CfnProcessingJobProps
- class aws_cdk.aws_sagemaker.CfnProcessingJobProps(*, app_specification, processing_resources, role_arn, environment=None, experiment_config=None, network_config=None, processing_inputs=None, processing_job_name=None, processing_output_config=None, stopping_condition=None, tags=None)
Bases:
object
Properties for defining a
CfnProcessingJob
.- Parameters:
app_specification (
Union
[IResolvable
,AppSpecificationProperty
,Dict
[str
,Any
]]) – Configuration to run a processing job in a specified container image.processing_resources (
Union
[IResolvable
,ProcessingResourcesProperty
,Dict
[str
,Any
]]) – Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job. In distributed training, you specify more than one instance.role_arn (
str
) – The ARN of the role used to create the processing job.environment (
Union
[Mapping
[str
,str
],IResolvable
,None
]) – Sets the environment variables in the Docker container.experiment_config (
Union
[IResolvable
,ExperimentConfigProperty
,Dict
[str
,Any
],None
]) – Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the CreateProcessingJob API.network_config (
Union
[IResolvable
,NetworkConfigProperty
,Dict
[str
,Any
],None
]) – Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.processing_inputs (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,ProcessingInputsObjectProperty
,Dict
[str
,Any
]]],None
]) – List of input configurations for the processing job.processing_job_name (
Optional
[str
]) – The name of the processing job. If you don’t provide a job name, then a unique name is automatically created for the job.processing_output_config (
Union
[IResolvable
,ProcessingOutputConfigProperty
,Dict
[str
,Any
],None
]) – Contains information about the output location for the compiled model and the target device that the model runs on.TargetDevice
andTargetPlatform
are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from theTargetDevice
list, useTargetPlatform
to describe the platform of your edge device andCompilerOptions
if there are specific settings that are required or recommended to use for particular TargetPlatform.stopping_condition (
Union
[IResolvable
,StoppingConditionProperty
,Dict
[str
,Any
],None
]) – Configures conditions under which the processing job should be stopped, such as how long the processing job has been running. After the condition is met, the processing job is stopped.tags (
Optional
[Sequence
[Union
[CfnTag
,Dict
[str
,Any
]]]]) – An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker cfn_processing_job_props = sagemaker.CfnProcessingJobProps( app_specification=sagemaker.CfnProcessingJob.AppSpecificationProperty( image_uri="imageUri", # the properties below are optional container_arguments=["containerArguments"], container_entrypoint=["containerEntrypoint"] ), processing_resources=sagemaker.CfnProcessingJob.ProcessingResourcesProperty( cluster_config=sagemaker.CfnProcessingJob.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_size_in_gb=123, # the properties below are optional volume_kms_key_id="volumeKmsKeyId" ) ), role_arn="roleArn", # the properties below are optional environment={ "environment_key": "environment" }, experiment_config=sagemaker.CfnProcessingJob.ExperimentConfigProperty( experiment_name="experimentName", run_name="runName", trial_component_display_name="trialComponentDisplayName", trial_name="trialName" ), network_config=sagemaker.CfnProcessingJob.NetworkConfigProperty( enable_inter_container_traffic_encryption=False, enable_network_isolation=False, vpc_config=sagemaker.CfnProcessingJob.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) ), processing_inputs=[sagemaker.CfnProcessingJob.ProcessingInputsObjectProperty( input_name="inputName", # the properties below are optional app_managed=False, dataset_definition=sagemaker.CfnProcessingJob.DatasetDefinitionProperty( athena_dataset_definition=sagemaker.CfnProcessingJob.AthenaDatasetDefinitionProperty( catalog="catalog", database="database", output_format="outputFormat", output_s3_uri="outputS3Uri", query_string="queryString", # the properties below are optional kms_key_id="kmsKeyId", output_compression="outputCompression", work_group="workGroup" ), data_distribution_type="dataDistributionType", input_mode="inputMode", local_path="localPath", redshift_dataset_definition=sagemaker.CfnProcessingJob.RedshiftDatasetDefinitionProperty( cluster_id="clusterId", cluster_role_arn="clusterRoleArn", database="database", db_user="dbUser", output_format="outputFormat", output_s3_uri="outputS3Uri", query_string="queryString", # the properties below are optional kms_key_id="kmsKeyId", output_compression="outputCompression" ) ), s3_input=sagemaker.CfnProcessingJob.S3InputProperty( s3_data_type="s3DataType", s3_uri="s3Uri", # the properties below are optional local_path="localPath", s3_compression_type="s3CompressionType", s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ) )], processing_job_name="processingJobName", processing_output_config=sagemaker.CfnProcessingJob.ProcessingOutputConfigProperty( outputs=[sagemaker.CfnProcessingJob.ProcessingOutputsObjectProperty( output_name="outputName", # the properties below are optional app_managed=False, feature_store_output=sagemaker.CfnProcessingJob.FeatureStoreOutputProperty( feature_group_name="featureGroupName" ), s3_output=sagemaker.CfnProcessingJob.S3OutputProperty( s3_upload_mode="s3UploadMode", s3_uri="s3Uri", # the properties below are optional local_path="localPath" ) )], # the properties below are optional kms_key_id="kmsKeyId" ), stopping_condition=sagemaker.CfnProcessingJob.StoppingConditionProperty( max_runtime_in_seconds=123 ), tags=[CfnTag( key="key", value="value" )] )
Attributes
- app_specification
Configuration to run a processing job in a specified container image.
- environment
Sets the environment variables in the Docker container.
- experiment_config
Associates a SageMaker job as a trial component with an experiment and trial.
Specified when you call the CreateProcessingJob API.
- network_config
Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
- processing_inputs
List of input configurations for the processing job.
- processing_job_name
The name of the processing job.
If you don’t provide a job name, then a unique name is automatically created for the job.
- processing_output_config
Contains information about the output location for the compiled model and the target device that the model runs on.
TargetDevice
andTargetPlatform
are mutually exclusive, so you need to choose one between the two to specify your target device or platform. If you cannot find your device you want to use from theTargetDevice
list, useTargetPlatform
to describe the platform of your edge device andCompilerOptions
if there are specific settings that are required or recommended to use for particular TargetPlatform.
- processing_resources
Identifies the resources, ML compute instances, and ML storage volumes to deploy for a processing job.
In distributed training, you specify more than one instance.
- role_arn
The ARN of the role used to create the processing job.
- stopping_condition
Configures conditions under which the processing job should be stopped, such as how long the processing job has been running.
After the condition is met, the processing job is stopped.
- tags
An array of key-value pairs.
For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide .