

針對 Oracle JD Edwards EnterpriseOne 最佳化 Amazon EC2 上的 SQL Server

AWS 方案指引

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS 方案指引: 針對 Oracle JD Edwards EnterpriseOne 最佳化 Amazon EC2 上的 SQL Server

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon 的商標和商業外觀不得用於任何非 Amazon 的產品或服務,也不能以任何可能造成客戶混 淆、任何貶低或使 Amazon 名譽受損的方式使用 Amazon 的商標和商業外觀。所有其他非 Amazon 擁 有的商標均為其各自擁有者的財產,這些擁有者可能附屬於 Amazon,或與 Amazon 有合作關係,亦 或受到 Amazon 贊助。

Table of Contents

簡介	1
JD Edwards EnterpriseOne 在 SQL Server 上的行為概觀	2
優化佈局並使用適當的資源	3
資源的放置	3
EC2 執行個體和佈局	3
儲存配置	4
SQL Server 版本	. 5
優化 SQL Server 組態	6
調整記憶體設定	6
設定最大和最小記憶體	. 6
鎖定記憶體中的頁面	8
調整 CPU 設定	. 8
調整 MAXDOP	8
調整平行處理的成本閾值	9
啟用即時檔案初始化	9
設定資料壓縮	9
在壓縮前檢查磁碟空間使用率	10
執行列舉指令碼	11
執行壓縮指令碼	12
在壓縮後檢查磁碟空間使用率	13
新增和平衡資料檔案	14
完成檔案大小計算	14
建立新檔案	15
暫時清空 MDF 檔案	16
調整 MDF 檔案的大小	17
清除	17
驗證結果	17
設定 RCSI	18
將 tempdb 移動至執行個體儲存體	18
啟用延遲耐久性	19
後續步驟	21
資源	22
文件歷史紀錄	23
詞彙表	24

#	24
A	24
В	27
C	28
D	31
E	34
F	36
G	37
H	38
T	39
L	41
M	42
O	46
P	48
Q	50
R	51
S	53
T	56
U	57
V	58
W	58
Z	59
	ls

針對 Oracle JD Edwards EnterpriseOne 最佳化 Amazon EC2 上的 SQL Server

Jeremy Shearer, Amazon Web Services (AWS)

2022 年 12 月 (文件歷史記錄)

JD Edwards EnterpriseOne 可以與多個資料庫平台一起使用,包括 Oracle Database、SQL Server 和 IBM Db2。許多使用者發現 SQL Server 是很好的資料庫選擇,因為它在成本和功能之間取得平衡,再 加上現有管理 SQL Server 資料庫的技能。

每個資料庫平台都支援 EnterpriseOne on 的多個部署選項 AWS,包括 Amazon Elastic Compute Cloud (Amazon EC2) 和 Amazon Relational Database Service (Amazon RDS),如下表所示。

EnterpriseOne 平台	上的部署選項 AWS			
	Amazon EC2	Amazon RDS	其他	
Oracle Database	是	是	IBM Power Systems (i/AIX) 和 AWS 混合架 構	
SQL Server	是	是		
IBM Db2	是	否	IBM Power Systems (i/AIX) 和 AWS 混合架 構	

本指南重點介紹在 Amazon EC2 上部署 EnterpriseOne 資料庫與 SQL Server。如需其他 SQL Server 部署選項的詳細討論,請參閱在 Amazon EC2 和 Amazon RDS 之間進行選擇。

在 Amazon EC2 上搭配使用 Oracle JD Edwards EnterpriseOne 與 SQL Server 資料庫時,可以利用特定的優化技巧來實現高效能和成本優化系統。本指南著重於 SQL Server 執行個體的效能最佳化,不包含高可用性、災難復原、備份或其他文件中涵蓋的其他補充組態,包括將 Microsoft SQL Server 資料庫遷移到 AWS 雲端。

本指南建立在<u>在 Amazon EC2 上部署 SQL Server 的最佳實務</u>指南的基礎上,面向充分了解 SQL Server 和 JD Edwards EnterpriseOne 的架構師和 DBA。

1

JD Edwards EnterpriseOne 在 SQL Server 上的行為概觀

EnterpriseOne 業務邏輯主要在應用程式中處理。只有基本的資料處理語言 (DML) 陳述式從應用程式傳遞到資料庫。在標準處理中,會在資料庫上開啟記錄集,但由應用程式管理。然後,應用程式通常會針對記錄集中的每個記錄執行多個 DML 操作。此方法會根據資料庫產生大量繁瑣的 DML 操作。每個 DML 操作的延遲是性能的關鍵驅動因素之一。由於這種架構,支援 Enterprise One 的資料庫的 CPU 使用率往往是最小的,而網路和磁碟 I/O 特性是程序效能的主要驅動因素。EnterpriseOne 資料庫調校主要著重於 DML 延遲的最小化。

為了減輕磁碟讀取 I/O 的延遲影響,通常會使用大型緩衝區快取。這可以與 SQL Server 資料壓縮結合使用,使緩衝區快取更加有效。雖然使用資料壓縮會影響 CPU,但是當您將這種方法與 Enterprise One 搭配使用時,負荷會降至最低。當緩衝區快取的大小足夠大時,磁碟讀取 I/O 延遲通常不會引起關注。

SQL Server 緩衝區快取不會解決寫入 I/O 的延遲。當 EnterpriseOne 處理產生大量的繁瑣寫入操作時,效能可能會被提交到交易日誌之每個寫入操作的延遲所限制。為了最小化這種延遲,您可以為LDF 檔案使用 io2 和/或 io2 Block Express 磁碟區。如果單獨 io2 或 io2 Block Express 不足以提供所需效能,或者成本過高,您可以使用延遲的耐久性組態來改善效能。

因為許多 EnterpriseOne 程序會建立可能與其他開啟的記錄集重疊的記錄集,因此您應該在每個 Enterprise One 資料庫上啟用已提交讀取快照隔離 (RCSI),以將封鎖降到最低。啟用此功能時,它可為 tempdb 建立大量 I/O 需求。tempdb 本質上是短暫的,不需要標準區塊儲存的耐用性。在大多數情況下,本機執行個體非揮發性記憶體快速 (NVMe) 儲存是 tempdb 的最佳選擇。

本指南的以下各節將探討這些以及其他最佳實務,以便針對 JD Edwards EnterpriseOne 優化 SQL Server。

優化佈局並使用適當的資源

最佳化資源佈局並選擇適當的資源會影響系統的成本和效能。當您搭配 EnterpriseOne 使用 SQL Server 資料庫時,請考慮下列各節中討論的最佳化模式。

主題

- 資源的放置
- EC2 執行個體和佈局
- 儲存配置
- SQL Server 版本

資源的放置

由於 EnterpriseOne 在應用程式層中完成了大部分業務邏輯,因此它在資料庫和應用程式層之間的網路中往往會非常繁忙。因此,在應用程式層上執行並存取資料庫層的程序通常對網路延遲很敏感。若要將網路延遲降到最低,建議您將 EnterpriseOne 資料庫伺服器放在與 EnterpriseOne 應用程式伺服器相同的可用區域和地區內的相同置放群組中。

如果要架構高可用性組態,可以使用多種技巧來確保最敏感的程序會在靠近資料庫伺服器的位置執行。 這些技巧包括使用 EnterpriseOne Object Configuration Manager (OCM) 將特定批次的作業 (也稱為 UBE) 映射至特定伺服器,以及在已停用遠端節點的情況下使用虛擬批次佇列 (VBQ)。

如需有關如何在 上使用置放群組的資訊 AWS,請參閱 Amazon EC2 文件中的置放群組。

EC2 執行個體和佈局

支援 EnterpriseOne 的 SQL Server 資料庫通常需要:

- x86/x64 CPU
- tempdb 的高效能本機執行個體儲存
- 用於緩衝區快取的大量記憶體
- 高儲存輸送量和 IOPS
- 高網路輸送量
- 低 vCPU 數

資源的放置

Note

本節根據撰寫本文時可用的資訊,提供特定 EC2 執行個體類型和 Amazon Elastic Block Store (Amazon EBS) 儲存建議。隨著 AWS 增加了對新的 EC2 執行個體、Amazon EBS 儲存類型和 Amazon FSx 儲存類型的支援,可能會有更好的選擇。如需最新資訊,請參閱本指南的<u>資源</u>一節。

Amazon EC2 X2iedn 執行個體類型是支援 EnterpriseOne 之 SQL Server 資料庫的偏好執行個體類型。X2iedn 提供高 Amazon EBS 輸送量、高網路輸送量以及每個 vCPU 佈建的大量記憶體和執行個體儲存量。它還支援佈建 IOPS SSD (io2) Block Express。

某些 EnterpriseOne 程序可能需要低延遲的寫入 I/O,才能支援繁瑣的遞交。具有最低延遲寫入 I/O 的磁碟區類型為 io2 Block Express,它僅適用於包含執行個體儲存體的 x86/x64 執行個體子集,包括 X2idn 和 X2iedn 執行個體。當您使用具有執行個體儲存體的其他 x86/x64 執行個體時,最低的延遲寫入 I/O 磁碟區類型為 io2。

儲存配置

搭配使用 SQL Server 資料庫檔案與 EnterpriseOne 時,其會根據其功能顯示支援各種磁碟類型的特性。

- tempdb 檔案應放置在 NVMe 執行個體儲存體上。啟用 RCSI 時,會在 tempdb 資料庫中建立大量工作負載以儲存記錄集快照。這些快照是短暫的,不需要傳統彈性區塊儲存的耐用性。當您使用 NVMe 執行個體儲存體時,資料庫會以低廉的價格獲得極低延遲的 I/O、高 IOPS 和高輸送量。
- MDF 和 NDF 資料檔案應放置在一個或多個一般用途 SSD (gp3) 磁碟區。這些檔案往往會大量讀取 IOPS,但與大型緩衝區快取搭配使用時,其對延遲不會過於敏感。您可以為每個資料庫使用多個 MDF 和 NDF 檔案,將資料庫分割到多個磁碟,以達到所需的效能等級。
- LDF 檔案應根據需要放置在單個 gp3、或<u>佈建 IOPS SSD</u> io2 或 io2 Block Express 磁碟區中。許多 JD Edwards 程序會執行建立頻繁寫入 I/O 的操作,這對延遲很敏感。對於許多使用者,gp3 延遲足以滿足需求。但是,如果您有執行期敏感程序,可能需要 io2 或者 io2 Block Express 來滿足您對工作負載的效能需求。您也可以考慮在 SQL Server 資料庫中啟用延遲耐久性,以減輕頻繁寫入 I/O 的效能影響。啟用延遲耐久性時,您可以使用 gp3 儲存裝置,而不必擔心寫入 I/O 延遲。
- 備份檔案應放置在高輸送量、低成本的儲存裝置中 (例如輸送量優化 HDD (st1)) 或 Amazon Simple Storage Service (Amazon S3) 儲存貯體中。此外,由於 EnterpriseOne 資料往往重複且稀少,因此 建議您針對透過資料庫進行的備份使用 SQL Server 備份壓縮。

儲存配置

• 當您使用具有大量 NVMe 執行個體儲存的執行個體時,緩衝集區延伸模組 (BPE) 可以提供價值。不過,當您使用 X2iedn 執行個體時,BPE 的優勢會因為大量可用記憶體而大幅降低,而且最好將可用的 NVMe 儲存裝置用於 tempdb。

SQL Server 版本

大多數使用者都能夠利用 SQL Server 標準版來滿足其生產系統的業務需求,並將 SQL Server 開發人員版本用於非生產環境。SQL Server 企業版往往很少用於 EnterpriseOne,因為它的成本很高,而且 Microsoft 會在每個版本中將功能從企業版移動到標準版。EnterpriseOne 通常使用的許多功能已移至 SQL Server 標準版,包括下列內容:

- 最大記憶體在 SQL Server 2012 中增加到 128 GB。
- SQL Server 2016 中提供單一資料庫的基礎 Always On 可用性群組。
- SQL Server 2016 SP1 中提供了資料庫壓縮功能。
- SQL Server 2017 可提供 BPE。
- SQL Server 2019 可提供透明資料加密功能。

但是,某些功能僅在企業版中可用。其中包含:

- 線上索引操作
- 每個資料庫執行個體使用超過 128 GB 的 RAM
- 使用超過 24 個核心
- 資源管理員可管理工作負載和系統資源消耗
- 預先讀取操作

大多數 EnterpriseOne 企業使用者可以利用其他解決方案來滿足他們的業務需求,而無需使用這些企業 版功能。

SQL Server 版本

優化 SQL Server 組態

SQL Server 的預設組態未針對 JD Edwards EnterpriseOne 進行優化。必須套用適當的組態,以確保在 SQL Server 資料庫上執行的 EnterpriseOne 具有最佳效能。下列各節會詳細說明這些設定。

主題

- 調整記憶體設定
- 調整 CPU 設定
- 啟用即時檔案初始化
- 設定資料壓縮
- 新增和平衡資料檔案
- 設定 RCSI
- 將 tempdb 移動至執行個體儲存體
- 啟用延遲耐久性

調整記憶體設定

建議您為執行 JD Edwards 工作負載的 SQL Server 資料庫設定預設記憶體值。其中包含:

- 設定最大和最小記憶體設定
- 鎖定記憶體中的頁面

設定最大和最小記憶體

設定 SQL Server 資料庫的最大記憶體可確保作業系統和其他程序有足夠的記憶體來執行其動作,而無需分頁到磁碟。設定最大和最小記憶體可防止安裝在相同 EC2 執行個體上的多個 SQL Server 執行個體 做此耗盡記憶體。

可以使用下列指令碼,透過保守值自動設定最大和最小設定。此指令碼會為作業系統保留 1 GB,而在 16 GB 以下的 25% 記憶體和 12.5% 的剩餘記憶體做為額外負荷。SQL Server 最小記憶體設定為最大記憶體的一半。該指令碼假設您在 EC2 執行個體上已安裝單一 SQL Server 資料庫。

DECLARE @OSMemoryUnder16GB bigint; DECLARE @OSMemoryUnder16GB bigint; DECLARE @OSMemoryOver16GB bigint;

調整記憶體設定 6

```
DECLARE @OSOverhead bigint;
DECLARE @MemoryOverheadLower bigint;
DECLARE @MemoryOverheadUpper bigint;
DECLARE @MemoryOverheadTotal bigint;
DECLARE @SQLMaxMemory int;
DECLARE @SQLMinMemory int;
-- Find how much memory is available on the OS
SELECT @OSMemoryTotalKB = total_physical_memory_kb from sys.dm_os_sys_memory;
SET @OSMemoryUnder16GB = IIF(@OSMemoryTotalKB>16777216, 16777216, @OSMemoryTotalKB);
SET @OSMemoryOver16GB = IIF(@OSMemoryTotalKB>16777216, @OSMemoryTotalKB-16777216, 0);
-- Calculate overhead for the OS
SET @OSOverhead= 1048576; -- static 1GB reservation
-- Calculate overhead for managing memory
SET @MemoryOverheadLower = @OSMemoryUnder16GB/4; --reserve 25% of memory under 16GB for
overhead
SET @MemoryOverheadUpper = @OSMemoryOver16GB/8; -- reserve 12.5% of memory over 16GB
 for overhead
SET @MemoryOverheadTotal = @OSOverhead + @MemoryOverheadLower + @MemoryOverheadUpper;
-- Calculate remaining memory available for SQL
SET @SQLMaxMemory = (@OSMemoryTotalKB-@MemoryOverheadTotal)/1024;
SET @SQLMinMemory = @SQLMaxMemory/2; -- set minimum to half of maximum
Print N'Total Server memory (KB): ' + CAST(@OSMemoryTotalKB as NVARCHAR);
Print N'Memory Overhead for OS Overhead (KB): ' + CAST(@OSOverhead as NVARCHAR);
Print N'Memory Overhead for management of lower 16GB (KB): ' +
 CAST(@MemoryOverheadLower as NVARCHAR);
Print N'Memory Overhead for management of over 16GB (KB): ' + CAST(@MemoryOverheadUpper
 as NVARCHAR);
Print N'Memory Overhead Total: ' + CAST(@MemoryOverheadTotal as NVARCHAR);
Print N'SQL Minimum Memory (MB): ' + CAST(@SQLMinMemory as NVARCHAR);
Print N'SQL Maximum Memory (MB): ' + CAST(@SQLMaxMemory as NVARCHAR);
EXEC sp_configure 'show advanced options', 1;
RECONFIGURE;
EXEC sp_configure 'min server memory', @SQLMinMemory
RECONFIGURE;
EXEC sp_configure 'max server memory', @SQLMaxMemory;
RECONFIGURE;
```

設定最大和最小記憶體

鎖定記憶體中的頁面

為了確保 EnterpriseOne SQL Server 資料庫所使用記憶體的穩定性,建議您鎖定記憶體中的頁面。請遵循在 Amazon EC2 上部署 SQL Server 的最佳實務指南來完成此組態。

調整 CPU 設定

SQL Server 資料庫上的預設 CPU 設定可允許程序耗用所有可用資源來完成其任務。此組態可能會使 EnterpriseOne 程序缺少所需的 CPU 資源,從而導致效能問題和逾時。若要緩解此問題,可以調整最大平行處理程度和成本閾值設定。

調整 MAXDOP

根據預設,最大平行處理程度 (MAXDOP) 會設定為無限制 (0)。將 MAXDOP 設定為 1 會停用平行處理,並強制查詢執行單一執行緒。0 或 1 以外的值會設定單一查詢可使用的最大平行執行緒 (vCPU) 數目。

若要為 MAXDOP 設定適當值,請考慮以下事項:

- 如果正在執行 SQL Server 企業版,可以使用資源管理器來控制 CPU 配置。但是,由於 SQL Server 標準版通常更具成本效益,因此許多 EnterpriseOne 安裝無法使用資源管理器。
- 大多數 EnterpriseOne 程序是較短的 DML 操作,不使用平行處理。不過,許多第三方應用程式都受益於平行處理,而且當平行處理降低或停用時,效能可能會下降。
- 可以設定較小的 MAXDOP 值,以限制任何單一程序使系統飽和的能力。

建議您最多將 MAXDOP 值設定為執行個體中可用 vCPU 數目的一半。最小 MAXDOP 值為 1,這會完全停用平行處理。下列查詢會透過將 MAXDOP 設定為 1 來停用平行處理,但您可以調整指令碼,將其設定為任何其他 MAXDOP 值。

Note

本指南中的指令碼使用 JDE_Prist920 作為 EnterpriseOne 資料庫名稱。若要使用指令碼,請更新資料庫名稱以反映您的資料庫。

```
USE JDE_Prist920;
GO
EXEC sp_configure 'show advanced options', 1;
```

鎖定記憶體中的頁面 8

```
GO
RECONFIGURE WITH OVERRIDE;
GO
EXEC sp_configure 'max degree of parallelism', 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
```

調整平行處理的成本閾值

如果透過將 MAXDOP 設定為大於 1 的值來啟用平行處理,請將平行處理的成本閾值設定為 50 或更高,以限制考慮進行平行處理的 EnterpriseOne 查詢數目。可以使用以下指令碼來設定該值。

```
EXEC sp_configure 'show advanced options', 1;
GO
RECONFIGURE
GO
EXEC sp_configure 'cost threshold for parallelism', 50;
GO
RECONFIGURE
GO
```

啟用即時檔案初始化

當資料庫檔案增長時,預設會用零 (0x0) 填充新的磁盤空間。這會產生大量的系統 I/O,並可能會降低系統效能。即時檔案初始化可防止已分配的磁碟空間上的歸零操作。若要啟用即時檔案初始化,請遵循在 Amazon EC2 上部署 SQL Server 的最佳實務指南中的步驟。

設定資料壓縮

可以使用頁面或資料列壓縮來壓縮 Enterprise One 業務資料和控制項資料表中的資料表和索引。上的大多數 EnterpriseOne 工作負載在頁面壓縮 AWS 時展現最佳效能,但非常大型的工作負載 (未壓縮的 TB 數倍) 可能會在資料列壓縮時表現更好。頁面與資料列壓縮的詳細討論已超出本指南範圍。本節主要著重於頁面壓縮。

當您為一般 EnterpriseOne 工作負載啟用壓縮時,CPU 使用率的增加會很小,但對整體系統效能有顯 著好處,這可以從下列方面進行衡量:

- 較小的資料庫大小和儲存需求,因為資料是以壓縮格式儲存在磁碟上。
- 較高的緩衝區快取命中率,因為緩衝區快取在壓縮時可以容納更多資料。

調整平行處理的成本閾值

- 所需的 Amazon EBS IOPS 和輸送量較低,因為每個 I/O 操作傳回的資料更多,而需要的操作更少,因為緩衝區快取更有效。
- 備份速度更快,因為資料會在整個備份過程中保持壓縮。

可以按資料表或索引單獨啟用壓縮。也可以按資料表和索引選擇壓縮類型 (頁面或資料列)。不壓縮定期更新的資料表可能是有利的,例如 F0002 (下一個數字) 和 F0902 (帳戶餘額) 資料表。在許多情況下,在所有資料表和索引間啟用壓縮可提供最簡單的解決方案,因為它提供了大部分優點,而不需要逐個物件進行分析。本指南中的步驟將使用頁面壓縮來壓縮所有資料表和索引。

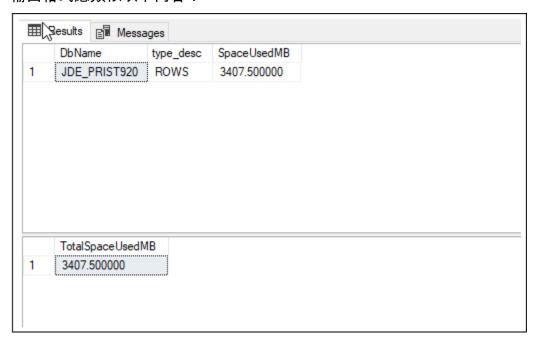
在某些情況下,壓縮可能會導致效能降低,尤其是當第三方系統直接存取 JD Edwards 資料庫並執行資料表和索引掃描操作時。這種降級通常是由效能不佳的查詢所引起。在這些情況下,請檢閱緩慢的查詢,並使用常見的最佳化技術來提高其效能。例如,考慮重寫查詢以使用現有索引或建置新索引。

啟用壓縮是一個多步驟程序。其中許多步驟都需要對資料庫物件的獨佔存取權,這表示必須讓 EnterpriseOne 和其他系統離線。請遵循下列高層級步驟,在 DTA 和 CTL 結構描述的所有資料表和索 引中啟用頁面壓縮:

- 1. 在壓縮前檢查磁碟空間使用率。
- 2. 執行列舉指令碼。
- 3. 執行壓縮指令碼。
- 4. 在壓縮後檢查磁碟空間使用率。

在壓縮前檢查磁碟空間使用率

若要檢查資料庫的當前磁碟空間使用率,請執行以下指令碼。


```
USE JDE_PRIST920
SELECT DB_NAME() AS DbName,
    type_desc,
    CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0 AS SpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
AND type_desc = 'ROWS';

SELECT SUM(CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0) AS TotalSpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
```

在壓縮前檢查磁碟空間使用率 10

AND type_desc = 'ROWS'

輸出格式應類似以下內容:

在此範例中,資料表列會佔用 3407 MB 的磁碟空間。

執行列舉指令碼

由於 EnterpriseOne 資料庫中有大量的資料表和索引,因此您可以使用指令碼來列舉要壓縮的物件。列舉指令碼的輸出是下一節中使用的壓縮指令碼。執行下列指令碼之前,請先更新結構描述擁有者名稱,以反映您要壓縮之資料表和索引的擁有者。

```
declare @tblname as varchar(100)
declare @idxname as varchar(100)
declare @schemaname as varchar(100)
declare @sqlstatement as varchar(512)
declare tblcurs CURSOR for
    select t.name as tblname, s.name as schemaname
    from sys.tables t
    inner join sys.schemas s on t.schema_id = s.schema_id
    inner join sys.indexes i on i.object_id = t.object_id
    inner join sys.partitions p on i.object_id = p.object_id AND i.index_id =
p.index_id
    where s.name in ('PS920DTA', 'PS920CTL')
    and i.type_desc='CLUSTERED'
    and p.data_compression_desc <> 'PAGE'
open tblcurs
```

執行列舉指令碼 11

```
FETCH next from tblcurs into @tblname, @schemaname
while @@FETCH_STATUS = 0
begin
                FETCH next from tblcurs into @tblname, @schemaname
                set @sqlstatement = 'alter table ' + @schemaname + '.' + @tblname + '
 rebuild with (DATA_COMPRESSION = PAGE)'
                print @sqlstatement
end
close tblcurs
deallocate tblcurs
declare idxcurs CURSOR for
    select i.name as idxname, t.name as tblname, s.name as schemaname
    from sys.tables t
    inner join sys.schemas s on t.schema_id = s.schema_id
    inner join sys.indexes i on i.object_id = t.object_id
    inner jOIN sys.partitions p ON i.object_id = p.object_id AND i.index_id =
 p.index_id
    where s.name in ('PS920DTA', 'PS920CTL')
    and p.data_compression_desc <> 'PAGE'
    and i.type_desc='NONCLUSTERED'
    and i.name is not null
open idxcurs
FETCH next from idxcurs into @idxname, @tblname, @schemaname
while @@FETCH STATUS = 0
begin
                FETCH next from idxcurs into @idxname, @tblname, @schemaname
                set @sqlstatement = 'alter index ' + @idxname + ' on ' + @schemaname +
 '.' + @tblname + ' rebuild with (DATA_COMPRESSION = PAGE)'
                print @sqlstatement
end
close idxcurs
deallocate idxcurs
```

執行壓縮指令碼

檢閱您在上一節執行之列舉指令碼的輸出。可以將此壓縮指令碼分成較小的指令碼,然後單獨和平行地 將其執行。

Important

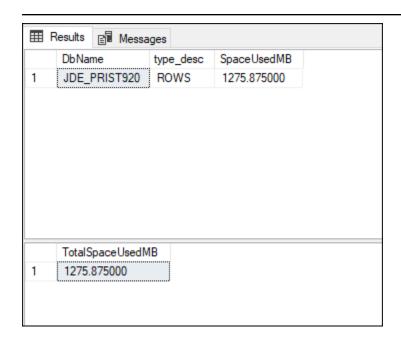
針對 EnterpriseOne 資料庫執行此指令碼時,請確定 EnterpriseOne 系統已離線。

執行壓縮指令碼 12

以下是壓縮指令碼範例。

```
alter table PS920DTA.F07620 rebuild with (DATA_COMPRESSION = PAGE)
alter table PS920DTA.F760404A rebuild with (DATA_COMPRESSION = PAGE)
alter table PS920DTA.F31B93Z1 rebuild with (DATA_COMPRESSION = PAGE)
alter table PS920DTA.F31B65 rebuild with (DATA_COMPRESSION = PAGE)
alter table PS920DTA.F47156 rebuild with (DATA_COMPRESSION = PAGE)
alter table PS920DTA.F74F210 rebuild with (DATA_COMPRESSION = PAGE)
...
alter index F4611_16 on PS920DTA.F4611 rebuild with (DATA_COMPRESSION = PAGE)
alter index F4611_17 on PS920DTA.F4611 rebuild with (DATA_COMPRESSION = PAGE)
alter index F7000110_PK on PS920DTA.F7000110 rebuild with (DATA_COMPRESSION = PAGE)
alter index F7000110_3 on PS920DTA.F7000110 rebuild with (DATA_COMPRESSION = PAGE)
alter index F7000110_4 on PS920DTA.F7000110 rebuild with (DATA_COMPRESSION = PAGE)
alter index F76A801T_PK on PS920DTA.F76A801T rebuild with (DATA_COMPRESSION = PAGE)
alter index F76A801T_PK on PS920DTA.F76A801T rebuild with (DATA_COMPRESSION = PAGE)
```

在壓縮後檢查磁碟空間使用率


若要在壓縮後檢查資料庫的當前磁碟空間使用率,請執行以下指令碼。

```
USE JDE_PRIST920
SELECT DB_NAME() AS DbName,
    type_desc,
    CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0 AS SpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
AND type_desc = 'ROWS';

SELECT SUM(CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0) AS TotalSpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
AND type_desc = 'ROWS'
```

輸出格式應類似以下內容。

在壓縮後檢查磁碟空間使用率 1

在此範例中,可以看到使用的空間從 3407 MB 降至 1275 MB,這表示可節省 62% 的壓縮空間。資料庫的節省有所不同,取決於資料在資料庫資料表中的分佈方式。

新增和平衡資料檔案

EnterpriseOne 提供的 SQL Server 資料庫通常可以從其他檔案中受益。其他檔案可讓儲存核心與處理器核心達到最佳平衡。平衡檔案是一個多步驟程序。其中許多步驟都需要對資料庫物件的獨佔存取權,因此必須讓 EnterpriseOne 和存取資料庫的其他系統離線。

- 1. 完成檔案大小計算。
- 2. 建立新檔案。
- 3. 暫時清空 MDF 檔案。
- 4. 調整 MDF 檔案的大小。
- 5. 清除。
- 6. 驗證結果。

完成檔案大小計算

若要查找資料庫檔案的適當大小,請先使用下列查詢來檢查目前 ROW 資料的大小。

USE JDE_PRIST920

新增和平衡資料檔案 14

SELECT SUM(CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0) AS SpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
AND type_desc = 'ROWS'

然後完成以下計算並填寫您的值欄位:

折線圖	名稱	範例	您的值	描述
1	目前的資料 列大小	1 TB		上一個查詢的結果。
2	規劃的增長	20%		未來幾個月的預期增長, 包括安全邊際。
3	所需尺寸	1.2 TB		第 1 行乘以第 2 行。
4	檔案數目	8		目標檔案數目。
5	每個檔案大 小	150 GB		第3行除以第4行。
6	自動增長百 分比	10%		自動增長的大小。對於最 小的分段,10% 是一個很 好的目標。
7	自動增長大 小	15 GB		第 5 行乘以第 6 行。

建立新檔案

使用下列指令碼做為範本,將檔案新增至資料庫。修改下列參數:

- 將 JDE-PRIST920 變更為要向其中新增檔案的資料庫名稱。
- 對於 NAME,請指定要新增之每個檔案的邏輯名稱。
- 對於 FILENAME,請指定要新增之每個檔案的實體名稱。
- 對於 FILEGROWTH,請使用上一個表格第 7 列計算出的值。
- 對於 SIZE, 指定上一個表格第 5 列中的值。

建立新檔案 15

```
USE master;
G<sub>0</sub>
ALTER DATABASE JDE_PRIST920
MODIFY FILE (NAME = JDE_PRIST920_Data, FILEGROWTH = 15GB);
ALTER DATABASE JDE_PRIST920
ADD FILE
(NAME = JDE_PRIST920_Data2, FILENAME = 'M:\DATA\PRIST920_Data2.ndf', SIZE=150GB,
FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_Data3, FILENAME = 'M:\DATA\PRIST920_Data3.ndf', SIZE=150GB,
 FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_Data4, FILENAME = 'M:\DATA\PRIST920_Data4.ndf', SIZE=150GB,
 FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_Data5, FILENAME = 'M:\DATA\PRIST920_Data5.ndf', SIZE=150GB,
 FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_Data6, FILENAME = 'M:\DATA\PRIST920_Data6.ndf', SIZE=150GB,
 FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_Data7, FILENAME = 'M:\DATA\PRIST920_Data7.ndf', SIZE=150GB,
 FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_Data8, FILENAME = 'M:\DATA\PRIST920_Data8.ndf', SIZE=150GB,
FILEGROWTH = 15GB),
(NAME = JDE_PRIST920_TEMP, FILENAME = 'M:\DATA\PRIST920_TEMP.ndf', SIZE=150GB,
 FILEGROWTH = 15GB)
G<sub>0</sub>
```

暫時清空 MDF 檔案

建立檔案後,請針對每個檔案執行下列命令,將資料從 MDF 檔案遷移至 NDF 檔案。調整檔案名稱以 反映資料庫中的檔案名稱。

```
USE JDE_PRIST920
DBCC SHRINKFILE (JDE_PRIST920_Data, EMPTYFILE)
```

EMPTYFILE 命令會產生錯誤,因為某些內容無法移動到 NDF 檔案。可以忽略此錯誤訊息。

```
BEC SHRINKFILE: System table SYSFILES1 Page 1:185736 could not be moved to other files because it only can reside in the primary file of the database.

Msg 2555, Level 16, State 1, Line 2

Cannot move all contents of file "JDE_PRIST920_Data" to other places to complete the emptyfile operation.

DBCC execution completed. If DBCC printed error messages, contact your system administrator.

Completion time: 2022-09-12T16:17:29.6488503+00:00
```

暫時清空 MDF 檔案 16

調整 MDF 檔案的大小

若要將 MDF 檔案大小縮減為目標大小,請執行以下命令。調整檔案大小以反映表格中第 5 列計算的 值。

```
JDE_PRIST920
DBCC SHRINKFILE (JDE_PRIST920_Data, 150000);
```

有時,由於放置了無法移至 NDF 檔案的內容,SHRINKFILE 命令會失敗。在這種情況下,可能需要執行 DBCC DBREINDEX 命令,重新執行該程序來清空檔案,然後再次嘗試 SHRINKFILE 操作。

清除

已建立目標檔案並且正確調整 MDF 檔案大小後,請使用以下命令將資料從 TEMP 檔案遷回 MDF 檔案。調整檔案名稱以反映資料庫中的檔案名稱。

```
DBCC SHRINKFILE (JDE_PRIST920_TEMP, EMPTYFILE)
```

若檔案為空,請使用以下命令來移除它:

```
ALTER DATABASE JDE_PRIST920;
REMOVE FILE JDE_PRIST920_TEMP;
```

驗證結果

若要在平衡後檢查資料庫的當前磁碟空間使用率,請執行以下指令碼。

```
USE JDE_PRIST920
SELECT DB_NAME() AS DbName,
    type_desc,
    CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0 AS SpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
AND type_desc = 'ROWS';

SELECT SUM(CAST(FILEPROPERTY(name, 'SpaceUsed') AS INT)/128.0) AS TotalSpaceUsedMB
FROM sys.database_files
WHERE type IN (0,1)
AND type_desc = 'ROWS'
```

調整 MDF 檔案的大小 17

輸出格式應類似以下內容。檔案很少會完全平衡,因為某些內容只能存在於 MDF 檔案中。

設定 RCSI

建議您為每個 EnterpriseOne 資料庫啟用已提交讀取快照隔離 (RCSI)。否則,可能會遇到影響系統效能的鎖定情況。在某些情況下,EnterpriseOne 可能會還原為 *NOLOCK,如果 RCSI 未生效,這可能會導致已變更讀取操作。

若要啟用 RCSI,請針對每個資料庫執行下列命令,並相應地修改資料庫名稱。

```
USE master
ALTER DATABASE JDE_Prist920 SET READ_COMMITTED_SNAPSHOT ON
GO
```

啟用 RCSI 之後,請依照「我的 Oracle 支援」 (MOS) 注意事項 2565588 (需要註冊) 中所述調整 EnterpriseOne 組態。調整會停用 SQL 查詢逾時並停用 *NOLOCK 重試。如果未啟用 RCSI,則需要這些設定。

將 tempdb 移動至執行個體儲存體

啟用 RCSI 時,可以在 tempdb 中建立大量 IOPS 和輸送量負載,以便在交易期間維護記錄的版本。由於這種負載,應該將 tempdb 移至 NVMe 執行個體儲存體。如需有關如何將 tempdb 移至執行個體儲存體的資訊,請遵循在 Amazon EC2 上部署 SQL Server 的最佳實務指南中的步驟。

設定 RCSI 18

啟用延遲耐久性

某些程序 (例如 EnterpriseOne 的物料需求計畫 (MRP) 會遇到由於將交易提交至交易日誌的磁碟延遲 所造成的瓶頸。將交易日誌 (LDF) 移至 io2 或者 io2 Block Express 儲存裝置通常能夠充分提升效 能,以符合業務需求。如果這不夠,可以在資料庫中設定延遲耐久性。

▲ Important

只有在效能不可接受且您完全瞭解在系統故障情況下交易在資料庫中的行為時,才應啟用延遲 耐久性。

啟用延遲耐久性時,會使用回寫 (而非直寫) 操作來快取交易遞交。如果發生系統故障,仍可保證資料 庫的一致性。不過,任何尚未遞交到磁碟的交易都會遺失。此外,當延遲的耐久性生效時,與複寫相 關的其他功能,包括 AWS Database Migration Service (AWS DMS) 所使用的功能,也會變得無法使 用。

在特定組態中進行 MRP 測試期間,我們觀察到以下幾點:

- 將 LDF 檔案移至 io2 Block Express 的執行期減少了 52% (與 qp3 上的 LDF 檔案的基準相比)。
- 與 qp3 上的 LDF 檔案的基準相比,啟用延遲耐久性會使執行期減少 79%。

若要啟用延遲耐久性,請針對資料庫執行以下命令。

USE master

ALTER DATABASE JDE_Prist920 SET DELAYED_DURABILITY = FORCE

延遲耐久性通常會每秒清除日誌數次,但是如果發生磁碟 I/O 瓶頸,延遲可能會增加。若要確保低復原 點目標 (RPO),可以將 sys.sp_flush_log 命令放入排程器中以高頻執行。此程序強制將日誌清空 至磁碟。

下列指令碼會在 SQL 作業排程器中建立作業,每分鐘執行一次。調整指令碼中的作業名稱和資料庫名 稱,以反映您的需求。

USE msdb;

G0

DECLARE @myjob nvarchar(128);

啟用延遲耐久性 19

```
DECLARE @mydb nvarchar(128);
DECLARE @mycommand nvarchar(max);
DECLARE @myschedule nvarchar(128);
DECLARE @jobId binary(16);
DECLARE @scheduleId binary(16);
SET @myjob = 'JDE_Prist920 Flush Log Cache';
SET @mydb = 'JDE_Prist920';
SET @mycommand = 'sys.sp_flush_log';
SET @myschedule = 'EveryMinute';
SELECT @scheduleId = schedule_id FROM msdb.dbo.sysschedules WHERE (name = @myschedule)
IF (@scheduleId IS NULL)
BEGIN
 EXEC sp_add_schedule
     @schedule_name = @myschedule,
     @freq_type = 4,
     @freq_interval = 1,
     @freq_subday_type = 0x2,
     @freq_subday_interval= 60
END
SELECT @jobId = job_id FROM msdb.dbo.sysjobs WHERE (name = @myjob)
IF (@jobId IS NULL)
BEGIN
    EXEC sp_add_job @job_name = @myjob
 EXEC sp_add_jobstep
     @job_name = @myjob,
     @step_name = N'process step',
     @subsystem = N'TSQL',
  @command = @mycommand,
  @database_name = @mydb
 EXEC sp_attach_schedule
  @job_name = @myjob,
  @schedule_name = @myschedule;
 EXEC dbo.sp_add_jobserver
  @job_name = @myjob
END
```

啟用延遲耐久性 20

後續步驟

本指南著重於針對 EnterpriseOne 最佳化 SQL Server 組態。資料庫災難復原等主題已超出本文件的範圍,但應作為組態的一部分進行討論;請參閱資源部分以獲得更多閱讀內容。

您也可以使用許多 AWS 服務和功能來最佳化 EnterpriseOne 系統,包括下列項目。

服務	使用
AWS Application Migration Service	可以使用 Application Migration Service,從執行支援的作業系統和資料庫的任何來源基礎架構中遷移 EnterpriseOne,包括 Microsoft Windows、Red Hat Enterprise Linux (RHEL)、Oracle Linux、SQL Server 和 Oracle Database。
AWS Elastic Disaster Recovery	彈性災難復原功能使用經濟實惠的儲存裝置、最少的運算和時間 點復原,透過內部部署應用程式和雲端應用程式的快速且可靠的 復原,將停機時間和資料遺失降到最低。
AWS Database Migration Service (AWS DMS)	AWS DMS 支援在超過 20 個不同的資料庫平台之間遷移資料,包括與 EnterpriseOne 搭配使用的資料庫平台。常見的 EnterpriseOne 使用案例包括使用 EnterpriseOne 資料來建置資料市集。
Application Load Balancer	Application Load Balancer 可讓您在多個 HTTP 或以 HTTPS 為基礎的 EnterpriseOne 應用程式服務中分散工作負載。
Amazon WorkSpaces	您可使用 Amazon WorkSpaces 產品,視需求存取 JD Edwards 開發和管理用戶端應用程式的高效能工作站。
AWS IAM Identity Center	您可以使用 AWS Identity and Access Management (IAM) 為 EnterpriseOne 提供身分驗證。此服務可與 EnterpriseOne Tools 9.2.5.4 或更高版本一起使用,它支援 JSON 網路字符 (JWT)。
Amazon Simple Email Service (Amazon SES)	Amazon SES 提供可靠且合規的方式來管理 EnterpriseOne 電子郵件。透過使用第三方公用程式進行 SMTP 驗證,此服務適用於所有 EnterpriseOne 版本。EnterpriseOne Tools 9.2.7 及更高版本支援使用 EnterpriseOne 進行身份驗證的 SMTP。

資源

- 將 Microsoft SQL Server 資料庫遷移至 AWS 雲端(AWS 規範性指導)
- 在 Amazon EC2 上部署 SQL Server 的最佳實務 (AWS 規範性指導)
- Amazon EC2 執行個體 (Amazon EC2 文件)
- Amazon Elastic Block Store (Amazon EBS) 文件
- 放置群組 (Amazon EC2 文件)
- AWS 使用 Connectria 託管具有低延遲連線的 IBM i 和 AIX Systems 至 (AWS 部落格文章)

文件歷史紀錄

下表描述了本指南的重大變更。如果您想收到有關未來更新的通知,可以訂閱 RSS 摘要。

變更 描述 日期

初次出版 — 2022 年 12 月 6 日

AWS 規範性指引詞彙表

以下是 AWS Prescriptive Guidance 提供的策略、指南和模式中常用的術語。若要建議項目,請使用詞彙表末尾的提供意見回饋連結。

數字

7 R

將應用程式移至雲端的七種常見遷移策略。這些策略以 Gartner 在 2011 年確定的 5 R 為基礎,包括以下內容:

- 重構/重新架構 充分利用雲端原生功能來移動應用程式並修改其架構,以提高敏捷性、效能和可擴展性。這通常涉及移植作業系統和資料庫。範例:將您的內部部署 Oracle 資料庫遷移至 Amazon Aurora PostgreSQL 相容版本。
- 平台轉換 (隨即重塑) 將應用程式移至雲端,並引入一定程度的優化以利用雲端功能。範例:將您的現場部署 Oracle 資料庫遷移至 中的 Amazon Relational Database Service (Amazon RDS) for Oracle AWS 雲端。
- 重新購買 (捨棄再購買) 切換至不同的產品,通常從傳統授權移至 SaaS 模型。範例:將您的客戶關係管理 (CRM) 系統遷移至 Salesforce.com。
- 主機轉換 (隨即轉移) 將應用程式移至雲端,而不進行任何變更以利用雲端功能。範例:將您的 現場部署 Oracle 資料庫遷移至 中 EC2 執行個體上的 Oracle AWS 雲端。
- 重新放置 (虛擬機器監視器等級隨即轉移) 將基礎設施移至雲端,無需購買新硬體、重寫應用程式或修改現有操作。您可以將伺服器從內部部署平台遷移到相同平台的雲端服務。範例:將 Microsoft Hyper-V應用程式遷移至 AWS。
- 保留 (重新檢視) 將應用程式保留在來源環境中。其中可能包括需要重要重構的應用程式,且您希望將該工作延遲到以後,以及您想要保留的舊版應用程式,因為沒有業務理由來進行遷移。
- 淘汰 解除委任或移除來源環境中不再需要的應用程式。

Α

ABAC

請參閱屬性型存取控制。

24

抽象服務

請參閱 受管服務。

ACID

請參閱原子性、一致性、隔離性、耐久性。

主動-主動式遷移

一種資料庫遷移方法,其中來源和目標資料庫保持同步 (透過使用雙向複寫工具或雙重寫入操作), 且兩個資料庫都在遷移期間處理來自連接應用程式的交易。此方法支援小型、受控制批次的遷移, 而不需要一次性切換。它更靈活,但需要比主動-被動遷移更多的工作。

主動-被動式遷移

一種資料庫遷移方法,其中來源和目標資料庫保持同步,但只有來源資料庫處理來自連接應用程式的交易,同時將資料複寫至目標資料庫。目標資料庫在遷移期間不接受任何交易。

彙總函數

在一組資料列上運作的 SQL 函數,會計算群組的單一傳回值。彙總函數的範例包括 SUM和 MAX。 AI

請參閱人工智慧。

AIOps

請參閱人工智慧操作。

匿名化

永久刪除資料集中個人資訊的程序。匿名化有助於保護個人隱私權。匿名資料不再被視為個人資 料。

反模式

經常用於經常性問題的解決方案,其中解決方案具有反生產力、無效或比替代解決方案更有效。 應用程式控制

一種安全方法,僅允許使用核准的應用程式,以協助保護系統免受惡意軟體攻擊。

應用程式組合

有關組織使用的每個應用程式的詳細資訊的集合,包括建置和維護應用程式的成本及其商業價值。 此資訊是<u>產品組合探索和分析程序</u>的關鍵,有助於識別要遷移、現代化和優化的應用程式並排定其 優先順序。

 \overline{A} 25

人工智慧 (AI)

電腦科學領域,致力於使用運算技術來執行通常與人類相關的認知功能,例如學習、解決問題和識別模式。如需詳細資訊,請參閱什麼是人工智慧?

人工智慧操作 (AIOps)

使用機器學習技術解決操作問題、減少操作事件和人工干預以及提高服務品質的程序。如需有關如何在 AWS 遷移策略中使用 AIOps 的詳細資訊,請參閱操作整合指南。

非對稱加密

一種加密演算法,它使用一對金鑰:一個用於加密的公有金鑰和一個用於解密的私有金鑰。您可以 共用公有金鑰,因為它不用於解密,但對私有金鑰存取應受到高度限制。

原子性、一致性、隔離性、耐久性 (ACID)

一組軟體屬性,即使在出現錯誤、電源故障或其他問題的情況下,也能確保資料庫的資料有效性和操作可靠性。

屬性型存取控制 (ABAC)

根據使用者屬性 (例如部門、工作職責和團隊名稱) 建立精細許可的實務。如需詳細資訊,請參閱《 AWS Identity and Access Management (IAM) 文件》中的 ABAC for AWS。

授權資料來源

存放主要版本資料的位置,被視為最可靠的資訊來源。您可以將授權資料來源中的資料複製到其他 位置,以處理或修改資料,例如匿名、修訂或假名化資料。

可用區域

中的不同位置 AWS 區域 ,可隔離其他可用區域中的故障,並提供相同區域中其他可用區域的低成本、低延遲網路連線。

AWS 雲端採用架構 (AWS CAF)

的指導方針和最佳實務架構 AWS ,可協助組織制定高效且有效的計劃,以成功地移至雲端。 AWS CAF 將指導方針組織到六個重點領域:業務、人員、治理、平台、安全和營運。業務、人員和控管層面著重於業務技能和程序;平台、安全和操作層面著重於技術技能和程序。例如,人員層面針對處理人力資源 (HR)、人員配備功能和人員管理的利害關係人。因此, AWS CAF 為人員開發、訓練和通訊提供指引,協助組織做好成功採用雲端的準備。如需詳細資訊,請參閱 AWS CAF 網站和 AWS CAF 白皮書。

Ā 26

AWS 工作負載資格架構 (AWS WQF)

一種工具,可評估資料庫遷移工作負載、建議遷移策略,並提供工作預估值。 AWS WQF 隨附於 AWS Schema Conversion Tool (AWS SCT)。它會分析資料庫結構描述和程式碼物件、應用程式程式碼、相依性和效能特性,並提供評估報告。

В

錯誤的機器人

旨在中斷或傷害個人或組織的機器人。

BCP

請參閱業務持續性規劃。

行為圖

資源行為的統一互動式檢視,以及一段時間後的互動。您可以將行為圖與 Amazon Detective 搭配使用來檢查失敗的登入嘗試、可疑的 API 呼叫和類似動作。如需詳細資訊,請參閱偵測文件中的<u>行</u>為圖中的資料。

大端序系統

首先儲存最高有效位元組的系統。另請參閱 <u>Endianness</u>。

二進制分類

預測二進制結果的過程 (兩個可能的類別之一)。例如,ML 模型可能需要預測諸如「此電子郵件是否是垃圾郵件?」等問題 或「產品是書還是汽車?」

Bloom 篩選條件

一種機率性、記憶體高效的資料結構,用於測試元素是否為集的成員。

藍/綠部署

一種部署策略,您可以在其中建立兩個不同但相同的環境。您可以在一個環境 (藍色) 中執行目前的應用程式版本,並在另一個環境 (綠色) 中執行新的應用程式版本。此策略可協助您快速復原,並將影響降至最低。

機器人

透過網際網路執行自動化任務並模擬人類活動或互動的軟體應用程式。有些機器人有用或有益,例如在網際網路上為資訊編製索引的 Web 爬蟲程式。某些其他機器人稱為惡意機器人,旨在中斷或傷害個人或組織。

B 27

殭屍網路

受到<u>惡意軟體</u>感染且受單一方控制之<u>機器人</u>的網路,稱為機器人繼承器或機器人運算子。殭屍網路 是擴展機器人及其影響的最佳已知機制。

分支

程式碼儲存庫包含的區域。儲存庫中建立的第一個分支是主要分支。您可以從現有分支建立新分支,然後在新分支中開發功能或修正錯誤。您建立用來建立功能的分支通常稱為功能分支。當準備好發佈功能時,可以將功能分支合併回主要分支。如需詳細資訊,請參閱關於分支 (GitHub 文件)。

碎片存取

在特殊情況下,以及透過核准的程序,讓使用者快速取得他們通常無權存取 AWS 帳戶 之 的存取權。如需詳細資訊,請參閱 Well-Architected 指南中的 AWS 實作打破玻璃程序指標。

棕地策略

環境中的現有基礎設施。對系統架構採用棕地策略時,可以根據目前系統和基礎設施的限制來設計 架構。如果正在擴展現有基礎設施,則可能會混合棕地和綠地策略。

緩衝快取

儲存最常存取資料的記憶體區域。

業務能力

業務如何創造價值 (例如,銷售、客戶服務或營銷)。業務能力可驅動微服務架構和開發決策。如需 詳細資訊,請參閱在 AWS上執行容器化微服務白皮書的圍繞業務能力進行組織部分。

業務連續性規劃 (BCP)

一種解決破壞性事件 (如大規模遷移) 對營運的潛在影響並使業務能夠快速恢復營運的計畫。

C

CAF

請參閱AWS 雲端採用架構。

Canary 部署

版本對最終使用者的緩慢和增量版本。當您有信心時,您可以部署新版本,並完全取代目前的版本。

C 28

CCoE

請參閱 Cloud Center of Excellence。

CDC

請參閱變更資料擷取。

變更資料擷取 (CDC)

追蹤對資料來源 (例如資料庫表格) 的變更並記錄有關變更的中繼資料的程序。您可以將 CDC 用於各種用途,例如稽核或複寫目標系統中的變更以保持同步。

混沌工程

故意引入故障或破壞性事件,以測試系統的彈性。您可以使用 <u>AWS Fault Injection Service (AWS FIS)</u> 執行實驗,為您的 AWS 工作負載帶來壓力,並評估其回應。

CI/CD

請參閱持續整合和持續交付。

分類

有助於產生預測的分類程序。用於分類問題的 ML 模型可預測離散值。離散值永遠彼此不同。例如,模型可能需要評估影像中是否有汽車。

用戶端加密

在目標 AWS 服務 接收資料之前,在本機加密資料。

雲端卓越中心 (CCoE)

一個多學科團隊,可推動整個組織的雲端採用工作,包括開發雲端最佳實務、調動資源、制定遷移時間表以及領導組織進行大規模轉型。如需詳細資訊,請參閱 AWS 雲端 企業策略部落格上的 CCoE 文章。

雲端運算

通常用於遠端資料儲存和 IoT 裝置管理的雲端技術。雲端運算通常連接到邊緣運算技術。

雲端操作模型

在 IT 組織中,用於建置、成熟和最佳化一或多個雲端環境的操作模型。如需詳細資訊,請參閱<u>建置</u>您的雲端操作模型。

採用雲端階段

組織在遷移至 時通常會經歷的四個階段 AWS 雲端:

C 29

- 專案 執行一些與雲端相關的專案以進行概念驗證和學習用途
- 基礎 進行基礎投資以擴展雲端採用 (例如,建立登陸區域、定義 CCoE、建立營運模型)
- 遷移 遷移個別應用程式
- 重塑 優化產品和服務,並在雲端中創新

這些階段由 Stephen Orban 在部落格文章 <u>The Journey Toward Cloud-First 和 Enterprise Strategy</u> <u>部落格上的採用階段</u>中定義。 AWS 雲端 如需有關它們如何與 AWS 遷移策略相關的詳細資訊,請參閱遷移整備指南。

CMDB

請參閱組態管理資料庫。

程式碼儲存庫

透過版本控制程序來儲存及更新原始程式碼和其他資產 (例如文件、範例和指令碼) 的位置。常見的雲端儲存庫包括 GitHub或 Bitbucket Cloud。程式碼的每個版本都稱為分支。在微服務結構中,每個儲存庫都專用於單個功能。單一 CI/CD 管道可以使用多個儲存庫。

冷快取

一種緩衝快取,它是空的、未填充的,或者包含過時或不相關的資料。這會影響效能,因為資料庫執行個體必須從主記憶體或磁碟讀取,這比從緩衝快取讀取更慢。

冷資料

很少存取且通常是歷史資料的資料。查詢這類資料時,通常可接受慢查詢。將此資料移至效能較低 且成本較低的儲存層或類別,可以降低成本。

電腦視覺 (CV)

AI 欄位<u>???</u>,使用機器學習從數位影像和影片等視覺化格式分析和擷取資訊。例如,Amazon SageMaker AI 提供 CV 的影像處理演算法。

組態偏離

對於工作負載,組態會從預期狀態變更。這可能會導致工作負載不合規,而且通常是漸進和無意的。

組態管理資料庫 (CMDB)

儲存和管理有關資料庫及其 IT 環境的資訊的儲存庫,同時包括硬體和軟體元件及其組態。您通常在 遷移的產品組合探索和分析階段使用 CMDB 中的資料。

C 30

一致性套件

您可以組合的 AWS Config 規則和修補動作集合,以自訂您的合規和安全檢查。您可以使用 YAML 範本,將一致性套件部署為 AWS 帳戶 和 區域中或整個組織的單一實體。如需詳細資訊,請參閱 AWS Config 文件中的一致性套件。

持續整合和持續交付 (CI/CD)

自動化軟體發行程序的來源、建置、測試、暫存和生產階段的程序。CI/CD 通常被描述為管道。CI/CD 可協助您將程序自動化、提升生產力、改善程式碼品質以及加快交付速度。如需詳細資訊,請參閱持續交付的優點。CD 也可表示持續部署。如需詳細資訊,請參閱持續交付與持續部署。

CV

請參閱電腦視覺。

D

靜態資料

網路中靜止的資料,例如儲存中的資料。

資料分類

根據重要性和敏感性來識別和分類網路資料的程序。它是所有網路安全風險管理策略的關鍵組成部分,因為它可以協助您確定適當的資料保護和保留控制。資料分類是 AWS Well-Architected Framework 中安全支柱的元件。如需詳細資訊,請參閱資料分類。

資料偏離

生產資料與用於訓練 ML 模型的資料之間有意義的變化,或輸入資料隨時間有意義的變更。資料偏離可以降低 ML 模型預測的整體品質、準確性和公平性。

傳輸中的資料

在您的網路中主動移動的資料,例如在網路資源之間移動。

資料網格

架構架構,提供分散式、分散式資料擁有權與集中式管理。

資料最小化

僅收集和處理嚴格必要資料的原則。在 中實作資料最小化 AWS 雲端 可以降低隱私權風險、成本和 分析碳足跡。

D 31

資料周邊

AWS 環境中的一組預防性防護機制,可協助確保只有信任的身分才能從預期的網路存取信任的資源。如需詳細資訊,請參閱在 上建置資料周邊 AWS。

資料預先處理

將原始資料轉換成 ML 模型可輕鬆剖析的格式。預處理資料可能意味著移除某些欄或列,並解決遺失、不一致或重複的值。

資料來源

在整個生命週期中追蹤資料的原始伺服器和歷史記錄的程序,例如資料的產生、傳輸和儲存方式。 資料主體

正在收集和處理其資料的個人。

資料倉儲

支援商業智慧的資料管理系統,例如 分析。資料倉儲通常包含大量歷史資料,通常用於查詢和分析。

資料庫定義語言 (DDL)

用於建立或修改資料庫中資料表和物件之結構的陳述式或命令。

資料庫處理語言 (DML)

用於修改 (插入、更新和刪除) 資料庫中資訊的陳述式或命令。

DDL

請參閱資料庫定義語言。

深度整體

結合多個深度學習模型進行預測。可以使用深度整體來獲得更準確的預測或估計預測中的不確定 性。

深度學習

一個機器學習子領域,它使用多層人工神經網路來識別感興趣的輸入資料與目標變數之間的對應關係。

深度防禦

這是一種資訊安全方法,其中一系列的安全機制和控制項會在整個電腦網路中精心分層,以保護網路和其中資料的機密性、完整性和可用性。當您在上採用此策略時 AWS,您可以在 AWS

D 32

Organizations 結構的不同層新增多個控制項,以協助保護資源。例如,defense-in-depth方法可能會結合多重要素驗證、網路分割和加密。

委派的管理員

在中 AWS Organizations,相容的服務可以註冊 AWS 成員帳戶來管理組織的帳戶,並管理該服務的許可。此帳戶稱為該服務的委派管理員。如需詳細資訊和相容服務清單,請參閱 AWS Organizations 文件中的可搭配 AWS Organizations運作的服務。

部署

在目標環境中提供應用程式、新功能或程式碼修正的程序。部署涉及在程式碼庫中實作變更,然後在應用程式環境中建置和執行該程式碼庫。

開發環境

請參閱 環境。

偵測性控制

一種安全控制,用於在事件發生後偵測、記錄和提醒。這些控制是第二道防線,提醒您注意繞過現 有預防性控制的安全事件。如需詳細資訊,請參閱在 AWS上實作安全控制中的偵測性控制。

開發值串流映射 (DVSM)

一種程序,用於識別對軟體開發生命週期中的速度和品質造成負面影響的限制並排定優先順序。DVSM 擴展了最初專為精簡製造實務設計的價值串流映射程序。它著重於透過軟體開發程序建立和移動價值所需的步驟和團隊。

數位分身

真實世界系統的虛擬呈現,例如建築物、工廠、工業設備或生產線。數位分身支援預測性維護、遠端監控和生產最佳化。

維度資料表

在<u>星星結構描述</u>中,較小的資料表包含有關事實資料表中量化資料的資料屬性。維度資料表屬性通常是文字欄位或離散數字,其行為類似於文字。這些屬性通常用於查詢限制、篩選和結果集標記。

災難

防止工作負載或系統在其主要部署位置實現其業務目標的事件。這些事件可能是自然災難、技術故障或人為動作的結果,例如意外設定錯誤或惡意軟體攻擊。

災難復原 (DR)

您用來將<u>災難</u>造成的停機時間和資料遺失降至最低的策略和程序。如需詳細資訊,請參閱 AWS Well-Architected Framework 中的 上工作負載災難復原 AWS:雲端中的復原。

D 33

DML

請參閱資料庫處理語言。

領域驅動的設計

一種開發複雜軟體系統的方法,它會將其元件與每個元件所服務的不斷發展的領域或核心業務目標相關聯。Eric Evans 在其著作 Domain-Driven Design: Tackling Complexity in the Heart of Software (Boston: Addison-Wesley Professional, 2003) 中介紹了這一概念。如需有關如何將領域驅動的設計與 strangler fig 模式搭配使用的資訊,請參閱使用容器和 Amazon API Gateway 逐步現代化舊版 Microsoft ASP.NET (ASMX) Web 服務。

DR

請參閱災難復原。

偏離偵測

追蹤與基準組態的偏差。例如,您可以使用 AWS CloudFormation 來偵測系統資源中的偏離,也可以使用 AWS Control Tower 來<u>偵測登陸區域中可能影響控管要求合規性的變更</u>。 <u>https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html</u>

DVSM

請參閱開發值串流映射。

F

EDA

請參閱探索性資料分析。

EDI

請參閱電子資料交換。

邊緣運算

提升 IoT 網路邊緣智慧型裝置運算能力的技術。與<u>雲端運算</u>相比,邊緣運算可以減少通訊延遲並改 善回應時間。

電子資料交換 (EDI)

組織之間商業文件的自動交換。如需詳細資訊,請參閱什麼是電子資料交換。

E 34

加密

一種運算程序,可將人類可讀取的純文字資料轉換為加密文字。

加密金鑰

由加密演算法產生的隨機位元的加密字串。金鑰長度可能有所不同,每個金鑰的設計都是不可預測 且唯一的。

端序

位元組在電腦記憶體中的儲存順序。大端序系統首先儲存最高有效位元組。小端序系統首先儲存最 低有效位元組。

端點

請參閱 服務端點。

端點服務

您可以在虛擬私有雲端 (VPC) 中託管以與其他使用者共用的服務。您可以使用 建立端點服務, AWS PrivateLink 並將許可授予其他 AWS 帳戶 或 AWS Identity and Access Management (IAM) 委託人。這些帳戶或主體可以透過建立介面 VPC 端點私下連接至您的端點服務。如需詳細資訊,請參閱 Amazon Virtual Private Cloud (Amazon VPC) 文件中的建立端點服務。

企業資源規劃 (ERP)

一種系統,可自動化和管理企業的關鍵業務流程 (例如會計、MES 和專案管理)。

信封加密

使用另一個加密金鑰對某個加密金鑰進行加密的程序。如需詳細資訊,請參閱 AWS Key Management Service (AWS KMS) 文件中的信封加密。

環境

執行中應用程式的執行個體。以下是雲端運算中常見的環境類型:

- 開發環境 執行中應用程式的執行個體,只有負責維護應用程式的核心團隊才能使用。開發環境 用來測試變更,然後再將開發環境提升到較高的環境。此類型的環境有時稱為測試環境。
- 較低的環境 應用程式的所有開發環境,例如用於初始建置和測試的開發環境。
- 生產環境 最終使用者可以存取的執行中應用程式的執行個體。在 CI/CD 管道中,生產環境是最 後一個部署環境。
- 較高的環境 核心開發團隊以外的使用者可存取的所有環境。這可能包括生產環境、生產前環境 以及用於使用者接受度測試的環境。

E 35

epic

在敏捷方法中,有助於組織工作並排定工作優先順序的功能類別。epic 提供要求和實作任務的高層級描述。例如, AWS CAF 安全概念包括身分和存取管理、偵測控制、基礎設施安全、資料保護和事件回應。如需有關 AWS 遷移策略中的 Epic 的詳細資訊,請參閱計畫實作指南。

ERP

請參閱企業資源規劃。

探索性資料分析 (EDA)

分析資料集以了解其主要特性的過程。您收集或彙總資料,然後執行初步調查以尋找模式、偵測異常並檢查假設。透過計算摘要統計並建立資料可視化來執行 EDA。

F

事實資料表

<u>星狀結構描述</u>中的中央資料表。它存放有關業務操作的量化資料。一般而言,事實資料表包含兩種類型的資料欄:包含度量的資料,以及包含維度資料表外部索引鍵的資料欄。

快速失敗

一種使用頻繁和增量測試來縮短開發生命週期的理念。這是敏捷方法的關鍵部分。

故障隔離界限

在 中 AWS 雲端,像是可用區域 AWS 區域、控制平面或資料平面等界限會限制故障的影響,並有助於改善工作負載的彈性。如需詳細資訊,請參閱AWS 故障隔離界限。

功能分支

請參閱分支。

特徵

用來進行預測的輸入資料。例如,在製造環境中,特徵可能是定期從製造生產線擷取的影像。

功能重要性

特徵對於模型的預測有多重要。這通常表示為可以透過各種技術來計算的數值得分,例如 Shapley Additive Explanations (SHAP) 和積分梯度。如需詳細資訊,請參閱 <u>的機器學習模型可解譯性</u> AWS。

F 36

特徵轉換

優化 ML 程序的資料,包括使用其他來源豐富資料、調整值、或從單一資料欄位擷取多組資訊。這可讓 ML 模型從資料中受益。例如,如果將「2021-05-27 00:15:37」日期劃分為「2021」、「五月」、「週四」和「15」,則可以協助學習演算法學習與不同資料元件相關聯的細微模式。

少量擷取提示

在要求 <u>LLM</u> 執行類似的任務之前,提供少量示範任務和所需輸出的範例。此技術是內容內學習的應用程式,其中模型會從內嵌在提示中的範例 (快照) 中學習。對於需要特定格式、推理或網域知識的任務,少量的提示可以有效。另請參閱零鏡頭提示。

FGAC

請參閱精細存取控制。

精細存取控制 (FGAC)

使用多個條件來允許或拒絕存取請求。

閃切遷移

一種資料庫遷移方法,透過<u>變更資料擷取</u>使用連續資料複寫,以盡可能在最短的時間內遷移資料, 而不是使用分階段方法。目標是將停機時間降至最低。

FΜ

請參閱基礎模型。

基礎模型 (FM)

大型深度學習神經網路,已針對廣義和未標記資料的大量資料集進行訓練。FMs 能夠執行各種一般 任務,例如了解語言、產生文字和影像,以及自然語言的交談。如需詳細資訊,請參閱<u>什麼是基礎</u> 模型。

G

生成式 AI

已針對大量資料進行訓練的 AI 模型子集,可使用簡單的文字提示建立新的內容和成品,例如影像、影片、文字和音訊。如需詳細資訊,請參閱什麼是生成式 AI。

地理封鎖

請參閱地理限制。

G 37

地理限制 (地理封鎖)

Amazon CloudFront 中的選項,可防止特定國家/地區的使用者存取內容分發。您可以使用允許清單或封鎖清單來指定核准和禁止的國家/地區。如需詳細資訊,請參閱 CloudFront 文件中的限制內容的地理分佈。

Gitflow 工作流程

這是一種方法,其中較低和較高環境在原始碼儲存庫中使用不同分支。Gitflow 工作流程會被視為舊版,而以幹線為基礎的工作流程是現代、偏好的方法。

黃金影像

系統或軟體的快照,做為部署該系統或軟體新執行個體的範本。例如,在製造中,黃金映像可用於 在多個裝置上佈建軟體,並有助於提高裝置製造操作的速度、可擴展性和生產力。

緑地策略

新環境中缺乏現有基礎設施。對系統架構採用綠地策略時,可以選擇所有新技術,而不會限制與現 有基礎設施的相容性,也稱為棕地。如果正在擴展現有基礎設施,則可能會混合棕地和綠地策略。

防護機制

有助於跨組織單位 (OU) 來管控資源、政策和合規的高層級規則。預防性防護機制會強制執行政策,以確保符合合規標準。透過使用服務控制政策和 IAM 許可界限來將其實作。偵測性防護機制可偵測政策違規和合規問題,並產生提醒以便修正。它們是透過使用 AWS Config AWS Security Hub、Amazon GuardDuty、、Amazon Inspector AWS Trusted Advisor和自訂 AWS Lambda 檢查來實作。

Н

HA

請參閱高可用性。

異質資料庫遷移

將來源資料庫遷移至使用不同資料庫引擎的目標資料庫 (例如,Oracle 至 Amazon Aurora)。異質遷移通常是重新架構工作的一部分,而轉換結構描述可能是一項複雜任務。AWS 提供有助於結構描述轉換的 AWS SCT。

高可用性 (HA)

在遇到挑戰或災難時,工作負載能夠在不介入的情況下持續運作。HA 系統的設計目的是自動容錯 移轉、持續提供高品質的效能,以及處理不同的負載和故障,並將效能影響降至最低。

H 38

歷史現代化

一種方法,用於現代化和升級操作技術 (OT) 系統,以更好地滿足製造業的需求。歷史資料是一種資料庫,用於從工廠中的各種來源收集和存放資料。

保留資料

從用於訓練機器學習模型的資料集中保留的部分歷史標記資料。您可以使用保留資料,透過比較模型預測與保留資料來評估模型效能。

異質資料庫遷移

將您的來源資料庫遷移至共用相同資料庫引擎的目標資料庫 (例如,Microsoft SQL Server 至 Amazon RDS for SQL Server)。同質遷移通常是主機轉換或平台轉換工作的一部分。您可以使用原生資料庫公用程式來遷移結構描述。

熱資料

經常存取的資料,例如即時資料或最近的轉譯資料。此資料通常需要高效能儲存層或類別,才能提供快速的查詢回應。

修補程序

緊急修正生產環境中的關鍵問題。由於其緊迫性,通常會在典型 DevOps 發行工作流程之外執行修補程式。

超級護理期間

在切換後,遷移團隊在雲端管理和監控遷移的應用程式以解決任何問題的時段。通常,此期間的長度為 1-4 天。在超級護理期間結束時,遷移團隊通常會將應用程式的責任轉移給雲端營運團隊。

IaC

ı

將基礎設施視為程式碼。

身分型政策

連接至一或多個 IAM 主體的政策,可定義其在 AWS 雲端 環境中的許可。

閒置應用程式

90 天期間 CPU 和記憶體平均使用率在 5% 至 20% 之間的應用程式。在遷移專案中,通常會淘汰這些應用程式或將其保留在內部部署。

39

lloT

請參閱工業物聯網。

不可變的基礎設施

為生產工作負載部署新基礎設施的模型,而不是更新、修補或修改現有基礎設施。不可變基礎設施本質上比<u>可變基礎設施</u>更一致、可靠且可預測。如需詳細資訊,請參閱 AWS Well-Architected Framework 中的使用不可變基礎設施部署最佳實務。

傳入 (輸入) VPC

在 AWS 多帳戶架構中,接受、檢查和路由來自應用程式外部之網路連線的 VPC。AWS 安全參考 架構建議您使用傳入、傳出和檢查 VPC 來設定網路帳戶,以保護應用程式與更廣泛的網際網路之 間的雙向介面。

增量遷移

一種切換策略,您可以在其中將應用程式分成小部分遷移,而不是執行單一、完整的切換。例如,您最初可能只將一些微服務或使用者移至新系統。確認所有項目都正常運作之後,您可以逐步移動 其他微服務或使用者,直到可以解除委任舊式系統。此策略可降低與大型遷移關聯的風險。

工業 4.0

<u>Klaus 於</u> 2016 年引進的術語,透過連線能力、即時資料、自動化、分析和 AI/ML 的進展,指製造程序的現代化。

基礎設施

應用程式環境中包含的所有資源和資產。

基礎設施即程式碼 (IaC)

透過一組組態檔案來佈建和管理應用程式基礎設施的程序。IaC 旨在協助您集中管理基礎設施,標準化資源並快速擴展,以便新環境可重複、可靠且一致。

工業物聯網 (IIoT)

在製造業、能源、汽車、醫療保健、生命科學和農業等產業領域使用網際網路連線的感測器和裝置。如需詳細資訊,請參閱建立工業物聯網 (IIoT) 數位轉型策略。

檢查 VPC

在 AWS 多帳戶架構中,集中式 VPC 可管理 VPCs 之間 (在相同或不同的 中 AWS 區域)、網際網路和內部部署網路之間的網路流量檢查。 AWS 安全參考架構建議您使用傳入、傳出和檢查 VPC 來設定網路帳戶,以保護應用程式與更廣泛的網際網路之間的雙向介面。

 $\overline{1}$

物聯網(IoT)

具有內嵌式感測器或處理器的相連實體物體網路,其透過網際網路或本地通訊網路與其他裝置和系統進行通訊。如需詳細資訊,請參閱什麼是 IoT?

可解釋性

機器學習模型的一個特徵,描述了人類能夠理解模型的預測如何依賴於其輸入的程度。如需詳細資訊,請參閱的機器學習模型可解譯性 AWS。

IoT

請參閱物聯網。

IT 資訊庫 (ITIL)

一組用於交付 IT 服務並使這些服務與業務需求保持一致的最佳實務。ITIL 為 ITSM 提供了基礎。

IT 服務管理 (ITSM)

與組織的設計、實作、管理和支援 IT 服務關聯的活動。如需有關將雲端操作與 ITSM 工具整合的資訊,請參閱操作整合指南。

ITIL

請參閱IT資訊庫。

ITSM

請參閱IT服務管理。

ı

標籤型存取控制 (LBAC)

強制存取控制 (MAC) 的實作,其中使用者和資料本身都會獲得明確指派的安全標籤值。使用者安全標籤和資料安全標籤之間的交集會決定使用者可以看到哪些資料列和資料欄。

登陸區域

登陸區域是架構良好的多帳戶 AWS 環境,可擴展且安全。這是一個起點,您的組織可以從此起點快速啟動和部署工作負載與應用程式,並對其安全和基礎設施環境充滿信心。如需有關登陸區域的詳細資訊,請參閱設定安全且可擴展的多帳戶 AWS 環境。

41

大型語言模型 (LLM)

預先訓練大量資料的深度學習 AI 模型。LLM 可以執行多個任務,例如回答問題、摘要文件、將文字翻譯成其他語言,以及完成句子。如需詳細資訊,請參閱什麼是 LLMs。

大型遷移

遷移 300 部或更多伺服器。

LBAC

請參閱標籤型存取控制。

最低權限

授予執行任務所需之最低許可的安全最佳實務。如需詳細資訊,請參閱 IAM 文件中的<u>套用最低權限</u> <u>許可</u>。

隨即轉移

請參閱7個R。

小端序系統

首先儲存最低有效位元組的系統。另請參閱 Endianness。

LLM

請參閱大型語言模型。

較低的環境

請參閱 環境。

M

機器學習 (ML)

一種使用演算法和技術進行模式識別和學習的人工智慧。機器學習會進行分析並從記錄的資料 (例如物聯網 (IoT) 資料) 中學習,以根據模式產生統計模型。如需詳細資訊,請參閱機器學習。

主要分支

請參閱分支。

M 42

惡意軟體

旨在危及電腦安全或隱私權的軟體。惡意軟體可能會中斷電腦系統、洩露敏感資訊,或取得未經授權的存取。惡意軟體的範例包括病毒、蠕蟲、勒索軟體、特洛伊木馬程式、間諜軟體和鍵盤記錄器。

受管服務

AWS 服務 會 AWS 操作基礎設施層、作業系統和平台,而您會存取端點來存放和擷取資料。Amazon Simple Storage Service (Amazon S3) 和 Amazon DynamoDB 是受管服務的範例。這些也稱為抽象服務。

製造執行系統 (MES)

一種軟體系統,用於追蹤、監控、記錄和控制生產程序,將原物料轉換為現場成品。

MAP

請參閱遷移加速計劃。

機制

建立工具、推動工具採用,然後檢查結果以進行調整的完整程序。機制是在操作時強化和改善自身的循環。如需詳細資訊,請參閱 AWS Well-Architected Framework 中的建置機制。

成員帳戶

除了屬於組織一部分的管理帳戶 AWS 帳戶 之外的所有 AWS Organizations。一個帳戶一次只能是一個組織的成員。

製造執行系統

請參閱製造執行系統。

訊息佇列遙測傳輸 (MQTT)

根據<u>發佈/訂閱</u>模式的輕量型machine-to-machine(M2M) 通訊協定,適用於資源受限的 <u>loT</u> 裝置。

微服務

一種小型的獨立服務,它可透過定義明確的 API 進行通訊,通常由小型獨立團隊擁有。例如,保險系統可能包含對應至業務能力 (例如銷售或行銷) 或子領域 (例如購買、索賠或分析) 的微服務。微服務的優點包括靈活性、彈性擴展、輕鬆部署、可重複使用的程式碼和適應力。如需詳細資訊,請參閱使用無 AWS 伺服器服務整合微服務。

 $\overline{\mathsf{M}}$

微服務架構

一種使用獨立元件來建置應用程式的方法,這些元件會以微服務形式執行每個應用程式程序。這些微服務會使用輕量型 API,透過明確定義的介面進行通訊。此架構中的每個微服務都可以進行更新、部署和擴展,以滿足應用程式特定功能的需求。如需詳細資訊,請參閱<u>在上實作微服務</u>AWS。

Migration Acceleration Program (MAP)

一種 AWS 計畫,提供諮詢支援、訓練和服務,協助組織建立強大的營運基礎,以移至雲端,並協助抵銷遷移的初始成本。MAP 包括用於有條不紊地執行舊式遷移的遷移方法以及一組用於自動化和加速常見遷移案例的工具。

大規模遷移

將大部分應用程式組合依波次移至雲端的程序,在每個波次中,都會以更快的速度移動更多應用程式。此階段使用從早期階段學到的最佳實務和經驗教訓來實作團隊、工具和流程的遷移工廠,以透過自動化和敏捷交付簡化工作負載的遷移。這是 AWS 遷移策略的第三階段。

遷移工廠

可透過自動化、敏捷的方法簡化工作負載遷移的跨職能團隊。遷移工廠團隊通常包括營運、業務分析師和擁有者、遷移工程師、開發人員以及從事 Sprint 工作的 DevOps 專業人員。20% 至 50% 之間的企業應用程式組合包含可透過工廠方法優化的重複模式。如需詳細資訊,請參閱此內容集中的遷移工廠的討論和雲端遷移工廠指南。

遷移中繼資料

有關完成遷移所需的應用程式和伺服器的資訊。每種遷移模式都需要一組不同的遷移中繼資料。遷 移中繼資料的範例包括目標子網路、安全群組和 AWS 帳戶。

遷移模式

可重複的遷移任務,詳細描述遷移策略、遷移目的地以及所使用的遷移應用程式或服務。範例:使用 AWS Application Migration Service 重新託管遷移至 Amazon EC2。

遷移組合評定 (MPA)

線上工具,提供驗證商業案例以遷移至 的資訊 AWS 雲端。MPA 提供詳細的組合評定 (伺服器適當規模、定價、總體擁有成本比較、遷移成本分析) 以及遷移規劃 (應用程式資料分析和資料收集、應用程式分組、遷移優先順序,以及波次規劃)。 MPA 工具 (需要登入) 可供所有 AWS 顧問和 APN 合作夥伴顧問免費使用。

 $\overline{\mathsf{M}}$

遷移準備程度評定 (MRA)

使用 AWS CAF 取得組織雲端整備狀態的洞見、識別優缺點,以及建立行動計劃以消除已識別差距的程序。如需詳細資訊,請參閱遷移準備程度指南。MRA 是 AWS 遷移策略的第一階段。

遷移策略

用來將工作負載遷移至 的方法 AWS 雲端。如需詳細資訊,請參閱本詞彙表中的 <u>7 個 Rs</u> 項目,並 請參閱動員您的組織以加速大規模遷移。

機器學習 (ML)

請參閱機器學習。

現代化

將過時的 (舊版或單一) 應用程式及其基礎架構轉換為雲端中靈活、富有彈性且高度可用的系統,以降低成本、提高效率並充分利用創新。如需詳細資訊,請參閱<u>《》中的現代化應用程式的策略</u> AWS 雲端。

現代化準備程度評定

這項評估可協助判斷組織應用程式的現代化準備程度;識別優點、風險和相依性;並確定組織能夠在多大程度上支援這些應用程式的未來狀態。評定的結果就是目標架構的藍圖、詳細說明現代化程序的開發階段和里程碑的路線圖、以及解決已發現的差距之行動計畫。如需詳細資訊,請參閱<u>《》</u>中的評估應用程式的現代化準備 AWS 雲端程度。

單一應用程式(單一)

透過緊密結合的程序作為單一服務執行的應用程式。單一應用程式有幾個缺點。如果一個應用程式功能遇到需求激增,則必須擴展整個架構。當程式碼庫增長時,新增或改進單一應用程式的功能也會變得更加複雜。若要解決這些問題,可以使用微服務架構。如需詳細資訊,請參閱<u>將單一體系分</u>解為微服務。

MPA

請參閱遷移產品組合評估。

MOTT

請參閱訊息佇列遙測傳輸。

多類別分類

一個有助於產生多類別預測的過程 (預測兩個以上的結果之一)。例如,機器學習模型可能會詢問 「此產品是書籍、汽車還是電話?」 或者「這個客戶對哪種產品類別最感興趣?」

 $\overline{\mathsf{M}}$ 45

可變基礎設施

更新和修改生產工作負載現有基礎設施的模型。為了提高一致性、可靠性和可預測性, AWS Well-Architected Framework 建議使用不可變的基礎設施作為最佳實務。

0

OAC

請參閱原始存取控制。

OAI

請參閱原始存取身分。

OCM

請參閱組織變更管理。

離線遷移

一種遷移方法,可在遷移過程中刪除來源工作負載。此方法涉及延長停機時間,通常用於小型非關 鍵工作負載。

OI

請參閱 操作整合。

OLA

請參閱操作層級協議。

線上遷移

一種遷移方法,無需離線即可將來源工作負載複製到目標系統。連接至工作負載的應用程式可在遷 移期間繼續運作。此方法涉及零至最短停機時間,通常用於關鍵的生產工作負載。

OPC-UA

請參閱開啟程序通訊 - 統一架構。

開放程序通訊 - 統一架構 (OPC-UA)

用於工業自動化machine-to-machine(M2M) 通訊協定。OPC-UA 提供資料加密、身分驗證和授權機制的互通性標準。

O 46

操作水準協議 (OLA)

一份協議,闡明 IT 職能群組承諾向彼此提供的內容,以支援服務水準協議 (SLA)。

操作整備審查 (ORR)

問題及相關最佳實務的檢查清單,可協助您了解、評估、預防或減少事件和可能失敗的範圍。如需詳細資訊,請參閱 AWS Well-Architected Framework 中的操作準備度審查 (ORR)。

操作技術 (OT)

使用實體環境控制工業操作、設備和基礎設施的硬體和軟體系統。在製造業中,整合 OT 和資訊技術 (IT) 系統是工業 4.0 轉型的關鍵重點。

操作整合 (OI)

在雲端中將操作現代化的程序,其中包括準備程度規劃、自動化和整合。如需詳細資訊,請參閱<u>操</u>作整合指南。

組織追蹤

由 建立的線索 AWS CloudTrail 會記錄 AWS 帳戶 組織中所有 的所有事件 AWS Organizations。在屬於組織的每個 AWS 帳戶 中建立此追蹤,它會跟蹤每個帳戶中的活動。如需詳細資訊,請參閱 CloudTrail 文件中的建立組織追蹤。

組織變更管理 (OCM)

用於從人員、文化和領導力層面管理重大、顛覆性業務轉型的架構。OCM 透過加速變更採用、解決過渡問題,以及推動文化和組織變更,協助組織為新系統和策略做好準備,並轉移至新系統和策略。在 AWS 遷移策略中,此架構稱為人員加速,因為雲端採用專案所需的變更速度。如需詳細資訊,請參閱 OCM 指南。

原始存取控制 (OAC)

CloudFront 中的增強型選項,用於限制存取以保護 Amazon Simple Storage Service (Amazon S3) 內容。OAC 支援所有 S3 儲存貯體中的所有伺服器端加密 AWS KMS (SSE-KMS) AWS 區域,以及對 S3 儲存貯體的動態PUT和DELETE請求。

原始存取身分 (OAI)

CloudFront 中的一個選項,用於限制存取以保護 Amazon S3 內容。當您使用 OAI 時,CloudFront 會建立一個可供 Amazon S3 進行驗證的主體。經驗證的主體只能透過特定 CloudFront 分發來存取 S3 儲存貯體中的內容。另請參閱 OAC,它可提供更精細且增強的存取控制。

ORR

請參閱操作整備審核。

O 47

OT

請參閱操作技術。

傳出 (輸出) VPC

在 AWS 多帳戶架構中,處理從應用程式內啟動之網路連線的 VPC。AWS 安全參考架構建議您使用傳入、傳出和檢查 VPC 來設定網路帳戶,以保護應用程式與更廣泛的網際網路之間的雙向介面。

P

許可界限

附接至 IAM 主體的 IAM 管理政策,可設定使用者或角色擁有的最大許可。如需詳細資訊,請參閱 IAM 文件中的許可界限。

個人身分識別資訊 (PII)

當直接檢視或與其他相關資料配對時,可用來合理推斷個人身分的資訊。PII 的範例包括名稱、地址和聯絡資訊。

PΙΙ

請參閱個人身分識別資訊。

手冊

一組預先定義的步驟,可擷取與遷移關聯的工作,例如在雲端中提供核心操作功能。手冊可以採用指令碼、自動化執行手冊或操作現代化環境所需的程序或步驟摘要的形式。

PLC

請參閱可程式設計邏輯控制器。

PLM

請參閱產品生命週期管理。

政策

可定義許可的物件 (請參閱<u>身分型政策</u>)、指定存取條件 (請參閱<u>資源型政策</u>),或定義組織中所有帳戶的最大許可 AWS Organizations (請參閱服務控制政策)。

P 48

混合持久性

根據資料存取模式和其他需求,獨立選擇微服務的資料儲存技術。如果您的微服務具有相同的資料儲存技術,則其可能會遇到實作挑戰或效能不佳。如果微服務使用最適合其需求的資料儲存,則可以更輕鬆地實作並達到更好的效能和可擴展性。如需詳細資訊,請參閱<u>在微服務中啟用資料持久性</u>。

組合評定

探索、分析應用程式組合並排定其優先順序以規劃遷移的程序。如需詳細資訊,請參閱<u>評估遷移準</u> 備程度。

述詞

傳回 true或 的查詢條件false,通常位於 WHERE子句中。

述詞下推

一種資料庫查詢最佳化技術,可在傳輸前篩選查詢中的資料。這可減少必須從關聯式資料庫擷取和 處理的資料量,並改善查詢效能。

預防性控制

旨在防止事件發生的安全控制。這些控制是第一道防線,可協助防止對網路的未經授權存取或不必要變更。如需詳細資訊,請參閱在 AWS上實作安全控制中的預防性控制。

委託人

中可執行動作和存取資源 AWS 的實體。此實體通常是 AWS 帳戶、IAM 角色或使用者的根使用者。如需詳細資訊,請參閱 IAM 文件中角色術語和概念中的主體。

設計隱私權

透過整個開發程序將隱私權納入考量的系統工程方法。

私有託管區域

一種容器,它包含有關您希望 Amazon Route 53 如何回應一個或多個 VPC 內的域及其子域之 DNS 查詢的資訊。如需詳細資訊,請參閱 Route 53 文件中的使用私有託管區域。

主動控制

旨在防止部署不合規資源<u>的安全控制</u>。這些控制項會在佈建資源之前對其進行掃描。如果資源不符合控制項,則不會佈建。如需詳細資訊,請參閱 AWS Control Tower 文件中的<u>控制項參考指南</u>,並參閱實作安全控制項中的主動控制項。 AWS

P 49

產品生命週期管理 (PLM)

管理產品整個生命週期的資料和程序,從設計、開發和啟動,到成長和成熟,再到拒絕和移除。

生產環境

請參閱環境。

可程式設計邏輯控制器 (PLC)

在製造中,高度可靠、可調整的電腦,可監控機器並自動化製造程序。

提示鏈結

使用一個 <u>LLM</u> 提示的輸出做為下一個提示的輸入,以產生更好的回應。此技術用於將複雜任務分解為子任務,或反覆精簡或展開初步回應。它有助於提高模型回應的準確性和相關性,並允許更精細、個人化的結果。

擬匿名化

將資料集中的個人識別符取代為預留位置值的程序。假名化有助於保護個人隱私權。假名化資料仍被視為個人資料。

發佈/訂閱 (pub/sub)

一種模式,可啟用微服務之間的非同步通訊,以提高可擴展性和回應能力。例如,在微服務型 MES中,微服務可以將事件訊息發佈到其他微服務可訂閱的頻道。系統可以新增新的微服務,而無需變更發佈服務。

Q

查詢計劃

一系列步驟,如指示,用於存取 SQL 關聯式資料庫系統中的資料。

查詢計劃迴歸

在資料庫服務優化工具選擇的計畫比對資料庫環境進行指定的變更之前的計畫不太理想時。這可能因為對統計資料、限制條件、環境設定、查詢參數繫結的變更以及資料庫引擎的更新所導致。

2 50

R

RACI 矩陣

請參閱負責、負責、諮詢、告知 (RACI)。

RAG

請參閱擷取增強產生。

勒索軟體

一種惡意軟體,旨在阻止對計算機系統或資料的存取,直到付款為止。

RASCI 矩陣

請參閱負責、負責、諮詢、告知 (RACI)。

RCAC

請參閱資料列和資料欄存取控制。

僅供讀取複本

用於唯讀用途的資料庫複本。您可以將查詢路由至僅供讀取複本以減少主資料庫的負載。

重新架構師

請參閱7個R。

復原點目標 (RPO)

自上次資料復原點以來可接受的時間上限。這會決定最後一個復原點與服務中斷之間可接受的資料 遺失。

復原時間目標 (RTO)

服務中斷與服務還原之間的可接受延遲上限。

重構

請參閱7個R。

區域

地理區域中的 AWS 資源集合。每個 AWS 區域 都獨立於其他 ,以提供容錯能力、穩定性和彈性。如需詳細資訊,請參閱指定 AWS 區域 您的帳戶可以使用哪些 。

R 51

迴歸

預測數值的 ML 技術。例如,為了解決「這房子會賣什麼價格?」的問題 ML 模型可以使用線性迴歸模型,根據已知的房屋事實 (例如,平方英尺) 來預測房屋的銷售價格。

重新託管

請參閱7個R。

版本

在部署程序中,它是將變更提升至生產環境的動作。

重新定位

請參閱7個R。

Replatform

請參閱 7 個 R。

回購

請參閱7個R。

彈性

應用程式抵禦中斷或從中斷中復原的能力。<u>在中規劃彈性時,高可用性</u>和<u>災難復原</u>是常見的考量 AWS 雲端。如需詳細資訊,請參閱AWS 雲端 彈性。

資源型政策

附接至資源的政策,例如 Amazon S3 儲存貯體、端點或加密金鑰。這種類型的政策會指定允許存取哪些主體、支援的動作以及必須滿足的任何其他條件。

負責者、當責者、事先諮詢者和事後告知者 (RACI) 矩陣

矩陣,定義所有參與遷移活動和雲端操作之各方的角色和責任。矩陣名稱衍生自矩陣中定義的責任類型:負責人 (R)、責任 (A)、已諮詢 (C) 和知情 (I)。支援 (S) 類型為選用。如果您包含支援,則矩陣稱為 RASCI 矩陣,如果您排除它,則稱為 RACI 矩陣。

回應性控制

一種安全控制,旨在驅動不良事件或偏離安全基準的補救措施。如需詳細資訊,請參閱在 AWS上實作安全控制中的回應性控制。

保留

請參閱7個R。

R 52

淘汰

請參閱7個R。

檢索增強生成 (RAG)

<u>一種生成式 AI</u> 技術,其中 <u>LLM</u> 會在產生回應之前參考訓練資料來源以外的授權資料來源。例如,RAG 模型可能會對組織的知識庫或自訂資料執行語意搜尋。如需詳細資訊,請參閱<u>什麼是</u>RAG。

輪換

定期更新秘密的程序,讓攻擊者更難存取登入資料。

資料列和資料欄存取控制 (RCAC)

使用已定義存取規則的基本、彈性 SQL 表達式。RCAC 包含資料列許可和資料欄遮罩。

RPO

請參閱復原點目標。

RTO

請參閱復原時間目標。

執行手冊

執行特定任務所需的一組手動或自動程序。這些通常是為了簡化重複性操作或錯誤率較高的程序而 建置。

S

SAML 2.0

許多身分提供者 (IdP) 使用的開放標準。此功能會啟用聯合單一登入 (SSO),讓使用者可以登入 AWS Management Console 或呼叫 AWS API 操作,而不必為您組織中的每個人在 IAM 中建立使用者。如需有關以 SAML 2.0 為基礎的聯合詳細資訊,請參閱 IAM 文件中的關於以 SAML 2.0 為基礎的聯合。

SCADA

請參閱監督控制和資料擷取。

SCP

請參閱服務控制政策。

S 53

秘密

您以加密形式存放的 AWS Secrets Manager機密或限制資訊,例如密碼或使用者登入資料。它由 秘密值及其中繼資料組成。秘密值可以是二進位、單一字串或多個字串。如需詳細資訊,請參閱 Secrets Manager 文件中的 Secrets Manager 秘密中的什麼內容?。

設計安全性

透過整個開發程序將安全性納入考量的系統工程方法。

安全控制

一種技術或管理防護機制,它可預防、偵測或降低威脅行為者利用安全漏洞的能力。安全控制有四種主要類型:預防性、偵測性、回應性和主動性。

安全強化

減少受攻擊面以使其更能抵抗攻擊的過程。這可能包括一些動作,例如移除不再需要的資源、實作授予最低權限的安全最佳實務、或停用組態檔案中不必要的功能。

安全資訊與事件管理 (SIEM) 系統

結合安全資訊管理 (SIM) 和安全事件管理 (SEM) 系統的工具與服務。SIEM 系統會收集、監控和分析來自伺服器、網路、裝置和其他來源的資料,以偵測威脅和安全漏洞,並產生提醒。

安全回應自動化

預先定義和程式設計的動作,旨在自動回應或修復安全事件。這些自動化可做為<u>偵測</u>或回應式安全控制,協助您實作 AWS 安全最佳實務。自動化回應動作的範例包括修改 VPC 安全群組、修補 Amazon EC2 執行個體或輪換登入資料。

伺服器端加密

由 AWS 服務 接收資料的 在其目的地加密資料。

服務控制政策 (SCP)

為 AWS Organizations中的組織的所有帳戶提供集中控制許可的政策。SCP 會定義防護機制或設定管理員可委派給使用者或角色的動作限制。您可以使用 SCP 作為允許清單或拒絕清單,以指定允許或禁止哪些服務或動作。如需詳細資訊,請參閱 AWS Organizations 文件中的服務控制政策。

服務端點

的進入點 URL AWS 服務。您可以使用端點,透過程式設計方式連接至目標服務。如需詳細資訊, 請參閱 AWS 一般參考 中的 AWS 服務 端點。

S 54

服務水準協議 (SLA)

一份協議,闡明 IT 團隊承諾向客戶提供的服務,例如服務正常執行時間和效能。

服務層級指標 (SLI)

服務效能層面的測量,例如其錯誤率、可用性或輸送量。

服務層級目標 (SLO)

代表服務運作狀態的目標指標,由服務層級指標測量。

共同責任模式

描述您與 共同 AWS 承擔雲端安全與合規責任的模型。 AWS 負責雲端的安全,而 負責雲端的安全。如需詳細資訊,請參閱共同責任模式。

SIEM

請參閱安全資訊和事件管理系統。

單一故障點 (SPOF)

應用程式的單一關鍵元件故障,可能會中斷系統。

SLA

請參閱服務層級協議。

SLI

請參閱服務層級指標。

SLO

請參閱服務層級目標。

先拆分後播種模型

擴展和加速現代化專案的模式。定義新功能和產品版本時,核心團隊會進行拆分以建立新的產品團隊。這有助於擴展組織的能力和服務,提高開發人員生產力,並支援快速創新。如需詳細資訊,請參閱中的階段式應用程式現代化方法 AWS 雲端。

SPOF

請參閱單一故障點。

星狀結構描述

使用一個大型事實資料表來存放交易或測量資料的資料庫組織結構,並使用一或多個較小的維度資料表來存放資料屬性。此結構旨在用於資料倉儲或商業智慧用途。

S 55

Strangler Fig 模式

一種現代化單一系統的方法,它會逐步重寫和取代系統功能,直到舊式系統停止使用為止。此模式源自無花果藤,它長成一棵馴化樹並最終戰勝且取代了其宿主。該模式<u>由 Martin Fowler 引入</u>,作為重寫單一系統時管理風險的方式。如需有關如何套用此模式的範例,請參閱<u>使用容器和 Amazon</u> API Gateway 逐步現代化舊版 Microsoft ASP.NET (ASMX) Web 服務。

子網

您 VPC 中的 IP 地址範圍。子網必須位於單一可用區域。

監控控制和資料擷取 (SCADA)

在製造中,使用硬體和軟體來監控實體資產和生產操作的系統。

對稱加密

使用相同金鑰來加密及解密資料的加密演算法。

合成測試

以模擬使用者互動的方式測試系統,以偵測潛在問題或監控效能。您可以使用 <u>Amazon</u> CloudWatch Synthetics 來建立這些測試。

系統提示

一種向 <u>LLM</u> 提供內容、指示或指導方針以指示其行為的技術。系統提示有助於設定內容,並建立與 使用者互動的規則。

T

標籤

做為中繼資料以組織 AWS 資源的鍵值對。標籤可協助您管理、識別、組織、搜尋及篩選資源。如 需詳細資訊,請參閱標記您的 AWS 資源。

目標變數

您嘗試在受監督的 ML 中預測的值。這也被稱為結果變數。例如,在製造設定中,目標變數可能是產品瑕疵。

任務清單

用於透過執行手冊追蹤進度的工具。任務清單包含執行手冊的概觀以及要完成的一般任務清單。對於每個一般任務,它包括所需的預估時間量、擁有者和進度。

T 56

測試環境

請參閱 環境。

訓練

為 ML 模型提供資料以供學習。訓練資料必須包含正確答案。學習演算法會在訓練資料中尋找將輸入資料屬性映射至目標的模式 (您想要預測的答案)。它會輸出擷取這些模式的 ML 模型。可以使用 ML 模型,來預測您不知道的目標新資料。

傳輸閘道

可以用於互連 VPC 和內部部署網路的網路傳輸中樞。如需詳細資訊,請參閱 AWS Transit Gateway 文件中的什麼是傳輸閘道。

主幹型工作流程

這是一種方法,開發人員可在功能分支中本地建置和測試功能,然後將這些變更合併到主要分支中。然後,主要分支會依序建置到開發環境、生產前環境和生產環境中。

受信任的存取權

將許可授予您指定的服務,以代表您在組織中 AWS Organizations 及其帳戶中執行任務。受信任的服務會在需要該角色時,在每個帳戶中建立服務連結角色,以便為您執行管理工作。如需詳細資訊,請參閱 文件中的 AWS Organizations 搭配使用 AWS Organizations 與其他 AWS 服務。

調校

變更訓練程序的各個層面,以提高 ML 模型的準確性。例如,可以透過產生標籤集、新增標籤、然 後在不同的設定下多次重複這些步驟來訓練 ML 模型,以優化模型。

雙比薩團隊

兩個比薩就能吃飽的小型 DevOps 團隊。雙披薩團隊規模可確保軟體開發中的最佳協作。

U

不確定性

這是一個概念,指的是不精確、不完整或未知的資訊,其可能會破壞預測性 ML 模型的可靠性。有兩種類型的不確定性:認知不確定性是由有限的、不完整的資料引起的,而隨機不確定性是由資料中固有的噪聲和隨機性引起的。如需詳細資訊,請參閱量化深度學習系統的不確定性指南。

U 57

未區分的任務

也稱為繁重工作,這是建立和操作應用程式的必要工作,但不為最終使用者提供直接價值或提供競爭優勢。未區分任務的範例包括採購、維護和容量規劃。

較高的環境

請參閱 環境。

V

清空

一種資料庫維護操作,涉及增量更新後的清理工作,以回收儲存並提升效能。

版本控制

追蹤變更的程序和工具,例如儲存庫中原始程式碼的變更。

VPC 對等互連

兩個 VPC 之間的連線,可讓您使用私有 IP 地址路由流量。如需詳細資訊,請參閱 Amazon VPC 文件中的什麼是 VPC 對等互連。

漏洞

危害系統安全性的軟體或硬體瑕疵。

W

暖快取

包含經常存取的目前相關資料的緩衝快取。資料庫執行個體可以從緩衝快取讀取,這比從主記憶體或磁碟讀取更快。

暖資料

不常存取的資料。查詢這類資料時,通常可接受中等速度的查詢。

視窗函數

SQL 函數,對與目前記錄有某種程度關聯的資料列群組執行計算。視窗函數適用於處理任務,例如根據目前資料列的相對位置計算移動平均值或存取資料列的值。

V 58

工作負載

提供商業價值的資源和程式碼集合,例如面向客戶的應用程式或後端流程。

工作串流

遷移專案中負責一組特定任務的功能群組。每個工作串流都是獨立的,但支援專案中的其他工作串流。例如,組合工作串流負責排定應用程式、波次規劃和收集遷移中繼資料的優先順序。組合工作 串流將這些資產交付至遷移工作串流,然後再遷移伺服器和應用程式。

WORM

請參閱寫入一次,讀取許多。

WQF

請參閱AWS 工作負載資格架構。

寫入一次,讀取許多(WORM)

儲存模型,可一次性寫入資料,並防止刪除或修改資料。授權使用者可以視需要多次讀取資料,但 無法變更資料。此資料儲存基礎設施被視為不可變。

Z

零時差入侵

利用零時差漏洞的攻擊,通常是惡意軟體。

零時差漏洞

生產系統中未緩解的缺陷或漏洞。威脅行為者可以使用這種類型的漏洞來攻擊系統。開發人員經常因為攻擊而意識到漏洞。

零鏡頭提示

提供 <u>LLM</u> 執行任務的指示,但沒有可協助引導任務的範例 (快照)。LLM 必須使用其預先訓練的知識來處理任務。零鏡頭提示的有效性取決於任務的複雜性和提示的品質。另請參閱<u>少量擷取提示</u>。

殭屍應用程式

CPU 和記憶體平均使用率低於 5% 的應用程式。在遷移專案中,通常會淘汰這些應用程式。

Z 59

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。