使用 kubectl 從 Amazon S3 和 Amazon FSx 部署自訂微調模型 - Amazon SageMaker AI

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

使用 kubectl 從 Amazon S3 和 Amazon FSx 部署自訂微調模型

下列步驟說明如何使用 kubectl 將存放在 Amazon S3 或 Amazon FSx 上的模型部署至 Amazon SageMaker HyperPod 叢集。

下列指示包含在 Jupyter 筆記本環境中執行的程式碼儲存格和命令,例如 Amazon SageMaker Studio 或 SageMaker 筆記本執行個體。每個程式碼區塊代表應循序執行的筆記本儲存格。互動式元素,包括模型探索資料表和狀態監控命令,已針對筆記本介面進行最佳化,在其他環境中可能無法正常運作。在繼續之前,請確定您能夠存取具有必要 AWS 許可的筆記本環境。

先決條件

確認您已在 Amazon SageMaker HyperPod 叢集上設定推論功能。如需詳細資訊,請參閱設定 HyperPod 叢集以進行模型部署

設定和組態

將所有預留位置值取代為您的實際資源識別符。

  1. 初始化您的叢集名稱。這可識別要部署模型的 HyperPod 叢集。

    # Specify your hyperpod cluster name here hyperpod_cluster_name="<Hyperpod_cluster_name>" # NOTE: For sample deployment, we use g5.8xlarge for deepseek-r1 1.5b model which has sufficient memory and GPU instance_type="ml.g5.8xlarge"
  2. 初始化叢集命名空間。您的叢集管理員應該已在命名空間中建立 Hyperpod-inference 服務帳戶。

    cluster_namespace="<namespace>"
  3. 定義協助程式方法來建立 YAML 檔案以進行部署

    下列協助程式函數會產生部署模型所需的 Kubernetes YAML 組態檔案。此函數會根據您的模型是存放在 Amazon S3 還是 Amazon FSx 上,自動處理儲存體特定的組態,來建立不同的 YAML 結構。在接下來的區段中,您將使用此函數來產生所選儲存後端的部署檔案。

    def generate_inferenceendpointconfig_yaml(deployment_name, model_id, namespace, instance_type, output_file_path, region, tls_certificate_s3_location, model_location, sagemaker_endpoint_name, fsxFileSystemId="", isFsx=False, s3_bucket=None): """ Generate a InferenceEndpointConfig YAML file for S3 storage with the provided parameters. Args: deployment_name (str): The deployment name model_id (str): The model ID namespace (str): The namespace instance_type (str): The instance type output_file_path (str): Path where the YAML file will be saved region (str): Region where bucket exists tls_certificate_s3_location (str): S3 location for TLS certificate model_location (str): Location of the model sagemaker_endpoint_name (str): Name of the SageMaker endpoint fsxFileSystemId (str): FSx filesystem ID (optional) isFsx (bool): Whether to use FSx storage (optional) s3_bucket (str): S3 bucket where model exists (optional, only needed when isFsx is False) """ # Create the YAML structure model_config = { "apiVersion": "inference.sagemaker.aws.amazon.com/v1alpha1", "kind": "InferenceEndpointConfig", "metadata": { "name": deployment_name, "namespace": namespace }, "spec": { "modelName": model_id, "endpointName": sagemaker_endpoint_name, "invocationEndpoint": "invocations", "instanceType": instance_type, "modelSourceConfig": {}, "worker": { "resources": { "limits": { "nvidia.com/gpu": 1, }, "requests": { "nvidia.com/gpu": 1, "cpu": "30000m", "memory": "100Gi" } }, "image": "763104351884.dkr.ecr.us-east-2.amazonaws.com/huggingface-pytorch-tgi-inference:2.4.0-tgi2.3.1-gpu-py311-cu124-ubuntu22.04-v2.0", "modelInvocationPort": { "containerPort": 8080, "name": "http" }, "modelVolumeMount": { "name": "model-weights", "mountPath": "/opt/ml/model" }, "environmentVariables": [ { "name": "HF_MODEL_ID", "value": "/opt/ml/model" }, { "name": "SAGEMAKER_PROGRAM", "value": "inference.py", }, { "name": "SAGEMAKER_SUBMIT_DIRECTORY", "value": "/opt/ml/model/code", }, { "name": "MODEL_CACHE_ROOT", "value": "/opt/ml/model" }, { "name": "SAGEMAKER_ENV", "value": "1", } ] }, "tlsConfig": { "tlsCertificateOutputS3Uri": tls_certificate_s3_location, } }, } if (not isFsx): if s3_bucket is None: raise ValueError("s3_bucket is required when isFsx is False") model_config["spec"]["modelSourceConfig"] = { "modelSourceType": "s3", "s3Storage": { "bucketName": s3_bucket, "region": region, }, "modelLocation": model_location } else: model_config["spec"]["modelSourceConfig"] = { "modelSourceType": "fsx", "fsxStorage": { "fileSystemId": fsxFileSystemId, }, "modelLocation": model_location } # Write to YAML file with open(output_file_path, 'w') as file: yaml.dump(model_config, file, default_flow_style=False) print(f"YAML file created successfully at: {output_file_path}")

從 Amazon S3 或 Amazon FSx 部署您的模型

Stage the model to Amazon S3
  1. 建立 Amazon S3 儲存貯體以存放您的模型成品。S3 儲存貯體必須與 HyperPod 叢集位於相同的區域。

    s3_client = boto3.client('s3', region_name=region_name, config=boto3_config) base_name = "hyperpod-inference-s3-beta" def get_account_id(): sts = boto3.client('sts') return sts.get_caller_identity()["Account"] account_id = get_account_id() s3_bucket = f"{base_name}-{account_id}" try: s3_client.create_bucket( Bucket=s3_bucket, CreateBucketConfiguration={"LocationConstraint": region_name} ) print(f"Bucket '{s3_bucket}' is created successfully.") except botocore.exceptions.ClientError as e: error_code = e.response["Error"]["Code"] if error_code in ("BucketAlreadyExists", "BucketAlreadyOwnedByYou"): print(f"Bucket '{s3_bucket}' already exists. Skipping creation.") else: raise # Re-raise unexpected exceptions
  2. 取得部署 YAML 以從 S3 儲存貯體資料部署模型。

    # Get current time in format suitable for endpoint name current_time = datetime.now().strftime("%Y%m%d%H%M%S") model_id = "deepseek15b" ## Can be a name of your choice deployment_name = f"{model_id}-{current_time}" model_location = "deepseek15b" ## This is the folder on your s3 file where the model is located sagemaker_endpoint_name=f"{model_id}-{current_time}" output_file_path=f"inferenceendpointconfig-s3-model-{model_id}.yaml" generate_inferenceendpointconfig_yaml( deployment_name=deployment_name, model_id=model_id, model_location=model_location, namespace=cluster_namespace, instance_type=instance_type, output_file_path=output_file_path, sagemaker_endpoint_name=sagemaker_endpoint_name, s3_bucket=s3_bucket, region=region_name, tls_certificate_s3_location=tls_certificate_s3_location ) os.environ["INFERENCE_ENDPOINT_CONFIG_YAML_FILE_PATH"]=output_file_path os.environ["MODEL_ID"]=model_id
Stage the model to Amazon FSx
  1. (選用) 建立 FSx 磁碟區。此步驟是選用的,因為您現有的 FSx 檔案系統可能具有與您想要使用的 HyperPod 叢集相同的 VPC、安全群組和子網路 ID。

    # Initialize the subnet ID and Security Group for FSx. These should be the same as that of the HyperPod cluster. SUBNET_ID = "<HyperPod-subnet-id>" SECURITY_GROUP_ID = "<HyperPod-security-group-id>" # Configuration CONFIG = { 'SUBNET_ID': SUBNET_ID, 'SECURITY_GROUP_ID': SECURITY_GROUP_ID, 'STORAGE_CAPACITY': 1200, 'DEPLOYMENT_TYPE': 'PERSISTENT_2', 'THROUGHPUT': 250, 'COMPRESSION_TYPE': 'LZ4', 'LUSTRE_VERSION': '2.15' } JUMPSTART_MODEL_LOCATION_ON_S3 = "s3://jumpstart-cache-prod-us-east-2/deepseek-llm/deepseek-llm-r1-distill-qwen-1-5b/artifacts/inference-prepack/v2.0.0/" # Create FSx client fsx = boto3.client('fsx') # Create FSx for Lustre file system response = fsx.create_file_system( FileSystemType='LUSTRE', FileSystemTypeVersion=CONFIG['LUSTRE_VERSION'], StorageCapacity=CONFIG['STORAGE_CAPACITY'], SubnetIds=[CONFIG['SUBNET_ID']], SecurityGroupIds=[CONFIG['SECURITY_GROUP_ID']], LustreConfiguration={ 'DeploymentType': CONFIG['DEPLOYMENT_TYPE'], 'PerUnitStorageThroughput': CONFIG['THROUGHPUT'], 'DataCompressionType': CONFIG['COMPRESSION_TYPE'], } ) # Get the file system ID file_system_id = response['FileSystem']['FileSystemId'] print(f"Creating FSx filesystem with ID: {file_system_id}") print(f"In subnet: {CONFIG['SUBNET_ID']}") print(f"With security group: {CONFIG['SECURITY_GROUP_ID']}") # Wait for the file system to become available while True: response = fsx.describe_file_systems(FileSystemIds=[file_system_id]) status = response['FileSystems'][0]['Lifecycle'] if status == 'AVAILABLE': break print(f"Waiting for file system to become available... Current status: {status}") time.sleep(30) dns_name = response['FileSystems'][0]['DNSName'] mount_name = response['FileSystems'][0]['LustreConfiguration']['MountName'] # Print the file system details print("\nFile System Details:") print(f"File System ID: {file_system_id}") print(f"DNS Name: {dns_name}") print(f"Mount Name: {mount_name}")
  2. (選用) 掛載 FSx 並將資料從 S3 複製到 FSx。此步驟是選用的,因為您的模型資料可能已存在於 FSx 檔案系統中。只有在您想要將資料從 S3 複製到 FSx 時,才需要此步驟。

    注意

    將 file_system_id、dns_name 和 mount_name 的值取代為您的 FSX IN CASE,而不使用上一步的 fsx 和您自己的 FSX。

    ## NOTE: Replace values of file_system_id, dns_name, and mount_name with your FSx in case you are not using the FSx filesystem from the previous step and using your own FSx filesystem. # file_system_id = response['FileSystems'][0]['FileSystemId'] # dns_name = response['FileSystems'][0]['DNSName'] # mount_name = response['FileSystems'][0]['LustreConfiguration']['MountName'] # print(f"File System ID: {file_system_id}") # print(f"DNS Name: {dns_name}") # print(f"Mount Name: {mount_name}") # FSx file system details mount_point = f'/mnt/fsx_{file_system_id}' # This will create something like /mnt/fsx_20240317_123456 print(f"Creating mount point at: {mount_point}") # Create mount directory if it doesn't exist !sudo mkdir -p {mount_point} # Mount the FSx Lustre file system mount_command = f"sudo mount -t lustre {dns_name}@tcp:/{mount_name} {mount_point}" !{mount_command} # Verify the mount !df -h | grep fsx print(f"File system mounted at {mount_point}") !sudo chmod 777 {mount_point} !aws s3 cp $JUMPSTART_MODEL_LOCATION_ON_S3 $mount_point/deepseek-1-5b --recursive !ls $mount_point !sudo umount {mount_point} !sudo rm -rf {mount_point}
  3. 取得部署 YAML 以從 FSx 資料部署模型。

    # Get current time in format suitable for endpoint name current_time = datetime.now().strftime("%Y%m%d%H%M%S") model_id = "deepseek15b" ## Can be a name of your choice deployment_name = f"{model_id}-{current_time}" model_location = "deepseek-1-5b" ## This is the folder on your s3 file where the model is located sagemaker_endpoint_name=f"{model_id}-{current_time}" output_file_path=f"inferenceendpointconfig-fsx-model-{model_id}.yaml" generate_inferenceendpointconfig_yaml( deployment_name=deployment_name, model_id=model_id, model_location=model_location, namespace=cluster_namespace, instance_type=instance_type, output_file_path=output_file_path, region=region_name, tls_certificate_s3_location=tls_certificate_s3_location, sagemaker_endpoint_name=sagemaker_endpoint_name, fsxFileSystemId=file_system_id, isFsx=True ) os.environ["INFERENCE_ENDPOINT_CONFIG_YAML_FILE_PATH"]=output_file_path os.environ["MODEL_ID"]=model_id
將模型部署到您的叢集
  1. 從 HyperPod 叢集 ARN 取得 Amazon EKS 叢集名稱,以進行 kubectl 身分驗證。

    cluster_arn = !aws sagemaker describe-cluster --cluster-name $hyperpod_cluster_name --query "Orchestrator.Eks.ClusterArn" --region $region_name cluster_name = cluster_arn[0].strip('"').split('/')[-1] print(cluster_name)
  2. 設定 kubectl 以使用 AWS 登入資料向 Hyperpod EKS 叢集進行身分驗證

    !aws eks update-kubeconfig --name $cluster_name --region $region_name
  3. 部署您的InferenceEndpointConfig模型。

    !kubectl apply -f $INFERENCE_ENDPOINT_CONFIG_YAML_FILE_PATH

驗證部署的狀態

  1. 檢查模型是否已成功部署。

    !kubectl describe InferenceEndpointConfig $deployment_name -n $cluster_namespace

    此命令會傳回類似以下的輸出:

    Name:                             deepseek15b-20250624043033
    Reason:                           NativeDeploymentObjectFound
    Status:
      Conditions:
        Last Transition Time:  2025-07-10T18:39:51Z
        Message:               Deployment, ALB Creation or SageMaker endpoint registration creation for model is in progress
        Reason:                InProgress
        Status:                True
        Type:                  DeploymentInProgress
        Last Transition Time:  2025-07-10T18:47:26Z
        Message:               Deployment and SageMaker endpoint registration for model have been created successfully
        Reason:                Success
        Status:                True
        Type:                  DeploymentComplete
  2. 檢查端點是否已成功建立。

    !kubectl describe SageMakerEndpointRegistration $sagemaker_endpoint_name -n $cluster_namespace

    此命令會傳回類似以下的輸出:

    Name:         deepseek15b-20250624043033
    Namespace:    ns-team-a
    Kind:         SageMakerEndpointRegistration
    
    Status:
      Conditions:
        Last Transition Time:  2025-06-24T04:33:42Z
        Message:               Endpoint created.
        Status:                True
        Type:                  EndpointCreated
        State:                 CreationCompleted
  3. 測試部署的端點以確認其正常運作。此步驟確認您的模型已成功部署,並且可以處理推論請求。

    import boto3 prompt = "{\"inputs\": \"How tall is Mt Everest?\"}}" runtime_client = boto3.client('sagemaker-runtime', region_name=region_name, config=boto3_config) response = runtime_client.invoke_endpoint( EndpointName=sagemaker_endpoint_name, ContentType="application/json", Body=prompt ) print(response["Body"].read().decode())
    [{"generated_text":"As of the last update in July 2024, Mount Everest stands at a height of **8,850 meters** (29,029 feet) above sea level. The exact elevation can vary slightly due to changes caused by tectonic activity and the melting of ice sheets."}]

管理您的部署

完成部署測試後,請使用下列命令來清理資源。

注意

在繼續之前,請確認您不再需要部署的模型或儲存的資料。

清除您的資源
  1. 刪除推論部署和相關聯的 Kubernetes 資源。這會停止執行中的模型容器,並移除 SageMaker 端點。

    !kubectl delete inferenceendpointconfig.inference.sagemaker.aws.amazon.com/$deployment_name
  2. (選用) 刪除 FSx 磁碟區。

    try: # Delete the file system response = fsx.delete_file_system( FileSystemId=file_system_id ) print(f"Deleting FSx filesystem: {file_system_id}") # Optional: Wait for deletion to complete while True: try: response = fsx.describe_file_systems(FileSystemIds=[file_system_id]) status = response['FileSystems'][0]['Lifecycle'] print(f"Current status: {status}") time.sleep(30) except fsx.exceptions.FileSystemNotFound: print("File system deleted successfully") break except Exception as e: print(f"Error deleting file system: {str(e)}")
  3. 確認已成功完成清除。

    # Check that Kubernetes resources are removed kubectl get pods,svc,deployment,InferenceEndpointConfig,sagemakerendpointregistration -n $cluster_namespace # Verify SageMaker endpoint is deleted (should return error or empty) aws sagemaker describe-endpoint --endpoint-name $sagemaker_endpoint_name --region $region_name
故障診斷
  1. 檢查 Kubernetes 部署狀態。

    !kubectl describe deployment $deployment_name -n $cluster_namespace
  2. 檢查 InferenceEndpointConfig 狀態,以查看高階部署狀態和任何組態問題。

    kubectl describe InferenceEndpointConfig $deployment_name -n $cluster_namespace
  3. 檢查所有 Kubernetes 物件的狀態。全面檢視命名空間中所有相關 Kubernetes 資源。這可讓您快速概觀正在執行的項目,以及可能遺漏的項目。

    !kubectl get pods,svc,deployment,InferenceEndpointConfig,sagemakerendpointregistration -n $cluster_namespace