AgentPromptVariantProps
- class aws_cdk.aws_bedrock_alpha.AgentPromptVariantProps(*, model, variant_name, prompt_variables=None, agent_alias, prompt_text)
Bases:
CommonPromptVariantProps
(experimental) Properties for creating an agent prompt variant.
- Parameters:
model (
IBedrockInvokable
) – (experimental) The model which is used to run the prompt. The model could be a foundation model, a custom model, or a provisioned model.variant_name (
str
) – (experimental) The name of the prompt variant.prompt_variables (
Optional
[Sequence
[str
]]) – (experimental) The variables in the prompt template that can be filled in at runtime. Default: - No variables defined.agent_alias (
IAgentAlias
) – (experimental) An alias pointing to the agent version to be used.prompt_text (
str
) – (experimental) The text prompt. Variables are used by enclosing its name with double curly braces as in{{variable_name}}
.
- Stability:
experimental
- ExampleMetadata:
fixture=default infused
Example:
cmk = kms.Key(self, "cmk") # Assuming you have an existing agent and alias agent = bedrock.Agent.from_agent_attributes(self, "ImportedAgent", agent_arn="arn:aws:bedrock:region:account:agent/agent-id", role_arn="arn:aws:iam::account:role/agent-role" ) agent_alias = bedrock.AgentAlias.from_attributes(self, "ImportedAlias", alias_id="alias-id", alias_name="my-alias", agent_version="1", agent=agent ) agent_variant = bedrock.PromptVariant.agent( variant_name="agent-variant", model=bedrock.BedrockFoundationModel.ANTHROPIC_CLAUDE_3_5_SONNET_V1_0, agent_alias=agent_alias, prompt_text="Use the agent to help with: {{task}}. Please be thorough and provide detailed explanations.", prompt_variables=["task"] ) bedrock.Prompt(self, "agentPrompt", prompt_name="agent-prompt", description="Prompt for agent interactions", default_variant=agent_variant, variants=[agent_variant], kms_key=cmk )
Attributes
- agent_alias
(experimental) An alias pointing to the agent version to be used.
- Stability:
experimental
- model
(experimental) The model which is used to run the prompt.
The model could be a foundation model, a custom model, or a provisioned model.
- Stability:
experimental
- prompt_text
(experimental) The text prompt.
Variables are used by enclosing its name with double curly braces as in
{{variable_name}}
.- Stability:
experimental
- prompt_variables
(experimental) The variables in the prompt template that can be filled in at runtime.
- Default:
No variables defined.
- Stability:
experimental
- variant_name
(experimental) The name of the prompt variant.
- Stability:
experimental