Interface CfnAnomalyDetector.RandomCutForestConfigurationProperty
- All Superinterfaces:
software.amazon.jsii.JsiiSerializable
- All Known Implementing Classes:
CfnAnomalyDetector.RandomCutForestConfigurationProperty.Jsii$Proxy
- Enclosing class:
CfnAnomalyDetector
@Stability(Stable)
public static interface CfnAnomalyDetector.RandomCutForestConfigurationProperty
extends software.amazon.jsii.JsiiSerializable
Configuration for the Random Cut Forest algorithm used for anomaly detection in time-series data.
Example:
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import software.amazon.awscdk.services.aps.*;
RandomCutForestConfigurationProperty randomCutForestConfigurationProperty = RandomCutForestConfigurationProperty.builder()
.query("query")
// the properties below are optional
.ignoreNearExpectedFromAbove(IgnoreNearExpectedProperty.builder()
.amount(123)
.ratio(123)
.build())
.ignoreNearExpectedFromBelow(IgnoreNearExpectedProperty.builder()
.amount(123)
.ratio(123)
.build())
.sampleSize(123)
.shingleSize(123)
.build();
- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeInterfaceDescriptionstatic final classA builder forCfnAnomalyDetector.RandomCutForestConfigurationPropertystatic final classAn implementation forCfnAnomalyDetector.RandomCutForestConfigurationProperty -
Method Summary
Modifier and TypeMethodDescriptionbuilder()default ObjectConfiguration for ignoring values that are near expected values from above during anomaly detection.default ObjectConfiguration for ignoring values that are near expected values from below during anomaly detection.getQuery()The Prometheus query used to retrieve the time-series data for anomaly detection.default NumberThe number of data points sampled from the input stream for the Random Cut Forest algorithm.default NumberThe number of consecutive data points used to create a shingle for the Random Cut Forest algorithm.Methods inherited from interface software.amazon.jsii.JsiiSerializable
$jsii$toJson
-
Method Details
-
getQuery
The Prometheus query used to retrieve the time-series data for anomaly detection.Random Cut Forest queries must be wrapped by a supported PromQL aggregation operator. For more information, see Aggregation operators on the Prometheus docs website.
Supported PromQL aggregation operators :
avg,count,group,max,min,quantile,stddev,stdvar, andsum.- See Also:
-
getIgnoreNearExpectedFromAbove
Configuration for ignoring values that are near expected values from above during anomaly detection.Returns union: either
IResolvableorCfnAnomalyDetector.IgnoreNearExpectedProperty- See Also:
-
getIgnoreNearExpectedFromBelow
Configuration for ignoring values that are near expected values from below during anomaly detection.Returns union: either
IResolvableorCfnAnomalyDetector.IgnoreNearExpectedProperty- See Also:
-
getSampleSize
The number of data points sampled from the input stream for the Random Cut Forest algorithm.The default number is 256 consecutive data points.
Default: - 256
- See Also:
-
getShingleSize
The number of consecutive data points used to create a shingle for the Random Cut Forest algorithm.The default number is 8 consecutive data points.
Default: - 8
- See Also:
-
builder
-