執行提示管理程式碼範例 - Amazon Bedrock

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

執行提示管理程式碼範例

若要嘗試提示管理的一些程式碼範例,請選擇您偏好方法的索引標籤,然後遵循下列步驟:下列程式碼範例假設您已設定憑證以使用 AWS API。如果您還沒有執行此操作,請參閱 開始使用 API

Python
  1. 執行下列程式碼片段載入 適用於 Python (Boto3) 的 AWS SDK、建立用戶端,並透過產生 CreatePrompt Amazon Bedrock 代理程式建置時期端點建立一個提示,該提示會使用兩個變數 (genrenumber) 建立音樂播放清單:

    # Create a prompt in Prompt management import boto3 # Create an Amazon Bedrock Agents client client = boto3.client(service_name="bedrock-agent") # Create the prompt response = client.create_prompt( name="MakePlaylist", description="My first prompt.", variants=[ { "name": "Variant1", "modelId": "amazon.titan-text-express-v1", "templateType": "TEXT", "inferenceConfiguration": { "text": { "temperature": 0.8 } }, "templateConfiguration": { "text": { "text": "Make me a {{genre}} playlist consisting of the following number of songs: {{number}}." } } } ] ) prompt_id = response.get("id")
  2. 執行下列程式碼片段產生 ListPrompts Amazon Bedrock 代理程式建置時期端點,以查看您剛建立的提示 (以及您帳戶中的任何其他提示):

    # List prompts that you've created client.list_prompts()
  3. 您應該會在 promptSummaries 欄位的物件中,看到您在 id 欄位中建立的提示 ID。執行下列程式碼片段,以透過產生 GetPrompt Amazon Bedrock 代理程式建置時期端點,來顯示您所建立提示的資訊:

    # Get information about the prompt that you created client.get_prompt(promptIdentifier=prompt_id)
  4. 透過執行下列程式碼片段產生 CreatePromptVersion Amazon Bedrock 代理程式建置時期端點,以建立提示的版本並取得其 ID:

    # Create a version of the prompt that you created response = client.create_prompt_version(promptIdentifier=prompt_id) prompt_version = response.get("version") prompt_version_arn = response.get("arn")
  5. 透過執行下列程式碼片段產生 ListPrompts Amazon Bedrock 代理程式建置時期端點,以檢視您剛建立的提示版本相關資訊,及草稿版本相關資訊:

    # List versions of the prompt that you just created client.list_prompts(promptIdentifier=prompt_id)
  6. 透過執行下列程式碼片段產生 GetPrompt Amazon Bedrock 代理程式建置時期端點,以檢視您剛建立的提示版本相關資訊:

    # Get information about the prompt version that you created client.get_prompt( promptIdentifier=prompt_id, promptVersion=prompt_version )
  7. 透過遵循 執行 Amazon Bedrock 流程程式碼範例 的步驟將提示新增至流程,來測試該提示。在第一個步驟中,當您建立流程時,以改為執行下列程式碼片段來使用您建立的提示,而不是在流程中定義內嵌提示 (將 promptARN 欄位中提示版本的 ARN 取代為您所建立提示版本的 ARN):

    # Import Python SDK and create client import boto3 client = boto3.client(service_name='bedrock-agent') FLOWS_SERVICE_ROLE = "arn:aws:iam::123456789012:role/MyPromptFlowsRole" # Flows service role that you created. For more information, see https://docs.aws.amazon.com/bedrock/latest/userguide/flows-permissions.html PROMPT_ARN = prompt_version_arn # ARN of the prompt that you created, retrieved programatically during creation. # Define each node # The input node validates that the content of the InvokeFlow request is a JSON object. input_node = { "type": "Input", "name": "FlowInput", "outputs": [ { "name": "document", "type": "Object" } ] } # This prompt node contains a prompt that you defined in Prompt management. # It validates that the input is a JSON object that minimally contains the fields "genre" and "number", which it will map to the prompt variables. # The output must be named "modelCompletion" and be of the type "String". prompt_node = { "type": "Prompt", "name": "MakePlaylist", "configuration": { "prompt": { "sourceConfiguration": { "resource": { "promptArn": "" } } } }, "inputs": [ { "name": "genre", "type": "String", "expression": "$.data.genre" }, { "name": "number", "type": "Number", "expression": "$.data.number" } ], "outputs": [ { "name": "modelCompletion", "type": "String" } ] } # The output node validates that the output from the last node is a string and returns it as is. The name must be "document". output_node = { "type": "Output", "name": "FlowOutput", "inputs": [ { "name": "document", "type": "String", "expression": "$.data" } ] } # Create connections between the nodes connections = [] # First, create connections between the output of the flow input node and each input of the prompt node for input in prompt_node["inputs"]: connections.append( { "name": "_".join([input_node["name"], prompt_node["name"], input["name"]]), "source": input_node["name"], "target": prompt_node["name"], "type": "Data", "configuration": { "data": { "sourceOutput": input_node["outputs"][0]["name"], "targetInput": input["name"] } } } ) # Then, create a connection between the output of the prompt node and the input of the flow output node connections.append( { "name": "_".join([prompt_node["name"], output_node["name"]]), "source": prompt_node["name"], "target": output_node["name"], "type": "Data", "configuration": { "data": { "sourceOutput": prompt_node["outputs"][0]["name"], "targetInput": output_node["inputs"][0]["name"] } } } ) # Create the flow from the nodes and connections client.create_flow( name="FlowCreatePlaylist", description="A flow that creates a playlist given a genre and number of songs to include in the playlist.", executionRoleArn=FLOWS_SERVICE_ROLE, definition={ "nodes": [input_node, prompt_node, output_node], "connections": connections } )
  8. 透過執行下列程式碼片段產生 DeletePrompt Amazon Bedrock 代理程式建置時期端點,以刪除您剛建立的提示版本:

    # Delete the prompt version that you created client.delete_prompt( promptIdentifier=prompt_id, promptVersion=prompt_version )
  9. 透過執行下列程式碼片段產生 DeletePrompt Amazon Bedrock 代理程式建置時期端點,以完全刪除您剛建立的提示:

    # Delete the prompt that you created client.delete_prompt( promptIdentifier=prompt_id )