ApplicationInferenceProfileProps

class aws_cdk.aws_bedrock_alpha.ApplicationInferenceProfileProps(*, application_inference_profile_name, model_source, description=None, tags=None)

Bases: object

(experimental) Properties for creating an Application Inference Profile.

Parameters:
  • application_inference_profile_name (str) – (experimental) The name of the application inference profile. This name will be used to identify the inference profile in the AWS console and APIs. - Required: Yes - Maximum length: 64 characters - Pattern: ^([0-9a-zA-Z:.][ _-]?)+$

  • model_source (IBedrockInvokable) – (experimental) The model source for this inference profile. To create an application inference profile for one Region, specify a foundation model. Usage and costs for requests made to that Region with that model will be tracked. To create an application inference profile for multiple Regions, specify a cross region (system-defined) inference profile. The inference profile will route requests to the Regions defined in the cross region (system-defined) inference profile that you choose. Usage and costs for requests made to the Regions in the inference profile will be tracked.

  • description (Optional[str]) – (experimental) Description of the inference profile. Provides additional context about the purpose and usage of this inference profile. - Maximum length: 200 characters when provided - Pattern: ^([0-9a-zA-Z:.][ _-]?)+$ Default: - No description is provided

  • tags (Optional[Mapping[str, str]]) – (experimental) A list of tags associated with the inference profile. Tags help you organize and categorize your AWS resources. Default: - No tags are applied

Stability:

experimental

ExampleMetadata:

fixture=default infused

Example:

# Create a cross-region inference profile
cross_region_profile = bedrock.CrossRegionInferenceProfile.from_config(
    geo_region=bedrock.CrossRegionInferenceProfileRegion.US,
    model=bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V2_0
)

# Create an application inference profile across regions
app_profile = bedrock.ApplicationInferenceProfile(self, "MyMultiRegionProfile",
    application_inference_profile_name="claude-35-sonnet-v2-multi-region",
    model_source=cross_region_profile,
    description="Multi-region application profile for cost tracking"
)

Attributes

application_inference_profile_name

(experimental) The name of the application inference profile.

This name will be used to identify the inference profile in the AWS console and APIs.

  • Required: Yes

  • Maximum length: 64 characters

  • Pattern: ^([0-9a-zA-Z:.][ _-]?)+$

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html#cfn-bedrock-applicationinferenceprofile-inferenceprofilename

Stability:

experimental

description

(experimental) Description of the inference profile. Provides additional context about the purpose and usage of this inference profile.

  • Maximum length: 200 characters when provided

  • Pattern: ^([0-9a-zA-Z:.][ _-]?)+$

Default:
  • No description is provided

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-bedrock-applicationinferenceprofile.html#cfn-bedrock-applicationinferenceprofile-description

Stability:

experimental

model_source

(experimental) The model source for this inference profile.

To create an application inference profile for one Region, specify a foundation model. Usage and costs for requests made to that Region with that model will be tracked.

To create an application inference profile for multiple Regions, specify a cross region (system-defined) inference profile. The inference profile will route requests to the Regions defined in the cross region (system-defined) inference profile that you choose. Usage and costs for requests made to the Regions in the inference profile will be tracked.

Stability:

experimental

tags

(experimental) A list of tags associated with the inference profile.

Tags help you organize and categorize your AWS resources.

Default:
  • No tags are applied

Stability:

experimental