adws

AR
AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK HEABEE

AWS Encryption SDK: FiZ& A B35/

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon WA EMEENB B RAMEMIE Amazon WERBRYE , BT ITREERFF IR
&, R EDSE Amazon BEZENHNFEH Amazon WEEZENEENE, A HEHMIE Amazon 5
ENEENAHRSEHEENME SLHEETEMEBR Amazon , RE Amazon BEEBE , 7R
=% | Amazon #B8f,

AWS Encryption SDK HEABEE

Table of Contents

FERER AWS ENCIYPLON SDK 2 ..ottt et 1
TR B B R TR R R TR EE T B B oottt 2

B N R R T B A R A B R B I oottt 2

I B A R ettt 3
BE 2D T B ettt ettt 4
B B R T B oo ettt ettt 4
B ettt ettt ettt 5

B B B ettt et 6

B B B B ettt 7
B B B ettt 8
Keyring Al B R B ettt nens 9
B R R ettt ettt en e 9

B R B Bl B ettt ettt ettt e, 11

B B B oottt e, 11

R R B B B T B et e, 11

B R IR BB B oottt 12

B B T R oottt e e 12

T B IR oottt ettt 13
B B T ettt ettt 15

S A T AE ..o et e e e e rans 16
] AWS Encryption SDK HIZREERLo 16

] AWS Encryption SDK BB HIZR BT .o 16

I B B B I oottt 17
BEEESBITE., BBEMEEBAGEI AES-GCM ..o 17

A S B B B I oottt 18

BE BB AWS KIS oottt e e e et e e e e e et e e e et e e e e et e e e et e e et e e e s 20
BRI B oottt ettt n sttt 21
B T B B B B oottt 24
B R B B AT R B oo e et e e 24

B B B e, 24
FEFIZEIT AWS KIMS KBYS ...ttt et ettt ee e e e 26
B B B R B e, 46
BRI R Y B B oottt 57

B L R R B B R oottt s 63

AWS Encryption SDK HEABEE

T T R I oo e e, 66
31 RO 73
Tz R =D g = RO 74
L= =g S i RO 74
e d TR 75
e R T 1 OO 75
B R R PR B AT T .ottt 76
F YR = O 76
S e =y A LY) (TP 77
BN Ly, Q) (=R 78

F= Vs - - SRR 83
B E 0 S B e 86
23 T T PP 88
KeYING THMAIIEAE ...ttt ettt et e et et et et e ettt et et e te e e e ene e 88
GVt T = 2 OSSR 90
BZR Keyring BITRIEIEESR oottt n e 91
R Keyring FlE B o R e 91
AWS KIMS KEYIING ..ottt ettt ettt et e e e e ettt e e e e e e e e e e e eaaaeeeeeeeeeeeeeesssssnnnnnnnnnns 93
AWS KMS KEYHNG BIBAZEFFT ...ooooooooeeeeoeeeeeeeoeeeeee oo eeee oo eee oo e eeeee e 94
£ AWS KMS keyring AWS KMS Keys FIEBRBooveeie e 95
BBIL AWS KIMS KEYFING oveeieeeee ettt ete et te et e e ste e eaeeseeeesee e ene st e eae e ansateeeennaneans 95
FEF AWS KMS FRIZR KEYIING .veveeveieeeeeeeee ettt te e e eae e ste e eeneeesteseeanane e 109
EF AWS KMS [EIFIRZR KEYING ooveeeeeereceeeeeeeee et e et eee e ateeeeeseneenesteesennaneaee e 116
AWS KMS BEB TN KEYIING «..veoeeeeeeee et ettt e et e e saeeteeneeneeeeeas 124
BB T Bt oo e e 126
73 & « SR T 127

P B B R T e 127
B B T oo e 128

F =B =AY T Vo PR 140
AWS KIMS ECDH KEYFING wvvvoeveeeeeeeeeeeeeoeeeeee oo oo eee oo ee oo e 148
AWS KMS ECDH keyring BB EEEFTT .ooooooooeoeoeeeeeeeeeeeeee oo 149
FEYT AWS KMS ECDH KEYIING w--vvveoeeeeeeeeeeeee oo eeeeeeee oo eeeeeeeeeeeeeeeeeeeeeeese e eeeeeseeeeee 149
BB AWS KMS ECDH FRER KEYIING .veveeeeeeeeeeeeeee ettt ve st e e ste e e e 156
R S =Y 2T [161
R Y AN =Y T o SRRSO 169
JRIR ECDH KEYFING ...ttt e ettt e et e te e eaeeeteeaeeeaeeteeneeeteeneeereeareaneas 177

AWS Encryption SDK HEABEE

FE R o1] o)Y o Te [178
%8 keyring ... 195
BB R BB T BB T o oo e, 205
ettt e —ee e e e e a———eeeeeaa———teeeeaaa———eeeeaaaateteeeeaaaatteeeeeeaaatreeeeeeaanraeeeeeeaanreeeaeaaans 205
=2 206
B C BB R et 207

- RO 211
N RSSO 217
g3 = AT TR 219

B B et a b bttt R sttt ettt n s e 219

- RO 220
€0 SRS 227
R R oottt sttt 228

B R ettt ettt ettt e ettt e et eate e te et e eaeeteanes 228
= 1 - TSP 228
R R oottt sttt 229

B R ettt ettt ettt e ettt e et eate e te et e eaeeteanes 230

- RO 231
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 244
B TR 245

B R ettt ettt ettt e ettt e et eate e te et e eaeeteanes 246
RSO 247

- RO 250
Y 1 T o PP 258
R R oottt sttt 258

B R ettt ettt ettt e ettt e et eate e te et e eaeeteanes 259

- RO 260
RUST ettt ettt e e e et e e e e e — e et e e e e e ———eeeeeaanteeeeeeeaanareeeeeeannnaneeeeeaannaeeaeaans 267
R R oottt sttt 268

B R ettt ettt ettt e ettt e et eate e te et e eaeeteanes 268

- RO 268

A T Tl TR B .ot a s 270
=2 O N [R 272
LI = = I I SRRSO 275
%ﬁ{’iﬂ ... 286
BB N B B B et 308

AWS Encryption SDK HEABEE

o NSO 320

= o) OO 323
LR R = e 1 = OO 324
R B A B R (s 324
ERSMIREEIS] 0 MBI e 332
g b 1 e ok 1 - L [OSSO 348
= oL 2 = AR 349
ER S IIRETIEIETTIN e 349

Fe YR - = L) OO 352

Fe RV = B — RO UTRRR 353
ERSEREIEE FEMEEIEER 7 oo 354
MNBZEAR - IAERIBIRERIEE .ot 354

B R RS AR E R B 2 e, 355
EREIBRENEIB ..ottt 355
R B R B B oottt ettt ettt an e 356

B DR T R ..ottt ettt e et e et e et an et eae et aneaeaens 357
CloudFOrmMation FBZcciiiece et e e e et e e e et e et e e e sae e e ereeeteeaeseneee e 368
BIRRAS AWS ENCIYPHON SDKoviieeieeieeeeeeeeeee ettt ae e eteste e e e eneeneeeeenee e 384
ettt —ee e e e e ————eeeeeeat——teeeeaa————eeeeeaaattteeeeaanaaaeeeeeeaantreeeeeeaanraneeeeaaanreeeeeaaans 384
(O B | = PRSP 385
Gl e 21 1 TN (O1) IR 386
= 1 - TSP 388
€0 SRS 390
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 390
Y 1 T o PP 391
RUST ettt ettt e e e et e e e e e — e et e e e e e ———eeeeeaanteeeeeeeaanareeeeeeannnaneeeeeaannaeeaeaans 393
N 2 = OO 393
(I A 1) - N 393
(I G - SRR 394
g R 396
2N g - RO 397
2 g RO 398
BRIREY AWS ENCIYPHON SDKooieeceeeeeeeeeee ettt te et ete e e eeeseeetesaeeneaneas 399
Ll g T = TR 400
PEER 1: BN ERARRETERITA AX AR (e 401
PEER 2 . AR EI ERITART (oo, 402

Vi

AWS Encryption SDK HEABEE

T AWS KMS B R ettt 402
BB R T BB B I oot 403
DL e 2 - WSO 407

FEHT AWS KIMS KEYIING ...veeeeeeeeeeee ettt ettt ettt et e e e e e te e e ete e e eneeeteeneeaaeeeaeeneeareens 409

B e B TR B BB IR .ot 412
O R T SR B BT BIER ..ottt et 413

BB R R T R A E T B R oo, 423
B BB BRI .o, 424
R R TR B R A B B oo 425
FARERT TR « FREE IR IR 3L oot 425
B R TR T B R R B e 426
8=y 1 = TSRS 426
BB TR IR oo et 426
Bl B ..o e e e et e e e e e 427

B R B B oot 428

Ed AWS SDKsE R AWS Encryption SDK TR[E] ? ..ovoiviiiiiiceeeee e 428

B2 Amazon S3 MZA FixA M AWS Encryption SDK REI 2 .o, 429

X E PR R 54w 2 E B 3% AWS Encryption SDK , TIBRMERTEERE 2 oo 429

AIBILEIE (IV) MR EE 2 B E I 2 e 429

BEERSBIMIEE. MBI E 7 oo 430

pURCIBER: I =g T R S e AT T TSROSO 430

AWS Encryption SDK FMEZER SRR EMBZERMNIERBM? (e, 430

AWS Encryption SDK ARRXEABNMZEREMZDEAER/ 7 (i 430

BRUFERAECHN SR % 2 e 431

i&-‘ME%ﬂ@%%ﬁﬁTmﬁ R 2 oo 431

RATLAER NZEWLEERIFETR AWS Encryption SDK ? ..ot 431

#0{al AWS Encryption SDK INZEFI 28 A /B (1/0) BBIR 2 e 431

BEBRL oottt 433

R B I B ettt 433
BB R B e e et et 434
A N R oo e e 441
B R B o oo 445
L R T B ...t 446

BBER (A BIETNEE 1 AR) oo 446
R ER (:ﬂ%ﬁrﬁ%ZH&) ... 450
3 B ERL (A BIETNEE 1 R) oo 452

Vii

AWS Encryption SDK HEABEE

PUIE AAD BB ettt e, 456

B B R B ettt 457
HNBBIEIE BB Z oot ettt ettt 461
AWS KMS BB keyring BT s A B T .. vttt e, 462
S BB S A oottt ettt 463
BB BT BT oottt et ettt ee e, 463

B R BT BT .ottt ettt ee e e 465
cdlxvii

viii

AWS Encryption SDK HEABEE

ftRE= AWS Encryption SDK ?

AWS Encryption SDK 2 FinMERENE , EEZEEAANBERRBEAELXEENREEBLRME
MARZER, EE R, ERENTIAEARINZOIE , MTAAROINAREREBESRENME
BREZIERIE, 1BIE Apache 2.0 & AWS Encryption SDK &1 ,

BELE AR AWS Encryption SDK f# & T 5IERE

- RECRAMENZEEE?

- EEEELAEZNAER ? ARRZEABEES 2

- BEBWAEENESER?

- BREZNMARENZSE 2 EFEMSRBZAIFREDRE 2

- BALMARETEINMBEER ?

- REZRWMAMRARTEE WA TGERKZNMBER ?

- REZNARAEMZENEEANENNERBETSERER?
- WMAEER AWS KMS BRI E R £ 2

£/ AWS Encryption SDK , A AER E SBIEHE R keyring , LURELARREZERNTES
i, A&, BUUFEHR RBUENGESEZRMBFNEZEER AWS Encryption SDK, & AWS Encryption
SDK #1THEREN 1k,

WERRHE AWS Encryption SDK , RO EZS LN EBENFBRAR , MAREEARINZ O
ge b, RMT%|EE K AWS Encryption SDK [E1 258 L&,

HEMZREERHNERE

RIBTER , SAENBZNESEERYH AWS Encryption SDK ELH—HWER @, EEMERE
FAK -—ERESBRETEANBRENNZREERER,

eHERALE. KBRBINEBELIEHEE LK AWS Encryption SDK IR EHWER, MEFMENA
§52:Mthe section called “X B EEEZEH,

EAEEXTRRBEENSRNRE

AWS Encryption SDK B E—HZETE LB/ TMEER , MRENZERNER R, BZBREM
MERNZEELESTHLLSBNER S8 | AWS Encryption SDK EBIRZBEMNMBZRER KRB T#E
o

AWS Encryption SDK HEABEE

a0, AWS KMS key £ THIMNBZER , AWS KMS UK KR HIFIZEE HSM L8, B LUER
T—ELBRRBBER , UBHERELFER K KIBEAREEAREAENESROT,

REEMBERSH/NEMNBERNEX/LAR

SR MENERFNMBNER S —#E AWS Encryption SDK FHRERA S ERERME M INEA
B, ERTETFEEHFFRBNZEHNNENER , BH SR AWS Encryption SDK #117,

Y R LEFE S B 1E AWS Encryption SDK FE AWS BIREMH , 18 AWS Encryption SDK AFE , AWS
WRPE R EM AWS BRI, AWS IRF RBEELEEZEFEH AWS KMS keys RIFBEERIF , &
E,

ERBRRE T ES R

AWS Encryption SDK 7 GitHub B MRRIBRETFETRE, BAlERAELFETFERBEER
. EERAEREE, UREREESEENEEEN.

- BAM C B AWS Encryption SDK — aws-encryption-sdk-c
« AWS Encryption SDK for NET — aws-encryption-sdkf#&FEMN NET B,

« AWS % CLI — aws-encryption-sdk-cli

- BAM JAVA B9 AWS Encryption SDK — aws-encryption-sdk-java

« ERAR JavaScript 8 AWS Encryption SDK — aws-encryption-sdk-javascript

- BAM Python B9 AWS Encryption SDK — aws-encryption-sdk-python
« AWS Encryption SDK for Rust — aws-encryption-sdkf#EER Rust B #.
« AWS Encryption SDK for Go — aws-encryption-sdkf&FEMN Go H #

EmnFZENENRFVEE S

AWS Encryption SDK X BZEBREXEHESN . TEESEFHRTEEN., EUUER—EES
BENE K YERAS—BEFTETHE, EEMRZIESRE . IR2EK ELRFIGSEELESE
R EEF MR, WA, MEMBERE | BLAEAEEN Keyring , FEEWMMESR/EME.
MEFMEFR , 552 Mthe section called “Keyring FBA ",

FiB , AWS Encryption SDK X EEMBEREREE, ARASEEREFSUFENEANER NFRE
B AnSEEFERA —EEXENR YERAS —ERXNERR,

ERBRRRREEETRE 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/

AWS Encryption SDK HEABEE

DynamoDB 1% A FiwH Amazon S3 A Fim Nz

AWS Encryption SDK &£ ## % DynamoDB 1% Fixsl Amazon S3 A FikNZFrinZ & ¥,
BEEXEHEEHESR AWS Encryption SDK BEEKMEA L.
AWS Key Management Service (AWS KMS)

AWS Encryption SDK T EAfE AWS KMS keysHl EXl S RABENER | BEZEE KMS
S8, Bl , BATLAERE AWS Encryption SDK 2R INZ & AWS KMS keys 1 —H %l THER
AWS IRE, i , %A MEHA AWS Encryption SDK REZRZER,

AWS Encryption SDK ;%2 AWS KMS Encrypt 3 ReEncrypt IR EBRINMBZEXF., B ,
AWS KMS f# 1R L R AWS Encryption SDK EEIM IIZEFAE

& AWS Encryption SDK ZEBHEIZ KMS £, BEEFEAIFYE KVMS £BRMBREA
AWS Encryption SDK, AWS Encryption SDK & #i#BA LN EELEHEE B2 M ECDSA
HEDE,

X EMHEE

AWS Encryption SDK A8 AWS SDK F T EMBERMEEBR |, SIEHARASE IR 4 a5 18 HA F

B, RIEEXR , BFEE AWS Encryption SDK $HREXERFTESHFEH WRFUTAMRAK |, WEBITH
IRABEEFHR, ERAEZEREER | FlIK%E 1.7.x ZBTH AWS Encryption SDK MRASFHERZE 2.0.x &
B , RIS RMA AR ARG B &

HEERENERETFE S B1E AWS Encryption SDK #B =2 7£ 18 Bl /Y B UR 18 586 GitHub fEFEF R, &M@
MANEG RPN ERERTERBFEEMR, 40 , I8ERAH AWS Encryption SDK TJEEE A —
EREARAESN—RUAM (ZBXE) BR , BERTRENEFE S Wend-of-support & & .
BMERESTREFEAZEIENERE , TEETEIEBNRA,

EESHRENERFEES AWS Encryption SDK IRA£ariBHAM B |, 552 B S8 AWS Encryption SDK
f7ZEH I SUPPORT_POLICY.rst &%

- AR C M AWS Encryption SDK — SUPPORT _POLICY .rst

AWS Encryption SDK for .NET — SUPPORT_POLICY.rst

AWS 1% CLI — SUPPORT_POLICY rst

EARM JAVA B AWS Encryption SDK — SUPPORT_POLICY .rst
BRI JavaScript B9 AWS Encryption SDK — SUPPORT_POLICY .rst
B Python 8 AWS Encryption SDK — SUPPORT _POLICY.rst

XEMMEE 3

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst

AWS Encryption SDK HEABEE

MEFMEERN , 528 (SDK M EZEEm) F/ M B4 AWS Encryption SDK SDK f1T &
EHE, AWS SDKs AWS SDKs

—& T

E AWS Encryption SDK MAFIRMBHFMET , FERELRR

- WFHIEE SDK HATABAMBSNRAER , F2E PHBE AWS Encryption SDK,

- MEREERER , 528 WHEEHK AWS Encryption SDKo

- WNEFEIEE SDK EF A XNFHMEN , 2 H SDK W{TELE,

- MEREIAE PEREIRIBEHEH AWS Encryption SDK , 5281 5%E AWS Encryption SDK,

- MERMEENFRESR F2E 2858,

. WFE NEMTHRE AWS Encryption SDK , 72 GitHub FHIAWS Encryption SDK # 1.

- MEEBAMER <BENEZ AWS Encryption SDK , 5B 5REEE AWS Crypto Tools B2 5w1E,

MEF AWS Encryption SDK RN ERETFE S 2 BEENMHEEER.

« C: 5520 GitHub £&Y R C B9 AWS Encryption SDK, AWS Encryption SDK C X 4 #1 aws-
encryption-sdk-c 1 E.

« C#l, NET : 552 AWS Encryption SDKEAR .NET B GitHub Laws-encryption-sdkf#
ZER aws-encryption-sdk-net B &,

o R HRME : 5528 AWS Encryption SDK @557 HE, EFEMZ CLI B934 , AR GitHub £
aws-encryption-sdk-cli f#1FZE. AWS

+ Java : i820 GitHub 8 B AR JAVA BJ AWS Encryption SDK, AWS Encryption SDK Javadoc
F aws-encryption-sdk-java fE1FE,

JavaScript : 82 the section called “JavaScript” # GitHub £#Y aws-encryption-sdk-javascript &
FE,

« Python : 528 GitHub L&Y E AR Python B AWS Encryption SDK, AWS Encryption SDK
Python X ## aws-encryption-sdk-python &7,

BixrEREH

BFE2R0SRMERDE, MREARERER. BEIRE , FEAUTER.

-7 #® 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK BRABER

o MBREE PBBBENZEMRE AWS Encryption SDK , 55EH AWS Z&M, BOIEILE
GitHub &3,

- FERMY WEREIEE AWS Encryption SDK , F87E GitHub REEREH B EEFEANER RS
SRHEBE,

s FERMANHANERRDE BEAKEELNWERERSEER. S aws-encryption-sdk-
docs (GitHub Lt XHMFRERBRTE) REBEXFEELENTE.,

H

Y= AWS Encryption SDK

AENE D EANEES AWS Encryption SDK , W IRIHFATZRMNSE, CEEHBBIET # AWS
Encryption SDK HEEA R , UREMARBRESHIMEE.

FENE)?

« T m{afEA AWS Encryption SDK {E i i1 B KRR BB E R,

- THRESNZNTER REERNERSE , UREEER BN TLE SR,

s THERELERAMLETE LB keyring MESBIRME,

- TRALNNZEFMEZELNMNEAST. EREEMLN , ERFRBNREEKR.
. TENBREZEENMEZEFS.

« A%, BE I LLE AWS Encryption SDK RIFHIERLETEES HEH

F&E

- HEMR

« Keyring ME£BIRMHE

- MBAR

- MEHAE

- BEEEEH

- BiSmEEREES

- HBMEHBMNE
AGEBUR

]
&b
[$)]

https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK HEABEE

- BlUEgE

HEM®

NEZEEMNZEME BB RAREBEARZENNEN SR, IZEESRERFENSTRN —E
REEH. FRERM , KFES—ANFER BRAESRNZBERUZTESR, FAZKESRNEE
BEWMNMEBAEHME,

SEAK —NEREH® AWS Encryption SDK INZBEAR. AR, CRELRIEENTESB/TM
ZERNTR, cEEMENENSBENZNERNEREEERNMBERAED,

EEEEOREW , FEM keyring EZWEME,

’_ DATA -o-g n

Data key Plaintext Algorithm Ciphertext B
data suite
o Encrypted
Message
P g O g O o~ g
rapping key Data key Encryption Encrypted
algorithm data key

EZESEHELBTNEMEERNER
FBALEZESESBTNZER SR, FUEEEATRANEARAERETRANSE S , ST
FAEENSRIEETANNVE, SESERBENEZHENER SR, SEMENBENERS
$& 8 i A E R AWS Encryption SDK ZRIEINZNA L+,

EEMTER CLEERATHEZHP-—ENZENSRNIESR,

HEMN®R 6

AWS Encryption SDK

FMBABER

BESEREENED

RIRFERR

P

Wrapping
key A

&

K

-

Encrypted
data key

€

Wrapping
key B

Data key
Encrypted
data key

P

Wrapping
key C

K

,

.

Encrypted
data key

AT MZEEBHWER , AWS Encryption SDK & B M E E 2 E 4B AES-GCM

HBEMNE, SWMOTERHY (HKDF) MZEE, sENZERTR EUNEEEEEIRSRHLEE
SIEHBMERERE *.

—RME HBERFEBHILATRNE BESRNFRELZEERR , EENNBEXZE D,

B2

BB EWME AWS Encryption SDK ARMBRERNMBE TR, SEENSRETEEREETRER
BV TAERES . BRIFEMERAER SI|MIREL , FH AWS Encryption SDK A —HNER SRR N
FRIRAR.

, NREREEEFELNEERAS ALSREERASE. "ERSSE NWER £7
DERAEBETRNBRNBZEN REEALBSRNBRNZEHER.

BAEERE. BEE, B, ER. REILAERSI/. AWS Encryption SDK &7 &AL 1% A

RERIER AERE,

ATRELNERSE EFA—JZEBATESHEHEEH AWS Encryption SDK BB INEZEE
WETINZE, £ AWS Encryption SDK FRZHNMEXFERSTRRMEBELNERR , cESRAGHR
REEPBR, AR BNBENERNSRERNBNEN —BERENSRESRN D MBEASH, W

FHMES |, 52 Bthe section called “SDK #{a:E/E”,

ok |

AWS Encryption SDK HEABEE

® Tip
£ AWS Encryption SDK , IS ER SREERNFZSBEIFHER, BEZENEELE
H (SERREN) , FAERTEHSERB LENSREZEINHZRRZRG, SWMTERHIEK
RERSBARA , YEEERARMNZERNERNZEE., At , BMABEEEREHR
EERSE "RT. ME, mA2 "y ERNEBMNER,

BENZNERSRBIETHEELR K SENZECHZESREBIFT, HPEERTE CHRFEBEFR
b AWS Encryption SDK i BI R ZE L8,

BESWELSMMBESE® | AWS Encryption SDK AIRMEMBEERMNER SR, SEMIFTER

TRBUTUNE-SZEIRSW/TMER, BELRERE keyring RESTWHIEHUER , BT SURECRABLD
KETRRRBLEHNESR,

® Note

TEESBRIE keyring RESBIEMETHN SR, ELAFHEISRIEHER TSBEETH
B 1TE R L IMasterKey¥E B /E A B,

AWS Encryption SDK X EHEFE AN &L/ , K0 AWS Key Management Service (AWS KMS)
¥ AWS KMS keys (BIEZEE KMS £i8). R AES-GCM (EFEINZE R ZEE/Galois FTRERER)
©88 , URFI RSA £, BHALERSIEFECHNIESR,

ERAEHNER K SEEFRECESRENKERENFN. BLUER T IEM A XAITIERE

- EREREMEMRMTEETH Web IR , fl20 AWS Key Management Service (AWS KMS),
- ERAERELZEIER (HSM) , #5170 AWS CloudHSM FriR A9 ThEE.
- FRAHMESBREERET BNRE.

MRERESHEERK , BEEMER AWS KMS, B2 AWS Encryption SDK B4 AWS KMS , LA
BSRENFERALENITL LI, B , AWS Encryption SDK FEE AWS SHIE{T AWS BRFE

aREH 8

https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK HEABEE
Keyring MlE £ HH

EEREARMBNRZN LSS BEM keyring RESBRIBEE, B LUER AWS Encryption
SDK =2 keyring ME SBIBHE | RRXFTEECHEE. BIBFESES , AWS Encryption SDK
REEEMEEN keyring MESWREMHE., WEFHHEENR , F2BKeyring HA 1,

Keying B4, MBENBRZRERNSIR, ELER keyring i , BUUEEMZRER BN TLESER,
RZH keyring EEZL —HIESBBERE , RHENRBTE LB, CHUUERRIEIESBN
keyring , SE A HMEREREERFEEHMN keyring, MMEZZNMEH AWS Encryption SDK EEZ
keyring HEREA , 2R Keyringo

THIRKREFFES ¥, Keyring :

- EAM C B AWS Encryption SDK

- BAR JavaScript B AWS Encryption SDK

« AWS Encryption SDK AR .NET 89

- 3.x kR BAR JAVA #§ AWS Encryption SDK

« 4.x MR BAR Python B9 AWS Encryption SDK , E2i& A iy B G Hm = M RHR E 2N E (MPL) Bt
FE B 55 A Br o

« for Rust 1.x AWS Encryption SDK kR
- BARM Go M 0.1.x AWS Encryption SDK x5 #TAR A

FTERRHEER keyring NERF R, TLREHESEOLEENILLR (SXEH). S
FLRETPAHE—EETEREME EXEBREEEETRMUZEELEB, Java, Python 1 AWS
Encryption CLI ZEF£RRME,

BB TE keyring (HEESBRME) SUETNE., BRUABRFIEEMERMN keyring (REEBIE
##E&) HATEH keyring. MNZREF |, AWS Encryption SDK & AR ENFIE 2L SBRNZER S
8, A, R'E AWS Encryption SDK FAZIEEN D ESBRBEMENER S8, BEEARE

ZHNEHESBRIZEAN , BiE2R AWS Encryption SDK HEE .

NEEESESROHEET HSH ZNAE LR,
mERRE

ATHERBRERENZ 2N FEMANBERBERTEENEAT. EANEATREMAN , B
AREBNFREEREER.

Keyring fMlE & @i HtE 9

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

MERBR—HEB/EY K HPESSEEFAENENRBER. NMEARTUITELRRENTM

BR BEEESEENNEEMEMNER , fINEEEREE, ARSAHEENER., EBNEE
R MBARSLURBEELBREENFNER , AN ERZERRGEEERNMBZERNS. AWS
Encryption SDK ZEEBEHN EMZAENEES , LEXFZEENEAR.

AWS Encryption SDK A MBZAR TS RIEENMEAR , AREZHHFZEEREEES (CMM) #FHiE

NAE€HBY., BERWMS EAERANEEELEREER , CMM S RB/EHTEINERE H
FEESHEEEM aws-crypto-public-key IRER LA ERFLBNE, MEABZHFHWaws-crypto-
public-key&fH R AWS Encryption SDK , TEEREMBRABFEMEMEHNER, WEFM

EH , F2RASKRKSEFH AAD,

UTEHMBARLEFRTFEENMEMBARTE , Uk CMM FENLEERY.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

EEMBRER SEEACNBALE. BR AWS Encryption SDK AJ LA N2 HY A S AZ B HEEUINZR A
B, AEEFTEEDRRENBRART. TiB , MBARU B ERZELEERBEENSMERAS.

 1£ AWS Encryption SDK i =555 H (CLI) , MR EERZGSPREMBFARAS , CLI EEEMXF
BRI eRBEREREREMEASNMBARH,

- EHMAEARESEFY BEDREISNEABTNRANFER . CERAEXTHNERRBEER
ﬁﬁii—?—ﬁﬂZﬁu,@'? ERERTORINNEARIEEBFRTFHNEAR (RFEH).

(® Note
TIHRAEXZELEZENMEZRE CMM , BALRAREFRAMNZFRFERMERNE,

« 3.x WX EAR JAVA B AWS Encryption SDK
« AWS Encryption SDK @A .NET KJ 4.x X

« 4.x iR EAR Python # AWS Encryption SDK , E2i® i) & G im = EHRE EEXE (MPL)
AR R B £ A B

for Rust 1.x AWS Encryption SDK ki
EAR Go B 0.1.x AWS Encryption SDK K2R B T iR 2

AN 10

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

BENZERRR , FiilE , ETRME. NEABTSGUMXFRERE AWS Encryption SDK & E1#Y 0
ZASEER, MEEREANE AWS Key Management Service , TIZER A th o] g A X F R RETRE
¥ECs M BEEH |, Hla0 AWS CloudTrails

NMEERABIRINBEBNBARNEY , FSEEREVEZIAEZSEH.
INZE AL
B8R IZRERE AWS Encryption SDK , E2EE MZAL

MEAER—BABAR N EREE HPISnENERURNEZENERN SR, EEZEZID, N
BBREMHNNZABMENIZEE, AWS Encryption SDK A INZRESER S MBZAL , MERIE
EEHEMEFR LR EME A,

BEMENEREENZENER SR ITUGHERERE , COTHBERNENENER , REETHR
HER 2 FHARERMNEE,

NEEMBALMMEBLAER FSEMBOASKR.
REREMN

AWS Encryption SDK EREEEZEHRMBENEZSNHBNBRZREEENNEASFNER, AWS
Encryption SDK X ESEEEEZEN. IEXENE4HFERAERINBRELE AES) BAFTEEE L,
WHCHREMEELNERZS.

& AWS Encryption SDK B2 BZ2WEELZEN , BMAFMENBRENTERE, BAEREGTEEREE
ENZEERSEMEE, ZUUEMZERNBRPREIBEUZHREZEERNEES (CVMM) BREEE
REEZEN ERIFBENFEBNEELEN FARTFEAERE. BINWEREARAES HVAC
extract-and-expand £ T4 B & (HKDF), £#75&zE. HE Eﬁvﬁ%ﬁy_ﬁﬁagﬁﬁi (ECDSA) #ZE M 256
T mZE#®E AES-GCM,

MRENEAEATESNE , MENBZENNERENRZENNERERRZIERE BUTNAEEE
ERBBUBRENEEEZEN. T8, RIAEBEREELEN AT 2 S eREENERITER
. REELYRENERAEHFEXREHEETH.

ZHmEERNEER

FHEBEHEER CMV) BESARNBNREENNEHEBEN, THAEENSMLTH
MEGENSR UREANAEEESLR, LARTRERE CVMM BB, NENRES EEAGR
&,

TETETE —

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK HEABEE

& LAMEF AWS Encryption SDK #2£KF85% CMM SREL CMM , RIBE BET CMM, &t LUEE
CMM , BETRULEN., BERIETE keyring ESMIBMER , A AWS Encryption SDK B3I T8
&% CMM, 78 CMM 2REIEEN keyring LESWIEHEMESMESBRER, EWREED TR
RIiGim=RT , HlIn AWS Key Management Service (AWS KMS),

B CMM & & AWS Encryption SDK 2 keyring (SRE£#®I2HE) 2ENBEA L EteREET
MEEMRHEEL | FlnZEBBEREHBTHIRE. AWS Encryption SDK 24tHRE CMM X EE R
S\ REL

HBNIFFE B MR
78 D75 P AR R Y SR SR I RO AR LR

SEHBNEZFEAME FHENERSRYE, EEPHN—ESRSNZER ; RARETN S —E€RT
LR ZER.
AWS Encryption SDK EREH %, CEEAHBENESRRNZENER. cEER—RSEHBE
FFHBEARSR/RMZHBERTR, cEELQNEALS HPESNBENERNEL —ENBENE
BEREIA,

MEZENER (HBNE)
AT MEZERNER , AWS Encryption SDK E B ER S RN L SWBMBREZNEELE
o BEMEZEER , AWS Encryption SDK S BN ER SR/ NARKNEE EES
MZEENERER (BEIEHBNER)
BRAIEMBNBRIREN keyring RESREHESREHBERN SR/ MENBEZ LK, &7

LOUEZEAYBINEN keyring RESWIRME |, HIW0 AWS KMS keyring , A FEHBINZRH
keyring 2% , #5l20/& % RSA keyring & JceMasterKey,

ESRAEGE

AWS Encryption SDK X IR &% (ERBARBEN), SR EZ2EBM , TREBSEMEXFR
BEMZAE—MNF, FEEEM , SRARRBRASEAMNBEARNENSBRRBEALS, £HS
A ETINZEMBEZREAWS Encryption SDK HEE .

AREZBEABBERE (2 AES) EEE-RBESRTNEMIF , 12 AWS Encryption SDK 2
NESEEXFASNE-—EXNTR. EAMEENENSRBEZLENSERDRFHERMERNM
Fo FATRAZRETHRRBEEEAK, T8 , JUEREFTEN SR THBNENF, ERIDEBER
T, RETUBZEEVTANBEXFHEREATH , BNABEEERNAF,

HEANEHEME 12

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK HEABEE

AWS Encryption SDK —##E — Bl —HNER SR TNHRESERNFALE. EURSESEIEER
(HETH|/) TMFXERER E2RSR - FSNFHEEANENSR, T8 , SENFBHREMN
ZHEERLTRESTEANENER SESRFHTENSKSR/NE, Hlu , MR—EEHERE
ZMENFAE , AIEE 0x0 (false) , % —E#EZ R A S EHERBE 0x1 (true)o

ATHILEERER , EMBEMNBERE | AWS Encryption SDK XESRAE, & FHSBESE AWS
Encryption SDK MIZA LR , CEUBRBRESI K EENBEXFHIHE - ERSRBEESRART
F, LLARBERSBEBINT. RE , cESEBAREFTETRENZARNPREER S, BEEFEH
SRAGEMRZHAER , AWS Encryption SDK ERFERCBESARMEZASNKE -8, WRE
REWBRBAY , BEBRES KK,

17X RPEIATHEREAENIE ETURBREFSREAENALS , EFTSERASREAFENE, &
A LAERLRAR T2 B BB SRAGERZMB L FZHIEE, 20x RESHEREENTEXE,
RIBEFER , ERAEEAEREAARNBAHER, BRTFERZER B 2MBXFHNEAENXT

S , EREAMERE AWS Encryption SDK,

BAEASARENSARCLERAES ERMEBLATAREAT LRCHERACHSH.
#1.7.x BRBI% , AWS Encryption SDK 3 B8 7E 78 508 8 3% 25 44 30 PR 6 T AL 65 PR R B SR A (0 R B2
. EEE SN SRR AR SRR T BN R,

CRMAEEELERA (+30 Bl) WNEALE YEEESREREE, URENEABRINHEX
PRMEEIFEHR , B LEETRRESRER, EREELELAEBEME , T aEEM.

WMEBBE1.7x M 2.0x REFHERN , SREFTEAGEINE , FFS6H EBER AWS Encryption
SDK, MELWAENEMER , 532 the section called SEE £2Z H the section called “5A E.1#%
RNBE",

EGEBUR

AEBRR—EHEERE , THEHENEARXREERASRAERNENRE., FHSRAFEETM
BRI #EZRAWS Encryption SDK RIEE .

EEBERA =EE,

® Note
B EEKTHEERB T REFREER K.

AREEBUR 13

AWS Encryption SDK HEABEE

AGEHRE

Value EASWEEN ERESWEE EALREAER ERESREE
= WERTME B H1ER T AR

ForbidEnc

ryptAllowDecrypt ® @ @ @
RequireEn

cryptAllo

wDecrypt

RequireEn

cryptRequ

ireDecrypt

AGEBUREREE 1.7.x AWS Encryption SDK fxF#H ., ©EARFEXEBNEXRITES.

« ForbidEncryptAllowDecrypt EEEARRELWMAENERTHE K EFSFEHSBAEET
&, WEE1.7xRPHEL EEEFRTEEARINAMEEIS TEIERS|AEMEHN M
BYFZHl , FRASBAREETRE,

« RequireEncryptAllowDecrypt —EFEASWAENE. TAUEEIRLEELRAENIERL T#F
., WEE 20x RF#EE , TEEERSRFAERBMNE , ENERBERME T , MEZSHR
Ao

« RequireEncryptRequireDecrypt EFEASWMAERMBENEE, LER 2.0x RPFERE, B
FEREMBMENFEFER WA MBRE , BFEALE.

AHEBRBREGRELAIUCAMELEETEEZES, £ 1.7.x RELK , AWS Encryption SDK X#EH
REBRBEELEN ENTEEE, IREEEHENARBRERVWEEEZES , 8] AWS
Encryption SDK €& [EI§535,

MFERERGHEBRN B , FSE RELIAFE IR,

e e 14

AWS Encryption SDK HEABEE

Biuss

FFH B BT AWS Encryption SDK MNZEE £ AES-GCM IMZREHWER BEEFSREMBZAL
WEEMNEEYE K MEFEEABMNEE, B2 , HN AES-GCM FABESE , AT UBRZAR
BEMBENFHNERESBOA , EAUFRHEIHFHMBNREX T ERBENRLBE, flw, MR
I8 AWS KMS key A EHE88) B8 kms:DecryptHFAINERAE T UEYNBZHNMNBREXF , M
F|EMU kms:Encrypto

A TEEILEE , AWS Encryption SDK X &4 H5E th R By HEEE A (ECDSA) HEMEEMEA
ENERE. ERARBEEEENAR , SAEEMBAS AWS Encryption SDK B4 BRIFFAE SR
NEEHE, LB S AWS Encryption SDK EREERSRAMBARY , WERELEER,
ERRRIAATURY S —BEALEERRENER, BEELIERLFERBEENENERE
R, EATRERPHNHEMCREEN BHLERERFASNEAEERALNFERATERERT.

BERESHEMBENBERERST, NRNZENNERAENEZERNEHAERARZEE , FER
ERATESRENEREEN.

® Note

MRBERFBREFM BN keyring RFHERENZEANEZREACHER , IBUEES
REZTHRZFE.

AWS KMS keyring , @3EIE¥TE RSA AWS KMS keyring , ATEURE AWS KMS €88 BUEH IAM BUE
KRR MBRERANMBERER,

HRERBRFNLE , T3 keyring BEEMBRANBREN 2 BHR

« AWS KMS FEE L keyring
« AWS KMS ECDH keyring
- JR%A AES keyring

- JR%A RSA keyring

- JR1#5 ECDH keyring

BuEE 15

AWS Encryption SDK HEABEE

AWS Encryption SDK BE#HEA

AEF N TEFRIERE 047 AWS Encryption SDK IIZERMBZNMZRNAE, EETEREFEHAE
RINBEHEREARRERF, NEEXNFEABT HNFERESN F2ESAXEL S E/EN GitHub &7
=

AWS Encryption SDK EFifEHMERREBELENER ., SEASFEUE -—NERSRMNE, AR &
HERTHEEENIRSR/MNE, EERBMENFE , AWS Encryption SDK B R EEERN S
KETRRBEEZL—EANENERSR, AR, CTUBRBENEXFEERMAFAS,

EERME DEANMEERBI AWS Encryption SDKIE ? 55288 the section called “BE&",

#n{a] AWS Encryption SDK 0% &

AWS Encryption SDK 2t nZF &, UxHEES M THEBRNGE. WFEEXBEH ,
BEXEIAESERTNEHEE,

En
W%
&n
m

1. B3 keyring (HESWEMRE) , EERBENNTE SR,
2. # keyring M FERMEEE MBEFZ. RMEREEEEANIERBENERNE,

3. MEZEFEEME keyring ABMEZEE R, keyring BERFENE—ERNZESE —EARXFERSE
%, UREBEEEIESBNBNENSBER,

4. EEMEBRFEZEFEAMNFTERCRRNZES , EEERRZIMXFER SR, NRERMEM
ZAA AWS Encryption SDK (REER) , MBF E28UBBHREFNBNZATBREEMENE
#o

5. MRBERAMERE , MEBEFEZSERMEFAE , HPIEMENER., NENERSR/MHEMF
HER IENBERE.

#n{a] AWS Encryption SDK 222 i1 Z 9 5H 8

AWS Encryption SDK IRIt#EZNEZF S W EEF X FHNFE. WHERNIBES , F2RBEREET
EEEBRPAVEHFIERE,

R MEFBM keyring (HESREME) XEHEARMEFALEN keyring (HEL\IRME) M
B, Hh— BRI FAEARTZNBZASFHMEER B, WEEE keyring MESWIRMHEEM
BUMNEN , 552 M the section called “Keyring F8E 4",

1. FRATHRZERNDES|RE keyring RESWIBHE, BUUFEAZREBMNEZES EZWHEE
keyring S E fth keyring,

SDK {aE 16

AWS Encryption SDK BRABER

2. B INZFER keyring BEEZ M E T %o

3. MEBHERER keyring EERREMEREZMZFALPINEP—ENBRER B, CFRMNBHE
BEAEA , SENENER SR,

4. keyring FREHTESRRBEEHP—EAMENERSHR, NRAY DESTEMNFERER,
MR keyring REEB/RUEEEN TR SRBELIAZNENER SR K BEFUSKE,

5. REFEFEAMNFERTRRMBER, BEAXTFERES WEEKEXFER,

-

R EEELZEH AWS Encryption SDK
HEEEGEMEEEERANMENES . TERERGEAREEEAREENBYTAL,

AWS Encryption SDK EE EZEHFE A Galois/zHEEE N (GCM) F A ER INZIZ%E (AES) BEE L
B AES-GCM , B EHKER . AWS Encryption SDK %18 256 fjt. 192 {utH 128 {1 TNz
&R, YIROE (V) WRE—ER 12 BlutilH. BREEBNRE—EL 16 BT,

BIFFEER , AWS Encryption SDK £ EH AES-GCM KEE X EHEB HMAC extract-and-expand
SWMITERY (HKDF), #EBM 256 U tNZEE£\. MRFAEBREFEZLRAFE , 8 AWS Encryption
SDK Bt X B WAEEELZEN ; B8, cEENEEeRITENRBNEEELESL , BF g
EIS\AGE,

2& ERERITE. ZFNERAFER AES-GCM

AWS Encryption SDK BE&FEREELZEMNH |, EiBAS 256 Lt ERNZ IR ML HMAC extract-and-
expand &8 T4 BB (HKDF) JR{T4 AES-GCM & £88, AWS Encryption SDK & %718 #5 B th 4R &
U EEE L (ECDSA) #£E, ATXELRAR WEELEHOSTEERAETE - FRNEE
RS\ - EREMZAENPEER S, LEeREARFTREUEEABELUTEERNNESBNE
Fr , 1B HKDF T4,

AWS Encryption SDK EEZEH#

e EE A ERmEZeRE SWRTEREREZX HEREX ERAGE
EMUurhE
1i7)
AES-GCM 256 HKDF , SHA- ECDSA , P-384 HKDF ##t
384 X M SHA-384 X SHA-512

HKDF Al B & SAERFERERNNEZ SR YREBECRERSRVER,

XENEREEEN 17

https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK HEABEE

HRNEZ | IWEEEAEHEM ECDSA RELZBRFN ZRBUEE X (SHA-384), HEEREEH

ECDSA , EMEER T EMBARAEEMEA. ASEZSRIASTHERTERENFZAL | LiRM
FUERE. EXTRNREBRAF—ACAEETENNE IAHSNHEAEETENER
B, ERMESRIB .

EAEREENERELZEATHRABENB N ZRABEL —EHEXF. ©MNEBRERENZEE L@
ANER RN DRATHEE. IBEE , ELRELIEHSITESREGTH, EREZH , @
ERRENTRECHOERARTH, NRRE BEFUSRA.

Htt X BRVEEEEHN

AT EHEBM , AWS Encryption SDK XETHBARELZEH., —KME , RATERELEER
EEMN. T8, RATHBBURSHREMBNE , ALEMAAELRJIRHUEFERITENS|/ER
. SR AMHEEANGETNEARES RASBERMROBE, SREAENERITENE
o

RETMAGER AES-GCM

RAETRAGENEELIEHAERECHTERIFEN SR, At | EEEREEAENREHE—-
NEXFRBEATRNAXFAS. T8, HREFEREARNEEEZEATELERB A (+30 VT
i) WINEAS , EREERNEERERE , Rt RSEEARINREEE,

AWS Encryption SDK X EBEFSMITE. WA, HENERELEN , UREFEBITENS
WEEETHRBNEELEN. RMTESREIEEREAENERTEREELEN. WRENSE
EEY BERECHEEESRITENSRARWEELESG BFEXE, T8 , IRENERE
AR R EEAEELENS AIEAEESRAR,. SRTENEBENEELIEHRREE
%o

E|EFEN AES-GCM

RABRBNWEEZEMROBRAEEMN A UERMMN ECDSA BE, REENFRERNEREMN
BEENNERAEREZEER , TERABLEEH.
EREEEEAMARER K BRCEEREAERITENSRAGENEELENS,
FEE£MWITERN AES-GCM
RAETRITENEREZEHASERENNESRMA AES-GCM MEER , MARERASR/ET

HEHRERITERE -2, BRATIBEALEGAREENENT , EERAEEIHEER , AWS
Encryption SDK X EBIEH,

Hitb 2 B EEEEH 18

AWS Encryption SDK HEABEE

NEFEELEHEREABEFUMERRECRANFHAER , F2Hthe section called EEEZZE",

Hitb 2 B EEEEH 19

AWS Encryption SDK HEABEE

AWS Encryption SDK #&H £H AWS KMS

EZEH AWS Encryption SDK , BEEFEHIESWRELE keyring HEDWIRMHE, MRERE
SMEMER BEEMER AWS Key Management Service (AWS KMS), FHFFZRENIEEH AWS
Encryption SDK #8ZEE AWS KMS keyo

EEH & AWS KMS , AWS Encryption SDK FEE AR REFENRTESH AWS BEBEEH.
AWS Encryption SDK Al FimfE X EETJ B2 AWS SDKsHEE A , U EFHR BE 248 AWS KMS,

¥4 AWS Encryption SDK £ £H AWS KMS

1. BY AWSIRFE, EETHWNAFER , 328 AWS A0 F 89 a2 7 M A #TH Amazon
Web Services &P ? o

2. BIYHBINE AWS KMS key. B , F2B AWS Key Management Service F# A 815
) PNELSER,

® Tip
EELLAWS KMS key BRERFTAXER , BFEE L8 ID I Amazon Resource
Name (ARN) AWS KMS key, IIESH 1 ID 5 ARN #9583 AWS KMS key , 5528 (
AWS Key Management Service B A B1Er) RS ID T ARN,

3. EXTFHER DHNRLMEFHREHR, ZAUER IAM FAENFISR ID NAEFHER , ©
AILAfEF 3R AWS Security Token Service B #H TIEfEER , HP B E27FM &R ID. AEBEEFERE
BANTERBEFHANRRZEEAEN, FAZSREER , RABRREAFEABRREALZR , MF
=EER IAMERAES AWS (1R) FAERFHEBBRNRAZAER,

EEFATFRESBEY IAMFERE , #28 (AM FHAEIERE) FHET IAM ERE,

EEELRRREEAER , F28 (AM £HEER) PHERENRZLEAER,

4. {#H AWS SDK for Java, &M Python (Boto) B9 AWS SDKE} & C++ B9 AWS SDK (i&
AR C) HHI#ERAWS SDK for JavaScript , AREES R 3 PEENFRER D MABREFRE
WIRERELN AWS BAER, MRCELBRRIEAER , fUEEREEIERERFH.

W AFF AWS SDKs AWS A Z3E Y MFER. B HE AWS Encryption SDK ¥ FHIER
&l AWS KMS BREREE TR LT ER,

5. THEHIXZRZE AWS Encryption SDK, BEE T L , F2REEFERACERAESNREET.

20

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html

AWS Encryption SDK HEABEE

WY BR{EE# AWS Encryption SDK

AWS Encryption SDK E X REEAEXRENREEBERREBEN . HAEERETR/GENR T
ZREEYK A BALEBREAN BEBETTEIHNT.

158 P B T iR A<

ERBIA A B AWS Encryption SDK , SR B REFWIERLGTES BRHNERA, MRE—
B A AWS Encryption SDK , FRRAREZEBERIEE, ERREEAEZNER , XFA
FTNLZLBUERRBELNER. NEIBRANFHEN K SEEBNIMBWIES| , F28H BN
HEER B9 ARZS AWS Encryption SDKo

MRFRADRRERBFPHLE , FERDAEM. RABSNEABEREFTERELNER
Vo

ARTBEEAARERZEBIRZHE , RMBEASRUTRIBERE . £RIELMRZS K HFEH
RIS, IR EATUARERAEN , MASHEENEETHERE,

£ A TEER

EERIEE T AWS Encryption SDK 25T AETER{E. EWEFEATEM. HRERETERNE
N, RAERUERSR , fINEEXBNEELEN. BALAEREAERHETNEE , 5
MEERT keyring, FLWIRHENHRBREFLEREES CMMs), BEEFHELHEEERER , I
STRERLTS I REMBREIEE,

ERAMZEAR

ATREFZBHEERENZ LY BENBEERNMEBRTISEEEERNENNEARAS. &
AMZERRZEAN , EAREENEBEEREEL. IBRERA PHEREMFRMAEAND
B E ! (AAD) AWS Encryption SDK, #ATTEME , ENMZARTHBERENEZERNT
BEUHMEEM,

£ # AWS Encryption SDK , ZReEEMBRIEEMZERE. EZEE , AWS Encryption SDK &1
F AWS Encryption SDK %@Zﬂﬂ& AEBEFEFNMEASR. TEABRRBEREMXFERZH , B
BEREARMZAENMZARTEEARBEZAENNBARF, WEHMAEHR A BF2EELR
FTEES RS,

EIRERGSHIRERE , AWS Encryption SDK 25EBEMZRASR.

21

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/

AWS Encryption SDK HEABEE

RELHN TR TR

S

AWS Encryption SDK 8 E£ M —HWERS|/RMESBEAXFAS . AR , cEEALREHANS
KETRMRNMBERSR, MREHNIVRSWERANEIIMER , EHMNBERELER. WREN
EWMAZRE CNERNTRER S ZIIRE,

FAZIRLSRERTRERENTE S , Hl0 AWS Key Management Service(AWS KMS),
EARME AES B /R RSA £k , BEAFTSEL2ERNERNMARERR. TERLSE
8 (HSM) 2 HSMsH IR EENMFEF T 28 AWS CloudHSMEREEK.

FHSRERRENRESS BYUSESBNEIRIAEZSECHNHERE. BEREEKXR
Al HINERIKER, EH B AWS KMS keys , FEfE A BEREEKFENSWBERM IAM BUEK,

EENBEER

BEEBERRERZNNZRAREECN LR, ELSEME , L€ AWS Encryption SDK f#
AEBEEN 28, UEXTREAEIACACEENNEZESE. HHR AWSKMS £ 8 , ©iEER
BF LB R/NOERRE AWS 1RE 2 BEFFEASE RERFALZREFEAFT TN SRR RNE

X‘&ﬁbo

N8 , AWS Encryption SDK #tFEIE B FTER keyring X SMIBHESERBIEESTE SR,
ePReFEREEEN LS., FHEK AES keyring, R RSA keyring #1 JCEMasterKeys
MEZENBZRE CHUEEEETIESE,

, 8 AWS KMS keyring Ml X &R ERZRN L BTFIFTEEETEEH|. AWS Encryption
SDK _JJ«MﬁjJﬂﬁﬁﬂﬁﬁﬁE’JﬁF%ﬁﬂﬂﬂ SSWERT. B K EECLHBERMESINREE
%o

BEEEA AWSKMS SRERKXIENFEEYR RABRRETHEE !
- FREEDE AWS KMS 88 keyring. MEBMMEEEF |, 5L keyring AEFEAZEENTE
T\,

« £ AWS KMS EE&MMECR|MIBHER , FEMA 1.7 X RASI ANBEEXZBRE. AWS
Encryption SDKftt 2 ViR E RSEACEENIREB/RMBENHEE, £ 1.7xX KF ,
FUEMNIRESRAZNEISREHEEZBREER , XE 2.0.x RPMBR.

EREEARBERN AWS KMS SE ST YIBERE , BrERARRREME, C M JavaScript
AWS Encryption SDK #1#J ST #BAWS KMS &3 keyring, EERREXN T LRIBHEBFAR
1.7.x lRFEHARAH Java M Python, ELREZREEERARFER AWS KMS 2R EIRETH
% , BAREIS R AWS Encryption SDK R A MBZRER BN TH SR,

22

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK HEABEE

MREGVACERAREZRME K BEAHRRGRRGIERBRHIEFEANTEERB. Flw, AWS
KMS EF#RE keyring AEAREFHNTESHE AWS EiF, BB AWS KMS keyring
AWS KMS master £ EREREFARE NIESH/ AWS RS, A, —FE—% , &

REMBERA 1AM BURRIZS AWS KMS Ha & SR FE.
ERBIVER

REBRRERARELIEHMETRE. AUEESeRIASTHECERESEIFALS , XREAR
RySTTEM, RIRTERR , BIFTBEMZA AWS Encryption SDK SRR EE ZEHBEESE,

MRENZEFRTESBNURE BULEERFHABEENEELEN. T8 , RAEBEME
ABuEE AHEE-HERENZER 5 —HERERELERNK,
{5 A 8RR

REBRREAESRARREYE. BEERIFNBENNE -—ERSBNS D , SREGE AL
R A R E M S EM X FAS R IENF,

AWS Encryption SDK 2 2.0.x IRFBHN SMAEMZNBEZNTEIE, RIBFERE , WA
ENEHNSERASBAEETIMRMAESR, 1.7.x Bt AWS Encryption SDK A] LUEIB £ 88 R 58 7 27
MEXF, ©EEHBBREMRANNEREKINEE 2.0.x iRo

HELWFAENIBEARTNEELZEGNTFNTERKRR BRI REELLLNBZEXF K 30 ELT

HENMEZENTF BESWRAE. SETUEEBENTEREZERE K BASHEAEHNEEZZISBRA

HNEZ, NMREZNERABRINE X PNMEIEERR , BULUREFEAAGEBERERERASBA

3%, RAN ERERENENLT AWS Encryption SDK SZFA L | B HE R EHEIE B M.
REMZERSHNEE

REBRRRHEHEZNASTNRENTRNEE LEERRATZEERENALS . E£AGF
SEBELHMBPNNBERTRRBEZAL TS ERERLE, HTER, RHEENERERX
MEMLRAEIRFHA , Y TRESENSREMRE. MRRARS , MBNASKSATUE
65, 535 1@ (2716 - 1) INENER W, WEFMER , F2RRINENERER,

MEELREER T AWS Encryption SDK BN Z £ IhEEEFME A |
Fininz: . B Keylds MEWRFE

3

28 AWS Z2EBEEF A E A

23

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK HEABEE

i E AWS Encryption SDK

AWS Encryption SDK HIERETZAER . # R AWS Encryption SDK B 8ERAERE , ERH ST
BEERE , UHAZHEARIXEABERS, T8 , AU EERBEARUNENEE , RERTTHS
EHEIEES

SREE/ER | 55MBY AWS Encryption SDK HIEEE IR AT AL E/E,

BREXRHES

- ENTEDR

- A ZEIH AWS KMS keys
BEEEEAEN

- REIMBNEREH

- BEVREEEGRMG

- BREMENMEARS CMM

- RERAFEBER

- FRAERER

- RENEREH

Jgﬁyii_tnln E E

AWS Encryption SDK Rt ZBEXRES. BESEFESRFTATELEE , WiRMHUHERMNIIEE , E7
EEUTRNAXER, —MBMsS , EUUERESNEARIKHEENERE. T8 , EUUABEE
EEMBERNREES. Hl, MRERFER keyring , BESRE BHRM C B AWS Encryption SDK
o AR JavaScript B9 AWS Encryption SDKo

BENZE TR

AWS Encryption SDK EE4£E—HWHBERSRRNEBESEAR. RELEAERSHRE , FRF
TERE. EEGEAERER. §4% AWS Encryption SDK #1T,

T, BHXEEN—RZEIESB/RNBZEER S/, AWS Encryption SDK ZERRE K/HH
AES B£8R RSA JEHEER, ©HXE AWS Key Management Service(AWS KMS) ¥ i8N

ERREXRIES 24

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK HEABEE

AWS KMS keys, B4 EEETRTR/RNZ2MAMAY , AHERETERZSRERNSRERR
HERF P EMAMZE SR , HlI0 AWS KMS,

EERTEARMBNERN LSS B LR keyring (C. Java, JavaScript, JavaScript, .NET
A Python) s X £ HE (Java, Python, AWS Encryption CLI), BAJLAIEE —E2 8 8=+
EARTREENZETELE., NIREFERAZESESR/RIELERNSE ASESESBESM
ZHEENSBNEIR, IZNERESR (SESESH) SENBNEN —EFHE AWS
Encryption SDK EEIHMBZRAE S, BEEMRBZER , AWS Encryption SDK A EBEFEAHP—EIE
SWRMBEMZNER S,

EEIE keyring RESMBIRMEE AWS KMS key FI8E |, BHERAZEN AWS KMS £ 5%, 0E
SEBEBIFHEFMEA AWS KMS |, F2HE (AWS Key Management Service BB A B8R ¥ &
BT

- £/ EA M JavaScript B9 AWS Encryption SDK & A Python #9 AWS Encryption SDK iE AR
JAVA B9 AWS Encryption SDK, = AWS Encryption CLI I1ZE | &7 LA KMS &8 FE
ERNER/ABT (£ ID. £ ARN, BIZEBHBIE ARN), £/H MEKR BARK CH AWS
Encryption SDK , B8R gEE €48 ID 28 ARN,

MRBEMNZELE KMS £BEERZB2BWI:EIE ARN , & AWS Encryption SDK #7178 & 825% 5l
ZHEABHN 28 ARN ; TE2R7TFHE. HNENEETEXEARRRER S/ KMS 218,

- EBREEXTER (BEEECEESRNNE) i, BXEFHS® ARN KB AWS KMS
keys, HEREAM AWS Encryption SDKHIFFEE S B 1k,

EREH AWS KMS keyring INZEF , 4% ®9€#8 ARN AWS Encryption SDK FHEMZEER &8
HREER AWS KMS key ., EEFERXTHEZR , TEAFHOESBBRBNENERN SR
Hi , AWS Encryption SDK 28 E RN €88 ARN EFHBRE keyring (RELBEMHE) B, m
RECEATRANSW|AFNF , BFERBIFSEHRN S/ AWS KMS key , AWS Encryption SDK
FERBIBEA .

EEN R AES S8 FE I RSA £BIEEAS keyring PHEHSE L4 BREEDREHNEE,
EEXLMIEMESF | Provider IDZERARGRZEM , M Key ID EEAREBRE. BHRE , BXEAS
BREESESREAENFREZSERNGEEANERE, IREEATRNGEEARERE , BIFES
$&FRI4HE , AWS Encryption SDK tt A 2R FEABE SR,

BREXSH 25

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK HEABEE

£ F % &8 AWS KMS keys

B LAE R BER AWS Key Management Service (AWS KMS) % EiF £ A & £18 AWS
Encryption SDK, MREFERAZ EFHSWETINE AWS EiF , AT UERATE PHWHEBEZ EHSH
EITRE AWS B, SEHSBINZIESE 19 2.3.x B AWS Encryption SDK 1 AWS #1%% CLI
3.0.x RAAH#EH,

AWS KMS ZEiF £ 2 — T E AWS KMS keys F8) AWS EiF, , EEHENSBHEMNEE D,
B LAERELERSE RECMETRESFRERN SR &, SESSHXEERNKEE
ERNiERRE , ELRFIFTEA —(ERGHNE , Y EFRDESPHER , MESETEREGFEWY AWS
KMS., MEZEHS|WHEEER , 526 AWS Key Management Service B3 A B5R) HHFE
BZEEHEHE,

ATXEZEHS® , AWS Encryption SDK ‘@& AWS KMS multi-Region-aware keyring M £§12
&, SERRRES PHFAHIMulti-Region-awareF R B BEE—ESNZ EHER,

- HRE—EFHEM® , multi-Region-aware 5k 1T BB LA E — [E15 AWS KMS keyring M E£i§1E
fitE, cRSERFEANEZERNE—EEHESRRMBEMEXF,

- HRZEFHEM , multi-Region-aware FHSEAFEAEMBERMERNZ BiHEH , AELIEEN
EFPEAEBNZEEHERSBREBBMNE LT,

A Z M KMS £# K multi-Region-aware keyring Ml &2 Ed | B LIEEZEE—EEHM
ZEEHLHR. TB , CRERX—EEBENZESERASRTEE s, WREEHAERNEE D
EEZESHBENT , 28R TUE XK,

WAL R Z B SRERERE, BE—[EiH AWS KMS keyring MELRIBHE, TiB , BHLAEEH
BESFEAMEERNZEHESBRMBNFEE, E—EH keyring MEEB/RAERSGEAFEAMEE
R £ Z N F o

T 5561 R &8 an{a F A 2 [E 15 £ $8 FF A multi-Region-aware keyring ME £ 82 HE R IMBNB R E
Flo EE&Hlus-west-28ME us-east-1 BEHPWER , UEASERETHEBHNZEEELRS
WAZEFHPNER., MTELESZH , FHELFZEHEH ARN BRARE WERE AWS Bk
Fo

C

EEFRZEGSBME , FBEA
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () F = RH{TEE/L
keyring, IEEZEIFHER.

fE A Z B AWS KMS keys 26

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK HEABEE

EREMENEHTIENEAR, MFE C PERMBARNES , F2E0H NBENBREF S,

MEZEEHG , FF2E GitHub LFEF EAR® C B AWS Encryption SDK EH#Y

kms_multi_region_keys.cppo

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

EEEXBERI (TR) (us-east-1) BEFEAZEHSENE BEAZESSEN
SWABFNIEE REHHN AWS KMS A Fin#{T{Ef8{tCreateAwsKmsMrkKeyringInput 4.
REBEMEH CreateAwskmsMrkKeyring () FHERE I keyring.

CreateAwsKmsMrkKeyring() A ZE€B I EERF—EZEHE®H keyring. EEFAZEE
HESBNZ K SEZEEHSE FFEH CreateAwskmsMrkMultiKeyring() 5%,

fFERAZEE AWS KMS keys 27

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK HEABEE

MEZREEH |, 5520 GitHub £ AWS Encryption SDK iBAR NET REEEN £ K
AwsKmsMrkKeyringExample.cs.

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

string mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Create the keyring

// You can specify the Region or get the Region from the key ARN

var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEastl),
KmsKeyId = mrkUSEastl

};

var mrkEncryptKeyring =

materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
{"purpose", "test"}
};

// Encrypt your plaintext data.
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = mrkEncryptKeyring,
EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

fE A Z B AWS KMS keys 28

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK HEABEE

AWS Encryption CLI

WEHIEE us-east-1 BEFANZEFHEB T MZFRhello. txtEER, HRESISIEEEEETTE
H<£8 ARN , At L EHITEMER --wrapping-keys 28 EFHE 4.

ECEESHRNISER ID REEREK , BRI AEA WEEBEM - -wrapping-keysRIEE R , 4l
i --wrapping-keys key=%$keyID region=us-east-1,

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEastl=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$mrkUSEastl \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

Java

EEFAZEGSBME , BHITEEIL AwsKkmsMrkAwareMasterKeyProviderWigEZEE
<48,

WETREH , F2H GitHub L7 BAR JAVA B9 AWS Encryption SDK
EEBasicMultiRegionKeyEncryptionExample.java®f #y

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

final String mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1

fE A Z B AWS KMS keys 29

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK HEABEE

final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider

.builder()

.buildStrict(mrkUSEastl);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
"Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
crypto.encryptData(
kmsMrkProvider,
encryptionContext,
sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

EEFRAZSESSBMNE , FEH
buildAwsKmsMrkAwareStrictMultiKeyringBrowser ()5 AREIL keyring Wi EZ EFHE
o

MEZTEEHS , FFSE GitHub LfF#F EA R JavaScript 89 AWS Encryption SDK EH
kms_multi_region_simple.ts.

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string

fFERAZEE AWS KMS keys 30

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK HEABEE

secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The ### JavaScript # AWS Encryption SDK gets the Region from the key ARN

*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr ({
generatorKeyId: multiRegionUsEastKey,
clientProvider,

1)

/* Set the encryption context */
const context = {
purpose: 'test',

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
encryptionContext: context,

1)

JavaScript Node.js

EEFAZEGESM/ME |, BFEMA buildAwsKmsMrkAwareStrictMultiKeyringNode ()5 &
REIL keyring LIEEZ EFH T8,

MEEREH |, FFSH GitHub L7177 BA M JavaScript B9 AWS Encryption SDK EH#Y
kms_multi_region_simple.ts.

//Encrypt with a multi-Region KMS key in us-east-1 Region

A Z &1 AWS KMS keys 31

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK HEABEE

import { buildClient } from '@aws-crypto/client-node’

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-east-1
*/
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsEastKey,
1)

/* Specify an encryption context */
const context = {
purpose: 'test',

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
encryptionContext: context,

1)

Python

HEFEHA AWSKMS ZEFHSB|BINE |, FEA
MRKAwareStrictAwsKmsMasterKeyProvider () AN IEEZ EIHER,

WETEES , FSE GitHub E&7F BAM Python B AWS Encryption SDK EH #
mrk_aware_kms_provider.py.

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client

fE A Z B AWS KMS keys 32

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK HEABEE

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_east_1]

Set the encryption context
encryption_context = {
"purpose": "test"

}

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
key_provider=strict_mrk_key_provider

BE K BINENXFBE us-west-2EE, BFFEEERMENEF,

EER us-west-2 BFHPUBKERXNBBEMNE T , Fus-west-2[E1F A Emulti-
Region-awarefifif. MREETRENEEHPIEEMEBES EFHSBS® ARN (BIEMEL)us-
east-1, multi-Region-awarefF 55 & & LT #5 R FF AL AWS KMS keyo

EBEER THER , multi-Region-awarefFi EE L) ARN, EREZRESHEABSEZ BN
—E<#® ARN,

PATIELE 2wl , FREHZ EHEE|® ARN KA FHEME AWS IRF,
C

EEFRAZESEREBRBREXNTHE , BFFEA
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () A EHITEEL
keyring, TEZAHE (us-west-2) BIFHFIEEHBENZEEHEE.

fFERAZEE AWS KMS keys 33

AWS Encryption SDK HEABEE

mETEEH |, 5520 GitHub LF#EF BARM C B AWS Encryption SDK EHHY
kms_multi_region_keys.cppo

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ NET

EEFRE—ZEHSREBKEXNTHE , BEACARMBESE ALE keyring SLETINE
WHEREBREBNS L, CHERZEHSRNESHE ARN MERAS (R=E[) (us-west-2)
[EiF i AWS KMS A FimR#1T{EE{tCreateAwsKmsMrkKeyringInput¥#, REEH
CreateAwsKmsMrkKeyring()AZEB I EE —EZEE KMS £#8H % E keyring,

fE A Z B AWS KMS keys 34

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK HEABEE

MEZREEH |, 5520 GitHub £ AWS Encryption SDK iBAR NET REEEN £ K
AwsKmsMrkKeyringExample.cs.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate the keyring input
// You can specify the Region or get the Region from the key ARN
var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
KmsKeyId = mrkUSWest2

};

// Create the multi-Region keyring
var mrkDecryptKeyring =
materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Keyring = mrkDecryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

ZEE[A us-west-2 B BN EEHSBRBE BFER --wrapping-keys ZEBN BB MR
EEHSE® ARN,

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.

fFERAZEE AWS KMS keys 35

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK HEABEE

$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$mrkUSwest2 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

Java

EEDBEERNBER BFHTEEBIL , AwsKkmsMrkAwareMasterKeyProviderIfE A # (us-
west-2) BIFHIEEMENZ EEHEE®,

mEZEEG , F2E GitHub LFEF EAR JAVA B9 AWS Encryption SDK EH#Y
BasicMultiRegionKeyEncryptionExample.java.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
the Region field.

String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider.builder()
.buildStrict(mrkUSWest2);

// Decrypt your ciphertext

CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
kmsMrkProvider,
ciphertext);

fFERAZEE AWS KMS keys 36

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK HEABEE

byte[] decrypted = decryptResult.getResult();

JavaScript Browser

EEBLBEERNMEE , BFFEA buildAwsKmsMrkAwareStrictMultiKeyringBrowser ()%
REI keyring , WHEAHE (us-west-2) BIEFIEEMBNZEE L,

WETEES , S GitHub £ EA M JavaScript B AWS Encryption SDK {#17E H #9
kms_multi_region_simple.ts.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}

/* Instantiate an AWS KMS client
* The ### JavaScript # AWS Encryption SDK gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Instantiate the keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser ({

fFERAZEE AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK HEABEE

generatorKeyId: multiRegionUsWestKey,
clientProvider,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

EELUBEEXNMER , BFEMH buildAwskmsMrkAwareStrictMultiKeyringNode () FERE
I keyring , METEASHE (us-west-2) BIF IS EMBNZ EiHEH8,

MEZREEH | 552 GitHub £ BA R JavaScript 89 AWS Encryption SDK & ZEHH
kms_multi_region_simple.ts,

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client

const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-west-2
*/
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcdl12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsWestKey,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

EEABEERXTHES 5B5FH MRKAwareStrictAwsKmsMasterKeyProvider ()5 EHRE T
FEMREE, TR (us-west-2) EEFIEEHBHNZEE SR,

fFERAZEE AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK HEABEE

METEEHH , F2H GitHub L&F EBAR Python B AWS Encryption SDK EH#Y
mrk_aware_kms_provider.py.

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
Region field

mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_west_2]

)

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=strict_mrk_key_provider

BRI LAER AWS KMS ZEFESREREERNPHRE, EREEAFHEZR , ELFEEEM AWS
KMS keys, (INFEE—[E1E AWS KMS &3 keyring WEH , 5528 B AWS KMS ## 3 keyringo)

MREEAZERESH/ME REEXFHmulti-Region-aware F S ERFEA AR EFHFHBN ZE
HEWMMREE, WRAFHE , WUSKRY, ERFEEAP , AWS Encryption SDK FEERHE AR M
ZNZEITHETERIFU,

(® Note
MRS RRE R B F Amulti-Region-aware S 5E R INBZE R | IFRES KB,

T %) & 45 /R 8 0] 1E BR R AE X A A multi-Region-aware B SR E TR, HRERIEE AWS KMS
key , E it AWS Encryption SDK AZBRT R RFEE Bif. WaENGE , FRREEAKESD., &

fFERAZEE AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK HEABEE

B, SfHE AWS BREHPHEENRRFRIESRED B AWS Encryption SDK BB A #E
=

PTIELE 2Bl , FBREPIRS ID NS EHEI/ ARN RS PHERE AWS kS,
C

EEFRAZESEREREEXNMRE BFEH

Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () A EZEE keyring , Y fF
F Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder () BB IRREFRHK
H, ZERREAMED , FEE ClientConfigurationItE A FinH AWS KMS EEEE.

mFEREH , FFSE GitHub LT EAR C B AWS Encryption SDK EFRH

kms_multi_region_keys.cppo

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
* filter is optional, but it's a best practice that we recommend.

*/
const char *account_id = "111122223333";
const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

ws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
Aws: :MakeShared<Aws: :KMS: :KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
ws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder()
WithKmsClient(kms_client)
.BuildDiscovery(region, discovery_filter);

fE A Z B AWS KMS keys 40

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK HEABEE

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

#E7E AWS Encryption SDKEAR .NET B 1 E I multi-Region-aware#R & keyring , FH#IT{E
BB{LiEZHE AWS KMS A FinfiCreateAwsKmsMrkDiscoveryKeyringInput ¥4 AWS &
5, UKk KMS £RREERE AWS 7 EIEBNIRFERRZEZRGE. REERBMAYH
0l CreateAwsKmsMrkDiscoveryKeyring()Fit, MFEZEEH , 52 GitHub £ AWS
Encryption SDK AR .NET #FER F# AwsKmsMrkDiscoveryKeyringExample.cs,

EE A %A B multi-Region-awareiR &R keyring AWS B35 , FBE A
CreateAwsKmsMrkDiscoveryMultiKeyring() AR Z BIHBAIRE keyring , HEH
CreateAwsKmsMrkDiscoveryKeyring()& Z{Emulti-Region-awarei®R & keyring , A% F A
CreateMultiKeyring()AEEZ keyring R EBHEM.

WMEFH , 5328 AwsKmsMrkDiscoveryMultiKeyringExample.cs,

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers

var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

List<string> account = new List<string> { "111122223333" };

A Z &1 AWS KMS keys 1

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK HEABEE

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{

AccountIds = account,

Partition = "aws"

// Create the keyring

var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = mrkDiscoveryFilter

};

var mrkDiscoveryKeyring =

materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDiscoveryKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

EEEREEAPMHE |, BEM --wrapping-keys SENREBM. RRIRFNFRRIEES
MHeRVEABRBENREEERNT.

EEEEES , LB HEE --wrapping-keys BENERBI.
Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \
region=us-west-2 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

fFERAZEE AWS KMS keys 42

AWS Encryption SDK HEABEE

--output .

Java

EEIREAMES BEM builder().withDiscoveryMrkRegion 28, & , &R FKRE
[E18 AWS Encryption SDK ER8 A #EHAWS SDK for Java.

mFEREH , 5L GitHub LREF EAR JAVA B9 AWS Encryption SDK EH Y
DiscoveryMultiRegionDecryptionExample.javao

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
AwsKmsMrkAwareMasterKeyProvider
.builder()
.withDiscoveryMrkRegion(Region.US_WEST_2)
.buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
.decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

FEERAUBZEHESRERERAPER FER

AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser ()5 %,

METRES |, S GitHub £ AR JavaScript #9 AWS Encryption SDK 7 E+H
kms_multi_region_discovery.ts,

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
buildClient,
CommitmentPolicy,

fE A Z B AWS KMS keys 43

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK HEABEE

KMS,
} from 'eaws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser ({
client,
discoveryFilter,

D

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

FEERAUBZEHESRERERAPER BFER

AwsKmsMrkAwareSymmetricDiscoveryKeyringNode ()5 %,

METEES , FSM GitHub £ AR JavaScript #9 AWS Encryption SDK &7 E+H
kms_multi_region_discovery.ts,

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,

fFERAZEE AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK HEABEE

buildClient,
CommitmentPolicy,
KMS,
} from 'eaws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition:

aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
client,
discoveryFilter,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

FEERAZSEASRERREADREE FEA

MRKAwareDiscoveryAwsKmsMasterKeyProvider ()% %,

mETELS , FSE GitHub E&F BAR Python B9 AWS Encryption SDK EHH)
mrk_aware_kms_provider.py.

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

fE A Z B AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK HEABEE

Use the multi-Region method to create the master key provider
in discovery mode

mrk_discovery_key_provider =
MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=mrk_discovery_key_provider

BEREAENH

AWS Encryption SDK X ESHEHBNIFEBNBEE L , TELEEN LSBT NEENERS
&, TiB , EEEACEEHSERMBENEREF | AWS Encryption SDK 858 & AES-GCM
BELARERSBITE, BUEENSRAGENESEELEN, AEREELEHTHREARK
ZEYERES K BERTLLEEBENREELENH. fin , FEEERESHREEVEENEELEN
FifmE. W& AWS Encryption SDK X B EELZEHHREEN , F2E P ENEEELZEN AWS
Encryption SDK.,

TS REBUAEMBRRFENBAREEEN . ELEHISEIEREN AES-GCM EEEZEN &

TEEERITENEREAR EFESBUEE. EAEATESBUEENEEAEHETINER

AERBREAAKENERBERN, MEXNMREICHENNEXFRERY , EERBEERR

BH.

C

EEE PEEBNEEELZENR EAM C K AWS Encryption SDK , B4 HAEETL CMM, REE

F aws_cryptosdk_default_cmm_set_alg_id#E CMM FBEAEE XEH,

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* To set an alternate algorithm suite, create an cryptographic

BEREEEN

46

AWS Encryption SDK HEABEE

materials manager (CMM) explicitly
*/
struct aws_cryptosdk_cmm *cmm =
aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
then release the CMM reference
*/
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
Use aws_cryptosdk_session_process_full with non-streaming data

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
ciphertext,

ciphertext_buf_sz,

&ciphertext_len,

plaintext,

plaintext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

RBREREBNEENERTINZNERR , 55 HA AWS_CRYPTOSDK_DECRYPT_UNSIGNED, #N
REZBINEENNBXF , ESERMEBRLK,

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create a session for decrypting with the AWS KMS keyring

BEREEEN 47

AWS

Encryption SDK HEABEE

C#

Then release the keyring reference
*/

struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {
return AWS_OP_ERR;

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
Use aws_cryptosdk_session_process_full with non-streaming data
*/

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
plaintext,
plaintext_buf_sz,
&plaintext_len,
ciphertext,
ciphertext_len)) {

aws_cryptosdk_session_destroy(session);

return AWS_OP_ERR;

[.NET

&= E1E AWS Encryption SDK EAR NET 1 FIEEBEREEEEMH , FIEE Encryptinput Y14
AlgorithmSuiteId B, for AWS Encryption SDK .NET & EE , TARBAIERITFWER
EEMH,

AWS Encryption SDK BAR NETH REEZHERBERFEISHEBNBEXFNFZE , BAKER
EFXRZERERER.

// Specify an algorithm suite without signing
// Instantiate the AWS Encryption SDK and material providers

var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

BEE

BEEEH 48

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK HEABEE

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring

var keyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

AlgoxrithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
i

var encryptOutput = encryptionSdk.Encrypt(encxyptInput);

AWS Encryption CLI

MmEhello. txtiEEE , HEAIGEA --algorithn BRIISERERU BTN RE AL,
Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output hello.txt.encrypted \
--decode

fREEs , LLEHIEER --decrypt-unsigned 28, BREALSHRBREBENRREZN
MEXF , LERER-—ZSHREANGE LN CL,

Decrypt unsigned streaming data

BEE

BEEEH 49

AWS Encryption SDK HEABEE

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--max-encrypted-data-keys 1 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output

Java

EEEEEMNEELEN , BFA AwsCrypto.builder().withEncryptionAlgorithm()7
E. LEHIIEEREBNEENEBREELEN,

// Specify an algorithm suite without signing

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withEncryptionAlgorithm(CxryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
Map<String, String> encryptionContext = Collections.singletonMap("Example",
"FileStreaming");

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

BREEEN 50

i
in

AWS Encryption SDK HEABEE

BREREITHREZR |, 38 A createUnsignedMessageDecryptingStream() 75 & RER IR
BENFMEME N FEHREE,

// Decrypt unsigned streaming data

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withMaxEncryptedDataKeys(1)
.build();

// Create a master key provider in strict mode

String awsKmsKey = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(awsKmsKey);

// Decrypt the encrypted message

FileInputStream in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<KmsMasterKey> decryptingStream =
crypto.createUnsignedMessageDecxyptingStream(masterKeyProvider, in);

// Return the plaintext data

// Write the plaintext data to disk

FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);

decryptingStream.close();

JavaScript Browser

EEEEENEELEN , FEA suiteld 2E¥#EBAlgorithmSuiteldentifier 5 {E,

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

BEE

EEER =

AWS Encryption SDK HEABEE

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

R, REAEEdecryptBiE. BIERR BAR JavaScript B AWS Encryption SDK HH R H
decrypt-unsigned X , RRABBRETZEHER.

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

EEEEENEELEN , BMFEA suiteld 28 BAlgorithmSuiteldentifier 58 {E,

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

=

in

EEMN 52

i

AWS Encryption SDK HEABEE

BERERBENEENE R TMHNERE , 556 decryptUnsignedMessageStream, HRIEZ|
BHENMBXTF , WHEERHK.

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream }
buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

EEREENMBEREE | BEMA algorithm 28 HAlgorithm3&E,

Specify an algorithm suite without signing

Instantiate a client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
algorithm=Algoxithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
key_provider=kms_key_provider

)

BREEEN 53

i
in

AWS Encryption SDK HEABEE

BEBEEREENEENERTMBNASE , BFFEMAdecrypt-unsigned B RER |, FRIRES

o bR R 2

Decrypt unsigned streaming data

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Decrypt with decrypt-unsigned
with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
"wb") as plaintext:
with client.stream(mode="decxypt-unsigned"”,
source=ciphertext,
key_provider=master_key_provider) as decryptor:
for chunk in decryptor:
plaintext.write(chunk)

Verify that the encryption context
assert all(

pair in decryptor.header.encryption_context.items() for pair in
encryptor.header.encryption_context.items()

)

return ciphertext_filename, cycled_plaintext_filename

Rust

EE% AWS Encryption SDK for Rust By RIEEEBREEEZEN , FEMNMBBRPEE
algorithm_suite_id B,

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name

BEREEEN 54

AWS Encryption SDK

FMBABER

Go

let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(raw_aes_keyring.clone())
.encryption_context(encryption_context.clone())
.algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
.send()
.await?;

import (
"context"

i

BE

EEN

in

55

AWS Encryption SDK

FMBABER

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”
client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)
// Instantiate the AWS Encryption SDK client

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err != nil {
panic(err)

// Define the key namespace and key name
var keyNamespace = "HSM_0Q1"
var keyName = "AES_256_012"

// Optional: Create an encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err != nil {

i

BE

EEN

in

56

AWS Encryption SDK HEABEE

panic(err)

}

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{

Plaintext: [Ibyte(exampleText),
EncryptionContext: encryptionContext,
Keyring: aesKeyring,
AlgorithmSuiteId: &algorithmSuiteld,
1))
if err != nil {
panic(err)
}

[REMENER SR

BRI LARBIMBAS PN MNZER SRBE, HWHEEF 08 A 17 B & 1E N BHE RIER E R RAY
keyring , HEREZREYNBZENEXF, TEAUBEHSRERRBETTILEN, BEMTHEF
EHNFLY, ERRTZEENRERZALE , REINZNERSRKEEE,

HAXZEMENTEREANZREANESESLSBEE —ENRNERSHR ENBNAERST
‘BE 65,535 AMBENEREE, ERTAEUASEBEGHETANZENSH/NNBEAL , ELE

SREMMEME, EIk , AWS Encryption SDK 2 ERBREBEANFZHNER S8 EIESHAEFHN

mZERS/AB I,

EERBMBHER S %{Eﬁﬁ MaxEncryptedDataKeys 28, & 1.9.x fl 2.2.x lxFHE , LB H
BRARMEXENRERNRES. AWS Encryption SDKEMZMEZRE K ER2ZFABEERN. T/
flERRE=ATEAN LW T MBENER, MaxEncryptedDataKeys ERXEA 3.

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =

ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arnl, { key_arn2, key_arn3 });

/* Create a session */

PR &I INZE B &R £ 58 57

AWS Encryption SDK HEABEE

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,

kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C#/ .NET

£ EPR%] AWS Encryption SDK BAMR NET 9 R MBRER S8 | HHTEEL AWS
Encryption SDK BAR NET ¥ AFis , WA HZEAMaxEncryptedDataKeysBEERERFIEN
B, A% , E/REM AWS Encryption SDK 1 1T{EEE EFFIU Decrypt()F %,

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
// Configure the commitment policy on the AWS Encryption SDK instance

var config = new AwsEncryptionSdkConfig

{

MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

PRI I E R R 58

AWS Encryption SDK HEABEE

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$key_arnl key=$key_arn2 key=$key_arn3 \
--buffer \
--max-encrypted-data-keys 3 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
.withMaxEncryptedDataKeys(3)
.build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(keyArnl, keyArn2, keyArn3);

// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult =
crypto.decryptData(keyProvider, ciphertext)

PRI I E R R 59

AWS Encryption SDK HEABEE

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}
const clientProvider = getClient(KMS, {

credentials: { accessKeyld, secretAccessKey, sessionToken }

1)

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
clientProvider,
keyIds: [keyArnl, keyArn2, keyArn3],
)

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring

const keyring = new KmsKeyringBrowser({
keyIds: [keyArnl, keyArn2, keyArn3],

1))

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(

PRI I E R R 60

AWS Encryption SDK HEABEE

key_ids=[key_arnl, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

let esdk_config = AwsEncryptionSdkConfig::builder()
.max_encrypted_data_keys(max_encrypted_data_keys)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate “max_encrypted_data_keys® raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > @, "max_encrypted_data_keys MUST be greater than
@Il);

let mut i = 0;
while i < max_encrypted_data_keys {
let aes_key_bytes = generate_aes_key_bytes();

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

raw_aes_keyrings.push(raw_aes_keyring);
i+=1;

PRI I E R R 61

AWS Encryption SDK HEABEE

Go

}

// Create a Multi Keyring with “max_encrypted_data_keys"™ AES Keyrings
let generator_keyring = raw_aes_keyrings.remove(Q);

let multi_keyring = mpl
.create_multi_keyring()
.generator(generator_keyring)
.child_keyrings(raw_aes_keyrings)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
MaxEncryptedDataKeys: &maxEncryptedDataKeys,

1)

if err !'= nil {
panic(err)

}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

PRI I E R R 62

AWS Encryption SDK HEABEE

}

// Generate “maxEncryptedDataKeys' raw AES keyrings to use with your keyring
rawAESKeyrings := make([]mpltypes.IKeyring, @, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
key, err := generate256KeyBytesAES()
if err !'= nil {
panic(err)
}
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)
}
rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
i++

// Create a Multi Keyring with “max_encrypted_data_keys ™ AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: rawAESKeyrings[0],
ChildKeyrings: rawAESKeyrings[1:],

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)
}

B IRRERRF

AR KMS BINENERE REERREBREEXNTHE , tRERAMEANZESRBRHS
BEENEM, T8, IELE , COUTNERREXNTHEE AP TEEEA2RER. FHERX

BUIRRENERIGMS 63

AWS Encryption SDK HEABEE

i, AWS KMS TUEREMEH KMS SRRMEMTHERNSMH , EREHEREMEFIML KMS
S8,

NREHBERRER RS | BRE—2EARRGEESE SRR TARIEE AWS B R 2
EIEFE KMS £, RREGBHEAERZEAY | BELBLES.

A T RIRHBTHRRENR RN 2 B EE

215 pai| =

AWS [E aws

P B [15 aws-cn
AWS GovCloud (US) Regions aws-us-gov

RETP RV RE AR YRR E R, EARRNT A , FRHEHEIRNKASR AWS tkF M 2EIE
R A ME.

C

MEZEEHG , FFSE FI kms_discovery.cpp AR C B9 AWS Encryption SDK,

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";
const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil

C#/ .NET

METEEG |, 552 AWS Encryption SDK (for .NET) A #9 DiscoveryFilterExample.cs.

// Create a discovery filter for an AWS account and partition
List<string> account = new List<string> { "111122223333" },;

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()

B RREHEGM 64

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK HEABEE

{

AccountIds = account,
Partition = "aws"

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

Java

METEREH , 528 () PH DiscoveryDecryptionExample.java E AR JAVA B AWS
Encryption SDK

// Create a discovery filter for an AWS account and partition
DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

METREH |, 5528 P kms_filtered_discovery.ts (Node.js) F kms_multi_region_discovery.ts
(BIE2s). BAR JavaScript B9 AWS Encryption SDK

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {

accountIDs: ['111122223333'],

partition: '

}

aws',

Python

METREH , F2H8 () P8 #3E_kms_provider.py B AR Python B9 AWS Encryption SDK,

B RREHEGM 65

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK HEABEE

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

Rust

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![111122223333.to_string()])
.partition("aws".to_string())
.build()?;

Go

import (
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

)

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{111122223333},
Partition: "aws",

}

REFEOMBAR CMM

BEUERMENMBEAR CMM , EEBREFEETFERNZRNET. MBRATR-AFBESR/IE
¥, MERBFURBRZFLSABEENZNESR , REFEERNMNZART HEE By, EEEH
HLENMEZERER CMM B | BUUEE-—HSELENNZART SR (LENER) ELERMA
BEEMBMBRNERFUG,

(® Note
RETIBRAXEMENMNEZAR CMM :

« 3.x W EAR JAVA B AWS Encryption SDK

FEMBEAR 66

AWS Encryption SDK HEABEE

« AWS Encryption SDK B AR .NET B9 4.x ix

« 4.x hx BAM Python B9 AWS Encryption SDK , E25& F) B i #m =M £HR I & E (MPL)
B ME B B 58 A B

- EAM Go M 0.1.x AWS Encryption SDK KR a5 3 iR A

MREERALBENMERSR CMM RINZER , BREEAEF —EAXXEORAREZER

INEE , AWS Encryption SDK EREFMBELENNFZEARTRECT IS ELEENNEREF, &
AWS Encryption SDK #EZIEENMBEAR. RAAFLESRNESRVEB I EFINL , WA FFH
FHEMNBREEDHMBASREH,

HERER BXARBNBAR , EHEeRRLESHROFTESMEY . AWS Encryption SDK £
RnZARNFRENZASERTNSREY RERLENZRREFEENRBNZEART. 0R
AWS Encryption SDK #EZEZFAMBEAR , BERFERY. NRERHNEREVISEFTE
BENKSESRE AEIHENENAL, ELXERHENZEREENWHERSR/EY.

/A Important

FHREBEEMZENRTALESREEFVLE, CELARAERZRFRREHERNZR/K
HHENE, NIREELIERMENER AEEHZNBHAL

THEHSEAFRFNNZEASR CMM #1216 AWS KMS keyringo

C#/ .NET

var encryptionContext = new Dictionary<string, string>()

{

{"encryption", "context"},

{"is not", "secret"},

{"but adds", "useful metadata"},

{"that can help you", "be confident that"},

{"the data you are handling", "is what you think it is"}
};

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

BENENE 67

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK

FMBABER

Java

// Instantiate the keyring input object

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = kmsKey

};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),

// If you pass in a keyring but no underlying cmm, it will result in a failure

because only cmm is supported.
RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

i

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Create your encryption context

final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");

encryptionContext.put("is not", "secret");

encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.aslList("encryption",

"context");

// Create the keyring

68

AWS Encryption SDK HEABEE

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
.kmsKeyId(keyArn)
.kmsClient(KmsClient.create())
.build();

IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
materialProviders.CreateDefaultCryptographicMaterialsManagexr(
CreateDefaultCryptographicMaterialsManagerInput.builder()
.keyring(kmsKeyring)
Lbuild()
);
ICryptographicMaterialsManager requiredCMM =
materialProviders.CreateRequiredEncryptionContextCMM(
CreateRequiredEncryptionContextCMMInput.buildex()
.requiredEncryptionContextKeys(requiredEncryptionContextKeys)
.underlyingCMM(cmm)
Lbuild()
);

Python

=Z EHARM Python B9 AWS Encryption SDK #BE X EMMBARSE CMM FH |, BELEFEAME
RHtEREZEXE (MPL),

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create your encryption context
encryption_context: Dict[str, str] = {
"keyl": "valuel",
"key2": "value2",
"requiredKeyl": "requiredValuel",
"requiredKey2": "requiredValue2"

Create a list of required encryption context keys

RENEAR 69

AWS Encryption SDK HEABEE

required_encryption_context_keys: List[str] = ["requiredKeyl", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=boto3.client('kms', region_name="us-west-2")
)

kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
mpl.create_default_cryptographic_materials_manager(
CreateDefaultCryptographicMaterialsManagerInput(
keyring=kms_keyring

required_ec_cmm: ICryptographicMaterialsManager = \
mpl.create_required_encryption_context_cmm(
CreateRequiredEncryptionContextCMMInput(
required_encryption_context_keys=required_encryption_context_keys,
underlying_cmm=underlying_cmm,

Rust

// Instantiate the AWS Encryption SDK client
AwsEncryptionSdkConfig: :builder().build()?;
esdk_client::Client::from_conf(esdk_config)?;

let esdk_config
let esdk_client

// Create an AWS KMS client

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([

RENEAR 70

AWS Encryption SDK HEABEE

("keyl".to_string(), "valuel".to_string()),

("key2".to_string(), "value2".to_string()),

("requiredKeyl".to_string(), "requiredValuel".to_string()),

("requiredKey2".to_string(), "requiredValue2".to_string()),
1);

// Create a list of required encryption context keys

let required_encryption_context_keys: Vec<String> = vec![
"requiredKeyl".to_string(),
"requiredKey2".to_string(),

1;

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

// Create the required encryption context CMM

let underlying_cmm = mpl
.create_default_cryptographic_materials_manager()
.keyring(kms_keyring)
.send()
.await?;

let required_ec_cmm = mpl
.create_required_encryption_context_cmm()
.underlying_cmm(underlying_cmm.clone())
.required_encryption_context_keys(required_encryption_context_keys)
.send()
.await?;

EENZEAR 71

AWS Encryption SDK HEABEE

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = defaultKmsKeyRegion

1)
// Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Create a list of required encryption context keys
requiredEncryptionContextKeys := [Jstring{}

FEEMBEARAR 72

AWS Encryption SDK HEABEE

requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
"requiredKeyl", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Create the required encryption context CMM
underlyingCMM, err :=
matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err !'= nil {
panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
UnderlyingCMM: underlyingCMM,
RequiredEncryptionContextKeys: requiredEncryptionContextKeys,

}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
requiredEncryptionContextInput)
if err != nil {
panic(err)
}

ARTE ARG IR

ARBER—EHEREBRE , THEBENEARIREERASRAERNENRE, FHSWAFEETM
RHMAZREZAWS Encryption SDK HEE,

RERFEHE 73

AWS Encryption SDK HEABEE

REMBRERAGEBER RS 1.7 x IRMEERAER AWS Encryption SDK £ 2.0.x iR M E#HRRAHY
FERLSR, WEESEER TEHFMERNA,

B #TARA~ AWS Encryption SDK (#£ 2.0.x iRB%E) PHTERAGEBUR

& , RequireEncryptRequireDecryptEARAZEHIER. FiB , MREFERFERE WA
MERTNBENMENF , B REESEAEBRREEAR RequireEncryptAllowDecrypt. fMFEM
AEBERXRAESPREABBERNES , F2E BELHNAFEBEE.

ER S REF

ELERERNETHREZN SIEETEMRETHNE , B EREBERE8] , 8 AWS Encryption
SDK EEFEZENMNF. R THERERIREZINITSEERFEAMANT , ERLERAREERT
Jﬁzﬁﬁ%ﬁi%/ﬂbﬂ’]%@i%o

RAEELERNEXFETHZ K MARFELERAESBUEENEREELEHFREELENK
FTEBRLEIEE,

ATEEFHFER , L AWS Encryption SDK EESE1E , 4]0 Node A H JavaScript 8 AWS
Encryption SDK .js , EfAZ A AP B EHEEINEE. AWS % CLI —ZHR@AEL |, 7£ 1.9.x
M22x \RHABIAT--buffer88, EHMESEED , EAUFEARENEEIIGE. (AWS
Encryption SDK EAR® .NET B FXEER.)

MREFEANRLZEBNEENEELEN K BESESERESEEFFER decrypt-unsignedh
BE, LLINBEEMENENT , BMREFHEBNNBEXNFTHRE LN, WEFAES A F2REEEEZE
Ett.

REVE F & 58

—RmME , THBEEFRAELRELE , 1B AWS Encryption SDK 2t &R &8 RELEE | TJRHEAR
NERSREEFH, ERSBRETUNERLEEARESNNEE WL HSKEBRENTY, £
SERBEDFERAERSHBRECH K FRAEZLHE YR UBERERBEEEEFAER S|/

FRAERER 74

AWS Encryption SDK HEABEE

£ ZMIE AWS Encryption SDK

£ # AWS Encryption SDK , €877 M [E=2 Amazon DynamoDB Bk , AIHREAWS KMS FE[E
keyring FREEFAMEBE R, €BFHRERBRBDEARE keyring AWS KMS #1TE B REFIRIE
P MY IR &

ERMEHESRENEEEER keyring ARMTEHNBENRBENNBRER/N IR, SR7T
HRESERERTHN S XSRNAEERNS XR, FATIXEREBEFN D XERRA, KE
X keyring BEASEMNBFREAR - NWERNBEH IEATLEEERT I XSRNE—IRSR
RNBEEERNBE TR, FEER keyring BURER P S X R RBEAITAE TR RSB HE AR
E.

EREFREMFMBLZ

Key store (Z#RFHIE)

FEMS B E R DynamoDB Efl&R |, il X £BAEESHR,
RES|8#

HEBMEZE KMS €88, TEANRBSREHETN S ZSBANEESR,

palac A]
ERFANERSE UMITEGHNENK —SE SR, ZUUE—EeBTFREPEIZES X
SR, EBEs R —RREE—BERAPHNIZEBEE., FAF S XEREEFTND X EB
R A
PR EBHTE B AWS KMS keys #H kms:GenerateDataKeyWithoutPlaintext 4,

H—ERER K ARNNMBNFREREANERNZREE,

BERTRITEAI X TR, NFERITEEFNFMER , FS2BAWS KMS BEE keyring F i
AN E Ao

ERMETR

ARMBRENER R, BER keyring EABENERREAE-—NERMEER,

TIRFHRENFME 75

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK HEABEE
BEFREERNETH

ERATREREN AWS KMS BB keyring i , EREERTIAE , WERKERZRERA .

ETREFHEEESR

SHREHEEEEAEEVNEESBARERHAENREBN I SR, ERENEEEEEX
M —HiHAE LB EMEZ Amazon DynamoDB BRI XREEBAFUNEHAE, MIIEZ M —
EREGIERERESESRENERE |, HlI CreateKeyM VersionKey, BRAEEFERES
W EESERHITIE LR,

CreateKey R —EISHREMRIRIE , THEHTHI KMS £88 ARN ST ZEZNEREFREAEE., It
KMS SRAILEBUFTNERP I X, RMEJLRFGIBRENER , BA— B KMS £
MEESXTRTENE , BEERERE.

EREREERE

ERZHEARGF , SREXNEFAEISENS. BE, HEVNRIERNE | BiBMKE

X keyring B BTFREES, Rt , MR FERAEBFHERN Amazon DynamoDB &
ARNEBIA, ERFHECAEZEAZTEFIERRRERENATENERERE , fia
GetActiveBranchKey, GetBranchKeyVersion#l GetBeaconKey, fffiEEEF] 2RE
REBRMMAEAN D &R,

EENERTFREDFRELSFER K IREARRRK , BUURTARRE, EENEREHRE

BEREARRE , BELIHTEEERE (CreateKey M VersionKey)o
MR ZEBEREEEEATIES»XERENEFHZE KMS €8 , EBENSBFHK
EFAEREHSREFREBELLETRR , MERREX keyring ATLAFE A Z{E KMS £,

BUSRENE

EEIDZSBBERAWS KMS BEE keyring 281 , BAERISHRENE EREENRESX
£ 888 Amazon DynamoDB & ¥}&K,

/A Important

B MBRIRE 2 X £8H DynamoDB & flk, MREMBRILERIK , BREELBEFEAKE
I\ keyring MNZE M EAE

BEREERNFTT 76

AWS Encryption SDK HEABEE

1Ef§ Amazon DynamoDB R ABERMPNEVERKER , FAIEERSIBMBEFRSIEBH TS
PVEFEE,

DEIEZES HEFRBI#
HEBERK branch-key-id type

BETREFHNERH

WHRMAEMEFHER DynamoDB ERRE , FHAFHEEBERERE SREFHEDFERIEENE
EERFRERRE, EESRFHERBTRASREHENRET , EF —EEAERIERRAE
ERE, SUA-REERFREDFHEEHENEESREFRERR.

DynamoDB ERZEZBMNBEE SR TR ER B2 LA Bone-to-one RS, BESBERERBIU
REREFNBETEREERRTHMEESR |, LUt DynamoDB ERIE#E., #HABESBETHRE
BB LLERZER DynamoDB ERRBBTE , ERZIBZHEEMN DynamoDB BRI R B BIEERRBE
SWENEZR., MRENERREBEREDIERE DynamoDB ER X R 2T | AEBESRENE
Z A LS ZFTH DynamoDB BRI RERE , UHEREEX keyring A UFREN B ERE,

ENEREESRENERBIEISHUZRBRBEN. EESREHEZBI UM EFN AWS KMS
CloudTrail B2 A tablename,

RESR

1. the section called ‘% E €@ FHEE/E
2. the section called “BM 9 X &8”

3. 3 AWS KMS B&E keyring
RETRTFHEEE

SHRENEBESRECEHETHITHERE , URHE AWS KMS FEE keyring 20 £ F £ 17 1K [E +
REFFIHAE KMS €88, AWS Encryption SDK X T3 &7 R [EE/EEAE,

BRESHRETERESE 77

5

X4
it

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK HEABEE

Tk

ELHERTERTHER , ESREFEHREREFEAESE kmsConfiguration IR KMS
&8 ARN HHEABEM KMS €88, WRERIY., RAEFHIRIME s X EBEFETTEMN KMS €48
ARN , BB E 5 AR

WA LATE HISEZ EIE KMS £#8kmsConfiguration , (E£RMIWE(E ARN , 2EEE , 2R HF
ETEB KMS €8s X8, ZEEZETANESHEEEE SV ERMTLHERNZE
e EF A,

ELTERESREFHRERSER BUURTHERE

(GetActiveBranchKey. GetBranchKeyVersion, GetBeaconKey) MIE R/ (CreateKey
M VersionKey), CreateKey R —EHHRERRE , M KMS €38 ARN FiEZEN SR
EFREAFEE., Ikt KMS €RANUBRIYFTNEAT S ZER, BRMAERERHERENTER,
HA—HB KMS £BfFBEERERE , REERERE,

73R

ERRAGRBVELBENEEER , SRENETUEASBEKRES AFFH HAEMR AWS KMS
key ARN, i , EBFZEE KMS €8 , B8 ARN FHEFEEIEEFEHAN AWS KMS A F
W EFTETR , R AR,

ERERE eRTREETRRE , BEHTERRIE , fl0 CreateKeyH VersionKey, BREE
BTRANE, B, HENRIFRENAERE. WEFMER , 52 RBthe section called “B1E
RIKERNETA",

RELNEBEREEF
RESREREBDEZN , BREZ S THLREH

s RELEBHTWRE, WEFMERN , 382 Bthe section called “BIEHIXERRAVEFAI ",
- BEEESRBENESRR

DynamoDB ERZEZBNBEESRBERER B2 E XL EBone-to-oneiS, BESRBEHERR
DEBRESFRNBEZERNXRFERNFTEER , LSt DynamoDB 2 FREE , £FE—BFEAE R
VERZERBLEE, ZXE—EESRTHESFEFEEHENZESRENEER. WEFH

B , 52 [Mlogical key store name,

RELWESHRIFHRREE 78

AWS Encryption SDK HEABEE

RS

THEHFERECREFRERF. BLREERA/EREFREN DynamoDB EREREHE, TWEMN
EBERE , UREFEBEMNE KMS £#|EY KMS €88 ARN,

® Note

AFlEREERERESRIEFHERKFEEN KMS £ ARN, CreateKey RFE#
KMS €% ARN T EEN I X SRMEREAFTEE, 1§ KMS ERFEEIXSREHE
%, REEMBRZER.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.buildexr()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()
.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C#/ .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName

1

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(

RELWESHRIFHRREE 79

AWS Encryption SDK HEABEE

config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationKmsKeyArn(
value=kms_key_id

),

Rust

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))
.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)
.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))
.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"

)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
Value: kmsKeyArn,

}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
DdbTableName: keyStoreTableName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

RELWESHRIFHRREE 80

AWS Encryption SDK HEABEE

1)
if err != nil {
panic(err)
}
RERERE

THEHSRE KRENEREREDE. ELABEERSEREFHREN DynamoDB EREREH , UKk
BETRETRESR.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()

.ddbClient(DynamoDbClient.create())

.ddbTableName(keyStoreName)

.logicalKeyStoreName(logicalKeyStoreName)

.kmsClient(KmsClient.create())

.kmsConfiguration(KMSConfiguration.buildex()
.discovery(Discovery.builder().build())
.build())

.build()).build();

C#/.NET

var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,

RELWESHRIFHRREE 81

AWS Encryption SDK HEABEE

logical_key_store_name=logical_key_store_name,

kms_client=kms_client,

kms_configuration=KMSConfigurationDiscovery(
value=Discovery()

)I

Rust

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery::builder().build()?))
.build()?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes™"

)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{

DdbTableName: keyStoreName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

1))

if err != nil {
panic(err)

}

RELWESHRIFHRREE 82

AWS Encryption SDK HEABEE
BIEAYN D X8\

DRER/RLE AWS KMS FTENE R & AWS KMS key , BEEX keyring EFEA T RE D EITH
I E AWS KMS, FRF D X EMEBRIMN DX EWRAE. BER keyring ERABENEBREL
HE—NWERER UEATEEBFERAPIXERNE-—IRSRRNBZSEER SR,

EREVHNFERAT ISR , ELAFERESRENERF. CreateKey R—BIFHEREREFE
AREREREDEHEETIEEN KMS £ ARN FTBZERTFREATEE, A%, KVS 2RE
RAREEFNERP S X TR, RMNESERFELRENER , BA—B KMS RMEESREFR

E B MEEMERE.

B UESBEREDAFIE—E KMS €68 | t I UEHREESBERESEHREDIEEN KMS
£ ARN Y CreateKeyERFW | LAFIIHZME KMS £, IREAFIEZEKMS 288 , &
NEBERECEHEEXARERTHSBTEHERE , MEMMATAETERN B EFRERFERT
MAZFFHN SR, MEFMEN , 552[the section called “SRE LW ERESHE,

e

EFEBVS X8 , £EEKms:GenerateDataKeyWithoutPlaintext 1 kms:ReEncrypt ¥l

BNDXEIR

THREECALCESREREDFHEETIEEN KMS EREVFNERAT S SR , YKERSS
X TRTEERATREFHEN DynamoDB B K.

EIEFN BCreateKey , B LLEREBIEE T HIZAE,
« branchKeyIdentifier : & B#J branch-key-id,

EEE VT HET branch-key-id , & METE encryptionContext Z2EH I EHMMBRE,

« encryptionContext : ERX—HBEANIEWEER/EY , &
kms:GenerateDataKeyWithoutPlaintext FEIY AR B E M INZ AR P IZHEEINNEFE R (AAD),

HWEANMBRRBZL aws-crypto-ec: FEETR

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",
"custom branch key id");

BYDXER 83

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK HEABEE

final String BranchKey = keystore.CreateKey(
CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

.build()).branchKeyIdentifier();

C#/ .NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");

var branchKeyId = keystore.CreateKey(new CreateKeyInput

{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL

1)

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
key id"}

branch_key_id: str = keystore.create_key(
CreateKeyInput(
branch_key_identifier = "custom-branch-key-id", # OPTIONAL
encryption_context = additional_encryption_context, # OPTIONAL

Rust

let additional_encryption_context = HashMap::from([

("Additional Encryption Context for".to_string(), "custom branch key
id".to_string())
1);

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL
.encryption_context(additional_encryption_context) // OPTIONAL

BUSZ&8 84

AWS Encryption SDK HEABEE

.send()
.await?
.branch_key_identifier
.unwrap();
Go
encryptionContext := map[string]lstring{
"Additional Encryption Context for": "custom branch key id",
}
branchKey, err := keyStore.CreateKey(context.Background(),

keystoretypes.CreateKeyInput{
BranchKeyIdentifier: &customBranchKeyId,

EncryptionContext: additional_encryption_context,
1)
if err !'= nil {

return "", err
}

B, CreateKeyBRESEE THIE,

o 5 4 MRAVERAME—BIAF (UUID) branch-key-id (BRIESEIEE T HET branch-key-id)s
s DXESM|MRAME 4 i UUID
+ 1SO 8601 HEiFMEFE N timestampty , LARBEEER (UTC) BEfL,

A%, CreateKeyBRESMHEA THFERMI kms:GenerateDataKeyWithoutPlaintexto

"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
1,
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"

BYDXER 85

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK HEABEE

}

EE | CreateKeyR{ERMM kms:ReEncrypt , BB EFHMBABRKEL 27X BN ERFREE,

% , CreateKeyBRAEEML ddb : TransactWriteltems REAFIEE , ZEEKRELESBE 2+
BUMNERKRIN D XZERSE, BEEEEFTYBM,

{
"branch-key-id" : branch-key-id,
"type" : "branch:ACTIVE",
"enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
"version": "branch:version:the branch key version UUID",
"create-time" : "timestamp",
"kms-arn" : "the KMS key ARN you specified in Step 1",
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"

WmERAPN S XTR

BEDXEHR-RARAE—EERTRE. —BRHE SEFEATIXESRRAIBEARRZZEF
Ko BR , BULEFHNEREREAT S XSRVEE , YHEFERA T D XSROVWIRER,

PXER/IEARMBEXFER TR, CHAMIENBRAXFERTRNE-—SRSR, LSRN
TTEREFEELEE— 2 U THIRSR BEF 28 BUHANBERY, ERTIXESRITUERR
RERERRESHITERB 79 B/ VESHIR 2°° A —agel. BAESEBRERE BHRER

FENRAURBITER , BT ERREATN I I E®W,

DXEWMOERPREISGRHEATRE | EXEKHEBRAL. BERNERAT I XSRS ARINT
mEZRE HEEARTEFN SRR , ANATUEFEMNELRESRSBRBECHEERA DM
ZNERER.

FrEMRTA
EERBRD L8 , BLEEKms:GenerateDataKeyWithoutPlaintext 1 kms:ReEncrypt ¥l
WBRIERT D X &8

£/ VersionKeyRERBRIEATN o, X 28, ELHRERAFIIBE K FEIUFTNI 8
DR R IRAR, EXRWmRER DD X8I , branch-key-id TE2E8F, EEMNLW Bbranch-
key-id , XEIEEAHKB B HEAR 2 X E\H VersionKey,

BRERTN DS 86

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK HEABEE

Java

keystore.VersionKey/(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
);

C#/ .NET

keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Python

keystore.version_key(
VersionKeyInput(
branch_key_identifier=branch_key_id

Rust

keystore.version_key()
.branch_key_identifier(branch_key_id)
.send()
.await?;

Go
_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
BranchKeyIdentifier: branchKeyId,
1)
if err !'= nil {
return err
}
WIRERTN S &8

87

AWS Encryption SDK HEABEE

Keyring

X ENEXRFTESEEMEA keyring RETETINE. Keyring BEE. MERBEERS

. Keyring BRERBESEASHE-—ERSH/ORE , URNEZERN SRV IL LB, BANE
INZREFIEE keyring , SWIE RIS EMBE R AR keyring, BB SDK =R keyring , Him
B BECHEABET keyringo

&) L@ Bl 8 A B 18 keyring RS keyring iR Z E keyring, HAZSH keyring AIAESE, MER
BEERSE K BUREEERTERNT —EIISTRIEN keyring , IR EEEERSBH keyring , I
#&# keyring B2 E At keyring £ & A,

BMEBEMEA keyring RRBENTE SR , UERLRBABTERREZRE |, Hl20 AWS KMS
keyring , £ AWS KMS keys KiZF & AWS Key Management Service(AWS KMS) R K 1%
MREE, BB LURE keyring , & keyring ERAFREER LT LEHE (HSMs) FHILE L/ |, ST HtL
FEWBEREB, WEFHMER , FS2E REHPH Keyring Interface £, AWS Encryption SDK

Keyring W EHMEXRMAESEETFANIERNISREMENAC, NREFEA W FRIESE
YE AWS Encryption SDK RINZMBRHE R , BHELEAERN keyring MESBWIRMEE, MFFHMAE
A, B2 BKeyring A M,

AREBERBWMAER B keyring THEE , AWS Encryption SDK BA K {522 keyringo

keyring H4AE4E

I8 MBE R | & AWS Encryption SDK 8 keyring ER B E ¥, keyring EEEM X FE R &8
M keyring PBETESB/MBNERSWELR, AWS Encryption SDK RN F WK MEE
B, REBERTFZER S8, R%E , AWS Encryption SDK EENZFE , HhEENBNER
S|AMFZHER,

keyring I{aE 1k =

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK HEABEE

AWS Encryption SDK

Cryptographic Materials Manager (CMM)
| A

_ p Plaintext data key
Get encryption
materials
‘ Encrypted data keys
k
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

ELBRRERE SR ERARARNZERMEER keyring , AEH keyring. EEBEZEER | BE

R4AN

keyring AZBTENNZE keyring P B8 (HUFR) EL—BTEESH,

2R MZNERSB/RMNZHALE AWS Encryption SDK E5EZE keyring , ¥ E R keyring iR H &
EA—1{E, keyring FAHTESR/RAZHP—ENEZNER SR YEOEXFERNSR/, AWS
Encryption SDK AN F M RBFZER . R keyring FRET AL LSBT URRETMMNEN
ERel , IMERFER

keyring Zn{aliE 4 89

AWS Encryption SDK HEABEE

AWS Encryption SDK

Cryptographic Materials Manager (CMM)

| A

Get decryption

materials Encrypted data keys *

L

Plaintext data key

Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

B AEFE — keyring , B AU HREER R FEEEMN keyring BEKZ E keyring, EEMEER
BF , 2F keyring SEEHMEZE LR (EBRZE keyring BIFFE keyring #) FT IR E R 8K
B, BRI LAER keyring £ H % keyring PR —ESE LB RBERER,

Keyring &t

HR HTRERESHEE AWS Encryption SDK B —&£RBER , BEMxLME , BRXRAFES R,

B ERA—EESEERNBEN , YFEATAEMESEERBEZERN., T8 , BXEAFAMERR
HENTGESBRNZNRZEN SR, NEEHERBESRINEN , F2HESEESEEN =&, 4
@A JavaScript B9 AWS Encryption SDK £ f&the section called “tHEM"FH

THIRKXFREFES X, Keyring :

- EARM C # AWS Encryption SDK

- AR JavaScript B9 AWS Encryption SDK

+ AWS Encryption SDK @A .NET 1

« 3.x KX AR JAVA 9 AWS Encryption SDK

Keyring 18 & 90

AWS Encryption SDK HEABEE

« 4.x R AR Python B9 AWS Encryption SDK , E2i& iy inZ 41 B2 &2 E (MPL) MEac B E
5 B

* AWS Encryption SDK for Rust
« AWS Encryption SDK for Go

Hn%: keyring IR EIER

£ LASA® AWS Encryption SDK EESE1EH @AM C B AWS Encryption SDK , 11% keyring (%%
keyring) R E MR EFNMETESBA L EREAMBZER S8, ﬂﬂ%ﬁ’cﬂ@%%ﬁﬁkﬁﬁbﬂ& , hn
BEEE AN, Eit , #EAXLEHEE keyring FAAE BN N EFT A, MREFERIRE keyring EEF
FEERHES keyring FNBER , MBRES KK,

BISAZ EAM C 9 AWS Encryption SDK , R INBRESRBELERE keyring , BENRZERRE
% & keyring FIEE L EFIRRK keyring , Bl KB,

A Keyring ME @4 E

TRETRHPL SN ELBIZHHEE AWS Encryption SDK 12 keyring R, ETHRESRE
MERNBBTHES , BEESEENHEBEZEPRHA,

Keyring : FaMiRME

AWS KMS keyring KMSMasterKey (Java)

KMSMasterKeyProvider (Java)

KMSMasterKey (Python)

KMSMasterKeyProvider (Python)

® Note

B Python #9 AWS Encryption SDK #1 B A% JAVA
B9 AWS Encryption SDK B2 ERRAWS KMS EFHFEZER
keyring W EE|MHE S WRMAE,

AWS KMS BEE ZTHRNRFESNRAZE
keyring

% keyring AR ER 91

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider

AWS Encryption SDK

FMBABER

Keyring :

AWS KMS ECDH
keyring

R %5 AES keyring

%5 RSA keyring

FEMBEME
« 3.x iR EAR JAVA B9 AWS Encryption SDK
AWS Encryption SDK EAR .NET B 4.x kR

MR EREXE (MPL) BB A Ko
for Rust 1.x AWS Encryption SDK ki
B Go 89 0.1.x AWS Encryption SDK Mgk 5 # iR 4~

ZTIEXRES MRAE

« 3.x iR EAR JAVA B AWS Encryption SDK
« AWS Encryption SDK IBAR .NET B 4.x iR

« 4.x X BAM Python B9 AWS Encryption SDK , E2i# i) 2 5 im 2

MR EEEE (MPL) fB M B A B
« for Rust 1.x AWS Encryption SDK hix
- BAM Go B 0.1.x AWS Encryption SDK K8\ B #T kiR 4%

REHBNESBERAR
JceMasterKey (Java)

RawMasterKey (Python)

BEFFHBMEZCRERR
JceMasterKey (Java)

RawMasterKey (Python)

(® Note
R RSA keyring A X EIEHTE KMS €18, MREBEMEH
JE¥ R RSA KMS €488 , AWS Encryption SDK @A R® .NET

B 4.x MR B AYEIMINE (SYMMETRIC_DEFAULT) Sk3E¥
RSA 9 AWS KMS keyring AWS KMS keys,

4.x R AR Python B9 AWS Encryption SDK , E2i& i) 5w =

A Keyring MESBIRMHEE

92

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK HEABEE

Keyring : FEMBEME
&% ECDH keyring ZTIRXFRFAFB S RAZE !

« 3.x iR EAR JAVA B9 AWS Encryption SDK
« AWS Encryption SDK IBAR .NET B 4.x iR

« 4.x X AR Python B9 AWS Encryption SDK , E23& F i % 41 %t
REERENE (MPL) MM E A,

« for Rust 1.x AWS Encryption SDK hix
- BAR Go M 0.1.x AWS Encryption SDK K =} 5 AR A

AWS KMS keyring

AWS KMS keyring £ AWS KMS keys RE4, MENHRZEREM|. AWS Key Management
Service (AWS KMS) SR ELEH KMS £488 | W FIPS i@ RAHMITREREZRE. RMABBER TR
£ AWS KMS keyring SiEBRBULZ 2 BMHR keyring.

Y& keyring WATERARFTESEFESBIEFAERBINEZ KMS €88 AWS KMS keyringo T2
RETES B EFEAIFEYE RSA KMS £#&1 AWS KMS keyring :

« 3.x hx BAM JAVA 9 AWS Encryption SDK

« AWS Encryption SDK iBAR .NET 8 4.x kR

« 4.x MR BAR Python B9 AWS Encryption SDK , E2i& F iy B G imE M PR E 2 E (MPL) Bt
P B 55 A Br o

« for Rust 1.x AWS Encryption SDK kX
- BARM Go M 0.1.x AWS Encryption SDK =i 5 # AR A&

MRBESREEMEMBSEENMNE keyring FEBEIEEHE KMS €48 , MEFWUS KK, MERE
fR% keyring P EEE , Blg TR,

B LATE AWS KMS keyring i E£IBEERER AWS KMS ZEEH S| , £ 1 2.3.x ik AWS
Encryption SDK #1 AWS #n% CLI #9 3.0.x xF#h. W&FEAmulti-Region-awarefF ik Y ¥4 & A
MEH , FSEEAZEE AWS KMS keys, NEZEFHSWHVEBENR , F28 (AWS Key
Management Service HEABIEM) FHERAZEEHEE,

AWS KMS keyring 93

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK HEABEE

® Note
1 AWS Encryption SDK FTE &K KMS keyring #2#& AWS KMS keyring.

AWS KMS keyring I A B EMERENTE S -

- BARER EERNFENESRIGENE, MZEERH keyring KRB —BEELER TR,

- Hitt S8 MEBEELERSBELENMXFER SR/, AWS KMS keyrings AIAEZESZEHME

R NEEEELRSBIEMBZALE. E AWS KMS keyring RE—1ll KMS &85 | ZSBEAK
EENNZERER. BEK ELRTR2EAN , YESZARELRSRNEMSR BNEE,

BAFTA keyring —#& , AWS KMS keyring AIB MY A , B A SUEEMEFH T REE M E M keyring
PREEA

£

« AWS KMS keyring By A EZF]

. 1 AWS KMS keyring AWS KMS keys A58 Rl

« 33 AWS KMS keyring

« £ AWS KMS 3% keyring

- £/ AWS KMS B3R keyring

AWS KMS keyring By A E 55 7]

AWS Encryption SDK RFEE , AWS tRF th RKFEEM AWS &, 718 , EEFEH AWS KMS
keyring , #BEE keyring AWS KMS keys F #9 AWS 1RF M T HI&RIEFFT

- HEMHA AWS KMS keyring 1% , BEEE4LEF S8 LM kms:GenerateDataKey §F 7, &5
AWS KMS keyring AT H At £ #H kms:Encrypt FF 7,

- HEEMEA AWS KMS keyring % , BEZE AWS KMS keyring FZE 2 — B €8 kms:Decrypt &F
A,

- ZEEFHH AWS KMS keyring #8RH % keyring 1N |, EBE LSS keyring PELEE LB
kms:GenerateDataKey 3 fl, BB EMAEHM AWS KMS keyring FFTE H b £#H kms:Encrypt
T,

AWS KMS keyring #9557 94

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Encryption SDK HEABEE

- ZEFHIEYHTE RSA AWS KMS keyring 1% |, A EE kms:GenerateDataKey 5 kms:Encrypt ,
RABBUEEE keyring HIEEEARMEBNLEER/ME, £ keyring MZ KT SETEM
AWS KMS H1Y, EEFEHAIFHETE RSA AWS KMS keyring 8% , BEE kms:Decrypt #F 7,

WE FF AR EEME S AWS KMS keys , 55288 AWS Key Management Service B3 A B5/) &
H) KMS £ 8877 BURIEF .

£ AWS KMS keyring AWS KMS keys #1535l

AWS KMS keyring AJ LA B & —RZ{E AWS KMS keys, &ZE1E AWS KMS keyring F38E AWS KMS
key , FEfEAXEMN AWS KMS &8 BIRF. ZaI LA RS keyring AWS KMS key # #9 & 8858 5l
e BENESEEMEMTRE. WFE £BBAITFOFMER AWS KMS key , 2B (AWS Key
Management Service B A B18/) FHEMBBIF,

SEEXREASEARSERNSESREDF.

« 1 B9INZR keyring F BAR C B AWS Encryption SDK , B A LAfEA &8 ARN = BI& ARN 3531
KMS €88, EFfEHMBESEEDR , BALMERA L ID. 288 ARN, BIZBBEHFIE ARN RiNE
&8,

o TEfER keyring P , BAEFE A S8 ARN KRB AWS KMS keys, BLZERERAK AWS Encryption
SDKWFEEESEF. WEFHAEN A BSRENITEER.

- EARMBEFBZE keyring B, BAEFEFA L] ARN REE B AWS KMS keys. LWEREAR
AWS Encryption SDKHIFFEFE S B1E,

WMRIEFEINE keyring A& KMS £REER B BBE;EIE ARN , IZRESH B o1 8251 K HBEBN =
iR ARN BEENZENESRNTRERD, STERTHR. NENSETSXERAREZNEER
T/ KMS £48.

3 AWS KMS keyring

& LAME MR AWS KMS key SRR AWS BRF #1 AWS KMS keys Y E — 5 218

RESE AWS KMS keyring AWS B35, AWS KMS keys B2 EBINE KMS £58
(SYMMETRIC_DEFAULT) 3% RSA KMS £, St A EREBNES EE KMS £, BT
LATE % AWS KMS keyring £ — = Z {8 keyring. 27?7

ST LA M IR R R E R AWS KMS keyring , tB AT LU T EPI AR B SHEZH AWS KMS
keyringe BB AWS KMS keyring RINZE R , K AREELRETR ERARELEHNFEHR
SRWAEHINEZ AWS KMS key HY » ERIEREHSE LE KMS £BER, A& 6 NMREEE , &7

1£ AWS KMS keyring AWS KMS keys A3 Bl 95

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Encryption SDK HEABEE

LEEH it AWS KMS keys RINZMHREINFANFER SR, BEMEZ I keyring REMINZRL |
BERANRE keyring BT EED —1{E keyring H AWS KMS keys E&HR , A AWS KMS keys.
(’8E B9 AWS KMS keyring AWS KMS keys BAAWS KMS # 3 keyringo)

£ LASAHS AWS Encryption SDK S B @AM C B9 AWS Encryption SDK , 1n% keyring =%
multi-keyring FRFMIE SE BB L EAEHMBER B, MRTMTRES[/EENE , MEHEEKX
B, EHitt , WENAEHEE keyring FATE BN EFT A, MREFERIRE keyring EFINEE R K
£% keyring P INZER , MBRES LK. HIARIZZ BAR CH AWS Encryption SDK , E 1
RIREESRPBEEERR keyring , BNRZEBREZEF keyring FIEEZ EFIRE keyring , BlIg X
B,

THEfleRTIEEELRSBN —EEN BN AWS KMS keyring, ELXHZSBMEMSIBARY
BINE KMS €88, ELsHIEA SR ARNs RilBl KMS €88, ERARIMERN AWS KMS keyring
BREE® , URARBEZERN AWS KMS keyring R, WEFMHER , FSBE AWS KMS keyring
AWS KMS keys A5l

C

EETE AWS KMS key B IN% keyring &5l @AM C B9 AWS Encryption SDK , B8 E £
ARN = 5]#& ARN, TEfE3 Keyring # , B4 EFE AL ARN, MEFMEN , ﬁ%’é‘ﬂﬂﬁ: AWS
KMS keyring AWS KMS keys H i Bl

ﬂU%%¥ﬁ1ﬁﬂ nﬁ 2 ﬁ trlng CPPo

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(generator_key, {additional_key});

C#/ .NET

#E7E AWS Encryption SDK for NET A EH —=5 %@ KMS £81 keyring , FEEH
CreateAwsKmsMultiKeyring() A%, HEHIFERAMME AWS KMS &8, EEEE—{E KMS
&8 , FBEFEHA Generator 88, EBEHM KMS €81 KmsKeyIds SER2EAW.,

It keyring BB AT E A AWS KMS A Fif, MR , &% keyring F KMS S£#8PTAA KM
@13 AWS Encryption SDK £ A% AWS KMS APk, flin , 1R SEEZ AN KMS

3L AWS KMS keyring 96

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK HEABEE

£#Generator VA EFHAELP (HEM) [EHH (us-west-2), Bl ARKus-west-2[E1HF
AWS Encryption SDK Z I 785% AWS KMS Al Fim, MREBEEZBTHF® AWS KMS |, FBfEA
CreateAwsKmsKeyring()F %o

B 18 AWS KMS key #£i# 7 AWS Encryption SDK .NET # &% keyring ¥67E B , &7
LMEREMAERNSEEBIRT : €88 ID. €88 ARN, BIZBEHFIE ARN, TELE AWS KMS
keyring AWS KMS keys F#i Bl HIFREA , 52/ £ AWS KMS keyring AWS KMS keys F## 5l .

T &5 AWS Encryption SDK B AR .NET 8 4.x lx#l CreateAwsKmsKeyring ()5 ER
Ei] AWS KMS A Fi.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{

Generator = generatorKey,

KmsKeyIds additionalKeys

};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

B8 AWS KMS key £ R A% keyring 187 B B A M JavaScript # AWS Encryption SDK , #&
AUERAEAERNEREL® . £38 ID. €38 ARN, FIEEBHEIE ARN, MEE AWS KMS
keyring AWS KMS keys i85l HIEREA , 552 £ AWS KMS keyring AWS KMS keys F &5l

THEFIEER buildClient BN EIRIE EFE R AGE R
REQUIRE_ENCRYPT_REQUIRE_DECRYPT., ZtAILAE A buildClient REEFIINZAEFHIINER
BEREEHE, MEFHMEN , 552 Mthe section called “FREIMBZHN ER £,

WETEEG |, S GitHub & E AR JavaScript B9 AWS Encryption SDK {12 E F #Y

kms_simple.ts,

3L AWS KMS keyring 97

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts

AWS Encryption SDK HEABEE

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const clientProvider = getClient(KMS, { credentials })

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeylId,
keyIds: [additionalKey]

1)

JavaScript Node.js

B8 AWS KMS key £ F B IN% keyring 1E7E B AR JavaScript 5 AWS Encryption SDK , &
AUERAEAERNEREL® : £38 ID. €38 ARN, FIEEBHEIE ARN, MEE AWS KMS
keyring AWS KMS keys H i85l FIEREA , 582 B £ AWS KMS keyring AWS KMS keys &5l

THEFIER buildClient BN ERIE EFERAGE B E
REQUIRE_ENCRYPT_REQUIRE_DECRYPT, ZtAILAE A buildClientREFIINZ AL F R IIZ
EREMEE, MEFMET , 552 /Bthe section called “FREIMBZHE R &8,

METREH |, 5528 GitHub & BA R JavaScript B9 AWS Encryption SDK fEZEHHY
kms_simple.ts,

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

3 AWS KMS keyring 98

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts

AWS Encryption SDK HEABEE

)

const generatorKeyIld = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
generatorKeylId,
keyIds: [additionalKey]

1)

Java

EEFEHA—=5% @ AWS KMS €8 3 keyring , 8 A CreateAwsKmsMultiKeyring()X
E. WEFFEAMME KMS €8, EEIE—@ KMS £488 , 5FEMH generator 28, EEHt
KMS €881 kmsKeyIds S82ZHMN.

It keyring B8 AT EEA AWS KMS A Fif., MR , &% keyring 7 KMS £#8PTR KM
S{EE13 AWS Encryption SDK £ E5% AWS KMS A F ik, #li0 , 1R SBEZR I KMS
£i8GeneratorVAEBIFEEE (R) EiF (us-west-2), Bl @B Rus-west-2[EHE
AWS Encryption SDK 2 fE5% AWS KMS Al Fim, MMREFEBTAFHm AWS KMS | A
CreateAwsKmsKeyring()F %o

B8 AWS KMS key £ R BN keyring 1E7E B EAR JAVA B AWS Encryption SDK , & 7]
LME R MAERISEEBIRT : €88 ID. €88 ARN, BIZBAEHEIE ARN, TELE AWS KMS
keyring AWS KMS keys 875l FIEREA , 582 £ AWS KMS keyring AWS KMS keys F &5l

MEZTEEHH |, S GitHub & BA R JAVA B AWS Encryption SDK 12 E 1 #Y
BasicEncryptionKeyringExample.java,

// Instantiate the AWS Encryption SDK and material providers

final AwsCrypto crypto = AwsCrypto.builder().build();

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

3L AWS KMS keyring 99

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK HEABEE

// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(generatorkKey)
.kmsKeyIds(additionalKey)
.build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

EEFEH—S% M@ AWS KMS €882 keyring , SBEH
create_aws_kms_multi_keyring()F%, WEHIFERARME KMS €88, ZEEIEE—E KMS £
% , SEEMEMA generator B, IEEHM KMS £ kms_key_ids SEZZAM,

It keyring B AT EERA AWS KMS A F iR, ks , &% keyring F KMS £ P &RH
= E[E18 AWS Encryption SDK £ TEEX AWS KMS A B, flan , iR SEERFIHN KMS
S#8generatorVMAEEAELS (HEM) EfF (us-west-2), Bl ARKus-west-2[E1F
AWS Encryption SDK 3 5% AWS KMS A F i, MREEERFTAF K AWS KMS |, 5
create_aws_kms_keyring() Ao

E & AWS KMS key £ F AN keyring 387E B AR Python B AWS Encryption SDK , & 1]
UEREAERNSEEAIE . 248 ID. £ ARN, BIAARBHEIA ARN, WEE AWS KMS
keyring AWS KMS keys F# 75l BIEREA , 552 £ AWS KMS keyring AWS KMS keys F & 5lo

T5IEa5E 68 A AR AFEBUR R#1T{EE8{L AWS Encryption SDK A F
SREQUIRE_ENCRYPT_REQUIRE_DECRYPT, fIETREIH , 5528 GitHub F BEAR Python By
AWS Encryption SDK A FEH K aws_kms_multi_keyring_example.py.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

3L AWS KMS keyring 100

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK HEABEE

}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

)

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
CreateAwsKmsMultiKeyringInput(
generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

)

Rust

EEFEH -2 @ AWS KMS €882 3 keyring , F51EH
create_aws_kms_multi_keyring()At, WEHIFEAMME KMS £i8, ZEEIEE—E KMS £
i® SEEMEH generator 28, BEHM KMS €81 kms_key_ids ZEEZAN.

It keyring B8 AT EEA AWS KMS A Fif, MR , &% keyring 1 KMS £#8PTR KM
S{E[E 1 AWS Encryption SDK £ 7E5% AWS KMS A%, flin , iR SEEZRBIHN KMS
E#generatorVAEBIEES (R) B (us-west-2), Bl §AFKus-west-2[EH
AWS Encryption SDK Z 3 f85% AWS KMS Al Fif, MREFEHTHFEH AWS KMS |, A
create_aws_kms_keyring()F %o

B 18 AWS KMS key #£ for Rust 2 5112 keyring AWS Encryption SDK 187 B , #& 0] LA F{E{T
BEMNE|/BBIET : 288 1D, £38 ARN, BIZEBHEIE ARN, fFEE AWS KMS keyring AWS
KMS keys B B9EREA , B2 B £ AWS KMS keyring AWS KMS keys A5l o

T % &6 45 & {55 P 7B 5 AR BUR. 2REN1T @Bt AWS Encryption SDK A F
S#%REQUIRE_ENCRYPT_REQUIRE_DECRYPT, MEZEEF| , 552 /M GitHub L aws-encryption-
sdk f#1ZEM Rust B &9 # aws_kms_keyring_example.rs. aws-encryption-sdk

// Instantiate the AWS Encryption SDK client

E I AWS KMS keyring 101

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK HEABEE

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Go

EEFEH—5% @ AWS KMS €882 3 keyring , FBEH
create_aws_kms_multi_keyring()5. LEAIFEAME KMS €8, EEIEE—E KMS £
& FEEMM generator 28, EEHM KMS £81 kms_key_ids SEE1ZAMN.,

It keyring VB AT EEA AWS KMS A B, Mkt , €% keyring B KMS 8T KM
S{E[E1 AWS Encryption SDK £ FA7E5% AWS KMS A F i, flin , iR SEERBIHN KMS
E#generatorVAEBEIEEE (R) B (us-west-2), Bl §AFKus-west-2[EH

3L AWS KMS keyring 102

AWS Encryption SDK HEABEE

AWS Encryption SDK B 785 AWS KMS A F ik, MREFEERBTAFH AWS KMS | A
create_aws_kms_keyring() Ao

& 18 AWS KMS key £ AWS Encryption SDK for Go A% keyring 87E B , &0 LA R
BEMWNSH|BBET - 288 1D, £88 ARN, FIRBEREIA ARN, mFEE AWS KMS keyring AWS
KMS keys &5l BIEREE , BB2E £ AWS KMS keyring AWS KMS keys A& Al o

T % &6 45 & {55 A B B AGEE BUR. 2REN1T @Bt AWS Encryption SDK A F
IwWREQUIRE_ENCRYPT_REQUIRE_DECRYPT,

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

3L AWS KMS keyring 103

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK HEABEE

// Create the AWS KMS keyring

awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{
Generator: "&arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
KmsKeyIds: []string{"arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

}

awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
awsKmsMultiKeyringInput)

AWS Encryption SDK th 3z =4 Fi JE¥I#8 RSA KMS €881 AWS KMS keyring. JE¥f# RSA AWS
KMS keyring RLEETE —EIESIBE,

=2 A YT RSA AWS KMS keyring tn% |, SR EE kms:GenerateDataKey % kms:Encrypt ,
RABUBETERE] keyring RIEEEEARMEN BB R, FAL keyring INFRRTREHETEM
AWS KMS ®0l, EEFEAIEETE RSA AWS KMS keyring % |, BFEE kms:Decrypt #F Ao

® Note
%Eﬁiiﬁﬁﬁ#%}ﬁ RSA KMS €81 AWS KMS keyring , X% BFERA T HP —ERERER

= ==

n ===

3.x i BAR JAVA B AWS Encryption SDK
AWS Encryption SDK B .NET B 4.x iR

4.x W B Python B AWS Encryption SDK , B85 Y B 5 fREM fHEHEEXE (MPL)
MR EERR,

for Rust 1.x AWS Encryption SDK hix
B Go B 0.1.x AWS Encryption SDK K2 E # R A<

TH&EHIER CreateAwsKmsRsaKeyring 5228 7 EHIFEHE RSA KMS £#8H AWS KMS
keyring, & ZE# 7 IEH T RSA AWS KMS keyring , SEiRME T HIE,

- kmsClient : B HH AWS KMS A F ik

« kmsKeyID : #BIIEEHE RSA KMS £ 28 ARN

« publicKey : UTF-8 #w#s PEM #&%#) ByteBuffer , K REEEHR 2 SR LN E L8 kmsKeyID

3L AWS KMS keyring 104

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

- encryptionAlgorithm : INZFEE LA A RSAES_OAEP_SHA_2563 RSAES_OAEP_SHA_1

C#/ .NET

EEEVIEHTE RSA AWS KMS keyring , B4 AR IEETE RSAKMS £RBEHAESBNAE
£ ARN, NEBMXAEA PEM HiE. THEMHEE I EGIEEHTE RSA E|EH AWS KMS
keyringo

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = AWS KMS RSA private key ARN,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

= EZE T IEHE RSA AWS KMS keyring , B4 ERIEETE RSAKMS SBEHAESBNFE
2 ARN, NEERMAR PEM mil. THEHSE L EFIFHE RSA SWEH AWS KMS
keyringo

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()

// Specify algorithmSuite without asymmetric signing here

//

// ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),

// ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),

// ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),

// ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x@114"),

// ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),

// ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

3L AWS KMS keyring 105

AWS Encryption SDK HEABEE

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_ TAG16_HKDF_SHA256)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a KMS RSA keyring.
// This keyring takes in:

// - kmsClient
// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key
// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public

// key for the key passed into kmsKeyId
// encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsakeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

BHEEVIFHE RSA AWS KMS keyring , B4 EMEIEH T RSA KMS £RBEHRANESRANLE
T ARN, NESRMUAR PEM Hil. TIHHHSEYEHFEHE RSA TI|REH AWS KMS
keyringo

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

3L AWS KMS keyring 106

AWS Encryption SDK HEABEE

}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
public_key="public_key",
kms_key_id="kms_key_id",
encryption_algorithm="RSAES_OAEP_SHA_256",
kms_client=kms_client

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
input=keyring_input

Rust

BHEEVIFHE RSA AWS KMS keyring , B4 EMEIEH B RSA KMS £RBEHRAESRANLE
TR ARN, NESRMUAR PEM Hil. TIHHHISET EHFEHE RSA TI|REH AWS KMS
keyringo

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

3L AWS KMS keyring 107

AWS Encryption SDK HEABEE

Go

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring

let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(kms_key_id)
.public_key(aws_smithy_types::Blob::new(public_key))

.encryption_algorithm(aws_sdk_kms: :types::EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(kms_client)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err !'= nil {

panic(err)

3L AWS KMS keyring 108

AWS Encryption SDK HEABEE

}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{

KmsClient: kmsClient,
KmsKeyId: kmsKeyID,
PublicKey: kmsPublicKey,
EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
awsKmsRSAKeyringInput)
if err !'= nil {
panic(err)
}

f#EH AWS KMS #RZ keyring

RER REEHRIEE AWS Encryption SDK AJAAEANERER. EEERLKEEERT , FE
F AWS KMS ##% keyring , #% AWS KMS B£8R AZEEN B/, TiB , BHATAEIAWS
KMS 3 keyring , i iR T ET DL LI AWS KMS keyring,

/A AWS KMS % [E15& 88 AWS Encryption SDK R4 AWS KMS #RZ keyring F#R% keyring.
ERE FRZEEHSENEEEER AWS Encryption SDK , F28 FAZEE AWS KMS keyso

fE /A AWS KMS &% keyring 109

AWS Encryption SDK HEABEE

HRKRIEEFMZTEEE , 5RE keyring BEMFE R, MREEBFEAIRRE keyring HIEZ keyring
RNZER MBRBRESEK. HIAR BAM CH AWS Encryption SDK , EF iNFIRESZRRIEZLE
RE keyring , BUIRBEBHREZE keyring FIEEZ EEHIFEZEK keyring , BIE KB,

R , RE keyring W& £ AWS KMS key MR AWS KMS 2R AWS Encryption SDK E 3R
BETAMBENER SR K BRHEHETSIEETEE® AWS KMS key, FILABEREAESR
kms :DecryptFF AT F & A Zh AWS KMS key.

/A Important

MR EERE D keyring PEE AWS KMS R E keyring , BI#RZE keyring BB B % keyring
R E A keyring IEEFTE KMS £#&RHl. ??7?% keyring 1T RBELRERFIFIEHN
keyringo AWS KMS &3 keyring "5 R % keyring EAK , TEFEME,

ATHERR , AWS Encryption SDK 2t AWS KMS &% keyring, 718 , ERTIRR , BREE
Al RS 1E BB PR HIHY keyringo

- EEM - AWS KMS % keyring AT AEAARMEZNMZA SR ER SO EM AWS KMS key , F
BIEUEEEEAZSBBZN AWS KMS key 3571 —#, iETRET 2 EHE AWS KMS key AITE
FEAN . flon, EP—ENENERSBRTEESERTZENIER TMNE AWS KMS key , F[A
EATLAGEA,

o HESBFIMEE - $RE AWS KMS keyring ATRELE H At keyring BAEEEE , B A AWS Encryption SDK &
REZENZRNER S | B AWS KMS keys EH M AWS 1RE Ml BiEHMBNERESE M
B AWS KMS keys i A BEFER ETHE.

MRIBFERIRE keyring , RPIEBBERIRRENHZIFHRES KMS €88 , EEXE LB THAREE AWS
IRE M D EFHNSB. 1.7.x MAEHFIREZEBIRREHZFMSF. AWS Encryption SDKINIES HRIRS
ID Mo EIEHEREA , FF2E PR AWS tRF & ARN ERXAWS —fg2 %,

THEXNBTEEA AWS KMS REEFZHRERBTEBILIRE keyring , # AWS Encryption SDK A 1A
EAM KMS £#@RFIEaws o EIEF 111122223333 €FIRFPHLH#.

FEAKENS 2 , FHEH6 AWS IRF Mo EEEIRNRA AWS IRF Mo EENERE. MREN
KMS €U RHPEIESE , FFEAaws-cnPEIEE, MREH KMS 28R AWS GovCloud (US)
Regions , B Aaws-us-govA EIEE. HRMEHM AWS Bl , FEHaws 2SI [EE.

fE /A AWS KMS &% keyring 110

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK HEABEE

C

WETEE) |, FEZE - kms_discovery.cppo

std: :shared_ptr<KmsKeyring::> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildex ()
.BuildDiscovery(discovery_filter));

C#/.NET

THEHIERBERAR .NET 89 4 AWS Encryption SDK .x Ao

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

{
AccountIds = account,
Partition = "aws"

1Y

var kmsDiscoveryKeyring =
mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser

£ JavaScript § , B HARBIEEIRRB M,

fE /A AWS KMS &% keyring 111

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK HEABEE
THIEFIER buildClient BN EIRIE EFERAGE R
REQUIRE_ENCRYPT_REQUIRE_DECRYPT., ZtAILAE A buildClientREEFIINZZ A S FHIINER
BERSERYE, WEHMENR , 52 Mthe section called “[R&IMBZHN ER S8,

import {
KmsKeyringBrowser,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
1))

JavaScript Node.js
£ JavaScript # , B4 EREEEREB M,

THEFIEER buildClient BN EIRIE E TR AGE R
REQUIRE_ENCRYPT_REQUIRE_DECRYPT., ZtAILAE A buildClientREEFIINZ A S FHIINER
BERSRE, MEHMENR , 552 Mthe section called “[R&IMBZHN ER &8,

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true

const keyring = new KmsKeyringNode({

A AWS KMS &% keyring 112

AWS Encryption SDK HEABEE

discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

1)

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

fE /A AWS KMS &% keyring 113

AWS Encryption SDK HEABEE

Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
CreateAwsKmsDiscoveryKeyringInput(
kms_client=kms_client,
discovery_filter=DiscoveryFilter(
account_ids=[aws_account_id],
partition="aws"

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
input=discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client

esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the AWS KMS discovery keyring

let discovery_keyring = mpl
.create_aws_kms_discovery_keyring()
.kms_client(kms_client.clone())
.discovery_filter(discovery_filter)
.send()

fE /A AWS KMS &% keyring 114

AWS Encryption SDK HEABEE

Go

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

fE /A AWS KMS &% keyring 115

AWS Encryption SDK HEABEE

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err !'= nil {
panic(err)
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{kmsKeyAccountID},
Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
KmsClient: kmsClient,

DiscoveryFilter: &discoveryFilter,

}
awsKmsDiscoveryKeyring, err :=
matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
awsKmsDiscoveryKeyringInput)
if err !'= nil {
panic(err)

}

£ AWS KMS EIEi#R3E keyring

AWS KMS EIiFRE keyring 2 FEE KMS €8 ARNSs keyring, H&it: , ©AFF RERA KMS £i8
AWS Encryption SDK Rf#% AWS [EiF,

£ AWS KMS [EIF#R3R keyring 8%k , & AWS Encryption SDK f#Z1EEE AWS KMS key F
B TNENEAMEERSE AWS BE, EERT , BEAMXEETNHBER LR AWS BE NiEE
AWS KMS keys # , #BZ 4 — {8 Bkms :DecryptiF .,

MEHARR keyring , BIFIRE keyring TEHEME, CREERBEMZNASFTIENR. MRE
ERARMBZRMBRRNZ keyring PEFAEEIRE keyring , IREEHEZEFIEN. NREFHAZEST
&K keyring EBEIMBRERRIEZ keyring FINBRER , MFRES KK,

/A Important
MRIBEREZZ keyring FBE AWS KMS EIFIRE keyring , BIFIRE keyring BB R %
keyring E At keyring IEEMNFTE KMS £RFl. 277% keyring HN1TABRLUAH R HIHE
9 keyringo AWS KMS &% keyring & B % keyring EAK , TEXEME.,

A AWS KMS EiZ#R3 keyring 116

AWS Encryption SDK HEABEE

Y EIEERE keyring AR C B AWS Encryption SDK EREFE A EREE T KMS €8 T
R, B8 M EARK JavaScript B9 AWS Encryption SDK AWS Encryption SDK .NET R {EARE
keyring B , A BATE AWS KMS A Fif L5 E [EiE, %% AWS Encryption SDK BET 24K [E 13 &
KMS €38 , 2 AWS KMS 8 X BIEEREIFHIN KMS £MIVEEFE R

MREFERRE keyring , RMBEBEFEARRERGM , BEBREAN KMS WERFIR/IEE AWS
RE M PEEPHESB, 1.7 x RANEFRA X BIREETFZEFRYE. AWS Encryption SDK

Bl | THRAESHERIRZEZIREEIL AWS KMS EIFHERE keyring. It keyring 4% FR#| AWS
Encryption SDK fE B FEET (B) EiF (us-west-2) IRFE 111122223333) KMS €48,

C

EEMRL keyring M create_kms_client FEMNITHEES , 28 kms_discovery.cppo

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filtexr(
KmsKeyring: :DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
ws: :Cryptosdk: :KmsKeyring: :Buildex ()

WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter))

C#/ .NET

for AWS Encryption SDK .NET R EERAMNEIHIRE keyring. 18 , &0 LA A BB 5 97 58 BR 1l 4%
RERERFFAEAN KMS £58,

3R keyring = PR Il [E 150 & B 5 5% =2 £ A multi-Region-aware#® & keyring , EMER R FEHE —
ESSRRNFER, SBIE—EiHS8F , multi-Region-aware keyring & A% EiF2h
e,

CreateAwsKmsMrkDiscoveryKeyring() A EEEM keyring &K [E 5 &

B KMS £8% , ARERI AWS KMS, AWS KMS REEMZNER £
HCreateAwsKmsMrkDiscoveryKeyringInput### Region ZEIEEHN EIFHHH KMS £i8
ER , TEEEMEBERE .,

T B a5 65 B A A NET #9 4 AWS Encryption SDK .x Ao

// Instantiate the AWS Encryption SDK and material providers

£ AWS KMS BiFi#R% keyring 117

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK HEABEE

var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter

{
AccountIds = account,
Partition = "aws"

i

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
Region = RegionEndpoint.USWest2,
DiscoveryFilter = filter

};

var kmsRegionalDiscoveryKeyring =
mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

B AT Ll AWS B £ AWS KMS A Fim#{TE 88 (AmazonKeyManagementServiceClient) 1§
EE , # KMS £#RFARFE . TiB , HEBERFEAmMulti-Region-awarei®R 3R keyring , LEAHREM
RRIK , MEATEREAES, TEEFUZFIKEHEE KMS £8 AWS KMS , AWS Encryption
SDK for NET AWS KMS € ABEMZENERS|BTWL (ERECHEE—@) , LKE AWS KMS
KEFEAN KMS £8RFIEEEN BT,

T 5554 FH AWS Encryption SDK B .NET 8 4.x o

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = new DiscoveryFilter()

{

A AWS KMS EiZ#R3 keyring 118

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK HEABEE

AccountIds = account,
Partition = "aws"

};

var kmsRegionalDiscoveryKeyring =
mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

THIEFIEER buildClient BN EIRIE EFE R AGE R
REQUIRE_ENCRYPT_REQUIRE_DECRYPT., ZtAILAE A buildClientREEFIINZ AL FHIINER
BERSRyE, MEHMENR , 552 Bthe section called “[REIMZHN ER S8,

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)
const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
b

JavaScript Node.js

TH&EHIER buildClient NEIRIEE AR AGEBUER
REQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t A LA A buildClientREHINZFEA B A HNZR
EREMEE, MEFMET , 552 Bthe section called “FREIMBZHE R £i87,

EERGL keyring M1imitRegionsEE , £ THEEHFIH , FES B kms_regional_discovery.ts,

import {
KmsKeyringNode,

A AWS KMS EiZ#R3 keyring 119

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK HEABEE

buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

1)

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context

A AWS KMS EiZ#R3 keyring 120

AWS Encryption SDK HEABEE

encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

Instantiate the material providers

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
CreateAwsKmsMrkDiscoveryKeyringInput(
kms_client=kms_client,
region=mrk_replica_decrypt_region,
discovery_filter=DiscoveryFilter(
account_ids=[111122223333],
partition="aws"

regional_discovery_keyring: IKeyring =
mat_prov.create_aws_kms_mrk_discovery_keyring(
input=regional_discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),

£ AWS KMS BiF#R% keyring 121

AWS Encryption SDK HEABEE

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client

let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
.region(Region: :new(mrk_replica_decrypt_region.clone()))
.build();

let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the regional discovery keyring

let discovery_keyring = mpl
.create_aws_kms_mrk_discovery_keyring()
.kms_client(decrypt_kms_client)
.region(mrk_replica_decrypt_region)
.discovery_filter(discovery_filter)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

A AWS KMS EiZ#R3 keyring 122

AWS Encryption SDK HEABEE

"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{awsAccountID},
Partition: "aws",
}
// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
KmsClient: kmsClient,
Region: alternateRegionMrkKeyRegion,

DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
awsKmsMrkDiscoveryInput)
if err != nil {

A AWS KMS EiZ#R3 keyring 123

AWS Encryption SDK HEABEE

panic(err)

E AR JavaScript B AWS Encryption SDK t2 & E i Node.js FMBIE2ZH excludeRegionsEHH,
RS R ERE AWS KMS keys EIF A H B [EE AWS KMS &3 keyring, FHIEHIEEL
AWS KMS [BIFRE keyring , BR 7T EBRIP (#ESEEILEB) (us-east-1) AWS [EIF LA , ATFE
B AWS KMS keys tRF 111122223333 H £,

EARK C 8 AWS Encryption SDK R BN 5% |, BEETEAUEBE N BET ClientSupplier B,

I EBHIFE R Node.js VR,

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({

clientProvider,

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
1)

AWS KMS B&E =z keyring

EH AWS KMS BEE R keyring , BT A EHBINE KMS 8 TREZBREESL , MEFE AWS
KMS E8AMEZESBHZER KT , HREEEYE HEHWUBREFENERREN AWS KMS |, IR A
EEFRRLERREIENMIAERHZEERVEARS EREENEREE,

BB keyring R —BEZBREERRIBRAR , £FARSEE Amazon DynamoDB ERFTRHPH AWS
KMS SRED X , ARLTEREARNENRZREN D ZEBER | UKD AWS KMS IR
%, DynamoDB ERlTRMASBIEFNE , TEENREBEI &R, CEEREATN I ZEBNME
EMN s Z2R, FATF P ZXSBERHN D ZBRE, BEX keyring A —HNE R SBRMNE
BREAS , LASEAMZRZRNZESEAERNMNZSE® K UFERATEBEATIZISRNE KSR
RNFZBEERNEER. BEX keyring BURMEAF 2 X REIRBEHITE DR LRSI B2 BE A
=

PERE N keyring BREEFEABES XEWMBRERBESEHFR, BR , BAUEINERERERATDTX
SWMNEE , YHEERT S XERNBIRER, 2XSRNVERATREIERFHEATRE , BEFEE
H@m Rk, BEMNERAST 2 XSRTISANITNERE , BNAUEHLARBRRE,

AWS KMS FEE= keyring 124

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK HEABEE

ERHITREBICIEE keyring i , EEEVABIRE, B IEEREES , ERSXSWERER
BRI Z AR LR, AEE BRI RREBEH, BB keyring & AWS KMS FEIY — R REE
DXL WE BEDE—RIEE branch-key-id BEE O X E@/ME., A%, 2XLRERS
FREARERES XEREARIEE WATEMENFEZERE , branch-key-idEF{RENPR HiBHA
Alt, ERAEREFERD X8R AWS KMS LY, #lin | 5FEE 15 2R IRER &,
MREEZREPRFIREIT 10 , 000 EMBRIRIE |, Eif AWS KMS keyring #FEE#1T 10, 000)X
AWS KMS FERY | LURZ 10, 000 ENZEE, MREE—EEATH branch-key-id , BIEEN
keyring REZERI —X AWS KMS , BUmE 10, 000 BNz igE,

RS NBERNERZERN T H. MEERRRERAT ZSWBESTER , XEEFEARPTEM
FRME BEEREBEHBHAL, BREHNRENERUPRERPERINN D X288 1D MRAEAEM
B, TEEEEEARES XS D MRAHEBHFERBIRE , BEERERHIZIH AL, ERE
—RAI L\ FEHRAEE S X 8N ZERA, EARBREEREAMER Bbranch key ID supplier , &t A LA
—RREREZEEAT IR DZEBRER.

(® Note
FIRFIMNFTE BB keyring AWS Encryption SDK #8£Z AWS KMS BEE = keyring.

THRXFFES NRAZEREEX keyring :

- 3.x kR AR JAVA #§ AWS Encryption SDK

« AWS Encryption SDK B AR .NET B9 4.x ix

« 4.x W B Python B9 AWS Encryption SDK , E2iZ I MPL #8 4k M ¥ B A B,
« for Rust # 1.x AWS Encryption SDK ki

- BARM Go M 0.1.x AWS Encryption SDK xR A

£

- BEFK

o SERIFM

- FREMEFA

« EERE

« EIFEE keyring

AWS KMS PEE = keyring 125

AWS Encryption SDK HEABEE

BRI

THZELSHERRAMB BN keyring AEES MBZEFMBRZER , AR keyring £ I3 F #& 12 EFT Y
RN, NETERESWITENMELFTERSBNEZEFOEMEFMEENR , FSEAWS KMS EEX
keyring H T #HE o

nEMEE

THZESHERBARER keyring MAEESMEZERAITEM—NTE SR,

1.

N5 EEmMEE keyring HRIMMBZER . keyring EELMNFER L ABMEAMIREH
EEEEMN S ZTERNREETEDR, UREERNIZE|ME , keyring BEEETIER
4,

WREZEERN D XEB/MEL , BEX keyring EEHEAT I X SRV SBEFRE.

a. TWMEMESFU AWS KMS REZERT IR , WERNHEXFEAFT D XER, &5
FERP I XERNVEREFINL , SUEBZW P RHAEINCBEER (AAD) AWS KMS,

b. TRENESEEMXFIZEB/NBRITHER , SN0 X WA,

FEE N keyring EHEE D XE|MME (MXFIXEB/ND XEWBRAE) , A CHBEIREFR
FEABRELR,

PERE X keyring ERA X F 0 X EIMM 16 (U TiEREH salt fTEM—HNIRER, SEATENS
RETRRNBEMNFZERSRVEIA

MEFEEAMBZRERRMZER, MEFHMER , FSB 017 AWS Encryption SDK 113 &E #l,

R BT

THELHERRAEEN keyring MMAHESHEBRERNNBBZMBNER TR,

1.
2.

BEREERMNEZNASIIMEZENER SR , WKHEEZMEER keyring.
BEE X keyring a5 BIMBER SMNERLERFIL , S/ D X EM|MMRA, 16 27Tl salt, XA
RiERE R S\ mamzn HaEH,

MEFMEF , FSEAWS KMS BEE keyring B ATEEME o

FEE I keyring EMERERFRREHEI R 2 PEAN S X SBRAEFANERS 2B H
Flo MREERN D ZLBME, keyring ERBEETSER 6,

MERBEERN S ZSBME , BEX keyring EEHFELT R 2 PRI X SBRAN S X &
WEME,

EBEAR 126

AWS Encryption SDK HEABEE

a. TWMERESEFU AWS KMS RFZS Xl , YERMNFERAT IR, BEEAH
DXREWMOERSFIE , LERBRFUDREEANCSEREER (AAD) AWS KMS,

b. TRENESEEMXFIZEBNBRICTHER , flUD X EWRA,

5. BEEX keyring EMES X EWMME (MXFOXTBNI XEWRE) , AAECHBEIRTFR
AR,

6. FEEX keyring EASER 2 PRAINMES DX SB|AEM 16 L THEM salt REFR MBER S
uﬁ_ﬂﬁﬁﬁo

7. BEE keyring FRERNBRTRRBEZRER TR YEORNFZEHER.

BEFLEEARZERNMEXFTFERSRRBAZMENAL . WEFMENR , FSE 0T AWS
Encryption SDK f#Z MZE AL

FORIRH

EEMFERAPEE keyring Z 81 ,

ATRERE T B RRM

- BRENERETHNEEEECEVSRERE YRVED —EERATHNDZER,
- BEREEZREREDE.

® Note

MARESRERBBERREETUNTHLRAE , LURBER keyring T L5 B
KMS £, MEHEET , HSH REXEDIE,

- BEEERNEHAESBEREN D XEWATEN AWS KMS 357, MEFMENR , 52 8the
section called “FTEMFF A",

- BFEMBAZENREER WHREKRFESEERWIREER, MFEFHMEHR ,
called “JBIZEHRE

&2 RBithe section

eSO

AWS Encryption SDK FEE , AWS tRF th KRB EM AWS fRiE. TiB , EEFEARKER
keyring , REE AWS RS 1 AWS KMS key (£I87FHKIE) HHEBMZN T IHRERFT.

- BEEFARE keyring MBMBZEER , BLHEE kms:Decrypto

SRR 127

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK HEABEE

- EEEIMNEBRD XL , B|EE kms:GenerateDataKeyWithoutPlaintext 1 kms:ReEncrypt.

MBLHY S X SWALRERE2 FEOFHMAT | HSH the section called "BER LR
EO
B EIREL

PERE X keyring EBAHRIARMEMBEZREND XEWMER AWS KMS |, BAE EITH IR
B, HREVFEE keyring 28l , BFEREZEANREURER, S0 LUERFERR R BFTRE , LA

BENER,

B keyring X E T HIREVER .

« the section called “FEXIREX”

« the section called “MultiThreaded R EX”
« the section called “StormTracking 1REX”
- the section called “# AR EX”

/A Important
FIEXENRELREEZESHITHERE.
B |, B B #E A BAR Python B9 AWS Encryption SDK , BEE 3 keyring T EZ#
ITHERIE, MEFMENR , 520 GitHub £ aws-cryptographic-material-providers-library f&
ZEFH Python README.rst %,

FRRKIREY

HRAZHERE , FRRNEREEHTHESER, ARRIEEXEARESHTHRRR. E0XER
MRIE BB | FEERIREN AWS KMS 1281 10 BB —E#THE D X S|/ EIRE BIBH | U
IEZEHTEFU, ETRERRE —EATESBREEE AWS KMS LLEHEEREL

FEE&F StormTracking IRV BRI HATHEER BRI FREEFAARRNNEARTE, NEE
R RELEET , 5 A the section called “StormTracking RE,

BRIFCBEZRFT T EARRNPEFAN S XERMHEEHE , TRAERMUEEN keyring BFHEE
EERNER, REREERNER , BEX keyring EFEAFERRIEE | WK EARERER
1000,

B REL 128

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst

AWS Encryption SDK HEABEE

HEBFERRE , FEETIE :

- HERE : REATEAERNFERND XSR/MRHEE HE,

Java

.cache(CacheType.builder()
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())

C#/ .NET

CacheType defaultCache = new CacheType
{

Default = new DefaultCache{EntryCapacity = 100}
Iy

Python

default_cache = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

Rust

let cache: CacheType = CacheType::Default(
DefaultCache: :buildex()
.entry_capacity(100)
.build()?z,
);

Go

cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},

IEIEREL 129

AWS Encryption SDK HEABEE

}

MultiThreaded R EX

MultiThreaded IRER] E ZHITHIRIEFZLER , EEF R AWS KMS 5 Amazon DynamoDB
FELFE E REMNEMIIEE. Hit , EoXeR/MAEEBHR FIERTEBERRKEEHN., ERRE
SEHZE AWS KMS M0 S 57 R = REL

ZEZFEAMultiThreadedREX |, FEHEETHIE :

- HERE : REATERAERINFERNS XEWRMEIEE #HE,
- HEGIBRESBA)D : EREIEARTEREFRNER HE.

Java

.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.buildexr()
.entryCapacity(100)
.entryPruningTailSize(1)

.build())

C#/ .NET

CacheType multithreadedCache = new CacheType

{
MultiThreaded = new MultiThreadedCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1
}
};
Python

multithreaded_cache = CacheTypeMultiThreaded(
value=MultiThreadedCache(
entry_capacity=100,
entry_pruning_tail_size=1

B REL 130

AWS Encryption SDK

FMBABER

)

Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildex()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberMultiThreaded{
Value: mpltypes.MultiThreadedCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
1,
}

StormTracking TREY

StormTracking IREREE X BEAXEZHITHIRE, EO0XSRMEEBE BHE | StormTracking RER
AWS KMS iRFIBA —E#TR I X/ REEEZBE |, UL ESTHEEW, EHERRE

— BT B REIEE AWS KMS SIEFTEERE,

£ Z A StormTracking tREL , EBIEETIIE :

- HERE : REATESAERNFERND XSR/MRHE RE,

FEE{E : 1000 {EIEE

- HEBIKREHAD : EB-XREIRN D XEW|MBEEHE,

YEasR{E 1 EER

- ERY EEEHNEREFEEsISBMBENPE,
JEERE 10 B

« Grace Eiff : EREREFEBEE X LBER BNV,

EERE

131

AWS Encryption SDK HEABEE
ERE:1¥
« Fan Out : ERXEREREHEE S X SWMBHIXEL

JEFR{E : 20 REH

« RITHEEER (TTL) : EREZNEAEFNEES ISRERRBNVE. SERIEL
LANoSuchEntryEIfE BfGetCacheEntry , RO X EWMEWRA/EEW P , EXIFEAPutCachel’
BEEAMEN @A L,

JEERE 10 ®
o IKEE : EZfanOutBiB BHTHRERENZED B

FAERE : 20 R

Java

.cache(CacheType.builder()
.StormTracking(StormTrackingCache.builder()
.entryCapacity(100)
.entryPruningTailSize(1)

.gracePeriod(10)
.gracelnterval(1)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

C#/ .NET

CacheType stormTrackingCache = new CacheType
{
StormTracking = new StormTrackingCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1,
FanOut = 20,
Gracelnterval = 1,
GracePeriod = 10,
InFlightTTL = 10,
SleepMilli = 20

IEIEREL 132

AWS Encryption SDK HEABEE

i

Python

storm_tracking_cache = CacheTypeStormTracking(
value=StormTrackingCache(
entry_capacity=100,
entry_pruning_tail_size=1,
fan_out=20,
grace_interval=1,
grace_period=10,
in_flight_ttl=10,
sleep_milli=20

Rust

CacheType: :StormTracking(

StormTrackingCache: :builder()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(202)
.in_flight_ttl(10)
.sleep_milli(20)

.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberStormTracking{
Value: mpltypes.StormTrackingCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
Gracelnterval: 1,

GracePeriod: 10,

FanOut: 20,

InFlightTTL: 10,

SleepMilli: 20,
1,

B REL 133

AWS Encryption SDK HEABEE

}

H R REL

RIFTAER , BEEX keyring BEEEERHITERIL keyring R A AHIRE, T8 , HAREEA

FRBEZERE keyring £ AMRE , AHBHERER. RARBRTEALHTERICNSERE

X keyring EUFINWHIBmEELRRE , MERSELEEPRE—ARR , #2EZCHWPmERER

keyring fE . HAMRETRBETE keyring ZEEEZBREER , EURBENMEEREAE. Hk
, BEE keyring ATLAZEVERI M ERIREY , BABBICEBERHE,

BUHARDE , BNASERRIER, EJLUIERE the section called “FEZREL", the section
called “MultiThreadedREL"8% the section called “StormTracking REV A REER , SKEAREMHEE
B BET R E

ZEREE R keyring AIAEAE —H AR, BEEEALARBEEILRERE keyring B , BRI IEREH
WP EIE ID, PEIEID EESEEARBRAMEE keyring. MRMEFEE keyring 2EMEHN 22
[E ID. logical key store namef % X &% ID , BIR{E keyring & RE P L AHEBNREIES, MR
LEVMEEEHEEXARBETRREDZIE IDsPEE keyring , BIF{E keyring A2RELARBABS
WEES T EFEIREER. 23 EMALARRPHVEESE , AFFSEME keyring EHIEEN 2
HELBLEE, MAETEERES — B2 EIEFHNER,

MRS EEEFAREALIEFHNIREIEE , BX4EERZEHCHN D EIE ID, EEEDEE ID FE
ZEPEE keyring BF |, keyring AILLEEFERAAARNMAPEFEENRICER , MASBEREIRY EHRE
PXEWER. WREKREEDSE D, AISRHTEBIEES keyring B , HLEBEHE—HN D
ZI[E ID $5i’4E keyringo

THRFREMMAERTFERRIEEET L AR , WiEHEREEMRER keyring.

1. FEAYMREMHERERE CryptographicMaterialsCache(MPL) 23 (CMC), https:/
github.com/aws/aws-cryptographic-material-providers-library

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.buildex()

IEIEREL 134

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a CacheType object for the Default cache
final CacheType cache =
CacheType.buildex()
.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCachelInput cryptographicMaterialsCachelInput =
CreateCryptographicMaterialsCacheInput.builder()
.cache(cache)
.build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCachelInput);

C#/.NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
value=DefaultCache(

EERE

135

AWS Encryption SDK HEABEE

entry_capacity=100,

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
cache=cache,

shared_cryptographic_materials_cache =
mat_prov.create_cryptographic_materials_cache(
cryptographic_materials_cache_input

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?>,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
create_cryptographic_materials_cache()
.cache(cache)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

B REL 136

AWS Encryption SDK HEABEE

)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCachelInput)
if err !'= nil {
panic(err)

2. BIUHAMREACacheType¥It,

sharedCryptographicMaterialsCache M ESER 1 REUH BEEH CacheType .

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.builder()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

IEIEREL 137

AWS Encryption SDK HEABEE

Python

Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
value=shared_cryptographic_materials_cache

)
Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
CacheType: :Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=
mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

#sharedCache¥I -t SR 2 BEZEREE keyring.

BIRERAERARINELRER keyring B |, LA LLBEMMES | partitionIDAEZHERKER
keyring Z I HAREVER, MRERIEESZIE ID, BEEN keyring B BB A keyring 15—
W5 EE ID,

(@ Note
MREGEIMERZESEHESEE ID. ML, ID W keyringlogical key store
name , ZBHFEE keyring ELARIA L AHEBNIREIER, MREFTHLSHE
keyring R HEREMIREUIEE |, X BABERE keyring A -2 EIE ID,

THEHIEER BIREEN keyringbranch key ID supplier , SRENR#I% 600 . METFIREBR
keyring #HREFF ER 2 ERVFFMEN , 552 [the section called “E & E keyring”s

Java

// Create the Hierarchical keyring

B REL 138

AWS Encryption SDK HEABEE

final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.ttlSeconds(600)
.cache(sharedCache)
.partitionID(partitionlID)
.build();
final IKeyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
Cache = sharedCache,
TtlSeconds = 600,
PartitionId = partitionID
};
var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring

keyring_input: CreateAwsKmsHierarchicalKeyringInput =

CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=shared_cache,
partition_id=partition_id

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

EERE

139

AWS Encryption SDK HEABEE

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to
// pass it to different Hierarchical Keyrings, it will still point to the
same
// underlying cache, and increment the reference count accordingly.
.cache(shared_cache.clone())
.ttl_seconds(600)
.partition_id(partition_id.clone())
.send()
.await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStorel,
BranchKeyId: &branchKeyId,
TtlSeconds: 600,
Cache: &shared_cache,
PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

B MEE keyring
BHEREVPEE keyring , BAEREETHE -
- SRTEHREERS
LRERTFHEEESEIMASRTFTHEN DynamoDB ERRE .

EIIPERE keyring 140

AWS Encryption SDK HEABEE

TRENPR & B (TTL)

DR EWMMBTEB ERARRIBH ol AT AERANM R, REPRS TTL SREMA FimfFIY AWS KMS
URBEAS XERNVER, ZHELARNRE, RIRS TTLBHE , KEFSRMEE YAS
TEABIRENES i

« D XREWBBIGT

B ARFRERRTE branch-key-id , LBRIEREFREFNE— AT IXER , IRED ISR
ID fFER,

DX D HEEEEAFRENZABT TR , RYUFBRLEMEND XER,

HREEEAFHEECHNIXESRNSHERFERE , BMBABRBEA D X8\ ID HE™E,
BAILER D &R ID HEBAS XTI IDs BEUSENER , WEERBFSEHERAFAER
DXEW D, Bl , ZEREBAREKIXZETRBA |, tenantlfFR b3f61619-4d35-48ad-
a275-050f87e15122,

HREBRRE , BUUREREE B keyring BERRFSE—BRAF , S ERAS TR
ID REERRERI RS M A ENBRF,
- (EA) RE

MREEREBTRNERF AT EAERENPEAN D SR/ EIEB HE |, FENRKRIL keyring B8
ERBERNEAERE,

BB keyring B T HIMREVER : 785%. MultiThreaded, StormTracking®&£ ., WMEREWM{AE
EFRERBERNFREANELS , FSE the section called “EEFERE,

MRIEARIEERE , BB keyring E B EIERAERREER |, WASEABTERES 1000,
- (EA) 7EEID

WMRIEIETE the section called “HARE , BAILLUEEEZRSEIE ID. 2EIE D EESEE AR
HFEE keyring. MREREERFEASIHLAPZIETRHREIVER , EXEAERE SN EIE D,
B ARDEIE D EEFMNFER, MREREELSEEID, ISEEVREBHEE—WDEIE ID
B 4E keyringo

WEFMAEE 2R Partitions.

EIIPERE keyring — 121

AWS Encryption SDK HEABEE

® Note
MREGRIMERZESEHESEE ID. ML, ID W keyringlogical key store
name , REVPBEE keyring BE X AR L AHERNIREVER ., MREFFLZE keyring
HAMBENREUEE |, AIXEREEREE keyring EAE—N D EI[E 1D,

- (EA) BTHEANEE
MREEARERFEEER keyring 1 KMS £ FE , BABEEXRIE keyring R AT A &
ENERTHER.

FRAFES S8 1D BIUPKE keyring

TH&EHIREBIHAERIEBFTED XL ID. the section called “TEZZREVFREXPR &I TTL 600 ##Y
BEE = keyringo

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();

final Keyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyId = branch-key-id,
TtlSeconds = 600

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

EIIPERE keyring 142

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK HEABEE

Python

Rust

Go

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id=branch_key_id,
ttl_seconds=600

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id(branch_key_id)
.ttl_seconds(600)
.send()
.await?;

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)
}
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStore,
BranchKeyId: &branchKeylID,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)

EIIPERE keyring 143

AWS Encryption SDK HEABEE

if err !'= nil {
panic(err)

FERAD &4 D HERMEIREE keyring
THRFREBMAERD XS 1D HEFREIEE keyring.
1. BAUS5X&48 1D HER

THEplEREYMEs XMW ZEEE , Wy
CreateDynamoDbEncryptionBranchKeyIdSupplier REM 95X &8 ID HER,

Java

// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.buildexr().build())
.build();
final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))
.build()).branchKeyIdSupplier();

C#/.NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

B PEE keyring 144

AWS Encryption SDK HEABEE

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{
DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)
}) .BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
tenant_1_id=branch_key_id_a,
tenant_2_id=branch_key_id_b,

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier: :new(

&branch_key_id_a,

&branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

2. EBPEE keyring

THEHEERLSR 1 PEYND XMW ID HEFDHRILEERE keyring , REVFRS| TLL & 600
¥, REUK/PNERA 10000

EIIPERE keyring 145

AWS Encryption SDK HEABEE

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)

.branchKeyIdSupplier(branchKeyIdSupplier)

.tt1lSeconds(600)

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
TtlSeconds = 600,
Cache = new CacheType

{
Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(

EIIPERE keyring 146

AWS Encryption SDK HEABEE

key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

),

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id_supplier(branch_key_id_supplier)
.ttl_seconds(600)
.send()
.await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

KeyStore: keyStore,
BranchKeyIdSupplier: &keySupplier,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err != nil {
panic(err)
}

EIIPERE keyring 147

AWS Encryption SDK HEABEE

AWS KMS ECDH keyring

AWS KMS ECDH keyring A IEHBEBIHZAWS KMS keys , ERMAZBITELAHBECE S
8., BE% , keyring fFAMEE 4R Diffie-Hellman (ECDH) £ 88 % REGHEN KMS £
BHABEANLNEERINLESRITEHLAMRE., AR, keyring SEAXAUERITER
BERMZSROELATHE LR, AWS Encryption SDK ARGTE XA SESBNSBITERE
(KDF_CTR_HMAC_SHA384) FFr& & $T4EHK NIST &,

SWMITEHYEER 64 BUTHENER/ME., ATHRRALFBEAEEHVES[/ME , AWS
Encryption SDK £ 8I 32 AL T AREER , && 2 BUTHBALACEESR, EHRER,
MR keyring BEERFREFALEEMZENF LWHEAFESBNLATEESHE | AIREF R
fFlan | WREFERALL Alice FAE 8 F Bob N ESBERTER keyring INHZER |, BILL Bob FAE &8 H
Alice A EEBERTEM keyring KERMERNAZSRBNLATE LS WEHRZRER, R Bob B
NELBTRERE KMS €484 , Al Bob ATLAE I R ECDH keyring REEZRE K,

AWS KMS ECDH keyring £/ AES-GCM B M mMEER ., A%, EXNSB®EFER AES-GCM
FERTENEAESRSBETEHME, 518 AWS KMS ECDH keyring REEE—ELAE£ SR B
SBR[LATE % keyring PEBTE Z{E AWS KMS ECDH keyring SiE2H f keyring — 28 E.

BB ETARM

AWS KMS ECDH keyring &7 Cryptographic Material Providers Library (MPL) B9 1.5.0 iR #EH | 3F
T TRINRARFTZBSNREZE -

- 3.x kR BAR JAVA #§ AWS Encryption SDK

« AWS Encryption SDK AR .NET B9 4.x ix

« 4.x iR BAR Python B9 AWS Encryption SDK , E2iZ iy MPL B4k M & 8L 65 F B
« for Rust 9 1.x AWS Encryption SDK i

« AWS Encryption SDK AR Go B 0.1.x AR E# AR A

*iE
« AWS KMS ECDH keyring By 4 Z 2 7]
. B3 AWS KMS ECDH keyring

- BV AWS KMS ECDH &% keyring

AWS KMS ECDH keyring 148

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

AWS KMS ECDH keyring %4 Z & 1]

AWS Encryption SDK 7FEE AWS 1RF |, B RKFEEM AWS IR, FiB , ZEFEH AWS KMS
ECDH keyring , 8EE AWS 1RFE 1 keyring AWS KMS keys F B FHIRIKEF A, FFO2BIBEEH
HWEBBREBERMEMMTE,

- EEFHKmsPrivateKeyToStaticPublicKey&#HEBEBHRAMBNHEZER K LEES
& IEHTE KMS €84 EH kms:GetPublicKey 1 kms:DeriveSharedSecret, 1R &7 H 1T
1t keyring R EEZRHFHEN DER RIBELAESH , AIREEFHEANIEHRE KVS €88 EH
kms:DeriveSharedSecret ¥ 7,

- ZEEMFEHAKmsPublicKeyDiscoveryBiBREBERBRZER , BRFEEIETEIFHE KMS 8%
L # kms:DeriveSharedSecret Hl kms:GetPublicKey & 7l

3 AWS KMS ECDH keyring

EERIMENBZEERHE AWS KMS ECDH keyring , %A
FKmsPrivateKeyToStaticPublicKey& @i B BiiR, BEMF
FAKmsPrivateKeyToStaticPublicKey & @ iHZE B RF B AWS KMS ECDH keyring , 5512
HT5IE :

. BFEH AWS KMS key ID

HAREBIKeyUsageEA WWIEEH NIST ZEAHEE R (ECC) KMS £#8¥KEY_AGREEMENT,
HENARESBARITERARE,

- (B) FHENLEER

AR DER fRIBH X.509 N E £ , A SubjectPublicKeyInfo(SPKI) , #1 RFC 5280 Ff
E&o

AWS KMS GetPublicKey I2/E & LAFTER DER #wmIEHE N EE LT KMS £8HN A AE L8,

BEBD keyring EITHY AWS KMS WILZE B NERRAFTHEN LTSRN, URRAFH
ENNBEWIEME , keyring B AWS KMS RERFHEN LB TR,

- WHEANLBEER

BAARBWA AR DER RS X.509 N E £ , A SubjectPublicKeyInfo(SPKI) ,
RFC 5280 HATE S,

AWS KMS ECDH keyring By 4 Z 5] 129

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK HEABEE
AWS KMS GetPublicKey B/E& LAFTEEH) DER fmiGHE N EE FLE KMS £R8HN A E 28,
o BRI

ABEE MY PHBEMRRE. FHEENREANSRY L EEFEENMRRE,

BEME : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512
- (EHA) RTEHMNBE

MR IEE A RER SIS AWS KMS ECDH keyring f KMS £ #77E , BXUBEEAHRAY keyring B
REPMELENREFTR,

C#/ .NET

THEFSEATHEN KMS €8, FHENLETERBNBRGEANLELE , £/H B3 AWS
KMS ECDH keyring, tt&i6|EAiZHASenderPublickeyZBUREHRBFTHEN L E LR, MERE
RIBMBFHENLEL® | keyring B AWS KMS RERFHEN LN E SR, FHEMREA
M SR EREECC_NIST_P2568AR Lo

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations

{
KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{

SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

SenderPublicKey = BobPublicKey,

RecipientPublicKey = AlicePublicKey

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

#3I AWS KMS ECDH keyring 150

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK HEABEE

KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration

i

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

THEHlEERATHEN KMS €8, FTHENLESRIBGEANLESE , FH B AWS
KMS ECDH keyring. tt&i6IEAiZHsenderPublickeySBRERFHEN LA ELB., NRE
REHRSFHENLEELEE | keyring R AWS KMS REMFHENLAE LI, SHEMBHEA
M SR ARTEECC_NIST_P256AR Lo

// Retrieve public keys

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput.builder()
.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Python

THEHHEFERATHEN KMS £, FHENLEEBNBGEANLEEER , FH B AWS
KMS ECDH keyring, Bt&i5ifE i AsenderPublickeySBIRIEHRBFHENLE LB, MRE
RIBEHFHENLELEB | keyring B AWS KMS RERFHENLESR, FHEMBE A
M S EEEECC_NIST_P256 AR £,

31 AWS KMS ECDH keyring 151

AWS Encryption SDK HEABEE

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
KmsPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Retrieve public keys

Must be DER-encoded X.509 public keys

bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput(
sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
sender_public_key = bob_public_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

#3I AWS KMS ECDH keyring 152

AWS Encryption SDK HEABEE

Rust

THEHEFERAFHEN KMS €8, FHENLBBNBHEANLELE FH B AWS
KMS ECDH keyring, M EifIfEAiZAsender_public_keyZEREMTHEN LAELE, ME
ERBEHFUHEN LGS, keyring EFL AWS KMS RIFEEFHEN AT LE,

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =

std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;

let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput: :buildex()

#3I AWS KMS ECDH keyring 153

AWS Encryption SDK HEABEE

.sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key

.sender_public_key(public_key_sender_utf8_bytes)

// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

#3I AWS KMS ECDH keyring 154

AWS Encryption SDK HEABEE

if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err != nil {
panic(err)
}
publicKeyRecipient, err :=
utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err !'= nil {
panic(err)

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
Value: kmsEcdhStaticConfigurationInput,

#3I AWS KMS ECDH keyring 155

AWS Encryption SDK HEABEE

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

}

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhStaticConfiguration,
KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhKeyringInput)
if err !'= nil {
panic(err)
}

3 AWS KMS ECDH #&% keyring

REE , RIEBEHRIEE AWS Encryption SDK AJAMERAN &8, ZEEEFELREER , BEHEAE
BKmsPrivateKeyToStaticPublicKey & @ iHZE @R AWS KMS ECDH keyring, Fig , &
AT LR YT AWS KMS ECDH 3 keyring , th3h2 AWS KMS ECDH keyring , TRZIEE KMS €
WEHN LA EEBPASTEREARNBXF LHREALEER/VEAAR,

/A Important
B FEAKnsPublicKeyDiscovery € BB EBIEAMEBZA SR CESIMELE LS,
EWEREE.

ZEZFAKmsPublicKeyDiscovery > RAE B HIRYHB{L AWS KMS ECDH keyring , 812t T
HI{E -

. Wik AH9 AWS KMS key ID

HEBAIKeyUsagefE A WIFET NIST ZENFHEE AR (ECC) KMS £33 ¥KEY_AGREEMENT,
o BARIRAE

3 AWS KMS ECDH % keyring 156

AWS Encryption SDK HEABEE

B WA KMS S8R P R B i AR AR 45

AM{E : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512
- (BA) BRTEANBE

WMREERAEEREE AWS KMS ECDH keyring F KMS £##FH , LA AEDIRIL keyring B
RUEFFBLENRTFFH.

C#/.NET

THIEHIEFEECC_NIST_P256 iR T BEH KMS ¥ AWS KMS ECDH #R% keyring.
B BEERE KMS £ ¥ 89 kms:GetPublicKey Hl kms:DeriveSharedSecret 3 7, Itk keyring
AUBBREAAL , EPIEE KMS EREN A ESRNTESEREAENBXF LHNBHEALNEE
",

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations

{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

THIEEHIEFEECC_NIST_P256 iR FE T BEH KMS ¥ AWS KMS ECDH &% keyring.
IBLBEREEIETE KMS £8¥ M kms:GetPublicKey 1 kms:DeriveSharedSecret ¥ A, Itk keyring

3 AWS KMS ECDH % keyring 157

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK HEABEE

AUBEZEEMAR HPEE KMS SRENLAESRTFSFREAENBEXF LNREALES
R

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput.buildexr()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Python

THIEHIETEECC_NIST_P256 iR FE B KMS €% AWS KMS ECDH &% keyring.
BB ERE KMS £88¥#9 kms:GetPublicKey #l kms:DeriveSharedSecret 3 . Lt keyring
AUBEBEEMAL , HPEE KMS RN A G RFTEERNEARMEXF LHNKRGEALER
8

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
KmsPublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS ECDH discovery keyring

create_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,

3 AWS KMS ECDH % keyring 158

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK HEABEE

key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput(
recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_azrn)
.build()?;

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

3 AWS KMS ECDH % keyring 159

AWS Encryption SDK HEABEE

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

// Optional: Create an encryption context

3 AWS KMS ECDH % keyring 160

AWS Encryption SDK HEABEE

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
Value: kmsEcdhDiscoveryStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
KmsClient: kmsClient,

}

awsKmsEcdhDiscoveryKeyring, err :=
matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhDiscoveryKeyringInput)
if err !'= nil {
panic(err)

JR % AES keyring

AWS Encryption SDK A BEFEARMEN AES BHBSR , HAREENERNTE LR, CFEE
£, ERAGRESBIE RFREERLTSEE HSM) Si¢REERKD, ELETERHETESR
WHARBRINZER S| , FEMRLE AES keyringo

R4 AES keyring 161

AWS Encryption SDK HEABEE

R AES keyring £ AES-GCM EEZMZIEEA N AN IESB/RNZER ., BEERR
AES keyring F REEIEE —E2E LB , BETLUEZE keyring PEB TS Z BRI AES keyring
B H A keyring —2EE,

R AES keyring R HHY JceMasterKey #5l , W EE AES MEE|/IEEEA BAR Python B
AWS Encryption SDK B | B2 ffy AR JAVA B9 AWS Encryption SDK RawMasterKey 35| B &,
B ERA—EEERNEES , XANACEAERSESBNEAEMCEERBZER., NFEFHE
A, B2 BKeyring HE M,

TR EZENER

HZmal keyring FHY AES £88 , [R% AES keyring AL REN ERGETEANEBER, BL
EHYFHZ, EHASURNFRERENZREEQNNZF SRR, RARBEMER HSM HERE
HERXENERHEZE UREBIZRHKP AES SRNEREH,

(® Note
SRTETHANESBEBERAR M PHRMHE ID (RIEME) JceMasterKeyFEH ID 1

fZRawMasterKey,

AWS Encryption SDK B .NET 89 @AM C B AWS Encryption SDK # &R & KMS
aws-kms &N ESBHRTME. BFOVER AES keyring R RSA keyring 2 ELIE TR
XEFA Lt ZEEE.

WREBBAEM keyring RIMNFZENBEREENALE , "B ZBNEREEREE. NMRHER keyring
THERBEZEAANEMEBTRINE keyring PERTEZANTREBNTLED X DNEMRFE
B, BMESRM R TEAR , B R EEABEE keyringo

flan , WA ER W EZEHSM_01FSWETE MR AES keyringAES_256_012, A% , &1
LABEF keyring RINZ — &R, EEREXER FEAHRNEBTEZRH. SREBNEBM R
REBHEIRIA AES keyringo

T 5 & Bl REB AN 2 31 [R %8 AES keyringo AESWrappingKey B REREHN S|/ R,
C

EEXE PHTEBICELR AES keyring AR C B9 AWS Encryption SDK , & H
aws_cryptosdk_raw_aes_keyring_new(). MEZEEH| , FSE raw_aes_keyring.co

struct aws_allocator *alloc = aws_default_allocator();

R4 AES keyring 162

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c

AWS Encryption SDK HEABEE

AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_0Q1");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");

struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
wrapping_key_len);

C#/ .NET

EE 7 AWS Encryption SDK for NET R JR 18 AES keyring , F&1E A
materialProviders.CreateRawAesKeyring()5k, METEEH |
RawAESKeyringExample.cs.

3
9
dn

THEFIERBERAR .NET #9 4 AWS Encryption SDK .x o

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
material.

// In production, use key material from a secure source.

var aesWrappingKey = new
MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = aesWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

BIEES BA M JavaScript B9 AWS Encryption SDK F1#J &4 WebCrypto API
MEBHBREREEAE S, FEE keyring 281 , BHLAER BRIBEEH

R4 AES keyring 163

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

AWS Encryption SDK HEABEE

#lRawAesKeyringWebCrypto.importCryptoKey()FEA WebCrypto &, iE] 7 R BN s
WebCrypto AT E R IEZIERLSH , keyring L ZTEM,

A&, EEHITEBBLIRLE AES keyring , £ RawAesKeyringWebCrypto() B iE. BHAE
RIFEBMENRERE AES BEEE L ("IHEEH) ., WETEEHY , 552E aes_simple.ts
(JavaScript BIE25) -

T5EHER buildClient W EURIEE AR EGEHE
REQUIRE_ENCRYPT_REQUIRE_DECRYPT., #ZtAILAE A buildClientREEFIMNZ AL F IR
EREMEE, MEFMET , 552 Bthe section called “FREIMBZHE R £i87,

import {
RawAesWrappingSuiteIdentifier,
RawAesKeyringWebCrypto,
synchronousRandomValues,
buildClient,
CommitmentPolicy,

} from 'e@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */

const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
rawAesKey,
wrappingSuite

)

const rawAesKeyring = new RawAesKeyringWebCrypto({
keyName,
keyNamespace,
wrappingSuite,
aesWrappingKey
1)

R4 AES keyring 164

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK HEABEE

JavaScript Node.js

EE7 BHAM JavaScript B9 AWS Encryption SDK for Node.js F#1{TIEEE LR AES keyring ,

FEEI RawAesKeyringNodeHBIMHTEE, SXEARBSBMBENREIEE AES 3REE

E(TBREH). MEZTEEHH , 5B aes_simple.ts (JavaScript Node.js).

THIEHIFER buildClient EBUIRTE E FE R A BUER

REQUIRE_ENCRYPT_REQUIRE_DECRYPT., ZtAILAE A buildClientREEFIINZZ A S F I INER

BEREBHE, MEFHMES , 52 Bthe section called “FREIMBZRHER &8,

import {
RawAesKeyringNode,
buildClient,
CommitmentPolicy,
RawAesWrappingSuiteIdentifier,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
keyName,
keyNamespace,
aesWrappingKey,
wrappingSuite,

1)

Java

EEE PHTEBILELR AES keyring AR JAVA B AWS Encryption SDK , &£/
matProv.CreateRawAesKeyring(),

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)

R AES keyring

165

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK HEABEE

.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

T 5 Ea5lE 8 A TE R AAFEBUR R#1T{E88{L AWS Encryption SDK A F
iwREQUIRE_ENCRYPT_REQUIRE_DECRYPT, MEZREF| , 5528 GitHub #F BAR Python By
AWS Encryption SDK @ EH K raw_aes_keyring_example.py.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_@12"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw AES keyring

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

R4 AES keyring 166

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK HEABEE
raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input
)
Rust
// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;
// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "AES_256_012";
// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),
1);
// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
// Create Raw AES keyring
let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;
Go
import (
R4 AES keyring 167

AWS Encryption SDK

FMBABER

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err != nil {
panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"

var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: aesWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

R AES keyring

168

AWS Encryption SDK HEABEE

R %A RSA keyring

[R5 RSA keyring € AR MHEA RSA RBENAB R BAREREINERSRITIEHBME
MER, LREELE. FHNRELGER BFRERBRRLEE (HSM) REW[EFERKH. 0H

HEERE RSA LRERNFZERN SR, BERASCALETERBEEN SR, G URE{E RSA
R EE,

BB ZN R RSA keyring , XETEFHBLHSRNIAESBYE, TB , ZAFERARELE
SR RSA keyring RINZE R , LAl AEA R BB WAL RSA keyring RFEZE R, &
AIBATEZ keyring A EEEMIEL RSA keyring. MR EFER LB MILAE SIBELER 1 RSA keyring
ERECARERSBEN -39, WELFESE/E AWS Encryption SDK T E€FEAREFRENE
WIREBFEIA RSA keyring, Ht ARKBERBIFENESREDTRKREERNERY,

Raw RSA keyring @R HFH JceMasterKey M H @Y BAR JAVA B9 AWS Encryption SDK
RawMasterKey , I 1£ 88 RSA IFHBINB BB E AR EAR Python B AWS Encryption SDK FFEE
HMERE, EUUERA—EEERNZER , YANAFEAERSESHNETAELMEEREZER.
MEFHMBEA , F2BKeyring HHA .

(@ Note
R RSA keyring T 2 IEHHE KMS £i8, MREEBEFEHIEYE RSAKMS €8 | TIFE
NEXFTRE S X EMF A IEE T RSA 9 AWS KMS keyring AWS KMS keys :
- 3.x WX BAR JAVA 5 AWS Encryption SDK
« AWS Encryption SDK AR .NET B 4.x kX

« 4.x X BAM Python B9 AWS Encryption SDK , E25& F Y 2 i = M £HR I &2 E (MPL)
FE 1 42 B 158 A B

- BAM Go B 0.1.x AWS Encryption SDK K 2 & #T iR 4~

MREFEATE RSAKMS A B SM|A R RSA keyring RIMZEHR , Bl AWS
Encryption SDK 1 # AWS KMS #EBF T, BEES AWS KMS EEHE KMS €80T E
SR EH E R RSA keyringo AWS KMS Decrypt BRVESE L% AWS Encryption SDK & [E]
MR

&% RSA keyring 169

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

£ PEERI RSA keyring B BA R C B AWS Encryption SDK , B4R PEM ERENAR |
HbhZeBESBMA nul RIEHN C FHR , MARKEHEREZME, £ JavaScript PEBRIE RSA
keyring B , I r EEHEMBESEENEBETHES,

wREENERE

7 T # B keyring Y RSA £88#8 | [R18 RSA keyring EALRUNEBRTEZANSRERE,
ELEYFRT, EMASURNZRRENFREELNNZASEED. BMEBEEAERDEE
BME|MERE , LB HSM EMEERM T RSA RY (RELEERW) .

(® Note
SRBETHANSBEBERAR M PARMHE ID (RIEME) JceMasterKeyFE8 ID

fZRawMasterKey,
EAR C # AWS Encryption SDK €1R% KMS aws-kms £ @GR =HE, FOERKA
AES keyring R 14 RSA keyring H#E £/ EAR C B9 AWS Encryption SDK.

MRFEBTEMN keyring RINBHNBHZIEENALE R EHANEBEZEBEE., MEMHF keyring
TSR ECHANSREBETLTTLTENE keyring PHEB G R ZENESREBES KNE | BME
SWMREMENESRYE , BT EFEABE keyring,

#E5m keyring @8 RSA LN E£#8. RSAME LRI SH/YEPNME LS , MEFNEZ keyring P&
BN ESRTEZANEREBELANME, fl0 , BREEASBHAEZHEHSM_01NEREHE
RSA N E &AM E RSA keyrlng RMZEERIRSA_2048_06, EEMEZZESR , FEALE LS
(REWE) MERN SRR ZEAMABREERLE RSA keyringo

AR
M ARRARMEMERN R RSA keyring I EEMER , AEAFESEFNDERALEE

AWS Encryption SDK X ETHEFHER , SRRSEEZSHRG. RMEZRFER OAEP EFHER ,
155126 H SHA-256 Y OAEP FfEA SHA-256 E#H MGF1, PKCS1 EE#ERNEXERPHEE
,

- £/ SHA-1 19 OAEP A SHA-1 HE#H MGF1 SHA-1

« OAEP ## SHA-256 1 MGF1 #4# SHA-256 1E#

« OAEP #£# SHA-384 1 MGF1 #4# SHA-384 1E#

« £/ SHA-512 #) OAEP FIfEH SHA-512 E#HH MGF1 SHA-512

&% RSA keyring 170

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS Encryption SDK HEABEE

« PKCS1v1.5 15

THEHIREMAER RSA SEBNWAEMFAE SIE IR RSA keyring , AR E M SHA-256 2
M OAEP |, AR fEf SHA-256 E##E X2 MGF1, RSAPublicKey # RSAPrivateKey& &R %K
R EH A,

C

EEE PEIRIH RSA keyring BAM C B AWS Encryption SDK , 55
aws_cryptosdk_raw_rsa_keyring_new,

£ FEE R RSA keyring B i@ AR C B9 AWS Encryption SDK , 55 %124t PEM #EEHN R
B, EHIESRASBMAE null BRIEH C-string, MARKEREREHE, NWEXTEEHS , F2HE

raw_rsa_keyring.co

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
alloc,
key_namespace,
key_name,
private_key_from_pem,
public_key_from_pem,
AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C#/ .NET

&= E1E AWS Encryption SDK EAR .NET B F#1TER{LRE RSA keyring , FEE
Al materialProviders.CreateRawRsaKeyring() A%, MEZEREH , FSE
RawRSAKeyringExample.cs.

THEFIERBERAR .NET #9 4 AWS Encryption SDK .x o

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

&% RSA keyring 7

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs

AWS Encryption SDK HEABEE

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
PublicKey = publicKey,
PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

BT 2S BAM JavaScript B9 AWS Encryption SDK F#J &1 WebCrypto BRXERESH
RiEmEEAERT. 2% keyring 28I , BAEFER importPublicKey () /=
importPrivateKey() #&EE &M FHEA WebCrypto %%, & A HERENMEY WebCrypto BIFR
BEWUBRIERLSH , keyring bERZTEN.,. EAFZERNYH ISR ETE LR EEHERN,

EALBMPI 2% , 55FE A RawRsaKeyringWebCrypto () A ERENITEEE(L keyring. TE
JavaScript FI2#E R RSA keyring i , B X ZHAMESEENEBEETHES,

THIEFIER buildClient BN ERIE EFERAGE B E
REQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t A LA buildClient KRR HINZFEA B A HNZR
EREMEE, MEFMET , 552 Bthe section called “FREIMBZHE R &8,

METEEH , FSH rsa_simple.ts (JavaScript BIET) .

import {
RsaImportableKey,
RawRsaKeyringWebCrypto,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-browser"'

&% RSA keyring 172

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK HEABEE

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey(
publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName 'RSA_2048_06'

const keyring new RawRsaKeyringWebCrypto({

keyName,
keyNamespace,
publicKey,
privateKey,

1)

JavaScript Node.js

EE 1 BAM JavaScript B9 AWS Encryption SDK for Node.js F#1{TEE{L R RSA keyring ,
B Y RawRsaKeyringNode B #1TEE. wrapKey ZHEERELEE£#M|. unwrapKey

SYSREFNE LM, RawRsaKeyringNode EEHEEATHEREREFES , BETLEER
HFRYIEHE,

£ JavaScript P E#E R RSA keyring B |, I BEEMESEENEETHES.

T5&EFER buildClient HEURIEEFERAGEHE
REQUIRE_ENCRYPT_REQUIRE_DECRYPT, Bt AILAE A buildClientREFIINZ AL F R IIZR
BREREE, MEFMAET , F2/Bthe section called “FREIMBHNEL &8,

MEZEEH , S/ rsa_simple.ts (JavaScript Node.js).

import {
RawRsaKeyringNode,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-node'

&% RSA keyring 173

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK HEABEE

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName("RSA_2048_06")
.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

T 5 I & f5E A FEER RGA BUR #1718 1 AWS Encryption SDK A F
#wREQUIRE_ENCRYPT_REQUIRE_DECRYPT, METREIF| , 5528 GitHub F BAR Python By
AWS Encryption SDK ffZEH R raw_rsa_keyring_example.pye

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_ 06"

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw RSA keyring

keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
key_namespace=key_name_space,
key_name=key_name,

R RSA keyring 174

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK HEABEE

padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
public_key=RSAPublicKey,
private_key=RSAPrivateKey

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring

let raw_rsa_keyring = mpl
.create_raw_rsa_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.padding_scheme(PaddingScheme: : 0aepSha256Mgf1)
.public_key(aws_smithy_types::Blob: :new(RSAPublicKey))
.private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
.send()
.await?;

&% RSA keyring 175

AWS Encryption SDK HEABEE

Go

Go

// Instantiate the material providers library
matProv, err :=
awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderss

// Create Raw RSA keyring

rsaKeyRingInput :=
awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
KeyName: "rsa",

KeyNamespace: "rsa-keyring",

PaddingScheme:
awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcsl,
PublicKey: pem.EncodeToMemory(publicKeyBlock),

PrivateKey: pem.EncodeToMemory(privateKeyBlock),

}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)

import (

"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {

panic(err)

// Optional: Create an encryption context
encryptionContext := map[string]string{

&% RSA keyring 176

AWS Encryption SDK HEABEE

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

// Define the key namespace and key name
var keyNamespace = "HSM_o1"
var keyName = "RSA_2048_ 06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw RSA keyring

rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgfl,

PublicKey: (RSAPublicKey),
PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
if err !'= nil {
panic(err)
}

&% ECDH keyring

[R% ECDH keyring G RENBESRRLAE/AESHBY K EMACETELACE SR, B
%, keyring SHEAFHENLE SR, EANLESBFMHE AR Difie-Hellman (ECDH) €815
BREEEITEHAME., AR, keyring EFALAUERITERBERNEZCRNAATRER,
AWS Encryption SDK AARSTE LA TE RN SWITERE (KDF_CTR_HMAC_SHA384) & E2#MHT
4B NIST 55,

&% ECDH keyring 177

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK HEABEE

SHMITENBEER 64 B THNSBME., ATHRARESHEAEENSBME , AWS
Encryption SDK € A&l 32 BTl ARFE L K KR 2 BANTHABRARASTESE, ERBF
B, 20R keyring BEERTFHREASEENBEXF LNERAZESBANLA X SR | AREEX
B, Bl , MREEALL Alice FAE 87 Bob N EEMEXER keyring IIZER |, BILL Bob #AE &
WA Alice AEEMERTEM keyring K ERMBRMNAZES|/NLATESH WEHIBRERER., WR
Bob K9AE &M E AWS KMS key ¥ , Bl Bob ATBERIT AWS KMS ECDH keyring AR & ¥t

[R% ECDH keyring fEFl AES-GCM FAHB B MZER, A% K ERSBEFEH AES-GCM £H
FTEMERASESBETERME. SEEK ECDH keyring REEE—BALAEE LR BEULUES
keyring FE BT E ZER%H ECDH keyring SREEH M keyring — B EE.

HEEELE, EVNRBELNILELE BFEEERZSEE (HSM) EREBERKED, FHEM
WHANEBE RSNV AEENIEEM/ME L, AWS Encryption SDK X T 55 E R85 -

 ECC_NIST_P256
 ECC_NIST_P384
 ECC_NIST_P512

*EE_tnX;-I-:E

n||||

HEM

R # ECDH keyring €%F Cryptographic Material Providers Library (MPL) B9 1.5.0 fR#H | 2T
EIJEIDETI:XH-i'nn = *ﬂﬁiﬂﬁi‘i%

- 3.x MR BARK JAVA #§ AWS Encryption SDK

« AWS Encryption SDK B AR .NET B9 4.x ix

« 4.x WX BAM Python B9 AWS Encryption SDK , E2iZ iy MPL B4k M & 8L 5 F B
- for Rust 9 1.x AWS Encryption SDK kX

- JEAR Go i 0.1.x AWS Encryption SDK HR= E R A

3 R4 ECDH keyring

R ECDH keyring X E =B 8B REBHER : RawPrivateKeyToStaticPublicKey.
EphemeralPrivateKeyToStaticPublicKey#l PublicKeyDiscovery, ZEBMAWSBIHREE
HRERELUTUMTHBLERBEERE , URNOABESBTE,

&

» RawPrivateKeyToStaticPublicKey

3 R ECDH keyring 178

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK HEABEE

» EphemeralPrivateKeyToStaticPublicKey

» PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

fFFRawPrivateKeyToStaticPublicKey&i@iHZEBMIR | 7£ keyring PBRREREFTHENIE

EW|MMBEAN LB TR, LERHBEBHBTUANZNBEZER,

EEMARawPrivateKeyToStaticPublicKey & @1 & B R 1L R # ECDH keyring |
HTIE :

- FHENLBER

s

=

BN BRESFHERN PEM HmIEFAE £48 (PKCS #8 PrivateKeyInfo #548) , il RFC 5958 FTES.

- WHEANRLBEER

BAARBWA AR DER RS X.509 N E£# , A SubjectPublicKeyInfo(SPKI) , 1

RFC 5280 FiE -

AR EFEBEWMDZ KMS RPN LB SR , AIABELENSH/BEN LB EEH/ AWS,

.« HRRBAE
ABEEERYPHBERRRE, FHEENREANSRY L EEFAENMRBRE,

B{E : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

// Instantiate material providers

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH static keyring
var staticConfiguration = new RawEcdhStaticConfigurations()
{
RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
{
SenderStaticPrivateKey = BobPrivateKey,
RecipientPublicKey = AlicePublicKey

B[R ECDH keyring

179

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK HEABEE

}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

T % Java il FiRawPrivateKeyToStaticPublicKey B E BB R RBFRERESTHE
NAAEERANBREANLE LR, MESHREEEECC_NIST_P256##R £,

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput.builder()
// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()

)
.build()

3 R ECDH keyring 180

AWS Encryption SDK HEABEE

).build();

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

T % Python &3l
FARawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey& & FEEIEH R
RFPEREFHENLESRBNBFANLEESE. MESHEEEECC_NIST_P256MHAR L,

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
RawPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Must be a PEM-encoded private key

bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput(
sender_static_private_key = bob_private_key,
recipient_public_key = alice_public_key,

B[R ECDH keyring 181

AWS Encryption SDK HEABEE

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

HNABERNBHANLEER, WESRELAVRER#HAR L,

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Create keyring input
let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput::buildexr()

// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
Lbuild()?;

let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring

let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()

3 R ECDH keyring 182

AWS Encryption SDK HEABEE

Go

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create keyring input

rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
SenderStaticPrivateKey: privateKeySender,
RecipientPublicKey: publicKeyRecipient,

}

rawECDHStaticConfiguration :=

&mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
Value: rawEcdhStaticConfigurationInput,

}

rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,

3 R ECDH keyring 183

AWS Encryption SDK HEABEE

KeyAgreementScheme: rawECDHStaticConfiguration,

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

}

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)

}

EphemeralPrivateKeyToStaticPublicKey

fffAEphemeralPrivateKeyToStaticPublicKey &8 BEBIHREREN keyring EEAREE T
SR | WS EANBEFUSTEE-—NWHATESR,

hERHBREBWRIENBZAL, EEMRFMFEHEphemeralPrivateKeyToStaticPublicKeys®
RHBEBERNBENAL ELAERAUERREANAEERRENRRSRBIGREBIER,
EEMEZ | WA LA R ECDH keyring ¥ BtPublicKeyDiscoveryi@iHEEE L , RE , W
RRHEANLAESBREFHBESBIGE KMS 28% | B LIERA AWS KMS ECDH keyring &8¢
KmsPublicKeyDiscovery &8 1# 3EBH# IR,

EEFHEphemeralPrivateKeyToStaticPublicKey & @i i R0 A LR ECDH
keyring , dmiRH T 5IE :

- BHANREER

YRR EWRH AR DER RS X.509 A E £ , LA SubjectPublicKeyInfo(SPKI) ,
RFC 5280 FTE -

BRI EFEBERE KMS BBV LA/ ER |, N BEENSRBEN LB SR/ AWS,
.« HRRBAE

ABEE LB S|P AIHEE RS

3 R ECDH keyring 184

https://tools.ietf.org/html/rfc5280

AWS Encryption SDK HEABEE

MEZE |, keyring EEEENHE LBV FTNERY SEAMNLESRIEEN LB ER/RITE

HABEER.

BMME : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ NET

TygE & EMAEphemeralPrivateKeyToStaticPublicKey &8 EBHIRE L RHA
ECDH keyring. MZHE , keyring #$FEIEERECC_NIST_P256Hi#R EARKE T HH S8%,

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()

{
EphemeralPrivateKeyToStaticPublicKey = new

EphemeralPrivateKeyToStaticPublicKeyInput

{
RecipientPublicKey = AlicePublicKey

}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

KeyAgreementScheme = ephemeralConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

T5gEHl&FEMAEphemeralPrivateKeyToStaticPublicKey &8 B E B IRE N RHA
ECDH keyringo MN%8 |, keyring #1EIEERECC_NIST_P256 4R E R AHEE T 5T S8 Y,

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()

B[R ECDH keyring

185

AWS Encryption SDK HEABEE

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput.buildex()
.recipientPublicKey(recipientPublicKey)
Lbuild()
)
Lbuild()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemerallnput);

}

Python

THlgEfEsE
FARawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey&i#ih:®
FERB IR RSB ECDH keyring. 1B | keyring AS1EFS EMECC_NIST_P256 iR LA A2
U SBE,

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
EphemeralPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

3 R ECDH keyring 186

AWS Encryption SDK HEABEE

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput(
recipient_public_key = recipient_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

TH&EHIEEMHephemeral_raw_ecdh_static_configuration&fHEREBIBRELRLR
ECDH keyring. MMZEF , keyring B1EIEEN MR LR AHEE TN SHE,

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =

std::fs::read_to_string(Path: :new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput

3 R ECDH keyring 187

AWS Encryption SDK HEABEE

let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput::buildexr()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

3 R ECDH keyring 188

AWS Encryption SDK HEABEE

// Optional: Create your encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {

panic(err)

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
Value: ephemeralRawEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,

}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)
}

3 R ECDH keyring 189

AWS Encryption SDK HEABEE

PublicKeyDiscovery

MER , REBEBRIEE AWS Encryption SDK AJUERANBE SR, EEERELREERR , FE
AEESHELE BB ALE£I®E ECDH keyring, i , & th [LA M JR#H ECDH ##3%
keyring , 2Rt 2R ECDH keyring , I B EEESMN LN B SREFREASNBEXF EWREAL
ERMEFNEMAS. LERHBREBRRREBEAS,

/A Important

B fFEAPublicKeyDiscovery€ BB EBHARBASK , BEIMELEER &R
HEFE,

EEFEAPublicKeyDiscovery @i ZEBE R B{LIR ECDH keyring , FRiRt T5I{E :
- WHANBREIESE

B NBREWHE AR PEM fRISFAHE £488 (PKCS #8 PrivateKeyInfo #&548) , il RFC 5958 FTES.
- BHARIRAE

HMAlEER A ERPOBE MRS, FHENRGANSRELASRHERR RIS,

BEE : ECC_NIST_P256, ECC_NIS P384, ECC_NIST_P512

C#/ .NET

THlgEFIEEAPublickeyDiscovery & iR iH BB 1R E 1 [R# ECDH keyring, It keyring A
UMBREAAL , HPEENAE RN L A EERFEFREASNENFLHRGEALE LS,

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{
PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey
}

3 R ECDH keyring 190

https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK HEABEE

i

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = discoveryConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

THgEFEEAPublickeyDiscovery & iR B 1R E I [R# ECDH keyring. It keyring A
UBBEAAL , HPEENAE RN L EERFEFREASNENFLHREALE LS,

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()
)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

B[R ECDH keyring 191

AWS Encryption SDK HEABEE

Python

T5lgEflEFEARawEcdhStaticConfigurationsPublicKeyDiscovery £t @ i B iR E
3 R4 ECDH keyring. Lt keyring AIABRZEMAAL , HFEENAE BN LN ESBFTSTFRE
AERMBXF EHWBHEALNESR,

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsPublicKeyDiscovery,
PublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
PublicKeyDiscoveryInput(
recipient_static_private_key = recipient_private_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

TH&EHEEMAdiscovery_raw_ecdh_static_configuration&RiHEREBIBRELRLR
ECDH keyring. Lt keyring I ABZEAFAL , HPEENIAE RN A ESBASTFHREALM
BNFLEHREALE S,

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;

3 R ECDH keyring 192

AWS Encryption SDK HEABEE

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load keys from UTF-8 encoded PEM files.

let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();

file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
PublicKeyDiscoveryInput::buildex()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =

RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_ing

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (

3 R ECDH keyring 193

AWS Encryption SDK HEABEE

"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {

panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}
// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err != nil {

panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
RecipientStaticPrivateKey: privateKeyRecipient,

3 R ECDH keyring 194

AWS Encryption SDK HEABEE

discoveryRawEcdhStaticConfiguration :=
&mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
Value: discoveryRawEcdhStaticConfigurationInput,

}

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,

}

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
discoveryRawEcdhKeyringInput)
if err !'= nil {

panic(err)

}

% & keyring

BT LAES keyring RBZ E keyring. % E keyring 2 — & keyring , EF @ EHERTEERN —=R
Z{EE R keyringe MRMBEE2FEH KT P EE keyring. FHZE keyring RINZERIE | HEM
keyring P E B R SBIITTUMBRZER,

B % E keyring RINBERIE , BEIEEHP —{E keyring B E LR keyring. FTEHEAM keyring
AT keyring, EAE keyring BEL W MBMLFTER B, AR , BT keyring PHFTE 2L
CREMZHARNAELFTER SR, 2B E keyring BAZE keyring PN EESX SREOMECFS
WA—EMBNERSB, MRELS keyring & KMS keyring , AWS KMS 8 keyring H# E 4 85
CREELINMBMXFEEB., A%, AWS KMS keyring FEIFTEFESL AWS KMS keys £88 |, LR
multi-keyring FFTE F keyring FHFIE 2E LW/ , FMBEHENMXF LR,

MRBRIIZEELEES keyring 9% keyring , AT EBFEATREZER , BEFENE, E , &
BEEMZREDFERREELES keyring % keyring , BRI LS T ES S — @ multi-keyring HEIF
keyring. RBEAESR keyring % keyring EIEE &5 — 1@ multi-keyring R E £ 8§ keyringo

fEZBF , AWS Encryption SDK 2 keyring RESEMBZHEF —EAMZNER B, RBEZE
keyring F I8 EM EF I keyringe REFT keyring FHEASBUEZENBENER SR | B
MEFL,

% & keyring 195

AWS Encryption SDK HEABEE

1.7 x WzBAts , EMBHNERSBIE AWS Key Management Service (AWS KMS) keyring (R E
S8|IEME) TMHFEF , AWS Encryption SDK —2 &% FI£#8 ARN &E AWS KMS key & AWS
KMS Decrypt #2/E# KeyId S8, ER AWS KMS HEEK , TRASEAZEEEANTRESBR
BEMENER SR,

EEEEZE keyring W IEEH] |, 52

C : multi_keyring.cpp

C#/ .NET : MultiKeyringExample.cs

» JavaScript Node.js : multi_keyring.ts

JavaScript BB 28 : multi_keyring.ts

Java : MultiKeyringExample.java

« Python : multi_keyring_example.py

EEBVULE keyring , LA F keyring B1TERL. FELEHIF , TPFER AWS KMS keyring F
R AES keyring , BT BLTE % keyring FiE S EZ B keyringo

C
/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr().Build(example_key);
// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,
AWS_CRYPTOSDK_AES256);
C#/ .NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

% E keyring 196

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK

FMBABER

JavaScript Browser

THIgEFIEA buildClient BN BRI E TR AR GH BUR

REQUIRE_ENCRYPT_REQUIRE_DECRYPT. &t A LA A buildClient R HIINZRFA

ERSREE, WEFMEENR , F2Bthe section called “REIMEZNERI R,

import {
KmsKeyringBrowser,
KMS,
getClient,
RawAesKeyringWebCrypto,
RawAesWrappingSuiteIdentifier,
MultiKeyringWebCrypto,
buildClient,
CommitmentPolicy,
synchronousRandomValues,

} from 'e@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.

const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
wrappingSuite, masterKey })

JavaScript Node.js

THIEHIFER buildClient EBIRIEE TR AFHEBUER

By

REQUIRE_ENCRYPT_REQUIRE_DECRYPT., &t A LAER buildClient REEHIINZZAE FHIINER

BRIy E, MEFMENR , 52 Hthe section called “FREINBZHER £,

import {
MultiKeyringNode,
KmsKeyringNode,
RawAesKeyringNode,
RawAesWrappingSuiteIdentifier,
buildClient,

% & keyring

197

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK HEABEE

CommitmentPolicy,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
unencryptedMasterKey })

Java

// Define the raw AES keyring.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateRawAesKeyringInput createRawAesKeyringInput =

CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_0Q1")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyArn)
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

T 5IEa5lE 68 A TE R AAFEBUR R#1T{E88{L AWS Encryption SDK A F
UwWREQUIRE_ENCRYPT_REQUIRE_DECRYPT,

Create the AWS KMS keyring

% & keyring 198

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK HEABEE

kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

kms_keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
generator=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=kms_keyring_input

Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_@12"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=raw_aes_keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library

% E keyring 199

AWS Encryption SDK

FMBABER

Go

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

% & keyring

200

AWS Encryption SDK HEABEE

if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create an AWS KMS keyring

awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,

}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)
}
// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: AESWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)

% & keyring 201

AWS Encryption SDK HEABEE

BE EIYZE keyring , WIEEEEALES keyring (MR A), EHEH|F , RMFEILZ keyring , H
B AWS KMS keyring 2 E4 25 keyring , T AES keyring ¥ keyringo

C

£ CHHBE keyring BEHEH , BRAFIEEHELS keyringo

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
kms_keyring);

EEE T keyring B ELM B E keyring , FBEA
aws_cryptosdk_multi_keyring_add_child 5. BFEZEREHIBHEEF keyring FIYEX
FiE—Ro

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C#/ .NET

NET CreateMultiKeyringInput BB EEERELS keyring ¥ keyring, E4%
#iCreateMultiKeyringInput¥H# 2R TEH,

var createMultiKeyringInput = new CreateMultiKeyringInput
{

Generator = kmsKeyring,

ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser

JavaScript ZE keyring 2 T A8/, JavaScript % keyring B KB 1] F RIS EE £ 25 keyring
Z {8 F keyringo

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
[aesKeyring]);

% & keyring 202

AWS Encryption SDK HEABEE

JavaScript Node.js

JavaScript Z & keyring 2 N /& #, JavaScript % keyring BB KB W] ZERIEEE LR keyring
%@+ keyring.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
[aesKeyring]);

Java

Java CreateMultiKeyringInput BB EEAIZREERELSR keyring M F keyringe BXE
McreateMultiKeyringInput¥ 427 ATEH,

final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonList(rawAesKeyring))
Lbuild();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
generator=kms_keyring,
child_keyrings=[raw_aes_keyring]

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
input=multi_keyring_input

Rust

let multi_keyring = mpl
.create_multi_keyring()
.generator(kms_keyring.clone())
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()
.await?;

% & keyring 203

AWS Encryption SDK HEABEE

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: awsKmsKeyring,
ChildKeyrings: [Impltypes.IKeyring{rawAESKeyring},
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)

}

B , B ERZE keyring RINZEMFEZE R

% & keyring 204

AWS Encryption SDK HEABEE

[

AWS Encryption SDK F2\5%515E

AWS Encryption SDK BAR THEXREES. Bz
fEmE YERAS—EBESETHE, EEMAEZRE
E’JI:EE':FjJDJ«X?RHH o, INBRBERE , BUEAFER
THMER |, 552 Bthe section called “Keyring A,

SEERRTEEN. SKRUER-—EESE
ESRE, MREER K ELRISEFRSER
AEH Keyring , IEEWMMESWEME. W

—>|-nH ELH

&

« JEHARM C B AWS Encryption SDK

« AWS Encryption SDK BB .NET &y

« AWS Encryption SDK for Go

« ERAR® JAVA B9 AWS Encryption SDK

« @AM JavaScript B AWS Encryption SDK
- EAM Python B AWS Encryption SDK

* AWS Encryption SDK for Rust

« AWS Encryption SDK @ 5| 5

BEAM C B AWS Encryption SDK

RECHREEABRIXMNFZAS EAM CH AWS Encryption SDK RIEEAFimMERENXE, WA
DR ESMRENERFTTES AWS Encryption SDK B HIER,

B A B4 —# AWS Encryption SDK , @AM C #9 AWS Encryption SDK R EFEERMRETh
fE, ELERESEEHNE. BANREBEN AAD) IRRe, OCRBNHBLMEZELENH, fim
256 T AES-GCM H il £HITEMESE,

WFTERE S ¥ EEE AWS Encryption SDK B AIZ£EiE, fli , B UAFER mBER BAR CH
AWS Encryption SDK , ¥ FERATAZENESEEREER , B AWS Encryption CLI,

EAR CH AWS Encryption SDK £ E EARK C++ B AWS SDK B AWS Key Management Service
(AWS KMS) B &, REEEEREAMN AWS KMS keyring B, FEEFERT., T8, AWS
Encryption SDK FEZE AWS KMS SiE M E i AWS IRFE.

—5 T

C 205

AWS Encryption SDK HEABEE

- MEMFH #ITEARTVFMAEA BAMN CH AWS Encryption SDK |, 5528 C #4l. GitHub £
aws-encryptlon-sdk cREEDHNEN , AR BAR CH AWS Encryption SDK API X,

= Wl {E A ﬁﬁﬁﬁ’*\ C B AWS Encryption SDK tnZ &R G R , UELRUUEZEESFPHERE
*4 AWS [EiF , 552 AWS R IPFEE P I{I A C AWS Encryption SDK H#Y % Z @21
PN F .

&

« R¥E BAM C B AWS Encryption SDK
- £/ EAR C K AWS Encryption SDK
EAR C B AWS Encryption SDK Zi 4l

Z& BAR C B AWS Encryption SDK

ZHEBIFRAH EAR C & AWS Encryption SDK,

® Note

FrE EAR® C B AWS Encryption SDK B 2.0.0 B iRA &R EE M end-of-support P& Ex

BRI LARE 2.0.x IR EFRRA LR 2 EHMERFMRAL , AR C B AWS Encryption SDK
MAZEESFEMERNBRER. TiB , 2.0x RPSIANFZ L WAEELIEHES, B2
AT X ZHAINIRAEFE 20X REFIRAE , L EEEHEZHNY 1 BAR CH AWS
Encryption SDK.x hix 4, MFEFMEF , F2EEBEH AWS Encryption SDK,

& B LATE aws-encryption-sdk-c &7 ER AR C B AWS Encryption SDK README ERFHEIZR
HMEE WEHFMARA, EPIIEAE Amazon Linux, Ubuntu, macOS # Windows & LB E KR
B,

B2 El , SBARELRESERE FHH AWS KMS keyring AWS Encryption SDK, 1 R &5 F
AWS KMS keyring E'Jﬁ*agit%z B C++ 9 AWS SDK, EE AWS SDK FEEEE AWS Key
Management Service() EBIAWS KMS, E&fEHA AWS KMS keyring B , AWS Encryption SDK &
£/ AWS KMS RELENREBERBLENN MBI,

BEAR C++ B9 AWS SDK InREE A EH M keyring 288 | fI20JF 1 AES keyring, FE#8 RSA keyring
AT E AWS KMS keyring 9% keyring , BITEERE ., FiB , FHRME keyring B | B#FE
EEVYREHCHNERRIESRE,

T 206

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/#readme
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK HEABEE

MREBERERIBZIMRE , 557 aws-encryption-sdk-cEFEFREEE , IEALER LHE
AEREISHELR,

F/H BAM C K AWS Encryption SDK
AEERPHMBENRZAESEE BEBAMN C M AWS Encryption SDK AR BRI ZR 9 AL,

AEHPHNEHREBUMER 2.0.x IRFMEFHIMA BERAR C B AWS Encryption SDK, MEFEAERDN
g5 , 51E GitHub L aws-encryption-sdk-c f#17 B B R 245 7& B8 F 3 B IE 0 AR AN o

WMEFER EITEXRETHFFMER BAM C M AWS Encryption SDK , 5528 C &fl. GitHub L
aws-encryption-sdk-c fEFEP R EH , AR BAR C B9 AWS Encryption SDK API 324,

30

520 : Keyring

&

o MEMBEHRERES
- BEFH

M2 EREN

B8R B BAR C K AWS Encryption SDK , FFEBEMM TWER | B keyring, B EHA
keyring B9 CMM, ZEI{EH CMM (# keyring) B T/ERSER , REERIE TEMRER,

1. BARRF B,

£ C =5 C++ BXWEHPMI aws_cryptosdk_load_error_strings()FE. TEHALHEEE
EERANEREA.

WREMNW—X , flNEEHmainFEF,

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. B3I keyringo

ERZERARNZER MO TR SMRERTE keyring. BLEFIER AWS KMS keyring ¥ B
keyring AWS KMS key , B8] AR H{u E £ AEMEEH keyringo

fEF C RBEH 207

https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK HEABEE
EEE AWS KMS key #9102 keyring &5l @AM C B AWS Encryption SDK , FRiEE £

ARN B 81% ARN, EfR% Keyring ' , 4 EEA S8 ARN, MESHMET, , FSEE AWS
KMS keyring AWS KMS keys # i 5l

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(KEY_ARN);

3. B T/ERER,

£ B BAR C B AWS Encryption SDK , &AL TR R INBRE — X FH S RNERE—
MEXFAL , BREXNAM, LITERBREEREREBEDSHERFASHRE,

FERDBEES. keyring FE X REETE LA TIEFEER - AWS_CRYPTOSDK_ENCRYPT
5 AWS_CRYPTOSDK_DECRYPT, MIREGEES T T/ERENER 6 BEH
aws_cryptosdk_session_reset 5%,

EI&EH keyring B3 TEREEE , AR C M9 AWS Encryption SDK & B) A8 &E Y A X E R
ZEHEER (CMM), EFFTEEY, HEIHERLDMH,

Blgn , LT TERBERAESR 1 PERN DB keyring, ERMEBERE , BX A
AWS_CRYPTOSDK_ENCRYPT,

struct aws_cryptosdk_session * session =
aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

4. AN ERER,

EEAEITERRBRIEBRER , 55F A aws_cryptosdk_session_process A%, MR
WAREEHARNUSHEERX Y K MAEEFEHNKUSHEBMEZ T , Sy
aws_cryptosdk_session_process_full, Fi8 , MREBFEBERERRER , BRI LE

BB aws_cryptosdk_session_processH Il , mMFEEH , 552 E file_streaming.cpp &
fil, aws_cryptosdk_session_process_full B7F 1.9.x 1 2.2.x AWS Encryption SDK ki #
L,

ETEREREAMBERR HXFHAEERBA , MBEXFHAUHEREE, plaintext H#{
RBLEEEMBENAE | ciphertext WMUEEME S EFMERMNINEAS

/* Encrypting data */

fEF C RBEH 208

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK HEABEE

aws_cryptosdk_session_process_full(session,
ciphertext,
ciphertext_buffer_size,
&ciphertext_length,
plaintext,
plaintext_length)

ETERBREEABRBERE , MBEXFHAERE A , HXFRAUERB Y, ciphertext ¥
REMBAHEMERNSINZAL |, plaintext WUNESHEZ S EERNAEXFZALS,

EEMZER , BH®WM aws_cryptosdk_session_process_full 5%,

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
plaintext,
plaintext_buffer_size,
&plaintext_length,
ciphertext,
ciphertext_length)

BEHY

ATHLERERRX EREATERINMENHSER FELBHEHEL, fRSEKGKRERK
o LWHAREHRHSEZZERRERM.

BELSEATIEP—EFUHELRXYHER , KYHSIELEZRE FYHNSE | TR :

- keyring , 540 , £ keyring B3 T e B
- EREZHBHEENEEES (CMM) , HlanfEATERR CMM B TERBR BE] CMM
« ERSWBRE, HlE0 , FH keyring FIREVE M REL CMM

FREEFEHFYHNENIZ2E BRALTUERYRYHRINBEEFYNHNSE, EHEEZXYH
B, WrUHnERSEeERE, MRXTRAIELFEN —REEAKESENHNSE | £F
ERASERBRMK KRR,

FRAEEEBLEECHREYN TYUHSE, ZTFEEEEE SDK AZEUNEANHNSE, IR
SDK M ¥4 , #lf aws_cryptosdk_caching_cmm_new_from_keyringJ5 ki = THERERK
785 CMM , Bl SDK EEBEYHRHESENE L MBS,

fEF C RBEH 209

AWS Encryption SDK HEABEE

ET5EHIGR , BEEM keyring B TSR , ZTERBRSEUS keyring W8 E | LR

B2sE BIITHERREZAL, MREFTEERE keyring WHAMSZE | BRI LR
aws_cryptosdk_keyring_release SAEE Y TR EE AR E keyring Y. WA ETER
keyring (N2 Z5T 8., B&MI aws_cryptosdk_session_destroy REEF TEMRKRE 2B H
T EREER¥ keyring IEZE,

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
object.
aws_cryptosdk_keyring_release(keyring);

HREEEHEY , PNt S A TERREEER keyring , HIE CMM RISEREEES | LT
FEMABVANHBISE, NERVER FOUDFUBLSE, MRRTARTERSEZN BET
BEMELNGE FRULHSE,

EEEAER CMMs B | (S EH B HER | FINER SR RIMARER CMM, EE4RREA
keyring 2 HREX CMM B | RER CMM EEEMENHNSE, BRILEERAALMEYE BUET
BATERRER CMM 22374 Y1 BVER HSRERA] keyring MBI 8%, Rk | EEEARE CMM B3 TERER
B, A LURHIRER CMM M3,

AR BAFAEBRHEHBEYNYHSE, FERERINYG , flIERREL CMM TSR
CMM , RH FEEE,

/ Create the caching CMM from a cache and a keyring.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.

struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,
AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

A CRAREH 210

AWS Encryption SDK HEABEE

Y coo

aws_cryptosdk_session_destroy(session);

BERA C B AWS Encryption SDK il
TG RE @ E A BAMK C B AWS Encryption SDK 3R in% f i 24 ¥l

AEHHEHREUMER 2.0.x RAMEFHMA EHR C B AWS Encryption SDK, MEFEAERDN
g4 , 5528 GitHub £ aws-encryption-sdk-c f# 17 E/ R AE E .,

BIRLHENEE i BAR CH AWS Encryption SDK , EXMEMEFINRABEISHE
examplesFE&S , eMEHmEILANES buildB &P, E A LE GitHub £ aws-encryption-sdk-
c RFENEHF B &PRIEM,

ES |
o« INERFEEF B

IR F fif 2 = &R
THIEFREF MR BAM C B AWS Encryption SDK RiNZMEZRF R,

L& HIEHF AWS KMS keyring , i&2—%& keyring , £ AWS Key Management Service (AWS KMS)
AWS KMS key Ffy RELEMMBER S8, LEFITSU C++ BENWENE, BAMR CH AWS
Encryption SDK &R £ H AWS KMS keyring AWS KMS B B C++ B AWS SDK Fil , R
EERAW keyring B2 B &) AWS KMS , f5la0/R % AES keyring, R RSA keyring i R 328 AWS
KMS keyring 9% keyring , AR C++ B AWS SDK BIFREE ,

WMERT KR AWS KMS key , 7588 (AWS Key Management Service BiZ A B1E§R/) FMWEIL
£, WHETE AWS KMS keyring AWS KMS keys HiE 5 HEREA , F52E £ AWS KMS keyring AWS
KMS keys # 85l

ESRTENEXBES : string.cpp

i

S
. B
. R

FF
s

{3

%)
1

&4l 211

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK HEABEE

n#EF&

L E B — S EREA) AWS KMS keyring AWS KMS key RIS 58,
SB1.HABRTFEH,

£ C & C++ BRBHM I aws_cryptosdk_load_error_strings()5t. EEHAHEEIE
FHEANEREA.

BRERW—X , flnELENmaink 4,

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

HEE 2 . B keyringo

B ARMER AWS KMS keyring, L& HIHEY keyring R E A — 18 AWS KMS key , B A LA
E BB Z1E keyring B9 AWS KMS keyring AWS KMS keys , B3E1E AWS KMS keys TEIH AWS
21 tRkE .

HEX AWS KMS key B9 1N% keyring &5l BAR C B AWS Encryption SDK , FBiEEE#R
ARN = 51# ARN, Ef#% Keyring # , A EEAS® ARN, MFEFHMBEN , FSBE AWS

KMS keyring AWS KMS keys H & Bl

£ AWS KMS keyring AWS KMS keys A5 51

EREN BB ZE M keyring B AWS KMS keys , B LU TE AWS KMS key FARAE £ FM &t
NFEREH|/N , UKk AWS KMS keys AR IMEZMHRMEN FER SRV BABENES], TIER
T, RIS EEEES AWS KMS keyo

BATHREXT 20 , FEEF I ARN BREERNEEH® ARN,

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

struct aws_cryptosdk_keyring *kms_keyring =
ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

SR3: BY TR,
EADBER. EXFRRM keyring RE Y THERER.

&4l 212

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK HEABEE

BREI/ERBREEER : AWS_CRYPTOSDK_ENCRYPT ARINZE AWS_CRYPTOSDK_DECRYPT A
RFBR, EESFREIEREBNES , BF A aws_cryptosdk_session_reset HiZo

BB keyring W ITERER 2% , B LAEH SDK REMN 5% |, BEHNSERB BB keyring, T
ERBESEELEMBERBERE keyring NS E, EXRERTERERR , B W keyring 1T
EREYMHNSE, WSEHEENTEIRBREERRL YBREEAYHRRBEYHG.

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

FR4 REMBEAR,

NEZABTR—EBER. FLEENBREN, ESENZRRERMNZARE , AWS Encryption

SDK ZiRmEZSRMNBARBEENENT , ALFTEMRNNBEARREZER . EANERE
RN, EEMEBEACTERREER.

RENEEMZEARTFHENHERE,

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_keyl, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_valuel, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_keyl, (void *)enc_ctx_valuel, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

WMEITERERPMBARNTEIEE, A% , A aws_cryptosdk_enc_ctx_clone BB
MBRABERT THERR, SEXAKRE my_enc_ctx 1, FEETUERRERN CEHREHE,

NERABRRTEREERN 52 , MIEFESED THFEREEHBNSH. ETREBRKEENZEARTH
RABNSEIEER , BMEFU T THEEREERHS ORMBRREBAETR.

gl

213

AWS Encryption SDK HEABEE

struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

HBR5: MBEFH,

EEMZEM N FEFER | BEMEMA aws_cryptosdk_session_process_full FEEE MFHEX K
TEBEER, b5 3ETE 1.9.x 1 2.2.x AWS Encryption SDK R #H |, EEIERFRMZMEZRMER
te ZEREBHRRER , BT EBaws_cryptosdk_session_processH P ,

NMZE , MXFHRUARARNY MEXFRUAREEYL. ERETK
B , ciphertext_output MUSEENEZENALE , SRERNEZNF, NMENERSBNMER
B, B LAEREMZENRENLFTEES AWS Encryption SDK #9 R 2 ik iAo

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
ciphertext_output,
ciphertext_buf_sz_output,
&ciphertext_len_output,
plaintext_input,
plaintext_len_input)) {
aws_cryptosdk_session_destroy(session);
return 8;

SR 6 BEIERER.
RE—EATREHERXTERE , SFEH CMM M keyring BB E,
MRIEmIFERAEED keyring M1 CMM RERFH | FMBHWBHRHMAL , MARHER TR

B, PERIIERBRANER 6 FBFH aws_cryptosdk_session_reset HERGEREEL
AWS_CRYPTOSDK_DECRYPT,

fRE 7 &

)

LEFINE BN E8 TS RAFHEZMBXFHMZRBEE,

&4l 214

AWS Encryption SDK HEABEE

FBR1: HAHRTH,

£ C & C++ BRBHM I aws_cryptosdk_load_error_strings()5t., EEHAHEEIE
FHEANEREA.

BRERWN—X , flEENmainAES,

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

HEE 2 . B keyringo

EEMEZERE AWS KMS |, B2EAMNE API EEMNINZFF S . Decrypt APl F&# AWS KMS
key A A, K2 , AWS KMS € AMEREMN AWS KMS key REFZE A RMZN INZE LT,
i@ , AWS Encryption SDK A ZRTE N FFEZ AWS KMS keys B , A EE AWS KMS
keyringo

R R , WA LAEA R AWS KMS keys 2 ERRBZNZA SR RERE keyring. Hlan , &l
REFHEBPEEAR® AWS KMS key PIERAR RE L keyring. BRIE AWS Encryption SDK
WRIEMR R keyring 1, AWS KMS key BRI KIEFEFEA . R SDK &L E A RIRMHRY keyring
AWS KMS keys Y RBZMZHNER S8 | BA keyring AWS KMS keys FEEEM AR N
EREREE EAEREAREE keyring AWS KMS keys F{ER BIFFAT |, SEFN S LB,

B8 AWS KMS key BfER keyring F5E B , B4 BFRAEH S ARN, 518 ARNs & R 5540
B keyring 1, GIZELE AWS KMS keyring AWS KMS keys %5 BIEREA |, 5520 £ AWS KMS
keyring AWS KMS keys A& Al

HLEHIP RFISEEEM AWS KMS key AR N FEHAEE BRE keyring. HITIHREXE
280, FERESI £ ARN R AR 28 ARN,

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arn);

HR 3 BY TR

RS BETH keyring R TIERE, BEERTEANBZN TIERE |, BEA
AWS_CRYPTOSDK_DECRYPT # =R 3%E TEMER.

&4l 215

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK HEABEE

BYEA keyring W TEREER 2% , BRI SDK RN 5 E |, BENBER LR keyring, T
ERRSEELE G ENBEREY keyring WHHNSE | ECBRTHERERE , THERERM keyring
HEeBH, ESEFRRMEIRNERCRERX LB EERDHFREBLDMF,

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,

kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

FRA4BFEER

EEMBARTE FBMFEH aws_cryptosdk_session_process_full FEBERERARAEZNT
EREER ., LF5ETE 1.9.x # 2.2.x AWS Encryption SDK i #H | EAF R RIMNBMBERMERET.
EEREBEARER , BEEREaws_cryptosdk_session_processH ML ,

RZE NMEXFHALAEBABNY MAXEHLAE BB, ciphertext_input BUER®E
B EEEMMNZNAL, ERETRE , plaintext_output MU EEMIFE (BEWN) F
$o

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,

plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input)) {

aws_cryptosdk_session_destroy(session);

return 13;

}

SBR5: BENBEAR.

EREERNEZEAR — ARBEAESNASR — BELENZAEKRERANBEAR, BERNEZER
BURTERNEY , IAZREHRSZSENEES (CMM) AIAEMZRAL 2 , SEHEFIETRMH
WINERR,

£ P EHARM CH AWS Encryption SDK , BFZFEEHRZREMNBZAR , RANBREEEE
SDK EEHMZAEF, ER , EEEEMNFAECH , ENEZHEEZRBRENBEZAR
FFTEREEHRERBASFMANMBEREF,

&4l 216

AWS Encryption SDK HEABEE

B ETHERPEERBNERER. KEERETLSHREASMANNERR.

const struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr(session);

ARBRBIREELEMZEFERN my_enc_ctx HERBFNWNBRAS. BREFARBZHN
my_enc_ctx #MERKPINWERARHBETERZEFTAMN session_enc_ctx #EXRKEP., IRE
FALBER , IRXEBETEANE , EFLEEIEAERAL.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);

aws_hash_iter_next(&iter)) {

struct aws_hash_element *session_enc_ctx_kv_pair;

aws_hash_table_find(session_enc_ctx, iter.element.key,
&session_enc_ctx_kv_pair)

if (!session_enc_ctx_kv_pair ||
laws_string_eq(
(struct aws_string *)iter.element.value, (struct aws_string
*)session_enc_ctx_kv_pair->value)) {
fprintf(stderr, "Wrong encryption context!\n");
abort();

S 6 FEIERER,

BRENZERART 2R , EULEEHEEEHTFER. IREFEZENRETFREER , BFEM

aws_cryptosdk_session_resetF o

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK B AR NET 89

for AWS Encryption SDK .NET EAR L C# MEM NET EXRAESRERARINERAEN
RAFimmMmERNE, Windows, macOS M Linux #iR#t &,

.NET 217

AWS Encryption SDK HEABEE

® Note

AWS Encryption SDK 5B .NET #9 4.0. AWS Encryption SDK 0 IR fmBtFA 281, K

It |, 4.0.0 liRINZHFAE RAER NET AWS Encryption SDK B 4.0.0 KRR E T IRA R, 1F47
Ht R R AESEREEREEM.

AWS Encryption SDK B .NET 8 4.0.1 lRERIBASHREE A AWS Encryption SDK ﬁﬂ
B, YWRAEMEARESEFERR. RIFEFER , 4.0.1 IRATLAFEE 4.0.0 RINBEHNFAS

B, MRETAEEZ 4.0.0 RIMZFWAE , BALUEE NetV4_0_0_RetryPolicy B , Lx

Pt FinBEUEL AR, MEFHMEN , 552 H GitHub Lk aws-encryption-sdk EZEFH
v4.0.1 lRA et

AWS Encryption SDK for .NET 82 #y — & H 23X ER515E S EE AWS Encryption SDK BT RE :

« FPXEER SRR

@ Note

AWS Encryption SDK B .NET B 4.x lxZEAWS KMS FEE keyring , ERERNE
iR ERREURIR S R

- TXERRER
NET AWS Encryption SDK hix /% & &0 8% =i # B8 it
« HBE AWS SDK for .NET

for AWS Encryption SDK .NET B& 2.0.x R EFH ARSI ANFIERELINEE , Uk WEHMESEE
AWS Encryption SDK, Fi8 , t1REFEH AWS Encryption SDK for NET R H 2.0.x BIRAR S —
BFE S EEFTMZE M E R AWS Encryption SDK , BRI E ERBEWAEEE. NEFHMEEA , F2
BS 20] 3% 7€ 8 Y 2GR UK .

AWS Encryption SDK B .NET # 2 Dafny AWS Encryption SDK FIVER , ER—BEXNER
Hme , ZANEHPRESAE, BEFEMHNERE URAZeMNER, FRE2—EEE, 9&
?ﬁ%qﬂgﬂf #YIhBE AWS Encryption SDK , SARE{RIDAEIEREM

— ST

- MERENAITE PEREIRIEAE B AWS Encryption SDK , HliNis EBREEEZEMH. REIMBEHN
ERe® UREH AWSKMS ZEiF &8 , 55208 5% AWS Encryption SDK,

.NET 218

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK HEABEE

- WMEMEA AWS Encryption SDK EAR NET B #TEXERFTHNFMEE
encryption-sdk FFEM aws-encryption-sdk-net B &,

i“ll
':iﬂh

28 GitHub Lt aws-

FE

« Z# AWS Encryption SDK B R NET &
- EEBAR NET AWS Encryption SDK Y
« AWS Encryption SDK iEAR .NET Ay £

Z % AWS Encryption SDK BAR® .NET &

AWS Encryption SDK B .NET 8 A[4EA NuGet FHJAWS . Cryptography.EncryptionSDKE

. MF/EBZREMEE AWS Encryption SDK BAR .NET By BIEFHERA , 528 aws-encryption-
sdk-netf@#FEFH README.md R

3.x iR

AWS Encryption SDK EAR .NET B 3.x iR & Windows £# .NET Framework 4.5.2 - 4.8,
T X BNEERMA EXE NET Core 3.0+ # .NET 5.0 REFHARA

4.x hR

AWS Encryption SDK EAR .NET #9 4.x lxx#& .NET 6.0 &1 .NET Framework net48 & B #Thx
Ko 4x REEBARM .NET v3 B9 AWS SDK,

SDK for .NET BME& KA AWS Key Management Service (AWS KMS) €8 , AWS Encryption
SDKEAR .NET) #FE . ©HE NuGet EfF—i2R%K. T1B , BRFEHEA AWS KMS i , BAI
AWS Encryption SDK BAR NETH FEZE . AWS IRF AWS BHEREEM AWS REHWES, 0
EERE AWS IRFHIEREE , 52 B AWS Encryption SDK &8 £/ AWS KMS,

E$EE A .NET AWS Encryption SDK #J

AWS Encryption SDK for NET A &E£ T HF. for AWS Encryption SDK .NET A SIAR R EE
EFIARRAL , EFSEEHEBEENR,

ATHBEESE | BHESE DEUEEE SDK for NET, B9 BEMEERFS SDK for NET A5 EhIE
B hEAMEEER SDK for NET B2 AWS Encryption SDK B A NET # hiEEER, WME SDK

for NET fC8.HIRAA , 5558 (AWS SDK for NET B3 AE1ER) F# AWSLogging. (EEEE
T8, FEMBABLAEERE NET Framework AR EE.)

ZHEMES 219

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme
https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS Encryption SDK HEABEE

AWS Encryption SDK B AR .NET # &5 45l

T 58558 REHR AWS Encryption SDK B AR NET # ETRENREBAEANERREEENR, &
BmE , £ TER{L AWS Encryption SDK M B ERENE, A& , FHRWUESERZEZH ,
BRI ETEECERESHENE A, SEEE PFEANGEERXIEEHEL SDK for NET,

WMERETAAE FEREZEEH AWS Encryption SDK , SIINig EBRREEZEHS. REMBNE
A&\ UREA AWSKMS ZEiF & , F2[E 52E AWS Encryption SDK,

mEMEA AWS Encryption SDK BAR NET ¥y ETEXRFTNWEZEH , 5528 GitHub L&
Faws-encryption-sdkEaws-encryption-sdk-net B #&™FH &6,

£ AWS Encryption SDK @AM .NET # iz & ¥

LEHIBRMBERNELEN, EEEAZ—E AWS KMS 2R REAFBNER SRR MEZNEE

==

<o

SE 1 : #1781t AWS Encryption SDK M RHEEERENE,

B, #7188t AWS Encryption SDK I EHEHEREXE, BAEER FHEER AWS
Encryption SDK MZEMBRER . BiEERAMBHREEEXNEPN G EREIL keyring , LAIEER
LSBRBEEMNER,

#1781 AWS Encryption SDK M g2t EEXEMN A , £ AWS Encryption SDK &
B .NET B MR 3.x Ml 4.x 2BBEFIFR. BEAR .NET B 3.x A 4 AWS Encryption SDK .x kix#J
B TS BREHEE.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders(

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

&4l 220

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK HEABEE

SEE 2 : B keyring BN A Y4,

BRI keyring WA ZHELHENBAYWHER. fln , EERT
CreateAwsKmsKeyring() FEMBAYMY , FBE I CreateAwsKmsKeyringInput$EBIH 1T
e,

BIfELE keyring VB AKRIEEELZR SR , KmsKeyId BBIEENE— KMS £RNAEERE
R, CEELYMEMBRERNER SR,

LB A E KMS £48 AWS [E1F #9 AWS KMS A Fi, BEERI AWSKMS AFH , 5
£ h#ITEEE{L AmazonKeyManagementServiceClient#&3 SDK for .NET, ﬂ?ﬂll‘ﬁﬁ’i‘%l

#AmazonKeyManagementServiceClient() EEHNELE I EFEREN A iR,

FERAREA AWS Encryption SDK for .NET MNZ# AWS KMS keyring # , 2RI SAEA £ ID.
@88 ARN, BIEEBBREIA ARN il KMS €88, £RARMBZEN AWS KMS keyring &, %
AFEALHE ARN REBIEE KMS €58, MESITEEEFRANER keyring EITHR | FAMAE
KMS €& A &8 ARN BB,

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

SE 3 B keyringo

EER keyring , B A keyring B A keyring B 3%, LLEIHIEH
CreateAwsKmsKeyring() A% , SEE—E KMS £,

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

R4 ERBMBEARR.

MEREZZEAN , BREERTE FETEBRZRME AWS Encryption SDK, BAINERZ—H %
BEERBSB/EY,

&4l 221

AWS Encryption SDK

FMBABER

® Note

{# A8 A A AWS Encryption SDK .NET B 4.x iR , A AEEBFREMZAS CMM KPR
BENBRFERPERMBRAR,

// Define the encryption context
var encryptionContext =

{

new Dictionary<string, string>()
{"purpose", "test"}
i

HER 5 B ARMBEA @AY,

il Encrypt() B ZEZE , AR EncryptInputFERIMEIT{ERE.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

HER 6 BT,

/8 B Encrypt ()% AWS Encryption SDK |, fEFBEZEM keyring INFH X F,

Encrypt() FEEEEncryptOutputty EFEEMEF L (Ciphertext), MBRBFNEEE
EHMNE L,

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

HER7 : MEMENAR.

AWS Encryption SDK BAR .NET 8 FH Decrypt () A EHAEncryptOutput#1T{E
BCiphertextf R &,

gl

222

AWS Encryption SDK HEABEE

EncryptOutput ##CiphertextfKERMENIAL , ER—ETEXYH , EhISNEN
R, NMENERNSHRNPEER , S ENZERT. EUNZSHEMBHNASFH—BRER , &
HBEERZE Decrypt () FELUERMNE,

var encryptedMessage = encryptOutput.Ciphertext;

£ AWS Encryption SDK BAR .NET B F L BRBERXFEH

REEXERCETARBZERNNEIR , UHREBABRKERXNEE, AWS Encryption SDK Ef#
FBTE keyring FIEEM KMS €SB RBEMBEXF. BE keyring P SRS BT EEL —BAMEE
R<is,

I 25451 78 7R AWS Encryption SDK for NET EBREER THBZHNESER,
SE 1. HITIEBE/L AWS Encryption SDK #EHEEEREX E,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

SEE 2 B3 keyring BV A Y4,

EEIETE keyring AN S8, SBESNEAYH. AWS Encryption SDKBAR NET 9 FE
8 keyring F =R EH EMNE A Y. BRLLEFIFER CreateAwsKmsKeyring () HERE
keyring , Rt E@#TEE{LE AR CreateAwsKmsKeyringInput$EHl,

A% keyring |, BAEFEA S ARN REE KMS £,

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

$E 3 B keyringo

EEBEVMR keyring , WEIHIEFE A CreateAwsKmsKeyring () A 3EM keyring 8 A ¥4

&4l 223

AWS Encryption SDK HEABEE

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

SR 4 B AREZNEWAYT.

EEE Decrypt () FENBAYHY |, BHITERIL DecryptInput$Eil,

DecryptInput() BHEEM Ciphertext 2HEHRAEncrypt()HEER
BEncryptOutput¥#FCiphertext &, Ciphertext BHARMENILE , HPEE BEA
BEFENMNBESR, MENERSWMPEZR AWS Encryption SDK .

EABAR NET # 4 AWS Encryption SDK .x iR , Bl LAEAZAEncryptionContext28E
Decrypt() HEHRIEEMERE,

£/ EncryptionContext SERRBREFANRMNEBNINZEAR DTS ETARMBE N FHINE
RAEH, MREFEREELEHRERE , AINFEREEZLZENH , SMEE AWS Encryption SDK
FEZEMEAR , BEBUEE,

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = encryptedMessage,

Keyring = keyring,

EncryptionContext = encryptionContext // OPTIONAL
};

TR5 BEMEXF,

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

SE6: REBFEMBRAS - 3.x IR

AWS Encryption SDK BA .NET B 3.x lkDecrypt () FEFERAMBAR, CERMBALS
PP EERDRSNZEARE. T8 , EEESFEAMXFZE , REEKIREARBRINEX
FHNBZRAREETELEMZFRENNIBZRE,

BERARNBENMZARSEEARBENMZEXFTHNBERBTY, IREERAEELENHBEER
Z HInFEREEEEN | Si5EY AWS Encryption SDK 8 EMBRRE , B R/EBNUERE,

// Verify the encryption context
string contextKey = "purpose";

gl

224

AWS Encryption SDK HEABEE

string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
|| 'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

£ AWS Encryption SDK for NET A %K keyring #1T#R %

BRTYIEEARBEN KMS €824\ , BETLUIRME AWS KMS 3 keyring , ER —ERIEEEM
KMS €381 keyring, ¥R keyring 15 £ MK EM KMS £38 AWS Encryption SDK R % &
B, IREREAHSBEEMEN, SHEREER , FMERRGREG , URFITARIEES S
[E AWS IRF 9 KMS €8,

for AWS Encryption SDK .NET 12 EARKIREK keyring , EE AWSKMS AAFl , UREERIEE—
R ZE NIREZ keyring AWS EiF, AFRMNESFSRH TARBEMBAEN KMS 8. W1E
keyring KV A Y14 EER ARV IR RER B R4

THIEE BT RER AWS KMS 1R keyring M IRRENZIRH B R ERNER,
HEE 1 #1T1EE{L AWS Encryption SDK M A EHEEERRE,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

HEE 2 B keyring N A Y4,

EEIBTE keyring FENSE , BESEMAYH. AWS Encryption SDK B NET #9 RV FE
keyring 52 EEHEN AW . BHRLLEHIFER CreateAwsKmsDiscoveryKeyring() a3k
REI keyring , Bt EHTER{LE AN CreateAwsKmsDiscoveryKeyringInput$Eal.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

{

&4l 225

AWS Encryption SDK HEABEE

AccountIds = accounts,
Partition = "aws"

};

$EE 3 : B keyringo

EEEITHER keyring , WLEHIEFEH CreateAwsKmsDiscoveryKeyring () 3EH keyring &
AV,

var discoveryKeyring =
materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

HER 4 B ARBEZNEWAYT.

EERY Decrypt () HENBAYH |, BHITHEEE DecryptInput$ERl, Ciphertext S8
{ER Encrypt() A EEE ZEncryptOutput P CiphertextWK &,

FEABAR NET # 4 AWS Encryption SDK .x iR , B LAEAZAEncryptionContext28E
Decrypt() AZEHFEEMERE.

£/ EncryptionContext Z2ERRBREFANNEZNNZARRE T SEANERNZR L ENMNE
AAH, MREFEREELIEHEESEE AINFEREEEZEN , 2i5E % AWS Encryption SDK
MEZENHERE , BRBNEE,

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = ciphertext,

Keyring = discoveryKeyring,

EncryptionContext = encryptionContext // OPTIONAL
};

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

SRS BREMBRAR -3.x R

AWS Encryption SDK B .NET 8 3.x fxDecrypt () FEFEE LEANER
ADecrypt(). EEBRMEASFNPREERNNEBNBARE, T8 , EERSEAMFZH ,
REBERKRBREARBENEXFNNZARREEELEMERREENMNBERS,

&4l 226

AWS Encryption SDK HEABEE

BERARNBENMZARSEEARBEMZEXFTHNBERBTY, IREERAEELIENH RS
Z FImFEREEEEN | Si5EY AWS Encryption SDK 8 EMBRRS , B R/EBNUEE,

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)

|| !'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

AWS Encryption SDK for Go

AREERP MM Z MR AWS Encryption SDK for Go, #1ZEfH AWS Encryption SDK for Go i#
TRARFTHFMER , 28 GitHub L aws-encryption-sdk f#ZEM go B 8%,

AWS Encryption SDK for Go B2 #y — e H X 5E 5155 5 B1E AWS Encryption SDK B TR :

- FXEEREBREL, FiB , AWS Encryption SDK for Go ZEAWS KMS FEE R keyring , ERH
RN EBRZERIRIER S R

° ;Ffiﬁgaﬂumﬁ§*4

AWS Encryption SDK for Go @& 2.0.x lRFMEFMRAP S| AWNFIELETIEE , Uk WEMESEE
AWS Encryption SDK, Fif8 , tNR&EEH AWS Encryption SDK for Go REZH 2.0.x BIRAS 5 — 1@
ESEEFMBENER AWS Encryption SDK , B RERHABR B AL BR. NEFEEN , 2
B JN{AI 5] TE SR MY AR GE BUR o

AWS Encryption SDK for Go & Dafny AWS Encryption SDK A EmR , ER—BEXWRIFES , &
ANERPRESRE, BEFEEMANERS URAFREMNER. GREEXE , IEEBHEEN

Ih&E AWS Encryption SDK , LAFE{RIhAE IEREM
—S TR

- MEREBUAE PERERIEAEH AWS Encryption SDK , HlinisEHXEEEELH. REIMNERHN
EReil® , UREHA AWSKMS ZEFH S| , 55288 5%E AWS Encryption SDKo

Go 227

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK HEABEE

- MEREIAREMAFEA AWS Encryption SDK for Go HY &l , 55289 GitHub £ aws-encryption-
sdk RFEFH Go 4,

3]
. SRAELE
. B

FoIRAR
Z % AWS Encryption SDK for Go Z 8l , i@ EEE T 5 5T iR G4,
XM Go lR7A&

EAR Go ¥ EZ Go 1 AWS Encryption SDK .23 3 E # AR,

WMETHNEZE Go WFHMES , F2E Go ZE,

%

Wit

}

ZHEEHMRAE AWS Encryption SDK for Go, MIEZEFMEE AWS Encryption SDK for Go B & #H
B3 , 552 [GitHub £ aws-encryption-sdk f#1ZE#/ go B #9# README.md : /o

EERERIRAE
- &% AWS Encryption SDK for Go

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

- REZHREVRRHAERENE (MPL)

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

BEAR JAVA B9 AWS Encryption SDK

AEERPMARERFEH BHR JAVA B9 AWS Encryption SDK, WMEFEH #TENREFTHFMAE
F BEAR JAVA 9 AWS Encryption SDK , 528 GitHub L&) aws-encryption-sdk-java f#FE. 0
&= API X |, 552 E 1 Javadoc AR JAVA By AWS Encryption SDK,

SRR 228

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples
https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK HEABEE
FE
o FRIRHE

- RE

« BARM JAVA B9 AWS Encryption SDK &4l

Jo IR (R
T8 2 a1 BARK JAVA B9 AWS Encryption SDK , :EEERE T 5 iR H
Java FRIRE

BEEE Java 8 REFRAE, 1£ Oracle It £ , BE Java SE T 5 , RETHI %% Java SE
HEEH (JDK),

WMREEH Oracle JDK , MBS BT HIZEHE Java Cryptography Extension (JCE) Unlimited
Strength EEREBERE R,

Bouncy Castle

BEAR JAVA B AWS Encryption SDK ZEZ Bouncy Castle,

- EAR JAVA H§ AWS Encryption SDK 1.6.1 iR M1 E#ThR A< £ Bouncy Castle RF 5L FE R
FHMt R GmEYH. T LEH Bouncy Castle 5 Bouncy Castle FIPS i ER, MER
FERE Bouncy Castle FIPS HIEREA , 2B BC FIPS ¥ , AHRFERAEREENLZEHERA
PDF,

- Bl EARM JAVA B9 AWS Encryption SDK £/ Bouncy Castle Ky Java B Z1EiR=E APl, R
A3k FIPS Bouncy Castle F#gm B ILER,

MR R A Bouncy Castle , &8I E T & Bouncy Castle for Java FTEH¥EZE JDK HIRHERR,
&l LAE A Apache Maven JRERSHZ% Bouncy Castle #2#t#& (bcprov-ext-jdk150n) BB @R
Bouncy Castle FIPS (bc-fips) B X Mo

AWS SDK for Java

3.x WX BAR JAVA B AWS Encryption SDK Z AWS SDK for Java 2.x , BIfEEFEHR AWS
KMS keyringo

2.x iR E RARAH BAK JAVA B9 AWS Encryption SDK AFEE AWS SDK for Java, i3 ,
AWS SDK for Java % BEHA AWS Key Management Service(AWS KMS) A &Rt &, ©®

TORIRE 229

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/

AWS Encryption SDK HEABEE

7

2.4.0 AR JAVA B AWS Encryption SDK hxBE% , BAR JAVA B9 AWS Encryption SDK X &
1.x B 2.x fixBY AWS SDK for Java 1.x Ml 2.x R#Y AWS SDK for Java AWS Encryption SDK 1.x
M2xRATER, flan, BELERZE AWS SDK for Java 1.x B AWS Encryption SDK 23\ 1%
RmmER WEALE WEXNBERBZER AWS SDK for Java2.x (RZIR) . 2.4.0 BAR
JAVA B AWS Encryption SDK Z BI#Y MRAE X B AWS SDK for Java 1.x. HIFEFEFT MRAHFFAH
&F AWS Encryption SDK , 5528 E#Z &/ AWS Encryption SDK,

EAR JAVA B AWS Encryption SDK F2X it AWS SDK for Java 1.x E#i 4 B AWS SDK
for Java 2.x , 55#% AWS SDK for Java 1.x FAWSKMST EIZZWMMR A FHWKnsClient N ES

#Z AWS SDK for Java 2.x. B JAVA B9 AWS Encryption SDK F3%#8 KmsAsyncClient 5
Ho, o, EFHEHNERNBUMER kmssdkv2 n B Z B AWS KMSHBYIH |, TIE kms @58

E’ Faﬁ [

EEBZ 4 AWS SDK for Java , & H Apache Maven,
« HEMEAE{E AWS SDK for Java tEAHEEKME , B pom.xml E#RFEFE,

- ZE{EA AWS SDK for Java 1.x) AWS KMS AR MK , BEREEESEEENTE
A, YA artifactId RER aws-java-sdk-kms,

- HEEAR in AWS SDK for Java 2.x FH AWS KMS BB E KM |, FEBEEEHEEENTE

S

Ro #& groupld FREA software.amazon.awssdk , #§ artifactIdERES kms,

MEFELEE F2E (AWS SDK for Java 2.x BE ASIER) T/ AWS SDK for Java 1.x
2x ZEMER,

{ AWS Encryption SDK FiZ A E358) F#Y Java €HIERA AWS SDK for Java 2.x.

%

LZEEHRAR BAR JAVA B AWS Encryption SDK,

(® Note

FrE EAR JAVA B AWS Encryption SDK £ 2.0.0 B9 MR A EBEE A end-of-supportP& Bz o
WAL 2.0.x IRFIEFHRALZ £ EHERTRAN , BAR JAVA B AWS Encryption
SDK MAZELFAMEANBRER ., T8 , 2.0x RHEIANFZLIIERBEPFAEE, &
ER1.7x ZATHMAEHZE 2.0x REFMRE , BLEALEFERFH 1 AWS Encryption
SDK.x lRAx, MNFFMER , F2EEREH AWS Encryption SDK,

230

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

BAILLER EA R JAVA B AWS Encryption SDK TRl AR =8 ,

FE

EEZRE BAR JAVA 15 AWS Encryption SDK , FFE R = T & aws-encryption-sdk-java GitHub
RFE.
{# F Apache Maven

AEBEA TSI MEERN Apache Maven iBAR JAVA 9 AWS Encryption SDK £,

<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-encryption-sdk-java</artifactId>
<version>3.0.0</version>

</dependency>

ZEPERBEMH R, FAEFAEEHNES Java XM GitHub E#Y Javadoc.

#ERAR JAVA B9 AWS Encryption SDK ZE 4

THIEFIREBIMEER BAR JAVA B9 AWS Encryption SDK ZRINZ AR E R, ELEHHIRE
R 3.x AIRFIEFARA BAR JAVA B9 AWS Encryption SDK, 3.x i B R JAVA B9 AWS
Encryption SDK FZ AWS SDK for Java 2.x. 3.x RfEF keyring EAR JAVA B9 AWS Encryption
SDK MR E&miR it E. MEFAERNED , 528 GitHub L aws-encryption-sdk-java 7 EH
RAEE,

ES-]

o DN AN E 2R o R

« EMBEZNMITHBER

« EAZE keyring HNER M #F 2 {1 TTAE &R

hnz Mg = = &R

THIgEFIREB A B 3.x i BAR JAVA B AWS Encryption SDK RINZMFEZFH, EAFH
ZHl, EREER LA TERES,

LLE IR AWS KMS keyring, E#&#E A AWS KMS keyring T8 |, BAILIEA S ID. €88
ARN, BIEBBIEIE ARN K5I KMS €88, BERK , BXEEATE ARN REEI KMS €8,

&4l 231

https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases
https://github.com/aws/aws-encryption-sdk-java/releases

AWS Encryption SDK HEABEE
B encryptData() FEKR , T®EREMZEAL (CryptoResult) , EFAIEMBEXF. N

RHWERSBANMBEANAS, ERE CryptoResult ¥4 LMY getResult B , E2EEE MEH
EW base-64 fmiGEF BMA , B LS HEEL decryptData() FiZ.

B , EEMFI KrdecryptData() , HEEMNCryptoResultYHEBEMXFHAEF AWS
KMS key ID, EEABENERMNF 28] , BREZMBAESFRH AWS KMS key ID FNZERE 2 EFT
FEEINY,

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

import java.util.Collections;

import java.util.Map;

/**
* Encrypts and then decrypts data using an AWS KMS Keyring.

*

* <p>Arguments:

*
* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
customer master

X key (CMK), see 'Viewing Keys' at

& http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
*

*/

public class BasicEncryptionKeyringExample {

private static final byte[] EXAMPLE_DATA = "Hello
World".getBytes(StandardCharsets.UTF_8);

&4l 232

AWS Encryption SDK HEABEE

public static void main(final String[] args) {
final String keyArn = args[0];

encryptAndDecryptWithKeyring(keyArn);
}

public static void encryptAndDecryptWithKeyring(final String keyArn) {
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with a
committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto =
AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create an encryption context

// We recommend using an encryption context whenever possible

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

g5 233

AWS Encryption SDK HEABEE

// 4. Encrypt the data

final CryptoResult<byte[], ?> encryptResult =
crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);

final byte[] ciphertext = encryptResult.getResult();

// 5. Decrypt the data
final CryptoResult<byte[], ?> decryptResult =
crypto.decryptData(
kmsKeyring,
ciphertext,
// Verify that the encryption context in the result contains the
// encryption context supplied to the encryptData method
encryptionContext);

// 6. Verify that the decrypted plaintext matches the original plaintext

assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);
}

D20 fR 28 T AR BB IR
T 5 &) R EF A E FH AWS Encryption SDK 3R i1 %3 # #2221y T A B o

Lt &I A R 15 AES keyringo

e | WEHEFER AwsCrypto.builder() .withEncryptionAlgorithm()J
EREERBENEENEELZEN., BER , ATHRNEXFAREE , LS ER
createUnsignedMessageDecryptingStream() A&, MRBEEEBNEENNZXF , H
createUnsignedMessageDecryptingStream() A &8 kM.

MREFEADEBNEENTEEELEHETMNE , FHH createDecryptingStream()F &
M — @& BIFT R

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;

k

gl

234

AWS Encryption SDK HEABEE

import com.amazonaws.encryptionsdk.jce.JceMasterKey;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;

import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.nio.ByteBuffer;

import java.security.SecureRandom;
import java.util.Collections;

import java.util.Map;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

/**
* <p>

* Encrypts and then decrypts a file under a random key.

* <p>

* Arguments:

*

* Name of file containing plaintext data to encrypt
*

* <p>
* This program demonstrates using a standard Java {@link SecretKey} object as a {e@link
IKeyring} to
* encrypt and decrypt streaming data.
*/
public class FileStreamingKeyringExample {
private static String srcFile;

public static void main(String[] args) throws IOException {
srcFile = args[0];

// In this example, we generate a random key. In practice,
// you would get a key from an existing store
SecretKey cryptoKey = retrieveEncryptionKey();

g5 235

AWS Encryption SDK HEABEE

// Create a Raw Aes Keyring using the random key and an AES-GCM encryption
algorithm
final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateRawAesKeyringInput keyringInput =
CreateRawAesKeyringInput.builder()
.wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
.keyNamespace("Example")
.keyName (""RandomKey")
.wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAGl6)
.build();
IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

// Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

// This example encrypts with an algorithm suite that doesn't include signing
for faster decryption,

// since this use case assumes that the contexts that encrypt and decrypt are
equally trusted.

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

// Create an encryption context to identify the ciphertext
Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

// Because the file might be too large to load into memory, we stream the data,
instead of

//loading it all at once.

FileInputStream in = new FileInputStream(srcFile);

g5 236

AWS Encryption SDK HEABEE

CryptoInputStream<JQceMasterKey> encryptingStream =
crypto.createEncryptingStream(keyring, in, context);

FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
IOUtils.copy(encryptingStream, out);

encryptingStream.close();

out.close();

// Decrypt the file. Verify the encryption context before returning the

plaintext.

// Since the data was encrypted using an unsigned algorithm suite, use the
recommended

// createUnsignedMessageDecryptingStream method, which only accepts unsigned
messages.

in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<JceMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(keyring, in);

// Does it contain the expected encryption context?

if
(!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Exampl
{

throw new IllegalStateException("Bad encryption context");

// Write the plaintext data to disk.

out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);
decryptingStream.close();

out.close();

/**
* In practice, this key would be saved in a secure location.
* For this demo, we generate a new random key for each operation.
*/
private static SecretKey retrieveEncryptionKey() {
SecureRandom rnd = new SecureRandom();
byte[] rawKey = new byte[16]; // 128 bits
rnd.nextBytes(rawKey);
return new SecretKeySpec(rawKey, "AES");

&4l 237

AWS Encryption SDK HEABEE
5 2 E keyring INZ M EZ ST BT

TSI &l R E 247 AWS Encryption SDK #&EL % keyring B . EAZE keyring RINFBE R , HE
1] keyring FIVEBE SIS UM BEZER . LLEHIFER AWS KMS keyring R RSA keyring
EHF keyringo

LEFIERFEREEEAEHME EhESBUEE. BRE , SETEMRECR BERIHN
FE 2/l AWS Encryption SDK B{THX F, ATEBESERERECHERAMXT | LEfISEEM
NF, W R RREE N B R 5T A B R AR RR

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoOutputStream;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import software.amazon.cryptography.materialproviders.model.PaddingScheme;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.nio.ByteBuffer;

import java.security.GeneralSecurityException;
import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.util.Collections;

/**
* <p>

* Encrypts a file using both AWS KMS Key and an asymmetric key pair.

*

* <p>

g5 238

AWS Encryption SDK HEABEE

* Arguments:

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,

& see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html

*

* Name of file containing plaintext data to encrypt

*

* <p>

* You might use AWS Key Management Service (AWS KMS) for most encryption and
decryption operations, but

* still want the option of decrypting your data offline independently of AWS KMS. This
sample

* demonstrates one way to do this.

* <p>

* The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair

* so that either key alone can decrypt it. You might commonly use the AWS KMS key for
decryption. However,

* at any time, you can use the private RSA key to decrypt the ciphertext independent
of AWS KMS.

* <p>

* This sample uses the RawRsaKeyring to generate a RSA public-private key pair

* and saves the key pair in memory. In practice, you would store the private key in a
secure offline

* location, such as an offline HSM, and distribute the public key to your development
team.

*/
public class EscrowedEncryptKeyringExample {

private static ByteBuffer publicEscrowKey;
private static ByteBuffer privateEscrowKey;

public static void main(final String[] args) throws Exception {
// This sample generates a new random key for each operation.
// In practice, you would distribute the public key and save the private key in
secure
// storage.
generateEscrowKeyPair();

final String kmsArn = args[0];
final String fileName = args[1];

standardEncrypt(kmsArn, fileName);
standardDecrypt(kmsArn, fileName);

g5 239

AWS Encryption SDK HEABEE

escrowDecrypt(fileName);

private static void standardEncrypt(final String kmsArn, final String fileName)
throws Exception {
// Encrypt with the KMS key and the escrowed public key
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

&4l 240

AWS Encryption SDK HEABEE

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =

CreateMultiKeyringInput.builder()

.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();

IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Encrypt the file
// To simplify this code example, we omit the encryption context. Production

code should always

crypto.

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName);

final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");
final CryptoOutputStream<?> encryptingStream =
createEncryptingStream(multiKeyring, out);

IO0Utils.copy(in, encryptingStream);
in.close();
encryptingStream.close();

private static void standardDecrypt(final String kmsArn, final String fileName)

throws

Exception {
// Decrypt with the AWS KMS key and the escrow public key.

// 1. Instantiate the SDK.
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt

commitment policy,

// which means this client only encrypts using committing algorithm suites and

enforces

// that the client will only decrypt encrypted messages that were created with

a committing

client.

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS

gl

241

AWS Encryption SDK HEABEE

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsMultiKeyringInput keyringInput =

CreateAwsKmsMultiKeyringInput.builder()

.generator(kmsArn)
.build();

IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");

// Since we are using a signing algorithm suite, we avoid streaming decryption
directly to the output file,

// to ensure that the trailing signature is verified before writing any
untrusted plaintext to disk.

final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(multiKeyring, plaintextBuffer);

I0Utils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

&4l 242

AWS Encryption SDK

FMBABER

final ByteArrayInputStream plaintextReader = new

ByteArrayInputStream(plaintextBuffer.toByteArray());

IOUtils.copy(plaintextReader, out);
out.close();

private static void escrowDecrypt(final String fileName) throws Exception {
// You can decrypt the stream using only the private key.
// This method does not call AWS KMS.

// 1. Instantiate the SDK
final AwsCrypto crypto = AwsCrypto.standard();

// 2. Create the Raw Rsa Keyring with Private Key.
final MaterialProviders matProv = MaterialProviders.builder()

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
final CreateRawRsaKeyringInput encryptingKeyringInput =

CreateRawRsaKeyringInput.builder()

.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.privateKey(privateEscrowKey)
.build();

IKeyring escrowPrivateKeyring =

matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 3. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.
final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");

final CryptoOutputStream<?> decryptingStream =

crypto.createDecryptingStream(escrowPrivateKeyring, out);

I0Utils.copy(in, decryptingStream);
in.close();
decryptingStream.close();

private static void generateEscrowKeyPair() throws GeneralSecurityException {

gl

243

AWS Encryption SDK HEABEE

final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
kg.initialize(4096); // Escrow keys should be very strong

final KeyPair keyPair = kg.generateKeyPair();

publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

B JavaScript B9 AWS Encryption SDK

EAR JavaScript B AWS Encryption SDK E £ &7 JavaScript Fi#2E Web BB EARE X FH
ABDHE Node.js FIRE Web IR EARXNHAZASRMEAFIEMBERENE,

B2 MFT BB E—#& AWS Encryption SDK , B JavaScript 8 AWS Encryption SDK 12 i fE &
RRENRE, BLIIRESTFEEIMNE. BHANRIER (AAD) kRS, CRBENHBREELE
| Blan 256 77T AES-GCM #E S BITEMESE,

RIBZESHRES , WA ETESE/E AWS Encryption SDK #Ek5tARTHEE, WME JavaScript EES
FRAEIMEEMAER , 552 the section called “AHAM”,

— ST

:l:llh+

- WMEFER ETRENRTWEMENR BAR JavaScript B9 AWS Encryption SDK , 5528 GitHub E

B9 aws-encryption-sdk-javascript f1ZE.
o MFEREXKZFTEH , 5526 the section called “&i3 4" H aws-encryption-sdk-javascript f&FEF Y
example-browser 1 example-node 1,

- MEMFEH BAR JavaScript B AWS Encryption SDK £ Web ERRER P INBERNEEEH |, 5
S0 AWS 2 EBEHE P /Y a4 A B AR JavaScript B9 AWS Encryption SDK 1 Node.js £ 2%
22 PR MNE,

&

- WAEAM BAR JavaScript B AWS Encryption SDK
« % BAR JavaScript B AWS Encryption SDK

- FRRYIELR B A JavaScript B AWS Encryption SDK
« BAK JavaScript B AWS Encryption SDK &i4l

JavaScript 244

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK HEABEE

A M AR JavaScript B9 AWS Encryption SDK

EA R JavaScript B9 AWS Encryption SDK E1£EE W HMEE S BEEE AWS Encryption SDK, X
ZEBRT , B LER B ER BAR JavaScript B AWS Encryption SDK , S R{E R EAhEE
SEFEBZER , @ AWS Encryption SDK a5 5 57 H. &t r]LAEA BARK JavaScript B AWS
Encryption SDK Rf##% HthFE S BHEPTE LR INZEFAE AWS Encryption SDKo

FiB , B&6EH & EARM JavaScript 89 AWS Encryption SDK , 8REZE X & JavaScript B S B1EM
Web BIESRHPH —LHEAEREE,

WA FERTFENESEER BEAREHENEISRIEME. TL8BF keyring. MEFMENR |
52 BKeyring A M,

B R JavaScript B9 AWS Encryption SDK &1
/9 JavaScript BFERHE 138 S EE AWS Encryption SDK & , AR :

- KN R4E BAR JavaScript B9 AWS Encryption SDK A E2EE K MBXF, TiB , BH
1 JavaScript B9 AWS Encryption SDK 2% HtFE S EEEENERMIEELRNE X F AWS
Encryption SDK.,

 # Node.js HR4x 12.9.0 B% , Node.js T ELLT RSA £i83 %811 .
- BB SHA1, SHA256, SHA384 = SHA512 #J OAEP
- BA SHA1 #J OAEP f1E%H SHA1 By MGF1
« PKCS1v15
« TERMRZA 12.9.0 ZH , Node.js EEX BT RSA R TEEE .
- BA SHA1 #J OAEP fE%& SHA1 Y MGF1
« PKCS1v15

BERAAN

L Web BIBESRTXE BAR JavaScrlpt # AWS Encryption SDK FrEEHN E R R RZFRIE, &7
LLEIBBIEBESE M WebCrypto API 5% E fis F R A 0 E IRV R 1,

Web 2% 25 R &l
THRHI DA Web BIEREA :

« WebCrypto APl 7% & PKCS1v15 £#3%,

HEM 245

AWS Encryption SDK HEABEE

- BERTIZE 192 A&,

VBN R BRFRE

1£ Web BIE2S | B M JavaScript B AWS Encryption SDK EE TR E, MRBIERTFZEE
iRt | BIe B @AM JavaScript B9 AWS Encryption SDKHE R

- BB MNBEE crypto.getRandomValues() , ER—EBURBHmEHNEEBEREN T *.
MFEFEXE crypto.getRandomValues() Z Web BIEBRMAMNEREN , FSEE AT UER
crypto.getRandomValues() ¥ ?

B

AR JavaScript B9 AWS Encryption SDK FEE7E Web BBSRFHT T IEXENRE, MREXE
FREEELERN Web BB |, AIXARERA. &8, E5 BAR JavaScript B AWS Encryption
SDK #EBIESEER HE XK.

- B Web BARKXPITEERRHRZIRIEN WebCrypto API , W3FR[EFTARIER LER, WF
X & Web RiFimFN Web BIERHRANEBEN , F2 Eﬂ?&'—ll«,{fiﬁﬁ Web ZiEHRZES ? o

« Safari Web BB IR A MRA T 2 AWS Encryption SDK FrEEM E st AES-GCM %, R
BIE 23 E/E WebCrypto API , {BE;%EFEF AES-GCM ZE{ 7t |, Bl R BA R JavaScript B
AWS Encryption SDK ﬁﬁﬁfﬁﬁﬁz‘t@Lﬁiﬁﬁ:%ﬂbﬂ'&"o T e A WebCrypto API 1T A Hith
BYE,

EREE-—RENER , BB TIRRANFBEEWERNIE, £ configureFallback EE(F | #5
Ei%lﬁﬁlﬂ ENRERNE, THEH/EEH Microsoft Research JavaScript Cryptography Library
(msrcrypto) , BEREAMULMEANERXERR T, NETEEHHF , 2 [fallback.ts,

import { configureFallback } from 'eaws-crypto/client-browser'
configureFallback(msrCrypto)

Z % B R JavaScript B9 AWS Encryption SDK

AR JavaScript B AWS Encryption SDK B &M EKFHEENES. BEHEPHHERIRFRTE—E
EBENBEES, BoEAREABILEEMRGT. —‘tb*E%E?E&FﬁﬁﬁﬂfFﬁ% — LR 4E R A R 45 5k
&M, MEHE AWS Encryption SDK B AR JavaScript B FEENEN , B2 PEHE BAR

= 246

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts

AWS Encryption SDK HEABEE

JavaScript B AWS Encryption SDKH GitHub £ aws-encryption-sdk-javascript &1z B & & {E &4+
Ay README.md &%

(@ Note

P SBAR JavaScript B9 AWS Encryption SDK B 2.0.0 B9 iR ZA#BEE M end-of-support P&
B

IBE AL 2.0.x IRFIEFRAZ £ EF ERFRAL , BAK JavaScript B AWS
Encryption SDK MAFZEEFEMEXBRER . T8 , 2.0.x R 5IERN L £ e AR
PHE. BEER 17X ZBNREAEFRE 20X REFRA , BLBEEHFZHFN 1 BAR
JavaScript # AWS Encryption SDK.x k&, WMFEFHMEF , FSREERBEHN AWS Encryption
SDKo,

BEREER , BEM npm EHEETE,

flan , EERFEclient-nodetEfl , HP B EFEH Node.js AR JavaScript B AWS Encryption
SDK K #ITRARFIFENAEEE , FEA TGS

npm install @aws-crypto/client-node

ngtézcllent browsert&ff , HHA I EERIEE BAR JavaScript B AWS Encryption SDK A
A ETRARFAMENMEER , FEATIHS,

npm install @aws-crypto/client-browser

MEMMAEA §9 TS BAR JavaScript B9 AWS Encryption SDK , 5528 GitHub £ aws-
encryption-sdk-javascript @7 EH example-node#l example- browser*ﬁﬁﬂqﬂﬂ’ﬁﬁ{’iﬂo

RRYELR B AR JavaScript B AWS Encryption SDK
FRYRELE B AR JavaScript B9 AWS Encryption SDK A B8R L HERFAENERE,
JavaScript Node.js Byt #H

client-node

A& Node.js i AR JavaScript B9 AWS Encryption SDK H) # TR R R FIENIEE
#H,

184 247

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node

AWS Encryption SDK HEABEE

caching-materials-manager-node

fE 4 3 #£ Node & JavaScript B9 AWS Encryption SDK .js 1 &l & i 1R EUThREM B B,
decrypt-node

EHERRITRBARERMERTOMNBZASNEE, ZEE client-node EHEH,
encrypt-node

EEMZBNESTRBEENNEKEE, @EE client-node BIAF,

example-node

£ Node.js B JavaScript 89 AWS Encryption SDK F A [EHENRETH TEEH ., /TR
REEM keyring MR EEEBAVEHI,
hkdf-node

&t Node.js i A JavaScript B9 AWS Encryption SDK 1 4 EEE EZEH R FEHR HVAC 2
S8 OTE R E (HKDF), BB S BA R JavaScript 8 AWS Encryption SDK 1 #J {#/ WebCrypto
API Ry JE A HKDF B,

integration-node

EEAR | LI Node.js AR JavaScript B9 AWS Encryption SDK iy 25 HE WHMESE
YEFBZ AWS Encryption SDK,

kms-keyring-node

fE i % #£ Node.js 8 AWS KMS keyring BB,

raw-aes-keyring-node

fE 1 Node.js F X R AES keyring FIBRIEL

raw-rsa-keyring-node

P HH1E Node.js X &7 RSA keyring B &,

JavaScript BIE 31 EE

client-browser

‘BIFIIEBIERS AR JavaScript B9 AWS Encryption SDK H i ETRRNRAFIENFIER
8o

or | 248

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser

AWS Encryption SDK HEABEE

caching-materials-manager-browser

BE X BB E5 - JavaScript BRI &M IREUBEM B,

decrypt-browser

EHERRIBRIBARENNERRNMZRASNEE.

encrypt-browser

EHNBENEZETEEEERBRE,

example-browser

£BIE S BAM JavaScript B9 AWS Encryption SDK R {Ef TR TS, BETE
BAHY keyring MAREBER P EH],

integration-browser

EHAEE UUBRFRERDH BAR JAVA B9 AWS Encryption SDKIESERRE WEHMESEE
%A AWS Encryption SDK,

kms-keyring-browser

FE 4 £ 2B 38 St 2 AWS KMS keyring BB E,

raw-aes-keyring-browser

PE 7 BB 25 R SR B)5 18 AES keyring BV BB,

raw-rsa-keyring-browser

P 7 BB 25 R B)R 15 RSA keyring FIBR B,

BRARAEENER

cache-material

TEERSHBREIIGE, BUHAREBEHESEERN SRRV ZBFEEENNENE,
kms-keyring
BE tH 7 38 KMS keyring BI B

material-management

BEFEZHHREZEREES (CMM),

or | 249

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management

AWS Encryption SDK HEABEE

raw-keyring
P H R #4 AES 1 RSA keyring PTER S,

serialize

FEH SDK ARFFL Hia AR R,

web-crypto-backend

B HHERIESZH A WebCrypto API B R JavaScript B9 AWS Encryption SDK B &,

B R JavaScript B9 AWS Encryption SDK £i 4
LU &35 57 88 an] 55 R B A JavaScript B9 AWS Encryption SDK 3R N2 M i 2 & ¥,

&) LATE GitHub B R JavaScript B AWS Encryption SDK B aws-encryption-sdk-javascript & 12 &
#) example-node M example-browser AP KREELFEH &6, EERRE client-browser 5
client-node HHE , TERERIELHFIER,

ESETENERNGEES : 812 : kms_simple.ts , BIEBS : kms_simple.ts

S|
« A AWS KMS keyring 113 & ¥l
« fH AWS KMS keyring i@ % & ¥}

{5 AWS KMS keyring tn& & £l

T 56 R &8 an{aE A BA R JavaScript B9 AWS Encryption SDK R B MR %8 F RS T/l fE
5l

WEHIEH AWS KMS keyring , IER — & keyring , £ AWS KMS key RELEMMZE R £8, w0
FHEI WERA AWS KMS key , 752 B AWS Key Management Service B3 ABERM) PHNELS
i, WFETE AWS KMS keyring AWS KMS keys &5 BIFREA , 7528 £ AWS KMS keyring AWS
KMS keys F % 5l

HBR 1 REAEIK.

% 1.7 x WxBA%E WA R JavaScript B9 AWS Encryption SDK , &7 LL7E FEAL 41T {E B8 1 AWS
Encryption SDK A Eiw#9% buildClient NEBFER ERGEBUER, buildClient REREAYIL

gl 250

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK HEABEE

ERRREHAEBR, CEELEH encryptM decryptHE , EEMZMNBERIFREHTE
Y EGEBUR o

THEFIER buildClient HNEIRIEEFARAEHE
REQUIRE_ENCRYPT_REQUIRE_DECRYPT, ZtAILAE A buildClientREFIINZ AL FHIIIZR
BREREE, MEFMET , F2/Bthe section called “FREIIMBHNEL &8,

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

S8R 2 B8 keyringo
237 AR AWS KMS keyring.

8 AWS KMS keyring tIZEH | MM ERTELEZSW | b2 AWS KMS key FARE£#E
XFERSRAUBEMZEN . ZHAUEEESESIZEREANSH/RRNBEEHNEXFERS
i®, keyring 2% keyring AWS KMS key FVEE BRI FEN S BAZERN B NRE
X, BEELERTR, EEMRTEN , CEERTTA—EMZNER SR,

&4l 251

AWS Encryption SDK HEABEE

EER PIEEME keyring AWS KMS keys Y B R JavaScript 89 AWS Encryption SDK , #&7]
DERERZERN AWS KMS £if35I5. LhEfemEAELSSR (KAH ARN BAl) , AR —
AN S8/ (KE8/ ARN BB,

® Note

MREETEIEEFER AWS KMS keyring E1T#EZ |, BIXEFEA S ARNs K#B Bl keyring
AWS KMS keys F#Y

BITHERERNBE 28 , FAEEH] AWS KMS key BRIRFRA BB RWEE T, BLEEFE keyring
R AEA AWS KMS keysFr B EF Ao

JavaScript Browser

BRREENEAERIKBIERS. BARM JavaScript B AWS Encryption SDK #341& £ F
webpack.DefinePlugin , EBUZHNERZEAERRRBEAENEY ., BERETUERAETMEE
REHENEAER, RE , FARAERERI AWS KMS A Fif.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
D)

EE ETELSNSBNEMESE AWSKMS keys B . A% , FH AWS KMS M #iI
AWS KMS keyring AWS KMS keys,

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyld, keyIds })

&4l 252

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK HEABEE

JavaScript Node.js

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

BRI REMBEAR.

NEZARR—EEE. FLBREARITELN. ELENERREENZARNRE , AWS Encryption

SDK ZHBmEFERMNEBZABTREENEXT , ALFEMENMBEARS ERRER, FRAMER
RREMAN , BEMNERERCEAREER,

BUGENEARENEEN 4. SEHETNRSIBNELARTS,

JavaScript Browser

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}
JavaScript Node.js

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}
R4 MEER.
BEMEZEMFER , FHU encrypt BB BA AWS KMS keyring, #XFERMMBEAR.
encrypt HEEE@MEASR (result) , EFIEMENER, MENEHNESRNEZNPRE

B, BENBERBNEE,
A L E R T BRI ERETEES AWS Encryption SDK B 2R # 22 th i1 2R FA S,

JavaScript Browser

const plaintext = new Uint8Array([1l, 2, 3, 4, 5])

g5 253

AWS Encryption SDK HEABEE

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
context })

JavaScript Node.js

const plaintext = 'asdf'

const { result } await encrypt(keyring, plaintext, { encryptionContext:

context })

£ AWS KMS keyring B & ¥}
IETLAGE R B A A JavaScript B9 AWS Encryption SDK S Z BN AL ERFEHBE R

R EFIH BFISEBRIEPIE the section called “EH AWS KMS keyring I E R A INZENE
#o

HBR 1 REAHEIR.

1.7 x WxBA%A AR JavaScript 8 AWS Encryption SDK , #&8] LATE FE AL 1 1T {E B8t AWS
Encryption SDK A F iM% buildClient BB EREEE, buildClient HEBEHRAHIE
ERRRENAEBR, CEELEH encryptM decryptHE , EEMZMNBERIFREHITE
Y EGEBUR

THEFIEER buildClient BN ERIE EFE R AGE R
REQUIRE_ENCRYPT_REQUIRE_DECRYPT., ZtAILAE A buildClientREEFIINZ A S FHIINER
BERSERE, WEHMENR , 52 Bthe section called “[R&IMZHN ER S8,

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

&4l 254

AWS Encryption SDK HEABEE

)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

SR 2 . B keyring.

HEMBRER , FEAencryptHBELNMEAS (result), MBENASSEMBZNER, 0
ZNENSRIEENPREN S ENBARNEE,

BB | EXEIEE AWS KMS keyring, B SMEAARMBERHFE keyring #I48E
keyring, ZEERKIh , 8% keyring AWS KMS key R EDE — BN BREAB R IMBZASPHEF—
BNBER LB, ARTEELETAERLE BFREEEME keyring PIEEELR LR, MR
ICEEY , AELMHRARNEEELSRSBNENSE,

EEHE PIEEME keyring AWS KMS key B 1B R JavaScript ¥ AWS Encryption SDK , & 2478
EAEMW ARN, BEI , AWS KMS key FEEHFE . MFEE AWS KMS keyring AWS KMS keys
RER R WERER |, 2B £ AWS KMS keyring AWS KMS keys 755 Bl

(® Note
MR EERAMEER keyring RINBMFEZ | FEA LI ARNs K5l keyring AWS KMS
keys F#Y o

FEHESS | RPEILM keyring LEEINE keyring AWS KMS keys R E AR —1E . HIT
WRERIE 2 , EEEA £ ARN BERERH €88 ARN, BXHEEEF AWS KMS key £HY
kms:Decrypt & ™,

g5 255

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK HEABEE

JavaScript Browser

BRREENEAERIKBIERS. BARM JavaScript B AWS Encryption SDK #3451 & £ F
webpack.DefinePlugin , EBUZHNBEREAERRRBEAERNEY ., BRENUEAEMAEZE
REBHENEAER, RE , FARABREREI AWS KMS A Fif.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken

}
1)

EE | FH AWS KMS B FIwE I AWS KMS keyring. Lt EIHIE R AWS KMS keys 3R BN
% keyring BWEH—1@ ,

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })
JavaScript Node.js

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringNode({ keyIds })
SR 3 MEER,
ETR, Fi decrypt BB, EAZRIEINER keyring (keyring) Mencrypt B EEEH N
ZIA L (result)s AWS Encryption SDK #/ keyring REEZHh —EMBZNER &8, RETE

MRFWUKT , plaintext MUETEMNT (EFF) EB. messageHeader MU TEHEBMHE
BREFNTHEER K SRERAXRBEERNNERES,

g5 256

https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK HEABEE

JavaScript Browser

const { plaintext, messageHeader } await decrypt(keyring, result)

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

R4 BENEAR.

ARBEERNNNBEANBTSERE decrypt HEEERIMFASIEE (messageHeader) F., ERAIFE
ARXBREMAXFERZH , FEZBZENZERFTRUENNZEARTEERZRMEANMERAR
P, FTHETERIENEINER , RBRERBRERNMEZEXF,

RENZARE F2ERTLAYN, FANBEREEIRESER K ZEHESFENEES (CMM)
EEMBARZH , BLAERESRTEENTAR. AR , KRXVAENEZERTHHEXETE
EERNMZEARF,

B, A EEERENERE., AE , BRARBENBERER (context) PHBERSIBEHFTSE
B MNFEARNR (encryptionContext) FHRSIREY,

JavaScript Browser

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {

if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

b
JavaScript Node.js

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context

does not match expected values')

&4l 257

AWS Encryption SDK HEABEE

1)

MRMBARBERS , BRI ERMANFER,

BEA R Python B AWS Encryption SDK

AEBERPIMIRERFEH BEHR Python B9 AWS Encryption SDK, MEMFEA #TRENERETHEEM
B EAR Python B AWS Encryption SDK , 5528 GitHub L # aws-encryption-sdk-python &%
E. W% API X ¥ |, E2EEEMER S

ES |
- FRRM

- BE
« EAM Python B AWS Encryption SDK i X 15

5o IR (R4
L8t 25 AR Python B AWS Encryption SDK , SR EERE T 5l &R &4,
XM Python KR

3.2.0 WRFEF BA M Python B9 AWS Encryption SDK MRAZEE Python 3.8 B E#FT AR A,

@ Note

AWS ZiBim=MEHREEERERXE (MPL) £ 4.x i BAR Python B AWS Encryption
SDK 5| A2 WM. MREEERHE MPL , BIX%ZAEA Python 3.11 SEHThRAS,

B AWS Encryption SDK 18 Python 2.7 #l Python 3.4 REFA , ERZBEFEHARFTIREAN
AWS Encryption SDK,

EETH Python , 52 & Python T#,
EAR Python B pip REITE

pip @E1E Python 3.6 MEHFIRAS , BETREREAR. MEARILE WFHEMEApip , FS
BY pip XHHHZE,

Python 258

https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-cryptographic-material-providers-library
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS Encryption SDK HEABEE

ZE

RHEBHFRAK BAR Python B AWS Encryption SDKo

(® Note

B EAR Python B9 AWS Encryption SDK 21 3.0.0 9 lRA# & MR end-of-supportF& B o
BRI SR 2.0.x IR EFTIR A R £ i B EZIARAH , AWS Encryption SDK A HEEEE
FAENBRER. T8, 2.0x RPSIENFTLZEIERLEHES. BEMR 1.7.x ZETHAR
AEHE 2.0x REFEAE , BLEAXEHEZRHA 1 AWS Encryption SDK.x R4S, 1554
B, EZEERBEMN AWS Encryption SDK,

pip £ L& BHAM Python B9 AWS Encryption SDK , 20 5l €547 R
BERRRETRAE
pip install "aws-encryption-sdk[MPL]"

[MPL] BEBEZEAWS ZiEHmEYEEHREERXE (MPL), MPL @8 ARMENBZRERNE
B, MPL 2 4.x ix# BAR Python B9 AWS Encryption SDK 5| A2 B9ZAMHEMKME, RA@RZIE
BREREMPL, 1B , IRERITEMEA MPL , B LB BE[MPL] R,

WEREH pip REERAREHNFAEN , FERLEEN.

EFEFA L BAR Python B9 AWS Encryption SDK #8EE 2 5w 212 7\ /& (pycalcryptography)o
FTERARN pip® BB Windows EZEMEERE RN cryptographyE. pip 8.1 MIEFHRAEEH
£ Linux cryptography EREMBEE . MREFEANRER |, pipM BEW Linux RIERBEE
BFEXcryptographyEfFiENIE AIFERETCM, WFFMAER , F2BE Linux LEEZGH
B

RIS EMRAENR 2.5.0 F 3.3.2 ZEH BAR Python B9 AWS Encryption SDK PIN k7 1.10.0
M 2.5.0, HARAR BEHR Python B AWS Encryption SDK ZE R HIRAN BRiEiRZE, MREEE
332 ZEMMERAE , BREEARHN ETERA BAR Python B9 AWS Encryption SDK,

WE NERHBEAZMRA BAR Python 8 AWS Encryption SDK , §8817E GitHub 1 #J aws-encryption-
sdk-python &1 E.

L& 2% BARM Python B AWS Encryption SDK , S5k &EE SR T Python EHIFER I,

T 259

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK HEABEE

B R Python B9 AWS Encryption SDK #5712 = 15

THEHIRE I ER BAR Python B9 AWS Encryption SDK RiIIZfMEZER

AER R EHRE MR 4.x Bk BAR Python B9 AWS Encryption SDK & B2 F 1Y 22 16 fm 52 41 £HE
#EREXEMMKMY (aws-cryptographic-material-providers), EERBERABERIZEMH
RMHERNE (MPL) R H] , 557 GitHub L aws-encryption-sdk-python REFENRAFEF S
KB MRA

E1& B Python B AWS Encryption SDK # & MPL £/ 4.x Mk , E& M keyring REITEH
%, AWS Encryption SDK RS LFRAPFERAN EELBRUEHEN keyring, MEFHME
, 582 Ethe section called “Keyring tfHAME", MEREEWIEHEBEE keyring WEH| , FSH
GitHub Eff#1Faws-encryption-sdk-pythonEHR BB E I ;

ES]
« INEFFEF H
© INEMMERVITHBER

Iz 2 7 R

THEFIREIMAEEA AWS Encryption SDK RINZEMEZRFHE, LWEHIFEHAEEHBEME KMS 88
B AWS KMS keyringo

L S50 E 58 A TR AR ARGE BUR R 1T {8881t AWS Encryption SDK A F
UWREQUIRE_ENCRYPT_REQUIRE_DECRYPT, HIZEFFME , 582 [Ethe section called “5% & & HY 455
BER

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and

decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
EXAMPLE_DATA

with an encryption context. This example also includes some sanity checks for
demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

gl 260

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK HEABEE

These sanity checks are for demonstration in the example only. You do not need these in
your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

import boto3

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noqga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
kms_key_id: str

"""Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

Usage: encrypt_and_decrypt_with_keyring(kms_key_id)

:param kms_key_id: KMS Key identifier for the KMS key you want to use for
encryption and

decryption of your data keys.

:type kms_key_id: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,

which enforces that this client only encrypts using committing algorithm suites
and enforces

that this client will only decrypt encrypted messages that were created with a
committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(

&4l 261

AWS Encryption SDK HEABEE

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. Create a boto3 client for KMS.
kms_client = boto3.client('kms', region_name="us-west-2")

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Create your keyring
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=keyring_input

5. Encrypt the data with the encryptionContext.
ciphertext, _ = client.encrypt(
source=EXAMPLE_DATA,
keyring=kms_keyring,
encryption_context=encryption_context

6. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert ciphertext != EXAMPLE_DATA, \
"Ciphertext and plaintext data are the same. Invalid encryption"

7. Decrypt your encrypted data using the same keyring you used on encrypt.

&4l 262

AWS Encryption SDK HEABEE

plaintext_bytes, _ = client.decrypt(
source=ciphertext,
keyring=kms_keyring,
Provide the encryption context that was supplied to the encrypt method
encryption_context=encryption_context,

8. Demonstrate that the decrypted plaintext is identical to the original
plaintext.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert plaintext_bytes == EXAMPLE_DATA, \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

bz A g2 v AR BB R

Tl REB a5 - AWS Encryption SDK R iN%: F ## 227 s4E 57, WLEBIER R e AES
keyringo

L EBG & fF A A 5 ARG BUE SRE1TERE{L AWS Encryption SDK A F
W%REQUIRE_ENCRYPT_REQUIRE_DECRYPT., MIFZEFFMEEA , 552 Bithe section called “5%E & 1Y A& EE

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
load into

memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
loading it

all at once in memory. In this example, we demonstrate file streaming for encryption
and decryption

using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
‘plaintext_filename’™ with an encryption context to an output (encrypted) file
‘ciphertext_filename".

It then decrypts the ciphertext from “ciphertext_filename™ to a new file
“decrypted_filename .

This example also includes some sanity checks for demonstration:

g5 263

AWS Encryption SDK HEABEE

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
example

in the AWS Encryption SDK for Python.

import filecmp

import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
CreateRawAesKeyringInput

from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
plaintext_filename: str,
ciphertext_filename: str,
decrypted_filename: str

"""Demonstrate a streaming encrypt/decrypt cycle.

Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
ciphertext_filename
decrypted_filename)

:param plaintext_filename: filename of the plaintext data

:type plaintext_filename: string

:param ciphertext_filename: filename of the ciphertext data

:type ciphertext_filename: string

:param decrypted_filename: filename of the decrypted data

:type decrypted_filename: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment

policy,

&4l 264

AWS Encryption SDK HEABEE

which enforces that this client only encrypts using committing algorithm suites

and enforces

that this client will only decrypt encrypted messages that were created with a

committing

an

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. The key namespace and key name are defined by you.

and are used by the Raw AES keyring to determine

whether it should attempt to decrypt an encrypted data key.
key_name_space = "Some managed raw keys"

key_name = "My 256-bit AES wrapping key"

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Generate a 256-bit AES key to use with your keyring.
In practice, you should get this key from a secure key management system such as
HSM.

Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
static_key = secrets.token_bytes(32)

5. Create a Raw AES keyring

We choose to use a raw AES keyring, but any keyring can be used with streaming.

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=static_key,

gl

265

AWS Encryption SDK HEABEE

wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

6. Encrypt the data stream with the encryptionContext
with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
ct_file:
with client.stream(
mode="'e"',
source=pt_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as encryptor:
for chunk in encryptor:
ct_file.write(chunk)

7. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
"Ciphertext and plaintext data are the same. Invalid encryption"

8. Decrypt your encrypted data stream using the same keyring you used on
encrypt.
with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
pt_file:
with client.stream(
mode='d",
source=ct_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as decryptor:
for chunk in decryptor:
pt_file.write(chunk)

10. Demonstrate that the decrypted plaintext is identical to the original

plaintext.
(This is an example for demonstration; you do not need to do this in your own

code.)
assert filecmp.cmp(plaintext_filename, decrypted_filename), \

g5 266

AWS Encryption SDK HEABEE

"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

AWS Encryption SDK for Rust

AEFERP MM L EMAEEH AWS Encryption SDK for Rust, #1ZE{#H AWS Encryption SDK for Rust
HITIEXERFTHFMER , 52/ GitHub £ aws-encryption-sdk #1FEM Rust B #.

AWS Encryption SDK for Rust 82 #y —&HfZXERETFEE S EEB LT AWS Encryption SDK & :

« IAXEERSEREL, B , AWS Encryption SDK for Rust SX#AWS KMS BB keyring , iER
BERNEBRFZERMREBRS R,

- TXEBRER

AWS Encryption SDK for Rust @& 2.0.x iR FIEHThRAH 5| AW PTG L2 IhEE AWS Encryption

SDK , Uk WEHMEBEESEE., 7B , MEEFEH AWS Encryption SDK for Rust JREEZH 2.0.x BIMRAS
% 1Inn = BEPT IR E R AWS Encryption SDK , B eE ZEERBLENAEBER. WEFMER ,
BN ARRE RN AR,

AWS Encryption SDK for Rust s Dafny AWS Encryption SDK # WEmR , ER—BEXNRIES ,
FBAUEREGTRESAE., BEREMNERS , URAIECHNER, GR2—EE8XE , AELB8+E
YE #9ZhBE AWS Encryption SDK , LARE{RIhBE EREM,

— ST

- MFEREBUOME PEREIREAEH AWS Encryption SDK , SIS ESREE AT, FREIMNZN
BERei® URMEHR AWSKMS ZEE S8 , 5528 %E AWS Encryption SDKo

- WMEREIAEREFER AWS Encryption SDK for Rust B34l , 5526 GitHub £ aws-encryption-
sdk FEFEHH Rust £,

*rE

. SERGH

- BRE

« AWS Encryption SDK for Rust #3552 = i

Rust 267

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples

AWS Encryption SDK HEABEE
ToRRH

£ &% AWS Encryption SDK for Rust Z & , SR ELAE T 5 & RG 4

Z % Rust fl Cargo

£/ rustup & B BITEERY Rust A,

METRALEDENHMEH , FSH Cargo Book HHIRERF,

ZE

AWS Encryption SDK for Rust AJ#E Crates.io : // EfiBaws-esdk KFEEH. MELZENEE
AWS Encryption SDK for Rust B4 &E A , 72 [GitHub Lt aws-encryption-sdk 7 E+#Y
README.md : //»

B AEA T 55 K%L 8 AWS Encryption SDK for Rust,
F&

& E X% AWS Encryption SDK for Rust , 78R T & aws-encryption-sdk GitHub & &,
£ Crates.io

EERBHEPHIT TS Cargo %
cargo add aws-esdk
HAG LA T 1TH I E Cargo.toml :

aws-esdk = "<version>"

AWS Encryption SDK for Rust £ 5152 =\ 15

T3 ga5I B REM AWS Encryption SDK for Rust #{TREXRFTRAMEANELRREHRER, EBMS |
EEHITERRIL AWS Encryption SDK M RHRHERNE, RE , EFUSESEZH , B
TEB{CERT EEW AN,

MFEREDIMMAE FEREIBIERIE B AWS Encryption SDK , Blilig EBRBE ZEGNEH MZNE
¥l&i& 5520 GitHub £ aws-encryption-sdk 2 EF Y Rust £,

TORIRE 268

https://rustup.rs/
https://www.rust-lang.org/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK HEABEE

£ AWS Encryption SDK for Rust 5§ N %8 # ## %3 & %l

LEFIBERMBNRZERNNEREN, CEEAZ—E AWS KMS BREREABHNERNSRAME

NEIRER,
SER 1. #1TEBEB L AWS Encryption SDK.

IEHGE R YA ER AWS Encryption SDK B MR E ¥,

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

HER 2 . B3 AWS KMS A Fim.

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

EA BEYEHNERER,

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);
SR 3: HTEBREREESE,
BARERAMBHRHERNEPRN S EREIL keyring , AIEEEMLESBRELNWER,

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

$E8 4 : B3I AWS KMS keyringo

EEEB keyring , FafEA keyring B AW IU keyring 7555, LLEHIfE A
create_aws_kms_keyring()FEIIEE — @ KMS £i8,

g5 269

AWS Encryption SDK HEABEE

let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

HER5 BT

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

let ciphertext = encryption_response
.ciphertext
.expect("Unable to unwrap ciphertext from encryption response");

HER 6 : ERBEMZERFTEANMERE keyring JREFZ MBZHE R,

let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

let decrypted_plaintext = decryption_response
.plaintext
.expect("Unable to unwrap plaintext from decryption
response");

AWS Encryption SDK < %l 5

AWS Encryption SDK #5555 E (AWS % CLI) AJZE&E A AWS Encryption SDK £ s3I MiES
BHUESHAXMENRZER, EFEEAEERFREIEIRIANEEANZ.

WRYRE 270

AWS Encryption SDK HEABEE

® Note

4.0.0 ZHIEY AWS 1% CLI lRZAEE R end-of-supportP& Ex o

BRI R £t 1E 2.1.x RAMERMRAEF BRI AWS t1%Z CLI , MAZEEEMAEXT
REREBE, T8 , 21 x RPSIENFTLEUERERPED. BER 1.7 XREABEERELE
¥, BUAAXREFE AWS I CLI BWERFT 1.x A, MEHMENR , FSHELEHN AWS
Encryption SDK,

Y 2 £ ThRERM1E AWS BN%E CLI ARA 1.7.x 1 2.0.x F&1T, T8 , AWS Encryption CLI
1.8.x MREWMX T 1.7.x WX , ™ AWS Encryption CLI 2.1.x fRERX T 2.0.x, MEFMET , 5F2
B GitHub £ aws-encryption-sdk-cli ZENHEBLZEER,

n[E BT B AWS Encryption SDK , AWS 1n# CLI 2R ERMREIRE. HPBEEHM
%, Htt 2 BRBFHNER (AAD) , UkZRE, CHRENHEBEREELEN , fINEFSRITE. 28K
F#MEFH 256 {7t AES-GCMo

AWS % CLI BB L£iE AR Python B AWS Encryption SDK , % # Linux, macOS #l
Windows, A BLFE Linux X macOS MREFHEF. 7£ Windows WS TR RFTHRE (cmd.exe)
B, UREEMRFEB PowerShell A H , T SHIESHERMBNBAZER,

WFT B4 ERES B1E AWS Encryption SDK , ‘@35 AWS iN% CLI , BT @, fln , BaLER mE
B EhE AR JAVA B AWS Encryption SDK , 36 AWS Encryption CLI 8 & %!,

AEBNE AWS INF CLI, SRPWAZRENMFERE , WIRHLESHFIRIGEIERBER, MFREA
P9, F26 AWS REIBEBRPHMAEA AWS IN%E CLI RNHEMFERLENER, WEESHEE
A, BESEEESE , W ARKME GitHub B9 aws-encryption-sdk-cli 72 E B8 AWS 0% CLI,

AWS in# CLI ZE# L @ AR Python B9 AWS Encryption SDK., &X#11T CLI B , P& EE
Python TR FBTEE. EEXSNeE , FRTHEEHE-—GSMFE-—RINB LSS, F
W, BTENEESRNREREEIRERN—ERT , MARHESEERATELGS.

F&E

« &% AWS Encryption SDK @55 R

. J{AfER AWS pnZ CLI

- AWS tn% CLI # &l

« AWS Encryption SDK CLI ZEZHS 822

WRYRE 271

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK HEABEE

« AWS % CLI BYRRA

%% AWS Encryption SDK &5 5 5 HE

AEFRPMARZE AWS % CLI, MFEFHMEF , F2 B GitHub £# aws-encryption-sdk-cli & #F
EE , 3¢ REFE AR B S

x5
« ZHENEIFH
o ZHEMEFH AWS 0% CLI

LZRLEIRE

AWS tn# CLI ZZEE L EAM Python B AWS Encryption SDK, BEEZR ¥ AWS 1% CLI , BEE
Python #l pip , Python EHEEBTITE, MIEXENFAEEREMH Python B pip,

FERE AWS % CLI 25l , FBRTETIITRIEHE
Python
AWS fN% CLI 4.2.0 iR & E#TIRAFE E Python 3.8 S EFRA,

ERHY AWS Encryption CLI 328 Python 2.7 1 3.4 REFHIRA , ERMRZREFERARITRAMN
AWS Encryption CLI,

Python @& #E KZ# Linux M macOS &&H , BEFEAMRE Python 3.6 HEMRAE., BME
BISERARTRAR Python, 7 Windows L |, 4B %R S Python ; ERTAELRHE, EETHIZL
% Python , 5528 Python T #,

& ZYE Python RECRETE , FRRTIBATIRE,

python

EHEEF Python lR& , FEA -V (KE V) 28,

python -V

£ Windows £ , &% Python 2% , #Python.exe RN B EHIE TR ERBESINE,

%4t CLI 272

https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://www.python.org/downloads/

AWS Encryption SDK HEABEE

EFERBERT |, Python 8L EE $home ¥ B &KW FTEFERE B &K EHEHIREB &+
(suserprofile% = AppData\Local\Programs\Python), ZEEHKHRFKEHM Python.exe
BXE K FEETIHIESEHMIB, B LUER PowerShell RE &5 8%,

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip
pip & Python E4EEB T E, EEZXH AWS Encryption CLI R EABKM |, BEE pip 8.1 REH
IRA, MERERFHR HRMApip , BHE pip THFHRE,
£ Linux R E | 8.1 pipZ BIMRAELEE AWS MZE CLI TENZIBHEENE, MEKZ
BEXREHpiplA& , WU ZERETE, MEFMER , BF2EE Linux LEEZBRS.
AWS Command Line Interface

RAEEEE AWS Command Line Interface (AWS CLI) AWS KMS keys 1 AWS Key Management
Service & AWS % CLI A B , T FE (AWS KMS), MREFEANRTRNESHIEMHE
AWS CLI BIFEE ,

EE AWS KMS keys #E AWS % CLI A , BEELRENFRE AWS CLI, HERETEAHRER
T WEAERH AWS tNE CLI AWS KMS £/,

ZEMEF AWS % CLI

RRZHRAN AWS 1% CLI. ERER pip ZE AWS & CLI & , EEEHERE CLI FiER
BXE , 21F @AM Python B9 AWS Encryption SDK, Python ZiG#wZ2EM BAR Python
(Boto3) B AWS SDK,

(@ Note

4.0.0 ZHIH AWS % CLI lRA B M end-of-supportP& £

B L2 2.1.x RAMEFRRAEAEHBZIREN AWS % CLI, MAFEERAERE
REREBE, T8, 21 x RPSIENFTLEUERLEEPES. BER 1.7 XRABEERELE
¥, BAAXREFE AWS I CLI BIRFT 1.x A, MEHMENR , FSHELEMN AWS
Encryption SDK,

%4t CLI 273

https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

FHY R £ NRERAN1E AWS % CLI ARA 1.7.x 1 2.0.x F%1T, T8 , AWS Encryption CLI
1.8.x MREWMX T 1.7.x WX , ™ AWS Encryption CLI 2.1.x lRERX T 2.0.x, MEFMET , F2
B GitHub £ aws-encryption-sdk-cli fFEFHNHEBLZEEE.

LREFRAH AWS mZ CLI

pip install aws-encryption-sdk-cli

FHRB B ARAHK AWS & CLI
pip install --upgrade aws-encryption-sdk-cli
21k AWS n# CLI M W RA#wH% AWS Encryption SDK
aws-encryption-cli --version
Bl H g 5 W ERE N E R iR AR 5%
aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0
FHRE & F AR AWS 0% CLI

pip install --upgrade aws-encryption-sdk-cli

Z8E AWS I CLI b @R ERFIRAH BA M Python (Boto3) B AWS SDK , R &R ZEMEE,
MREZR% Boto3 , REEXNFHME Boto3 RAARFEEEH,

SR EZEM Boto3 MR
pip show boto3

EHERFAARAE Boto3

pip install --upgrade boto3

EEREB A EEBRA AWS % CLI KrA , 5528 GitHub £#Y aws-encryption-sdk-cli 7 E.

%4t CLI 274

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK HEABEE

MEMEA pip REEFAR Python EHMFHMER , S M pip X

e sE A AWS 102 CLI

AREFERBPMAER AWS % CLI RIS 8, FEEH| , 5F5S8 AWS % CLI fEifl, mETE
WX FSREEMEEX . ELHFPERNFEEER® AWS Encryption CLI 2.1.x MR A E#TAR
7,

® Note

4.0.0 ZHIHY AWS tN% CLI MRAEE M end-of-supportPE Bt

B AR 2 E 2.1 x IRFIERTRAE# B &R AWS 1% CLI, MAZEEMAREXBER
EREE, T8, 21 x RP5IENFLZLIEREEMAER. BER 17X RREEREE

¥, B AXREFE AWS I CLI BWERHT 1.x A, MEFHMENR , FSHELEMN AWS
Encryption SDK.,

Y 2 £ hRERAN1E AWS % CLI ARA 1.7.x 1 2.0.x F&1T, T8 , AWS Encryption CLI
1.8x IRERX T 1.7.x BX , AWS Encryption CLI 2.1.x lREMX T 2.0.x, MEHMET , BF2H
GitHub Lt aws-encryption-sdk-cli ffEFEEF IR Z £ E &

WMEBRBMAEARGMBER SR RN ES , F2HE RINZNER TR,

MFREUMAER AWS KMS ZEEHS|IVEH , F2E LA ZEE AWS KMS keyso

ES |

« WMFRMNBEEZER

- NAEERRER

- WARHEEA

« WIS ER HVE

© WEAERMNEAR

o« WIS EAGEBUR

- MAEHEEERTERSH

n4aT 0 2% F fR 2 B R

Encryption CLI AWS £/ KIZhEE AWS Encryption SDK , EEERENBZRMBERER.

WAAEERA CLI 275

https://pip.pypa.io/en/stable/quickstart/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK HEABEE

® Note

--master-keys S8 E1E AWS 1% CLI 89 1.8.x NRHEH , ¥ 2.1.x R B, FHA
--wrapping-keys 28, & 2.1.x kR , ENMBENBZHFEE - -wrapping-keys &
B, MEHMET , 5F2BAWS Encryption SDK CLI FEEMSB BB E,

- BB AWS INE CLI RINZRERE BULEEMXFERMNTESE (RE£48) , Hl0 AWS
KMS key in AWS Key Management Service (JAWS KMS, IR EFEANEHTEISREHRE K £t
TERETRME, ST EMZAENNRREMABIEERNRENE, NMEAERER
B, BEEFER,

£ 1.8x A , A --commitment-policy ZEEFEE - -wrapping-keys S8 , ZRIEM,
#2.1.x iRBEtA , --commitment-policy 2B REZRMN , BEZEFEH.

aws-encryption-cli --encrypt --input myPlaintextData \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myEncryptedMessage \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

AWS 1% CLI SR -—NWENSRMBENER, RE , CEEEEENELRERTNRERS
iR, TEEMCENEZFASNBENERTRER, CSNEASTSNBENES (NEXF) MER S
WONEMZER, EFFERVFHANEE[E , AIREBREHER.

- BEERE BACNEALS., BANNERE UREXFEENPEERNUE. SOTUERE
AWS 1% CLI T AR@BHRASNBERER , NEXH AWS #F CLI A EREAMZARN SRS
R

7 1.8.x RBAth , SBEMEZE--wrapping-keys BB , BEHBMER, £ 2.1.x kBB , ENH
MBZREEE - -wrapping-keys 28,

fREE , BAILERA --wrapping-keys 2ENTRBUREERZERN SRR, EHREKRIE
E AWS KMS SR E&R2:EAN E5EEBRHEEERATTEERANER. NREEANZEE

AIETREMRE AIXFAEERHMENIRER,

WA £ CLI 276

AWS Encryption SDK HEABEE

MBLERFEHSEBEY , AILAR - -wrapping-keys 2EWIRZEBMURES true , ETE AWS
Encryption CLI E AEAMZRAEN TESWRFER,

BREBKEMFEA --max-encrypted-data-keys S8 , LHEBRZERXNTERNAL , EhaE8
BZHMZERSR, EEEHNNZENSRBE (ARNENEEIRLESBRS—E) EEN
LR (Hltn5), MEFMER , F2RERFINENER SR,

--buffer ZBRASEMARWARETERELNMEXF , S EREFENBUEE.

--decrypt-unsigned Z2EEMEMENTF , YHERASERB A ARES, UREEH 28
BERNREBUEENEELEHRMNEZEESR , FEAL--algorithmB 8., MRBJBFMENF , ##
BE R,

B LAMER --decrypt= --decrypt-unsigned #{T#% , ETERKBEARE

aws-encryption-cli --decrypt --input myEncryptedMessage \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myPlaintextData \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

AWS 1% CLI FAEE SR RKBEMBZAEHTNER B, ZEECFHERNSRRBELENER, ©
SEREBHHNFZERMNRENHEBHEER,

MAEEBR TR

ER1E AWS IIZ CLI v iNBERK , BREZTEEEL —BAIELE (HE28), BUSUEH AWS
KMS keys in AWS Key Management Service (AWS KMS), RE BT ¢BEHENTE SR W
., BT BREETURTMEBMN Python TLWMIRME,

EER 18X MANEFRAPIEEDLESE , FFEH --wrapping-keys B8 (-w), LSHNERE
A attribute=value BXMEMUEES, ZFEANBHERREZSBRERENG S,

- AWSKMS, EMZEGTH , BUEREEESBBMN--wrapping-keysZ 8, % 2.1.x ik
B, BEWOPHEE --wrapping-keys 88, BEE , --wrapping-keys 28X EEEFR
SIEBMUDRES true (ETRERREEME) WHEREYE. HtEHERIBAN.

WA £ CLI 277

AWS Encryption SDK HEABEE

- BITEEREHE, EXBAESEAGSFIEE--wrapping-keys28., SEBENLEBHEE key M
provider B4,

A LEHBEN G SFEEZE--wrapping-keysZEMZESBB M.

--wrapping-keys Z2E8MEI S TIBUEURHEE, MEMEGTSEHEE - -wrapping-keys B8
(= --master-keys 28)., # 2.1.x kK A6 BERHHBEE - -wrapping-keys B8,

NMRBUHEBIELESZRIRKRT T , FRKASIREETEBNE, fIW --wrapping-keys

key=12345 "provider=my cool provider',

iR EEORER
EATRBURBHSEER, NER , REVUARTESREREIRNNEATERBEIMT.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

Em#ZEasoH , ELACEEL—EAREUENE, FEEZAERSRTNRERER
RZEERBT,

3
m

aws-encryption-cli --encrypt --wrapping-keys
key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1la2b3c4d

£ FRANMEZEGRSH AWS KMS keys , RN ERLZE® ID. HE£#8 ARN, FIEBBZEIAE
ARN, filgn | ten#aro7E key BUEMNEHRERARSE ARN, WFE SIRBFIFNFMAER AWS
KMS key , 552 < AWS Key Management Service BiZ A E5/) B &BE B,

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

EFEAETESRRERENBBERSH |, key M provider BHERSHEMN,

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101'

£ ERNBBWmSTHR AWS KMS , ZrAFEA MBI RIEE AWS KMS keys AAREER |, SfE
BEA WIREBMtrue , B AWS Encryption CLI £ AWS KMS key F SR MNZRASMEM . 40
RIZIEE AWS KMS key , EXEARARMEBEASHNEP —BIE LB,

WA £ CLI 278

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK HEABEE

EETEEMIAWS Encryption SDK EEHK. ©ARREER AWS KMS key ITEFEAD

H@BFeTH SREENESEREE ARN.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

REK : RZ AWS KMS key BfE R E

MREBFFZERFIERZ AWS KMS keys A |, AIFTAERES By IRERBEtrue. B
EtrueftFF AWS % CLI EAMZERAENEM AWS KMS key K%, MRERIEERZE

t, Bl REA false (AR) . REBUEEHEZSSTER , HEEASEA MERER AWS
KMS keyso

BEA NREBMtrueREASBBMRIEE WENR SR AWS KMS keys, RZFEH MEBHFAE
KF AWS KMS keys , B1El--wrapping-keysZ#H L EAEELRBURELA WIRRBMtrue
BFrRREEME.

ERFAtrue i, REEREFEH BRI EENFRRIRFBM , #& AWS KMS keys R A&
AWS tRF {EEW PAIERAMN . ETHEHIP , IREBEAFF AWS % CLI EIEER AWS KMS
key FEFEM AWS IRF,

aws-encryption-cli --decrypt --wrapping-keys \
discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

RHEE BEETEREMRSE

provider BB E £ RIZMHE, FARER aws-kms , K& AWS KMS, MIREFEAFTENE LB
B#tE | Al provider BHEAME,

--wrapping-keys key=12345 provider=my_custom_provider

MBEFAEIT (FAWS KMS) TLBREEWHMER , BBRWAWS % CLI FZEH
README 5 0 RAAR T 1,

WA £ CLI 279

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst

AWS Encryption SDK HEABEE

B : iEE AWS B

EABSEMERIEE AWS B 65 AWS KMS key, ItBMHEENFGTHER , BEEARES
REMER AWS KMSH

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS IR N%Z CLI i 2EEHE , fl0 ARN , HIZFEAESBBEES AWS B I5EMN . IRE
@EIETE a AWS B , IS ZBREDSB%.

region BHEAREMEESRIK, WREREAEFHEM , AWS Encryption CLI in & EA AWS
CLI B AR EREF AWS B IEEH , REMNE , I—REHNTERRERE,
Profile : EEW B BRER

£/ profile BRI IEE AWS CLI i B iR E. BEARERTUTEEAERN AWS EiF, LB
MEBRARESBIRMER AWS KMSE,

--wrapping-keys key=alias/primary-key profile=admin-1

B LAERA profile BEREEMZNBZGSHNBHAEAER, ENFEGSY , REESBET
TeEHEREEEEMER , AWS % CLI T2EERRERE AWS EiF, FFH . EFEDD
F, SLABBERERE AWS B P8 .

M EZELLEELR

BU U ESEAGTTREESEAIEELE (R L),

NREEEZEIRSR E—ACLERSECANEZARNEZERNEN SR, HIRESREM
ZHEENERNER, EENNEZASBENHEN (TNEXF,)) MNBERERNES SEAZE
EWMENE—E, EATERTUEZ—ENENERER , ARBEER,

EMEARNTUEESETESR
« #E--wrapping-keysZH$EHTIEZELHE M.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

WAAEERA CLI 280

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK HEABEE

- EE—EHTSHMAZME --wrapping-keys 28, ELEENBMHETEAN oSHNMEaE
S|, FEALEZE

--wrapping-keys region=us-east-2 key=alias/test_key \
--wrapping-keys region=us-west-1 key=alias/test_key

BEAR NREBMtrue [AWS INZ CLI FEAEMMERAE AWS KMS key B . SIREEMHBN GBS
REAZE- -wrapping-keysZ 8 , @ --wrapping-keysZ&discovery=trueFEH &5
Wi BEEHM- -wrapping-keysS B Hh LB BHEARE,

o, TETHSmSH , B—E--wrapping-keysSEHFAHNSBBHEIE AWS NZ CLI RFIAEEN
AWS KMS key, Fif8 , £ =fl--wrapping-keysSEH K RRE M 1= AWS Encryption CLI £
AWS KMS key I8EIRF FEA REBZAL

aws-encryption-cli --decrypt \
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

LUREIE SRS N

AWS 1% CLI FIINZRESRBHEXFERMMARA , YERNZNFE. BRRERASMZRALS
MA@ A K LEERAEXFZER,

Fi'8 AWS Encryption CLI i S #EE --input 28 (-1) , & AWS Encryption CLI EAES K
Ao

BRI LUEB U TR AR HE A -
- ERAER
--input myData.txt

- ERAERBBEEX,

--input testdir/*.xml

mfAIfERA CLI 281

AWS Encryption SDK HEABEE

- FRESREELBER, EWMARB®E , --recursive B (-1, -R) BLE,

--input testdir --recursive

« EEABIEI BT (stdin)o £ - 28/ --input . (--input BB—RALE).

echo 'Hello World' | aws-encryption-cli --encrypt --input -

A E e VB

--output Z2EE2%E A AWS Encryption CLI EAIEEANBRRBEZIRIENER. 8 AWS
Encryption CLI ss S #FEZEE. Encryption AWS CLI €4 BETHNESEMARRETHNEHESR,

MRBEBRESFE , RIBFER , AWS INZE CLI EIHNES REBREER. BEPLER , FE
F --interactive 2% , EB EEEEU?E/T"‘EE : & --no-overwrite ﬂﬂ%iﬁ]tﬂﬁﬁﬁi%
BARBEA, EEEBHBERES , BFEH --quiet., ZEMH AWS % CLI FEESERMNESE | B
ﬁz>&1§¥ﬁ§ﬁ;§%ﬁ¥ﬂ%'€ﬂ’ﬁﬁ)\ﬁtﬂ =255

® Note
ERBHERNSTELAEMREHER. IRGTRY , BHERTERSESIMER.

BAEREE S R EEREVE,
- EEERER., IREEERREBE BREPNAEEHBLEAFTE , v T EHNIT.

--output myEncryptedData.txt

- BEB K. BT , i B SRS RIFHE,

MRBMABESFEEK , ST EEENBERCTENELEFB &,

--output Test

ERHVERBE (TEERER) B, AWSHIE CL SREBRAEREBNLLEBREZH
BREE, MERESMHM .encrypted EMABRERE , MBEBREZH M .decrypted. BE
BEREE , FFEA --suffix B8,

mfAIfERA CLI 282

AWS Encryption SDK HEABEE

flan , MREME file.txt , MBEWHEEIL file. txt.encrypted, MREHER
file.txt.encrypted , BZEWHEEI file.txt.encrypted.decrypted,

- BEAGTS (stdout) A - BEH --output H. BHBER --output -, EWHEIEES —
B S HER,

--output -
mEAEANEARR

AWS 1% CLI T REEMZNFEZ S THRENZART. EFRLEERE , BERRMAEZBENERR
FREER.

MBEABR—EEE., FLBHEARFTEL. £ AWS % CLI H , NBEABZE —#Bname=valuefi
i, BAILEALRENFHNEARR S FERNVERET. IHPEERRPSRNZRFNER ,
RELERTFTHERERNER,

Ei#FEew

FBEMEZESTSPIEENNBAS , Uk CMM FBHEMENGE BUEBRENSXBEZNEN
X, cHUB8MATTEENEMNZEFAER UHXFER), NREFERANZE AWS KMS key , IIEA
B AE X FREREE X &M BEES |, Hla0 AWS CloudTrails

AT & pIFEREHA = name=value BEEHHIMNBRE.

--encryption-context purpose=test dept=IT class=confidential

EBEZRHBTH
EBEZEBTH , MERA G ERBEEETHR RN EMBEAL,

BEMZBFEEAMZEAR , CUAFEERZHSTRANZAR. T8 , MREERKM , AWS i
ZCL EREBEENTNEARTNESELERTENBAEMBARHN TEAR. NRLEAF
TE A BESTERM.

i, LTS REEMBEARSEE dept=IT i , TEHEHREMERR.

aws-encryption-cli --decrypt --encryption-context dept=IT ...

WAAEERA CLI 283

AWS Encryption SDK HEABEE

MEABERLERNETHS, B , MREMBASE | FRETHETERSE. BIENBRE
tha SRR,

EEMERE

« Eencrypt @ SH , A --encryption-context SEFEE —H %@ name=value ¥, FHZ
KR RS EEE.

--encryption-context name=value [name=value]

« f£ decrypt i FH , --encryption-context SE{ETLUTE name=value ¥#. name TE (¥
BE), IMENES.

--encryption-context name[=value] [name] [name=value]

MR name BHEFPH value X name=value BEEHERBFHKRF T , 7 A EIEFREEHAE,
--encryption-context "department=software engineering" "AWS ##=us-west-2"
Bl NBZGSESEAMELE (purpose=test M dept=23) WIMBEAR,

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

A

ELBERTAURL, BESTHINNBEATRERENBEATHN FE,

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

T, ELBEERTELAN. CMBASNNERBTFTLTEEENTE,

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

mfAIfERA CLI 284

AWS Encryption SDK HEABEE
AT 48 E AR BUR

EEREDONAERE | BMEMA --commitment-policy 28, LBHE 1.8x RPiHH, ©F
MENBBHSPER. ERENAFBHREEAREEBENG S, NMRERBREDTTHWAFEBEE ,
AWS N% CLI & HERE

Bl | THSBESEREBIRIRES require-encrypt-allow-decrypt , ZBEX—REEHE#
AENE EEREBEFERASITEASRAENBNNEXF,

--commitment-policy require-encrypt-allow-decrypt

MAEHEERTERSE
EADEBEERPREEAN AWS M CLI SBME , LUEIHE RREILE R0 A SIS,

HEEREXNFRER , HPh3E AWS Encryption CLI if SN SEM{E. E&ETE AWS Encryption CLI
WEPSEEEERE , SESREBRERPNSENERR. HRRNELEGSIFHRAERA
B, HEERTERATMERE. LR BFEREIFIREMAE &P,

T5EEFIERERE SR AWS KMS keys TR EE Fkey.confiEEME .
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

FEERTPHEAERBER FEERSBIMNE @ 3% (). # PowerShell 247 |, FFEARSI
mFTUHEH @ &R (C@).

el SEMBWSHER key. conf BX,

Bash
$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir
PowerShell

PS C:\> aws-encryption-cli -e “@key.conf -i .\Hello.txt -o .\TestDir

WAAEERA CLI 285

AWS Encryption SDK HEABEE

ERAEERNBAMTAR

- BULESEACERPESZEZ2H eMATAEMERFIIH. FEFTENTIHEASBREE
(IERAB).

- A # AR IAETHH T

- BALKSEMARMERER, F2EARSIHRFTREE @ 5% (@) , £ PowerShell Ei2&F
_%o

- MREEEEERDPEMSIT , SERANXFTRE-—SZT.

Bl | ER & encrypt.conf BENRE,

Archive Files

--encrypt

--output /archive/logs

--recursive

--interactive

--encryption-context class=unclassified dept=IT
--suffix # No suffix

--metadata-output ~/metadata

@caching.conf # Use limited caching

FBHEAUERSTESSEERER, LEFFSRREER encrypt. conf # master-keys.conf
fHRERE R,

Bash
$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf
PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log ‘@encrypt.conf “@master-keys.conf

T—% : EE AWS & CLI 4

AWS 1n# CLI By g4l

ERANTES , ZRREFNFAE LER AWS % CLlI, MEXE/AHMBSBHRA , FSRUAEE

A AWS N% CLl, MNERESE | 5528 AWS Encryption SDK CLI SEEMSESE,

g5 286

AWS Encryption SDK HEABEE

® Note

THI€EHIfER AWS % CLI 2.1.x fREVRE .

Y 2 £ ThRERM)1E AWS M3 CLI ARA 1.7.x 1 2.0.x F&1T, T8 , AWS Encryption CLI
1.8.x MREWMX T 1.7.x WX , ™ AWS Encryption CLI 2.1.x fRERX T 2.0.x, MEFMET , 5F2
B GitHub £ aws-encryption-sdk-cli ZENHEBLZLER.

MEBREMAEARGMBER SR cRLNENES |, F2HE RENZNER TR,

MFREUMAER AWS KMS ZEEHS|ROVEH , F2E £HAZEE AWS KMS keyso

ES]

=
33
ik
v

R
B
i
A

¢

- NEBFTPHNABERESE
- BEBSRTHWAMBESR
- EmR Y EMEREE
- ERZEEER

« EIESHET N NE R
- EAENERIRI

23

4

MBRER
L EEBIE A AWS HN%2 CLI JRH0%R hello. txt RMAS , EHEE Hello Worlds F&£,

ESEERLHTNES TR , AWS IIZ CLI EIEERNAR. ELEH-—NENER, FERER
THEERAR , RRENBNASBATER,

F—EBTEN L8 ARN FEFE SkeyArnBE AWS KMS key ., R tNEE AWS KMS key ,
RO LAER S8 ID, 8 ARN, BIBEBBREIE ARN R&EFIT, MFE SBBBIFFHFEMER AWS
KMS key , 552E { AWS Key Management Service B A E5/) M &BE B,

E_ESOENEREAR. KHDEMHEA --encrypt BERIEEIREM --input B8 , UETRE
EMZENER, --wrapping-keys SERHEMENSBREBY , R TS FEHAHEH® ARN AWS KMS
key iﬁ‘ﬂ’g o

gl 287

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK HEABEE

L SEEA - -metadata-output B8, EEARNZREEBIEERNIFTER. RESEE
%, kS SEMEA --encryption-context SE MR E MZME

WS tHEEA --comnitment-policy 2R RAMBREALERE. £ 1.8xRF , EEFER 2¥
B , B --wrapping-keysZ 8, # 2.1.x lxFAtE , --commitment-policy S8 I2EAHN , B
BEEA.

--output 2BME , LHEH (), ASEALSTESBLHERA BN E &,

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input Hello.txt °
--wrapping-keys key=$keyArn °
--metadata-output $home\Metadata.txt
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--output .

~

ERTHINE METSETEERTAHE. EEHNEBGSREHTRY , FEEF $? BHNAMK
B, EMTHTHINE , $? WEZR 0 (Bash) & True (PowerShell), EWTSHITAKE , $? NE
23T (Bash) = False (PowerShell),

g5 288

AWS Encryption SDK HEABEE

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

FBEUERBZIEGS , EENEGPTREEIL THMWER hello. txt.encrypted, BN
BwmoREEHHNERERE , Bt AWS Encryption CLI €8 HEARBARRERNER ,
t.encryptedBif. EEFEATRANERLBRER , BFEH --suffix B8¥,

hello.txt.encrypted BRIETMEHNALE , EFEE hello.txt BRWMEXF, ERSHK
MWMEEAR , AR SIENZMBAEAPEBER,

Bash

$ 1s
hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name

-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted
R CES

LEEBIER AWS % CLI REFE LRI &P NZEHello. txt.encryptedWERAR.

IRZBTEMER --decrypt S2BHIERREN --input B8, UEZEFEETNER, --
output 2BMER—ER , BMCKRBERIR B .

g5 289

AWS Encryption SDK HEABEE

EESREBMMN --wrapping-keys SHEEEARBENEZEF LN DL SR, £FH #EGT
AWS KMS keys , €BHNENLBER SR ARN, BEGHSPEE - -wrapping-keys 28,
RIBERK R AWS KMS keys , B LAER S BB M IRIEE AWS KMS keys #ITHRE , REFAEA
true (BFRERRIEEME) NEZBY, NREFERANEETISNIEHE JEELEMEH
EBM,

2.1.x lRBAtE , --commitment-policy S RERAMN , EBRZFEH. FATCUUBARBEENE
EEMT , BIFEZRISE T TR {E require-encrypt-require-decrypto

--encryption-context S EMEBRTHTEREAM , IFENBGSPEERENBHE, B2
EEELE #EaTEEAMERTARHANARMEZEMRE, EHZZA , AWS & CLI &5
BAEPNMBERARREEZEpurpose=testfiil, MRERETE , BBETDTHAITRE LI,

--metadata-output Z2ESREEARBRZREMBPIEERNNER, --output 2EHE , LR=E
(), MeadEEABaHE &%,

BREBKEMFEA --max-encrypted-data-keys S8 , LBEBERITERNVIAL , HHEEB
ZNMBRER SR, EEEINNZERNSREE (ARNENSESESRS—E) IAEN LR
(flan 5), MEFHMEN , FSEEHNEZNERER,

REEZREMBBAZE , T8--bufferEEfNT , SERBFENBNUEE,

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

g5 290

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK HEABEE

PS C:\> aws-encryption-cli --decrypt °
--input Hello.txt.encrypted °
--wrapping-keys key=$keyArn °
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--metadata-output $home\Metadata.txt
--max-encrypted-data-keys 1 °
--buffer °
--output .

~

EHTRYE K @EaSETISERT MEE, EEHHGSREHITHI , BFEE $? BE8HNE, &
U AFERAEHIHGT EELUDPTREEL T BMEE .decrypted WHER, BEEEFMXF
AR, EFERATSUEESZERAZR , i cat = Get-Content,

Bash

$ 1s
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name

-a---- 9/17/2017 1:01 PM 11 Hello.txt

-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

&4l 291

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK HEABEE

Z B SFPNARER

LegaHIER AWS & CLI K% B P ERNRE.

EMTHESERERE, AWS IIE CLI EEIEESEER. CENBERAE., ETRIMEHE
RNHE-ERTR, REZENERANBERART BESEREATHH B HHaFER. Rit,
IR LB R R AR

B TestDir BHBEERE R T EMAEMZENMXFER,
Bash

$ 1s testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

Directory: C:\TestDir

Mode LastWriteTime Length Name

-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:44 PM 46 Employees.csv

E—EHSEH B Amazon Resource Name (ARN) fE1E#E $keyArnEE AWS KMS key F,

FE_FEDTENRBRE TestDir BEHEFZERNAR , WiSMEMATHHEREA TestEnc B #.
MR TestEnc BEHAEE , T HTHREARN. ARBANER—EEH , TS AFER --

recursive 2,

--wrapping-keys Z2ERHEFMENSREMY K BEEEFANTESE, ENFGSEIE N
. dept=IT, ELEHTNEZAREZNMEDSPIEECENBHEE , AEERTFEERAZERE
e,

WA --metadata-output S8, AIE X AWS 1% CLI EAEEAEBNFRENPEE
#lo Encryption AWS CLI R BEMENERE A —EHEER %,

&4l 292

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS

Encryption SDK HEABEE

#2.1.x lxBI%B , --commitment-policy parameterZ2iZBFAM , BERZFEH., NRGSHETSHE
RAEEMBINE X F MR , FARAEBRERE W i By SRR R R,

ETDTHAE , AWS % CLI € IMBNERE ATestEncEHE , BEXASEREAE#HH,

RENBTEIIH TestEnc BHETHER, BEMNFATNGAER HEF—ENZEEH5H D

BR, HRUDTREEEBRRE AUNZa e E8BR AEBREMLE .encrypted.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input testdir --recursive\
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--output testenc

$ 1s testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt °
--input .\TestDir --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT

~

--commitment-policy require-encrypt-require-decrypt °

~

--metadata-output .\Metadata\Metadata.txt
--output .\TestEnc

PS C:\> dir .\TestEnc

gl

293

AWS Encryption SDK HEABEE

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted

-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted
BREBETNRERESR
S EHEEETNERER, @0l —RBERAEEMNE TestEnc B&H |, STRSEAIFMMENE
E
Bash

$ 1s testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

ERBEDOGMRBEE TestEnc BRPNMERR , BEEBMLFRRBEA TestDec Bk, BHS
WEBMMEI|® ARN R --wrapping-keys S8 &HH AWS INZ CLI AWS KMS keys E £ H{E
B RBHER, W DFEH --interactive ZERIBETRAWS INZE CLI EEEEEHEEBHER
Z AR RIE,

st EERE L NEERSAIIERNNZHAE. BRLSERRE , AWS 1% CLI SHESEE
ENNBAR. IREMEENMBATRERN , AWS % CLI 28R, BARSE, £Hhig8
BHREEAH , REEERSRILHNER, WMFE AWS % CLI l&ﬂﬁlﬂﬂ)ﬁﬁlﬁ'ﬁ DEAER , B(E
RESTEIMAIKK,

&4l 294

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK HEABEE

HEEMEHF , IABMAEFHNEMBRASBELE dept=1T MEMB TR, TiB , MREHER
WAERATRNMEZME , EREERERTURIN N MBME, flan, IRELEFALRETE
dept=finance WINZME A MEMALBTENR dept=1T , ERETRIEEXE , MEERT NEMH
HRAB-ETE dept BH. NREBBEREESZRE , LW UERER 0T REZELESR.

mEasITeEnEfad BERTNERABEIHGS EFERBEYTSM .decrypted B
MFER, FEEEMAXFTAR , FEADTURERERAR.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input testenc --recursive \
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output testdec --interactive

$ 1s testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
employees.csv.encrypted.decrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’

PS C:\> aws-encryption-cli --decrypt °
--input C:\TestEnc --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT °
--commitment-policy require-encrypt-require-decrypt °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °

--buffer °

g5 295

AWS Encryption SDK HEABEE

--output C:\TestDec --interactive

PS C:\> dir .\TestDec

Mode LastWriteTime Length Name
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

e e g Wi P 1)

B RE NS ABIXBGS (stdin) , ARSEHEHBAGTH (stdout), EFHIEREPIMMIED
SRR stdin, stdout , AR WAl fE A N ER Baseb4 #mts T EFHLE shell $555##:23F ASCIl Z T,

EESEMEKMENFFREXINERT , AENBENASREFIEHP, AR, cSRKEBHPNEM
ZABWEINBERT , BHXDTHEEBHBEASEE (stdout).

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

\-

« EZEABTER Hello World FHRWEIMBEGT , UMMITHERMEFE $encrypted BEH,

FiB AWS Encryption CLI SF S #EE --input# --output B8, EEETAAZRATGD
(stdin) , - ZEMNEERFERAEFH (--input). EEREEEXF G5 (stdout) , --output B¥
W EFEERETFH,

g5 296

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK HEABEE

--encode 2L L i# 1T Baseb4 {wiE , BAEER, BRI LS LE shell SHEREZEINZA
B3k ASCIl £t

HREEGTRARATHSRE FIARMSERMNZEE YABEPREER (-5).

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \

--input - --output - --
encode \
--wrapping-keys key=
$keyArn)
PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S °

--input - --output - --
encode °

--wrapping-keys key=
$keyArn

- FE=EBPTER Sencrypted BEHNEMBASBIATBRZETT,

ERBENSEEA --input -, BETRWASHAKEEEA (stdin) , MBFEA --output - A5
HEIAFZEE (stdout), (iﬁl]\%?ﬁ%ﬂ&ﬂ’h&ﬁllﬂ’ﬁﬁﬁ , M3EBMRMMATE , R ETREFER
$encrypted BH A --input S81H).

WEBIER --wrapping-keys S8 REBM , LLAFF AWS % CLI £AEE AWS KMS key
RFBZER,. ETREEAFEE , HEEFEA 2.1 x IRMEH RN FEERE require-encrypt-

require-decrypt,

=N Tt <SEhEA ?ﬁﬁJ_ﬁfﬂi‘nﬁ% FIUABEZGESEEFEA --decode 2E KRG Baseb4 Hmik
BREN@A , EE2EETHEE, BHALEFER --decode 28 |, A4 Baseb4 imiGEIE R |
EEBETNES,

E&i |, EEGTEEMMEME , LEREMPEELR (-S),

&4l 297

AWS Encryption SDK HEABEE

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
--input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
--input - --output - --decode --buffer -S
Hello World

BT ERE— AR T RATMBNBRZRE T2 TAPEHE2E,

£ LREFIF , --input F --output BEEE - B, MUEGTEEA --encode ZER AT HHE
1THRTE , EMA - -decode S EIE Al A TR,

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |

aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |

aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
- --output - --decode -S
Hello World

gl

298

AWS Encryption SDK HEABEE

ERZEETR

L g8 BRI IR AWS CLI BB R ER S ERA ZEE SR,

NMRERERZEEEB/RMNEZES , ARFEA—EESRMBUTAR/ERNETHRE. ERRKEITHE
RIE—ETWUFEZRER EEP—EEZSRBETTHNERL. NREEENBNERREFESE
AWS Bl , WRIETREEMRREPEAEERRBEEN,

ERERZEAESRRETNER K F—EAESREWERKNAC, CEEEREENNEEAE
MERTR, HENEZSRAANBEEANFTNENER, EREENNENAS K SETHENERE
HNEMBREHSRNES , SAASSHEIEN TSR, AE—EAXSRFELERER BH
REM—EESRBUTABRZREE[—ETHREZEZEENNENER.

FRA=EX£BMH
eSS ERA = AL LB R IMNFEFinance. logiER , SAEES —M@ AWS EiF,

EERMENASBAZ Archive B, k@ SEMEA --suffix 28 , ETEERBERNSH
B, Rt AMN@HEN S BEHEEEN,

L SEEA --wrapping-keys 88, YWiIEE=1E key Bt., ZHRAUEMRNGSHERAZE
--wrapping-keys 2%,

EEMZEBFER , AWS Encryption CLI EERBFEFHNE —EITEEIR SkeylEERARMBERH
EXeg, A%, cECAECSESRSBRNBHERERNSBNMAXFEAR, EHEERFHEM
BRIALE BETLH=ZENCNBERLR,

Bash

$ keyl=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1la2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3cad

$ aws-encryption-cli --encrypt --input /logs/finance.log \
--output /archive --suffix \
--encryption-context class=log \
--metadata-output ~/metadata \
--wrapping-keys key=$keyl key=$key2 key=$key3

g5 299

AWS Encryption SDK HEABEE

PowerShell

PS C:\> $keyl = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef"

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d’

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log °
--output D:\Archive --suffix °
--encryption-context class=log °
--metadata-output $home\Metadata.txt °
--wrapping-keys key=$keyl key=$key2 key=$key3

ERGTEMRZEESMEZEN Finance.log BREIAR , IHHEA Finance.log.clear B &
B Finance R, EEMBRE=T MENERE AWS KMS keys , B LIS EHBH =8 AWS KMS
keys ST FE&E, LEHEEEH D —E AWS KMS keys,

EEEH AWS % CLI AWS KMS keys £ BHME RFEZSWER , FBEMA --wrapping-keys 2
BN RBM, £/ BEE AWS KMS keys , £RBHMWELERESHE ARN,

\

¥

A BERETER AWS KMS keys $5EM LM Decrypt API BIEFH, MEBFHMER , FSE NES
Ee 3% A1 7 BUE S AWS KMS,

BEBKE , WEHIFEA --max-encrypted-data-keys 2ERBEREZR AT ERWTAL , Hob
TEBZHMNZER SR, BIFELEFAEEH —BaXSMETHRE , NBHALEE= () AMBEH
EREH MEREAN=EEXLHBE— G, EERFNNEERSRYESSENTZKE , fiW
5, IREBEEPIRINEKRE , ATt EAK. NEFHEFR , F2RRINENER SR,

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
--wrapping-keys key=$keyl \
--output /finance --suffix '.clear' \
--metadata-output ~/metadata \
--max-encrypted-data-keys 3 \
--buffer \
--encryption-context class=log

g5 300

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK HEABEE

PowerShell

PS C:\> aws-encryption-cli --decrypt °
--input D:\Archive\Finance.log °
--wrapping-keys key=$keyl °
--output D:\Finance --suffix '.clear’
--metadata-output .\Metadata\Metadata.txt °
--max-encrypted-data-keys 3 °
--buffer °
--encryption-context class=log

EESHRMENEZR

L EHIREBIMMAEIE TR ER AWS 1% CLI, BAUREAEMEZENBRZENNETE K EEE
HEREFPEENERBEZRENESH,

ERHEFH ETHENEERERNES, BREM. mBef , ARENBNERERE Amazon
S3 fFRTER, EE&?EnE%%ﬁ.LEEE{EJE* , FTAEERERTUE R ETHZENRER.

EBBANNBERE K FHLLETRER , BETMNE, ERTRNEZENERTREETERE,

/A Warning

BEERTRESHZZEAIMEENBENER FHL/NM0. BEERNRE KR/, A6
ETEERHRHEAREENBRAET.

Bash

Continue running even if an operation fails.
set +e

dir=%1

encryptionContext=$2

s3bucket=$3

s3folder=$4

masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){
gzip -qf $1

g5 301

AWS Encryption SDK HEABEE

}

encrypt(){

-e encrypt
-i input
-0 output
--metadata-output unique file for metadata
-m masterKey read from environment variable
-c encryption context read from the second argument.
-v be verbose

aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
"${encryptionContext}" -v

}

s3put (){
copy file argument 1 to s3 location passed into the script.
aws s3 cp ${1} ${s3bucket}/${s3folder}

}

Validate all required arguments are present.
if ["${dir}" 1 && ["${encryptionContextl}"] && ["${s3bucket}"] &&
["${s3folder}"] && ["${masterKey}" 1; then

Is $dir a valid directory?

test -d "${dir}"

if [$? -ne 0]; then
echo "Input is not a directory; exiting"
exit 1

fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
do
echo "Working on $f"
compress ${f}
encrypt ${f}.gz

rm -f ${f}.gz

s3put ${f}.gz.encrypted
done;
else

echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"

g5 302

AWS Encryption SDK HEABEE

echo " and ENV var \$masterKey must be set"
exit 255
fi
PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive
Param
(

[Parameter(Mandatory)]

[ValidateScript({Test-Path $_3})]

[String[]]

$FilePath,

[Parameter()]
[Switch]
$Recurse,

[Parameter(Mandatory=$true)]
[String]
$wrappingKeyID,

[Parameter()]
[String]
$masterKeyProvider = 'aws-kms',

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$ZipDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$EncryptDirectory,

[Parameter()]
[String]
$EncryptionContext,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

g5 303

AWS Encryption SDK HEABEE

$MetadataDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-S3Bucket -BucketName $_3})]
[String]

$S3Bucket,

[Parameter()]
[String]
$S3BucketFolder

BEGIN {}

PROCESS {
if ($files = dir $FilePath -Recurse:$Recurse)
{

Step 1: Compress
foreach ($file in $files)
{

$fileName = $file.Name

try

{

Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip

}
catch
{
Write-Error "Zip failed on $file.FullName"
}

Step 2: Encrypt
if (-not (Test-Path "$ZipDirectory\$filename.zip"))
{
Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"

}

else
{
2>&1 captures command output
$err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip"
-0 $EncryptDirectory °
-m key=$wrappingKeyID provider=
$masterKeyProvider °
-c¢ $EncryptionContext °

g5 304

AWS Encryption SDK HEABEE

--metadata-output $MetadataDirectory °

-v) 2>&1

Check error status
if ($? -eq $false)
{

Write the error

$err
}
elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
{

Step 3: Write to S3 bucket
if ($S3BucketFolder)
{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

}

else

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted"

}
}
}
}
}
}
£ A E R E IR IRE

EEEMEENFRREEAEERNSTHEAER SRR

BIEFEER , AWS 1% CLI (FMEAEMAH AWS Encryption SDK) € 5 EMZNESEREREEH -
ERER, HASRENZEXRASEREFAK —NERNSR K BEELERT , NUEIRENE
PEBEEFEH, MIREZERFAEHSBTNE SRR IEMEHAERERA LNEZLMER I
BAEESENZEMERE,

HEEMELHF , ERSR/RRINEASRLD TOESREHEREBRWER | EENERERENR,

g5 305

AWS Encryption SDK HEABEE

EE@SEFTNHSENEREET LB TERKNARBH , HPIEEH KL 800 E/NE AFE.
E—ERmTEN AWS KMS key B ARN 127 keyARN 28fh, F_EdTEMBEE@WA B ETH
FIERR, YRHBEARTFES, EEGSEMEM --suffix BHRKIEE .archive B,

--caching S E2/MAEHNESRRE, BERFRNFPERSBEEN capacity BHRIEA 1, BA
FIARNEREER , "X —EFEA—EER<B. AERECRIMESBUUEAZ XM max_age B
BIE% A 10 PiE,

E M max_messages_encrypted B RIFRA 10 BIFAS , FTAAEMZEE 10 BALWERE , 8%
FTEERE—HERNSR., RESEERNSHREAMFZFNEREE , T ERSRERANBESERRE

BB ZITENERYE,

EEAEXRRELENAFENTERADTD , BUEESEEFRATEESER (Linux B sudo ;
Windows B9 Run as Administrator JARKEEE 5 9 #H1T)).

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input /var/log/httpd --recursive \
--output ~/archive --suffix .archive \
--wrapping-keys key=$keyArn \
--encryption-context class=log \
--suppress-metadata \
--caching capacity=1 max_age=10 max_messages_encrypted=10

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive' °
--wrapping-keys key=$keyARN
--encryption-context class=log °
--suppress-metadata °
--caching capacity=1 max_age=10
max_messages_encrypted=10

g5 306

AWS Encryption SDK HEABEE

ATAZER BRIV MR |, EEEHIE1E PowerShell FH Measure-Command cmdlet, &# 1T
WEIFIFTHTERSRREIEE TRERAN 2 WiE, EREFSAEBETHNEEERELEFTN
BErleil,

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata }

Days : 0

Hours 0

Minutes 0

Seconds . 25

Milliseconds . 453

Ticks : 254531202

TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes : 0.42421867
TotalSeconds ¢ 25.4531202

TotalMilliseconds : 25453.1202

ERTRRMEHMREF BERFISEEHNSRESIAREE 10 AR, EEGTRERETR
12 WHReT R , Bk E SRR E R HNFURBORD KA RFRXBE 1/100

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °

--encryption-context class=log °

--suppress-metadata °

--caching capacity=1 max_age=10
max_messages_encrypted=10}

Days 1 0
Hours : 0
Minutes 0
Seconds ;11

g5 307

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK HEABEE

Milliseconds . 813

Ticks : 118132640

TotalDays : 0.000136727592592593
TotalHours 1 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264

TotalMilliseconds : 11813.264

MR MPER max_messages_encrypted BR#I | ,\JFﬁﬁ*;?ﬁﬁ‘Bﬁﬁ?%*EﬂE’Jﬁﬂﬁ RETINE, SEE
FEENEEFRERNSEBNERES K MARFEREYRESMNR, TiB , RS8R EEN
REHERA 1 Ko

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN
--encryption-context class=log °
--suppress-metadata °

--caching capacity=1 max_age=10}

Days : 0

Hours 0

Minutes 0

Seconds : 10

Milliseconds . 252

Ticks : 102523367

TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367

TotalMilliseconds : 10252.3367

AWS Encryption SDK CLI 58 M2 g2 =

ATERUFBEZBRNBEZSEIER | LUFHBIEEA AWS Encryption SDK a5 =35I 5RHE (CLI). MED
HEBNHMSEHORE , FS8 WAFEH AWS 1% CLl, WELS , 5528 AWS % CLI &
B, METENXY FSEEEMEBIF.

B
« AWS in#; CLI 587

FBENMSEHSE 308

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK HEABEE
- AWS /% CLI 58 %
- ERESH

AWS 1n%; CLI 587

iELE AWS Encryption CLI 54 B R TREE A AWS Encryption CLI 11T BETKNEL. EAK
& AWS tn# CLI 2.1.x iRMEHRAHEBH A

R £ INRERA1E AWS % CLI ARA 1.7.x 1 2.0.x 1T, T8 , AWS Encryption CLI 1.8.x
MREX T 1.7.x WX , ™ AWS Encryption CLI 2.1.x fREUX T 2.0.x0 Zzl] EME |, 552 E GitHub £
aws-encryption-sdk-cli @ FEFHNHEEZ S EE,

(@ Note

MRIESHEBEPSERA , SASEASHEIBHESBAG TR REFER —R.
MBEBER ST ENEBM , AWS Encryption CLI 2ZBEZATENEBYE K MASHRE
H iR,

i8R
HENBEASEERNTE AWS IZE CLI &% , FEM --help -h,

aws-encryption-cli (--help | -h)

S MRA

= EHEBHE AWS Encryption CLI L&MW RAREE , FFEA --version, ERRLEEE. EHEE
RO EEEMEA AWS INZ CLI RRE | BELEE R

aws-encryption-cli --version
nEER
THFEEBERETR encrypt R EANSZEL

aws-encryption-cli --encrypt
--input <input> [--recursive] [--decode]

EENZEBE 309

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK HEABEE

--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
key=<keyID> [key=<keyID>]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]

[--commitment-policy <commitment-policy>]

[--encryption-context <encryption_context> [<encryption_context>

..1]

[--max-encrypted-data-keys <integer>]

[--algorithm <algorithm_suite>]

[--caching <attributes>]

[--frame-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

THFEEERER decrypt S T EANSE,

£ 1.8.x ke , BHEMRRIE--wrapping-keysBiZ2H , BEREFH., # 2.1.x BB , EMNH
MBFZEFEEE - -wrapping-keys 28, M AWS KMS keys , BaILAFEASBBHERISETHE
88 (REERE) BERRBURES true , EFSREE AWS I CLI AT AEANSE LR,

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
[key=<keyID>] [key=<keyID>]
[discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
.. 1]

[--buffer]
[--max-encrypted-data-keys <integer>]

EENZEBE 310

AWS Encryption SDK HEABEE

[--caching <attributes>]
[--max-length <length>]
[-v | -vv | -vvv | -vvvv]
[--quiet]

ERERESR

n\lm

BUNSEZQESENAENEBER, EMEREGTHFRAASENE. WFHH
HHEERTFERZ R

528 Wi

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli ‘@<configuration_file>
AWS 1% CLI 5528

IEERME AWS INZE CLI i S 28HNEALRRA, WETERA ,
#

§52:8 aws-encryption-sdk-cli X

--encrypt (-e)

mZ@AER, SESGSEMHSEE --encrypt. = --decrypts --decrypt-unsigned &
.

--decrypt (-d)

REZWAER, SEGSHLES --encrypt. --decryptH --decrypt-unsigned &,
--decrypt-unsigned [7£ 1.9.x fl 2.2.x fxH T #5]

--decrypt-unsigned ZE2MBMEXF , YHRASEBR A REE, NREFEH S8
BEUSEBNEENEEZEARNBESR , FEAL--algorithmZE, MRBFEMEXF ,
frEg RN,

BAILAER --decryptEl --decrypt-unsigned #1T#% , BETFERFEARE.
--wrapping-keys (-w) [1.8.x KRN #E]

EEARNENBERENTESR (HEXLR). BAUESERSPEAZE--wrapping-
keys%%lo

EENSESE 311

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/
http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK HEABEE

#2.1x iR , ENBNBEZGSHEE - -wrapping-keys 28, £ 1.8.x it , MBHSE
E --wrapping-keyssk --master-keys 88, % 1.8x REZEWSH , --wrapping-keys2
BRZAN BEEEM.

FABTESRIEHEN K NBENREGTTETESRMNBEEBME, £/ B AWS KMS keys , il
BHTEESREBEME, BEDTTEESRBEMLEDESR true (BEFEWE) WIREBEM., BERE
AEBEHEAWS Encryption SDK HEEK., MRELEMBRIABMNFASHIIK |, H120 Amazon S3
fE1FET = Amazon SQS ITHIHMAE , RHEE,

MEREWMAFEH AWS KMS ZEF SR ATESBNEES , BFSB FHZEE AWS KMS
keys.

Bt : --wrapping-keys Z2E8HNEZTETIBM. KRR attribute_name=value,

B RERERAN KSR, KA 2 key=ID Bil, BULESME--wrapping-keysZH{EF
EEZESEREM,

- MBRS MENEGTHEESREM . EQENEDS AWS KMS key HER B, £
WMEMNETUREEER ID. 8 ARN, BIEEBHFIE ARN. MF AWS KMS & iRHE B
HIEREA |, 5528 (AWS Key Management Service BIZ¢ A B35/) FHSEEFIF,

- BEMT . FH BEE AWS KMS keys , --wrapping-keys S2EEESL® ARN ENE
MEBM , NER WIREBM true (EFRME) . EAERBMERAWS Encryption SDK &
FEX. FABTXSRIEHERTE K TESHEBM.

(® Note

FEEBRBRTHEE AWSKMS BREH| , SRBUNELRAREI® ARN, MR
BEREH D, BB BWAFIAE ARN ,, AWS % CLI EEHR TR TR,

B LA ERE- -wrapping-keysSBETIEELEEBEME. T8 , --wrapping-keys8#¥
PHEMREE. EENREEBUEESERIZSEETNAMECX LB, EZHEEEETRE
BHENSESE FE aSPEAZME--wrapping-keysBE,

FL¥F AWS Encryption CLI £ F{E{T AWS KMS key REEZAL ., HRETUR truesh

false, HREA false. RRBUEEHZRTHER , AEEZSREH/ES KAX
AWS KMS,

EENSESE 312

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK HEABEE

F A B AWS KMS keys , --wrapping-keys SEEELRBMRES true (ETEM
) WEREME. NREERASREY ATUFERES NIREBMfalse RABIERRE,

« False (%) — REECHERBUHIHEA Kfalse, AWS Encryption CLI REEMH --
wrapping-keys 2B EMBEHE AWS KMS keys IEEN REZAL ., NMREE FRAE
REEERBMfalse , BEMTE RN, WEXE AWS % CLI EEX.

« True — BERZBUNES Htrue , AWS % CLI AWS KMS keys R IMZALFH
HEREE |, XEAHEH AWS KMS keys REBZAL, BEA NWIREBMEtrueWITAELUR
1.8.x lRZ B AWS 1% CLI IR , TAFLERZBEERESR, T8 , £FHA WEE
AWS KMS key ZIAFEN ., MREBE REA KIEESBBMtrue , BETTEXRE,

HtrueE T AEZE R AWS 1% CLI AWS KMS keys R E AWS tRE M EEFFER , &
ERMFEA AWS KMS keys R EREREFRAN .

E RRA Btrue , REEBRER RRDFENRRIRFBM | & AWS KMS keys BREIH&E
AWS tRF 1EER FRTERD o

IR

AWS KMS keys AIREZM BREIBIEE B AWS tRFE. HWEMHRHE—BRER AWS IRF
IDo

EMRERAYN , BEEREDTPER , AWS KMS keys Hft IREBMRS true BIEE &R
RoEEEM.

SR RERFBEREZE—E AWS IRFE ID , BT EMERBH - -wrapping-keysZ 8 Hig
EZEFRRRFBM, IBE--wrapping-keysZ8HIEENFMEREHLANRIEEN AWS
PEIER,

R EE
£ RRIEFBEREERFN AWS 2EIE, EEXAR AWS 7EIE , FlM0 aws, aws-cns

aws-gov-cloud, MEFMENR , F2B) FH Amazon Resource NamesAWS — g2
=

ERER RRIEFBME EEREBM., SE--wrapping keysSEREEiEE—E ERSE
EEYt. EEEZEIEIE AWS IRF FiEE , FFEAHEHM--wrapping-keysB ¥,

provider (12 #)

MBIl ES|IEME, BXE provider=ID ¥4, FEFX{E aws-kms F&F AWSKMS, REEZXE
WREERR B, THEEREM AWS KMS,

EENZEBE 313

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK HEABEE

region

Al AWS B By AWS KMS key. LLEBEEBEAR AWS KMS keys, £7E key @ BIFARIEE
EERTERE TASAK, FATCK , 88X CLIAWS HRFXERTHNERES,

profile

ABIE AWS CLI tr BHIERERE. LEEBMEBEAR AWS KMS keyso REEGTHH key 5!
HAREERE , BZE region B , T2FEAREETRHES.

--input (-i)
EEMZEN@ZERNVLE. WALESY, SEETARERSIEHZNBRE IEREBEN,
MREHWABER WS (stdin) , FEA -,
WMREATEFE , D BIEMNTHK , BFAHRERAES,
--recursive (-r, -R)
EWABSREFEHZPHNERLHTERE, B --input NHERB &K , LBBALE,
--decode

R 15 Baseb64 {mISH A,

NREERTENDEERBOAL CLELRBAL , ARTERE. HSRBRLRDE
BT,

Flin | MREEMBZRSSHER --encode 28 | FEVENHEZGSTMER --decode 2
B, Bha Ll EHA IS E KRS Basebs RISH A |, EEHETMNER,
--output (-0)
EEaENENt, WAXESE, ERETVUREREE. BEE%& 3& -, 2E59KHEE
At (stdout)o
MREENBHBEEZLEE T 8LM. MRWAITSTEH , AWS 1% CLI ELIEEN @
HE&TERFHE &%,

RIZFEEX , AWS Encryption CLI EZEEFHRABRBNESR. EE8FNTA , FFEA --
interactive = --no-overwrite 28, FEBBEBERSES , FFEA --quiet 28,

(® Note
MRBRBHERNGTRY , MEMRELHESR,

EENSESE 314

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK HEABEE

--interactive

HBERERZIHRRETR,

--no-overwrite

TEBRER. Rz, IRBHERTE , AWS % CLI SRBHEABE A,

--suffix

IBE AWS % CLI BU 2 RBRNWEITEREBER. BEZETIEREG , FEAZHEmMA ML
B (--suffix).

EFEERERT , B --output BEKREEERERE BHEREBEEERAEREBNERE
2% BNELEB. IBHSHEBR .encrypted. BEHTHREBR .decrypted,

--encode

EH Base64 (CHMUENT) WHEI@H L, ®BETHLRBEIREXNEREZFOHFZHHFE
ASCIl ZF TT,

E A HE stdout (--output -) KFEEALSE (LHRTE PowerShell £ &) , BIfE
FREAHEIEES A SRR EFEEED,

--metadata-output

EERBREFRENEFATFRENNVE. AARECIERERE, NMRBEFEFE DTERN
EERAPREREGTS (stdout) , FBEM -,

IEBTREEHRNG TP BEAGTE Y (--output) MAEEREE (--metadata-output) £
stdouto AL , B --input = --output WERB &K (RERERER) , CELBPEERNBLEE
AZME[E B $%=3 B S E A F B 8.

MBEEHIEERANER , RIBTER , AWS 113 CLI H5H P EE R CEM INBIE RPN EM[R
Do WIHREETBREEIVE—RER HPF IR BHREZRENTEHER, EEZEEHARERSH
AE , BFEA --overwrite-metadata 2#.

Encryption CLI AWS E#t B as ST S EMBHEFRFEED JSON AW PRER LK, 3
BErEENCHBTL SR ATBHERNZERE, MERAS, BEEEEANEMWEREN #HE
RARRBRELBREEFSENRERE,

--overwrite-metadata

BEETHRENBHERPNARS, EFERERT , --metadata-output S B i1 #E R
RPN TAEERNR,

EENZEBE 315

AWS Encryption SDK HEABEE

--suppress-metadata (-S)

BRI R R IREMN AR PR E R,
--commitment-policy

EEMBEMNBRZRGTHEAEBE, RABRSHHENASREERZRAE TR ETNEM
R,

--commitment-policy SHE%E 1.8 x lxFH#HH, EENBMBERGSHER.

£ 1.8x X , AWS MN% CLI /& forbid-encrypt-allow-decrypt&AEBE B RFTA M
RNBRRE, ELRENZRBZGSRER --wrapping-keys 288 |, EEEH forbid-
encrypt-allow-decrypt{EfY --commitment-policy 28, MRERMER - -wrapping-
keys 8% , Bl --commitment-policy BE &M, EEHMRE 2.1.x lRrequire-encrypt-
require-decrypth , RERE B REAEN LENAEBREBEER

T 21x RBAME , XEMEREBEE, --commitment-policy 28 AIRA A6 FARES

require-encrypt-require-decrypt,

WSHERUTE :

« forbid-encrypt-allow-decrypt — EEZFEASWAENE. CAUBREERARTEALIR
AGEINZEWINE X F .
£ 1.8.x i , ERH—BUNE. AWS % CLI i forbid-encrypt-allow-decrypt#
ABER AR MEBMEERE

« require-encrypt-allow-decrypt — EMELWEFE. FRANTERESREAEETHE,
AT 2.1.x iRPHEH,

- require-encrypt-require-decrypt (785) — EFASBAERNBNHER, HEE
2Ax R, ER 2.1.x RMEMRANTERE. FHIER , AWS Encryption CLI T & ##
FEFAEMR INZR Y E{T 1N %8 3LF AWS Encryption SDK.,

MERERFERENFMEENR , F28 EBEH AWS Encryption SDK,

--encryption-context (-c)

EERENNZEANR., LBBEMLE , BPHEBEER.
« £ --encrypt WHH , WA—HZE name=value ¥iH., FAZEKRD REEHE,
« E--decrypt@®m o , WAREENname=valuelit¥. name TEHIME,

EENZEBE 316

AWS Encryption SDK HEABEE

R name ¥#EFH value = name=value BEERLIFHF T , FFASIHBERAEEE, Hlm

--encryption-context "department=software development',

—-buffer (-b) [1.9.x F 2.2.x KRFN#E]

REEREMEBARTSEEEMAXT , SERBFBNEERSTEE.
—-max-encrypted-data-keys [1.9.x 1 2.2.x fx N 48]

EEMBARFNZENSRNHELR, LARAZE,

BEMER1-65, 535, MREHBLBE , AWS INE CLI FERABTEMZKE, MBEHFA
ERZARE 65, 535 @ (2M6 - 1) MENER TR,

BRI ENZGTHEALSHE , U LR T ERANALE, EAUEREGTHEAETRENE
EAR UERAEAASEELIBENNZENCRRBEAS . UEFHEANES , F2ER
FINZNERE®,

--help (-h)

Han S HIENER A ENTE %,

--version

HU§ AWS 0% CLI BYRRAS,
-V | -vV | -vvv | -vvvv
BRFMES. BENEHAS. GHPNFREFSRESH TN v BEME M, KFMORE
(-vvvv) 81 AWS % CLI R EERANFE T4 EREEBRER.
--quiet (-q)
BRERESIAL fln, ECERTHHERBNAL,
--master-keys (-m) [EEH]

(® Note
--master-keys ZE 21 1.8.x PEM , W& 2.1.x DB, FFHA --wrapping-keys 2
.

EEARNBNBERENIER., EUUESEGSPEAZBAIERBE.

EENSESE 317

AWS Encryption SDK HEABEE

EMZEGTH --master-keys SBAMLE, REELEABRT (FFAWS KMS) &R E
i, TEEEHRBEWHTH,

B . --master-keys SEWEZETHEBMH., KR attribute_name=value,

HAl BEPEANZESR. KR key=ID #il, EFMIEMEW ST key BERME,

EZREMBGRS AWS KMS key FEA I, SREBUENETIR LR ID. £ ARN, BI&EH
B BlE ARN, 1% AWS KMS €A BIRFNFMER , 552K (AWS Key Management
Service F#& ABERE) RHERET.

EXCHREHRETR B A BEGSPEE SBEM AWSKMS, EMZIU MBZERNGS
B, FTAFFEASBEYE AWS KMS key,

B A EEE- -master-keysBHETEELELRBE M. FiB , £ provider, region
profile BEMEERZSHETNELIELR, EEFATANBHEREEE SR , FET S
FEFAZME --master-keys 28,

provider (12 #)
A ESBIEHE, KR provider=ID ¥#H, FEFRE aws-kms K&k AWS KMS, REEXSE
WREEETR &, TEELEM AWS KMS,
region
A AWS EiF B9 AWS KMS key, B EERR AWS KMS keys, 1E7E key S BIRF R IgE
EFRITERAE L SAEZK. CATK , 28 E CLIAWS AR EREPHNERES,
profile

#Al AWS CLI EW B ERE, LLBMEERAR AWS KMS keyse REEGTHH key 375!
HAREERE , BZE region B , TEFEAREERHES,

28
--algorithm
EEBREELEN. KLBHEEREAN EENBRSFER.

MREBEREULSE , AWS % CLI €% 1.8.x lxF AWS Encryption SDK 8K EREF—1@
BEEEEEN, EMEEREE EHE A AES-GCM ## HKDF, ECDSA 2 E M 256 {7 T hn%
S, —BEEASRARE , —BTFER. BREELEHNEEEURRN o HNEAFEEE.

EENZEBE 318

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK HEABEE

BRASHNFRREEARRRELZEN. NFARENEE , F2EEDEHH algorithm
281E.

--frame-length
ERAEENERREEVEL. LBHERAN EENBRTHFER.
DU TERABENEAE, BREAOM1-231-1, BHOXRTFEXKER., FHEREA 409 (LT
) o

(® Note

S|EEFEAEKER, £ AWS Encryption SDK X EEHAENIEX K ER, WELES
BE{AR AWS Encryption SDK AIAE£FERMEZENF . FMMEXENES BEEFH TR
BRERNEERMEXF,

--max-length

RREMZBAS BRI EAERAN (HEERASNEARBRE) , MunBHAE N, HLBEHRE
ERAN , EEREGTHEN, EERBREBEIERENZEMENF,

D TEAENMNBAE, MREEHILSE , AWS Encryption SDK & R Flff B BF B R248 K7D,
--caching

BRAEHEZRREE TEEEAENER MIASERARRELETNERSR, HKBEX
BEMRES, ERLIhEER , BB EERER SRR

--caching B8 EE T 5B,
capacity (4 E)

RIERENFAYIE B B LR,

®/MER 1. RERABIE.
max_age (HE)

REEARNAENSERE , LYK/EM , REMIHESREBISA,
BAKXR O HNBIE, REZARIE,

max_messages_encrypted (iEH)

RIEREUR B AJLAINE N R ARAS R

EENZEBE 319

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK HEABEE
BERES 1-2°32, FERES 2432 (AE),
max_bytes_encrypted (i#F)

RIERENIE B A LA ZR RY & KAz AR R

EREROM1-2263-1, FEREAR263-1 (AR). EA O RAHELENEZNASFH
B 6 F B R 2 SRR EY

AWS fn#: CLI RYRRAS

BMEZEEAZITRAH AWS Encryption CLI,

(® Note

4.0.0 2 BIHY AWS 1N%8 CLI iR AR end-of-supportP& Ex

BRI R 2 E 2.1.x IR EFARAE B REMRAK AWS 112 CLI , MAFEEEMAREXB
REREE, T8, 21 x RPSIENFZEYEELEHES. BER 17X RBERREE
¥, BAALEFE AWS MNE CLI EFT 1.x AR, MEHMEF , FSEEBLEN AWS
Encryption SDK,

R £ INRERANIE AWS MN%E CLI ARA 1.7.x 1 2.0.x B 1T, T8 , AWS Encryption CLI
1.8.x MREMX T 1.7.x WX , ™ AWS Encryption CLI 2.1.x fREMX T 2.0.xo MEFMEF , F2
B GitHub £ aws-encryption-sdk-cli fZEFHHEBLZ S ES,

WNE EERAKEFR AWS Encryption SDK , 55288 BhZA< AWS Encryption SDKo

K e AE A M ERR AR ?
MRERYIRER AWS Iz CLI, FEEAZIHRE,
EEMREF 1.7.x AWS Encryption SDK iR ZBIHY RAPFTINBNER | BEAEBERIRER AWS

Encryption CLlI, HEMZE 2.1.x RIEMNRAEZE , ETAEESNEE., NEFHEF A6 F2HE
B 188 AWS Encryption SDK,

E—F T #

- MEEBRELEMREACEENIESINFHEENR , F28 EBEH AWS Encryption SDK,
- WMFTEFH AWS 1% CLI SEBFBHAFRA , 5828 AWS Encryption SDK CLI FEEFIZE S E,

WRA 320

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK HEABEE

T5IEERA 1.8.x M 2.1.x R AWS 1% CLI HEE,

AWS % CLI B 1.8.x lREF

%A --master-keys 28, FXA --wrapping-keys B#,

¥18 --wrapping-keys(-w) 28, ©X&E --master-keys SEWFEBML. CHEFEB TR
RAEY , REEER BB BR AWS KMS keys,

- ®EK

- REZEE

- RRIRF

HRABITESBIEMRE | --encryptM - -decrypt®HEE --wrapping-keys BEH --
master-keys B8 (ETEFARFEME). A, B --encrypti® AWS KMS keys EE
--wrapping-keys 8= --master-keys 28 ({EFXEME).

£EH W--decrypt@HH AWS KMS keys , --wrapping-keys SE2:Z/AM , BEEMFER ,
RATCE2IXMPRMEN, MREFEHATE , AIXEREERSIBBURES true (ETHERKIE
EME) WREBM,

#7138 - -commitment-policy 28, B—HBHMMWES forbid-encrypt-allow-
decrypt., forbid-encrypt-allow-decrypt ABBEKRARMEMNBZNERG S

£ 1.8.x e , EZEH --wrapping-keys 288 , EEEH forbid-encrypt-allow-
decryptfEHY --commitment-policy 28, EEHMRE 2.1.x lRrequire-encrypt-
require-decrypthy , FRE EA AR LENAZBREEHEER

AWS % CLI) 2.1.x lREF

BBR --master-keys 8%, FXA --wrapping-keys B#.,

FIEMBENBRZGSEEE - -wrapping-keys B8, BUEEEES true ({ETERBIEEWN
) NEREBUHIREBML,

--commitment-policy 2#ZETIIE, MEFMHEN , F2RERELNAEBEE.

« forbid-encrypt-allow-decrypt

* require-encrypt-allow-decrypt
« require-encrypt-require decrypt (FEi&{E)

BT 2.1.x R¥F--commitment-policyAEA., FE%{EA require-encrypt-require-
decrypto.

[E:N 321

AWS Encryption SDK HEABEE

AWS 1NZ28 CLI B9 1.9.x hxF0 2.2.x R E&E

- #1i¥ --decrypt-unsigned 8, MEFHMEN , FS082.2.x Mo
o ¥118 --buffer B8, WFFHBEF , FSB2.2.x o
« #T#¥ --max-encrypted-data-keys 28, MEFHEFA , F2REFNENERER,

3.0.x k¥ AWS in# CLI W& E

- ¥ AWSKMS L EFHESMI T, NEFMENR , F2EEAZESE AWS KMS keys.

WRA 322

AWS Encryption SDK HEABEE

BRI IIRE

ERERRINSEENSRNEEANZERN S BRAFIRMF, ELNBRBRZERE , SERRF
AWS Encryption SDK SN ER TR, MRKIFENTH TREEAXRDELRTR , M
EELEFNER. ERSRRIAUEANE, BEXNE , YEREERARARETHRRE KFHET
BBR%AE.

FEREXETIIRG TRXEENSRRIES

- EALERERERER,
- TEELERENERER,
- BRNEZERFEEBHBERE, KARE, MEZRIBEERAER.

PRELA] BUR A I8 B SR sE RIS 62 |, Bl AWS Key Management Service (AWS KMS), #0R iR %
E|iE AWS KMS requests-per-second limit , ERFIREVREERI R —B 21, B EARE A SLE A IRE
LREMBELERLBFER , MARFW AWS KMS, (Bt LUEAWS ZERLBITEH , LR
SRFHREE,)

AWS Encryption SDK Al B B U MEEER S|MRIN. TRELSHEROMROFZ R ERFEHNEES
(fREXCMM) , HERRMEBH I BHPTERENZLME. EERHERSEF 2R , RUREE
BEEFRENSRRESERNR IREERRRZSM,

BERL@IREE MIZA AL AWS Encryption SDK |, IRFEREE[A, RIBER , SASENRRE
AWS Encryption SDK EA W ER 8, EEEMEZENFRENTREER K MEBEBMELTHE
BEEEFHAERSB., —KMS K EHSBINRSEATRENEEERTSRA, B8, BFH
ERESBRNEZLMEHE , BREZEHARERIBIRIER KA MEERZ,

3.x WX BAR JAVA B9 AWS Encryption SDK EXEFHAERESBIERERAMNRER CMM , FXE
keyring 5., i , AWS Encryption SDKEAR .NET B 4.x ix. BAM Rust B9 3.x BAR JAVA
#9 AWS Encryption SDKhR i@ Python B AWS Encryption SDK, AWS Encryption SDK & AR
Rust 8 1.x kR , A& AWS Encryption SDK E AR Go B 0.1.x iR EH AR AT EAWS KMS FEER

keyring , ERBRXNEZHBHREERRIFRAATR. A AWS KMS BEER keyring INZEN AR R &E
AREER keyring AWS KMS &%,

MEELZLEENFMENR , F2H AWS Z2IEKPHAWS Encryption SDK : #IAHEIER &
BREEAESENERREN,

ES- |

323

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/

AWS Encryption SDK BRAREE
© MAERERERRE

- RERDZ 2 MRE

- ERESRREGHEERA

- ERERIRENED]

0 1e] 5 F B R <2 SR IR BN

LEERANAERARIPERAERSRRN, CEESEIELTREFNBEIR, RE , IR
BERBERS ERFEDEAERSBMEIRMNEF S,

AE R EHIREIMEER 2.0.x IRFEF A AWS Encryption SDK., MEEAERNES , BER
XEZFTE S W GitHub REERKTBEEFSHREW R,

WEE PERER S\ R TR B E 5 AWS Encryption SDK |

3
¢
a5

* C/C++ : caching_cmm.cpp

+ Java : SimpleDataKeyCachingExample.java

+ JavaScript B|E 2§ : caching_cmm.ts

« JavaScript Node.js : caching_cmm.ts

* Python : data_key_caching_basic.py

AWS Encryption SDK for NET FXE &R SR IRE

£}
- FAERHSRRE : BSRE
- BRSRIRIES] : hNEF S

ERER RN BHREF

BERSEIRANTRILBEFERSH/IRIMAFN TH,

- BEYER SRR, HELEHF P , RMMEA AWS Encryption SDK R E A AEREN, HPIAFRE
RIS 10 EER SR,

Al AR B R SRR ER 324

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK

L PN=E =]

C

// Cache capacity (maximum number of entries) is required

size_t cache_capacity = 10;

struct aws_allocator *allocator = aws_default_allocator();

struct aws_cryptosdk_materials_cache *cache =

aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);
Java

THEFER Y 2 BAR JAVA B9 AWS Encryption SDK.x iR, 3.x W& BAR® JAVA B9 AWS
Encryption SDK BRX ERI &R REL CMM, £ 3.x ikl , BB A SIEAAWS KMS FEEX
keyring , EREBER N BIHMEERIREUERS R.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);
JavaScript Browser

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)
JavaScript Node.js

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

ERERESRRE : BSRME 325

AWS Encryption SDK HEABEE

- B E&BIRMHE (Java M Python) = keyring (C # JavaScript), iELL&HIER AWS Key
Management Service (AWS KMS) = &2 EHHEEH AWS KMS keyring,

C

// Create an AWS KMS keyring

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);
Java

THIEHIER 8 2 BAR JAVA B9 AWS Encryption SDK.x iR, 3.x iRE BAR JAVA B9 AWS
Encryption SDK EXfAE R 3| RE CMM, A 3.x ki , B SIERAAWS KMS FEE R
keyring , ERE RN B IHMEERIREUERE R,

// Create an AWS KMS master key provider

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn);

JavaScript Browser

FERESRT EXAREHEALCHNBEAER, LEBFHERSEHTHREBTZAERN
webpack (kms.webpack.config) P EAE R, ©EHR AWS KMS AFmMEAEREIL AWS
KMS A FIHREEHTEE, A% K BTEI keyring & , EREAFRHRMEEHE AWS KMS
key () —EBEIEFEEENgeneratorKeyId),

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

ERERESRRE : BSRME 326

AWS Encryption SDK HEABEE

/* Create an AWS KMS keyring
* You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeylId,
keyIds,
1))

JavaScript Node.js

/* Create an AWS KMS keyring
& The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider

The input is the Amazon Resource Name (ARN)

of an AWS KMS key

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

- BEYRBREBREZEHEES (RECMM).

AEREX CMM EZIRENM = 8RB E S keyring B EFHE, A% , R CMM LERERNEZEH
EO

£ # EAM C B AWS Encryption SDK , EAI LAt E R CMM 2 1REL CMM |, flanFEzk
CMM , fE keyring. LLEEHIEHE keyring I REX CMM,

BINIRECMM z#& , B LU H ¥ keyring MIIRENW B E , MFEFMEF , 552 Bthe section
called “8EFE’

ERERESRRE : BSRME 327

AWS Encryption SDK HEABEE

// Create the caching CMM

// Set the partition ID to NULL.

// Set the required maximum age value to 60 seconds.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

THIEFI6ER 89 2 BARM JAVA B9 AWS Encryption SDK.x iR, 3.x ix B JAVA B9 AWS
Encryption SDK T X EE R S #MIREN , BEEEZEAWS KMS BEER keyring , ERBRNEE
mEERMREURR S R

/*
* Security thresholds
* Max entry age is required.
£ Max messages (and max bytes) per entry are optional
*/
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)

.withCache(cache)
.withMaxAge(MAX_ENTRY_AGE_SECONDS,

TimeUnit.SECONDS)
.withMessageUselLimit (MAX_ENTRY_MSGS)
.build();

JavaScript Browser

/*

ERERESRRE : BSRME 328

AWS Encryption SDK HEABEE

* Security thresholds
ik Max age (in milliseconds) is required.
ks Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

D

JavaScript Node.js

/-k
* Security thresholds
* Max age (in milliseconds) is required.
* Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

1)

Python

Security thresholds

Max entry age is required.

Max messages (and max bytes) per entry are optional
#

MAX_ENTRY_AGE_SECONDS = 60.0

MAX_ENTRY_MESSAGES = 10

Create a caching CMM

ERERESRRE : BSRME 329

AWS Encryption SDK HEABEE

caching_cmm = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=MAX_ENTRY_MESSAGES

IRHERITELIRE, R%E , B A AWS Encryption SDK BEIRE , S IEEEHCHIREEERE
-8

EEREEFURFERAERSBRECRMZNMBRERE BEERMCMM , MAREESRBIEMRER
Ht CMM,

® Note

MRBEEMBERERSIEMARAKRPIER , FRSLEFBRPEEER KD, MBERAMAK
N ERLBE AWS Encryption SDK , AE2FHAERSMRREL

£ # EAR C B AWS Encryption SDK , #&& AR CMM B3 TERER , REREE TIER
B

BIBETER , EABKNKRAMEEREIE | AWS Encryption SDK T E2IRINER &8, EELETHAE
ﬁﬁtﬂﬁﬂﬁlﬁ’]‘ﬂ—uunﬂ‘iﬂﬂ #EfEMA aws_cryptosdk_session_set_message_bound FiERER
ENAEKDER, BREREARAGTHAEKRD, NREBERASK/NEBRES , BNZREE
=

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
session, output_buffer, output_capacity, &output_produced,
input_buffer, input_len, &input_consumed);

ERERESRRE : BSRME 330

AWS Encryption SDK HEABEE

/* Release your references to the caching CMM and the session. */
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

THIEEHIER 8 2 BAR JAVA B9 AWS Encryption SDK.x i, 3.x RS EA R JAVA B9 AWS
Encryption SDK B{XE R S8 HREL CMM, £ 3.x IREF , B LAEAAWS KMS FEE
keyring , ERE RN ETHRZERIRIERS R,

// When the call to encryptData specifies a caching CMM,

// the encryption operation uses the data key cache

final AwsCrypto encryptionSdk = AwsCrypto.standard();

return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser
const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

B IR7E SBAR JavaScript B9 AWS Encryption SDK for Node.js R {EAREL CMM B |, encrypt’h
ZEEMNFHIRE,. IRETRMEAZEN K BRTERNENSR, NRERERE , BRIEMHN
MYFERNBBZRE , AINFRES AR, MRETHNERANEZNRIRE , SINEERBEHTER
R, SRR MEANERE,

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,

the encryption operation uses the data key cache

#

encrypted_message, header = client.encrypt(
source=plaintext_source,
materials_manager=caching_cmm

ERERESRRE : BLRME

AWS Encryption SDK HEABEE

)

ERERREEH : R TR

EEEENEARENENRFRREAENSR/REN, CEREZTEFNERNRSHELETUMT
BRI E R,

WEIF S A B AR ESBIEHEEDR keyring AWS KMS key, A% , c2FEAREREMNES
WIRMED keyring REV EFBEZLRHENIRI CMM, £ Java fl Python 1 |, INFHAFERFIEER
B CMM, EMENMEXFER , URNEZEART. ECH , RENCMM B TERBRPIEE , WiFxT
ERSER IR BRI ZR R R

EEHTELES , BEERM M Amazon Resource Name (ARN) AWS KMS key, EHEEREEE
A AWS KMS keyfIFF A , AEXEER TR,

MERVNERAERSB/RINEFMERRS , F2H ERSRREEHELR.

C

* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is
* located at

ik http://aws.amazon.com/apache2.0/

* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and

* limitations under the License.

*/

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
bytes already allocated)
size_t *ciphertext_len, // length of output will go here

ER S IREES . BT S 332

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK HEABEE

size_t ciphertext_capacity,

const char *kms_key_arn,

int max_entry_age,

int cache_capacity) {

const uint64_t MAX_ENTRY_MSGS = 100;

struct aws_allocator *allocator = aws_default_allocator();

// Load error strings for debugging
aws_cryptosdk_load_error_strings();

// Create a keyring
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);

// Create a cache
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

// Create a caching CMM
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(
allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
if (!caching_cmm) abort();

if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
abort();

// Create a session
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);
if (!session) abort();

// Encryption context

struct aws_hash_table *enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

if (l!enc_ctx) abort();

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");

if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
abort();

// Plaintext data to be encrypted

ERSMIREES - MBEFH 333

AWS Encryption SDK HEABEE

const char *my_data = "My plaintext data";
size_t my_data_len strlen(my_data);
if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

// When the session uses a caching CMM, the encryption operation uses the data
key cache
// specified in the caching CMM.
size_t bytes_read;
if (aws_cryptosdk_session_process(
session,
ciphertext,
ciphertext_capacity,
ciphertext_len,
(const uint8_t *)my_data,
my_data_1len,
&bytes_read))
abort();
if (laws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
abort();

aws_cryptosdk_session_destroy(session);
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

THIEEHIER 8 2 AR JAVA B9 AWS Encryption SDK.x iR, 3.x iRE BA R JAVA B9 AWS
Encryption SDK ERX & B £ 8 REL CMM, £/ 3.x ixhF , Bl LAEHAAWS KMS FEE
keyring , ERE RN ZTERZERIRIERS R,

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CryptoMaterialsManager;

import com.amazonaws.encryptionsdk.MasterKeyProvider;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.CryptoMaterialsCache;

import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;

ERSMIREES - MBEFH 334

AWS Encryption SDK

FMBABER

import
import
import
import
import
import

/**

* <p>

com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
java.nio.charset.StandardCharsets;

java.util.Collections;

java.util.Map;

java.util.concurrent.TimeUnit;

* Encrypts a string using an &KMS; key and data key caching

* <p>

* Arguments:

*
* <1i>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,

*

*/
public

/*

*

*

see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/

developerguide/find-cmk-id-arn.html
* Max entry age: Maximum time (in seconds) that a cached entry can be used
* Cache capacity: Maximum number of entries in the cache
*

class SimpleDataKeyCachingExample {

Security thresholds
Max entry age is required.
Max messages (and max bytes) per data key are optional

*/
private static final int MAX_ENTRY_MSGS = 100;

public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
cacheCapacity) {

// Plaintext data to be encrypted

byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

// Encryption context

// Most encrypted data should have an associated encryption context
// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("purpose", "test");

ERSWMIREED : BT R

335

AWS Encryption SDK HEABEE

// Create a master key provider
MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder()
.buildStrict(kmsKeyAzrn);

// Create a cache
CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

// Create a caching CMM
CryptoMaterialsManager cachingCmm =

CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
.withCache(cache)
.withMaxAge(maxEntryAge, TimeUnit.SECONDS)
.withMessageUselLimit (MAX_ENTRY_MSGS)
.build();

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, myData,
encryptionContext).getResult();
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring
* to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.

*/

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
WebCryptoCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from 'eaws-crypto/client-browser'

ERSMIREES - MBEFH 336

AWS Encryption SDK HEABEE

import { toBase64 } from '@aws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient() .
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* This is injected by webpack.
* The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
values when bundling.
* The credential values are pulled from @aws-sdk/credential-provider-node
* Use any method you like to get credentials into the browser.
* See kms.webpack.config
*/
declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {

/* This example uses an &KMS; keyring. The generator key in a &KMS; keyring

generates and encrypts the data key.

* The caller needs kms:GenerateDataKey permission on the &KMS; key in
generatorKeyId.
*/
const generatorKeyId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding additional KMS keys that can decrypt.
* The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.

ERSMIREES - MBEFH 337

AWS Encryption SDK HEABEE

* In “generatorId’, this &KMS; key is identified by its alias ARN.

* In “keyIds', this &KMS; key is identified by its key ARN.

* In practice, you would specify different &KMS; keys,

* or omit the “keyIds' parameter.

* This is *only* to demonstrate how the &KMS; key ARNs are configured.

*/
const keyIds = [

'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f"',

/* Need a client provider that will inject correct credentials.

* The credentials here are injected by webpack from your environment bundle is
created

* The credential values are pulled using @aws-sdk/credential-provider-node.

* See kms.webpack.config

* You should inject your credential into the browser in a secure manner

* that works with your application.

*/

const { accessKeyId, secretAccessKey, sessionToken } = credentials

/* getClient takes a KMS client constructor
* and optional configuration values.
* The credentials can be injected here,
* because browsers do not have a standard credential discovery process the way
Node.js does.
*/
const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken,
I
b

/* You must configure the KMS keyring with your &KMS; keys */
const keyring = new KmsKeyringBrowser({

clientProvider,

generatorKeylId,

keyIds,
1)

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries

ERSMIREES - MBEFH 338

AWS Encryption SDK HEABEE

* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum number of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,

ERSMIREES - MBEFH 339

AWS Encryption SDK HEABEE

partition,

maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

/* Encryption context is a *very* powerful tool for controlling

* and managing access.

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-gquide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

/* Find data to encrypt. */
const plainText = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data.

* The caching CMM only reuses data keys

* when it know the length (or an estimate) of the plaintext.

* However, in the browser,

* you must provide all of the plaintext to the encrypt function.

* Therefore, the encrypt function in the browser knows the length of the
plaintext

ERSMIREES - MBEFH 340

AWS Encryption SDK HEABEE

* and does not accept a plaintextLength option.
*/
const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

/* Log the plain text

* only for testing and to show that it works.

*/

console.log('plainText:', plainText)
document.write('</br>plainText:' + plainText + '</br>")

/* Log the base64-encoded result
* so that you can try decrypting it with another AWS Encryption SDK
implementation.
*/
const resultBase64 = toBaseb64(result)
console.log(resultBase64)
document.write(resultBaseb4)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Log the clear message

ERSMIREES - MBEFH 341

AWS Encryption SDK HEABEE

* only for testing and to show that it works.
*/
document.write('</br>Decrypted:' + plaintext)
console.log(plaintext)

/* Return the values to make testing easy. */
return { plainText, plaintext }

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
NodeCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-node’

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient()".
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

export async function cachingCMMNodeSimpleTest() {
/* An &KMS; key is required to generate the data key.
* You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
*/
const generatorKeylId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding alternate &KMS; keys that can decrypt.

ERSMIREES - MBEFH 342

AWS Encryption SDK HEABEE

* Access to kms:Encrypt is required for every &KMS; key in keyIds.

* You might list several keys in different AWS Regions.

* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key

* and the additional key are actually the same &KMS; key.

* In “generatorId’, this &KMS; key is identified by its alias ARN.

* In “keyIds®, this &KMS; key is identified by its key ARN.

* In practice, you would specify different &KMS; keys,

* or omit the “keyIds® parameter.

* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keylIds = [

'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* The &KMS; keyring must be configured with the desired &KMS; keys
* This example passes the keyring to the caching CMM
* instead of using it directly.
*/

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

ERSMIREES - MBEFH 343

AWS Encryption SDK HEABEE

* As a result, sharing elements in the cache MUST be an intentional operation.
*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum amount of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
partition,
maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

/* Encryption context is a *very* powerful tool for controlling

* and managing access.

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

ERSWMIREED : BT R 344

AWS Encryption SDK HEABEE

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-gquide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

/* Find data to encrypt. A simple string. */
const cleartext = 'asdf'

/* Encrypt the data.
* The caching CMM only reuses data keys
* when it know the length (or an estimate) of the plaintext.
* If you do not know the length,
* because the data is a stream
* provide an estimate of the largest expected value.

* If your estimate is smaller than the actual plaintext length
* the AWS Encryption SDK will throw an exception.

* If the plaintext is not a stream,
* the AWS Encryption SDK uses the actual plaintext length
* instead of any length you provide.

*/

const { result } = await encrypt(cachingCMM, cleartext, {
encryptionContext,
plaintextLength: 4,

1)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */

ERSMIREES - MBEFH 345

AWS Encryption SDK HEABEE

const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’™ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Return the values so the code can be tested. */
return { plaintext, result, cleartext, messageHeader }

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

or in the "license" file accompanying this file. This file is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific

#
#
#
#
#
#
http://aws.amazon.com/apache2.0/
#
#
#
#
language governing permissions and limitations under the License.

"""Example of encryption with data key caching.
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
"""Encrypts a string using an &KMS; key and data key caching.

ERSMIREES - MBEFH 346

AWS Encryption SDK HEABEE

:param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key

:param float max_age_in_cache: Maximum time in seconds that a cached entry can
be used

:param int cache_capacity: Maximum number of entries to retain in cache at once

Data to be encrypted

my_data = "My plaintext data"

Security thresholds
Max messages (or max bytes per) data key are optional
MAX_ENTRY_MESSAGES = 100

Create an encryption context
encryption_context = {"purpose": "test"}

Set up an encryption client with an explicit commitment policy. Note that if
you do not explicitly choose a

commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Create a master key provider for the &KMS; key
key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

Create a local cache
cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

Create a caching CMM

caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager/(
master_key_provider=key_provider,
cache=cache,
max_age=max_age_in_cache,
max_messages_encrypted=MAX_ENTRY_MESSAGES,

When the call to encrypt data specifies a caching CMM,
the encryption operation uses the data key cache specified
in the caching CMM
encrypted_message, _header = client.encrypt(
source=my_data, materials_manager=caching_cmm,
encryption_context=encryption_context

)

ERSMIREES - MBEFH 347

AWS Encryption SDK HEABEE

return encrypted_message

RERMZEHERE
RN SRR | ERERERE CVM BHHTH RS BE,

EEZeMRERBHERFSECRINENSBRUEANSERE , URKEBESEERSBITURE
MERBE, RECMM AEEREVAENEMARLMEREERMNEN SR, MRRIVEE BB
FMA—ERE A ZEERTEARBINERE , ARFRERNFBEH, SEEHES|HYTRER (B
REUZ) TEMAELRES.

RIBER RFREAREREK,. BRAERANNERRHRNBE,

AWS Encryption SDK ff—f) SREVEASBITTEREMBZNER S8, Ik CEETEEREN
FRRE, SERHEERR , ENSREEFARETEBEMNERE, T8 , RAZNHEXFTERS
WERBREUEE (FARELREARE) , IARERSSRBAERERIIRE. i FEHRYS
ELRERRTREZIERENER,

MBEHRERNEZLEHENES , FSE AWS T2 EERFHAWS Encryption SDK : A Ef & & £
BRREAEHELNERER,

(@ Note

REL CMM 8# BT T HFMERE. WREREEEAE , BRI CMM 2FHERE,
EETEHEHAERESEMRE , B Java H Python B4 AWS Encryption SDK €121 null 5
fmEEERMRE (null IREX) o Null IRERE BE{E GET FAREREB , MBTEEEE PUT 5
Ko BELMFEA null REX, MAERRBNEERZEHRERES 0, MEFMHEN , FSH
Java F Python A& null REL,

RAFEY (EB)

RERBEBUUFEANRERE , REB MARBEBTR. WEAXE, @BAKXR 0 WEIE.,
AWS Encryption SDK TR #HEFEHE,

WAFEES EEHT LM BEMN AWS Encryption SDK EERZREFEH |, 18 @AM JavaScript
AWS Encryption SDKERZEMHY BRI

RERNZ 2 MREE 348

https://en.wikipedia.org/wiki/Key_derivation_function
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK HEABEE
FATREARBERERDNEZNEERBR. SUEAGESRBRBENEAFTEHRE.
FATCKREHENSHRNEERER , AERENZERSRENRRE , ARBHEZIIREEFTEEE
BB RAENER TR,

BEARMEZBAZR (ER)

EERNERSR/ITUNZNRAASEH LERZAN.
HREA 2732 BIFAR.

3

WA 1 2032 2ENASE.

BERNEK[AUIURBZALBENREE EREAEZRANGEEFERRBE,. EXENERR
HRFECHEIRREIEZINRENAZE.
RAMBTAER (ER)

EERNERSH/UTUAMBNRALTHAB. HERZAN. FRANTR 0 T 2263 - 1 2HHE.
FARRER 2763 - 1, HA 0 ARHFEENEZEEZNAEFRREAERSRRE,

AMELERER , SEWABRBERPNVTE, MREEENA AN LB v TEBBXEE ,
AR ERSRUEERERIMBY , EXESREARBDIER.

ER SR REGFEERR

AREBEABRXTUEARRNENSRRNENE BERARBEFIEAR. FHRARREEN—L&#
HEAEF.

ES |

- BERERRIAEESLR

« BURIGRFZEFIRI

- BURDERREREENEES

- ERSRREVEE DB EER ?

- MEBAR : MR FERIVER

- RNERAEAREERARMNER SR ?

BRI MR EFES K

BREBERPERAER SR RERINBREZE R | AWS Encryption SDK £ ESMRMHPERE
HEFERNER B, MERIERNWHEFEE , AFEARBNENSBRNZER, 58, e®EE
—EFFNERSE RERERR—&K,

ERSWMREGHEES 349

AWS Encryption SDK HEABEE

BERTRRNTEARTARPER , fIIERER, ERFRRI CMM IERER G175 A TiE
E. EEBREETAH , FRABRKDIBEMEFRK,

BRTHREZA EREBREEARDEBHEENEES (R CMM), RECMM 2EMHZE
BiRZEREEES (CMM) , TERRIAMER CMM BB, (BEREEESMIEHER keyring & |
AWS Encryption SDK & BB E 85X CMM,) fREX CMM SREVEE#H CMM EEHNER S8, R

H CMM b &R HlE TR EN RNZ £ /ME.

ABERERIGERERNVEN SR , ATEHASHRE CMM SERREVZBRZELN TIBERFS

- BEEEH
- NEAR (BMERZ)
- DEIERE (FBIRELCMM HFE)

- (EREER) mBENER TR

® Note
RETEELEHERESBITEREE |, 8 AWS Encryption SDK fREXE R €88, https:/

en.wikipedia.org/wiki/Key_derivation_function

LT ITERETEEANRAERSR/RIVELT , BROUAREMNZRER, ©ABERIAERRFF
fE R EE N WV REUTH | SFEREVHIIREL CMMo

mEZEER , FEARE
EEREMEER , EFEBRE :
1. EATER AWS Encryption SDK &R IBHE ¥,

EREEEFTSBIEMER keyringe AWS Encryption SDK €2 3 28K £ £ 82 HE H keyring
BB TR CMM,

2. AWS Encryption SDK &[@ CMM EXRINZER (BERHREZER) .

3. CMM & ZERH keyring (C F JavaScript) = £ 8124t F (Java F Python) 2 BIEFBER, &
AR BRI REMRZRT |, 610 AWS Key Management Service (AWS KMS), CMM &i#$ & &E
¥HEE = AWS Encryption SDKo

EReMiRmmEESR 350

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK HEABEE

4. AWS Encryption SDK E X FER MR MBER, ©REMBNERMMBNERSRERE
BoiaEREN SRS H.

Request to
encrypt data
A Encrypted
User DATA e Y|V message
I A
AWS DATA
—_—
Encryption O 2 Ener
ypt

SDK P —— WL

Get cryptographic r

A

materials

Cryptographic

materials
manager (CMM) N
Get master keys
CMM Generate data key

MEER , EHRE

EEFERERSBRECRBEMEER :

1. FEF#E3\ AWS Encryption SDK &k InH%&ER,
EREETCHERZGHEENEES (CMM) HEBHNRIREZEER=E=ENEES (HE CMM),
ERIEETSRIBMER keyring B, AWS Encryption SDK 8 B I FEER CMM,

2. SDK 8EENRE CMM ERMEEH,

3. REX CMM E#ERENGER INZE R

a. MIRRBKEENGERE , MeENFEYLEAEFREUEENE , YRR NZEE/EDIR
B CMM,

MRREVEEFESEZERE , (R CMM S HER SDK, B8l , egBARMBHIRR |, I
O BHETTIR B WIFIREETT.

b. MRREK AR ERNMAMIER , RECMM EEREERH CMM ELEFTHNER TR,

EXNSRREEEES R 351

AWS Encryption SDK HEABEE
EHE CMM 2% H keyring (C # JavaScript) REE#IZHE (Java F Python) NS R IGH=E
B, ERREES BRI AR , 20 AWS Key Management Service, E# CMM 215 &E R £8H
S F A INEEREEIRE CMM,

REL CMM & 3% %7 89 hn 238 & B F R E A,
4. HREX CMM &4#& N2 & $HEE AWS Encryption SDKo

5. AWS Encryption SDK £ A X FER MR MBER,. CHENENERNNEZENERSRERE
BoiaERENSNEFASH.

Request to
User encrypt data Encrypted
message

a——
Caching
=
AWS T

Encryption E= ’r—' DATA og Encrypt

SDK cryptographic
materials T

Return to SDK

Caching l
CMM
Keys in
Query cache (SRS v Save in cache

cache? < a’.
A

Get cryptographic materials
CMM

Get master keys
Generate data key

v

B RS ERHRE

AWS Encryption SDK EEARER SRRV EZBHRZERNRIMER. BER
MAMRE , ERARE. LBEA. ISP EAN (LRU) REL,. FEEVYAR
BRENA#1T{E 88 |, E6EMA Java LocalCryptoMaterialsCache # Python A
R B, JavaScript Y getLocalCryptographicMaterialsCache BRE{ , = C
aws_cryptosdk_materials_cache_local_new FHEERE,

B iR ERHRE 352

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK HEABEE

FHRNTEEARNEENEE SENE, BEALBHREER |, UR#EEBRE. EFFERER
BT RENEEEE, SR UEEERAABRE, BFTRE, SEREMERA R,

BIMAHREGE SUUARERERE R RRNAIRENEERE LR, WREAHBHEARRNE
BE IR EE A RERFT A RIR

EAR® JAVA B AWS Encryption SDK 1 i#E A # Python B AWS Encryption SDK 1124t null 2154
ZFERMRE (NullCryptoMaterialsCache). NullCryptoMaterialsCache €& EIFFAGGETIRENIER , M
FEEEPUTERME, BRI NullCryptoMaterialsCache #1THIE , REFEHIERNERNBZE
AKX PR

£ F AWS Encryption SDK , SEZBHREENRIPERNAHREELETEE (RECMM) 1HE
B, RRELCMM ERREEBER SR, KERSBBARE , UEEHBTERENZLHE, BR
BIURECMM B, SO EEEFANRE , URELHRBZERNSRHVER CMM HE £ M
&,

BARIMEZHRZFENEES
EERARHSRRE , CUNBYROARDFBRELNEES (KRB CMM). K , EMHER

BEERNFERP , BAEERN CMM , MARBREZRBREZFELHEESR (CMM) , REEZREHR
F5k keyringo

CMMsEMERE, MmEMBSTMEENER UARERARRREZER) , BEANSTETE , TR

« CMM E keyring (C = JavaScript) i xRt & (Java M Python) #EFHE, & SDK [@ CMM ER
MZRRBHERE , CMM R HE keyring RESRIEFHEEIWBER, £ Java Python 1 , CMM
FHESBREE, NEIMBRELR LM, 1£ C M JavaScript 1 , keyring BE%E., NBRMERZ
EimEER,

« RER CMM B2 —{E{REXAH RIS | a0 AR ENFE R CMM, & SDK EREl CMM ERZRIGRZEE
R, RELCMM S ESRRIREEEBER, MRERTEEFEE |, RECVMM EEEER CMM ER
ME, #E cESFNBEREENMEREREA ZTTRRIER,

REL CMM b &R HTERBEARIEERENLZLME. AREZLRERE PREILHRE CMM
SRFIET , EUEIEREVR R BURM B M ERET |, 8t B SUE AR AR B R REY,

BUYRRFRBREEHNEES 353

AWS Encryption SDK HEABEE

EXRTRREVEE PEMEEE ?

ERSRRNEERNPEFRERSRNEBERR=ES. SEHEFSSTEIHN TR, BER
ERBERAERNSH/RMYEE URERNFREZEHNEES (RN CMM) LEREZLRER , &
TRRERRALEAREA.

IR REVEE
HAMFREMMABERSRRINNIBELETITE

« MENER TR (—HNZME)
- NERE

- NEEESH (WMREA)
- BEZEH

- ARBHBTEEMRENPREN S EAETEES

FRE R R REVE E
HRBRREMMAERS/RINIBESETIITE

- ZERTSWM (WMREA)
- AREHEBITEEMERENPREN S EAE RS

MBAR : EHEEFERECEE

BANENMBRERNFERFEENEAR, T8, MBFAREENSHRRNFIERHKEAR, CAURE
EREPEYER SR FEE , IMEER SRR AMEENRE CMM,

NERAER—EER/EY A HTESERFATRER, ENEHE , NZATEURHTRELRES

mEmmEs | BRERTEREEEHENMBERR, % S AWS Encryption SDK , NIEASEEK
HEEMBERAER SR MEAS S,

ERAENSHBRIE , CEUTUAEARBRAZRAZHNEZREZERRENRNER SR, NMBEAEE
HgENeR - ERTERIUEE S (BAREUER ID—15). REWENSRRAEHENZARR

ERS|MREUER RAEMGEER ? 354

AWS Encryption SDK HEABEE

BRI EESEER, MREBYHNZFBFREECARENENER FEEMEENNEZEAT. NRER
BREAELEHNER A FHEETEANMNERR.

NERAR-—EREAN , EEBER. IRETEFBRPEENFEAR , SERIUEEEBFF A
ZHWMNERR , YFEEEFR.

BWERAEAREEARNNERNER ?

EHSHRMEY KL EARKATEANERARNBECER, T8, RACRE—LAR , B
BB CHEHEROAER , KEREERRTARER,

RAERSRINSEEFAENESR SHENYRBRRRIEEHERSBNTURE, BEE
FlEIREEF , 22 AWS Encryption SDK FEIY AWS KMS GenerateDataKeyi2 2R 3 #1754 & #l
i URREUERK. ER , REABEEELZEEFHER Y (SEHENEABTNEEELEHN)
MWERSREARID , TeEARBE N,

= EYIEEH BHERS AWS Encryption SDK BEREARIMANER TR , FFEE T HIHM

- EXESHERRENAFET REFWUMNER HDEBVHNENSHR, EENSBRENE B
VHERNWTILRBEZSHEBETR, flin , MREFEH AWS KMS £ £RI12M=E S keyring , BB
CloudTrail BiH# & GenerateDataKey FEl,

- LEE AWS Encryption SDK EE AR ERREMEZEFROMEZFA L. 0, MREERAHI BARN
JAVA Hy AWS Encryption SDK , FELEER B TR &R E) ParsedCiphertext ¥1#F. £ 1 EAR
JavaScript B9 AWS Encryption SDK , Lt MessageHeader encryptedDatakKeys BN AR,
ERFRAENSRE , MBEARFHMBRERSBEMEEM.,

BRI SR REE S

WEHIEAEE SRR RAMRE , UEEARR ETHSALEEENENe MBLREE
FEM BT,

EUHRGF ZEERNLEEESELER. MEER , YEASEEFHFH Kinesis F£ife AWS
LambdaBi® (BUAE) EMBHER , WA XFEREAEREHPH DynamoDB EXRlR, ERLEESE
FMEE & A AWS Encryption SDK Hl AWS KMS = £i8i2tE, BT RO KMS WL | SE4
EEMEEEHE B D HWAEREL

O] LAE Java Hl Python RIREIE LS I RHRENE, LEMtIEEREEHERN
CloudFormation &i4%,

BWERARARERERARBNER R ? 355

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

AWS Encryption SDK HEABEE

Producers

(\e\u—central—l)
Amazon _ AWS KMS
Kinesis
A)‘JS Lambd\a\)
\[Consumer I Consumer Consumer Consumer
£ A\ v
Amazon Amazon
DynamoDB DynamoDB
. VAN v

AR ARENE R

TRETAHERNEZLES PYH KMS TR (BERSEY) BLA/RBEN 1%,

BUEETHR
SV EERFHHBRE SEEENE SUSEEY
i# B R

ELXERTR NEERSR KB (BEE

(us-west-2) (eu-central-1) 1)

AHEREE R 356

AWS Encryption SDK

FMBABER

FEAREL
IR EX

HEEB>

FEIRE

ZHEAREX

1 1

1 rps/100)R 1 rps/100)R
Ed Ed]

BUEERFRNFERE
BEKMAEE1 500

rps

FEREE1 500
rps/100 JRfE
H

EREMRIMEHIRENT

RN IFEHIFE Java M Python REATHRINEYBENENSH/RNEE, LEABIELL

HEAREN Y W B =A 1T RIS -
Lambda BHE) .

1

1 rps/100 X
Ed]

5

500

AWS Encryption SDK,

BR L ®IREGEF M AWS Encryption SDK X B FTERERRES.

MEE FEAERSHBREA TEMNBFE B AWS Encryption SDK

» C/C++ : caching_cmm.cpp

» Java : SimpleDataKeyCachingExample.java

- JavaScript B|E 2% : caching_cmm.ts

« JavaScript Node.js : caching_cmm.ts

» Python : data_key caching_basic.py

500

500

BEEHN A
F i

500
5
BUESEES

Y SFORE R

1,000

10

—ERRMZERNEREESE S EAAREZERNEREES (AWS

NEESEESPEEENSHREMFMEERNR , 528 W Javadoc M Python XX

, FABH

gHIER

357

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK HEABEE

£EE

S EEZISHE, ASHEERE JSON, /8 AWS Encryption SDK RINFZRE |, WA IR X FioskHix
ZHE B K Kinesis &£ AWS B,

HEABEEENEZBHRESZREESE (RECMM) , WigHEREREMEBRBAWS KMS =£4i8
RMUEEIREE, RECVMM ERESBIEHERNENSE (FNEBRNEGHHRZER. ctaRR
FREMAERNED , X EFHHTEZENZEHERE

HRAFIUINES EZEEERR CMM , MAR—MRERKFE=EHNEES (CMM) REEZREHRE , Bt
INER A8 A B R R REL

Java

THIEFI6ER #9 2 BAM JAVA B9 AWS Encryption SDK.x i, 3.x iRE @R JAVA #9 AWS
Encryption SDK EUAE R £ REL CMM, A 3.x ki , B SERAAWS KMS BEFER
keyring , ERBRNEBHRSERRIERE X,

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

* http://aws.amazon.com/apache2.0

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.MasterKeyProvider;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;

import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;

gHIER 358

https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK HEABEE

import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;

import java.util.Arraylist;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.UUID;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.kinesis.KinesisClient;

import software.amazon.awssdk.services.kms.KmsClient;

/**
* Pushes data to Kinesis Streams in multiple Regions.
*/

public class MultiRegionRecordPusher {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
private static final long MAX_ENTRY_USES = 100;

private static final int MAX_CACHE_ENTRIES = 100;

private final String streamName_;

private final ArraylList<KinesisClient> kinesisClients_;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

/**
* Creates an instance of this object with Kinesis clients for all target
Regions and a cached
* key provider containing KMS master keys in all target Regions.
*/
public MultiRegionRecordPusher(final Region[] regions, final String
kmsAliasName,
final String streamName) {
streamName_ = streamName;
crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();
kinesisClients_ = new ArraylList<>();

AwsCredentialsProvider credentialsProvider =
DefaultCredentialsProvider.builder().build();

gHIER 359

AWS Encryption SDK HEABEE

// Build KmsMasterKey and AmazonKinesisClient objects for each target region
List<KmsMasterKey> masterKeys = new ArraylList<>();
for (Region region : regions) {
kinesisClients_.add(KinesisClient.buildexr()
.credentialsProvider(credentialsProvider)
.region(region)
.build());

KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
.defaultRegion(region)
.builderSuppliex(() ->
KmsClient.builder().credentialsProvider(credentialsProvider))
.buildStrict(kmsAliasName)
.getMasterKey(kmsAliasName);

masterKeys.add(regionMasterKey);

// Collect KmsMasterKey objects into single provider and add cache
MasterKeyProvider<?> masterKeyProvider =
MultipleProviderFactory.buildMultiProvider(
KmsMasterKey.class,
masterKeys

);

cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
.withMasterKeyProvider(masterKeyProvider)
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.withMessageUselLimit(MAX_ENTRY_USES)
.build();

/**
* JSON serializes and encrypts the received record data and pushes it to all
target streams.
*/
public void putRecord(final Map<Object, Object> data) {
String partitionKey = UUID.randomUUID().toString();
Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("stream", streamName_);

// JSON serialize data

gHIER 360

AWS Encryption SDK HEABEE

String jsonData = Jackson.toJsonString(data);

// Encrypt data

CryptoResult<byte[], ?> result = crypto_.encryptData(
cachingMaterialsManager_,
jsonData.getBytes(),
encryptionContext

);

byte[] encryptedData = result.getResult();

// Put records to Kinesis stream in all Regions
for (KinesisClient regionalKinesisClient : kinesisClients_) {
regionalKinesisClient.putRecord(builder ->
builder.streamName(streamName_)
.data(SdkBytes.fromByteArray(encryptedData))
.partitionKey(partitionKey));

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import json

import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy
from aws_encryption_sdk.key_providers.kms import KMSMasterKey

gHIER 361

AWS Encryption SDK HEABEE

import boto3

class MultiRegionRecordPusher(object):
"""Pushes data to Kinesis Streams in multiple Regions."""
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 300.0
MAX_ENTRY_MESSAGES_ENCRYPTED = 100

def __init_ (self, regions, kms_alias_name, stream_name):
self._kinesis_clients = []
self._stream_name = stream_name

Set up EncryptionSDKClient
_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Set up KMSMasterKeyProvider with cache
_key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

Add MasterKey and Kinesis client for each Region
for region in regions:
self._kinesis_clients.append(boto3.client('kinesis’,
region_name=region))
regional_master_key = KMSMasterKey(
client=boto3.client('kms', region_name=region),
key_id=kms_alias_name
)

_key_provider.add_master_key_provider(regional_master_key)

cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
self._materials_manager = CachingCryptoMaterialsManager(
master_key_provider=_key_provider,
cache=cache,
max_age=self.MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED

def put_record(self, record_data):
"""JSON serializes and encrypts the received record data and pushes it to
all target streams.

:param dict record_data: Data to write to stream

gHIER 362

AWS Encryption SDK HEABEE

Kinesis partition key to randomize write load across stream shards
partition_key = uuid.uuid4().hex

encryption_context = {'stream': self._stream_name}

JSON serialize data
json_data = json.dumps(record_data)

Encrypt data

encrypted_data, _header = _client.encrypt(
source=json_data,
materials_manager=self._materials_manager,
encryption_context=encryption_context

)

Put records to Kinesis stream in all Regions
for client in self._kinesis_clients:
client.put_record(
StreamName=self._stream_name,
Data=encrypted_data,
PartitionKey=partition_key

HEE

EREAERH Kinesis EHBEMN AWS Lambdafl ., TEHRZMERFILEMEGCHK , WAEH
FEHE AHREEHPH Amazon DynamoDB & ##&k,

MEEEERENG NAEE RS EHRE A EZNHUPEARNZERESENEES (R
CMM) R A E R | IREL,

Java BB FEHAEEN , EBEEEXTEEEZLBIEME AWSKMS key, BERBTEERIKE
X, BERZEEX, Python EXBEARRKRE , T AWS Encryption SDK FEAREAMEZEER S
BN OESBERBRT,

Java

THIEFI6ER #9 2 BAM JAVA B9 AWS Encryption SDK.x i, 3.x iRE @A R JAVA #9 AWS
Encryption SDK EUAE R &R REL CMM. A 3.x ki , B SERAAWS KMS EER
keyring , ERBRNEBRSERRIERE X,

gHIER 363

https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK

FMBABER

HEXNBEEVFSREMHRE UBKEXMBE. JBEEMRA AWS KMS keys ZIEER AWS
Encryption SDK REZ AL,

/*

* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

*

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the
* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/**

com.
com.
com.
com.
com.
com.
com.
com.
com.
com.
java

java.
java.
java.

amazonaws
amazonaws

amazonaws.
amazonaws.

amazonaws

amazonaws.
amazonaws.
amazonaws.

.encryptionsdk.AwsCrypto;
.encryptionsdk.CommitmentPolicy;
amazonaws.

encryptionsdk.CryptoResult;
encryptionsdk.caching.CachingCryptoMaterialsManager;
encryptionsdk.caching.LocalCryptoMaterialsCache;

.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
amazonaws.

services.lambda.runtime.Context;
services.lambda.runtime.events.KinesisEvent;
services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
util.BinaryUtils;

.io.UnsupportedEncodingException;

nio.ByteBuffer;
nio.charset.StandardCharsets;
util.concurrent.TimeUnit;

software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
software.amazon.awssdk.enhanced.dynamodb.TableSchema;

* Decrypts all incoming Kinesis records and writes records to DynamoDB.

*/

public class LambdaDecryptAndwWrite {

gHIER

364

AWS Encryption SDK HEABEE

private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
private static final int MAX_CACHE_ENTRIES = 100;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

private final DynamoDbTable<Item> table_;

/**
* Because the cache is used only for decryption, the code doesn't set the max
bytes or max
* message security thresholds that are enforced only on on data keys used for
encryption.
*/
public LambdaDecryptAndWrite() {
String kmsKeyArn = System.getenv('"CMK_ARN");
cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

.withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.build();

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

String tableName = System.getenv("TABLE_NAME");
DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

/**
* @param event
* @param context
*/
public void handleRequest(KinesisEvent event, Context context)
throws UnsupportedEncodingException {
for (KinesisEventRecord record : event.getRecords()) {
ByteBuffer ciphertextBuffer = record.getKinesis().getData();
byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

// Decrypt and unpack record
CryptoResult<byte[], ?> plaintextResult =
crypto_.decryptData(cachingMaterialsManager_,
ciphertext);

gHIER 365

AWS Encryption SDK HEABEE

// Verify the encryption context value
String streamArn = record.getEventSourceARN();
String streamName = streamArn.substring(streamArn.index0f("/") + 1);
if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
throw new IllegalStateException("Wrong Encryption Context!");

// Write record to DynamoDB

String jsonItem = new String(plaintextResult.getResult(),
StandardCharsets.UTF_8);

System.out.println(jsonItem);

table_.putItem(Item.fromJSON(jsonItem));

private static class Item {

static Item fromJSON(String jsonText) {
// Parse JSON and create new Item
return new Item();

Python

It Python BERXIFEFEAREEXPNEESWMIBMUEEITHE., ©JZE AWS Encryption SDK £
FAMBERNERNTESRRATEC. BREANRSEEYK , ZUMUEHPEETARBEN D
HEH,

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except

in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

gHIER 366

AWS Encryption SDK HEABEE

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.
import baseb4

import json

import logging

import os

from aws_encryption_sdk import EncryptionSDKClient,
DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
LocalCryptoMaterialsCache, CommitmentPolicy

import boto3

_LOGGER = logging.getlLogger(__name__)
_is_setup = False

CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

def setup():

"""Sets up clients that should persist across Lambda invocations."""
global encryption_sdk_client
encryption_sdk_client =

EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

global materials_manager
key_provider = DiscoveryAwsKmsMasterKeyProvider()
cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

Because the cache is used only for decryption, the code doesn't set
the max bytes or max message security thresholds that are enforced
only on on data keys used for encryption.
materials_manager = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS
)
global table
table_name = os.environ.get('TABLE_NAME')
table = boto3.resource('dynamodb').Table(table_name)
global _is_setup
_is_setup = True

gHIER 367

AWS Encryption SDK HEABEE

def lambda_handler(event, context):
"""Decrypts all incoming Kinesis records and writes records to DynamoDB."""
_LOGGER.debug('New event:"')
_LOGGER.debug(event)
if not _is_setup:
setup()
with table.batch_writer() as batch:
for record in event.get('Records', []):
Record data baseb4-encoded by Kinesis
ciphertext = baseb64.b64decode(record['kinesis']['data'])

Decrypt and unpack record

plaintext, header = encryption_sdk_client.decrypt(
source=ciphertext,
materials_manager=materials_manager

)

item = json.loads(plaintext)

Verify the encryption context value

stream_name = record['eventSourceARN'].split('/', 1)[1]
if stream_name != header.encryption_context['stream']:

raise ValueError('Wrong Encryption Context!')

Write record to DynamoDB
batch.put_item(Item=item)

BRI IREES . CloudFormation template

It CloudFormation BIAE R EFFEMLE AWS WER , LEBRER B RELEF,

JSON

"Parameters": {

"SourceCodeBucket": {
"Type": "String",
"Description": "S3 bucket containing Lambda source code zip files"

.

"PythonLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"

CloudFormation &7 368

AWS Encryption SDK HEABEE

},
"PythonLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
I
"JavalLambdaS3Key": {
"Type": "String",

"Description": "S3 key containing Python Lambda source code zip file"
},
"JavalLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
1,
"KeyAliasSuffix": {
"Type": "String",
"Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"
},
"StreamName": {
"Type": "String",
"Description": "Name to use for Kinesis Stream"

}I

"Resources": {
"InputStream": {
"Type": "AWS::Kinesis::Stream",
"Properties": {
"Name": {
"Ref'": "StreamName"

1,
"ShardCount": 2

1,
"PythonLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [
{
"AttributeName": "id",
"AttributeType": "S"

1,

CloudFormation &7 369

AWS Encryption SDK HEABEE

"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"

1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

I
"PythonLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

},
"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AwWSLambdaBasicExecutionRole"
1,
"Policies": [
{
"PolicyName": "PythonLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

CloudFormation &7 370

AWS Encryption SDK HEABEE

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}"
}
I

{
"Effect": "Allow",

"Action": [
"dynamodb:PutItem"
1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}*"
}
I

{
"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:

${AWS: :AccountId}:stream/${InputStream}"
}

},
"PythonLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Python consumer",
"Runtime": "python2.7",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"PythonLambdaRole",
"Arn"

CloudFormation &7 371

AWS Encryption SDK

FMBABER

iy

"Handler":

"aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",

"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"

I
"S3Key": {

"Ref": "PythonLambdaS3Key"
},

"S30bjectVersion": {
"Ref": "PythonLambdaObjectVersionId"

1,
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "PythonLambdaOutputTable"

1,
"PythonLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:

${AWS: :AccountId}:stream/${InputStream}"
},
"FunctionName": {
"Ref": "PythonLambdaFunction"
I
"StartingPosition": "TRIM_HORIZON"

1,
"JavalLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{

CloudFormation &iZx

372

AWS Encryption SDK HEABEE

"AttributeName": "id",
"AttributeType": "S"

}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

iy
"JavalLambdaRole": {

"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

},
"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AwWSLambdaBasicExecutionRole"
1,
"Policies": [
{
"PolicyName": "JavalLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

CloudFormation &7 373

AWS Encryption SDK HEABEE

"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:

${AWS: :AccountId}:table/${JavalLambdaOutputTable}"
}
I

{
"Effect": "Allow",

"Action": [
"dynamodb:PutItem"
1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${JavaLambdaOutputTable}*"
}
I

{
"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:

${AWS: :AccountId}:stream/${InputStream}"
}

},
"JavaLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Java consumer",
"Runtime": "java8",
"MemorySize": 512,
"Timeout": 90,

CloudFormation &7 374

AWS Encryption SDK

FMBABER

"Role": {
"Fn::GetAtt": [
"JavalLambdaRole",

"Azn"
]
I
"Handler":
""com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
I
"S3Key": {
"Ref": "JavalLambdaS3Key"
},
"S30bjectVersion": {
"Ref": "JavalLambdaObjectVersionId"
}
},

"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "JavalLambdaOutputTable"

I
"CMK_ARN": {
"Fn::GetAtt": [
"RegionKinesisCMK",
"Azn"
]
}

I
"JavalLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"
},

"FunctionName": {

: :handleRequest",

CloudFormation &iZx

375

AWS Encryption SDK HEABEE

"Ref": "JavalLambdaFunction"

iy
"StartingPosition": "TRIM_HORIZON"

1,
"RegionKinesisCMK": {
"Type": "AWS: :KMS: :Key",
"Properties": {
"Description": "Used to encrypt data passing through Kinesis Stream
in this region",
"Enabled": true,
"KeyPolicy": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": {
"Fn::Sub": "arn:aws:iam::${AWS: :AccountId}:root"

},

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey",
"kms:CreateAlias",
"kms:DeleteAlias",
"kms:DescribeKey",
"kms:DisableKey",
"kms:EnableKey",
"kms:PutKeyPolicy",
"kms:ScheduleKeyDeletion",
"kms:UpdateAlias",
"kms :UpdateKeyDescription"

1,

"Resource": "*"

"Effect": "Allow",
"Principal": {
"AWS": [
{
"Fn::GetAtt": [
"PythonLambdaRole",
"Arn"

CloudFormation &7 376

AWS Encryption SDK

FMBABER

]
I
{
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"
]
}
]
I
"Action": "kms:Decrypt",
"Resource": "*"

},
"RegionKinesisCMKAlias": {
"Type": "AWS::KMS::Alias",
"Properties": {
"AliasName": {
"Fn::Sub": "alias/${KeyAliasSuffix}"
},
"TargetKeyId": {
"Ref": "RegionKinesisCMK"

}
}
}
}
}
YAML
Parameters:
SourceCodeBucket:
Type: String
Description: S3 bucket containing Lambda source code zip files
PythonLambdaS3Key:

Type: String

Description: S3 key containing Python Lambda source code zip file

PythonLambdaObjectVersionId:
Type: String

CloudFormation &iZx

377

AWS Encryption SDK HEABEE

Description: S3 version id for S3 key containing Python Lambda source code
zip file
JavalLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
JavalLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
KeyAliasSuffix:
Type: String
Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
StreamName:
Type: String
Description: Name to use for Kinesis Stream
Resources:
InputStream:
Type: AWS::Kinesis::Stream
Properties:
Name: !Ref StreamName
ShardCount: 2
PythonLambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1
PythonLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:

CloudFormation &7 378

AWS Encryption SDK

FMBABER

${AWS: :

${AWS: :

${AWS: :

Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:
PolicyName: PythonLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
AccountId}:table/${PythonLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
AccountId}:table/${PythonLambdaOutputTable}*
Effect: Allow
Action:
- kinesis:GetRecords
- kinesis:GetShardIterator
- kinesis:DescribeStream
- kinesis:ListStreams
Resource: !Sub arn:aws:kinesis:${AWS::Region}:
AccountId}:stream/${InputStream}

PythonLambdaFunction:

Type: AWS::Lambda: :Function
Properties:
Description: Python consumer
Runtime: python2.7
MemorySize: 512

Timeout: 90
Role: !GetAtt PythonLambdaRole.Azrn
Handler:

aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler

Code:
S3Bucket: !Ref SourceCodeBucket

CloudFormation &iZx

379

AWS Encryption SDK

FMBABER

S3Key: !Ref PythonLambdaS3Key
S30bjectVersion: !Ref PythonlLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !'Ref PythonLambdaOutputTable
PythonLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref PythonLambdaFunction
StartingPosition: TRIM_HORIZON
JavalambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1
JavalLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:

PolicyName: JavalLambdaAccess

CloudFormation &iZx

380

AWS Encryption SDK HEABEE

PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}*
Effect: Allow
Action:

- kinesis:GetRecords
kinesis:GetShardIterator
kinesis:DescribeStream
kinesis:ListStreams

Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
JavalLambdaFunction:
Type: AWS::Lambda::Function
Properties:

Description: Java consumer
Runtime: java8
MemorySize: 512
Timeout: 90
Role: !GetAtt JavalLambdaRole.Arn
Handler:
com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite: :handleRequest
Code:
S3Bucket: !Ref SourceCodeBucket
S3Key: !Ref JavalambdaS3Key
S30bjectVersion: !Ref JavalLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !Ref JavalLambdaOutputTable
CMK_ARN: !GetAtt RegionKinesisCMK.Azrn
JavalLambdaSourceMapping:

CloudFormation &7 381

AWS Encryption SDK HEABEE

Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref JavalLambdaFunction
StartingPosition: TRIM_HORIZON
RegionKinesisCMK:
Type: AWS::KMS: :Key
Properties:
Description: Used to encrypt data passing through Kinesis Stream in this
region
Enabled: true
KeyPolicy:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
Action:
Data plane actions
- kms:Encrypt
- kms:GenerateDataKey
Control plane actions
- kms:CreateAlias
- kms:DeleteAlias
- kms:DescribeKey
- kms:DisableKey
- kms:EnableKey
- kms:PutKeyPolicy
- kms:ScheduleKeyDeletion
- kms:UpdateAlias
- kms:UpdateKeyDescription
Resource: '*'

Effect: Allow
Principal:
AWS:
- !GetAtt PythonLambdaRole.Arn
- lGetAtt JavalLambdaRole.Arn
Action: kms:Decrypt
Resource: '*'

CloudFormation &7 382

AWS Encryption SDK HEABEE

RegionKinesisCMKAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: !Sub alias/${KeyAliasSuffix}
TargetKeyId: !Ref RegionKinesisCMK

CloudFormation &iZx 383

AWS Encryption SDK HEABEE

#I AR A< AWS Encryption SDK

AWS Encryption SDK EE S BEFEAEERAES , BEERR MBS EREATNEERE. TER
REmFHEE , fli 1.xx B 2xx , RAAUEZEEEABEENTELBNEREE, FRAHNPE
SBFEUNRETSFESECEARS , FRENRTFEFIUEEELREZIFE, RERATHNEE |, fiw
x1x Bl x2.x, —EEWEE , B3 22BN TER,

£ A BEfE A AWS Encryption SDK MR ERETHE S WRIRA . BERANEENIERERER
BARTESEEMARTRE. IFEEARAREZSPIERETWFHRER , F2HH GitHub f#
FEHH SUPPORT_POLICY.rst X,

ER RS EEERHREARUBRNBRMEEBRNTIER ROSRUEPEREANFHENFEARSA,
flan |, 1.7.x A 1.8.x IREIERET AERMRA |, WTHBIEKE 1.7.x RARE 2.0.x RAEFHRAR, MEFF
HHEF , FBFSEER LR AWS Encryption SDK,

(® Note

RAmSR PN x RREENREBREANEAEHEER. G0, 1.7.x REFK 1.7 BENPFTE MR
X, BFE171H1.7.9

R £ INRERANIE AWS M2 CLI ARA 1.7.x 1 2.0.x B¥1T, T8 , AWS Encryption CLI
1.8.x MREMX T 1.7.x WX , ™ AWS Encryption CLI 2.1.x fREMX T 2.0.xo MEFMEF , F2
B GitHub £ aws-encryption-sdk-cli fZEFHHEBLZ S ES.

T&RMBIR AWS Encryption SDK SBEXZFES X EN REACZEANEEEZR,

C

MEFMEEEMNFMRE , 528 GitHub £ aws-encryption-sdk-c fE1FEHHY
CHANGELOG.md : //o

FEIRA FHARER SDK X EmA4L i
HA R B
1.X 1.0 Initial release. End-of-SupportP& E¢
1.7 Updates to the AWS

Encryption SDK that

C 384

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

help users of earlier
versions upgrade

to versions 2.0.x

and later. For more
information, see 1.7.x

FR.

2.X 2.0 Updates to the AWS — i A A (GA)
Encryption SDK. For
more information, see

2.0.x hR.

2.2 Improvements to the
message decryption
process.

2.3 Adds support for AWS
KMS multi-Region
keys.

C#/.NET

MEFFEESENFMARE |, 5528 GitHub LffFaws-encryption-sdk-net EFHY
CHANGELOG.md,

FERA FHAMER SDK X ERA £ i
HAPE ER
3.X 3.1.0 Initial release. End-of-Support

AWS Encryption SDK
BAR NET B 3.x
I BEAR ISR ;
EAHRE 4.0

4.x 4.0 Adds support for the — R AT A (GA)
AWS KMS Hierarchi
cal keyring, the

C#/ .NET 385

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FMBABER

SIS E (CLI)

required encryption
context CMM, and

asymmetric RSA AWS

KMS keyrings.

MEFFEESEREMRE |, 5528 GitHub £ aws-encryption-sdk-cli fEfZEH R AWS 1123 CLI YR

ZF CHANGELOG.rsto

EERRAE A&
1.x 1.0

1.7
2.x 2.0

2.1

Initial release.

Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade

to versions 2.0.x

and later. For more
information, see 1.7.x

hR.

Updates to the AWS
Encryption SDK. For
more information, see
2.0.x hR.

BB --discovery
B, WEHEHRKA
--wrapping-keys
SE M discovery
Bk,

SDK X ERA4£ i

S PR B

End-of-SupportB& B

End-of-SupportB& B

W 5IRME (CLI)

386

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

AWS 112 CLI #Y
2.1.0 lRERRH 72
KBETEEM 2.0 1R,

2.2 Improvements to the
message decryption

process.

3.x 3.0 Adds support for AWS End-of-SupportP& E&
KMS multi-Region
keys.

4.x 4.0 The AWS Encryptio — i A A (GA)

n CLI no longer
supports Python 2
or Python 3.4. As of
major version 4.x of
the AWS Encryption
CLI, only Python 3.5
or later is supported.

4.1 The AWS Encryptio
n CLI no longer
supports Python 3.5.
As of version 4.1.x of
the AWS Encryption
CLI, only Python 3.6
or later is supported.

4.2 The AWS Encryptio
n CLI no longer
supports Python 3.6.
As of version 4.2.x of
the AWS Encryption
CLI, only Python 3.7
or later is supported.

WHHIRE (CLI) 387

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FMBABER

Java

MEFFEESEMEMRE |, 5528 GitHub £ aws-encryption-sdk-java f1FEFH

CHANGELOG.rst,

EERAE A&
1.x 1.0

1.3

1.6.1

1.7

Initial release.

Adds support for
cryptographic
materials manager

and data key caching.
Moved to deterministic

IV generation.

%M AwsCrypto
.decryptS
tring()
AwsCrypto
.encryptS
tring() M AHE
B A AwsCrypto
.encryptD
ata() #
AwsCrypto
.decryptD
ata() o

Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade

to versions 2.0.x
and later. For more

SDK X ERrA4£ i

End-of-SupportB& £

Java

388

https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

information, see 1.7.x
hiR.

2.X 2.0 Updates to the AWS — i AT A (GA)
Encryption SDK. For
more information, see

2.0.x iR.

2.x iy BAR JAVA 1
AWS Encryption SDK
AE1E 2024 FEAMHEE
2.2 Improvements to the E

message decryption

process.

2.3 Adds support for AWS
KMS multi-Region
keys.

24 Adds support for AWS
SDK for Java 2.x.

3.x 3.0 & EAR JAVA B —fix Al A (GA)
AWS Encryption SDK
BYRREEREXE
(MPL) 5,

FigH B AIEY

RSA AWS KMS
keyring. AWS KMS
ECDH keyring. AWS
KMS B& & keyring.
% AES keyring, &
% RSA keyring, B4
ECDH keyring, Z&
keyring FMFTENZER
A CMM X,

Java 389

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FMBABER

Go

MEFRBRENFERA ,

CHANGELOG.md : //s

FERAK

0.1.x

JavaScript

MEMEEEMNFERA

CHANGELOG.md : //o

FEMRA

1.x

2.X

5528 GitHub L aws-encryption-sdk f#1ZE Go B #&+H

FAIE

0.1.0

Initial release.

SDK £ EfRA £ i
HA P ER

— iR AT H T (GA)

5528 GitHub L aws-encryption-sdk-javascript &7 E S H

AEEA

1.0

1.7

20

2.2

Initial release.

Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade

to versions 2.0.x

and later. For more
information, see 1.7.x

hR.

Updates to the AWS
Encryption SDK. For
more information, see
2.0.x hR.

Improvements to the
message decryption
process.

SDK £ EfRA £ B
HAB R

End-of-SupportB& £

End-of-SupportB& £

390

https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FMBABER

2.3
3.X 3.0
4.x 4.0

Python

Adds support for AWS
KMS multi-Region
keys.

Removes Cl coverage
for Node 10.
Upgrades dependenc
ies to no longer
support Node 8 and
Node 10.

Requires version 3 of
the AR JavaScrip
t B9 AWS Encryptio

n SDK's kms - ### to
use the AWS KMS
keyring.

Maintenance (#38)

3x WX E EBAR
JavaScript B AWS
Encryption SDK #$R
2024 £ 1 B 17 B#
FRo

— X AT A1 (GA)

MEMESENFMRA , 52 GitHub £ aws-encryption-sdk-python fEZEH Y

CHANGELOG.rst,

FERAK FAIE
1.x 1.0
1.3

Initial release.

Adds support for
cryptographic
materials manager
and data key caching.

Moved to deterministic

IV generation.

SDK £ EfRA £ B
HA PR ER

End-of-SupportP& E&

Python

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FMBABER

2.X

3.

4.x

1.7

20

2.2

2.3

3.0

4.0

Updates to the AWS
Encryption SDK that
help users of earlier
versions upgrade

to versions 2.0.x

and later. For more
information, see 1.7.x
hiR.

Updates to the AWS
Encryption SDK. For
more information, see
2.0.x hR.

Improvements to the
message decryption
process.

Adds support for AWS
KMS multi-Region
keys.

The AR Python

AWS Encryptio

n SDK no longer
supports Python 2

or Python 3.4. As of
major version 3.x of
the AR Python &Y
AWS Encryption SDK,
only Python 3.5 or
later is supported.

7 BR R Python B9
AWS Encryption SDK
BYRREEREXE
(MPL) #5,

End-of-SupportPg E&

— X AT A1 (GA)

— X AT A1 (GA)

Python

392

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

Rust

MEFFEEENEMRE | 5528 GitHub £ aws-encryption-sdk ffZER Rust B #&+H
CHANGELOG.md : //o

FERAK &R SDK FERA4 58
HABE EX

1. 1.0 Initial release. — % Al A (GA)

AR S FE A & B
THEERE I ERAZEHEEERE AWS Encryption SDK,

£

o 1.7.X Z B hRZR
« 22X

« 2.3.xhR

1.7.x Z BTV AR AR

® Note

FiE 1.x.x lRZ# AWS Encryption SDK #ERend-of-supportfg Et. J|RFAKREI AWS
Encryption SDK EARENENERFE SR AARE, FER 1.7.x ZHH AWS
Encryption SDK WRAF 4R , WA BELFHRE 1.7.x. MFEFMEF , FSEEBEN AWS
Encryption SDK,

1.7.x AWS Encryption SDK Z BlH) IR ARHEEN L L INEE , DIEEA Galois/aHHERER (AES-
GCM) FRY IR DN E AR E R EITINER. HMAC extract-and-expand £ #8574 B & (HKDF), Z#H2H
256 U minE €|, FiB , EERATXERMBBNSEEY , SEEHEAE.

Rust 393

https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

1.7.x iR

® Note
I 1.x.x HRA<#Y AWS Encryption SDK #BEE R end-of-supportB& E& o

1.7.x iR EEHBIEIR WA & AWS Encryption SDK FHRE 2.0.x lREEFRAR, MRERVREH
AWS Encryption SDK , R ARG IBILAR A |, M AR RIS N R T ARARLE,

17X REZ2EHES ; EFESIATMERBESEE KI1TA AWS Encryption SDK, Tt &M
B cUBELENERS , FHE 20X RIER, CEEFWE , EFELMATCH. cEEHRE
B, UL BB AMEF e , BERBERF AL,

17X IREETHEE :
AWS KMS = &BIEHEETH (HE)

1.7.x R EBER N 5| A BAR Python B AWS Encryption SDK , B JAVA B AWS
Encryption SDK I £ BE S IRZRE X AR AWS KMS =824 E, RAESELNE
FEF®ZE AWS Encryption SDK s S 5I5RME (CLI), MEFMEF , FSEEH AWS KMS =248
RitE,

- EBEERXT , AWSKMS = 2RIEHEZTECLSBNEFE cAREFALEENSE SR
RiNZMER, ELZ AWS Encryption SDK RIEEHK , IEREEATEFRAN T E S,

- ERREXF , AWSKMS TERBEHEFTTRACTMIRER, CEEERCMETNR, #
2R, AU ERAEMIRESRREZNENENER. TB , BUUERARNEZN LSRN
[REIBIFRIZBLE S AWS 1RF ., IRFEERZAN , BEMNEBNEEELR.

BIYERAWSKMS T2 REHENEBERNCE17XRPER , XE 2.0x RPBR, BLER
BEEHTERBCEAZEESESRETNENISREHRE. TB , eMEEAMZERDN
BESRRBEMBNERSE K MAEZEEBEENTELE, FRETESENERMMTITERE
AHNEELRMRALE TIEEHEHM AWS KMS keys AWS 1RF #1 EifiH,

AWS KMS = £#8MEBHREREEFE, MEMNMAZRE , AWSKMS =& REFEH AWS KMS
key B EM -

1.7.x hi 394

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

AWS KMS keyring 51 (1R)

1.7 x KASETH ERB IR FTI8 = BA R C B9 AWS Encryption SDK 1 5@ JavaScript B AWS
Encryption SDK BfE , #AWS KMS #£3 keyring FREIAB4EFE AWS tRE ., EEFIRFEIEREG 2
ERAN ERMERRASEER. MEFMES , F2REH AWS KMS keyring,

AWS KMS keyring WEBEEBREEE, EBKEXT , £% AWS KMS keyring 1T AELIAE
S@IRME, AWS KMS #R3EK keyring REFRRER THEEIHN,

BE£8 ID AWS KMS LR %

®1.7.x Bt , EMBNZHNER S|, AWS Encryption SDK — & E ¥ AWS KMS
Decrypt 2YERI I AWS KMS key HF3EE . AWS KMS key Rt BEMBER BTN FEER
AWS Encryption SDK E8 BW&88 ID B, LWEFTEETMENIGEEE,

AWS KMS key T EEIEE HWEi® 1D, BB REHBINE KMS €8 T MEZENMFZEXE | HIE
BAWS KMS HIEEK, NEESHRREHREVEEETESHR —K , WEKTHER AWS KMS E£EH
BIEFERANSIESRETHRE,

15 P S SR 7GE R 2 N 3L 7

1.7 x R UBEZERRRAERAENENNEXF, T8 , CEEAERSREERMNBNEXF,
BT RETENBERAEN , REIEMLEMBRF 28, AILRE LS 8RAGE I N2
XF, HRILRASERRERBTRARNBEATNENAL , REETFEEMMBEMMNEX
Fo

ATEERTA , 1.7x REBEFHAFEBEEMBERERE , AIRE AWS Encryption

SDK REA R EMAERMNERER, £ 1.7.x P , FHEBER E—BX
{EForbidEncryptAllowDecrypt @ AR B MEMBERIRIE, LETBLE AWS Encryption
SDK A S EERAENTAMEEZEMHFETNE, SR EANTERAERAE AWS
Encryption SDK R % % X F

HAR1T7 X RPRE—BAERNAERRE , BESERHIRATSI AT APIs B | RASERE
BRESREME, EFLARKE 2.1.x lRrequire-encrypt-require-decrypth , 3RE ELHE
BN EEBRESEELR . Rz , BN REEREHNAEBE,

BERREAENRELEN

17X RBEMELIESBAENTEELEN., BIEEE S HBTFEE%E, EETX
BWEELEN EMEFKEE LEGHH#IE AES-GCM &, 256 uxinZ£id , A& HMAC
extract-and-expand & #8744 B2l (HKDF)

1.7.x hi 395

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK HEABEE
B, ARMENEREELEHTEEE, ELEELZEHSMEE 1.7.x iR, LERENER
BXE 2.0x RAMEFHRAEASEAEM.

CMM EE2E

1.7 x RSB ESI AAREHREEHNEESR (CMM) /TH , UXESRER. AEELRFA
CMM B , WBFEXSWRENTE. WEFMES A F2HE API XA HEXKEFE S M GitHub f#
FE.

2.0.x ik

2.0.x R 18 hIREMNFH L2 IAE AWS Encryption SDK , 2IEEENTHSEBNSREAE, ATXE
BLEIEE 20X IRBEER WEKRKEE, AWS Encryption SDKIE AT LUEIBERE 1.7 .x MR ERIEL
BF, 20xRIE1.7x RPEIENFMERIIGE , AR THIFENEBE,

(® Note

2.x.x MRy AR JavaScript B9 AWS Encryption SDK i&F 7 Python #9 AWS Encryption
SDK#H1 AWS pn# CLI R end-of-supportP&E .
MEFBUEREFNERRFTES I EMMEE L AWS Encryption SDK lRAKEF , F2EH
GitHub f#ZE+# SUPPORT_POLICY.rst =R,

AWS KMS & gigitE

A.7x iRPECHRIE AWS KMS =& RERERBREAEE 2.0x RPBR. BLAUBRKIE
ABREEXARERE AWS KMS T ERIZHE,

158 F <& 8 7E 0 28 M B2 22 I 33 3L 7

20x RAIMEESRESRAFENERA T NENEZNENF, HITABRRERBERE. B
BHER , E—ACHESBAENE YERSREFEASRAENBNMENF. RIFELESEAE
BXE , B8] AWS Encryption SDK T &M 2T A &R MNZE M INZ X F AWS Encryption SDK , ‘@1&
1.7.x WX

/A Important
RIFFERR , 2.0x RTFERZEAERETRFAGENER T NBENNENF, WRE
WEAEXTREIERZEERFAENERTNENNEXF |, FEA REAFEBXR
fEAllowDecrypt,

2.0.x kX 396

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

=

20x R, AFEBRRER=BENE :

« ForbidEncryptAllowDecrypt — AWS Encryption SDK A FE A SBAE N . ©OUME

ZERAHFER S RAGE MBI INE X F,

« RequireEncryptAllowDecrypt — AWS Encryption SDK A BFEH £MAENE . © 7L #E

ZEAHAEASRAGE MBI F,

« RequireEncryptRequireDecrypt (5%) — AWS Encryption SDK 24ZE {5 F & #8745 1N

n
fi#

7, CAEREERSRAGENMEXF,

RIGEREM B AWS Encryption SDK E 2.0.x bR , 584% REBURREA B , UHERETL
REAERATREZINMEREMENF. B EefiERFEARLLEE,

2.2.x kR

MEBVEENRHMZER SR E,

@ Note
2.x.x WREY AR JavaScript B AWS Encryption SDK & 7 Python B9 AWS Encryption
SDK#1 AWS 1% CLI B end-of-supportP& Ez
MEFBUSREFNERRFTES I EMMEZE L AWS Encryption SDK lRAWEF , FFSEH
GitHub f#ZE+# SUPPORT_POLICY.rst =R,
BUEE

ATUEMREBYUFZEMEREE , AWS Encryption SDK & T HITHAE :

FEREX — RAFEREMBAARTIEEOMXT , S REANFERERAUEE, WIhER
G ERBRUBECAERMN Y, SEABZERRURE (FHREEEEN) NEW
BRI, SBEMALIIRE. HlE, AR AWS 1% CLI —FEERREXTEEEN , RLEAR
VEERBENMBENFZREM - -buffer B,

ERABENHEZER — KIERASBRERBEFNNENF., NREZENZEXFFEIBNL
BE RFEXRM. FALIERTERERIEECHENRECSEEARFHMXF,

[REIINZNER R

FEA R MZFAETHNNBEREREBE, WIETHEENZRERNREHERNESWEMH
ED keyring , REMBRZRRFINEZMBE T,

2.2.x Hx

397

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

EERTZEENRERZALR CEZRFMNZNENER., CTHEHSRERREETF
LB, BEATREFENFU,

2.3.x iR

g AWS KMS B Z [EIHSIRNE., NFEFHMEENR , F2REEAZEE AWS KMS keyso

® Note

AWS Encryption CLI X 3.0.x IRFEABRN Z EE S8,

2.x.x hREY AR JavaScript B9 AWS Encryption SDK & 7 Python B9 AWS Encryption
SDK#H1 AWS pn# CLI R end-of-supportP&E .

WMEBBUERIFHENEGTES IEMMER L AWS Encryption SDK R ER , FSHHE
GitHub f#ZE## SUPPORT_POLICY.rst X

2.3.x kX 398

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK HEABEE

BB K AWS Encryption SDK

AWS Encryption SDK X EZEREBHNEXZFESEE , SEHRE GitHub EHBERRBHRE
EHRE., RBSEER BERE AWS Encryption SDK $H¥IEEE S FEAKITREDN .

B AR 211 2.0.x REBREFHARAFKZZE AWS Encryption SDK BFIRA. FiB , B 2.0.x ixA
AWS Encryption SDK 5| T EEMFH L2 ThEE , HP - LR EEPEEE, EER 1.7.x ZHIAR
BIHRE 2.0.x REFMA , BLEEABRERHTN 1.x TE, ZEFHNEESEHBETHREE, A
EHEARNENERNRAE URZE BRD#thEBZERIRAH AWS Encryption SDK,

ME EBRAHEA AWS Encryption SDK , 552 B BIRZA AWS Encryption SDKo

/A Important

EREABERHN AXMAZH , BOEER 1.7 X RARE 2.0x RREFRA. REE
BEAERE 2.0x RBEFHMRA , WA E#FIIEE , AWS Encryption SDK Bl 7§ &% R 57
FEER TZEH MBI F AWS Encryption SDK,

(® Note

for NET AWS Encryption SDK & R4 =2 3.0.x e AWS Encryption SDK B .NET
WATERA#HZE 2.0x FEIANZEREEK. AWS Encryption SDKIZR AT A Z £t AR E
RATRA |, B|F ﬁﬁﬁﬂh'ﬁ%jﬁﬂo

AWS 1n%% CLI : BB BRISEME , 55 H AWS Encryption CLI 1.8.x B9 1.7.x BBRA , &
£ AWS Encryption CLI 2.1.x B9 2.0.x BB RA. WFEFMEENR , FSBEAWS % CLI KRR
Ko

R £ INRERAIE AWS % CLI AR 1.7.x 1 2.0.x B&1T, T8 , AWS Encryption CLI
1.8.x lREMX T 1.7.x AX , ™ AWS Encryption CLI 2.1.x lREUX 7 2.0.x. MNEFMENR , 5F2
B GitHub £ aws-encryption-sdk-cli ffZEEHEZ £ EE,

MERE

MEBERYXER AWS Encryption SDK , AWS Encryption SDK BN ERRESTEEN
MRASHY . FERRESRA WATE X2 IEE AWS Encryption SDK , @EFHXKE, éﬁﬁﬁ &8
FAHEITHIN® ., AWS Encryption SDK

399

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK HEABEE

BRIER#E

BRLS|REBEIREARZHZHMOATARAE, FIE 1.x R4 AWS Encryption SDK #ERend-
of-supportf& Bt , RERXRFAEB SN EFMA B 2L, WF AWS Encryption SDK 255
S XENERBRENFMENR , B0 I BETESE

AWS Encryption SDK 2.0.x iR FIE#TIRAREFTN L L IEE , UGB REELNER., T8 , 2.0.x
AWS Encryption SDK R @B ZEHERTNEREE, ATHRRZSNER BFESEXKRGE
ST ERIREAEBERTN 1.x. ELRHN 1.x RATLEEIL RINEER , BRI lLLHEBR
B 20x RMEFHRE, ERAMTBEFERI>BXEARILHEE,

MBEELEELT R Z AWS Encryption SDK K2 IhsENEFMER , F2H AWS R ERPHNREA
Finin% : B Keylds & REGE

S BAM JAVA By AWS Encryption SDK #& 8t £/ #ViB) AWS SDK for Java 2.x ? FF2R FAF
#o

e

- AEBREFEBE AWS Encryption SDK

- EF AWS KMS 2R HtE

- EH AWS KMS keyring

- RELHAFEBER

- HEBESHMAETHED

B MEFE AWS Encryption SDK

1.7.x LAHIEY AWS Encryption SDK [RZARBEE 2.0.x REHMRAR , BLNER 2 ERAFHSE
EENE, B, ENEARAKBIBEBRBENNEXF, MREFEAHE AWS KMS TEREH
E ASAEHAUBEEAIRREARI T SREMENTERERX.

(® Note

AREFEHERENR B AWS Encryption SDK £ 2.0.x iR EF IR FE A EMERET. RE
=R ER AWS Encryption SDK , #& 0] LAfsE FA TR 5% 8% & 3L BN BA 1A 1 A | Y B A R AR

mfTERMERE 400

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK HEABEE

ARTBREEEIBBLEFTEFNCMBNFNRERER , EREEZETRARKREBNTE, EFRAT
—ERER R , FREESERRFETKETEHE, EHERFZEIUNIBARARABIIEER.

PEER 1 : BN ERREXERNERIA 1.x A

BIENERNRFRESENERNMN 1.x AR, EFRRMEER 2 281 , SRR, HBEFE , WHERER
EEEBEMA B Wib E#,

/A Important
BRI 1.x lRAR 1.7.x HLEFH A AWS Encryption SDK.

E#THY 1.x R4~ AWS Encryption SDK EZEhR EI#MEZ , AWS Encryption SDK B &2 2.0.x iR R E#
IRACMEHHEE. ©fME28 2.0x RPEFEENFHEE , EESEALEBRFTNLLERE, cMUTES
REZABAWS KMS =& BiRME K UFEREELZEATENE , EEEHTEBESBAEREM
BN Fo

- MKEERHWTE | BFER AWS KMS T RREHENEBEN. # Python & , FBLFHEMER
BE, EEFHN 1 x RAFERANEXNBTES N 2.0.x RAEHFRAEFBER,

- BTSRRI AGERERES ForbidEncryptAllowDecrypt, HERIERRH 1.x RAPM —FAX
WE , BESFEALREAFNEAPIs B EENBRTE. ELERE 2. Oxﬁi*ﬂﬁ%ﬁﬁiﬂxﬂ-r E Ak
IHERABRNIERELSESRARENERTMBENMENF, MEFMERH , 552 Bthe section called
“BRELRHAFEBUR,

- MREFEHA AWSKMS &R E AXERERETERRHEEEFTAIEEREINRRE
AW ELBIEMHE, BAR JAVA B9 AWS Encryption SDK i# A/ Python B9 AWS Encryption
SDK, #1 AWS Encryption CLI EEIFE#H, NRLERZERNFFEATLBEMRSE K RMAEBLE
ERRERIGH , SFAERANSESRREERLESB AWS RS, LEFRZAN , BERMEER
R&EE®. WEHEFHEN , FSHREN AWS KMS TERREHE.

- MREFEAAWS KMS RE keyring , KFIEZREC I ERKZEERY , BBRBEPEANTRESRBRG
ARE WET® AWS IRF., LEFRZAN , ERMESIRASEER. WFEFMENR , FBHEE
¥ AWS KMS keyringo

R 1 BENERAEXERMEHMTH 1.x A 401

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK HEABEE

PEER 2 . BRENEREXNERE &M

RRIDAG R 1. x iRAZBBRFAEEHE , BOULUFRE 2.0x IRFMEFRAE. 2.0x RBEMBER
HEKREE, AWS Encryption SDKTIE , IMREHETHE 1 FERHPEZNEXBEE | AJUIERES
BERMRAFE LR,

EENESRHRAZE , BREREWEAFBR —BHEES ForbidEncryptAllowDecrypt. A
%, BBENERERE , BB ECWSFABHBE RequireEncryptAllowDecrypt , R&EE
B EITEERERE RequireEncryptRequireDecrypt. BRFIBE—RIIMNEBRIE WTAARER,

1. B EEBUERERES BBForbidEncryptAllowDecrypt. AWS Encryption SDK AI A EH &
WAGEMREBEAL , BEAEASRARMNE,

2. BERERITR , BTN AEBRREH A RequireEncryptAllowDecrypt. BFEIREHAFE
AWS Encryption SDK B INZENER,. ©RUEANTERSB\AERBEZME T,

AEBREEHZE 2BiRequireEncryptAllowDecrypt , SEREREN R 1.x RACHBEEFT
X ORBELEEZNBEXFNEAEAZEINNEE. 1.7.x IR AWS Encryption SDK Z &I#Y
IR AR LA SR AR N AR

Et2SEEHMEERARNEEE LAIESRENEREMEXE K MESSRASE, &
15 B 42 4 I 7] B 7] 22 2 o S ARGE BUR R EE#T A RequireEncryptRequireDecrypt, HREL
ERER , 207 Amazon SQS {FHFRIMBAENERAER , EAERTESFTEHRNIFE , UE
RAMZWFIBEMZENFHEEHMMED MR, HRAEMERAREN , flm=Ze S3 Y4 , BEEE
ETR. ENNBNENR EFREYH.

3 EXEREBERESBABNERA T MEEMALR , BULEEBEREENA
RequireEncryptRequireDecrypt., WEARRENER —EEASR/AEETNENRE, 1
RERHERE, ARETEEAEERTE , ERMERTEEM. PRNRESEYRESE , URW
REARNBINBEXFZFMALETESRAERITETENTAEEER,

Fi# AWS KMS =482 it#

EEEBRERFM 1.x lRZX AWS Encryption SDK , REBEZE 2.0.x IRFEFRA , BAEKER
AWS KMS €M ERRAUBREXNIREZEXAREVNEISH/REME, BENRTSBREHRSE
BE 17X RPER , XE 2.0x RPBBR, £H BAHR JAVA 5 AWS Encryption SDK, 1 AWS
Encryption CLI B FEFAREXNE A Python B AWS Encryption SDKFIESBEENEF, KEHHE
Bilig RE A ERZ S

FEER 2 . BN ERARXEMERIIRE 402

AWS Encryption SDK HEABEE

® Note
£ Python # , FRAEAES. EXRGHEANECEEETNERBT D

MREEANZE AWSKMS T8 (FREEREMRE) , BUUBKBLHIR. AWS KMS EZ&/F
ERATBE. eMAESEALEENSRSR/RMNBNER,

FEFNEFZERCETERENEIAB AR, NIEEFEXRNTRES , FSREXEHEZER
GitHub P EE A — &, o , ELHHEE S LA I ARNs JREKR AWS KMS keys. EEEMA
RNZNESWBHEER | BT UERTAERN AWS KMS £ BRI KRR AWS KMS key o B
BEIARBEZNESREMRER , BLAERER ARN,

E—LTHER

HH AWS Encryption SDK FREERAE , THEWMAE PERELHAFE B K he section called “BXEEH
AGEBR .

R BAR CH AWS Encryption SDK H B JavaScript B9 AWS Encryption SDK £ & , T#
H keyring BYIE A E#H E 5 AWS KMS keyring,

ES |
- EBEBBKER
- EBERRER

BBEEBREEN

FHERHH 1.x lRA% AWS Encryption SDK , ABEEXNSERTSREHER AT SBIEH
., EBRBERT , BL4EE ﬂﬂ&%ﬂﬁﬁ&h%ﬁﬁﬁ HagEL®, R AWS Encryption SDK A&
EENSELR, CEANEZSRREHETUCAMZEERSWIVEMR AWS KMS key REEZE R
SIEETEH AWS KMS keys AWS 1RE 1 EiF A,

BEERXNESBIEMHESE 1.7.x AWS Encryption SDK R #H, ©EARTERESBIESRSE
S LR M %E‘/E 17x FEA , XE 2.0x PBR, EEHEXNTEAEZSBIRAMER AWS Encryption
SDK &1EE .

THEABEUBBREXRIEISREHRE | BULARNBNEE,

BB EREER 403

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK HEABEE

Java

WEBHRERER 1.6.2 RBEERTHWEARXPWEXT. EAR JAVA B AWS Encryption
SDK

WEAIEFE A KmsMasterKeyProvider.builder () 53R THEBLER AWS KMS =&
BEE AWS KMS key i AZH LS,

// Create a master key provider

// Replace the example key ARN with a valid one

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.withKeysForEncryption(awsKmsKey)
.build();

HEFRREARXPER 1.7 x REEMEENERXT. BEBAR JAVA B AWS Encryption SDK
METEEH |, 552/ BasicEncryptionExample.javas

+F—EgEH P EAL Builder.build() Builder.withKeysForEncryption()AEBTHE
1.7.x RAPER |, MWH 2.0.x RPBER

EFEEFEBEENEXNEZTSBIERE WESBSSYEEEAFEZNFURRAY
#Builder.buildStrict () A AN, LLEHIIEE — B AWS KMS key A DESE |, B
Builder.buildStrict () A AR LAES %@ HI/EE AWS KMS keys,

// Create a master key provider in strict mode

// Replace the example key ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

Python

HEHRKREARIXPER 1.4.1 IRWEXEE, BAR Python B AWS Encryption SDKELFZR T
£/ KMSMasterKeyProvider , BE 1.7.x RPER , Xt 2.0.x RPBIR. BEEF , cEEA
NZER SIS AWS KMS key , MFZERE AWS KMS keys BIEEM .

EBBEEEER 404

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK HEABEE

FE® , KMSMasterKey FEEAHBHR. MEMBEE , REFEH AWS KMS key BIEEH o

Create a master key provider

Replace the example key ARN with a valid one

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvidex(
key_ids=[key_1, key_2]

HEFHREREARINPER 1.7 x RUERT. BEAR Python B AWS Encryption SDKIIFE T E
&5 , 552/ basic_encryption.pyo

EEEMABRBEXNTSRREMRE HEXBSEY WFIEKMSMasterKeyProvider () A%
AIPEIUStrictAwsKmsMasterKeyProvider(),

Create a master key provider in strict mode

Replace the example key ARNs with valid values from your AWS
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[key_1, key_2]

AWS Encryption CLI
1 2545153 BB 2N 4a] £ ;. AWS Encryption CLI 1.1.7 R E R R R I Z MR,

FE1A17 RANERRAEAF , NEBEF , LSEE-—IZEEELB (NTEEE|) , Flw AWS KMS
key. MEENR , RIFLEABITETEREME TRELEERMITELR/,. AWS N CLI ATLAfE
AmBEREBNEIMNIESR,

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

BB EREER 405

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK HEABEE

$ aws-encryption-cli --encrypt \
--input hello.txt \
--master-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

\

¥

Bt &85 REF N4 F AWS Encryption CLI 1.7.x RSB EFMRARMNZ MR, MELTEEH |, 555
B3 AWS iz CLI BV & Hl,

S8 --master-keysBE 1.7.x lRPEMR , WE 2.0.x RFBER, ©EEL --wrapping-keys &
A K ERNEBEN#AZGSTHNLEEE, KBEXEBEEEXNRRES, BEEXRE AWS
Encryption SDK REE¥ , IRREEALERENTE LR,

BEAMEBRER FENBMNBERRMER - -wrapping-keys BN ESRBEBUREES RS
R

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

BEBRBER 406

AWS Encryption SDK HEABEE
BRERZFEREN

£ 1.7.x WRBA%S , AWS Encryption SDK S{EEX 2% AWS KMS =2 EFABEKEN | B
REENZNRZEECIESR, NFE SXE-2ECQESHR. BEEEERT , EEAR
AWS KMS keys fRZH) &8 ARNs S REYIERR, Hlin , wRE6E A B RE BN AWS KMS keys
R, MREBERBRFLESIHEE ARNs , RIS LERIBNTR. kA , BERREFEXNPH =S| MH
ENTHAERRTISH/EREEC , BTN EERRB P EREASLREEE BRBUBRKER
FREZESBEMRE,

HEEFERT SUNERREATEATSREMNE, ELTTREMETSELEETLRER
HEEEERTMETNER. B2K MTUEREANZENSRNAESR, BETANEENE
RESH/BEAEETE , BUUERZEATABRRICH, ERREXATEAETSR/REEER |, TN
[RETARELREENTRER AWS IRF, LRREGBHRGZZAYN ERMAZBRAREER.
MERE AWS ZEEMRFHNER , 526 PH Amazon Resource NamesAWS — k8%,

THSEHSEBRBEXNTELARME AWS KMS HESBRRME Y EREEXTEILARBE
AWS KMS M EZ|RIEHE, RREAPNEIERBEHRESERARRGERT , SARBENSEER
Rl Baws D EIBMFEEH AWS 1RF, HAEUIFEHENGEFFFFERFEERNS , B — @
FEREXNZER K M= —ERARXBEZENK ERFFRAENREER.

Java

HEHRREABRIXPER 1.7 x RBEEHMRENEXET. EAR JAVA B AWS Encryption SDK
METREF |, 5528 DiscoveryDecryptionExample.javao

EEUBRERNHTERCESRERENETNE , HEJISFER
Builder.buildStrict()F%. BEEREZERNPHTERICEISRIBEENETHRE |
T A Builder.buildDiscovery()} %, Builder.buildDiscovery() HEFRAR
DiscoveryFilteriEE AWS 2 E|[E MR~ F#Y BRE| AWS Encryption SDK AWS KMS keys
5o

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting
// Replace the example account IDs with valid values.

BEERZRER 407

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/

AWS Encryption SDK HEABEE

DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.aslList("111122223333",
""444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildDiscovery(accounts);

Python

HEHIRKREABRIXPER 1.7 x REEMEEHNERXT. BEARM Python B AWS Encryption
SDK tnE =B & , 552/ %3 _kms_provider.py,

EEEBRREXNTEYARNEBN EEREME , LEFIER
StrictAwsKmsMasterKeyProvider, EEEREBXIEYTESHEMENETHRE K ©e
£ DiscoveryAwsKmsMasterKeyProvider#®&t DiscoveryFilter , EIEEMN AWS ﬁJ‘%‘J
[E AR5 5% BRHI AWS Encryption SDK AWS KMS keys % o

Create a master key provider in strict mode

Replace the example key ARN and alias ARNs with valid values from your AWS ##.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

key_2 = "arn:aws:kms:us-

west-2:444455556666: key/la2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
partition="aws",
account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
discovery_filter=accounts

AWS Encryption CLI
I &5 SR EF N {] 8 F§ AWS Encryption CLI 1.7.x iR EFMRARIMNBZRMMER, £ 1.7.x lRBIH |, 7

MBZEMBREEE --wrapping-keys 28, --wrapping-keys SE X EBREEXNREZE
No MEZTEEFH , 5B R the section called “EiHl",

BRERRENX 408

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK HEABEE

mER , LEFHSEEFTENTRER., BER K ©SHEAEAR M --wrapping-keys 2
HldiscoveryBHRAEBIERZE N true,

EE# AWS Encryption SDK I ZREEXFEANTESBIRFIRSEI AL EH AWS 1RF |
WEHSFER - -wrapping-keys 28 discovery-partition®l discovery-account B
M., ELERABMRBEdiscoveryBHRER HF BMtrue. BXERKEA discovery-
partition#l discovery-account B ; ME&EN,

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyAlias \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--output .

E#1 AWS KMS keyring

Y AWS KMS keyringiE i /A C B9 AWS Encryption SDK, AWS Encryption SDK for NET # i& F
A JavaScript B9 AWS Encryption SDK X EFEEK , IELENZENRZNFIEEIE DR, WRE
EBIAWS KMS 3 keyring , sERATESN T ILIRE,

F 3 AWS KMS keyring 409

AWS Encryption SDK HEABEE

® Note

for NET AWS Encryption SDK B & R RZA<=Z 3.0.x R AWS Encryption SDK @A R .NET
WFTERAEZE 2.0x FEIANZEHKEEK. AWS Encryption SDKIRAI A Z £t AR E
BETRA , BEFEEEAEXBHER.

EREHEHHM 1.x lRAE AWS Encryption SDK , #& 0] LUAE A #f 3= ERZ IR SRR EIAWS KMS R %
keyring RAWS KMS [EiF#R % keyring ERHBRFIEAN LS|/ AWS IRF, EFRIER keyring =2
AWS Encryption SDK H{EE 7%,

B R Y BB 5% R S8 AN A G IR R EFIR R AF AWS KMS #7148 = [BIEHIHRFE keyringo
E—F T HER

#H AWS Encryption SDK FREERE |, THRUMAE PERELNAFEE K he section called “5XEEH
AFEBER .

HR EAR JAVA B AWS Encryption SDK & AR Python #9 AWS Encryption SDKF AWS
Encryption CLI £ % , T P ESWEMR BN L EFFHthe section called “EF AWS KMS £ #12
®"E,

EHNEARNPIRHSEENTHERNS., LEFHSEIREEXEET (BEE) (us-west-2) [EEFH
FEHOXSBNES AWS KMS &% keyring. BLEIHI T 1.7.x Z 8 AWS Encryption SDK iR ZAHI 12
Eﬁﬁ%o Z:@ , ETZE 1.7.x W*ﬂgﬁsﬁmqu:‘m%ﬁi‘ o

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder ()
.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

FE# AWS KMS keyring 410

AWS Encryption SDK HEABEE

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

#®1.7.x RBE%E , BRI LUSIRRER G4 I8 ZEM AWS KMS]R3 keyring. WIRFREZIFH S
AWS Encryption SDK o] A% AWS KMS keys 9 BREIAIBEDEIEMIRS K . FHALKERTS
ZH EREESTFSIE , WLAERHWIRS ID BEVUREHIRS IDs,

C

MEZEEH , FSE kms_discovery.cppo

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.AddAccount("444455556666")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr ()

WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter))

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
"}

1)

aws

JavaScript Node.js

METEEH |, F5ZE kms_filtered_discovery.tso

FE# AWS KMS keyring 11

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK HEABEE

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
'aws' }

1)

AR ESERAGEBUR

SRAETRAREZNNBEN —ERZAEENMXTF. ATRERZLEMY % 1.7.x REH ,
AWS Encryption SDK FREESMARENINEELEN . FEYHEBZNENRESFEASMARET
MBNEE |, BEAREEEHERERE, EHAS|AENZMBEZERRAWS Encryption SDK HEE

%,

RERFEBRERBREFPE_EALSBNEER Y : &£ BWHH 1.x lRA&E® AWS Encryption SDK £
2.0.xX RAMEFHEAE, EREMNEELNAEBRZE , B4 EEEREDPHEBEAREN Z 51 UK
HERAREN. WEERIES , F28 WIERBMEE AWS Encryption SDK,

AERRBERE 2.0x MAEFIREPE=Z/ERE. BRI 1xRE (R1.7xKREAK) #, RE
ForbidEncryptAllowDecrypt B,

« ForbidEncryptAllowDecrypt — AWS Encryption SDK E:E R SRAGEMNSE ., ©UUERE
AR EASRAENMENINEXF,

EHHW 1x AP ERE—NERE. EARRELAZT2ERIEHASBEAERZ 2T ,
TEFEASBARETNS, BEARE 2.0x RBEFMArequire-encrypt-require-
decrypths , BRE EU AR LENEAEBRREDEER . Rz , BN BREBENEFEIR
X

+ RequireEncryptAllowDecrypt — AWS Encryption SDK — A EBASE MR, ©OUER
FASTEAEBAENZENMENF. WEEE 2.0.x RPHIE,

+ RequireEncryptRequireDecrypt — AWS Encryption SDK — & i R AL R INZ MR R,
HWERE 2.0.x lRPHIE, ER 2.0.x RMEHIRAH FEERE.

BB AR 412

AWS Encryption SDK HEABEE

ST 1.x ARG | M—ERNAEREES ForbidEncryptAllowDecrypt, BB E 2.0.x iR=
BEHRAR SN TEREFESEEEEAFEEER, RIFELRERLEERESRAENRER T MBS
fIEAE , RequireEncryptRequireDecryptBRIB UM EAEREREHE .

ELEHIFRAMMERHAY 1.x RAHM 2.0.x REHMRAFERELHEFEBR. RNBURRENERR

.
e~ T REB

R BAR JAVA By AWS Encryption SDK AR Python #5 AWS Encryption SDKH AWS %
CLl, T hEX SR HEN L ERFthe section called “BEH AWS KMS F&BRME"

B EAR CH AWS Encryption SDK 1 &A1 JavaScript B AWS Encryption SDK , T f# &
keyring B2 A E#H E#H AWS KMS keyringo

AN1AIER TE SR HY ARG LR

BRARREAABRNEMERNSEERSEFNBETE., ELHMSREUAHNIT, ELELNEFE
BRH , FRE PSRRI R AEBNEE,

C

8 1.7.x hxBA%E BA M C B9 AWS Encryption SDK , &7 LA fE
aws_cryptosdk_session_set_commitment_policyBRETE % MR % TR ER L5 E&GE
BUR, BRENAEBREANEZ TERER EFUNFTE BN EZRRE,

£ 1.7.x iR EMR aws_cryptosdk_session_new_from_keyring#
aws_cryptosdk_session_new_from_cmmiEE , ¥1E 2.0.x iRHPBER, BELEHE
SEMBER THERERKN aws_cryptosdk_session_new_from_keyring_2#
aws_cryptosdk_session_new_from_cmm_2B &,

ERTERIM 1.x liA&Raws_cryptosdk_session_new_from_cmm_2/

B aws_cryptosdk_session_new_from_keyring_2# B , &AL ARE
FACOMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPTZAFE B R E MY
aws_cryptosdk_session_set_commitment_policyBR®, £ 2.0.x MRHIE H AR A
o, FUEEREREAN , cEEMBEERNE. 2.0x RNEFMAHNTEREALZRES -
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT

MFETEEH , F2SE string.cpp.

/* Load error strings for debugging */

WA R TE SR K GG BUR h

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK HEABEE

aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Encrypt your data */

size_t plaintext_consumed_output;

aws_cryptosdk_session_process(encrypt_session,
ciphertext_output,
ciphertext_buf_sz_output,
ciphertext_len_output,
plaintext_input,
plaintext_len_input,
&plaintext_consumed_output)

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);
struct aws_cryptosdk_session *decrypt_session =
*aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(decrypt_session,

WA R TE SR K GG BUR h

AWS Encryption SDK HEABEE

plaintext_output,
plaintext_buf_sz_output,
plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output)

C#/ .NET

ltrequire-encrypt-require-decrypt{E= AWS Encryption SDK BAR NET HFTE R
RPN FERAEER, SUNARMEEHEREARERR BETRLEN, T8 , REFE
Fi AWS Encryption SDK for .NET Rf#ZH HtZESEEMBNMEXF , AWS Encryption
SDK MARELRARE , IEERARBREZE SR REQUIRE_ENCRYPT_ALLOW_DECRYPTS}
FORBID_ENCRYPT_ALLOW_DECRYPT, &HI| , ERBEEMEZEXFHE XK,

£ AWS Encryption SDK EAR .NET 8 # , BALAE WEITER LERERAFEHE AWS
Encryption SDK, £ CommitmentPolicy B&#TERB{LAwsEncryptionSdkConfig¥l# ,
It f5E FAAEREMD#F SR SI AWS Encryption SDK #i1T{EI#8., A% , I EEXE AWS Encryption SDK
#1TEEH Encrypt () # Decrypt()Fi%o

WEHI S RFEBREIRES require-encrypt-allow-decrypt,

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig

{
CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

var encryptionContext = new Dictionary<string, string>()

{
{"purpose", "test"}encryptionSdk

};

WA R TE SR K GG BUR 415

AWS Encryption SDK HEABEE

var createKeyringInput = new CreateAwsKmsKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
i

var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

EEE AWS % CLI FERERFEHE , FFHA --commitment-policy 8. LB 1.8.x
MR HEE

ERHW 1. x RAF , BEBTE --encryptsh --decryptin SHEM --wrapping-keys S8
B, E2BH forbid-encrypt-allow-decrypt{EfY --commitment-policy 28, &8,
--commitment-policy 2 HEN,

£ 21X R EFMRAF , --commitment-policy SER2RHM , WFEERA require-
encrypt-require-decryptfd , TEMELBETAERE SWMAGERIF N T IR 2L
F. T8, RMERESEMEMENBRZ IR ARERERFBE , BB EZE,

WEHISERERBBR, CHEMEMA --wrapping-keys SEIREURHE 1.8.x MRBIBH - -
master-keys 28, MEFMEN , 552 Bthe section called “EFH AWS KMS =& BIEFE,
METEEES , FSE AWS E CLI B4,

\\ To run this example, replace the fictitious key ARN with a valid value.

WA R TE SR K GG BUR h

AWS Encryption SDK HEABEE

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

%" B 1.7.x WRBAA BA R JAVA B9 AWS Encryption SDK , #&7] LA fE $1T1E 8 L 3REAFER
FAwsCrypto , BIMXFE AWS Encryption SDK A FixH ¥4, WAEBRZEERARZAFKL
L 49 PR N 25 F R 25 R 4

AwsCrypto() BEEREBERHN 1. x RAREER , AR JAVA B9 AWS Encryption SDK
WE 2.0.x RAEPBR. ©HFBuilderfEHl, Builder.withCommitmentPolicy ()X &
FMCommitmentPolicy%lIS2EAE4R,

EHHFN 1.x lRAF |, BuilderBHIEE Builder.withCommitmentPolicy ()5
7&F CommitmentPolicy.ForbidEncryptAllowDecrypt5|®, # 2.0.x

W% , Builder.withCommitmentPolicy ()5 EAiEMA ; BRES
CommitmentPolicy.RequireEncryptRequireDecrypt,

METREH |, 5528 SetCommitmentPolicyExample.javas

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.ForbidEncryptAllowDecxypt)
.build();

WA R TE SR K GG BUR 417

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK HEABEE

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

// Decrypt your ciphertext

CryptoResult<byte[], KmsMasterKey> decryptResult
masterKeyProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

crypto.decxryptData(

JavaScript

1.7 x WxBAtA B M JavaScript 8 AWS Encryption SDK , #&8] LATE FE AL 4 1T {E B8 1L AWS
Encryption SDK A Fim#y# buildClient BREBFEREAFEBR, buildClient BNEIEHRA Y&
BERARRENAERE. CLEOFHR encrypt decryptHE , EEMBZMNEZEREHTE
MY EGRBUR o

EEFH 1.x RAA | buildClientEHBEE
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPTSI®, # 2.0.x hxBAth , AFEBUEREI
B BEM , FE5R{EA CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,

AUER |, Nodejs MBIERNEANBTEME , BRERFERBNRZERAER,

THIEHIFER AWS KMS keyring INZE R, FbuildClientER B S RFEBERRES
FORBID_ENCRYPT_ALLOW_DECRYPT , ER&H 1.x FHFERE, buildClient EE H#K
encrypt decryptBEHEEAFIE 1T EEREMNAFEBUR,

import { buildClient } from '@aws-crypto/client-node’
const { encrypt, decrypt } =
buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'

WA R TE SR K GG BUR .

AWS Encryption SDK HEABEE

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

% 1.7 x WRBA%A BAM Python B9 AWS Encryption SDK , &R LA #11T{ERE L3R EREH
REncryptionSDKClient , EERX &K AWS Encryption SDK A FimtIF ¥, BEREMRFER
KERANEAXAFPIRMITERBNAE encrypt# decrypt®il,

EHRHFM 1.x EncryptionSDKClient rAH | BBHEE
ECommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPTHIEBM{E, # 2.0.x B , &5
BUEREI®BER |, A5%EA CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,

L EBIE AFMIENncryptionSDKClient BB E , WASHEFEHERRES 1.7.x R E-
EENYESHTEENLAR WHF% AWS Encryption SDK, E&7E LA Fim L
decrypt. encrypts streami3EE , B EEHHMTERENAFEBR, LEfLEER
StrictAwsKmsMasterKeyProviderHBINMBBHY , EEEMEMMBEE AWS KMS keys
¥ o

MEFTEES , FSE set_commitment.py.

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_AL

// Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

)

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(

WA R TE SR K GG BUR v

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK HEABEE

source=source_plaintext,
encryption_context=encryption_context,
master_key_provider=aws_kms_strict_master_key_provider

Decrypt your ciphertext

decrypted, decrypt_header = client.decxypt(
source=ciphertext,
master_key_provider=aws_kms_strict_master_key_provider

Rust

Jtl:require—encrypt—require decrypt{E= AWS Encryption SDK Rust Ffi iR ZA<#J 78
RAGEHE., EULAREEHESREAREER EETERLEN., T8 , IREFEH AWS
Encryption SDK for Rust JRf# & H HAFE S BEMZENMNEXF , AWS Encryption SDK
MAFEESRAF AIEERKAFEBERESZES REQUIRE_ENCRYPT_ALLOW_DECRYPTH;
FORBID_ENCRYPT_ALLOW_DECRYPT, &8I , EEMEMZENLFHRE KM,

£ AWS Encryption SDK for Rust # , &7 SAfE BYEN4T{E B8 L5 EAFEBER AWS Encryption
SDK, £/ comitment_policy %5?‘?1ﬁ"‘ﬂsAwsEncryptionSdkConfig'fWLF It 5 F AR A
YI#E 3R L AWS Encryption SDK #11T1E88. A% , HIIZ25&E AWS Encryption SDK #11T{EERY
Encrypt()# Decrypt()FH %o

W EI SRS AGEBRERES forbid-encrypt-allow-decrypt,

// Configure the commitment policy on the AWS Encryption SDK instance

let esdk_config = AwsEncryptionSdkConfig::builder()
.commitment_policy(ForbidEncryptAllowDecrypt)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),

WA R TE SR K GG BUR 420

AWS Encryption SDK HEABEE

("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

WA R TE SR K GG BUR .

AWS Encryption SDK HEABEE

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
&commitPolicyForbidEncryptAllowDecxypt})
if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

WA R TE SR K GG BUR ”

AWS Encryption SDK HEABEE

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
esdktypes.EncryptInput{

Plaintext: [Ibyte(exampleText),
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

b

if err !'= nil {
panic(err)

}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
esdktypes.DecryptInput{

Ciphertext: res.Ciphertext,
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1)

if err !'= nil {
panic(err)

}

HEBBERMMAETHED L

BENERRBRAERZE 2.0.x RREEFHRAZ B AWS Encryption SDK , 5545 EFERHH 1.x F‘lb_l
AWS Encryption SDK , Wi HTE£IE, ERHEEEREERZE 2.0.x IRFEHRA AT 881&E 2 8
RZYEER, MFEFMES , 2FE6] , F28 EBEH AWS Encryption SDK,

HERE SR ETHRELSE 423

AWS Encryption SDK HEABEE

/A Important
BERIBERIH 1.x R R 1.7 x RJEFRA AWS Encryption SDK,

® Note

AWS 1n%: CLI : ZR¥5RH 1.7.x lR#9ZE AWS Encryption SDK A AWS f1% CLI 1.8.x
. ZA¥E§RIF 2.0.x Kix#9Z2E AWS Encryption SDK @AM AWS 11%8 CLI 89 2.1.%0
Y 2 £ ThRERA1E AWS M3 CLI ARA 1.7.x 1 2.0.x F&1T, T8 , AWS Encryption CLI
1.8.x lRERX T 1.7.x AR , ™ AWS Encryption CLI 2.1.x lREXX T 2.0.x. WMNEFMENR , F2
B GitHub £ aws-encryption-sdk-cli fFZEFHNHEBLZEEE.

RERE S EBBEREB MR TRIBIINRE RER.
ES |

- EEASBRAYH

- HEEHR FEBENEEEEH

- HEEHR AHEBERNMENXF

- SIRFEGERFT RN

- HtnE KK

- BRE8

ERARBERNHF

20X fRBESHEARE GREBBRE 1.7 xRPEANEREBRE. Hk, HENER, /78
RimEaRinie, EAHR, BESBNFRERTIER (BURRENERRETES) | FLARE
AWS Encryption SDK R EZFHES W& 1. X BRER, (EMXAR 1.7.X RBEFMERE,) FAZHH
1.x AR , BANERREAFRZABREARRTE,

MREFESENARE 2.0x IRBEEFEAX , F2EEAREXFRFTFEEMW changelog , WA E R
HUX A& changelog &K &5k

EEARBROUHF 424

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK HEABEE
HREER ARBRNEELENY

NMREEEWERELZEFRENAEBRGR , MENFUSRK , B HBRAREFRER,.

EEREIEER FOEETEEEENH. BRIBEFAR , AWS Encryption SDK EF BRI AGEBUERAA
BNREZEEEE, T8 , IRELEEERELEN , AINMRBFZFNEN FHRLRIZEEHEAER
RMEBREREREN

AGEBE MAERELEH
ForbidEncryptAllowDecrypt ERES®ARIEELEN |, 0 :

AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (0378) (&%
E)

AES_256_GCM_IV12_TAG16_HKDF
_SHA256 (0178) (F"&E)

RequireEncryptAllowDecrypt EESHMARENEMEELEN , il
AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (0578) (&%
£)

RequireEncryptRequireDecrypt

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (0478) (T%E)

MREEHREEREEZEHFREIIFR , ENERREFEHEES (CMM) TREZEZEFRIVER
EEH. AR CMM TEEMERVESEEZEN , EAF] CMM AJsEERl. WEHE , F2RE5]
CMM By X4

HHREEZR | AGERBUERNMNE X F

RequireEncryptRequireDecrypt ZAFEBUIR T FF AWS Encryption SDK B2 SIRAFEN
ERTMBZNTAL, MEHEER AWS Encryption SDK FER ESBAENERTHETLE vaH
[E1 A RE T SR 8RR,

HEER . RBBERMEELEY 425

AWS Encryption SDK HEABEE

AT BRIERS £ ERequireEncryptRequireDecryptEBBEK 2Bl , SBEREH SBAERE
BMEHFMBRENBNMNEZENT , SHTRNERARIEE., MREEDHES SO ERFZRM
BN FWIERR , A ERBEBREHFEE A RequireEncryptAllowDecrypt,

MRERBRER 1.7 X WIREAARE 2.0.x IR EFHIRATEEILLEER , BEREABEZTHN 1.x AR
A (17X REEHFRA) , FERBEEZTHZHN 1.x IRA , THEARE 2.0.x IRJEHARA & B Z R
AHEBEEMBEIH, MFEWHE , F2E WMITEBAEE AWS Encryption SDK,

EMAGERE RN
BERBEASRABNBOALE CUESRISRAERB XUNEBEAL. ERTRETU K

B, AANEZEFETHNERTREFENE-—SERSRIE. EBERFHERIVERTR , =HRE
A RELERENERARERZ B FHFAE.

WERRNEEREZNMBZALL KA EE AWS Encryption SDK. BRAIRER FHRENAERE
AHERNER. MRBBEINER , FNEAEXTLEEASLERE , ELEEFHAS,

H At hn & K< B

METEEELSERATAR, EEEEANS KMS BRERTEARER keyring RESMIBHER
MBEAL, 222

BERAEREERANNENSESBRIETE keyring RESMWIREE, WFE FANRHA AWS KMS
keys , F@2 B (AWS Key Management Service FZ A B15F) FHRR S8 BRI B 7 EUE
AWS KMS key.,

Htg= <M

MBBESREZMBZNAE LR , KRR AWS Encryption SDK &% (A4S) BRALFWEMME
BRE8,

MREFERIEETESI|BMN keyring RESWIRME | B LE AWS Encryption SDK ERERIEEEN 2
HEB BREEANRECEENSESR K MALEIBEEP—EIELSBMkns :DecryptH
o, MEEER EARKA AWS KMS keys , BIFTAE R FEAAWS KMS # 3 keyring IRFEERX FH
FTEMEHERBBAS. WRBERY , FERMANF] , FRZARBEZASNSBREETH
&8,

SRAGERI RN 426

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK HEABEE
4 =
EEEE

MRENERABRRNEENEZLHRZER , CEEAUEBENERBRIR. keyring, TEBWIRME
RAEBERFREE, T8 , ERLEERT , AU gRERTSEARIEREERN AWS
Encryption SDK,

MREXNEEIR | FHEEHIT. 1.7.X AWS Encryption SDK Z B f MRANEE AR 22 LA & 88 78GE INZ2 A9 hn
B F

. REBFMW 1.x RAEIRZIEN #% AWS Encryption SDK R&Z %, B EEERHERENBATHN
BT FREEALIREAPFZENFRMNDE,

- —BERBRMNE 2.0x IRBEFIREPNSI/AFE (BEERRRER
RequireEncryptAllowDecrypt) , ENA[EIRE 1.7.x iRk , BEEZERETAEMR. 1.7.Xx AWS
Encryption SDK Z BT HY R A< 8L R 55 LA S 88 AGE B & X F o

MREEFMBEIHEMAIUCERASRAEBZ 2T NMBAERASREENS ,]IFREETHEL m
TRER, MRASREGHMN , ETUALZLHER , AIETREERBASEIANER, NMRFEE
R, BANERRERTERBRI SHNERBAR.

EEEE 427

AWS Encryption SDK HEABEE

= REESE

FREEE

+ B2 AWS SDKsE i AWS Encryption SDK RG] ?

- Bd Amazon S3 iz A FimA i AWS Encryption SDK R[E ?

o XEML RGN R E % AWS Encryption SDK , 1 BB 2 FEER{E ?
- MimiLEE (V) WAELE ? FRIEHE ?

- BEERESRNAELE, MERRE?

- M{TERARMBERNER SR ?

« AWS Encryption SDK @ FMEZER SRR EMZERN XA ?
« AWS Encryption SDK AEXEABNMBEREMSDENER ?
- RREUUSEHECHESBIREE 2

s RAUNEZECEESBTMNEERE?

- BASMER mEMLEEREE AWS Encryption SDK ?

« 30{A] AWS Encryption SDK HN% F## 258 A /& (1/0) B ?

B2 AWS SDKsHE 1A AWS Encryption SDK R [a ?

AWS SDKs#2 {8 Amazon Web Services (AWS) EBIHERE , @ AWS Key Management
Service ()AWS KMS, HIELEFES E#HE AWS Encryption SDK , HlZ1AWS Encryption SDK & F

A NETH |, —EZZEMHERERARTESH AWS SDK, REERIE AWS KMS keyring S E £ 81214
ERFEASRE HMESEESIEEHEN AWS SDK, NEFHMEF , F20 vERRENRGE
SHIEREAWS Encryption SDK 2R EREES.

WA LAE A AWS SDKsEE B &) AWS KMS , SiEEN#ZLEER (FRYBNZEESRRS
4,006 ANt) , URAFAFHEMEBEELEN SR, TiB , ERELERESRET SXAEEER
MBNBZRES., FANBHNERSEBEMBZER AWS KMS, 2 tBREMVYFZERSE. FEMNSR
MNERSE K AEMBERSBAMEER. A AWS Encryption SDK REILEF.

AWS Encryption SDK Rt E , AIFAXARENREERRNENBEZER, c8ELERE
W, EREENEESBTNEENSR , UERMNENAL, SEMEZERNARZERSBNTER
BRI, BER CEEANZENASNEL —EaLEH\ (FEA) , ™ AWS Encryption SDK &
BEEZNHEXTFER,

82 AWS SDKs&1{i AWS Encryption SDK F[& ? 428

https://aws.amazon.com/tools/

AWS Encryption SDK HEABEE

IBAILAEF AWS KMS keys A FHI28E£88 AWS Encryption SDK , B IEMSE, B LAFEREE
AWMZEE URRESBEERIANPEERLLEHNMNZ S/, AWS Encryption SDK EJ
FEIR28 AWSIRF , thaJBAEHA .

E2 Amazon S3 % A Fis &1 AWS Encryption SDK R~[E ?

AWS SDKs #1#y Amazon S3 1% A Fim & &4 BMFE Amazon Simple Storage Service (Amazon S3)
hEREENBRANAR, ELAFIRE Amazon S3 BZE4S , BEBAREREZENESR,

BB LEREE A5 B E R AWS Encryption SDK 2t I1Z MR, AWS Encryption SDK #
Amazon S3 MEAFIHFHE , RAEMEELETEAERBINMEF,

S BB PR LE R G m s E & 5% AWS Encryption SDK |, T BHME R FERE ?

AWS Encryption SDK £ A AES-GCM 9 Galois/5FHEEFE R (GCM) IS N ZZ1Z % (AES) ¥
BEEZERMZLENER, CUELRBEEBNERBEELTIEE LNBENEERNER SR,

HM AES-GCM , FEREEEZEMHREHR 256 U n 28, S#IT4E (HKDF), B ESEMESBAGEN
AES-GCM, AWS Encryption SDK th 8 192 I Tl 128 Ut iNZ &8 , URFEBNEENER
AN MBEEE,

EFFBEBRT , FIR{ILOE IV WRE—EA 12 BTl BrRBEBHVRE—EAS 16 BT
. RIBEFER , HRXEHFEAERSBMHAE AT HVAC RERNER 8 ITHERE (HKDF) , RHT
£ AES-GCM M 448 , th T L8 Elliptic Curve {2 3= 85 % (ECDSA) %=,

%

\

WMEREERBEEEEZNVERET , FERXENEEEEMH.

T

i

NMEXXBEREEINFEES , F2REEELZE,

%

DB EE (IV) AELE ? R HE 2

AWS Encryption SDK EAAEM A EZREBEBEZKNTE IV EH, EFRI|BETFEALPER
Vs, (£ BAR JAVA B9 AWS Encryption SDK 1 1.3.0 2 81 iBA R Python #§ AWS Encryption
SDK , AWS Encryption SDK SR ASRESEELER —W IV E,)

IV €127 AWS Encryption SDK BRI INZAL S, MEEZEHF , FS2BAWS Encryption SDK
Eﬂz%*%ﬁ%%()

8 Amazon S3 % A FixA& @ AWS Encryption SDK & ? 429

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK HEABEE

BEENSRMAEE, MERER?

FEBURRISE RN keyring RESMIBMHE,

FH AWS KMS keyring M E €812 & AWS Encryption SDK &€ AWS KMS GenerateDataKey
AP REREABEER SR Y EHIESR TN, FELTHM KMS ERTNEZERESBNE
X, efgER AWS KMS IERE, "ERRERSR ©fISER AWS KMS Decrypt ##4E.
EHME |, 5528 GitHub AWS Encryption SDK HREHH AWS KMS keyringo

HAth keyring BEFEASEERARGIESNREEE T EARELER B, MBENHE, NEFHEA ,
=2 H GitHub AR EEEEE H keyring AWS Encryption SDK S E £ iR &K RIE

MG HE A SR DB BRI R E R SR

2 A% AWS Encryption SDK #{TLHIRME, EEMZERE HEBRAZEHASNBER S| NZE
WERENBNERN - EERECERNENZAEF. EXRHRERE , AWS Encryption SDK &
RMENASPERMBNER SR, KERER K RAREATRBEER.

AWS Encryption SDK @ ENZER B EEMBZERN XA ?

Y INZE R EE AWS Encryption SDK BEIIMZENFLE , EREEMNBERREMBEER SWIVE—
ERER, AERNTEMES, EHEAN, ASEESITEMENERSE® URRHAASESR
BARARXNER. ARANTENZENER, IREELZEATEENEE ALK RTETEERE
HWER., MEFMENR , F2BAWS Encryption SDK FAEEKSE,

AWS Encryption SDK AR EABENNZERENSDENE
faf ?

BN EA B FREURA AWS Encryption SDK @R % , B THIEE :

« MEXFERH KD
- MEANXERER
EERHABENNBREELR (AAD) , UKNZ AAD HRE
- ARERATESHOBENFR
- BERD (EREERERE)

BREENSHRIMAESE, MEREBE? 430

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK HEABEE

E&RER AWS Encryption SDK R HTERERE (—1{@ AWS KMS key HMBatsie (RE ol).
RE AAD. FREER URSEEBWNEEEE) B, EARFNR 600 Bl TE. —BAE
A A B EE AWS Encryption SDK #1011 KB SE WA , T SI2HM AAD, MEFEAE
A , S BEAWS Encryption SDK AEHERSE,

BAEHECHNESREMRE ?

2, EFFMETERBEFERANIEEANGESMEMTRE. T8, MEXENZESHIELESR
BEIZGR=EAEEES (CMMs)M), T&£@|IBMHE, keyring, TLWMNITELSR,

BRALEZESESR/ T INBERS ?

o BALMEREMERSR (NETR) NBERNER | MEESRURTE EE 58 E R 2R
BiekE,

EEEZECLESBTMNBER K BFEAZEASELSBET keyring RESWBIRME, £ keyring
i, BB EEZETRERNE— keyring B Z 1B keyringo

BIRERAZEIE LB MNBRERE | AWS Encryption SDK 2 — A& R RELMNFTERS
i, EREMEK N K EE2LHEOESBER., REFERANFTENSRNTESR/MNENER
SWMER, AR, NMELLZSEAHMGIRSW/RNZER SR, EENNEFETEMENESR ,
DREBEaSESBN —ENREREER,

BRI AERAMZRREFFEANT —SESBRBZMBENAS. AWS Encryption SDK FHITE IR
RBEMZNER S|/, AR CEEARXFENSBREZER,
AT LAGE A hnZR Lt & s 3 E AWS Encryption SDK ?

R ZEFRENLFTEES BE AWS Encryption SDK EBRILUINB RBM T (SZTAERES) . 1/0 B
(fLThEEBR) MFH. AWS Encryption SDK for NET A& 110 £, RFRHSESZIZEER
RETE SN EHIRENE,

un4a] AWS Encryption SDK h0%% #l#% 28 A /& 1 (1/0) &5t ?

AWS Encryption SDK R INESHFEZER , LSEER /0 BR. NEIBABZERSEINHEA
P EEITRIBRERE. fl0 , CUUERERSERLNMAFER IKENZEEEER. =
E CUNENRERERNNBEXTF , YEEFZEEEDER. RARHEMAENT , ARNENBE
BRAXEERNZEEXRFESNER.

REBUUEABCHESREMNE? 431

AWS Encryption SDK HEABEE

AWS Encryption SDK for NET F3Z#2 I/0 &3,

#n{a] AWS Encryption SDK inz #2258 A /8 (1/0) #5R ? 432

AWS Encryption SDK HEABEE

AWS Encryption SDK &%

AE@ELREENSZ0ELREB I E AWS Encryption SDKIRAMN MR FEEE, MEETE
BECEEHANNZRRTE , JETFERENA.

BERHP—EAXENRENRFTFES AWS Encryption SDK FfEA |, F2E EXHRAES.

MFEEHBEE AWS Encryption SDK BIETHEM B , 2B GitHub FEIAWS Encryption SDK #
1o

AWS Encryption SDK A EFEEZEOE - SREBRAL , EF S NFHNER N M IS
B, THZERPEEZNMERNEE, FRAREFAREERENE , AUBRME AEILERES
AN E,

£

« AWS Encryption SDK AKX 2%

« AWS Encryption SDK & E4& = & 5l

« AWS Encryption SDK# A EESNER B E R (AAD) &
+ AWS Encryption SDK ;E &k 8#

« AWS Encryption SDK #]#a1t [2 £:&

+ AWS KMS BB keyring £ iTF & FA

AWS Encryption SDK SAEK X2 Z&

AEHELRHENSEZTZELEE B ILE AWS Encryption SDKIAWIMBZREEE, NRETE
BCEEMANMNERTE , THEFAEFERER.

EEAEP—EAXENRENILETTES AWS Encryption SDK A |, 2 EXRHES.

MEEREE AWS Encryption SDK BETEHRK , F52H GitHub FEYAWS Encryption SDK #2
o

AEBA2E 433

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK HEABEE

Ry INZIREE AWS Encryption SDK BRIE—EREBINEAE , HPIEMENER (NEX
F) NFAEMZENER SR, EEETHRASKR THEEELHERERE SEETNUBEENES
=

AERATEMERD EEEAX, ZRLERLT , ARRAESSTSE=ARY , tRREEE. #A
ERASERMRNTHEIRFFNEFFS , XBEA Big Endian X, AEBASUREMARE
RBRFEEARNETE (WRA).

X EWEEEZEH AWS Encryption SDK ERAMEA SR RAREZ—. BRESRAENEELZESFE
ARAERNE 1R, EESBABENWEELZEHFERAASENE 2 K.

ES]
- RER
- ERE®

FEEESLEMENER TR , URGEHAASEEEAR S ANEN . TREAASLIRE 1 M 2
R R (v T AR R B R B B Ao

TEEERTEABREIREPTAEFE . ABXFRTESERAFTENE.

@ Note
BURFREKTHEERD , THREFRERRFHAMEER,

WAL ABHERE 1R ABHERE 2 ik
RE (fztia) RE (fztia)

Version 1 1

Type 1 T HFHE

Algorithm ID 2 2

EEEE 434

AWS Encryption SDK

FMBABER

Rz

Message |ID

AAD Length

Encrypted Data Key Count

Encrypted Data Key(s)

Content Type

Reserved

IV Length

Frame Length

Algorithm Suite Data

Header Authentication

AEBAE 1R
RE (fz7til)
16

2

ENZEABTRZER , 2 Vil
AAD REWMMUZHES 0.

2 KRN RESHERE
Bl 2 fEfz i+ (AAD REMR
).

EMBRRNBEREAE , EET
&H AAD 1,

2

25 BURRMEZER TR
BEHESEMZERSRNK
E.

1
4
1
4

TEE

28 BURRAHARELEFARNE
g%

AEBNE 2 R
RE (fz7til)
32

2

ENZEABTRZER , 2 Vil
AAD REMUHES 0.

2 MRV RESHERE
Bl 2 fEfz T+ (AAD REMR
i),

EMBRRNBEREAR , EET
T&H AAD 1,

2

25 BURRMZER TR
BEHESEMZERSRNK
E.

1
Tt
T
4

28, BURRARELEFR
HEE .

B BRRARELETLNE
Bk,

435

AWS Encryption SDK HEABEE

TS

BEARASEAARE, BRAR 12 mBAMITHOIZE02 TR ENRRE
=Rt

BAAEEANEE, BEEEHERNER, IXENE-—BESUNEFRIENNZEERAR,
HEAEA 128 , X E T AEBURTEPRES 80,

AR AR ERASEXE 2 .

JEESE ID
FREREREZNEER. el 2 U THRBERT , YHEFER 16 U THEFRERY, WFEEE
E’Jn¥%ﬂ1ﬁnﬂ mZ 2 ZBAWS Encryptlon SDK /,\ﬁlfﬁ%o

AE ID

R ELNE , TRRIAS. AR ID:

o ME—FXBIMEFAL

- UBSXBEIN , BARBREBREEAELR

- REZLNEIIRERSENEASEEEAER SR,

- BT AWS Encryption SDKREAERFEAER SR , ASHESR,

WEEASERRAE 1 5128 U , FRAE 2 & 256 fL7T.
AAD RE

FENANRBER AAD) WRE, T8N 2 THBEERTR , YHEEL 16 U THEFRERY , BHE
& AAD LT/ E.,

i3

MEABRZER , AAD REWUNESR 0.

AAD

HINNREESR. AAD ANZEATREAN , ERSREANES , ETNEESKREEESR
UTF-8 i F TN F&H. NEARSERSMUTAFS , YHRETR AAD BiH. ENFAR
RZEAR , REPTEHE AAD #,

MREAEERENEEL , MFARRLETESEM\ENR {'aws-crypto-public-key',
Qtxt}. Qtxt XK, SEC 1 hixZs 2.0 BHE , AE L base64 MmIBHMHEEIMRE Q. MEAB AL
SEHME , BEFTEE AAD WRE LRA 2/M6 - 1 (LT,

RERER 436

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK HEABEE

THRAERA AAD BWHEREA. EEKRB UTF-8 ZABREEHFSEEHE, M TEKETRIER
Ff$h0 o

AAD #EH
- i RE (fztig)
Key-Value Pair Count 2
Key Length 2
Key B8 FRE 2 AU TEPEENE (ERE
E)o
Value Length 2
Value By ERE 2 ALTEPEENE (BER
E)o
EEHTH

AAD FIVSIBEHBE. T8N 2 THBEXRR , YHEEA 16 L THELFRES , 54 AAD
FSREESE. AAD PN EBEHREELRA 2M6 -1,

WRREMBEAR , AIMBATAZAH , KRURTEHIRE AAD BB,

THMEENSRRE, CEU 2 THBERT , XHFS 16 L TWEFRER , EHIESSH
By A&

SREENEHR, ©EU UTF-8 RIBLTEFIIRT,
BERE

TMEENERE, T8N 2 THBERT , WHEES 16 L THEFRER , BEHISENN
THAHE.

SREENE. B8N UTF-8 MIBLTEFIIRR.

RERER 437

AWS Encryption SDK HEABEE
MENERSBEITH

MBERSBNEE, T2 THBERT , XHFEEA 16 UTWEFRESY , EHNZERS
BHNEE, SEALSPHNBERSWMEE LRA 65, 535 (2M6 - 1).

MENERER (s)

NEZEEMER/RNFS. FIREBEARNIZENSRNVEEESANZENESRIRE. Filaea
EEL—EMBRER R,

TRERASENZERNSRVERMA, (LTHEMRERIERFH M.

MBEERESRER

- i RE (fztig)

Key Provider ID Length 2

Key Provider ID g2 Sl 2 BUTEPIEENE (RN
% ID RE).

Key Provider Information Length 2

Key Provider Information B8y ERE 2 BN TAFEENE (SRR H
EEARE),

Encrypted Data Key Length 2

Encrypted Data Key 2y S 2 BUTHEPIEENE (NEER
TREE).

TMEHRE DRE

EWEHERBHRE. U2 TEBERT , XHEEFES 16 UTHEFREY EHES
TRRMEE D WUTHEE,

EWEMHE D

TMBEHERBRR. cEARELHNZERSRNRERE UMATHER.
EREHEEIARE

EREHEETNRE, ©8M0 2 THBERT , XHEFES 16 UiWENREY EHEsS
WRHEETANVTEBE,

RERER 438

AWS Encryption SDK

LESC L
TRREHEEN

CREHEENA. CEERRSB/EHRE,
B AWS KMS 2 > EREEH AWS KMS keyring B |, It{ESEE # Amazon Resource
Name (ARN) AWS KMS key.

MBENENSBRE

MEEMERIRE. ©8M0 2 THBERT , YHEFS 16 UTHEFREY BHISNE
ERERNUTERE.
MENER TR

NEEHSR. ERHSRRBREFNEOERNELR,
bt

MEZEERNER , TR E.

(® Note

BUREFEREEER, & AWS Encryption SDK X EEFERIRNIEERE R, HWEL

SH=
BEEMA AWS Encryption SDK AT AEAFEEMB N F, FMIEZENESEETR TR
REBNEEERMNBEXF,

FRERDRERNT ; BENsHEEENE. EERABTAEE 2, ¥E+ANEMKRTEDR
BAMITE 02,

EXHRERTESDE ; ERE % Blob, BEERABTAFE 1, YE+TANEMNRTETREB AN
JTiE 01,
RE

EREN 4 L TBF, EXER 0, EEETAEMRTEPRTES 00 00 00 00 (tLFE L
A v FFIRTFAEEFER 0 /Y 32 (L B RIEH).

EERA R ERASEKE 2 o
vV RE

NEEE (V) HRE. e85 1 THEBERT UEZFEL S UTHEMNREY , BHES VL
THEHE, WEBRRELEABNESE IV LTEE.

RERER

439

AWS Encryption SDK HEABEE
HRUFAFERAABRKE 2 kP , EXREASEERERAEEY IV ENEEEZENL,
ERRE

BEXKREREBRNRE, TR 4 UnlE A BER N2 ANENRERY , EESEAXETNMLT
B, EERAFERK , tBREContent TypeUMER 1K , WEHKES 0,

(_I) Note

BEE AR ER, {2 AWS Encryption SDK X EEFKAIENWIEERER ., WELES
ﬁﬂfﬂﬁ?ﬁ AWS Encryption SDK AJAEEIFER BN F, FMEXENESEFEE T LUE
BRI E MBI F,

RELEEHER
ELEFENEELZMENHREN. RENABRHEREERE, ERETHER 0,

MU EERASBIRE 1,
BHEEDBRE

BERFIRNRELEFASNEEZ, FERRESHERERE. Edhas—@ IVE-EAREER,
v 7T 4B < BB 7R B B

W1z 1.0 IRV RE ({futi) 20 RN RE (fuil)
\Y S BHARELARNEE NA
JE IV L TR ES
Authentication Tag 2 BRRELEAESNEE LS8 BURRELEASNEE
ERBEBAUTHAE, ERBEBAUTHAE,
v

AR ECEREEBNNBEOE (V).

R FERABRNE 2 RBEER, ARKRAE 2 REXBEASEEPEABREN IV
EIEEEEN.

EEEE 440

AWS Encryption SDK HEABEE

B RERR

FENREE. EEESHRREEENERAR,

RIAER

AEANELESNEER , UREMBNMNENF, ANNEESIRNRAREE (BERIEER).
THESSRASERTEENARA KN, ABRANEBEASHIRE 1 M 2 ARERMN.

£
BERER

- BEREHR

BEREHN

EERENENE— Blob PEMAM— IV B3 AAD EITHE,

® Note
RUREFEAEEER, £ AWS Encryption SDK X EEFZARNIEELER, WELEESE®
IR AWS Encryption SDK AIAE4AFERMBE X F, FIEXENES EEBAIBREEMN
T MZELE,
THRARABERERNVERBMN, T KETIEFRM N,
BIERRNERS
W RE CMuTEAEN)
\Y 28 ZREE |V Lengthu TP IEEMNE.
Encrypted Content Length 8
Encrypted Content S EHE 8 BNUTHETEENE (MEAR
RE).
Authentication Tag B8 BARERANEEEEE,

AXRH yve

AWS Encryption SDK HEABEE

\Y

BENEZEEEFERANDNBEE (V).

MEZENRERE
NERABRIMBNFHRE, ©E 8 THEBERT , YHFAS 64 UTHEFREY BHES

IBRRBENTHEEBE,
MENBEMS , AFNHKRES 2263 -1, = 8 Exbibyte (8 EiB)e FiB , ERNE M EE LT R
HIFRG K REEBEAZAER A 2136 - 32 , R 64 Gibibyte (64 GiB).

(® Note

HERFESRH , tk SDK #y Java BEESKEREE —FRHIE 2/31-1 R , hEL= 20
Gibibyte (2 GiB),

NENAR

HNZEEELERNMBEAR (NBEXF).
B RERR

ANHEREE, EEEERRBERASAR

EERER

EEERERTD HXFERHEIAERNES , BAER. SEAK—/ IV MR AAD 75l
AWS Encryption SDK & &{E &%,

(® Note
BT REFEREER., & AWS Encryption SDK X EEFERIRNIEELRER, WEEESE
{IH#R AWS Encryption SDK AIAEEIFERMB N F., FIBEZXENZE S EETH TLUBRREK
EFEMELE,

¥
Eil

EERE MEEDNBZAETHRE , @RS EAEMEFRTE, ERXPNVTHEHEE LRA
232 -1, AEHPELEMZTHEEE LBRA 2732 -1,

AR HEE 442

AWS Encryption SDK HEABEE

ERIEMERE . —RESK. SEASBLAERATNIEHKRESR,

AEHWIE —RERBAEENERRE. RRERTUARTRENERRE.

BEFENPNEREXNERNEZRETNREMABHRTE,

- FREBRE — ENENARREE-BREBNERREMER ARTUISESENN —KRE
¥, EERREAT 0) NEKREK, IE , ARNERTUAESSERNERER, EILER
T, BRERNERRER —RERMEE,

- FRRENEH — ENFENATRER —REBRENBUGRE FEGEUURESENN—
iRt EERREAT 0) NREFMK, E , ARNBEEAUAESEMNSERER. ELER
T, BRERNVERRER —RERMEE,

- TREBRENEY — ENENARRETR —REBIBRRENBIEHE KBS SH
BRHNER, BRERNERRE MR —BRERNERRE,

- PREBRE — ENENABRREIMR—REBNEERER K FE22208MAENNGRRE
B RRERNERRE I -—REZNERKRE.

TRAGRBERMEAR, A TTAEAREUR B B B0,
BREEARNGER., —BRER

iz RE (AMITEBER)

Sequence Number 4

\Y 2. FNEE |V Lengthfu TP IEERE.
Encrypted Content BE. ENEEFrame Lengthh I8 EME,
Authentication Tag g2y BFORAEANEEL , anEE

By Algorithm ID H#E7E,

Fr iR

ERFHR. EEFRAERNEETHSERE. EEN4 UTHEBERT , XHEFS 32 L THE
ﬁ%gﬂo

BERXENMARFSR 1 AR, REERLRKFRES W —@EERSH 1. B/, &
BEFREFL , WHEHRER,

AR HEE 443

AWS Encryption SDK HEABEE

\Y

ERNLBEEE (IV), SDKEFERARERLE , AARTHNEEEREZBTEN IV, ENRESH
ERREEZEMHEE.

MEHRE

HINZEE EZEENERNZARR (NEXF).
B RERR

BERNEBEE. ERESRARBRIERMERELR,

BRERAN SR, RRER

Az RE (MMytiEAEN)

Sequence Number End 4

Sequence Number 4

v B8 ZHERE |V LengthfI TP IEENE.

Encrypted Content Length 4

Encrypted Content 2. SR8 4 BURBEREENE (NBARS
RE).

Authentication Tag g2y BFORAEANEEL , aREE

#9Algorithm ID H#EE,

REERNER, ERESE T AEMNRTEPRES 4 fLTEM FF FF FF FF,
Fri

ERFHR. EEFRAEREETHRRR. U4 UTHEBERT , YEFES 32 LT E
R R

BERXENMARFSR 1 FARwR. REERLAKFRES WA —@EERSH 1. B/, &
BEFREFL , WHEHRER,

AR HEE 444

AWS Encryption SDK HEABEE

\Y

ERNAEEE (IV), SODK BFRAREMFZE , AAETNERAEREBTEN IV, VRES®
Hﬂ/i%‘-/fﬁﬁ:?ﬁmo

ME AT RE
MEABRNERE. 8N4 THEBERT , URES 2 UANERRESY , EHISEEMER
BNALTHEBE,

mER R

HINZFEEEZBENERMZERE (NFXF).
SO BRER

BERNEEE. EEESRRBRIERZMEELR,

HE®®

MRERASEZEENEE L ARKANEESERE. AREREEUASERNAGTEN BV
B, TRERPAERNVEMMM. VTEKERIEFHMN. AREREBEARRIBRAE 1 M2 R
ME.

ER&EB
- v RE CMuTEAEN)
Signature Length 2
Signature S8 Fe 2 ButEPEENE (BER
E)o
BERE
HENRE, TN 2 THBERT , Y#HER 16 UtWENRESY , EHESEENUTEE
B,
B®E

BELXE,

HERF®E 445

AWS Encryption SDK HEABEE

AWS Encryption SDK A E.1& =X &i /5l

AEHLREEHNSZMZLZEB S HIE AWS Encryption SDKIEEBRHINZREFE, MREF
BCEEMBANNEZREE , AEAFELEA,

EEEEP—EAXENERIETFES AWS Encryption SDK FfEA , FFSH EXHRiES.

MEEZEE AWS Encryption SDK BETEHRIE |,
o

528 GitHub FFEIAWS Encryption SDK #R

T5IEER TR AWS Encryption SDK AN E S, SEHFER TAEMRTENRAMNTA ,
BEERBEENTHERRMAE,

ES]

- FHRER (ABBAE 1)

- FHRER (ABBAE2MR)

« ERRER (ABKBAE 1/R)

TRER (ABBXE 1)

THEFIRRABERRAE 1 PERERAA SN,

Fem - +

| Header |

Fem - +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see #####)

6E7COFBD 4DF4A999 717C22A2 DDFE1A27 Message ID (random 128-bit value)

Q08E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("QThis")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("lan")

AR BN

446

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

FMBABER

000A

656E6372 79774690
0008

32636F6E 74657874
0007

6578616D 706C65
0015

6F6E

6177732D 63727970 746F2D70 75626C69

public-key")
632D6B65 79
0044

416A4173 7569326F 7430364C 4B77715A

("AjAsui2ot@6LKwgzZXDInU/Aqc2vD+@0kp0Z1cc8Tg2qd7rs5aLTg71vfUEW/86+/5w=="")
58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F

35773D3D
0002
0007
(7)
6177732D 6B6D73
kms")
004B

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A

a755-138a6d9alleb")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
00A7
Length (167)

01010200 7857A1C1
956C4702 23DCESD7Y
Q2A4EF29 7F000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
7A12EB19 8BF2D802
A5474FBC 392360B5
A6BD7332 6BF86DAB
47Q07E356 ADA3735A
O9F224BF9 E67E87

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C3F
01108038
CB9997E0
60D8CCB8
7C52D778

75732D77

32323333
3831382D
35352D31

4LECA7C83
973E3CED
092A8648
00306806
06096086
F02C897B
24003D1F
6A17DE4C
8295DBE9
B3135A47

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

AAD
AAD

EncryptedDataKeyCount

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

Pair

~ ~

~

~ ~ ~

A A W W W OWDNDN

~

4,

Value Length (10)
Value ("encryption")
Key Length (8)

Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)

Key ("aws-crypto-

Value Length (68)

Pair 4, Value

Encrypted Data Key 1,

Encrypted Data Key 1,

Encrypted Data Key 1,

Encrypted Data Key 1,
us-west-2:111122223333:key/715c0818-5825-4245-

(2)
Key Provider ID Length

Key Provider ID ("aws-

Key Provider

Key Provider

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

ERER (AEBKXE 1K)

447

AWS Encryption SDK

FMBABER

0007
(7)
6177732D 6B6D73
kms™)
Q04E

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
D218B674 5BBC6102
E470AA27 DEAB660B
57DCC69B AAB1294F
72EBAAFD E24E3ED8
556FBD58 9E621C
02
00000000
ocC
00000100
4ECBD5CQ 9899CA65
0B896144 QCA27950

00000001

6BD3FESC ADBCB213
1F6471EQ A51AF310
F5AFA33C 7D2E8C6C
FBDOA@C3 C6E3FB59
BDEE43A8 OF0QQF49E
A90DB923 699A1495
201E3AD9 1EA6DAl4
DEB7F372 375ECB28

6B6D733A

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040C36
01108038
3EQCES8EQ
21202C01
7168EQFA

923D2347
CA571201

5B89E8F1
10FASEF6
9C5D5175
C125DBF2
ACBBD8B2
C3B31B50
7F6496DB
9BF84B6D

63612D63

ca-central-1:111122223333:

31323232
31336361
2D616134
6666

AC72F79B
5A002C94
092A8648
00306806
06096086
CD985E12
0320E3CD
8B1A89E4
9A50D323
DB40508F

4DA58029

FOC76EDF
A212AF8E
89AC7939
1C785089
0A48A830
6BC104A4
2863889F

Encrypted Data Key 2,

Encrypted Data Key 2,

Encrypted Data Key 2,

Encrypted Data Key 2,
key/9bl3casb-afcc-46a8-aas47-

Key Provider ID Length

Key Provider ID ("aws-

Key Provider

Key Provider

Encrypted Data Key 2, Encrypted Data Key

Encrypted Data Key 2, Encrypted Data Key

Content Type (2, framed data)

Reserved

IV Length (12)
Frame Length (256)
IV

Authentication Tag

Frame 1, Sequence Number (1)

Frame 1, IV

Frame 1, Encrypted Content

FRER (

ﬂl'lll
ol
ok
=1
H
=

448

AWS Encryption SDK

FMBABER

CB8OA167
A7D9D2CC
6D1E798B
0041BC78
BB732F27
57F2BB80
E866C042
A820055F
5262DB34
O4EE3CC5
00000002
F1140984
216C7C6A
A1042608
A41455B4
A884C1EL
23DFEE28
7597C901
1FF787AB
778D7CEE
ED7@B1F3
C8760D55
95941F7E
AC65B6EF
2A57F1FD
DF1172C2
3B16F868
FECDC4A4
A61FQA3B
FFFFFFFF
00000003
35F74F11
0000008E
F7A53D37
B965AD1F
BA9FA7C4
88859500
4ALE52A3
3A043180
CO51AD55
6ADCO17D
B66B6ASA
811234FD

9C361C4B
5150D414
AEBA4CDB
3E5F2F41
D83DC36D
066971C2
E1382369
FB47E428
59F5D37E
379732B5

FF25F943
2234F395
8A8BCB3F
9A78BAC9
705FF696
E74B225A
65EF3502
2E38FD77
3C36625F
79729B47
7779520A
5CBAEACS
08262D74
E7060503
FA63CF54
1BBC5E4D
8577F08B
A3E45A84

25410F01

2F467237
AS10AAS5SF
B25AF82E
7096FABB
8E41484D
DF25E5C5
A437F6BC
BA41CDA4
80FDB433
8D589683

5EC0Q7438
AF75F509
ADOQ@SESF
8AF157FD
CCOEBCO5
DEEAQG62F
12E9926B
41876F14
76E46522
F56751FA

959BE514
FoD2D9B9
B58CF384
36E54E68
E540D297
732F2C0C
546575D4
125D129C
FF3A985C
E7D9B5FC
81D54F9B
CEC13B62
44670624
AC37E197
E6E2B9B6
0B6919B3
99D766A1
4D151493

DDOE@4BF

6FBDOB57
SEFFFFF4
64A0LE3A
3ACAD32A
270B7AQF
3676E449
139E9E55
COF17A83
8A4L8D6AL
51F6F39A

7A4822B4
FCE118BD
1A571B77
461E959A
00D87803
4F36255D
BA4OE2FC
3B6261D9
E8213640
8E5F26AD

304670BF
D72EC004
2709B7BD
446A8285
27C6BDA2
6D5EBF22
43D44B96
76F7D320
@2FCESF5
EC45219D
1464757D
A3657F7F
2F297A84
A86F582B
@8D5ABCF
E5545670
63ECA38F

D1DFE830
BC7D431C
A@915526
75CFEDOC
ED61810C
@986557F
6199FD60
3823F9EC
21CB

040B3E3B

Frame 1, Authentication Tag
Frame 2, Sequence Number (2)
Frame 2, IV

Frame 2, Encrypted Content

Frame 2, Authentication Tag

Final Frame, Sequence Number End

Final Frame, Sequence Number (3)

Final Frame, IV

Final Frame, Encrypted Content Length (142)
Final Frame, Encrypted Content

Final Frame, Authentication Tag

ERER (AEBKXE 1K)

449

AWS Encryption SDK

FMBABER

| Footer

0066

30640230
639AED00O
758B309F
5208B133
3C6A7D5E
7E06808D
A13762FF

085C1D3C
F7624854
5EFD9D5D
02301DF7
4F8B894E
OFE79002

63424E15
F8CF2203
2EQ7ADOB
2DFC877A
83D98E7C
E24422B9

B2244448
D7198A28
467B8317
66838028
E350F424
98A0D130

Signature Length (102)

Signature

844D

EHRER (ARBRKE2MK)

OIS HIRERASERRA 2 PEBERAHASE,

02

0578
122747eb
cc621a30
008e
0004
0005
30546869
0002
6973
0003
31616e
000a
656e6372
0008
32636f6e
0007
6578616d
0015
6177732d

21dfe39b 38631c6l 7fad7340
32allcc3 216d0204 fd148459

73

79707469 6f6e

74657874

706c¢c65

63727970 746f2d70 7562669

public-key")

632d6b65
0044
41746733

79

72703845 41345161 36706669

Version (2.0)

Algorithm ID (see Algorithms reference)

Message ID (random 256-bit value)

AAD Length (142)

AAD Key-Value Pair Count (4)

AAD Key-Value Pair 1,
AAD Key-Value Pair 1,
AAD Key-Value Pair 1,
AAD Key-Value Pair 1,
AAD Key-Value Pair 2,
AAD Key-Value Pair 2,
AAD Key-Value Pair 2,
AAD Key-Value Pair 2,
AAD Key-Value Pair 3,
AAD Key-Value Pair 3,
AAD Key-Value Pair 3,
AAD Key-Value Pair 3,
AAD Key-Value Pair 4,
AAD Key-Value Pair 4,

AAD Key-Value Pair 4,
AAD Key-Value Pair 4,

Key Length (5)
Key ("@This")
Value Length (2)
Value ("is")

Key Length (3)
Key ("1lan")

Value Length (10)
Value ("encryption")
Key Length (8)
Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)
Key ("aws-crypto-

Value Length (68)
Value

("QXRnM3JwOEVBNFFhNnBmaTk3MULTNTk3NHpOMn1ZWE5vSmtwRHFPc@dIYkVaVDRGME50M1FKRStmbTFVY@1WdThnPTO=

FRER (

g"ll

=]

E=N

BEE 2 R)

450

AWS Encryption SDK HEABEE

39373149 53353937 347a4e32 7959584e
6T4abb70 44714F73 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675

38673d3d

0001 Encrypted Data Key Count (1)

0007 Encrypted Data Key 1, Key Provider ID Length
(7)

6177732d 6b6d73 Encrypted Data Key 1, Key Provider ID ("aws-

kms™)

004b Encrypted Data Key 1, Key Provider
Information Length (75)

61726e3a 6177733a 6b6d733a 75732d77 Encrypted Data Key 1, Key

Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537efl-
d8dc-4780-9f5a-55776cbb2f7f")
6573742d 32323635 38393536 36303038
33333a6b 65792f62 33353337 6566312d
64386463 2d343738 302d3966 35612d35
35373736 63626232 663766

00a7 Encrypted Data Key 1, Encrypted Data Key
Length (167)
01010100 7840f38c 275e3109 7416c107 Encrypted Data Key 1, Encrypted Data Key

29515057 1964ada3 eflc2le9 4c8badbd
bc9dofb4 14000000 7e307c06 092a8648
86f70d01 0706a06f 306d0201 00306806
09228648 86f70d01 0701301e 06096086
48016503 04012e30 11040c39 32d75294
06063803 8460802 ©110803b 2a46bc23
413196d2 903bfld7 3ed98fc8 a94acbed
e00ee2l16 74ecl349 12777577 7fad52a5
ba62e9e4 f2ac8df6 bcbl758f 2ce®fb2l
cc9ee5c9 7203bb

02 Content Type (2, framed data)
00001000 Frame Length (4096)

05cd@35b 29d5499d 4587570b 87502afe Algorithm Suite Data (key commitment)
634f7b2c c3df2aa9 88al0105 4a2c7687

76cb339f 2536741f 59alc202 4f2594ab Authentication Tag

Fem - +

| Body |

Fem - +

frffffff Final Frame, Sequence Number End
00000001 Final Frame, Sequence Number (1)
00000000 00000000 00000001 Final Frame, IV

00000009 Final Frame, Encrypted Content Length (9)
fab6e39cb 02927399 3e Final Frame, Encrypted Content

FRER (

ﬂl'lll
ol
ok
=1
H
(N
=

451

AWS Encryption SDK

FMBABER

f683a564

0067

30650230
ade70b3f
967d91d8
869cade2
e5054803
074217ea
3657e2b0

FERER (

405d68db

+

+

2ale47ad
2a2bc3b8
42d92baf
023100aa
110c9ed8
3b@1b660
9368hbd

eeb0656¢c

98867925
50eb9lef
357bba48
ael2deosf
11b2e0@8a
534ac921

d57c9eb0

cl712e8f
56cfdd18
f636c7a0
8a0afe85
c4a052a9
bf@91d12

AEEAE 1 bR)

LT Sl RERERENVASERX,

(@ Note

BUREEHAEIRER. £ AWS Encryption SDK X EEFH AR IRER., HWEL
188 AWS Encryption SDK AIAEAIEEEMENF, FIBEXEN

SERBMEX T,

80
data)
0378

B8929B01 753D4A45 C0217F39 4Q4F70FF

008E
0004
0005
30746869
0002
6973
0003
31616E
000A

73

Final Frame, Authentication Tag

Signature Length (103)
Signature

Version (1.0)
Type (128, customer authenticated encrypted

EERME
EERESTUREHA

Algorithm ID (see #####)
Message ID (random 128-bit value)
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

Count (4)
1, Key Length (5)

1, Key ("@This")

1, Value Length (2)
1, Value ("is")

2, Key Length (3)

2, Key ("1an")

2, Value Length (10)

FETRER (ABBKE 1))

452

AWS Encryption SDK

FMBABER

656E6372 79774690 6F6E

0008
32636F6E
0007
6578616D
0015

74657874

706C65

6177732D 63727970 746F2D70 75626C69
public-key")

632D6B65
0044

79

41734738 67473949 6E4C5075 3136594B

("AsG89gGOINLPul6YK1qXTOD+nykG8YqHAhgecj8aXfD2e5B4gtVE73dZkyC1A+TAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D

4F513D3D
0002
0007

(7)
6177732D
kms™")
004B

6B6D73

Information Length (75)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

a755-138a6d9alle6")

6573742D
33333A6B
35383235
33386136
00A7

323A3131
65792F37
2D343234
64396131

Length (167)

01010200
956C4702
02A4EF29
86F70D01
092A8648
48016503
0OF2A0383
3A33605C
ESA33EBE
418E1151
3E2DEBDS5

7857A1C1
23DCE8D7
7F000000
0706A06F
86F70D01
04012E30
659EF802
48840656
33F46461
21311A75
CBOO5D

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C28
0110803B
C38BCB1F
0591FECA
E575ECCS

75732D77

32323333
3831382D
35352D31

4LECA7C83
973E3CED
092A8648
00306806
06096086
4116449A
B23A8133
9CCE7369
947262F3
61A286E0

AAD
AAD
AAD
AAD
AAD
AAD
AAD

AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Key-Value
Key-Value

Encrypted Data
Encrypted Data

Encrypted Data

Encrypted Data

Encrypted Data
us-west-2:111122223333:key/715c0818-5825-4245-

Pair
Pair
Pair
Pair
Pair
Pair
Pair

Pair
Pair

Value ("encryption")
Key Length (8)

Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)

Key ("aws-crypto-

Value Length (68)
Value

Key Count (2)

Key

Key

Key

Key

1,

1,

1,

1,

Key Provider ID Length

Key Provider ID ("aws-

Key Provider

Key Provider

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

FETRER (ABBKE 1))

453

AWS Encryption SDK

FMBABER

0007

(7)
6177732D
kms™)
Q04E

6B6D73

Information Length (78)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

be3435b423ff")

656E7472
32333333
34622D61
372D6265
00OA7

616C2D31
333A6B65
6663632D
33343335

Length (167)

01010200
OE57BD87
AF787150
86F70D01
092A8648
48016503
76616EF2
FDD@1BD9S
3CC686D7
71F18A46
2A363C2A
01

00000000
ocC

00000000
734C1BBE
2C82BB23

D39DD3E5
00000000
E8B6F955
5871BA4C
59455BD8
E4159DFE
6766ECD5
55FCDAS5B
C7D75BCC

78FAFFFB
3F60F4E6
69000000
0706A06F
86F70D01
04012E30
A6B30D02
B0979082
F3CF7C7A
80QE2C43F
E11397

032F7025
4CBF4AAB

915E0201
0000028E
B5F22FE4
93F78436
D76479DF
C8A944B6
E3F54653
9F5318BC
10FQ5EAS

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040CB2
01108038
099FDBFC
CCC52639
A34CQES8

84CDASDO
8F5C6002

77A4AB11

FD890224
1085E4F8
C28D2E0B
685643FC
DF205D30
F4265B06
OE2F2F40

63612D63

Encrypted Data Key 2, Key Provider ID Length

Encrypted Data Key 2, Key Provider ID ("aws-

Encrypted Data Key 2, Key Provider

Encrypted Data Key 2, Key Provider

ca-central-1:111122223333:key/9bl3casb-afcc-46a8-aa47-

31323232
31336361
2D616134
6666

AC72F79B
5A002C94
092A8648
00306806
06096086
A820D0CC
8073D0OF1
F7B13548
122A1495
11D05114

622E886C

4E1D5155
D61ECE28
BDB3D5D3
EA24122B
0081D2D8
2FE7C741
47A60344

Encrypted Data Key 2, Encrypted Data Key

Encrypted Data Key 2, Encrypted Data Key

Content Type (1, nonframed data)
Reserved

IV Length (12)

Frame Length (@, nonframed data)
IV

Authentication Tag

IV
Encrypted Content Length (654)
Encrypted Content

FETRER (ABBKE 1))

454

AWS Encryption SDK

FMBABER

ECE10AA7
95FE9(C58
31E4F48A
B48A2068
CO9B21A10
9D86E334
54C0C231
B8178484
12B0000OC
A5BA8Q4F
A15D0551
5E2034DB
46B2C979
€2394012
C6FFB914
1BABBAE4
F3CB6B86
B731839B
E3862DF6
6920AA76
D4ESDF5C
6932E67C
63490741
978A019C
66DFF333
2C15100C
9247EF61
76EQ8ESB
E24FDE26
C4A46ALE
2EAFDOCB
1E3305D9
6276C5F1
50715406
65B2E942

0067

30650230
CBE194F1
BE84B355
1BEB8281
15599638

559AF633
€65329D1
9B1CCO47
8060DF60
371E6179
701E1442
AD43571A
7EB73A4F
8429F504
7F190927
DAEBA4AF
4D19E7CD
AB84EE12
AF20A97E
FEFD4DES
BE55325E
71666C06
CF711F6A
338E02B5
OBF8ES03
491EE86B
C64B3A26
3AB79D60
FE49EEQA
OE10226F
6A2AA3F1
3E7B7EQD
9ADCDF8C
3044C856
B5AB72FE
BOEB8B83
0COE2294
A3B7ES51E
822D1682

24BEEAGE
+

+

7229DDF5
1CCOF8CF
3CED1721
023100B2
889F72C3

9DE2C21B
377C4CD7
EE5A0719
B492A737
78FAFB0OB
EA5DA288
B9071925
AAE46B26
936B2492
5D2DF651
2060D0OD5
EEA6CF7E
202FD6DF
369BCBDA
88F5AFE1
4FB7E602
6BF74E1B
84CA95F5
C345CFF8
552C5A04
20C33FE1
B8988B25
D8AEFBES
OE96BF@D
0A1B219C
88251874
29F3AD89
C886D4FD
BFO8F051
096041F1
AEQ5885A
ESAD7E3B
422D365D
80BOF2E5
A513F918

B86A5B64
D27B7F8B
A@BE2A1B
0OCB323EF
B15D1700

12AC8087
EA103EC1
704211E5
21B0DB21
BAAEC3F4
64485077
609A4ES9
F5B374B8
AAF47E94
B59D4C2F
CB1DA4E6
549C86AC
E7E3CO9F
62459D3E
98488557
C1CO4BEE
OF881F31
958D3B44
A31D54F3
917CCD11
5D21FQAD
CFA33E2B
2F48E25A
D6074DDB
BES54E4C2
FDCO94F6B
FA14A29C
A69F6CB4
1ADAD329
F3F3571B
8F2D2793
8E4DECS96
E4C0259C
5C94

CCEC1DE3

54E4D627
F50658C0
8E3F449E
58A4ACE3
5FB26E61

Authentication Tag

Signature Length (103)
Signature

FETRER (ABBKE 1))

455

AWS Encryption SDK

FMBABER

331F3614 BC40@7CEE B86A66FA CBF74D9E
34CB7E4B 363A38

AWS Encryption SDKEY A X EEINBI R E F (AAD) &&

AEHLRENSZMZELEZEB CHIE AWS Encryption SDKIERHINZFEFE, MREFR

HEREMBANNEM#EE , T FTRLET.

EEEEP—EZENENRITES AWS Encryption SDK HfER |, FE2H EXRES.

WMEEREE AWS Encryption SDK BIETTRIRE , 552 M GitHub FHIAWS Encryption SDK

ﬁo

ERBARBREEGRERE , SEANWRBEER (AAD) RHt4E AES-GCM BEE £, HREELMERE
%WIE%&%BIEE&DMSO ZIEI ﬁ@ﬁ AAD &EE GE“OIS/n‘I’%k%%*EAt (GCM) EFE’JFH /J-EE,J n¥%ﬂ1§nﬂ nﬁ 2
B ERMBREEXNER . Galois/atEEFER (GCM) 1 GMAC,

TRIMAA I AAD AVERARL, 7 TTAE R BN B B B0

R AAD #18
Rz

Message |ID

Body AAD Content

Sequence Number

Content Length

il'

AL ID

EABBEERFRENMEE Message ID {Ho
A AAD AE

HATER A X ERREIRERN UTF-8 fmis{E,

B (M REN)
16

B9 HSWTHEERHAT AAD AR,
4

8

A X AAD 2&

456

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK HEABEE

HRAEELRER | FEEME AWSKMSEncryptionClient Single Blocke
HREERERFHN—MIER , FBFEAE AWSKMSEncryptionClient Frame,

HREEZEERPNRKESR , FFEHE AWSKMSEncryptionClient Final Frame.
=2

4UTTiHE , BER 2 UTHNEEEREEL,
HREERESR , ERERFR.

HREERER BEAE1, BT NEMNRTESRRFEES 4 L7t 00 00 00 01,
NAERE

REGEREZETNENRANZENRE , MU THEREMN, ©R 8 U tiEE , WHEFER 64 LT
KR ESRER,

AWS Encryption SDK EE £ 5%

AE@LRENSZ0EHELREB I E AWS Encryption SDKIRERH MR FEEE, MREETRE
BCEEHANNBRRTE , JETFERENA.

FEEHP—EAXENRNXRITES AWS Encryption SDK A |, F2H EXEHE

|

o

MF/EHBEE AWS Encryption SDK BIETHEM B , S GitHub FEIAWS Encryption SDK #
o

MREEZZEHCHERNE , LERMNE AHE HENINZEF AWS Encryption SDK , BEEE T #
#n{al AWS Encryption SDK BEX BN EEEZEHRMZRBER.

AWS Encryption SDK XETHEELEMH, FIE AES-GCM EEZLZEHHE 12 Lt Bt mER
16 L 74 AES-GCM B 7 BB EE, EREE LEMHSHE AWS Encryption SDK MR A< FE# ERAY & 887
HBBEMAMTE. WHEFHMBER SSEREERIEELEN.

457

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

FMBABER

AWS Encryption SDK EE 2EH#

BEE ID

05

04

03

03

02

01

01

78

78

78

46

14

78

46

AEBRK

TS

0x02

0x02

0x01

0x01

0x01

0x01

0x01

mEREHE
&

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

RE (¢

256

256

256

192

128

256

192

TWMITE EEEH

EEE =

HKDF ECDSA | F

FRE 84

SHA-512 SHA-384
B2

HKDF i

FRE

SHA-512

HKDF , SH ECDSA | F

384 X 84
SHA-384
%

HKDF , SH ECDSA | F
384 X 84

SHA-384
=
HKDF , ECDSA ,
fAE Rl
SHA-256 P-256 #
SHA-256
HKDF , i
Al
SHA-256
HKDF , =
FAE
SHA-256

EIRMAEG
BEE

HKDF
Rl
SHA-512

HKDF
fAE
SHA-512

4

FANY

3

PAYYY

BEEE
HERK
E (furx

18)

32 (&
@A)

32 (%
@A)

N/A

N/A

N/A

N/A

N/A

~o0

"
B
®
b

458

AWS Encryption SDK HEABEE

BEEID RARKK NEBEE BEHESR SWROTE BERE SWEGE EEEE
BN o RE (v EEZE o BEER HEREK
7T) E (furx
#)
01 14 0x01 AES- 128 HKDF , i i N/A
GCM FRE
SHA-256
00 78 0x01 AES- 256 i i i N/A
GCM
00 46 0x01 AES- 192 i i i N/A
GCM
00 14 0x01 AES- 128 = = i3 N/A
GCM

BEEEID

A ME— R BEE EEERN 2 Ut TNEVE, MESFRENEXFHASEEF,
BB

AEBKNEAR, EFSREARNWEREEZEMHEAAEEKE 2 ik (0x02), RAESWRAGHENRE X
EHEARASEIMRE 1 (0x01)o

BEREHENRE

RELZEHABEERUTENRE, MU EIEFASBIRE 2 (0x02), EFAEHENE 2 kR
(0x02) #F , HERGHREASEEN Algorithm suite dataffud. XESREENREE
EM4EEA 2 AUTHEBASREETS, NEFMER , F2RALBFETNSRAHETE,

ERSBORE , BMutBENM, AWS Encryption SDK 18 256 T, 192 4 TtH 128 {ut®
8, ERSB|EMR keyring RESWELE,

EREEES | HERSEERE HVAC extract-and-expand £ 88 674 B (HKDF) Ry
Ao HKDF B HiAMBEEZPNERME LB, WEFHBEN , FSEARFEPNSBITE

Srimy ek S
BEE,

BEESE 459

AWS Encryption SDK HEABEE

mEERE X

FRANMZEEEZNZBNER, DHEELEH AWS Encryption SDK i FA P INZZE % (AES)
B E L E Galois/fHEE#E R (GCM),

EMARREL

AR ESRAGEFRRVEE L, BHSFREABEEMN Algorithm suite datatlfu , I
RREEERAGENENER,

MBS MBI ERFOLEMBIR , B8 Cryptology ePrint Archive i) £ 8875
AEADs,
SMITEREE

ARITEERMNZ B HVAC XHEENER \ITERE (HKDF), AWS Encryption SDK £ F
RFC 5869 HEZH HKDF,

RESWMAGENWEELEN (JEEE ID01xx — 03xx)
- FRANMEEREI SHA-384 5 SHA-256 , BURAEE EZEH,
- HRAEESER

« TfEA salte BIFRFC , sat RERAFHFE, FRRESFAEZEHBBHNKE , SHA-384
% 48 LTt , SHA-256 & 32 fti.

« MASBMEERE keyring RESBIEHRENE R S8,
- HRERSR
- MAERBHESHIREMETBHE L.
- MABAREEELZIDMALID (KEHIEF) HWBRE,
- BHEEMENRERERABNRE. WESEMMBREEZPNERNESR,

ERSMAENWERELEN (EEX ID 04xxH 05xx)
- EAMMERERE SHA-512,
- BRI

o salt & 256 U TR IGmERME, EFA SRR 2 (0x02) |, I{E=REMIE MessagelD
B,

« PIREWMMBRE keyring AEESWEHENER TR,
- HRERDR
- BAERBBEREREENSRNE L,

BEES2E 460

https://eprint.iacr.org/2020/1153
https://eprint.iacr.org/2020/1153
https://tools.ietf.org/html/rfc5869

AWS Encryption SDK HEABEE

- EERELUNRBMNITEIEFUTF-8-encodedfz 7til. DERIVEKEY
- MABAREEELID NLSBER (KXEF) HWERE,
- HHBEMRNRERERNENRE, HEHSEMNBEE EZFNERNZ S,

EEEEAEABREANAREIRE, NFFHRER F2RAEBASE,

=
EC RN
EEEZE

385

AREZEBNBZXFEBENANELESNEENSEERE L. AWS Encryption SDK £ #5[E th #R &
M EEHE L (ECDSA) #E T HIFMENA

- ERAVNEEIMARAS P-384 3 P-256 miiR (AUEEE ID FRfERE). ELHBRERNBIUESTHRE
(DSS) (FIPS PUB 186-4) /1,

- EANMZEEBRE SHA-384 (FBH P-384 Hi#R) = SHA-256 (1&H. P-256 HI#R).

AWS Encryption SDK #]#a1{t 0 & 2:&

AEHELRHENSETZEEEE B CHILE AWS Encryption SDKIEWIMBZREEE, NRETE
BCEEMEANNZREE , TETEELEA,

BEEHP—EXENEXRFTFES AWS Encryption SDK FfEA |, F2E EXHRAES.

WMFEEREE AWS Encryption SDK BT RENBRME , 5B B GitHub FEYAWS Encryption SDK
o

AWS Encryption SDK R EX BN EE ZEHMENIHILEE (IVs), REEHERERFRRK
Be IV, RE-ARRERMEERTERAERE V.

=18 96 £t (12 fz7Til) IV M B KA AL ARSI ZBER |, AT EF &

« 64 fT : 0 (REUAEBREM).
- 32Ut ERFHR. HRERRIER ERELRTE,

EEIEERTMIREUZA , AWS Encryption SDK —Eff AN ER SMRMBESAAL | LEHE
£FFE V. RABRERERESER , AILBRELEN IV ERBEREELREREN., ERBEENS
EERTRRN (BREECRENER) RMNuSERBEAELE VAR,

DR AESE 257

http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK HEABEE

ERAEFERAELIEENRES IV, EXEENTEE-ENSBTZEHTHHUEE, i, R
BN ERSHR —RERAEELIEAERSBITERE., FHBEMY IV ERERMEESMITERE ,
ERSWITEMZEEH AWS Encryption SDK , AT % 2432 AIFARE , MAEBBRGHREZER.

AWS KMS BEB = keyring F AT s¥#HE A

AWS KMS BEE S keyring FATBENERSRRNFRSEALE , YEATEBERAD DI SBAVMH
—SBESRRNZEEER SR, SEATESREXPNSBITERBE HMAC SHA-256 B EEEREM K
HRSTEEETHI@WMAN 32 UunilEELE,

* 16 L TAEFEHE salt
- ERTR X EH
- SBEMEERBIMT "aws-kms-hierarchy" # UTF-8 RS E

BB keyring ERFTAMN TE S | A AES-GCM-256 2H 16 11T B 5 B FEBEN T 58 A K
MEMEXFER SR B,

- PTENSEEREAE AES-GCM BiFLR

- EREMERAE AES-GCM AR

- 12 (i niEREMAItR{Lm & (IV) A AES-GCM IV

- BETHFILENEMEHFER (AAD),

Value iUt ABENHRE RS
"aws-kms-hierarchy 17 UTF-8 #mf%

2 X &R 23 UTF-8 #w i

DR E WA 16 UTF-8 #mf%

mERE 2y UTF-8 {miE &R EY

AWS KMS BB keyring H iS4 & A 462

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK HEABEE

AWS Encryption SDK FiE& A EiERH X4 B £ 5c 8%

I EREHHR (AWS Encryption SDK B¢ A B35/) WEKXKEH.

ES- |
- RIEEH
- BREHN

BT AT

TRRBLUXMHHE 2017 £ 11 ARNEARE, RTEEMIINEIESEN RABSREERH
LSERARENES , YARREEEERMANEROE. WERRERSENEX |, BB RSS
AR,

2% iR H
— R AT A #ri8 AWS KMS ECDH keyring 2024 %6 A 17 H
FIE 4 ECDH keyring B3
%,
EBRAR JAVA B5 AWS EES EAR JAVA) AWS 2023 F 12 A6 H
Encryption SDK 3.x i Encryption SDK E2# &2t &

BXE, #EH keyring AT
FENEZEAR CMM X &,

AWS Encryption SDK for NET $7i#8 AWS KMS ¥ ER 202310 A 12 H
4.x KR keyring, FIEMZERZE CMM

FIEXE RSA AWS KMS
keyring B9 X %,

— MR AT At 48 AWS Encryption SDK & 2022 %5 A 17 H
AR NET) X,

XHEE # AWS Key Managemen 2021 %8 A 30 H
t Service MEEEF X &R

(CMK) Bt AWS KMS
keyHl KMS €48,

BRILEH 463

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key

AWS Encryption SDK

FMBABER

— R AT A 1

— R AT A 1

— R AT A 1

— R AT A 1

— R AT A 1

BB

— R AT A 1

Frig¥ AWS Key Managemen
t Service(AWS KMS) ZEE &
BNXE, ZEHESBE AWS
KMS & A& AWS &
5, AERER K BRAEeM
EEHENE® ID ME|/M
o

MENENTSEREASREE
R,

E XTI EH AWS % CLI
1.8.x WiXEXIX AWS % CLI
1.7.x REY— MR AT A PE SO, B
R EUMX AWS tn# CLI 2.0.x hik
) AWS % CLI 2.1.x X

g MEH 1.7.x F 2.0.x AWS
Encryption SDK R #9 — % 7]
AxXH afEREERE
M. BBEE. EFfs. B
FEXRESEIE EME
EEAEHRSE. EFHNAER
X2ZE , URFHASRKE
il

g M EH E AR JavaScript
AWS Encryption SDK Y 1E
N ITRRA X

g M= H E AR JavaScript
AWS Encryption SDK B2
B4 Beta lRA X4

FEMES EAR CH AWS
Encryption SDK #9 1IE = 2 1Thix
KX,

20216 A8 H

2021 5 H 11 H

2020 £10 A 27 H

2020 9 A 24 H

2019 10 A1 H

2019 6 A21 H

2019 5 H 16 B

464

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html

AWS Encryption SDK

FMBABER

BB

AR

X

8 EAR CHAWS
Encryption SDK T8 & x#9 3C
%,

i o 5 A ER X AWS
Encryption SDK,

2019 2 HA5H

2017 £11 A 20 H

TRRHA 2017 £ 11 A28 AWS Encryption SDK B AEEENEREE,

g8F
H AR

B

HhRAS

DU

SRR AN SR SR
N,

¥ri8the section called “¥A1Y
MESETHE , HPREME
ENRELRER IVEFAER
REM Vo

#1#8the section called “#}2"*
BLMBESS SRTNHE
mEEREEE,

EXAERISEXHRMA
¥TBIAWS Encryption SDK £
EEH,

FiEER WER AWS
Encryption SDK X EHEE %
Ef

BRT 24\, AWS Encryption
SDK RE1E X EPythonZ X &%

HEES Java.

Date

2017 £7H31H

20173 H21H

20173 H21H

ERERN

465

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK HEABEE

g% iR Date
AR AWS Encryption SDK #1432 2016 €3 A 22 H
IR IR AR AR

BIRE#H 466

AWS Encryption SDK HEABEE

ANBREXIRWHEBBZFRE , IRBFRFEMAERRT—BZRE , BIULARRAE,

cdlxvii

	AWS Encryption SDK
	Table of Contents
	什麼是 AWS Encryption SDK？
	在開放原始碼儲存庫中開發
	與加密程式庫和服務的相容性
	支援和維護
	進一步了解
	傳送意見回饋
	中的概念 AWS Encryption SDK
	封套加密
	資料金鑰
	包裝金鑰
	Keyring 和主金鑰提供者
	加密內容
	加密的訊息
	演算法套件
	密碼編譯資料管理員
	對稱和非對稱加密
	金鑰承諾
	承諾政策
	數位簽章

	AWS Encryption SDK 的運作方式
	如何 AWS Encryption SDK 加密資料
	如何 AWS Encryption SDK 解密加密的訊息

	中支援的演算法套件 AWS Encryption SDK
	建議：具有金鑰衍生、簽署和金鑰承諾的 AES-GCM
	其他支援的演算法套件

	AWS Encryption SDK 搭配 使用 AWS KMS
	的最佳實務 AWS Encryption SDK
	設定 AWS Encryption SDK
	選取程式設計語言
	選取包裝金鑰
	使用多區域 AWS KMS keys
	選擇演算法套件
	限制加密的資料金鑰
	建立探索篩選條件
	設定所需的加密內容 CMM
	設定承諾政策
	使用串流資料
	快取資料金鑰

	中的金鑰存放區 AWS Encryption SDK
	金鑰存放區術語和概念
	實作最低權限的許可
	建立金鑰存放區
	設定金鑰存放區動作
	設定您的金鑰存放區動作
	靜態組態
	探索組態

	建立作用中的分支金鑰
	輪換作用中的分支金鑰

	Keyring
	keyring 如何運作
	Keyring 相容性
	加密 keyring 的不同需求
	相容 Keyring 和主金鑰提供者

	AWS KMS keyring
	AWS KMS keyring 的必要許可
	在 AWS KMS keyring AWS KMS keys 中識別
	建立 AWS KMS keyring
	使用 AWS KMS 探索 keyring
	使用 AWS KMS 區域探索 keyring

	AWS KMS 階層式 keyring
	運作方式
	先決條件
	所需的許可
	選擇快取
	預設快取
	MultiThreaded快取
	StormTracking 快取
	共用快取

	建立階層 keyring
	使用靜態分支金鑰 ID 建立階層 keyring
	使用分支金鑰 ID 供應商建立階層 keyring

	AWS KMS ECDH keyring
	AWS KMS ECDH keyring 的必要許可
	建立 AWS KMS ECDH keyring
	建立 AWS KMS ECDH 探索 keyring

	原始 AES keyring
	原始 RSA keyring
	原始 ECDH keyring
	建立原始 ECDH keyring
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	多重 keyring

	AWS Encryption SDK 程式設計語言
	適用於 C 的 AWS Encryption SDK
	安裝 適用於 C 的 AWS Encryption SDK
	使用 適用於 C 的 AWS Encryption SDK
	加密和解密資料的模式
	參考計數

	適用於 C 的 AWS Encryption SDK 範例
	加密和解密字串
	加密字串
	解密字串

	AWS Encryption SDK 適用於 .NET 的
	安裝 AWS Encryption SDK 適用於 .NET 的
	偵錯適用於 .NET AWS Encryption SDK 的
	AWS Encryption SDK 適用於 .NET 的範例
	在 AWS Encryption SDK 適用於 .NET 的 中加密資料
	在 AWS Encryption SDK 適用於 .NET 的 中以嚴格模式解密
	在 AWS Encryption SDK for .NET 中使用 探索 keyring 進行解密

	AWS Encryption SDK for Go
	先決條件
	安裝

	適用於 JAVA 的 AWS Encryption SDK
	先決條件
	安裝
	適用於 JAVA 的 AWS Encryption SDK 範例
	加密和解密字串
	加密和解密位元組串流
	使用多重 keyring 加密和解密位元組串流

	適用於 JavaScript 的 AWS Encryption SDK
	的相容性 適用於 JavaScript 的 AWS Encryption SDK
	適用於 JavaScript 的 AWS Encryption SDK 相容性
	瀏覽器相容性

	安裝 適用於 JavaScript 的 AWS Encryption SDK
	中的模組 適用於 JavaScript 的 AWS Encryption SDK
	JavaScript Node.js 的模組
	JavaScript 瀏覽器的模組
	適用於所有實作的模組

	適用於 JavaScript 的 AWS Encryption SDK 範例
	使用 AWS KMS keyring 加密資料
	使用 AWS KMS keyring 解密資料

	適用於 Python 的 AWS Encryption SDK
	先決條件
	安裝
	適用於 Python 的 AWS Encryption SDK 範例程式碼
	加密和解密字串
	加密和解密位元組串流

	AWS Encryption SDK for Rust
	先決條件
	安裝
	AWS Encryption SDK for Rust 範例程式碼
	在 AWS Encryption SDK for Rust 中的加密和解密資料

	AWS Encryption SDK 命令列界面
	安裝 AWS Encryption SDK 命令列界面
	安裝必要項目
	安裝和更新 AWS 加密 CLI

	如何使用 AWS 加密 CLI
	如何加密和解密資料
	如何指定包裝金鑰
	包裝金鑰參數屬性
	如何指定多個包裝金鑰

	如何提供輸入
	如何指定輸出位置
	如何使用加密內容
	如何指定承諾政策
	如何在組態檔案中存放參數

	AWS 加密 CLI 的範例
	加密檔案
	解密檔案
	加密目錄中的所有檔案
	解密目錄中的所有檔案
	在命令列上加密和解密
	使用多個主金鑰
	在指令碼中加密和解密
	使用資料金鑰快取

	AWS Encryption SDK CLI 語法和參數參考
	AWS 加密 CLI 語法
	AWS 加密 CLI 命令列參數
	進階參數

	AWS 加密 CLI 的版本
	AWS 加密 CLI 的 1.8.x 版變更
	AWS 加密 CLI 的 2.1.x 版變更
	AWS 加密 CLI 的 1.9.x 版和 2.2.x 版變更
	3.0.x 版對 AWS 加密 CLI 的變更

	資料金鑰快取
	如何使用資料金鑰快取
	使用資料金鑰快取：逐步操作
	資料金鑰快取範例：加密字串

	設定快取安全性閾值
	資料金鑰快取詳細資訊
	資料金鑰快取的運作方式
	加密資料，不使用快取
	加密資料，使用快取

	建立密碼編譯資料快取
	建立快取密碼編譯資料管理員
	資料金鑰快取項目中有什麼項目？
	加密內容：如何選擇快取項目
	我的應用程式是否使用快取的資料金鑰？

	資料金鑰快取範例
	本機快取結果
	資料金鑰快取範例程式碼
	生產者
	消費者

	資料金鑰快取範例： CloudFormation template

	的版本 AWS Encryption SDK
	C
	C# / .NET
	命令列界面 (CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	版本詳細資訊
	1.7.x 之前的版本
	1.7.x 版
	2.0.x 版
	2.2.x 版
	2.3.x 版

	遷移您的 AWS Encryption SDK
	如何遷移和部署 AWS Encryption SDK
	階段 1：將您的應用程式更新至最新的 1.x 版本
	階段 2：將您的應用程式更新至最新版本

	更新 AWS KMS 主金鑰提供者
	遷移至嚴格模式
	遷移至探索模式

	更新 AWS KMS keyring
	設定您的承諾政策
	如何設定您的承諾政策

	對遷移至最新版本進行故障診斷
	已棄用或移除的物件
	組態衝突：承諾政策和演算法套件
	組態衝突：承諾政策和加密文字
	金鑰承諾驗證失敗
	其他加密失敗
	其他解密失敗
	回復考量

	常見問答集
	與 AWS SDKs有何 AWS Encryption SDK 不同？
	與 Amazon S3 加密用戶端有何 AWS Encryption SDK 不同？
	支援哪些密碼編譯演算法 AWS Encryption SDK，而哪個是預設值？
	初始化向量 (IV) 如何產生？存放在哪裡？
	每個資料金鑰如何產生、加密及解密？
	如何追蹤用來加密資料的資料金鑰？
	AWS Encryption SDK 儲存加密資料金鑰及其加密資料的方式為何？
	AWS Encryption SDK 訊息格式會為我的加密資料增加多少額外負荷？
	我是否可以使用自己的主金鑰提供者？
	我可以在多個包裝金鑰下加密資料嗎？
	我可以使用 加密哪些資料類型 AWS Encryption SDK？
	如何 AWS Encryption SDK 加密和解密輸入/輸出 (I/O) 串流？

	AWS Encryption SDK 參考
	AWS Encryption SDK 訊息格式參考
	標題結構
	本文結構
	無框架資料
	具框架資料

	頁尾結構

	AWS Encryption SDK 訊息格式範例
	影格資料 （訊息格式第 1 版）
	影格資料 （訊息格式第 2 版）
	非影格資料 （訊息格式第 1 版）

	AWS Encryption SDK的內文額外的驗證資料 (AAD) 參考
	AWS Encryption SDK 演算法參考
	AWS Encryption SDK 初始化向量參考
	AWS KMS 階層式 keyring 技術詳細資訊

	AWS Encryption SDK 開發人員指南的文件歷史記錄
	最近更新
	舊版更新

	

