本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
編譯模型 (AWS Command Line Interface)
本節說明如何使用 AWS Command Line Interface (CLI) 管理機器學習模型的 Amazon SageMaker Neo 編譯任務。您可以建立、描述、停止和列出編譯任務。
建立編譯任務
使用 CreateCompilationJob API 作業,您可以指定資料輸入格式、儲存模型用的 S3 儲存貯體、寫入編譯模型用的 S3 儲存貯體,以及目標硬體裝置或平台。
下表說明如何根據目標是裝置或平台設定 CreateCompilationJob API。
- Device Example
-
{
"CompilationJobName": "neo-compilation-job-demo",
"RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-ExecutionRole-yyyymmddThhmmss",
"InputConfig": {
"S3Uri": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/train",
"DataInputConfig": "{'data': [1,3,1024,1024]}",
"Framework": "MXNET"
},
"OutputConfig": {
"S3OutputLocation": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/compile",
# A target device specification example for a ml_c5 instance family
"TargetDevice": "ml_c5"
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 300
}
}
如果您使用 PyTorch 架構訓練模型,且目標裝置是 ml_* 目標,則可以選擇性指定與 FrameworkVersion 欄位搭配使用的架構版本。
{
"CompilationJobName": "neo-compilation-job-demo",
"RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-ExecutionRole-yyyymmddThhmmss",
"InputConfig": {
"S3Uri": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/train",
"DataInputConfig": "{'data': [1,3,1024,1024]}",
"Framework": "PYTORCH",
"FrameworkVersion": "1.6"
},
"OutputConfig": {
"S3OutputLocation": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/compile",
# A target device specification example for a ml_c5 instance family
"TargetDevice": "ml_c5",
# When compiling for ml_* instances using PyTorch framework, use the "CompilerOptions" field in
# OutputConfig to provide the correct data type ("dtype") of the model’s input. Default assumed is "float32"
"CompilerOptions": "{'dtype': 'long'}"
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 300
}
}
- Platform Example
-
{
"CompilationJobName": "neo-test-compilation-job",
"RoleArn": "arn:aws:iam::<your-account>:role/service-role/AmazonSageMaker-ExecutionRole-yyyymmddThhmmss",
"InputConfig": {
"S3Uri": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/train",
"DataInputConfig": "{'data': [1,3,1024,1024]}",
"Framework": "MXNET"
},
"OutputConfig": {
"S3OutputLocation": "s3://<your-bucket>/sagemaker/neo-compilation-job-demo-data/compile",
# A target platform configuration example for a p3.2xlarge instance
"TargetPlatform": {
"Os": "LINUX",
"Arch": "X86_64",
"Accelerator": "NVIDIA"
},
"CompilerOptions": "{'cuda-ver': '10.0', 'trt-ver': '6.0.1', 'gpu-code': 'sm_70'}"
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 300
}
}
若為 OutputConfig API 作業,TargetDevice 和 TargetPlatform API 作業互斥。您必須選擇兩個選項之一。
若要取決於架構尋找 DataInputConfig 的 JSON 字串範例,請參閱 Neo 期望的輸入資料形狀。
如需設定組態的更多相關資訊,請參閱 SageMaker API 參考資料中的 InputConfig、OutputConfig 與 TargetPlatform API 作業。
設定 JSON 檔案之後,執行下列命令建立編譯任務:
aws sagemaker create-compilation-job \
--cli-input-json file://job.json \
--region us-west-2
# You should get CompilationJobArn
執行下列命令,描述編譯任務:
aws sagemaker describe-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2
執行下列命令,停止編譯任務:
aws sagemaker stop-compilation-job \
--compilation-job-name $JOB_NM \
--region us-west-2
# There is no output for compilation-job operation
執行下列命令,列出編譯任務:
aws sagemaker list-compilation-jobs \
--region us-west-2