本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
多屬性索引鍵模式
概觀
多屬性索引鍵可讓您建立全域次要索引 (GSI) 分割區,並排序每個分割區最多包含四個屬性的索引鍵。這可減少用戶端程式碼,並可讓您更輕鬆地對資料進行初始建模,並在稍後新增新的存取模式。
考慮常見的案例:若要建立依多個階層屬性查詢項目的 GSI,傳統上您需要透過串連值來建立合成索引鍵。例如,在遊戲應用程式中,若要依競賽、區域和回合查詢競賽配對,您可以建立合成 GSI 分割區索引鍵,例如 TOURNAMENT#WINTER2024#REGION#NA-EAST,以及合成排序索引鍵,例如 ROUND#SEMIFINALS#BRACKET#UPPER。此方法有效,但如果您要將 GSI 新增至現有資料表,則在寫入資料、讀取時剖析和在所有現有項目中回填合成索引鍵時,需要字串串連。這使得程式碼更雜亂且具有挑戰性,以在個別關鍵元件上維持類型安全。
多屬性索引鍵可解決 GSIs此問題。您可以使用多個現有屬性來定義 GSI 分割區索引鍵,例如 tournamentId 和 region。DynamoDB 會自動處理複合索引鍵邏輯,將它們雜湊在一起以進行資料分佈。您可以使用網域模型中的自然屬性撰寫項目,GSI 會自動為其編製索引。不串連、不剖析、不回填。您的程式碼會保持乾淨,您的資料會保持輸入狀態,而您的查詢會保持簡單。當您擁有具有自然屬性分組的階層式資料 (例如競賽 → 區域 → 回合或組織 → 部門 → 團隊) 時,此方法特別有用。
應用程式範例
本指南會逐步解說如何為 電競平台建置競賽配對追蹤系統。平台需要有效率地查詢多個維度的配對:依賽事和區域進行括號管理、依玩家進行配對歷史記錄,以及依排程日期進行查詢。
資料模型
在此演練中,競賽配對追蹤系統支援三種主要存取模式,每個模式都需要不同的金鑰結構:
存取模式 1:依其唯一 ID 查詢特定相符項目
-
解決方案:使用
matchId做為分割區索引鍵的基礎資料表
存取模式 2:查詢特定賽事和區域的所有配對,選擇性地依四捨五入、括號或配對進行篩選
-
解決方案:具有多屬性分割區索引鍵 (
tournamentId+region) 和多屬性排序索引鍵 (round+bracket+matchId) 的全域次要索引 -
範例查詢:「NA-EAST 區域中的所有 WINTER2024 相符項目」或「WINTER2024/NA-EAST 上括號中的所有 SEMIFINALS 相符項目」
存取模式 3:查詢玩家的配對歷史記錄,選擇性地依日期範圍或競賽四捨五入進行篩選
-
解決方案:具有單一分割區索引鍵 (
player1Id) 和多屬性排序索引鍵 (matchDate+round) 的全域次要索引 -
範例查詢:「玩家 101 的所有配對」或「Player 101 在 2024 年 1 月的配對」
檢查項目結構時,傳統和多屬性方法之間的主要差異會變得明確:
傳統全域次要索引方法 (串連索引鍵):
// Manual concatenation required for GSI keys const item = { matchId: 'match-001', // Base table PK tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'SEMIFINALS', bracket: 'UPPER', player1Id: '101', // Synthetic keys needed for GSI GSI_PK: `TOURNAMENT#${tournamentId}#REGION#${region}`, // Must concatenate GSI_SK: `${round}#${bracket}#${matchId}`, // Must concatenate // ... other attributes };
多屬性全域次要索引方法 (原生索引鍵):
// Use existing attributes directly - no concatenation needed const item = { matchId: 'match-001', // Base table PK tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'SEMIFINALS', bracket: 'UPPER', player1Id: '101', matchDate: '2024-01-18', // No synthetic keys needed - GSI uses existing attributes directly // ... other attributes };
使用多屬性索引鍵,您可以使用自然網域屬性寫入項目一次。DynamoDB 會自動跨多個 GSIs 編製索引,而不需要合成串連金鑰。
基礎資料表結構描述:
-
分割區索引鍵:
matchId(1 屬性)
全域次要索引結構描述 (具有多屬性索引鍵的 TournamentRegionIndex):
-
分割區索引鍵:
tournamentId、region(2 個屬性) -
排序索引鍵:
round、bracket、matchId(3 個屬性)
全域次要索引結構描述 (PlayerMatchHistoryIndex 與多屬性索引鍵):
-
分割區索引鍵:
player1Id(1 屬性) -
排序索引鍵:
matchDate、round(2 個屬性)
基礎資料表:TournamentMatches
| matchId (PK) | tournamentId | region | round | 括號 | player1Id | player2Id | matchDate | 優勝者 | 分數 |
|---|---|---|---|---|---|---|---|---|---|
| match-001 | WINTER2024 | NA-EAST | 最終 | CHAMPIONSHIP | 101 | 103 | 2024-01-20 | 101 | 3-1 |
| match-002 | WINTER2024 | NA-EAST | SEMIFINALS | UPPER | 101 | 105 | 2024-01-18 | 101 | 3-2 |
| match-003 | WINTER2024 | NA-EAST | SEMIFINALS | UPPER | 103 | 107 | 2024-01-18 | 103 | 3-0 |
| match-004 | WINTER2024 | NA-EAST | QUARTERFINALS | UPPER | 101 | 109 | 2024-01-15 | 101 | 3-1 |
| match-005 | WINTER2024 | NA-WEST | 最終 | CHAMPIONSHIP | 102 | 104 | 2024-01-20 | 102 | 3-2 |
| match-006 | WINTER2024 | NA-WEST | SEMIFINALS | UPPER | 102 | 106 | 2024-01-18 | 102 | 3-1 |
| match-007 | SPRING2024 | NA-EAST | QUARTERFINALS | UPPER | 101 | 108 | 2024-03-15 | 101 | 3-0 |
| match-008 | SPRING2024 | NA-EAST | QUARTERFINALS | LOWER | 103 | 110 | 2024-03-15 | 103 | 3-2 |
GSI:TournamentRegionIndex (多屬性索引鍵)
| tournamentId (PK) | 區域 (PK) | round (SK) | 括號 (SK) | matchId (SK) | player1Id | player2Id | matchDate | 優勝者 | 分數 |
|---|---|---|---|---|---|---|---|---|---|
| WINTER2024 | NA-EAST | 最終 | CHAMPIONSHIP | match-001 | 101 | 103 | 2024-01-20 | 101 | 3-1 |
| WINTER2024 | NA-EAST | QUARTERFINALS | UPPER | match-004 | 101 | 109 | 2024-01-15 | 101 | 3-1 |
| WINTER2024 | NA-EAST | SEMIFINALS | UPPER | match-002 | 101 | 105 | 2024-01-18 | 101 | 3-2 |
| WINTER2024 | NA-EAST | SEMIFINALS | UPPER | match-003 | 103 | 107 | 2024-01-18 | 103 | 3-0 |
| WINTER2024 | NA-WEST | 最終 | CHAMPIONSHIP | match-005 | 102 | 104 | 2024-01-20 | 102 | 3-2 |
| WINTER2024 | NA-WEST | SEMIFINALS | UPPER | match-006 | 102 | 106 | 2024-01-18 | 102 | 3-1 |
| SPRING2024 | NA-EAST | QUARTERFINALS | LOWER | match-008 | 103 | 110 | 2024-03-15 | 103 | 3-2 |
| SPRING2024 | NA-EAST | QUARTERFINALS | UPPER | match-007 | 101 | 108 | 2024-03-15 | 101 | 3-0 |
GSI: PlayerMatchHistoryIndex (多屬性索引鍵)
| player1Id (PK) | matchDate (SK) | round (SK) | tournamentId | region | 括號 | matchId | player2Id | 優勝者 | 分數 |
|---|---|---|---|---|---|---|---|---|---|
| 101 | 2024-01-15 | QUARTERFINALS | WINTER2024 | NA-EAST | UPPER | match-004 | 109 | 101 | 3-1 |
| 101 | 2024-01-18 | SEMIFINALS | WINTER2024 | NA-EAST | UPPER | match-002 | 105 | 101 | 3-2 |
| 101 | 2024-01-20 | 最終 | WINTER2024 | NA-EAST | CHAMPIONSHIP | match-001 | 103 | 101 | 3-1 |
| 101 | 2024-03-15 | QUARTERFINALS | SPRING2024 | NA-EAST | UPPER | match-007 | 108 | 101 | 3-0 |
| 102 | 2024-01-18 | SEMIFINALS | WINTER2024 | NA-WEST | UPPER | match-006 | 106 | 102 | 3-1 |
| 102 | 2024-01-20 | 最終 | WINTER2024 | NA-WEST | CHAMPIONSHIP | match-005 | 104 | 102 | 3-2 |
| 103 | 2024-01-18 | SEMIFINALS | WINTER2024 | NA-EAST | UPPER | match-003 | 107 | 103 | 3-0 |
| 103 | 2024-03-15 | QUARTERFINALS | SPRING2024 | NA-EAST | LOWER | match-008 | 110 | 103 | 3-2 |
先決條件
開始前,請確保您具備以下條件:
帳戶和許可
-
作用中 AWS 帳戶 (視需要在此處建立一個
) -
DynamoDB 操作的 IAM 許可:
dynamodb:CreateTabledynamodb:DeleteTabledynamodb:DescribeTabledynamodb:PutItemdynamodb:Querydynamodb:BatchWriteItem
注意
安全備註:針對生產用途,建立僅具有所需許可的自訂 IAM 政策。在本教學課程中,您可以使用 AWS 受管政策 AmazonDynamoDBFullAccessV2。
開發環境
-
安裝在機器上的 Node.js
-
AWS 使用下列其中一種方法設定的登入資料:
選項 1: AWS CLI
aws configure
選項 2:環境變數
export AWS_ACCESS_KEY_ID=your_access_key_here export AWS_SECRET_ACCESS_KEY=your_secret_key_here export AWS_DEFAULT_REGION=us-east-1
安裝必要的套件
npm install @aws-sdk/client-dynamodb @aws-sdk/lib-dynamodb
實作
步驟 1:使用多屬性索引鍵建立具有 GSIs資料表
使用簡單的基本金鑰結構和使用多屬性金鑰GSIs 建立資料表。
import { DynamoDBClient, CreateTableCommand } from "@aws-sdk/client-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const response = await client.send(new CreateTableCommand({ TableName: 'TournamentMatches', // Base table: Simple partition key KeySchema: [ { AttributeName: 'matchId', KeyType: 'HASH' } // Simple PK ], AttributeDefinitions: [ { AttributeName: 'matchId', AttributeType: 'S' }, { AttributeName: 'tournamentId', AttributeType: 'S' }, { AttributeName: 'region', AttributeType: 'S' }, { AttributeName: 'round', AttributeType: 'S' }, { AttributeName: 'bracket', AttributeType: 'S' }, { AttributeName: 'player1Id', AttributeType: 'S' }, { AttributeName: 'matchDate', AttributeType: 'S' } ], // GSIs with multi-attribute keys GlobalSecondaryIndexes: [ { IndexName: 'TournamentRegionIndex', KeySchema: [ { AttributeName: 'tournamentId', KeyType: 'HASH' }, // GSI PK attribute 1 { AttributeName: 'region', KeyType: 'HASH' }, // GSI PK attribute 2 { AttributeName: 'round', KeyType: 'RANGE' }, // GSI SK attribute 1 { AttributeName: 'bracket', KeyType: 'RANGE' }, // GSI SK attribute 2 { AttributeName: 'matchId', KeyType: 'RANGE' } // GSI SK attribute 3 ], Projection: { ProjectionType: 'ALL' } }, { IndexName: 'PlayerMatchHistoryIndex', KeySchema: [ { AttributeName: 'player1Id', KeyType: 'HASH' }, // GSI PK { AttributeName: 'matchDate', KeyType: 'RANGE' }, // GSI SK attribute 1 { AttributeName: 'round', KeyType: 'RANGE' } // GSI SK attribute 2 ], Projection: { ProjectionType: 'ALL' } } ], BillingMode: 'PAY_PER_REQUEST' })); console.log("Table with multi-attribute GSI keys created successfully");
關鍵設計決策:
基礎資料表:基礎資料表使用簡單的matchId分割區索引鍵進行直接比對查詢,讓基礎資料表結構保持直接,同時 GSIs 提供複雜的查詢模式。
TournamentRegionIndex 全域次要索引:TournamentRegionIndex全域次要索引使用 tournamentId + region作為多屬性分割區索引鍵,建立競爭區域隔離,其中資料會依兩個屬性的雜湊合併分佈,在特定競爭區域內容中啟用有效的查詢。多屬性排序索引鍵 (round + bracket + matchId) 提供階層排序,支援階層任何層級的查詢,自然排序從一般 (圓形) 到特定 (相符 ID)。
PlayerMatchHistoryIndex 全域次要索引:PlayerMatchHistoryIndex全域次要索引使用 player1Id做為分割區索引鍵,依玩家重新組織資料,為特定玩家啟用跨旅程查詢。多屬性排序索引鍵 (matchDate + round) 提供依時間順序排序的功能,可依日期範圍或特定競賽回合進行篩選。
步驟 2:插入具有原生屬性的資料
使用自然屬性新增競賽配對資料。GSI 會自動為這些屬性編製索引,而不需要合成索引鍵。
import { DynamoDBClient } from "@aws-sdk/client-dynamodb"; import { DynamoDBDocumentClient, PutCommand } from "@aws-sdk/lib-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const docClient = DynamoDBDocumentClient.from(client); // Tournament match data - no synthetic keys needed for GSIs const matches = [ // Winter 2024 Tournament, NA-EAST region { matchId: 'match-001', tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'FINALS', bracket: 'CHAMPIONSHIP', player1Id: '101', player2Id: '103', matchDate: '2024-01-20', winner: '101', score: '3-1' }, { matchId: 'match-002', tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'SEMIFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '105', matchDate: '2024-01-18', winner: '101', score: '3-2' }, { matchId: 'match-003', tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'SEMIFINALS', bracket: 'UPPER', player1Id: '103', player2Id: '107', matchDate: '2024-01-18', winner: '103', score: '3-0' }, { matchId: 'match-004', tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'QUARTERFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '109', matchDate: '2024-01-15', winner: '101', score: '3-1' }, // Winter 2024 Tournament, NA-WEST region { matchId: 'match-005', tournamentId: 'WINTER2024', region: 'NA-WEST', round: 'FINALS', bracket: 'CHAMPIONSHIP', player1Id: '102', player2Id: '104', matchDate: '2024-01-20', winner: '102', score: '3-2' }, { matchId: 'match-006', tournamentId: 'WINTER2024', region: 'NA-WEST', round: 'SEMIFINALS', bracket: 'UPPER', player1Id: '102', player2Id: '106', matchDate: '2024-01-18', winner: '102', score: '3-1' }, // Spring 2024 Tournament, NA-EAST region { matchId: 'match-007', tournamentId: 'SPRING2024', region: 'NA-EAST', round: 'QUARTERFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '108', matchDate: '2024-03-15', winner: '101', score: '3-0' }, { matchId: 'match-008', tournamentId: 'SPRING2024', region: 'NA-EAST', round: 'QUARTERFINALS', bracket: 'LOWER', player1Id: '103', player2Id: '110', matchDate: '2024-03-15', winner: '103', score: '3-2' } ]; // Insert all matches for (const match of matches) { await docClient.send(new PutCommand({ TableName: 'TournamentMatches', Item: match })); console.log(`Added: ${match.matchId} - ${match.tournamentId}/${match.region} - ${match.round} ${match.bracket}`); } console.log(`\nInserted ${matches.length} tournament matches`); console.log("No synthetic keys created - GSIs use native attributes automatically");
資料結構說明:
自然屬性用量:每個屬性代表一個真正的競賽概念,不需要字串串連或剖析,提供直接映射到網域模型。
自動全域次要索引索引:GSIs 會使用現有屬性 (tournamentId、regionroundbracket、、 matchId代表 TournamentRegionIndex,以及 player1Id、 round代表 PlayerMatchHistoryIndex) 自動索引項目matchDate,而不需要合成串連索引鍵。
不需要回填:當您將具有多屬性索引鍵的新全域次要索引新增至現有資料表時,DynamoDB 會使用其自然屬性自動為所有現有項目編製索引,而不需要使用合成索引鍵更新項目。
步驟 3:查詢具有所有分割區索引鍵屬性的 TournamentRegionIndex 全域次要索引
此範例會查詢具有多屬性分割區索引鍵 (tournamentId + ) 的 TournamentRegionIndex 全域次要索引region。所有分割區索引鍵屬性都必須在查詢中指定等式條件 - 您無法tournamentId單獨使用 查詢,或在分割區索引鍵屬性上使用不等式運算子。
import { DynamoDBClient } from "@aws-sdk/client-dynamodb"; import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const docClient = DynamoDBDocumentClient.from(client); // Query GSI: All matches for WINTER2024 tournament in NA-EAST region const response = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region', ExpressionAttributeNames: { '#region': 'region', // 'region' is a reserved keyword '#tournament': 'tournament' }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST' } })); console.log(`Found ${response.Items.length} matches for WINTER2024/NA-EAST:\n`); response.Items.forEach(match => { console.log(` ${match.round} | ${match.bracket} | ${match.matchId}`); console.log(` Players: ${match.player1Id} vs ${match.player2Id}`); console.log(` Winner: ${match.winner}, Score: ${match.score}\n`); });
預期的輸出:
Found 4 matches for WINTER2024/NA-EAST:
FINALS | CHAMPIONSHIP | match-001
Players: 101 vs 103
Winner: 101, Score: 3-1
QUARTERFINALS | UPPER | match-004
Players: 101 vs 109
Winner: 101, Score: 3-1
SEMIFINALS | UPPER | match-002
Players: 101 vs 105
Winner: 101, Score: 3-2
SEMIFINALS | UPPER | match-003
Players: 103 vs 107
Winner: 103, Score: 3-0
無效查詢:
// Missing region attribute KeyConditionExpression: 'tournamentId = :tournament' // Using inequality on partition key attribute KeyConditionExpression: 'tournamentId = :tournament AND #region > :region'
效能:多屬性分割區索引鍵會雜湊在一起,提供與單一屬性索引鍵相同的 O(1) 查詢效能。
步驟 4:從left-to-right查詢全域次要索引排序索引鍵
排序索引鍵屬性必須依全域次要索引中定義的順序left-to-right查詢。此範例示範在不同階層層級查詢 TournamentRegionIndex:僅依 round篩選、依 round + 篩選bracket,或依所有三個排序索引鍵屬性篩選。您無法略過中間的屬性,例如,您無法在略過 matchId時透過 round和 查詢bracket。
import { DynamoDBClient } from "@aws-sdk/client-dynamodb"; import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const docClient = DynamoDBDocumentClient.from(client); // Query 1: Filter by first sort key attribute (round) console.log("Query 1: All SEMIFINALS matches"); const query1 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round = :round', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':round': 'SEMIFINALS' } })); console.log(` Found ${query1.Items.length} matches\n`); // Query 2: Filter by first two sort key attributes (round + bracket) console.log("Query 2: SEMIFINALS UPPER bracket matches"); const query2 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round = :round AND bracket = :bracket', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':round': 'SEMIFINALS', ':bracket': 'UPPER' } })); console.log(` Found ${query2.Items.length} matches\n`); // Query 3: Filter by all three sort key attributes (round + bracket + matchId) console.log("Query 3: Specific match in SEMIFINALS UPPER bracket"); const query3 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round = :round AND bracket = :bracket AND matchId = :matchId', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':round': 'SEMIFINALS', ':bracket': 'UPPER', ':matchId': 'match-002' } })); console.log(` Found ${query3.Items.length} matches\n`); // Query 4: INVALID - skipping round console.log("Query 4: Attempting to skip first sort key attribute (WILL FAIL)"); try { const query4 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND bracket = :bracket', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':bracket': 'UPPER' } })); } catch (error) { console.log(` Error: ${error.message}`); console.log(` Cannot skip sort key attributes - must query left-to-right\n`); }
預期的輸出:
Query 1: All SEMIFINALS matches Found 2 matches Query 2: SEMIFINALS UPPER bracket matches Found 2 matches Query 3: Specific match in SEMIFINALS UPPER bracket Found 1 matches Query 4: Attempting to skip first sort key attribute (WILL FAIL) Error: Query key condition not supported Cannot skip sort key attributes - must query left-to-right
Left-to-right查詢規則:您必須從左至右依序查詢屬性,而不略過任何屬性。
有效模式:
僅限第一個屬性:
round = 'SEMIFINALS'前兩個屬性:
round = 'SEMIFINALS' AND bracket = 'UPPER'全部三個屬性:
round = 'SEMIFINALS' AND bracket = 'UPPER' AND matchId = 'match-002'
無效的模式:
略過第一個屬性:
bracket = 'UPPER'(略過四捨五入)查詢順序不正確:
matchId = 'match-002' AND round = 'SEMIFINALS'離開間隙:
round = 'SEMIFINALS' AND matchId = 'match-002'(略過括號)
注意
設計秘訣:從最一般到最具體的排序索引鍵屬性,以最大化查詢彈性。
步驟 5:在全域次要索引排序索引鍵上使用不等式條件
不等式條件必須是查詢中的最後一個條件。此範例示範在排序索引鍵屬性上使用比較運算子 (>=、BETWEEN) 和字首比對 (begins_with())。使用不等式運算子之後,就無法再新增任何其他排序索引鍵條件,不等式必須是索引鍵條件表達式中的最終條件。
import { DynamoDBClient } from "@aws-sdk/client-dynamodb"; import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const docClient = DynamoDBDocumentClient.from(client); // Query 1: Round comparison (inequality on first sort key attribute) console.log("Query 1: Matches from QUARTERFINALS onwards"); const query1 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round >= :round', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':round': 'QUARTERFINALS' } })); console.log(` Found ${query1.Items.length} matches\n`); // Query 2: Round range with BETWEEN console.log("Query 2: Matches between QUARTERFINALS and SEMIFINALS"); const query2 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round BETWEEN :start AND :end', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':start': 'QUARTERFINALS', ':end': 'SEMIFINALS' } })); console.log(` Found ${query2.Items.length} matches\n`); // Query 3: Prefix matching with begins_with (treated as inequality) console.log("Query 3: Matches in brackets starting with 'U'"); const query3 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round = :round AND begins_with(bracket, :prefix)', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':round': 'SEMIFINALS', ':prefix': 'U' } })); console.log(` Found ${query3.Items.length} matches\n`); // Query 4: INVALID - condition after inequality console.log("Query 4: Attempting condition after inequality (WILL FAIL)"); try { const query4 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round > :round AND bracket = :bracket', ExpressionAttributeNames: { '#region': 'region' // 'region' is a reserved keyword }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST', ':round': 'QUARTERFINALS', ':bracket': 'UPPER' } })); } catch (error) { console.log(` Error: ${error.message}`); console.log(` Cannot add conditions after inequality - it must be last\n`); }
不等式運算子規則:您可以將比較運算子 (>、>=<、、<=)、 BETWEEN用於範圍查詢,以及 begins_with()用於字首比對。不等式必須是查詢中的最後一個條件。
有效模式:
等式條件後接不等式:
round = 'SEMIFINALS' AND bracket = 'UPPER' AND matchId > 'match-001'第一個屬性上的不等式:
round BETWEEN 'QUARTERFINALS' AND 'SEMIFINALS'字首比對為最終條件:
round = 'SEMIFINALS' AND begins_with(bracket, 'U')
無效的模式:
在不等式之後新增條件:
round > 'QUARTERFINALS' AND bracket = 'UPPER'使用多個不等式:
round > 'QUARTERFINALS' AND bracket > 'L'
重要
begins_with() 會被視為不等式條件,因此沒有任何額外的排序索引鍵條件可以遵循它。
步驟 6:使用多屬性排序索引鍵查詢 PlayerMatchHistoryIndex 全域次要索引
此範例會查詢具有單一分割區索引鍵 (player1Id) 和多屬性排序索引鍵 (matchDate + ) 的 PlayerMatchHistoryIndexround。這可透過查詢特定玩家的所有配對而不了解賽事 IDs,而基礎資料表則需要每個賽事區域組合個別的查詢。
import { DynamoDBClient } from "@aws-sdk/client-dynamodb"; import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const docClient = DynamoDBDocumentClient.from(client); // Query 1: All matches for Player 101 across all tournaments console.log("Query 1: All matches for Player 101"); const query1 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'PlayerMatchHistoryIndex', KeyConditionExpression: 'player1Id = :player', ExpressionAttributeValues: { ':player': '101' } })); console.log(` Found ${query1.Items.length} matches for Player 101:`); query1.Items.forEach(match => { console.log(` ${match.tournamentId}/${match.region} - ${match.matchDate} - ${match.round}`); }); console.log(); // Query 2: Player 101 matches on specific date console.log("Query 2: Player 101 matches on 2024-01-18"); const query2 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'PlayerMatchHistoryIndex', KeyConditionExpression: 'player1Id = :player AND matchDate = :date', ExpressionAttributeValues: { ':player': '101', ':date': '2024-01-18' } })); console.log(` Found ${query2.Items.length} matches\n`); // Query 3: Player 101 SEMIFINALS matches on specific date console.log("Query 3: Player 101 SEMIFINALS matches on 2024-01-18"); const query3 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'PlayerMatchHistoryIndex', KeyConditionExpression: 'player1Id = :player AND matchDate = :date AND round = :round', ExpressionAttributeValues: { ':player': '101', ':date': '2024-01-18', ':round': 'SEMIFINALS' } })); console.log(` Found ${query3.Items.length} matches\n`); // Query 4: Player 101 matches in date range console.log("Query 4: Player 101 matches in January 2024"); const query4 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'PlayerMatchHistoryIndex', KeyConditionExpression: 'player1Id = :player AND matchDate BETWEEN :start AND :end', ExpressionAttributeValues: { ':player': '101', ':start': '2024-01-01', ':end': '2024-01-31' } })); console.log(` Found ${query4.Items.length} matches\n`);
模式變化
具有多屬性索引鍵的時間序列資料
使用階層式時間屬性最佳化時間序列查詢
{ TableName: 'IoTReadings', // Base table: Simple partition key KeySchema: [ { AttributeName: 'readingId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'readingId', AttributeType: 'S' }, { AttributeName: 'deviceId', AttributeType: 'S' }, { AttributeName: 'locationId', AttributeType: 'S' }, { AttributeName: 'year', AttributeType: 'S' }, { AttributeName: 'month', AttributeType: 'S' }, { AttributeName: 'day', AttributeType: 'S' }, { AttributeName: 'timestamp', AttributeType: 'S' } ], // GSI with multi-attribute keys for time-series queries GlobalSecondaryIndexes: [{ IndexName: 'DeviceLocationTimeIndex', KeySchema: [ { AttributeName: 'deviceId', KeyType: 'HASH' }, { AttributeName: 'locationId', KeyType: 'HASH' }, { AttributeName: 'year', KeyType: 'RANGE' }, { AttributeName: 'month', KeyType: 'RANGE' }, { AttributeName: 'day', KeyType: 'RANGE' }, { AttributeName: 'timestamp', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }], BillingMode: 'PAY_PER_REQUEST' } // Query patterns enabled via GSI: // - All readings for device in location // - Readings for specific year // - Readings for specific month in year // - Readings for specific day // - Readings in time range
優點:自然時間階層 (年 → 月 → 日 → 時間戳記) 可隨時啟用有效率的查詢,而無需日期剖析或操作。全域次要索引會使用其自然時間屬性自動為所有讀數編製索引。
具有多屬性索引鍵的電子商務訂單
追蹤具有多個維度的訂單
{ TableName: 'Orders', // Base table: Simple partition key KeySchema: [ { AttributeName: 'orderId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'orderId', AttributeType: 'S' }, { AttributeName: 'sellerId', AttributeType: 'S' }, { AttributeName: 'region', AttributeType: 'S' }, { AttributeName: 'orderDate', AttributeType: 'S' }, { AttributeName: 'category', AttributeType: 'S' }, { AttributeName: 'customerId', AttributeType: 'S' }, { AttributeName: 'orderStatus', AttributeType: 'S' } ], GlobalSecondaryIndexes: [ { IndexName: 'SellerRegionIndex', KeySchema: [ { AttributeName: 'sellerId', KeyType: 'HASH' }, { AttributeName: 'region', KeyType: 'HASH' }, { AttributeName: 'orderDate', KeyType: 'RANGE' }, { AttributeName: 'category', KeyType: 'RANGE' }, { AttributeName: 'orderId', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }, { IndexName: 'CustomerOrdersIndex', KeySchema: [ { AttributeName: 'customerId', KeyType: 'HASH' }, { AttributeName: 'orderDate', KeyType: 'RANGE' }, { AttributeName: 'orderStatus', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } } ], BillingMode: 'PAY_PER_REQUEST' } // SellerRegionIndex GSI queries: // - Orders by seller and region // - Orders by seller, region, and date // - Orders by seller, region, date, and category // CustomerOrdersIndex GSI queries: // - Customer's orders // - Customer's orders by date // - Customer's orders by date and status
階層組織資料
模型組織階層
{ TableName: 'Employees', // Base table: Simple partition key KeySchema: [ { AttributeName: 'employeeId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'employeeId', AttributeType: 'S' }, { AttributeName: 'companyId', AttributeType: 'S' }, { AttributeName: 'divisionId', AttributeType: 'S' }, { AttributeName: 'departmentId', AttributeType: 'S' }, { AttributeName: 'teamId', AttributeType: 'S' }, { AttributeName: 'skillCategory', AttributeType: 'S' }, { AttributeName: 'skillLevel', AttributeType: 'S' }, { AttributeName: 'yearsExperience', AttributeType: 'N' } ], GlobalSecondaryIndexes: [ { IndexName: 'OrganizationIndex', KeySchema: [ { AttributeName: 'companyId', KeyType: 'HASH' }, { AttributeName: 'divisionId', KeyType: 'HASH' }, { AttributeName: 'departmentId', KeyType: 'RANGE' }, { AttributeName: 'teamId', KeyType: 'RANGE' }, { AttributeName: 'employeeId', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }, { IndexName: 'SkillsIndex', KeySchema: [ { AttributeName: 'skillCategory', KeyType: 'HASH' }, { AttributeName: 'skillLevel', KeyType: 'RANGE' }, { AttributeName: 'yearsExperience', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'INCLUDE', NonKeyAttributes: ['employeeId', 'name'] } } ], BillingMode: 'PAY_PER_REQUEST' } // OrganizationIndex GSI query patterns: // - All employees in company/division // - Employees in specific department // - Employees in specific team // SkillsIndex GSI query patterns: // - Employees by skill and experience level
稀疏多屬性索引鍵
結合多屬性索引鍵來製作稀疏的 GSI
{ TableName: 'Products', // Base table: Simple partition key KeySchema: [ { AttributeName: 'productId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'productId', AttributeType: 'S' }, { AttributeName: 'categoryId', AttributeType: 'S' }, { AttributeName: 'subcategoryId', AttributeType: 'S' }, { AttributeName: 'averageRating', AttributeType: 'N' }, { AttributeName: 'reviewCount', AttributeType: 'N' } ], GlobalSecondaryIndexes: [ { IndexName: 'CategoryIndex', KeySchema: [ { AttributeName: 'categoryId', KeyType: 'HASH' }, { AttributeName: 'subcategoryId', KeyType: 'HASH' }, { AttributeName: 'productId', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }, { IndexName: 'ReviewedProductsIndex', KeySchema: [ { AttributeName: 'categoryId', KeyType: 'HASH' }, { AttributeName: 'averageRating', KeyType: 'RANGE' }, // Optional attribute { AttributeName: 'reviewCount', KeyType: 'RANGE' } // Optional attribute ], Projection: { ProjectionType: 'ALL' } } ], BillingMode: 'PAY_PER_REQUEST' } // Only products with reviews appear in ReviewedProductsIndex GSI // Automatic filtering without application logic // Multi-attribute sort key enables rating and count queries
SaaS 多租戶
具有客戶隔離的多租戶 SaaS 平台
// Table design { TableName: 'SaasData', // Base table: Simple partition key KeySchema: [ { AttributeName: 'resourceId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'resourceId', AttributeType: 'S' }, { AttributeName: 'tenantId', AttributeType: 'S' }, { AttributeName: 'customerId', AttributeType: 'S' }, { AttributeName: 'resourceType', AttributeType: 'S' } ], // GSI with multi-attribute keys for tenant-customer isolation GlobalSecondaryIndexes: [{ IndexName: 'TenantCustomerIndex', KeySchema: [ { AttributeName: 'tenantId', KeyType: 'HASH' }, { AttributeName: 'customerId', KeyType: 'HASH' }, { AttributeName: 'resourceType', KeyType: 'RANGE' }, { AttributeName: 'resourceId', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }], BillingMode: 'PAY_PER_REQUEST' } // Query GSI: All resources for tenant T001, customer C001 const resources = await docClient.send(new QueryCommand({ TableName: 'SaasData', IndexName: 'TenantCustomerIndex', KeyConditionExpression: 'tenantId = :tenant AND customerId = :customer', ExpressionAttributeValues: { ':tenant': 'T001', ':customer': 'C001' } })); // Query GSI: Specific resource type for tenant/customer const documents = await docClient.send(new QueryCommand({ TableName: 'SaasData', IndexName: 'TenantCustomerIndex', KeyConditionExpression: 'tenantId = :tenant AND customerId = :customer AND resourceType = :type', ExpressionAttributeValues: { ':tenant': 'T001', ':customer': 'C001', ':type': 'document' } }));
優點:租戶-客戶內容和自然資料組織內的高效率查詢。
金融交易
銀行系統使用 GSIs追蹤帳戶交易
// Table design { TableName: 'BankTransactions', // Base table: Simple partition key KeySchema: [ { AttributeName: 'transactionId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'transactionId', AttributeType: 'S' }, { AttributeName: 'accountId', AttributeType: 'S' }, { AttributeName: 'year', AttributeType: 'S' }, { AttributeName: 'month', AttributeType: 'S' }, { AttributeName: 'day', AttributeType: 'S' }, { AttributeName: 'transactionType', AttributeType: 'S' } ], GlobalSecondaryIndexes: [ { IndexName: 'AccountTimeIndex', KeySchema: [ { AttributeName: 'accountId', KeyType: 'HASH' }, { AttributeName: 'year', KeyType: 'RANGE' }, { AttributeName: 'month', KeyType: 'RANGE' }, { AttributeName: 'day', KeyType: 'RANGE' }, { AttributeName: 'transactionId', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }, { IndexName: 'TransactionTypeIndex', KeySchema: [ { AttributeName: 'accountId', KeyType: 'HASH' }, { AttributeName: 'transactionType', KeyType: 'RANGE' }, { AttributeName: 'year', KeyType: 'RANGE' }, { AttributeName: 'month', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } } ], BillingMode: 'PAY_PER_REQUEST' } // Query AccountTimeIndex GSI: All transactions for account in 2023 const yearTransactions = await docClient.send(new QueryCommand({ TableName: 'BankTransactions', IndexName: 'AccountTimeIndex', KeyConditionExpression: 'accountId = :account AND #year = :year', ExpressionAttributeNames: { '#year': 'year' }, ExpressionAttributeValues: { ':account': 'ACC-12345', ':year': '2023' } })); // Query AccountTimeIndex GSI: Transactions in specific month const monthTransactions = await docClient.send(new QueryCommand({ TableName: 'BankTransactions', IndexName: 'AccountTimeIndex', KeyConditionExpression: 'accountId = :account AND #year = :year AND #month = :month', ExpressionAttributeNames: { '#year': 'year', '#month': 'month' }, ExpressionAttributeValues: { ':account': 'ACC-12345', ':year': '2023', ':month': '11' } })); // Query TransactionTypeIndex GSI: Deposits in 2023 const deposits = await docClient.send(new QueryCommand({ TableName: 'BankTransactions', IndexName: 'TransactionTypeIndex', KeyConditionExpression: 'accountId = :account AND transactionType = :type AND #year = :year', ExpressionAttributeNames: { '#year': 'year' }, ExpressionAttributeValues: { ':account': 'ACC-12345', ':type': 'deposit', ':year': '2023' } }));
完成範例
下列範例示範從設定到清除的多屬性金鑰:
import { DynamoDBClient, CreateTableCommand, DeleteTableCommand, waitUntilTableExists } from "@aws-sdk/client-dynamodb"; import { DynamoDBDocumentClient, PutCommand, QueryCommand } from "@aws-sdk/lib-dynamodb"; const client = new DynamoDBClient({ region: 'us-west-2' }); const docClient = DynamoDBDocumentClient.from(client); async function multiAttributeKeysDemo() { console.log("Starting Multi-Attribute GSI Keys Demo\n"); // Step 1: Create table with GSIs using multi-attribute keys console.log("1. Creating table with multi-attribute GSI keys..."); await client.send(new CreateTableCommand({ TableName: 'TournamentMatches', KeySchema: [ { AttributeName: 'matchId', KeyType: 'HASH' } ], AttributeDefinitions: [ { AttributeName: 'matchId', AttributeType: 'S' }, { AttributeName: 'tournamentId', AttributeType: 'S' }, { AttributeName: 'region', AttributeType: 'S' }, { AttributeName: 'round', AttributeType: 'S' }, { AttributeName: 'bracket', AttributeType: 'S' }, { AttributeName: 'player1Id', AttributeType: 'S' }, { AttributeName: 'matchDate', AttributeType: 'S' } ], GlobalSecondaryIndexes: [ { IndexName: 'TournamentRegionIndex', KeySchema: [ { AttributeName: 'tournamentId', KeyType: 'HASH' }, { AttributeName: 'region', KeyType: 'HASH' }, { AttributeName: 'round', KeyType: 'RANGE' }, { AttributeName: 'bracket', KeyType: 'RANGE' }, { AttributeName: 'matchId', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } }, { IndexName: 'PlayerMatchHistoryIndex', KeySchema: [ { AttributeName: 'player1Id', KeyType: 'HASH' }, { AttributeName: 'matchDate', KeyType: 'RANGE' }, { AttributeName: 'round', KeyType: 'RANGE' } ], Projection: { ProjectionType: 'ALL' } } ], BillingMode: 'PAY_PER_REQUEST' })); await waitUntilTableExists({ client, maxWaitTime: 120 }, { TableName: 'TournamentMatches' }); console.log("Table created\n"); // Step 2: Insert tournament matches console.log("2. Inserting tournament matches..."); const matches = [ { matchId: 'match-001', tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'FINALS', bracket: 'CHAMPIONSHIP', player1Id: '101', player2Id: '103', matchDate: '2024-01-20', winner: '101', score: '3-1' }, { matchId: 'match-002', tournamentId: 'WINTER2024', region: 'NA-EAST', round: 'SEMIFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '105', matchDate: '2024-01-18', winner: '101', score: '3-2' }, { matchId: 'match-003', tournamentId: 'WINTER2024', region: 'NA-WEST', round: 'FINALS', bracket: 'CHAMPIONSHIP', player1Id: '102', player2Id: '104', matchDate: '2024-01-20', winner: '102', score: '3-2' }, { matchId: 'match-004', tournamentId: 'SPRING2024', region: 'NA-EAST', round: 'QUARTERFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '108', matchDate: '2024-03-15', winner: '101', score: '3-0' } ]; for (const match of matches) { await docClient.send(new PutCommand({ TableName: 'TournamentMatches', Item: match })); } console.log(`Inserted ${matches.length} tournament matches\n`); // Step 3: Query GSI with multi-attribute partition key console.log("3. Query TournamentRegionIndex GSI: WINTER2024/NA-EAST matches"); const gsiQuery1 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'TournamentRegionIndex', KeyConditionExpression: 'tournamentId = :tournament AND #region = :region', ExpressionAttributeNames: { '#region': 'region' }, ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-EAST' } })); console.log(` Found ${gsiQuery1.Items.length} matches:`); gsiQuery1.Items.forEach(match => { console.log(` ${match.round} - ${match.bracket} - ${match.winner} won`); }); // Step 4: Query GSI with multi-attribute sort key console.log("\n4. Query PlayerMatchHistoryIndex GSI: All matches for Player 101"); const gsiQuery2 = await docClient.send(new QueryCommand({ TableName: 'TournamentMatches', IndexName: 'PlayerMatchHistoryIndex', KeyConditionExpression: 'player1Id = :player', ExpressionAttributeValues: { ':player': '101' } })); console.log(` Found ${gsiQuery2.Items.length} matches for Player 101:`); gsiQuery2.Items.forEach(match => { console.log(` ${match.tournamentId}/${match.region} - ${match.matchDate} - ${match.round}`); }); console.log("\nDemo complete"); console.log("No synthetic keys needed - GSIs use native attributes automatically"); } async function cleanup() { console.log("Deleting table..."); await client.send(new DeleteTableCommand({ TableName: 'TournamentMatches' })); console.log("Table deleted"); } // Run demo multiAttributeKeysDemo().catch(console.error); // Uncomment to cleanup: // cleanup().catch(console.error);
最小程式碼 scaffold
// 1. Create table with GSI using multi-attribute keys await client.send(new CreateTableCommand({ TableName: 'MyTable', KeySchema: [ { AttributeName: 'id', KeyType: 'HASH' } // Simple base table PK ], AttributeDefinitions: [ { AttributeName: 'id', AttributeType: 'S' }, { AttributeName: 'attr1', AttributeType: 'S' }, { AttributeName: 'attr2', AttributeType: 'S' }, { AttributeName: 'attr3', AttributeType: 'S' }, { AttributeName: 'attr4', AttributeType: 'S' } ], GlobalSecondaryIndexes: [{ IndexName: 'MyGSI', KeySchema: [ { AttributeName: 'attr1', KeyType: 'HASH' }, // GSI PK attribute 1 { AttributeName: 'attr2', KeyType: 'HASH' }, // GSI PK attribute 2 { AttributeName: 'attr3', KeyType: 'RANGE' }, // GSI SK attribute 1 { AttributeName: 'attr4', KeyType: 'RANGE' } // GSI SK attribute 2 ], Projection: { ProjectionType: 'ALL' } }], BillingMode: 'PAY_PER_REQUEST' })); // 2. Insert items with native attributes (no concatenation needed for GSI) await docClient.send(new PutCommand({ TableName: 'MyTable', Item: { id: 'item-001', attr1: 'value1', attr2: 'value2', attr3: 'value3', attr4: 'value4', // ... other attributes } })); // 3. Query GSI with all partition key attributes await docClient.send(new QueryCommand({ TableName: 'MyTable', IndexName: 'MyGSI', KeyConditionExpression: 'attr1 = :v1 AND attr2 = :v2', ExpressionAttributeValues: { ':v1': 'value1', ':v2': 'value2' } })); // 4. Query GSI with sort key attributes (left-to-right) await docClient.send(new QueryCommand({ TableName: 'MyTable', IndexName: 'MyGSI', KeyConditionExpression: 'attr1 = :v1 AND attr2 = :v2 AND attr3 = :v3', ExpressionAttributeValues: { ':v1': 'value1', ':v2': 'value2', ':v3': 'value3' } })); // Note: If any attribute name is a DynamoDB reserved keyword, use ExpressionAttributeNames: // KeyConditionExpression: 'attr1 = :v1 AND #attr2 = :v2' // ExpressionAttributeNames: { '#attr2': 'attr2' }