CfnUserProfilePropsMixin
- class aws_cdk.mixins_preview.aws_sagemaker.mixins.CfnUserProfilePropsMixin(props, *, strategy=None)
Bases:
MixinCreates a user profile.
A user profile represents a single user within a domain, and is the main way to reference a “person” for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from IAM Identity Center , a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user’s private Amazon Elastic File System (EFS) home directory. .. epigraph:
If you're using IAM Identity Center authentication, a user in IAM Identity Center , or a group in IAM Identity Center containing that user, must be assigned to the Amazon SageMaker Studio application from the IAM Identity Center Console to create a user profile. For more information about application assignment, see `Assign user access <https://docs.aws.amazon.com/singlesignon/latest/userguide/assignuserstoapp.html>`_ . After assignment is complete, a user profile can be created for that user in IAM Identity Center with AWS CloudFormation.
- See:
- CloudformationResource:
AWS::SageMaker::UserProfile
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins cfn_user_profile_props_mixin = sagemaker_mixins.CfnUserProfilePropsMixin(sagemaker_mixins.CfnUserProfileMixinProps( domain_id="domainId", single_sign_on_user_identifier="singleSignOnUserIdentifier", single_sign_on_user_value="singleSignOnUserValue", tags=[CfnTag( key="key", value="value" )], user_profile_name="userProfileName", user_settings=sagemaker_mixins.CfnUserProfilePropsMixin.UserSettingsProperty( auto_mount_home_efs="autoMountHomeEfs", code_editor_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.CodeEditorAppSettingsProperty( app_lifecycle_management=sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), built_in_lifecycle_config_arn="builtInLifecycleConfigArn", custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), custom_file_system_configs=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomFileSystemConfigProperty( efs_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.EFSFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" ), f_sx_lustre_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.FSxLustreFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" ), s3_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.S3FileSystemConfigProperty( mount_path="mountPath", s3_uri="s3Uri" ) )], custom_posix_user_config=sagemaker_mixins.CfnUserProfilePropsMixin.CustomPosixUserConfigProperty( gid=123, uid=123 ), default_landing_uri="defaultLandingUri", execution_role="executionRole", jupyter_lab_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.JupyterLabAppSettingsProperty( app_lifecycle_management=sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), built_in_lifecycle_config_arn="builtInLifecycleConfigArn", code_repositories=[sagemaker_mixins.CfnUserProfilePropsMixin.CodeRepositoryProperty( repository_url="repositoryUrl" )], custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), jupyter_server_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.JupyterServerAppSettingsProperty( default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), kernel_gateway_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.KernelGatewayAppSettingsProperty( custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), r_studio_server_pro_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.RStudioServerProAppSettingsProperty( access_status="accessStatus", user_group="userGroup" ), security_groups=["securityGroups"], sharing_settings=sagemaker_mixins.CfnUserProfilePropsMixin.SharingSettingsProperty( notebook_output_option="notebookOutputOption", s3_kms_key_id="s3KmsKeyId", s3_output_path="s3OutputPath" ), space_storage_settings=sagemaker_mixins.CfnUserProfilePropsMixin.DefaultSpaceStorageSettingsProperty( default_ebs_storage_settings=sagemaker_mixins.CfnUserProfilePropsMixin.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 ) ), studio_web_portal="studioWebPortal", studio_web_portal_settings=sagemaker_mixins.CfnUserProfilePropsMixin.StudioWebPortalSettingsProperty( hidden_app_types=["hiddenAppTypes"], hidden_instance_types=["hiddenInstanceTypes"], hidden_ml_tools=["hiddenMlTools"], hidden_sage_maker_image_version_aliases=[sagemaker_mixins.CfnUserProfilePropsMixin.HiddenSageMakerImageProperty( sage_maker_image_name="sageMakerImageName", version_aliases=["versionAliases"] )] ) ) ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::SageMaker::UserProfile.- Parameters:
props (
Union[CfnUserProfileMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['domainId', 'singleSignOnUserIdentifier', 'singleSignOnUserValue', 'tags', 'userProfileName', 'userSettings']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
AppLifecycleManagementProperty
- class CfnUserProfilePropsMixin.AppLifecycleManagementProperty(*, idle_settings=None)
Bases:
objectSettings that are used to configure and manage the lifecycle of Amazon SageMaker Studio applications.
- Parameters:
idle_settings (
Union[IResolvable,IdleSettingsProperty,Dict[str,Any],None]) – Settings related to idle shutdown of Studio applications.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins app_lifecycle_management_property = sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) )
Attributes
- idle_settings
Settings related to idle shutdown of Studio applications.
CodeEditorAppSettingsProperty
- class CfnUserProfilePropsMixin.CodeEditorAppSettingsProperty(*, app_lifecycle_management=None, built_in_lifecycle_config_arn=None, custom_images=None, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
objectThe Code Editor application settings.
For more information about Code Editor, see Get started with Code Editor in Amazon SageMaker .
- Parameters:
app_lifecycle_management (
Union[IResolvable,AppLifecycleManagementProperty,Dict[str,Any],None]) – Settings that are used to configure and manage the lifecycle of CodeEditor applications.built_in_lifecycle_config_arn (
Optional[str]) – The lifecycle configuration that runs before the default lifecycle configuration. It can override changes made in the default lifecycle configuration.custom_images (
Union[IResolvable,Sequence[Union[IResolvable,CustomImageProperty,Dict[str,Any]]],None]) – A list of custom SageMaker images that are configured to run as a Code Editor app.default_resource_spec (
Union[IResolvable,ResourceSpecProperty,Dict[str,Any],None]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the Code Editor app.lifecycle_config_arns (
Optional[Sequence[str]]) – The Amazon Resource Name (ARN) of the Code Editor application lifecycle configuration.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins code_editor_app_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.CodeEditorAppSettingsProperty( app_lifecycle_management=sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), built_in_lifecycle_config_arn="builtInLifecycleConfigArn", custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- app_lifecycle_management
Settings that are used to configure and manage the lifecycle of CodeEditor applications.
- built_in_lifecycle_config_arn
The lifecycle configuration that runs before the default lifecycle configuration.
It can override changes made in the default lifecycle configuration.
- custom_images
A list of custom SageMaker images that are configured to run as a Code Editor app.
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the Code Editor app.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the Code Editor application lifecycle configuration.
CodeRepositoryProperty
- class CfnUserProfilePropsMixin.CodeRepositoryProperty(*, repository_url=None)
Bases:
objectA Git repository that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
- Parameters:
repository_url (
Optional[str]) – The URL of the Git repository.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins code_repository_property = sagemaker_mixins.CfnUserProfilePropsMixin.CodeRepositoryProperty( repository_url="repositoryUrl" )
Attributes
- repository_url
The URL of the Git repository.
CustomFileSystemConfigProperty
- class CfnUserProfilePropsMixin.CustomFileSystemConfigProperty(*, efs_file_system_config=None, f_sx_lustre_file_system_config=None, s3_file_system_config=None)
Bases:
objectThe settings for assigning a custom file system to a user profile or space for an Amazon SageMaker AI Domain.
Permitted users can access this file system in Amazon SageMaker AI Studio.
- Parameters:
efs_file_system_config (
Union[IResolvable,EFSFileSystemConfigProperty,Dict[str,Any],None]) – The settings for a custom Amazon EFS file system.f_sx_lustre_file_system_config (
Union[IResolvable,FSxLustreFileSystemConfigProperty,Dict[str,Any],None]) – The settings for a custom Amazon FSx for Lustre file system.s3_file_system_config (
Union[IResolvable,S3FileSystemConfigProperty,Dict[str,Any],None]) – Configuration settings for a custom Amazon S3 file system.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins custom_file_system_config_property = sagemaker_mixins.CfnUserProfilePropsMixin.CustomFileSystemConfigProperty( efs_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.EFSFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" ), f_sx_lustre_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.FSxLustreFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" ), s3_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.S3FileSystemConfigProperty( mount_path="mountPath", s3_uri="s3Uri" ) )
Attributes
- efs_file_system_config
The settings for a custom Amazon EFS file system.
- f_sx_lustre_file_system_config
The settings for a custom Amazon FSx for Lustre file system.
- s3_file_system_config
Configuration settings for a custom Amazon S3 file system.
CustomImageProperty
- class CfnUserProfilePropsMixin.CustomImageProperty(*, app_image_config_name=None, image_name=None, image_version_number=None)
Bases:
objectA custom SageMaker AI image.
For more information, see Bring your own SageMaker AI image .
- Parameters:
app_image_config_name (
Optional[str]) – The name of the AppImageConfig.image_name (
Optional[str]) – The name of the CustomImage. Must be unique to your account.image_version_number (
Union[int,float,None]) – The version number of the CustomImage.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins custom_image_property = sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )
Attributes
- app_image_config_name
The name of the AppImageConfig.
- image_name
The name of the CustomImage.
Must be unique to your account.
- image_version_number
The version number of the CustomImage.
CustomPosixUserConfigProperty
- class CfnUserProfilePropsMixin.CustomPosixUserConfigProperty(*, gid=None, uid=None)
Bases:
objectDetails about the POSIX identity that is used for file system operations.
- Parameters:
gid (
Union[int,float,None]) – The POSIX group ID.uid (
Union[int,float,None]) – The POSIX user ID.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins custom_posix_user_config_property = sagemaker_mixins.CfnUserProfilePropsMixin.CustomPosixUserConfigProperty( gid=123, uid=123 )
Attributes
- gid
The POSIX group ID.
DefaultEbsStorageSettingsProperty
- class CfnUserProfilePropsMixin.DefaultEbsStorageSettingsProperty(*, default_ebs_volume_size_in_gb=None, maximum_ebs_volume_size_in_gb=None)
Bases:
objectA collection of default EBS storage settings that apply to spaces created within a domain or user profile.
- Parameters:
default_ebs_volume_size_in_gb (
Union[int,float,None]) – The default size of the EBS storage volume for a space.maximum_ebs_volume_size_in_gb (
Union[int,float,None]) – The maximum size of the EBS storage volume for a space.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins default_ebs_storage_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 )
Attributes
- default_ebs_volume_size_in_gb
The default size of the EBS storage volume for a space.
- maximum_ebs_volume_size_in_gb
The maximum size of the EBS storage volume for a space.
DefaultSpaceStorageSettingsProperty
- class CfnUserProfilePropsMixin.DefaultSpaceStorageSettingsProperty(*, default_ebs_storage_settings=None)
Bases:
objectThe default storage settings for a space.
- Parameters:
default_ebs_storage_settings (
Union[IResolvable,DefaultEbsStorageSettingsProperty,Dict[str,Any],None]) – The default EBS storage settings for a space.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins default_space_storage_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.DefaultSpaceStorageSettingsProperty( default_ebs_storage_settings=sagemaker_mixins.CfnUserProfilePropsMixin.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 ) )
Attributes
- default_ebs_storage_settings
The default EBS storage settings for a space.
EFSFileSystemConfigProperty
- class CfnUserProfilePropsMixin.EFSFileSystemConfigProperty(*, file_system_id=None, file_system_path=None)
Bases:
objectThe settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker AI Domain.
- Parameters:
file_system_id (
Optional[str]) – The ID of your Amazon EFS file system.file_system_path (
Optional[str]) – The path to the file system directory that is accessible in Amazon SageMaker AI Studio. Permitted users can access only this directory and below.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins e_fSFile_system_config_property = sagemaker_mixins.CfnUserProfilePropsMixin.EFSFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" )
Attributes
- file_system_id
The ID of your Amazon EFS file system.
- file_system_path
The path to the file system directory that is accessible in Amazon SageMaker AI Studio.
Permitted users can access only this directory and below.
FSxLustreFileSystemConfigProperty
- class CfnUserProfilePropsMixin.FSxLustreFileSystemConfigProperty(*, file_system_id=None, file_system_path=None)
Bases:
objectThe settings for assigning a custom Amazon FSx for Lustre file system to a user profile or space for an Amazon SageMaker Domain.
- Parameters:
file_system_id (
Optional[str]) – The globally unique, 17-digit, ID of the file system, assigned by Amazon FSx for Lustre.file_system_path (
Optional[str]) – The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins f_sx_lustre_file_system_config_property = sagemaker_mixins.CfnUserProfilePropsMixin.FSxLustreFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" )
Attributes
- file_system_id
The globally unique, 17-digit, ID of the file system, assigned by Amazon FSx for Lustre.
- file_system_path
The path to the file system directory that is accessible in Amazon SageMaker Studio.
Permitted users can access only this directory and below.
IdleSettingsProperty
- class CfnUserProfilePropsMixin.IdleSettingsProperty(*, idle_timeout_in_minutes=None, lifecycle_management=None, max_idle_timeout_in_minutes=None, min_idle_timeout_in_minutes=None)
Bases:
objectSettings related to idle shutdown of Studio applications.
- Parameters:
idle_timeout_in_minutes (
Union[int,float,None]) – The time that SageMaker waits after the application becomes idle before shutting it down.lifecycle_management (
Optional[str]) – Indicates whether idle shutdown is activated for the application type.max_idle_timeout_in_minutes (
Union[int,float,None]) – The maximum value in minutes that custom idle shutdown can be set to by the user.min_idle_timeout_in_minutes (
Union[int,float,None]) – The minimum value in minutes that custom idle shutdown can be set to by the user.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins idle_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 )
Attributes
- idle_timeout_in_minutes
The time that SageMaker waits after the application becomes idle before shutting it down.
- lifecycle_management
Indicates whether idle shutdown is activated for the application type.
- max_idle_timeout_in_minutes
The maximum value in minutes that custom idle shutdown can be set to by the user.
- min_idle_timeout_in_minutes
The minimum value in minutes that custom idle shutdown can be set to by the user.
JupyterLabAppSettingsProperty
- class CfnUserProfilePropsMixin.JupyterLabAppSettingsProperty(*, app_lifecycle_management=None, built_in_lifecycle_config_arn=None, code_repositories=None, custom_images=None, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
objectThe settings for the JupyterLab application.
- Parameters:
app_lifecycle_management (
Union[IResolvable,AppLifecycleManagementProperty,Dict[str,Any],None]) – Indicates whether idle shutdown is activated for JupyterLab applications.built_in_lifecycle_config_arn (
Optional[str]) – The lifecycle configuration that runs before the default lifecycle configuration. It can override changes made in the default lifecycle configuration.code_repositories (
Union[IResolvable,Sequence[Union[IResolvable,CodeRepositoryProperty,Dict[str,Any]]],None]) – A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.custom_images (
Union[IResolvable,Sequence[Union[IResolvable,CustomImageProperty,Dict[str,Any]]],None]) – A list of custom SageMaker images that are configured to run as a JupyterLab app.default_resource_spec (
Union[IResolvable,ResourceSpecProperty,Dict[str,Any],None]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterLab app.lifecycle_config_arns (
Optional[Sequence[str]]) – The Amazon Resource Name (ARN) of the lifecycle configurations attached to the user profile or domain. To remove a lifecycle config, you must setLifecycleConfigArnsto an empty list.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins jupyter_lab_app_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.JupyterLabAppSettingsProperty( app_lifecycle_management=sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), built_in_lifecycle_config_arn="builtInLifecycleConfigArn", code_repositories=[sagemaker_mixins.CfnUserProfilePropsMixin.CodeRepositoryProperty( repository_url="repositoryUrl" )], custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- app_lifecycle_management
Indicates whether idle shutdown is activated for JupyterLab applications.
- built_in_lifecycle_config_arn
The lifecycle configuration that runs before the default lifecycle configuration.
It can override changes made in the default lifecycle configuration.
- code_repositories
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.
- custom_images
A list of custom SageMaker images that are configured to run as a JupyterLab app.
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterLab app.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the lifecycle configurations attached to the user profile or domain.
To remove a lifecycle config, you must set
LifecycleConfigArnsto an empty list.
JupyterServerAppSettingsProperty
- class CfnUserProfilePropsMixin.JupyterServerAppSettingsProperty(*, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
objectThe JupyterServer app settings.
- Parameters:
default_resource_spec (
Union[IResolvable,ResourceSpecProperty,Dict[str,Any],None]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app.lifecycle_config_arns (
Optional[Sequence[str]]) – The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, theDefaultResourceSpecparameter is also required. .. epigraph:: To remove a Lifecycle Config, you must setLifecycleConfigArnsto an empty list.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins jupyter_server_app_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.JupyterServerAppSettingsProperty( default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp.
If you use this parameter, the
DefaultResourceSpecparameter is also required. .. epigraph:To remove a Lifecycle Config, you must set ``LifecycleConfigArns`` to an empty list.
KernelGatewayAppSettingsProperty
- class CfnUserProfilePropsMixin.KernelGatewayAppSettingsProperty(*, custom_images=None, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
objectThe KernelGateway app settings.
- Parameters:
custom_images (
Union[IResolvable,Sequence[Union[IResolvable,CustomImageProperty,Dict[str,Any]]],None]) – A list of custom SageMaker AI images that are configured to run as a KernelGateway app. The maximum number of custom images are as follows. - On a domain level: 200 - On a space level: 5 - On a user profile level: 5default_resource_spec (
Union[IResolvable,ResourceSpecProperty,Dict[str,Any],None]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app. .. epigraph:: The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the AWS CLI or CloudFormation and the instance type parameter value is not passed.lifecycle_config_arns (
Optional[Sequence[str]]) – The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. .. epigraph:: To remove a Lifecycle Config, you must setLifecycleConfigArnsto an empty list.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins kernel_gateway_app_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.KernelGatewayAppSettingsProperty( custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- custom_images
A list of custom SageMaker AI images that are configured to run as a KernelGateway app.
The maximum number of custom images are as follows.
On a domain level: 200
On a space level: 5
On a user profile level: 5
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app.
The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the AWS CLI or CloudFormation and the instance type parameter value is not passed.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
To remove a Lifecycle Config, you must set
LifecycleConfigArnsto an empty list.
RStudioServerProAppSettingsProperty
- class CfnUserProfilePropsMixin.RStudioServerProAppSettingsProperty(*, access_status=None, user_group=None)
Bases:
objectA collection of settings that configure user interaction with the
RStudioServerProapp.- Parameters:
access_status (
Optional[str]) – Indicates whether the current user has access to theRStudioServerProapp.user_group (
Optional[str]) – The level of permissions that the user has within theRStudioServerProapp. This value defaults toUser. TheAdminvalue allows the user access to the RStudio Administrative Dashboard.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins r_studio_server_pro_app_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.RStudioServerProAppSettingsProperty( access_status="accessStatus", user_group="userGroup" )
Attributes
- access_status
Indicates whether the current user has access to the
RStudioServerProapp.
- user_group
The level of permissions that the user has within the
RStudioServerProapp.This value defaults to
User. TheAdminvalue allows the user access to the RStudio Administrative Dashboard.
ResourceSpecProperty
- class CfnUserProfilePropsMixin.ResourceSpecProperty(*, instance_type=None, lifecycle_config_arn=None, sage_maker_image_arn=None, sage_maker_image_version_arn=None)
Bases:
objectSpecifies the ARN’s of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.
When both
SageMakerImageVersionArnandSageMakerImageArnare passed,SageMakerImageVersionArnis used. Any updates toSageMakerImageArnwill not take effect ifSageMakerImageVersionArnalready exists in theResourceSpecbecauseSageMakerImageVersionArnalways takes precedence. To clear the value set forSageMakerImageVersionArn, passNoneas the value.- Parameters:
instance_type (
Optional[str]) – The instance type that the image version runs on. .. epigraph:: JupyterServer apps only support thesystemvalue. For KernelGateway apps , thesystemvalue is translated toml.t3.medium. KernelGateway apps also support all other values for available instance types.lifecycle_config_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.sage_maker_image_arn (
Optional[str]) – The ARN of the SageMaker AI image that the image version belongs to.sage_maker_image_version_arn (
Optional[str]) – The ARN of the image version created on the instance. To clear the value set forSageMakerImageVersionArn, passNoneas the value.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins resource_spec_property = sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" )
Attributes
- instance_type
The instance type that the image version runs on.
JupyterServer apps only support the
systemvalue.For KernelGateway apps , the
systemvalue is translated toml.t3.medium. KernelGateway apps also support all other values for available instance types.
- lifecycle_config_arn
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
- sage_maker_image_arn
The ARN of the SageMaker AI image that the image version belongs to.
- sage_maker_image_version_arn
The ARN of the image version created on the instance.
To clear the value set for
SageMakerImageVersionArn, passNoneas the value.
S3FileSystemConfigProperty
- class CfnUserProfilePropsMixin.S3FileSystemConfigProperty(*, mount_path=None, s3_uri=None)
Bases:
objectConfiguration for the custom Amazon S3 file system.
- Parameters:
mount_path (
Optional[str]) – The file system path where the Amazon S3 storage location will be mounted within the Amazon SageMaker Studio environment.s3_uri (
Optional[str]) – The Amazon S3 URI of the S3 file system configuration.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins s3_file_system_config_property = sagemaker_mixins.CfnUserProfilePropsMixin.S3FileSystemConfigProperty( mount_path="mountPath", s3_uri="s3Uri" )
Attributes
- mount_path
The file system path where the Amazon S3 storage location will be mounted within the Amazon SageMaker Studio environment.
- s3_uri
The Amazon S3 URI of the S3 file system configuration.
StudioWebPortalSettingsProperty
- class CfnUserProfilePropsMixin.StudioWebPortalSettingsProperty(*, hidden_app_types=None, hidden_instance_types=None, hidden_ml_tools=None, hidden_sage_maker_image_version_aliases=None)
Bases:
objectStudio settings.
If these settings are applied on a user level, they take priority over the settings applied on a domain level.
- Parameters:
hidden_app_types (
Optional[Sequence[str]]) – The Applications supported in Studio that are hidden from the Studio left navigation pane.hidden_instance_types (
Optional[Sequence[str]]) – The instance types you are hiding from the Studio user interface.hidden_ml_tools (
Optional[Sequence[str]]) – The machine learning tools that are hidden from the Studio left navigation pane.hidden_sage_maker_image_version_aliases (
Union[IResolvable,Sequence[Union[IResolvable,HiddenSageMakerImageProperty,Dict[str,Any]]],None]) – The version aliases you are hiding from the Studio user interface.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins studio_web_portal_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.StudioWebPortalSettingsProperty( hidden_app_types=["hiddenAppTypes"], hidden_instance_types=["hiddenInstanceTypes"], hidden_ml_tools=["hiddenMlTools"], hidden_sage_maker_image_version_aliases=[sagemaker_mixins.CfnUserProfilePropsMixin.HiddenSageMakerImageProperty( sage_maker_image_name="sageMakerImageName", version_aliases=["versionAliases"] )] )
Attributes
The Applications supported in Studio that are hidden from the Studio left navigation pane.
The instance types you are hiding from the Studio user interface.
The machine learning tools that are hidden from the Studio left navigation pane.
The version aliases you are hiding from the Studio user interface.
UserSettingsProperty
- class CfnUserProfilePropsMixin.UserSettingsProperty(*, auto_mount_home_efs=None, code_editor_app_settings=None, custom_file_system_configs=None, custom_posix_user_config=None, default_landing_uri=None, execution_role=None, jupyter_lab_app_settings=None, jupyter_server_app_settings=None, kernel_gateway_app_settings=None, r_studio_server_pro_app_settings=None, security_groups=None, sharing_settings=None, space_storage_settings=None, studio_web_portal=None, studio_web_portal_settings=None)
Bases:
objectA collection of settings that apply to users of Amazon SageMaker Studio.
These settings are specified when the CreateUserProfile API is called, and as
DefaultUserSettingswhen the CreateDomain API is called.SecurityGroupsis aggregated when specified in both calls. For all other settings inUserSettings, the values specified inCreateUserProfiletake precedence over those specified inCreateDomain.- Parameters:
auto_mount_home_efs (
Optional[str]) – Indicates whether auto-mounting of an EFS volume is supported for the user profile. TheDefaultAsDomainvalue is only supported for user profiles. Do not use theDefaultAsDomainvalue when setting this parameter for a domain. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn’t apply this setting to shared spaces.code_editor_app_settings (
Union[IResolvable,CodeEditorAppSettingsProperty,Dict[str,Any],None]) – The Code Editor application settings. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.custom_file_system_configs (
Union[IResolvable,Sequence[Union[IResolvable,CustomFileSystemConfigProperty,Dict[str,Any]]],None]) – The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker AI Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.custom_posix_user_config (
Union[IResolvable,CustomPosixUserConfigProperty,Dict[str,Any],None]) – Details about the POSIX identity that is used for file system operations. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.default_landing_uri (
Optional[str]) – The default experience that the user is directed to when accessing the domain. The supported values are:. -studio::: Indicates that Studio is the default experience. This value can only be passed ifStudioWebPortalis set toENABLED. -app:JupyterServer:: Indicates that Studio Classic is the default experience.execution_role (
Optional[str]) – The execution role for the user. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn’t apply this setting to shared spaces.jupyter_lab_app_settings (
Union[IResolvable,JupyterLabAppSettingsProperty,Dict[str,Any],None]) – The settings for the JupyterLab application. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.jupyter_server_app_settings (
Union[IResolvable,JupyterServerAppSettingsProperty,Dict[str,Any],None]) – The Jupyter server’s app settings.kernel_gateway_app_settings (
Union[IResolvable,KernelGatewayAppSettingsProperty,Dict[str,Any],None]) – The kernel gateway app settings.r_studio_server_pro_app_settings (
Union[IResolvable,RStudioServerProAppSettingsProperty,Dict[str,Any],None]) – A collection of settings that configure user interaction with theRStudioServerProapp.security_groups (
Optional[Sequence[str]]) – The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when theCreateDomain.AppNetworkAccessTypeparameter is set toPublicInternetOnly. Required when theCreateDomain.AppNetworkAccessTypeparameter is set toVpcOnly, unless specified as part of theDefaultUserSettingsfor the domain. Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.sharing_settings (
Union[IResolvable,SharingSettingsProperty,Dict[str,Any],None]) – Specifies options for sharing Amazon SageMaker AI Studio notebooks.space_storage_settings (
Union[IResolvable,DefaultSpaceStorageSettingsProperty,Dict[str,Any],None]) – The storage settings for a space. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.studio_web_portal (
Optional[str]) – Whether the user can access Studio. If this value is set toDISABLED, the user cannot access Studio, even if that is the default experience for the domain.studio_web_portal_settings (
Union[IResolvable,StudioWebPortalSettingsProperty,Dict[str,Any],None]) – Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins user_settings_property = sagemaker_mixins.CfnUserProfilePropsMixin.UserSettingsProperty( auto_mount_home_efs="autoMountHomeEfs", code_editor_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.CodeEditorAppSettingsProperty( app_lifecycle_management=sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), built_in_lifecycle_config_arn="builtInLifecycleConfigArn", custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), custom_file_system_configs=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomFileSystemConfigProperty( efs_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.EFSFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" ), f_sx_lustre_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.FSxLustreFileSystemConfigProperty( file_system_id="fileSystemId", file_system_path="fileSystemPath" ), s3_file_system_config=sagemaker_mixins.CfnUserProfilePropsMixin.S3FileSystemConfigProperty( mount_path="mountPath", s3_uri="s3Uri" ) )], custom_posix_user_config=sagemaker_mixins.CfnUserProfilePropsMixin.CustomPosixUserConfigProperty( gid=123, uid=123 ), default_landing_uri="defaultLandingUri", execution_role="executionRole", jupyter_lab_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.JupyterLabAppSettingsProperty( app_lifecycle_management=sagemaker_mixins.CfnUserProfilePropsMixin.AppLifecycleManagementProperty( idle_settings=sagemaker_mixins.CfnUserProfilePropsMixin.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), built_in_lifecycle_config_arn="builtInLifecycleConfigArn", code_repositories=[sagemaker_mixins.CfnUserProfilePropsMixin.CodeRepositoryProperty( repository_url="repositoryUrl" )], custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), jupyter_server_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.JupyterServerAppSettingsProperty( default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), kernel_gateway_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.KernelGatewayAppSettingsProperty( custom_images=[sagemaker_mixins.CfnUserProfilePropsMixin.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", image_version_number=123 )], default_resource_spec=sagemaker_mixins.CfnUserProfilePropsMixin.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), r_studio_server_pro_app_settings=sagemaker_mixins.CfnUserProfilePropsMixin.RStudioServerProAppSettingsProperty( access_status="accessStatus", user_group="userGroup" ), security_groups=["securityGroups"], sharing_settings=sagemaker_mixins.CfnUserProfilePropsMixin.SharingSettingsProperty( notebook_output_option="notebookOutputOption", s3_kms_key_id="s3KmsKeyId", s3_output_path="s3OutputPath" ), space_storage_settings=sagemaker_mixins.CfnUserProfilePropsMixin.DefaultSpaceStorageSettingsProperty( default_ebs_storage_settings=sagemaker_mixins.CfnUserProfilePropsMixin.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 ) ), studio_web_portal="studioWebPortal", studio_web_portal_settings=sagemaker_mixins.CfnUserProfilePropsMixin.StudioWebPortalSettingsProperty( hidden_app_types=["hiddenAppTypes"], hidden_instance_types=["hiddenInstanceTypes"], hidden_ml_tools=["hiddenMlTools"], hidden_sage_maker_image_version_aliases=[sagemaker_mixins.CfnUserProfilePropsMixin.HiddenSageMakerImageProperty( sage_maker_image_name="sageMakerImageName", version_aliases=["versionAliases"] )] ) )
Attributes
- auto_mount_home_efs
Indicates whether auto-mounting of an EFS volume is supported for the user profile.
The
DefaultAsDomainvalue is only supported for user profiles. Do not use theDefaultAsDomainvalue when setting this parameter for a domain.SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn’t apply this setting to shared spaces.
- code_editor_app_settings
The Code Editor application settings.
SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.
- custom_file_system_configs
The settings for assigning a custom file system to a user profile.
Permitted users can access this file system in Amazon SageMaker AI Studio.
SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.
- custom_posix_user_config
Details about the POSIX identity that is used for file system operations.
SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.
- default_landing_uri
.
studio::: Indicates that Studio is the default experience. This value can only be passed ifStudioWebPortalis set toENABLED.app:JupyterServer:: Indicates that Studio Classic is the default experience.
- See:
- Type:
The default experience that the user is directed to when accessing the domain. The supported values are
- execution_role
The execution role for the user.
SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn’t apply this setting to shared spaces.
- jupyter_lab_app_settings
The settings for the JupyterLab application.
SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.
- jupyter_server_app_settings
The Jupyter server’s app settings.
- kernel_gateway_app_settings
The kernel gateway app settings.
- r_studio_server_pro_app_settings
A collection of settings that configure user interaction with the
RStudioServerProapp.
- security_groups
The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
Optional when the
CreateDomain.AppNetworkAccessTypeparameter is set toPublicInternetOnly.Required when the
CreateDomain.AppNetworkAccessTypeparameter is set toVpcOnly, unless specified as part of theDefaultUserSettingsfor the domain.Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.
- sharing_settings
Specifies options for sharing Amazon SageMaker AI Studio notebooks.
- space_storage_settings
The storage settings for a space.
SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn’t apply these settings to shared spaces.
- studio_web_portal
Whether the user can access Studio.
If this value is set to
DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
- studio_web_portal_settings
Studio settings.
If these settings are applied on a user level, they take priority over the settings applied on a domain level.