CfnStudioLifecycleConfigProps
- class aws_cdk.aws_sagemaker.CfnStudioLifecycleConfigProps(*, studio_lifecycle_config_app_type, studio_lifecycle_config_content, studio_lifecycle_config_name, tags=None)
Bases:
objectProperties for defining a
CfnStudioLifecycleConfig.- Parameters:
studio_lifecycle_config_app_type (
str) – The App type to which the Lifecycle Configuration is attached.studio_lifecycle_config_content (
str) – The content of your Amazon SageMaker Studio Lifecycle Configuration script. This content must be base64 encoded.studio_lifecycle_config_name (
str) – The name of the Amazon SageMaker AI Studio Lifecycle Configuration.tags (
Optional[Sequence[Union[CfnTag,Dict[str,Any]]]]) – Tags to be associated with the Lifecycle Configuration. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker cfn_studio_lifecycle_config_props = sagemaker.CfnStudioLifecycleConfigProps( studio_lifecycle_config_app_type="studioLifecycleConfigAppType", studio_lifecycle_config_content="studioLifecycleConfigContent", studio_lifecycle_config_name="studioLifecycleConfigName", # the properties below are optional tags=[CfnTag( key="key", value="value" )] )
Attributes
- studio_lifecycle_config_app_type
The App type to which the Lifecycle Configuration is attached.
- studio_lifecycle_config_content
The content of your Amazon SageMaker Studio Lifecycle Configuration script.
This content must be base64 encoded.
- studio_lifecycle_config_name
The name of the Amazon SageMaker AI Studio Lifecycle Configuration.
- tags
Tags to be associated with the Lifecycle Configuration.
Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API.