Class CfnInferenceComponentPropsMixin
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint.
Implements
Inherited Members
Namespace: Amazon.CDK.Mixins.Preview.AWS.SageMaker.Mixins
Assembly: Amazon.CDK.Mixins.Preview.dll
Syntax (csharp)
public class CfnInferenceComponentPropsMixin : Mixin, IMixin
Syntax (vb)
Public Class CfnInferenceComponentPropsMixin Inherits Mixin Implements IMixin
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated
Examples
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
using Amazon.CDK.Mixins.Preview.Mixins;
using Amazon.CDK.Mixins.Preview.AWS.SageMaker.Mixins;
var cfnInferenceComponentPropsMixin = new CfnInferenceComponentPropsMixin(new CfnInferenceComponentMixinProps {
DeploymentConfig = new InferenceComponentDeploymentConfigProperty {
AutoRollbackConfiguration = new AutoRollbackConfigurationProperty {
Alarms = new [] { new AlarmProperty {
AlarmName = "alarmName"
} }
},
RollingUpdatePolicy = new InferenceComponentRollingUpdatePolicyProperty {
MaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
MaximumExecutionTimeoutInSeconds = 123,
RollbackMaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
WaitIntervalInSeconds = 123
}
},
EndpointArn = "endpointArn",
EndpointName = "endpointName",
InferenceComponentName = "inferenceComponentName",
RuntimeConfig = new InferenceComponentRuntimeConfigProperty {
CopyCount = 123,
CurrentCopyCount = 123,
DesiredCopyCount = 123
},
Specification = new InferenceComponentSpecificationProperty {
BaseInferenceComponentName = "baseInferenceComponentName",
ComputeResourceRequirements = new InferenceComponentComputeResourceRequirementsProperty {
MaxMemoryRequiredInMb = 123,
MinMemoryRequiredInMb = 123,
NumberOfAcceleratorDevicesRequired = 123,
NumberOfCpuCoresRequired = 123
},
Container = new InferenceComponentContainerSpecificationProperty {
ArtifactUrl = "artifactUrl",
DeployedImage = new DeployedImageProperty {
ResolutionTime = "resolutionTime",
ResolvedImage = "resolvedImage",
SpecifiedImage = "specifiedImage"
},
Environment = new Dictionary<string, string> {
{ "environmentKey", "environment" }
},
Image = "image"
},
ModelName = "modelName",
StartupParameters = new InferenceComponentStartupParametersProperty {
ContainerStartupHealthCheckTimeoutInSeconds = 123,
ModelDataDownloadTimeoutInSeconds = 123
}
},
Tags = new [] { new CfnTag {
Key = "key",
Value = "value"
} },
VariantName = "variantName"
}, new CfnPropertyMixinOptions {
Strategy = PropertyMergeStrategy.OVERRIDE
});
Synopsis
Constructors
| CfnInferenceComponentPropsMixin(ICfnInferenceComponentMixinProps, ICfnPropertyMixinOptions?) | Create a mixin to apply properties to |
Properties
| CFN_PROPERTY_KEYS | Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. |
| Props | Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. |
| Strategy | Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. |
Methods
| ApplyTo(IConstruct) | Apply the mixin properties to the construct. |
| Supports(IConstruct) | Check if this mixin supports the given construct. |
Constructors
CfnInferenceComponentPropsMixin(ICfnInferenceComponentMixinProps, ICfnPropertyMixinOptions?)
Create a mixin to apply properties to AWS::SageMaker::InferenceComponent.
public CfnInferenceComponentPropsMixin(ICfnInferenceComponentMixinProps props, ICfnPropertyMixinOptions? options = null)
Parameters
- props ICfnInferenceComponentMixinProps
L1 properties to apply.
- options ICfnPropertyMixinOptions
Mixin options.
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated
Properties
CFN_PROPERTY_KEYS
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint.
protected static string[] CFN_PROPERTY_KEYS { get; }
Property Value
string[]
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated
Examples
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
using Amazon.CDK.Mixins.Preview.Mixins;
using Amazon.CDK.Mixins.Preview.AWS.SageMaker.Mixins;
var cfnInferenceComponentPropsMixin = new CfnInferenceComponentPropsMixin(new CfnInferenceComponentMixinProps {
DeploymentConfig = new InferenceComponentDeploymentConfigProperty {
AutoRollbackConfiguration = new AutoRollbackConfigurationProperty {
Alarms = new [] { new AlarmProperty {
AlarmName = "alarmName"
} }
},
RollingUpdatePolicy = new InferenceComponentRollingUpdatePolicyProperty {
MaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
MaximumExecutionTimeoutInSeconds = 123,
RollbackMaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
WaitIntervalInSeconds = 123
}
},
EndpointArn = "endpointArn",
EndpointName = "endpointName",
InferenceComponentName = "inferenceComponentName",
RuntimeConfig = new InferenceComponentRuntimeConfigProperty {
CopyCount = 123,
CurrentCopyCount = 123,
DesiredCopyCount = 123
},
Specification = new InferenceComponentSpecificationProperty {
BaseInferenceComponentName = "baseInferenceComponentName",
ComputeResourceRequirements = new InferenceComponentComputeResourceRequirementsProperty {
MaxMemoryRequiredInMb = 123,
MinMemoryRequiredInMb = 123,
NumberOfAcceleratorDevicesRequired = 123,
NumberOfCpuCoresRequired = 123
},
Container = new InferenceComponentContainerSpecificationProperty {
ArtifactUrl = "artifactUrl",
DeployedImage = new DeployedImageProperty {
ResolutionTime = "resolutionTime",
ResolvedImage = "resolvedImage",
SpecifiedImage = "specifiedImage"
},
Environment = new Dictionary<string, string> {
{ "environmentKey", "environment" }
},
Image = "image"
},
ModelName = "modelName",
StartupParameters = new InferenceComponentStartupParametersProperty {
ContainerStartupHealthCheckTimeoutInSeconds = 123,
ModelDataDownloadTimeoutInSeconds = 123
}
},
Tags = new [] { new CfnTag {
Key = "key",
Value = "value"
} },
VariantName = "variantName"
}, new CfnPropertyMixinOptions {
Strategy = PropertyMergeStrategy.OVERRIDE
});
Props
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint.
protected virtual ICfnInferenceComponentMixinProps Props { get; }
Property Value
ICfnInferenceComponentMixinProps
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated
Examples
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
using Amazon.CDK.Mixins.Preview.Mixins;
using Amazon.CDK.Mixins.Preview.AWS.SageMaker.Mixins;
var cfnInferenceComponentPropsMixin = new CfnInferenceComponentPropsMixin(new CfnInferenceComponentMixinProps {
DeploymentConfig = new InferenceComponentDeploymentConfigProperty {
AutoRollbackConfiguration = new AutoRollbackConfigurationProperty {
Alarms = new [] { new AlarmProperty {
AlarmName = "alarmName"
} }
},
RollingUpdatePolicy = new InferenceComponentRollingUpdatePolicyProperty {
MaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
MaximumExecutionTimeoutInSeconds = 123,
RollbackMaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
WaitIntervalInSeconds = 123
}
},
EndpointArn = "endpointArn",
EndpointName = "endpointName",
InferenceComponentName = "inferenceComponentName",
RuntimeConfig = new InferenceComponentRuntimeConfigProperty {
CopyCount = 123,
CurrentCopyCount = 123,
DesiredCopyCount = 123
},
Specification = new InferenceComponentSpecificationProperty {
BaseInferenceComponentName = "baseInferenceComponentName",
ComputeResourceRequirements = new InferenceComponentComputeResourceRequirementsProperty {
MaxMemoryRequiredInMb = 123,
MinMemoryRequiredInMb = 123,
NumberOfAcceleratorDevicesRequired = 123,
NumberOfCpuCoresRequired = 123
},
Container = new InferenceComponentContainerSpecificationProperty {
ArtifactUrl = "artifactUrl",
DeployedImage = new DeployedImageProperty {
ResolutionTime = "resolutionTime",
ResolvedImage = "resolvedImage",
SpecifiedImage = "specifiedImage"
},
Environment = new Dictionary<string, string> {
{ "environmentKey", "environment" }
},
Image = "image"
},
ModelName = "modelName",
StartupParameters = new InferenceComponentStartupParametersProperty {
ContainerStartupHealthCheckTimeoutInSeconds = 123,
ModelDataDownloadTimeoutInSeconds = 123
}
},
Tags = new [] { new CfnTag {
Key = "key",
Value = "value"
} },
VariantName = "variantName"
}, new CfnPropertyMixinOptions {
Strategy = PropertyMergeStrategy.OVERRIDE
});
Strategy
Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint.
protected virtual PropertyMergeStrategy Strategy { get; }
Property Value
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated
Examples
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
using Amazon.CDK.Mixins.Preview.Mixins;
using Amazon.CDK.Mixins.Preview.AWS.SageMaker.Mixins;
var cfnInferenceComponentPropsMixin = new CfnInferenceComponentPropsMixin(new CfnInferenceComponentMixinProps {
DeploymentConfig = new InferenceComponentDeploymentConfigProperty {
AutoRollbackConfiguration = new AutoRollbackConfigurationProperty {
Alarms = new [] { new AlarmProperty {
AlarmName = "alarmName"
} }
},
RollingUpdatePolicy = new InferenceComponentRollingUpdatePolicyProperty {
MaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
MaximumExecutionTimeoutInSeconds = 123,
RollbackMaximumBatchSize = new InferenceComponentCapacitySizeProperty {
Type = "type",
Value = 123
},
WaitIntervalInSeconds = 123
}
},
EndpointArn = "endpointArn",
EndpointName = "endpointName",
InferenceComponentName = "inferenceComponentName",
RuntimeConfig = new InferenceComponentRuntimeConfigProperty {
CopyCount = 123,
CurrentCopyCount = 123,
DesiredCopyCount = 123
},
Specification = new InferenceComponentSpecificationProperty {
BaseInferenceComponentName = "baseInferenceComponentName",
ComputeResourceRequirements = new InferenceComponentComputeResourceRequirementsProperty {
MaxMemoryRequiredInMb = 123,
MinMemoryRequiredInMb = 123,
NumberOfAcceleratorDevicesRequired = 123,
NumberOfCpuCoresRequired = 123
},
Container = new InferenceComponentContainerSpecificationProperty {
ArtifactUrl = "artifactUrl",
DeployedImage = new DeployedImageProperty {
ResolutionTime = "resolutionTime",
ResolvedImage = "resolvedImage",
SpecifiedImage = "specifiedImage"
},
Environment = new Dictionary<string, string> {
{ "environmentKey", "environment" }
},
Image = "image"
},
ModelName = "modelName",
StartupParameters = new InferenceComponentStartupParametersProperty {
ContainerStartupHealthCheckTimeoutInSeconds = 123,
ModelDataDownloadTimeoutInSeconds = 123
}
},
Tags = new [] { new CfnTag {
Key = "key",
Value = "value"
} },
VariantName = "variantName"
}, new CfnPropertyMixinOptions {
Strategy = PropertyMergeStrategy.OVERRIDE
});
Methods
ApplyTo(IConstruct)
Apply the mixin properties to the construct.
public override IConstruct ApplyTo(IConstruct construct)
Parameters
- construct IConstruct
Returns
IConstruct
Overrides
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated
Supports(IConstruct)
Check if this mixin supports the given construct.
public override bool Supports(IConstruct construct)
Parameters
- construct IConstruct
Returns
Overrides
Remarks
In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.
CloudformationResource: AWS::SageMaker::InferenceComponent
Mixin: true
ExampleMetadata: fixture=_generated