Working with layers for Node.js Lambda functions - AWS Lambda

Working with layers for Node.js Lambda functions

Use Lambda layers to package code and dependencies that you want to reuse across multiple functions. Layers usually contain library dependencies, a custom runtime, or configuration files. Creating a layer involves three general steps:

  1. Package your layer content. This means creating a .zip file archive that contains the dependencies you want to use in your functions.

  2. Create the layer in Lambda.

  3. Add the layer to your functions.

Package your layer content

To create a layer, bundle your packages into a .zip file archive that meets the following requirements:

  • Build the layer using the same Node.js version that you plan to use for the Lambda function. For example, if you build your layer using Node.js 22, use the Node.js 22 runtime for your function.

  • Your layer's .zip file must use one of these directory structures:

    • nodejs/node_modules

    • nodejs/nodeX/node_modules (where X is your Node.js version, for example node22)

    For more information, see Layer paths for each Lambda runtime.

  • The packages in your layer must be compatible with Linux. Lambda functions run on Amazon Linux.

  • If your layer includes native binaries or executable files, they must target the same architecture (x86_64 or arm64) as your function.

You can create layers that contain either third-party Node.js libraries installed with npm (such as axios or lodash) or your own JavaScript modules.

To create a layer using npm packages
  1. Create the required directory structure and install packages directly into it:

    mkdir -p nodejs npm install --prefix nodejs lodash axios

    This command installs the packages directly into the nodejs/node_modules directory, which is the structure that Lambda requires.

    Note

    For packages with native dependencies or binary components (such as sharp or bcrypt), ensure that they're compatible with the Lambda Linux environment and your function's architecture. You might need to use the --platform flag:

    npm install --prefix nodejs --platform=linux --arch=x64 sharp

    For more complex native dependencies, you might need to compile them in a Linux environment that matches the Lambda runtime. You can use Docker for this purpose.

  2. Zip the layer content:

    Linux/macOS
    zip -r layer.zip nodejs/
    PowerShell
    Compress-Archive -Path .\nodejs -DestinationPath .\layer.zip

    The directory structure of your .zip file should look like this:

    nodejs/
    ├── package.json
    ├── package-lock.json
    └── node_modules/
        ├── lodash/
        ├── axios/
        └── (dependencies of the other packages)
    Note
    • Make sure your .zip file includes the nodejs directory at the root level with node_modules inside it. This structure ensures that Lambda can locate and import your packages.

    • The package.json and package-lock.json files in the nodejs/ directory are used by npm for dependency management but are not required by Lambda for layer functionality. Each installed package already contains its own package.json file that defines how Lambda imports the package.

To create a layer using your own code
  1. Create the required directory structure for your layer:

    mkdir -p nodejs/node_modules/validator cd nodejs/node_modules/validator
  2. Create a package.json file for your custom module to define how it should be imported:

    Example nodejs/node_modules/validator/package.json
    { "name": "validator", "version": "1.0.0", "type": "module", "main": "index.mjs" }
  3. Create your JavaScript module file:

    Example nodejs/node_modules/validator/index.mjs
    export function validateOrder(orderData) { // Validates an order and returns formatted data const requiredFields = ['productId', 'quantity']; // Check required fields const missingFields = requiredFields.filter(field => !(field in orderData)); if (missingFields.length > 0) { throw new Error(`Missing required fields: ${missingFields.join(', ')}`); } // Validate quantity const quantity = orderData.quantity; if (!Number.isInteger(quantity) || quantity < 1) { throw new Error('Quantity must be a positive integer'); } // Format and return the validated data return { productId: String(orderData.productId), quantity: quantity, shippingPriority: orderData.priority || 'standard' }; } export function formatResponse(statusCode, body) { // Formats the API response return { statusCode: statusCode, body: JSON.stringify(body) }; }
  4. Zip the layer content:

    Linux/macOS
    zip -r layer.zip nodejs/
    PowerShell
    Compress-Archive -Path .\nodejs -DestinationPath .\layer.zip

    The directory structure of your .zip file should look like this:

    nodejs/              
    └── node_modules/
        └── validator/
            ├── package.json
            └── index.mjs
  5. In your function, import and use the modules. Example:

    import { validateOrder, formatResponse } from 'validator'; export const handler = async (event) => { try { // Parse the order data from the event body const orderData = JSON.parse(event.body || '{}'); // Validate and format the order const validatedOrder = validateOrder(orderData); return formatResponse(200, { message: 'Order validated successfully', order: validatedOrder }); } catch (error) { if (error instanceof Error && error.message.includes('Missing required fields')) { return formatResponse(400, { error: error.message }); } return formatResponse(500, { error: 'Internal server error' }); } };

    You can use the following test event to invoke the function:

    { "body": "{\"productId\": \"ABC123\", \"quantity\": 2, \"priority\": \"express\"}" }

    Expected response:

    { "statusCode": 200, "body": "{\"message\":\"Order validated successfully\",\"order\":{\"productId\":\"ABC123\",\"quantity\":2,\"shippingPriority\":\"express\"}}" }

Create the layer in Lambda

You can publish your layer using either the AWS CLI or the Lambda console.

AWS CLI

Run the publish-layer-version AWS CLI command to create the Lambda layer:

aws lambda publish-layer-version --layer-name my-layer --zip-file fileb://layer.zip --compatible-runtimes nodejs22.x

The compatible runtimes parameter is optional. When specified, Lambda uses this parameter to filter layers in the Lambda console.

Console
To create a layer (console)
  1. Open the Layers page of the Lambda console.

  2. Choose Create layer.

  3. Choose Upload a .zip file, and then upload the .zip archive that you created earlier.

  4. (Optional) For Compatible runtimes, choose the Node.js runtime that corresponds to the Node.js version you used to build your layer.

  5. Choose Create.

Add the layer to your function

AWS CLI

To attach the layer to your function, run the update-function-configuration AWS CLI command. For the --layers parameter, use the layer ARN. The ARN must specify the version (for example, arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1). For more information, see Layers and layer versions.

aws lambda update-function-configuration --function-name my-function --cli-binary-format raw-in-base64-out --layers "arn:aws:lambda:us-east-1:123456789012:layer:my-layer:1"

The cli-binary-format option is required if you're using AWS CLI version 2. To make this the default setting, run aws configure set cli-binary-format raw-in-base64-out. For more information, see AWS CLI supported global command line options in the AWS Command Line Interface User Guide for Version 2.

Console
To add a layer to a function
  1. Open the Functions page of the Lambda console.

  2. Choose the function.

  3. Scroll down to the Layers section, and then choose Add a layer.

  4. Under Choose a layer, select Custom layers, and then choose your layer.

    Note

    If you didn't add a compatible runtime when you created the layer, your layer won't be listed here. You can specify the layer ARN instead.

  5. Choose Add.

Sample app

For more examples of how to use Lambda layers, see the layer-nodejs sample application in the AWS Lambda Developer Guide GitHub repository. This application includes a layer that contains the lodash library. After creating the layer, you can deploy and invoke the corresponding function to confirm that the layer works as expected.