

用户指南

AWS IoT Analytics

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT Analytics: 用户指南

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon 的商标和商业外观不得用于任何非 Amazon 的商品或服务,也不得以任何可能引起客户混 淆、贬低或诋毁 Amazon 的方式使用。所有非 Amazon 拥有的其他商标均为各自所有者的财产,这些 所有者可能附属于 Amazon、与 Amazon 有关联或由 Amazon 赞助,也可能不是如此。

Table of Contents

1
1
2
3
5
6
7
7
9
0
1
8
9
0
0
1
2
3
5
6
7
8
8
0
2
2
4
4
6
9
1
2
2
6

监控提取的数据	47
创建数据集	49
查询数据	50
访问查询的数据	50
探索 AWS IoT Analytics 数据	28
Amazon S3	51
AWS IoT Events	52
QuickSight	52
Jupyter Notebook	52
保留多个版本的数据集	53
消息负载语法	54
处理 AWS IoT SiteWise 数据	54
创建数据集	55
访问数据集内容	58
教程:查询 AWS IoT SiteWise 数据	59
管道活动	66
通道活动	66
数据存储活动	66
AWS Lambda 活动	66
Lambda 函数示例 1	67
Lambda 函数示例 2	69
AddAttributes 活动	70
RemoveAttributes 活动	71
SelectAttributes 活动	
Filter 活动	73
DeviceRegistryEnrich 活动	73
DeviceShadowEnrich 活动	75
Math 活动	
数学活动运算符和函数	
RunPipelineActivity	
重新处理通道消息	95
参数	95
重新处理通道消息(控制台)	
重新处理通道消息(API)	97
取消通道重新处理活动	97
实现工作流程自动化	

使用案例	
使用 Docker 容器	
自定义 Docker 容器的输入/输出变量	102
权限	103
CreateDataset (Java 和 AWS CLI)	106
示例 1 - 创建 SQL 数据集 (java)	106
示例 2 - 创建具有增量时段的 SQL 数据集 (Java)	107
示例 3-创建自带计划触发器的容器数据集 (Java)	108
示例 4-创建以 SQL 数据集作为触发器的容器数据集 (Java)	109
示例 5-创建 SQL 数据集 (CLI)	110
示例 6-创建具有增量时段的 SQL 数据集 (CLI)	110
容器化笔记本	112
对不是通过控制台创建的笔记本实例启用容器化 AWS IoT Analytics	112
更新笔记本容器化扩展	115
创建容器化映像	115
使用自定义容器	120
可视化数据	129
可视化(控制台)	129
可视化 () QuickSight	130
标记	134
标签基本知识	134
在 IAM 策略中使用标签	135
标签限制	137
SQL 表达式	138
支持的 SQL 功能	139
支持的数据类型	139
支持的函数	140
常见问题故障排除	141
安全性	142
AWS Identity and Access Management	142
受众	142
使用身份进行身份验证	143
管理访问权限	145
使用 IAM	146
防止跨服务混淆座席	150
IAM 策略示例	155

排查 身份和访问问题	161
日志记录和监控	162
自动监控工具	162
手动监控工具	163
使用 CloudWatch 日志进行监控	164
使用 CloudWatch 事件进行监控	168
使用 记录 CloudTrail API 调用	176
合规性验证	180
恢复能力	181
基础结构安全性	181
限额	183
命令	184
AWS loT Analytics 行动	184
AWS IoT Analytics 数据	184
故障排除	185
如何知道我的消息是否进入 AWS IoT Analytics?	185
为什么管道会丢失消息? 如何修复此问题?	186
为什么我的数据存储中没有任何数据?	187
为什么我的数据集会只显示dt?	187
如何编写由数据集完成操作驱动的事件代码?	187
如何正确配置笔记本实例来使用 AWS IoT Analytics?	187
为什么我无法在实例中创建笔记本?	188
为什么我看不到我的数据集 QuickSight?	188
为什么我在现有的 Jupyter Notebook 上看不到容器化按钮?	189
为什么我的容器化插件安装失败?	189
为什么我的容器化插件引发错误?	189
为什么我在容器化期间看不到我的变量?	189
我可以将哪些变量作为输入添加到我的容器中?	190
我如何将我的容器输出设置为后续分析的输入?	190
我的容器数据集为什么会失败?	190
文档历史记录	191
早期更新	192
C	xciii

什么是 AWS IoT Analytics?

AWS IoT Analytics 自动执行分析来自 IoT 设备的数据所需的步骤。 AWS IoT Analytics 筛选、转换和 丰富物联网数据,然后将其存储在时间序列数据存储中进行分析。您可以将服务设置为只从您的设备 中收集所需数据,应用数学转换来处理数据,并使用设备特定的元数据 (例如设备类型和位置) 来丰富 数据,然后再存储这些数据。然后,您可以通过使用内置的 SQL 查询引擎运行查询来分析数据,或者 执行更复杂的分析和机器学习推理。 AWS IoT Analytics 通过与 <u>Jupyter</u> Notebook 集成,实现高级数 据探索。 AWS IoT Analytics 还可通过与集成实现数据可视化<u>QuickSight</u>。 QuickSight 在以下<u>地区</u>可 用。

传统分析和商业智能工具设计用于处理结构化数据。原始 IoT 数据通常来自记录结构化程度较低的数据 (如温度、动作或声音)的设备。因而来自这些设备的数据可能具有大量空白、损坏的消息和错误的读 数,必须先清除这些,才能进行分析。此外,物联网数据通常只有在来自外部来源的其他数据中才有意 义。 AWS IoT Analytics 允许您解决这些问题并收集大量设备数据、处理和存储消息。然后,您可以查 询数据并对其进行分析。 AWS IoT Analytics 包括针对常见物联网用例的预建模型,因此您可以回答诸 如哪些设备即将出现故障或哪些客户面临放弃可穿戴设备风险之类的问题。

如何使用 AWS IoT Analytics

下图概述了如何使用 AWS IoT Analytics。

主要特征

收集

- 与 AWS IoT Core—AWS IoT Analytics 完全集成, AWS IoT Core 因此它可以在连接的设备流入 时接收来自这些设备的消息。
- 使用批处理 API 添加来自任何来源的数据,AWS IoT Analytics 可以通过 HTTP 接收来自任何来 源的数据。这意味着连接到 Internet 的任意设备或服务可以将数据发送到 AWS IoT Analytics。有 关更多信息,请参阅 AWS IoT Analytics API 参考中的 BatchPutMessage。
- 仅收集要存储和分析的数据 您可以使用 AWS IoT Analytics 控制台进行配置,使其通过 MQTT 主题过滤器 AWS IoT Analytics 以各种格式和频率接收来自设备的消息。 AWS IoT Analytics 验 证数据是否在您定义的特定参数范围内,并创建通道。然后,服务将通道路由到适当的管道来对 消息进行处理、转换和丰富。

流程

- 清理和筛选-AWS IoT Analytics 允许您定义在 AWS IoT Analytics 检测到缺失数据时触发的 AWS Lambda 函数,以便您可以运行代码来估计和填补空白。您还可以定义最大值和最小值筛选条件 和百分位数阈值来删除数据中的异常值。
- Transform-AWS IoT Analytics 可以使用您定义的数学或条件逻辑来转换消息,以便您可以执行常见的计算,例如将摄氏度转换为华氏度。
- Enrich —AWS IoT Analytics 可以使用外部数据源(例如天气预报)来丰富数据,然后将数据路 由到 AWS IoT Analytics 数据存储。

存储

- 时间序列数据存储 将设备数据AWS IoT Analytics 存储在经过优化的时间序列数据存储中,以 便更快地进行检索和分析。您还可以管理访问权限,实施数据保留策略以及将数据导出到外部访 问点。
- 存储已处理的数据和原始数据-AWS IoT Analytics 存储处理后的数据,还会自动存储提取的原始 数据,以便日后进行处理。

分析

- 运行临时 SQL 查询-AWS IoT Analytics 提供 SQL 查询引擎,因此您可以运行临时查询并快速获得结果。通过使用该服务,您可以使用标准 SQL 查询从数据存储中提取数据以回答一些问题,如互联车队的平均行驶距离,或者在晚上 7 点以后将智能建筑中的多少个门锁上。这些查询可重复使用,即使互连设备、队列大小和分析要求发生了更改也是如此。
- 时间序列分析 —AWS IoT Analytics 支持时间序列分析,因此您可以分析设备在一段时间内的性能并了解其使用方式和地点,持续监控设备数据以预测维护问题,并监控传感器以预测环境条件并做出反应。

- 用于复杂分析和机器学习的托管笔记本 -AWS IoT Analytics 支持托管在 Jupyter Notebook 中的 笔记本,用于统计分析和机器学习。该服务包括一组笔记本模板,其中包含 AWS创作的机器学 习模型和可视化效果。您可以通过模板开始使用与以下内容相关的 IoT 使用案例:设备故障分 析、预测事件 (如可能表示客户将放弃产品的低使用率)或者按客户使用水平 (如大量用户、周末 用户)或设备运行状况细分设备。在创作笔记本之后,可将其容器化并按指定计划执行它。有关 更多信息,请参阅自动化工作流。
- 预测 您可以通过称为逻辑回归的方法进行统计分类。您还可以使用 Long-Short-Term内存 (LSTM),这是一种强大的神经网络技术,用于预测随时间变化的过程的输出或状态。预构建的笔 记本模板还支持用于设备细分的 K-means 集群算法,它将您的设备划分为类似设备组。这些模 板通常用于剖析设备运行状况和设备状态,如巧克力工厂中的 HVAC 装置的运行状况或风力涡轮 机叶片的磨损状态。同样,这些笔记本模板也可以容器化并按计划执行。

构建和可视化

- QuickSight 集成-AWS IoT Analytics 提供连接器, QuickSight 以便您可以在 QuickSight 仪表板 中可视化您的数据集。
- 控制台集成 您还可以在"控制台"的嵌入式 Jupyter Notebook 中可视化结果或临时分析。
 AWS IoT Analytics

AWS IoT Analytics 组件和概念

频道

通道收集来自 MQTT 主题的数据,并在将数据发布到管道之前将原始未处理消息归档。您也可以使 用 <u>BatchPutMessage</u>API 直接向频道发送消息。未处理的消息存储在您或管理的亚马逊简单存储服 务 (Amazon S3) 存储桶中。 AWS IoT Analytics

管道

管道使用来自通道的消息,并允许您在将消息存储在数据存储之前处理消息。名为活动(<u>管道活</u> <u>动</u>)的处理步骤对您的消息执行转换,例如,删除、重命名或添加消息属性,根据属性值筛选消 息,为消息调用 Lambda 函数以进行高级处理,或执行数学转换以规范化设备数据。

数据存储

管道将它们处理过的消息存储在数据存储中。数据存储不是数据库,但它是一个可扩展且可查询的 消息存储库。对于来自不同设备或位置的消息,您可以有多个数据存储,或者根据您的管道配置 和要求,通过消息属性进行筛选。与未处理的频道消息一样,数据存储已处理的消息存储在您或 AWS IoT Analytics 管理的 A mazon S3 存储桶中。

数据集

您可以通过创建数据集从数据存储中检索数据。 AWS IoT Analytics 允许您创建 SQL 数据集或容器 数据集。

拥有数据集后,您可以使用进行集成,探索数据并获得对数据的见解<u>QuickSight</u>。您也可以通过与 <u>Jupyter Notebook</u> 的集成来执行更高级的分析函数。Jupyter Notebook 提供强大的数据科学工具, 可以执行机器学习和一系列统计分析。有关更多信息,请参阅笔记本模板。

您可以将数据集内容发送到 <u>Amazon S3</u> 存储桶,从而允许与现有数据湖集成在一起,或者从内部 应用程序和可视化工具中进行访问。您还可以将数据集内容作为输入发送到 <u>AWS loT Events</u>,该 服务允许您监控设备或进程故障或操作更改,并在发生此类事件时触发其他操作。

SQL 数据集

SQL 数据集类似于 SQL 数据库的具体化视图。您可以通过应用 SQL 操作来创建 SQL 数据 集。SQL 数据集可以通过指定触发器,按定期计划自动生成。

容器数据集

通过容器数据集,您可以自动运行分析工具和生成结果。有关更多信息,请参阅<u>自动化工作流</u>。它 将作为输入的 SQL 数据集、Docker 容器及分析工具和所需库文件、输入和输出变量以及可选的调 度触发器组合到一起。输入和输出变量告知可执行映像获取数据和存储结果的位置。触发器可以在 SQL 数据集完成创建其内容时或者按照时间调度表达式来运行分析。容器数据集自动运行,生成并 随后保存分析工具的结果。

触发器

您可以通过指定触发器来自动创建数据集。触发器可以是时间间隔(例如,每隔两小时创建该数据 集)或在创建另一个数据集的内容时(例如,在 myOtherDataset 完成创建其内容时创建该数据 集)。或者,您可以使用 CreateDatasetContentAPI 手动生成数据集内容。

Docker 容器

您可以创建自己的 Docker 容器来打包分析工具或使用 SageMaker AI 提供的选 项。有关更多信息,请参阅<u>Docker 容器</u>。您可以创建自己的 Docker 容器来打包分 析工具或使用 <u>SageMaker AI</u> 提供的选项。您可以将容器存储在您指定的 <u>Amazon</u> <u>ECR</u> 注册表中,以便可以将其安装在所需的平台上。Docker 容器能够运行您通过 Matlab、Octave、Wise.io、SPSS、R、Fortran、Python、Scala、Java、C++ 等准备的自定义分 析代码。有关更多信息,请参阅容器化笔记本。

增量时段

增量时段是一系列用户定义的不重叠且连续的时间间隔。通过使用增量时段,您可以使用在 上次分析后到达数据存储的新数据创建数据集内容,并对新数据执行分析。您可在数据集 queryAction 的 filters 部分中,通过设置 deltaTime 来创建增量时段。有关更多信息, 请参阅 <u>CreateDataset</u> API。通常,您还希望设置时间间隔触发器以自动创建数据集内容 (triggers:schedule:expression)。基本上,这使您可以筛选在特定时间窗口中到达的消息, 这样来自以前时间窗口的消息中包含的数据不会重复计数。有关更多信息,请参阅<u>示例 6 - 创建具</u> 有增量时段的 SQL 数据集 (CLI)。

访问权限 AWS IoT Analytics

作为的一部分 AWS IoT, AWS IoT Analytics 提供以下接口,使您的设备能够生成数据,使您的应用 程序能够与它们生成的数据进行交互:

AWS Command Line Interface (AWS CLI)

在 Windows、OS X 和 Linux AWS IoT Analytics 上运行命令。您可以使用这些命令创建并管理事物、证书、规则和策略。要开始使用,请参阅 <u>AWS Command Line Interface 用户指南</u>。有关命令 的更多信息 AWS IoT,请参阅《AWS Command Line Interface 参考资料》中的 i <u>o</u> t。

A Important

使用aws iotanalytics命令与之交互 AWS loT Analytics。使用 aws iot 命令与 loT 系 统的其他部分交互。

AWS IoT API

使用 HTTP 或 HTTPS 请求构建您的 IoT 应用程序。您可以使用这些 API 操作创建和管理事物、证书、规则及策略。有关更多信息,请参阅《AWS IoT API 参考》中的操作。

AWS SDKs

使用特定语言 APIs构建 AWS IoT Analytics 应用程序。它们 SDKs 封装了 HTTP 和 HTTPS API, 使您能够使用任何支持的语言进行编程。有关更多信息,请参阅<u>AWS SDKs 和工具</u>。

AWS IoT 设备 SDKs

构建在您的设备上运行并向其发送消息的应用程序 AWS IoT Analytics。有关更多信息,请参阅 AWS IoT SDKs。

AWS IoT Analytics 控制台

您可以通过构建组件在 AWS IoT Analytics 控制台中可视化结果。

使用案例

预测性维护

AWS IoT Analytics 提供模板来构建预测性维护模型并将其应用于您的设备。例如,您可以使用 AWS IoT Analytics 来预测联网货运车辆的供暖和冷却系统何时可能出现故障,以便可以重新调整 车辆的路线,以防止货物损坏。或者,汽车制造商可以检测哪些客户的刹车片已磨损并通知他们维 修车辆。

主动补充供应品

AWS IoT Analytics 允许您构建可以实时监控库存的 IoT 应用程序。例如,食品和饮料公司可以分 析食品自动售货机中的数据并在供应不足时主动再订购商品。

过程效率评分

借 AWS IoT Analytics助,您可以构建持续监控不同流程效率的物联网应用程序,并采取措施改进 流程。例如,矿业公司可以通过最大化每次行程的装载量来提高其运矿卡车的效率。借 AWS IoT Analytics助,公司可以确定某个地点或卡车在一段时间内最高效的装载,然后实时比较与目标负载 的任何偏差,并更好地规划领先指导方针以提高效率。

智能农业

AWS IoT Analytics 可以使用 AWS IoT 注册表数据或公共数据源使用上下文元数据丰富物联网设备 数据,以便您的分析考虑时间、位置、温度、海拔和其他环境条件。通过该分析,您可以编写模型 来输出建议设备在现场执行的操作。例如,要确定何时浇水,灌溉系统可使用降雨量数据来丰富湿 度传感器数据,从而更高效地使用水资源。

AWS IoT Analytics 支持终止

经过仔细考虑,我们决定自2025年12月15 AWS IoT Analytics日起终止对它的支持。 AWS IoT Analytics 从 2024 年 7 月 24 日起,将不再接受新客户。如果现有客户拥有在 2024 年 7 月 23 日之前 注册了该服务的账户,则可以继续使用这些 AWS IoT Analytics 功能。2025 年 12 月 15 日之后,您将 无法再使用 AWS IoT Analytics。

随着2025年12月15 end-of-service 日的 AWS IoT Analytics 临近,客户必须了解他们的迁移选项。本 页概述了的关键功能,并将它们映射到用于复制该功能的替代 AWS 服务。 AWS IoT Analytics 通过了 解这些替代服务的功能,客户可以计划和执行平稳的迁移,从而确保他们的 AWS IoT 数据分析工作流 程持续不间断。

主题

- 迁移选项
- 迁移指南

迁移选项

在考虑迁移时 AWS IoT Analytics,重要的是要了解这种转变背后的好处和原因。下表提供了备选选项 和现有 AWS IoT Analytics 功能的映射。

操作	AWS IoT Analytics	替代服务	Reason
收集	AWS IoT Analytics 便 于使用 BatchPutM essage API 直接从 AWS IoT Core 或其他 来源获取数据。这种 集成可确保数据从您 的设备无缝流向分析 平台。	 Amazon Kinesis Data Streams Amazon Data Firehose 	Amazon Kinesis Data Streams 提供 了一个强大的解决方 案。Kinesis 实时传输 数据,实现即时处理 和分析,这对于需要 实时见解和异常检测 的应用至关重要。 Amazon Data Firehose 简化了在流 数据存入 Amazon S3 之前对其进行捕获和

AWS IoT Analytics

操作	AWS IoT Analytics	替代服务	Reason
			转换的过程,可自动 扩展以匹配您的数据 吞吐量。
流程	处理中的数据 AWS IoT Analytics 包括清 理、筛选、转换和使 用外部来源丰富数 据。	 适用于 Apache Flink 的亚马逊托管 服务 Amazon Data Firehose 	Amazon Apache Flink 托管服务支持复杂的 事件处理,例如模式 匹配和聚合,这对于 复杂的场景至关重要 。AWS IoT Analytics Amazon Data Firehose 可以处理更 简单的转换,并且可 以调用 AWS Lambda 函数进行自定义处理 ,从而在不像 Flink 那 样复杂的情况下提供 灵活性。
存储	AWS IoT Analytics 使 用针对数据进行了优 化的时间序列 AWS IoT 数据存储,其中包 括数据保留策略和访 问管理等功能。	 Amazon S3 Amazon Timestrea m 	Amazon S3 提供可 扩展、耐用且经济 实惠的存储解决方 案。Amazon S3 与其 他 AWS 服务的集成使 其成为长期存储和分 析海量数据集的绝佳 选择。 Amazon Timestream 是一个专门构建的时 间序列数据库。您可 以从 Amazon S3 批量 加载数据。

操作	AWS IoT Analytics	替代服务	Reason
分析	AWS IoT Analytics 提供内置 SQL 查询 功能、时间序列分析 以及对托管 Jupyter Notebook 的支持,可 轻松执行高级分析和 机器学习。	 AWS Glue Amazon Athena 	AWS Glue 简化了 ETL 流程,便于提 取、转换和加载数 据,同时还提供了与 Athena 集成的数据目 录以方便查询。 Amazon Athena 更进 一步,允许您直接对 存储在 Amazon S3 中 的数据运行 SQL 查 询,而无需管理任何 基础设施。
可视化	AWS loT Analytics 与 集成 QuickSight,支 持创建丰富的可视化 效果和仪表板。	 Amazon QuickSight 	QuickSight 根据您 决定使用的备用数据 存储继续使用,例如 Amazon S3。

迁移指南

在当前的架构中, AWS IoT 数据 AWS IoT Analytics 通过 AWS IoT Core 规则从流 AWS IoT Core 向 流动。 AWS IoT Analytics 处理摄取、转换和存储。

要完成迁移,请执行两个步骤:

主题

- 步骤 1: 重定向正在进行的数据摄取
- 步骤 2:导出之前摄取的数据
- 对两种模式都运行按需查询
- <u>摘要</u>

步骤 1:重定向正在进行的数据摄取

迁移的第一步是将持续的数据摄取重定向到新服务。我们根据您的具体用例推荐两种模式:

模式 1:亚马逊 Kinesis Data Streams 使用适用于 Apache Flink 的亚马逊托管服务

在这种模式中,您首先发布与 Amazon Kinesis Data Streams 集成的数据,这样您就可以实时收集、 处理和分析大量带宽的数据。 AWS IoT Core

指标和分析

1. 摄取数据: AWS IoT 数据实时输入到 Amazon Kinesis Data Streams 中。Amazon Kinesis Data Streams 可以处理来自数百万 AWS IoT 台设备的高吞吐量数据,从而实现实时分析和异常检测。

- 处理数据:使用适用于 Apache Flink 的亚马逊托管服务来处理、丰富和筛选来自亚马逊 Kinesis Data Streams 的数据。Flink 为复杂的事件处理提供了强大的功能,例如聚合、联接和临时操作。
- 3. 存储数据:Flink 将处理后的数据输出到 Amazon S3 以供存储和进一步分析。然后,可以使用 Amazon Athena 或与其他分析服务集成 AWS 来查询这些数据。

如果您的应用程序涉及高带宽流数据并且需要高级处理(例如模式匹配或窗口),则使用此模式,则此 模式最合适。

模式 2:使用亚马逊 Data Firehose

在这种模式下,数据将发布到 AWS IoT Core与 Amazon Data Firehose 集成,允许您将数据直接存储 在 Amazon S3 中。此模式还支持使用 AWS Lambda进行基本转换。

指标和分析

- 1. 摄取数据: AWS IoT 数据直接从您的设备中提取或导入 AWS IoT Core Amazon Data Firehose。
- 处理数据: Amazon Data Firehose 对数据进行基本的转换和处理,例如格式转换和扩充。您可以 启用 Firehose 数据转换,方法是将其配置为在传送到目标之前调用 AWS Lambda 函数来转换传 入的源数据。
- 3. 存储数据:处理后的数据将以近乎实时的方式传输到 Amazon S3。Amazon Data Firehose 会自动 扩展以匹配传入数据的吞吐量,从而确保可靠、高效的数据交付。

对于需要基本转换和处理的工作负载,请使用此模式。此外,Amazon Data Firehose 还为存储在 Amazon S3 中的数据提供数据缓冲和动态分区功能,从而简化了流程。

步骤 2:导出之前摄取的数据

对于之前提取并存储在中的数据 AWS IoT Analytics,您需要将其导出到 Amazon S3。为了简化此过 程,您可以使用 AWS CloudFormation 模板来自动执行整个数据导出工作流程。您可以使用该脚本进 行部分(基于时间范围)的数据提取。

AWS CloudFormation 用于将数据导出到 Amazon S3 的模板

上图说明了使用 AWS CloudFormation 模板在同一数据 AWS IoT Analytics 存储中创建数据集,从而 允许基于时间戳进行选择的过程。这允许用户在所需的时间范围内检索特定的数据点。此外,还创建了 内容传输规则,用于将数据导出到 Amazon S3 存储桶。

以下步骤说明了这些步骤。

 准备好 AWS CloudFormation 模板并将其另存为 YAML 文件。例如 migratedatasource.yaml。

```
# Cloudformation Template to migrate an AWS IoT Analytics datastore to an external
dataset
AWSTemplateFormatVersion: 2010-09-09
Description: Migrate an AWS IoT Analytics datastore to an external dataset
Parameters:
DatastoreName:
Type: String
Description: The name of the datastore to migrate.
AllowedPattern: ^[a-zA-Z0-9_]+$
TimeRange:
```

```
Type: String
    Description: |
      This is an optional argument to split the source data into multiple files.
      The value should follow the SQL syntax of WHERE clause.
      E.g. WHERE DATE(Item_TimeStamp) BETWEEN '09/16/2010 05:00:00' and '09/21/2010
 09:00:00'.
    Default: ''
 MigrationS3Bucket:
    Type: String
    Description: The S3 Bucket where the datastore will be migrated to.
    AllowedPattern: (?!(^xn--|.+-s3alias$))^[a-z0-9][a-z0-9-]{1,61}[a-z0-9]$
  MigrationS3BucketPrefix:
    Type: String
    Description: The prefix of the S3 Bucket where the datastore will be migrated
 to.
    Default: ''
   AllowedPattern: (^([a-zA-Z0-9.\-_]*\/)*$)|(^$)
Resources:
  # IAM Role to be assumed by the AWS IoT Analytics service to access the external
 dataset
  DatastoreMigrationRole:
    Type: AWS::IAM::Role
    Properties:
      AssumeRolePolicyDocument:
        Version: 2012-10-17
        Statement:
          - Effect: Allow
            Principal:
              Service: iotanalytics.amazonaws.com
            Action: sts:AssumeRole
      Policies:
        - PolicyName: AllowAccessToExternalDataset
          PolicyDocument:
            Version: 2012-10-17
            Statement:
              - Effect: Allow
                Action:
                  - s3:GetBucketLocation
                  - s3:GetObject
                  - s3:ListBucket
                  - s3:ListBucketMultipartUploads
                  - s3:ListMultipartUploadParts
                  - s3:AbortMultipartUpload
                  - s3:PutObject
```

- s3:DeleteObject
Resource:
- !Sub arn:aws:s3:::\${MigrationS3Bucket}
- !Sub arn:aws:s3:::\${MigrationS3Bucket}/
<pre>\${MigrationS3BucketPrefix}*</pre>
This dataset that will be created in the external S3 Export
MigratedDataset:
Type: AWS::IoTAnalytics::Dataset
Properties:
<pre>DatasetName: !Sub \${DatastoreName}_generated</pre>
Actions:
- ActionName: SqlAction
QueryAction:
<pre>SqlQuery: !Sub SELECT * FROM \${DatastoreName} \${TimeRange}</pre>
ContentDeliveryRules:
- Destination:
S3DestinationConfiguration:
Bucket: !Ref MigrationS3Bucket
<pre>Key: !Sub \${MigrationS3BucketPrefix}\${DatastoreName}/!</pre>
<pre>{iotanalytics:scheduleTime}/!{iotanalytics:versionId}.csv</pre>
RoleArn: !GetAtt DatastoreMigrationRole.Arn
RetentionPeriod:
Unlimited: true
VersioningConfiguration:
Unlimited: true

2. 确定需要导出数据的数据存 AWS IoT Analytics 储。在本指南中,我们将使用 名iot_analytics_datastore为的示例数据存储。

Data	stores (1)						C Actions * Cre	ate data store
								< 1 > ©
Ó.	Name	Status	Last message arrival time	Storage information	File format	Created	Last updated	Data partition
5 1	iotanalytics_datastore	⊘ Active	Jun 12, 2024 9:53:08 AM -0400	Service managed	JSON	Jun 11, 2024 1:59:17 PM -0400	Jun 11, 2024 1:59:17 PM -0400	Not enabled

3. 创建或确定要将数据导出到的 Amazon S3 存储桶。在本指南中,我们将使用iot-analyticsexport存储桶。

Account snapshot - updated every 24 hours Storage lans provides visibility into storage usage and activity in	All AWI'S Regions		View Storage L	ens dashboard
eneral purpose buckets Directory buckets				
eneral nurnese buckets (6) into an use	j		C C Copy ARN Empty Delete	Create bucket
eneral purpose buckets (0) mil (analisingiona				
chets are containers for data stored in S3.				
Autorian pur pose our cess (c) inno <u>anna sociale sociale</u> Autorian social in Sa.), Find buckets by name				< 1 >
center of purpose of centers (of min centers advised of the centers of the center	▼ AWS Region	v IAM Access Analyzer	Creation date	< 1 >

- 4. 创建 AWS CloudFormation 堆栈。
 - 导航到 https://console.aws.amazon.com/cloudformation。
 - 单击"创建堆栈",然后选择"使用新资源(标准)"。
 - 上传 migrate-datasource.yaml文件。

are state			
2 cify stack details	Prerequisite - Prepare template		
3	Prepare template Every stack is based on a template. A template is a JSON or YAML file that o	contains configuration information about the AWS resources you want to include	In the stack
4 ew and create	Choose an existing template Upload or choose an existing template.	Use a sample template Choose from our sample template library.	Build from Application Composer Create a template using a visual builder.
	Specify template		
	A template is a JSON or VAML file that describes your stack's resources and Template source Subortin a template generates an Amazon SS TBL when it will be strand	properties.	
	A template is a JSON or YAMIL Rite that desorbes your stack's resources and Template source Selecting a template generates an Amazon S3 URL, where it will be stored. C Amazon S3 URL Provide an Amazon S3 URL to your template.	Upload a template file Upload your template directly to the console.	Sync from Git - new Sync a template from your Git repository.
	A template is a JSON or YAMI, file that desorbes your stack's resources and Template source Selecting a template generates an Amazon SS URL, where it will be stored. Amazon SS URL Provide an Amazon SS URL to your template. Upload a template file Choose file	Upload a template file Upload your template directly to the console.	Sync from Git - new Sync a template from your Git repository.
	A template is a JSON or YAMI, file that desoftles your stack's resources and Template source Selecting a template generates an Amazon SS URL, where it will be stored. C Amazon SS URL Provide an Amazon SS URL to your template. Upload a template file C Choose file Imigrate-datasource.yamI JSON or YAMI, formatted file	Upload a template file Upload your template directly to the console.	Sync from Git - new Sync a template from your Git repository.

- 5. 输入堆栈名称并提供以下参数:
 - DatastoreName:要迁移 AWS IoT Analytics 的数据存储的名称。
 - m@@ igrations3Bucket:存储迁移数据的 Amazon S3 存储桶。
 - M@@ igrationS3 BucketPrefix(可选): Amazon S3 存储桶的前缀。
 - TimeRange(可选):用于筛选正在导出的数据的SQL WHERE子句,允许根据指定的时间范围 将源数据拆分为多个文件。

stack details	Provide a stack name
	Stack name
e stack options	iot-analytics-data-export
	Stack name must be 1 to 128 characters, start with a letter, and only contain alphanumeric characters. Character count: 25/128.
	Parameters Parameters are defined in your template and allow you to input custom values when you create or update a stack.
	DatastoreName The name of the datastore to migrate.
	iotanalytics_datastore
	MigrationS3Bucket The S3 Bucket where the datastore will be migrated to.
	iot-analytics-export
	MigrationS3BucketPrefix The prefix of the S3 Bucket where the datastore will be migrated to.
	Enter String
	TimeRange This is an optional argument to split the source data into multiple files. The value should follow the SQL syntax of WHERE clause. E.g. WHER DATE(Item_TImeStamp) BETWEEN '09/16/2010 05:00:00' and '09/21/2010 09:00:00'.

- 6. 在"配置堆栈选项"屏幕上单击"下一步"。
- 7. 选中复选框以确认创建 IAM 资源,然后单击"提交"。

The following resource(s) require	capabilities: [AWS::IAM::Role]			
This template contains Identity and	Access Management (IAM) resources that m	ht provide entities access to make changes to	your AWS account. Check that you want to create	each of these resources and that
they have the minimum required p	ermissions. Learn more			
I acknowledge that AWS Cloud	Formation might create IAM resources.			

8. 在"事件"选项卡上查看堆栈创建完成情况。

			Delete Updat	te Stack actions 🔻 Creat	e stack 🔻
itack info Events Resour	rces Outputs Parameter	s Template Change sets	Git sync - new		
vents (8)				Detect root cause	C
Q. Search events					0
Timestamp 🔻 🗌	Logical ID	Status	Detailed status	Status reason	
024-06-12 09:59:54 UTC-0400	iot-analytics-data-export	O CREATE_COMPLETE	15	2.*X	
024-06-12 09:59:54 UTC-0400	MigratedDataset	O CREATE_COMPLETE	۰	(17-1)	
024-06-12 09:59:54 UTC-0400	MigratedDataset	CREATE_IN_PROGRESS	51	Resource creation Init	iated
024-06-12 09:59:53 UTC-0400	MigratedDataset	CREATE_IN_PROGRESS	3		
024-06-12 09:59:52 UTC-0400	DatastoreMigrationRole	CREATE_COMPLETE	0	1997 (A. 1997)	
024-06-12 09:59:35 UTC-0400	DatastoreMigrationRole	CREATE_IN_PROGRESS	<u>.</u>	Resource creation Init	iated
024-06-12 09:59:34 UTC-0400	DatastoreMigrationRole	CREATE_IN_PROGRESS	а 2	826) 	
				these belatered	

9. 成功完成堆栈后,导航至 AWS IoT Analytics → 数据集以查看迁移的数据集。

AWS IoT	Analytics > Datasets					
Data	isets (2)					C Actions V Create dataset
						< 1 > @
	Name	Туре	Triggers	Status	Created	Last updated
	iotanalytics_dataset	Query	No trigger has been set yet.	⊘ Active	Jun 11, 2024 1:59:19 PM -0400	Jun 11, 2024 1:59:19 PM -0400
0	iotanalytics_datastore_migrated	Query	No trigger has been set yet.	@ Active	Jun 12, 2024 9:59:53 AM -0400	Jun 12, 2024 9:59:53 AM -0400

10. 选择生成的数据集,然后单击 "立即运行" 导出数据集。

verview		
ataset ARN Info	Created	
n:aws:lotanalytics:us-east-1:276334286713:dataset/lotanalytics_datastore_migrated	Jun 12, 2024 9:59:53 AM -0400	
pe	Last updated	
uery	Jun 12, 2024 9:59:53 AM -0400	
atus		
) Active		

11. 可以在数据集的内容选项卡上查看内容。

tanalytics_datastore_migrate	ed			Run now Delete
Dverview				
lataset ARN Info Innawsiotanalyticsus-east-1:276334286713:dataset/iot/ (ype Query Status ⊘ Active	analytics_datastore_migrated	Created Jun 12, 2024 10:21:26 AM -0400 Last updated Jun 12, 2024 10:21:26 AM -0400		
Details Content Schedule Dataset com	tent retention settings Dataset conter	nt delivery rules Tags		
Details Content Schedule Dataset com	tent retention settings Dataset conter	nt delivery rules Tags		C Actions ¥
Details Content Schedule Dataset com	tent retention settings Dataset conter	nt delivery rules Tags	Status	C Actions * < 1 > @ Duration

12. 最后,通过在 Amazon S3 控制台中打开iot-analytics-export存储桶来查看导出的内容。

Objects (1) Info	C	Copy S3 URI	Copy URL	Download	Open [2]	Delete	Actions v	Create folder	P Uploa
Objects are the fundamental en	tities stored in Amazon 53. You can use Amaz	on S3 inventory 🔀 to get a list of	f all objects in your buck	et. For others to access yo	our objects, you'll nee	ed to explicitly gr	ant them permissions	s Learn more 🗹	
Q Find objects by prefix]							< 1 >
Name Name	🔺 Туре	~	Last modified		▼ Size		⊽	Storage class	
102e15e7- fafder565b0e csv	433- CSV		June 12, 2024, 1	2:00:28 (UTC-04:00)			3.8 MB	Standard	

对两种模式都运行按需查询

当您将 AWS IoT Analytics 工作负载迁移到亚马逊 Kinesis Data Streams 或 Amazon Data Firehose 时,利用和 AWS Glue 亚马逊 Athena 可以进一步简化您的数据分析流程。 AWS Glue 简化了数据准备和转换,而 Amazon Athena 则支持对您的数据进行快速、无服务器的查询。它们共同为分析 AWS IoT 数据提供了强大、可扩展且经济实惠的解决方案。

摘要

将您的 AWS IoT Analytics 工作负载从迁移 AWS IoT Analytics 到 Amazon Kinesis Data Streams、Amazon S3,并增强您处理大规模、 AWS IoT 复杂数据的能力。该架构提供可扩展、耐用 的存储和强大的分析功能,使您能够实时从物联网数据中获得更深入的见解。

清理使用创建的资源 AWS CloudFormation 对于在迁移完成后避免意外成本至关重要。

有关数据迁移所涉及的费用,请参阅 AWS IoT Analytics <u>定价页面</u>。请考虑在完成后删除新创建的数据 集,以避免任何不必要的开支。

完整数据集导出:要在不进行任何基于时间的拆分的情况下导出完整的数据集,您还可以使用 AWS loT Analytics 控制台并相应地设置内容交付规则。

通过遵循迁移指南,您可以无缝过渡数据摄取和处理管道,从而确保持续可靠的数据流。利用 AWS Glue 和 Amazon Athena 进一步简化了数据准备和查询,使您无需管理任何基础设施即可执行复杂的 分析。

这种方法使您能够有效地扩大 AWS IoT Analytics 工作规模,从而更轻松地适应不断增长的业务需求, 并从 AWS IoT 数据中获得最大价值。

入门 AWS IoT Analytics (控制台)

使用本教程创建所需的 AWS IoT Analytics 资源(也称为组件),以发现有关物联网设备数据的有用见 解。

🚺 备注

- 如果您在以下教程中输入大写字符,则 AWS IoT Analytics 会自动将其更改为小写字符。
- AWS IoT Analytics 控制台具有一键入门功能,用于创建频道、管道、数据存储和数据集。 登录 AWS IoT Analytics 控制台后即可找到此功能。
 - 本教程将引导您完成创建 AWS IoT Analytics 资源的每个步骤。

按照以下说明创建 AWS IoT Analytics 频道、管道、数据存储和数据集。本教程还向您展示了如何使用 AWS IoT Core 控制台发送要采集到 AWS IoT Analytics的消息。

主题

- 登录 AWS IoT Analytics 控制台
- 创建通道
- 创建数据存储
- <u>创建管道</u>
- 创建数据集
- 使用发送消息数据 AWS IoT
- 查看 AWS IoT 消息的进度
- 访问查询结果
- 探索您的数据
- 笔记本模板

登录 AWS IoT Analytics 控制台

要开始使用,您必须有一个 AWS 帐户。如果您已经有一个 AWS 帐户,请导航到<u>https://</u> console.aws.amazon.com/iotanalytics/。 如果您没有 AWS 帐户,请按照以下步骤创建一个。

创建 AWS 账户

- 1. 打开https://portal.aws.amazon.com/billing/注册。
- 2. 按照屏幕上的说明操作。

在注册时,将接到电话,要求使用电话键盘输入一个验证码。

当您注册时 AWS 账户,就会创建AWS 账户根用户一个。根用户有权访问该账户中的所有 AWS 服务 和资源。作为最佳安全实践,请为用户分配管理访问权限,并且只使用根用户来执行<u>需要根</u>用户访问权限的任务。

3. 登录 AWS Management Console 并导航到https://console.aws.amazon.com/iotanalytics/。

创建通道

通道收集并存档未处理的、非结构化的原始 IoT 设备数据。按照以下步骤创建您的通道。

创建通道

 在 "<u>https://console.aws.amazon.com/iotanalytics/</u>准备数据 AWS IoT Analytics" 部分中,选择查看 频道。

也可以从导航窗格中选择 通道。

- 2. 在 Channels (通道) 页面上,选择 Create channel (创建通道)。
- 3. 在指定通道详情页面上,输入有关通道的详细信息。
 - a. 输入唯一且易于识别的通道名称。
 - b. (可选)在标签中,将一个或多个自定义标签(键值对)添加到通道中。标签有助于标识您为 AWS IoT Analytics创建的资源。
 - c. 选择下一步。
- 4. AWS IoT Analytics 将未经处理的原始物联网设备数据存储在亚马逊简单存储服务 (Amazon S3) 存储桶中。您可以选择自己的 Amazon S3 存储桶,您可以访问和管理该存储桶,AWS IoT Analytics 也可以为您管理 Amazon S3 存储桶。
 - a. 在本教程中,对于存储类型,选择服务托管存储。
 - b. 对于选择原始数据的存储时间,选择无限期。
 - c. 选择下一步。
- 5. 在配置源页面上,输入 AWS IoT Analytics 要从中收集消息数据的信息 AWS IoT Core。
 - a. 输入 AWS IoT Core 主题筛选条件,例如update/environment/dht1。在本教程的后面部 分,您将使用此主题筛选条件向通道发送消息数据。
 - b. 在 IAM 角色 区域中,选择 新建。在 创建新角色窗口中,输入角色的 名称,然后选择 创建角
 色。这会自动创建附加了相应策略的角色。
 - c. 选择下一步。
- 6. 检查您的选择,然后选择创建渠道。
- 7. 确认您的新通道显示在通道页面上。

创建数据存储

数据存储接收并存储您的消息数据。数据存储不是数据库。相反,数据存储是 Amazon S3 存储桶中可 扩展且可查询的存储库。您可以为来自不同设备或位置的消息使用多个数据存储。或者,您可以根据管 道配置和要求筛选消息数据。

按照以下步骤创建数据存储。

创建数据存储

 在<u>https://console.aws.amazon.com/iotanalytics/</u>准备数据使用 AWS IoT Analytics部分中,选择查 看数据存储。

- 2. 在数据存储页面上,选择创建数据存储。
- 3. 在指定数据存储详细信息页面上,输入数据存储相关的基本信息。
 - a. 在数据存储 ID 中,输入唯一的数据存储 ID。该 ID 在创建后无法更改。
 - b. (可选)对于标签,选择添加新标签,将一个或多个自定义标签(键值对)添加到数据存储 中。标签有助于标识您为 AWS IoT Analytics创建的资源。

c. 选择下一步。

- 4. 在配置存储类型页面上,指定如何存储数据。
 - a. 对于存储类型,选择服务托管存储。
 - b. 对于配置要保留已处理数据的时间,选择无限期。
 - c. 选择下一步。
- 5. AWS IoT Analytics 数据存储支持 JSON 和 Parquet 文件格式。对于数据存储数据格式,请选择 JSON 或 Parquet。有关 AWS IoT Analytics 支持的文件类型的更多信息,请参阅 文件格式。

选择下一步。

 (可选) AWS IoT Analytics 支持数据存储中的自定义分区,因此您可以查询已修剪的数据以缩短 延迟。有关支持的自定义分区的更多信息,请参阅自定义分区。

选择下一步。

- 7. 检查您的选择,然后选择 创建数据存储。
- 8. 确认新数据存储显示在数据存储页面上。

创建管道

您必须创建一个管道,将通道连接到数据存储。基本管道仅指定收集数据的通道,并标识消息发送到的 数据存储。有关更多信息,请参阅管道活动。

在本教程中,您将创建一个仅将通道连接到数据存储的管道。以后,您可以引入管道活动来处理此数 据。

执行以下步骤创建管道。

创建管道

 在<u>https://console.aws.amazon.com/iotanalytics/</u>准备数据使用 AWS IoT Analytics部分中,选择查 看管道。

🚺 Tip

也可以从导航窗格中选择 管道。

- 2. 在 管道 页面上,选择 创建管道。
- 3. 输入有关管道的详细信息。
 - a. 在设置管道 ID 和源中,输入管道名称。
 - b. 选择管道的来源,这是您的管道将从中读取消息的 AWS loT Analytics 渠道。
 - c. 指定管道的输出,即存储已处理消息数据的数据存储。
 - d. (可选)在标签中,将一个或多个自定义标签(键值对)添加到管道中。
 - e. 在推断消息属性页面上,输入属性名称和示例值,从列表中选择数据类型,然后选择添加属 性。
 - f. 对所需数量的属性重复上一步操作,然后选择下一步。
 - g. 现在您不会添加任何管道活动。在丰富、转换和筛选消息页面上,选择下一步。
- 4. 检查您的选择,然后选择 创建管道。
- 5. 确认您的新管道显示在管道页面上。

Note

您创建 AWS IoT Analytics 资源是为了让它们可以执行以下操作:

- 使用通道收集未处理的原始 IoT 设备消息数据。
- 将您的 IoT 设备消息数据存储在数据存储中。
- 使用管道清理、筛选、转换和丰富数据。

接下来,您将创建一个 AWS IoT Analytics SQL 数据集,以发现有关您的物联网设备的有用见 解。

创建数据集

Note

数据集通常是数据的集合,这些数据可能以表格形式呈现,也可能不以表格形式呈现。相比之 下,通过对数据存储中的数据应用 SQL 查询来 AWS IoT Analytics 创建数据集。

您现在具有一个通道以将原始消息数据路由到管道,该管道将数据存储在数据存储以对其进行查询。 要查询数据,您需要创建一个数据集。数据集包含用于查询数据存储的 SQL 语句和表达式,以及在您 指定的日期和时间重复该查询的可选计划。您可以使用类似于 <u>Amazon CloudWatch 计划表达式的表达</u> 式来创建可选计划。

创建数据集

- 1. 在的https://console.aws.amazon.com/iotanalytics/左侧导航窗格中,选择数据集。
- 2. 在创建数据集页面上,选择创建 SQL。
- 3. 在指定数据集详细信息页面上,指定数据集的详细信息。
 - a. 输入数据集的名称。
 - b. 对于数据存储源,选择用于标识先前所创建数据存储的唯一 ID。
 - c. (可选)在标签中,将一个或多个自定义标签(键值对)添加到数据集中。
- 4. 使用 SQL 表达式查询数据并回答分析问题。您的查询结果存储在此数据集中。
 - a. 在作者查询字段中,输入使用通配符显示最多五行数据的 SQL 查询。

SELECT * FROM my_data_store LIMIT 5

有关中支持的 SQL 功能的更多信息 AWS loT Analytics,请参见<u>中的 SQL 表达式 AWS loT</u> <u>Analytics</u>。

b. 您可以选择测试查询来验证您的输入是否正确,并在查询后以表格显示结果。

Note

在本教程中,此时您的数据存储可能为空。在空数据存储上运行 SQL 查询不会返回结果,因此您可能只会看到 ___dt。

您必须小心地将 SQL 查询限制为合理的大小以免长时间运行,因为 Athena 限制了
 运行的最大查询数。因此,必须小心地将 SQL 查询限制为合理的大小。

我们建议测试期间在查询中使用 LIMIT 子句。测试成功后,您可以删除此子句。

 (可选)使用指定时间范围内的数据创建数据集内容时,某些数据可能无法及时送达处理。要允许 延迟,可指定偏移量或增量。有关更多信息,请参阅 通过 Amazon Ev CloudWatch ents 获取延迟 数据通知。

此时无需配置数据选择筛选条件。在配置数据选择筛选条件页面上,选择下一步。

6. (可选)您可以安排定期运行此查询以刷新数据集。您可随时创建和编辑数据集计划。

此时,您不会计划定期运行查询,因此,在设置查询计划页面上选择下一步。

 AWS IoT Analytics 将创建此数据集内容的版本并存储指定时间段内的分析结果。我们建议 90 天,但您可以选择设置自定义保留策略。您也可限制数据集内容存储版本的数量。

您可以将默认数据集保留期限设置为无限期,并禁用版本控制。在 配置分析结果 页面上,选择 下 一步。

8. (可选)您可通过配置数据集结果传送规则,将其传送到特定目的地,例如 AWS loT Events。

您不会在本教程的其他地方传送结果,因此在配置数据集内容传送规则页面上,选择下一步。

9. 检查您的选择,然后选择创建数据集。

10. 确认您的新数据集显示在数据集页面上。

使用发送消息数据 AWS IoT

如果您具有一个通道以将数据路由到管道,该管道将数据存储在数据存储以在其中对其进行查询,则 可以将 IoT 设备数据发送到 AWS IoT Analytics。您可以使用以下选项 AWS IoT Analytics 将数据发送 到:

- 使用 AWS IoT 消息代理。
- 使用 AWS IoT Analytics <u>BatchPutMessage</u> API 操作。

在以下步骤中,您将从 AWS IoT Core 控制台中的 AWS IoT 消息代理发送消息数据, AWS IoT Analytics 以便接收这些数据。

Note

在为消息创建主题名称时,请注意以下几点:

- 主题名称不区分大小写。同一负载中名为 example 和 EXAMPLE 的字段被视为重复字段。
- 主题名称不能以 \$ 字符开头。以 \$ 开头的主题均为只能由 AWS IoT使用的预留主题。
- 请勿在主题名称中包含个人身份信息,因为这些信息可能会出现在未加密的通信和报告中。
- AWS IoT Core 无法在 AWS 账户或 AWS 地区之间发送消息。

使用发送消息数据 AWS IoT

- 1. 登录 AWS loT 控制台。
- 2. 在导航窗格中选择测试,然后选择MQTT测试客户端。
- 3. 在 MQTT 测试客户端 中,选择 发布到主题。
- 对于主题名称,请输入与通道创建时输入的主题筛选条件相匹配的名称。此示例使用 update/ environment/dht1。
- 5. 在消息负载部分中,输入以下 JSON 内容。

```
{
    "thingid": "dht1",
    "temperature": 26,
    "humidity": 29,
    "datetime": "2018-01-26T07:06:01"
}
```

- 6. (可选)选择添加配置以获取其他消息协议选项。
- 7. 选择发布。

这会发布一条由您的通道捕获的消息。然后,您的管道会将消息路由到数据存储。

查看 AWS loT 消息的进度

您可以按照以下步骤检查消息是否提取到您的通道中。

查看 AWS loT 消息的进度

1. 登录到 https://console.aws.amazon.com/iotanalytics/。

- 2. 在导航窗格中,选择通道,然后选择您此前创建的通道名称。
- 在通道的详细信息页面上,向下滚动到监控部分,然后调整显示的时间范围 (1h 3h 12h 1d 3d 1w)。选择一个值(例如 1w)以查看上周的数据。

您可以使用类似的功能在管道的详细信息页面上监控管道活动运行时和错误。在本教程中,您尚未将活 动指定为管道的一部分,因此不应看到任何运行时错误。

监控管道活动

- 1. 在导航窗格中,选择管道,然后选择先前所创建管道的名称。
- 在管道的详细信息页面上,向下滚动到监控部分,然后通过选择一个时间范围指示符 (1h 3h 12h 1d 3d 1w)来调整显示的时间范围。

访问查询结果

数据集内容是 CSV 格式的文件,其中包含查询结果。

- 1. 在的https://console.aws.amazon.com/iotanalytics/左侧导航窗格中,选择数据集。
- 2. 在 数据集 页面上,选择您以前创建的数据集的名称。
- 3. 在数据集信息页面上,在右上角选择立即运行。
- 4. 要检查数据集是否已准备就绪,请在数据集下方查看一条类似于您已成功启动数据集查询的消息。数据集内容选项卡包含查询结果并显示已成功。
- 要预览成功查询的结果,请在数据集内容选项卡上,选择查询名称。选择下载 来查看或保存包含查 询结果的 CSV 文件。

Note

AWS IoT Analytics 可以将 Jupyter 笔记本的 HTML 部分嵌入到数据集内容页面上。有关更 多信息,请参阅 使用控制台可视化 AWS IoT Analytics 数据。

探索您的数据

您可以通过多种方法存储、分析和可视化数据。

Amazon Simple Storage Service

您可以将数据集内容发送到 Amazon S3 存储桶,从而允许与现有数据湖集成

在一起,或者从内部应用程序和可视化工具中进行访问。参见<u>CreateDataset</u>操

作contentDeliveryRules::destination::s3DestinationConfiguration中的字段。 AWS IoT Events

您可以将数据集内容作为输入发送到该服务 AWS IoT Events,该服务使您能够监控设备或进程的 故障或操作变化,并在此类事件发生时启动其他操作。

为此,请使用<u>CreateDataset</u>操作创建数据集并在字段中指定 AWS IoT Events 输入contentDeliveryRules :: destination :: iotEventsDestinationConfiguration :: inputName。您还必须指定角色的roleArn, 该角色授予运行 AWS IoT Analytics 权限iotevents:BatchPutMessage。每当创建数据集内 容时,都会 AWS IoT Analytics 将每个数据集内容条目作为消息发送到指定的 AWS IoT Events 输 入。例如,如果您的数据集包含以下内容。

```
"what","who","dt"
"overflow","sensor01","2019-09-16 09:04:00.000"
"overflow","sensor02","2019-09-16 09:07:00.000"
"underflow","sensor01","2019-09-16 11:09:00.000"
...
```

然后 AWS IoT Analytics 发送包含以下字段的消息。

{ "what": "overflow", "who": "sensor01", "dt": "2019-09-16 09:04:00.000" }

{ "what": "overflow", "who": "sensor02", "dt": "2019-09-16 09:07:00.000" }

您需要创建一个可识别您感兴趣的字段(、中的一个或多个dt)的 AWS IoT Events 输入 whatwho,并创建一个 AWS IoT Events 检测器模型,该模型在事件中使用这些输入字段来触发操 作或设置内部变量。

Jupyter Notebook

<u>Jupyter Notebook</u> 是使用脚本语言运行临时数据探索和高级分析的开源解决方案。您可以深入研究 并应用更复杂的分析,并对 IoT 设备数据使用机器学习方法,例如用于预测的 k 均值集群和回归模 型。 AWS IoT Analytics 使用 Amazon SageMaker AI 笔记本实例托管其 Jupyter 笔记本电脑。在创建笔 记本实例之前,您必须在 AWS IoT Analytics 和 Amazon A SageMaker I 之间创建关系:

- 1. 导航到 A SageMaker I 控制台并创建笔记本实例:
 - a. 填写详细信息,然后选择 Create a new role (创建新角色)。记录角色 ARN。
 - b. 创建笔记本实例。
- 2. 前往 IAM 控制台并修改 SageMaker AI 角色:
 - a. 打开角色。它应该具有一个托管策略。
 - b. 选择添加内联策略,对于服务,选择 iotAnalytics。选择 选择操作,然后在搜索框中键入
 GetDatasetContent并选择它。选择 Review Policy(查看策略)。
 - c. 检查策略的准确性,为其输入名称,然后选择 创建策略。

这为新创建的角色提供了从中读取数据集的权限 AWS loT Analytics。

- 返回并在左侧导航窗格中选择 "笔记本"。<u>https://console.aws.amazon.com/iotanalytics/</u>在笔记本页面上,选择创建笔记本。
- 2. 在选择模板页面上,选择 loTA 空白模板。
- 在设置笔记本页面上,为笔记本输入名称。在选择数据集源中,选中,然后选择您之前创建 的数据集。在选择笔记本实例中,选择您在 SageMaker AI 中创建的笔记本实例。
- 4. 查看您的选择后,选择创建笔记本。
- 5. 在笔记本页面上,您的笔记本实例将在 Amazon A SageMaker I 控制台中打开。

笔记本模板

AWS IoT Analytics 笔记本模板包含 AWS 创作的机器学习模型和可视化效果,可帮助您开始 AWS IoT Analytics 使用案例。您可以使用这些笔记本模板来了解更多信息,也可以重复使用它们来适应 IoT 设 备数据并提供即时值。

您可以在 AWS IoT Analytics 控制台中找到以下笔记本模板:

- 检测情境异常 使用泊松指数加权移动平均 (PEWMA) 模型, 在测得的风速中应用情境异常检测。
- 太阳能电池板输出预测 应用分段、季节性、线性时间序列模型来预测太阳能电池板的输出。
- 喷气发动机的预测性维护 应用多变量长短期记忆 (LSTM) 神经网络和逻辑回归来预测喷气发动机故障。
- 智能家居客户细分 应用 K 均值和主成分分析法 (PCA) 分析,从智能家居使用数据中发现不同客户 群。
- 智能城市拥堵预测 应用 LSTM 预测城市主干道的利用率。
- 智能城市空气质量预测 应用 LSTM 预测城市中心区的颗粒物污染情况。

入门 AWS IoT Analytics

本节讨论您用来收集、存储、处理和查询设备数据的基本命令 AWS IoT Analytics。此处显示的示例 使用 AWS Command Line Interface (AWS CLI)。有关更多信息 AWS CLI,请参阅《<u>AWS Command</u> <u>Line Interface 用户指南》</u>。有关可用的 CLI 命令的更多信息 AWS IoT,请参阅《AWS Command Line Interface 参考资料》中的 i <u>o</u> t。

Important

使用aws iotanalytics命令与 AWS loT Analytics 使用进行交互 AWS CLI。使用 AWS CLI,通过 aws iot命令 与 loT 系统的其他部分交互。

Note

在以下示例中输入 AWS IoT Analytics 实体(频道、数据集、数据存储和管道)的名称时,请 注意,系统会自动将您使用的任何大写字母更改为小写字母。实体的名称必须以小写字母开 头,并且只能包含小写字母、下划线和数字。

创建通道

通道收集并存档未处理的原始消息数据,然后再将该数据发布到管道。传入消息将发送到通道,因此, 第一步是为数据创建通道。

aws iotanalytics create-channel --channel-name mychannel

如果您想将 AWS IoT 消息收录到该频道 AWS IoT Analytics,则可以创建 AWS IoT 规则引擎规则,将 消息发送到此频道。这将在后面的 <u>正在将数据摄取到 AWS IoT Analytics</u> 中显示。将数据传入频道的 另一种方法是使用 AWS IoT Analytics 命令BatchPutMessage。

列出您已经创建的通道:

aws iotanalytics list-channels

获取有关通道的更多信息。

aws iotanalytics describe-channel --channel-name mychannel

未处理的频道消息存储在由您管理的 Amazon S3 存储桶或您管理的 AWS IoT Analytics Amazon S3 存储桶中。可以使用 channelStorage 参数指定相应的存储桶。默认设置是服务管理的 Amazon S3 存储桶。如果您选择将频道消息存储在您管理的 Amazon S3 存储桶中,则必须授予 AWS IoT Analytics 权限才能代表您对您的 Amazon S3 存储桶执行以下操作:s3:GetBucketLocation(验证存储桶位置)s3:PutObject(存储)、s3:GetObject(读取)、s3:ListBucket(重新处理)。

Example

```
{
    "Version": "2012-10-17",
    "Id": "MyPolicyID",
    "Statement": [
        {
            "Sid": "MyStatementSid",
            "Effect": "Allow",
            "Principal": {
                 "Service": "iotanalytics.amazonaws.com"
            },
            "Action": [
                "s3:GetObject",
                "s3:GetBucketLocation",
                "s3:ListBucket",
                "s3:PutObject"
            ],
            "Resource": [
                "arn:aws:s3:::my-iot-analytics-bucket",
                "arn:aws:s3:::my-iot-analytics-bucket/*"
            ]
        }
    ]
}
```

如果更改客户管理的通道存储的选项或权限,您可能需要重新处理通道数据,以确保以前提取的数据包 含在数据集内容中。请参阅重新处理通道数据。

创建数据存储

数据存储接收并存储您的消息。数据存储不是数据库,但它是一个可扩展且可查询的消息存储库。您可以创建多个数据存储来存储来自不同设备或位置的消息,也可以使用单个数据存储来接收所有 AWS IoT 消息。

aws iotanalytics create-datastore --datastore-name mydatastore

列出您已经创建的数据存储。

aws iotanalytics list-datastores

获取有关数据存储的更多信息。

aws iotanalytics describe-datastore --datastore-name mydatastore

亚马逊 S3 AWS IoT Analytics 资源政策

您可以将处理过的数据存储消息存储在由您管理的 Amazon S3 存储桶 AWS IoT Analytics 或您管理的 Amazon S3 存储桶中。创建数据存储时,使用 datastoreStorage API 参数选择所需的 Amazon S3 存储桶。默认设置是服务管理的 Amazon S3 存储桶。

如果您选择将数据存储消息存储在您管理的 Amazon S3 存储桶中,则必须授予您在 Amazon S3 存储 桶上执行以下操作的 AWS IoT Analytics 权限:

- s3:GetBucketLocation
- s3:PutObject
- s3:DeleteObject

如果您使用数据存储作为 SQL 查询数据集的来源,请设置一个 Amazon S3 存储桶策略,授予对存储 段内容调用 Amazon Athena 查询的 AWS IoT Analytics 权限。

Note

我们建议在存储桶策略中指定 aws:SourceArn,以免出现混淆代理安全问题。这通过仅允许 来自指定账户的请求来限制访问。有关混淆代理问题的更多信息,请参阅<u>the section called "防</u> 止跨服务混淆座席"。 以下是授予所需权限的示例存储桶策略。

```
{
    "Version": "2012-10-17",
    "Id": "MyPolicyID",
    "Statement": [
        {
            "Sid": "MyStatementSid",
            "Effect": "Allow",
            "Principal": {
                "Service": "iotanalytics.amazonaws.com"
            },
            "Action": [
                "s3:GetBucketLocation",
                "s3:GetObject",
                "s3:ListBucket",
                "s3:ListBucketMultipartUploads",
                "s3:ListMultipartUploadParts",
                "s3:AbortMultipartUpload",
                "s3:PutObject",
                "s3:DeleteObject"
            ],
            "Resource": [
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
            ],
            "Condition": {
                "ArnLike": {
                    "aws:SourceArn": [
                         "arn:aws:iotanalytics:us-east-1:123456789012:dataset/DOC-
EXAMPLE-DATASET",
                         "arn:aws:iotanalytics:us-east-1:123456789012:datastore/DOC-
EXAMPLE-DATASTORE"
                    ]
                }
            }
        }
    ]
}
```

有关更多信息,请参阅《Amazon Athena 用户指南》中的<u>"跨账户访问"</u>。

Note

此外,如果更新客户管理的数据存储的选项或权限,您可能需要重新处理通道数据,以确保以 前提取的数据包含在数据集内容中。有关更多信息,请参阅重新处理通道数据。

文件格式

AWS IoT Analytics 数据存储目前支持 JSON 和 Parquet 文件格式。默认文件格式为 JSON。

- JSON (JavaScript 对象表示法) -一种支持名称-值对和有序值列表的文本格式。
- Apache Parquet 一种列式存储格式,用于高效存储和查询大量数据。

要配置 AWS IoT Analytics 数据存储的文件格式,可以在创建数据存储时使用 该FileFormatConfiguration对象。

fileFormatConfiguration

包含文件格式的配置信息。 AWS IoT Analytics 数据存储支持 JSON 和 Parquet。

默认文件格式为 JSON。只能指定一种格式。创建数据存储后,无法更改文件格式。 jsonConfiguration

包含 JSON 格式的配置信息。

parquetConfiguration

包含 Parquet 格式的配置信息。

schemaDefinition

定义架构所需的信息。

columns

指定存储数据的一个或多个列。

每个架构最多可有 100 列。每列最多可有 100 种嵌套类型。

name

列的名称。

长度限制:1-255个字符。

type

数据的类型。有关受支持的数据类型的更多信息,请参阅《AWS Glue 开发人员指 南》中的常见数据类型。

长度限制:1-131072个字符。

AWS IoT Analytics 支持 <u>Amazon Athena 数据类型</u>页面上列出的所有数据类型,但-除 外。DECIMAL(*precision, scale*) *precision*

创建数据存储(控制台)

以下步骤说明如何创建以 Parquet 格式保存数据的数据存储。

创建数据存储

- 1. 登录到 https://console.aws.amazon.com/iotanalytics/。
- 2. 在导航窗格中,选择数据存储。
- 3. 在数据存储页面上,选择创建数据存储。
- 4. 在指定数据存储详细信息页面上,输入数据存储相关的基本信息。
 - a. 在数据存储 ID 中,输入唯一的数据存储 ID。该 ID 在创建后无法更改。
 - b. (可选)对于标签,选择添加新标签,将一个或多个自定义标签(键值对)添加到数据存储 中。标签有助于标识您为 AWS IoT Analytics创建的资源。
 - c. 选择下一步。
- 5. 在配置存储类型页面上,指定如何存储数据。
 - a. 对于存储类型,选择服务托管存储。
 - b. 对于配置要保留已处理数据的时间,选择无限期。
 - c. 选择 下一步。
- 在配置数据格式页面上,定义数据记录的结构和格式。
 - a. 对于 分类,选择 Parquet。创建数据存储后,无法更改该格式。
 - b. 对于推理源,请为您的数据存储选择 JSON 字符串。
 - c. 对于字符串,请以 JSON 格式输入您的架构,如下例所示。

```
{
    "device_id": "0001",
    "temperature": 26,
    "humidity": 29,
    "datetime": "2018-01-26T07:06:01"
}
```

- d. 选择推断架构。
- e. 在配置 Parquet 架构下,确认格式与 JSON 示例相匹配。如果格式不匹配,请手动更新 Parquet 架构。
 - 如果希望架构显示更多列,请选择添加新列,输入列名,然后选择数据类型。

Note

默认情况下,您的架构可以有 100 列。有关更多信息,请参阅 <u>AWS loT</u> Analytics 配额。

您可以更改现有列的数据类型。有关受支持的数据类型的更多信息,请参阅《AWS Glue 开发人员指南》中的常见数据类型。

Note 创建数据存储后,无法更改现有列的数据类型。

- 要删除现有列,请选择移除列。
- f. 选择下一步。
- (可选) AWS IoT Analytics 支持数据存储中的自定义分区,因此您可以查询经过修剪的数据以缩 短延迟。有关支持的自定义分区的更多信息,请参阅自定义分区。

选择 下一步。

8. 在 查看和创建 页面上,查看您的选择,然后选择 创建数据存储。

创建数据存储后,无法更改列的数据存储 ID、文件格式或数据类型。

9. 确认新数据存储显示在数据存储页面上。

用户指南

自定义分区

AWS IoT Analytics 支持数据分区,因此您可以整理数据存储中的数据。使用数据分区来组织数据时,可以查询已清理的数据。这减少了每次查询扫描的数据量并减少了延迟。

您可根据消息数据属性或通过管道活动添加的属性,对数据进行分区。

首先,启用数据存储中的数据分区。指定一个或多个数据分区维度,并将分区后的数据存储连接到 AWS IoT Analytics 管道。然后,编写利用 WHERE 子句优化性能的查询。

创建数据存储(控制台)

下面的过程演示如何使用自定义分区来创建数据存储。

创建数据存储

- 1. 登录 AWS IoT Analytics 控制台。
- 2. 在导航窗格中,选择数据存储。
- 3. 在数据存储页面上,选择创建数据存储。
- 4. 在指定数据存储详细信息页面上,输入数据存储相关的基本信息。
 - a. 在数据存储 ID 中,输入唯一的数据存储 ID。该 ID 在创建后无法更改。
 - b. (可选)对于标签,选择添加新标签,将一个或多个自定义标签(键值对)添加到数据存储 中。标签可以帮助您识别为其创建的资源 AWS IoT Analytics。
 - c. 选择下一步。
- 5. 在配置存储类型页面上,指定如何存储数据。
 - a. 对于存储类型,选择服务托管存储。
 - b. 对于配置要保留已处理数据的时间,选择无限期。
 - c. 选择 下一步。
- 6. 在配置数据格式页面上,定义数据记录的结构和格式。
 - a. 对于数据存储数据格式分类,选择 JSON 或 Parquet。有关 AWS IoT Analytics 支持的文件类型的更多信息,请参阅文件格式。

Note

创建数据存储后,无法更改该格式。

- b. 选择 下一步。
- 7. 为此数据存储创建自定义分区。
 - a. 对于添加数据分区,选择启用。
 - b. 对于数据分区源,请指定分区源相关的基本信息。

选择 Samp le sour ce, 然后选择为此数据存储收集消息的 AWS loT Analytics 渠道。

c. 在消息示例属性中,选择要用于对数据存储进行分区的消息属性。接下来,将您的选择添加 为操作下的属性分区维度或时间戳分区维度。

Note您只能将一个时间戳分区添加到数据存储中。

- d. 对于自定义数据存储分区维度,请定义有关分区维度的基本信息。您在上一步中选择的每个消息示例属性都将成为分区的维度。使用以下选项自定义每个维度:
 - 分区类型 指定此分区维度是属性还是时间戳分区类型。
 - 属性名称和维度名称-默认情况下, AWS IoT Analytics 将使用您选择的消息样本属性的 名称作为属性分区维度的标识符。编辑属性名称以自定义分区维度的名称。您可以使用 WHERE 子句中的维度名称来优化查询性能。
 - 任何分区属性维度的名称均带有 __partition_ 前缀。
 - 对于时间戳分区类型, AWS IoT Analytics 创建以下四个维度___year, 名称 为、___month___day、___hour。
 - 排序 重新排列分区维度以缩短查询的延迟。

对于时间戳格式,请通过匹配消息数据中提取的时间戳来指定时间戳分区的格式。您可以从 AWS IoT Analytics 列出的格式选项中选择一个,也可以指定一个与您的数据格式相匹配的选 项。详细了解如何指定日期时间格式化程序。

要添加不是消息属性的新维度,请选择 添加新分区。

- e. 选择下一步。
- 8. 在 查看和创建 页面上,查看您的选择,然后选择 创建数据存储。

Important

- 创建数据存储后,无法更改数据存储 ID。
- 要编辑现有分区,必须创建另一个数据存储并通过管道重新处理数据。
- 9. 确认新数据存储显示在数据存储页面上。

创建管道

管道使用来自通道的消息,并在将消息存储在数据存储之前允许您处理和筛选消息。要将通道连接到数 据存储,请创建一个管道。最简单的管道除了指定收集数据的通道和标识将向其发送消息的数据存储之 外,不包含任何其他活动。有关更复杂管道的信息,请参阅管道活动。

在开始时,我们建议您创建一个管道,该管道仅将通道连接到数据存储,而不执行任何其他操作。然 后,在确认原始数据流到数据存储后,您可以引入额外的管道活动以处理该数据。

运行以下命令以创建管道。

```
aws iotanalytics create-pipeline --cli-input-json file://mypipeline.json
```

mypipeline.json 文件包含以下内容。

```
{
    "pipelineName": "mypipeline",
    "pipelineActivities": [
        {
            "channel": {
                "name": "mychannelactivity",
                "channelName": "mychannel",
                "next": "mystoreactivity"
            }
        },
        {
            "datastore": {
                "name": "mystoreactivity",
                 "datastoreName": "mydatastore"
            }
        }
    ٦
```

}

运行以下命令可列出现有管道。

aws iotanalytics list-pipelines

运行以下命令可查看单个管道的配置。

aws iotanalytics describe-pipeline --pipeline-name mypipeline

正在将数据摄取到 AWS IoT Analytics

如果您具有一个通道以将数据路由到管道,该管道将数据存储在数据存储以在其中对其进行查询,则可 以将消息数据发送到 AWS IoT Analytics。此处,我们介绍了两种将数据传送到 AWS IoT Analytics的 方法。您可以使用消息代理或使用 AWS IoT Analytics BatchPutMessage API 发送 AWS IoT 消息。

主题

- 使用 AWS IoT 消息代理
- 使用 BatchPutMessage API

使用 AWS IoT 消息代理

要使用 AWS IoT 消息代理,您需要使用规则引擎创建 AWS IoT 规则。该规则将带有特定主题的消息 路由到 AWS IoT Analytics。但首先,该规则要求您创建一个角色以授予所需的权限。

创建 IAM 角色

要将 AWS IoT 消息路由到 AWS IoT Analytics 频道,您需要设置规则。但首先,您必须创建一个 IAM 角色来授予该规则向 AWS IoT Analytics 频道发送消息数据的权限。

运行以下命令以创建角色。

```
aws iam create-role --role-name myAnalyticsRole --assume-role-policy-document file://
arpd.json
```

arpd.json文件的内容应与以下内容类似。

AWS IoT Analytics

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
               "Service": "iot.amazonaws.com"
        },
        "Action": "sts:AssumeRole"
        }
    ]
}
```

然后,将策略文档附加到该角色。

```
aws iam put-role-policy --role-name myAnalyticsRole --policy-name myAnalyticsPolicy --
policy-document file://pd.json
```

pd.json文件的内容应与以下内容类似。

创建 AWS IoT 规则

创建一条向您的频道发送消息的 AWS loT 规则。

```
aws iot create-topic-rule --rule-name analyticsTestRule --topic-rule-payload file://
rule.json
```

rule.json文件的内容应与以下内容类似。

```
{
    "sql": "SELECT * FROM 'iot/test'",
    "ruleDisabled": false,
    "awsIotSqlVersion": "2016-03-23",
    "actions": [ {
        "iotAnalytics": {
            "iotAnalytics": {
               "channelName": "mychannel",
               "roleArn": "arn:aws:iam::your-account-number:role/myAnalyticsRole"
            }
        } ]
}
```

将 iot/test 替换为应路由的消息的 MQTT 主题。将通道名称和角色替换为您在前面章节中创建的通 道和角色。

将 MQTT 消息发送到 AWS IoT Analytics

在将规则加入通道、通道加入管道以及将管道加入到数据存储之后,所有与该规则匹配的数据现在都将 流 AWS IoT Analytics 向数据存储,随时可以进行查询。要对此进行测试,您可以使用 AWS IoT 控制 台发送消息。

Note

您发送到的消息负载(数据)的字段名称。 AWS IoT Analytics

- 必须仅包含字母数字字符和下划线 (_);不允许使用其他特殊字符。
- 必须以字母字符或单个下划线 (_) 开头。
- 不能包含连字符 (-)。
- 正则表达式术语:^[A-Za-z_]([A-Za-z0-9]*|[A-Za-z0-9][A-Za-z0-9_]*)\$。
- 长度不能超过 255 个字符
- 不区分大小写。同一负载中名为 foo 和 F00 的字段被视为重复字段。

例如,在消息负载中,{"temp_01": 29}或{"_temp_01": 29}有效,但{"temp-01": 29}、{"01_temp": 29}或{"__temp_01": 29}无效。

1. 在 AWS loT 控制台的左侧导航窗格中选择 Test (测试)。

2. 在 MQTT 客户端页面上,在 Publish 部分的 Specify a topic 中,键入 **iot/test**。在消息负载部分,请验证以下 JSON 内容是否存在,如果不存在,则键入它们。

3. 选择 Publish to topic (发布到主题)。

这会发布一条消息,该消息路由到您之前创建的数据存储。

使用 BatchPutMessage API

获取消息数据的另一种方法 AWS IoT Analytics 是使用 BatchPutMessage API 命令。此方法不需要 您设置 AWS IoT 规则,即可将带有特定主题的消息路由到您的频道。但它确实要求向频道发送数据/消 息的设备能够运行使用 AWS SDK创建的软件或能够使用调用。 AWS CLI BatchPutMessage

1. 创建一个文件messages.json,其中包含要发送的消息(在本示例中,只发送一条消息)。

```
[
    { "messageId": "message01", "payload": "{ \"message\": \"Hello from the CLI
    \" }" }
]
```

2. 运行 batch-put-message 命令。

```
aws iotanalytics batch-put-message --channel-name mychannel --messages file://
messages.json --cli-binary-format raw-in-base64-out
```

如果没有错误,将显示以下输出。

```
{
    "batchPutMessageErrorEntries": []
}
```

监控提取的数据

您可以使用 AWS IoT Analytics 控制台检查您发送的消息是否提取到您的通道中。

 在 <u>AWS IoT Analytics 控制台</u>中,在左侧导航窗格中选择 Prepare (准备) 并选择 Channel (通 道)(如有必要),然后选择您之前创建的通道的名称。

AWS IoT Analytics	Channels			Create	Ф (У) (?)
Channels	Name	Status	Created	Last updated	
Pipelines Data stores	my_channel	ACTIVE	Sep 13, 2019 10:47:	17 AM Sep 13, 2019 10:47:17 AM •••	
Data sets					
Notebooks					

在通道详细信息页面上,向下滚动到监控部分。根据需要,选择其中的一个时间范围指示符(1小时3小时12小时1天3天1周)以调整显示的时间范围。将会看到一条图表线,以指示在指定时间范围内提取到该通道的消息数:

Tags									Edit
No tags									
Monitoring									
						1h 3h	12h 1d	3d 1w	C
IncomingMessa	iges								
2.00									
1.50									
1.00					_				
0.5									
					1				

可以使用类似的监控功能以检查管道活动执行。您可以在管道的详细信息页面上监控活动执行错误。如 果未将活动指定为管道的一部分,将显示 0 个执行错误。

1. 在 <u>AWS IoT Analytics 控制台</u>中,在左侧导航窗格中选择 Prepare (准备),选择 Pipelines (管道), 然后选择您之前创建的管道的名称。

AWS IoT Analytics	Pipelines			Create	₽ �
Channels	Name	Created	Last updated		
Pipelines Data stores	my_pipeline	Sep 13, 2019 11:21:01 AM -0700	Sep 13, 2019 11:21:01 AM -0700	•••	
Data sets					
Notebooks					

在管道详细信息页面上,向下滚动到监控部分。根据需要,选择其中的一个时间范围指示符(1小时3小时12小时1天3天1周)以调整显示的时间范围。将会看到一个图形线,以指示指定时间范围内的管道活动执行错误数。

创建数据集

您可以通过创建 SQL 数据集或容器数据集从数据存储中检索数据。 AWS IoT Analytics 可以查询数据 来回答分析问题。虽然数据存储不是数据库,但您可以使用 SQL 表达式来查询数据并生成存储在数据 集中的结果。

主题

- 查询数据
- 访问查询的数据

查询数据

要查询数据,您需要创建一个数据集。数据集包含用于查询数据存储的 SQL 以及在您选择的日期和时 间重复该查询的可选计划。您可以使用类似于 <u>Amazon 计划表达式的表达式来创建可选 CloudWatch</u> <u>计划</u>。

运行以下 命令以创建数据集。

```
aws iotanalytics create-dataset --cli-input-json file://mydataset.json
```

其中 mydataset.json 文件包含以下内容。

运行以下命令,通过执行查询来创建数据集内容。

aws iotanalytics create-dataset-content --dataset-name mydataset

等待几分钟,在创建完数据集内容后,便可继续。

访问查询的数据

查询结果是以 CSV 文件格式存储的数据集内容。将通过 Amazon S3 向您提供该文件。以下示例说明 了如何检查结果是否已准备就绪、文件是否已下载。

运行以下 get-dataset-content 命令 :

aws iotanalytics get-dataset-content --dataset-name mydataset

如果数据集包含任何数据,则 get-dataset-content 输出在 status 字段中具有 "state": "SUCCEEDED",如以下示例所示:

```
{
    "timestamp": 1508189965.746,
    "entries": [
        {
            "entryName": "someEntry",
            "dataURI": "https://aws-iot-analytics-datasets-f7253800-859a-472c-aa33-
e23998b31261.s3.amazonaws.com/results/f881f855-c873-49ce-abd9-b50e9611b71f.csv?X-Amz-"
        }
    ],
    "status": {
        "status": {
            "state": "SUCCEEDED",
            "reason": "A useful comment."
        }
    }
}
```

dataURI 是输出结果的签名 URL。它在较短的一段时间内有效 (几个小时)。根据您的工作流,您可能 需要在访问内容之前始终调用 get-dataset-content,因为调用此命令会生成新的签名 URL。

探索 AWS IoT Analytics 数据

您可以通过多种方式存储、分析和可视化 AWS IoT Analytics 数据。

本页面上的主题:

- Amazon S3
- AWS IoT Events
- QuickSight
- Jupyter Notebook

Amazon S3

您可以将数据集内容发送到 <u>Amazon Simple Storage Service (Amazon S3)</u>存储桶,从 而允许与现有数据湖集成在一起,或者从内部应用程序和可视化工具中进行访问。请参 阅contentDeliveryRules::destination::s3DestinationConfiguration中的字 段<u>CreateDataset</u>。

AWS IoT Events

您可以将数据集内容作为输入发送到该服务 AWS loT Events,该服务使您能够监控设备或进程的故障 或操作变化,并在此类事件发生时触发其他操作。

为此,请使用创建数据集CreateDataset并在字段中指定 AWS IoT Events 输

入contentDeliveryRules :: destination ::

iotEventsDestinationConfiguration :: inputName。您还必须指定授予执行 "iotevents:" AWS IoT Analytics 权限的角色。roleArn BatchPutMessage每当创建数据集的内容时,都会 AWS IoT Analytics 将每个数据集内容条目作为消息发送到指定的 AWS IoT Events 输入。例如,如果您的数 据集包含:

```
"what","who","dt"
"overflow","sensor01","2019-09-16 09:04:00.000"
"overflow","sensor02","2019-09-16 09:07:00.000"
"underflow","sensor01","2019-09-16 11:09:00.000"
...
```

然后 AWS IoT Analytics 会发送包含以下字段的消息:

{ "what": "overflow", "who": "sensor01", "dt": "2019-09-16 09:04:00.000" }

{ "what": "overflow", "who": "sensor02", "dt": "2019-09-16 09:07:00.000" }

你需要创建一个能够识别你感兴趣的字段(、中的一个或多个dt)的 AWS IoT Events 输入 whatwho,并创建一个在事件中使用这些输入字段来触发操作或设置内部变量的 AWS IoT Events 检 测器模型。

QuickSight

AWS IoT Analytics 提供与的直接集成<u>QuickSight</u>。 QuickSight 是一项快速的业务分析服务,可用于构 建可视化、执行临时分析以及快速从数据中获取业务见解。 QuickSight 使组织能够扩展到成千上万的 用户,并通过使用强大的内存引擎 (SPICE) 提供响应式性能。 QuickSight 在这些地区可用。

Jupyter Notebook

AWS IoT Analytics Jupyter Notebook 也可以直接使用数据集,以执行高级分析和数据探索。Jupyter Notebook 是一个开源解决方案。您可以从 <u>http://jupyter.org/install.html</u> 安装并下载。还提供与 SageMaker Amazon 托管笔记本解决方案 AI 的额外集成。

保留多个版本的数据集

您可以通过在调用和时为数据集retentionPeriod and versioningConfiguration字段指定值 来选择要保留的数据集内容的数量CreateDataset以及UpdateDataset APIs保留多长时间:

```
...
"retentionPeriod": {
    "unlimited": "boolean",
    "numberOfDays": "integer"
},
"versioningConfiguration": {
    "unlimited": "boolean",
    "maxVersions": "integer"
},
....
```

这两个参数的设置一起使用,以通过以下方式确定保留的数据集内容版本数和保留天数。

	retentionPeriod	retentionPeriod :	retentionPeriod :	
	[未指定]	无限制 = 真, numberOfDays = 未设置	无限制 = 假, numberOfDays = X	
versioningConfigur ation: [未指定]	仅将最新版本以及最 新的成功版本(如果 不同)保留 90 天。	仅无限期保留最新版 本以及最新的成功版 本(如果不同)。	仅将最新版本以及最 新的成功版本(如果 不同)保留 X 天。	
versioningConfigur ation: unlimited = TRUE,未设置 maxVersions	将保留过去 90 天的所 有版本,而无论具有 多少个版本。	对保留的版本数没有 任何限制。	将保留过去 X 天的所 有版本,而无论具有 多少个版本。	

versioningConfigur	将保留过去 90 天内不	将最多保留 Y 个版	将保留过去 X 天内不
ation :	超过 Y 个版本。	本,而无论它们存在	超过 Y 个版本。
		多长时间。	
unlimited =			
FALSE, max			
Versions = Y			

消息负载语法

您发送到的消息负载(数据)的字段名称: AWS IoT Analytics

- 必须仅包含字母数字字符和下划线 (_);不允许使用其他特殊字符
- 必须以字母字符或单个下划线 (_) 开头。
- 不能包含连字符 (-)。
- 正则表达式术语:^[A-Za-z_]([A-Za-z0-9]*|[A-Za-z0-9][A-Za-z0-9_]*)\$。
- 长度不能超过 255 个字符。
- 不区分大小写。同一负载中名为"foo"和"FOO"的字段被视为重复字段。

例如,在消息负载中,{"temp_01": 29}或{"_temp_01": 29}有效,但 {"temp-01": 29}、{"01_temp": 29}或{"__temp_01": 29}无效。

处理 AWS IoT SiteWise 数据

AWS IoT SiteWise 是一项托管服务,可用于大规模收集、建模、分析和可视化来自工业设备的数据。 该服务提供了一个资产建模框架,用来构建工业设备、流程和设施的表示形式。

借助 AWS IoT SiteWise 资产模型,您可以定义要使用的工业设备数据,以及如何将数据处理成复杂 的指标。您可以配置资产模型以在 AWS 云端收集和处理数据。有关更多信息,请参阅《<u>AWS IoT</u> <u>SiteWise</u>用户指南》。

AWS IoT Analytics 与集成 AWS IoT SiteWise ,因此您可以对 AWS IoT SiteWise 数据运行和安排 SQL 查询。要开始查询您的 AWS IoT SiteWise 数据,请按照AWS IoT SiteWise 用户指南中配置存储 设置中的步骤创建数据存储。然后,按照中的使用数据创建数据集(控制台) AWS IoT SiteWise步骤 创建 AWS IoT Analytics 数据集并使用数据创建 AWS IoT SiteWise 数据集 (AWS CLI)对您的工业数据 运行 SQL 查询。

主题

- 使用 AWS IoT Analytics 数据创建 AWS IoT SiteWise 数据集
- 访问数据集内容
- 教程:在中查询 AWS IoT SiteWise 数据 AWS IoT Analytics

使用 AWS IoT Analytics 数据创建 AWS IoT SiteWise 数据集

AWS IoT Analytics 数据集包含用于查询数据存储中数据的 SQL 语句和表达式,以及一个在您指定的 日期和时间重复查询的可选计划。您可以使用类似于 <u>Amazon CloudWatch 计划表达式的表达式</u>来创建 可选计划。

Note

数据集通常是数据的集合,这些数据可能以表格形式呈现,也可能不以表格形式呈现。相比之 下,通过对数据存储中的数据应用 SQL 查询来 AWS IoT Analytics 创建数据集。

按照以下步骤开始为数据创建 AWS IoT SiteWise 数据集。

- 主题
- 使用数据创建数据集(控制台) AWS IoT SiteWise
- 使用数据创建 AWS IoT SiteWise 数据集 (AWS CLI)

使用数据创建数据集(控制台) AWS IoT SiteWise

使用这些步骤在 AWS IoT Analytics 控制台中为您的 AWS IoT SiteWise 数据创建数据集。

创建数据集

- 1. 在https://console.aws.amazon.com/iotanalytics/左侧导航窗格中,选择数据集。
- 2. 在创建数据集页面上,选择创建 SQL。
- 3. 在指定数据集详细信息页面上,指定数据集的详细信息。
 - a. 输入数据集的名称。
 - b. 对于数据存储源,选择用于标识您的 AWS IoT SiteWise 数据存储的唯一 ID。
 - c. (可选)在标签中,将一个或多个自定义标签(键值对)添加到数据集中。

- 4. 使用 SQL 表达式查询数据并回答分析问题。
 - a. 在作者查询字段中,输入使用通配符显示最多五行数据的 SQL 查询。

SELECT * FROM my_iotsitewise_datastore.asset_metadata LIMIT 5

有关中支持的 SQL 功能的更多信息 AWS IoT Analytics,请参见<u>中的 SQL 表达式 AWS IoT</u> <u>Analytics</u>。或者,参阅 <u>教程:在中查询 AWS IoT SiteWise</u> 数据 AWS IoT Analytics</u> 了解能够 提供数据见解的统计查询示例。

b. 您可以选择测试查询 来验证输入是否正确,并在查询后的表格中显示结果。

Note

由于 Amazon Athena <u>限制了运行查询的最大数量</u>,因此应将 SQL 查询限制为合理的 大小,这样它就不会长时间运行。

 (可选)使用指定时间范围内的数据创建数据集内容时,某些数据可能无法及时送达处理。要允许 延迟,可指定偏移量或增量。有关更多信息,请参阅 通过 Amazon Ev CloudWatch ents 获取延迟 数据通知。

在配置数据选择筛选条件页面上配置数据选择筛选条件后,选择下一步。

 (可选)在设置查询计划页面上,可将此查询安排为定期运行以刷新数据集。您可随时创建和编辑 数据集计划。

Note

AWS IoT Analytics 每六小时 AWS IoT SiteWise 摄取一次的数据。我们建议选择六小时或 更长时间的提取频率。

选择频率,然后选择 下一步。

 AWS IoT Analytics 将创建此数据集内容的版本并存储指定时间段内的分析结果。我们建议 90 天,但您可以选择设置自定义保留策略。您也可限制数据集内容存储版本的数量。

在配置数据集结果页面上选择选项后,选择下一步。

8. (可选)您可通过配置数据集结果传送规则,将其传送到特定目的地,例如 AWS loT Events。

在配置数据集内容传送规则页面上选择选项后,选择下一步。

9. 检查您的选择,然后选择创建数据集。

10. 确认您的新数据集显示在数据集页面上。

使用数据创建 AWS IoT SiteWise 数据集 (AWS CLI)

运行以下 AWS CLI 命令开始查询您的 AWS IoT SiteWise 数据。

此处显示的示例使用 AWS Command Line Interface (AWS CLI)。有关更多信息 AWS CLI,请参阅 《<u>AWS Command Line Interface 用户指南》</u>。有关可用的 CLI 命令的更多信息 AWS IoT Analytics, 请参阅《参考资料》中的 <u>iotanalytics</u>。AWS Command Line Interface

创建数据集

1. 运行以下 create-dataset 命令以创建数据集。

aws iotanalytics create-dataset --cli-input-json file://my_dataset.json

其中 my_dataset.json 文件包含以下内容。

```
{
    "datasetName": "my_dataset",
    "actions": [
        {
            "actionName":"my_action",
            "queryAction": {
                "sqlQuery": "SELECT * FROM my_iotsitewise_datastore.asset_metadata
LIMIT 5"
            }
        }
        ]
}
```

有关中支持的 SQL 功能的更多信息 AWS IoT Analytics,请参见<u>中的 SQL 表达式 AWS IoT</u> <u>Analytics</u>。或者,参阅 <u>教程:在中查询 AWS IoT SiteWise</u> 数据 AWS IoT Analytics</u> 了解能够提供 数据见解的统计查询示例。

2. 运行以下 create-dataset-content 命令,通过运行查询来创建数据集内容。

aws iotanalytics create-dataset-content --dataset-name my_dataset

访问数据集内容

SQL 查询结果是以 CSV 文件格式存储的数据集内容。将通过 Amazon S3 向您提供该文件。以下步骤 说明了如何检查结果是否已准备就绪、文件是否已下载。

主题

- 在 AWS IoT Analytics (控制台)中访问数据集内容
- 访问 AWS IoT Analytics (AWS CLI) 中的数据集内容

在 AWS IoT Analytics (控制台)中访问数据集内容

如果您的数据集包含任何数据,则可以在 AWS loT Analytics 控制台中预览和下载 SQL 查询结果。

访问您的 AWS IoT Analytics 数据集结果

- 1. 在控制台的数据集页面上,选择要访问的数据集的名称。
- 2. 在数据集摘要页面上,选择内容选项卡。
- 3. 在数据集内容表中,选择要预览结果或下载结果的 csv 文件的查询名称。

访问 AWS IoT Analytics (AWS CLI) 中的数据集内容

如果数据集包含任何数据,则可预览和下载 SQL 查询结果。

此处显示的示例使用 AWS Command Line Interface (AWS CLI)。有关更多信息 AWS CLI,请参阅 《<u>AWS Command Line Interface 用户指南》</u>。有关可用的 CLI 命令的更多信息 AWS IoT Analytics, 请参阅《参考资料》中的 iotanalytics。AWS Command Line Interface

访问您的 AWS IoT Analytics 数据集结果 (AWS CLI)

1. 运行以下 get-dataset-content 命令以查看查询结果。

aws iotanalytics get-dataset-content --dataset-name my_iotsitewise_dataset

如果数据集包含任何数据,则 get-dataset-content 输出的 status 字段中包含 "state":
 "SUCCEEDED",如下例所示。

```
"timestamp": 1508189965.746,
"entries": [
```

{

```
{
    "entryName": "my_entry_name",
    "dataURI": "https://aws-iot-analytics-datasets-f7253800-859a-472c-aa33-
e23998b31261.s3.amazonaws.com/results/f881f855-c873-49ce-abd9-b50e9611b71f.csv?X-
Amz-"
    }
    J,
    "status": {
        "status": {
            "state": "SUCCEEDED",
            "reason": "A useful comment."
        }
}
```

3. get-dataset-content 的输出包括 dataURI,这是输出结果的签名 URL。它在较短的一段时间内有效 (几个小时)。访问 dataURI 网址以访问 SQL 查询结果。

Note

根据您的工作流,您可能需要在访问内容之前始终调用 get-dataset-content,因为 调用此命令会生成新的签名 URL。

教程:在中查询 AWS IoT SiteWise 数据 AWS IoT Analytics

本教程演示了如何在中查询 AWS IoT SiteWise 数据 AWS IoT Analytics。本教程使用演示中的数据 AWS IoT SiteWise ,该演示提供了风力发电场的样本数据集。

A Important

此演示创建和使用的资源是收费的。

主题

- 先决条件
- 加载并验证数据
- 数据探究
- 运行统计查询
- 清除教程资源

先决条件

在此教程中,您需要以下资源:

- 你必须有一个 AWS 账户才能开始使用 AWS IoT SiteWise 和 AWS IoT Analytics。如果您还没有账户,请按创建 AWS 账户中的步骤进行操作。
- 运行 Windows、macOS、Linux 或 Unix 的开发计算机(用于访问 AWS Management Console)。
 有关更多信息,请参阅 AWS Management Console入门。
- AWS IoT SiteWise 定义 AWS IoT SiteWise 模型和资产的数据,以及流式传输代表风力发电场设备数据的数据。要创建数据,请按照《AWS IoT SiteWise 用户指南》中创建 AWS IoT SiteWise 演示中的步骤进行操作。
- 您的 AWS IoT SiteWise 演示风电场设备数据存储在您管理的现有数据存储中。有关如何为数据 创建数据存储的更多信息,请参阅《AWS IoT SiteWise 用户指南》中的<u>配置存储设置</u>。 AWS IoT SiteWise

Note

您的 AWS IoT SiteWise 元 AWS IoT SiteWise 数据在创建后不久就会出现在您的数据 存储中;但是,原始数据最多可能需要六个小时才能显示。同时,您可以创建 AWS IoT Analytics 数据集并对元数据进行查询。

后续步骤

加载并验证数据

加载并验证数据

您在本教程中查询的数据是一组样本 AWS IoT SiteWise 数据,用于对风力发电场中的风力发电机涡轮 机进行建模。

Note

在本教程中,您将查询数据存储中的三个表:

- raw 包含各项资产未经处理的原始数据。
- asset_metadata 包含各项资产的一般信息。
- asset_hierarchy_metadata 包含有关资产之间关系的信息。

运行本教程中的 SQL 查询

- 按照使用数据创建数据集(控制台) AWS IoT SiteWise或使用数据创建 AWS IoT SiteWise 数据 集 (AWS CLI)中的步骤为您的 AWS IoT Analytics 数据创建 AWS IoT SiteWise 数据集。
- 2. 要更新本教程中的数据集查询,请执行以下操作。
 - a. 在 AWS IoT Analytics 控制台的 "数据集" 页面上,选择您在上一页上创建的数据集的名称。
 - b. 在数据集摘要页面上,选择编辑以编辑 SQL 查询。
 - c. 要在查询后的表中显示结果,请选择测试查询。

或者,您可以使用 AWS CLI运行以下 update-dataset 命令来修改 SQL 查询。

aws iotanalytics update-dataset --cli-input-json file://update-query.json

update-query.json的内容:

3. 在 AWS IoT Analytics 控制台中或使用中 AWS CLI,对您的数据运行以下查询,以验证您 的asset_metadata表是否成功加载。

SELECT COUNT(*) FROM my_iotsitewise_datastore.asset_metadata

同样,您可以验证 asset_hierarchy_metadata 和 raw 表是否为空。

下一个步骤

数据探究

数据探究

创建 AWS IoT SiteWise 数据并将其加载到数据存储后,您可以创建数据 AWS IoT Analytics 集并在中 运行 SQL 查询, AWS IoT Analytics 以发现有关资产的见解。以下查询演示了如何在运行统计查询之 前探索数据。

使用 SQL 查询探索数据

1. 查看每个表(例如原始表)中的列和值的示例。

SELECT * FROM my_iotsitewise_datastore.raw LIMIT 5

 SELECT DISTINCT用于查询您的asset_metadata表并列出 AWS IoT SiteWise 资产的(唯 一)名称。

SELECT DISTINCT assetname FROM my_iotsitewise_datastore.asset_metadata ORDER BY assetname

3. 要列出有关特定 AWS IoT SiteWise 资产属性的信息,请使用子WHERE句。

```
SELECT assetpropertyname,
    assetpropertyunit,
    assetpropertydatatype
FROM my_iotsitewise_datastore.asset_metadata
WHERE assetname = 'Demo Turbine Asset 2'
```

4. 使用 AWS IoT Analytics,您可以联接来自数据存储中两个或多个表的数据,如以下示例所示。

```
SELECT * FROM my_iotsitewise_datastore.raw AS raw
JOIN my_iotsitewise_datastore.asset_metadata AS asset_metadata
ON raw.seriesId = asset_metadata.timeseriesId
```

要查看资产之间的所有关系,请使用以下查询中的 JOIN 功能。

```
SELECT DISTINCT parent.assetName as "Parent name",
    child.assetName AS "Child name"
FROM (
    SELECT sourceAssetId AS parent,
        targetAssetId AS child
    FROM my_iotsitewise_datastore.asset_hierarchy_metadata
    WHERE associationType = 'CHILD'
```

```
)
AS relations
JOIN my_iotsitewise_datastore.asset_metadata AS child
        ON relations.child = child.assetId
JOIN my_iotsitewise_datastore.asset_metadata AS parent
        ON relations.parent = parent.assetId
```

后续步骤

运行统计查询

运行统计查询

既然您已经浏览了 AWS IoT SiteWise 数据,就可以运行统计查询,为您的工业设备提供宝贵的见解。 以下查询演示了您可以检索的一些信息。

对 AWS IoT SiteWise 演示风电场数据运行统计查询

1. 运行以下 SQL 命令,查找特定资产(演示涡轮机资产 4)所有数值属性的最新值。

```
SELECT assetName,
    assetPropertyName,
   assetPropertyUnit,
   max_by(value, timeInSeconds) AS Latest
FROM (
    SELECT *,
        CASE assetPropertyDataType
       WHEN 'DOUBLE' THEN
        cast(doubleValue AS varchar)
       WHEN 'INTEGER' THEN
        cast(integerValue AS varchar)
       WHEN 'STRING' THEN
       stringValue
       WHEN 'BOOLEAN' THEN
        cast(booleanValue AS varchar)
       ELSE NULL
        END AS value
   FROM my_iotsitewise_datastore.asset_metadata AS asset_metadata
    JOIN my_iotsitewise_datastore.raw AS raw
        ON raw.seriesId = asset_metadata.timeSeriesId
   WHERE startYear=2021
       AND startMonth=7
```

```
AND startDay=8
AND assetName='Demo Turbine Asset 4'
)
GROUP BY assetName, assetPropertyName, assetPropertyUnit
```

2. 将元数据表和原始表链接起来,确定所有资产(父资源除外)的最大风速属性。

```
SELECT child_assets_data_set.parentAssetId,
        child_assets_data_set.childAssetId,
        asset_metadata.assetPropertyId,
        asset_metadata.assetPropertyName,
        asset_metadata.timeSeriesId,
        raw_data_set.max_speed
FROM (
   SELECT sourceAssetId AS parentAssetId,
        targetAssetId AS childAssetId
   FROM my_iotsitewise_datastore.asset_hierarchy_metadata
   WHERE associationType = 'CHILD'
)
AS child_assets_data_set
JOIN mls_demo.asset_metadata AS asset_metadata
    ON asset_metadata.assetId = child_assets_data_set.childAssetId
JOIN (
    SELECT seriesId, MAX(doubleValue) AS max_speed
    FROM my_iotsitewise_datastore.raw
    GROUP BY seriesId
)
AS raw_data_set
ON raw_data_set.seriesId = asset_metadata.timeseriesid
WHERE assetPropertyName = 'Wind Speed'
ORDER BY max_speed DESC
```

3. 要查找资产(演示涡轮机资产 2)的特定属性(风速)的平均值,请运行以下 SQL 命令。必须将 my_bucket_id 替换为存储桶 ID。

```
SELECT AVG(doubleValue) as "Average wind speed"
FROM my_iotsitewise_datastore.raw
WHERE seriesId =
   (SELECT timeseriesId
   FROM my_iotsitewise_datastore.asset_metadata as asset_metadata
   WHERE asset_metadata.assetname = 'Demo Turbine Asset 2'
        AND asset_metadata.assetpropertyname = 'Wind Speed')
```

后续步骤

清除教程资源

清除教程资源

完成本教程后,清理资源以避免产生费用。

要删除您的 AWS IoT SiteWise 演示

一周后,该 AWS IoT SiteWise 演示会自行删除。如果您已完成演示资源的使用,则可以提前删除演 示。使用以下步骤手动删除演示。

- 1. 导航至 AWS CloudFormation 控制台。
- 2. 从堆栈列表中选择IoTSiteWiseDemoAssets。
- 3. 选择删除。当您删除堆栈时,为演示创建的所有资源都将被删除。
- 4. 在确认对话框中,选择删除。

删除堆栈约需 15 分钟时间。如果演示无法删除,请再次选择右上角的 删除。如果演示无法再次删 除,请按照 AWS CloudFormation 控制台中的步骤跳过删除失败的资源,然后重试。

删除数据存储

• 要删除您的托管数据存储,请运行 CLI 命令 delete-datastore,如下例所示。

aws iotanalytics delete-datastore --datastore-name my_IotSiteWise_datastore

删除您的 AWS IoT Analytics 数据集

• 要删除您的数据集,请运行 CLI 命令 delete-dataset,如下例所示。在执行此操作之前,您不 必删除数据集的内容。

aws iotanalytics delete-dataset --dataset-name my_dataset

Note

此命令不生成任何输出。

管道活动

最简单的正常运行的管道可将一个通道连接到数据存储,这使其成为具有两个活动的管道:一个 channel 活动和一个 datastore 活动。您可以通过向管道添加额外的活动,实现更强大的消息处理 功能。

您可以使用该<u>RunPipelineActivity</u>操作来模拟在您提供的消息负载上运行管道活动的结果。在开发和调 试管道活动时,您可能会发现这很有帮助。 RunPipelineActivity 示例演示了它是如何使用的。

通道活动

管道中的第一个活动必须是 channel 活动,它确定要处理的消息的来源。

```
{
    "channel": {
        "name": "MyChannelActivity",
        "channelName": "mychannel",
        "next": "MyLambdaActivity"
    }
}
```

数据存储活动

datastore 活动是最后一个活动,指定将处理后的数据存储到何处。

```
{
    "datastore": {
        "name": "MyDatastoreActivity",
        "datastoreName": "mydatastore"
    }
}
```

AWS Lambda 活动

1ambda 活动可用于对消息执行复杂的处理。例如,您可使用来自外部 API 操作输出的数据来丰富消息,或者根据来自 Amazon DynamoDB 的逻辑筛选消息。但是,在进入数据存储之前,您无法使用此 管道活动来添加其他消息或删除现有消息。
1ambda活动中使用的 AWS Lambda 函数必须接收并返回一个 JSON 对象数组。有关示例,请参阅<u>the</u> section called "Lambda 函数示例 1"。

要授予调用 Lambda 函数的 AWS IoT Analytics 权限,您必须添加策略。例如,运行以下 CLI 命令 并*examp1eFunctionName*替换为您的 Lambda 函数的名称,替换为您的 AWS 账户 ID,然后使用 调<u>123456789012</u>用给定 Lambda 函数的管道的亚马逊资源名称 (ARN)。

```
aws lambda add-permission --function-name exampleFunctionName --
action lambda:InvokeFunction --statement-id iotanalytics --principal
iotanalytics.amazonaws.com --source-account 123456789012 --source-arn
arn:aws:iotanalytics:us-east-1:123456789012:pipeline/examplePipeline
```

该命令将返回以下输出:

```
{
    "Statement": "{\"Sid\":\"iotanalyticsa\",\"Effect\":\"Allow\",
    \"Principal\":{\"Service\":\"iotanalytics.amazonaws.com\"},\"Action\":
    \"lambda:InvokeFunction\",\"Resource\":\"arn:aws:lambda:aws-region:aws-
account:function:exampleFunctionName\",\"Condition\":{\"StringEquals\":
    {\"AWS:SourceAccount\":\"123456789012\"},\"ArnLike\":{\"AWS:SourceArn\":
    \"arn:aws:iotanalytics:us-east-1:123456789012:pipeline/examplePipeline\"}}"
}
```

有关更多信息,请参阅AWS Lambda 开发人员指南中的为 AWS Lambda使用基于资源的策略。

Lambda 函数示例 1

在该示例中,Lambda 函数根据原始消息中的数据添加信息。设备发布一条包含类似于以下负载的消 息。

```
{
    "thingid": "00001234abcd",
    "temperature": 26,
    "humidity": 29,
    "location": {
        "lat": 52.4332935,
        "lon": 13.231694
    },
    "ip": "192.168.178.54",
        "datetime": "2018-02-15T07:06:01"
}
```

并且该设备具有以下管道定义。

```
{
    "pipeline": {
        "activities": [
            {
                "channel": {
                    "channelName": "foobar_channel",
                    "name": "foobar_channel_activity",
                    "next": "lambda_foobar_activity"
                }
            },
            {
                "lambda": {
                     "lambdaName": "MyAnalyticsLambdaFunction",
                     "batchSize": 5,
                    "name": "lambda_foobar_activity",
                    "next": "foobar_store_activity"
                }
            },
            {
                "datastore": {
                     "datastoreName": "foobar_datastore",
                    "name": "foobar_store_activity"
                }
            }
        ],
        "name": "foobar_pipeline",
        "arn": "arn:aws:iotanalytics:eu-west-1:123456789012:pipeline/foobar_pipeline"
    }
}
```

以下 Lambda Python 函数 (MyAnalyticsLambdaFunction) 将 GMaps 网址和温度(以华氏度为单 位)添加到消息中。

```
import logging
import sys
# Configure logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
streamHandler = logging.StreamHandler(stream=sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(nessage)s')
```

```
streamHandler.setFormatter(formatter)
logger.addHandler(streamHandler)
def c_to_f(c):
    return 9.0/5.0 * c + 32
def lambda_handler(event, context):
    logger.info("event before processing: {}".format(event))
    maps_url = 'N/A'
    for e in event:
        #e['foo'] = 'addedByLambda'
        if 'location' in e:
            lat = e['location']['lat']
            lon = e['location']['lon']
            maps_url = "http://maps.google.com/maps?q={},{}".format(lat,lon)
        if 'temperature' in e:
            e['temperature_f'] = c_to_f(e['temperature'])
        logger.info("maps_url: {}".format(maps_url))
        e['maps_url'] = maps_url
    logger.info("event after processing: {}".format(event))
    return event
```

Lambda 函数示例 2

一种有用的方法是压缩并序列化消息负载,以降低传输和存储成本。在该第二个示例中,Lambda 函数 假定消息负载表示已压缩并以字符串形式进行 Base64 编码(序列化)的 JSON 原始数据。它返回原 始 JSON。

```
import base64
import gzip
import json
import logging
import sys
# Configure logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
streamHandler = logging.StreamHandler(stream=sys.stdout)
```

```
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
streamHandler.setFormatter(formatter)
logger.addHandler(streamHandler)
def decode_to_bytes(e):
    return base64.b64decode(e)
def decompress_to_string(binary_data):
    return gzip.decompress(binary_data).decode('utf-8')
def lambda_handler(event, context):
    logger.info("event before processing: {}".format(event))
    decompressed_data = []
    for e in event:
        binary_data = decode_to_bytes(e)
        decompressed_string = decompress_to_string(binary_data)
        decompressed_data.append(json.loads(decompressed_string))
    logger.info("event after processing: {}".format(decompressed_data))
    return decompressed_data
```

AddAttributes 活动

addAttributes 活动根据消息中现有的属性添加属性。这样,您就可以在存储之前更改消息的配 置。例如,您可以使用 addAttributes 规范化来自不同代的设备固件的数据。

考虑以下输入消息。

```
{
    "device": {
        "id": "device-123",
        "coord": [ 47.6152543, -122.3354883 ]
    }
}
```

addAttributes 活动类似于以下内容。

{

```
"addAttributes": {
    "name": "MyAddAttributesActivity",
    "attributes": {
        "device.id": "id",
        "device.coord[0]": "lat",
        "device.coord[1]": "lon"
    },
        "next": "MyRemoveAttributesActivity"
}
```

该活动会将设备 ID 移到根级别,并提取 coord 数组中的值,将它们提升到称为 lat 和 lon 的顶级属 性。作为此活动的结果,输入消息将转换为以下示例。

```
{
    "device": {
        "id": "device-123",
        "coord": [ 47.6, -122.3 ]
    },
    "id": "device-123",
    "lat": 47.6,
    "lon": -122.3
}
```

原始设备属性仍然存在。如果要删除它,您可以使用 removeAttributes 活动。

RemoveAttributes 活动

removeAttributes 活动从消息中删除属性。例如,给定以下消息,它是 addAttributes 活动的 结果。

```
{
    "device": {
        "id": "device-123",
        "coord": [ 47.6, -122.3 ]
    },
    "id": "device-123",
    "lat": 47.6,
    "lon": -122.3
}
```

为了规范化该消息,使其只包含根级别所需的数据,请使用以下 removeAttributes 活动。

```
{
    "removeAttributes": {
        "name": "MyRemoveAttributesActivity",
        "attributes": [
            "device"
        ],
        "next": "MyDatastoreActivity"
    }
}
```

这会产生沿管道流动的以下消息。

```
{
    "id": "device-123",
    "lat": 47.6,
    "lon": -122.3
}
```

SelectAttributes 活动

selectAttributes 活动仅使用原始消息中的指定属性创建新消息。其他属性都将被丢 弃。selectAttributes 只会在消息的根位置下创建新属性。因此,给定此消息:

```
{
    "device": {
        "id": "device-123",
        "coord": [ 47.6152543, -122.3354883 ],
        "temp": 50,
        "hum": 40
    },
    "light": 90
}
```

和此活动:

```
{
    "selectAttributes": {
        "name": "MySelectAttributesActivity",
```

```
"attributes": [
        "device.temp",
        "device.hum",
        "light"
    ],
        "next": "MyDatastoreActivity"
    }
}
```

结果将是流经管道的以下消息。

```
{
    "temp": 50,
    "hum": 40,
    "light": 90
}
```

同样,selectAttributes只能创建根级别对象。

Filter 活动

filter 活动根据消息属性筛选消息。此活动中使用的表达式看起来像一个 SQL WHERE 子句,它必须 返回一个布尔值。

```
{
    "filter": {
        "name": "MyFilterActivity",
        "filter": "temp > 40 AND hum < 20",
        "next": "MyDatastoreActivity"
    }
}</pre>
```

DeviceRegistryEnrich 活动

通过该deviceRegistryEnrich活动,您可以将 AWS loT 设备注册表中的数据添加到消息负载中。 例如,给定了以下消息:

"temp": 50,

{

```
"hum": 40,
"device" {
    "thingName": "my-thing"
}
```

和类似下面这样的 deviceRegistryEnrich 活动:

```
{
   "deviceRegistryEnrich": {
      "name": "MyDeviceRegistryEnrichActivity",
      "attribute": "metadata",
      "thingName": "device.thingName",
      "roleArn": "arn:aws:iam::<your-account-number>:role:MyEnrichRole",
      "next": "MyDatastoreActivity"
   }
}
```

输出消息现在如此示例所示。

```
{
    "temp" : 50,
    "hum" : 40,
    "device" {
        "thingName" : "my-thing"
    },
    "metadata" : {
        "defaultClientId": "my-thing",
        "thingTypeName": "my-thing",
        "thingArn": "arn:aws:iot:us-east-1:<your-account-number>:thing/my-thing",
        "version": 1.
        "thingName": "my-thing",
        "attributes": {},
        "thingId": "aaabbbccc-dddeeef-gghh-jjkk-llmmnnoopp"
    }
}
```

您必须在活动定义的 roleArn 字段中指定已附加适当权限的角色。该角色必须具有类似以下示例的权 限策略。

```
"Version": "2012-10-17",
```

{

```
"Statement": [
    {
        "Effect": "Allow",
        "Action": [
            "iot:DescribeThing"
        ],
        "Resource": [
            "arn:aws:iot:<region>:<account-id>:thing/<thing-name>"
        ]
        }
    ]
}
```

和类似如下的信任策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "",
            "Effect": "Allow",
            "Principal": {
               "Service": "iotanalytics.amazonaws.com"
            },
            "Action": [
               "sts:AssumeRole"
            ]
        }
    ]
}
```

DeviceShadowEnrich 活动

deviceShadowEnrich活动将来自 Dev AWS loT ice Shadow 服务的信息添加到消息中。例如,给定 以下消息:

```
{
    "temp": 50,
    "hum": 40,
    "device": { "thingName": "my-thing" }
}
```

```
{
    "deviceShadowEnrich": {
        "name": "MyDeviceShadowEnrichActivity",
        "attribute": "shadow",
        "thingName": "device.thingName",
        "thingName": "device.thingName",
        "roleArn": "arn:aws:iam::<your-account-number>:role:MyEnrichRole",
        "next": "MyDatastoreActivity"
    }
}
```

结果是类似于以下示例的消息。

```
{
    "temp": 50,
    "hum": 40,
    "device": {
        "thingName": "my-thing"
    },
    "shadow": {
        "state": {
            "desired": {
                "attributeX": valueX, ...
            },
            "reported": {
                "attributeX": valueX, ...
            },
            "delta": {
                "attributeX": valueX, ...
            }
        },
        "metadata": {
            "desired": {
                "attribute1": {
                     "timestamp": timestamp
                }, ...
            },
            "reported": ": {
                "attribute1": {
                     "timestamp": timestamp
                }, ...
            }
```

```
},
    "timestamp": timestamp,
    "clientToken": "token",
    "version": version
}
```

您必须在活动定义的 roleArn 字段中指定已附加适当权限的角色。该角色必须具有类似如下的权限策 略。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
               "iot:GetThingShadow"
            ],
            "Resource": [
               "arn:aws:iot:<region>:<account-id>:thing/<thing-name>"
        ]
        }
    ]
}
```

和类似如下的信任策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "",
            "Effect": "Allow",
            "Principal": {
               "Service": "iotanalytics.amazonaws.com"
            },
            "Action": [
               "sts:AssumeRole"
            ]
        }
    ]
}
```

Math 活动

math 活动使用消息的属性计算算术表达式。表达式必须返回数字。例如,给定以下输入消息:

```
{
"tempF": 50,
}
```

经过以下 math 活动处理后:

```
{
    "math": {
        "name": "MyMathActivity",
        "math": "(tempF - 32) / 2",
        "attribute": "tempC",
        "next": "MyDatastoreActivity"
    }
}
```

生成的消息类似于:

```
{
    "tempF" : 50,
    "tempC": 9
}
```

数学活动运算符和函数

您可以在 math 活动中使用以下运算符:

+	添加
-	减
*	乘
/	除

modulo

您可以在 math 活动中使用以下函数:

- abs(Decimal)
- acos(Decimal)
- asin(Decimal)
- atan(Decimal)
- atan2(Decimal, Decimal)
- ceil(Decimal)
- cos(Decimal)
- cosh(Decimal)
- exp(Decimal)
- In(Decimal)
- log(Decimal)
- mod(Decimal, Decimal)
- power(Decimal, Decimal)
- round(Decimal)
- sign(Decimal)
- sin(Decimal)
- sinh(Decimal)
- <u>sqrt(Decimal)</u>
- tan(Decimal)
- tanh(Decimal)
- trunc(Decimal, int)

abs(Decimal)

返回数字的绝对值。

示例:abs(-5)返回 5。

参数类型	结果
Int	Int,参数的绝对值。
Decimal	Decimal,参数的绝对值
Boolean	Undefined .
String	Decimal。结果是参数的绝对值。如果字符串无 法转换,则结果为 Undefined 。
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

acos(Decimal)

以弧度为单位返回数字的反余弦值。在代入函数之前,Decimal 参数舍入到双精度。

示例:acos(0)=1.5707963267948966

参数类型	结果
Int	Decimal (双精度),参数的反余弦值。虚数结果 返回 Undefined 。
Decimal	Decimal (双精度),参数的反余弦值。虚数结果 返回 Undefined 。
Boolean	Undefined .
String	Decimal (双精度)参数的反余弦值。如果字符串 无法转换,则结果为 Undefined 。虚数结果 返回 Undefined 。

参数类型	结果
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

asin(Decimal)

以弧度为单位返回数字的反正弦值。在代入函数之前,Decimal 参数舍入到双精度。

示例:asin(0)=0.0

参数类型	结果
Int	Decimal (双精度),参数的反正弦值。虚数结果 返回 Undefined 。
Decimal	Decimal (双精度),参数的反正弦值。虚数结果 返回 Undefined 。
Boolean	Undefined .
String	Decimal (双精度),参数的反正弦值。如果字符 串无法转换,则结果为 Undefined 。虚数结 果返回 Undefined 。
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

atan(Decimal)

以弧度为单位返回数字的反正切值。在代入函数之前, Decimal 参数舍入到双精度。

示例:atan(0)=0.0

参数类型	结果
Int	Decimal (双精度),参数的反正切值。虚数结果 返回 Undefined 。
Decimal	Decimal (双精度),参数的反正切值。虚数结果 返回 Undefined 。
Boolean	Undefined .
String	Decimal (双精度),参数的反正切值。如果字符 串无法转换,则结果为 Undefined 。虚数结 果返回 Undefined 。
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

atan2(Decimal, Decimal)

以弧度的形式返回 x 轴正方向与由两个参数定义的 (x,y) 点之间的角度。逆时针的角,角度为正数(上 半平面,y > 0),顺时针的角,角度为负数 在代入函数之前,Decimal 参数舍入到双精度。

示例:atan(1, 0)=1.5707963267948966

参数类型	参数类型	结果
Int/Decimal	Int/Decimal	Decimal (双精度),x 轴和指 定的 (x,y) 点之间的角度

AWS IoT Analytics

参数类型	参数类型	结果
Int/Decimal/String	Int/Decimal/String	Decimal,所描述点的反正切 值。如果字符串无法转换,则 结果为 Undefined 。
其他值	其他值	Undefined .

ceil(Decimal)

将给定的 Decimal 向上舍入到最近的 Int。

示例:

ceil(1.2) = 2

ceil(11.2) = -1

参数类型	结果
Int	Int,参数值。
Decimal	Int,字符串将转换为 Decimal 并向上舍 入到最近的 Int。如果字符串无法转换为 Decimal,则结果为 Undefined 。
其他值	Undefined .

cos(Decimal)

以弧度为单位返回数字的余弦值。在代入函数之前,Decimal参数舍入到双精度。

示例:cos(0) = 1

参数类型	结果
Int	Decimal(双精度),参数的余弦值。虚数结果返 回 Undefined 。

参数类型	结果
Decimal	Decimal(双精度),参数的余弦值。虚数结果返 回 Undefined 。
Boolean	Undefined .
String	Decimal (双精度),参数的余弦值。如果字符串 无法转换为 Decimal,则结果为 Undefined 。虚数结果返回 Undefined 。
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

cosh(Decimal)

以弧度为单位返回数字的双曲余弦值。在代入函数之前,Decimal 参数舍入到双精度。

示例:cosh(2.3)=5.037220649268761

参数类型	结果
Int	Decimal (双精度),参数的双曲余弦值。虚数结 果返回 Undefined 。
Decimal	Decimal (双精度),参数的双曲余弦值。虚数结 果返回 Undefined 。
Boolean	Undefined .
String	Decimal(双精度),参数的双曲余弦值。如 果字符串无法转换为 Decimal,则结果为 Undefined 。虚数结果返回 Undefined 。

参数类型	结果
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

exp(Decimal)

返回 e 的参数次方。在代入函数之前, Decimal 参数舍入到双精度。

示例:exp(1)=1

参数类型	结果
Int	Decimal(双精度),e^参数。
Decimal	Decimal(双精度),e^参数
String	Decimal (双精度) , e ^ 参数。如果 String 无 法转换为 Decimal , 则结果为 Undefined 。
其他值	Undefined .

In(Decimal)

返回参数的自然对数。在代入函数之前,Decimal参数舍入到双精度。

示例:ln(e)=1

参数类型	结果
Int	Decimal(双精度),参数的自然对数。
Decimal	Decimal(双精度),参数的自然对数

参数类型	结果
Boolean	Undefined .
String	Decimal (双精度),参数的自然对数。如果字符 串无法转换为 Decimal,则结果为 Undefined 。
数组	Undefined .
对象	Undefined .
Null	Undefined .
未定义	Undefined .

log(Decimal)

返回参数的以 10 为底的对数。在代入函数之前,Decimal 参数舍入到双精度。

示例:log(100)=2.0

参数类型	结果
Int	Decimal (双精度),参数以 10 为底的对数。
Decimal	Decimal (双精度),参数以 10 为底的对数。
Boolean	Undefined .
String	Decimal (双精度),参数以 10 为底的对数。 如果 String 无法转换为 Decimal,则结果为 Undefined 。
数组	Undefined .
对象	Undefined .
Null	Undefined .

参数类型	结果
未定义	Undefined .

mod(Decimal, Decimal)

返回第一个参数除以第二个参数的余数。您还可以使用%作为相同取模功能的插入运算符。

示例:mod(8,3)=2

左侧操作数	右侧操作数	输出
Int	Int	Int,第一个参数对第二个参 数取模。
Int/Decimal	Int/Decimal	Decimal,第一个参数对第二 个参数取模。
String/Int/Decimal	String/Int/Decimal	如果所有字符串转换为 Decimals,则结果为第一个 参数对第二个参数取模的值。 否则为 Undefined 。
其他值	其他值	Undefined .

power(Decimal, Decimal)

返回第一个参数的第二个参数次幂的值。在代入函数之前,Decimal 参数舍入到双精度。

示例:power(2, 5)=32.0

参数类型 1	参数类型 2	输出
Int/Decimal	Int/Decimal	Decimal (双精度),返回第 一个参数的第二个参数次幂的 值。

参数类型 1	参数类型 2	输出
Int/Decimal/String	Int/Decimal/String	Decimal (双精度),返回第 一个参数的第二个参数次幂 的值。所有字符串均转换为 Decimals。如果任何 String 无法转换为 Decimal,则结果 为 Undefined 。
其他值	其他值	Undefined .

round(Decimal)

将给定的 Decimal 舍入到最近的 Int。如果 Decimal 与上下两个 Int 值距离相同 (例如 0.5), Decimal 将向上进位。

示例:

- Round(1.2) = 1
- Round(1.5) = 2
- Round(1.7) = 2

Round(-1.1) = -1

Round(-1.5) = -2

参数类型	结果
Int	参数
Decimal	Decimal 会向下舍入至最近的 Int。
String	Decimal 会向下舍入至最近的 Int。如果字符 串无法转换为 Decimal,则结果为 Undefined 。
其他值	Undefined .

sign(Decimal)

返回给定数字的符号。当参数的符号为正时,将返回 1。当参数的符号为负时,将返回 -1。如果参数为 0,则返回 0。

示例:

sign(-7) = -1

sign(0) = 0

sign(13) = 1

参数类型	结果
Int	Int,Int 值的符号。
Decimal	Int, Decimal 值的符号。
String	Int,Decimal 值的符号。字符串将转换为 Decimal 值,并返回 Decimal 值的符号。如 果 String 无法转换为 Decimal,则结果为 Undefined 。
其他值	Undefined .

sin(Decimal)

以弧度为单位返回数字的正弦值。在代入函数之前, Decimal 参数舍入到双精度。

示例:sin(0)=0.0

参数类型	结果
Int	Decimal(双精度),参数的正弦值。
Decimal	Decimal(双精度),参数的正弦值。
Boolean	Undefined .

参数类型	结果
String	Decimal,参数的正弦值。如果字符串无法转换 为 Decimal,则结果为 Undefined 。
Аттау	Undefined .
Object	Undefined .
Null	Undefined .
Undefined	Undefined .

sinh(Decimal)

以弧度为单位返回数字的双曲正弦值。在代入函数之前,Decimal 值舍入到双精度。结果是双精度的 Decimal 值。

示例:sinh(2.3)=4.936961805545957

参数类型	结果	
Int	Decimal(双精度),参数的双曲正弦值。	
Decimal	Decimal(双精度),参数的双曲正弦值。	
Boolean	Undefined .	
String	Decimal,参数的双曲正弦值。如果字符串无法 转换为 Decimal,则结果为 Undefined 。	
Array	Undefined .	
Object	Undefined .	
Null	Undefined .	
Undefined	Undefined .	

用户指南

sqrt(Decimal)

返回数字的平方根。在代入函数之前,Decimal参数舍入到双精度。

示例:sqrt(9)=3.0

参数类型	结果	
Int	参数的平方根。	
Decimal	参数的平方根。	
Boolean	Undefined .	
String	参数的平方根。如果字符串无法转换为 Decimal,则结果为 Undefined 。	
Array	Undefined .	
Object	Undefined .	
Null	Undefined .	
Undefined	Undefined .	

tan(Decimal)

以弧度为单位返回数字的正切值。在代入函数之前,Decimal 值舍入到双精度。

示例:tan(3) = -0.1425465430742778

参数类型	结果
Int	Decimal(双精度),参数的正切值。
Decimal	Decimal(双精度),参数的正切值。
Boolean	Undefined .

参数类型	结果	
String	Decimal (双精度),参数的正切值。如果字符 无法转换为 Decimal,则结果为 Undefined 。	
Array	Undefined .	
Object	Undefined .	
Null	Undefined .	
Undefined	Undefined .	

tanh(Decimal)

以弧度为单位返回数字的双曲正切值。在代入函数之前,Decimal 值舍入到双精度。

示例:tanh(2.3)=0.9800963962661914

参数类型	结果	
Int	Decimal(双精度),参数的双曲正切值。	
Decimal	Decimal (双精度),参数的双曲正切值。	
Boolean	Undefined .	
String	Decimal(双精度),参数的双曲正切值。如 果字符串无法转换为 Decimal,则结果为 Undefined 。	
Аттау	Undefined .	
Object	Undefined .	
Null	Undefined .	
Undefined	Undefined .	

trunc(Decimal, int)

按照第二个参数指定的 Decimal 位数截断第一个参数。如果第二个参数小于零,则会设置为零。如果 参数第二大于 34,则会设置为 34。将从结果中删除结尾的零。

示例:

trunc(2.3, 0) = 2

trunc(2.3123, 2) = 2.31

trunc(2.888, 2) = 2.88

trunc(2.00, 5) = 2

参数类型 1	参数类型 2	结果
Int	Int	源值。
Int/Decimal/String	Int/Decimal	第一个参数被截断到由第二个 参数所指定的长度。第二个参 数如果不是 Int,将向下舍 入至最近的 Int。所有字符 串均转换为 Decimal 值。如 果字符串转换失败,则结果为 Undefined 。
其他值		Undefined。

RunPipelineActivity

以下示例演示如何使用 RunPipelineActivity 命令测试管道活动。在本示例中,我们将测试数学活动。

1. 创建一个 maths.json 文件,其中包含您要测试的管道活动的定义。

```
{
    "math": {
        "name": "MyMathActivity",
```

```
"math": "((temp - 32) * 5.0) / 9.0",
"attribute": "tempC"
}
```

2. 创建一个 payloads.json 文件,其中包含用于测试管道活动的示例负载。

```
[
    "{\"humidity\": 52, \"temp\": 68 }",
    "{\"humidity\": 52, \"temp\": 32 }"
]
```

3. 从命令行调用 RunPipelineActivities 操作。

```
aws iotanalytics run-pipeline-activity --pipeline-activity file://maths.json --
payloads file://payloads.json --cli-binary-format raw-in-base64-out
```

这会产生以下结果。

```
{
    "logResult": "",
    "payloads": [
        "eyJodW1pZG10eSI6NTIsInRlbXAi0jY4LCJ0ZW1wQyI6MjB9",
        "eyJodW1pZG10eSI6NTIsInRlbXAi0jMyLCJ0ZW1wQyI6MH0="
    ]
}
```

结果中列出的负载是 Base64 编码的字符串。对这些字符串解码时,您将获得以下结果。

```
{"humidity":52,"temp":68,"tempC":20}
{"humidity":52,"temp":32,"tempC":0}
```

重新处理通道消息

AWS IoT Analytics 使您能够重新处理频道数据。这在以下情况下很有用:

- 您希望重放现有已提取的数据,而不是重新开始。
- 您对管道进行了更新,并希望将现有数据 up-to-date与更改一起使用。
- 您希望包含在更改客户托管存储选项、通道权限或数据存储之前提取的数据。

参数

使用通过管道重新处理频道消息时 AWS IoT Analytics,必须指定以下信息:

StartPipelineReprocessing

启动通过管道重新处理通道消息。

ChannelMessages

指定要重新处理的一组或多组通道消息。

如果使用 channelMessages 对象,则不得为 startTime 和 endTime 指定值。

s3Paths

指定一个或多个密钥,用于标识保存通道消息的 Amazon Simple Storage Service (Amazon S3)对象。您必须使用该密钥的完整路径。

路径示

例:00:00:00/1582940490000_1582940520000_123456789012_mychannel_0_2118.0.

类型:字符串数组

数组成员限制:1-100 项。

长度限制:1-1024 个字符。

endTime

重新处理的通道数据的结束时间 (不含)。

如果为 endTime 参数指定值,则不得使用 channelMessages 对象。

类型:时间戳

startTime

重新处理的原始消息数据的开始时间 (含)。

如果为 startTime 参数指定值,则不得使用 channelMessages 对象。

类型:时间戳

pipelineName

要开始重新处理的管道的名称。

类型:字符串

长度限制:1-128个字符。

重新处理通道消息(控制台)

本教程向您展示如何在 AWS IoT Analytics 控制台中重新处理存储在指定 Amazon S3 对象中的频道数 据。

在开始之前,请确保将要重新处理的通道消息保存在客户托管的 Amazon S3 存储桶中。

- 1. 登录 AWS IoT Analytics 控制台。
- 2. 在导航窗格中,选择管道。
- 3. 选择您的目标管道。
- 4. 从操作中选择重新处理消息。
- 5. 在管道重新处理页面上,为重新处理消息选择 S3 对象。

AWS IoT Analytics 控制台还提供以下选项:

- 所有可用范围 重新处理通道中的所有有效数据。
- 最近 120 天 重新处理最近 120 天到达的数据。
- 最近 90 天 重新处理最近 90 天到达的数据。
- 最近 30 天 重新处理最近 30 天到达的数据。
- 自定义范围 重新处理在指定时间范围内到达的数据。您可以选择任何时间范围。
- 6. 输入用于存储通道消息的 Amazon S3 对象的密钥。

要查找密钥,请执行以下操作:

- a. 前往 Amazon S3 控制台。
- b. 选择目标 Amazon S3 对象。
- c. 在属性下的对象概述部分中,复制密钥。
- 7. 选择开始重新处理。

重新处理通道消息(API)

在使用 StartPipelineReprocessing API 时,请注意以下几点:

- startTime 和 endTime 参数指定提取原始数据的时间,不过这些是粗略估计的时间。您可以舍入 到最接近的小时。startTime 含本数,但 endTime 不含本数。
- 该命令异步启动重新处理并立即返回。
- 不保证重新处理消息的顺序与接收时的顺序相同。这大致相同,但不完全一致。
- 每 24 小时最多可发出 1000 个 StartPipelineReprocessing API 请求,用于通过管道重新处理 相同的通道消息。
- 重新处理原始数据将产生额外的费用。

有关更多信息,请参阅 StartPipelineReprocessingAPI 参考中的AWS IoT Analytics API。

取消通道重新处理活动

要取消管道再处理活动,请使用 <u>CancelPipelineReprocessing</u>API 或在控制台的 "活动" 页面上选择 "取 消重新处理"。 AWS IoT Analytics 如果取消重新处理,则不会重新处理剩余的数据。您必须启动另一 个重新处理请求。

使用 DescribePipelineAPI 检查重新处理的状态。参阅响应中的 reprocessingSummaries 字段。

实现工作流程自动化

AWS IoT Analytics 提供高级数据分析 AWS IoT。您可以使用数据分析和机器学习工具自动收集 IoT 数据,处理数据以及存储和分析数据。您可以执行托管您自己的自定义分析代码或 Jupyter Notebook 的容器,或者使用第三方自定义代码容器,以便无需重新创建现有的分析工具。您可以使用以下功能从数据存储中提取输入数据,并将其提供给自动化工作流程:

按照定期计划创建数据集内容

在调用 CreateDataset 时指定触发器以计划自动创建数据集内容

(triggers:schedule:expression)。数据存储中的数据用于创建数据集内容。您可以使用 SQL 查询 (actions:queryAction:sqlQuery)选择所需的字段。

定义非重叠的连续时间间隔,以确保新数据集内容仅包含在上次传送后到达的数据。使用 actions:queryAction:filters:deltaTime 和:offsetSeconds 字段指定增量时间间隔。 然后,指定一个触发器,以便在时间间隔结束时创建数据集内容。请参阅<u>the section called "示例 6</u> - 创建具有增量时段的 SQL 数据集 (CLI)"。

在另一个数据集完成时创建数据集内容

在另一个数据集的内容创建完成时触发创建新的数据集内容 triggers:dataset:name。

自动运行您的分析应用程序

将您自己的自定义数据分析应用程序容器化,并在创建另一个数据集的内容时触发以运行这些应用 程序。这样,您就可以为应用程序提供按照定期计划创建的数据集内容中的数据。您可以从应用程 序中自动对分析结果执行操作。(actions:containerAction)

在另一个数据集完成时创建数据集内容

在另一个数据集的内容创建完成时触发创建新的数据集内容 triggers:dataset:name。

自动运行您的分析应用程序

将您自己的自定义数据分析应用程序容器化,并在创建另一个数据集的内容时触发以运行这些应用 程序。这样,您就可以为应用程序提供按照定期计划创建的数据集内容中的数据。您可以从应用程 序中自动对分析结果执行操作。(actions:containerAction)

使用案例

自动测量产品质量以降低 OpEx

您的系统具有可测量压力、湿度和温度的智能值。系统定期整理事件,并且还会在发生某些事件时 整理事件,例如阀门打开和关闭时。借助 AWS IoT Analytics,您可以自动进行分析,汇总来自这 些定期窗口的不重叠数据,并创建有关最终产品质量的 KPI 报告。处理每个批次后,您可以测量总 产品质量,并通过最大化运行卷来降低运营支出。

自动分析设备队列

您每 15 分钟对数百台设备生成的数据运行一次分析(算法、数据科学或 KPI 机器学习)。每个分 析周期都会生成并存储下一次分析运行的状态。对于每个分析,您都希望只使用在指定时间窗口内 收到的数据。借助此功能, AWS IoT Analytics 您可以编排分析,为每次运行创建 KPI 和报告,然 后存储数据以备将来分析。

自动执行异常检测

AWS IoT Analytics 使您能够自动执行异常检测工作流程,该工作流程必须每 15 分钟手动运行一次,处理已到达数据存储的新数据。您还可以自动更新控制面板,其中显示在指定时间段内的设备 使用情况和顶级用户。

预测工业过程的成果

您具有工业生产线。使用发送到 AWS IoT Analytics的数据(包括可用的过程测量值),您可以操 作分析工作流程以预测过程结果。模型的数据可以排列在 M x N 矩阵中,其中每行包含来自采集 实验室样本的不同时间点的数据。 AWS IoT Analytics 通过创建增量窗口并使用数据科学工具创建 KPIs 和保存测量设备的状态,帮助您实现分析工作流程的操作。

使用 Docker 容器

本节包含有关如何构建您自己的 Docker 容器的信息。如果重复使用第三方构建的 Docker 容器,则存 在安全风险:这些容器可能使用您的用户权限执行任意代码。在使用之前,请确保您信任任何第三方容 器的作者。

使用以下步骤可设置针对自上次执行分析以来到达的数据的定期数据分析:

1. 创建一个 Docker 容器,其中包含您的数据应用程序以及任何必要的库或其他依赖项。

IotAnalytics Jupyter 扩展提供了一个容器化 API 来协助容器化过程。您还可以运行自己创建内容 的映像,其中您创建或组装了应用程序工具集,以执行所需的数据分析或计算。通过 AWS IoT Analytics ,您借助变量来定义容器化应用程序的输入数据源和 Docker 容器输出数据的目标。(<u>自</u> 定义 Docker 容器输入/输出变量包含有关将变量与自定义容器结合使用的更多信息。)

- 2. 将容器上传到 <u>Amazon ECR</u> 注册表。
- 3. 创建数据存储,以接收并存储来自设备的消息(数据)(iotanalytics: CreateDatastore)
- 4. 创建消息发送通道(iotanalytics: CreateChannel)。
- 5. 创建用于将通道连接至数据存储的管道 (iotanalytics: <u>CreatePipeline</u>)。
- 6. 创建一个 IAM 角色以授予向 AWS IoT Analytics 频道发送消息数据的权限 (iam: CreateRole.)
- 7. 创建一个 IoT 规则,以使用 SQL 查询将通道连接到消息数据源(iot: <u>CreateTopicRule</u>字段 topicRulePayload:actions:iotAnalytics)。在设备通过 MQTT 发送具有相应主题的消息时,它将路由到您的通道。或者,您可以使用iotanalytics: <u>BatchPutMessage</u>将消息从 能够使用 AWS SDK 的设备直接发送到频道,或者 AWS CLI。
- 创建一个 SQL 数据集,其创建由时间计划(iotanalytics: <u>CreateDataset</u>, 字段 actions: queryAction:sqlQuery)触发。

您还可以指定要应用于消息数据的预筛选器,以帮助将消息限制为自上次执行操作以来到达的消息。(字段 actions:queryAction:filters:deltaTime:timeExpression 提供了可用于确定消息时间的表达式,而字段

actions:queryAction:filters:deltaTime:offsetSeconds则指定了消息到达的可能延迟。)

预筛选器和触发器计划共同确定了您的增量时段。每个新的 SQL 数据集是使用在上次创建 SQL 数据集后收到的消息创建的。(首次创建 SQL 数据集是如何实现的?根据计划和预筛选器估算上 次创建数据集的时间。)

- 创建另一个数据集,该数据集由创建第一个数据集(<u>CreateDataset</u>字段trigger:dataset)触发。对于此数据集,您需指定一个指向您在第一步中创建的 Docker 容器并提供运行该 Docker 容器所需信息的"容器操作"(字段 actions:containerAction)。在这里,您还可以指定:
 - 您的账户中存储的 Docker 容器的 ARN (image)。
 - 角色的 ARN,该角色用于授予访问所需资源所需的系统权限,以便运行容器操作 (executionRoleArn)。
 - 执行容器操作的资源的配置 (resourceConfiguration)。
 - 用于执行容器操作的计算资源的类型(computeType,可能的值为:ACU_1 [vCPU=4, memory=16GiB] or ACU_2 [vCPU=8, memory=32GiB])。
 - 用于执行容器操作的资源实例可以使用的持久性存储的大小(以 GB 为单位) (volumeSizeInGB)。

• 在应用程序的执行上下文中使用的变量值(基本上是传递给应用程序的参数)(variables)。

在执行容器时,将替换这些变量。这样,您就可以使用在创建数据集内容时提供的不同变量(参数)来运行相同的容器。 lotAnalytics Jupyter 扩展通过自动识别笔记本中的变量并将其作为容器化过程的一部分提供来简化此过程。您可以选择已识别的变量或添加自己的自定义变量。在运行容器之前,系统会将每个变量的值替换为执行时的当前值。

 其中的一个变量是数据集的名称,数据集的最新内容将作为应用程序输入(这是您在上一步中创 建的数据集的名称)(datasetContentVersionValue:datasetName)。

使用用于生成数据集的 SQL 查询和增量窗口,以及包含应用程序的容器,可以 AWS IoT Analytics 创 建计划生产数据集,该数据集按您在增量窗口中指定的时间间隔运行,生成所需的输出并发送通知。

您可以随时暂停您的生产数据集应用程序,然后再恢复。在恢复生产数据集应用程序时 AWS loT Analytics,默认情况下,会捕获自上次执行以来到达但尚未进行分析的所有数据。您还可通过执行一系 列连续运行,来配置恢复生产数据集作业窗口长度的方式。或者,您也可以通过只捕获适合增量时段的 指定大小的新到达数据来恢复生产数据集应用程序。

在创建或定义由其他数据集的创建所触发的数据集时,请注意以下限制:

- 只有容器数据集可由 SQL 数据集触发。
- 一个 SQL 数据集最多可以触发 10 个容器数据集。

在创建由 SQL 数据集触发的容器数据集时,可能会返回以下错误:

- "Triggering dataset can only be added on a container dataset"(只能在容器数据集中添加触发数据集)
- "There can only be one triggering dataset"(只能存在一个触发数据集)

如果您尝试定义由两个不同 SQL 数据集触发的容器数据集,则会发生此错误。

"The triggering data set <dataset-name> cannot be triggered by a container dataset"(触发数据集 < 数据集名称> 不能被容器数据集触发)

如果您尝试定义由其他容器数据集触发的容器数据集,则会发生此错误。

 "<N> datasets are already dependent on <dataset-name> dataset"(已经有 <N> 个数据集依赖于 < 数据集名称> 数据集)

如果您尝试定义的另一个容器数据集是由已触发 10 个容器数据集的 SQL 数据集触发的,则会出现 该错误。 "Exactly one trigger type should be provided"(应确切提供一种触发器类型)

如果您尝试定义同时由计划触发器和数据集触发器触发的数据集,则会发生此错误。

自定义 Docker 容器的输入/输出变量

本节演示您的自定义 Docker 映像运行的程序如何读取输入变量并上传其输出。

参数文件

输入变量以及要将输出上传到的目的地存储在一个 JSON 文件中,它位于执行 Docker 映像的实例上的 /opt/ml/input/data/iotanalytics/params 中。下面是该文件的内容示例。

```
{
   "Context": {
       "OutputUris": {
           "html": "s3://aws-iot-analytics-dataset-xxxxxx/notebook/results/
iotanalytics-xxxxxx/output.html",
           "ipynb": "s3://aws-iot-analytics-dataset-xxxxxx/notebook/results/
iotanalytics-xxxxxx/output.ipynb"
       J.
   },
   "Variables": {
       "source_dataset_name": "mydataset",
       "source_dataset_version_id": "xxxx",
       "example_var": "hello world!",
       "custom_output": "s3://aws-iot-analytics/dataset-xxxxxxx/notebook/results/
iotanalytics-xxxxxx/output.txt"
   }
}
```

除了数据集的名称和版本 ID 外,Variables 部分还包含在 iotanalytics:CreateDataset 调用 中指定的变量 - 在此示例中,为变量 example_var 给定值 hello world!。在 custom_output 变 量中还提供了自定义输出 URI。该OutputUris字段包含容器可以将其输出上传到的默认位置——在本 例中,为 ipynb 和 html 输出 URIs 都提供了默认输出。

输入变量

通过 Docker 映像启动的程序可从 params 文件中读取变量。下面的示例程序将打开 params 文件、 对文件进行分析并打印 example_var 变量的值。

import json
```
with open("/opt/ml/input/data/iotanalytics/params") as param_file:
    params = json.loads(param_file.read())
example_var = params["Variables"]["example_var"]
print(example_var)
```

上传输出

通过 Docker 映像启动的程序还可以将其输出存储在 Amazon S3 位置。输出必须使用 "bucket-ownerfull-control" <u>访问控制列表</u>加载。访问列表允许 AWS IoT Analytics 服务控制上传的输出。在本示例 中,我们对上一示例进行扩展,将 example_var 的内容上传至 params 文件中由 custom_output 定义的 Amazon S3 位置。

```
import boto3
import json
from urllib.parse import urlparse
ACCESS_CONTROL_LIST = "bucket-owner-full-control"
with open("/opt/ml/input/data/iotanalytics/params") as param_file:
    params = json.loads(param_file.read())
example_var = params["Variables"]["example_var"]
outputUri = params["Variables"]["custom_output"]
# break the S3 path into a bucket and key
bucket = urlparse(outputUri).netloc
key = urlparse(outputUri).netloc
key = urlparse(outputUri).path.lstrip("/")
s3_client = boto3.client("s3")
s3_client.put_object(Bucket=bucket, Key=key, Body=example_var, ACL=ACCESS_CONTROL_LIST)
```

权限

您必须创建两个 角色。一个角色授予启动 SageMaker AI 实例的权限,以便对笔记本进行容器化。执 行容器需要使用另一个角色。

您可以自动或手动创建第一个角色。如果您使用 AWS IoT Analytics 控制台创建新的 SageMaker AI 实例,则可以选择自动创建新角色,该角色授予执行 SageMaker AI 实例和容器化笔记本所 需的所有权限。或者,您也可以手动创建具有这些权限的角色。要手动创建,请创建一个已附加 AmazonSageMakerFullAccess 策略的角色并添加以下策略。 {

```
"Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "ecr:BatchDeleteImage",
        "ecr:BatchGetImage",
        "ecr:CompleteLayerUpload",
        "ecr:CreateRepository",
        "ecr:DescribeRepositories",
        "ecr:GetAuthorizationToken",
        "ecr:InitiateLayerUpload",
        "ecr:PutImage",
        "ecr:UploadLayerPart"
      ],
      "Resource": "*"
    },
    {
      "Effect": "Allow",
      "Action": [
        "s3:GetObject"
      ],
      "Resource": "arn:aws:s3:::iotanalytics-notebook-containers/*"
    }
  ]
}
```

您必须手动创建第二个角色,该角色将授予执行容器所需的权限。即使您使用 AWS IoT Analytics 控制 台自动创建第一个角色,也必须执行此操作。创建一个附加以下策略和信任策略的角色。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
               "s3:GetBucketLocation",
               "s3:PutObject",
               "s3:GetObject",
               "s3:PutObjectAcl"
        ],
        "Resource": "arn:aws:s3:::aws-*-dataset-*/*"
```

},

```
{
            "Effect": "Allow",
            "Action": [
                "iotanalytics:*"
            ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [
                "ecr:GetAuthorizationToken",
                "ecr:GetDownloadUrlForLayer",
                "ecr:BatchGetImage",
                "ecr:BatchCheckLayerAvailability",
                "logs:CreateLogGroup",
                "logs:CreateLogStream",
                "logs:DescribeLogStreams",
                "logs:GetLogEvents",
                "logs:PutLogEvents"
            ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [
                "s3:GetBucketLocation",
                "s3:ListBucket",
                "s3:ListAllMyBuckets"
            ],
            "Resource": "*"
        }
    ]
}
```

以下是信任策略的示例。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "",
            "Effect": "Allow",
```

```
"Principal": {
    "Service": ["sagemaker.amazonaws.com", "iotanalytics.amazonaws.com"]
    },
    "Action": "sts:AssumeRole"
    }
]
```

通过 Java 使用 CreateDataset API 和 AWS CLI

创建数据集。数据集存储通过应用 queryAction (SQL 查询)或 containerAction (执行 容器化应用程序)从数据存储中检索的数据。此操作创建数据集的骨架。该数据集可以通过调用 CreateDatasetContent 手动填充,也可以根据您指定的 trigger 自动填充。有关更多信息,请 参阅CreateDataset和CreateDatasetContent。

主题

- <u>示例 1 创建 SQL 数据集 (java)</u>
- 示例 2 创建具有增量时段的 SQL 数据集 (Java)
- <u>示例 3 创建自带计划触发器的容器数据集 (Java)</u>
- 示例 4 创建以 SQL 数据集作为触发器的容器数据集 (Java)
- <u>示例 5 创建 SQL 数据集 (CLI)</u>
- 示例 6 创建具有增量时段的 SQL 数据集 (CLI)

示例 1 - 创建 SQL 数据集 (java)

```
CreateDatasetRequest request = new CreateDatasetRequest();
request.setDatasetName(dataSetName);
DatasetAction action = new DatasetAction();
//Create Action
action.setActionName("SQLAction1");
action.setQueryAction(new SqlQueryDatasetAction().withSqlQuery("select * from
DataStoreName"));
// Add Action to Actions List
List<DatasetAction> actions = new ArrayList<DatasetAction>();
actions.add(action);
```

```
//Create Trigger
DatasetTrigger trigger = new DatasetTrigger();
trigger.setSchedule(new Schedule().withExpression("cron(0 12 * * ? *)"));
//Add Trigger to Triggers List
List<DatasetTrigger> triggers = new ArrayList<DatasetTrigger>();
triggers.add(trigger);
// Add Triggers and Actions to CreateDatasetRequest object
request.setActions(actions);
request.setTriggers(triggers);
// Add RetentionPeriod to CreateDatasetRequest object
request.setRetentionPeriod(new RetentionPeriod().withNumberOfDays(10));
final CreateDatasetResult result = iot.createDataset(request);
```

成功时的输出:

```
{DatasetName: <datatsetName>, DatasetArn: <datatsetARN>, RetentionPeriod: {unlimited:
  true} or {numberOfDays: 10, unlimited: false}}
```

示例 2 - 创建具有增量时段的 SQL 数据集 (Java)

```
CreateDatasetRequest request = new CreateDatasetRequest();
request.setDatasetName(dataSetName);
DatasetAction action = new DatasetAction();
//Create Filter for DeltaTime
QueryFilter deltaTimeFilter = new QueryFilter();
deltaTimeFilter.withDeltaTime(
                new DeltaTime()
                .withOffsetSeconds(-1 * EstimatedDataDelayInSeconds)
                .withTimeExpression("from_unixtime(timestamp)"));
//Create Action
action.setActionName("SQLActionWithDeltaTime");
action.setQueryAction(new SqlQueryDatasetAction()
                .withSqlQuery("SELECT * from DataStoreName")
                .withFilters(deltaTimeFilter));
// Add Action to Actions List
List<DatasetAction> actions = new ArrayList<DatasetAction>();
```

```
用户指南
```

```
actions.add(action);
//Create Trigger
DatasetTrigger trigger = new DatasetTrigger();
trigger.setSchedule(new Schedule().withExpression("cron(0 12 * * ? *)"));
//Add Trigger to Triggers List
List<DatasetTrigger> triggers = new ArrayList<DatasetTrigger>();
triggers.add(trigger);
// Add Triggers and Actions to CreateDatasetRequest object
request.setActions(actions);
```

request.setTriggers(triggers);

```
// Add RetentionPeriod to CreateDatasetRequest object
request.setRetentionPeriod(new RetentionPeriod().withNumberOfDays(10));
final CreateDatasetResult result = iot.createDataset(request);
```

成功时的输出:

{DatasetName: <datatsetName>, DatasetArn: <datatsetARN>, RetentionPeriod: {unlimited: true} or {numberOfDays: 10, unlimited: false}}

示例 3 - 创建自带计划触发器的容器数据集 (Java)

```
CreateDatasetRequest request = new CreateDatasetRequest();
request.setDatasetName(dataSetName);
DatasetAction action = new DatasetAction();
//Create Action
action.setActionName("ContainerActionDataset");
action.setContainerAction(new ContainerDatasetAction()
        .withImage(ImageURI)
        .withExecutionRoleArn(ExecutionRoleArn)
        .withResourceConfiguration(
                new ResourceConfiguration()
                .withComputeType(new ComputeType().withAcu(1))
                .withVolumeSizeInGB(1))
        .withVariables(new Variable()
        .withName("VariableName")
        .withStringValue("VariableValue"));
// Add Action to Actions List
```

```
List<DatasetAction> actions = new ArrayList<DatasetAction>();
actions.add(action);
//Create Trigger
DatasetTrigger trigger = new DatasetTrigger();
trigger.setSchedule(new Schedule().withExpression("cron(0 12 * * ? *)"));
//Add Trigger to Triggers List
List<DatasetTrigger> triggers = new ArrayList<DatasetTrigger>();
triggers.add(trigger);
// Add Triggers and Actions to CreateDatasetRequest object
request.setActions(actions);
request.setTriggers(triggers);
// Add RetentionPeriod to CreateDatasetRequest object
request.setRetentionPeriod(new RetentionPeriod().withNumberOfDays(10));
final CreateDatasetResult result = iot.createDataset(request);
```

成功时的输出:

{DatasetName: <datatsetName>, DatasetArn: <datatsetARN>, RetentionPeriod: {unlimited: true} or {numberOfDays: 10, unlimited: false}}

示例 4 - 创建以 SQL 数据集作为触发器的容器数据集 (Java)

```
// Add Action to Actions List
List<DatasetAction> actions = new ArrayList<DatasetAction>();
actions.add(action);
//Create Trigger
DatasetTrigger trigger = new DatasetTrigger()
        .withDataset(new TriggeringDataset()
            .withName(TriggeringSQLDataSetName));
//Add Trigger to Triggers List
List<DatasetTrigger> triggers = new ArrayList<DatasetTrigger>();
triggers.add(trigger);
// Add Triggers and Actions to CreateDatasetRequest object
request.setActions(actions);
request.setTriggers(triggers);
final CreateDatasetResult result = iot.createDataset(request);
```

成功时的输出:

{DatasetName: <datatsetName>, DatasetArn: <datatsetARN>}

示例 5 - 创建 SQL 数据集 (CLI)

```
aws iotanalytics --endpoint <EndPoint> --region <Region> create-dataset --dataset
name="<dataSetName>" --actions="[{\"actionName\":\"<ActionName>\", \"queryAction\":
{\"sqlQuery\":\"<SQLQuery>\"}}]" --retentionPeriod numberOfDays=10
```

成功时的输出:

```
{
    "datasetName": "<datasetName>",
    "datasetArn": "<datasetARN>",
    "retentionPeriod": {unlimited: true} or {numberOfDays: 10, unlimited: false}
}
```

示例 6 - 创建具有增量时段的 SQL 数据集 (CLI)

增量时段是一系列用户定义的不重叠且连续的时间间隔。通过使用增量时段,您可以使用在上次分析 后到达数据存储的新数据创建数据集内容,并对新数据执行分析。您可以通过在数据集的filters部 分deltaTime中设置来创建增量窗口 (CreateDataset)。queryAction通常,您还希望设置时间间隔 触发器以自动创建数据集内容 (triggers:schedule:expression)。基本上,这使您可以筛选在特 定时间窗口中到达的消息,这样来自以前时间窗口的消息中包含的数据不会重复计数。

在该示例中,我们创建一个新数据集,它仅使用在上次传送后到达的数据每隔 15 分钟自动创建新的数 据集内容。我们指定 3 分钟(180 秒)的 deltaTime 偏差,以允许到达指定数据存储的消息延迟 3 分钟。因此,如果数据集内容是在上午 10:30 创建的,则使用的数据(包含在数据集内容中)的时间 戳在上午 10:12 到上午 10:27 之间(即上午 10:30 - 15 分钟 - 3 分钟到上午 10:30 - 3 分钟)。

```
aws iotanalytics --endpoint <EndPoint> --region <Region> create-dataset --cli-input-
json file://delta-window.json
```

delta-window.json 文件包含以下内容。

```
{
  "datasetName": "delta_window_example",
  "actions": [
    {
      "actionName": "delta_window_action",
      "queryAction": {
        "sqlQuery": "SELECT temperature, humidity, timestamp FROM my_datastore",
        "filters": [
          {
            "deltaTime": {
              "offsetSeconds": -180,
              "timeExpression": "from_unixtime(timestamp)"
            }
          }
        ]
      }
    }
  ],
  "triggers": [
    {
      "schedule": {
        "expression": "cron(0/15 * * * ? *)"
      }
    }
  ]
}
```

成功时的输出:

```
{
    "datasetName": "<datasetName>",
    "datasetArn": "<datatsetARN>",
}
```

容器化笔记本

本节包含有关如何使用 Jupyter notebook 构建 Docker 容器的信息。如果重复使用第三方构建的笔记 本,则存在安全风险:包含的容器可能使用您的用户权限执行任意代码。此外,笔记本生成的 HTML 可以显示在 AWS IoT Analytics 控制台中,从而在显示 HTML 的计算机上提供潜在的攻击媒介。在使 用之前,请确保您信任任何第三方笔记本的作者。

执行高级分析函数的一个选项是使用 <u>Jupyter 笔记本</u>。Jupyter Notebook 提供强大的数据科学工具,可 以执行机器学习和一系列统计分析。有关更多信息,请参阅<u>笔记本模板</u>。(请注意,我们目前不支持内 部 JupyterLab容器化。) 您可以将 Jupyter Notebook 和库打包到一个容器中,该容器会定期在一批新 数据上运行,因为这些数据是在您定义的 delta AWS IoT Analytics 时间窗口内收到的。您可以计划使 用容器和在指定时间窗口中捕获的新分段数据的分析作业,然后存储该作业的输出以用于以后的计划分 析。

如果您在 2018 年 8 月 23 日之后使用 AWS IoT Analytics 控制台创建了 SageMaker AI 实例,则容 器化扩展的安装已自动完成,<u>您可以开始创建容器</u>化映像。否则,请按照本节中列出的步骤在您的 SageMaker AI 实例上启用笔记本容器化。在接下来的内容中,您将修改您的 SageMaker AI 执行角色 以允许您将容器映像上传到 Amazon, EC2 然后安装容器化扩展。

对不是通过控制台创建的笔记本实例启用容器化 AWS loT Analytics

我们建议您通过 AWS IoT Analytics 控制台创建新的 SageMaker AI 实例,而不是按照以下步骤操作。 新实例将自动支持容器化。

如果您在启用容器化后重启 SageMaker AI 实例(如下所示),则无需重新添加 IAM 角色和策略,但 必须重新安装扩展,如最后一步所示。

 要授予您的笔记本实例访问 Amazon ECS 的权限,请在 SageMaker AI 页面上选择您的 SageMaker AI 实例:

Amazon SageMaker $ imes$	Amazon SageMaker >	Notebook instances	
Dashboard Notebook	Notebook instances	Open Start	Update settings Actions v
Notebook instances Lifecycle configurations	Q Search notebook i	nstances	
 Training Training jobs 	Name	▼ Instance	e Creation time

2. 在 IAM 角色 ARN 下,选择 SageMaker AI 执行角色。

Amazon SageMaker $ imes$	Amazon SageMaker > Notebook instances > exampleNotebookInstance							
Dashboard	exampleNotebookInstance	Delete Stop Start Open						
 Notebook Notebook instances Lifecycle configurations 	Notebook instance settings	Edit						
▼ Training Training jobs	Name exampleNotebookInstance	Notebook instance type ml.t2.medium						
Hyperparameter tuning jobs	ARN	Storage						
▼ Inference	arn:aws:sagemaker:us-east-1::notebook- instance/examplenotebookinstance	5GB EBS						
Models		Encryption key						
Endpoint configurations	Lifecycle configuration							
Endpoints	-	IAM role ARN						
	Status	arn:aws:iam:: Barna B						
	(Pending							

3. 选择 Attach Policy (附加策略),然后定义并附加权限中显示的策略。如果尚未附加 AmazonSageMakerFullAccess 策略,则附加策略。

Permissions	Trust relationships	Access Advisor	Revoke sessions	
Attach polic	y Attached policies	: 7		

您还必须从 Amazon S3 下载容器化代码并将其安装在您的笔记本实例上。第一步是访问 SageMaker AI 实例的终端。

1. 在 Jupyter 中,选择 新建。

Ċ ju	pyter										Qu	ıit
Files	Running	Clusters	SageMaker Examples	Conda								
Ē									Uplo	ad N	lew 🗸	C

2. 在显示的菜单中,选择终端。

Other:	
Text File	
Folder	
Terminal	

3. 在终端内,输入以下命令来下载、解压缩和安装代码。请注意,这些命令会杀死您的笔记本在此 SageMaker AI 实例上运行的所有进程。

💭 Jupyter
sh-4.2\$
cd /tmp
aws s3 cp s3://iotanalytics-notebook-containers/iota_notebook_containers.zip /tmp
unzip iota_notebook_containers.zip
cd iota_notebook_containers
chmod u+x install.sh
./install.sh

更新笔记本容器化扩展

如果您在 2018 年 8 月 23 日之后通过 AWS IoT Analytics 控制台创建了 SageMaker AI 实例,则会自 动安装容器化扩展。您可以通过从 SageMaker AI 控制台重启实例来更新扩展程序。如果您手动安装了 扩展程序,则可以通过重新运行对未通过控制台创建的笔记本实例启用容器化中列出的终端命令来对其 进行更新。 AWS IoT Analytics

创建容器化映像

🗂 jupyter

在本节中,我们将演示实现笔记本容器化所需的步骤。首先,请转至您的 Jupyter 笔记本,创建具有容 器化内核的笔记本。

在您的 Jupyter 笔记本中,选择 New (新建),然后从下拉列表中选择所需内核类型。(内 1. 核类型应以 "Containerized" 开头,并以原本要选择的任何内核结尾。例如,如果只要一个 像"conda_python3"这样的纯 Python 3.0 环境,请选择"Containerized conda_python3")。

Files Running Clusters SageMaker Examples Conda	
ename Move 1	Upload New
	Notebook:
	Containerized conda_chainer_p27
I IoTAnalytics	Containerized conda_chainer_p36
Iost+found	Containerized conda_mxnet_p27
	Containerized conda_mxnet_p36
	Containerized conda_python2
	Containerized conda_python3
	Containerized conda_pytorch_p27
	Containerized conda_pytorch_p36
	Containerized conda_tensorflow_p27
	Containerized conda_tensorflow_p36
	Sparkmagic (PySpark)
	Sparkmagic (PySpark3)
	Sparkmagic (Spark)
	Sparkmagic (SparkR)
	conda_chainer_p27
	conda_chainer_p36
	conda_mxnet_p27
	conda_mxnet_p36
	conda_python2
	conda_python3

在完成笔记本中的工作并且想要将其容器化时,请选择容器化按钮。 2.

3. 输入容器化笔记本的名称。您也可以输入可选描述。

1. Name	2. Input Variables	3. Select AWS ECR Repository	4. Review	5. Monitor Progress
Container	Name *			
Beer-Tas	tiness-Calculator			
Container	Description			
				7
				Next

Exit

 4. 指定应用于调用笔记本的 Input Variables (输入变量)(参数)。您可以选择从笔记本中自动检测 到的输入变量,或定义自定义变量。(请注意,仅当之前已执行过笔记本时,才能检测到输入变 量。)对于每个输入变量,选择一种类型。您还可以输入输入变量的可选描述。

1. Name 2. Input Variables	3. Select AWS ECR Repo	sitory 4. Re	view 5. I	Monitor P	rogress
Name	Туре	D	escription		
ounces	Double	÷			×
brand	String	÷			×
Showing 1 to 2 of 2 variables Add Variable			Previous	1	Next
Previous					Next

Exit

5. 选择应将从笔记本中创建的映像上传到的 Amazon ECR 存储库。

1	I. Name	2. Input Variables	3. Select AWS ECR Repository	4. Review	5. Monitor Progress	
	Please u	pload different notebo	oks to different repositories.			
	Repository	Name Create	9	Search: Rep	ository Name	
	Name				*	
	my-repo					
	my-repo2	3				
	Showing 1	to 3 of 3 repositories		Prev	rious 1 Next	
Ρ	revious				Nex	t
					Fx	it –

6. 选择 容器化 开始容器化过程。

您将看到汇总输入情况的概述。请注意,容器化过程启动后便无法取消。该过程可能长达一小时。

1. Name	2. Input Variables	3. Select	AWS ECR Repository	4. Review	5. Monitor Progress
Container Container Upload To:	Name: Beer-Tastiness- Description: my-repo	-Calculator			
	Variable Name		Туре	De	escription
	ounces		Double		
	brand		String		
Showing 1	to 2 of 2 variables			Pre	vious 1 Next
Previous					Containerize
下一页将显示	进度。				5 Marila Daaraa
1. Name	2. Input Variables	3. Select	AWS ECH Repository	4. Review	5. Monitor Progress
The cont	tainerization process ty	pically com	pletes within 30 minutes	ð.	
Creating Im	age				

Exit

Exit

- 8. 如果您意外关闭了浏览器,则可从 AWS IoT Analytics 控制台的笔记本部分监视容器化过程的状态。
- 9. 该过程完成后,容器化映像将存储在 Amazon ECR 中,随时可供使用。

Containerize Notebook × 1. Name 2. Input Variables 3. Select AWS ECR Repository 4. Review 5. Monitor Progress Creating Image... ✓ Uploading Image... ✓ You can now use this notebook for scheduled analysis of your Data Sets. Go To Data Sets

使用自定义容器进行分析

本节包含有关如何使用 Jupyter notebook 构建 Docker 容器的信息。如果重复使用第三方构建的笔记 本,则存在安全风险:包含的容器可能使用您的用户权限执行任意代码。此外,笔记本生成的 HTML 可以显示在 AWS IoT Analytics 控制台中,从而在显示 HTML 的计算机上提供潜在的攻击媒介。在使 用之前,请确保您信任任何第三方笔记本的作者。

您可以创建自己的自定义容器并使用该 AWS loT Analytics 服务运行它。为此,您需要安装 Docker 映 像并将其上传到 Amazon ECR,然后设置数据集来运行容器操作。本节提供一个使用 Octave 的过程 示例。

本教程假定:

- 本地计算机上已安装 Octave
- 本地计算机上已设置 Docker 账户
- 拥有 Amazon ECR 或 AWS IoT Analytics 访问权限的 AWS 账户

步骤 1:设置 Docker 映像

本教程需要三个主要文件。其名称和内容如下:

• Dockerfile - 用于 Docker 容器化过程的初始设置。

```
FROM ubuntu:16.04
# Get required set of software
RUN apt-get update
RUN apt-get install -y software-properties-common
RUN apt-get install -y octave
RUN apt-get install -y python3-pip
# Get boto3 for S3 and other libraries
RUN pip3 install --upgrade pip
RUN pip3 install boto3
RUN pip3 install urllib3
# Move scripts over
ADD moment moment
ADD run-octave.py run-octave.py
# Start python script
ENTRYPOINT ["python3", "run-octave.py"]
```

 run-octave.py— 解析来自 JSON AWS IoT Analytics,运行 Octave 脚本,然后将构件上传到 Amazon S3。

```
import boto3
import json
import os
import sys
from urllib.parse import urlparse
# Parse the JSON from IoT Analytics
with open('/opt/ml/input/data/iotanalytics/params') as params_file:
    params = json.load(params_file)
variables = params['Variables']
order = variables['order']
input_s3_bucket = variables['inputDataS3BucketName']
```

```
input_s3_key = variables['inputDataS3Key']
output_s3_uri = variables['octaveResultS3URI']
local_input_filename = "input.txt"
local_output_filename = "output.mat"
# Pull input data from S3...
s3 = boto3.resource('s3')
s3.Bucket(input_s3_bucket).download_file(input_s3_key, local_input_filename)
# Run Octave Script
os.system("octave moment {} {} {} ".format(local_input_filename,
local_output_filename, order))
# # Upload the artifacts to S3
output_s3_url = urlparse(output_s3_uri)
output_s3_bucket = output_s3_url.netloc
output_s3_key = output_s3_url.path[1:]
s3.Object(output_s3_bucket, output_s3_key).put(Body=open(local_output_filename,
 'rb'), ACL='bucket-owner-full-control')
```

• moment - 一个简单的 Octave 脚本,可根据输入或输出文件和指定的顺序计算时刻。

```
#!/usr/bin/octave -qf
arg_list = argv ();
input_filename = arg_list{1};
output_filename = arg_list{2};
order = str2num(arg_list{3});
[D,delimiterOut]=importdata(input_filename)
M = moment(D, order)
save(output_filename,'M')
```

1. 下载每个文件的内容。创建一个新目录,并将所有文件都放入该目录,然后cd到该目录。
 2. 运行以下命令。

docker build -t octave-moment .

3. 您应该会在 Docker 存储库中看到一个新映像。通过运行以下命令验证它。

docker image ls | grep octave-moment

步骤 2:将 Docker 映像上传到 Amazon ECR 存储库

1. 创建 Amazon ECR 存储库。

aws ecr create-repository --repository-name octave-moment

2. 获取 Docker 环境的登录信息。

aws ecr get-login

3. 复制输出并运行它。输出应与以下内容类似。

docker login -u AWS -p password -e none https://your-aws-accountid.dkr.ecr..amazonaws.com

4. 用 Amazon ECR 存储库标签标记您创建的映像。

docker tag your-image-id your-aws-account-id.dkr.ecr.region.amazonaws.com/octavemoment

5. 将映像推送到 Amazon ECR

docker push your-aws-account-id.dkr.ecr.region.amazonaws.com/octave-moment

步骤 3:将示例数据上传到 Amazon S3 存储桶

1. 将以下内容下载至文件input.txt。

0.857549	-0.987565	-0.467288	-0.252233	-2.298007
0.030077	-1.243324	-0.692745	0.563276	0.772901
-0.508862	-0.404303	-1.363477	-1.812281	-0.296744
-0.203897	0.746533	0.048276	0.075284	0.125395
0.829358	1.246402	-1.310275	-2.737117	0.024629
1.206120	0.895101	1.075549	1.897416	1.383577

2. 创建名称为 octave-sample-data-your-aws-account-id 的 Amazon S3 存储桶。

3. 将文件 input.txt 上传到您刚刚创建的 Amazon S3 存储桶。现在, 您应该有了一个名为 octave-sample-data-*your-aws-account-id* 的存储桶, 其中包含文件 input.txt。

步骤 4: 创建容器执行角色

将以下内容复制到名为 role1.json 的文件中。your-aws-account-id
 ID aws-region 和您的 AWS 资源 AWS 区域。

Note

此示例包括一个全局条件上下文密钥,用于防止混淆代理安全问题。有关更多信息,请参阅 the section called "防止跨服务混淆座席"。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": [
                     "sagemaker.amazonaws.com",
                     "iotanalytics.amazonaws.com"
                ]
            },
            "Action": "sts:AssumeRole",
            "Condition": {
              "StringEquals": {
                 "aws:SourceAccount": "your-aws-account-id"
              },
              "ArnLike": {
                "aws:SourceArn": "arn:aws:iotanalytics:aws-region:your-aws-account-
id:dataset/DOC-EXAMPLE-DATASET"
              }
            }
    ]
}
```

2. 使用您下载的文件 AWS IoT Analyticsrole1.json,创建一个向 SageMaker AI 和授予访问权限的 角色。

```
用户指南
```

```
aws iam create-role --role-name container-execution-role --assume-role-policy-
document file://role1.json
```

3. 将以下内容下载到名为 policy1.json 的文件,并将 *your-account-id* 替换为您的账户 ID(请 参阅 Statement:Resource 下的第二个 ARN)。

```
{
 "Version": "2012-10-17",
 "Statement": [
   {
     "Effect": "Allow",
     "Action": [
       "s3:GetBucketLocation",
       "s3:PutObject",
       "s3:GetObject",
       "s3:PutObjectAcl"
     ],
     "Resource": [
       "arn:aws:s3:::*-dataset-*/*",
       "arn:aws:s3:::octave-sample-data-your-account-id/*"
   },
   {
     "Effect": "Allow",
     "Action": [
       "iotanalytics:*"
     ],
     "Resource": "*"
   },
   {
     "Effect": "Allow",
     "Action": [
       "ecr:GetAuthorizationToken",
       "ecr:GetDownloadUrlForLayer",
       "ecr:BatchGetImage",
       "ecr:BatchCheckLayerAvailability",
       "logs:CreateLogGroup",
       "logs:CreateLogStream",
       "logs:DescribeLogStreams",
       "logs:GetLogEvents",
       "logs:PutLogEvents"
     ],
     "Resource": "*"
```

```
},
{
    "Effect": "Allow",
    "Action": [
        "s3:GetBucketLocation",
        "s3:ListBucket",
        "s3:ListAllMyBuckets"
    ],
    "Resource" : "*"
}
]
```

4. 使用您刚刚下载的文件 policy.json 创建一个 IAM policy。

```
aws iam create-policy --policy-name ContainerExecutionPolicy --policy-document
file://policy1.json
```

5. 将 策略附加到该角色。

```
aws iam attach-role-policy --role-name container-execution-role --policy-arn
arn:aws:iam::your-account-id:policy/ContainerExecutionPolicy
```

步骤 5: 使用容器操作创建一个数据集

 将以下内容下载到名为 cli-input.json 的文件中,并用相应的值替换 your-account-id 和 region 的所有实例。

2. 使用您刚刚下载并编辑的文件 cli-input.json 创建一个数据集。

aws iotanalytics create-dataset -cli-input-json file://cli-input.json

步骤 6:调用数据集内容生成

1. 运行以下命令。

aws iotanalytics create-dataset-content --dataset-name octave-dataset

步骤7:获取数据集内容

1. 运行以下命令。

```
aws iotanalytics get-dataset-content --dataset-name octave-dataset --version-id \setminus $LATEST
```

2. 您可能需要等待几分钟时间,直到 DatasetContentState 为 SUCCEEDED。

步骤 8:在 Octave 中打印输出

1. 使用 Octave shell 通过运行以下命令从容器中打印输出。

bash> octave
octave> load output.mat
octave> disp(M)
-0.016393 -0.098061 0.380311 -0.564377 -1.318744

可视化数据 AWS IoT Analytics

要可视化 AWS IoT Analytics 数据,您可以使用 AWS IoT Analytics 控制台或 QuickSight。

主题

- 使用控制台可视化 AWS IoT Analytics 数据
- 使用可视化 AWS IoT Analytics 数据 QuickSight

使用控制台可视化 AWS IoT Analytics 数据

AWS IoT Analytics 可以在<u>AWS IoT Analytics 控制台</u>的容器数据集内容页面上嵌入容器数据集的 HTML 输出(在文件中找到output.html)。例如,如果您定义一个运行 Jupyter notebook 的容器数 据集,并在 Jupyter notebook 中创建可视化内容,您的数据集可能类似以下内容。

然后,在创建容器数据集内容后,您可以在控制台的数据集内容页面上查看该可视化内容。

有关创建运行 Jupyter notebook 的容器数据集的信息,请参阅自动执行工作流程。

使用可视化 AWS IoT Analytics 数据 QuickSight

AWS IoT Analytics 提供与的直接集成<u>QuickSight</u>。 QuickSight 是一项快速的业务分析服务,可用于构 建可视化、执行临时分析以及快速从数据中获取业务见解。 QuickSight 使组织能够扩展到成千上万的 用户,并通过使用强大的内存引擎 (SPICE) 提供响应式性能。您可以在 QuickSight 控制台中选择您的 AWS IoT Analytics 数据集并开始创建仪表板和可视化效果。 QuickSight 在这些地区可用。

要开始使用可 QuickSight 视化效果,您必须创建一个 QuickSight 帐户。在设置账户时,请务 必 QuickSight 允许访问您的 AWS IoT Analytics 数据。如果您已经有一个帐户,请通过选择 "管 理员"、"管理 QuickSight"、"安全和权限" 来 QuickSight 访问您的 AWS IoT Analytics 数据。在 "QuickSight 访问 AWS 服务" 下,选择 "添加" 或 "删除",然后选中旁边的复选框AWS IoT Analytics并 选择 "更新"。

设置账户后,从管理员 QuickSight 控制台页面选择 "新建分析" 和 "新建数据集",然后选择 AWS IoT Analytics 作为来源。键入数据源的名称,选择要导入的数据集,然后选择 创建数据源。

🔽 Qu	ickSight					
Data sets	1	New	AWS IoT Analytics data sou	irce	×	
		Data se	ource name			-
		radiant_load_test_dataset				
Â	MariaDB	Select : O n	an AWS IoT Analytics data set to im adiantloadtestdataset adiant_load_test_dataset	port		
TERADATA.	Teradata Provided by Teradata	Cancel Create data source				
FROM EXISTI	NG DATA SOURCES					
Ŵ	Sales Pipeline Updated an hour ago	ışı	People Overview Updated an hour ago		Business Review Updated an hour ago	
	Web and Social Media A Updated an hour ago	¢	Business Review Updated 6 hours ago		Web and Social Me Updated 6 hours ago	dia A

创建数据源后,您可以在中 QuickSight创建可视化效果。

有关 QuickSight 仪表板和数据集的信息,请参阅<u>QuickSight 文档</u>。

为资源添加 AWS IoT Analytics 标签

为了方便管理您的通道、数据集、数据存储和管道,您可以选择通过标签的形式为每个资源分配您自己 的元数据。本章介绍标签并说明如何创建标签。

主题

- 标签基本知识
- 在 IAM 策略中使用标签
- 标签限制

标签基本知识

标签使您能够以不同的方式对 AWS IoT Analytics 资源进行分类,例如按用途、所有者或环境进行分 类。这在您拥有许多同类型资源时很有用 - 您可以根据分配给资源的标签快速识别特定资源。每个标签 都包含您定义的一个键和一个可选值。例如,您可以为通道定义一组标签,以跟踪负责每个通道的消息 源的设备类型。我们建议您针对每类资源设计一组标签,以满足您的需要。使用一组连续的标签键,管 理 资源时会更加轻松。您可以根据添加的标签搜索和筛选资源。

您还可以使用标签对成本进行分类和跟踪。当您将标签应用于通道、数据集、数据存储或管道时, AWS 会生成一份逗号分隔值 (CSV) 文件形式的成本分配报告,该报告按标签汇总您的使用率和成本。 您可以设置代表业务类别 (例如成本中心、应用程序名称或所有者) 的标签,以便整理多种服务的成 本。有关对成本分配使用标签的更多信息,请参阅 AWS Billing 用户指南中的使用成本分配标签。

为便于使用,请使用 AWS 账单与成本管理 控制台中的标签编辑器,它提供了一种集中、统一的方式 来创建和管理标签。有关更多信息,请参阅 AWS Management Console入门中的使用标签编辑器。

您也可以使用 AWS CLI 和 AWS IoT Analytics API 处理标签。可在创建标签时将其与通道、数据集、 数据存储和管道关联;可在以下命令中使用 Tags (标签) 字段:

- CreateChannel
- CreateDataset
- CreateDatastore
- CreatePipeline

您可以为支持标记的现有资源添加、修改或删除标签。使用以下命令:

- TagResource
- ListTagsForResource
- UntagResource

您可以修改标签的密钥和值,还可以随时删除资源的标签。您可以将标签的值设为空的字符串,但是不 能将其设为空值。如果您添加的标签的值与该实例上现有标签的值相同,新的值就会覆盖旧值。如果删 除资源,则所有与资源相关的标签都将被删除。

在 IAM 策略中使用标签

您可以在 IAM 策略中将 Condition 元素(也称为 Condition 块)与以下条件上下文键/值一起使 用,以根据资源的标签控制用户访问权限(权限):

- 使用 iotanalytics:ResourceTag/<tag-key>: <tag-value> 可允许或拒绝带特定标签的资 源上的用户操作。
- 使用 aws:RequestTag/<tag-key>: <tag-value> 可要求在发出创建或修改允许标签的资源的 API 请求时使用(或不使用)特定标签。
- 使用 aws:TagKeys: [<tag-key>, ...] 可要求在发出创建或修改允许标签的资源的 API 请求 时使用(或不使用)一组特定标签键。

Note

IAM policy 中的条件上下文键/值仅适用于能够标记的资源的标识符是必需参数的那些 AWS IoT Analytics 操作。例如,之所以使用,<u>DescribeLoggingOptions</u>不是allowed/denied on the basis of condition context keys/values因为此请求中未引用任何可标记的资源(频道、数 据集、数据存储或管道)。

有关更多信息,请参阅《IAM 用户指南》中的<u>使用标签控制访问</u>。该指南的 <u>IAM JSON 策略参考</u>一节 包含 IAM 中的 JSON 策略的元素、变量和评估逻辑的详细语法、描述和示例。

以下示例策略应用两个基于标签的限制。受此策略限制的用户:

- 1. 无法为资源提供标签"env=prod"(请参阅示例中的 "aws:RequestTag/env" : "prod"行)。
- 2. 无法修改或访问具有现有标签"env=prod"的资源(在示例中,请参阅第

"iotanalytics:ResourceTag/env" : "prod" 行)。

{

```
"Version" : "2012-10-17",
  "Statement" :
  Ε
    {
      "Effect" : "Deny",
      "Action" : "iotanalytics:*",
      "Resource" : "*",
      "Condition" : {
        "StringEquals" : {
          "aws:RequestTag/env" : "prod"
        }
      }
    },
    {
      "Effect" : "Deny",
      "Action" : "iotanalytics:*",
      "Resource" : "*",
      "Condition" : {
        "StringEquals" : {
          "iotanalytics:ResourceTag/env" : "prod"
        }
      }
    },
    {
      "Effect": "Allow",
      "Action": [
        "iotanalytics:*"
      ],
      "Resource": "*"
    }
  ]
}
```

您还可以为给定标签键指定多个标签值,方法是将它们括在列表中,如以下示例所示:

```
"StringEquals" : {
   "iotanalytics:ResourceTag/env" : ["dev", "test"]
}
```

Note

如果您根据标签允许/拒绝用户访问资源,请务必考虑显式拒绝用户在相同资源中添加或删除这 些标签的功能。否则,用户可能会修改资源标签以绕过您的限制,并获得该资源的访问权限。

标签限制

下面是适用于标签的基本限制:

- 每个资源的最大标签数 50
- 最大密钥长度 127 个 Unicode 字符(采用 UTF-8 格式)
- 最大值长度 255 个 Unicode 字符(采用 UTF-8 格式)
- 标签键和值区分大小写。
- 请勿aws: prefix在标签名称或值中使用,因为它已保留供 AWS 使用。您无法编辑或删除带此前 缀的标签名称或值。具有此前缀的标签不计入每个资源的标签数限制。
- 如果标签方案针对多个服务和资源使用,请记得其他服务可能对支持的字符有限制。通常允许使用的 字符包括:可用 UTF-8 格式表示的字母、空格和数字以及以下特殊字符 + - = ._: / @。

中的 SQL 表达式 AWS IoT Analytics

数据集是使用数据存储中数据的 SQL 表达式生成的。 AWS IoT Analytics 使用与 Amazon Athena 相 同的 SQL 查询、函数和运算符。

AWS IoT Analytics 支持 ANSI 标准 SQL 语法的子集。

```
SELECT [ ALL | DISTINCT ] select_expression [, ...]
[ FROM from_item [, ...] ]
[[ INNER | OUTER ] LEFT | RIGHT | FULL | CROSS JOIN join_item [ ON join_condition ]]
[ WHERE condition ]
[ GROUP BY [ ALL | DISTINCT ] grouping_element [, ...] ]
[ HAVING condition ]
[ UNION [ ALL | DISTINCT ] union_query ]
[ ORDER BY expression [ ASC | DESC ] [ NULLS FIRST | NULLS LAST] [, ...] ]
[ LIMIT [ count | ALL ] ]
```

有关参数的描述,请参阅 Amazon Athena 文档中的<u>参数</u>部分。

AWS IoT Analytics 而且 Amazon Athena 不支持以下内容:

- WITH 子句。
- CREATE TABLE AS SELECT 语句
- INSERT INTO 语句
- 预编译语句,您无法用 USING 运行 EXECUTE。
- CREATE TABLE LIKE
- DESCRIBE INPUT 和 DESCRIBE OUTPUT
- EXPLAIN 语句
- 用户定义的函数(UDFs 或 UDAFs)
- 存储过程
- 联合连接器

主题

- 中支持的 SQL 功能 AWS IoT Analytics
- 解决 AWS IoT Analytics中 SQL 查询的常见问题
中支持的 SQL 功能 AWS IoT Analytics

数据集是使用 SQL 表达式从数据存储中的数据生成的。你运行的查询基 AWS IoT Analytics 于 Presto 0.21 7。

支持的数据类型

AWS IoT Analytics 而且 Amazon Athena 支持这些数据类型。

- primitive_type
 - TINYINT
 - SMALLINT
 - INT
 - BIGINT
 - BOOLEAN
 - DOUBLE
 - FLOAT
 - STRING
 - TIMESTAMP
 - DECIMAL(precision, scale)
 - DATE
 - CHAR (具有指定长度的长度固定的字符数据)
 - VARCHAR (具有指定长度的长度可变的字符数据)
- array_type
 - ARRAY<data_type>
- map_type
 - MAP<primitive_type, data_type>
- struct_type
 - STRUCT<col_name:data_type[COMMENT col_comment][,...]>

AWS IoT Analytics 而且 Amazon Athena 不支持某些数据类型。

支持的函数

<u>亚马逊 Athena AWS IoT Analytics 和 SQL 功能基于 Presto 0.217。</u>有关相关函数、运算符和表达式的 信息,请参阅 函数和运算符以及 Presto 文档中的以下具体章节。

- 逻辑运算符
- 比较函数和运算符
- 条件表达式
- 转换函数
- 数学函数和运算符
- 按位函数
- 十进制函数和运算符
- 字符串函数和运算符
- 二进制函数
- 日期与时间函数和运算符
- 正则表达式函数
- JSON 函数和运算符
- URL 函数
- 聚合函数
- 窗口函数
- 颜色函数
- 数组函数和运算符
- 映射函数和运算符
- Lambda 表达式和函数
- Teradata 函数

Note

AWS IoT Analytics 而且 Amazon Athena 不支持用户定义的函数UDFs (UDAFs或)或存储 过程。

解决 AWS IoT Analytics中 SQL 查询的常见问题

使用以下信息可帮助您排查 AWS IoT Analytics中的 SQL 查询问题。

• 要转义单引号,请在其前面加上另一个单引号。不要将这种情况与双引号混淆。

Example 示例

SELECT '0''Reilly'

• 要转义下划线,可以使用反引号将以下划线开头的数据存储列名称括起来。

Example 示例

SELECT `_myMessageAttribute` FROM myDataStore

• 要对含有数字的名称进行转义,请用双引号将包含数字的数据存储名称括起来。

Example 示例

SELECT * FROM "myDataStore123"

• 要对保留关键字进行转义,请用双引号将保留关键字括起来。如需更多信息,请参阅 SQL SELECT 语句中保留关键字的列表。

安全性 AWS IoT Analytics

云安全 AWS 是重中之重。作为 AWS 客户,您可以受益于专为满足大多数安全敏感型组织的要求而构 建的数据中心和网络架构。

安全是双方共同承担 AWS 的责任。责任共担模式将其描述为云的安全性和云中的安全性:

- 云安全- AWS 负责保护在 AWS 云中运行 AWS 服务的基础架构。 AWS 还为您提供可以安全使用的 服务。作为 <u>AWS 合规性计划</u>的一部分,我们的安全措施的有效性定期由第三方审计员进行测试和验 证。要了解适用的合规计划 AWS IoT Analytics,请参阅<u>按合规计划划分的范围内的AWS 服务</u>。
- 云端安全-您的责任由您使用的 AWS 服务决定。您还需要对其他因素负责,包括您的数据的敏感
 性、您组织的要求以及适用的法律法规。

本文档将帮助您了解在使用时如何应用分担责任模型 AWS IoT Analytics。以下主题向您介绍如何进行 配置 AWS IoT Analytics 以满足您的安全和合规性目标。您还将学习如何使用其他 AWS 服务来帮助您 监控和保护您的 AWS IoT Analytics 资源。

AWS Identity and Access Management in AWS IoT Analytics

AWS Identity and Access Management (IAM) 是一项 AWS 服务,可帮助管理员安全地控制对 AWS 资源的访问。IAM 管理员控制谁可以进行身份验证(登录)和授权(拥有权限)使用 AWS IoT Analytics 资源。IAM 是一项无需额外付费即可使用的 AWS 服务。

受众

您的使用方式 AWS Identity and Access Management (IAM) 会有所不同,具体取决于您所做的工作 AWS IoT Analytics。

服务用户-如果您使用 AWS IoT Analytics 服务完成工作,则您的管理员会为您提供所需的凭证和权限。当你使用更多 AWS IoT Analytics 功能来完成工作时,你可能需要额外的权限。了解如何管理访问权限有助于您向管理员请求适合的权限。如果您无法访问 AWS IoT Analytics中的特征,请参阅 <u>对</u>AWS IoT Analytics 身份和访问进行故障排除。

服务管理员-如果您负责公司的 AWS IoT Analytics 资源,则可能拥有完全访问权限 AWS IoT Analytics。您的工作是确定您的服务用户应访问哪些 AWS IoT Analytics 功能和资源。然后,您必须向 IAM 管理员提交请求以更改服务用户的权限。请查看该页面上的信息以了解 IAM 的基本概念。要详细

了解您的公司如何将 IAM 与配合使用 AWS IoT Analytics,请参阅<u>如何 AWS IoT Analytics 与 IAM 配</u> 合使用。

IAM 管理员:如果您是 IAM 管理员,您可能希望了解如何编写策略以管理对 AWS IoT Analytics的访问权限的详细信息。要查看您可以在 IAM 中使用的 AWS IoT Analytics 基于身份的策略示例,请参阅。AWS IoT Analytics 基于身份的策略示例

使用身份进行身份验证

身份验证是您 AWS 使用身份凭证登录的方式。您必须以 IAM 用户身份或通过担 AWS 账户根用户任 IAM 角色进行身份验证(登录 AWS)。

您可以使用通过身份源提供的凭据以 AWS 联合身份登录。 AWS IAM Identity Center (IAM Identity Center)用户、贵公司的单点登录身份验证以及您的 Google 或 Facebook 凭据就是联合身份的示例。 当您以联合身份登录时,您的管理员以前使用 IAM 角色设置了身份联合验证。当你使用联合访问 AWS 时,你就是在间接扮演一个角色。

根据您的用户类型,您可以登录 AWS Management Console 或 AWS 访问门户。有关登录的更多信息 AWS,请参阅《AWS 登录 用户指南》中的如何登录到您 AWS 账户的。

如果您 AWS 以编程方式访问,则会 AWS 提供软件开发套件 (SDK) 和命令行接口 (CLI),以便使用您 的凭据对请求进行加密签名。如果您不使用 AWS 工具,则必须自己签署请求。有关使用推荐的方法自 行签署请求的更多信息,请参阅《IAM 用户指南》中的用于签署 API 请求的AWS 签名版本 4。

无论使用何种身份验证方法,您都可能需要提供其他安全信息。例如, AWS 建议您使用多重身份验证 (MFA) 来提高账户的安全性。要了解更多信息,请参阅《AWS IAM Identity Center 用户指南》中的<u>多</u>重身份验证和《IAM 用户指南》中的 IAM 中的AWS 多重身份验证。

AWS 账户 root 用户

创建时 AWS 账户,首先要有一个登录身份,该身份可以完全访问账户中的所有资源 AWS 服务 和资 源。此身份被称为 AWS 账户 root 用户,使用您创建帐户时使用的电子邮件地址和密码登录即可访问 该身份。强烈建议您不要使用根用户执行日常任务。保护好根用户凭证,并使用这些凭证来执行仅根 用户可以执行的任务。有关需要您以根用户身份登录的任务的完整列表,请参阅《IAM 用户指南》中 的需要根用户凭证的任务。

IAM 用户和群组

I <u>AM 用户</u>是您 AWS 账户 内部对个人或应用程序具有特定权限的身份。在可能的情况下,我们建议使 用临时凭证,而不是创建具有长期凭证(如密码和访问密钥)的 IAM 用户。但是,如果您有一些特定 的使用场景需要长期凭证以及 IAM 用户,建议您轮换访问密钥。有关更多信息,请参阅《IAM 用户指 南》中的对于需要长期凭证的用例,应在需要时更新访问密钥。

IAM 组是一个指定一组 IAM 用户的身份。您不能使用组的身份登录。您可以使用组来一次性为多个用 户指定权限。如果有大量用户,使用组可以更轻松地管理用户权限。例如,您可以拥有一个名为的群 组,IAMAdmins并向该群组授予管理 IAM 资源的权限。

用户与角色不同。用户唯一地与某个人员或应用程序关联,而角色旨在让需要它的任何人代入。用户具 有永久的长期凭证,而角色提供临时凭证。要了解更多信息,请参阅《IAM 用户指南》中的 <u>IAM 用户</u> 的使用案例。

IAM 角色

I <u>AM 角色</u>是您内部具有特定权限 AWS 账户 的身份。它类似于 IAM 用户,但与特定人员不关联。要在 中临时担任 IAM 角色 AWS Management Console,您可以<u>从用户切换到 IAM 角色(控制台)</u>。您可 以通过调用 AWS CLI 或 AWS API 操作或使用自定义 URL 来代入角色。有关使用角色的方法的更多信 息,请参阅《IAM 用户指南》中的<u>代入角色的方法</u>。

具有临时凭证的 IAM 角色在以下情况下很有用:

- 联合用户访问:要向联合身份分配权限,请创建角色并为角色定义权限。当联合身份进行身份验证时,该身份将与角色相关联并被授予由此角色定义的权限。有关用于联合身份验证的角色的信息,请参阅《IAM 用户指南》中的<u>针对第三方身份提供商创建角色(联合身份验证)</u>。如果您使用 IAM Identity Center,则需要配置权限集。为控制您的身份在进行身份验证后可以访问的内容,IAM Identity Center 将权限集与 IAM 中的角色相关联。有关权限集的信息,请参阅《AWS IAM Identity Center 用户指南》中的权限集。
- 临时 IAM 用户权限:IAM 用户可代入 IAM 用户或角色,以暂时获得针对特定任务的不同权限。
- 跨账户存取:您可以使用 IAM 角色以允许不同账户中的某个人(可信主体)访问您的账户中的资源。角色是授予跨账户访问权限的主要方式。但是,对于某些资源 AWS 服务,您可以将策略直接附加到资源(而不是使用角色作为代理)。要了解用于跨账户访问的角色和基于资源的策略之间的差别,请参阅 IAM 用户指南中的 IAM 中的跨账户资源访问。
- 跨服务访问 有些 AWS 服务 使用其他 AWS 服务服务中的功能。例如,当您在服务中拨打电话时,该服务通常会在 Amazon 中运行应用程序 EC2 或在 Amazon S3 中存储对象。服务可能会使用发出调用的主体的权限、使用服务角色或使用服务相关角色来执行此操作。
 - 转发访问会话 (FAS) 当您使用 IAM 用户或角色在中执行操作时 AWS,您被视为委托人。使用 某些服务时,您可能会执行一个操作,然后此操作在其他服务中启动另一个操作。FAS 使用调用 委托人的权限以及 AWS 服务 向下游服务发出请求的请求。 AWS 服务只有当服务收到需要与其他

AWS 服务 或资源交互才能完成的请求时,才会发出 FAS 请求。在这种情况下,您必须具有执行 这两项操作的权限。有关发出 FAS 请求时的策略详情,请参阅转发访问会话。

- 服务角色 服务角色是服务代表您在您的账户中执行操作而分派的 <u>IAM 角色</u>。IAM 管理员可以在 IAM 中创建、修改和删除服务角色。有关更多信息,请参阅《IAM 用户指南》中的<u>创建向 AWS 服</u> 务委派权限的角色。
- 服务相关角色-服务相关角色是一种与服务相关联的服务角色。 AWS 服务服务可以代入代表您执 行操作的角色。服务相关角色出现在您的中 AWS 账户 ,并且归服务所有。IAM 管理员可以查看 但不能编辑服务相关角色的权限。
- 在 A@@ mazon 上运行的应用程序 EC2 您可以使用 IAM 角色管理在 EC2 实例上运行并发出 AWS CLI 或 AWS API 请求的应用程序的临时证书。这比在 EC2 实例中存储访问密钥更可取。要 为 EC2 实例分配 AWS 角色并使其可供其所有应用程序使用,您需要创建一个附加到该实例的实例 配置文件。实例配置文件包含该角色,并允许在 EC2 实例上运行的程序获得临时证书。有关更多信 息,请参阅 IAM 用户指南中的使用 IAM 角色向在 A mazon EC2 实例上运行的应用程序授予权限。

使用策略管理访问

您可以 AWS 通过创建策略并将其附加到 AWS 身份或资源来控制中的访问权限。策略是其中的一个 对象 AWS ,当与身份或资源关联时,它会定义其权限。 AWS 在委托人(用户、root 用户或角色会 话)发出请求时评估这些策略。策略中的权限确定是允许还是拒绝请求。大多数策略都以 JSON 文档 的 AWS 形式存储在中。有关 JSON 策略文档的结构和内容的更多信息,请参阅 IAM 用户指南中的 JSON 策略概览。

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体可以对什么资源执行操作,以及在什么条件下执行。

默认情况下,用户和角色没有权限。要授予用户对所需资源执行操作的权限,IAM 管理员可以创建 IAM 策略。管理员随后可以向角色添加 IAM 策略,用户可以代入角色。

IAM 策略定义操作的权限,无关乎您使用哪种方法执行操作。例如,假设您有一个允许 iam:GetRole 操作的策略。拥有该策略的用户可以从 AWS Management Console AWS CLI、或 AWS API 获取角色 信息。

基于身份的策略

基于身份的策略是可附加到身份(如 IAM 用户、用户组或角色)的 JSON 权限策略文档。这些策略 控制用户和角色可在何种条件下对哪些资源执行哪些操作。要了解如何创建基于身份的策略,请参阅 《IAM 用户指南》中的使用客户托管策略定义自定义 IAM 权限。 基于身份的策略可以进一步归类为内联策略或托管式策略。内联策略直接嵌入单个用户、组或角色 中。托管策略是独立的策略,您可以将其附加到中的多个用户、群组和角色 AWS 账户。托管策略包括 AWS 托管策略和客户托管策略。要了解如何在托管策略和内联策略之间进行选择,请参阅《IAM 用户 指南》中的在托管策略与内联策略之间进行选择。

其他策略类型

AWS 支持其他不太常见的策略类型。这些策略类型可以设置更常用的策略类型向您授予的最大权限。

- 权限边界:权限边界是一个高级特征,用于设置基于身份的策略可以为 IAM 实体(IAM 用户或角色)授予的最大权限。您可为实体设置权限边界。这些结果权限是实体基于身份的策略及其权限边界的交集。在 Principal 中指定用户或角色的基于资源的策略不受权限边界限制。任一项策略中的显式拒绝将覆盖允许。有关权限边界的更多信息,请参阅IAM 用户指南中的 IAM 实体的权限边界。
- 服务控制策略 (SCPs) SCPs 是 JSON 策略,用于指定中组织或组织单位 (OU) 的最大权限 AWS Organizations。 AWS Organizations 是一项用于对您的企业拥有的多 AWS 账户 项进行分组和集中 管理的服务。如果您启用组织中的所有功能,则可以将服务控制策略 (SCPs) 应用于您的任何或所有 帐户。SCP 限制成员账户中的实体(包括每个 AWS 账户根用户实体)的权限。有关 Organization SCPs s 和的更多信息,请参阅《AWS Organizations 用户指南》中的服务控制策略。
- 资源控制策略 (RCPs) RCPs 是 JSON 策略,您可以使用它来设置账户中资源的最大可用权限,而无需更新附加到您拥有的每个资源的 IAM 策略。RCP 限制成员账户中资源的权限,并可能影响身份(包括身份)的有效权限 AWS 账户根用户,无论这些身份是否属于您的组织。 有关 Organizations 的更多信息 RCPs,包括 AWS 服务 该支持的列表 RCPs,请参阅《AWS Organizations 用户指南》中的资源控制策略 (RCPs)。
- 会话策略:会话策略是当您以编程方式为角色或联合用户创建临时会话时作为参数传递的高级策略。
 结果会话的权限是用户或角色的基于身份的策略和会话策略的交集。权限也可以来自基于资源的策略。任一项策略中的显式拒绝将覆盖允许。有关更多信息,请参阅 IAM 用户指南中的会话策略。

多个策略类型

当多个类型的策略应用于一个请求时,生成的权限更加复杂和难以理解。要了解在涉及多种策略类型时 如何 AWS 确定是否允许请求,请参阅 IAM 用户指南中的策略评估逻辑。

如何 AWS IoT Analytics 与 IAM 配合使用

在使用 IAM 管理访问权限之前 AWS IoT Analytics,您应该了解哪些可用的 IAM 功能 AWS IoT Analytics。要全面了解如何 AWS IoT Analytics 和其他 AWS 服务与 IAM 配合使用,请参阅 IAM 用户 指南中的与 IAM 配合使用的AWS 服务。 本页面上的主题:

- AWS IoT Analytics 基于身份的策略
- AWS IoT Analytics 基于资源的政策
- 基于 AWS IoT Analytics 标签的授权
- AWS IoT Analytics IAM 角色

AWS IoT Analytics 基于身份的策略

借助 IAM 基于身份的策略,您可以指定允许或拒绝的操作和资源,以及允许或拒绝操作的条件。 AWS IoT Analytics 支持特定的操作、资源和条件键。要了解在 JSON 策略中使用的所有元素,请参阅《IAM 用户指南》中的 IAM JSON 策略元素参考。

操作

基于 IAM 身份的策略的 Action 元素描述该策略将允许或拒绝的特定操作。策略操作通常与关联的 AWS API 操作同名。此操作用于策略中以授予执行关联操作的权限。

策略操作在操作前 AWS IoT Analytics 使用以下前缀:iotanalytics:例如,要授予某人 使用 AWS IoT Analytics CreateChannel API 操作创建 AWS IoT Analytics 频道的权限, 您需要将该iotanalytics:BatchPuMessage操作包含在他们的策略中。策略声明必须包 含Action或NotAction元素。 AWS IoT Analytics 定义了它自己的一组操作,这些操作描述了您可以 使用此服务执行的任务。

要在单个语句中指定多项 操作,请使用逗号将它们隔开,如下所示。

```
"Action": [
    "iotanalytics:action1",
    "iotanalytics:action2"
]
```

您也可以使用通配符 (*) 指定多个操作。例如,要指定以单词 Describe 开头的所有操作,请包括以下 操作。

"Action": "iotanalytics:Describe*"

要查看 AWS IoT Analytics 操作列表,请参阅 IAM 用户指南 AWS IoT Analytics中定义的操作。

资源

Resource 元素指定要向其应用操作的对象。语句必须包含 Resource 或 NotResource 元素。您可 使用 ARN 来指定资源,或使用通配符 (*) 以指明该语句适用于所有资源。

AWS IoT Analytics 数据集资源具有以下 ARN。

arn:\${Partition}:iotanalytics:\${Region}:\${Account}:dataset/\${DatasetName}

有关格式的更多信息 ARNs,请参阅 Amazon 资源名称 (ARNs) 和 AWS 服务命名空间。

例如,要在语句中指定 Foobar 数据集,请使用以下 ARN。

"Resource": "arn:aws:iotanalytics:us-east-1:123456789012:dataset/Foobar"

要指定属于特定账户的所有实例,请使用通配符 (*)。

"Resource": "arn:aws:iotanalytics:us-east-1:123456789012:dataset/*"

某些 AWS IoT Analytics 操作(例如创建资源的操作)无法对特定资源执行。在这些情况下,您必须使 用通配符 (*)。

```
"Resource": "*"
```

某些 AWS IoT Analytics API 操作涉及多个资源。例如,CreatePipeline 引用通道和数据集,因 此,用户必须具有使用通道和数据集的权限。要在单个语句中指定多个资源,请 ARNs 用逗号分隔。

```
"Resource": [
"resource1",
"resource2"
]
```

要查看 AWS IoT Analytics 资源类型及其列表 ARNs,请参阅 IAM 用户指南 AWS IoT Analytics中<u>定义</u> 的资源。要了解可以在哪些操作中指定每个资源的 ARN,请参阅 AWS IoT Analytics定义的操作。

条件键

在 Condition 元素(或 Condition 块)中,可以指定语句生效的条件。Condition 元素是可选 的。您可以构建使用<u>条件运算符</u>(例如,等于或小于)的条件表达式,以使策略中的条件与请求中的值 相匹配。 如果您在一个语句中指定多个 Condition 元素,或在单个 Condition 元素中指定多个键,则 AWS 使用逻辑 AND 运算评估它们。如果您为单个条件键指定多个值,则 AWS 使用逻辑 OR 运算来评估条件。在授予语句的权限之前必须满足所有的条件。

在指定条件时,您也可以使用占位符变量。例如,仅当用户使用其用户名进行标记时,您才可为其授予 访问资源的权限。有关更多信息,请参阅 IAM 用户指南 中的 IAM policy 元素:变量和标签。

AWS IoT Analytics 不提供任何特定于服务的条件键,但它确实支持使用某些全局条件键。要查看所有 AWS 全局条件键,请参阅 IAM 用户指南中的AWS 全局条件上下文密钥。

示例

要查看 AWS IoT Analytics 基于身份的策略的示例,请参阅。AWS IoT Analytics 基于身份的策略示例

AWS IoT Analytics 基于资源的政策

AWS IoT Analytics 不支持基于资源的策略。要查看详细的基于资源的策略页面的示例,请参阅AWS Lambda 开发人员指南中为 AWS Lambda使用基于资源的策略。

基于 AWS IoT Analytics 标签的授权

您可以为 AWS IoT Analytics 资源附加标签或在请求中传递标签 AWS IoT Analytics。要根据标 签控制访问,您需要在策略的<u>条件元素</u>中使用 iotanalytics:ResourceTag/{key-name}, aws:RequestTag/{key-name} 或 aws:TagKeys 条件键提供标签信息。有关为 AWS IoT Analytics 资源添加标签的更多信息,请参阅为资源添加 AWS IoT Analytics 标签。

要查看基于身份的策略示例,该策略用于根据资源上的标签限制对该资源的访问权限,请参阅<u>根据标签</u> 查看 AWS IoT Analytics 频道。

AWS IoT Analytics IAM 角色

IAM 角色是 AWS 账户 中具有特定权限的实体。

将临时凭证与配合使用 AWS IoT Analytics

可以使用临时凭证进行联合身份验证登录,分派 IAM 角色或分派跨账户角色。您可以通过调用 AWS Security Token Service (AWS STS) API 操作(例如<u>AssumeRole</u>或)来获取临时安全证 书GetFederationToken。

AWS IoT Analytics 不支持使用临时证书。

服务相关角色

<u>服务线角色</u>允许 AWS 服务访问其他服务中的资源以代表您完成操作。服务相关角色显示在 IAM 账户 中,并归该服务所有。IAM 管理员可以查看但不能编辑服务相关角色的权限。

AWS IoT Analytics 不支持服务相关角色。

服务角色

此功能允许服务代表您担任<u>服务角色</u>。此角色允许服务访问其他服务中的资源以代表您完成操作。服务 角色显示在 IAM 账户中,并归该账户所有。这意味着,IAM 管理员可以更改该角色的权限。但是,这 样做可能会中断服务的功能。

AWS IoT Analytics 支持服务角色。

防止跨服务混淆座席

混淆代理问题是一个安全性问题,即不具有操作执行权限的实体可能会迫使具有更高权限的实体执行 该操作。在中 AWS,跨服务模仿可能会导致混乱的副手问题。一个服务(呼叫服务)调用另一项服务 (所谓的服务)时,可能会发生跨服务模拟。可以操纵调用服务以使用其权限对另一个客户的资源进行 操作,否则该服务不应有访问权限。为了防止这种情况, AWS 提供可帮助您保护所有服务的服务委托 人数据的工具,这些服务委托人有权限访问账户中的资源。

我们建议在资源策略中使用 <u>aws:SourceArn</u> 和 <u>aws:SourceAccount</u> 全局条件上下文密钥。这限 制了向资源 AWS IoT Analytics 提供其他服务的权限。如果使用两个全局条件上下文键,在同一策略语 句中使用时,aws:SourceAccount 值和 aws:SourceArn 值中的账户必须使用相同的账户 ID。

防止混淆代理问题最有效的方法是使用具有资源完整 Amazon Resource Name (ARN) 的 aws:SourceArn 全局条件上下文键。如果您不知道资源的完整 ARN,或正在指定多个资 源,请针对 ARN 未知部分使用带有通配符 (*) 的 aws:SourceArn 全局上下文条件键。例 如,arn:aws:*iotanalytics::123456789012*:*。

主题

- Amazon S3 存储桶的防护
- 使用 Amazon CloudWatch 日志进行预防
- 对客户管理的 AWS IoT Analytics 资源进行防范混乱的副手预防

Amazon S3 存储桶的防护

如果您将客户托管的 Amazon S3 存储用于 AWS IoT Analytics 数据存储,则存储您的数据的 Amazon S3 存储桶可能会遇到混乱的副手问题。

例如,Nikki Wolf 使用客户拥有的名为 *DOC-EXAMPLE-BUCKET* Amazon S3 存储桶。存储桶存储在该 地区创建 AWS IoT Analytics 的数据存储的信息*us-east-1*。她指定了一项允许 AWS IoT Analytics 服务委托人代表她*DOC-EXAMPLE-BUCKET*进行查询的策略。Nikki的同事李娟用自己的账户进行查 询*DOC-EXAMPLE-BUCKET*,并用结果创建了一个数据集。结果,尽管Li从她的账户中进行了查询,但 AWS IoT Analytics 服务负责人还是代表Li查询了Nikki的Amazon S3存储桶。

为了防止这种情况,Nikki 可以在政策中为*DOC-EXAMPLE-BUCKET*其指 定aws:SourceAccountaws:SourceArn条件或条件。

指定aws:SourceAccount条件-以下存储桶策略示例指定只有 Nikki 账户 (123456789012) 中的 AWS IoT Analytics 资源才能访问DOC-EXAMPLE-BUCKET。

```
{
    "Version": "2012-10-17",
    "Id": "MyPolicyID",
    "Statement": [
        {
            "Sid": "ConfusedDeputyPreventionExamplePolicy",
            "Effect": "Allow",
            "Principal": {
                "Service": "iotanalytics.amazonaws.com"
            },
            "Action": [
                "s3:GetBucketLocation",
                "s3:GetObject",
                "s3:ListBucket",
                "s3:ListBucketMultipartUploads",
                "s3:ListMultipartUploadParts",
                "s3:AbortMultipartUpload",
                "s3:PutObject",
                "s3:DeleteObject"
            ],
            "Resource": [
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
            ],
            "Condition": {
```

```
用户指南
```

指定 aws:SourceArn 条件 - 或者, Nikki 也可使用 aws:SourceArn 条件。

```
{
    "Version": "2012-10-17",
    "Id": "MyPolicyID",
    "Statement": [
        {
            "Sid": "ConfusedDeputyPreventionExamplePolicy",
            "Effect": "Allow",
            "Principal": {
                "Service": "iotanalytics.amazonaws.com"
            },
            "Action": [
                "s3:GetBucketLocation",
                "s3:GetObject",
                "s3:ListBucket",
                "s3:ListBucketMultipartUploads",
                "s3:ListMultipartUploadParts",
                "s3:AbortMultipartUpload",
                "s3:PutObject",
                "s3:DeleteObject"
            ],
            "Resource": [
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
                "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
            ],
            "Condition": {
                "ArnLike": {
                    "aws:SourceArn": [
                        "arn:aws:iotanalytics:us-east-1:123456789012:dataset/DOC-
EXAMPLE-DATASET",
                        "arn:aws:iotanalytics:us-east-1:123456789012:datastore/DOC-
EXAMPLE-DATASTORE"
                    ]
                }
```

使用 Amazon CloudWatch 日志进行预防

在使用 Amazon Lo CloudWatch gs 进行监控时,您可以防止出现混乱的副手问题。以下资源策略显示 了如何防止混淆代理问题:

- 全局条件上下文密钥, aws:SourceArn
- aws:SourceAccount使用您的 AWS 账户 ID
- 与中的sts:AssumeRole请求关联的客户资源 AWS IoT Analytics

在以下示例中,123456789012替换为您的 AWS 账户 ID 和*us-east-1*您 AWS IoT Analytics 账户所 在的地区。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "iotanalytics.amazonaws.com"
            },
            "Action": "logs:PutLogEvents",
            "Resource": "*",
            "Condition":{
                "ArnLike":{
                    "aws:SourceArn":"arn:aws:iotanalytics:us-east-1:123456789012:*/*"
                },
                "StringEquals":{
                     "aws:SourceAccount":"123456789012"
                }
            }
    ]
}
```

有关启用和配置 Amazon CloudWatch 日志的更多信息,请参阅<u>the section called "日志记录和监控"</u>。

对客户管理的 AWS IoT Analytics 资源进行防范混乱的副手预防

如果您授予对 AWS IoT Analytics 资源执行操作的 AWS IoT Analytics 权限,则这些资源可能会遇到混 乱的代理问题。为了防止出现混乱的代理问题,您可以使用以下示例资源策略 AWS IoT Analytics 来限 制授予的权限。

主题

- 防范 AWS IoT Analytics 渠道和数据存储
- 跨服务混淆了 AWS IoT Analytics 数据集内容交付规则的副手预防

防范 AWS IoT Analytics 渠道和数据存储

您可以使用 IAM 角色来控制 AWS IoT Analytics 可以代表您访问的 AWS 资源。为了防止你的角色面 临混乱的代理问题,你可以在aws:SourceAccount元素中指定 AWS 账户,在附加到角色 AWS IoT Analytics 的信任策略元素中aws:SourceArn指定资源的 ARN。

在以下示例中,123456789012替换为您的 AWS 账户 ID 以及arn:aws:iotanalytics:awsregion:123456789012:channel/DOC-EXAMPLE-CHANNEL AWS IoT Analytics 频道或数据存储 的 ARN。

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "ConfusedDeputyPreventionExamplePolicy",
      "Effect": "Allow",
      "Principal": {
        "Service": "iotanalytics.amazonaws.com"
       },
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "123456789012"
        },
        "ArnLike": {
          "aws:SourceArn": "arn:aws:iotanalytics:aws-region:123456789012:channel/DOC-
EXAMPLE-CHANNEL"
        }
      }
    }
  ]
```

}

要了解有关通道和数据存储的客户托管 S3 存储选项的更多信息,请参阅《AWS loT Analytics API 参考》中的 <u>CustomerManagedChannelS3Storage</u> 和 CustomerManagedDatastoreS3Storage。

跨服务混淆了 AWS IoT Analytics 数据集内容交付规则的副手预防

AWS IoT Analytics 假设向 Amazon S3 或向其传送数据集查询结果的 IAM 角色 AWS IoT Events 可能 会遇到混乱的副手问题。为防止出现混淆副手问题,请在aws:SourceAccount元素中指定 AWS 帐 户,并在您附加到角色的信任策略aws:SourceArn元素中指定 AWS IoT Analytics 资源的 ARN。

```
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "ConfusedDeputyPreventionExampleTrustPolicyDocument",
      "Effect": "Allow",
      "Principal": {
        "Service": "iotanalytics.amazonaws.com"
       },
      "Action": "sts:AssumeRole",
      "Condition": {
        "StringEquals": {
          "aws:SourceAccount": "123456789012"
        },
        "ArnLike": {
          "aws:SourceArn": "arn:aws:iotanalytics:aws-region:123456789012:dataset/DOC-
EXAMPLE-DATASET"
        }
      }
    }
  ]
}
```

有关配置数据集内容传送规则的更多详细信息,请参阅《AWS IoT Analytics API 参考》中的 <u>contentDeliveryRules</u>。

AWS IoT Analytics 基于身份的策略示例

默认情况下,用户和角色没有创建或修改 AWS IoT Analytics 资源的权限。他们也无法使用 AWS Management Console AWS CLI、或 AWS API 执行任务。IAM 管理员必须创建 IAM 策略,以便为用

户和角色授予权限以对所需的指定资源执行特定的 API 操作。然后,管理员必须将这些策略附加到需 要这些权限的用户或组。

要了解如何使用这些示例 JSON 策略文档创建 IAM 基于身份的策略,请参阅 IAM 用户指南中的<u>在</u> JSON 选项卡上创建策略

本页面上的主题:

- 策略最佳实践
- 使用控制 AWS IoT Analytics 台
- 允许用户查看他们自己的权限
- 访问一个 AWS IoT Analytics 输入
- 根据标签查看 AWS IoT Analytics 频道

策略最佳实践

基于身份的策略非常强大。它们决定是否有人可以在您的账户中创建、访问或删除 AWS loT Analytics 资源。这些操作可能会使 AWS 账户产生成本。创建或编辑基于身份的策略时,请遵循以下指南和建 议:

- 开始使用 AWS 托管策略-要 AWS IoT Analytics 快速开始使用,请使用 AWS 托管策略为员工提供所 需的权限。这些策略已在您的账户中提供,并由 AWS维护和更新。有关更多信息,请参阅 IAM 用户 指南中的使用 AWS 托管策略的权限入门。
- 授予最低权限 创建自定义策略时,仅授予执行任务所需的许可。最开始只授予最低权限,然后根据需要授予其它权限。这样做比起一开始就授予过于宽松的权限而后再尝试收紧权限来说更为安全。
 有关更多信息,请参阅 IAM 用户指南中的授予最低权限。
- 为敏感操作启用 MFA 为增强安全性,要求用户使用多重身份验证 (MFA) 来访问敏感资源或 API 操作。有关更多信息,请参阅《IAM 用户指南》中的在 AWS中使用多重身份验证(MFA)。
- 使用策略条件来增强安全性 在切实可行的范围内,定义基于身份的策略在哪些情况下允许访问资源。例如,您可编写条件来指定请求必须来自允许的 IP 地址范围。您也可以编写条件,以便仅允许指定日期或时间范围内的请求,或者要求使用 SSL 或 MFA。有关更多信息,请参阅 IAM 用户指南中的 IAM JSON 策略元素:条件。

使用控制 AWS IoT Analytics 台

要访问 AWS IoT Analytics 控制台,您必须拥有一组最低权限。这些权限必须允许您列出和查看有关您 的 AWS IoT Analytics 资源的详细信息 AWS 账户。如果创建比必需的最低权限更为严格的基于身份的 策略,对于附加了该策略的实体(用户或角色),控制台将无法按预期正常运行。

为确保这些实体仍然可以使用 AWS IoT Analytics 控制台,还要将以下 AWS 托管策略附加到这些实体。有关更多信息,请参阅《IAM 用户指南》中的为用户添加权限。

ł	
	"Version": "2012-10-17",
	"Statement": [
	{
	"Effect": "Allow",
	"Action": [
	"iotanalytics:BatchPutMessage",
	"iotanalytics:CancelPipelineReprocessing",
	"iotanalytics:CreateChannel",
	"iotanalytics:CreateDataset",
	"iotanalytics:CreateDatasetContent",
	"iotanalytics:CreateDatastore",
	"iotanalytics:CreatePipeline",
	"iotanalytics:DeleteChannel",
	"iotanalytics:DeleteDataset",
	"iotanalytics:DeleteDatasetContent",
	"iotanalytics:DeleteDatastore",
	"iotanalytics:DeletePipeline",
	"iotanalytics:DescribeChannel",
	"iotanalytics:DescribeDataset",
	"iotanalytics:DescribeDatastore",
	"iotanalytics:DescribeLoggingOptions",
	"iotanalytics:DescribePipeline",
	"iotanalytics:GetDatasetContent",
	"iotanalytics:ListChannels",
	"iotanalytics:ListDatasetContents",
	"iotanalytics:ListDatasets",
	"iotanalytics:ListDatastores",
	"iotanalytics:ListPipelines",
	"iotanalytics:ListTagsForResource",
	"iotanalytics:PutLoggingOptions",
	"iotanalytics:RunPipelineActivity",
	"iotanalytics:SampleChannelData",
	"iotanalytics:StartPipelineReprocessing",

对于仅调用 AWS CLI 或 AWS API 的用户,您无需为其设置最低控制台权限。相反,只允许访问与您 尝试执行的 API 操作相匹配的操作。

允许用户查看他们自己的权限

此示例显示您可以如何创建策略,以便允许 用户查看附加到其用户身份的内联和托管策略。此策略包 括在控制台上或使用 AWS CLI 或 AWS API 以编程方式完成此操作的权限。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ViewOwnUserInfo",
            "Effect": "Allow",
            "Action": [
                "iam:GetUserPolicy",
                "iam:ListGroupsForUser",
                "iam:ListAttachedUserPolicies",
                "iam:ListUserPolicies",
                "iam:GetUser"
            ],
            "Resource": [
                 "arn:aws:iam::*:user/${aws:username}"
            ]
```

```
},
        {
            "Sid": "NavigateInConsole",
            "Effect": "Allow",
            "Action": [
                 "iam:GetGroupPolicy",
                 "iam:GetPolicyVersion",
                 "iam:GetPolicy",
                 "iam:ListAttachedGroupPolicies",
                 "iam:ListGroupPolicies",
                 "iam:ListPolicyVersions",
                 "iam:ListPolicies",
                 "iam:ListUsers"
            ],
            "Resource": "*"
        }
    ]
}
```

访问一个 AWS IoT Analytics 输入

在此示例中,您想授予用户 AWS 账户 访问您的其中一个 AWS loT Analytics 频道的权 限exampleChannel。您还想要允许该用户添加、更新和删除通道。

此策略向用户授予 iotanalytics:ListChannels, iotanalytics:DescribeChannel, iotanalytics:CreateChannel, iotanalytics:DeleteChannel, and iotanalytics:UpdateChannel 权限。有关为用户授予权限并使用控制台测试这些权限的 Amazon S3 服务的演练示例,请参阅<u>演练示例:使用用户策略控制对存储桶的访问</u>。

```
{
    "Version":"2012-10-17",
    "Statement":[
        {
            "Sid":"ListChannelsInConsole",
            "Effect":"Allow",
            "Action":[
              "iotanalytics:ListChannels"
            ],
            "Resource":"arn:aws:iotanalytics:::*"
        },
        {
            "Sid":"ViewSpecificChannelInfo",
            "Effect":"Allow",
            "Effect":"Allow",
            "Sid":"ViewSpecificChannelInfo",
            "Effect":"Allow",
            "Effect
```

```
"Action":[
            "iotanalytics:DescribeChannel"
         ],
         "Resource":"arn:aws:iotanalytics:::exampleChannel"
      },
      {
         "Sid": "ManageChannels",
         "Effect":"Allow",
         "Action":[
            "iotanalytics:CreateChannel",
            "iotanalytics:DeleteChannel",
            "iotanalytics:DescribeChannel",
            "iotanalytics:ListChannels",
            "iotanalytics:UpdateChannel"
         ],
         "Resource": "arn: aws: iotanalytics::: exampleChannel/*"
      }
   ]
}
```

根据标签查看 AWS IoT Analytics 频道

您可以使用基于身份的策略中的条件根据标签控制对 AWS IoT Analytics 资源的访问权限。此示例显示 如何创建策略以允许查看 channe1。但是,仅当 channe1 标签 Owner 具有该用户的用户名的值时, 才授予此权限。该策略还会授予在控制台上完成该操作所需的权限。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "ListChannelsInConsole",
            "Effect": "Allow",
            "Action": "iotanalytics:ListChannels",
            "Resource": "*"
        },
        {
            "Sid": "ViewChannelsIfOwner",
            "Effect": "Allow",
            "Action": "iotanalytics:ListChannels",
            "Resource": "arn:aws:iotanalytics:*:*:channel/*",
            "Condition": {
                "StringEquals": {"iotanalytics:ResourceTag/Owner": "${aws:username}"}
            }
```

}

您可以将此策略附加到您账户中的用户。如果名为的用户richard-roe尝试查看 AWS IoT Analytics channel,则channel必须对其进行标记Owner=richard-roe or owner=richard-roe。否则,他将被拒绝访问。条件标签键 Owner 匹配 Owner 和 owner,因为条件键名称不区分大小写。有关更多信息,请参阅《IAM 用户指南》中的 IAM JSON 策略元素:条件。

对 AWS IoT Analytics 身份和访问进行故障排除

使用以下信息来帮助您诊断和修复在处理时可能遇到的常见问题 AWS IoT Analytics。

主题

- 我无权在以下位置执行操作 AWS IoT Analytics
- 我无权执行 iam:PassRole
- 我想允许我以外的人 AWS 账户 访问我的 AWS IoT Analytics 资源

我无权在以下位置执行操作 AWS IoT Analytics

如果 AWS Management Console 告诉您您无权执行某项操作,则必须联系管理员寻求帮助。您的管理 员是指为您提供用户名和密码的那个人。

当 mateojackson 用户尝试使用控制台查看有关 channel 的详细信息,但不具有 iotanalytics:ListChannels 权限时,会发生以下示例错误。

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: iotanalytics:``ListChannels`` on resource: ``my-example-channel``

在这种情况下, Mateo 请求他的管理员更新其策略,以允许他使用 iotanalytics:ListChannel 操作访问 my-example-channel 资源。

我无权执行 iam: PassRole

如果您收到一个错误,表明您无权执行 iam:PassRole 操作,则必须更新策略以允许您将角色传递给 AWS IoT Analytics。

有些 AWS 服务 允许您将现有角色传递给该服务,而不是创建新的服务角色或服务相关角色。为此, 您必须具有将角色传递到服务的权限。 当名为 marymajor 的 IAM 用户尝试使用控制台在 AWS IoT Analytics中执行操作时,会发生以下示例 错误。但是,服务必须具有服务角色所授予的权限才可执行此操作。Mary 不具有将角色传递到服务的 权限。

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform: iam:PassRole

在这种情况下,必须更新 Mary 的策略以允许她执行 iam: PassRole 操作。

如果您需要帮助,请联系您的 AWS 管理员。您的管理员是提供登录凭证的人。

我想允许我以外的人 AWS 账户 访问我的 AWS loT Analytics 资源

您可以创建一个角色,以便其他账户中的用户或您组织外的人员可以使用该角色来访问您的资源。您可 以指定谁值得信赖,可以代入角色。对于支持基于资源的策略或访问控制列表 (ACL) 的服务,您可以 使用这些策略向人员授予对您的资源的访问权。

要了解更多信息,请参阅以下内容:

- 要了解是否 AWS IoT Analytics 支持这些功能,请参阅如何 AWS IoT Analytics 使用 IAM。
- 要了解如何提供对您拥有的资源的访问权限 AWS 账户 ,请参阅 <u>IAM 用户指南中的向您拥有 AWS</u> 账户 的另一个 IAM 用户提供访问权限。
- 要了解如何向第三方提供对您的资源的访问<u>权限 AWS 账户,请参阅 IAM 用户指南中的向第三方提</u> 供访问权限。 AWS 账户
- 要了解如何通过联合身份验证提供访问权限,请参阅《IAM 用户指南》中的<u>为经过外部身份验证的</u> 用户(联合身份验证)提供访问权限。
- 要了解使用角色和基于资源的策略进行跨账户存取之间的差别,请参阅《IAM 用户指南》中的 <u>IAM</u> 角色与基于资源的策略有何不同。

登录和监控 AWS IoT Analytics

AWS 提供了可用于监控的工具 AWS IoT Analytics。您可以配置其中的一些工具以便进行监控。一些 工具需要手动干预。建议您尽可能实现监控任务自动化。

自动监控工具

您可以使用以下自动监控工具来监视 AWS IoT 和报告何时出现问题:

- Amazon CloudWatch Logs-监控、存储和访问来自 AWS CloudTrail 或其他来源的日志文件。有关更多信息,请参阅 Amazon CloudWatch 用户指南中的什么是 AWS CloudTrail监控日志文件。
- AWS CloudTrail 日志监控-在账户之间共享日志文件,通过将 CloudTrail 日志文件发送到 "日志" 来 实时监控 CloudWatch 日志文件,用 Java 编写日志处理应用程序,并验证您的日志文件在传送后是 否未更改。 CloudTrail有关更多信息,请参阅《AWS CloudTrail 用户指南》中的使用 CloudTrail 日 志文件。

手动监控工具

监控 AWS IoT 的另一个重要部分是手动监控 CloudWatch 警报未涵盖的项目。 AWS IoT CloudWatch、和其他 AWS 服务控制台仪表板提供了 AWS 环境状态的 at-a-glance视图。我们建议您 同时查看日志文件 AWS IoT Analytics。

- 控制 AWS IoT Analytics 台显示:
 - 渠道
 - Pipelines
 - 数据存储
 - 数据集
 - 笔记本
 - 设置
 - 学习
- CloudWatch 主页显示:
 - 当前告警和状态
 - 告警和资源图表
 - 服务运行状况

此外,您还可以使用 CloudWatch 执行以下操作:

- 创建自定义控制面板以监控您关心的服务
- 绘制指标数据图,以排除问题并弄清楚趋势
- 搜索和浏览您的所有 AWS 资源指标
- 创建和编辑告警以接收问题通知

使用 Amazon CloudWatch 日志进行监控

AWS IoT Analytics 支持使用 Amazon 登录 CloudWatch。您可以使用 <u>PutLoggingOptionsAPI</u> 操作为 AWS IoT Analytics 启用和配置 Amazon CloudWatch 日志记录。本节介绍如 何PutLoggingOptions与 AWS Identity and Access Management (IAM) 配合使用来配置和启用 Amazon CloudWatch 日志记录 AWS IoT Analytics。

有关 CloudWatch 日志的更多信息,请参阅 <u>Amazon CloudWatch 日志用户指南</u>。有关 AWS IAM 的更 多信息,请参阅AWS Identity and Access Management 用户指南。

Note

在启用 AWS IoT Analytics 日志记录之前,请确保您了解 CloudWatch 日志访问权限。有 权访问 CloudWatch 日志的用户可以看到您的调试信息。有关更多信息,请参阅 <u>Amazon</u> CloudWatch 日志的身份验证和访问控制。

创建 IAM 角色以启用日志记录

创建 IAM 角色以启用 Amazon 的日志记录 CloudWatch

使用 <u>AWS IAM 控制台</u>或以下 AWS IAM CLI 命令创建具有信任关系策略(信任策略)的新 IAM 角
 色。<u>CreateRole</u>信任策略向实体(例如 Amazon CloudWatch)授予担任该角色的权限。

aws iam create-role --role-name exampleRoleName --assume-role-policy-document
 exampleTrustPolicy.json

exampleTrustPolicy.json 文件包含以下内容。

Note

此示例包括一个全局条件上下文密钥,用于防止混淆代理安全问题。123456789012替换 为您的 AWS 账户 ID aws-region 和您的 AWS 资源 AWS 区域。有关更多信息,请参阅 the section called "防止跨服务混淆座席"。

```
"Version": "2012-10-17",
"Statement": [
```

{

```
{
         "Effect": "Allow",
         "Principal": {
            "Service": "iotanalytics.amazonaws.com"
         },
         "Action": "sts:AssumeRole",
         "Condition": {
           "StringEquals": {
             "aws:SourceAccount": "123456789012"
           },
           "ArnLike": {
             "aws:SourceArn": "arn:aws:iotanalytics:aws-region:123456789012:*"
           }
         }
      }
   ]
}
```

稍后在调用该命令时,您将使用此角色的 ARN。 AWS IoT Analytics PutLogging0ptions

2. 使用 AWS IAM PutRolePolicy将权限策略 (arole policy) 附加到您在步骤 1 中创建的角色。

aws iam put-role-policy --role-name exampleRoleName --policy-name examplePolicyName --policy-document exampleRolePolicy.json

exampleRolePolicy.json 文件包含以下内容。

```
{
    "Version": "2012-10-17",
    "Statement": [
    {
        "Effect": "Allow",
        "Action": [
        "logs:CreateLogGroup",
        "logs:CreateLogStream"
    ],
        "Resource": [
        "arn:aws:logs:*:*:*"
    ]
    }
    ]
}
```

3. 要 AWS IoT Analytics 授予向亚马逊发布日志事件的权限 CloudWatch,请使用 Amazon CloudWatch 命令PutResourcePolicy。

Note

为防范混淆代理安全问题,我们建议在资源策略中指定 aws:SourceArn。这限制了访问权限,仅接受来自指定账户的请求。有关混淆代理问题的更多信息,请参阅<u>the section</u> called "防止跨服务混淆座席"。

```
aws logs put-resource-policy --policy-in-json
exampleResourcePolicy.json
```

exampleResourcePolicy.json 文件包含以下资源策略。

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "iotanalytics.amazonaws.com"
            },
            "Action": "logs:PutLogEvents",
            "Resource": "*",
            "Condition":{
                "ArnLike":{
                     "aws:SourceArn":"arn:aws:iotanalytics:us-east-1:123456789012:*/
*"
                },
                "StringEquals":{
                     "aws:SourceAccount":"123456789012"
                }
            }
    ]
}
```

配置并启用日志记录

使用PutLoggingOptions命令为配置和启用 Amazon CloudWatch 日志记录 AWS loT Analytics。loggingOptions 字段中的 roleArn 应为您在上一节中创建的角色的 ARN。还可以使用 DecribeLoggingOptions 命令来检查您的日志记录选项设置。

PutLoggingOptions

设置或更新 AWS IoT Analytics 日志选项。如果您更新任何 loggingOptions 字段的值,则最多需要 一分钟,更改才能生效。此外,如果您更改附加到您在 roleArn 字段中所指定角色的策略(例如,更 正无效策略),则最多需要五分钟,更改才能生效。有关更多信息,请参阅 PutLoggingOptions。

DescribeLoggingOptions

检索 AWS IoT Analytics 日志选项的当前设置。有关更多信息,请参阅 DescribeLoggingOptions

命名空间、指标和维度

AWS IoT Analytics 将以下指标放入 Amazon CloudWatch 存储库:

命名空间

AWS/Io TAnalytics

指标	描述	
ActionExecution	已执行的操作的数量。	
ActionExecutionThrottled	受限制的操作数。	
ActivityExecutionError	执行管道活动时生成的错误数。	
IncomingMessages	进入通道的消息数量。	
PipelineConcurrentExecutionCount	并发执行的管道活动数量。	

维度	描述
ActionType	正在监视的操作类型。

AWS IoT Analytics

维度	描述	
ChannelName	正在监视的通道的名称。	
DatasetName	正在监视的数据集的名称。	
DatastoreName	正在监视的数据存储的名称。	
PipelineActivityName	正在监视的管道活动的名称。	
PipelineActivityType	正在监视的管道活动的类型。	
PipelineName	正在监视的管道的名称。	

使用 Amazon CloudWatch 活动进行监控

AWS IoT Analytics 当活动期间发生运行时错误时,会自动将 CloudWatch 事件发布到 Amazon Event AWS Lambda s。此事件包含详细的错误消息以及存储未处理通道消息的 Amazon Simple Storage Service (Amazon S3)对象的密钥。您可使用 Amazon S3 密钥重新处理未处理的通道消息。有关更多 信息<u>重新处理通道消息</u>,请参阅 <u>StartPipelineReprocessing</u>API 参考中的AWS IoT Analytics API 和 《亚马逊 CloudWatch 活动用户指南》中的"什么是亚马逊 CloudWatch 事件"。

您还可以配置目标,使 Amazon E CloudWatch vents 能够发送通知或采取进一步行动。例 如,您可以发送通知到 Amazon Simple Queue Service (Amazon SQS) 队列中,然后调用 StartReprocessingMessage API 来处理保存在 Amazon S3 对象中的通道消息。Amazon Ev CloudWatch ents 支持多种类型的目标,例如:

- Amazon Kinesis 流
- AWS Lambda 函数
- Amazon Simple Notification Service (Amazon SNS) 主题
- Amazon Simple Queue Service (Amazon SQS)队列

有关支持的目标列表,请参阅《亚马逊 EventBridge 用户指南》中的亚马逊 EventBridge 目标。

您的 CloudWatch 活动资源和相关目标必须位于您创建 AWS IoT Analytics 资源的 AWS 区域。有关更 多信息,请参阅 AWS 一般参考 中的服务端点和配额。

针对 CloudWatch 活动中的运行时错误发送给 Amazon Even AWS Lambda ts 的通知采用以下格式。

```
{
    "version": "version-id",
    "id": "event-id",
    "detail-type": "IoT Analytics Pipeline Failure Notification",
    "source": "aws.iotanalytics",
    "account": "aws-account",
    "time": "timestamp",
    "region": "aws-region",
    "resources": [
        "pipeline-arn"
    ],
    "detail": {
        "event-detail-version": "1.0",
        "pipeline-name": "pipeline-name",
        "error-code": "LAMBDA_FAILURE",
        "message": "error-message",
        "channel-messages": {
            "s3paths": [
                "s3-keys"
            ]
        },
        "activity-name": "lambda-activity-name",
        "lambda-function-arn": "lambda-function-arn"
    }
}
```

示例通知:

```
{
    "version": "0",
    "id": "204e672e-ef12-09af-4cfd-de3b53673ec6",
    "detail-type": "IoT Analytics Pipeline Failure Notification",
    "source": "aws.iotanalytics",
    "account": "123456789012",
    "time": "2020-10-15T23:47:02Z",
    "region": "ap-southeast-2",
    "resources": [
        "arn:aws:iotanalytics:ap-southeast-2:123456789012:pipeline/
test_pipeline_failure"
    ],
    "detail": {
        "event-detail-version": "1.0",
        "pipeline-name": "test_pipeline_failure",
    }
}
```

```
"error-code": "LAMBDA_FAILURE",
    "message": "Temp unavaliable",
    "channel-messages": {
        "s3paths": [
            "test_pipeline_failure/channel/cmr_channel/__dt=2020-10-15
 00:00:00/1602805530000_1602805560000_123456789012_cmr_channel_0_257.0.json.gz"
        ]
      },
      "activity-name": "LambdaActivity_33",
        "lambda-function-arn": "arn:aws:lambda:ap-
southeast-2:123456789012:function:lambda_activity"
      }
}
```

通过 Amazon Ev CloudWatch ents 获取延迟数据通知

当您使用来自指定时间段的数据创建数据集时,有些消息数据可能无法及时送达处理。为了允许延迟, 您可以通过应用queryAction(SQL 查询)来指定<u>创建数据集QueryFilter</u>时的deltaTime偏移 量。 AWS IoT Analytics 仍会处理在 delta 时间内到达的数据,并且您的数据集内容存在时间延迟。数 据延迟通知功能 AWS IoT Analytics 允许在增量时间之后数据到达时通过 <u>Amazon Ev CloudWatch en</u> ts 发送通知。

您可以使用 AWS IoT Analytics 控制台、<u>API</u>、<u>AWS Command Line Interface (AWS CLI)</u> 或 <u>AWS</u> <u>SDK</u> 为数据集指定延迟数据规则。

在 AWS IoT Analytics API 中,LateDataRuleConfiguration对象表示数据集的后期数据规则设 置。此对象是与 CreateDataset 和 UpdateDataset API 操作关联的 Dataset 对象的一部分。

参数

使用为数据集创建延迟数据规则时 AWS IoT Analytics,必须指定以下信息:

ruleConfiguration (LateDataRuleConfiguration)

包含延迟数据规则配置信息的结构。

deltaTimeSessionWindowConfiguration

包含增量时间会话窗口的配置信息的结构。

DeltaTime 指定时间间隔。您可以通过 DeltaTime 使用上次执行后到达数据存储的数据创建数据集内容。有关 DeltaTime 的示例,请参阅使用增量窗口(CLI)创建 SQL 数据集。

timeoutInMinutes

一个时间间隔。你可以使用 timeoutInMinutes soh 来 AWS loT Analytics 批量处理自上 次执行以来生成的延迟数据通知。 AWS loT Analytics 一次向 CloudWatch 事件发送一批通 知。

类型:整数

有效范围:1-60

ruleName

延迟数据规则的名称。

类型:字符串

A Important

要指定 lateDataRules,数据集必须使用 DeltaTime 筛选器。

配置延迟数据规则(控制台)

以下步骤介绍了如何使用 AWS IoT Analytics 控制台配置数据集的延迟数据规则。

要配置延迟数据规则

- 1. 登录 AWS IoT Analytics 控制台。
- 2. 在导航窗格中,选择数据集。
- 3. 在数据集下,选择目标数据集。
- 4. 在导航窗格中,选择 详细信息。
- 5. 在 增量窗口部分中,选择编辑。
- 6. 在配置数据选择筛选条件下,执行以下操作:
 - a. 对于数据选择窗口,选择增量时间。
 - b. 对于偏移,输入一个时间段,然后选择一个单位。
 - c. 对于时间戳表达式,输入一个表达式。这可以是时间戳字段的名称,也可以是可以推导时间的 SQL 表达式,例如from_unixtime(time)。

有关如何编写时间戳表达式的更多信息,请参阅《Presto 0.172 文档》中的<u>日期与时间函数和</u> 运算符。

- d. 对于延迟数据通知,请选择激活。
- e. 对于增量时间,请输入一个整数。有效范围为 1-60。
- f. 选择保存。

UPD	ATF	DATA	SET

Configure data selection filter

When creating a SQL data set, you can specify a deltaTime pre-filter to be applied to the message data to help limit the messages to those which have arrived since the last time the SQL data set content was created. Learn more

Data selection window Delta time			
Offset Specifies possible latency in the arrival of a message			
Timestamp expression from_unixtime(time)			
Late data notification Enable late data notification to receive CloudWatch events if late data is detected.			
Delta time IoT Analytics will emit a notification if late data is received within the value below			
2 Minutes			
Back	Save		

配置延迟数据规则(CLI)

在 AWS IoT Analytics API 中, LateDataRuleConfiguration对象表示数据集的后期数据规则设置。此对象是与 CreateDataset 和 UpdateDataset 关联的 Dataset 对象的一部分。您可以使用 API、AWS CLI、或 AWS SDK 为数据集指定延迟数据规则。下面的示例使用了 AWS CLI。

要使用指定的延迟数据规则创建数据集,请运行以下命令。以下命令假定该 dataset.json 文件位于 当前目录中。

Note

您可以使用 UpdateDatasetAPI 更新现有数据集。

aws iotanalytics create-dataset --cli-input-json file://dataset.json

该dataset.json文件应包含以下内容:

- demo_dataset替换为目标数据集名称。
- demo_datastore 替换为目标数据存储名称。
- from_unixtime(time)替换为可以推导时间的时间戳字段或 SQL 表达式的名称。

有关如何编写时间戳表达式的更多信息,请参阅《Presto 0.172 文档》中的<u>日期与时间函数和运算</u> 符。

- *timeout* 替换为 1—60 之间的整数。
- demo_rule用任意名称替换。

```
}
                     }
                 ],
                 "sqlQuery": "SELECT * FROM demo_datastore"
            }
        }
    ],
    "retentionPeriod": {
        "unlimited": false,
        "numberOfDays": 90
    },
    "lateDataRules": [
        {
             "ruleConfiguration": {
                 "deltaTimeSessionWindowConfiguration": {
                     "timeoutInMinutes": timeout
                 }
            },
            "ruleName": "demo_rule"
        }
    ]
}
```

订阅接收延迟数据通知

您可以在 " CloudWatch 事件" 中创建规则,定义如何处理从中发送的延迟数据通知 AWS IoT Analytics。当 Ev CloudWatch ents 收到通知时,它会调用规则中定义的指定目标操作。

创建 CloudWatch 事件规则的先决条件

在为创建 CloudWatch 事件规则之前 AWS IoT Analytics,应执行以下操作:

- 熟悉事件中的事件、规则和目标。 CloudWatch
- 创建和配置您的 CloudWatch 事件规则调用的目标。规则可调用多类目标,例如:
 - Amazon Kinesis 流
 - AWS Lambda 函数
 - Amazon Simple Notification Service (Amazon SNS) 主题
 - Amazon Simple Queue Service (Amazon SQS)队列

您的 CloudWatch 事件规则和关联目标必须位于您创建 AWS IoT Analytics 资源的 AWS 区域。有关 更多信息,请参阅 AWS 一般参考 中的服务端点和配额。
有关更多信息,请参阅<u>什么是 CloudWatch 事件?</u> 以及《<u>亚马逊 CloudWatch 活动用户指南》中的 "亚</u> 马逊 CloudWatch 活动入门"。

延迟数据通知事件

延迟数据通知的事件使用以下格式。

```
{
 "version": "0",
 "id": "7f51dfa7-ffef-97a5-c625-abddbac5eadd",
 "detail-type": "IoT Analytics Dataset Lifecycle Notification",
 "source": "aws.iotanalytics",
 "account": "123456789012",
 "time": "2020-05-14T02:38:46Z",
 "region": "us-east-2",
 "resources": ["arn:aws:iotanalytics:us-east-2:123456789012:dataset/demo_dataset"],
 "detail": {
  "event-detail-version": "1.0",
  "dataset-name": "demo_dataset",
  "late-data-rule-name": "demo_rule",
  "version-ids": ["78244852-8737-4650-aa4d-3071a01338fa"],
  "message": null
 }
}
```

创建 CloudWatch 事件规则以接收延迟的数据通知

以下过程向您展示如何创建向 Amazon SQS 队列发送 AWS IoT Analytics 延迟数据通知的规则。

创建 CloudWatch 事件规则

- 1. 登录 Amazon CloudWatch 控制台。
- 2. 在导航窗格中的 Events (事件)下,选择 Rules (规则)。
- 3. 在规则页面,选择创建规则。
- 4. 在事件源下,选择事件模式。
- 5. 在生成事件模式以按服务匹配事件部分,执行以下操作:
 - a. 对于服务名称,请选择 IoT Analytics
 - b. 对于事件类型,请选择 IoT Analytics 数据集生命周期通知。
 - c. 选择特定数据集名称,然后输入目标数据集的名称。

- 6. 在目标下,选择添加目标*。
- 7. 选择 SQS 队列,然后执行以下操作:
 - 对于队列*,选择目标队列。
- 8. 选择 Configure details(配置详细信息)。
- 9. 在 步骤 2: 配置规则详细信息 页面上,输入名称和描述。

10. 选择创建规则。

使用记录 AWS IoT Analytics API 调用 AWS CloudTrail

AWS IoT Analytics 与 AWS CloudTrail一项服务集成,该服务提供用户、角色或 AWS 服务在中执行的 操作的记录 AWS IoT Analytics。 CloudTrail 捕获一部分 API 调用 AWS IoT Analytics 作为事件,包括 来自 AWS IoT Analytics 控制台的调用和对的代码调用 AWS IoT Analytics APIs。如果您创建了跟踪, 则可以允许将 CloudTrail 事件持续传输到 Amazon S3 存储桶,包括的事件 AWS IoT Analytics。如果 您未配置跟踪,您仍然可以在 CloudTrail 控制台的 "事件历史记录"中查看最新的事件。使用收集的信 息 CloudTrail,您可以确定向哪个请求发出 AWS IoT Analytics、发出请求的 IP 地址、谁发出了请求、 何时发出请求以及其他详细信息。

要了解更多信息 CloudTrail,请参阅《AWS CloudTrail 用户指南》。

AWS IoT Analytics 信息在 AWS CloudTrail

CloudTrail 在您创建 AWS 账户时已在您的账户上启用。当活动发生在中时 AWS IoT Analytics,该活 动会与其他 AWS 服务 CloudTrail 事件一起记录在事件历史记录中。您可以在自己的 AWS 账户中查 看、搜索和下载最近发生的事件。有关更多信息,请参阅使用事件历史查看 CloudTrail 事件。

要持续记录您 AWS 账户中的事件,包括其中的事件 AWS IoT Analytics,请创建跟踪。跟踪允许 CloudTrail 将日志文件传输到 Amazon S3 存储桶。预设情况下,在控制台中创建跟踪时,此跟踪应用 于所有 区域。跟踪记录 AWS 分区中所有区域的事件,并将日志文件传送到您指定的 Amazon S3 存储 桶。此外,您可以配置其他 AWS 服务,以进一步分析和处理 CloudTrail 日志中收集的事件数据。有关 更多信息,请参阅:

- 创建跟踪概览
- <u>CloudTrail</u> 支持的服务和集成
- 配置 Amazon SNS 通知 CloudTrail
- 接收来自多个区域的 CloudTrail 日志文件和接收来自多个账户的 CloudTrail 日志文件

- CancelPipelineReprocessing
- <u>CreateChannel</u>
- CreateDataset
- <u>CreateDatasetContent</u>
- <u>CreateDatastore</u>
- <u>CreatePipeline</u>
- DeleteChannel
- DeleteDataset
- DeleteDatasetContent
- DeleteDatastore
- DeletePipeline
- DescribeChannel
- DescribeDataset
- DescribeDatastore
- DescribeLoggingOptions
- DescribePipeline
- GetDatasetContent
- ListChannels
- ListDatasets
- ListDatastores
- ListPipelines
- PutLoggingOptions
- RunPipelineActivity
- SampleChannelData
- <u>StartPipelineReprocessing</u>
- UpdateChannel
- UpdateDataset
- UpdateDatastore
- UpdatePipeline

每个事件或日志条目都包含有关生成请求的人员信息。身份信息有助于您确定以下内容:

- 请求是使用根凭证还是 AWS Identity and Access Management 用户凭证发出的。
- 请求是使用角色还是联合用户的临时安全凭证发出的。
- 请求是否由其他 AWS 服务发出。

有关更多信息,请参阅 CloudTrail userIdentity 元素。

了解 AWS IoT Analytics 日志文件条目

跟踪是一种配置,允许将事件作为日志文件传输到您指定的 S3 存储桶。 CloudTrail 日志文件包含一个 或多个日志条目。事件代表来自任何来源的单个请求,包括有关请求的操作、操作的日期和时间、请求 参数等的信息。 CloudTrail 日志文件不是公共 API 调用的有序堆栈跟踪,因此它们不会按任何特定的 顺序出现。

以下示例显示了演示该CreateChannel操作的 CloudTrail 日志条目。

```
{
"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "ABCDE12345FGHIJ67890B:AnalyticsChannelTestFunction",
"arn": "arn:aws:sts::123456789012:assumed-role/AnalyticsRole/
AnalyticsChannelTestFunction",
"accountId": "123456789012",
"accessKeyId": "ABCDE12345FGHIJ67890B",
"sessionContext": {
"attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-02-14T23:43:12Z"
},
"sessionIssuer": {
 "type": "Role",
 "principalId": "ABCDE12345FGHIJ67890B",
 "arn": "arn:aws:iam::123456789012:role/AnalyticsRole",
 "accountId": "123456789012",
 "userName": "AnalyticsRole"
}
}
},
"eventTime": "2018-02-14T23:55:14Z",
```

```
"eventSource": "iotanalytics.amazonaws.com",
"eventName": "CreateChannel",
"awsRegion": "us-east-1",
"sourceIPAddress": "198.162.1.0",
"userAgent": "aws-internal/3 exec-env/AWS_Lambda_java8",
"requestParameters": {
"channelName": "channel_channeltest"
},
"responseElements": {
"retentionPeriod": {
"unlimited": true
},
"channelName": "channel_channeltest",
"channelArn": "arn:aws:iotanalytics:us-east-1:123456789012:channel/channel_channeltest"
},
"requestID": "7f871429-11e2-11e8-9eee-0781b5c0ac59",
"eventID": "17885899-6977-41be-a6a0-74bb95a78294",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"
}
```

以下示例显示了演示该CreateDataset操作的 CloudTrail 日志条目。

```
{
"eventVersion": "1.05",
"userIdentity": {
"type": "AssumedRole",
"principalId": "ABCDE12345FGHIJ67890B:AnalyticsDatasetTestFunction",
"arn": "arn:aws:sts::123456789012:assumed-role/AnalyticsRole/
AnalyticsDatasetTestFunction",
"accountId": "123456789012",
"accessKeyId": "ABCDE12345FGHIJ67890B",
"sessionContext": {
"attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-02-14T23:41:36Z"
},
"sessionIssuer": {
 "type": "Role",
 "principalId": "ABCDE12345FGHIJ67890B",
 "arn": "arn:aws:iam::123456789012:role/AnalyticsRole",
 "accountId": "123456789012",
 "userName": "AnalyticsRole"
```

}

```
}
},
"eventTime": "2018-02-14T23:53:39Z",
"eventSource": "iotanalytics.amazonaws.com",
"eventName": "CreateDataset",
"awsRegion": "us-east-1",
"sourceIPAddress": "198.162.1.0",
"userAgent": "aws-internal/3 exec-env/AWS_Lambda_java8",
"requestParameters": {
"datasetName": "dataset_datasettest"
},
"responseElements": {
"datasetArn": "arn:aws:iotanalytics:us-east-1:123456789012:dataset/
dataset_datasettest",
"datasetName": "dataset_datasettest"
},
"requestID": "46ee8dd9-11e2-11e8-979a-6198b668c3f0",
"eventID": "5abe21f6-ee1a-48ef-afc5-c77211235303",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012"
}
```

合规性验证 AWS IoT Analytics

要了解是否属于特定合规计划的范围,请参阅AWS 服务 "<u>按合规计划划分的范围</u>" ",然后选择您感兴 趣的合规计划。 AWS 服务 有关一般信息,请参阅AWS 合规计划AWS。

您可以使用下载第三方审计报告 AWS Artifact。有关更多信息,请参阅中的 "<u>下载报告" 中的 " AWS</u> Artifact。

您在使用 AWS 服务 时的合规责任取决于您的数据的敏感性、贵公司的合规目标以及适用的法律和法规。 AWS 提供了以下资源来帮助实现合规性:

- <u>Security Compliance & Governance</u>:这些解决方案实施指南讨论了架构考虑因素,并提供了部署安 全性和合规性功能的步骤。
- 符合 HIPAA 要求的服务参考:列出符合 HIPAA 要求的服务。并非所有 AWS 服务 人都符合 HIPAA 资格。
- AWS 合规资源AWS 此工作簿和指南集可能适用于您所在的行业和所在地区。

- <u>AWS 客户合规指南</u> 从合规角度了解责任共担模式。这些指南总结了保护的最佳实践, AWS 服务 并将指南映射到跨多个框架(包括美国国家标准与技术研究院 (NIST)、支付卡行业安全标准委员会 (PCI)和国际标准化组织 (ISO))的安全控制。
- 使用AWS Config 开发人员指南中的规则评估资源 该 AWS Config 服务评估您的资源配置在多大 程度上符合内部实践、行业准则和法规。
- <u>AWS Security Hub</u>— 这 AWS 服务 提供了您内部安全状态的全面视图 AWS。Security Hub 通过安 全控制措施评估您的 AWS 资源并检查其是否符合安全行业标准和最佳实践。有关受支持服务及控制 措施的列表,请参阅 Security Hub 控制措施参考。
- <u>Amazon GuardDuty</u> 它通过监控您的 AWS 账户环境中是否存在可疑和恶意活动,来 AWS 服务 检测您的工作负载、容器和数据面临的潜在威胁。 GuardDuty 通过满足某些合规性框架规定的入侵 检测要求,可以帮助您满足各种合规性要求,例如 PCI DSS。
- <u>AWS Audit Manager</u>— 这 AWS 服务 可以帮助您持续审计 AWS 使用情况,从而简化风险管理以及 对法规和行业标准的合规性。

韧性在 AWS IoT Analytics

AWS 全球基础设施是围绕 AWS 区域和可用区构建的。 AWS 区域提供多个在物理上独立且隔离的可 用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操 作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础结 构相比,可用区具有更高的可用性、容错性和可扩展性。

有关 AWS 区域和可用区的更多信息,请参阅<u>AWS 全球基础设施</u>。

中的基础设施安全 AWS IoT Analytics

作为一项托管服务 AWS IoT Analytics ,受 AWS 全球网络安全的保护。有关 AWS 安全服务以及如何 AWS 保护基础设施的信息,请参阅<u>AWS 云安全</u>。要使用基础设施安全的最佳实践来设计您的 AWS 环 境,请参阅 S AWS ecurity Pillar Well-Architected Fram ework 中的基础设施保护。

您可以使用 AWS 已发布的 API 调用通过网络进行访问。客户端必须支持以下内容:

- 传输层安全性协议(TLS)。我们要求使用 TLS 1.2,建议使用 TLS 1.3。
- 具有完全向前保密(PFS)的密码套件,例如 DHE(临时 Diffie-Hellman)或 ECDHE(临时椭圆曲 线 Diffie-Hellman)。大多数现代系统(如 Java 7 及更高版本)都支持这些模式。

此外,必须使用访问密钥 ID 和与 IAM 主体关联的秘密访问密钥来对请求进行签名。或者,您可以使用 <u>AWS Security Token Service</u>(AWS STS)生成临时安全凭证来对请求进行签名。

AWS IoT Analytics 配额

该AWS 一般参考 指南提供了 AWS 账户 AWS IoT Analytics 的默认配额。除非另有说明,否则每个配额都是按 AWS 地区划分的。有关更多信息,请参阅《AWS 一般参考 指南》中的<u>AWS IoT Analytics</u>服务终端节点和配额及AWS 服务配额。

要请求提高服务配额,请在<u>支持中心</u>控制台中提交支持案例。有关更多信息,请参阅《Service Quotas 用户指南》中的请求增加配额。

阅读本主题以了解所支持的 Web 服务协议的 API 操作 AWS IoT Analytics,包括请求、响应和错误示 例。

AWS IoT Analytics 行动

您可以使用 AWS IoT Analytics API 命令来收集、处理、存储和分析您的物联网数据。有关更多信息, 请参阅《AWS IoT Analytics API 参考》 AWS IoT Analytics 中支持的操作。

《AWS CLI 命令参考》中的<u>AWS IoT Analytics 章节</u>包括可用于管理和操作的 AWS CLI 命令 AWS IoT Analytics。

AWS IoT Analytics 数据

您可以使用 AWS IoT Analytics Data API 命令通过 AWS IoT Analytics channel、pipelinedatastore、和执行高级活动dataset。有关更多信息,请参阅《AWS IoT Analytics API 参考》中的 AWS IoT Analytics Data 支持的数据类型。

AWS IoT Analytics 行动

故障排除 AWS IoT Analytics

请参阅以下部分,对错误进行故障排除,并找到解决问题的可能解决方案 AWS IoT Analytics。

主题

- 如何知道我的消息是否进入 AWS IoT Analytics?
- 为什么管道会丢失消息? 如何修复此问题?
- 为什么我的数据存储中没有任何数据?
- •为什么我的数据集会只显示 __dt?
- 如何编写由数据集完成操作驱动的事件代码?
- 如何正确配置笔记本实例来使用 AWS IoT Analytics?
- 为什么我无法在实例中创建笔记本?
- 为什么我看不到我的数据集 QuickSight?
- 为什么我在现有的 Jupyter Notebook 上看不到容器化按钮?
- 为什么我的容器化插件安装失败?
- 为什么我的容器化插件引发错误?
- 为什么我在容器化期间看不到我的变量?
- 我可以将哪些变量作为输入添加到我的容器中?
- 我如何将我的容器输出设置为后续分析的输入?
- 我的容器数据集为什么会失败?

如何知道我的消息是否进入 AWS IoT Analytics?

检查是否正确配置了通过规则引擎将数据注入通道的规则。

aws iot get-topic-rule --rule-name your-rule-name

该响应应当与以下内容相似。

{

"ruleArn": "arn:aws:iot:us-west-2:your-account-id:rule/your-rule-name",

确保规则中使用的区域和通道名称正确。要确保数据进入了规则引擎并且正确执行了规则,您可能需要 添加新目标,以在 Amazon S3 存储桶中临时存储传入消息。

为什么管道会丢失消息?如何修复此问题?

• 活动收到了无效的 JSON 输入:

除了 Lambda 活动之外的所有活动,专门需要有效 JSON 字符串作为输入。如果活动收到的 JSON 无效,则将丢弃消息,并且消息不会传入数据存储。确保您将有效的 JSON 消息提取到服务中。在 使用二进制输入时,确保管道中的第一个活动是将二进制数据转换为有效 JSON 的 Lambda 活动, 然后再将其传递到下一个活动或者存储到数据存储中。有关更多信息,请参阅 Lambda 函数示例 2。

• Lambda 活动调用的 Lambda 函数权限不足:

确保 Lambda 活动中的每个 Lambda 函数都有从该服务调用的权限。 AWS IoT Analytics 您可以使 用以下 AWS CLI 命令来授予权限。

aws lambda add-permission --function-name <name> --region <region> --statement-id <id> --principal iotanalytics.amazonaws.com --action lambda:InvokeFunction

• 不正确地定义了某个筛选条件或 removeAttribute 活动:

确保任意 filter 或 removeAttribute 活动的定义正确。如果您筛选出了某条消息或者从某条消 息中删除了所有属性,该消息不会添加到数据存储。

为什么我的数据存储中没有任何数据?

• 数据提取与数据可用之间存在延迟:

将数据提取到通道中之后,可能需要几分钟时间,然后数据才会在数据存储中可用。该时间因管道活动数以及管道中的任何自定义 Lambda 活动的定义而异。

• 管道正将消息筛选掉:

确保您未在管道中丢弃消息。(请参阅前面的问题和答复。)

• 数据集查询不正确:

确保从数据存储生成数据集的查询正确无误。从查询中删除任何不必要的筛选条件,确保数据可以进 入数据存储。

为什么我的数据集会只显示 ___dt?

此列由服务自动添加,并包含数据的大致提取时间。它可用于优化查询。如果数据集中除此之外不含
 任何其他内容,请参阅前面的问题和答复。

如何编写由数据集完成操作驱动的事件代码?

 您必须根据 describe-dataset 命令设置轮询,以检查具有特定时间戳的数据集的状态是否为已 成功。

如何正确配置笔记本实例来使用 AWS IoT Analytics?

按照以下步骤确保您用于创建笔记本实例的 IAM 角色具有所需权限:

- 1. 前往 A SageMaker I 控制台并创建笔记本实例。
- 2. 填写详细信息,然后选择 create a new role (创建新角色)。记下角色的 ARN。
- 3. 创建笔记本实例。这也创建了 A SageMaker I 可以使用的角色。
- 转到 IAM 控制台并修改新创建的 SageMaker AI 角色。当您打开该角色时,它应具有一个托管策略。
- 5. 单击 "添加内联策略",选择 Io TAnalytics 作为服务,然后在 "读取权限" 下选 择GetDatasetContent。

- 检查策略,添加策略名称,然后对它选择 create (创建)。新创建的角色现在拥有从中读取数据集的 策略权限 AWS IoT Analytics。
- 7. 前往 AWS IoT Analytics 控制台,在笔记本实例中创建笔记本。
- 8. 等待笔记本实例进入"In Service"(正在服务)状态。
- 9. 选择 create notebooks (创建笔记本),然后选择您创建的笔记本实例。这将使用可访问您的数据集的选定模板创建 Jupyter notebook。

为什么我无法在实例中创建笔记本?

- 确保您使用正确的 IAM 策略创建了笔记本实例。(按照上一个问题中的步骤操作。)
- 请确保笔记本实例处于"In Service"(正在服务)状态。在您创建实例时,它开始处于"Pending"(待处理)状态。通常大约需要 5 分钟进入"In Service"(正在服务)状态。如果笔记本实例在大约 5 分钟之后进入"Failed"(失败)状态,请重新检查权限。

为什么我看不到我的数据集 QuickSight?

QuickSight 可能需要权限才能读取您的 AWS IoT Analytics 数据集内容。要授予权限,请按照以下步骤 操作。

- 1. 在的右上角选择您的账户名称, QuickSight 然后选择管理。 QuickSight
- 在左侧导航窗格中,选择 安全和权限。在 "QuickSight 访问 AWS 服务" 下,验证是否已授予访问 权限 AWS IoT Analytics。
 - a. 如果 AWS IoT Analytics 没有访问权限,请选择 "添加" 或 "删除"。
 - b. 选中 AWS IoT Analytics 旁边的复选框,然后选择 更新。这 QuickSight 允许读取您的数据集 内容。
- 3. 请重试以可视化您的数据。

请确保为 AWS IoT Analytics 和选择相同的 AWS 区域 QuickSight。否则,您可能会在访问 AWS 资源 时遇到问题。有关支持的区域列表,请参阅 Amazon Web Services 一般参考 中的<u>AWS IoT Analytics</u> 端点和配额以及QuickSight 端点和配额。

为什么我在现有的 Jupyter Notebook 上看不到容器化按钮?

- 这是由于缺少 AWS IoT Analytics 容器化插件造成的。如果您在 2018 年 8 月 23 日之前创建了 SageMaker笔记本实例,则需要按照笔记本容器化中的说明手动安装插件。
- 如果您在从 AWS IoT Analytics 控制台创建 SageMaker 笔记本实例或手动安装后看不到容器化按 钮,请联系 AWS IoT Analytics 技术支持。

为什么我的容器化插件安装失败?

- 通常,由于 SageMaker笔记本实例中缺少权限,插件安装失败。有关笔记本实例需要的权限,请参 阅<u>权限</u>以及向笔记本实例角色添加所需权限。如果问题仍然存在,请从 AWS IoT Analytics 控制台创 建一个新的笔记本实例。
- 如果安装插件期间出现以下消息,您可以安全地忽略日志中的这一消息:"To initialize this extension in the browser every time the notebook (or other app) loads"(每当笔记本(或其他应用)加载时,在浏 览器中初始化此扩展程序)。

为什么我的容器化插件引发错误?

- 容器化失败并生成错误的原因有很多。在进行笔记本容器化之前,确保您使用的是正确的内核。容器 化内核以"Containerized"前缀开头。
- 由于插件会在 ECR 存储库中创建并保存一个 Docker 映像,请确保您的笔记本实例角色有足够权限 来读取、列出和创建 ECR 存储库。有关笔记本实例需要的权限,请参阅<u>权限</u>以及向笔记本实例角色 添加所需权限。
- 此外,还要确保存储库的名称符合 ECR 要求。ECR 存储库名称必须以字母开头,并且只能包含小 写字母、数字、连字符、下划线和正斜杠。
- 如果容器化过程失败并显示错误"This instance has insufficient free space to run containerization"(此 实例用于运行容器化的可用空间不足),请尝试使用更大的实例来解决问题。
- 如果显示连接错误或映像创建错误,请重试。如果问题仍然存在,请重新启动实例并安装最新的插件 版本。

为什么我在容器化期间看不到我的变量?

 AWS IoT Analytics 容器化插件在运行带有 "容器化" 内核的笔记本后,它会自动识别笔记本中的所有 变量。使用其中一个容器化内核运行笔记本,然后执行容器化。

我可以将哪些变量作为输入添加到我的容器中?

 您可以将要在运行时期间修改其值的任何变量作为输入添加到容器中。这样,您就可以使用需要在创 建数据集时提供的不同参数来运行相同的容器。AWS IoT Analytics 容器化 Jupyter 插件通过自动识 别笔记本中的变量并将其作为容器化过程的一部分提供来简化此过程。

我如何将我的容器输出设置为后续分析的输入?

 每次运行容器数据集时,都会创建一个可存储已执行构件的特定 S3 位置。要访问此输出位置, 请在您的容器数据集中创建一个类型为 outputFileUriValue 的变量。该变量的值应该是 用于存储其他输出文件的 S3 路径。要在后续运行时访问这些已保存的构件,您可以使用代码 getDatasetContent API 并选取后续运行所需的相应输出文件。

我的容器数据集为什么会失败?

- 确保将正确的 executionRole 传递给容器数据集。executionRole 的信任策略必须同时包含 iotanalytics.amazonaws.com 和 sagemaker.amazonaws.com。
- 如果 AlgorithmError 显示为失败原因,请尝试手动调试容器代码。如果容器代码中有错误或执行 角色无权执行容器,则会出现这种情况。如果您使用 AWS IoT Analytics Jupyter 插件进行容器化, 请创建一个与 ContainerDataset 的 executionRole 角色相同的新 SageMaker 笔记本实例,然后尝试 手动运行笔记本。如果容器是在 Jupyter 插件外创建的,请尝试手动运行代码并限制 executionRole 的权限。

文档历史记录

下表介绍了2020 年 11 月 3 日之后对 AWS IoT Analytics 用户指南 作出的重要更改。如需对此文档更 新的通知,您可以订阅 RSS 源。

变更	说明	日期
<u>终止支持通知</u>	终止支持通知:AWS 将于 2025 年 12 月 15 日终止对 的支持 AWS IoT Analytics 。2025 年 12 月 15 日之后, 您将无法再访问 AWS IoT Analytics 控制台或 AWS IoT Analytics 资源。有关更多信 息,请参阅 <u>AWS IoT Analytics</u> 终止支持。	2025 年 5 月 20 日
<u>AWS IoT Analytics 不再向新客</u> <u>户开放</u>	AWS loT Analytics 不再向新客 户提供。的现有客户 AWS loT Analytics 可以继续照常使用该 服务。 <u>了解更多</u>	2024 年 8 月 8 日
区域启动	AWS loT Analytics 现已在亚太 地区(孟买)区域推出。	2021 年 8 月 18 日
使用JOIN查询	此更新允许您J0IN使用查询 AWS loT Analytics 数据集。	2021 年 7 月 27 日
<u>与集成 AWS IoT SiteWise</u>	现在,您可以使用 AWS loT Analytics 来查询 AWS loT SiteWise 数据。	2021 年 7 月 27 日
<u>自定义分区</u>	AWS IoT Analytics 现在通常 支持根据消息属性或通过管道 活动添加的属性对数据进行分 区。	2021 年 6 月 14 日

重新处理通道消息	此更新使您能够重新处理指定 Amazon S3 对象中的通道数 据。	2020 年 12 月 15 日
<u>Parquet 架构</u>	AWS IoT Analytics 数据存储现 在支持 Parquet 文件格式。	2020 年 12 月 15 日
<u>使用 CloudWatch 事件进行监</u> 控	AWS IoT Analytics 当活动期 间发生运行时错误时,会自 动将 CloudWatch 事件发布到 Amazon Event AWS Lambda S。	2020 年 12 月 15 日
<u>延迟数据通知</u>	当延迟数据到达时,您可以 使用此功能通过 Amazon Ev CloudWatch ents 接收通知。	2020 年 11 月 9 日
区域发布	AWS IoT Analytics 在中国(北 京)推出。	2020 年 11 月 4 日

早期更新

下表列出了 2020 年 11 月 4 日之后对 AWS IoT Analytics 用户指南 的一些重要更改。

更改	描述	日期
区域发布	AWS loT Analytics 在亚太地区 (悉尼)地区推出。	2020 年 7 月 16 日
更新	重新组织了文档。	2020 年 5 月 7 日

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。