CfnModelExplainabilityJobDefinitionPropsMixin
- class aws_cdk.mixins_preview.aws_sagemaker.mixins.CfnModelExplainabilityJobDefinitionPropsMixin(props, *, strategy=None)
Bases:
MixinCreates the definition for a model explainability job.
- See:
- CloudformationResource:
AWS::SageMaker::ModelExplainabilityJobDefinition
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins cfn_model_explainability_job_definition_props_mixin = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin(sagemaker_mixins.CfnModelExplainabilityJobDefinitionMixinProps( endpoint_name="endpointName", job_definition_name="jobDefinitionName", job_resources=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringResourcesProperty( cluster_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_kms_key_id="volumeKmsKeyId", volume_size_in_gb=123 ) ), model_explainability_app_specification=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityAppSpecificationProperty( config_uri="configUri", environment={ "environment_key": "environment" }, image_uri="imageUri" ), model_explainability_baseline_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityBaselineConfigProperty( baselining_job_name="baseliningJobName", constraints_resource=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ConstraintsResourceProperty( s3_uri="s3Uri" ) ), model_explainability_job_input=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityJobInputProperty( batch_transform_input=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.BatchTransformInputProperty( data_captured_destination_s3_uri="dataCapturedDestinationS3Uri", dataset_format=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.DatasetFormatProperty( csv=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.CsvProperty( header=False ), json=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.JsonProperty( line=False ), parquet=False ), features_attribute="featuresAttribute", inference_attribute="inferenceAttribute", local_path="localPath", probability_attribute="probabilityAttribute", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ), endpoint_input=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.EndpointInputProperty( endpoint_name="endpointName", features_attribute="featuresAttribute", inference_attribute="inferenceAttribute", local_path="localPath", probability_attribute="probabilityAttribute", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ) ), model_explainability_job_output_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputConfigProperty( kms_key_id="kmsKeyId", monitoring_outputs=[sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputProperty( s3_output=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.S3OutputProperty( local_path="localPath", s3_upload_mode="s3UploadMode", s3_uri="s3Uri" ) )] ), network_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.NetworkConfigProperty( enable_inter_container_traffic_encryption=False, enable_network_isolation=False, vpc_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) ), role_arn="roleArn", stopping_condition=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.StoppingConditionProperty( max_runtime_in_seconds=123 ), tags=[CfnTag( key="key", value="value" )] ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::SageMaker::ModelExplainabilityJobDefinition.- Parameters:
props (
Union[CfnModelExplainabilityJobDefinitionMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['endpointName', 'jobDefinitionName', 'jobResources', 'modelExplainabilityAppSpecification', 'modelExplainabilityBaselineConfig', 'modelExplainabilityJobInput', 'modelExplainabilityJobOutputConfig', 'networkConfig', 'roleArn', 'stoppingCondition', 'tags']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
BatchTransformInputProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.BatchTransformInputProperty(*, data_captured_destination_s3_uri=None, dataset_format=None, features_attribute=None, inference_attribute=None, local_path=None, probability_attribute=None, s3_data_distribution_type=None, s3_input_mode=None)
Bases:
objectInput object for the batch transform job.
- Parameters:
data_captured_destination_s3_uri (
Optional[str]) – The Amazon S3 location being used to capture the data.dataset_format (
Union[IResolvable,DatasetFormatProperty,Dict[str,Any],None]) – The dataset format for your batch transform job.features_attribute (
Optional[str]) – The attributes of the input data that are the input features.inference_attribute (
Optional[str]) – The attribute of the input data that represents the ground truth label.local_path (
Optional[str]) – Path to the filesystem where the batch transform data is available to the container.probability_attribute (
Optional[str]) – In a classification problem, the attribute that represents the class probability.s3_data_distribution_type (
Optional[str]) – Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults toFullyReplicateds3_input_mode (
Optional[str]) – Whether thePipeorFileis used as the input mode for transferring data for the monitoring job.Pipemode is recommended for large datasets.Filemode is useful for small files that fit in memory. Defaults toFile.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins batch_transform_input_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.BatchTransformInputProperty( data_captured_destination_s3_uri="dataCapturedDestinationS3Uri", dataset_format=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.DatasetFormatProperty( csv=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.CsvProperty( header=False ), json=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.JsonProperty( line=False ), parquet=False ), features_attribute="featuresAttribute", inference_attribute="inferenceAttribute", local_path="localPath", probability_attribute="probabilityAttribute", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" )
Attributes
- data_captured_destination_s3_uri
The Amazon S3 location being used to capture the data.
- dataset_format
The dataset format for your batch transform job.
- features_attribute
The attributes of the input data that are the input features.
- inference_attribute
The attribute of the input data that represents the ground truth label.
- local_path
Path to the filesystem where the batch transform data is available to the container.
- probability_attribute
In a classification problem, the attribute that represents the class probability.
- s3_data_distribution_type
Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key.
Defaults to
FullyReplicated
- s3_input_mode
Whether the
PipeorFileis used as the input mode for transferring data for the monitoring job.Pipemode is recommended for large datasets.Filemode is useful for small files that fit in memory. Defaults toFile.
ClusterConfigProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.ClusterConfigProperty(*, instance_count=None, instance_type=None, volume_kms_key_id=None, volume_size_in_gb=None)
Bases:
objectThe configuration for the cluster resources used to run the processing job.
- Parameters:
instance_count (
Union[int,float,None]) – The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.instance_type (
Optional[str]) – The ML compute instance type for the processing job.volume_kms_key_id (
Optional[str]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.volume_size_in_gb (
Union[int,float,None]) – The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins cluster_config_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_kms_key_id="volumeKmsKeyId", volume_size_in_gb=123 )
Attributes
- instance_count
The number of ML compute instances to use in the model monitoring job.
For distributed processing jobs, specify a value greater than 1. The default value is 1.
- instance_type
The ML compute instance type for the processing job.
- volume_kms_key_id
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
- volume_size_in_gb
The size of the ML storage volume, in gigabytes, that you want to provision.
You must specify sufficient ML storage for your scenario.
ConstraintsResourceProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.ConstraintsResourceProperty(*, s3_uri=None)
Bases:
objectInput object for the endpoint.
- Parameters:
s3_uri (
Optional[str]) – The Amazon S3 URI for the constraints resource.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins constraints_resource_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ConstraintsResourceProperty( s3_uri="s3Uri" )
Attributes
- s3_uri
The Amazon S3 URI for the constraints resource.
CsvProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.CsvProperty(*, header=None)
Bases:
objectThe CSV format.
- Parameters:
header (
Union[bool,IResolvable,None]) – A boolean flag indicating if given CSV has header.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins csv_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.CsvProperty( header=False )
Attributes
- header
A boolean flag indicating if given CSV has header.
DatasetFormatProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.DatasetFormatProperty(*, csv=None, json=None, parquet=None)
Bases:
objectThe dataset format of the data to monitor.
- Parameters:
csv (
Union[IResolvable,CsvProperty,Dict[str,Any],None]) – The CSV format.json (
Union[IResolvable,JsonProperty,Dict[str,Any],None]) – The Json format.parquet (
Union[bool,IResolvable,None]) – A flag indicating if the dataset format is Parquet.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins dataset_format_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.DatasetFormatProperty( csv=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.CsvProperty( header=False ), json=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.JsonProperty( line=False ), parquet=False )
Attributes
- csv
The CSV format.
- json
The Json format.
- parquet
A flag indicating if the dataset format is Parquet.
EndpointInputProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.EndpointInputProperty(*, endpoint_name=None, features_attribute=None, inference_attribute=None, local_path=None, probability_attribute=None, s3_data_distribution_type=None, s3_input_mode=None)
Bases:
objectInput object for the endpoint.
- Parameters:
endpoint_name (
Optional[str]) – An endpoint in customer’s account which has enabledDataCaptureConfigenabled.features_attribute (
Optional[str]) – The attributes of the input data that are the input features.inference_attribute (
Optional[str]) – The attribute of the input data that represents the ground truth label.local_path (
Optional[str]) – Path to the filesystem where the endpoint data is available to the container.probability_attribute (
Optional[str]) – In a classification problem, the attribute that represents the class probability.s3_data_distribution_type (
Optional[str]) – Whether input data distributed in Amazon S3 is fully replicated or sharded by an Amazon S3 key. Defaults toFullyReplicateds3_input_mode (
Optional[str]) – Whether thePipeorFileis used as the input mode for transferring data for the monitoring job.Pipemode is recommended for large datasets.Filemode is useful for small files that fit in memory. Defaults toFile.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins endpoint_input_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.EndpointInputProperty( endpoint_name="endpointName", features_attribute="featuresAttribute", inference_attribute="inferenceAttribute", local_path="localPath", probability_attribute="probabilityAttribute", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" )
Attributes
- endpoint_name
An endpoint in customer’s account which has enabled
DataCaptureConfigenabled.
- features_attribute
The attributes of the input data that are the input features.
- inference_attribute
The attribute of the input data that represents the ground truth label.
- local_path
Path to the filesystem where the endpoint data is available to the container.
- probability_attribute
In a classification problem, the attribute that represents the class probability.
- s3_data_distribution_type
Whether input data distributed in Amazon S3 is fully replicated or sharded by an Amazon S3 key.
Defaults to
FullyReplicated
- s3_input_mode
Whether the
PipeorFileis used as the input mode for transferring data for the monitoring job.Pipemode is recommended for large datasets.Filemode is useful for small files that fit in memory. Defaults toFile.
JsonProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.JsonProperty(*, line=None)
Bases:
objectThe Json format.
- Parameters:
line (
Union[bool,IResolvable,None]) – A boolean flag indicating if it is JSON line format.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins json_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.JsonProperty( line=False )
Attributes
- line
A boolean flag indicating if it is JSON line format.
ModelExplainabilityAppSpecificationProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityAppSpecificationProperty(*, config_uri=None, environment=None, image_uri=None)
Bases:
objectDocker container image configuration object for the model explainability job.
- Parameters:
config_uri (
Optional[str]) – JSON formatted Amazon S3 file that defines explainability parameters. For more information on this JSON configuration file, see Configure model explainability parameters .environment (
Union[Mapping[str,str],IResolvable,None]) – Sets the environment variables in the Docker container.image_uri (
Optional[str]) – The container image to be run by the model explainability job.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins model_explainability_app_specification_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityAppSpecificationProperty( config_uri="configUri", environment={ "environment_key": "environment" }, image_uri="imageUri" )
Attributes
- config_uri
JSON formatted Amazon S3 file that defines explainability parameters.
For more information on this JSON configuration file, see Configure model explainability parameters .
- environment
Sets the environment variables in the Docker container.
- image_uri
The container image to be run by the model explainability job.
ModelExplainabilityBaselineConfigProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityBaselineConfigProperty(*, baselining_job_name=None, constraints_resource=None)
Bases:
objectThe configuration for a baseline model explainability job.
- Parameters:
baselining_job_name (
Optional[str]) – The name of the baseline model explainability job.constraints_resource (
Union[IResolvable,ConstraintsResourceProperty,Dict[str,Any],None]) – The constraints resource for a model explainability job.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins model_explainability_baseline_config_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityBaselineConfigProperty( baselining_job_name="baseliningJobName", constraints_resource=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ConstraintsResourceProperty( s3_uri="s3Uri" ) )
Attributes
- baselining_job_name
The name of the baseline model explainability job.
- constraints_resource
The constraints resource for a model explainability job.
ModelExplainabilityJobInputProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityJobInputProperty(*, batch_transform_input=None, endpoint_input=None)
Bases:
objectInputs for the model explainability job.
- Parameters:
batch_transform_input (
Union[IResolvable,BatchTransformInputProperty,Dict[str,Any],None]) – Input object for the batch transform job.endpoint_input (
Union[IResolvable,EndpointInputProperty,Dict[str,Any],None]) – Input object for the endpoint.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins model_explainability_job_input_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ModelExplainabilityJobInputProperty( batch_transform_input=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.BatchTransformInputProperty( data_captured_destination_s3_uri="dataCapturedDestinationS3Uri", dataset_format=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.DatasetFormatProperty( csv=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.CsvProperty( header=False ), json=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.JsonProperty( line=False ), parquet=False ), features_attribute="featuresAttribute", inference_attribute="inferenceAttribute", local_path="localPath", probability_attribute="probabilityAttribute", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ), endpoint_input=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.EndpointInputProperty( endpoint_name="endpointName", features_attribute="featuresAttribute", inference_attribute="inferenceAttribute", local_path="localPath", probability_attribute="probabilityAttribute", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ) )
Attributes
- batch_transform_input
Input object for the batch transform job.
MonitoringOutputConfigProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputConfigProperty(*, kms_key_id=None, monitoring_outputs=None)
Bases:
objectThe output configuration for monitoring jobs.
- Parameters:
kms_key_id (
Optional[str]) – The AWS Key Management Service ( AWS ) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.monitoring_outputs (
Union[IResolvable,Sequence[Union[IResolvable,MonitoringOutputProperty,Dict[str,Any]]],None]) – Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins monitoring_output_config_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputConfigProperty( kms_key_id="kmsKeyId", monitoring_outputs=[sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputProperty( s3_output=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.S3OutputProperty( local_path="localPath", s3_upload_mode="s3UploadMode", s3_uri="s3Uri" ) )] )
Attributes
- kms_key_id
The AWS Key Management Service ( AWS ) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- monitoring_outputs
Monitoring outputs for monitoring jobs.
This is where the output of the periodic monitoring jobs is uploaded.
MonitoringOutputProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputProperty(*, s3_output=None)
Bases:
objectThe output object for a monitoring job.
- Parameters:
s3_output (
Union[IResolvable,S3OutputProperty,Dict[str,Any],None]) – The Amazon S3 storage location where the results of a monitoring job are saved.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins monitoring_output_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringOutputProperty( s3_output=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.S3OutputProperty( local_path="localPath", s3_upload_mode="s3UploadMode", s3_uri="s3Uri" ) )
Attributes
- s3_output
The Amazon S3 storage location where the results of a monitoring job are saved.
MonitoringResourcesProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringResourcesProperty(*, cluster_config=None)
Bases:
objectIdentifies the resources to deploy for a monitoring job.
- Parameters:
cluster_config (
Union[IResolvable,ClusterConfigProperty,Dict[str,Any],None]) – The configuration for the cluster resources used to run the processing job.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins monitoring_resources_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.MonitoringResourcesProperty( cluster_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_kms_key_id="volumeKmsKeyId", volume_size_in_gb=123 ) )
Attributes
- cluster_config
The configuration for the cluster resources used to run the processing job.
NetworkConfigProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.NetworkConfigProperty(*, enable_inter_container_traffic_encryption=None, enable_network_isolation=None, vpc_config=None)
Bases:
objectNetworking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
- Parameters:
enable_inter_container_traffic_encryption (
Union[bool,IResolvable,None]) – Whether to encrypt all communications between distributed processing jobs. ChooseTrueto encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.enable_network_isolation (
Union[bool,IResolvable,None]) – Whether to allow inbound and outbound network calls to and from the containers used for the processing job.vpc_config (
Union[IResolvable,VpcConfigProperty,Dict[str,Any],None]) – Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins network_config_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.NetworkConfigProperty( enable_inter_container_traffic_encryption=False, enable_network_isolation=False, vpc_config=sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) )
Attributes
- enable_inter_container_traffic_encryption
Whether to encrypt all communications between distributed processing jobs.
Choose
Trueto encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.
- enable_network_isolation
Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
- vpc_config
Specifies a VPC that your training jobs and hosted models have access to.
Control access to and from your training and model containers by configuring the VPC.
S3OutputProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.S3OutputProperty(*, local_path=None, s3_upload_mode=None, s3_uri=None)
Bases:
objectThe Amazon S3 storage location where the results of a monitoring job are saved.
- Parameters:
local_path (
Optional[str]) – The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.s3_upload_mode (
Optional[str]) – Whether to upload the results of the monitoring job continuously or after the job completes.s3_uri (
Optional[str]) – A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins s3_output_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.S3OutputProperty( local_path="localPath", s3_upload_mode="s3UploadMode", s3_uri="s3Uri" )
Attributes
- local_path
The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
LocalPath is an absolute path for the output data.
- s3_upload_mode
Whether to upload the results of the monitoring job continuously or after the job completes.
- s3_uri
A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
StoppingConditionProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.StoppingConditionProperty(*, max_runtime_in_seconds=None)
Bases:
objectSpecifies a limit to how long a job can run.
When the job reaches the time limit, SageMaker ends the job. Use this API to cap costs.
To stop a training job, SageMaker sends the algorithm the
SIGTERMsignal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with
CreateModel. .. epigraph:The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.
- Parameters:
max_runtime_in_seconds (
Union[int,float,None]) – The maximum length of time, in seconds, that a training or compilation job can run before it is stopped. For compilation jobs, if the job does not complete during this time, aTimeOuterror is generated. We recommend starting with 900 seconds and increasing as necessary based on your model. For all other jobs, if the job does not complete during this time, SageMaker ends the job. WhenRetryStrategyis specified in the job request,MaxRuntimeInSecondsspecifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days. The maximum time that aTrainingJobcan run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins stopping_condition_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.StoppingConditionProperty( max_runtime_in_seconds=123 )
Attributes
- max_runtime_in_seconds
The maximum length of time, in seconds, that a training or compilation job can run before it is stopped.
For compilation jobs, if the job does not complete during this time, a
TimeOuterror is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
RetryStrategyis specified in the job request,MaxRuntimeInSecondsspecifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.The maximum time that a
TrainingJobcan run in total, including any time spent publishing metrics or archiving and uploading models after it has been stopped, is 30 days.
VpcConfigProperty
- class CfnModelExplainabilityJobDefinitionPropsMixin.VpcConfigProperty(*, security_group_ids=None, subnets=None)
Bases:
objectSpecifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources have access to.
You can control access to and from your resources by configuring a VPC. For more information, see Give SageMaker Access to Resources in your Amazon VPC .
- Parameters:
security_group_ids (
Optional[Sequence[str]]) – The VPC security group IDs, in the formsg-xxxxxxxx. Specify the security groups for the VPC that is specified in theSubnetsfield.subnets (
Optional[Sequence[str]]) – The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins vpc_config_property = sagemaker_mixins.CfnModelExplainabilityJobDefinitionPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] )
Attributes
- security_group_ids
The VPC security group IDs, in the form
sg-xxxxxxxx.Specify the security groups for the VPC that is specified in the
Subnetsfield.
- subnets
The ID of the subnets in the VPC to which you want to connect your training job or model.
For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .