interface ClusterConfigProperty
| Language | Type name | 
|---|---|
|  .NET | Amazon.CDK.AWS.Sagemaker.CfnModelBiasJobDefinition.ClusterConfigProperty | 
|  Java | software.amazon.awscdk.services.sagemaker.CfnModelBiasJobDefinition.ClusterConfigProperty | 
|  Python | aws_cdk.aws_sagemaker.CfnModelBiasJobDefinition.ClusterConfigProperty | 
|  TypeScript | @aws-cdk/aws-sagemaker»CfnModelBiasJobDefinition»ClusterConfigProperty | 
The configuration for the cluster resources used to run the processing job.
Example
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import * as sagemaker from '@aws-cdk/aws-sagemaker';
const clusterConfigProperty: sagemaker.CfnModelBiasJobDefinition.ClusterConfigProperty = {
  instanceCount: 123,
  instanceType: 'instanceType',
  volumeSizeInGb: 123,
  // the properties below are optional
  volumeKmsKeyId: 'volumeKmsKeyId',
};
Properties
| Name | Type | Description | 
|---|---|---|
| instance | number | The number of ML compute instances to use in the model monitoring job. | 
| instance | string | The ML compute instance type for the processing job. | 
| volume | number | The size of the ML storage volume, in gigabytes, that you want to provision. | 
| volume | string | The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job. | 
instanceCount
Type:
number
The number of ML compute instances to use in the model monitoring job.
For distributed processing jobs, specify a value greater than 1. The default value is 1.
instanceType
Type:
string
The ML compute instance type for the processing job.
volumeSizeInGb
Type:
number
The size of the ML storage volume, in gigabytes, that you want to provision.
You must specify sufficient ML storage for your scenario.
volumeKmsKeyId?
Type:
string
(optional)
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
