FSx 使用 kubectl 部署来自亚马逊 S3 和亚马逊的自定义微调模型 - 亚马逊 SageMaker AI

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

FSx 使用 kubectl 部署来自亚马逊 S3 和亚马逊的自定义微调模型

以下步骤向您展示了如何使用 kubectl 将存储在 Amazon S3 或亚马逊上的模型部署 FSx 到亚马逊 SageMaker HyperPod 集群。

以下说明包含专为在 Jupyter 笔记本环境(例如 Amazon SageMaker Studio 或 SageMaker 笔记本实例)中运行而设计的代码单元和命令。每个代码块代表一个应按顺序执行的笔记本单元。交互式元素(包括模型发现表和状态监控命令)已针对笔记本界面进行了优化,在其他环境中可能无法正常运行。在继续操作之前,请确保您拥有必要的 AWS 权限访问笔记本环境。

先决条件

确认您已在 Amazon SageMaker HyperPod 集群上设置了推理功能。有关更多信息,请参阅 设置 HyperPod 集群以进行模型部署

设置和配置

将所有占位符值替换为实际资源标识符。

  1. 初始化您的集群名称。这标识了您的模型将在哪个 HyperPod 集群中部署。

    # Specify your hyperpod cluster name here hyperpod_cluster_name="<Hyperpod_cluster_name>" # NOTE: For sample deployment, we use g5.8xlarge for deepseek-r1 1.5b model which has sufficient memory and GPU instance_type="ml.g5.8xlarge"
  2. 初始化集群命名空间。您的集群管理员应该已经在您的命名空间中创建了 hypod-Inference 服务账户。

    cluster_namespace="<namespace>"
  3. 定义用于创建 YAML 文件以进行部署的辅助方法

    以下辅助函数生成部署模型所需的 Kubernetes YAML 配置文件。此函数会根据您的模型存储在 Amazon S3 还是 Amazon 上创建不同的 YAML 结构 FSx,并自动处理特定于存储的配置。在接下来的章节中,您将使用此函数为所选存储后端生成部署文件。

    def generate_inferenceendpointconfig_yaml(deployment_name, model_id, namespace, instance_type, output_file_path, region, tls_certificate_s3_location, model_location, sagemaker_endpoint_name, fsxFileSystemId="", isFsx=False, s3_bucket=None): """ Generate a InferenceEndpointConfig YAML file for S3 storage with the provided parameters. Args: deployment_name (str): The deployment name model_id (str): The model ID namespace (str): The namespace instance_type (str): The instance type output_file_path (str): Path where the YAML file will be saved region (str): Region where bucket exists tls_certificate_s3_location (str): S3 location for TLS certificate model_location (str): Location of the model sagemaker_endpoint_name (str): Name of the SageMaker endpoint fsxFileSystemId (str): FSx filesystem ID (optional) isFsx (bool): Whether to use FSx storage (optional) s3_bucket (str): S3 bucket where model exists (optional, only needed when isFsx is False) """ # Create the YAML structure model_config = { "apiVersion": "inference.sagemaker.aws.amazon.com/v1alpha1", "kind": "InferenceEndpointConfig", "metadata": { "name": deployment_name, "namespace": namespace }, "spec": { "modelName": model_id, "endpointName": sagemaker_endpoint_name, "invocationEndpoint": "invocations", "instanceType": instance_type, "modelSourceConfig": {}, "worker": { "resources": { "limits": { "nvidia.com/gpu": 1, }, "requests": { "nvidia.com/gpu": 1, "cpu": "30000m", "memory": "100Gi" } }, "image": "763104351884.dkr.ecr.us-east-2.amazonaws.com/huggingface-pytorch-tgi-inference:2.4.0-tgi2.3.1-gpu-py311-cu124-ubuntu22.04-v2.0", "modelInvocationPort": { "containerPort": 8080, "name": "http" }, "modelVolumeMount": { "name": "model-weights", "mountPath": "/opt/ml/model" }, "environmentVariables": [ { "name": "HF_MODEL_ID", "value": "/opt/ml/model" }, { "name": "SAGEMAKER_PROGRAM", "value": "inference.py", }, { "name": "SAGEMAKER_SUBMIT_DIRECTORY", "value": "/opt/ml/model/code", }, { "name": "MODEL_CACHE_ROOT", "value": "/opt/ml/model" }, { "name": "SAGEMAKER_ENV", "value": "1", } ] }, "tlsConfig": { "tlsCertificateOutputS3Uri": tls_certificate_s3_location, } }, } if (not isFsx): if s3_bucket is None: raise ValueError("s3_bucket is required when isFsx is False") model_config["spec"]["modelSourceConfig"] = { "modelSourceType": "s3", "s3Storage": { "bucketName": s3_bucket, "region": region, }, "modelLocation": model_location } else: model_config["spec"]["modelSourceConfig"] = { "modelSourceType": "fsx", "fsxStorage": { "fileSystemId": fsxFileSystemId, }, "modelLocation": model_location } # Write to YAML file with open(output_file_path, 'w') as file: yaml.dump(model_config, file, default_flow_style=False) print(f"YAML file created successfully at: {output_file_path}")

从 Amazon S3 或亚马逊部署您的模型 FSx

Stage the model to Amazon S3
  1. 创建 Amazon S3 存储桶来存储您的模型构件。S3 存储桶必须与您的 HyperPod 集群位于同一区域。

    s3_client = boto3.client('s3', region_name=region_name, config=boto3_config) base_name = "hyperpod-inference-s3-beta" def get_account_id(): sts = boto3.client('sts') return sts.get_caller_identity()["Account"] account_id = get_account_id() s3_bucket = f"{base_name}-{account_id}" try: s3_client.create_bucket( Bucket=s3_bucket, CreateBucketConfiguration={"LocationConstraint": region_name} ) print(f"Bucket '{s3_bucket}' is created successfully.") except botocore.exceptions.ClientError as e: error_code = e.response["Error"]["Code"] if error_code in ("BucketAlreadyExists", "BucketAlreadyOwnedByYou"): print(f"Bucket '{s3_bucket}' already exists. Skipping creation.") else: raise # Re-raise unexpected exceptions
  2. 获取部署 YAML 以从 S3 存储桶数据部署模型。

    # Get current time in format suitable for endpoint name current_time = datetime.now().strftime("%Y%m%d%H%M%S") model_id = "deepseek15b" ## Can be a name of your choice deployment_name = f"{model_id}-{current_time}" model_location = "deepseek15b" ## This is the folder on your s3 file where the model is located sagemaker_endpoint_name=f"{model_id}-{current_time}" output_file_path=f"inferenceendpointconfig-s3-model-{model_id}.yaml" generate_inferenceendpointconfig_yaml( deployment_name=deployment_name, model_id=model_id, model_location=model_location, namespace=cluster_namespace, instance_type=instance_type, output_file_path=output_file_path, sagemaker_endpoint_name=sagemaker_endpoint_name, s3_bucket=s3_bucket, region=region_name, tls_certificate_s3_location=tls_certificate_s3_location ) os.environ["INFERENCE_ENDPOINT_CONFIG_YAML_FILE_PATH"]=output_file_path os.environ["MODEL_ID"]=model_id
Stage the model to Amazon FSx
  1. (可选)创建 FSx 卷。此步骤是可选的,因为您可能已经拥有与要使用的 HyperPod 集群相同的 VPC、安全组和子网 ID 的现有 FSx 文件系统。

    # Initialize the subnet ID and Security Group for FSx. These should be the same as that of the HyperPod cluster. SUBNET_ID = "<HyperPod-subnet-id>" SECURITY_GROUP_ID = "<HyperPod-security-group-id>" # Configuration CONFIG = { 'SUBNET_ID': SUBNET_ID, 'SECURITY_GROUP_ID': SECURITY_GROUP_ID, 'STORAGE_CAPACITY': 1200, 'DEPLOYMENT_TYPE': 'PERSISTENT_2', 'THROUGHPUT': 250, 'COMPRESSION_TYPE': 'LZ4', 'LUSTRE_VERSION': '2.15' } JUMPSTART_MODEL_LOCATION_ON_S3 = "s3://jumpstart-cache-prod-us-east-2/deepseek-llm/deepseek-llm-r1-distill-qwen-1-5b/artifacts/inference-prepack/v2.0.0/" # Create FSx client fsx = boto3.client('fsx') # Create FSx for Lustre file system response = fsx.create_file_system( FileSystemType='LUSTRE', FileSystemTypeVersion=CONFIG['LUSTRE_VERSION'], StorageCapacity=CONFIG['STORAGE_CAPACITY'], SubnetIds=[CONFIG['SUBNET_ID']], SecurityGroupIds=[CONFIG['SECURITY_GROUP_ID']], LustreConfiguration={ 'DeploymentType': CONFIG['DEPLOYMENT_TYPE'], 'PerUnitStorageThroughput': CONFIG['THROUGHPUT'], 'DataCompressionType': CONFIG['COMPRESSION_TYPE'], } ) # Get the file system ID file_system_id = response['FileSystem']['FileSystemId'] print(f"Creating FSx filesystem with ID: {file_system_id}") print(f"In subnet: {CONFIG['SUBNET_ID']}") print(f"With security group: {CONFIG['SECURITY_GROUP_ID']}") # Wait for the file system to become available while True: response = fsx.describe_file_systems(FileSystemIds=[file_system_id]) status = response['FileSystems'][0]['Lifecycle'] if status == 'AVAILABLE': break print(f"Waiting for file system to become available... Current status: {status}") time.sleep(30) dns_name = response['FileSystems'][0]['DNSName'] mount_name = response['FileSystems'][0]['LustreConfiguration']['MountName'] # Print the file system details print("\nFile System Details:") print(f"File System ID: {file_system_id}") print(f"DNS Name: {dns_name}") print(f"Mount Name: {mount_name}")
  2. (可选)将数据从 S3 装载 FSx 并复制到 FSx。此步骤是可选的,因为您的模型数据可能已经存在于 FSx 文件系统中。仅当您要将数据从 S3 复制到时,才需要执行此步骤 FSx。

    注意

    用你的 FSX 替换 file_system_id、dns_name 和 mount_name 的值,以防不使用上一步中的 fsx 而是使用自己的 FSX。

    ## NOTE: Replace values of file_system_id, dns_name, and mount_name with your FSx in case you are not using the FSx filesystem from the previous step and using your own FSx filesystem. # file_system_id = response['FileSystems'][0]['FileSystemId'] # dns_name = response['FileSystems'][0]['DNSName'] # mount_name = response['FileSystems'][0]['LustreConfiguration']['MountName'] # print(f"File System ID: {file_system_id}") # print(f"DNS Name: {dns_name}") # print(f"Mount Name: {mount_name}") # FSx file system details mount_point = f'/mnt/fsx_{file_system_id}' # This will create something like /mnt/fsx_20240317_123456 print(f"Creating mount point at: {mount_point}") # Create mount directory if it doesn't exist !sudo mkdir -p {mount_point} # Mount the FSx Lustre file system mount_command = f"sudo mount -t lustre {dns_name}@tcp:/{mount_name} {mount_point}" !{mount_command} # Verify the mount !df -h | grep fsx print(f"File system mounted at {mount_point}") !sudo chmod 777 {mount_point} !aws s3 cp $JUMPSTART_MODEL_LOCATION_ON_S3 $mount_point/deepseek-1-5b --recursive !ls $mount_point !sudo umount {mount_point} !sudo rm -rf {mount_point}
  3. 获取部署 YAML 以根据 FSx 数据部署模型。

    # Get current time in format suitable for endpoint name current_time = datetime.now().strftime("%Y%m%d%H%M%S") model_id = "deepseek15b" ## Can be a name of your choice deployment_name = f"{model_id}-{current_time}" model_location = "deepseek-1-5b" ## This is the folder on your s3 file where the model is located sagemaker_endpoint_name=f"{model_id}-{current_time}" output_file_path=f"inferenceendpointconfig-fsx-model-{model_id}.yaml" generate_inferenceendpointconfig_yaml( deployment_name=deployment_name, model_id=model_id, model_location=model_location, namespace=cluster_namespace, instance_type=instance_type, output_file_path=output_file_path, region=region_name, tls_certificate_s3_location=tls_certificate_s3_location, sagemaker_endpoint_name=sagemaker_endpoint_name, fsxFileSystemId=file_system_id, isFsx=True ) os.environ["INFERENCE_ENDPOINT_CONFIG_YAML_FILE_PATH"]=output_file_path os.environ["MODEL_ID"]=model_id
将模型部署到您的集群
  1. 从集群 ARN 中获取用于 kubectl 身份验证的 Amazon EKS HyperPod 集群名称。

    cluster_arn = !aws sagemaker describe-cluster --cluster-name $hyperpod_cluster_name --query "Orchestrator.Eks.ClusterArn" --region $region_name cluster_name = cluster_arn[0].strip('"').split('/')[-1] print(cluster_name)
  2. 将 kubectl 配置为使用凭据向 Hyperpod EKS 集群进行身份验证 AWS

    !aws eks update-kubeconfig --name $cluster_name --region $region_name
  3. 部署您的InferenceEndpointConfig模型。

    !kubectl apply -f $INFERENCE_ENDPOINT_CONFIG_YAML_FILE_PATH

验证您的部署状态

  1. 检查模型是否成功部署。

    !kubectl describe InferenceEndpointConfig $deployment_name -n $cluster_namespace

    该命令返回的输出类似于下方内容:

    Name:                             deepseek15b-20250624043033
    Reason:                           NativeDeploymentObjectFound
    Status:
      Conditions:
        Last Transition Time:  2025-07-10T18:39:51Z
        Message:               Deployment, ALB Creation or SageMaker endpoint registration creation for model is in progress
        Reason:                InProgress
        Status:                True
        Type:                  DeploymentInProgress
        Last Transition Time:  2025-07-10T18:47:26Z
        Message:               Deployment and SageMaker endpoint registration for model have been created successfully
        Reason:                Success
        Status:                True
        Type:                  DeploymentComplete
  2. 检查终端节点是否已成功创建。

    !kubectl describe SageMakerEndpointRegistration $sagemaker_endpoint_name -n $cluster_namespace

    该命令返回的输出类似于下方内容:

    Name:         deepseek15b-20250624043033
    Namespace:    ns-team-a
    Kind:         SageMakerEndpointRegistration
    
    Status:
      Conditions:
        Last Transition Time:  2025-06-24T04:33:42Z
        Message:               Endpoint created.
        Status:                True
        Type:                  EndpointCreated
        State:                 CreationCompleted
  3. 测试已部署的端点以验证其是否正常工作。此步骤确认您的模型已成功部署并且可以处理推理请求。

    import boto3 prompt = "{\"inputs\": \"How tall is Mt Everest?\"}}" runtime_client = boto3.client('sagemaker-runtime', region_name=region_name, config=boto3_config) response = runtime_client.invoke_endpoint( EndpointName=sagemaker_endpoint_name, ContentType="application/json", Body=prompt ) print(response["Body"].read().decode())
    [{"generated_text":"As of the last update in July 2024, Mount Everest stands at a height of **8,850 meters** (29,029 feet) above sea level. The exact elevation can vary slightly due to changes caused by tectonic activity and the melting of ice sheets."}]

管理您的部署

完成部署测试后,使用以下命令清理资源。

注意

继续操作之前,请确认您不再需要已部署的模型或存储的数据。

清除资源
  1. 删除推理部署和关联的 Kubernetes 资源。这将停止正在运行的模型容器并移除 SageMaker端点。

    !kubectl delete inferenceendpointconfig.inference.sagemaker.aws.amazon.com/$deployment_name
  2. (可选)删除该 FSx 卷。

    try: # Delete the file system response = fsx.delete_file_system( FileSystemId=file_system_id ) print(f"Deleting FSx filesystem: {file_system_id}") # Optional: Wait for deletion to complete while True: try: response = fsx.describe_file_systems(FileSystemIds=[file_system_id]) status = response['FileSystems'][0]['Lifecycle'] print(f"Current status: {status}") time.sleep(30) except fsx.exceptions.FileSystemNotFound: print("File system deleted successfully") break except Exception as e: print(f"Error deleting file system: {str(e)}")
  3. 验证清理是否成功完成。

    # Check that Kubernetes resources are removed kubectl get pods,svc,deployment,InferenceEndpointConfig,sagemakerendpointregistration -n $cluster_namespace # Verify SageMaker endpoint is deleted (should return error or empty) aws sagemaker describe-endpoint --endpoint-name $sagemaker_endpoint_name --region $region_name
故障排除
  1. 检查 Kubernetes 部署状态。

    !kubectl describe deployment $deployment_name -n $cluster_namespace
  2. 检查 InferenceEndpointConfig 状态以查看高级部署状态和任何配置问题。

    kubectl describe InferenceEndpointConfig $deployment_name -n $cluster_namespace
  3. 检查所有 Kubernetes 对象的状态。全面了解你的命名空间中所有相关的 Kubernetes 资源。这可以让你快速了解正在运行的内容和可能缺少的内容。

    !kubectl get pods,svc,deployment,InferenceEndpointConfig,sagemakerendpointregistration -n $cluster_namespace