aws
& A RigE
AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK FERARER

AWS Encryption SDK: FF&Z A R ¥EM

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon FIEFRFE L AR A BB FEMIE Amazon WERBRS , AR BLEAATRESIEEZFE
&, BRKIKS Amazon WA REH., PIEIE Amazon HEMEMBEIRO AR BFIEENMT | XL
FrE& T BEME T Amazon., 5 Amazon BxBk=iH Amazon #Bh , th AIEER 2 aNkk,

AWS Encryption SDK FERARER

Table of Contents

FBRATA AWS ENCIYPHON SDK ? ..o e et te e eeete e eteeaeeneens 1
TE T R IR B B R T R oottt en e 2
= = 1 O - OSSR 2
B 1 RO 3
=2 == TSR 4
Y5 SRR 4

Y ettt ettt ettt et e ettt et e e et e e et e et e et et e et atenns 5
L)1 OO 6
i PPN 7
G RO 8
B I L e TR 9
11wl R 9
D B B B .o e e 11
== OO 11
g1 1P = OO 11
PO YL 3 O 1y 1 S 12
R T I oottt ettt n ettt e e e eeeeens 12
pz= QSRR 13
B B ettt ettt ettt ettt e et et e e ere e 15
LB am =L Al PR 16
A AWS Encryption SDK HIZRBIIE ..ot 16
n{a] AWS Encryption SDK B HIZR BT B ..o 16
B I RO 17
B EEZARE, SBRABARBEI AES-GCM ..ot 17
8= i = RO 18

BZETI AWS KIMS .o e e et e e e e e e e e e 19

BRI E T B oo e e e e 20

B I S ...ttt — e — e e e e —e e e ——eeee —eeeee—eeeea—eeeeeateeeeaeeeseaareeaaaeaeaas 23
Vi = RO 23
Vi = < RO 23
FEFZXIT AWS KIMS KEYS ...ttt ettt en e see e 25
Vi = RO 45
ey < PO 56
B B it RO 62

AWS Encryption SDK FERARER

T R T I oo e 65
R B T BRI .ottt ettt ettt ettt ettt 72
B BB T BB oottt 73
B B E B Il oottt 73
R T TR .ottt ettt ettt ettt e ettt ettt 74
R B L TR B I oot ettt ettt 74
S R A B .ottt ettt et 74
B B R e ..ottt ettt e e 75
B B R R T B R o oottt 76
B B T R B B T R oottt 77

B B 0 S BT .ottt ettt 81
B R B B B 0 S B T oo 85
R TR ettt et ettt ettt ettt ettt 87
BRI Y L T o oottt ettt ettt 87
R TR B R ettt 89
FEINBRBREBERBI TSI ZESR oottt 90

B R BRI R E B R IR oo et 90
AWS KIMS S BERBL ..ottt ettt ettt ee e e et et e e, 92
AWS KMS BTN FTTERUBR . oottt ettt e, 93
£ AWS KMS 4B EEE AWS KMS Keys IR ..ot 94
BUZRBE AWS KIMS FAIE ..ottt et e et en e en e 94
EF AWS KMS BILZREBIR ..ottt e e 108
FH AWS KMS KIBIRILZREAIR .o, 115
AWS KMS B R BRI ..ottt ettt et 123
TTHEBRIR oottt ettt 125

G R R ettt ettt 126

BT R I BB ettt ettt 126

e B BT ettt ettt e, 127
BUR D R BREATE .ottt ettt 139
AWS KMS ECDH FHRERB ...ttt ettt 146
AWS KMS ECDH AR FTTEHIALBR ..ottt 147
BIZZ AWS KMS ECDH BFEATE ..ottt ettt en e 148
B AWS KMS ECDH RILZREAIR ..ottt 155
JRIE AES BREATE ..ottt ettt ettt 160
JRIE RSA ZREAIR oottt ettt ettt ettt ettt 167
FRATIHT ECDH BAREB ..ottt ettt et 176

AWS Encryption SDK FERARER

BIEIRIEHY ECDH ZREAIR oottt te et e e eeeenee e 177
=Rk 22 £ N 194
R B B oo e oo e e e e e e e a e 203
e e —eeeeeeeett—eeeeeeeeeta—eeeeeeeetta—aeeeeeeeta——aeeaeeeett——aaaeteraraaaaaas 203
T R e e e et 204
BB C T R L B e e 205
I e e e 209

I | RO 215
B R I B e 217

P TB e e et e e e e et e e eeae e 217
I e e e 218
o TSP 225
T R R e e 226

T R e e e e 226
JAV A e e e e e e e et e e e e et et —aa——_ 226
T R R e e 227

T R e e e e 228
I e e e 229
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 242
R B e 242

T R e e e e 244

B I e e 245
I e e e 248
Y 1 T o PP 255
T R R e e 255

T R e e e e 256
I e e e 257
U] PP 264
T R R e e 265

T R e e e e 265
I e e e 266
Kk i1 OO 268
T Ll e e e e 269
BIATE T CL et e 272
I e e e 284
T I =R 306

AWS Encryption SDK FERARER

R e e e e 317
G A< L AR 320
LR IR € o = RO 321
ek Ak Tz o R (=Y o o)V (=Y o SOOI 321
Ak A Bl | o = 329
BRI = a1 [R 345
A = e L = NSRRI 346
G Ak = A B =y o - VTR 346

LB Ry o L TR 349
B 1y v = = O 350
R A R ERE R BB RIZ 7 e 350

) 1wl N R (1 1B = - = PR 351

Eo NN b R R b e O s I R 351
ok = = A OO 352
B R 353
B IR e e e e e 354
CloUudFOrmation BEARc.oovieie ettt et e e et et et e e ne et et et neere e s 365
BIRRAS AWS ENCIYPHON SDKoviieeieeieeeeeeeeeee ettt ae e eteste e e e eneeneeeeenee e 381
e e —eeeeeeeett—eeeeeeeeeta—eeeeeeeetta—aeeeeeeeta——aeeaeeeett——aaaeteraraaaaaas 381
(O -2 B8 NN | 382
el e 1T TN (1) IR 383
= - O 384
o TP 386
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 386
Y 1 T o PP 387
U] PP 389
B R T BB .ot e e 389
T . 7 X BRI e et 389

R R 17 X e e, 390
BN 20X e e e e e e e e, 392

R R 2 2 X e e e, 393

B R 2 3 X e e e, 394
TEFBARET AWS ENCIYPLON SDK ...oovieieeceecee ettt ettt eeensateeeeeeeaneseeteeeennaneaee e 395
LU B =2 1 =1 = =R 396
MER 1: NEHNAREEFEIBRITARIR 1.X oo 397
FER 2 . BN AREEFEIBRITARZ ..ocoooeoeeeeeeeeeeeeee e 398

Vi

AWS Encryption SDK FERARER

T AWS KMS B R R R o oo 398
bt 2l = = - VO 399
bank 2 - - VR 403

FEET AWS KIMS BB R ... e e e e e e ee e 405

BT Qe - 408
LU R = - SO 409

pOpaa T E S i sk 3 419
FREBBERIITTIR .ottt 420
[T e R G 3 = = OO 420
[T R Qe 3 1y 1= OO 421
BRAATRIEIRAE R ..ottt ettt ettt en et 422
HAAIANZRIBE .. .ottt ettt aaens 422
HAAIANZRIBE .. .ottt ettt aaens 422
B R E B BB Tl ..o e e e 422

B] R .o 424

F ? B AWS Encryption SDK E AWS SDKS ?oveeeeeeeeeeeeeeeeete e, 424

5 Amazon S3 MBREFIHA M AWS Encryption SDK A 2 ..o 425

S EFMRLE tn2E &L AWS Encryption SDK , BB—FZBRIABE 2 oo, 425

WA B AIERIEEI B (IV) AR EIEREIETAL 2 oo 425

L/ e B o o A | P 1 R S g L S 426

WA R R A T N R B B BB BB 8 2 oo 426

WAL I 2R Y BIR 2 4R 5 E B BEE — 2 AWS Encryption SDK EE 2 oo, 426

AWS Encryption SDK JEER X AR MBRTBEMZDTFE 2 o, 426

A T A E A B OB E B R R I 2 oo 427
BB MERAZSMNBEBAMBEIE 2 oo 427
AT LA(E A BRLE BRI SR B AT HNZR AWS Encryption SDK ? ..., 427
AWS Encryption SDK t#Z % input/output (I/O) FREIMAFEITEI 2 oo 427
B e e 429

T B B I B e e 429
= A OO 430
T M e e e e 437
BB R oo 441

D= = = W OO 442
i 1= 0= V= W N TR 442
Uk = 0= = W N TR 446
13 0k € = D= - = W 1N T 448

Vii

AWS Encryption SDK FERARER

IESL AAD B2 oottt h ettt a ettt n e b et et ne et nte et eneene e 452
B ettt r et et Rttt ne et et neene e 453
E Lo o1 = SRS 457
AWS KMS 2 R AR B IR AT oo 458
B = i T ST 459
= G i 2 SRS 459
B B T et R et R et R et R et R et R et e et e e e e e 461
.. cdlxii

viii

AWS Encryption SDK FERARER

AR 1+ 4 AWS Encryption SDK ?

AWS Encryption SDK R —NEFIRMNEE |, §ELLEN ARS8 A 1T L #r0f B E SRR X B
HITMBNRE, X¥ , BRUUTITNAEFRNZOINEE , MAROMANKESXNMENBRBH
&, & AWS Encryption SDK Apache 2.0 ¥ AJiE T & 522 1,

XL AWS Encryption SDK Z R N REZIN T RA :

« BN ZAEA BRI EE 2

o BNIZMAERZEEREBPRXTER ?

« BAMAERINEZR ?

« BOAFRFNZEZR , ARREERETLANE?

« BOAEMZNBIEERESEN?

« RAATELR B AREWE T USREUR Y I B B E 2

« RNAHARES AN R NBLRE BT 2ME QX LEHIE 2
- WMEIHEA AWS KMS IREIREIEZE 2

£/ AWS Encryption SDK , BAI LUE X EZAREEFRBHAT , ATHESEABLEHRZARRE
BiE, AF , BUNERARMOEESEZXNBERTMENMBEZ. AWS Encryption SDKEITH AWS
Encryption SDK FiZX4A 7 o

WER%AE AWS Encryption SDK , BAIBEERREZSHNB N RWEMZERRASR K MARCENAERFN
BAOIhee £, MMTETREILTAAR AWS Encryption SDK B 251X £ @) &,

B8 N B SRER YRR IASKHE

RINBERT , 2 NEMBNENIEIIR AWS Encryption SDK £ K —/MNE—HEIER4P. XEBRE
ESINNBREREAE - BIERANNERERE,

FREZE, 23 50 KIEH X PR B AT B EEE#H 1T AWS Encryption SDK &, EXEZE
B &S the section called “XEFNEEZEH",

ERURZART BIREZRANER

BEE - NESNHEZA T NERITEZAR AWS Encryption SDK /I IMBEEHNBIERHA. BF
RE-—NMEASNLRFHNERIEZRHANEL , AWS Encryption SDK X7 By T 4849 N % Hi 4=
ERTBHEN,

AWS Encryption SDK FERARER

Flan | XK B AR HSM AWS KMS key B AWS KMS i AFIZ4E THEBIEH TN, AT ESH
F—ANZAFAARFARASENERXHNR |, BRI UERAEH - NS EZARZEIE,

KAFEMERXIHE | CEEINERNREZH AR =8 IR

N7 B9 BRHE R AN 25 1Y B IR 2540 — 2 AWS Encryption SDK T 12 8 Fi & LB R X M9 i 208
B, ZEREELEFREIFRF NBHRENHEZSR BHXLEZHARNIR AWS Encryption
SDK f##Y.

Hy F LB S I AWS Encryption SDK ZEZE S AWS DK , {E AWS Encryption SDK A& E SDK AWS
BKP, AEE T M AWS BRSS. AWS K RA LR RE KR SR HIERN AWS KMS
keys , TEE—1

EFRE#EERFTLR

AWS Encryption SDK 21 LT RFMEEHIT KM GitHub, BRI UFERAXLEEFEEEETENRE, %
MEREE , HEERBFETEMESIHRNER.

» AWS Encryption SDK for C — aws-encryption-sdk-c
« AWS Encryption SDK i F.NE T-aws-encryption-sdk F#ER .NET B,
« AWS 0% CLI — aws-encryption-sdk-cli

* AWS Encryption SDK for Java — aws-encryption-sdk-java

* AWS Encryption SDK for JavaScript — aws-encryption-sdk-javascript

* AWS Encryption SDK for Python — aws-encryption-sdk-python
« AWS Encryption SDK ¥ F Rus t — aws-encryption-sdk F6#EH Rust B .
« AWS Encryption SDK for G 0 — aws-encryption-sdk F#ER Go B

Em&EMRSHREE

AWS Encryption SDK /LM EEEE X, FIEEEXEHBRAEREN, BAUFERA—fESX
BTN | %Eﬁ%—#iﬁ??ﬁﬁiﬁﬁﬁﬁ@o EREUTHESTESHRNBES, MRBIXHE , XL
REEEXREESRENEBTRHTHER, I, EMENFER %@EFH%?E’\J@#H%@EE%*HE
RHARMER. BXEZER ;ﬁél’iﬂ the section called “B4AL B,

{852 , AWS Encryption SDK B2 EHMERREE, ATENEUATENKNREMBZENEE , ©
W, BITEERA—NERTMERHERS —NEHTHRE,

EFFRERERTR 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/

AWS Encryption SDK FERARER

DynamoDB 1nZ%& FiwH Amazon S3 & F i N &8

AWS Encryption SDK £ ##2 H DynamoDB IIZ & F ikt Amazon S3 & 7 i i1 25 i ZE RV 3K
B, XEFELEBEZRBNINZEE. AWS Encryption SDK

AWS Key Management Service (AWS KMS)

AWS Encryption SDK A BAEFBIAWS KMS keys FZE 2240 SRR IR BIE | @FZXE KMS
BR4A, Bl | B LUSEE AWS Encryption SDK £ AWS KMS keys) —PNHZANT IR E
HEIE AWS K, {BER , BAJEH AWS Encryption SDK R Z1Z I IE.

AWS Encryption SDK T2 AWS KMS IIZ IR FIREIR 23, ReEncryptEI® , AWS KMS
RERETEMBIRENINZEEE. AWS Encryption SDK

{X AWS Encryption SDK XX #01% KMS %4, BT EMEAIEXN# KMS 4R 1E AWS
Encryption SDKA#{TINZHZEE . AWS Encryption SDK A HERTEBNELZEHERBEDS
By ECDSA £& %4,

> R4

AWS Encryption SDK £/ 5 AWS SDK M T EMEIMN 4 KRS , DIEERRARE B 4 a5 B H B BR.
ERBIESRE |, BRITBWEMEA AWS Encryption SDK 5EA TN REBIESNEF THRAE , HEH
AR FHITHR. HRAFEHTERERS , Fl20M 1.7 ZBIH AWS Encryption SDK ARAF
To x B 2.0 A&, x RUG , BASBEIFHE AR BHZ,

e 4mIE1E S SEIEB AWS Encryption SDK R E £ IR GitHub FEFRF KH . BRI E
WEABRNZENRUEERFHEMR. §l , AERAEWE —TREE S+ AWS Encryption SDK A ‘J
BEATERXNRF (EE2XEF) M, B4 T35 —fiERZEIES M end-of-supportBt . HRIMNBIWER
FALEXENERE BRERATEIFNMRE,

EERENYREIES AWS Encryption SDK MRAW A BHIB EX , BEEF S AWS Encryption SDK
7% FE F /9 SUPPORT_POLICY. rstX#f,

* AWS Encryption SDK for C — s upport_policy.r
« AWS Encryption SDK i@ F.NET — s upp ort_policy.
« AWS %8 CLI — s upport_policy.r s

* AWS Encryption SDK for Java — s upport_policy.r

» AWS Encryption SDK for JavaScript — s upport_policy.r

* AWS Encryption SDK for Python — s upport_policy.r

EEEZIE: 3

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst

AWS Encryption SDK FERARER

BXEZER |, BHSREMNRA AWS Encryption SDKAWS SDKs 1 T ESZ15FH i AWS SDKs F#]
%I]IE%?FIE&%O

THREZER
A X AWS Encryption SDK MIZEFmMBENEZER , BEHUTRIER.

s BXZAAIESHEANRENBLZHNAD , 2S5 FHEE AWS Encryption SDK,
BRBEXKRAN , BSH H&ESSE AWS Encryption SDK,
BREFAEAIEBNIEARNER , BSRZALAITESNITHESLSR,

AR BEROMAEPEE R RH AWS Encryption SDK , &2 [E/£# & AWS Encryption SDK,
BEXFANERER , BSHASE,

BXRBFEARAMHE AWS Encryption SDK , iEZFFHEIAWS Encryption SDK M358 GitHub,

Bx R BHIZER AWS Encryption SDK , i5FEAWS % T EiHiSi0IE H & bk,

B < AWS Encryption SDK £ T E4wEIE S PEIME L.
« C: AWS Encryption SDK for C &% AWS Encryption SDK C 3 #4H £ #aws-encryption-sdk-cF
& B GitHub,

« C#/.NET : ZILAWS Encryption SDK X} F.NET , 7Zf#EE#aws-encryption-sdk-netaws -
encryption-sdkBRBEITF. GitHub

o WHITHRME : ZMAWS Encryption SDK a5 G475 H , FiE AWS 1% CLI K9324 , AR EE#aws-
encryption-sdk-clifFf# E GitHub,

« Java : 2L AWS Encryption SDK for Java AWS Encryption SDK Javadoc 1 _EH#Yaws-
encryption-sdk-javaf®Z & E., GitHub

JavaScript: #EZ [#the section called “JavaScript” , aws-encryption-sdk-javascript7Z & E 237 7
GitHub,

+ Python : &I AWS Encryption SDK for Python AWS Encryption SDK Python 32 #4#1_Eaws-
encryption-sdk-python T 9 % B GitHub,

BOE gk

BIRDERER S | MREEEARAHIBAREZRERE , FEANUTEIR,

THREZEER 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK FERARER

. MBEEHRKINBENZLTE AWS Encryption SDK , iHEH AWS 222071, FEGIBATFF
GitHub |E.| Eﬁo

o ER{HIEX KRB AWS Encryption SDK , & 7E GitHub EEFRREEEFEANREEESHWRIE,

s ERMEBEXANHENRE , BEMAZTE LR B, SHA IR BB aws-encryption-sdk-
docs R X5y TR 7 e ST R GitHub,

HE LS AWS Encryption SDK

AN B FERANBZ AWS Encryption SDK , HRBIFILERMSEER. ©EERBETHHE AWS
Encryption SDK TERBEU R BATARFEREHIARIE,

BEH?

« THRIN{A AWS Encryption SDK i {5 £ il 22 SRR BB BE

- THRESNENER RFEENSBEZHAARRFBEZANIEZN.

s THRRELEABHMIRZANZATNEIZAREER.

- THRAUEENZEIRETEMNMNE LT, XRAEN , BHRBRINBWMNRESKEK,
o TEIERFEREM NS

« RE , BRITUBBCERNREBSHEMAT. AWS Encryption SDK

EL1

-+ EHmE

- BIEEY

- BREE

- BRANERARUESF
- MELETX

- MEMHE

- BREH

- MEAREER
- MR
© EAGE

]
&b
[$)]

https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK FERARER
o RERE

- BFER

(EE=pIES

MEZENBENZ 2D BRT AR IRBZZBEOREZH. RPBEZHN —PLOANRES
BRENEBITNE, At , BEFES—INEER MAZANBRHIZEZH, EACSREHNE
BEZANBOER N EEH IR,

R BIEEA

5 A — N EFE AWS Encryption SDK ZANBREEH TR, AFE , WEEENSEEZHATH
BIBEBZAHITNER. NNBENREZHASNENRE - AEHEERLRENMNZE S,

EEEQRFH , BEAZHRREFHEHRER.

’_ DATA Gg n

Data key Plaintext Algorithm Ciphertext B
data suite
o Encrypted
Message
P g O g O o~ g
rapping key Data key Encryption Encrypted
algorithm data key

EZNEBERFBHATNEHEBENHE
BORESNEBEZHATMEREZR. EUEFENTEANAFRERAETRANEERS , SEIRM
TRXHENIEZR RENTFRANNLE. SNSRZFAHNZHENBERR. FEMER
FEREAFMMZEAE AWS Encryption SDK F# £ NZHEH,

EMBYHE CREERATUBRZE - NIBHREZANTRER,

(EESpIES 6

AWS Encryption SDK FERARER

Wrapping Wrapping Wrapping
key A key B key C

6=
Data key

B i,

Encrypted Encrypted Encrypted
data key data key data key

ZRSHEENRS

EMRENHE , INERT , AWS Encryption SDK £ EH AES-GCM X#MiN&E, HARER
¥ (HKDF) MIZEMERELEN. EMBEBEZY , EUEEES NI RZHANXI M IEX
MmZEEE,

BE , SENNHELERAME At , INBEANBEEZEEER , EENBEXE D, BLEEH
EETRUEBANALIBNERMNEZENEE, NTEABHEENNS , B UERAXHER
MEZEREMBEEE , R ERLFZRHNEZENRNBERERNA.

BAEE A = AWS Encryption SDK A T INZHENMBEZR. BN EEZARRE - IMIENBERE
ROFTHA, RIFSEABIEZHERF , BWS AWS Encryption SDK {5 F Iff — BV BHIR Z AR N
BRHE

BEEBEE. £/, X, ¥R, RPIAEABEEH. SLRAANENHEZRERN , AWS
Encryption SDK & & FERIX L T,

NTRPEHOBIEZH , FH-NHZAN BB AWS Encryption SDK MMEZ4R (M EEBHRER
) EBITINZE. AWS Encryption SDK FERAEHNAXABBEZANBENERERE , EAaRREH
MAFEHHRIER. ARG, SENENHREZASNENEE - HFHENFRERBDNMNZEEFR, BX
EZEER |, 557 the section called “ZFF X TEGM TEAR

BiREH 7

AWS Encryption SDK FERARER

® Tip
£ AWS Encryption SDK , BITRBBEZRASHREMEZHAX TR, —EXBFENEELE
H(BRBANES) EABHRERBEAN EREZARINEMBRG, BE80RERBGHE
ZEERNEA , FRESSFEATMERFENRFEMNZEZHR. Hit , BIMNEBHRBIER BE K
BEZAMEN , MAR B BEZAMNEN,

BIMNNEBNBREZABIEAHE , SENEHHATNENTEZANIRRLT. LaBEEE AWS
Encryption SDK f#Z i A LA E B ¥ b iR B B M 2EZER.

BEREH
SEFAR—MBAMBEH , AWS Encryption SDK (/A %2 M MEA T MBENIESH, A

BERA IS NMERBHNES N ANBERH. fREZHASNEZHRREREFT , LEAIIRERE
AL YRBHRFRT ENBIE

® Note
DERFZAREZRFNIEIRARMEFINER. TR BESLECAZZHARMERRE
Hl{LEY MasterKey K <Ek,

AWS Encryption SDK X #&ZihE AR 2&Z4 , 0 AWS Key Management Service (AWS KMS)
F# AWS KMS keys (‘BIFEZXE KMS 247) . |RiE AES-GCM (&4 1% Standard/Galois it #18%
B) ZHEANES RSA Zfi, BETLUY BREEE SN IEZEH.

EFEAEEMERN , EEERFISEZHUM LERELBZNNGR, BB A FEMARXRIITILER
£ -

- EATATIZAEN Web BRS , 10 AWS Key Management Service (AWS KMS)o

- BABEHZESER (HSM), #ifn , AWS CloudHSM REHER,

- FRAHEHMRAEERETIENRES.

MREGEFAEERS , RINBUUEER AWS KMS, 5 AWS Encryption SDK £/ AWS KMS
ATRIB BRI AR 2% F4A, B2 , AWS Encryption SDK FEE AWS FAE[AWS RS

https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK FERARER
RN ERARMEER

EEEATNZENBEZNCTERS BUUFEABATRIEIRARMEERF. SRUERAMITRENEH
BRAMERARERESF , BT LLURITEC I, AWS Encryption SDK AWS Encryption SDK 2t 4H
ERANBHATRNERARMEER , EHETESREH. BXEZEE , BN ZHRHRAEM,

B £ K. MEMNRBREZH, EXBHARN , JUEEATNEHERANTEZH, XS
BERARZLEE - NEIEBAS —MREMNRFIREZRANRS. BEAUTUE LT HFIRZANER
B, EFEAEMEEENENEER:NEZHAR, BXIEENER AWS Encryption SDK E X AIA =
BB , S BT,

T RIETE S IFBRHAH

+ AWS Encryption SDK for C

» AWS Encryption SDK for JavaScript

« AWS Encryption SDK X F.NET

« MRA 3, #9 x AWS Encryption SDK for Java

« MRZA 4, B9 x AWS Encryption SDK for Python , SAER i1 4 #HE HIZFE (MPL) kBT — 28
FA B,

« MR 1, x B for AWS Encryption SDK Rust
« BRA& 0.1, x RESRAH fo AWS Encryption SDK r Go

FEARHEFRBATNERLR. TEVRHEFEOEEENIRZH (HEEH) . BIER
HE-NEZAREEFEXEK , EXRARAEFEERHSNMNEEA, Java. Python H AWS 1
CLI X EZRHARHER

BXTEERTMENZAR (REBHARMER) . BUNEEMENEHAR (SETZHAREER)
RAENFARHEITHED, MBET , AWS Encryption SDK &8 ENME R RARMBHRIER
R, BER, AWS Encryption SDK REAELEEEN T EZARBEMENRERH. EEATHE
M aEZHARTIEN , {B1X2 AWS Encryption SDK &£,

BXEEAERANTAES BSH LESETH,
n#E £ T

ATREMBRERZEY BEMENEHRENERFIEMNH LT, FAME L TXETELN , B
X REMNEVETHMBERERXEK,

ZRRNEBARMESF 9

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

MBLETX B—4HEBHEXN , HHEISEEFNBELT SHRIEAKM MEKE. mBELTXTRITER
ERNEMAHRE BETEESSATHEERERMBRERAKE , A0, BXXHRE, AERIAENRHEK
B, HEMBHERN , MFLTXAMZBLFRAEZMBZENRE , LMEFEFAERDNMNES LT XXHER
¥iE. AWS Encryption SDK Gz £ T XUBAXERXSEEHIREIMN INZHEEFRLF,

AWS Encryption SDK £ AR INE L T X BIFFRIEENINE LT XMINBEM L EESE (CMM) FINEY
PNEAXS, BRI SYUBERATEZNMEZRELR , CMM #BamMZE LT (BREEF. aws-
crypto-public-key IR A ABRIEFHAWELARK) RIN—NEF/EXN. MZELTXHWaws-
crypto-public-key&FEHRE AWS Encryption SDK , TEEFE IR £ T b AR E A XS Y
M. AXEMEER , B EERXSE"HH AAD,

THNRAMEZ LT XHERPEENFHEMNE LT CMM RN LA BAX AR,

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

ERBHRE |, EREANBNES . BT AWS Encryption SDK AJ LU 1025 B8R 4 #7 k R 42 BN 3
LT, AEETRRMBEMAMNB LT, B2 , B L TXAFHPERIAEZN R ERBMNEEE,

« £ AWS Encryption SDK a3 51752 M (CLI) A , I RIETE decrypt i HHFRBEMBZ LT3, CLI FE
REPAXBFEIRIENZFEENNB LT REFEEXEE,

- EHMERESIUS BEBNETSNE L TXHNAXHE. NARFPHBERBNRLERE
AXBENRIEERENPHNE L TYXRBEEMEEFR (HFE) FHMNE LTI

® Note

BTIMRAZFRBENNE L TX CMM |, EAIERERERERBMBFERPEAMZE LT
Mo

« MRA 3, #9 x AWS Encryption SDK for Java
« MRA 4, .NET AWS Encryption SDK &Y x

« MRA 4, B9 x AWS Encryption SDK for Python , Sa&R %4 £HREHFRFE (MPL) k¥
]ﬁ_ﬂﬁ% HT.I-O

« R 1, x B9 for AWS Encryption SDK Rust
e R 0.1, x REFMRAH fo AWS Encryption SDK r Go

& ET 10

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

EEEMZE LT , HFiRETCTRIEN, MERLETXBAXERE RE AWS Encryption SDK iR
BB IR E EFRA P, MREFEANE AWS Key Management Service , t1% T 3t ATELA4E 3T
AEXAHIAEFITEZMBES |, flad, AWS CloudTrail

BRERBHREINBIEME L TXHRG , HSHENE®REEZES 6.
Ry HE S
U I8 (E IR B EAT AWS Encryption SDK , E&IRE —&INZHHEE .

MEZEAEER— A BENESCBIESEN , S SNBNEE. BEZHANMNERIAR, EZID UKT
‘EMEZ ET XM FZE, AWS Encryption SDK I INZREREMBREE | BRRENNE
HYSHEER A

FNBNBERENBNBIERASHE B UELRBRRE , EFLFNENBERAIRL T A
MENBIEEITEERNEE,

BAMBWHEBWERES , WSEMBHHSHR,
SEEN

AWS Encryption SDK £ B EZEHX N 2R ER B NZEEFHHRBEHTNENLS S,
AWS Encryption SDK X#EF—LEELEMH, MEXEFENEHESRINBRIRAE (AES) EREEE L |, H
BHEEHMEENELAEER,

AWS Encryption SDK B THENEZEH , (FEAFMENERENRINEZESH. BEERENRE
KRN S | RAEGTREARETN, BAENZREENBERPIECNENZHEREERS
(CMM) RiEERAEEEN , BRECNIMEZEFRARAENS , BN , ZREFEARANEL. 5
BIEYERIAE R AES-GCM , EBE T HMAC K extract-and-expandZ 40 R £ BBk (H KDF), ZR4A7&
W, WEMEBFTLERE L (ECDSA) XA 256 (L iNZEZ4A,

MREHNARFEESHE , AENBRENAFNEZRENRFRHZIEE WAAEREE
FTHUFEENELZEN. ER , RIMNBNEBEUEAZSRARENZARERBNELIES. &
BXEDRNEEZEHN TREQERE.

mEZM R EERR

MEMHEESR (CMM) ARATNENBEZHREA MBS L. NEME DS XHINENBIEZH
LR Wit EEERERH, BKEFLEES CMM RE, MEMNBERGEREHITLE,

mEEE —

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK FERARER

EAT LA R ERIA CMM 3 AWS Encryption SDK $24t#E77 CMM , W AT BB HE XL CMM, a3
]BXE CMM , EXTRMSEN, HBEEFZHAFRRERARMBIEFIT , AWS Encryption SDK &7 &8
EBHIA CMM, BIA CMM NEEENZAFREZARERFREUNBSFEZME . XS REH
— M BRS , 10 AWS Key Management Service (AWS KMS),

BT CMM %% AWS Encryption SDK 5EZ4A3F (X ZARMER) 2RNEKEA , HtERBE
YAy BHNEES , flINXFREEHEMERF. AWS Encryption SDK 124t T &1 CMM X #HHIE

X PR A IERT TR0
XI5 0022 6 R 4R F 10 224 SR N8 R AR S R

SENMINZFEABERRNBEZAX . BAXNPHN - IMRANBERTNR ; AFEAXNHPHE -1
AT AR IIE

AWS Encryption SDK EAEENE ., ERAXNHBBERANZENHIRE. €A IS PNHIERTH
BEZAMENHFBEZES. BE-FNFHES HPEENEHENZEL —MEEZHANMEE
o

MERE (XIFRINE)

EMHENEIE , AWS Encryption SDK FERANMBEZANMIENMMBELNELEN., BER
BBIE , AWS Encryption SDK £AMBEBENHEZANMEENELES.

MEMREEE (AHRIEXHIE)
EHMENBERERLOTATRETARLEFRE T AHMREAONENRES R, 57

PUERERANTMENZ AR EFARMER (HIOBHAR) |, B SUEREAIEXNTMEZN
AWS KMS ZHRHEZARMER |, Hl/RHBE RSA ZHHA K, JceMasterKey

ZHAE

AWS Encryption SDK X #{#E (ARNHAIREYE) XR2—NELEM , AIRIESNMNEXRGER
BMABANENR, Jitt , BRRETRIENEANBEENBBEZARMEEE, EAZHARBEHITM
RHBERZ R AWS Encryption SDK E{ERE,

REBBIRNFZE (BFE AES) FHEANZEAXBHAHTINE |, 60 AWS Encryption SDK A 10
REFAXGEENE —REZH. CAMENBEZAREBEXERESCRESRAKIEMERNEN, £
ATRNZARBZEESRAY. B2 , EUREAFRNTENZRABRBENBENF, ERDBERLT | &
B —NEBARFNANFTHMB X FHEZ T EEA A SAIEHENAX AT

PORIPIIE SR YiIE 12

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK FERARER

AWS Encryption SDK S84 A —ME—NBEZANBRANTEEHRTNE, JE2EAZINE
REH (REEP) MBZBEZS , CBXFZRRLNEEENEESZH. REWL , FahsEN
SXENENEEXMRLTRSETENHEZY , SEMNEBABETRANTERAMNE, Fiw , W
R—/NAPX B EEHTHES [EE 0x0 (false) , MB—MNAFHEZMHEHNMNZEENEE
0x1 (true) o

FBFIEHIIXFER , AWS Encryption SDK X NZE MR ZN Y ZARE. SEARARETER
AWS Encryption SDK #{TINZR , ©E2UME S FERE N —BIERAHEZZRAE TS
(EMEBRFEZRRRIRT). ARG , FBEAREFHTRFREENBEENABEY. SCERAFAERE
A% H BB , AWS Encryption SDK 2KiIFHIERARERZMNEZEHENE -4, MRBIFEFZHE
ERM , N EZREFAIK.

FERRA 1.7x FEIA TN BARENXE , AUBETERARENEE , EFERABHAAEHTM
B, BUUEALREALEBEFEAZRREREZME X FHINGE, BRE 2.0x SENBARENLEE
. RABERT , NEAZARBEHITNENRE. N TTAEERZHEHREMZENZXHNARE
X , XR—EEWEE, AWS Encryption SDK

REFAZHAEHTNBNRZRRESR , BRIMNATFEREMNFERAZN , HATZRAERXAE
FRNEE, M 1.7 lRAEFIH. x, AWS Encryption SDK XA FiREERINELEHHRFITREFE AN
ELEEHNAEERE, RERELCHNBEREEYZARBEHITINZENER,

BRAEXEREAR (30 Z240FT) WNEES , A EFEESHERLE, RENNARFNKX
PNEEREIFEEUR , M ATBLARIBR R HAERL . ERBELER S XM

BEXEIBEMRE17xM20x WEZER , SREFHABINE , FSH BRI AWS Encryption
SDK, BXBREARENEAREER |, H3 ¥ the section called “E%:5ZE” F the section called ““HEHK =R
SE,

ZQry i

AERBE—MEERE K ATHELANNAREFESCEABAREHITNENER, FRZAREH
TINZFMEZRRZ AWS Encryption SDK S{ERE,

N

HiE KGR =ME,

(® Note
BARFRREKFREERY TREFTENK,

TR SRR 13

AWS Encryption SDK FERARER

i R {E

(=] ERBAREE ATEABARE EABAREE FTERABHRE
1T HEATINE TR AT IR

ForbidEnc

ryptAllowDecrypt

RequireEn

cryptAllo

wDecrypt

RequireEn

cryptRequ

ireDecrypt

1.7 AWS Encryption SDK iR 5| A T AW RIEIRE. xo RIREEMBXFNREEES PHBER.

* ForbidEncryptAllowDecrypt R ERFRAAEHRITHRE , EFERABHAREHITM
o WEE 1.7 RAFEIA, x, EELUFEETENNAREFNENEBEFEHAZHARE NZRNZ
N2l ERFERABARERITHRE,

« RequireEncryptAllowDecrypt WRAFABARBHITNE ., TUAEARTERAZRREHITH
B, WEMERAE 2.0x F5|A , ATFEERAZRAREITHMNE , BNHATTRERZHRRERZIEM
B Fo

« RequireEncryptRequireDecrypt REABARBHITMENFRR, WERMREK 2.0.x WEIA
B, HEWEMBEMENFEFERABARBEHITMER , BEALE,

AERBIRBERE T EBUUSEAMERE LZENH, M 1.7 REFH. x, AWS Encryption SDK X #
HHRENELEN BXBANTHZE, NRBEENELZEHSEWAERE PR , I AWS
Encryption SDK £iRE5i%.

BRIREZARREHOAE , BESH REEAE KK,

TR SRR 14

AWS Encryption SDK FERARER
Heby =1 45
BFrEH

FRAZEFHRIULHN AWS Encryption SDK 1N & & AES-GCM XN EMBBH TNE , BEIRLTE
FAHFEZNATRIEMFEENTEEMESX M, B2 , BT AES-GCM FERANRELR |, FTELEE
RERATHRENZEXFHREZANTAAZBAUFHARFTOMBNMEZELF , NTIEREBEENR
2|, Flwn, mREFEH AWS KMS key ERBERZH , WEBkms :DecryptiXRHWAFREEEHA
ENAI I MBI X, kms:Encrypt

NEELEB , AWS Encryption SDK XFEMZEENARKERMHEE HE R FEEE L (ECDSA) &
B, FRAZXBRELENN , 2 NEHMBEE AWS Encryption SDK 4 X I BF FASA M N 4AX . $5 20 4B
AWS Encryption SDK FEEHBZHANMBIRREF , HEFA, IETUBREMTABLLUES
—MERALNARTRIENS S, ZEEZNLARERMZNBIEZAENBEFLPHEHMLT 54K
IEEVERIE , NTIBFIE REEMZEEMN AP ER L AREME R R,

TERRIEEMAENFEZERERS. WRNBHENRA-NEZRENAFEFZIEE , BERE
AT eEERIENEEEN.

® Note

MRBARIN HRMBM RN L RNRAREMBRNBERRZ BB RR , WBFEETRE
FHEMIINENE,

AWS KMS ZRH (@FEIEXSFR RSA AWS KMS ZAER) Al LURIEZE 4R SR EE A IAM R BE £ 00 25 85 M 2
R BHEITH D, AWS KMS

HTHEMNEZEER , U TEAREEEMNZRRNEZR 2 EHETI S

- AWS KMS 7 Z4A R
AWS KMS ECDH 4A &t
[R#& AES Z4AIF

[R%R RSA Z4AR
KINTH ECDH A RME

AWS Encryption SDK FERARER

AWS Encryption SDK T{ERE

ARF) THEFRFZEV A 7 140 AWS Encryption SDK MNZEIEMARIMBRAEE . X T /EREHER
INFAEHRERRRE, AXENNEAEENAHHNFARE BEASHXENIESEZIM GitHub
i,

AWS Encryption SDK EAEH MERFIFENRE, SFEEBEAE -—HNRBEZHATMNE. A
B, EREEENSRFZHNERERH, EMZMZVEFE , AWS Encryption SDK /A &5 ER/Y
BERZARBEED —INENREZH, REEATBZNEXFHEE—-FHIHES

FEH X AWS Encryption SDKFTAARIEHFERHE B ? ESFthe section called “Bi27
#n{al AWS Encryption SDK 11Z 8 1E

AWS Encryption SDK ##t T B FAF R, FHHAMFHRNGTE. BXRREBRH , FSHAZN &
EES S0 HREER,

1. REEATRIPEEENSEZANEZER (SIEBHREER) .

2. HEARMPNBIEEBEME T E. BIWWEEA—NAENIENZMNE LT,

3. MRS ZERFARBEMBME, BAFRREEENE - BIENRZRS | —NEXARERHAMN
— I HEBNMNEENTEZAMENBTFEZHANEIR,

4. MEFEFEAAXBEZANEZRE K AREFANBEEH. IRERMEME LT (AWS
Encryption SDK S{ESREE) , B FEZRLUMEF NG ME LT X E R MZENEIE.

5 MEBEFERE—FMNFHEE , HPISMZENHKE,. MEABEZANITENZ LT (MRE)
TR H At T 8EE

#n{a] AWS Encryption SDK 2 1121958 &
AWS Encryption SDK 1=t TR NZEEHBREAN AN G E, BXRBRA , FSREN REE
= BHHRAZE,

BREMBEENZEAL (R ERAREER) DAEATHEEENFARRS, HP—NaEHHS
MEEB MEMZHEPHIMBREZR. EXEEHATATIEZAREEBFOREIUENER |, S A the
section called “ZR{iHR B,

1. ERAAREZRRENESEZACREARREIRARMERF. EUNERAENEL EZEENBARTR
HZ A%

2. FInEEEMBZRARMRELBEE T E.

ZARTEBNITHERRX 16

AWS Encryption SDK FERARER

3. MER ZERENNNETZARMEFBEMZEEPHN —MNERERH, BEANELEEF
MER SRNENHEZNR,

4. BANEREERBANBRE - MNENBEZA. NRE , WA SSHAXKEEZNA. MRE
AARREZARAEFEENSRBAOTEREZNZRIERS |, NEZ A XY

5. MER EEAPAXBBERHMRBYRSE , ZFAXHEEZESR , RREEHXHE,

P EHNEEEMH AWS Encryption SDK
EEZEH R—HNBEENEXNE. MEREEAEEZIERBES.

% AWS Encryption SDK &2 E 4 Galois/Counter X TH S RMZRFRE (AES) % (GCM) , D
AES-GCM , X RAEIE#H 1TINZR. AWS Encryption SDK 3% 256 i, 192 fuH 128 (L i1ZH 4R,
ABikmE (V) KEREN 12 FT, SORIEFIKERLN 16 F1,

ERiAER T , AWS Encryption SDK fEf#H AES-GCM NWEEEH , ZEHEEFET HVAC /Y
extract-and-expandZ A4 TIEE (H KDF), &M 256 U NE#4H. MRAERBEEZA&AE , N
AWS Encryption SDK REFRRIN XEBHARENEELEL Ell , c2EFEFBARENZEIIEE
BARXEFEBARENELES,

B2 BEFERPAIRE. R/ NEHAEERN AES-GCM

AWS Encryption SDK B EA—RMEZEZEH , ZEHEZI@E T HVAC NEEARERE (H extract-
and-expand KDF) 12t 256 i {9 53E N2 243 K3k 1§ AES-GCM M#ZE% 4. AWS Encryption SDK i
M7 HEMEBFEEREL (ECDSA) R, N TXREHAAE , ZEEZEHERET —INBHREF
R (—NIENEBREBHATREY) ZFHAEERENZEENTRER., EBAREFRBEEES
BELCUTFHBEMBZZARELEET HKDF #1TRE.

AWS Encryption SDK ExEH#

&% BENEFRRAK BHARESEE LTHREE R
E (1)
AES-GCM 256 HKDF A% ECDSA XA HKDF A%
SHA-384 & P-384 H SHA-512
SHA-384

HKDF AT AF B BB R BN EABBENEZS , R ESEERBERANRE,

XEFNEEESF 17

https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK FERARER

NTEE ZEEEAERTMERFEHE L (SHA-384) £y ECDSA. RIANBRT |, REA
ECDSA , EMfEEA T A AN KB RIEE ZFE E, HELZRIDERERAHARTERMEEE , ARE

BAARNE, IREFHPENRBAT—ARAFNERE ART-ETRANAFBEREE , X2
23RN

EARHAARNELIEABREMNNEXFRNERN —MAN, SEEEZEHABIRIEAENRE L8
ANBREZANSHEE LREN. BN, FEEEEHSREZAREZNS, EREZH , XE
BEEARRIBERAREERAREFRNE. WRTE , Decrypt A2 KK,

Ht XS EEEH

AWS Encryption SDK X #FH LT & AEZEHUXIRERE, BE , RMNTEUEAXEELEHF.
BR , RINARIEE 2T EXWMLRE , BERNENZERREM T EEEARENZRARIES,.
NTFSAHTELEZNERNENNARSF , RINFERREHRDIESR, BRARENEZARENES,

REHBAEEN AES-GCM

FEETHRENEEEHTAERSE L IRIENES, Al | XEHEEFTELFEM NS
N EREHFRNEONS. B BT EETARENELE4HSERBA (+30 T) HE
HE , HELEREEK , LA HERNARFNRERE,

AWS Encryption SDK XFEFFAIRE, BHARE, SBENELENH , UREFRARENZH

AEETFTREENELEN. RNTBEWERATEEZHARENELES. MRXAFER , B

BUZREAEERARENZARAEETIBFZEANELENS, B2, UREHNNAREF HERE

XHEZRERAELEN BESRECEAEGERAE. ZARENSENELZENS.
TEEZHEM AES-GCM

TERZENEEZEH RV EFEMNT AR IAERN ECDSA £, MREFEEMBHNEZE
BORF , BRERLEEHF,

NREATEELEENELZES RINBENEEREFBARENZRARENELZES
TEERARER AES-GCM

FEEFAMENEEZEHFHIENZE 4 FHIE AES-GCM NFZ4A |, MIEFEHRARERBURE
H—HNZH. BNTEMERALREGEREX , BHETHREMZEIE , AWS Encryption SDK E413%

Be.

EXRUMAEEHRRRNEAXEEFNEZEE |, 5 Hthe section called “EESE",

Htt W EEEN 18

AWS Encryption SDK FERARER

{5 F wit AWS Encryption SDK h AWS KMS

ZE#FFH AWS Encryption SDK , BEERNZAN S EIFHARUEFREDERH. NREEEZH
gk , BRINBWER AWS Key Management Service (AWS KMS), FHIF 258 RG]# AWS
Encryption SDK 2 AWS KMS key.

EE5ZRE AWS KMS , AWS Encryption SDK EEFHENEHIEREIESH AWS SDK, AWS
Encryption SDK & i%ESHE & A AWS SDKs U F 4 Py =248 AWS KMS,

#%& 5 AWS Encryption SDK —i#2EH AWS KMS

1. BIE—NAWS K/, ETHIARE , B2 a2 MBCEFHH L S# Web Services K ?
£ AWS HIRAFLHE,

2. BIBXNFINE AWS KMS key, BXHBBEER , 5/ (AWS Key Management Service FF & A
RAERE) PHLIERHA,

® Tip
= AWS KMS key BURTAXEAR , BEEMNZE ID 3 Amazon BEIRAF (ARN),
AWS KMS keyZFR{BH 32K AWS KMS key ID F ARN K958 , 1555 (AWS Key
Management Service FF X AR 3gm) FHEKRE ID 7 ARN,

3. ERIAEZE ID MEZLHRIZEH. BAIER IAM AFPWHEEZEA ID MAREHRZES , 1H
DEAERIRNRESIES (BFHRES ID. REHREZEHANESE) QIEFKIE. AWS
Security Token Service fEAZ & HREKER , RNBWUEFEARFES , MFA25EH IAM AP
AWS (1R) AP KB KHES,

EQEEFHRZEAN IAM AP, ESR (IAM AFERE) RIelE IAM AR,

EERIENZEEIE , B20H (AM AFER) PRERIENZ£ &I,

4. {EHAWS SDK for JavaAWS SDK for JavaScript, AWS SDK for Python (Boto)=} 5& i F C++ Y
AWS SDK (XNF C) FHRBAUREESR 3 FAERNIAEZEE ID MFAE 7B FHP KRB
AWS iE$, MRBERTIREILE , EEEBEERETHE.

3532 AWS SDKs A ZRZEXN AWS WiER, 52X E AWS Encryption SDK K153 7Rl
AWS KMS Ri&E BRI F TR,

5. TEHZR%E AWS Encryption SDK, BT #RRIESZ , BSREFRANREE

][l

GOSN

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK FERARER

WY B {ES5E AWS Encryption SDK

AWS Encryption SDK EZE L&A LRV AT\ AR T BRAE SRR R B HTE. SRERIAEF
NEER TS RESER , BEEEHMERTERN , BIEERRAITRER,

158 P B T iR A<

FF & R AWS Encryption SDK , {5 LM B RIZIES RENETRAE. RE—BEEFE
FA AWS Encryption SDK , BRRARF B NEFRAR, XEATUBREEAEENEEHR A
NWEZEBHRFRFENHIE, EXIEFENRANFAGEE , SEIBNTBER , H5H 504
¥ M BARA AWS Encryption SDK,

MRFRAFRTERBIHTE FRVUGEER, FRBEAREIRPEEQHETENE
(AP 3

AT RYCEARAFF B HERN TN |, RIMBRSBHEIGITSOTEMRA . X £ iR A< 5 H B
RISCH , BRETUERHMES THERNIBEL TARNARERF.

EFARIAE

A 1ESEER AWS Encryption SDK i1t R EERINE. RERT , RNFEARIAME. X TERIAMETT
THER , BINEHEBRAR , INEEZIBNELES, BIENSSAPRMEEENS , 6
MEEXZPR, TRPREBEFTMNZEM B EEE () CMMs, BEEMAXESRERER , H
Rt Z 4 TRIFRIEENIER,

EA & £ T

NTREMZBRERSY , BEMENBEEENERIISEEEENNENNEZE LT, FEAM
FRETXRTEN , EXERRNBIETHMNEZERESREK, NE L TXH AWS Encryption SDKH
0 S RIE MR R HFARIERE (AAD) . REXTEZFH , BN LT XA EBERF =
BIENTEEMEE M,

£ AWS Encryption SDK , REEMEBRN T REEEME LT X, #EEt , AWS Encryption SDK
AR ERY IR E BFRA PRI INEE ET X, AWS Encryption SDK £ AR FIREAXHIEZH |
BRIIEMBZEENFEANNBZ L TXHARETENBEECEANME LT, BXEFEHMER , &
SR REEIE S THA,

UIFERGSTREN , 27 & AWS Encryption SDK BiF % £ T X,

20

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/

AWS Encryption SDK FERARER

R TEEH

AWS Encryption SDK £ — M —HIBBEBRHARMBERANNHER., RE , FHERHENSE
ZAXNBERAR/TNE, NRENTEBFHAEZRIMER WENCHBHRFEFLERE., NRE
MNEZERATRE , ENBRETESZIHE,

FRAZSZRAEMIZRRIPNIERSA , HlI0 AWS Key Management Service (AWS KMS) ,
FEHR AES Z/R1E RSA AN , BEAFSLZL2ERNBIRENEAFH, EEAHLLSER
(HSM) SR8 HSMsBRSS (Al) FAERFEHIEZHAR — T H&RESEER. AWS CloudHSM

FRAZAEMRENENIEREIEZFANHL , LEEENAFSEHR, XHEHFESIKE
N, FlIHENPR. FERAE AWS KMS keys , 1B A E&ESSERFEN X EREEH IAM KB
B EAE R

REMMZNBPREEORZARARRESER, HRXHEMET , R AWS Encryption SDK AR
EENZH. XML THRARXEAEENMNZEZH. T AWS KMS HEZH , e IER
LERFEAEM AWS K/ SthXWEA RESHEAECENEANZRAHRITHRE WAMREEMH

Ll
Beo

mEN , BENBZARNEFAREEFERBIEETEZEH, AWS Encryption SDK X 52 71X
FREEENSITEZH. FHFEK AES Z4AKR, R RSA ZARMBRPARITINZMBE RN |
BRAEEREIEFH. JCEMaster

B2 , E£A% AWS KMS AN ERHREBFHTHEEZN L SLEREEIERH. AWS
Encryption SDK A BAM N2 2 #E % 4R 09 T IR FIREVEZ AP RRT . EREEESEBARBIHEEN
- gENs N

NTEEH AWS KMS H#RZANTIFX —RESZE , BANEBUEEUATERE

- FRIEEEE AWS KMS ZRANARRE, MBNBEN XEFARUEALEENIEESTER
o

o £ AWS KMS EZAMERARMBERFN , BEARAE 1.7 Pl AW EERNWERK, & x
N AWS Encryption SDK, XLEHHBOUENRHEEFREAGEENTEZABIITMENREE,
BAFEREAEERFARITREZENTIZARUEFNBERRTERE 1.7.x PHEER , FRA
2.0.x FHIBR o

UIEERA THRZN AWS KMS B RATYISEERAE |, B AER XK NIBEHEF. AWS Encryption
SDK £ C i S # ¥ JavaScript XIFAWS KMS KT Z4Ah, TERA 1.7x REBRAF , EEX
MERNW ERARBEFTAT Java M Python, XELZIMBHEFNATER AWS KMS BER
ABTHRE , clRBERERANZHREZHANTMIERZ. AWS Encryption SDK

21

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK FERARER

MREGLANERARIDRMER , BEAHRNBERGEEREHEANSEZHR. Flm, AWS
KMS Regional Discovery Z4AIMXE A4S E AWS Xigi R B4, B TLUF AWS KMS 247
RF AWS KMS EZfRRHEFEENREAZEZH. AWSIKF A , BEAE—& , SA%H

REEH 1AM REERZHN AWS KMS 2RZHARI TR
ERBFER

BEXRERFEATIENELZEN., L2 URITEMGEEHARTSENLEEEHRP HENT
M, RIANBERT , FTERAE AWS Encryption SDK T ZENEELEH,

MRENZEERTEERFER WABRETTRFZEBNEEZES. BR , RNBUERAR
FEF BRI AR MBEREN S —HAH P BEZBER.
15 F 22 e &

REXKRECEAZARELTL2YEE. BERIEMBHENE - SBEZANSH , ZHRAEATLULE
IEBR AR AR E R S SRS BRI I X F

M 2.0 frRFFIR |, B AFE AWS Encryption SDK REX IR FHERNEE . xo BRIAER
T, BB EEEEAZAREHITMENBER, WA 1.7, x AWS Encryption SDK Al LA A #
HARERER N, HEEHKBRHRANAFRIEBRA 2.0.x0

NZARENIFOENELEHANEERR | ZENERNNE X FXEEE B AREN N

MFK3I0FW, ZFUBRARERD 7THNMENEE , Rt XSHAFBUTUEZZHRET

REVEFAL, MREHNAREN A/PNMMEREIEEBUR , N LUREFE AR S KRB IRERERABHAE

BERAFERERENERTHEZELE , BRETE AWS Encryption SDK 2470 AT F X ##44
BREIMZHABIBEBZANE

REXKEELBRBZNEERRENBOBEZANEE LERKETAGSKRER. EAKX
BRTEHRZNNERREZHRBEZEEARSSBEERN ALK , % , REEHNARRF
MEMAZTEKFONARR , A TRERBAEMRE. EXERFNBERT , MBEEEZSZT
LAH 65535 (2M6 - 1) MINBEHEZH. BXEZER , FSH RENBREZH,

BRI L RESKEFT AWS Encryption SDK kBN R £ WEEMEZER , BSFHAWS T2 B EHRIN
HEFIRME : £ Keylds FMZBEAEE,

22

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK FERARER

IEEBLiE AWS Encryption SDK

AWS Encryption SDK BiZitHEF M. RE AWS Encryption SDK EZ/MNEEILT , ERINEREZ
HEOIERN , MEXASHNAEFRESAXZS, B , ST ERAEREURESHERERIT
FinA BE X IhEE.

BLESSHERT |, & E AWS Encryption SDK SR H RATBE S 3K K,

FH

- ERERES

- EEIEER

- A ZXig AWS KMS keys
- EREEEH

- BRI 2 BIEE A

- BRI ESM

- BEMENMNE LTI CMM
- REFAERE

- ERARRKE

IR RETES

AWS Encryption SDK BEZ M RIZES A, BEEXNEEXRUTEEREHEMHMEREINIIGE RE
XLENEEAEUTEN A REN, BE , BFEASENNARFRENE. B2 , BUUNFENSE
MEFE—TEFEES. flln , MREEERFEHHAZLE , WA BLERE AWS Encryption SDK for C .
AWS Encryption SDK for JavaScript

LR IREH

AWS Encryption SDK £ — M —H N HBEERARNBEZHEE. RIEFEABERAEE , UL
EHE. EERNFEABERH. M2 7R AWS Encryption SDK ##,

B2 , XTER—IPRSNBEZARNBESNBIEZH. AWS Encryption SDK XFFRE K/DHY
AES X #2240 RSA JEX#E4H. & AWS Key Management Service (AWS KMS) Xt #r 0%

HEREEIES 23

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK FERARER

AWS KMS keys, SN BRZANZTEEMMAERR , R BRIMNEZWEERFRZE2ERIZAE
MR RS (Pl) PEMAINEZH AWS KMS,

EEEATNENREZNTERY , BUUFERARBHAIF (C. Java, . .NET H Python) S FZRRM
2/ (Java JavaScript, Python. Encryption, Encryption AWS CLI) , BALUIEE—NBEZRHAHZ
MIBHTEXENTERR. UREFEASNSEZARSE—NTREEZR , IS NSEZHA/ME
B—HEZANEER, MEBENBEZR (8NSEEZH -1) ENMBELRIE—EF#7E AWS Encryption

SDK IREIINZEE ., EfEZEHIE , AWS Encryption SDK A E £ FEREHN —NESREZARER

nZE N BERA,

ZE AWS KMS key EZAFR ST HARMBFPIEE , EEAXZEFN AWS KMS ZHIRIRRF. BXE
FNFRARRETH AWS KMS #4EL |, 555 (AWS Key Management Service FF & AR $EF) &
M AR IR o

 {# AWS Encryption SDK for Java, AWS Encryption SDK for JavaScript AWS Encryption SDK
for Python, SXiN% CLI #1T AWS M&EET , &0 LAERERB RO HAFRAF (ZH ID. BH
ARN. BI&Z51#& ARN) ¥E8 KMS 4R, ERAMZERT AWS Encryption SDK for C , &R eEEA R
%A ID HE4A ARN,

MREE MBI KMS ZREES B BFHBIE ARN , Il AWS Encryption SDK 2R FHF1 5%
ABXEMNEL ARN ; EFR2RFANE. NBIBNERT2FMATHRBHFEZHAN KMS Z4,

- EERER (BERENSEZH) THREN , XTEAZE ARN RIRE] AWS KMS keys. ZER
& T AWS Encryption SDKEYFTE1E S 3K,

R AWS KMS AR NZet |, &7 #9248 ARN AWS Encryption SDK 4 E INZ IR Z4AN T
BiEF. AWSKMS key EFREXTHEN , EZHEASEZARENENRERAZH , 2
AWS Encryption SDK ¥ iUFZ AR (X ZARERERF) PREHIMEBENEE ARN, WRERE
RATENZAFRFF , WENER RS AHERR S AWS KMS key , BF2IRBIHFEAH. AWS
Encryption SDK

EF R AES ZHAHRI RSA ZANEENBHAFPHNIERNR , BTEEWEZRNMER. £F
FEARMIEF D |, Provider ID ZETHBZEE , Key ID ERATFEH. BER , “ANENRHBEE
REAEASNZENZ2HRNGEZENEN. NREFEATEANGEZRRNEH , BERHAMRIE
[E , t& AWS Encryption SDK F&1iRBI KR T E R4,

¢

ERBRZH 24

P
2%

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK FERARER

f# F % X138 AWS KMS keys

B LAE A AWS Key Management Service (AWS KMS) ZXigiZAER BEFH. AWS
Encryption SDKIIREFEAZ XFEZAE TN —HITME AWS X5, WA UEAEMZEAPHEXS
X ZAH#ITHR. AWS XA 2.3 F5|A TN ZXEEHANZR. AWS Encryption SDK FIRRZA
3.0 Y xo AWS % CLI H Y xo

AWS KMS X #Z4AR — A EEHEBEZAM B FEL ID TR AWS XiF 44, AWS KMS keys

A LG ERTRXEEAMERNZS —HEERAXEEXES, SXEFAIHELNRERENE G

e, EHRERE—NMXEHTNE , HES —IMXE#HTHEEZ K mMESHTEXEHEA. AWS
KMSEXZXEZANWEE , S H (AWS Key Management Service F A AR ERM) dWEAZX
HEA.

NTEREZXEFEH , AWS Encryption SDK BIEX1F AWS KMS % XiEH Z4AMR M E R RMURE
Fo. SihRIEIES P multi-Region-aware & 5#8 37335 3 X g M 2 X 5 %48,

« NTFEXEZEA , % multi-Region-awareF 5T ARG L XEZE AWS KMS AR E R 4ARMEE
F—#, ZBASENERNEBIEN £ XERARBENE T,

« NTZXEF , Z multi-Region-aware &&= 18,6 F N Z HIE MM E 2 X i A R 88 E MY X g
(Y 4 3¢ 25 X35 Bl A< 25 4R SRR 2 2 3o

EFEAZ multi-Region-aware KMS AN ZHARMEZARMERFT , EAUEES/NEXFHNZ
XiFZ4, B2 , BRENSFEEXINSXEEIAZHAPEE N BH. IREEHAEENEEA D 8
ESNEBAFIRE , NAERKARFRK,

R S XEZA SR g, BXIEEH AWS KMS R ERARMEBF—EFER, B2 , BH4Mm
EE-XEERAERNSXEZARTNENER., EXERARNEZARHEFZANERNBEHK
FOBRARBRINEXF,

LA 7451135 BA G a] 4 F 2% (X 19 27 4A LA B 37 B9 2248 multi-Region-aware IR fl £ 4 IR 1T F R B #E27
e, XERGFEAT N us-east-1XEHEXZXFEIARZA MNP us -west -2 X 13 BV 3R H ##
FRZXEHHOBIE, EETXERGzE | BHRHRFIZ X154 ARN B 7&K AWS IKFFHER
B,

C

EFASXEZARTME , BEEH
ws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () A &SI Z4AIR, 15
EZXEF4A,

fFAZXE AWS KMS keys 25

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK FERARER

RANMEENROTFESENE LT, BXRE CESHEAME L TXHRE , FSH %N #ER
FHE

BXZTERH , H55H L AWS Encryption SDK for C Z&FEF #) kms_multi_region_keys.cpp
GitHub,

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Buildexr().Build(mrk_us_east_1);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/.NET

EFEAEERD (FBHFRBLILER) (us-east-1) KB Z XEBRAFTINS | EEHZXERANS
AR EX B E P imEfl{tCreateAwsKmsMrkKeyringInput— MR, AWS KMS AR5
£ CreateAwskmsMrkKeyring() A &SI Z4AR,

CreateAwsKmsMrkKeyring() A AIENZHARRBE N SXERA. EFASNIEER
(BESXEHRA) #TNH , BEH CreateAwskmsMrkMultikKeyring() Hi%o

fFAZXE AWS KMS keys 26

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK FERARER

BXRZTENRA , 25 AwsKmsMrkKeyringExamplefor NET 74 FE S #) AWS Encryption
SDK .cs., GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

string mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Create the keyring

// You can specify the Region or get the Region from the key ARN

var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEastl),
KmsKeyId = mrkUSEastl

};

var mrkEncryptKeyring =

materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
{"purpose", "test"}
};

// Encrypt your plaintext data.
var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = mrkEncryptKeyring,
EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

fFEAZXiE AWS KMS keys 27

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK FERARER

AWS Encryption CLI

BERBIFT us-east-1 KIS X Z4A T hello. txt XHHTMNRE. TR RAEETHE
XigtEHNZ4 ARN |, FTLEATRER --wrapping-keys S region & 1.

HBREZANER ID RIEEXEN , BALERA - -wrapping-keys # region BHEXRIEE X1 ,
ffltn - -wrapping-keys key=$keyID region=us-east-1l.

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEastl=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$mrkUSEastl \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

Java
EFAZXEZEME , HXHIL AwsKkmsMrkAwareMasterKeyProvider #18E % Xig %40,

BXxTEHRH , 155 H AWS Encryption SDK for Java 1Zfi#
FEEBasicMultiRegionKeyEncryptionExample.java® 8 GitHub,

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

final String mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1

fFAZXE AWS KMS keys 28

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK FERARER

final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider

.builder()

.buildStrict(mrkUSEastl);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
"Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
crypto.encryptData(
kmsMrkProvider,
encryptionContext,
sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

EFAZXERARTMNE , BEEA
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() FESIBZZARHEELXER
A,

BXRTEN RS , BES EFE#EHSM kms_multi_region_simple.ts, AWS Encryption SDK for
JavaScript GitHub

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string

fFAZXE AWS KMS keys 29

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK FERARER

secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK for JavaScript gets the Region from the key ARN

*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr ({
generatorKeyId: multiRegionUsEastKey,
clientProvider,

1)

/* Set the encryption context */
const context = {
purpose: 'test',

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
encryptionContext: context,

1)

JavaScript Node.js

EFASXERARITMNE , B buildAwsKmsMrkAwareStrictMultiKeyringNode() 75
EOBFARHIEESXEZA,

BXRTENRE , BES EFEFEEDSM kms_multi_region_simple.ts, AWS Encryption SDK for
JavaScript GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

fFAZXE AWS KMS keys 30

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK FERARER

import { buildClient } from '@aws-crypto/client-node’

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-east-1
*/
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsEastKey,

1)

/* Specify an encryption context */
const context = {
purpose: 'test',

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
encryptionContext: context,

1)

Python

EEH AWS KMS XA TINE , 5
FAMRKAwareStrictAwsKmsMasterKeyProvider ()5 EHIEE S XE %4,

BXRZTERH , HSE L AWS Encryption SDK for Python 2 FE 5 Y
mrk_aware_kms_provider.py GitHub,

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client

2 X1 AWS KMS keys 31

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK FERARER

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_east_1]

Set the encryption context
encryption_context = {
"purpose": "test"

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
key_provider=strict_mrk_key_provider

BETXR, RENNBEXFBE us-west-2 X, BEFEFTMEMEF,

EERXEHUTERERBEZREY |, HHEAZus-west -2 Xig % % X134 multi-Region-aware#y
48 ARN KRB S, us-west-2MRLHEHMXE (LEMBZZHNMS) PEEEXZX
HZ4AN 4 ARNus-east-1 , iZ multi-Region-awareF 5 A b # THEXIFIEHR. AWS KMS
key

EFERERNTHERN , multi-Region-awareF 5 HFEH4 ARN, NEZBHEHMEXNSXEBHA+FHN—
N4 ARN,

HEETRERMZE , FRRHZXEES ARN BN ENBTRE. AWS K-
C

EEEEEXTEAZXERA"ITHESR BER
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() 5356l B4R, &
i (us-west-2) XKiHIEEMHXHN S XFEA,

fFAZXE AWS KMS keys 32

AWS Encryption SDK FERARER

BXZTERH , 558 L AWS Encryption SDK for C 2 FEF #) kms_multi_region_keys.cpp
GitHub,

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ NET

EEFREXTEAENSXEFARTHRE EEASARMATNEATNENES
AERM SRS L. ERAEXZSXEZANESR ARN MIEZEERAZ (BBX) (us-
west-2) X1y AWS KMS ZF #l3=fl{tCreateAwsKmsMrkKeyringInputX¥ K., AEEA
CreateAwsKmsMrkKeyring() FEBEE —1%Xig KMS Z4A 012 % XEHEHAR,

fFAZXE AWS KMS keys 33

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK FERARER

BXRZTENRA , 25 AwsKmsMrkKeyringExamplefor NET 74 FE S #) AWS Encryption
SDK .cs., GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate the keyring input
// You can specify the Region or get the Region from the key ARN
var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
KmsKeyId = mrkUSWest2

};

// Create the multi-Region keyring
var mrkDecryptKeyring =
materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Keyring = mrkDecryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

EEMA us-west-2 KIFHRPHEXZXERARTHE , HFEH --wrapping-keys S8 key B
MRIEEE 4 ARN,

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.

fFAZXE AWS KMS keys 34

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK FERARER

$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$mrkUSwest2 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

Java

EEFEEXATHRE , BX6I1L AwsKmsMrkAwareMasterKeyProvider H1EZA 4t (us-west-2)
XE s EMEXHN 2 XEEH,

BHRTERH , HS5 L AWS Encryption SDK for Java GitHubfzf& B #Y
BasicMultiRegionKeyEncryptionExample.java.

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
the Region field.

String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider.builder()
.buildStrict(mrkUSWest2);

// Decrypt your ciphertext

CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
kmsMrkProvider,
ciphertext);

fFAZXE AWS KMS keys 35

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK FERARER

byte[] decrypted = decryptResult.getResult();

JavaScript Browser

EEEEEXTHEE , BFEA buildAwsKmsMrkAwareStrictMultiKeyringBrowser () K&
BIRZARHER M (us-west-2) i igEMXNZ X FEH,

BXRTENRE , BES EFE#EEDSM kms_multi_region_simple.ts, AWS Encryption SDK for
JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from 'eaws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}

/* Instantiate an AWS KMS client
* The AWS Encryption SDK for JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Instantiate the keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser ({

fFAZXE AWS KMS keys 36

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK FERARER

generatorKeyId: multiRegionUsWestKey,
clientProvider,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

EEEEEXTHESE | BFEA buildAwsKmsMrkAwareStrictMultiKeyringNode() FESIE
HEARHTEAR M ((us-west-2) KiFHIEEMERMN L XIFHEH.

BXRTENRE , BES EFE#EEHSM kms_multi_region_simple.ts, AWS Encryption SDK for
JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client

const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-west-2
*/
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcdl12ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsWestKey,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

EEEEEXTHESE | BE#FH MRKAwareStrictAwsKmsMasterKeyProvider () FERIEE R
FARBER, A (us-west-2) X HIEEHXMNZXEFA,

fFAZXE AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK FERARER

BXZTERG , HSE L AWS Encryption SDK for Python &4 B 5 #9
mrk_aware_kms_provider.py GitHub,

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
Region field

mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_west_2]

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=strict_mrk_key_provider

B ERIER T EH AWS KMS ZXERAHITHRE, EXRINEXTHEN , THEEEEM
AWS KMS keys. (B*2[XiH AWS KMS KIMBATWER | HSHEER AWS KMS KI5
®o)

MREFERSXERAME , NAIRER TR multi-Region-awarefF 5 = 15 A A it X H X %
XBRARTHEZ, URTEFE , WEAAKRK. ERIAERXT , AWS Encryption SDK F o= EX
HEAATNZN S XEEA.

(® Note
MEBEERIMER T FEH multi-Region-aware 5 R NZERIE | N N2 ER LMK,

fFAZXE AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK FERARER

LU 7R3 BA A 42 A DU X T A multi-Region-aware F B # TR, HTEXREE AWS KMS
key , E Itk AWS Encryption SDK AN EMSRIRIRENX 15, MRAEE , FHBREEAMXE, &N ,
M AWS SDK H 1 ZH 4RFEIE S Bl B X8 AWS Encryption SDK ZRER AR #h X 15,

HETXERGZE , BRRAKS ID MZXEHH ARN BN EHNERE. AWS K/
C

EFAZXEEAEANEXNTHE , EEA

Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder() FEWERHAR , £
B Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter::Builder() FEHWE LI IHES
#, BEREARMXE EEN ClientConfiguration #1E AWS KMS B FimH i Eo

BHRTERH , HS5 L AWS Encryption SDK for C B #) kms_multi_region_keys.cpp
GitHub,

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
* filter is optional, but it's a best practice that we recommend.

*/
const char *account_id = "111122223333";
const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter::Builder(partition).AddAccount(account_id).Buil

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
Aws: :MakeShared<Aws: :KMS: :KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder()
WithKmsClient(kms_client)
.BuildDiscovery(region, discovery_filter);

fFAZXE AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK FERARER

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

E7 for NET F 42 multi-Region-aware X N Z 43K , iH AWS Encryption SDK =411t —
MNCreateAwsKmsMrkDiscoveryKeyringInput¥ & , ZXN REMIEERN AWS KMS &/ i
AWS XiF , AR —/NLERN ZTSIEES | F KMS ZARFIERSEN AWS 2 XHtkF, REE
S AXNRAA CreateAwskmsMrkDiscoveryKeyring() Fi&E. BXTEMWRE | HSH
AwsKmsMrkDiscoveryKeyringExamplefor .NET & # AWS Encryption SDK .cs. GitHub

EH ZNFARBE multi-Region-aware X LR 4ATF AWS X1 | H1F
FCreateAwskmsMrkDiscoveryMultiKeyring() A ESIEZZ4AL |, REMFE
FACreateAwskmsMrkDiscoveryKeyring()8lZ2 %4 multi-Region-aware X 1 Z4AR , REFE
AiZCreateMultiKeyring() A EFENAER — NS EAK.

BxRH , 55 M AwsKmsMrkDiscoveryMultiKeyringExample.cs,

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers

var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

List<string> account = new List<string> { "111122223333" };

% X158 AWS KMS keys 40

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK FERARER

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{

AccountIds = account,

Partition = "aws"

// Create the keyring

var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = mrkDiscoveryFilter

};

var mrkDiscoveryKeyring =

materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDiscoveryKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

EERINEXTHE , BFEMH --wrapping-keys S8 H discovery B . discovery-account
discovery-partition B RIE 7T —MNERIAFERYE | ZHEFHRTEN , BEEUFEA,

BEEXE , LS --wrapping-keys S region B,
Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \
region=us-west-2 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

fFAZXE AWS KMS keys 41

AWS Encryption SDK FERARER

--output .

Java

EEAM X , E#EH builder() . .withDiscoveryMrkRegion &%, &M , AWS
Encryption SDK M AWS SDK for Java H B iE K9 X IFIREUAS #h X 15 .

AXRZERH , H259 £ AWS Encryption SDK for Java GitHub 1z EE - 19
DiscoveryMultiRegionDecryptionExample.java.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
AwsKmsMrkAwareMasterKeyProvider
.builder()
.withDiscoveryMrkRegion(Region.US_WEST_2)
.buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
.decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

EFEANNSXEAZAERIEXNTHR | BEH

AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser() o

AXTEBWRE , BFSR ELE#ESR kms_multi_region_discovery.ts, AWS Encryption SDK for
JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
buildClient,
CommitmentPolicy,

fFAZXE AWS KMS keys 42

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK FERARER

KMS,
} from 'eaws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition:

aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser ({
client,
discoveryFilter,

D

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

BEFEANNSXEAZAERIEANTHER , BEH

AwsKmsMrkAwareSymmetricDiscoveryKeyringNode() F %o

BXRTENRE , BESH LEFEFRB kms_multi_region_discovery.ts, AWS Encryption SDK for
JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,

% X158 AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK FERARER

buildClient,
CommitmentPolicy,
KMS,
} from 'eaws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition:

aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
client,
discoveryFilter,

1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

EFAZXERAERNEXNTHE FEA
MRKAwareDiscoveryAwsKmsMasterKeyProvider() FiZo

BHRZERH , HS5 L AWS Encryption SDK for Python 124 & H Y
mrk_aware_kms_provider.py GitHub,

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

fFAZXE AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK FERARER

Use the multi-Region method to create the master key provider
in discovery mode

mrk_discovery_key_provider =
MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=mrk_discovery_key_provider

IEREEEN

AWS Encryption SDK X#FZfNMAENMMEZEEE , AT EZEENSRZA TR REZRIHT
mz, B2 , SeHEAXEREZARMNZENEIERN , AWS Encryption SDK BUAEA#ENE X
N ZEHFRATERARE., BFXIHENEZHEEN AES-GCM B, RERINEEZEHT8ES

RATAZHRBARER , BEATUNERZRELES, fll , RERFZENEZEHTURERLER
FEBEPER, X AWS Encryption SDK IEFENWELZEHNEER , BSR PXHFENEEEHN AWS
Encryption SDK.,

T RBIEEEREMBR IMTERZEREEZEN. XERHIEETHEN AES-GCM BEEEH |, %
EHEARARENBREE BRAUFER. EATESRFEBNEEZEMHHRITNR | FEHE
BN EANRALZZENEZER, IMEXERAEARBNEER , MRBIXLZHMNEXF , &
KW

C

ExEGIEERBEEEH AWS Encryption SDK for C , 4B EIE CMM, REH
aws_cryptosdk_default_cmm_set_alg_id 5 CMM Mt ENELEH —RFEM,

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* To set an alternate algorithm suite, create an cryptographic

EREEEN 45

AWS Encryption SDK FERARER

materials manager (CMM) explicitly
*/
struct aws_cryptosdk_cmm *cmm =
aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
then release the CMM reference
*/
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
Use aws_cryptosdk_session_process_full with non-streaming data

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
ciphertext,

ciphertext_buf_sz,

&ciphertext_len,

plaintext,

plaintext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

BBRRZMFZEEMBHEIENR , E6H AWS_CRYPTOSDK_DECRYPT_UNSIGNED, MRBRZHE
HWINBENE | X2SHER LM,

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create a session for decrypting with the AWS KMS keyring

REEEEMS 46

AWS Encryption SDK FERARER

Then release the keyring reference
*/

struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {

return AWS_OP_ERR;

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
Use aws_cryptosdk_session_process_full with non-streaming data
*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
plaintext,

plaintext_buf_sz,

&plaintext_len,

ciphertext,

ciphertext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

C#/ .NET

ZE1&+ AWS Encryption SDK A.NET I8 EBREEZEMH , B8 EEncryptinputxt R
AlgorithmSuiteIdE . f AWS Encryption SDK or NET @8 A A TR EGELZEHNE

o

|18

f AWS Encryption SDK or NET ZBERANBENEMNLEZBR XN FE , RALEFZFRIARH
BE,

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

EREEEN 47

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK FERARER

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring

var keyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

AlgoxrithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
i

var encryptOutput = encryptionSdk.Encrypt(encxyptInput);

AWS Encryption CLI

N# hello.txt XY , Bk RGIFEA --algorithm SHREEFTHHRFSENELEN,
Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output hello.txt.encrypted \
--decode

fREnt |, thROIEA --decrypt-unsigned 8. BUEALSHKBREEEHZREEM
BNF , AHRFEA CLl, ZTERAR1LHm AN L.

Decrypt unsigned streaming data

REEEEMS 48

AWS Encryption SDK FERARER

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--max-encrypted-data-keys 1 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output

Java

EEERHAEEEN , BFEH AwsCrypto.builder().withEncryptionAlgorithm() 5
E. WRBIEETTFTHRFZENRAELEN.

// Specify an algorithm suite without signing

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withEncryptionAlgorithm(CxryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
Map<String, String> encryptionContext = Collections.singletonMap("Example",
"FileStreaming");

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

REEEEMS 49

AWS Encryption SDK FERARER

ERNEMBIERTHEZN |, B createUnsignedMessageDecryptingStream() 53
REEEBENFENENFEIREE,

// Decrypt unsigned streaming data

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withMaxEncryptedDataKeys(1)
.build();

// Create a master key provider in strict mode

String awsKmsKey = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(awsKmsKey);

// Decrypt the encrypted message

FileInputStream in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<KmsMasterKey> decryptingStream =
crypto.createUnsignedMessageDecxyptingStream(masterKeyProvider, in);

// Return the plaintext data

// Write the plaintext data to disk

FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);

decryptingStream.close();

JavaScript Browser

BEEERAEEEN , BHFERATA AlgorithmSuiteIdentifier MEEK suiteld S,

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

REEEEMS 50

AWS Encryption SDK FERARER

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

gt | EEAIRAHE decrypt HiE. AWS Encryption SDK for JavaScript £ 2% F
decrypt-unsigned X , BRI KHFFAZFER,

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

EREEZAELEEN BEEATA AlgorithmSuiteIdentifier MAEM suiteld SH,

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

REEEEMS 51

AWS Encryption SDK FERARER

BRRARFIZNMEZEHREN , B decryptUnsignedMessage Stream, MRIBEIZE KN
XZF, hHFEEEXM,

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

EREERAMNZEL | BHFERATA Algorithm MEEM algorithm 8.

Specify an algorithm suite without signing

Instantiate a client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
algorithm=Algoxithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
key_provider=kms_key_provider

)

REEEEMS 52

AWS Encryption SDK FERARER

BEARZHFELMBHHEEN | EEH decrypt-unsigned BHER , AHEREERREHNE
B BR 22 AT o

Decrypt unsigned streaming data

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Decrypt with decrypt-unsigned
with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
"wb") as plaintext:
with client.stream(mode="decxypt-unsigned"”,
source=ciphertext,
key_provider=master_key_provider) as decryptor:
for chunk in decryptor:
plaintext.write(chunk)

Verify that the encryption context
assert all(
pair in decryptor.header.encryption_context.items() for pair in
encryptor.header.encryption_context.items()
)

return ciphertext_filename, cycled_plaintext_filename

Rust

E 7% for Rust F AWS Encryption SDK EEERAEZEHN , FEMBERFPIEE
Zalgorithm_suite_idEM.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name

REEEEMS 53

AWS Encryption SDK

FRARER

Go

let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(raw_aes_keyring.clone())
.encryption_context(encryption_context.clone())
.algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
.send()
.await?;

import (
"context"

EREEEN

54

AWS Encryption SDK FERARER

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)
// Instantiate the AWS Encryption SDK client

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
panic(err)

// Define the key namespace and key name
var keyNamespace = "HSM_0Q1"
var keyName = "AES_256_012"

// Optional: Create an encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err != nil {

EREEEN 55

AWS Encryption SDK FERARER

panic(err)

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{

Plaintext: [Ibyte(exampleText),
EncryptionContext: encryptionContext,
Keyring: aesKeyring,
AlgorithmSuiteId: &algorithmSuiteld,
1))
if err != nil {
panic(err)
}

BR 751 o0 2 24 4% 7 4R

BRI LAEMBE S PREIMBRIERANRE, HREFREIEE] LA By G4 i 28 o 40 B B 45 1R Y
AR, REEFEZNRNESNEX T, XHEE TR LN X REMIREHTISE, BHR. A8
ﬁEE’\JﬂﬁJO HEMER BT ABERENEER , REMEREZHATER.

REXRZBMZBEEEMZFEANSNIRBHABE —IMEREZR , EMENEERZANTE
65535 NINZHFEHL, BERGEATRSEANT LA NMNNBREZAMEMNZEEES |, BXLHA
MEEME, EIL , AWS Encryption SDK 2Z R BESNNBENBIERL , EFAREEFRIMNER
BIEZ,

ERFMFBBRIERL , BFEH MaxEncryptedDataKeys 28, M AWS Encryption SDKARAS 1.9.x
M22xTE , WSBUATHEXENERES. XRWEN , HEEMBNBRENER. LT RO
NEAEANTENBEZHAMZNRIFEH1THE, & MaxEncryptedDataKeys HIREN 3.

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =

ws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arnl, { key_arn2, key_arn3 });

/* Create a session */

PRl hn B EdE = 4R 56

AWS Encryption SDK FERARER

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,

kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C#/ .NET

ERFINET P MZELBIERE4 , ¥ AWS Encryption SDK J1.NET EHI{LEFin , FFHET
1%EMaxEncryptedDataKeysZEIRENFTEME. AWS Encryption SDK RAJ5 , EELEHR AWS
Encryption SDK 3=l £ Decrypt() F%o

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
// Configure the commitment policy on the AWS Encryption SDK instance

var config = new AwsEncryptionSdkConfig

{

MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

R 751 i 22 2 47% 22 41 57

AWS Encryption SDK FERARER

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$key_arnl key=$key_arn2 key=$key_arn3 \
--buffer \
--max-encrypted-data-keys 3 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
.withMaxEncryptedDataKeys(3)
.build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(keyArnl, keyArn2, keyArn3);

// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult =
crypto.decryptData(keyProvider, ciphertext)

R 751 i 22 2 47% 22 41 58

AWS Encryption SDK FERARER

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

}
const clientProvider = getClient(KMS, {

credentials: { accessKeyld, secretAccessKey, sessionToken }

1)

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
clientProvider,
keyIds: [keyArnl, keyArn2, keyArn3],
)

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring

const keyring = new KmsKeyringBrowser({
keyIds: [keyArnl, keyArn2, keyArn3],

1))

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(

R 751 i 22 2 47% 22 41 59

AWS Encryption SDK FERARER

key_ids=[key_arnl, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

let esdk_config = AwsEncryptionSdkConfig::builder()
.max_encrypted_data_keys(max_encrypted_data_keys)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate “max_encrypted_data_keys® raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > @, "max_encrypted_data_keys MUST be greater than
@Il);

let mut i = 0;
while i < max_encrypted_data_keys {
let aes_key_bytes = generate_aes_key_bytes();

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

raw_aes_keyrings.push(raw_aes_keyring);
i+=1;

R 751 i 22 2 47% 22 41 60

AWS Encryption SDK FERARER

Go

}

// Create a Multi Keyring with “max_encrypted_data_keys"™ AES Keyrings
let generator_keyring = raw_aes_keyrings.remove(Q);

let multi_keyring = mpl
.create_multi_keyring()
.generator(generator_keyring)
.child_keyrings(raw_aes_keyrings)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
MaxEncryptedDataKeys: &maxEncryptedDataKeys,

b

if err !'= nil {
panic(err)

}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

R 751 i 22 2 47% 22 41 61

AWS Encryption SDK FERARER

}

// Generate “maxEncryptedDataKeys' raw AES keyrings to use with your keyring
rawAESKeyrings := make([]mpltypes.IKeyring, @, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
key, err := generate256KeyBytesAES()
if err !'= nil {
panic(err)
}
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)
}
rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
i++

// Create a Multi Keyring with “max_encrypted_data_keys ™ AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: rawAESKeyrings[0],
ChildKeyrings: rawAESKeyrings[1:],

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)
}

B2 & D im ik S

AR KMS ZRAMZENBIEN , REXKEREEFCEEATEE |, Rl FeERANRTEE
ENEH, B2, WALE SEUNERIEXTHER , EXMEXT , EEFEEENSEER,

B R ITHE SR 62

AWS Encryption SDK FERARER

EREXT , AWS KMS TR #HBHEN T H % KMS 247 , # A LUER MZEBFEZEAN KMS =4
X EHBATHRE,

NREMFERDEATEE BNBWERAEARIALES ZLRBEFARATEEN D XY
KMS ZRRFIEREE AWS IKF Mo X EH, RAFHERFRTIEAN , BXRHERXK,

£ T R\BERITEILESFFH D XE.

Region 7 X

AWS X1 aws

& (X 15 aws-cn
AWS GovCloud (US) Regions aws-us-gov

AT PRy REIE G R R eI R R IR, EEARBEZE , BRREEBERN AWS K M2
KBy EME,

C
BHXRZTEMNRE , S AWS Encryption SDK for CH# kms_discovery.cppo

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";

const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil
C#/ NET

BXTEMNRH , 2N DiscoveryFilterExample.net F#J AWS Encryption SDK .cs,

// Create a discovery filter for an AWS account and partition
List<string> account = new List<string> { "111122223333" },;

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()

B R ITHE SR 63

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK FERARER

{

AccountIds = account,
Partition = "aws"

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

Java

BXRZTERG , HSREHH DiscoveryDecryptionExample.java, AWS Encryption SDK for Java

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

BHRTEWRE , ESE AWS Encryption SDK for JavaScriptd 89
kms_filtered_discovery.ts (Node.js) #1 kms_multi_region_discovery.ts (X¥%E&F) -

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {

accountIDs: ['111122223333'],

partition: 'aws',

Python

BHXRTEH R , F3 % AWS Encryption SDK for Python® B9 discovery_kms_provider.py.

B R ITHE SR 64

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK FERARER

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

)
Rust

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![111122223333.to_string()])
.partition("aws".to_string())
.build()?;

Go
import (

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

)

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{111122223333},
Partition: "aws",

}

BEFFENMNE L TX CMM

BT LAMER TRV £ T XX CMM EMFRERERMNE L T, M#ETXR-AFNBFREN.
n#EETXAMEZELTAHRERMENRSE , MEFTECRAEARNNE L TXERFR, EHLFEHNMNE
LTX CMM B, AIEE— M HEMLENMBE LT XRA (XENER) |, XERALNITEERN
BmBENBF A,

(® Note
RAEUTHRAXFFENNE L TX CMM :

« MRZA 3, H9 x AWS Encryption SDK for Java
« MRZA 4, .NET AWS Encryption SDK #J x

BENELTX 65

AWS Encryption SDK FERARE

3]

« MRA 4, B9 x AWS Encryption SDK for Python , Sa[i&R %A £HREHIZFE (MPL) AkH
Iﬁi_ﬂﬁﬁﬁ HT.I-O
« BRA& 0.1, x RE S RAH fo AWS Encryption SDK r Go

MBI EAOINE £ T X CMM BRI | U R L R MR AR 2 — XY ST B

et , AWS Encryption SDK BIFFIESENMEZE L TN ZHARBSEERIBENME LT XHF,
I IRIE E B IR £ T 30 1T AWS Encryption SDK 8. REFFAEFANRBREXN TS F 5L H LI
XN FHEMRRERE N INZEEARLF,

fREn , XARTEEERRAMEZANFTEREXNMNME L TX, AWS Encryption SDK i F it 1Nz
E T XMEEENRERAPHNRBENRERSENRREFREENREBMZE LT, R AWS
Encryption SDK TZERRBMNEZR LT3 , NFFRELIK, IREREMANBENTSETEBNAT
TR, WEEREBEMEEE ., SRENBEXN XS NZNIEENHERE.

/A Important
EFFAZEREENE L TXPAMERHIERENE, SLARSERZNBARREREAR

HWNE. MRELTEZEIREZRH , WL EEZNEER.

LA RBIGERFRERYINE £ T X CMM #]281L% AWS KMS £RER,

C#/ .NET

var encryptionContext = new Dictionary<string, string>()

{

{"encryption", "context"},

{"is not", "secret"},

{"but adds", "useful metadata"},

{"that can help you", "be confident that"},

{"the data you are handling", "is what you think it is"}
I

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

BEMELFX

66

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

// Instantiate the keyring input object

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = kmsKey

};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
// If you pass in a keyring but no underlying cmm, it will result in a failure
because only cmm is supported.
RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

i

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

Java

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Create your encryption context

final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");

encryptionContext.put("is not", "secret");

encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.aslList("encryption",

"context");

// Create the keyring

FEMELTX 67

AWS Encryption SDK FERARER

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
.kmsKeyId(keyArn)
.kmsClient(KmsClient.create())
.build();

IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
materialProviders.CreateDefaultCryptographicMaterialsManagexr(
CreateDefaultCryptographicMaterialsManagerInput.builder()
.keyring(kmsKeyring)
Lbuild()
);
ICryptographicMaterialsManager requiredCMM =
materialProviders.CreateRequiredEncryptionContextCMM(
CreateRequiredEncryptionContextCMMInput.buildex()
.requiredEncryptionContextKeys(requiredEncryptionContextKeys)
.underlyingCMM(cmm)
Lbuild()
);

Python

ZE5¥ AWS Encryption SDK for Python SFrERMNZE L TX CMM —& R |, AT E R RHEHE
EJFE (MPL),

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create your encryption context
encryption_context: Dict[str, str] = {
"keyl": "valuel",
"key2": "value2",
"requiredKeyl": "requiredValuel",
"requiredKey2": "requiredValue2"

Create a list of required encryption context keys

FEMELTX 68

AWS Encryption SDK FERARER

required_encryption_context_keys: List[str] = ["requiredKeyl", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=boto3.client('kms', region_name="us-west-2")
)

kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
mpl.create_default_cryptographic_materials_manager(
CreateDefaultCryptographicMaterialsManagerInput(
keyring=kms_keyring

required_ec_cmm: ICryptographicMaterialsManager = \
mpl.create_required_encryption_context_cmm(
CreateRequiredEncryptionContextCMMInput(
required_encryption_context_keys=required_encryption_context_keys,
underlying_cmm=underlying_cmm,

Rust

// Instantiate the AWS Encryption SDK client
AwsEncryptionSdkConfig: :builder().build()?;
esdk_client::Client::from_conf(esdk_config)?;

let esdk_config
let esdk_client

// Create an AWS KMS client

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([

FEMELTX 69

AWS Encryption SDK FERARER

("keyl".to_string(), "valuel".to_string()),

("key2".to_string(), "value2".to_string()),

("requiredKeyl".to_string(), "requiredValuel".to_string()),

("requiredKey2".to_string(), "requiredValue2".to_string()),
1);

// Create a list of required encryption context keys

let required_encryption_context_keys: Vec<String> = vec![
"requiredKeyl".to_string(),
"requiredKey2".to_string(),

1;

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

// Create the required encryption context CMM

let underlying_cmm = mpl
.create_default_cryptographic_materials_manager()
.keyring(kms_keyring)
.send()
.await?;

let required_ec_cmm = mpl
.create_required_encryption_context_cmm()
.underlying_cmm(underlying_cmm.clone())
.required_encryption_context_keys(required_encryption_context_keys)
.send()
.await?;

FEMELTX 70

AWS Encryption SDK FERARER

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = defaultKmsKeyRegion

1)
// Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Create a list of required encryption context keys
requiredEncryptionContextKeys := [Jstring{}

FEMELETX 71

AWS Encryption SDK FERARER

requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
"requiredKeyl", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Create the required encryption context CMM
underlyingCMM, err :=
matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err !'= nil {
panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
UnderlyingCMM: underlyingCMM,
RequiredEncryptionContextKeys: requiredEncryptionContextKeys,

}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
requiredEncryptionContextInput)
if err != nil {
panic(err)
}

R B SR

AERBE—MEERE K ATHELSHNNAEFEACEAZHAREHITNENRE, EHBHAREH
TNZFMEZRRZ AWS Encryption SDK S{ERE,

&% B A SR 72

AWS Encryption SDK FERARER

REM B A E KB ZM AWS Encryption SDK A 1.7.x X ERMAEIZ FIMA 2.0.x RES AR
XEI|, TRETEHPEMBRRTX—HE,

AWS Encryption SDK & #TARZA (AR 2.0.x FF8) R EYBRIAA S RS E
RequireEncryptRequireDecrypt IEBZEAZHIER. ER , MREEERFRILFHAEM
IR F |, W AT EEE BN A% R E NN RequireEncryptAllowDecrypt. BXUMFERE
MEFESREARERENTE , HSH REEN AL R,

£ F SRR B3R

ERAEMBEHTHERN , FE8 ExBEUEREZAE. ERIEHFERZE , AWS Encryption
SDKREIN RBEFMNANR, NARELZESIRIEZATREHEAAX , BNEBWESZHFRR
RRNENY , EFENMEELET K.

RESERAERNBEXFRHTHEEN AARFULEASSRFTEENEEZES (FIMRAEEE

) B, FAHTXEE,

NTELEAF , B AWS Encryption SDK B S LI (5120 Node.js AWS Encryption SDK for
JavaScript F) ERZFEZHR TS EHINEE. BARN LR AFH LA AWS Encryption CLI 7ERR
K19xF22x HEIAT --buffer S8, EEMBESZASF , BULUEHANENEHINEE. (N
AWS Encryption SDK ET R A X RN,)

MRBEANREERFIBANELEN , BSHLESHEBESEUFEA decrypt-unsigned I
BE. WIIRERIIMEMENF , BENREINEENMENTF , MakM,. EXELER , HSH &F
BEEEH

S FHERH

BE THEMESFERAKIER , {8 AWS Encryption SDK 124t 7 BB R4A E 751 |,] R 53 2 dE
ZHNEESER. BHEFAETFUUARSRENARFNMEFBONBAEMIZENIER, £E£5~K
BHERABRERAEECH , FARZSHEA#TIR , LBRESFERABERANTL X TR

A RRBE 73

AWS Encryption SDK FERARER

AT E AWS Encryption SDK

£ AWS Encryption SDK , 43122 — Amazon DynamoDB & , Z&XRE 7 2 E RN FE R
AWS KMS 2 E#E. BAFERE TR ER S EEBARKITNEREMEN AR, AWS KMS

ZHREREAEES XFH , 7 EFHREARERARPTEHNENFRFBENERH, BHAERF
f#EZ 0 XBAN D XBRANE AR, FHDXBANET I XEZRARR. 2 EBHENFMM
ZEREAE-—NBENZZSR , HERANED D XBRARENE - LRBZAN S M RENEZART
mE, 7RBRHMMBIEES 2 XBARERESERHZRABINZEREM,

RAFERENES
Key store (B4R 126)

ATREDBHIE (HlUs X ZEHAMNERZE4L) B DynamoDB ko

—HREE KMS B8 , AT ERARF BRGNS R BANEHEH.
oSl

—MHEZA TEERTREATEINZNE-—IRZH, EUTUE-IBEHAEFESZN 2
XEZH , BRI XBH-RARE - MERN D XBHARK, FHDXBHANRTHTDXERAR
Ko

P B4R AWS KMS keys B FE A k ms: GenerateDataKeyWithoutPlaintext R/EMRAER

—ME—NBERS , AT NBEREPERNBENREZR,

BEZARBIXEN. AREAREIBRNESZEE , BSRAWS KMS 7 ZZHARZARAT,
R I 2 1A

AT hNZRENBIEZRH, 2ERZATRN SN NEEREAE -NBENRZR,

KIER RN R

ERAZHAEN AWS KMS 2 22N , RIMNBWEBEZEXATHEKEF/RENREN

B ISR IERNHE 74

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK FERARER

ZHEEER

RAFEEEAARUENEERAEREBARTFNRFN D X ZEH, BATHEEANZZH—
N RSN Z4A 17K Amazon DynamoDB REBEEANRHAF . AN % —BE R4S
NEERIRE (HlWCreateKeyM) WA VersionKey, RABERDEBEZHAFERIEN | THER
1TIXLEIRIE,

CreateKey R —HUEFHURME , ATLURF#TAEY KMS %48 ARN RINEI BN ZAFEF IR £, 1k KMS
ZATLACIRMEVES 2 X ER. RINBWRFEXILBRFENLRNR , BH—BR KMS Z477310
o XBAFED , ETERERER,

ZHAER

EXRZHAMD BAERAFENE. %, LENRIEBENNELSEZRARE
FHREHRITRE, Al , MR EFEEXN BELHNZPEFEMERN Amazon DynamoDB
REBRENR, BAERAFREEHAEMERIER N TRNEREE , HI
GetActiveBranchKeyGetBranchKeyVersion, #GetBeaconKey, ftfi1FHEEXPREIA 6]
B EEMINERAN D XEH,

HRAERBRELTHESRERSH | SIENEBAFEREREENRTRIN , BAURTEAR
B, BRAFMEBRERENATRIN , BLEPITEERIRIE (CreateKeyMVersionKey) o

NMREN D XZAFTHEEAEECN I XBHERFIIATZN KMS 24 , BINBUENZHE
R EEERHAFMREURTRI , SMEMIN 2 ZEARTUERZ N KMS B,

BIERAE

EOED ZBASEADAWS KMS BEZHAR 2 , XAECEZAER DERNRF 2 ZHN
Amazon DynamoDB &,

/A Important
B M ERRE 2 X2 AR DynamoDB k. MEMERLR , NIFTERZFER D BRBATR MR
AR CIE €

#58 Amazon DynamoDB FF R BT SIZRLERITRE , FAATLENFRHREFEN DX
MEF8,

BIERARE 75

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS Encryption SDK FERARER

7 X HEFr

HE branch-key-id type

BREAERN

& AERAFMEHN DynamoDB XY , B LA AERELREFR AR RENEREENEERAR
EEm. BBRHEENAIABHENRRN , EF-MAFPKNENELEZER. ERAFEMERE
b, ATIRAEEEHENEZERHFE B

DynamoDB &% # 18 15 2 A 7 B ¥ Z Bl 417 1E one-to-oneMk &, 9 f&{t DynamoDB &R
BE ZEBAFKEVUNESXNSBEINRFEERNAERE. EREEFRAFHEENTEESR
DynamoDB REZ#HAFE , BFHEA1EZIEVFEL DynamoDB kA MIEE N ZEBZHAFM BN
MRENZ B FIRE DynamoDB REZLHNRBMRETL , WA LUTE B 2401776 B ARG EIHTHY
DynamoDB &{E#: , AR 7 R B MA R LA BB B 76

BONESEZAEEEEHTESENBRBRELS . £ AWS KMS CloudTrail B4 |, B1EZ4A1F6E
EEZHAAENEATERXE RN, tablename

IEEE

1. the section called “Fi B R 4A 12 i /E”
2. the section called “BI2 4 % 2247”
3. BIE AWS KMS 2 B 248

Be B 2R Tt 1R AF

FEAFHIBRERE T BN A P A AT LR IE | IR ABTHY AWS KMS 2 /= A] A I8N &=
1M RFFHHEY KMS %248, AWS Encryption SDK XL TN Z4AFHIRER B,

B
HEBRSEEFRRFEN RATRREEASLERERAFHRENEHRN KMS 48 ARN X

BRH) KMS 40, kmsConfigurationfIREGIE, MRAEFIHIKRE D X HZANER TR KMS
%40 ARN , |45l X 7E,

BEZRAE#IRE 76

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK FERARER

IO EFRIEEZXE KMS Z4FkmsConfiguration , BiZZ4AMNE N ARN (BFEXE) #%
BEM KMS ZHIREN D ZZHAP, EFEEEMXEEEZRHR , KLTRETLERN 2 X
S REEETE.,

BB FMHIRER |, ATRITERRE

(GetActiveBranchKey, GetBranchKeyVersion, GetBeaconKey) MIEEIRE
(CreateKeyMVersionKey), CreateKey®—UUUIRIE , JLUSHTEY KMS %47 ARN R inE|
EHRAETTRE, It KMS BT ARIBFHESN 2 X B4H. AR PR HIXT H 4R 77 R4
BR , ERFF KMS AR IMBIBAFREER , R EFEMER.

Discovery

HEREFRAFREURITRIN , BAFETUAERBRAEHFIAF TS LBEM AWS KMS key
ARN, B2 , IREFZ X KMS B4 , H# B 1Z%HAMN ARN A XEEIEE &R imey X8
g , M5l 5FE. AWS KMS

EEREZAEUAM RN , BEEHRITEERRE , fliiCreateKeyfMVersionKey, BREERITE
Az, @%, SENRIMRENERRE. BXEZER |, BZH the section called “SE i 1K
PR,

BLE BRI KRB IERIE

EREZRAFHERFEZN FREBEZUATERSES.

- BMELEEHITHLIRIE, BXEZEELR |, 1§51 the section called “SEfE SRR,
 BE—INEEBFRAEEEN

DynamoDB & ¥ #1218 24 7% B MR 2 B A IFTE one-to-onefR Gt , BEZRAFMH A MAME
FRBERNRPEENFAERE , LAEI{L DynamoDB ERIRE , EFE—MNHFBRNENETEX
H#TER,. ERREMBRED , XTNBREEHRANEERAFEEEN. BXEZEE , BN

logical key store name,

LT REIAEBESHAEERAEMERE, EXTNEEREFRBEFEMED DynamoDB R B, HAEMR
KB B Z PR A RPRRXN FR IR KMS 240/ KMS 243 ARN,

BB XEEIERE 77

AWS Encryption SDK FERARER

® Note

FHAEREEBDEEFRHEFMRSAIEEN KMS %4 ARN, ZCreateKeyR¥FRF KMS
Z4 ARN RINFEN DX EZAFRETATRED. F KMS BRI D X ZAFEES , EX
R ELI BR

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()
.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C#/ .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName

};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,

BB XEEIERE 78

AWS Encryption SDK FERARER

kms_configuration=KMSConfigurationKmsKeyArn(
value=kms_key_id

)I

Rust

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))
.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)
.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))
.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"

)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
Value: kmsKeyArn,

}

keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
DdbTableName: keyStoreTableName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

b

if err !'= nil {
panic(err)

}

BB XEEIERE 79

AWS Encryption SDK FERARER

ROEE

UTROEETRATRIANBAFERE, SLAEERFEZAFHED DynamoDB R B HMEBE
HIEEE.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.builder()

.ddbClient(DynamoDbClient.create())

.ddbTableName(keyStoreName)

.logicalKeyStoreName(logicalKeyStoreName)

.kmsClient(KmsClient.create())

.kmsConfiguration(KMSConfiguration.buildexr()
.discovery(Discovery.builder().build())
.build())

.build()).build();

C#/ .NET

var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationDiscovery(
value=Discovery()

),

BB XEEIERE 80

AWS Encryption SDK FERARER

Rust

Go

)

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery: :builder().build()?))
.build()?;

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes '"github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"

)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{

DdbTableName: keyStoreName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

1))

if err != nil {
panic(err)

}

BIER M T X EH

D REARMEE D XBHANBIERHA AWS KMS key , AWS KMS 3 R ERHER ZERKED B
FETRE. AWS KMSTEZI 2 X BN RO XBHERE. 7RZBHIRN N NEE R ERKME - B
24, AEANED D XBRRENE - IEZAXN S M EZARTNE,

BIESD X HBH 81

AWS Encryption SDK FERARER

BEOEFRED D BN YT BESEERAFRRE, CreateKeyR—UUENERE , BT REAE
REREPEEN KMS Z4 ARN RINBIBRAFEFTREPR, RF , £/ KMS BHRERFTHES
XER. BINBWRBIX ERENTTERR , BN/ KMS ZHRAAMIZAERER , ELEFER
BRo

B ZAEEEPHN —N KMS ZHIIAFTERE | W B EHEEZRAERBREREPIEE
B9 KMS %348 ARN B XIBRARATFFIAZ AN KMS B340, CreateKeyMREFZ D KMS B4A5| A
AL NENRAEEARNEERLZATFHEBREUREI , SUEAMT T AERMIERGE N
AEEETNEAAFNRNEH, BXEZELR |, 315 the section called “BL & B 4A IR 1E,

FRERHIAX R

ERBOXEY LREEREBIAFEREPIEEN KMS Z4HH kms:
GenerateDataKeyWithoutPlaintext 1 kms: ReEncrypt PR,

IR D X E A

UTRECRAESEZAERBEREETEEN KMS ZAVNEBHFN T 2 X EH , HED D XBHF
HnE A E% A 176”9 DynamoDB & H .

A CreateKey BY , A LLUEARIEE U T AE(E,
« branchKeyIdentifier : EXBENX branch-key-ido

EQEBEEY branch-key-id , BAMMAEE encryptionContext SHMWEMMNE LT3,

« encryptionContext: EX—ARENIIEMBZRAEN , ATHE kms: FARIENME L TXH
REFANEE & HRIENESE (AAD), GenerateDataKeyWithoutPlaintext

BEAINE £ X+ H aws-crypto-ec: Bl

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",
"custom branch key id");

final String BranchKey = keystore.CreateKey(
CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

B X EH 82

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK FERARER

.build()).branchKeyIdentifier();

C#/.NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");

var branchKeyId = keystore.CreateKey(new CreateKeyInput
{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL
1)

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
key id"}

branch_key_id: str = keystore.create_key(
CreateKeyInput(
branch_key_identifier = "custom-branch-key-id", # OPTIONAL
encryption_context = additional_encryption_context, # OPTIONAL

Rust

let additional_encryption_context = HashMap::from([

("Additional Encryption Context for".to_string(), "custom branch key
id".to_string())
1);

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL
.encryption_context(additional_encryption_context) // OPTIONAL
.send()
.await?
.branch_key_identifier
.unwrap();

B X EH 83

AWS Encryption SDK FERARER

Go
encryptionContext := map[string]lstring{
"Additional Encryption Context for": "custom branch key id",
}
branchKey, err := keyStore.CreateKey(context.Background(),

keystoretypes.CreateKeyInput{
BranchKeyIdentifier: &customBranchKeylId,

EncryptionContext: additional_encryption_context,
1)
if err !'= nil {

return "", errx
}

B, CreateKey BIEERUTE,

« SEAT branch-key-id BARZ 4 BAM —#518 (UUID) (BRIEZIEE T BEN branch-key-
id) o

« BATHXBHAREFHRE 4 UUID

« timestamp AFURAH AL R (UTC) ISO 8601 HHAA AT EIFE

RIE , iZCreateKeyRYEGenerateDataKeyWithoutPlaintextff B LA T~ 15 3R 8 F kms:o

"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
1,
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"

ET X , ZCreateKey®REVA km ReEncrypt s: , BEEFHNE L TXH 9 X BRHACEEFIEH

B X EH

84

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html

AWS Encryption SDK FERARER

B&J5 , %CreateKeyRERA ddb: TransactWriteltems R\E—NFHWME , ZMBHREEEDSE 2
FOIENKRPN D XEH. IEEFUTEM.

{
"branch-key-id" : branch-key-id,
"type" : "branch:ACTIVE",
"enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
"version": "branch:version:the branch key version UUID",
"create-time" : "timestamp",
"kms-arn" : "the KMS key ARN you specified in Step 1",
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"

}

RIMIERED B X EH

BN XBR - RNEE—EDRE, BE , SIMERN I XBARSTEATHEZSNMER, BRE
AURHEED S XBANESEERAEE , FBEED D X ZBANRRER,

DREBHFIATNERAXHEZER. eIATRENAXBEZHRTNZNE-—IRZH, 2REH
MAESZEKME—/ 32 FHERENA , HENAEEN 28 7T, XBWE , ERENBREZH , 2

XA BURAE T 79 A2 2° M- BREH, REERRKRIERE , BEHTLERARAMN
MEBATENR | BT ERIIEN 7 X HH,

HERRZE , 2 XBANEI RIS —BELTEDRS. UEIRARED 2 ZBRAFTLATHRITINE
BE , STREATREFNESEES , EMATUTAXLEZAHRETSEBARBEECNEETIRES
TIENBEZA,

FRR AR

ERRDXFY BEERPEMEIREDRIEEN KMS K kms: GenerateDataKeyWithoutPlaintext
F kms: ReEncrypt 1R,

RRARN D XFH

EAZVersionKeyRERRIREW TS 20X FH. RIRED D ZBHAN , REQWEFTN S XHHAR
BRAIRA, HEBREEH D IFHAR |, branch-key-id T2 ®E, £iAMA VersionKey B , H4M
EERATFRREEES 2 X Z4AM branch-key-id,

RIRIBW B 2 X EH 85

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK FERARER

Java

keystore.VersionKey/(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
);

C#/ .NET

keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Python

keystore.version_key(
VersionKeyInput(
branch_key_identifier=branch_key_id

Rust

keystore.version_key()
.branch_key_identifier(branch_key_id)
.send()
.await?;

Go
_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
BranchKeyIdentifier: branchKeyId,
1)
if err !'= nil {
return err
}
RRENE B8

86

AWS Encryption SDK FERARER

F4AT

XENEEESIUEABRARRNTEHNE, BARER, NMBENRBZRIERH. BATBERE
BRHENHE -BEZHANKER , ARNZBZBEZHANLEZH, SENBREE-MBHE , A&

BEMNIEEHERTENENR., EUUAFEAFRIEGRENEZRR , CURELECHREIBAE
MBI,

AR ERSNIRAR , ARSI BAREHA N N ZEFHR. ERRSHBRARTUE
B, MBEM@ERBERS , BEETUMERRINT TR ERENZAR , SINALERBEZANESR
0, AREEASREEMERARESER,

BNBVUEEATRFIEBAHETLLEAARITMERENZRIR | a0 AWS KMS 4835 |, ©
FAKTREE AWS Key Management Service() AWS KMS keys AWS KMSHI B4R, ik aJLARE
—MERAHEZANBANL XERAFEEEFLTLSER (HSMs) hHZHMFZRRSRF. BX
HHELR |, 155 H AWS Encryption SDK Specification 18 Keyring Interface £,

ZAREEHMBREESIAPEANEIZANEIZARHENER, MRELER AWS Encryption
SDK T EESXERMEZNBZRSE , BTSLEARBBARNEIZAREEF. BXESER
FSH ZHRREM,

75 3 75 BE a4 f5F A B9 4R ER Th BE AWS Encryption SDK LA K Il i& 12 4R R

ZEARH TEA K

EZHAER , & AWS Encryption SDK ESRZAFEHMEM B, BARIKRE — B XBIEZH AR
HEARTFNENTERANZNBIEZARI A, AWS Encryption SDK £ A X RAMBLHYE , A
EHBRANABIERR, AE, AWS Encryption SDK IR Bl — &I E INEHIE A M B HIE N N2
H B

BATHIERR 87

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK FERARER

AWS Encryption SDK

Cryptographic Materials Manager (CMM)

| A

_ p Plaintext data key
Get encryption

materials
‘ Encrypted data keys
k
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

mEHES , KUUEANEREANEAN WA AEAHMRAT, ERERE #EBHATLYL
MEE (HARER) MEBRAFRPNED —NEREH,

TR BARZAMINER EE AWS Encryption SDK 2 B Z4AHR | A ERBAABEE PEF—
N BRRERHBRBHUBRZ - MNENHERN , FREAXHERHA. AWS Encryption SDK
ERARNBERAURZRE. ARFARTNAEERFABLTERBZEANBNRIERS |, #EE
USSENE

BATHIERR 88

AWS Encryption SDK FERARER

AWS Encryption SDK

Cryptographic Materials Manager (CMM)
| A

Get decryption

materials Encrypted data keys *

Plaintext data key

k4
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

U LER—NZAR , h A URARREHAEARENBRARASE - ZERAHTP. HENEHR
B, SERAHEREERNKZZSERATNIERARTNEERFANENBERARES. &
AUERAEEZERARHE-—SREANZAREERE.

RETEMIBES XTI AWS Encryption SDK E—E M ER BT HE , EZESREINYD

o BWAILIMEA—MESERMBLHRIE , AHMESSEHTHRE, T3 , B40EAHEBZAENY
BEZANBNBREBRREZRH,. BXESRENGEE , FSRAXEMESSIMNEE , 0 AWS
Encryption SDK for JavaScript E£&the section called “FRA M A F B,

LT RIEIES IFHHKE -

* AWS Encryption SDK for C

* AWS Encryption SDK for JavaScript

« AWS Encryption SDK X F.NET

« MRA 3, H9 x AWS Encryption SDK for Java

BT RAM 89

AWS Encryption SDK FERARER

« MRA 4, #9 x AWS Encryption SDK for Python , 5 RIEK %241 LR HIEF FE (MPL) kB — 2 fF
R e,

« AWS Encryption SDK ¥ F Rust
+ AWS Encryption SDK for Go

X I B ARy AR E K

TR 2 S\H9 AWS Encryption SDK i& S 3XHlF AWS Encryption SDK for C , Ffi £ 3512 i B4R EF
(REBEHAN) IEZARUEFPNBABLAEBNERESH, WEEASEZATENE | It
MEFEFAM, Bt , BRAFSAREZARHAEZANENR, MRELPRESEZATRF
£/ Discovery AR MERMIE , MAFRAT KM

ME—@Y 652 AWS Encryption SDK for C , IIBFRFLZBITERINFANR , ERNMREERHES
ZRRPEESXERIABHL , MR,

RENBATNEZAREERF

TRERTHEFZANMEIRARUEFSCINRENZRAIRIFZS. AWS Encryption SDK BXIES
XENEEFERETHTESARMS BT ABHMAREIER

AL - FHARMER
AWS KMS Azt KMSMaster#4A (Java)

KMSMasterKeyProvider (Java)

KMSMaster#:4f (Python)

KMSMasterKeyProvider (Python)

(® Note
AWS Encryption SDK for Python 1 AWS Encryption SDK for
Java T EEERE TAWS KMS X K A AN ERARNER
HEEER.

AWS KMS 7 /= fA L B TRIZE S MARAZH

X IR AR AR R 90

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider

AWS Encryption SDK FERARER

AL FEAREER
« WA 3, H9 x AWS Encryption SDK for Java
WA 4, .NET AWS Encryption SDK #J x

WRA 4, B9 x AWS Encryption SDK for Python , 5]34 /9 i1 %3 #1 £
REEFE (MPL) k10— 2 65 i

WA 1, x B9 fo r AWS Encryption SDK Rust
MRAS 0.1, x RESMAH fo AWS Encryption SDK r Go

AWS KMS ECDH %At HUTRIZES WRAZHE

MRA 3, H9 x AWS Encryption SDK for Java
WA 4, .NET AWS Encryption SDK £ x

MRAS 4, B9 x AWS Encryption SDK for Python , 5] % B i %3 41 %1
RHEFE (MPL) B0 — 2 A,

MRA 1, x B9 fo r AWS Encryption SDK Rust
RAS 0.1, x ESRAH fo AWS Encryption SDK r Go

[R5 AES B EXtwmzZ s — 2 EA
JceMasterKey(Java)

RawMasterKey (Python)

716 RSA ZHHHE B3 MNEZ 2 — e EAT
JceMasterKey(Java)

RawMasterKey (Python)

(® Note

R RSA ZHRR T XIFIEXNFR KMS Z4H. MREERIER
M RSAKMS %4A , B FEARZA 4, .NET B9 AWS Encryption
SDK x Z#EFEAXNFINZ (SYMMETRIC_DEFAULT) S3IEX#5
RSA 9% AWS KMS £A¥F, AWS KMS keys

RENEZARMNERAREER 91

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK FERARER

AR FEARMER
RINTH ECDH AR HUATRIZE S MARASH

« WA 3, H9 x AWS Encryption SDK for Java
WA 4, .NET AWS Encryption SDK #J x

MRS 4, B9 x AWS Encryption SDK for Python , 5 AIi%& /9 11 %3 47 %
RHEFE (MPL) i — 2 A,

WA 1, x B9 fo r AWS Encryption SDK Rust
MRAS 0.1, x RESMAH fo AWS Encryption SDK r Go

AWS KMS %A =L

AWS KMS AFAWS KMS keys A F AR, MBMBEHIEZEH. AWS Key Management Service
(AWS KMS) R EH KMS A HE FIPS I R AT IR RME, BWERAEER AWS KMS 4
R EFRLLZLEHNERR,

MEXEZPTRNREIES RUH ZEEARNHINE KMS AWS KMS Z4AN R, U THREIBESS
& 2356 A FEXS s RSA KMS AWS KMS Z4A) B4R R -

« MRA 3, H9 x AWS Encryption SDK for Java

« MRA 4, .NET AWS Encryption SDK B9 x

« RZAX 4, B x AWS Encryption SDK for Python , SR[IER M RBHEHREFE (MPL) kB — 2 fE
FABt,

« MR 1, x B9 fo r AWS Encryption SDK Rust
FRA 0.1, x ESRAH fo AWS Encryption SDK r Go

MRIEZ R ENE KMS ZRANAEMEMESKENNBEZRARGT , MR ERAFRN. MRFEN
ABBRZRAHP |, WA,

M 2.3 iRFTYE , BT AFE R AWS KMS RREZAREESF FEH AWS KMS ZXEH#EH, AWS
Encryption SDK FIiRZS 3.0 FEY xo AWS tN%E CLI F Y xo BXREM1Z multi-Region-aware &5 #Y
FMEENRAE , BSREHAZXE AWS KMS keyso BXxZXERANEER , HSH (AWS Key
Management Service FF X A R IEm) FHFERZXHEH,

AWS KMS 4A 2Ll 92

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK FERARER

® Note
FATEIRN KMS B4AIRH9 AWS Encryption SDK A& H# AWS KMS F4RER,

AWS KMS AR Al LA B fp R B B R 4Rt ¢

- ERBEH ERTNBANBEZH. IERENZARSAE - NMEKBRER,
- HtbB4A - MBEMBRBRERNANSIHEZRA. AWS KMS ARE T AR ENH S

=]
Eo

BERANMSAERERBZHS RN EERTME. =5 AWS KMS BHHFIFT - KMS BT |, 2%
HATERMMBRERR. BEN , ERRBHARTEN , EXFZANEBEN 2B X3P
B

BATEHRRE — , AWS KMS BT RIMER |, b Al AEHMMAR N T ERENHRE —BE
ZHARBFRER,

£}

- AWS KMS Z4AH PR X R

« £ AWS KMS 4A 2B AWS KMS keys FiR 5l
- BIE® AWS KMS 4HER

« {#/ AWS KMS £ I Z 4R

- EF AWS KMS Xig & I B4R

AWS KMS Z AP B ER

AWS Encryption SDK FEE AWS Ik |, B R FEM— AWS RS, B2 , EFH AWS KMS
ZAAEN | MBEEX AWS IKF B4R AWS KMS keys FH EB LT RIERER,

- EEAZ AWS KMS i #1TI% |, BEEAE W IFZIM kms: GenerateDataKey IR, BEEXS
AP WA AP EAE kms: encrypt)R, AWS KMS

- EFAZRARHITHRE , BEENE AWS KMS fiFHHNEDL —NEHEH kms: Decrypt R,
AWS KMS

AWS KMS Z4AIRFT B R 93

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK FERARER

- EFERAHBHATEARNSBARHITNEG , REERGEREE AWS KMS AR EREEHAN
kms: GenerateDataKey f R, REEXN A HMBRARPNAAEEMZAESR kms: encrypt X R,
AWS KMS

- EFAEXNY RSA AWS KMS ZEAR#TINE , LA FEE kms: GenerateDataKey % kms: E

ncrypt , A AERIEFZARAAIEEEATHNENLBAHR, FERHLEZFHARMNZRF TS AWS KMS
RHEREY, EM4HENFH RSA B AWS KMS AR TR | /REZE kms: Decrypt IR,

BXRPRIFMES AWS KMS keys , S (AWS Key Management Service F & AR $5F) Y
KMS 22 4A 175 [8) M X R

£ AWS KMS £A 2B AWS KMS keys AR 5l

—N AWS KMS B T L BFE— N2 AWS KMS keysto EFE AWS KMS Z4ER AWS KMS
key FIEE , BEAXEFN AWS KMS Z4AMRRE . AT TEZAIF AWS KMS key HIRFI 2
PARIRFRBENES UM T, BX AWS KMS keyZ4AIRRAFNIEMAESR |, 38 (AWS Key
Management Service FF X A R 8/ FHZEHFIRE,

ENRESRK , BEARESSESHNEARRR.
- TERNEZEAIRH AWS Encryption SDK for C , A LA 248 ARN =515 ARN KiR5] KMS %

. EAMEHMES P , BULERAZEY ID. 4 ARN, BB E ARNINZERIE.

- EMRBZRPIRF | B FE ARN BAFRIR AWS KMS keys, ZEREMATF AWS Encryption
SDKWFTEIEE K. BXEZER , BN AETEEH.

- ERATINBRMBEZNZHATF | B4 AL ARN BIFRIR AWS KMS keys, ZERERF AWS
Encryption SDKEYFTE1E & <1,

MREEMBZARF A KMS HAEEH B BHHBIE ARN , W INFRES T S8 5% 5 B <K
Z4 ARN REENERBEZANABEF, ET2RENE. EXEFT2EWATERNBRIES
A KMS Z4.

AR AWS KMS 48R

BT AR T AWS KMS Z4AIRELE — 4 AWS KMS key Z 4 AWS KMS keys #HE R

TR ZHL , AWS IKF Bk, AWS XiZ AWS KMS keys HNZ X #RINEE KMS 248
(SYMMETRIC_DEFAULT) SIEXN#: RSA KMS %40, S A LAEAXNFRMNE 2 XiE KMS Z4, &1
RIE— NS EZARPER—NHZAN AWS KMS Z475R,

£ AWS KMS 4R REEB AWS KMS keys FFiR 5] 94

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Encryption SDK FERARER

BRI ZRA T NZEMNBBBIENE AWS KMS 4838, i AT UGB E TR TMERHEZER AWS KMS
ZHAR, QIBA T IMBHIEN AWS KMS B4R , XIEEERSIZR , ZZHATERAEXAHK
BERAHNEHAITNE, AWS KMS key BIERAEHF L5 KMS BT X, A, IREEE , U
AILAUEE A F inZ M E 4 XA BIE R AN E M AWS KMS keys IR, EMZRZ IR ANRIFHNEZEF
B, BEANBREZARVMELTERHRAR AWS KMS keys EXHWFZEHFHH —1 , HEF=o
AWS KMS keys (&HH AWS KMS Z48IR AWS KMS keys #FFAWS KMS ZIMF4AIR,)

EBRZ M9 AWS Encryption SDK &S KA AWS Encryption SDK for C , FiE £ & E MZE AN
SERARPNBAB LB NBREZHR. WETASEBATENES , KNBFEFAK. it ,
RALXITREZRRRPIERANFTEN R, MREERMHEZSERHASL P £ Discovery ZEFRIN
BEIE |, MBRENEAK. H—rHI5 2 AWS Encryption SDK for C , IIZRES ZBEIRAH XD F4A

B, ERMRELEMBESHARPEESXBENEZHRR , MakK.

AR RBIE R4 EE AWS KMS 5 — N N2 A2 405, £ B A M E A X
= KMS B40, XL RBIGEH 4 ARNsKIREI KMS 240, X EA T INEN AWS KMS B HE
Xk, BRATHEN AWS KMS ZMNER, BXELEE , S £ AWS KMS fAEE AWS
KMS keys iR 5l

C

E AWS KMS key £ H Y INZE 2 £AFH 1R 5] AWS Encryption SDK for C , I E %4 ARN 23|
% ARN, ERBZHARP , BLAERZH ARN, BXESEEL , B2H £ AWS KMS A RE
AWS KMS keys FiR 51,

BXRTENRG , HZH string.cppo

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(generator_key, {additional_key});

C#/ .NET

E7E AWS Encryption SDK ZAF.NET WHEIEEE —1MRZ KMS ZHNZRHANL |, B
FCreateAwsKmsMultiKeyring() A&, RHBIEAFTN AWS KMS 4, EEE KMS #
£, BN Generator 8. IEEHM KMS Z4HH KmsKeyIds SR AES .

B AWS KMS £A3F 95

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK FERARER

BRI AT EEZ AWS KMS &P iw. &R , AWS Encryption SDK fi F BB A E R Y
KMS ZRR TSN XA IA AWS KMS BF %, Bl , R MHGeneratorSHEIRRA
By KMS ZAM TREFES (H#K) K& (us-west-2) , MR Zus-west-2XE AWS
Encryption SDK 8IZ & iA AWS KMS & i, MRFEBEENL AWS KMS & i , BEH
CreateAwsKmsKeyring() F %,

F£.NET F AWS KMS key A INBZAFRIEERN , AIAFEREAERNBHAFIRA . 24 1D, BH
AR N, BI&=H5%& ARN, AWS Encryption SDKEXIRE] AWS KMS 4A 2L AWS KMS keys &
B EEBD | IS 7E AWS KMS 43 R6B AWS KMS keys AR5,

AR RBIMEARZA 4, .N AWS Encryption SDK ET 8 x SR B E X AWS KMS &
mCreateAwsKmsKeyring ()75 3%,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput

{

Generator = generatorKey,
KmsKeyIds

additionalKeys
};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

£ AWS KMS key I Z 248 R 38 E BF AWS Encryption SDK for JavaScript , #& 0] LU B 4E 4
BN EARIRE - F4 ID. 6 ARN, FlEF51E ARN., BXIRF] AWS KMS £ARLE AWS
KMS keys FHIEVESBY |, BB U4 AWS KMS 4B EEE AWS KMS keys 1251,

AR RBIEAbuildClient BOBR IS E B IAMY RS R
BEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t A LAEAbuildClient KRR M B N
BEZHNBE, BREZELR , 55 H the section called “FREIMNZLIEZ"

BIER AWS KMS 4R 96

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK FERARER

BXTENRE , BB EFEFHEDB kms_simple.ts, AWS Encryption SDK for JavaScript
GitHub

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const clientProvider = getClient(KMS, { credentials })

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeyId,
keyIds: [additionalKey]

b

JavaScript Node.js

£ AWS KMS key 1 InZ 48R3 E BF AWS Encryption SDK for JavaScript , #& 8] LU F4E{a
BN ZARIRE - FH ID. ZH ARN, 3lE 518 ARN, BXIRF] AWS KMS £ARLE AWS
KMS keys FHIEVESBY |, BB 04 AWS KMS 4B BB AWS KMS keys iR 51,

LU RGIEMAbuildClient BOBORIE B BRIA MR IE 5
EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t AILAEAbuildClientRR&IMNZEHE B+ N
BIEZHANBE, BXREZEE , B3 H the section called “FREIMBEHIEELA"

BXRTEN RS , BSEFPEFEFRB kms_simple.ts, AWS Encryption SDK for JavaScript
GitHub

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

BIEZ AWS KMS 473k 97

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts

AWS Encryption SDK FERARER

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
generatorKeyld,
keyIds: [additionalKey]

1)

Java

EFA—IHZN AWS KMS ZRAIB AL |, isFEACreateAwsKmsMultiKeyring() B,
WRBIEARN KMS %4, BEIEE KMS %4 , XM generator ¥, EEHM KMS %47
kmsKeyIds 8N AESH,

WEARNRATES AWS KMS BF ik, MK , AWS Encryption SDK R HZHFHH
KMS Z4A &R RSN XEH BRI AWS KMS &P iR, i, R HGeneratorZHERR
) KMS BN TEERL (HBENXN) X (us-west-2) , M&RiZus-west-2XiF AWS
Encryption SDK 8|2 ERIA AWS KMS BFin, MRFEBE L AWS KMS BFin , HEA
CreateAwsKmsKeyring() 5%,

£ AWS KMS key H B Z4BERIE EBF AWS Encryption SDK for Java , &7 LAME F{ERIE X
AR - 8 ID. B ARN, FlEAZHHIE ARN. BXIRE AWS KMS £A 2L AWS KMS
keys FHYAYEEEY | S HE AWS KMS £AREE AWS KMS keys FiR 5,

BAXRTERH , HS 595 AWS Encryption SDK for Java & EHH
BasicEncryptionKeyringExample GitHub.java,

// Instantiate the AWS Encryption SDK and material providers

final AwsCrypto crypto = AwsCrypto.builder().build();

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

BIER AWS KMS 4R 98

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK FERARER

List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(generatorkKey)
.kmsKeyIds(additionalKey)
.build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

EfEA N Z AWS KMS Z4A 01 EZ 43K |, 5 Acreate_aws_kms_multi_keyring()7%
Eo WRBIEAFN KMS 240, EIEE KMS 4R |, iXEA generator ¥, EEHM KMS
ZEAK kms_key_ids SE A TESE,

LA AT S AWS KMS & F iR, R , AWS Encryption SDK £ AR ZE AR H Y
KMS ZH R TN BN XEH BRI AWS KMS F %, Hlt0 , 1R HgeneratorZHERIR
7 KMS BN TXERI (#HE8X) X (us-west-2) , M&AZus-west-2XiF AWS
Encryption SDK 82 ZRIA AWS KMS B Pk, MRFEHE L AWS KMS B g , E6EA
create_aws_kms_keyring() Hi&.

£ AWS KMS key 1 IIZ 2 4A R 18 E BT AWS Encryption SDK for Python |, &8 U B {E A K
HZEAPRIRAT - 241 ID. B4 ARN, BlEZ5IHA ARN. BXxIRE AWS KMS 4AREE AWS KMS
keys FHVEIEEBY |, BS7E AWS KMS 4ARLE AWS KMS keys FiR50,

LU 5145 A RN 7 i SR BE SE {1t AWS Encryption SDK & /2
Who REQUIRE_ENCRYPT_REQUIRE_DECRYPTEXFTEMRHI , EZH+ AWS Encryption SDK for
Python Z&EE R #Y aws_kms_multi_keyring_example.py GitHub,

Instantiate the AWS Encryption SDK client

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",

BIER AWS KMS 4R 99

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK FERARER

"the data you are handling": "is what you think it is",

}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

)

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
CreateAwsKmsMultiKeyringInput(
generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

)

Rust

BHFER—IHZN AWS KMS Z4ABIBZAL |, M create_aws_kms_multi_keyring()FA
Eo WRBIEAFEN KMS 40, EfEE KMS 4R |, iXEA generator ¥, EEHM KMS
ZEAK kms_key_ids SEA TESE,

LA AT AWS KMS B Fim, R , AWS Encryption SDK £ A Z AR
KMS ZH R TN BN XEH BRI AWS KMS F i, Hlt0 , 1R HgeneratorZHERIR
7 KMS BN TXERI (#HE8X) X (us-west-2) , M&AZus-west-2XiF AWS
Encryption SDK 82 ZRIA AWS KMS B Fik, MRFEHE L AWS KMS BF g , E6EA
create_aws_kms_keyring() Hi&.

£ for Rust 1 AWS KMS key AR ZRAMRIEER |, 7 LUE BETE R ZAPRREF : 247 ID,
#40 ARN, 3J& 54 ARN, AWS Encryption SDKEXIRE] AWS KMS 48 2B AWS KMS keys
FEREEBD | BSEE AWS KMS A REE AWS KMS keys FiR 5,

LU 75145 A RN 7 i SR BE SE {1t AWS Encryption SDK & /2
Vo REQUIRE_ENCRYPT_REQUIRE_DECRYPTEXTZEM A , S L7FME Rust B FHH
aws_kms_keyring_example. rs, aws-encryption-sdk GitHub

// Instantiate the AWS Encryption SDK client

BIER AWS KMS 4R 100

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK FERARER

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Go

EFERA—1EZN AWS KMS ZARIRZ4AIS |, M create_aws_kms_multi_keyring()XA
Eo WRBIEAFHN KMS 41, EEE KMS Z4R |, iBXEHA generator ¥, EEHM KMS
ZEAK kms_key_ids SE A TESE,

WA ATESZ AWS KMS BEF %, &R , AWS Encryption SDK ERHBEZHFHH
KMS ZXR TN EMNXIFHERIA AWS KMS FF iR, i , 1R HgeneratorSH{EMFIR
B KMS ZAMN FEEEZ (B#NX) XiF (us-west-2) , &R Zus-west-2Xig AWS

B AWS KMS £A3F 101

AWS Encryption SDK FERARER

Encryption SDK #1222\ AWS KMS &7k, MRFZEHEX AWS KMS &/ iR , HEM
create_aws_kms_keyring() 7%

£ for Go 1 AWS KMS key F B ZEAIEER |, B0 LAMEREAAE RN ZRBFRRET - 248 D,
48 ARN, BIZ 5515 ARN, AWS Encryption SDKE IR EI AWS KMS A 2B AWS KMS keys
FEREEBD | BSE1E AWS KMS A REB AWS KMS keys iR 51,

BT R4 A BRIA i R EE S B4k AWS Encryption SDK & /2
Umo. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

BIER AWS KMS 4R 102

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK FERARER

// Create the AWS KMS keyring
awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{

Generator: "&arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

KmsKeyIds: []string{"arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

}

awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
awsKmsMultiKeyringInput)

AWS Encryption SDK i& X 3% F JEXI #1 RSA KMS AWS KMS Z4AMI Z 4R, FEXTFR RSA AWS
KMS ZAH R e 88 —NEHAX.

EFAIENFR RSA AWS KMS AR ITINR |, LA EE kms: GenerateDataKey 3 kms: E ncrypt ,
RAE I ZZ AR B AEEEATMEN LA, EALZEARKITNENT2EAEMRM AWS

KMS . EFAIEXNH RSA 2 AWS KMS A 1T % , fREE kms: Decrypt X BR.
(® Note
E 0|2 H I RSA KMS Z4ARI 4 AWS KMS 3R, HAEAUTREEBESEI 2 — :

WA 3, B9 x AWS Encryption SDK for Java
WA 4, .NET AWS Encryption SDK 9 x

IR 4, #9 x AWS Encryption SDK for Python , S RiE# 1122 £HEHIZFE (MPL) 4K#
Iji_ﬁ-a-ﬁ% ET.I-O

WA 1, x B9 fo r AWS Encryption SDK Rust
WA 0.1, x BRESMAE fo AWS Encryption SDK r Go

AT RAIEAZCreateAwsKmsRsaKeyring A A B H B IEX ¥ RSA KMS AWS KMS Z 43/ &4A
. ERIEIEXF RSA AWS KMS Z4AH , EREUTE.

« kmsClient: BZ % AWS KMS & Fi®
« kmsKeyID: A FiRBIERISEXFR RSA KMS Z4ARNZE A ARN

* publicKey: a 3k ByteBuffer B UTF-8 4ri3#Y PEM X4 , R X HRRIREZELHZRAN LA
kmsKeyID

B AWS KMS £A3F 103

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

« encryptionAlgorithm: MNFEEELFRRSAES_OAEP_SHA_2563f RSAES_OAEP_SHA_1

C#/ .NET

ZOJEIEXH RSA AWS KMS BAEE |, AR ALK B IEX F RSA KMS BRI 2 43 MFAHA
ARN, NBZHAUHRA PEM 4B LATRAEIERMEX#F RSA AWS KMS Z 43X gl 2 Z A,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = AWS KMS RSA private key ARN,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

E X TR RSA AWS KMS ZHATE |, AR AR B IEXFR RSA KMS Z 47 /Y 2248 MFAHH
ARN, NBZHAULHRA PEM 4B AT REIERMIEX# RSA AWS KMS Z 43X el 2 Z A

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()

// Specify algorithmSuite without asymmetric signing here

//

// ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),

// ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),

// ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),

// ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),

// ALG_AES_192_GCM_IV12_TAG1l6_HKDF_SHA256("0x0146"),

// ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256)

B AWS KMS £A3F 104

AWS Encryption SDK FERARER

.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a KMS RSA keyring.
// This keyring takes in:

// - kmsClient
// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key
// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public

// key for the key passed into kmsKeyId
// encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsakeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

EOZIEXFR RSA AWS KMS ZAER | TR AR B IEX 75 RSA KMS Z4ARY 2 43 MFAHH
ARN, NBEZHAULHRA PEM 4B BATREIERMIEX# RSA AWS KMS Z 43X el 2 Z A

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers library

B AWS KMS £A3F 105

AWS Encryption SDK FERARER

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
public_key="public_key",
kms_key_id="kms_key_id",
encryption_algorithm="RSAES_OAEP_SHA_ 256",
kms_client=kms_client

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
input=keyring_input

Rust

ZOIEIEXI TR RSA AWS KMS Z4ATE |, BAIER AR B IEXN R RSA KMS Z 47 #2248 M FA4A
ARN., NBZHAUHRA PEM HwiBo BT RAEIEREX#7 RSA AWS KMS Z 43X Sl 2 Z A

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

B AWS KMS £A3F 106

AWS Encryption SDK FERARER

// Create the AWS KMS keyring

let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(kms_key_id)
.public_key(aws_smithy_types::Blob::new(public_key))

.encryption_algorithm(aws_sdk_kms: :types::EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(kms_client)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

B AWS KMS £A3F 107

AWS Encryption SDK FERARER

// Optional: Create an encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{

KmsClient: kmsClient,
KmsKeyId: kmsKeyID,
PublicKey: kmsPublicKey,
EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
awsKmsRSAKeyringInput)
if err !'= nil {
panic(err)
}

/A AWS KMS & I 2243

REN |, RIEMCERIEE AWS Encryption SDK AJLAERN E&EF, BEEFEILRESE , BFER
AWS KMS 24 | N AWS KMS HEZXARFERIEENZATCERN, B2 , BHar it
BEAWS KMS XIIZ4AER |, IR 8 EFE 32 AWS KMS FAZ AR,

7 AWS KMS %X # 4R AWS Encryption SDK 12 7 #5 AWS KMS R B4R AT EHRAR, B
XEXIHFAE AWS Encryption SDKEAMEE , B2 £HZXE AWS KMS keys,

T Discovery ZAR KR IEEF M BEZ4 , Bk Discovery ZEATEMBLIE, MRERMHESE
AR E A Discovery BAMRMBELRIE , MBREFAK. HE—EIFIZZE AWS Encryption SDK for

A AWS KMS K I Z4AIR 108

AWS Encryption SDK FERARER

C, MFERFELPEINERNFHL , ERNMREENFESEZARTEESXERAZHE , MK
Mo

fREE , AMBARAGFERAMNZRGFNHHAER AWS KMS BRI AMZNHREZRE , TRERER
A/RAE AWS KMS key iZ#4H. AWS Encryption SDK AWS KMS keyREEEA S HAE AWS KMS
keyH#) kms:Decrypt fXPREY , WAF 2K,

/A Important

MRCERZZFZHARPITE AWS KMS RIZEAH , MAARANHFEESHHRARPEME
AP IEENE KMS ZRT ., ZEFZHRNTARCLTRESZDNHAT, LIaERS
EZEZFASDERR , AWS KMS Discovery Z4AIR I INZ T

RHFERN , AWS Encryption SDK 12T AWS KMS XA B4ARE., T3 , HEFUTER , BIXRA
BEfE A BRI B4R R

« B3 — AWS KMS X TN B4R AT LUAE AR/ AWS KMS key B F IIZ 1278 B A RIFERAN R
8, X ARERULUERIZZR AWS KMS key #H1THER, XAaER2MW AWS KMS key &3T
EFEAN, flan, P —NMNBENBEZA TR EEMAZ AL AWS KMS key AN ZEMR
RER T INZEN,

- HERMMERE — AWS KMS KM Z4RARAJRELL H At 4N 1818 % |, B fbfi] AWS Encryption SDK &
ZHBEMENZNBIEZRS , SEEM AWS K/ FX1E AWS KMS keys RINZEHNEIEZSA , m
HWAELTNEAXERARITHEE. AWS KMS keys

MREFERARNZHAR |, RAMNBWEEARILRZ /AT AN KMS Z4ARFINIEE AWS K- M5
Xy ®fH, AWS Encryption SDKhMAS 1.7 x R EEMAZIFRITEIESFMA. WFERBERERIKS
ID Mo X , ESEFHEN AWS IKF FRIREFM ARN 185, AWS —fig5#E

UTRBEAKXITIRIFZFEHL AWS KMS RIEAIE |, ZIIERRE AWS Encryption SDK A A1 Y
KMS ZZ4ABRHIH aws 2 X 111122223333 RHINK - A HI B 4H

EFEALRBZE , BRFR6 AWS K Mo XESERHN AWS IKF Mo XN ERE. HREN
KMS ZAfu FHEXE , EEA aws-cn 7 X{E. WMREHN KMS 4 F AWS GovCloud (US)
Regions , i A aws-us-gov 7 X{E, X FREHM AWS XiF , iHFEA aws 2 X{E,

C

BXRZEEMNTH , ESH . kms_discovery.cppo

A AWS KMS K I Z4AIR 109

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK FERARER

std: :shared_ptr<KmsKeyring::> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr ()
.BuildDiscovery(discovery_filter));

C#/.NET

AR RBIERZERT .NET 89 AWS Encryption SDK ARA 4.x.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

{

AccountIds = account,
Partition = "aws"

};

var kmsDiscoveryKeyring =
mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser
1£ JavaScript , A4NBAEIEEXTE M,

LT RGIEMAbuildClient BRBRIE E B IA MR 5
BEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t AJLAEAbuildClientRR&IMZEHE B P I
BIEFHANBE. BXEZELR , BSH the section called “FREIMBLHIEZE",

import {

ffEF AWS KMS % Bl & 4R 110

AWS Encryption SDK FERARER

KmsKeyringBrowser,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
1)

JavaScript Node.js
1£ /R JavaScript , AMBATEIEE L IE .

LT R BI6EAbuildClient BEERIEEBRIARY RIE R
EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t A LAfEAbuildClient kR INEH S+ N
BREZANEE, BXEZER , 15 the section called “PR&IIMNEHIEZA".

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true

const keyring = new KmsKeyringNode({

discovery,

discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
1)

£/ AWS KMS RKILZ4AER 111

AWS Encryption SDK FERARER

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
CreateAwsKmsDiscoveryKeyringInput(
kms_client=kms_client,

ffEF AWS KMS % Bl & 4R 112

AWS Encryption SDK FERARER

discovery_filter=DiscoveryFilter(
account_ids=[aws_account_id],
partition="aws"

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
input=discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
.create_aws_kms_discovery_keyring()
.kms_client(kms_client.clone())
.discovery_filter(discovery_filter)
.send()
.await?;

ffEF AWS KMS % Bl & 4R 113

AWS Encryption SDK

FRARER

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

£/ AWS KMS RKILZ4AER

114

AWS Encryption SDK FERARER

panic(err)
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: [Jstring{kmsKeyAccountID},
Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
KmsClient: kmsClient,

DiscoveryFilter: &discoveryFilter,

}

awsKmsDiscoveryKeyring, err :=
matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
awsKmsDiscoveryKeyringInput)
if err !'= nil {
panic(err)

}

A AWS KMS X1 & I 2 4R

AWS KMS X &I ZHH 2 —FTIEE KMS %4 ARNs FZ4AIR, Mk , EAFRER KMS #Z4
BITHE, AWS Encryption SDK AWS X5

A8 AWS KMS KB & TN R AR ZRT | & AWS Encryption SDK 222 1E 15 E I T MBI P A B 5K
EZ4. AWS KMS key AWS XIFER T , BAEXABEX IEEHIERE AWS KMS keys FED
—NINZHFERE AWS X5 Bkms : DecryptiX R,

S Hth Discovery Z4A¥#H[E , Regional Discovery AR BT M. 1% B AN MR Z %258 B it
BR. MREERTMENRBRENZERAIRPER Regional Discovery BRI | M ZZ4A R 7
BRINER, MBERMHEZERASRDEHZ X1 Discovery BEARMBAIIE | MFREFT LKW,

/A Important
MREBERZZZHAFRDPITE AWS KMS XIFZIZHAR , MIXFEENZHARGESZSEHE
PHMZARPEENTE KMS ZARE. SEFHARNITHRUTRIZONHZRR, &
MERARESEFPARPFERAN , AWS KMS Discovery Z4AIRIT INZ T Mo

A AWS KMS X5 4% I B4R R 115

AWS Encryption SDK FERARER

AWS Encryption SDK for C Zi® P XH AN ZARNEAEEXBHH KMS ZHRAHRITHE. &
AWS Encryption SDK for JavaScript #1f* AWS Encryption SDK J.NET XN ZAHA , EEH
AWS KMS & ix LB Xid, X% AWS Encryption SDK SRR XiFTE KMS 248 , BXIEE
Xz /A KMS Z4ARY R 1ER AWS KMS 2K MK,

MREGERERNEZRR , RNBWEERARITRBHHEZFERAN KMS BEARFINIEE AWS K
Mo XPHEE, AWS Encryption SDKERA 1.7 x RESRAZF LI TFEE S

i, LT RBEALXNTIEFCE AWS KMS Xigi & T Z4AR, 1 ZR4AIRXBR AWS Encryption
SDK FE£EFEE (KB) #[X (us-west-2) I 111122223333 Hhfy KMS 2348,

C

EENEEFEANREPER LRI create_kms_client 5%, BSRH

kms_discovery.cpp.

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildex()

.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery(discovery_filter))

C#/ .NET

f AWS Encryption SDK or .NET ¥ B X ANXEAINZAR, B2 , BUUFERZSM G LG HEEN
FEA KMS ZARFIERSE X,

REIAMBART XBHRERSG ERER ﬁfjb'?i:?%ﬂ% B fE A X A SR 1T T
%, multi-Region-aware =& F £ XiFZ4A6Y , 2 multi-Region-awarefA ¥A {5 F £ 17 % X 15 2f

Hbo

CreateAwsKmsMrkDiscoveryKeyring() A EREMZARLERA AWS KMSZ B 1& X 15 i
% KMS 4, AWS KMS RELHMBNBEZHRHNRPHRegionSHIEEMN XiFHH KMS %
PAmMER , e 2K ERBRER, CreateAwsKmsMrkDiscoveryKeyringInput

TR RGIERZERT NET 8 AWS Encryption SDK KA 4.x.

// Instantiate the AWS Encryption SDK and material providers

A AWS KMS X5 4% I B4R R 116

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK FERARER

var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter

{
AccountIds = account,
Partition = "aws"

i

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
Region = RegionEndpoint.USWest2,
DiscoveryFilter = filter

};

var kmsRegionalDiscoveryKeyring =
mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

BRI LA AWS X B 7E AWS KMS & P i SE 51 H 38 E X5k KMS Z4A R &l 7 45 E R B4R
(AmazonKeyManagementServiceClient), B2 , 5 A multi-Region-aware K MZ AR L |
XMEENEREK , MERKAEES. for NET FREFAAZBEXEFE KMS %48 AWS
KMS , T2 AWS KMS A8 MNINZENHIEZH (EEEHE -1) , HKEET AWS KMS k¥
HEAN KMS ZARFIEEEXE. AWS Encryption SDK

TR RGIERZERTF NET # AWS Encryption SDK kAN 4.x,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = new DiscoveryFilter()

{

A AWS KMS X5 4% I B4R R 117

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK FERARER

AccountIds = account,
Partition = "aws"

};

var kmsRegionalDiscoveryKeyring =
mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

LR RGIEAbuildClient BABORIE B BRIAHY 7RI 58
BEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t AILAEAbuildClientRR&IMNZEHE B+ N
BEZHANKE, BXEZER , iHSH the section called “BREIMNZHITFEZLR"

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'e@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
b

JavaScript Node.js

LU RGIEAbuildClient BOEOR 18 E BR IAHY 5 3R
EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, & A[LAfEAbuildClientRERHIHNZEHE B+ N
BEZHANHE, BXEZELR , i3 the section called “BR I MNZBIEZH".

BEEIERHIFEFLBHAFMLinitRegionsEE , S km s_regional_discovery.ts.

import {
KmsKeyringNode,

£/ AWS KMS Xif & 1 Z 47 2R 118

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK FERARER

buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }

1)

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context

A AWS KMS X5 4% I B4R R 119

AWS Encryption SDK FERARER

encryption_context: Dict[str, str] = {
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

Instantiate the material providers

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
CreateAwsKmsMrkDiscoveryKeyringInput(
kms_client=kms_client,
region=mrk_replica_decrypt_region,
discovery_filter=DiscoveryFilter(
account_ids=[111122223333],
partition="aws"

regional_discovery_keyring: IKeyring =
mat_prov.create_aws_kms_mrk_discovery_keyring(
input=regional_discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),

A AWS KMS X5 4% I B4R R 120

AWS Encryption SDK FERARER

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client

let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
.region(Region: :new(mrk_replica_decrypt_region.clone()))
.build();

let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the regional discovery keyring

let discovery_keyring = mpl
.create_aws_kms_mrk_discovery_keyring()
.kms_client(decrypt_kms_client)
.region(mrk_replica_decrypt_region)
.discovery_filter(discovery_filter)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

A AWS KMS X5 4% I B4R R 121

AWS Encryption SDK FERARER

"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{awsAccountID},
Partition: "aws",
}
// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
KmsClient: kmsClient,
Region: alternateRegionMrkKeyRegion,

DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
awsKmsMrkDiscoveryInput)
if err != nil {

A AWS KMS X5 4% I B4R R 122

AWS Encryption SDK FERARER

panic(err)

AWS Encryption SDK for JavaScript &5 H 7 Node.js F¥ ¥ 25hexcludeRegionsE . LLEEA]
B— AWS KMS XA IMZHL |, ZZHALEEE AWS KMS keys THERXE ., UTRHIBIET —4
AWS KMS XA ZHT , BRTEBRI (3BERLILEP) (us-east-1) AWS XiF 24 , ZFHT
M 111122223333 FER AWS KMS keys o

AWS Encryption SDK for C 3% BE LM 5% , BEMLUBSAEBEN HEFRSEI, ClientSupplier

ZRBIERT Node.js BIRE,

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({

clientProvider,

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
1))

AWS KMS 7 /= A =6]

A AWS KMS 2 ZZ4A | Ba LAEXNFINZR KMS 248 T RSN mMBEME , mMEFEE AWS KMS
BARMBERBEBIENEBERA, NTEESARE#BOARANNARFEURTUEREREZLER
HNERTEEFRELEMFEMBONARRKE , XR— N TEN®RE, AWS KMS

PRZARZ—TMEMBERFHRER , ©FEA AWS KMS {R#F1EAmazon DynamoDBk Y
R DEZEH AEEAGBEEATNENBBREN D ZHBHAME , ANTR2 AWS KMS B AR
¥, DynamoDB RAEEBERNRTF 2 XBANZRFMR, HEHEI I IZAN > XZHNE L
WA, SEN D XBANET D XZRRER. 2EBHANEAE—NWHEBEZARNESFES , AN
MBFEROBNBIENBHHABITME , HEANEH 2 XBHARENE - SEZHANESINBENRER
BTG, 2EFHARMRETI I IZARERETSEFHACEAELNRIREH,

PEFHRBEEASES XBHARANBEZSMNMER. EREATUEFEDI I XBANEECAEE |,
WEED D XBHNRRFR, EERRCH , P XBANEIRAR2—ELTEIRS. BHDIXE
AP EAREAT LA TRITNRRE | BRHUEREF A THRBERE,

SR BRATE , 7REHRKCNEBRA M ES. EAUEEEZFRS , ZRIENT 2ZH
MRESPANEFIBH A FREAMEFPHRKNE, ERXEREFIEE abranch-key-id

AWS KMS %' /= 47 &t B 123

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK FERARER

B, 7 EREATRS AWS KMS A E S XBRAH AR X BHME, RE , 2 XBAMRERES
wEFF , ARERATARERE branch-key-id WMBRNERRE , EEZZFRHEFIH. FoXHE
AMBEFREREEFR AR AWS KMS B, i, RIREFRFIN 15 584, IREEZER
PR&IM#IT 10,000 XA |, ML S AWS KMS ZHAFFEEHIT 10,000 X AWS KMS 18 = 6E#
ZE 10,000 RN RME, MREH-—METEDIRSbranch-key-id , WBEBRAFRRFEHRT IR
AWS KMS 8 ENAT# 2 10,000 M INZE#R1E,

Kt RFEMEM B ERBEMR ST, MEMBHEIIZIFHAEMR , AEEFRHIIPZAEE
BTrREmEREE. BEMBERBENZEFZERATEEDIFANS X248 ID MRASCHRMAN |, £
ZERHFHH CNTREERATES XFH ID MRAHAXNATERZRE, AEFTL—X
FER— N2 XBANZSIRE, FAREFEE N FERARbranch key ID supplier , &k Al LAE B 7 6%
RKEZSNEN D IBEAN D I BAME,

® Note
FRFER KR 2 EZ4BIRH AWS Encryption SDK & AWS KMS 2 E Z48 5,

mIEESRAM

DT REBESNRAX G BRI

« FRA 3, B9 x AWS Encryption SDK for Java

« XA 4, .NET AWS Encryption SDK 9 x

« MRA 4, H9 x AWS Encryption SDK for Python , 2 5 /3% /) MPL 4k #i101 — 2 £ F i,

MRA 1, x B9 fo r AWS Encryption SDK Rust
IR 0.1, x ESMAH fo AWS Encryption SDK r Go

2
. ITteFE
P di
PR I AUR
. BBEY

- BB ERHET

AWS KMS %' /= 47 &t B 124

AWS Encryption SDK FERARER

THERE

UTFBEEHRT 2 RRARMMCEINBNBEZMN S, URBARN MBRNRZRIENTE AR, B
XEBEFZHRENANBFEZANELIENEAREAEE , FSH AWS KMS ZEZHTEARFHE
=

/N0

M EE

UTRGHIE T 5 BB AR MR MRS E B — 0 DR B,

1. MESEERSREAFREMSNE, BAFERBRESRS AERERHEEFREFE
EHS XM TRERTEEN, DRFETRNS ZEAMH , WEHFDEASR 4,

2. MBRHARNSXBANE WD REAFLERAEFEWED S LA,
a. BHEEEA AWS KVMS BEEH S R BHFERAXAED S XER. FREDS XA

MRELETHEIU , ABEREEA AWS KMSH RET B EBIE.

b. BEEEEAXAS XBATNFREEANRE , HIMY ZBAIRA,

3. HRBARLCAEITTEMN (HXHTBANSZBARE) | FHFRBREREREEFD.,

4. DEREZBHIMNAND XBZHN—N 16 FHHEHMBSEPRELE-NIRZH, HEHARES
R MNZ AN BIERRNE A

WNZRAEERAMBMENEZRE. BXEZEL | S W AWS Encryption SDK MNZEIE,

fR 2 7 Bk
UTREGER T 5 BEATMAAERZ B A BENZBEEZER.

1. ZBBFERAREMNEZERNNBRLERR , FREEBLESERHAR.

2. PEBHRRFICIRRNEZREZANSEE S/ XBHERE, 16 FHHNMELL UK E M
RHFEZAMBLANER
BXEZEER , BSH AWS KMS 2 EHARBHEARAT,

3. PEBRANRCREAMEFIREFESSIR 2IMAND XBHREMEEEN AN D XBEAM
B MREERRD XEHME , WRHAKFHALER 6.

4. MERBEMNDXZAME , W2 ERBARERAFEFERNSIR 2 PBHEN D X BHARA
| T: e A

THERE 125

AWS Encryption SDK FERARER

a. BHEREM AWS KMS &0 X ZHABRMANARFEN T XBEH. RAES 2 XZHNHRE
SBEATFIE , UEEBEZFEA AWS KMSHHR H B /NS IRz,

b. HAESRE MY AS XRARMRLZRABIE | Hls ZHAMRAE,
5. HEBHARLEDLEAMR (PXDXEANIZBARAE) | FHHBAEHERBEEF,
6. HEEHFEATAHNS XEEMRASE 2 A8 16 TH TR EAMERRERALK — 2%

B}
M@

7. DPREHHERAENNSEZARZHEZAFTREHAXBERH.

ZRBLEAERBEMANAXBERARBZNZER. BXRESEER , ST AWS Encryption
SDK 2% I 2R B 44

FRF M

HEOIZMEA D EBAT 28 , TRERBRIT EREMS,

. ARENBAEEER DURRAE RGBT EL —MERN D ZEH.
. BEEEET BAEHERE.

® Note

WAL B B A R A IRAEIRTE T A8 W AT VIR E BA N 50 2 B4R B] BAGE R TR L KMIS 224
BXREZER FEREHAFHEEE.

- BB HRMERAZAEND XZAFTEM AWS KMS PR, BEXEZEE |, 5§ the section
called “FTER PR,

- BEKEETIRNEFREAHBETRESLATRNEFLE, EXEZER , BSH the
section called “:FEF",

T R B BR

AWS Encryption SDK T EE AWS K |, B NMRBTEA— AWS BRS. ER , EEASREH
0, BEEX AWS K- ZHREPHNHRINZE AWS KMS keyEH LT HERR.

- ZEFRASEEARMENFEBLRIE , IREZE kms: Decrypto
- ERENRHRDIFR , /REE k ms: GenerateDataKeyWithoutPlaintext #1 kms: ReEncrypto

TR 126

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK FERARER

BXEET D XBAMBAEN BERRHESER | #2Mthe section called “SHERIERE
ERET
3 ERERATR AWS KMS S5 75 453 58 77 D2 I AR 32 2 e v (5 P 19 59 S B4R M RUSRORL V8 FR B IR 2K

HOEDERARCH , EREREEFANEERE, EUUEARUANEZFREAENEFUREEE
B E R,

SEBARL BT EERE .

« the section called “BRiAE 1

« the section called “MultiThreaded & 17"

« the section called “StormTracking &1F”

« the section called “#{ E & 17

/A Important
FIEXENEFREABEEIRSEENE,
BR , 5—i 2T AWS Encryption SDK for Python , 7 EZARTXIEZKENIE, &
XEZELR , H309 LM aws-cryptographic-material-providers- library 1Zf& B 1 #9 Python
README.rst 3X#. GitHub

MINETF

NTRZHBRAFME , MAERFUTREELEER, MAEEATXRHESLERR. S0 X2HAMH
FESHE , MAEEFSR AWS KMS 281 10 WBH— MBS XEZAMBZEREH , MWL
SREAM. IHTUBARIE-IMEDRERFEFHER. AWS KMS

ZRIAFD StormTracking REZFHRANWLREER ER/RAFEEEAODRENFEARIAERTE, B
TERBHANEFEEEN , BfMA, the section called “StormTracking &17”

BRIEZEBEL AU FREAMEFTFN I XBZAMBZENKE SNECESREARNETRTEES
FRE, MRKREEEFRE , WoREZAREARANEFREFFZBEFTEREN 1000,

EHENRMINGF , BEENATE :
- XEFE RATUFHEEAMEFTNS XBAMBZENHE,

BERERF 127

https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst

AWS Encryption SDK

FRARER

Java
.cache(CacheType.builder()
.Default(DefaultCache.builder()
.entryCapacity(100)
.build())
C#/ NET

CacheType defaultCache = new CacheType
{

Default = new DefaultCache{EntryCapacity = 100}

};

Python

default_cache = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

Rust

let cache: CacheType = CacheType: :Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?z,
);

Go

cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
1,
}

EEEE

128

AWS Encryption SDK FERARER

MultiThreaded &7

MultiThreaded EF I EZLERERZEMEA , EEFRE/EMATHZRABRER LD AWS KMS 5
Amazon DynamoDB AR ThEE. Hit , Ho X HAMBIKE BE , MELERSEENIKEIEA,
XAREA S HZ R AWS KMS B AR EF,

E#F M MultiThreaded &717 , BIEEUTE :
- XERE : RETUEHEEAMEETN S XFHAMBZENKE,
- XEBHERIHBAN ENEXIZXERENEESHENZERE,

Java

.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.buildex()
.entryCapacity(100)
.entryPruningTailSize(1)

.build())

C#/ .NET

CacheType multithreadedCache = new CacheType

{
MultiThreaded = new MultiThreadedCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1
}
};
Python

multithreaded_cache = CacheTypeMultiThreaded(
value=MultiThreadedCache(
entry_capacity=100,
entry_pruning_tail_size=1

“RERF 129

AWS Encryption SDK

FRARER

Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildex()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberMultiThreaded{
Value: mpltypes.MultiThreadedCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
},

}

StormTracking &=

StormTracking EF EEXIFREZSLENE, Yo X BHAMRAZELHA , StormTracking EF 1R
BBH—NEES X ZAMBK B E , NS NLBIEA AWS KMS . XEAUHERR

—NERBRIERFHEFNER. AWS KMS

E#F A StormTracking EF , BEENUTE :

- XEFE RATUAFHEAMEFTNT XBRAMBZENHE,

ERIAME : 1000 1Nk E

« REBHEESHAD EX—XREEHEN T XZAMBZENRE.

BIAE 1N %KE
- RRE : ELEIBE= R D XBHAMRNYH,

HMNE:10¥
- RIREIRRE | EXFRZEHRIF D X ZBHME R RV

HRANE 1R

EEEE

130

AWS Encryption SDK

FRARER

R E XA LR A 218 Rl #7032 22 A A R IR B

ZRIAE : 20 =R
R AEERE (TTL) EXEDXZHAMER

ZREN AN YE. SLHEFNEM

GetCacheEntry MiRE NoSuchEntry B , 7 X ZHAHURNERF , EEMREZRHAS PutCache

% E _EE‘AO

HRUNE: 108
AR« E BTN EENKIRNZEYH. fanOut

BIAE : 20 ER

Java

.cache(CacheType.builder()

.StormTracking(StormTrackingCache.builder()

.entryCapacity(100)
.entryPruningTailSize(1)
.gracePeriod(10)
.gracelnterval(1)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

C#/ .NET

CacheType stormTrackingCache = new CacheType

{

StormTracking = new StormTrackingCache

{
EntryCapacity = 100,
EntryPruningTailSize = 1,
FanOut = 20,
Gracelnterval = 1,
GracePeriod 10,
InFlightTTL = 10,
SleepMilli = 20

1Y

ERER

131

AWS Encryption SDK FERARER

Python

storm_tracking_cache = CacheTypeStormTracking(
value=StormTrackingCache(
entry_capacity=100,
entry_pruning_tail_size=1,
fan_out=20,
grace_interval=1,
grace_period=10,
in_flight_ttl=10,
sleep_milli=20

Rust

CacheType: :StormTracking(

StormTrackingCache: :builder()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(20)
.in_flight_ttl(10)
.sleep_milli(20)

.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberStormTracking{
Value: mpltypes.StormTrackingCache{
EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,

GraceInterval: 1,
GracePeriod: 10,
FanOut: 20,
InFlightTTL: 10,
SleepMilli: 20,
.

BERERF 132

AWS Encryption SDK FERARER

HEER

RNBRT , BRRFLERARE , 2EEAFRBRUE-IMINAHEEF. R K HEEFAWEE
SNDRBERARCAREETF , NTBEPTHERTF. AEEEFTENEXFHLNEN 2 EZRAKTCIE
MEOMEMRET MEENFPRAF#E-—AZF AR EN I ERARER, HZEEFTESE
ZHRHRZRAEEMEME , NMABBRCAFEAR, AR , 7EZARALULRERNEERER , M
MR EEREFES M.

BIBRZRER , MEEENEFTEE, EBLUEEhe section called “BAIAZE 17 the section called
“MultiThreaded ££717”, Hthe section called “StormTracking B ERN BFXRE | O UBREMRES
WEENER.

X

SNDERBERARTUAEARNREZRTF, ERARAZEFCRSEFHANN , TUEXL RN DX ID,
X ID IXS BN EEAREEEAZF. IRFNDERERRSIAHRNS X ID M5 X HH
IDlogical key store name , MW AN ZABFEZFHIHRAEZHENEFRE, IRECIBRTHNEEHEE
HEZFESXFRNTEFHAR IDs , WM BARRETRARAZEEFFECEEN S XPHNEFS
B, 2RALUHAZEZFINEEIX , ANBINPERENREHCHEES X LMIMIZET , AT
FHEES — 12 XPHHE.

MREHTEEESFEAFIHRAESIXPNEERE , ULNEXBENSTX ID, HEFSX ID EEELEDE
ZHANE RRRTUNEEEARZEFPEFENEEFRE MALBRRRERNEFRTREN D XHHHM
B MREBREESX ID, WERXKHLD ZRAKRN BB NBARSBE-—ME—HIDX ID,

LSRRI BMANEERENAZEFFRELBLE D EEAR.

1. FERAMRHEMEEE CryptographicMaterialsCache (MPL) 12 (CMC),

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a CacheType object for the Default cache
final CacheType cache =
CacheType.buildex()

HERER 133

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCachelInput cryptographicMaterialsCachelInput =
CreateCryptographicMaterialsCacheInput.builder()
.cache(cache)
.build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C#/.NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100,

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(

ERERT 134

AWS Encryption SDK

FRARER

Rust

Go

cache=cache,

shared_cryptographic_materials_cache =
mat_prov.create_cryptographic_materials_cache(
cryptographic_materials_cache_input

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?>,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef
create_cryptographic_materials_cache()
.cache(cache)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

= mpl.

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

EEEE

135

AWS Encryption SDK FERARER

}

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCachelInput)
if err !'= nil {
panic(err)

2. AHZEZRFBECacheTypeX R,
ffsharedCryptographicMaterialsCache&EES R 1 HOIEMNZEL T CacheTypeX R,

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.builder()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
value=shared_cryptographic_materials_cache

BEET 136

AWS Encryption SDK FERARER

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
CacheType: :Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=
mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

3. FMPE® 2 B sharedCacheXt §1&i% 2| 9 B Z4A I,

ERAREEFUEIEHANEN , TBLEREN —MpartitionIDAES N RE AT 2BHE
ZF&E, WREREESX ID, W REAREINBARIE —MHE-—N2X ID.

® Note

MEEBEFRANREZ5|AHER P X ID Mo XFH ID WHHAR , Mo ERARNEERE
ZEFPHEHEBMNEEFEB, logical key store name I RIEFHFLEZNRARAZHEN
ZEEX8 , WSTABN?BEEHARERAE—N DX ID,

P2

UTREIBIRT N B fﬁ“Eﬂﬂ‘branch key ID supplier , EEFREHIH 600 . BXRUTER
PAREEPENNENEZEE |, ESHthe section called “BIE 5 EZHHBR",

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.tt1lSeconds(600)
.cache(sharedCache)
.partitionID(partitionID)
.build();

BERERF 137

AWS Encryption SDK FERARER

final IKeyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
Cache = sharedCache,
TtlSeconds = 600,
PartitionId = partitionID
};

var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring

keyring_input: CreateAwsKmsHierarchicalKeyringInput =

CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=shared_cache,
partition_id=partition_id

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to

HERER 138

AWS Encryption SDK FERARER

// pass it to different Hierarchical Keyrings, it will still point to the
same

// underlying cache, and increment the reference count accordingly.

.cache(shared_cache.clone())

.ttl_seconds(600)

.partition_id(partition_id.clone())

.send()

.await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStorel,
BranchKeyId: &branchKeyId,
TtlSeconds: 600,
Cache: &shared_cache,
PartitionId: é&partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

6122 55 2 B4R
BRI EFAN |, XTRMLUTE
- BEAEEWN

BRENZAEFEEE R ZNAFERHFMHN DynamoDB KAV E #i,

EFRBEFRIE (TTL)

i BEFNDXEZAMBZEESH 2 AT EANRK (AN EN), EFERHTILRETHF
w8 AWS KMS RERIRER 2 X ZANFE, ZELHAKRTE, EFRH TTL 25 , Z%BH
KIERLWRM , F/MNEEFHEL,

. SRBEFRR

Rl 139

AWS Encryption SDK FERARER

FBANBSEERTHABAERENIG I XBHAN , B RHES X% ID #AR, branch-
key-id

DXFH D REECERAEFHEENR L TXHFNFRRBEFZILRFZWRN 2 XER.

NTFENMNMIFHEECHN I XBRANZSHEPBIERE |, BIEZNBUFERAS X4 ID #HAurg, &
AILAER D %4 ID HNEA D X FHRAUBREFEN , IDs MEBRMIRGISERFAFWERS X
40 1D, Hltn , ZieBMFEERTLUFGS B4 AN tenantl MIE b3f61619-4d35-48ad-
a275-050f87e15122,

NFRBRE , BUUBRSEEE N ERZARURFNENEFLHITHRE , LU UERA D B4
ID EHEFEEBNES ARTHBRILT,
. (Tt) B

NMREBEENEFREHUFREAMEFT I XBAMBRENYE FENRCERARNEESR
FRENZERE,

PEFBPRIFUTEEER - BN, MultiThreaded StormTracking, MH#E., BXERINAEN
BREFERBNEZEENRY , ESHthe section called “EFEEF

MBRIEEEE , WS EHAT2ADEARNEFLITRERRREN 1000,
(it) 2K ID

R Ethe section called “HEEF" , MAILLEREN DX ID. 27X ID A X5 B0 EZERIE
EEAEF, IRBITEEEFASIHREIPXFANEFRE , UIXMENECHW DX ID, BA LR

27X ID EEEMNZE/E, MBEBRKRIEESX ID, NSERBZAR B N ZAR B —IE—MW
2 X 1D

BEXEZEELR |, 55 @ Partitions,

(® Note
MREEVNERANSELSIAERES X ID M5 XZH ID WERR , M2 EBHANRTERESR
FHRHEHEEINEESREB. logical key store name MR EFRHLEZNRARKZHENEE
%8 , WXRAEBN Ny EZRARFERAKE -2 X ID,

« (Hik) BRNTHESIER

Rl 140

AWS Encryption SDK FERARER

MREEI ENERE 2R EZAIRH KMS BHOHRNR , WSAEDRCBRARRRERAELE
RV RN T hE o

\-

EABADXEH D QIS BEAR

LT REERIMMGIZEESRSSXFH ID. EFRE TTL v 600 5 EZH4, the section
called “BRINEF”

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyId = branch-key-id,
TtlSeconds = 600

1

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(

BB D EZHH 141

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK FERARER

key_store=keystore,
branch_key_id=branch_key_id,
ttl_seconds=600

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id(branch_key_id)
.ttl_seconds(600)
.send()
.await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err !'= nil {
panic(err)

}

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStore,

BranchKeyId: &branchKeylID,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

BB D EZHH 142

AWS Encryption SDK FERARER

ER 7 X FH ID HNE RS R EAH

UTEEERIAER 2 XZH ID REE QR D EERAR
1. BIEZD <% ID RN

LT ROIAWN D ZBANERFEN , H
ACreateDynamoDbEncryptionBranchKeyIdSupplier A&|&E %5 X %40 ID R,

Java

// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()

.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
.build();

final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()

.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))

.build()).branchKeyIdSuppliex();

C#/.NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;

}

// Create the branch key ID supplier

BB D EZHH 143

AWS Encryption SDK FERARER

var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{
DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)
}) .BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
tenant_1_id=branch_key_id_a,
tenant_2_id=branch_key_id_b,

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier: :new(

&branch_key_id_a,

&branch_key_id_b
)i

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

2. tIED7EZHNR

LT RBIERSER 1 RelZR 0 X% ID HNr4Rb s REHAR |, EFRE TLL 7 600 ¥
RARZEFA/H 1000,

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(keystore)

BB D EZHH 144

AWS Encryption SDK FERARER

.branchKeyIdSupplier(branchKeyIdSupplier)

.ttlSeconds(600)

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{

Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

),

BB D EZHH 145

AWS Encryption SDK FERARER

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input
)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id_supplier(branch_key_id_supplier)
.ttl_seconds(600)
.send()
.await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

KeyStore: keyStore,
BranchKeyIdSupplier: &keySupplier,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)
}

AWS KMS ECDH Azt

AWS KMS ECDH Z4AME A IEX M BRATHPILAWS KMS keysRIREN AT HEN T HETERHA, B
% , Z4AMER Elliptic Curve Diffie-Hellman (ECDH) Z4AMMXE % | MEKIEE N KMS Z4AX P HIFA
ANBEWEN L BPREEHXZEFRA, AE , BAFREALEZEZARREATRPENBENZRZHAN
HEBEF4H. AWS Encryption SDK A (KDF_CTR_HMAC_SHA384) AR EBEZRAN RHRE
BRBAE NIST X TEHARENEL

FEAMAERBURE 64 FHNEAME. NBRNAEAEBNZHAME FAE 32 N ETERNRE
40 , AWS Encryption SDK &G 32 FHENHRERRKFA, BEN , MRRARLLEEHF6HE

AWS KMS ECDH 4A Rt 146

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK FERARER

EERRERE PN ERERRZANAZAREZN WEEREAR. Sl REEHAEESR Alice F
fAA Bob NAMBAIR BIEH TN |, NIAEA Bob WFLAM Alice N ARBREN BRI EFIEE
MAEZANEZIREN HEBBERE, W3R Bob HAATENRE KMS Z4ixf , 384 Bob A
B8l —1 Raw ECDH BN REZA TR

AWS KMS ECDH ZAEA AES-GCM EANMEZERANBIFEHITINE, RIEER AES-GCM Ak
ENHEIRZANBEBZARTEHE MR, 81 AWS KMS ECDH AR AEE —IMHENTER
., BEAUESEATRP RS EEHMBERAT —BEE S AWS KMS ECDH Z 4.

WIEES REMN

AWS KMS ECDH ZRARTEINZE M BHEHEZEFE (MPL) B9 1.5.0 lRAH 5| A | HHAEU T REIES MR
AEHE:

« W7 3, B9 x AWS Encryption SDK for Java

« MRA 4, .NET AWS Encryption SDK #9 x

« MRA 4, H9 x AWS Encryption SDK for Python , 5 R[i£#) MPL Ak I0 — 2 & A 8
« MR 1, x B for AWS Encryption SDK Rust

« lRA 0.1, x REFMRAH fo AWS Encryption SDK r Go

ES]

« AWS KMS ECDH Z4AH iR IR
- B3 AWS KMS ECDH #433F

- B3 AWS KMS ECDH XK I #4733k

AWS KMS ECDH Z 4R SR RV IR

AWS Encryption SDK FFE AWS tkF~ , B RKREET AWS BRSF. E= , EFEA AWS KMS ECDH
BEAIR | BWEE—/ AWS kP BRI Z4AER AWS KMS keys FEY LA T BRIKIBR . PR R B E A
AR TR

- B fi®KmsPrivateKeyToStaticPublicKey4AtMNREMBIBREE , KEEELEFHE
F#R KMS #4733 DeriveSharedSecret £ kms: GetPublicKey #1 km s:o f1RIETEZFI{L B AR
FIEEREMREEN DER HmBLA , MAFERN RIZEBNIEXNH KMS Z 47X DeriveSharedSecret
E5H kms: R,

AWS KMS ECDH Z$AERFr fE B AR 147

https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK FERARER

- EfEA®KmnsPublicKeyDiscoveryfAMiNRIIBHHE , KFENIEENIENT KMS BN E
& kms: DeriveSharedSecret 1 kms: GetPublicKey X R,

222 AWS KMS ECDH #4735

E6|BA T MZENBEZEIEN AWS KMS ECDH Z4A3E |, SJUFE F Z4A TN ER
4, KmsPrivateKeyToStaticPublicKeyZEfEAZAMINEH#H L AWS KMS ECDH
KmsPrivateKeyToStaticPublicKey Z4AHF |, HREUTE :

« XA AWS KMS key H131E

MTFRIRE N I FEFTFR NIST HEERIE B4k (ECC) KMS H4AXS, KeyUsage KEY_AGREEMENT X
EENFLAATRERZERA,

« (R) RHARLRER

M= DER miBAY X.509 248 , t8# 7 SubjectPublicKeyInfo (SPKI) , #1 RFC 5280 HFE
Xo

% AWS KMS GetPublicKey#EAFTE# DER 4mE34& IR EIJEXT #F KMS Z4AX B 2248,

BERDEHH AWS KMS RITHRE , BANERERRRHFANLH. IRXENRFEANLHRE
HAEEE , NEAFRSER AWS KMS LB RRIEER 2,

« WHEAR LA

AR AR DER 4mE3HY X.509 2348 , tH#5J9 SubjectPublicKeyInfo (SPKI), # RFC
5280 FATE Lo

% AWS KMS GetPublicKey#2ELAPTER DER &RIBHENIREIER # KMS ZAFT 2 4A,
- BHEEMIE

PRIRIETE B AN R AV B B ST, R A AR AR AN A E B E R &M,

BEMYE : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512
o (HE) BRINTHSIER

MRFBEE TR FIXT AWS KMS ECDH 4R H KMS A A RIR |, MFEXD IR {6 25 4R RaT 24
MBI B L ERNTRNT

£l AWS KMS ECDH Z433%F 148

https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK FERARER

C#/ .NET

LU RGIER A8 AR KMS 248, &84 ABNLHRBHE AN 612 — AWS KMS ECDH %4A
R, WRBIEARESenderPublicKeyZ BB AIEZEN L. MRETRMEFANLE N
ZHASSIEHA AWS KMS IR REHF AN LR KEAFBHE AN ZAXNEIEECC_NIST_P256E
B,

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{
SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
SenderPublicKey = BobPublicKey,
RecipientPublicKey = AlicePublicKey

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

T RAIERAEHEAN KMS 240, RUEANLSAMBHG AN NARE - AWS KMS ECDH #4A
0, WRAIEATEsenderPublicKeyZBIRMAIEEN L NH. NRETRMEFANLE , N
AR STA AWS KMS I REHF AN NH. KMEANBG AN ZEAXTEEECC_NIST_P256&
g,

#12 AWS KMS ECDH Z4A %k 149

AWS Encryption SDK FERARER

// Retrieve public keys

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab") ;
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput.builder()
.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Python

AT RBIGER A4 AR KMS 247, K8 A LHAMBE AN LHEIE—N AWS KMS ECDH %4
B, LRBIEAEsenderPublicKeyS IR A EEN LN H. MEEFREVEHANLE , U
FERSTFH AWS KMS IR REZ AN LH, RHEATBGEANZHAXSEBBEECC_NIST_P256ZE
B,

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,

KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
KmsPrivateKeyToStaticPublicKeyInput,
)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

#12 AWS KMS ECDH Z4A %k 150

AWS Encryption SDK FERARER

Retrieve public keys

Must be DER-encoded X.509 public keys

bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput(
sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
sender_public_key = bob_public_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust

IR RBIEREZH AR KMS 48, A6 ABNLHAMBE AN L8122 —1 AWS KMS ECDH %47
W, RBIEA T Esender_public_keySHIRMAEEN L. MREBFRHELEHFANLES |
NZAR LT A AWS KMS LU R K 4 A48,

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([

#12 AWS KMS ECDH Z4A %k 151

AWS Encryption SDK FERARER

("encryption".to_string(), "context".to_string()),

("is not".to_string(), "secret".to_string()),

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =

std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;

let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput::buildexr()

.sender_kms_identifier(arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key
.sender_public_key(public_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)

#12 AWS KMS ECDH Z4A %k 152

AWS Encryption SDK FERARER

Go

.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",

#12 AWS KMS ECDH Z4A %k 153

AWS Encryption SDK FERARER

"the data you are handling": "is what you think it is",

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err !'= nil {
panic(err)
}
publicKeyRecipient, err :=
utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err != nil {
panic(err)

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
Value: kmsEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhStaticConfiguration,
KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhKeyringInput)
if err != nil {
panic(err)

#12 AWS KMS ECDH Z4A %k 154

AWS Encryption SDK FERARER

}

212 AWS KMS ECDH &I B4R ER

RN |, RIEMCERIETE AWS Encryption SDK AJAERAM#4H, EEFURESR , BEATER
AT ZRHIEY AWS KMS ECDH KmsPrivateKeyToStaticPublicKey Z4A%R, {BR , &t arLia)
AWS KMS ECDH &I #4A3K , Bl AWS KMS ECDH Z4A |, ZBAR U REMER , HFE
E KMS ZAXN N2 AESF M EE BB X FHBE AN L EAHETE,

/A Important
A ®KmsPublicKeyDiscoveryfAtMN R WEZREER | TICWIHEME LN , #HES
ELH.

EFARAMLEENEIL AWS KMS ECDH KmsPublicKeyDiscovery Z4A35 |, BT E :

o AR AWS KMS key B 131E

RIFRIRE N HIFEFTFR NIST #HERHE 4k (ECC) KMS Z4AXf, KeyUsage KEY_AGREEMENT
- BhER A

FRIRIAF AR KMS Z24A 3 A YR B sl ST o

BEME : ECC_NIST_P256, ECC_NIS P384, ECC_NIST_P512
o (T) BNSEIER

MR LB RAR B3 AWS KMS ECDH Z4AIR A KMS B FIR , MRG0 AR At 4%
BEREPIE L ERN RN T,

C#/ .NET

UTREIBIZET —4 AWS KMS ECDH KB Z4RF |, Mgk £H KMS 24X, ECC_NIST_P256%
RIS HETEM KMS Z4AXT#48 kms: GetPublicKey # kms: DeriveSharedSecret fX R, It Z4AR
A UMBZEES | HPIEE KMS 2NN N A SEMEEE BB X P RS AR A AMETE,

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

12 AWS KMS ECDH X I Z4R R 155

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK FERARER

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations

{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

BT RBIeET —4 AWS KMS ECDH RIMEAES |, Mtk £ KMS 24X, ECC_NIST_P2564&
AR ER KMS Z4AXT A kms: GetPublicKey # kms: DeriveSharedSecret 1R, 1t Z AR
AUBBEMEE , ERIEE KMS BAN N LA EF#1EH BB XA KR4 AR 2 A8

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.buildexr()
.KmsPublicKeyDiscovery/(
KmsPublicKeyDiscoveryInput.buildex()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Python

LUTREIBIET —4 AWS KMS ECDH X B Z4RF |, Mgk £H KMS 24X, ECC_NIST_P256%
RIS HETER KMS Z4AXT#78 kms: GetPublicKey # kms: DeriveSharedSecret fX R, It Z4AR
A UMBZEES | HPIEE KMS 2NN N A SEMEEE BB X P KRS AR A AMETE,

2l AWS KMS ECDH XK HIZ 4R 156

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK FERARER

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
KmsPublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput(
recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),

12 AWS KMS ECDH X I Z4R R 157

AWS Encryption SDK FERARER

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_arn)
.build()?;

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

12 AWS KMS ECDH X I Z4R R 158

AWS Encryption SDK FERARER

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
Value: kmsEcdhDiscoveryStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,

12 AWS KMS ECDH X I Z4R R 159

AWS Encryption SDK FERARER

KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
KmsClient: kmsClient,

}
awsKmsEcdhDiscoveryKeyring, err :=
matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhDiscoveryKeyringInput)
if err !'= nil {
panic(err)

}

[R5 AES Z4AIR

AWS Encryption SDK A& FERARRMEN AES X MBAENBEBARRF ENBIERNR. 8F
AR, FEANRFEBEAME , RFREBEHRZRLER (HSM) AFAETEREPRE, IREFER
HOARFAH TR RELENZBIERE , WEFERARKR AES BRI,

[R%h AES BARER AES-GCM EEUREEENF T REAN TEEZANGEHRTMNR . SMRE
AES ZHRF REEEE—NEEER , BN ZEEPHRPITNETE SRS AES BT , ZFHH
BB RAAREHEMBRAT—BHAA

% AES #ZF4A5 AES MNFZ4H — k2 A AWS Encryption SDK for Python B} , Raw AES Z4AIR&
[ETF AWS Encryption SDK for Java A #IRawMasterKeyEK H 5iZK IR, JceMasterKey & a] LA
FA—MXMNEZHE , ACAHESEZHANTAEMASSIHTRE. EXEZEER , #5350 B
BRBM,

ZHRwAZRMER

HAIMRBARRE AES B4,]I AES BN EALRENZAD R ZBNEARH. XEEFR
ZR . EUAMERXNBMENBRERDAINZE SAPFRAHR, BITEWE HSM RAEE RS H
ERARANEZHERATHRAZRET AES BHANBHEN.

@ Note

DB EBMBHABHERT JceMasterKey # RawMasterKey FIREREF ID (iR

BF) %4 IDF .

.NET AWS Encryption SDK #J AWS Encryption SDK for C fl{R 8 KMS aws-kms 4R #9124
WEERE, EOTESXLEENRE AES BAKRRLE RSA BHATHEMA LS =R E,

"R AES Z4ER 160

https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS Encryption SDK FERARER

MREBSHEFENZAAMBNRZALAEHE , W B ZANEHENEXEE, NRBEZZHAKLF
MBRABEZANBHAENENERARTNBAGEZEANBRAEN I TETE, XNER—3, B
EZAMBFTHAER , T ERAERRHR,

Blan | AT LAE A ZR4Aan B 228 HSM_01 MZR4AB K AES_256_012 E N R AES Z4AIR, RiEER
ZERARNBB o HE. ERFXEHRIE EEAEMRNZRATEEE,. BRHBAMMNZHAMRERR
AES 4,

LARRABIRER T tnfal B2 R 38 AES #4H. AESWrappingKey ZERRER BN ZHAM R,

C

EEHRHl{L Raw AES Z4H¥ , AWS Encryption SDK for CiFf#

. aws_cryptosdk_raw_aes_keyring_new()BXxZE Rl , 5SS raw_aes_keyring.co
struct aws_allocator *alloc = aws_default_allocator();
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_0Q1");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");
struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(

alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
wrapping_key_len);
C#/ .NET

E7 AWS Encryption SDK 7 .NET 8|2 R AES 243K |, B
FmaterialProviders.CreateRawAesKeyring()5t. BXZTEMN A , S Raw
AESKeyring Example.cs.

LURRBIERZERT .NET 89 AWS Encryption SDK ARZA 4.x.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
material.
// In production, use key material from a secure source.

B¥A AES B4R 161

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK FERARER

var aesWrappingKey = new
MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = aesWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

¥ %88 AWS Encryption SDK for JavaScript M API FERERE N2 JRiE. WebCryptoE #iE %
ARz Bl , AFEARawAesKeyringWebCrypto.importCryptoKey () FRHAZFAHEF A
WebCrypto 5k, X#EF B RENNMERAATFRRELSH , BAN B RTE WebCrypto B,

ARG , BEXHILIRIR AES Z4AH |, B A RawAesKeyringWebCrypto() Fik. BHAMIBIER
AMBNKEIEE AES 88X (“BREHN") . BXTEMNRH , ESH aes_simple.ts (X5
2%) » JavaScript

LR RGIEAbuildClient BABOR 18 E BR A MY R IE 58
BEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, & AILAEAbuildClientRR&IMNZEHE B+ N
BEZANKE, BXEZER , iHSH the section called “BREIMNZHITFEEZLR",

import {
RawAesWrappingSuiteIdentifier,
RawAesKeyringWebCrypto,
synchronousRandomValues,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

R AES Z4AER 162

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK FERARER

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
rawAesKey,
wrappingSuite

)

const rawAesKeyring = new RawAesKeyringWebCrypto({
keyName,
keyNamespace,
wrappingSuite,
aesWrappingKey
1)

JavaScript Node.js

E 7 for Node.js F3£6l{t Raw AES #4A3F , iH 8|2 1% AWS Encryption SDK for JavaScript Z2£#Y
%fl, RawAesKeyringNodeZRAMRFEBZEPAMBNKEIEE AES BEEXE ("B KEH"). B
REEBHRY| , ESH aes_simple.ts (Node.js). JavaScript

AR RBIEAbuildClient BRI E B IAM AE R
EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, & R[LAfEAbuildClient SRER&IHNZEH 2+ N
BEZHNBE, BXEZER |, 155 H the section called “FREIMNZELIEZ"

import {
RawAesKeyringNode,
buildClient,
CommitmentPolicy,
RawAesWrappingSuiteIdentifier,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

"R AES Z4ER 163

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK FERARER

const rawAesKeyring = new RawAesKeyringNode({
keyName,
keyNamespace,
aesWrappingKey,
wrappingSuite,

1)

Java

EEPEHIL Raw AES Z4¥F , AWS Encryption SDK for Javai&
Ao, matProv.CreateRawAesKeyring()

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())

.build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

LU 5145 A R A i SR BE SEHI{E AWS Encryption SDK &2
. REQUIRE_ENCRYPT_REQUIRE_DECRYPTHEXZE R , ESE+ AWS Encryption SDK for
Python EAf&EF#Y raw_aes_keyring_example.py GitHub,

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_@12"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
"encryption": "context",

R AES Z4AER 164

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK FERARER

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw AES keyring

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config AwsEncryptionSdkConfig: :builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_@1";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

"R AES Z4ER 165

AWS Encryption SDK

FRARER

Go

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

import (

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"

var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context

encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

B¥A AES B4R

166

AWS Encryption SDK FERARER

}
// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)

}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: aesWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}

aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

}

JR15 RSA B

[R%h RSA ZHAMERERHAN RSA AR EZANBAERAN T RN FHHBEZHARITIEXNFINEM
BE, BREBRER. FERNRFLEEY KREREEHFRZEER (HSM) HEAERREPRNE.
MEZEREX RSA NABEEZA THHREFEZARITNE, BRDEEALEBANBERHARTHEE. £7
BUMTLM RSA EREX PRATERE

MEMBEZN R RSA BRARLMELE — N ERNHLERHANLERHAN, BR , LA UERNE

BLABANELE RSA ZRATMBRE , HERNESLREANRS RSA BHRTBEREE, &
UEZEZAFRPISEMERLE RSA B, MRENERH RSA ZAREBEELAETRANLEESR
FRRERETE - 1MEAX. HELLIESKI AWS Encryption SDK F&EAXR BT EX W EHARE
Raw RSA Z#i#h, HthiESXENFEZLRIEZARERBE—MEHAN.

Raw RSA Z4AR 5 RSA JEXFRMNZE 4] —#26EFA AWS Encryption SDK for Python Bt , ZEF AWS
Encryption SDK for Java flRawMasterKeyH M Z4AH 52 i@, JceMasterKey & AJ LA A —fhsk
WMmEHE , ACAEESRFANTAEMSNHITHRE. EXESELR B5H BHTREM,

B RSA B4R 167

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS Encryption SDK FERARER

® Note

R4 RSA ZART ZFIEX TR KMS 4, MR EFEAIEXFR RSA KMS %4 |, NI T wEE
= XIS ERAERFR RSA B9 AWS KMS F54A3F © AWS KMS keys

« MRA 3, #9 x AWS Encryption SDK for Java
« MRA 4, .NET AWS Encryption SDK &Y x

« MRA 4, B9 x AWS Encryption SDK for Python , Sa[i&R 1% 4 £HRE HIZFE (MPL) k¥
Iji_ﬂﬁ% ET.I-O
« R 0.1, x REFMRAH fo AWS Encryption SDK r Go

MBEMEHEZE RSA KMS Z4A04AH Raw RSA Z4ATRX HIBH 1T IR |, W EH AWS
Encryption SDK F&i& AWS KMS Xt H# 1T %, BT E [AWS KMS JEXI#R KMS Z47
M FAEA S H BRI RSA B4ARA, AWS KMS BEBRELEBZREMNMNEZESE. AWS
Encryption SDK

£ Raw RSA Z4AERET AWS Encryption SDK for C , HE S REEBEF N ZAN PEM XHH A
B, UZEEN CFHHE , MARRRHEXHE. £ JavaScript FHE R RSA ZEARE |, HEER
SEHMESSRNEETREE AT,

A ZERMER

NEFRBATR PR RSA BHAME , [R5 AES RN EALRHUN P EZAMNBRHAEH. XEETFTR
PEZR . HIBEMER HIENZRER QM IIZE ERPRAH, BRITEWHE HSM HBEAEERREH
EARABEZEEHTHRA RSA 24X (IELBRH) NEHABN.

® Note

AWM B ERMEZABHERT JceMasterKey # RawMasterKey FRIEMEERF ID (Sz
BF) M4 IDFE.

7 KMS aws-kms %43 AWS Encryption SDK for C R EZH B = E{E, B2ERIKE AES &
AN R 1R RSA B P HE S AWS Encryption SDK for C3 A,

MRLBIWETRNBARNENBERLEEE DEZANENENEXREE, NRBERARF
HNEAREZENBATHENERARPNZASEZANZABHR I T2 LE, KNER—F, B
EZARBMEENZAY , ST ERBEZAR.

[R% RSA B4RIR 168

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

ZRBRHARHDEE RSA NEEH. RSAMARALRBFANTNRNRA | NENFEZZ AT P RN
MENBRAREZRANZRAEMRLIAMEE, Sl , RREEATSHHDEZME HSM_01 MBRAER
RSA_2048_06 Ky RSA X EZHR RIS RSA RAR MBS, ERBHE FEALRFESR (IF
X) . HENZARE ZRMNEHEERE RSA 2K,

EREN
LA AT MEMBEZN RS RSA BAREEERRN , AEEANCEEERENNIESKED

Lk
Beo

AWS Encryption SDK XU TEZRERN , SBMESHRG. RMNBWER OAEP HEREX , LH
2748 SHA-256 1 MGF1 SHA-256 1B 7t OAEP, {NX#EPKCS1HERZERNENTHEEHRE.

. A SHA-1 1 MGF1 SHA-1 HE% /) OAEP

. T8 SHA-256 1 MGF1 SHA-256 1E% K OAEP

. A SHA-384 M MGF1 SHA-384 1E7 /) OAEP

« A8 SHA-512 M MGF1 SHA-512 E% i OAEP

- PKCS1v1.5E%

LT REIBRT WA HA RSA Z4AXTHY N 4R FFA4R LA R EF SHA-256 A1 MGF1 SHA-256 iEE#Z &Y
OAEP #|ZR% RSA #Z4A¥F, RSAPublicKey # RSAPrivateKey ZTENRREREHZRHAME,
C

EEH B RSA RIRZEIR AWS Encryption SDK for C , &
H. aws_cryptosdk_raw_rsa_keyring_new

£ Raw RSA Z4AIRET AWS Encryption SDK for C , S S REEBEEINZRHAN
PEM XHHHNE , UZELEREN C F/HH , MAREBRINEE. BXZTERE , 5

raw_rsa_keyring.co

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
alloc,
key_namespace,

[R% RSA B4RIR 169

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c

AWS Encryption SDK FERARER

key_name,

private_key_from_pem,
public_key_from_pem,
AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C#/.NET

E1E AWS Encryption SDK EA F.NET #9 Raw RSA Z4ARALHl{L | EERT
7%, materialProviders.CreateRawRsaKeyring()BXZEHNRHEl , FSH Raw
RSAKeyring Example.cs.

LT REMERZERTF NET 8 AWS Encryption SDK kAN 4.x.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));

var privateKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
PublicKey = publicKey,
PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

X ¥ 88 AWS Encryption SDK for JavaScript FHIMEFIREVE INZRiE. WebCryptoE #iE %
ARz wl , AEAimportPublicKey () and/or importPrivateKey () FERBZAMEZ A

B RSA B4R 170

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

AWS Encryption SDK FERARER

WebCrypto 5k, X#EH AT BREENNWMERARAHERLH , ZHHHBRETE WebCrypto B,
SEAFERANNRSEBEELIREERES,

SAR4AMBE , FH RawRsaKeyringWebCrypto() A EEHI{LZR4AIR, EHHE Raw RSA
EARRT JavaScript , EFE TS EMIEE RAUTHE,

TR RBIEAbuildClient BURIE EBIAM AL
BSREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t A LAEAbuildClient RERHIMNZE M B N
BIEZHANBE, EXEZELR , BSMH the section called “FREIMBLHIEEE".

BAXTEWRE , FSH rsa_simple .ts (X %88) . JavaScript

import {
RsaImportableKey,
RawRsaKeyringWebCrypto,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey/(
publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringWebCrypto({
keyName,
keyNamespace,
publicKey,
privateKey,

1)

B RSA B4R 171

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK FERARER

JavaScript Node.js

E7£ AWS Encryption SDK for JavaScript Node.js F3EHI{L R RSA Z4AIF | BRI B IZE M
2fl, RawRsaKeyringNodewrapKey Z#ATRELAEHFE. unwrapKey ZHATREFALE
#i, RELTLUIEEERERESR |, B RawRsaKeyringNode HERBA N EITERINETE
o

ERMIERE RSA 2Rt JavaScript , B E S HEMIBES XU AR,

LT RGIEMAbuildClient BRBORIEE B IA MR 5
EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t AILAEAbuildClientRRHIMNZEHE S H N
BEZHNHE. BXREZFELR , S the section called “FR I NZHITEZH

AXZTEW R , HS 5 rsa_simple .ts (Node.js), JavaScript

import {
RawRsaKeyringNode,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName ("RSA_2048_06")
.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)
.build();
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

B RSA B4R 172

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK FERARER

.build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

BT R 14 F BRI SR BE SE B4k AWS Encryption SDK &2
%, REQUIRE_ENCRYPT_REQUIRE_DECRYPTEXZE R , ES M+ AWS Encryption SDK for
Python ZEAf&EF#Y raw_rsa_keyring_example.py GitHub,

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_ 06"

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw RSA keyring

keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
public_key=RSAPublicKey,
private_key=RSAPrivateKey

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),

B RSA B4R 173

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK FERARER

Go

("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "RSA 2048 06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring

let raw_rsa_keyring = mpl
.create_raw_rsa_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.padding_scheme(PaddingScheme: :0aepSha256Mgf1)
.public_key(aws_smithy_types::Blob::new(RSAPublicKey))
.private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
.send()
.await?;

// Instantiate the material providers library
matProv, err :=
awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderss

// Create Raw RSA keyring

rsaKeyRingInput :=
awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
KeyName: "
KeyNamespace: "rsa-keyring",
PaddingScheme:
awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcsl,
PublicKey: pem.EncodeToMemory(publicKeyBlock),
PrivateKey: pem.EncodeToMemory(privateKeyBlock),

rsa",

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)

B RSA B4R 174

AWS Encryption SDK

FRARER

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",

"that can help you":

"the data you are handling":

// Define the key namespace
var keyNamespace = "HSM_o1"
var keyName = "RSA_2048_ 06"

// Instantiate the material

matProv,

if err != nil {
panic(err)

err :=

// Create Raw RSA keyring

"be confident that",
"is what you think it

is",

and key name

providers library

mpl.NewClient(mpltypes.MaterialProvidersConfig{})

rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,

B RSA B4R

175

AWS Encryption SDK FERARER

PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgf1,

PublicKey: (RSAPublicKey),
PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
if err !'= nil {
panic(err)
}

FRINTH ECDH AL E

Raw ECDH ZAME AR MM ME E AFAANKREEN A 2N HRZBRZEH, B, BHK
FEREEENIGE. KHEABL4HAH Eliptic Curve Diffie-Hellman (ECDH) ZA MM EERE HHEEH
l, RE , BPREARERARRER TR EHNBENBRRAN L ZT SRR, AWS Encryption
SDK f# (KDF_CTR_HMAC_SHA384) IRE XA ZBRFZHNFHMERBAS NIST X THHAMRENE
Wo

FHAMRERBURE 64 FTHZAMB. RARKRIGEAEBANZHAMB , AWS Encryption SDK £
Bl 32 FRHERNEERS , FARE 2 FHEAHRZATREH. BEN , IRBARTLEEHEFHE

HUFEEXPNERREZANEZTRES , WREFSEIK. il , mREEHEESR Alice FA4A
Bob 2ANMAMZAM I BIEH 1T INE |, NIEA Bob KA Alice W AABE BN ZAM T EFIHEREM

AEFANRLZTEREZRA , AP HERHIE, MR Bob AR E— AWS KMS key X , 38X Bob]
LBl AWS KMS ECDH 4 IR R R 3 dE

Raw ECDH Z4ARfEH AES-GCM AN MZAR HIR#HITINE, ABFEH AES-GCM fEAIRAERN H
EARBEANNBRIBEFAFETEEHMNE, 51 Raw ECDH Z4ARReeE — P H_EGERE | BETUE
SRR M EEMRAST— 285 %/ Raw ECDH &4k,

BARERN. FERNRFENILES REFREEARLER (HSM) RFAEEREF. REAFMBHEF
ANBZANER 2 HENHE ML, AWS Encryption SDK LA THE f £k A%

 ECC_NIST_P256
 ECC_NIST_P384
 ECC_NIST_P512

WIEESREMN

FKINIH ECDH 48R 176

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK FERARER

Raw ECDH Z4AH 2 INZ M RHEHZFE (MPL) B9 1.5.0 lRASH 3| ARY |, HHUTRZIES MRA
XE

« FRA& 3, B x AWS Encryption SDK for Java

WA 4, .NET AWS Encryption SDK #J x

FRZA 4, B9 x AWS Encryption SDK for Python , 5[/ MPL k#1151 — 2 5 i i,
MRA 1, x B9 fo r AWS Encryption SDK Rust

R 0.1, x EEMRAH fo AWS Encryption SDK r Go

22 R/ ECDH &4AIk

Raw ECDH A 3 =T 2 A ISR

¥ : RawPrivateKeyToStaticPublicKey, EphemeralPrivateKeyToStaticPublicKey#l, Public
RN BADNRRE T BT S HITHE MZREURBAMBNAE LK,

F

+ RawPrivateKeyToStaticPublicKey

» EphemeralPrivateKeyToStaticPublicKey

» PublickeyDiscovery

RawPrivateKeyToStaticPublicKey

f£FRawPrivateKeyToStaticPublicKeyZ4AMY R M F AR F EHSEE R IXFEWFA UM A
RN PO A3) SVEE S AR Gl B 132 6 8

EFEARAPMINEM LA Raw ECDH RawPrivateKeyToStaticPublicKey 24 , imiRMHHUT
=

« RFEARFAH

IBATIR M & AR PEM 4REBFA4 (PKCS #8 PrivateKeyInfo £5#9) , #1 RFC 5958 H1FTE W,
o WHARNLREA

BB AR DER 4HEH X.509 24A , tB#H SubjectPublicKeyInfo (SPKI), #l RFC
5280 HFFTE X

BRI LR EIEXN B AN KMS BRANM LN |, B U EEINEPE AV Z AN Y AWSN A,

BIERIGH ECDH B4AIR 177

https://github.com/aws/aws-cryptographic-material-providers-library
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK FERARER

o« HEAE

PREEZ AN R ENT. REANBEANZHEN LAEFHEER LN,

BEME : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

// Instantiate material providers

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH static keyring

var staticConfiguration = new RawEcdhStaticConfigurations()

{

RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput

{

SenderStaticPrivateKey = BobPrivateKey,

RecipientPublicKey = AlicePublicKey

}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

LAF Java ROIEARawPrivateKeyToStaticPublicKey B4RV RIERAEL B XX & WA
M AN DH, BANZEANEIEECC_NIST_P256014% £,

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

B RIAH ECDH F4AR 178

AWS Encryption SDK FERARER

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput.builder()
// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()

)
.build()
) .build();

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

LA Python Rl
FARawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKeyZ4A M EIERAS
BEREENALANMBREN LA, FANABAXNEEECC_NIST_P256#%k £,

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
RawPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library

B RIAH ECDH F4AR 179

AWS Encryption SDK FERARER

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Must be a PEM-encoded private key

bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput(
sender_static_private_key = bob_private_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

LA Python RIfEAraw_ecdh_static_configurationZ4AMN MBS E B &% & HIFALE
MBWEN LT, ANBANSAN TR —FHL% L,

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Create keyring input

BIERIGH ECDH B4AIR 180

AWS Encryption SDK FERARER

let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput: :buildex()
// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring

let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

B RIAH ECDH F4AR 181

AWS Encryption SDK FERARER

// Optional: Create your encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create keyring input

rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
SenderStaticPrivateKey: privateKeySender,
RecipientPublicKey: publicKeyRecipient,

}

rawECDHStaticConfiguration :=

&mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
Value: rawEcdhStaticConfigurationInput,

}

rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: rawECDHStaticConfiguration,

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)

EphemeralPrivateKeyToStaticPublicKey

F A Z AR ME B EphemeralPrivateKeyToStaticPublicKey 40 TR 7E 4 ith 6 22 37 B9 27 4R
X, FASIMBARRE - ME—NWHEZBERA,

B RIAH ECDH F4AR 182

AWS Encryption SDK FERARER

HRAMIUEEREMBEE . EfZEMEAFEphemeral PrivateKeyToStaticPublicKey4H
MR MEBRER |, XIERAREEHERBGA LN BN RNZRDINERE, BEFRR |, BRI LUE
AT A ZRAMYEEN R ECDH 245 |, & , MREWRENLPublicKeyDiscovery4
>k B IEXNFBA M KMS BHAX , WA LF AWS KMS ECDH Z4AR SRR IR — 268
A KmsPublicKeyDiscovery

EF AR MBI HEIL Raw ECDH EphemeralPrivateKeyToStaticPublicKey Z4A3K | &
RMEUTE

GG N DN

BRI AR DER 4R HY X.509 2248 , B#5 8 SubjectPublicKeyInfo (SPKI) , #l RFC
5280 HFE Lo

BRI BUEEFEN ME AP KMS BRI L |, B S EE SN A BB B X Y AWS2,
« HIEAK

PRIRIETE A P R R i 2 A8

mEZet , BARSEREEHLE LREFTNZAN , AERFTHNLANEEN A ARRERAEZNERE
o

EM{E : ECC_NIST_P256, ECC_NIS _P384, ECC_NIST P512

C#/.NET

LA 7R F B2 4R T 2B ¥9 8 2 — 4 Raw ECDH EphemeralPrivateKeyToStaticPublicKey
R, MFBE , BARFEBEECC_NIST_P256 14k 2 6 2 — MNETRI 4337 o

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()
{

EphemeralPrivateKeyToStaticPublicKey = new

EphemeralPrivateKeyToStaticPublicKeyInput

{

RecipientPublicKey = AlicePublicKey

}

BIERIGH ECDH B4AIR 183

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK FERARER

i

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = ephemeralConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

LA R4 A B2 4R T 2B ¥9 8 2 — 4 Raw ECDH EphemeralPrivateKeyToStaticPublicKey
FEAR, MBE , BN EREEECC_NIST_P256 #i4k LAt 61 2 — N R 4ART .

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey/(
EphemeralPrivateKeyToStaticPublicKeyInput.buildexr()
.recipientPublicKey(recipientPublicKey)
.build()
)
.build()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemeralInput);

}

B RIAH ECDH F4AR 184

AWS Encryption SDK FERARER

Python

BAUT R B8 A 22 A i 3R 49 6 32 — 4~ Raw ECDH
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey 43, 1N
RfE , BARFERSEECC_NIST_P256 14k E A 812 — N RAR .

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
EphemeralPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput(
recipient_public_key = recipient_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

AT 5152 FA B2 A P 2R ¥ 8] 2 — 4> Raw ECDH
ephemeral_raw_ecdh_static_configuration Z4iif, MEFE , BANFEIEEHL LXK
Bl — N B AN,

// Instantiate the AWS Encryption SDK client

BIERIGH ECDH B4AIR 185

AWS Encryption SDK FERARER

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.

let public_key_file_content =
std::fs::read_to_string(Path::new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content = parse(public_key_file_content)?;

let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput::buildexr()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

BIERIGH ECDH B4AIR 186

AWS Encryption SDK FERARER

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {

panic(err)

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
Value: ephemeralRawEcdhStaticConfigurationInput,

B RIAH ECDH F4AR 187

AWS Encryption SDK FERARER

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

}

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,

}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)
}

PublicKeyDiscovery

RN | REMCERIEE AWS Encryption SDK AJLAERMN BEFH, EER/LRKESER , EERE
FHEE X AFAA T A LN4AH ECDH Z4A3R, (B2 , Bt UA8IE Raw ECDH XL Z4A3K | Al
Raw ECDH Z4H , T UBEZEER , HPEERAN LA SEEEMR4Z LR RE AN L
MTE, AN RERZES,

/A Important
R ®PublicKeyDiscoveryAMX R HMAZEEN , TiICHWIHAMELH , BNEZmE
NS

B A R4AMINEE L Raw ECDH PublicKeyDiscovery Z4AF | BN TE :
o WH AR ERSTAA

B TIRBLUAE ARY PEM 488 %A4A (PKCS #8 PrivateKeylInfo 443) , il RFC 5958 HFFE Lo
o HEHIE

PRREERATMBEMEATE, KEAMBE AN RAX BAEEHEER LK,

BIERIGH ECDH B4AIR 188

https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK FERARER

BEME : ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

LU R BIE A 2 4R i Ze ¥ 8] 2 — /> Raw ECDH PublicKeyDiscovery Z4A R, SLZR4AFRTIEL
BREAMER , HPEERAN L AEEREEEE PG AN L EAHETE,

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{

PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,

KeyAgreementScheme = discoveryConfiguration

I
var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

LU R A 4R i 28 ¥ 8] 2 — > Raw ECDH PublicKeyDiscovery Z4A R, SLZR4AERTI L
BEEMER , HPEERPN LA SFHEEERE RIS AN AT,

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair recipient = GetRawEccKey();

BIERIGH ECDH B4AIR 189

AWS Encryption SDK FERARER

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()
)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

LA 7R 51 52 A 25 4R T i 3R 49 8 2 — A Raw ECDH
RawEcdhStaticConfigurationsPublicKeyDiscovery Z4A R, thZR4BERTT LARE TR
B, HYEELAN L M ASFHEERE XA AN AT,

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsPublicKeyDiscovery,
PublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

BIERIGH ECDH B4AIR 190

AWS Encryption SDK FERARER

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
PublicKeyDiscoveryInput(
recipient_static_private_key = recipient_private_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

LU R 51468 A B4R I R M 8] 22 — A Raw ECDH
discovery_raw_ecdh_static_configuration Z4A., WWHRARTUBREEE | H
EEMFAN NMIEEEEEER P RS AN N FAMETE,

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Load keys from UTF-8 encoded PEM files.

let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();

file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =

B RIAH ECDH F4AR 191

AWS Encryption SDK FERARER

PublicKeyDiscoveryInput: :builder()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_ing

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",

B RIAH ECDH F4AR 192

AWS Encryption SDK FERARER

"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}
// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err !'= nil {
panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
RecipientStaticPrivateKey: privateKeyRecipient,

discoveryRawEcdhStaticConfiguration :=
&mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
Value: discoveryRawEcdhStaticConfigurationInput,

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
discoveryRawEcdhKeyringInput)
if err !'= nil {

panic(err)

BIERIGH ECDH B4AIR 193

AWS Encryption SDK FERARER

BRI SANBRAREHN NS ERAR, SEFHAR BH - MRS MEEHAERENZASTA
BHBHR, MREEREASNIBHRRL, EERASEZATRNZREN HESFHARTNES
BRZAER A LA BIRRATRRE

EORSERARUMBRIER , EALF - NBAREENERBZZRAR . AEHMERARTN FE
IR, ERBFBHRERFMBAXBEZR. R, A FEARFHAESRFHMMEEEEA
NBEZH. XTSEZARTNENLREFH , SEZAFBREAXFAN — M NBHBIEZR,

WMRERBEATR KMS BHE , AWS KMS BHRIRHRNERSRZAFERAMBAER, RiF

ZHAH AWS KMS keys FRVFTREEME , AR ZH AWS KMS HRRHMA FRZARFHMEHER
H, #FMBEEEXARH,

MRECIET —MRBEERB[EATNSHHRL , WA RIMERCREZRIE EFEATNE,
FE EEMBREFEAXBTERREZARNSHAR |, AES M SEARPHEEEN FEH
H, RELERBRATNSBARTRBPIEEN S - SBARPNERBZZHAR

fRZ8Y , AWS Encryption SDK £ AZARZHBBEHP —MNZNBIEZR. BHIAREBRESZE
ZEARPEENIRF AN, REFAZARPNTARATURBMZNBIERS , LERILEE
1k,

M7 AT, x , HINFNBIBEBZRBE AWS Key Management Service (AWS KMS) Z4REF (HE
FEHARMERF) TIZEET , AWS Encryption SDK JA4 2158 % 40 ARN %1% A FKey IdRE AWS
KMS &%, AWS KMS key X2 —f AWS KMS HEXE , IRRECEHEFANIEZABREM
B BIEZH.

EERZERARNERRE , F5H

» C : multi_keyring.cpp
« C#/NET : MultiKeyringExample.cs

JavaScript Node.js: m ult i_keyring.ts

JavaScript I %88 : m ult i_keyring.ts

« Java : MultiKeyringExample. java

» Python : multi_keyring_example.py

EOESERAR , e REXOULFRHAR, EHRHIF , RIER AWS KMS BRI Raw AES
ZHAN | BETHEAXENBRARASE - SEHAHTH,

LEZRPR 194

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py

AWS Encryption SDK FERARER

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */

struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,

AWS_CRYPTOSDK_AES256);

C#/ .NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

JavaScript Browser

LT RGIEAbuildClient BEBURIEEBRIAM AL R
BSREQUIRE_ENCRYPT_REQUIRE_DECRYPT, & A[LAfEAbuildClient RERHIMNZEE B+ i
BIEZHANKE, BXEZEL , BSMH the section called “FREIMBHIEZE.

import {
KmsKeyringBrowser,
KMS,
getClient,
RawAesKeyringWebCrypto,
RawAesWrappingSuiteIdentifier,
MultiKeyringWebCrypto,
buildClient,
CommitmentPolicy,
synchronousRandomValues,

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

LEEMRHR 195

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK FERARER

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
wrappingSuite, masterKey })

JavaScript Node.js

LT RGIEMAbuildClient BRBORIE B BRIAH 7RI 5
BEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t AILAEAbuildClientRR&IMNZEHE B N
BEZANKE, BXEZER , iIHSH the section called “RREIMNZHIFEZLR".

import {
MultiKeyringNode,
KmsKeyringNode,
RawAesKeyringNode,
RawAesWrappingSuiteIdentifier,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
unencryptedMasterKey })

Java

// Define the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")

LEEMRHR 196

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK FERARER

.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyArn)
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

AT R A BRA & i RS SEHIl{E AWS Encryption SDK &2
Uiio REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

kms_keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
generator=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=kms_keyring_input

Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_@12"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,

LEZRPR 197

AWS Encryption SDK FERARER

wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=raw_aes_keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

LEEMRHR 198

AWS Encryption SDK

FRARER

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

1)

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS keyring

awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,

ZERHAK

199

AWS Encryption SDK FERARER

awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)
}
// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{

KeyName: keyName,

KeyNamespace: keyNamespace,

WrappingKey: AESWrappingKey,

WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}

aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)

ETROUBRSERARHEERLERBEZRR (NRF). BURHF , RNURT - ISEHHK , &
REARR LR AWS KMS BH | AES ZHARR TR,

C

 CNZERNHMWEREYP , BNEEHREKRBRE,

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
kms_keyring);

EFFRARPIMB ZERASLS |, EFH aws_cryptosdk_multi_keyring_add_child &
Eo. BEERNHFMNENFEBRHRFR —IRZEE

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C#/ .NET

NET CreateMultiKeyringInput ¥iEEBATEE L ENBZARN FEHR, ER
CreateMultiKeyringInput N RFAE,

LEEMRHR 200

AWS Encryption SDK FERARER

var createMultiKeyringInput = new CreateMultiKeyringInput
{

Generator = kmsKeyring,
ChildKeyrings = new List<IKeyring>() {aesKeyring}
};
var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser

JavaScript ZfARBIR T AIEM, JavaScript ZRARMERBATEEELERNBZEZARNSZANF
=R,

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
[aesKeyring]);

JavaScript Node.js

JavaScript Z{ARLBI R T AIZEM, JavaScript ZEARMERB AT EEELERBBRARNZ AT
HEAR,

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
[aesKeyring]);

Java

Java CreateMultiKeyringInput HEBRBAFEE N EXBFBATNFEHARL. ERH
createMultiKeyringInput X &RAF T,

final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonlList(rawAesKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(

LEZRPR 201

AWS Encryption SDK

FRARER

generator=kms_keyring,
child_keyrings=[raw_aes_keyring]

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
input=multi_keyring_input

Rust

let multi_keyring = mpl
.create_multi_keyring()
.generator(kms_keyring.clone())
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()
.await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: awsKmsKeyring,
ChildKeyrings: [Impltypes.IKeyring{rawAESKeyring},
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err != nil {
panic(err)

}

WE , ERATAERALSERHRMBNBEZRIET .

ZERHAK

202

AWS Encryption SDK FERARER

AWS Encryption SDK ‘RIZ1ES

AWS Encryption SDK BRATFUTRZEIES. FIEES XD EREN, ERILFER—fiE SN
BTN , HEAS —ESRHTHE, BRELTESITESHRMBE, MRERIXHE , XEY
REEBXBEES RN EBPHTER, I, ENMBENBRZN , XAEARBNBARIETZHANE
HARMER. BXHFHAEE , BSthe section called “BHAFRAM",

&

* AWS Encryption SDK for C

« AWS Encryption SDK ¥ F.NET

« AWS Encryption SDK for Go

* AWS Encryption SDK for Java

* AWS Encryption SDK for JavaScript
« AWS Encryption SDK for Python

» AWS Encryption SDK X} F Rust

« AWS Encryption SDK 1T 52 H

AWS Encryption SDK for C

RER CIESRENARFHFLXAR AWS Encryption SDK for C 2t 7 — 1M EFIRNERE, ©HE
BAESRREEBSZI AWS Encryption SDK K E A,

SWFAXIM —# AWS Encryption SDK , AWS Encryption SDK for C £t T & X% IFERIP AL, X
L aEEHmnEg, EtE285RKIENEIE (AAD) UkEE, 23 5RKRIEANHNRBAELE
#, MEEZHARENEEH 256 L AES-GCM,

WATE4E TiBE S HEI AWS Encryption SDK 2L W] EREMN, Hltn , B AERAMZERE ,
AWS Encryption SDK for C #EREH A FNIES RN EHRITHE , IFEME AWS CLI,

AWS Encryption SDK for C B3R5 AWS Key Management Service (AWS KMS) A F C++ B9
AWS SDK #1TRE, X YEEHA LN AWS KMS Z4ARR , TEEFAZITE, HER, AWS
Encryption SDK FEZE AWS KMS SiE M E M AWS RS

THRES

C 203

AWS Encryption SDK FERARER

- BXFERRENIFMES AWS Encryption SDK for C , 525 C 7~ GitHub, _aws-encryption-
sdk-c 17 FE P 19 =B LA AWS Encryption SDK for C API 343,

s BXNAIFEAMBREAETUNERZE NS NMXENITIL AWS X , BERZTLEEFHOAE
A CESHEZESZANXEFRMWE, AWS Encryption SDK for C AWS Encryption SDK AWS

£

« I[ETEZ % AWS Encryption SDK for C

+ {8 AWS Encryption SDK for C

» AWS Encryption SDK for C 4l ¥

IETE %% AWS Encryption SDK for C

REEFMRAK AWS Encryption SDK for C,

® Note

2.0.0 AWS Encryption SDK for C 2 Bl BY P iR A &4k T 1Z B E& . end-of-support
BRI A&k £ tth M AWS Encryption SDK for C i 7 2.0.x RESMEAEH ARKIIRAE , TEEX
FEARBEBTE. BR , RE 2.0x F5IATHWZLIE , TRAEHRE. EM 1.7.x ZBTHR
AEHE 2.0x RESHA , HMEEFHE AWS Encryption SDK for CERETIRAS 1.xc BXE
ZEE , B2 W TBIRE AWS Encryption SDKo

& 1] LAfEaws-encryption-sdk-cTZ & EE Y README 34 AWS Encryption SDK for CHR#EI B xR i
MAENIFEMEE, EPBIEE Amazon Linux, Ubuntu, macOS # Windows F & E#ITHIZEMG
B,

Fazdl , BRERBEM AWS Encryption SDKHER AWS KMS 24, IREFER AWS KMS
ARE NEEZE, BT C++ W AWS SDKEEM A AWS SDK F#E5 AWS Key Management
Service(AWS KMS) #1TR B, /A AWS KMS Z4A3REt , AWS Encryption SDK AWS KMS AT 4%
BRI R BRI ZEH,

ERATF C++ B9 AWS SDK tIREEAMN R EM ALK | SRR AES ZA., RiR RSA %4
HRHZ AL ERPATRN SR |, MILTELE, AWSKMS BER |, FHARBBPRERN K BEEAR
HERFPECHERRBERA,

it
b

204

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/#readme
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK FERARER

MREELRENEREB , BTE aws-encryption-sdk-c 174k FE H iR 32 o) B 51 5 A bt T B RO 4R
LJ\ﬁ_Eo

£ AWS Encryption SDK for C

AXTHBRTHMREESINPIAXISHNELINEE, AWS Encryption SDK for C

A F5 i TR BR T a0fAI A AWS Encryption SDK for ChRAS 2.0.x RESRA, BxEH R A
W RHBI , ETEaws-encryption-sdk-c 71 FE 17 i FE W iR AN 5 R P 3R F BRI AR A GitHub,

BXRFERREMNIFMES AWS Encryption SDK for C , 55 C =4l GitHub, Eaws-encryption-sdk-
c FEFER R RBIELR AWS Encryption SDK for C APl X £,

ZRSH : BRH

ES}

« MNEMBEBRHIEAER
- BIATH

hnE: M 2= AR AR

Bt AWS Encryption SDK for C , FHEBRMUFUTHES : ¢IBZAN |, ¢|EFERAZHERN
CMM , BIZEFER CMM (MIZ4AR) WEE , RELEAE,

1. MBHRFRTH

£ C = C++ RIBAAMA aws_cryptosdk_load_error_strings() HiE. ZAEMEX
FEFANBRER

BREZRA X, HIANTE main FERER,

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Bl —EHK,

FERERTNZEREZANIRZHAREZ AR, LREIERAFTAWS KMS £ E R HHER AWS
KMS key , B A AEREMRENBHAFRREE.

FERCHAIES 205

https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK FERARER

E AWS KMS key £ H 1N ZEAF HIR 5] AWS Encryption SDK for C , I E %4 ARN 53|

%A ARN, EBEZZATSD , BLAFEAEH ARN, BEXEZEL , BHSH £ AWS KMS ARE
AWS KMS keys FiR 51,

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(KEY_ARN);

3. BIE L,

£# AWS Encryption SDK for C , A EASERNEB —FRANKEERBE —REIERE , T
RHANIFE, 2EFEBEMEBIEDLEF EHENRS.

FRDE . FHAKRFMERX (AWS_CRYPTOSDK_ENCRYPT = AWS_CRYPTOSDK_DECRYPT) Bti&
2iF. MRFEFNLEER , BFEH aws_cryptosdk_session_reset Hi%,

LIRE AR ELER , AWS Encryption SDK for C & B3 R &SI 2 EIAR INZR# R B 25
(CMM), BEFECNR., EFFERIZNR,

pign , LATLECERIEB[ARESR 1 FELNERR. ENBLEN , #XH
AWS_CRYPTOSDK_ENCRYPT,

struct aws_cryptosdk_session * session =
aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

4. DN E B IAE

BB LFFHEIE | B#EH aws_cryptosdk_session_process FiE. MR AZEF
XEBK , TUERENAY , HERESEAXEB K , IUFHEAMNMEZEXTF , MATAE

A aws_cryptosdk_session_process_full, A , MREFBLNERFRHKIE , BRI

&R AR aws_cryptosdk_session_process., BxRHl , S H file_streaming.cpp =

i, aws_cryptosdk_session_process_fullfE 1.9 AWS Encryption SDK RAHF 5| A, x
2.2, Xo

FERENMBREN , AXFRERBA , BEXFRERAH, plaintext FRESENE
KIHE , ciphertext FEIRWNE 75 EIRER JIZRHYE B

/* Encrypting data */
aws_cryptosdk_session_process_full(session,

FERCHAIES 206

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK FERARER

ciphertext,
ciphertext_buffer_size,
&ciphertext_length,
plaintext,
plaintext_length)

FLERENFERREN , BEXFRERBA K AXFRERA L, ciphertext ZREEMHES
EREAINZRDESE |, plaintext FEREBEWRER 75 ERE /YA IOHE S

EMBZRHIE , BHIAA aws_cryptosdk_session_process_full Ji%,

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
plaintext,
plaintext_buffer_size,
&plaintext_length,
ciphertext,
ciphertext_length)

5IAITE

ATHILERFRR , EEATENAMBENRE , BSLBREXENNEIH. BN , AR EXA it
Ko AFRTEBRHET HLRESH T &,

BREA—ITUTFHRUBINRE , KARBLIIKBAFREXN ZFNROEIH , MR :

« Z4AIN) Bl ERARBHRCELT
o RINNMZAMREES (CMM) |, Hlan | FRABRIA CMM RIERLFHBEN CMM
- WEREEE, SN, FRAZRATNEFLNEESF CMM

BRIFFEXN FHRAT RIS , BN, EUNERBRRINREILNBERN FHRNEIA. EHHERX
NRE, FRAXNFRRHERSI A, ZEXBRERAEZTENLEFNBSINRNGIA , TL2ERINKRE
FREY 5 A s B A 7 o

BNARBRHRZABENEN FRRNEIAH. EFAREENZFATIETUENEANRNEIAH. W
RZBHBAAIEGBIE—IXNR (HlI0 , aws_cryptosdk_caching_cmm_new_from_keyring
FERMBSFFHERIACMM) , ZEAFAXIESFHEREZNKREESI AN ZMERIE,

R CHAIER 207

AWS Encryption SDK FERARER

EUTROIGR , ZERAZARCEXEN , QRN BARN S| AHREFZ5IA , B
FHEBR2EN L, MRTEERBNBATNEMSIA , BN EESFEFZEFEH
aws_cryptosdk_keyring_release FZEBREZHRIN R, ZHEFRDZHAFNSI AT, £/
F aws_cryptosdk_session_destroy AMHHAER |, FRBAENFAKFNEIA,

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
object.

aws_cryptosdk_keyring_release(keyring);

NTEERNES (FlW , FRAREERATSANREDNE CMM REEEEZEMN) , KURFERRE
NENRONBEMEIA, MRBXEF , BREMENAMA release 5E , MBEEFBEAXLENRE , RT
HESEUN EEBREIA.

HIEFEREMAEE (HINERE CMM) #ITEIEZAZEEFN CMMs |, XR5|AITBEREER. NE&F
ML OIEEF CMM BT , £7F CMM HEREI AN N RN EI A, BRIEGFEFEAXL CMM 1T
HMES , &0, BAUNENEETF CMM BB EENBHATN LS A, AF , TEAZE
CMM B SFER , BRI UBRHRNEE CMM W51,

FER , BT BRANEHABEENXNRIEIH. FEGENXR (Flw, FEHEEF CMM BRI
A CMM) RH1ZFEEER,

/ Create the caching CMM from a cache and a keyring.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.

struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,
AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

FERCHAIES 208

AWS Encryption SDK FERARER

// ...

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for C 5l #
LR RBIEERERT A A AWS Encryption SDK for C 3k il %3 Fl ## Z 5=

AT R RBGIEER T A ERARRA 2.0.x RESMRAH AWS Encryption SDK for C. BXfEH R HIMR
KRBl |, iEEaws-encryption-sdk-c 17 & FE 17 & FE B W 245 51l 3= R #R B BB MR AR GitHub,

ZRFMER AWS Encryption SDK for C , iX &£ 7RI F E Mt RHIBVRA BB EEexamplesF B F
B, EMNeEEFHANER ZbuildA P, BHEALE Laws-encryption-sdk-c GitHub## & FE#Y =
Bl B FEHHREE.

25
. MEBRRE TS

HNZE M R 2 = 7 &R
AR RGBSR R T f{a#E A AWS Encryption SDK for C RINZR MR R FZRFH,

BERBIAAWS KMS B RIS |, X2 —F6EH AWS KMS key in AWS Key Management Service
(AWS KMS) £ M MBBEZANZAR, ZTHIEEA C++ FENRE. F£/H AWS KMS fARE
AWS KMS B} AWS Encryption SDK for C & F C++ 9 AWS SDK EEFH. NMREFERANRTE
ZXREMZHR AWS KMS |, flanJR8E AES Z4A5h, RAGEMN RSA BHAR T I EBHATNZE
£A3R , M| AWS KMS FEEFH. EAT C++ B AWS SDK

BXBIER B AWS KMS key , iS5 (AWS Key Management Service 7 X &15/) T2
F4. BXIAB AWS KMS 4AREE AWS KMS keys FHIHIFEBD , S AWS KMS fAREE AWS
KMS keys FiR 5!,

%5 MR BRI RA : string.cpp
ES 0]

. METHE

. RETHE

5l 209

https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK FERARER

nEFrF &

ARG 58 —EB 0 E AT A B H AWS KMS Z4AER AWS KMS key RN 4 LR FRHFE,
TR MBBRFFE,

£ C = C++ RIBAAMA aws_cryptosdk_load_error_strings() HiE. ZAEMEX i
FEEBRANERER,

BREFEZRER IR, HITE main FEFEA,

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

HIR 2 . WEBRAR.

BIEA T INEH AWS KMS Z43R, RRGIFHZHREER — AWS KMS key , BT LU
ENBAUNE B S AWS KMS Z4ER AWS KMS keys , EIEETRRE AWS X135 F7FE KK
AWS KMS keys i,

= AWS KMS key £ # iNZ ZEA TR IR 5] AWS Encryption SDK for C , iE 4 ARN =3

A ARN, EREZZRRF BUAFERAZH ARN, BXELZER , BSH £ AWS KMS fAEE
AWS KMS keys Fi2 5,

£ AWS KMS 4B 2B AWS KMS keys HiR 5l

B ITEZNFHANBRHARE AWS KMS keys , AJEUIETE AWS KMS key B F 4 5% 1 b0 22 45 STAS B
FEZEAN , UK AT %A E S AR AR AT IE M I AWS KMS keys i, FEXFMERT ,
BRFEEEEEKEE AWS KMS key,

HE1T1ZAE e , B ROIZEH ARN ERAIEH ARN,

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

F|3: HIESE,
RS ERE. BEXRERNBHARCUR - 21E,

5l 210

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK FERARER

BN EHREE—HES : BT INER AWS_CRYPTOSDK_ENCRYPT = A
TR AWS_CRYPTOSDK_DECRYPT, EEXMAELEFNER |, EEH
aws_cryptosdk_session_reset 75,

EEAZATE- M 2EE , EUUAERAZTRIEGREN T ERBNBZATNEIH. Z2FE
EEWEAPNRENBARNRNEIH, EHERZKFN , FRANZATRTXEXNRHEIA, X
el AT B AR THIERFME , B L EEAX REPRERK.

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

PB4 REMR LT,

NELETNRESNFNZEMALY S HRIENERE. SEREAEXNZNNE LT , £
AWS Encryption SDK UIIE L F R MNE L TXHAERFEX , HERHEZEARNMNEZE LT
X, EAMBETXRAEN , BEN-—T&ESKE , BWUERHNE LT

B, tI - NEENB L TXFRAENRER.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_keyl, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_valuel, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_keyl, (void *)enc_ctx_valuel, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

REFEPMNZE LETXWAEES. RS, FH aws_cryptosdk_enc_ctx_clone B N
ETXEHZLED, BHBIARREE my_enc_ctx b , LEEEZBIESRITZE.,

NELETXRLEN—H2 , MIFAREZLEQERERBNSH. XAURIEXNEENEN2RER
MEMNE ETX , ESXEASEEERBRMBEANES BRI,

5l 211

AWS Encryption SDK FERARER

struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

HI 5 MBRFHER,

ENZANFEHE |, EFEMA aws_cryptosdk_session_process_full AEHER MZER Y
£iF, WA 1.9 AWS Encryption SDK BRAH 5| A, x 2.2, x, THIERI N T #E 2% MR
ite BAEBEREIE , BEMBSFPEA aws_cryptosdk_session_process,

ER , ANFEAMAFER BXFRABMEFER, LEBEHXE , ciphertext_output F&RE
EMBHER , HPIFEXRMGREN. MBNHEZANMNZ LT, SUUANEAZEFENEREES
FERRBRLINZEE, AWS Encryption SDK

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
ciphertext_output,
ciphertext_buf_sz_output,
&ciphertext_len_output,
plaintext_input,
plaintext_len_input)) {
aws_cryptosdk_session_destroy(session);
return 8;

HIR6 : FEKIE
RE—HHERRE , 2FX CMM MEHRHH 5 A,
LU UREFEEEEAEEHAREATRN CMM N2 ERBREFHS | INB/MEEMER |

MARHEB LT, EFASEHTHES , BEMFEH aws_cryptosdk_session_reset FEMER
B AWS_CRYPTOSDK_DECRYPT,

FRE TR ER

)

ARPINE RN TEREF T EBEXNMEEEHITHER,

ayt]| 212

AWS Encryption SDK FERARER

HI] 1 MBS IRF SR

£ C = C++ RIBAAMA aws_cryptosdk_load_error_strings() HiE. ZAEMEX
FEBRANERER,

BRAFERA IR, BIIE main FEPFA.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

HIR 2 - EBRAR,

LIRBEBIERT AWS KMS |, fR&4EAINE APIIREIFINZEE, 5% APl REUBIA AWS KMS
key RHiA. R , AWS KMS RS INEZEXMEEMN G E AWS KMS key RFZEZE X, BR
AWS Encryption SDK R IF& R B EZFRK AWS KMS keys IEEZE AWS KMS AR,

ERZE |, S LERER TRZ N EE AWS KMS keys R4 KE BHFAR, il , &
AR E— MU EBEAATEEACFERANEHARR, AWS KMS key AWS KMS key BRIFE H I
EMRBRZATD | BUKZEFRLERAE. AWS Encryption SDK #18 SDK % A SR H A Z4H
IR AWS KMS keys FHIRBZMBNEBIEZE , ELARR B AWS KMS keys F5& B ERT
ABBEZARMBEABRERLS , ELERRNBERELRERZHAR AWS KMS keys B3 1T ##
%, WEZREREAK.

AWS KMS key 1 R B B AIMEER , SFE A H %4 ARN, XA ARNSTE N2 24 R 5 F
@@ 7B . BXRIAB AWS KMS A2 AWS KMS keys FEVHIEEBY |, S M 7E AWS KMS 4A BLFE
AWS KMS keys FiR 51,

EURHIH , BIVEET —NRAR , ZBAREEN AWS KMS key AT I FRF R ZAR,
HETZRBzE , BRREES ARN BN EHR ARN,

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arn);

F|3: HESE

FEHAPESINZATNE—IMN2E, EREMBRZLIE , B6EH AWS_CRYPTOSDK_DECRYPT # &
BEaiE,

5l 213

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK FERARER

EEAZHTGE-IM2EE , EUUAERZTRTESREN G ERBNBATRNEIM. Z2E
EEREAHNRENBARNRNEIA , EHRZLEN , REBRSENZRART, X5 AR
FERB TR IEREMRE , AP EERN REPRFERER,

struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

S|4 MBS,

EMARFRHER BEMFEMH aws_cryptosdk_session_process_full FEMEERTHRENE
&, LA ETE AWS Encryption SDK MR 1.9.x M 2.2.x 5| A , TRIERRMBFFER IR
BELBRRBIE , BEMBSPREA aws_cryptosdk_session_process,

RN BXFRABAZER , BXEREMHEFR, ciphertext_input ZREEMEFER
B MEEE, REEKE , plaintext_output FEREESHX (BEREW) ZHFH,

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,

plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input)) {

aws_cryptosdk_session_destroy(session);

return 13;

HB|5 RUEME £ T3

EWHAIEGHMNEZE LT (ATHRFBEENLTX) B88ENEE SN RENME LT, Kb
EETXARESSTHNNREN , BN ML EEER (CMM) B LA 1% E B 8 32 4L R h0 2
£ XA EX.

=4 AWS Encryption SDK for C , @ZNLHFREMBE LT , RAMNE L TXEE%E SDKRE
WMEEEF, B2 , EHRERERR , FNBRZEBENBITIATHRZEENNB LTSS
EFTRMMINE LT X PHPTEREX,

5l 214

AWS Encryption SDK FERARER

B , KRS ERRFRNRAREH. ZRFRESATHEEENNE LT X

const struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr(session);

ARE , BRIMZENEHN my_enc_ctx BEXRPPMELT X, RIEATFHREN
session_enc_ctx BERBEATMEN my_enc_ctx BHERFHAMEREX, MRBRDEM
%4, AIXPEETEWE , WELAEHREHERER,

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);
aws_hash_iter_next(&iter)) {
struct aws_hash_element *session_enc_ctx_kv_pair;
aws_hash_table_find(session_enc_ctx, iter.element.key,
&session_enc_ctx_kv_pair)

if (!session_enc_ctx_kv_pair ||
laws_string_eq(
(struct aws_string *)iter.element.value, (struct aws_string
*)session_enc_ctx_kv_pair->value)) {
fprintf(stderr, "Wrong encryption context!\n");
abort();

H6 : FEKE,

WIFE ETXE , IERE , REA2E, NIRFEEFEERE , BEH

aws_cryptosdk_session_reset 15,

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK 3t F.NET

fo AWS Encryption SDK r NET 2 —MNEFWMEBE , ERATEA C# MHALNET FRERESHRENHA
BFHNFEXAR. B Windows, macOS # Linux L%,

.NET 215

AWS Encryption SDK FERARER

® Note

AWS Encryption SDK A F.NET # 4.0.0 kA5 CEEME) AWS Encryption SDK B
TR, Hit , B 4.0.0 IRINFEHEE REEES.NET ARA 4.0.0 RESRAITHR. AWS
Encryption SDK F A H b 4RF2iE S ML EXN HHTHE,

for .NET AWS Encryption SDK #J 4.0.1 iR#R$#EEEMBE A AWS Encryption SDK JHE , ¥
BAEHMERIESSNERE. RIABERT , FRZE 4.0.1 ATLUREURZ 4.0.0 INEHEE.
BMREFEMEZBRRA 4.0.0 MBREE , WATLUIEE NetV4_0_0_RetryPolicy BMEX
BHIEEFIRIREUXLE S, BXEZER |, S aws-encryption-sdkFEEFH v4.0.1 fRA
1B, GitHub

f AWS Encryption SDK or .NET 5H#—L4REE S KM FRE 24 AWS Encryption SDK £ F :

c TXRBBEZHER

@ Note

W7 4, .NET AWS Encryption SDK B x X3 FAWS KMS 7 &4 , X2 —FER/
BMRBRFRRAR,

- FEXERBE
- RBEAT NET 8 AWS Encryption SDK B9 H & 10 F 5 3% IR R
« EZE AWS SDK for NET

.N AWS Encryption SDK ET iR‘@#E 2.0 IRFSIAWFIBEL£INEE. x RESRAHHEAIESSE

I AWS Encryption SDK, B2 , MREME A for NET REFH 2.0 ZBIRAMNBZHEHIE, AWS
Encryption SDK x MRA<H) 53 —#1E 52 AWS Encryption SDK , B REEBHE AL HER, BXRES
EE , BSH W% E ERHAE R,

f AWS Encryption SDK or .NET & Dafny AWS Encryption SDK i~ ¥] , X2 —fhEX N RIEIE
S, RAMAEREENE, ZMATHRBURMRAT, ERNEHRDEEHENESR PR
AWS Encryption SDK ZhaeHIEE,

THEZS

- BXETWNMEPEREIEDN (FliEERAEEEM AWS Encryption SDK, BRI #E A M 6E
A AWS KMS X Z4R) WRHBI |, 5[EEEE AWS Encryption SDK,

.NET 216

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK FERARER

« BXMEA for NET AWS Encryption SDK #{T4REZENFMEE , iHSH LK aws-encryption-sdkiF
f§EEaws-encryption-sdk-net B % GitHub,

FH

« AWS Encryption SDK JI.NET Z%H
« AWS Encryption SDK J3.NET iz

« AWS Encryption SDK &%& .NET R4l

AWS Encryption SDK J.NET Z%E#Y

N AWS Encryption SDK ET iR#EHNAWS . Cryptography.EncryptionSDKEHBIEHE NuGet, BHX
ZRMME NET IREY AWS Encryption SDK i#F4E L , S HAFMESPH README.md X, aws-
encryption-sdk-net

WA 3.x

RR7A 3, .NET Bk AWS Encryption SDK #J x {X#£ Windows L% .NET &% 4.5.2 — 4.8, H&EF
BEXHWBRERZHH I NET Core 3.0+ F .NET 5.0 RE&M A,

MR 4.x

MRA 4, .NET 8 AWS Encryption SDK x X #.NET 6.0 #1.NET Framework net48 & & Sk,
WA 4, x BEEMATF.NET 89 AWS SDK v3,

SDK for .NET EMELR;&R B EH AWS Key Management Service (AWS KMS) # |, for NET tHEE,
AWS Encryption SDK E5 NuGet B 83— ER%*&, B2 , BRIEEHEANZE AWS KMS 245 , AWS
Encryption SDK BM.NET FEE AWS EREHSEM AWS RS RE, AWS IKFINEEXIRE
AWS Tk BB | S B9EA wit AWS Encryption SDK h AWS KMS,

AWS Encryption SDK R.NET @iz

fo AWS Encryption SDK r .NET F4ERKEMBE. .NET F#9 AWS Encryption SDK RESERFEH
B, BEFR 44 RH#KRIRER,

N T BEEBHRITIER | iESHTE SDK for NETHE A BERIEFINEE, FHYAEFEEIRHEE SDK

for NET ATLAESBYRX 20 .NET A HIEHY SDK for .NET iR FI.NET & tHEl AWS Encryption SDK #J
£5i1%, B SDK for NET BEIZFZAIEEES | i%?ﬁ}I}HAWSLogging {AWS SDK for .NET FF X A G138
) . (BEEFIZEHE , BRI Open to view .NET Framework content 2%,)

RRMEE 217

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme
https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS Encryption SDK FERARER

AWS Encryption SDK &Z&.NET R4l

LR RBIERT BIEE R for NET AWS Encryption SDK #{TRERNERNERRBER, E4m
S, B LR #RHEAEE FE AWS Encryption SDK MAtRHEREE, RE , ERAEN NEERZ
B, BAESMLE S ZE ZHMANTR, X587 SDK for NETHERANERBERXIEFTHEEL

BXERMAEPEREED (flNEERAEEZEMYS AWS Encryption SDK. PR il in 25 £ 4% 247 F £
AWS KMS ZX15#48) WRBl , S HEEEE AWS Encryption SDKo

BXEA for NET AWS Encryption SDK #1T4EMNE S 1| , 55 Laws-encryption-sdkiFf&
FEaws-encryption-sdk-net B FH# R4H| GitHub,

M#FZEATF NET 89 AWS Encryption SDK F Y $3E

I RBIRER T BENBNESER, EEAZ - AWS KMS 8XZHARPHBEFEZAXN —NN X
AT

%1% ZHLARHREMEZEE AWS Encryption SDK A1 EHEH & E,
B S H{b A RHR & B AWS Encryption SDK M RHEEEE., SNERATHNSE AWS

Encryption SDK RM#MBEZHIE. REAMBRERFEFNITEZCIEZHR | BHKNEER
LRARY BAVEIE

ERRA 3/, SEBIEATRHE S B E AWS Encryption SDK MM REBREEN SR EFATE. x
4, .NET AWS Encryption SDK B xo FINRZAS 3 WA T MBS R&MEE. x M 4. .NET AWS
Encryption SDK B xo

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders(

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

5l 218

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS

Encryption SDK FERARER

HI 2 NERARCBAAT R

BONBARCES ZEIEN N EANRE, HlI0 , R CreateAwsKmsKeyring() HiEtIEH
ATR , HRIZE CreateAwsKmsKeyringInput FEIEHI,

RELFARNMARIEELERZZZ |, B KmsKeyId SHIEEN RN KMS BN EHER
e HERF BB THEMZNBIERH.

WM ANREE AWS KMS EFimKIREL KMS %4, AWS Xig E42 AWS KMS B F i
B1EHEHl{biZAmazonKeyManagementServiceClient3, SDK for NETHARTSEHMN
AmazonKeyManagementServiceClient() WERBLLIBREERINAENE iR,

F£ AWS Encryption SDK A F.NET MZ % AWS KMS $3hd |, B AFEAZE4 ID. Z4H
ARN, #l&Z51HE ARN RiIRGI KMS Z4H. EATMEBNE AWS KMS AR | A0 A 2 4A
ARN RFRIREAN KMS 4. RSB NESFEAMBEATHTHRE , BFEH ARN FRERKFA
FrrE KMS B4H,

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object

var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

SR 3 IERAHR,

EORZAR FEAZHATAANRBEABAR G X, WRHGIEM CreateAwsKmsKeyring()
FE, RFERF - KMS ZH,

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

HPR 4 EME LT

& L X RA%ER |, EEZIBNERH#HITINEREE, AWS Encryption SDKIEALLE L — N %
NENZRER

ayt]|

219

AWS Encryption SDK FERARER

® Note

FERAMA 4, x AWS Encryption SDK 3 F.NET , A AERAFTENINE LT X CMM £FF
EMBZEFERPERFEAMNE LT,

// Define the encryption context
var encryptionContext =

{

new Dictionary<string, string>()
{"purpose", "test"}
i
SIS AEATMENR AR,

A Encrypt() F&EZ 8, HRIZ EncryptInput £3£461,

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

iggl% 6 : le]%':‘fh.‘HﬂIo

FEHEncrypt ()M AZE , BEHAEE Y AWS Encryption SDK B Z4A FR XY 4 STAHE 1T 1N %3 o

Encrypt() JZIRER EncryptOutput @A TREUMEZEE (Ciphertext), M#FE LT
MELEHNTE,

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

SRR 7 FREUNEE S

for N AWS Encryption SDK ET F#fDecrypt () B ERAEncryptOutput3iflCiphertextf ik

B

ayt]|

220

AWS Encryption SDK FERARER

EncryptOutput &K Ciphertext RARMEEE , HABREANR , P SEMBLKIE.
MBHREZANMTBE SENBRLETX, SBUUKREAZLEEMNZHEE , T LNEERSA
Decrypt () FELMERE A,

var encryptedMessage = encryptOutput.Ciphertext;

£5ERB T NET 89 AWS Encryption SDK R 7E =& X T #E %

REXRBUEGEEATHERENES ZETHNTHKIER, X AWS Encryption SDK A&7
BARPIEEN KMS ZAXRMBEZE N, BEZARPNBALNETEEL —MNEHENER,

WRBIEEA T BERAER T NET B9 AWS Encryption SDK EEER THITEZWEARER,
% 1% : =414t AWS Encryption SDK F#EHEMH EE,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

HI 2 NEARCBRBANR.

ENFIAR T EEESH , BOIBMAXNR, for NET 8 AWS Encryption SDK S/1MNZ4AR)5 5%
EHE— MR BANR, BT RAER CreateAwskmsKeyring() FERIEZHAR | Hiks
R AEHIY CreateAwsKmsKeyringInput 2,

HBEZRASRF |, BLHERZER ARN #RiR KMS #4.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyAzrn
};
FIR 3 RIERAR,

EQEERZANL |, ROIER CreateAwsKmsKeyring() HEMBZHBTRAII R,

ayt]| 221

AWS Encryption SDK FERARER

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

SR 4 CIEATHZNHANR,

ZEH Decrypt() HEREBRMAXNR , EXEHIL DecryptInput K,

DecryptInput() #iEEEM Ciphertext ZMFEE Encrypt() HEIRER EncryptOutput
X Ciphertext MR, Ciphertext BMXRTRMNEZEER , EPSENBHIE. NEHEZH
F AWS Encryption SDK ## %8 B & TR,

fEFAMRA 4, x AWS Encryption SDK 3 F.NET , B Al SAfFE A Ali%EncryptionContextS
fEDecrypt () FEHRIBEZNME LT

£/ EncryptionContext Z¥HRIEMBENFEANMNE L TXRETEEATHREMNENF
MMBELTXH, MREERANETIENELZES (HIWNBRIANELZEHN) , WSFHEX AWS
Encryption SDK RNEMNE L TXH , SEHRFZE,

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{
Ciphertext = encryptedMessage,
Keyring = keyring,
EncryptionContext = encryptionContext // OPTIONAL
;
FB|5 BEMNEBEXF

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

S 6: RIEMER LT - iRA 3.x

FRZA 3 Decrypt() B9A3%E. NET AWS Encryption SDK B9 x AR AME LT, ESMNNEZEHE
ENABEHRREMEZE L TXE, B2, FRERFEAANZEH , REMCERRIEA THENE X
FHMZE L TXRBESELEMBR BRI ME LT

BIEMBREANNZE L TN REEEEATHRENEXFHAMNE LT, MREFEANRTE
BNEEEN (HIMBRINEEZEHN) , WESFKI AWS Encryption SDK RFMEIMBZETXH |, 2
BHRFEZE,

// Verify the encryption context

ayt]|

222

AWS Encryption SDK FERARER

string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
| | !'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

£ for NET HERA X RAKH1THEZ AWS Encryption SDK

& LRI IS A KMS R4 ZR4ATR , AWS KMS Discovery B4R | T3k E F T 21
KMS %41, &3 AWS Encryption SDK Z4A ¥R /o i FEM I B EIEH KMS ZREARMBHEIE |, gl
SRAEREZHNHRENR, EREGHRESER , BANRITES , STATHEES XMW KMS 4
BREINIEE AWS Ik 2 KR4,

fo AWS Encryption SDK r .NET 2t T — MNEXN K ZLHE , eFE— AWSKMS BFis , BF
—NMNRUZHER , FEEREBE—NHSNRAR, AWS XIGE F inH XS5 R & 7] A T # 2 N 2%5H
B KMS i, ANZRRNAANREFTER ORI AN TFEIEZMHF,

LA R4 88 T 6EF§ AWS KMS Discovery Z4A IR F1 & I 5 it R R BIRENER,
F 15 2L EHRMEEZEE AWS Encryption SDK F#TEHEMH & E,

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

\

HR 2 NERARCBRRANR.

ENZPRGEEESH , BOIBR AR, for NET F8 AWS Encryption SDK &/MNZ4AH A%
EHE - RHNBMAT R, BT REIMEER CreateAwsKkmsDiscoveryKeyring() AEBIER
I, At &R AL CreateAwsKmsDiscoveryKeyringInput 2,

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

5l 223

AWS Encryption SDK FERARER

{

AccountIds = accounts,
Partition = "aws"

i

SR 3 QIERBAHK,

EHEMBRRANL |, RO CreateAwsKmsDiscoveryKeyring() FEMZR AR AN
Ko

var discoveryKeyring =
materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

SR 4 IEATHENHANR,

EN Decrypt() FEBIBBMANR , iHEHE DecryptInput 3£, Ciphertext SHHENRN
Encrypt() BH3EREH EncryptOutput IR Ciphertext KA,

ERRA 4, x AWS Encryption SDK 3 F.NET , & B EA AIEEncryptionContextS Kk
fEDecrypt () FEFEEEMNMNE LT X,

£/ EncryptionContext ZHBIEMENFEANMBE L TXREIEEATHEMNEXF
MNZELETXH, MREFEANRTIBNELZEY (HINRAELZEHR) , WESFEX AWS
Encryption SDK AR EIMZE L TXH , BEKFZR,

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = ciphertext,

Keyring = discoveryKeyring,

EncryptionContext = encryptionContext // OPTIONAL
};

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

S5 WIEMER £ T3 - A 3.x

WA 3 Decrypt() B35, .NET AWS Encryption SDK B9 x FF B N%E LT XDecrypt(), H
2NN EEN THEPREME L TXE, B2 , ERERFEAAXZEH , REMERRIEAT
BREMNZEXFHNE L TNEEITELEMERRBHROME LT X,

5l 224

AWS Encryption SDK FERARER

RiIEMZREANNE L TXREETEEEATHREMZEXFHME L TXXH, MREEANEH
LENEEZEMH (HIMBRINEEZENR) |, WESFHEXT AWS Encryption SDK AR NEIINZE £ T3
BERFER.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)

|| !'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

AWS Encryption SDK for Go

REBNF WAL %ﬂﬁﬁﬁ fo AWS Encryption SDK r Go, Bxf£H for Go AWS Encryption SDK 3t
TRIENFMAEE , 50 L aws-encryption-sdk 7% FEH go B F GitHub,

f AWS Encryption SDK or Go 5H fth —L4RIETE S LI TR 24 AWS Encryption SDK £ F

« IAXEBRERBERF. HR , fo AWS Encryption SDK r Go X#FAWS KMS 2 EZ4AH |, X2 —ft
BEROMEMRREFHRRAR
- FXEFRBE

fo AWS Encryption SDK r Go @& 2.0 RAEH 5| AWFAELZLMEE. x RESMANEMESEHN
AWS Encryption SDK, B2 , SR & A for AWS Encryption SDK Go Rf#ZH 2.0 2 8 MRS i 2R 1Y
BIE. x lRAK B —fhiE S5 AWS Encryption SDK , B REEBFBAEBE, BXEZELE | &
S QAR B IR AR R R o

f AWS Encryption SDK or Go & AWS Encryption SDK in Dafny F7=#] , X2 — R EXNWRIFES ,
RALAEREFENT, SUATHRBUARN AL, FRAEHRIDEEBENERPIHE AWS
Encryption SDK ZhRERY B,

THRES

o BXERIMAEREEIEI] (1’5|J§D?"”H§ﬁ§§‘}£§1¢ AWS Encryption SDK, PR &l in% 53z =AM E
A AWS KMS ZXE %4) WRHl , 5SS EERE AWS Encryption SDK,

Go 225

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK FERARER

- BXRINABEFMFER for Go AWS Encryption SDK H7Rfl , 25 £ aws-encryption-sdk 4 FE FF
M Go =4l GitHub,

W [8
H
»a
F

FRFZM
&% fo AWS Encryption SDKr Go Z 8l , iFHRBER AT ERFMH,
XM Go MR

Go EE AWS Encryption SDK £/ Go 1.23 SiE SR

BXTHNMERE Go WESEE , HZH Go £

+
I=<

1

LERFIRAH fo AWS Encryption SDK r Go. BXZEME for Go AWS Encryption SDK K i¥ 48
B8 , B R LEM#E go BHX*H README.md, aws-encryption-sdk GitHub

AR

Wi
M
So

#Z % fo AWS Encryption SDK r Go

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

- REMEMEHREERFE (MPL)

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS Encryption SDK for Java

REBNBT WMAZREMEFER AWS Encryption SDK for Java., BXxFERREMNFMAEE AWS
Encryption SDK for Java , 52l E#aws-encryption-sdk-javaZf&E GitHub, Bx API X1 | i§5
593i& A F AWS Encryption SDK for Java#y Javadoc,

FRFZ M 226

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples
https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK FERARER

F&
< EREH

= M
o FBI

» AWS Encryption SDK for Java %l F

FRFH
£ &% 2 B AWS Encryption SDK for Java , FHRHE BT £ REH.
Java FF 335

WEE[FEH Java 8 ESMRA, £ Oracle Mt Lk |, #% Java SE T , AR THH L% Java SE
Development Kit (JDK),

WMREA Oracle JDK , BIEXR T E H L% Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files,

Bouncy Castle

AWS Encryption SDK for Java EE xS HE

« AWS Encryption SDK for Java 1.6.1 R E & R4 A Bouncy Castle X1 tNZX it 17 H{L
REFIt, & LA Bouncy Castle 2 Bouncy Castle FIPS BUBRIZER, BXRLZEMNEE
Bouncy Castle FIPS B#5B) , 520 BC FIPS X4 , AERAFEEMEL2BE. PDFs

« BHIARZA AWS Encryption SDK for Java f£ Bouncy Castle 8 Java % APIl, {X3E FIPS
Bouncy Castle HZ2ZEXR,

MR YR5%E Bouncy Castle , #E#I{E T Java kit Bouncy Castle TSR JDK X NEVIREEF
X, YRteELAER Apache Mav en 3REFR# Bouncy Castle 2% (beprov-ext-jdk15 on) By
2550 Bouncy Castle FIPS #8285 (be-fips) o

AWS SDK for Java

WA 3, HHA x AWS Encryption SDK for Java & AWS SDK for Java 2.x , BIE{RFEH AWS
KMS $HEE .,

A 2, x REFRRRA AWS Encryption SDK for Java REZE AWS SDK for Java, B2 AWS SDK
for Java , %EHA AWS Key Management Service(AWS KMS) #E R ER4AIREEF. M 2.4.0
AWS Encryption SDK for Java lRAFF 38 , RIEt AWS Encryption SDK for Java X 1.x fl 2.x kR
ZXH, AWS SDK for Java AWS Encryption SDK AWS SDK for Java 1.x fl 2.x IR IBE AT ERE

TR 227

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/

AWS Encryption SDK FERARER

B, i | &AL E R 3 AWS SDK for Java 1.x B9 AWS Encryption SDK XTB IR EIE |, RE

FAXENRBXYE#THESZ AWS SDK for Java 2.x (R2ZI R) . 2.4.0 AWS Encryption SDK

for Java Z BIFY AR AX £ #F AWS SDK for Java 1.xo BXEFHMRAEIE S AWS Encryption SDK
SRFEBIRE AWS Encryption SDK,

£ AWS Encryption SDK for Java fXEBM 1.x E#EI8t AWS SDK for Java 2.x , iH AWS SDK
for Java 1.x FIXFAWSKMSHE O K 5| & # N & AWS SDK for Java XfkmsClient# O/I5| A,

AWS SDK for Java 2.x AWS Encryption SDK for Java X #FiZKmsAsyncClient## 0, 4 |, E
FARBENA#EA kmssdkv2 e R ZEEFH AWS KMSHAXN R , AR kms &5 & ZE[E,

EL% | H A Apache Maven, AWS SDK for Java
« ES AEAN AWS SDK for JavaAER K HBIIN , i pom. xml XX H#ITEH,

« E1£ AWS SDK for Java 1.x F{X 3 AWS KMS #EHR AKX R , BIRBIEE S EERN A
HITRE , HRE RN, artifactId aws-java-sdk-kms

« B AWS SDK for Java 2.x X AWS KMS &R BEB KRR , FRBIEEISEERNE
BABE TR E, ™ groupId i EN software.amazon.awssdk , }fF artifactId i&EN
kmso

EXEZEN, 2 (AWS SDK for Java 2.x FXEIEE) FH AWS SDK for Java 1.x F 2.x
BH 4K,

{ AWS Encryption SDK FF & A AfEm) F#Y Java RHIEA AWS SDK for Java 2.x.

W
P

RKEFMRAH AWS Encryption SDK for Java.

it

(® Note

2.0.0 AWS Encryption SDK for Java 2 8 Y Fi B MR A< &4k T 1B Bt . end-of-support

IEA LA Z 2 M AWS Encryption SDK for Java fRZA 2.0.x R ESMAEFTNRFTIRAE , TE
FREARBREE, B2, RE20x FEIATHHNEZLEE , TAERE. EMN1.7.x 28
E’JH&ZIKE%? B 2.0x RESRA , BMEEHE AWS Encryption SDKREHRA 1.x, BXEZ
E8 , SR TBIRE AWS Encryption SDK,

BT LB LA AWS Encryption SDK for Java B R &%,

228

1

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

FHHERX

EZ % AWS Encryption SDK for Java , i35 T Haws-encryption-sdk-java GitHub7#fi# .
& Apache Maven

A[J@IE Apache Maven 3R1& , IKBIXREN WM T, AWS Encryption SDK for Java

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-encryption-sdk-java</artifactId>
<version>3.0.0</version>

</dependency>

ZETHHEFAIEGR , BEREEREEFN RS Java 58 , RFFFF J avadoc. GitHub
AWS Encryption SDK for Java i+

AR RBIE SRR T A A AWS Encryption SDK for Java RINZ M AR EIE, X LEREIH A 7 a4
FRARA 3, x RESRAH AWS Encryption SDK for Java. x4 3, EHHH x AWS Encryption SDK
for Java ¥ E AWS SDK for Java 2.x. MxZ 3. HH x AWS Encryption SDK for Java ¥ EZH4HEH
BEFERNBHRT. BXERARHREN A , 157E Laws-encryption-sdk-javaiF i BE R AR ARSI R P %
BB AR GitHub,

£}

© NEMERFRE

© NEMERFTR

- ERAZEHTNZNBZZTR

Iz M g 2 7 RF R

DTRRGIEERR T MAERARE 3. ATMEMBEFREN xo AWS Encryption SDK for Java £
FERAFRAEZE , BEEERRNFHRA.

L RBIEE A BAWS KMS A5, EFZ AWS KMS AR iNZ et | AT LUER %40 ID, 248 ARN, 318
H 318 ARN KiR5I KMS %40, fEHeT , MAMEH 4 ARN KRB KMS %48,

£ encryptData() 5K , BIREMZEHEE (CryptoResult) , HRBFEZRI, MBI EE
B MNE LT, X CryptoResult X¥REA getResult B , BIREIINZEREE M base-64
WIBNFRIERA , B LU HEZES decryptData() Hito

ayt]| 229

https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases

AWS Encryption SDK FERARER

B , HZFARNdecryptData() , ©iREMCryptoResul t REE L XAHEM— AWS KMS
key ID, EZEWMARFREIAN AR ZE , FRIEMEBEESHPH AWS KMS key ID i L TXER
HEEWEE,

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;

import java.util.Collections;

import java.util.Map;

/**
* Encrypts and then decrypts data using an AWS KMS Keyring.

*

* <p>Arguments:

*
* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
customer master

X key (CMK), see 'Viewing Keys' at

& http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
*

*/

public class BasicEncryptionKeyringExample {

private static final byte[] EXAMPLE_DATA = "Hello
World".getBytes(StandardCharsets.UTF_8);

public static void main(final String[] args) {
final String keyArn = args[Q];

ayt]| 230

AWS Encryption SDK FERARER

encryptAndDecryptWithKeyring(keyArn);
}

public static void encryptAndDecryptWithKeyring(final String keyArn) {
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with a
committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto =
AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.

// This example creates a multi keyring, which automatically creates the KMS
client.

final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create an encryption context

// We recommend using an encryption context whenever possible

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

// 4. Encrypt the data
final CryptoResult<byte[], ?> encryptResult =
crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);

5l 231

AWS Encryption SDK

FRARER

final byte[] ciphertext = encryptResult.getResult();

// 5. Decrypt the data

final CryptoResult<byte[], ?> decryptResult =

crypto.decryptData(

kmsKeyring,

ciphertext,

// Verify that the encryption context in the result contains the
// encryption context supplied to the encryptData method
encryptionContext);

// 6. Verify that the decrypted plaintext matches the original plaintext
assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);

}

MBENERFTTR

LA 7= 45135 BF 0ol 55 - AWS Encryption SDK R N 22 M 2 22 =55 o

LERBIE R EHY AES B,

et |, b RBIEA AwsCrypto.builder() .withEncryptionAlgorithm()
FAEETHRTERNEAES. BN | ARRNBEXTRES | LROER
createUnsignedMessageDecryptingStream() 5%, MREBFFERFEANE , N
#ZcreateUnsignedMessageDecryptingStream()H &R AW,

MREBERARANELEN (BEBFER) #ITINE |, BHA createDecryptingStream() Fi& ,
MR —NRBIFFR.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import
import
import
import
import
import
import
import

com.
com.
com.
com.
com.
com.

amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.

encryptionsdk.AwsCrypto;
encryptionsdk.CommitmentPolicy;
encryptionsdk.CryptoAlgorithm;
encryptionsdk.CryptoInputStream;
encryptionsdk.jce.JceMasterKey;
util.IOUtils;

software.amazon.cryptography.materialproviders.IKeyring;
software.amazon.cryptography.materialproviders.MaterialProviders;

ayt]|

232

AWS Encryption SDK

FRARER

import
import
import

import
import
import
import
import
import
import
import
import

/**

* <p>

software.amazon.cryptography.materialproviders.model.AesWrappingAlg;
software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

java
java
java

java.
java.
java.
java.

.io0.FileInputStream;
.io.FileOutputStream;
.i0.I0Exception;

nio.ByteBuffer;
security.SecureRandom;
util.Collections;
util.Map;

javax.crypto.SecretKey;

javax.crypto.spec.SecretKeySpec;

* Encrypts and then decrypts a file under a random key.

* <p>

* Arguments:

*

* Name of file containing plaintext data to encrypt
*

* <p>

* This program demonstrates using a standard Java {e@link SecretKey} object as a {elink
IKeyring} to
* encrypt and decrypt streaming data.

*/

public class FileStreamingKeyringExample {

private static String srcFile;

public static void main(String[] args) throws IOException {
srcFile = args[0];

// In this example, we generate a random key. In practice,
// you would get a key from an existing store
SecretKey cryptoKey = retrieveEncryptionKey();

// Create a Raw Aes Keyring using the random key and an AES-GCM encryption
algorithm

final MaterialProviders materialProviders

= MaterialProviders.builder()

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

ayt]|

233

AWS Encryption SDK FERARER

.build();

final CreateRawAesKeyringInput keyringInput =

CreateRawAesKeyringInput.builder()

.wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
.keyNamespace("Example")
.keyName (""RandomKey")
.wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAGl6)
.build();

IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

// Instantiate the SDK.
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

// This example encrypts with an algorithm suite that doesn't include signing
for faster decryption,

// since this use case assumes that the contexts that encrypt and decrypt are
equally trusted.

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

// Create an encryption context to identify the ciphertext

Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

// Because the file might be too large to load into memory, we stream the data,
instead of

//loading it all at once.

FileInputStream in = new FileInputStream(srcFile);

CryptoInputStream<JceMasterKey> encryptingStream =
crypto.createEncryptingStream(keyring, in, context);

FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
I0Utils.copy(encryptingStream, out);

5l 234

AWS Encryption SDK FERARER

encryptingStream.close();
out.close();

// Decrypt the file. Verify the encryption context before returning the
plaintext.

// Since the data was encrypted using an unsigned algorithm suite, use the
recommended

// createUnsignedMessageDecryptingStream method, which only accepts unsigned
messages.

in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<JQceMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(keyring, in);

// Does it contain the expected encryption context?

if
(!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Exampl
{

throw new IllegalStateException("Bad encryption context");

// Write the plaintext data to disk.

out = new FileOutputStream(srcFile + ".decrypted");
I0Utils.copy(decryptingStream, out);
decryptingStream.close();

out.close();

/**
* In practice, this key would be saved in a secure location.
* For this demo, we generate a new random key for each operation.
*/
private static SecretKey retrieveEncryptionKey() {
SecureRandom rnd = new SecureRandom();
byte[] rawKey = new byte[16]; // 128 bits
rnd.nextBytes(rawKey);
return new SecretKeySpec(rawKey, "AES");

£ Z B AR MENFEZ Z TR

AR RBIE SRR T A5 £ %49 AWS Encryption SDKIR—i2 A, EFEHAZERARMNZEE
i, HEEZATRTNEESTEZRHTUNBEHTHE., REIFERAWS KMS ZH3H Raw
RSA ZEAERN FEHAK,

ayt]| 235

AWS Encryption SDK

FRARER

WREIEASEHFEEMNRINELZEHHITNE, BEREN , SETEEREFEBERIERFER ZH
AWS Encryption SDK KX, ATEBEELHERIEZAFEABRY , KRFlaZFPHEX , HANXE
REZEMBIE TR E T HHE AR,

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import
import
import
import
import
import
import

com.amazonaws.encryptionsdk.AwsCrypto;
com.amazonaws.encryptionsdk.CommitmentPolicy;
com.amazonaws.encryptionsdk.CryptoOutputStream;
com.amazonaws.util.IOUtils;
software.amazon.cryptography.materialproviders.IKeyring;
software.amazon.cryptography.materialproviders.MaterialProviders;

software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;
software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;
software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;
software.amazon.cryptography.materialproviders.model.PaddingScheme;

import
import
import
import

import
import
import
import
import
import
import
import
import

/**

* <p>

java
java
java
java

java.
java.
java.
java.
java.

* Encrypts

* <p>

.io.ByteArrayInputStream;
.io.ByteArrayOQutputStream;
.io.FileInputStream;
.i0.FileQutputStream;

nio.ByteBuffer;
security.GeneralSecurityException;
security.KeyPair;
security.KeyPairGenerator;
util.Collections;

a file using both AWS KMS Key and an asymmetric key pair.

* Arguments:

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,
& see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html

*

ayt]|

236

AWS Encryption SDK FERARER

* Name of file containing plaintext data to encrypt

*

* <p>

* You might use AWS Key Management Service (AWS KMS) for most encryption and
decryption operations, but

* still want the option of decrypting your data offline independently of AWS KMS. This
sample

* demonstrates one way to do this.

* <p>

* The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair

* so that either key alone can decrypt it. You might commonly use the AWS KMS key for
decryption. However,

* at any time, you can use the private RSA key to decrypt the ciphertext independent
of AWS KMS.

* <p>

* This sample uses the RawRsaKeyring to generate a RSA public-private key pair

* and saves the key pair in memory. In practice, you would store the private key in a
secure offline

* location, such as an offline HSM, and distribute the public key to your development
team.

*/
public class EscrowedEncryptKeyringExample {

private static ByteBuffer publicEscrowKey;
private static ByteBuffer privateEscrowKey;

public static void main(final String[] args) throws Exception {
// This sample generates a new random key for each operation.
// In practice, you would distribute the public key and save the private key in
secure
// storage.
generateEscrowKeyPair();

final String kmsArn = args[0];
final String fileName = args[1];

standardEncrypt(kmsArn, fileName);
standardDecrypt(kmsArn, fileName);

escrowDecrypt(fileName);
private static void standardEncrypt(final String kmsArn, final String fileName)

throws Exception {
// Encrypt with the KMS key and the escrowed public key

5l 237

AWS Encryption SDK FERARER

// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();

ayt]| 238

AWS Encryption SDK FERARER

IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Encrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName);

final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");

final CryptoOutputStream<?> encryptingStream =
crypto.createEncryptingStream(multiKeyring, out);

I0Utils.copy(in, encryptingStream);
in.close();
encryptingStream.close();

private static void standardDecrypt(final String kmsArn, final String fileName)
throws Exception {

// Decrypt with the AWS KMS key and the escrow public key.

// 1. Instantiate the SDK.
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)

ayt]| 239

AWS Encryption SDK FERARER

.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");

// Since we are using a signing algorithm suite, we avoid streaming decryption
directly to the output file,

// to ensure that the trailing signature is verified before writing any
untrusted plaintext to disk.

final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(multiKeyring, plaintextBuffer);

I0Utils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

final ByteArrayInputStream plaintextReader = new
ByteArrayInputStream(plaintextBuffer.toByteArray());

IOUtils.copy(plaintextReader, out);

out.close();

5l 240

AWS Encryption SDK

FRARER

private static void escrowDecrypt(final String fileName) throws Exception {
// You can decrypt the stream using only the private key.
// This method does not call AWS KMS.

// 1. Instantiate the SDK
final AwsCrypto crypto = AwsCrypto.standard();

// 2. Create the Raw Rsa Keyring with Private Key.
final MaterialProviders matProv = MaterialProviders.builder()

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();
final CreateRawRsaKeyringInput encryptingKeyringInput =

CreateRawRsaKeyringInput.builder()

.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.privateKey(privateEscrowKey)
.build();

IKeyring escrowPrivateKeyring =

matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 3. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.
final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");

final CryptoOutputStream<?> decryptingStream =

crypto.createDecryptingStream(escrowPrivateKeyring, out);

I0Utils.copy(in, decryptingStream);
in.close();
decryptingStream.close();

private static void generateEscrowKeyPair() throws GeneralSecurityException {
final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
kg.initialize(4096); // Escrow keys should be very strong
final KeyPair keyPair = kg.generateKeyPair();
publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic(

));

privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

ayt]|

241

AWS Encryption SDK FERARER

}

AWS Encryption SDK for JavaScript

B 1£ AWS Encryption SDK for JavaScript A7 Node.js F4RE Web x| % 25 5 F#2 & JavaScript = fiE
A%HmE Web RSB[R ARFNTAAAREEFIRINEZE,

SWFrESEI —# AWS Encryption SDK , AWS Encryption SDK for JavaScript 12t 7 & R EE R
Ihie, XLEINREBFEETME, HMZN SHRIENEIE (AAD) UEkZE, 23 5ARiF AXRHHER
REEENR MEEZBHARENLEEN 256 i AES-GCM,

PB4 E T 18 S WX AWS Encryption SDK ##HiZ 1T N AT B , EEEBFESHRS. AXIE
SREINFME SR JavaScript , IS Hthe section called “FRAM",

THES

. BXERRENIEMES AWS Encryption SDK for JavaScript , 5251 _E#aws-encryption-sdk-
javascript##f& & GitHub,

o BXEETH , S Hthe section called “RHI" AR 7748 FE 8 =B S EE MR 61 S8R, aws-
encryption-sdk-javascript

s BXEMRAE Web NARFHMBRFENESLRS , BSH AWS Z£BEHHWAEH AWS

Encryption SDK for JavaScript #1 Node.js X ¥ 25/ 1%, AWS Encryption SDK for
JavaScript

FH

« BB M AWS Encryption SDK for JavaScript
« I[EFEZ % AWS Encryption SDK for JavaScript
- YR AWS Encryption SDK for JavaScript
« AWS Encryption SDK for JavaScript 5l ¥

#9322 AWS Encryption SDK for JavaScript

AWS Encryption SDK for JavaScript EE S HMIES XM EEE, AWS Encryption SDKIE KR
SHEAT , SN ERMBEE , b MEREMEES 23 (BIEAWS Encryption SDK #5517

JavaScript 242

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK FERARER

AH) NEB#THEE. AWS Encryption SDK for JavaScript T B , #& A LAEH AWS Encryption SDK
for JavaScript R Z MW EMBES I EKMINZESE . AWS Encryption SDK

B2 , £ AWS Encryption SDK for JavaScript , #BEZ = JavaScript i5 S 2T Web I
PR —LFHRAM R,

AN, EEATENESKER , BEORERTNEIZARMRESF. TBRHNEHR, BXEZE
B, BZR BHTREM,

AWS Encryption SDK for JavaScript & &4

#9 JavaScript RIS EH MiE S XIAY AWS Encryption SDK FEIZAET :
- B9 INERME AWS Encryption SDK for JavaScript T &IREIJERK M, B2 , AWS Encryption
SDK for JavaScript ¥ f##Z HME S RIR BN HFEMIEKMAIZ L. AWS Encryption SDK
« M Node.js 12.9.0 MxFF#8 , Node.js X3FLL T RSA B4R B L%
« OAEP # & SHA1, SHA256, SHA384, = SHA512
« OAEP & SHA1 fl MGF1 #%& SHA1
« PKCS1v15
« 1£12.9.0 lRZ 81 , Node.js (X Z#FLLT RSA ZEADI<IE
« OAEP & SHA1 fl MGF1 #%& SHA1
« PKCS1v15

MR BRE

F L Web 3 %857 X 3F AWS Encryption SDK for JavaScript FT B E AR NZRIRE, ERILUES A R
YW ESSKI A WebCrypto AP B & & A SR IRkh — LEBR 2K AU IR 1E,

Web x| 55 25 BR
LATBR#IZFTE Web RIYEEFEAM
« WebCrypto APl 7 #F PKCS1v15 B EH %,

© WBEBRAZE 192 LEHR

FREE Y IR

REM 243

AWS Encryption SDK FERARER

AWS Encryption SDK for JavaScript FEE7 Web X P HITUTERME, MRFN B[/ AT IFX LR
£ , M'E & AWS Encryption SDK for JavaScript T #& &

- MBI MBMEE crypto.getRandomValues() , XR—FMERMZAFENENFE. BxX
) Web X ¥ BSMRASHIE B crypto.getRandomValues() , HS RS FE A MZEE T,
getRandomValues() ? »

PR EIR

AWS Encryption SDK for JavaScript ZEE Web X P FERAUTEMRE, WRELZEFHN Web il
KBHEIHBREXLEER , BXTEEER, &N , ZiH7EXKEFF AWS Encryption SDK for JavaScript
5 A R M

* % WebCrypto APIEEWebM AR FHHITERNMBIRE , BHFEERFARERNKE. BXXEF
Web INZH Web X EERRANELE , BSHEEEAIUER Web % 7,

o HARRAH Safari FME R EERFZHF AES-GCM BEFTNE , X2HLFEMN. AWS Encryption SDK
WRX BEEFEIM T WebCrypto API , BTSEFER AES-GCM INZEZFFT , MY AWS Encryption
SDK for JavaScript EA& AFEH#ITEF T INE. ©EM WebCrypto API # 1T H AR 1E,

ERNXHAREHEEZERR , AT EARMEEHD, £ configureFallback BEHF |, IBEE—IMXF
BRAMThEEMNE . LT RHIBEA Microsoft JavaScript Research BB (msrcrypto) , {ERATLUH
HEBEMARENE, BXTENRY , ESH fallback.ts.

import { configureFallback } from 'eaws-crypto/client-browser'
configureFallback(msrCrypto)

IEE &% AWS Encryption SDK for JavaScript

AWS Encryption SDK for JavaScript H—R5EERFHNERARK. —EERIARBRITHA—EL
ENERNES, —EEPZITHREMTHE, —EEREZMESHATLEN ; M—LHEMERN
ERHRFRTRLEN, BX for PERMEER JavaScript , AWS Encryption SDK &2 , F 1
R AWS Encryption SDK for JavaScriptBA & aws-encryption-sdk-javascript{Zfi& F b FAME R
AYREADME . md 3 ## GitHub,

(® Note
2.0.0 AWS Encryption SDK for JavaScript 2 8 B P 8 iR A &AL TiZ B E& . end-of-support

it
b

244

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

BT AR £ b AWS Encryption SDK for JavaScript iR4s 2.0.x & B & WA E #1 4 R EFARAS |
TEFREMRBREE. B2, RE2.0x FEIATHNZLINE , TAGFHRE. EMN 1.7.x
Z B RAEFHE 2.0.x REFMRA , AAMEEFE AWS Encryption SDK for JavaScriptEx #i
A 1.x. BXEZER , H5H TBRH AWS Encryption SDK,

EREIXLEER | FAEH npm package manager,

fFlan | BELESEE client-node Node.js AWS Encryption SDK for JavaScript 1 4R i2FT ER
FRIEERMER | EEAUTES,

npm install eaws-crypto/client-node

ELKiZclient-browserfER (BIEFE XK EE AWS Encryption SDK for JavaScript £ F i
WATEER) BEAUATHS,

npm install @aws-crypto/client-browser

A< 1Al 55 F B9 T4E R AWS Encryption SDK for JavaScript , 2 #aws-encryption-sdk-
javascriptfZfi E P i example-nodefMexample-browser R R R A GitHub.

R R AWS Encryption SDK for JavaScript
RV IESR AT LA AWS Encryption SDK for JavaScript B¥A R %10 B FrE A RB,
JavaScript Node.js By &R

client-node

‘BIETE Node.js PERREFIEMNFTEER, AWS Encryption SDK for JavaScript

caching-materials-manager-node

£ Node.js H & H X EFHIEZHEFINEE AWS Encryption SDK for JavaScript BB K.
decrypt-node

SHBEZRMNBUERRBBENHBEANNZEENEE., 88 client-node &R A,
encrypt-node

SEHNFEXRENBIE R TNZNZEZNE. 287 client-node ERF,

1 245

https://www.npmjs.com/get-npm
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node

AWS Encryption SDK FERARER

example-node

AWS Encryption SDK for JavaScript #£ Node.js # 5 HERAREN TERG, SETRLEN R
AT R B BEN ~F,

hkdf-node
SHET HMAC K240k 4E B3 (HKDF) , Node.js AWS Encryption SDK for JavaScript # BY £ 43

EEZEHDERIZEK, %K EF AWS Encryption SDK for JavaScript F £ WebCrypto API &
B R4 HKDF B ¥R,

integration-node

B SN, | LAREAE Node.js AWS Encryption SDK for JavaScript FH 2B 5N HMESSUHRR
AWS Encryption SDK,

kms-keyring-node

£ Node.js F 5 H 1 AWS KMS ZAFRHI BB

raw-aes-keyring-node

S 7 Node.js BRI AES BB

raw-rsa-keyring-node

S 7 Node.js P FF /R RSA ZEAHE .

JavaScript ¥ 5 25 &R

client-browser

SIFIREEER MBS AWS Encryption SDK for JavaScript 1 {# A REHNFTEER,

caching-materials-manager-browser

EXNRERP S H I FHIEZ A E 17 TheE JavaScript BB,

decrypt-browser

S Hh 722 MBI 3R R SR M BRI 2308 SRV B R

encrypt-browser

SHNFRRENHFEHITNENLER N EH,

IR 246

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser

AWS Encryption SDK FERARER

example-browser

E/XU 2 8% AWS Encryption SDK for JavaScript F{EA&EEN TERG, SERRRBEHN AR
KBNBTEN TG,

integration-browser

E A TFRIEX ¥ EEFH AWS Encryption SDK for Javafil R 2 & 5 H) HiE S XIMHZBH N
AWS Encryption SDK.,

kms-keyring-browser

S HERXKEP T AWS KMS B4R IR B3,

raw-aes-keyring-browser

SHERNRBRFZIFFEIE AES ZHRTNERE

raw-rsa-keyring-browser

SHER KRR XIFFEIE RSA BHATAIEHK.

B8R T A SRHER IR

cache-material

YEBEZAZTHE, BHRKBUARSSINRER —ESZFHNMEMR,
kms-keyring

S X5 KMS BT B

material-management

KHE IR B E EEER (CMM)o

raw-keyring
S HIE% AES F RSA AT EN R,
serialize

SHIZFRTESR TFILER HB BRI

web-crypto-backend

1E3X ¥ 25 & S H F A iZ WebCrypto API AWS Encryption SDK for JavaScript BB,

ER 247

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend

AWS Encryption SDK FERARER

AWS Encryption SDK for JavaScript il ¥

LA RGIFER T tn{aEFH AWS Encryption SDK for JavaScript 1% f #2817

YRATLATE £ B e xample-node Fl example- browser =R FHFIEZEHRHl. AWS Encryption SDK
for JavaScript aws-encryption-sdk-javascript GitHubfE %% client-browser = client-node #&
REY , TREXLERBIER,

BESRTEBNRIB ARG : 2 : kms_simple.ts , X ¥ 25 : kms_simple.ts

EFB
o FRARPBAIRMEZE AWS KMS HiE
o FERZRPUHEZRHIE AWS KMS

FERAZHARME AWS KMS i
LA 7R 45115 B8 #n4a] £ /. AWS Encryption SDK for JavaScript RiNZ M@ RS FZFRHF T A,

BERBIBLAWS KMS R AEFE |, X2 —FERERMMBLHIEEH AWS KMS key BWE . B
K BIEZHHB) AWS KMS key , FZH (AWS Key Management Service FF X E58) HHBIER
. MBFENRF AWS KMS £AREE AWS KMS keys FHIAR , S H £ AWS KMS A B AWS
KMS keys A1iR 5l

SR REEBEK,

M 1.7 RAFFIR. x 5 AWS Encryption SDK for JavaScript , &7 LA7E 18 B SE B4 2 7 im iy
FbuildClient B EHRERAE KRB, AWS Encryption SDK buildClient MEEER REE
REEMMRE, HTMBENRZN , ZHBIRERHHITENAE RN EEH encrypt M
decrypt EH,

LR REIEAbuildClient BERIE ERRIAM R E K
EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, &t A LAfEAbuildClient kR INEH S+ Nz
BRZANBE, BXEZER , 15 the section called “PR&IMNEHIEZA".

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,

| 248

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK FERARER

buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-browser"'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

SR 2 . WERAR,

BIEZATIMEHN AWS KMS ZHE,

EA% AWS KMS IR , ATIEEERBRZR , BATEREXABEZAFH XN HRITINER
MAEREREH. AWS KMS key BE AT S EZNHESHINFH |, SN E YA XHE RN,
ZHPEEZARPEZN AWS KMS key HHMNANARFEZAMZBBERAN —INFEX , 2
FBEMSEZRH. ERERE , CEERBRT-NBEREZH.

E1£ 5 AWS KMS keys H INZZ4AIREE AWS Encryption SDK for JavaScript , &] LA (£ 1A
S AWS KMS ZER IR, ZnBIER —MNEREZER (BEBIA ARN #5117) FM—/N Nz
A (B4 ARN#RIR) o

@ Note

MREBITEESEAE AWS KMS AFR#ITHE |, WATERAZ4 ARNs KRiRBI Z4AIR
AWS KMS keys FHI %40,

FEETHABZA | EGROAT AWS KMS key iR BN ERIIRAZ. EAREEETHR
REERA AWS KMS keysFrER R,

ayt]|

249

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK FERARER

JavaScript Browser

B, MR RMAENEI, X& AWS Encryption SDK for JavaScript R5IfEH webpack.
DefinePlugin , ESNEIEEEF RN BN KRR, BR , B UEREMSEEAREEIE.
RfE , ERAKELIE AWS KMS & F i,

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken

}
)

TR, AWS KMS keys NERKSRZAMEMBRHAIEE. K5 , A AWS KMS & im M 62
AWS KMS %, AWS KMS keys

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })
JavaScript Node.js

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

HE3: REME LT

MEZELTNREENFNEHMELST SHRIENKE, YEREMEXMZBAMNB LT , &
AWS Encryption SDK AMNZAFMEZE L TXHAEREY , AHBEREZFEMEHAME LT
X, EAMEBLTXRAEN , BEN—DIHESXRE , BUEREMNE LT

HE-NEENBELTXHNEENR, SNFHRNELAR -—NFHHR.

ayt]| 250

https://webpack.js.org/plugins/define-plugin/
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK FERARER

JavaScript Browser

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}
JavaScript Node.js

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}

S 4 MBRHIE,
EMZAXEHE , BEA encrypt BB £ A AWS KMS Z4AR, AXABBEMMNZR LT,

encrypt REUREIMNZAEE (result) , EFITEMBENEHE. NBENBREZHANEETHIE ,
BEMZBELTIXHNESR,

BRI MR ENEREESEARBELMNEZESE. AWS Encryption SDK

JavaScript Browser

const plaintext = new Uint8Array([1l, 2, 3, 4, 5])

const { result } await encrypt(keyring, plaintext, { encryptionContext:

context })
JavaScript Node.js

const plaintext = 'asdf'

const { result } await encrypt(keyring, plaintext, { encryptionContext:

context 1})

£ A Z A EZEIE AWS KMS

& LAE A AWS Encryption SDK for JavaScript 3k % 23 1l 22 §9 85 4 H- 0% & R 1 338

5l 251

AWS Encryption SDK FERARER

EizRplH | RAEZEthe section called “ff A Z AR INZ AWS KMS E3E" 751 A 023 09 B4 o

HI] 1 REABRIR.

M 1.7 BRAEFFIR, x 1 AWS Encryption SDK for JavaScript , &7 LA7E 1 F SE Bl & F i #Y
FrbuildClientEBEHRBE&AIE KM, AWS Encryption SDK buildClient B EER REE
REEMMRE, #HITMBENRZN , ZHBSRERFHITENEAE RN EERH encrypt M
decrypt BE¥,

T RBIEAbuildClient BRERIE EBUIAR R E R

EEREQUIRE_ENCRYPT_REQUIRE_DECRYPT, #ta[AfEMAbuildClient kR 4)HNEH 2+ i
BEHANKBE. AXESREE , 51 the section called “FRE|MBEBIEEH".

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

HI 2 . MERAR.

EMBHYE , BEA encrypt HEREIMMNZEEE (result), MBERERBEMBNEE,. ME

MBERANERZECHE , S/NE L TXNESR,

5l 252

AWS Encryption SDK FERARER

HBER |, & BIIEE—D AWS KMS ZiHE, S AERRA T MRS ENHRZRHE , REE
RATENEHAT, BERY , BEZHAR AWS KMS key FARMEDLE —NEEB B MEHE R —
MNBHREZH. BTEEERETABEZ , EFEEERBBRRPEEEREZH, WRX
A, SRR 5 AL B A& A 2R 2 A M I EE 4R

EEH AWS KMS key R EARIEE — 4 AWS Encryption SDK for JavaScript , A5 { F 248
ARN. &R AWS KMS key , T #iR%, MBEHEEHIRE AWS KMS A28 AWS KMS keys Hi
AE , HSH £ AWS KMS £A 2B AWS KMS keys FiRFl

® Note
MREERBRNBARITHEMNER , FEMRZHA ARNs RiIRFIZEATRFHH AWS
KMS keys Z 4,

Fb RS | RGBT —MUEEMBRRAIR AWS KMS keys FH —MIZ4AR, EBITEZR
BZHl , BNRIZSA ARN B AEM ARN, BAMEH AWS KMS keyly kms : Decrypt X
BRo

JavaScript Browser

B, EAKSRREENEIE, X AWS Encryption SDK for JavaScript ;=5 webpack,
DefinePlugin , EQFEIMEEEF RN EHEFRIER, B2 , B UFERAEASERRBEILE,
R , EREREAE AWS KMS &,

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeyld,
secretAccessKey,
sessionToken
}
)

BETXR , £/ AWS KMS ZFimtl2 AWS KMS B4RIR, It REMXERA MZEZ AR AWS KMS
keyS FE—1

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

ayt]| 253

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK FERARER

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ keyIds })

iggl% 3: ﬁ@ﬁﬁo

BTk, BA decrypt B, ZAZNRNIIZRANFZZRHA (keyring) M encrypt REIRE
BN EE (result). AWS Encryption SDK A B4R E P —NNZNHRERH. AT,
{5 F B SUBUE 2 A AR B IR

MRFARI , N plaintext ZERBEAN (BER) BB, messageHeader ZREEHF/ <
ENRENTHIE , SEATHREREN NS LT,

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

JavaScript Node.js

const { plaintext, messageHeader } await decrypt(keyring, result)

SR 4 BIEMER LT3
RAT@EHRENINE L TXEBEE decrypt BEBUREIRE SRk (messageHeader) 1, ENA
BFRERAXHEEZS , FRIIEHRBENFEANMNE L TXHPREEEENBNERMNME LT
Mo MRFEE , MAsERABFEHER , IELSEMRBEBHHNE,
ERIUEMBE LT , FREZTE R, ENBEEELE —EEAN , NEMREESE (CMM)
EMEEHEZARABEEZANNBME LTXH, BR , BRXNMAENBLTXNNBEE
IREHYINEE £ 32,
B, WEHEMRLHREMEZE LT, AF , RIERBME LT X (context) PHNEMNMREXN SR
B N2 £ T3 (encryptionContext) AR EXN BB TE.,

JavaScript Browser

const { encryptionContext } = messageHeader

5l 254

AWS Encryption SDK FERARER

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

b
JavaScript Node.js

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

)

MRMEZ ETXREKD , &0 LURE B TR

AWS Encryption SDK for Python

REBNET WAL EFMER AWS Encryption SDK for Python, BXERREENIEFMES AWS
Encryption SDK for Python , i@ £ #aws-encryption-sdk-pythonfZf&E GitHub, B> APl 3X#4 |
BS R,

&

- KREH

frmP o
. Fi

« AWS Encryption SDK for Python Rl

TRFH
£ R ¥ 2 B AWS Encryption SDK for Python , E#R#H B U T & RE 4
T8 Python KRAS

3.2.0 RESMAEE Python 3.8 E S AWS Encryption SDK for Python ARZ,

Python 255

https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK FERARER

@ Note

AWS ZEMBHRHEZERFE (MPL) 2iRZ 4 AWS Encryption SDK for Python 5| AR A 1%
I, xo WMRRITEZE MPL , MABERA Python 3.11 HE SR,

#) B HARR A AWS Encryption SDK 3233 Python 2.7 # Python 3.4 R EEMA |, BRINBEEH
BFTIRAH AWS Encryption SDK,
ZE T & Python , & Python T#.

EATF Python §9 pip ZE I A

pip @& Python 3.6 REEBMAH , BERAHEENEBTHAR. BEXARILE pip WES
ER , BEZSH pip XHFH Installation,

Wi}
P

HEEHMRAH AWS Encryption SDK for Python,

Wt

(® Note
3.0.0 AWS Encryption SDK for Python 2 & B9 P B MR A &4k T iZ B Bt . end-of-support
A LAZ £t AWS Encryption SDK MRA 2.0.x RESRAEF ARIEAR , TEEREM
RBFEHIE. B2, BAE 2.0x FEIATHNZEIE , TRAEHRE. EMN1.7.x ZBIHRAE
2 2.0x RESMA , BAMEEFHE AWS Encryption SDKEFIRAK 1.x. BEXEZELR | #
21 TR AWS Encryption SDK,

pipFF &% AWS Encryption SDK for Python , 0L T ;RBIFTRo
RREBHTARA
pip install "aws-encryption-sdk[MPL]"

JE[MPL1&RZEAWS MEMEHEMBEFE (MPL), MPL 82 AT NBMNBZHENLEE. MPL 2
W7 4 i AWS Encryption SDK for Python 5| AR AIIEK I, x. EA1AZIEWZEE MPL, {8
=, WREFTEFER MPL , I AT A& BE/F [MPL]E&,

256

it
b

https://github.com/aws/aws-cryptographic-material-providers-library
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK FERARER

BXRERA pip REMAREFENERARE , BFERLEEF S

AWS Encryption SDK for Python BEEF & LN ZRBZE (pyca/ZiBE) . pip FIERAHELE
Windows t BZh R MR cryptography E. pip 8.1 REBMRALBEINE Linux ERZENEE
cryptography. MREA pip RHEMA , H B Linux ;REZXBEWE cryptography FEFIEMN T
8 LEEREXETE, AXELZEER , BZHE Linux LHENE,

ZhRAHY1.10.0F02.5. 0RR AT B2 58 Kk i< R AWS Encryption SDK for Python B E7£2.5.013.3.22
B, HAtARAM AWS Encryption SDK for Python REHHIRAHWEBE, NREFEL 332 EEM
BRBREMRA |, RIVEWIEFEH AWS Encryption SDK for Python# & 37 £ BiR A%,

BHRHPBRFIF EZKRA AWS Encryption SDK for Python , &1 8 A B aws-encryption-sdk-python 17 B
GitHub,

LT G AWS Encryption SDK for Python , & EEARIEEFH Python RAIKE,

AWS Encryption SDK for Python ;RI4XH3
AR RBIEERE R T A8 AWS Encryption SDK for Python 3R 123 H % 22 Bt dE

A5 oh i TR G 5 BR AN E A AR AS 4. ELHAY x AWS Encryption SDK for Python B8 T8 1123 #1 KR
HI2FEMBIN (aws-cryptographic-material-providers). EEEMFEA RHRAN RG] , =}
EREAMBREERE (MPL) &% |, EfEaws-encryption-sdk-python 7 B B iR 745 51l & H % B 48 9
RRZA, GitHub

HIRERARA 4 B, x 7 AWS Encryption SDK for Python MPL & |, Eff A B HAHRMITEE NE,
AWS Encryption SDK R ZHAFELELETRAPFFEANEIZHREERRS. BXEZER,
ES A the section called “BHFAM" . BANERPRUEFIBIZATN A , ESHaws-
encryption-sdk-pythonZ#EFKEE =Fl . GitHub

£
DO AR 2R T ER
DOEE AR B R
Iz M 3 2 7 RF ER

LU R A an{a 5 F§ AWS Encryption SDK SRINBFEZF /TR, LREIEATEXNRINE KMS
AWS KMS Z4R K 4R,

5l 257

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK FERARER

It 7R Bl 158 A 3R A R SR B SE 5k AWS Encryption SDK & F
%o, REQUIRE_ENCRYPT_REQUIRE_DECRYPTEXEZ{EE , S the section called “1% & & HY &
R,

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and

decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
EXAMPLE_DATA

with an encryption context. This example also includes some sanity checks for
demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

import boto3

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"
def encrypt_and_decrypt_with_keyring(
kms_key_id: str

"""Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

ayt]| 258

AWS Encryption SDK FERARER

Usage: encrypt_and_decrypt_with_keyring(kms_key_id)

:param kms_key_id: KMS Key identifier for the KMS key you want to use for
encryption and

decryption of your data keys.

:type kms_key_id: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,

which enforces that this client only encrypts using committing algorithm suites
and enforces

that this client will only decrypt encrypted messages that were created with a
committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. Create a boto3 client for KMS.
kms_client = boto3.client('kms', region_name="us-west-2")

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Create your keyring
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=kms_client

ayt]| 259

AWS Encryption SDK FERARER

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=keyring_input

5. Encrypt the data with the encryptionContext.
ciphertext, _ = client.encrypt(
source=EXAMPLE_DATA,
keyring=kms_keyring,
encryption_context=encryption_context

6. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert ciphertext != EXAMPLE_DATA, \
"Ciphertext and plaintext data are the same. Invalid encryption"

7. Decrypt your encrypted data using the same keyring you used on encrypt.
plaintext_bytes, _ = client.decrypt(
source=ciphertext,
keyring=kms_keyring,
Provide the encryption context that was supplied to the encrypt method
encryption_context=encryption_context,

8. Demonstrate that the decrypted plaintext is identical to the original
plaintext.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert plaintext_bytes == EXAMPLE_DATA, \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

MEZEMBZRFZT R

LU 5158 BA an{a 5 F§ AWS Encryption SDK SRINBFFEZF T R. LLRBIERREE AES Z43E,

Bt 751 {58 A 3R A R i SR B SE 5L AWS Encryption SDK & F

. REQUIRE_ENCRYPT_REQUIRE_DECRYPTEXREZ{EE , S the section called “I% & & HY &
HREE

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

ayt]| 260

AWS Encryption SDK FERARER

This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
load into

memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
loading it

all at once in memory. In this example, we demonstrate file streaming for encryption
and decryption

using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
“plaintext_filename’ with an encryption context to an output (encrypted) file
‘ciphertext_filename".

It then decrypts the ciphertext from ‘ciphertext_filename™ to a new file
“decrypted_filename .

This example also includes some sanity checks for demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
example

in the AWS Encryption SDK for Python.

import filecmp

import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders

from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig

from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
CreateRawAesKeyringInput

from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noqga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
plaintext_filename: str,
ciphertext_filename: str,

5l 261

AWS Encryption SDK FERARER

decrypted_filename: str
"""Demonstrate a streaming encrypt/decrypt cycle.

Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
ciphertext_filename
decrypted_filename)

:param plaintext_filename: filename of the plaintext data

:type plaintext_filename: string

:param ciphertext_filename: filename of the ciphertext data

:type ciphertext_filename: string

:param decrypted_filename: filename of the decrypted data

:type decrypted_filename: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment

policy,

which enforces that this client only encrypts using committing algorithm suites

and enforces

that this client will only decrypt encrypted messages that were created with a

committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient()".

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. The key namespace and key name are defined by you.

and are used by the Raw AES keyring to determine

whether it should attempt to decrypt an encrypted data key.
key_name_space = "Some managed raw keys"

key_name = "My 256-bit AES wrapping key"

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

ayt]|

262

AWS Encryption SDK

FRARER

an

ct_

4. Generate a 256-bit AES key to use with your keyring.
In practice, you should get this key from a secure key management system such as
HSM.

Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
static_key = secrets.token_bytes(32)

5. Create a Raw AES keyring

We choose to use a raw AES keyring, but any keyring can be used with streaming.

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=static_key,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

6. Encrypt the data stream with the encryptionContext
with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
file:
with client.stream(
mode="'e"',
source=pt_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as encryptor:
for chunk in encryptor:

ct_file.write(chunk)

7. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own

code.)

assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
"Ciphertext and plaintext data are the same. Invalid encryption"

8. Decrypt your encrypted data stream using the same keyring you used on

encrypt.

ayt]|

263

AWS Encryption SDK FERARER

with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
pt_file:
with client.stream(
mode="'d",
source=ct_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as decryptor:
for chunk in decryptor:
pt_file.write(chunk)

10. Demonstrate that the decrypted plaintext is identical to the original
plaintext.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert filecmp.cmp(plaintext_filename, decrypted_filename), \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

AWS Encryption SDK 3 F Rust

AEBN B L EFER for AWS Encryption SDK Rust, BX M for Rust AWS Encryption SDK
HITRENFMEER , B30 L aws-encryption-sdkZ & EH Rust B % GitHub,

f AWS Encryption SDK or Rust 5H fth — L4728 S KM T E 24k AWS Encryption SDK £ F :

« FAXEBERRBER, BR , for AWS Encryption SDK Rust SZ#HAWS KMS 9 EZ4AH | X2 —Fp
BRI MBEMRRIFHRRE R,

« PXEFRBIE

f AWS Encryption SDK or Rust @& 2.0 lRAEAFRSIANMERELINEE. x RESRANEMEBESSE

I AWS Encryption SDK, B2 , I1R{RAEEMA for Rust SREEZH 2.0 ZBIRAMZHEIE, AWS
Encryption SDK x iRZAH 5B — & SKI AWS Encryption SDK , B[R EE AR R EZHE, BXES
FE , BFSH i E BN EE R,

f AWS Encryption SDK or Rust & AWS Encryption SDK in Dafny B97=4] , X2 —fEX R IUEE
S, RALAEREENE., SUATHRBURMNENT, ERNEFHERINGEEBEMENERDPHE
AWS Encryption SDK ZheeHI .,

THREZ

Rust 264

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK FERARER
« BXRERIMAZEHREEED (fliniEERZAEEEH AWS Encryption SDK., BR &I IN% E4E 2 A M
A AWS KMS ZXig#40) BRfl , TSR IEEBE AWS Encryption SDK,

- BXUAEEFMEA for Rust AWS Encryption SDK 7R , &5 £ aws-encryption-sdk1Ff& EE F
M Rust "4 GitHub,

&

- EREH

=P
.« I

« AWS Encryption SDK X} F Rust B =B

FTRFMH
£ &% f AWS Encryption SDK or Rust Z 8 , iR & B LT T RE 4,
Z % Rust # Cargo

£/ r ustup BRI BITREMRAH Rusto

BXTHENLE rustup WESER , B2H (BEFM) PHLERER.

]

=
i

f AWS Encryption SDK or Rust £ aws-esdkCrates.io LA LMERFEFEA, BXRZEFHE Rust ik
AWS Encryption SDK Hi*#IfE . , 152 A F@#EFH README.md. aws-encryption-sdk GitHub

PRA] LB LA A &% AWS Encryption SDK 3& A F Rust #9,
FaAR

E% % Rust iR , {553 T aws-encryption-sdk GitHub Ff%E. AWS Encryption SDK
£ Crates.io

FEENIE B RPE/TET Cargo 9 -
cargo add aws-esdk

HEELRE Cargo.toml ML T —1T :

TR 265

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples
https://rustup.rs/
https://www.rust-lang.org/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline

AWS Encryption SDK FERARER

aws-esdk = "<version>"

AWS Encryption SDK XJ F Rust B R B

LA RBIERT R for Rust AWS Encryption SDK #{T/RTIERFEANERREER, E4AMS | &7
PASEGI{E A1 BHE S & BE AWS Encryption SDK M EHEMERE ., RiE , EEASAN A EZE , ££6
{LE Iz TG L5 AT R

BEXRERIMAEPEBIEDN (HlUEERAELZEHNRIMZELIERS) WRHEl , FSH aws-
encryption-sdk 2 FE H # Rust =4I GitHub, AWS Encryption SDK

£ for Rust H iNZ3 F R 22 B4 ¥ AWS Encryption SDK

BRBIERT MENEZRENEARN, EERAZ—1 AWS KMS 8RZHARTFHBEZAX -1
NXHEREATINE

F 1. £Hl{t. AWS Encryption SDK

&I EH B # 755% AWS Encryption SDK SR IR M 2R E3E

let esdk_config
let esdk_client

AwsEncryptionSdkConfig: :builder().build()?;
esdk_client::Client::from_conf(esdk_config)?;

HIR 2 : Bl AWS KMS &,

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

ik ISR ME ET X

let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

ayt]| 266

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK FERARER
E 3L RHemRREEE,
ERERAMRREEFERFN S EZ0ERAR , BAKEEBLZART ENEE.

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

FIR 4 : B2 AWS KMS FE4AIE,

EQEZAR , FEARATRANRAABRAR G E. LREIE
Fcreate_aws_kms_keyring() FEHIEEE— KMS Z4,

let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

£ 5% MEHA,

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

let ciphertext = encryption_response
.ciphertext
.expect("Unable to unwrap ciphertext from encryption response");

566 & EASNERERNZATEEZ SN BRI,

let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

5l 267

AWS Encryption SDK FERARER

let decrypted_plaintext = decryption_response
.plaintext
.expect("Unable to unwrap plaintext from decryption
response");

AWS Encryption SDK @8 51T H

AWS Encryption SDK &85 175 E (AWS 1% CLI) % ERERSITHMEIZ S AWS Encryption
SDK AR EAXMBHNBEZHE, EFEEEAMBRERET L AR,

(® Note

4.0.0 Z 81K AWS mnzE CLI AiRAR4 TiZB &, end-of-support

BT EE R MR RBIBEI AT L2 1M AWS Encryption CLI BRZ 2.1.x RESRAEH I
BHFRA, BR , RE 21X PEIATHNLZLETE , TRAERS. M1.7 REEH. xRE
BIRA , RMAEFH BRI 1. AWS 1% CLI B x IR, BEXEZELR |, H5R TBERY
AWS Encryption SDK,

LT 2 EEHR VR E AWS I3 CLI ARAS 1.7 XM, x M 2.0, x. ER , AWS &
CLI FRAEN 1.8c x BT 1.7 lRo x F AWS % CLI 2.1, x Blf£ 2.0, xo BXRFAEER ,
EZ#aws-encryption-sdk-clifZ i EF IR L 205 GitHub,

S®PTAESRI —# AWS Encryption SDK , AWS % CLI Rt SRBIBERF I, XLEEEITIEEH
mE, FMARIEREE (AAD) URETSEHRIUINZTENHRAELEY. , Sl , EEFHRE, &
AREMEEH 256 {7 AES-GCM,

AWS fN% CLI 237 Linux, macOS AWS Encryption SDK for Python#l Windows £ , #Z H X,
YRETLAFE Linux 2% macOS BIE ik shell 1, Windows M e S I2RFE O (cmd.exe) AREMREH
PowerShell 12| & A2 17 a5 B 2% 5K i0 25§ % 22 508 o

HATE 4 E TiB S K2 AWS Encryption SDK , ‘@E1NZ AWS CLI , IR B4, flin , I LAfE
Am&EHE , FRAMZE AWS CLI X H## T, AWS Encryption SDK for Java

REBNAT AWS % CLI, BB THNALENEAT , HREE TN ROIKESEIEAT. EHREA
17, SR AWS R BEHRNNAFEAMNE AWS CLI MEZENRZENBIE. BXEZHMAERS | &
SR FAEXR | H AR fEaws-encryption-sdk-clifz & B R FF % AWS Encryption CLI GitHub,

WRTRE 268

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK FERARER

in AWS % CLI 2317 AWS Encryption SDK for Python, #&Xi=1T CLI &t , #4 B 3## Python &
TIEfl, RTIRESMEE BRURFEAEINGSMAR —RIBMNGS, HlW , ST —NEFLE
BRFHXHNDS , MARABN XM ETEMNGS,

£

« &% AWS Encryption SDK S8 BT E
WA fEA AWS HN% CLI

AWS fn# CLI A Rl

« AWS Encryption SDK CLI i&ZMSHS
« AWS iz CLI BYpRZR

Z % AWS Encryption SDK 51T H

AEBNBMALE AWS IE CLI, BXEFEMAEER , S LM aws-encryption-sdk-clifEf# FE GitHub
Read the Docs,

m
[

REVZAH
« ZIRMERH AWS % CLI

RELEHN

o AWS % CLI 237 AWS Encryption SDK for Python, EZ % AWS i1% CLI , {REE Python H
pip Python @EE TR, AILEMAXIFNTEA L&A Python M pip.

HERZ AWS % CLI 28l , BREATHEZAN
Python
AWS 1n# CLI i 4 4.2.0 R ESRAFEE Python 3.8 E G M.

BHRRAH AWS 1% CLI X#F Python 2.7 M 3.4 REGMZA , BHRINEWEERARIMRAEH
AWS % CLl,

RZE Linux #1 macOS Z&H#E T E Python , BERFEHLE Python 3.6 ESHRA, B
IBERRFH Python fRA, 7 Windows L , A% E L Python ; BRIAKRRE, ETHHZE
Python , i5& 5 Python downloads,

269

it
o
o)
=

https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://www.python.org/downloads/

AWS Encryption SDK FERARER

pip

ERERBLZET Python , BEGTSITHFRALUTRE :
python

ERE Python lRA& |, A -V(KB V) 8,

python -V

£ Windows L , &% Python 2 /& , ¥ Python.exe MM EZFMBB R ETENEH,

BABERT |, Python ZEEMBAFBRYP , HERER $home FEFMAFBENHE
% (%userprofile% = AppData\Local\Programs\Python) A, BEHEZNRE LEK
Python.exe XHME , FREUN T EMERIZ —. EALER PowerShell # FEM &,

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip £ Python BF &S, E"'”* AWS 1Nz CLI REMREI , IREE pip 8.1 RESRA
BXRERERHAR pip BB , BZH pip XHEHH Installation,

Linux RE | 8.1 pip ZATMIRAT AR AWS H1% CLI FRBMIMEE, REkEREH
pip HiA AMEMBRMRIE, AXESEL FSHEE Linux CHERME,

AWS Command Line Interface

RETE AWS N CLI AWS KMS keys H A in AWS Command Line Interface (AWS CLI) & ,
AWS Key Management Service (AWS KMS) X 24 FEW. NMREFANETENEZHREME
5,] AWS CLI F2&4FEH.

ZE AWS KMS keys 5 AWS % CLI BB&ER , BEELZEMEE AWS CLI, ZBEEEEA T
TERRBIIMNETRE AWS KMS T #t AWS % CLI FH.

ZEMEF AWS % CLI

REBRFIRAE AWS % CLI, HREMApipZE AWS % CLI &, E2BE3I R CLI FTENE ,
‘EIE Python tIZEM, AWS Encryption SDK for Pythoni& Fi F Python (Boto3) # AWS SDK

iy

% CLI 270

https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

AWS Encryption SDK

FRARER

® Note

4.0.0 Z 81K AWS mnzE CLI RAR4L TiZB &, end-of-support

BEEE AR BREIEEI T L2 2 M AWS Encryption CLI BRAS 2.1.x RESRAEHFH
BHFRA. B2 , RAR 21X B ATHHNELZLEWE , FTAERS. M 1.7 REEH. xHE
BIRAR , RMAEFH BRI 1. AWS 1% CLI B x iR, BEXEZEE , H50 TR
AWS Encryption SDK,

FZ = EER MR TE AWS 1% CLIARA 1.7 AEWH. x 2.0, xo B2, AWS %
CLIFRAN 1.80 x BT 1.7 fRo x M AWS in% CLI 2.1, x BifX 2.0, xo BXREFEHEE ,
B Z #aws-encryption-sdk-clifZ i E PR L 20 F GitHub,

ZRBIMAK AWS % CLI

pip install aws-encryption-sdk-cli

FHR B RFMRAR AWS 0% CLI

pip install --upgrade aws-encryption-sdk-cli

EEREH AWS I CLI BWhRZEFF AWS Encryption SDK

aws-encryption-cli --version

BHSIH T WA ERRES,

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0

FREBHFARAHE AWS %z CLI

pip install --upgrade aws-encryption-sdk-cli

R AWS M% CLI FELRERHRAN (MBHRLZEMIF) . EAT Python (Boto3) K AWS
SDKHIRZE T Boto3 , RERRHFAWIF Boto3 ARAIH 1 T ER X KT E .

ERBLER Boto3 A<

pip show boto3

iy

P

271

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK FERARER

E#H N HZFMRAH Boto3

pip install --upgrade boto3

ELRYFIEEFF KB Enc AWS ryption CLI fRZA , iBEF LW aws-encryption-sdk-clifZ & FE
GitHub,

B3ER pip BRMAR Python BFEINELHMEL , S pip T,
wn{afEFH AWS 1022 CLI

AREBNBUAER AWS % CLI FASE. Bx4 , BSHE AWS 112 CLI BIRHl, BRTEX
¥, BSREER, XERGBERNIEEERTF AWS % CLI BRA 2.1, x RESHRAK,

® Note

4.0.0 ZHIKY AWS iNZ CLI A4k T ZB &, end-of-support

BEEE AR BREBUERI AT L2 2 M AWS Encryption CLI BRAS 2.1.x RESRAEHH
BHRA. B2 , RAR 21X BEIATHHNEZLEDE , FTAERS. MN1.7 REEH. xHE
BRRA , RREEFRBEIHH 1. AWS IIZ CLI]9 x JRA, BXEZEE , B30 T8RN
AWS Encryption SDK,

FNREMEERYRTE AWS 1% CLI MRAS 1.7 h XMW, x fM 2.0, xo B2, AWS &
CLIKRAH 1.80 x BT 1.7 MRo x M AWS 0% CLI 2.1, x BUX 2.0 xo BXREHAEE ,
B2 aws-encryption-sdk-clifF g EE RV X Z £ & GitHub,

BXRETRNAERARMBHRFEZANZT2UEN RS , E5H RENZELIFERS.

BXBRUAFEH AWS KMS ZXigZ{AN RG] |, SR ER 2 Xig AWS KMS keys,

£}

« QO{ATHNER A R 2 TR
Wi E 2 REH

LI DR TN

A0 A{A 45 2E Bl v i

WA EERNE £ T X
QN {A 5 RE A i SR B

e fEA CLI 272

https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK FERARER

c MMEREEXHRERSHK

LURCIIIRRR Y a6

in AWS % CLI A #IThEE AWS Encryption SDK , ATARMZ £ it i Z BRI,

(@ Note

--master-keys S8 AWS Encryption CLI ARZAS 1.8.x FHERAHERZA 2.1.x PR, &
WA --wrapping-keys S8, MMA 2.1.x FFih , MBENEZREEMEA - -wrapping-
keys S8, BXEZEE , i3 AWS Encryption SDK CLI iB8EZFMSEHSZE,

- TEMNZE CLI F AWS MEHEN , EERELNAXABENLLEZH (REHH) |, Hln AWS
KMS key in AWS Key Management Service (AWS KMS), IR FEABEEN T RAREREF | BEE
ZETZRMHERF. ZEFEEENZENEEAREXAMEREN ABENREVCE, NEZLTXR
miER , BENER,

FERA1.8x#F |, £/ --wrapping-keys SHEEE[FEA --commitment-policy % ; &N
ZSHTEH. MIRAS 2.1.x FFHA , --commitment-policy SHE LR , BEWEA,

aws-encryption-cli --encrypt --input myPlaintextData \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myEncryptedMessage \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

AWS tn# CLI fE M —HBBEBHRAN ENBRERTNE. AR , NEEENTRFZHTHRERH
HATER, ©RENFENEEARBRZBENTHEE. IRESESMBNRE (BX) IR
BREANMBRREIR, EAXELRERATE. EEHERAE.

- EREBEBERN , BFEANBHER, MENMZE L TXARBAXHEMNTHELE, BETUEE
AWS tn# CLI AT ARk B4R , 20F &1F Encryption AWS CLI & AT LAfE F A {a X Bif
BT ITMBENIEER.

MARRZR 1.8.x FF#f , --wrapping-keys ZHEMRZI B EN , BENUFER, MRAE 2.1.x F g,
BB RNEEMEA --wrapping-keys ¥,

WA £ CLI 273

AWS Encryption SDK FERARER

fREet , |ALAERA --wrapping-keys *?&H’J key BMEREERATHRBZLFENIREH, EHZ
BfHEE AWS KMS BRZARAER , EXR—HHEME , AU IEEERERTTEERANE
H, IREAEBENERAREER , & ?aml,&m{ IEFNaRBENA,

MRERERZABYE , WA --wrapping-keysS BN EXIEMIREN ,
¥true , Encryption CLI AT EAEH AWS tnz EB#E’JEH@%E%J&{TﬂﬁﬁO

BEXERREMEA --max-encrypted-data-keys ZHRBREAIT SN NBREZHRBRNE
ZHHE ., EEMHANNMEZREZARE (MEFEANSNIEEZRE -) AEENKZKAE (4
ms), BEREZEER , ESH REMBZERIEZA,

RAEELETMBERALZE , --buffer ZRFI QBELEHAN , SFERIEHRFER (NRFHE) .

--decrypt-unsigned ZEXNMENFHITHRZABREEEREZZIAREE, MREFEA --
algorithm SEHER TRATHRFIBZNELEHRNBEE , BEALSH. IRNEXFEL
B, NFEZEKM,

IBAILAER - -decrypt B --decrypt-unsigned #{THE®R , (ETERMFERATEE,

aws-encryption-cli --decrypt --input myEncryptedMessage \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myPlaintextData \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

0 AWS & CLI A2 R ZHARBEMBEETNBERH, RE , CEABBEZABRZRE. TR
[B] B8 LB R AR B R AR RY TR

WA ESREH

N CLI AWS MEHER , FEEZPEE—NIEEH (REHH) . EFALLAWS KMS keys
£ AWS Key Management Service (AWS KMS) FfEF, @EXRBEENETZHAREEFNES , R
EMERMEZ,. BENEZHARMUEFTUREMHREN Python EHLHARMER,

EERAE 1.8x RUEHRATIEERERZ , BER --wrapping-keys 8 (-w). ZSHBWER
B A attribute=value BXHWEMEE. EEANBEHIRTEIZARMEFNGB S,

WA £ CLI 274

AWS Encryption SDK FERARER

- AWS KMS, FENZEGmTH , BUTIEEEHE key BHEM --wrapping-keys 8. MMRZ 2.1.x
Fig BBGSHEEEFEH --wrapping-keys 38, B #Er , --wrapping-keys SENAIE
BERN true B key B discovery B (EFEERBRRER) . HEEMHE %N,

- BEMERHAREER, BXAES NG SFIEE --wrapping-keys 8. ZSHBEXNER
key # provider &%,

BOLER—HSHEEZ --wrapping-keys SEHMBA key & 1.

BREZASUEE

--wrapping-keys ZHESEUTEMEREE, FIENBEGSHEE— --wrapping-keys ¥
(= --master-keys ¥) o MRAK 21.x FFih , BB BEE - -wrapping-keys S,

NMRBUHBNHELTESEERIBHETR , BREVNEMSIS5IEK, FlW --wrapping-keys

key=12345 "provider=my cool provider',
7 BEEAREN
£ key BHIRABEZERHA, MERN , ZETURETZARMEFRBINEARAFRAT.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

ENFGmeH , BUARELETE—"Nkey BENE. EEZNEEZHATNRENEERS |, 56
BZA key B,

aws-encryption-cli --encrypt --wrapping-keys
key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d

EFEANMBERSH AWS KMS keys , ZHMNERTEE4 ID. HFE4H ARN, 3lEH51H ARN,
5z | Z encrypt i = TE key BHEESEABBE ARN, BXBFHFIRFNIFHAER AWS KMS
key , 25 (AWS Key Management Service FF X BI85/ N ZHAIRRAT

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

EFEABENERARMERFD decrypt it H , TEMF A key M provider B %,

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101'

WA £ CLI 275

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK FERARER

HEEANBRERTH AWS KMS , BraLfEAZABMREER THREN IEERENNLIE
M AWS KMS keysRIiEEA T MEHEEMNtrue , £FME AWS CLI EREMA T NZE AWS KMS
key HEMEM. MREE AWS KMS key , MEXFERTNEZHENETEZERAZ —

EESIEZEHARK AWS Encryption SDK 5{ERE. ©AIERIRER AWS KMS key fRITE £
o

EMBWTH |, key BENELTNZZEH ARN,

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

K . #R% AWS KMS key BHEA any

MREBERBRINTEERBIFEH AWS KMS keys , NI AT LAEAE R discovery B, truefld
AtruefoiF AWS MNZ CLI EREMMNEEE AWS KMS key IR A B TIRE, MREREE
discovery Bt , M &AM A false (BRIAE) . KIBEMNERBGTHER , HENRXZEEHER
n&ZFER. AWS KMS keys

B true K discovery B AT ABRER key BHEIEE AWS KMS keys. fRZ A INZRIE S
B AWS KMS keys , 81 --wrapping-keysS¥H#E4ME — N 2B HH—MENNWEIE
Htrue , BEFERERMEZ,

HRIBERN , REMERER R 2 XM AT - B T 68 AR BIESR AWS KMS keys IEEH
SEEHN. AWS Ik EUTRHI4 , ZRIEMARYT AWS n# CLI fEREE AWS KMS key FHIE
B AWS Ik,

aws-encryption-cli --decrypt --wrapping-keys \
discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

RUEERF EEXBHRHER

provider BB E X ZARMEF. BIAMERN aws-kms , ©FRR AWS KMS, MMRERATRH EHF
HRMER , WEEMFEH provider B4,

--wrapping-keys key=12345 provider=my_custom_provider

WA £ CLI 276

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK FERARER

BXREABEN (IFAWSKMS) TZARMEBFNEZFE L |, BSH AWS Encryption CLI 771
README XA ESHREEFE B,

X : fEE—1 AWS X5

£ re gion BMERIEE AWS X5 #9 AWS KMS key, ZEMANTE encrypt S S HFAEMR , HBRE
FRARBEF R AWS KMSE B K.

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS IR % CLI 52X (Hlf0 ARN) |, NFERAZBABMHETIEEN. NRRABEET
AWS X5 , N XEE 4GS 2K, AWS XiF

region BEMRETIEENHMXE ., WREFEAXEEM , AWS Encryption CLI ts 5 ERE
) AWS CLI i B EEXH (RE) REIAEEX K+ AWS XiF IEENE .

profile : &7E i & Bl & XX

A LAGEA profile BMEHEE AWS CLI @i BB E X, REENHATUEEREIEM AWS XiF. R
BEEXZARMERFN AWS KMSEY , ZBHEF B,

--wrapping-keys key=alias/primary-key profile=admin-1

B LAE A profile & #E7E encrypt # decrypt f ST HIEER AZKIE. EMNEGS AWS Xig |, R
B AWS BRAETBEXHE&EXEE A , Encryption CLI I EGRBEBEXHhFER. E£HF
BRmoH , B AWS XiF FHE B X5 2.

MAEESNIEZH

A LEBIN S OPIEESNEIEZHN (REBH) -

NMREEZNERFH , F—NEREBEAFERFANEZRTNERENREZR. HaEZAXEE
MBFEZARITNER, ERNNZEESEMENEE (“NEXF") AR —ENZNHEZSR 81
BEBANZ - MEZR. SASRBHATURR - MNBNEEZS , RAEERZHE,

ABEMM S EEESMEREN

« £ --wrapping-keys SHEHFITEZ key B 1t

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

WA £ CLI 277

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK FERARER

$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

s ER—WSHBESZN --wrapping-keys S, IREEENEEETERATHSHPNMESE
=4, wEAZIEE.

--wrapping-keys region=us-east-2 key=alias/test_key \
--wrapping-keys region=us-west-1 key=alias/test_key

BENNEIEEtrue AT AWS Encryption CLI £ AEA 012 AWS KMS key SHERWHE. MR
BERB— AN SPEAZA --wrapping-keys S8 , MEET - -wrapping-keys S+ EH
discovery=true LB BEZHM - -wrapping-keys ZE+ key BRI BRFI,

flan , EUATHSH , F—/--wrapping-keysS¥HH W HHAB T AWS % CLI BRENEEHN
AWS KMS key, B2 , =/ --wrapping-keysZ¥H I XKINE M4 o F AWS Encryption CLI £/
BEMKF AWS KMS key A HYEZE MK 7 SR 7 B2 0B 14

aws-encryption-cli --decrypt \
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

LIREESPE DN

B0ZE CLI FEY AWS IR REFANAIBFEENAAFREMEHES . BERERNBEEEN R
A, FIRE A XHE,

FiE AWS 1% CLI S HEZE--inputSH (-1) , ©EIFMN AWS % CLI FEBE o] AR B Ao
A SO AT AR R A A
- ERAXH,

--input myData.txt

- ERAXHFRER,

WA £ CLI 278

AWS Encryption SDK FERARER

--input testdir/*.xml

- FAERREREHNER, EWANB RN , EEFH --recursive S (-1, -R).

--input testdir --recursive

- BYEENHMARET ST (stdin), BEA - ZHME --input. (--input SHBLARMLE
Mo)

o

echo 'Hello World' | aws-encryption-cli --encrypt --input -
AT HE B AL B

Z--outputSE&EiF AWS % CLI EMEEMZRSBBIRENE R, 8/ AWS % CLI i #HE
E¥Y., AWS Encryption CLI J9 &4+ 08 5 A S0 22580 5 S0

MRBMEXHELRFE , MWRIAMBERT , AWS IN% CLI 23 THEE , RAEBRZX Y. ERILES
BEA --interactive ¥ (EBHZZHRTEHIA) I --no-overwrite (EHESHEBEEMN
EJIS"J‘!FEF)\)o ERNETREBRES , BMHEMA --quiet. EM Encryption C AWS LI FH#IREBRFIE

, BEERA2AEEREZEFGEEA BB R,

(® Note
BEAH AN S ERBRE L H. WRZESRM, NIATEE S MR E S

LA BYSM A EEER HVE,
« BEXHE, IREEXHNEBE HETZHT2 , BEDNAA B RLAFE,

--output myEncryptedData.txt

* j: E %o T:EL{T.LZﬁ i‘f‘ﬁtﬂ = %M\ T?‘Tj_:o

MRMACBETFER , GO TRHEEENBERPERERXLEF B R,

--output Test

WA £ CLI 279

AWS Encryption SDK FERARER

URHVBRE SR (FEXHH) 7, AWS Encryption CLI £REM A X HB NER I H H X
o MEFREN .encrypted MBI ANXHBEE , MAZEEMD .decrypted. EERG
&, BEER --suffix 8.

f5lan , RN file.txt , encrypt i S AIE file.txt.encrypted, MRHEZH
file.txt.encrypted , decrypt e H¥F8IE file.txt.encrypted.decrypted,

--output -

LURGIEEDZYIIE: 2 ol 3

b AWS Z CLI AT ZBEMENBRZGTHFRENE LT, ITRMLEN , BXERINEWHNNE &
ESON=

MELTY B—AEENENBEMET 5 HRIENEIE, £ AWS Encryption CLI ¥, tln#® LT
& —4 name=value X, BAILERNFPFERAEIERNS , BFEEXXHNEE, BBEBEBERPERM
FIRENBIESEN RN R FTENEIEE,

£ encrypt 5 5

£ encrypt T I8 EMN N L TR CMM RN EME 3T MBS RSB ERMENEE, ©F
BE (MBAXER) EZGTRENMNZHAEEFR. MREEHRNIE AWS KMS key , In# LT X
RELAE N AR EAEFTIHERMAES , HlI, AWS CloudTrail

LT ROBIEREEF= name=value W MEE LT3,

--encryption-context purpose=test dept=IT class=confidential

£ decrypt IR
£ decrypt R, N LT XHEBEBIARZENZEBEHNMEELS,

TEEE decrypt m THREMME LT, IEEMENEATME LT, B2, MRIXEMY ,
AWS Encryption CLI £%1iF decrypt i I ME L T XHHW BN TR 2B S MBER4HY N2 £ T X
PR TERMETE, MREMRMTEFRLTE , decrypt v HIF KMo

WAAEERA CLI 280

AWS Encryption SDK FERARER

BN, REENBRETXEE dept=IT 8 , L THSTLEZRNBZHHEE,

aws-encryption-cli --decrypt --encryption-context dept=IT ...

MZEETXREZERBNEZAKRED. T , FEFNE L TXA , BiRECHWETRIEN, BT
EEME ETXHIEEANEHE.

BEEMREETX

« fEencrypt @t H , FAEE—NHZ name=value X# --encryption-context S, &
RAZEE7BEN,

--encryption-context name=value [name=value]

« £ decrypt i S H , --encryption-context ZHERLAZE name=value X, name THE (&%
BE)AHENAS,

--encryption-context name[=value] [name] [name=value]

MR name XHH value B name=value BEERRIFIHRZR , BRHEBEMNXN A5 5#K,

--encryption-context "department=software engineering" "AWS ##=us-west-2"
fltn | iZ encrypt R BEEEBWNA (purpose=test F dept=23) BME LT X,
aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

XL decrypt LK. BN MGTHHMBLTXRRENE L TXH -5,

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

A1, XL decrypt B HRLKM. MBHEEFHMNE L TXFEEEENTE.

mfAIfERA CLI 281

AWS Encryption SDK FERARER

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

WNAAT 4 T A v SR B

BEHRNIREBAEFE , BHEM --commitment-policy %, WSHERE 1.8.x P3N, ZSH
EMZENREGTTPRENR. BRENAERENANEAEHEHINGTSER. IREBEEANGHIRERE
KBS , M AWS 1n#: CLI fF&E A BIAE,

Bl | LTS BB RS RMIRE N require-encrypt-allow-decrypt , %R EIGLFE R K
BHTNE , EaBBFERASITFEABRREMBNNEXF,

--commitment-policy require-encrypt-allow-decrypt

MAEEEXFFEFRESH
B % A/ Encryption CLI Z8MER AWS FHEEEXHH , AT &8 EFBREAEIR.

BEENHR—IMNXAXHE , HHhEE AWS N CLI i WS FE, £ AWS Encryption CLI G55 H
SIAERENXHR , SIANERIEEXHTINSHIE, NREGTITHEAXERNR , HREHEE
W, MEXHAUESEMEN , HEMUUTHG AR TiHRNEME FH,

AT RBIEE X (key.conf) EERREXBHHFHN AWS KMS keys

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

EEwSPEAREXH , BEXHEFEARNM at F5 (@). £ PowerShell EHH , FAREISFAF
X at fF 5 (C@) #HITH Lo

AT RIS 1E encrypt s SR key. conf X,

Bash

$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir

mfAIfERA CLI 282

AWS Encryption SDK FERARER

PowerShell

PS C:\> aws-encryption-cli -e “@key.conf -i .\Hello.txt -o .\TestDir

B & S AL
fE R B XA AN I R AR

« BUNEBIMREXHFEESNISH , AREZMFIHXES Y, BEEHE—THIHENISHK
RHE (MRE).

o A # A—THEBRNE D ABEFNER,
« BUNEEXNHEMEEXHSIM. BEE , BT EEARSISEBeRE. PowerShell
- MREREXHHERSIS | SIBROXAFTEESMT.

Filan | AR 2RHl encrypt.conf XHFHAR,

Archive Files

--encrypt

--output /archive/logs

--recursive

--interactive

--encryption-context class=unclassified dept=IT
--suffix # No suffix

--metadata-output ~/metadata

@caching.conf # Use limited caching

A UERTHEESMRENX . UTRHIGHER encrypt. conf M master-keys.conf B&E
X,

Bash
$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf
PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log ‘@encrypt.conf “@master-keys.conf

T—2% : i AWS Encryption CLI ;R4

WAAEERA CLI 283

AWS Encryption SDK FERARER

AWS 1% CLI B9 =41

FAUTROELEERNTE LA AWS 1% CLI, BXETRANEMSHWEDE , FSRANAER
AWS 1% CLl, BXxMiESZE | 5% AWS Encryption SDK CLI &£ S S %,

(® Note

AR R BIER AWS % CLI ARZAR 2.1 BB, Xo

L £ EEHR VR E AWS I3 CLI ARAS 1.7 R M. x M 2.0, x. B2, AWS &
CLIFRAN 1.80 x BT 1.7 o x F AWS in% CLI 2.1, x BiX 2.0, xo BXREFHEE ,
S Faws-encryption-sdk-clifZ i FE R VAR Z £ 2 & GitHub,

BXRERUMAERARFNZRFEZANZEEN A, FSH RENBEHIERH.

BXRWMAERA AWS KMS ZXE AN =B , BSREFEHZ X AWS KMS keys,

£}

.« nEMXHF

- BENXHF

« D% B FHP A XM
- BT EFPRAE XM
« Ea ST LNENFEER
- ERZAMEEH

o FERZS R N A AR 2
- ERSERHER

N 344
LRBIER AWS % CLI XN XHRBEHTNE |, Zhello. txtXHEE “Hello World” £ &,

HEN X HZTMHBESE , AWS Encryption CLI £FREMXHANE | £ERME—NEIEZS , MERE
ZRTHXHAR , RERINEREEBAR X,

F— DI ARN RIZETE AWS KMS key #1, $keyArnfE A NZet AWS KMS key , &
AUAEAZES ID. 24 ARN, BIEHAE ARN RiRGIE. BXBHMAFHEMEE AWS KMS
key , 12 (AWS Key Management Service FF £ &) FHZARRE,

5l 284

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK FERARER

BB MBXERNS. ZHSER --encrypt SHIETEERE , HEM --input SHIEREMER
B, --wrapping-keysSHREVENZHAB M SIFHSEHABHZH ARN AWS KMS key &R
M,

A
ap

ZmSEA --metadata-output SHIEE— NI EBXMEZREN TEHIBH XA 4. EARESE
B, Z@omSER --encryption-context SHIEE—MNE LT,

A SEMEA - -commitment-policy SHRAWRERE R, ERAE1.8xF , YEEH --
wrapping-keys S8t , FEEFERAEXN S, MBRAEK 2.1.x FF#R , --commitment-policy S82
miER , BENER,

--output ZHMEDR"() ERHTRHEXEEAT L5 B FH.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input Hello.txt
--wrapping-keys key=$keyArn °
--metadata-output $home\Metadata.txt
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--output .

~

~

ayt]| 285

AWS Encryption SDK FERARER

MR encrypt AN , EFREFEAHE. EEEZTTEERY , BRE $? TEPWARE. W
SRME , BES$?H 0 (Bash) & True (PowerShell), fi5kMet | BIES? N IEE (Bash) & False
(PowerShell),

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

WA LAEA B RYIKRGTEE encrypt W B RERIE 7T HH XK (hello.txt.encrypted)s BT
encrypt R E R HBIEEXHE , Bt AWS Encryption CLI 25 HHBEA —NMNSRAXHRE H
WA .encrypted G BN XHH . EFEATRNERALHEER , BEER --suffix S8,

hello.txt.encrypted X#HIEMENEES , HPEE hello. txt XHMNEX, HIEZHBME
BIARURBANTEE (SEMBE LT)

Bash

$ 1s
hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

ayt]| 286

AWS Encryption SDK FERARER

BB

LRBIER AWS % CLI REZ I E ~FIFNZEHello. txt.encrypted XHFHA R,

decrypt i A --decrypt SEIERIRIE , HEMA --input SBEEERBIN X4, --output
SHENWER— MR, RAYETHWER.

WwH key BMEM --wrapping-keys ZHIEERA THRENBEENTEZH, EEARBTS

AWS KMS keys , ZHABMHNESARZEH ARN, EREBSPEEMEA --wrapping-keys &
¥, MREEEER AWS KMS keys , M AT EAEA key BIHERIEE AWS KMS keys A T#Z |, 1A
LAEF{ER true B discovery Bt (EFBEMEBERINMSER) . IRFEABENTHRAREER K NE
E A key M provider & %o

MIRAR 2.1.x P , --commitment-policy SR AER , BERIUER, BIFEERIEE T RIAE
require-encrypt-require-decrypt , tH AT LABRHEEH ZSHRBBENER,

--encryption-context ¥ decrypt i FH R AER , BIEE encrypt e S HIRME T INE
LETFX, EXMERT , decrypt e A encrypt e S HIREMERMNE L TX. EFEZ

Bl , Encryption CL AWS | 2 RIEMZEEFHMNE L TXREEE —X,. purpose=testilIRFE
& , decrypt LM,

--metadata-output SEIEE—NEEEXBFRIEN THIIEN X, --output SHHEG
R'() BREREXHFBEAR S EHZAH,

BREXEREMER --max-encrypted-data-keys SEREBRFEAE SN MBRIBERPBZELER
MBS, EEMHNMEHREZARE (MBREANENSEZHAS 1) IEENRKE (Hlm
5). BXEZER , BESR REMZEBEZH,

REELEZMBERAZRE , --buffer F2REAX , SFRIERFESR (NRFE).

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \

5l 287

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK FERARER

--max-encrypted-data-keys 1 \
--buffer \
--output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input Hello.txt.encrypted °
--wrapping-keys key=$keyArn °
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °
--output .

MR decrypt BRI , EFREEFAMHE. EWMEZGTREMKI , TR $? TEE, LAFER
BRIRGESEFZGOTREMNETES .decrypted BBNH X, EEEFHANANS , BEA—
W LIREHRNZ , Hl0 cat = Get-Content,

Bash

$ 1s
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir
Directory: C:\TestCLI

Mode LastWriteTime Length Name

-a---- 9/17/2017 1:01 PM 11 Hello.txt

ayt]| 288

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK FERARER

-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted
-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

% B PR X
L RBIER AWS & CLI XY B A XHH R R ITIE,

Y- BRES N, AWS N CLI 28 EENI XS, ERBXAAET , NEEHAPIRE
NHHNHE-BEZS CAZEEFRANEXHRNT AEREREAR A B RO X4FP, Eit,
18R] LA B 30 A8 X £ H ST

BAR TestDir B RIIKERENEINE /YA

Bash

$ 1ls testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

Directory: C:\TestDir

Mode LastWriteTime Length Name

-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:44 PM 46 Employees.csv

FE— NS Amazon BREH (ARN) REFEEZE AWS KMS key #, $keyArn

FE-NDRNE TestDir BRFHNHEARNER , HEEENMBZRNBHWXHEEAS| TestEnc BFH,
R TestEnc BRAEFE , ZHoFEM, HTHWANMNERE—1MNER, Hlt , --recursive SHEH
E£1,

ayt]| 289

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK FERARER
--wrapping-keys SERHEFMEN key BHIEEEFANIEREH. encrypt i ZE—IMMELT
3 (dept=IT), MREMEZSANXHENTETPRIEEME LT , FEMEXHFEAEBHME LT
o

Z@WwRiEE —1--metadata-outputSE , AT &iF AWS Encryption CLI EHEB A B X MFRE
M TEdE. th AWS & CLI A NMNMEXHEBEA —F A BEIER,

MR 2.1.x FF#h , --commitment-policy parameter %M , BENFEH, MEGSHMA
HTEMBR MBI FMARM , NE A REERE 7] RS BY & R U (7] /L,

WHTRE , AWS M CLI £ MBXHEBE AZTestEncEF , BEXRLREEA%H H,

BE— 1M YHE TestEnc BRI XH. BNMNEERAXABTHBMAXGEE NI ENBERNENH
Hx ., ATFiZemSREEERESR , Eit , encrypt 5% .encrypted MBI SN @A GBI
JEH,

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input testdir --recursive\
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--output testenc

$ 1s testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt °
--input .\TestDir --recursive °

ayt]| 290

AWS Encryption SDK FERARER

--wrapping-keys key=$keyArn °
--encryption-context dept=IT °

--commitment-policy require-encrypt-require-decrypt °
--metadata-output .\Metadata\Metadata.txt °

--output .\TestEnc
PS C:\> dir .\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted

-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted
R B F PR FTE XA

ZTGIREE FZPHRME XS, EM TestEnc BFRHPEL—NREIPMBH XHFFE.

Bash

$ 1s testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

It decrypt iR S RZE B RPNMBEXH , ARANXEXHEAZ TestEnc B3R, TestDec HHEZAE
M4 ARN W - -wrapping-keysZ ¥ &EIFINE AWS CLI ERA BN AWS KMS keys K f## % X
., ZHSEMA--interactiveSHEIF AWS % CLI EBERE XHZ IR ~E,

5l 291

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK FERARER

Z SR EREME X4 REMME LT, BESANXM4R , N2 AWS CLI 2R ESANXHRM
RETX, NRENMEASXHFNMNEZEETXRELRK , AWS Encryption CLI 234 Z X4 , EAEE ,
ERBEPIEREAN , AGHEREELRH, MR AWS IF CLI B TEMEMRER T EEH XY |
M EA decrypt @5 H 1 F 3 BN KM

FZRGH | IERAXEFNNZEEEE dept=IT B LTXTE, T3 , MEBERHEEES
FRNMNZE LT, BHATREIENE E X5, flan , MRELHEEEER dept=~finance %
PR3, MEMEEES dept=IT MBLTX , BUUBEIANE L TXHRELITERIEEEN dept B
o MRETHEEANEE , BUMUERIMAN TS PRRX L4,

decrypt s S FREMEMHE , BEAUSEAERIKRGTETCRAUNETES .decrypted BR
WX, EEFAXAE , BEA— NS UREXXHERS.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input testenc --recursive \
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output testdec --interactive

$ 1s testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
employees.csv.encrypted.decrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’

PS C:\> aws-encryption-cli --decrypt °
--input C:\TestEnc --recursive °

5l 292

AWS Encryption SDK FERARER

--wrapping-keys key=$keyArn °
--encryption-context dept=IT °

--commitment-policy require-encrypt-require-decrypt °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °

--buffer °

--output C:\TestDec --interactive

PS C:\> dir .\TestDec

Mode LastWriteTime Length Name
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

HEan 51T L NE =

LRRBINGE T B IEE M AREEGS (stdin) , ARFREB AR GHIT (stdout), XLERHI
B 7 M{AE S H R R stdin H stdout , AR INAI{ER A ER Base64 418 T EBHLE shell 51 it 7
23k ASCIl =5,

ZRPIEREERAFRARREES encrypt T, FRNBHERFELES. RF, CELEE
MEEPHNBEESLEE decrypt 5%, FEEFEBMEEATEES (stdout),

ZRBIBEAT = T ¢

« BN TREES ARN REEZE AWS KMS key #, $keyArn
Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

ayt]| 293

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK FERARER

N SBEYEEN Hello World FRFHEKRIEE encrypt i f , HFLERRFE $encrypted
#,

N

o

M
bn | |

N

1EFTB AWS Encryption CLI ts S FEEMHA --input M --output S, BEEREIEEN EA
KEF S (stdin) , BFIEFE (-) ER --input SHE. EFRELETGHT (stdout) , BHHFF
EZRFER --output SHUE,

--encode SERO % H 2 B H# 1T Baseb4 4wig, X AIFHLE shell $Eixit SRR INZEH S P RYIE
ASCII Z%F.

HTFZasREMSKI , Hit , RIONEEMB LT XHZEETHE (-5).
Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \

--input - --output - --
encode \
--wrapping-keys key=
$keyArn)
PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S °

--input - --output - --
encode °

--wrapping-keys key=
$keyArn

 F=IMHTBEIEEN $encrypted TEHRWIMNEHE XKEEF decrypt BH

Z decrypt wHEMA --input - EBTREARBTEE (stdin) , A --output - FHH&IET
EIE (stdout)e (input SEFERAMANMNEMFTE2RFAAFTT , Bt , BFEER $encrypted TE
ER --input SHE.)

W RBIGER - -wrapping-keysZS 8 X I E 4 L 1F AWS Encryption CLI £ FE{TE 4 AWS KMS
key RBEZEHIE. ZRHIEBEREREERRE , RUEARE 2.1.x RESRAWERIAE require-

encrypt-require-decrypto.

5l 294

AWS Encryption SDK FERARER

ATHHEMBEHBEEHRITRE , Bt |, decrypt @R EER Base64 RBHNEMAZBIFER --
decode ¥ H#H 1T, B A LIIEINER Base64 R A ZBIEA - -decode SHXT H it
1THERS,

E# | ZH T EEINE LT SOH 2B THIE (-S).
Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
--input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
--input - --output - --decode --buffer -S
Hello World

BETUERNGTHRRITNBENRRERE MLTEEALE,

EMBEIENRBIFTR , --input # --output ZHEE - B , W SEMA --encode SHFI M H#H 1T
45, HEA --decode SEI M AR THEB,

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |

aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |

aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

ayt]| 295

AWS Encryption SDK FERARER

PS C:\> 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
- --output - --decode -S
Hello World

£ Z N EFH
e RBIEBA INAIFE N2 CLI R INZEMBERBFENER SN ERHA. AWS

EEASNEBAMBHEN , TUAEREA - M ERARBHIE. ZRBHEREHETURBHRE |
BEENERATTAH. NREEFMBHREFEES NP AWS X8, N REE T EER —XE
5 E B ARBE IR

EFEASANEZHAHTMER , F—NERAERIFHNER. SERATNBEREABESZH. HR
FRAMBAXBIEZN. EENNZEETENBENHBEARNZNBEZRES , SN NETEHES
—AMaMMEaﬁoiﬁﬁEaﬁE% ¢£aﬁ$mm,@EﬂfaﬁﬁTuﬁaﬁmm—¢ﬁE
B XEREZATHATHRBRIE.

FERA=ANEHHAHRITME
ZRBlIGSEASNIEFAME Finance. log X , = AWS XEFHEEF - NIEZEH,

CRMNEZERNEEEAT Archive BEH. ZWTHEAXBEN --suffix SHUBBER , Bit
A M5 XX AR R MR

ZanSEREEZ key BMM --wrapping-keys S8, BHEIUER—GSHRERASA --
wrapping-keys S,

ENE BEXH , AWS Encryption CLI 2 ERFIRFHE —NEHEZAERA T NERRENBEER
o $keylRjm , F3ERAEMEEFRANBEEREZANAXER, @HXHRHMNZEES LSRR
BBV BERS.

Bash

$ keyl=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3cad

$ aws-encryption-cli --encrypt --input /logs/finance.log \

ayt]| 296

AWS Encryption SDK FERARER

--output /archive --suffix \
--encryption-context class=log \
--metadata-output ~/metadata \
--wrapping-keys key=$keyl key=$key2 key=$key3

PowerShell

PS C:\> $keyl = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef"

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d’

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log °
--output D:\Archive --suffix °
--encryption-context class=log °
--metadata-output $home\Metadata.txt °
--wrapping-keys key=$keyl key=$key2 key=$key3

ZW S Finance.log XHMMEBREIA , HFHHEBEAZ| Finance.log.clear B&HH
Finance X#., Ef®% = LU T INZHEHE AWS KMS keys , AIUIEEMHBH = AWS KMS keys
HAPWEMFE, ZRGIMIEETEHB— AWS KMS keys,

B4 AWS nZ CLI EA B AWS KMS keys REEZIEHEIE |, EERSHM - -wrapping-
keysZHE M, FAMER AWS KMS keys , BB N ELTNRHEH AR N,

BAIMBIE AWS KMS keys ZIEER LB Decrypt APl, BXEZEER , HSH AWS KMSH &
30 IE R 7 R 2

ERABRIESRER , ZRHIEA --max-encrypted-data-keys SERE & £/ 2 0 & HIEZEAR
BERXHERES. REZTREMRERA—NSERARITHEE , ENENEEE= (3) MNBHE
BE&EA ; MBENEAN=AIRERARE 1. BEEMBNNBREZARESSENZAE , film
5. MREENZAKENT 3, U HREAM. EXEZER , BSH RENEBIEZSR.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
--wrapping-keys key=$keyl \
--output /finance --suffix '.clear' \
--metadata-output ~/metadata \

5l 297

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK FERARER

--max-encrypted-data-keys 3 \
--buffer \
--encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt °
--input D:\Archive\Finance.log °
--wrapping-keys key=$keyl °
--output D:\Finance --suffix '.clear' °
--metadata-output .\Metadata\Metadata.txt °
--max-encrypted-data-keys 3 °
--buffer °
--encryption-context class=log

T RS Fp In R R R 2

bR BR AN FE BN A R E A AWS N CLI, BRI URENNZNBRBRHENMA |, SIEREERE
BN AE N SR R R R AR

FiZRflR ALK —ABEXH , EREAMBXLEXH , KRR NENXHEHE Amazon S3
D, ZHADFLEFSN XM, UELMERNEITIXEHF,

HEEMBFA MBI |, BELEMB AR TESR. TEEREBMZNBE.

/A Warning

EERNBFESS WRKEERGEEZFNBANBEN , ERA DD, EENBENHRLX
PHREKERPHEEREATNBRAES

Bash

Continue running even if an operation fails.
set +e

dir=%$1

encryptionContext=$2
s3bucket=$3

s3folder=$4
masterKeyProvider="aws-kms"

ayt]| 298

AWS Encryption SDK FERARER

metadataOutput="/tmp/metadata-$(date +%s)"

compress(){

gzip -gf $1
}
encrypt(){
-e encrypt
-i input
-0 output
--metadata-output unique file for metadata
-m masterKey read from environment variable
-c encryption context read from the second argument.
-v be verbose

aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
"${encryptionContext}" -v

}

s3put (){
copy file argument 1 to s3 location passed into the script.
aws s3 cp ${1} ${s3bucket}/${s3folder}

}

Validate all required arguments are present.
if ["${dir}" 1 && ["${encryptionContextl}"] && ["${s3bucket}"] &&
["${s3folder}"] && ["${masterKey}" 1; then

Is $dir a valid directory?

test -d "${dir}"

if [$? -ne 0]; then
echo "Input is not a directory; exiting"
exit 1

fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
do
echo "Working on $f"
compress ${f}
encrypt ${f}.gz
rm -f ${f}.gz

ayt]| 299

AWS Encryption SDK

FRARER

echo " and ENV var \$masterKey must be set"
exit 255
fi
PowerShell

done
else

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive

Para

(

s3put ${f}.gz.encrypted

’

echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"

m

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String[]]

$FilePath,

[Parameter()]
[Switch]
$Recurse,

[Parameter(Mandatory=$true)]
[String]
$wrappingKeyID,

[Parameter()]
[String]
$masterKeyProvider = 'aws-kms',

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$ZipDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$EncryptDirectory,

[Parameter()]
[String]
$EncryptionContext,

ayt]|

300

AWS Encryption SDK FERARER

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$MetadataDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-S3Bucket -BucketName $_3})]
[String]

$S3Bucket,

[Parameter()]
[String]
$S3BucketFolder

BEGIN {}
PROCESS {
if ($files = dir $FilePath -Recurse:$Recurse)

{

Step 1: Compress
foreach ($file in $files)

{
$fileName = $file.Name

try

{
Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -

DestinationPath $ZipDirectory\$filename.zip

}
catch
{
Write-Error "Zip failed on $file.FullName"
}

Step 2: Encrypt
if (-not (Test-Path "$ZipDirectory\$filename.zip"))

{

Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip

}

else

{

2>&1 captures command output
$err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip"

ayt]| 301

AWS Encryption SDK FERARER

-0 $EncryptDirectory °

-m key=$wrappingKeyID provider=
$masterKeyProvider °

-c¢ $EncryptionContext °

--metadata-output $MetadataDirectory °

-v) 2>&1

Check error status
if ($? -eq $false)
{

Write the error

$err
}
elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
{

Step 3: Write to S3 bucket
if ($S3BucketFolder)
{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

}

else

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted"

}

ERBERAER
ZRBIENBEREX ST HREREERHAER.

FIABR T , AWS Encryption CLI (AR K EftARA AWS Encryption SDK) &3 BN 8 X4
ER—MHE—NBEZ. SRAESMNREPERAE-—NEEZHARNBRESR EEREEERTHY
BEZAEAERIBEANESZN, NREEFEABERHAET FEAREIRMUATHRENNA
BFNZ2ER , HBEEEENLLRE,

ayt]| 302

AWS Encryption SDK FERARER

EiZRfl , BREBAZFREEZETBRARMEFERTRUMNRMNZRERE,

ZRBlFHNHESNE—NEESNFEZRNARER , HhEHTEAN 800 MNEEX K., E—N
WS AWS KMS key B ARN R keyARN ZEEH, FZ /Moo inEm A B FHWFTE X4 (i
BAER) , HEXEXHEARFEERP, ZOSEA --suffix ZHIETE .archive B4,

--caching 358 ABIEZ4AER, capacity BY (RHIEFHHRIBESREAR) RER 1, BRET
S BERMNT AT — MR EH, max_age B (BETEASEHRERAONAKE)
REN 10,

A[iE R max_messages_encrypted BHEIRE RN 10 MNEE |, Btk , NFERAENBIBERHAMZES 10
N, BERHSNMNREZHAMBN G, TR ERDEER THRERAMEM SR
HE.

ENRERFERNBAEXMSZTZGT , BEURFEESEEANRE (Linux Y sudo ; Windows
REHHLEEBR BHEIT) o

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input /var/log/httpd --recursive \
--output ~/archive --suffix .archive \
--wrapping-keys key=$keyArn \
--encryption-context class=log \
--suppress-metadata \
--caching capacity=1 max_age=10 max_messages_encrypted=10

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'
--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata °

ayt]| 303

AWS Encryption SDK FERARER

--caching capacity=1 max_age=10
max_messages_encrypted=10

RTNABIEZAEENRR |, REEFFERT Measu re-Command cmdlet, PowerShellfl Ri=1T
ZROIMAERAREZRAEE , KAZTE 25 WHRBEITETR. ZEBNEZFHNENXHERTH
BIRZ,

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata }

Days : 0

Hours 0

Minutes 0

Seconds : 25

Milliseconds ¢ 453

Ticks . 254531202

TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes : 0.42421867
TotalSeconds : 25.4531202

TotalMilliseconds : 25453.1202

BEZAZEUUNMRZIENEE , MERSIMNEZARFINKZSAT 10 M. ZHTRES
BRI 12 WavetR BN AISERL , X E R A R AR E AR BR D 2 RKRE 1/100

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN

--encryption-context class=log °

--suppress-metadata °

--caching capacity=1 max_age=10
max_messages_encrypted=10}

ayt]| 304

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK

FRARER

Days

Hours
Minutes
Seconds
Milliseconds
Ticks
TotalDays
TotalHours
TotalMinutes
TotalSeconds

TotalMilliseconds :

0

: 0

0

11

. 813

: 118132640

: 0.000136727592592593
: 0.00328146222222222
: 0.196887733333333

: 11.813264

11813.264

WREER max_messages_encrypted BRI, MEAR —BBHAMBARE M. ZEXEMTEA
BIEZHNXE K MASEFNRZIENEE. T , SN EZRHREEFNRARBE D E 1

Nrd
Ao

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °

Days

Hours
Minutes
Seconds
Milliseconds
Ticks
TotalDays
TotalHours
TotalMinutes
TotalSeconds

TotalMilliseconds :

0

0

0

. 10

. 252

: 102523367

: 0.000118661304398148
: 0.00284787130555556
: 0.170872278333333

: 10.2523367

10252.3367

--output $home\Archive --suffix

--wrapping-keys key=$keyARN
--encryption-context class=log °
--suppress-metadata °

--caching capacity=1 max_age=10}

.archive'

ayt]|

305

AWS Encryption SDK FERARER

AWS Encryption SDK CLI &= MSHS %

AREFRME TIEZRXRMNEESBIRIRLAE B EFE A AWS Encryption SDK a5 5 1T758H (CLl). BXE
RFZANMEMSENEL , BSH WAEHR AWS % CLI, xRl , S5 AWS /% CLI B7R
Bl BXTEXY , BSHIEE,

F;
« AWS 1n# CLI &%
« AWS 1ZR CLI S 1753

. BASH

AWS fnz CLI &%

XL AWS % CLI B ZEEERTEER AWS % CLI AT EBIUESVIEE, BAMKKR AWS INZE
CLI b2 2.1 FEVIEREIEE. x RESRE,

VL LIheE R RTE AWS IZ CLI R 1.7 FEAMH. x 2.0, x. B2, AWS % CLI kR
AR 1.8, xBHRT 1.7 lRo x F1AWS fn# CLI 2.1, x BIX 2.00 xo BAXFAEE , HSHaws-
encryption-sdk-clifE i EE P X L £/ & GitHub,

® Note
RIFESHEEPEH , NSNS HBIBEEREET I SPERA — R,
MBBERSHTZFNEM |, Encryption CLAWS | 2ZBZAZHFNEME K MASHMNE
HHE IR,

FREVNFE BY

BRI ES BRI TE AWS % CLI 1% |, A --helpdi-h.
aws-encryption-cli (--help | -h)

FREX AR AN

EIREL AWS MN% CLI RENIRAS |, BEMA--version, ERE, HRERBARD ZEXER
Encryption CLI 1R REY , B2 AWS BB ZRA,

BEENSHSE 306

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK FERARER

aws-encryption-cli --version

N B

AR ZBERE R encrypt i R ERANSH

aws-encryption-cli --encrypt
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
key=<keyID> [key=<keyID>]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]

[--commitment-policy <commitment-policy>]

[--encryption-context <encryption_context> [<encryption_context>

.. 1]

[--max-encrypted-data-keys <integer>]

[--algorithm <algorithm_suite>]

[--caching <attributes>]

[--frame-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

LB EERE R decrypt v S EANS .

TEMRA 1.8.x |, --wrapping-keys SHEMBRN S AIEN , BEWEMR. MRE 2.1.x 5,
mEZEMBZNFEEH --wrapping-keys 8. XF AWS KMS keys , A LAEA key Bk
BESERBH (HXESREK) , ALY discovery BMHIRE N true , XTPRE| AWS Encryption
CLI A A AN BEZR.

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
[key=<keyID>] [key=<keyID>]

BEENSHSE 307

AWS Encryption SDK FERARER

[discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
..1]
[--buffer]
[--max-encrypted-data-keys <integer>]
[--caching <attributes>]
[--max-length <length>]
[-v | -vv | -vvv | -vvvv]
[--quiet]
ERABEXH

US| REESHREENEEX . SHIATESTHTRASHNE. BXRH , BSHOF
EREEXHTHF#ESH.

aws-encryption-cli @<configuration_file>
In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli “@<configuration_file>

AWS 1% CLI s 51758

WHREBET AWS I CLI S HNERER, BXxTEIHA | FHS@aws-encryption-sdk-clisZ
o

--encrypt (-e)

B ABE, BN NG OSUAEE - --encrypt H --decrypt = --decrypt-unsigned &
.

--decrypt (-d)

BEWMARE, S NG OSMEE - --encrypt. --decrypt & --decrypt-unsigned &
o

BEENSHSE 308

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/
http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK FERARER

--decrypt-unsigned [fERMRAS 1.9.x 1 2.2.x F5| A,]

--decrypt-unsigned 2N MEXFHITHREBEHBEREEEBBZAIARZEE., UREFEA --

algorithm ZHHAER TATHRFELENELEMARNEZLRE , FEALKSHE. NRNBEXFE

ZE, WFEHERXK,

WA LAERA --decrypt B --decrypt-unsigned # 1T % , EFERERTEE,
--wrapping-keys (-w) [fEARZS 1.8.x 5| Ao]

EEEMZNRZREFEANZEZH (RERH) . BUUEE M SSPREAZ --
wrapping-keys S,

MIRA 21.x g, EMBNBBGSFEEMEA --wrapping-keys S8, ERA&R 1.8x # ,
MZEBSEE --wrapping-keys = --master-keys ¥, ERAX 1.8.x BEBEH , --
wrapping-keys ZHEEN , BEWERA,

FAEENEZARMERN , MEBENFERGSEEMEA key M provider B, FMABRT AWS KMS
keys , ZGWTEEZHEM. BEGTEESEH key BHRENRN true B discovery B (BT
REEFHERRER) . BBRINMERA key B2 AWS Encryption SDK §{EEE, MREEERZHRA
45EE , #ilan Amazon S3 FEMEE, Amazon SQS BAFIFHEE X—RAHEE,

BXRETUAFER AWS KMS ZXEZAENBEZHAN A , BSRMEAZ X8 AWS KMS
keys.

B : --wrapping-keys ZHETEUTEM. ®XN attribute_name=value,
i

FRRIBERFERANIERZEH. BN key=ID X, BALES/ --wrapping-keys SHEF
BESZ key B,

- MEGT MENBETSHEEMEH key B, EMETT AWS KMS key FEAR |,
ARMNETLRES ID. 4 ARN, BIEHFIE ARN. BHx AWS KMS B4R IR
iR | &S (AWS Key Management Service F & AR ¥8/) H M ZRAFIDAT,

- BREWT . A AWS KMS keysfEZ AT , --wrapping-keys SBEEFEAENZLH ARN

H key BHEIEN true B discovery B (EFEERMERINSER) . £ key BHER AWS
Encryption SDK F{£Li. FRAEBEX EHARMEFEZN , FEFH key B,

BEENSHSE 309

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK FERARER

@® Note
EEMBEDSPIEE AWS KMS X% , ZIABMNESLMEZ ARN, MRE
FRAZ4 ID, BlB2THBIE ARN , HNZ AWS CLI AR BB % %4,

B LAESA --wrapping-keys SREHREEZ M key B, TF , --wrapping-keys &
B B 1EA provider, region M profile BMHEA T ZSHEFTNIEEEFH. EEEEET
RAEMENSEZH , BEGSHPEAZ --wrapping-keys ¥,

discovery

AV AWS Nz CLI £ AE{ AWS KMS key &R EZER4E. discovery A LAR true &
false, BRIAEN false, discovery BHRXEMBEGRTHEN , HANEEZHHAREEF N
AWS KMSEI B ¥,

£ A ZR AWS KMS keys , --wrapping-keysSHEERABMRBE N true (EFEEHE

RMAEZ) WERINEM. MREFEH key B , WATLAEREN false B discovery B4 REA

WiEL K,

« False (BN) — HREERINBEMLHEBE RN false , Encryption CLI XERASEHH
ZEAE M AWS KMS keys IEERN B REZEEE . AWS --wrapping-keysiiR#iE
discovery 7§ false RS BIEE key Bt , MAZ G SRFAM, LEXFMAWS # CLI &

« True— HXIBEMMNENFtrue , AWS Encryption CLI & AWS KMS keys MINZZHE
R TP IREN , FHEMAIX L TEHIE AWS KMS keys REZI ., BRNEKIEME
MtruefTHELTF 1.8 lRZETHI AWS % CLI JRA. x FAGBERBINIEEDEZH,
B2 , BEH any WER AWS KMS key =BREEH, IR discovery I true BHEE T key
B, WEZRPSHAK.

ZtruefE T AEL S B Encryption CLI AWS KMS keys fE AR AWS Ik~ XA A AWS
KMS keys , REZHEAAFLTNERK AWS % CLl,

HRIANKRIA N true , REFCERFEARI 2 XML IIK - B[EARBIESR AWS KMS
keys EEEMWEEHN. AWS K/~
discovery-account

F AWS KMS keys A FHEZIRFINIEEN. AWS MK LHE M —BRER AWS Tk 7
1D,

BEENSHSE 310

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Encryption SDK FERARER

LEMRWIEN RELXINEHEIRENE AWS KMS keys EET AU XEHENBEZHSHE
Mo true

BIMNERNKFBEHERFE—NAWS IKF ID , BRARER—NMNSHHPEESNKIAKS,E
. --wrapping-keysTE4AEM --wrapping-keys S IEEWFIEMK - HLIN TIEE
) AWS 2 XH,

discovery-partition

£ d iscovery-account BHER AKFIEE AWS 27X, SHEXIRZ AWS 52X |, flilawsaws-
cn, Maws-gov-cloude BXEZEE , BEEH (AWS — &5 %) H M Amazon BRA
o

HI&fE A discovery-account BHER , FEEFEALE M. 81 --wrapping keys ¥
HEEFEE— discovery-partition B, B AWS IKF EZ N0 XHIEE , BEAEM--
wrapping-keysS#,

RmRiEE

BEFZHARMER, € H provider=ID X, ERIAE aws-kms {TRo AWS KMSREHEZR
FARMETERN , TEEREM AWS KMS,

region

R AWS X1F iR— AWS KMS key, LE NN BN AWS KMS keys. REEZARIREFR
EBEXEN , FERAZEYE , BN , SRR IZEMH. FHAEH , e2BE AWSCLI AE R
profile FYRRIA X,

B & XA

FRIRE AWS CLI i B ELE X . BRI AR AWS KMS keyse REEZHFIRFFRIERE
XEHEEHFSHRITE region BN , AR E X4 X,

--input (-i)

EEEMFRRBEZNBRENNVE, WSBNLFSH. ZETUARNHHE FHRE , HAILUEX
HEEN, MRELEEFBARIESEGT (stdin) , BER -,

MEMATEE , ZHTRRITR , TIFT2ERERRES.

--recursive (-r, -R)

N ABREHETFEFRPOXERITERE. & --input BN B FEN , FEEAZSH

--decode

fi# 13 Baseb64 RwIZHIH Ao

BENSESE 311

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK FERARER

NMREFZCNEZEHEERILIER , ELATERBRHEZXNERITHE, ZSBNERT
LR 1R,

flan |, ANRTE encrypt W HER --encode S , BEEMBHK decrypt W HER --
decode S8, ZthA[LATE 1%} Base64 iKY A 2 Bl 1% S B0 E 3t 1T #ERD .

--output (-0)

EEMENBR. SBNLESH. ZETURXHE. UEERY -, GENHEBEAR®S
1T (stdout)s

MREENHHBERTEFE , ZHTHEAR. IRBASEFEF, U AWS % CLI 2ELIEE
RRHERTER T B R,

KRIMBRT , AWS % CLI 2BEZRB XM, EERIZTH , i5EA --interactive & --

no-overwrite ¥, ERBILERBZES , BEA --quiet 3%,

@ Note
NSRS SR A S R IK , T S BR324

--interactive

EBEXMHZHIRT.
--no-overwrite

FEEXH. MR, MR HmEHXHERE , U AWS % CLI 2Bk M RIRY Ao
--suffix

N AWS IZ CLIRIZM XA EEBEN X HEER. EETIERR , BEAXBEENSH
(--suffix)o

BINERT , 7 --output SBUREEXHEN , BEXHESRAXHBHEBHMLE
%, encrypt i THIEERN .encrypted. decrypt i BHIERN .decrypted,
--encode

¥ Base64 (—HHIBIXA) HBNATHE. KBTI shell EHEFHEIR it AR X
AHE3E ASCIl 5,

EfRmEREE A stdout (--output -) BIEALLZSH , LEHRE PowerShell & |, BIfE
B EERHES MR HRFETED,

BENSESE 312

AWS Encryption SDK FERARER

--metadata-output

EEAXMERENTBENLE, FRARENIXMHE. IREFZRTEE , ZHTREAK. BN
THEE ARG TIT (stdout) F , EFEMA -,

BEAEER—wSPFwESHE (--output) MaBEHm L (--metadata-output) BEAE!
stdouto Lb4\ , W1R --input = --output ENEFR (REXHR) , ELEERBEREEA
ZlE— B F£H1% B FHEAF B FH,

MREIEEINE Y |, BRIAERT , Encrypt AWS ion CLI & $TH T BRI 18 FH B ST P E
ARNE. BEFERZIE , ZUUBE-— NI EMEMZRENABFEAXH. EBZIEXHH
HNZA , iEFH --overwrite-metadata S,

AWS 1% CLI @A ZRTHITHES M MBREREREERD JSON BN THEFEERK. SO THE
EREERWANEE XN TERR, MBRLTX, EXEFUAREMAENENEE , B UER
XEFEEEEREARUECREFEENZENE,

--overwrite-metadata

BEBERESXHFHIRNET. BRINERT |, --metadata-output SECT TEIRM MBI T4
PN EARERNREE.

--suppress-metadata (-S)
Bt B RB R INZ SRR IRER TR,
--commitment-policy

EEMENBRRGTHAEERRE, RERBRRELNHERBEAZAAE TR ITINENE
#o

--commitment-policy SHIERAK 1.8.x 5N, ZSHEMNRNBRHSHER.

£ 1.8 lRA&HF, x, AWS % CLI NATE MEMFEEZREEMAforbid-encrypt-allow-
decrypt&iE K, HEEMEBERHEBRGSPFEA --wrapping-keys ZH8t , FEHAESR
forbid-encrypt-allow-decrypt Y --commitment-policy ¥, MREFER --
wrapping-keys 28 , W] - -commitment-policy S¥FER. AR B & FHE O] Bh L IRAY &
HRBEARIRAE 2.1 x B3I E RN require-encrypt-require-decrypt

MIRAS 2.1.x FFih |, XEEFTERERKE, --commitment-policy SHE %M , BRIAMENR

require-encrypt-require-decrypt,

HSHERUTE :

BEENSHSE 313

AWS Encryption SDK FERARER

- forbid-encrypt-allow-decrypt - TEERAZHEABEHITNE, TUBRRERARTEAR
SAREMENNE X F,

A 1.8x |, XEH—HNERE. i AWS F CLI XFrE MZEMBERRIEFR forbid-
encrypt-allow-decrypti#& K,

« require-encrypt-allow-decrypt - {XERAFRABEBHITNE ., EANTERABHAREHRT
R, HWETERAE 2.1.x F5| A,

« require-encrypt-require-decrypt (Bk) - (REABRARBHITMBNBER, WEEMR
K21x 5l A, FEMRA 2.1.x MESERAR , XZERIAE, FHILE , Encryption CLI T4
ZER REMRAMBNEMZEL. AWS AWS Encryption SDK

BXRRERBERENFMES , BSH TBIRH AWS Encryption SDK,

--encryption-context (-c)

NBREBENE L TX. ZSBARLEN , BRUERA,

s £ --encrypt @TH , MA—PHZN name=value X, BEFEAZEKDRXL,

« £ --decrypt R H , A name=value X F/H&EEH name THE,

IR name XHH value = name=value BEEZRIIFHFZR , BHEANAN AL S5ERK, Film

--encryption-context "department=software development',

--buffer (-b) [TERRZAS 1.9.x # 2.2.x F5| Ao]

NELEBEREMAZFREBAY , B3FERIERFIER (NRFE)
--max-encrypted-data-keys [1£ 1.9 lRAH 5| A, x M 2.2, X]
EEMZEEPMEBEZANRARE. SR ATEN,

BMENRN 1-65535, MREBELSE , Il AWS 11% CLI Fo@EFHRITEMNRKE. MBEERZ
AT LIRS 65535 (2M6-1) NNBERIES4A.

BRI EMR G TR EALSEBOR EHIARNBRAES . EAUERERTHERAZZHEEN
ERHE , ARRERAXRELTERBENMBHREZABZHEE. BXEFAEENRE , FSHEH
BB FEZH.

--help (-h)
81T 5 B R ENIE %,

--version

FREXAN AWS & CLI BYRRAS,

BENSESE 314

AWS Encryption SDK FERARER

-V | -vV | -vwV | -vvvv
ERFAEE. BEMFEES. AETNFAGERSEPH v HEME N, FIFANIRE (-
vvvv) IREISR B % AWS CLI R &AM AL 4N EERRKE,

--quiet (-q)

BIIERESER , Sl EBERHXEHNERHER,
--master-keys (-m) [EF& A]

(® Note
--master-keys ZEIEMRA 1.8.x FHRAHERA 2.1.x F#iBR, EHA --wrapping-keys Z
08

EEENZENBRZREFEANIEH. EUUESI Mo THEASIEFRASH

FEE encrypt S FEMA --master-keys 8. RAEEMEABEN (IFAWS KMS) TH4AR
HEFN TEEERBGSTEARSH.

B : --master-keys SHETEUTEM., X F attribute_name=value,
i

PRI ERFERANEEZH, BN key=ID N, FEEFMA encrypt S HEH key B 1%,

EMHEaS AWS KMS key FEAR , ZHRBHENETAR R4 ID, 4 ARN, FBRAE
ARN, Bx AWS KMS ZAMRREFNiFMES |, 200 (AWS Key Management Service FF %
EIEME) PRBHAMER,

EXZPREEFTE AWSKMSH , EEEMEBEGTTEH key B, EHRZIRE AWS
KMS keyMZ BTN TS H , TAGFERA key B M.

WA LESA --master-keys SHEFEEZ N key Bit. T , 4E provider, region
profile BMEA T ZZHREFHMEEE. ZEEETEETRABHENETEY , BEFSHER
%A --master-keys ¥,

RiAE

EEEXZHARMERF. 8BXH provider=ID X, BRIAE aws-kms TR AWS KMSREHEH
ARMEFERN , TRELEM AWS KMS,

BEENSHSE 315

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK

region

FEARIERE
¥R AWS X1 iR —/ AWS KMS key, LB M EHR AWS KMS keys, RETEZBIRIREF&K
BEXER FaERZEYE , &N , SR ZEY. FHATH , eaBEZ AWSCLIFEHR
profile #YERIA X,

BB S

XEHBEEWFSHRTE region BN , FoFEAEE XA X,
2
--algorithm

FRIRE AWS CLI e BV ELE X4, B M B AWS KMS keys, REEZRRIFATREE

EERRANELEN. ZSHRETIEN , {VFE encrypt i THER

MEELSE , W AWS % CLIREEA 1.8 MR AWS Encryption SDK 5| ARBRIANEZEMHZ
algorithm SEHE.

—o Xo MMEINE EEFEATH HKDF, ECDSA Z£& M 256 (U NZZAK AES-GCM, —ME
EEABRARE —MTER. MANEEZEHNERB G THEAERBRE.

BUHRANEEZEHR T RSBNERE, BXREMENIIK , FZH Read the Docs H
-frame-length

ZEREEMKENALH, ZSREAIEN , {VE encrypt S HAEN.

BFRA—ME (FT). BREHN 0 M 1-2/31-1, H 0 RRIFEMBIE, BIAEN 4096 (F17) o
(® Note

RugefE AmiEE, 1 AWS Encryption SDK X S M IERMBIE, HELE
AR AWS Encryption SDK A BAE R IERR M 2 X . P XIFHYE
ot A0 JE WL N 28 3 F

=%
=SS ER AT LA SR 2 B
-max-length

EREMMBERE BB EMOBAMAND (RFMEENBRARNBRE) , AFTHENY, ZBH
RTEE , VE decrypt BEFAM. CEENILERBRIRANBESEL,
BENS RS E

316

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK FERARER

BRA—ME (FT). NREBBUHSE , NFEZ AWS Encryption SDK < BR &M A/,

--caching

BRBFEZAETHE , ZHREARERR , AIFTERENENMHANGFERFNNBEZN. 258
XRERAR. EEAZNEZE , BFLRRBIEZHAZEF X,

--caching ZHEEBUTEX.
capacity (4%)
HEEFHPNERAZE R,
&/MER 1, BREHRKE,
max_age (&5)
HEFERAZFXENNEKE (¥) , NEXRERNIIZERER,
BRA—NKT O WE, ZREHZKE.

max_messages_encrypted (AJiE)
WEZRFHNRE TUNEN & AEEH
BMEN 1-2/32, BINMER 2732 (BR)
max_bytes_encrypted (A%)
WMERFNRE TUNENRERFZTH

ASER 0 M 1-2763-1, BRIAERN 2763-1 (BB). EFEAE O , BREENBREEEZH
SNERABRERAEE.

[

AWS 1% CLI B hx A<
BB IEE A R ARAK AWS 1% CLI,

(® Note

4.0.0 2 BIHY AWS pi% CLI fRA4 T iZBh E& . end-of-support

BEEE S ARBREIEEI T L2 M AWS Encryption CLI BRA 2.1.x RESRAEHFH
BHFRA. BER , RAR 21 x FEIATHHNEZETE , TAERE. MN1.7TREEH., xRE
BWRA | XMAEFERHFN 1. AWS 1% CLI Y x lri &R, BEXEZER , F5H TBHRY
AWS Encryption SDK,

[E:N 317

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

L2 IAEH V2 E AWS I3 CLI ARAS 1.7 AR M. x M 2.0, x. BE , AWS &
CLI A7 1.8, x BT 1.7 ilRo x F AWS 0% CLI 2.1, x BUX 2.0 xo BXREFEMAEE
Z[Maws-encryption-sdk-clifF i EF KX L& 2 & GitHub,

BXEZERAHEE AWS Encryption SDK , IS WA M4 AWS Encryption SDK,

\\

AR B 2
MREFREM AWS Z CLI , BEEAZITIRA,

fZ22 /M 1.7 AWS Encryption SDK Z BIMRA I BB IE. x| E’ﬁ'ﬁﬁ@ﬂ%%ﬁﬁ&ﬂxﬂﬁ AWS tn#: CLlo
EEMB 2AXx RESRARZH , BRITAEEUNENR., BXEZEER , B5H TBHFH AWS
Encryption SDK,

TR

- BXREUNFAGEARTIBIIXLEHMRANIER , B TBIRE AWS Encryption SDKo
- BXFH AWS I CLI ZHHMEMHER | S FEAWS Encryption SDK CLI BEMS S E,

J‘/LTEIJ?—FZ;E T 1.8 H&Z'KI:FX-J- AWS le]{:. CLI E’JEE&O X *ﬂ 2.1 Xo
W< 1.8, AWS 1% CLI K9 x Ti 8

« £H --master-keys ¥, BEXRA --wrapping-keys ¥,
« W0 --wrapping-keys (-w) 8. X#F --master-keys SHHFERM, ERMT U T AL
B, XEBEHREFEH AWS KMS keysfEZ 8 B Mo
 discovery
« discovery-partition

« discovery-account

WFEENLERARMEREF |, --encrypt M --decrypt B HEEMMA --wrapping-keys S
--master-keys ¥ ({BEFEEMEBRNMSER) . I, FH--encrypt@H AWS KMS keys F
E__wrapping-keysS = - -master-keysSH (EFERMERMELZ) -

EHR --decryptian©H AWS KMS keys , --wrapping-keysSH 2L , BEWER , BR
E21REAPERLEN. xo MREFEAZSE , MXMIEE key BHEHEN true K discovery &
% (EFERERNER) .

WRA 318

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK FERARER

« N --commitment-policy ¥, H—BMEN forbid-encrypt-allow-
decrypt., forbid-encrypt-allow-decrypt AiEREATFRENBENBERG T

ERA 1.8.x |, HIEMER - -wrapping-keys S8t , EEFEHEN forbid-encrypt-
allow-decrypt B --commitment-policy ¥, AR EZE APy LB AERBEHRE
MR 2.1.x BF B3I XN require-encrypt-require-decrypto

FRZA 2.1, AWS 1% CLI By x TIE K

« B --master-keys ¥, HFHA --wrapping-keys S,

- EFANBHNBZEGSPEEFH --wrapping-keys 8, SBMIEE key BHHERN true K
discovery Bt ({EFERERMNFER) -

« --commitment-policy ZHEZHFUTE. BXEZEE , SN RELNAEEEK,
« forbid-encrypt-allow-decrypt

* require-encrypt-allow-decrypt
- require-encrypt-require decrypt (ERIA{E)

o FERRA 2.1.x H , --commitment-policy SHRAIEN . BIAEN require-encrypt-
require-decrypt,

RS 1.9.x # 2.2.x 3 AWS Encryption CLI F9E X

« %I --decrypt-unsigned 28, EXEZER , BZH A 2.2.x0
« M0 --buffer 8. EXEZELE , BSH RE 2.2.x
« M0 --max-encrypted-data-keys 8., BXEZERE , BSH REMEZEZH,

M2 3.0, AWS HN% CLI B9 x INE X

- INTX AWS KMS ZXIFFHAN IR, BXIFAEE , ESHMEHZXE AWS KMS keyso

WRA 319

AWS Encryption SDK FERARER

BREZHER

BEXASRT SHEZHANENNZEM R FEEZTP, NEIWERERN , 2EEZFH AWS
Encryption SDK EIX LB HIEREH. MRKFICED , EMEAZTFHREZRR , M TR ERFH
ZHH. BEFAERFEULUIRES e, BREREX , HEUUSBERENARRT BNREFERSRHA,

EUTERT , EFHNARFIUNBEZAZREFTZ

- RARFAUEAREZA.
- NARFERKERERH.
- BRMEREITEE. BAS. ZRHFTVEERERR.

ZEALURDEXNZRSHIER , Hlin AWS Key Management Service (AWS KMS), MRZE IR
FJAWS KMS requests-per-second bR , &7 A LUIRLASBY. WV N AREF Al LA A EFH 4K
BN RELEHEZRAER , MAXLFH AWS KMS, (BIET BAfE AWS Support Center g —/NER
BILAREEK RS,)

A AWS Encryption SDK # B 6| ZMEBRERAETF, ZTESRHE N AHLEEFNEFNEMS
AEER (BFCMM) | UESREFEREHAXBERENZLHE, XLHGERESFERTUBEN
ERSRERZARGHNENEDRZHE ANREREN LT 2,

BIRZAE TN - A IEINAE AWS Encryption SDK |, BN EEERA, BIABERT , 2SN ME
#R4F AWS Encryption SDK £ — MR HERH, IMGEIFNBRESEK , ZREIKTEN
SBEERABEZH. BY K RAREFEARTUERBERN , T NERAREZARE. WA, ENERRE
BZHREFLZEHE , MBRECABERANEEBIFTIFENRNEFE.

W7 3, x AWS Encryption SDK for Java XX HFHEERETZAREBRFIZONEF CMM , T
ZEAMEO, B2 , R4 4, .NET AWS Encryption SDK B x , 4 3, #J x AWS Encryption SDK
for Java , fRA& 4, B9 x AWS Encryption SDK for Python , fX4 1, Rust A 0.1 JRAH xo AWS
Encryption SDK x & & MR 4<# fo AWS Encryption SDK r Go X#FAWS KMS 2 EZ4AH |, X2 —
MERHMBEMBEFHRRER. £H AWS KMS 7 EZATMEN AT REEER 9 R BHANRHTH
AWS KMS %7,

BEXRZXEZLITRARNFMITIL , FSH AWS Z2EFEHH AWS Encryption SDK: How to Decide
if Data Key Caching is Right for Your Application,

ES}

320

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/

AWS Encryption SDK FFRARIEE
- MAERABREZAER

- REEFZREHE

- BREEAZFEAESE

- BRERERHETETR

M EHBRERAERE

REBNENAEECHNRABRFPEABREZHAEF. CHESEEI TR EZEE. RE , eFXLES
REAZ—MHERAIFR , ZROIEREPEABEZAZEFUNREFFE,

ARF5 R RGIEBE T a0 AWS Encryption SDKARZA 2.0.x RE SRR, BxFEHA RN R
Bl , BELENREES GitHub FHEERN MRS R PR EEH A,

BREREABEZAZFHTEALI N R AWS Encryption SDK , FZ :

* C/C++ : caching_cmm.cpp

+ Java : SimpleDataKeyCachingExample. java

JavaScript X/ 5T 28§ : caching_cmm.ts

JavaScript Node.js: caching_cmm.ts

Python : data_key_caching_basic.py

FEAT NET BJAWS Encryption SDK R X ¥R H4AE 7.

£
- FAKERETT . Step-by-step
- RIEZREETO . MEFRES

FERBEZIET . Step-by-step
XL step-by-stepli BAEEE R 7T AR BT BIFEBRABRFIIFNAHY,

- DIBERERASF. BEXEREH , FAIEA AWS Encryption SDK REN Kt EfF. BRIVFHERF
BR&IN 10 MNIER A,

MAERBIEZAET 321

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK

FEARIERE

C

// Cache capacity (maximum number of entries) is required

size_t cache_capacity = 10;

struct aws_allocator *allocator = aws_default_allocator();

struct aws_cryptosdk_materials_cache *cache =

aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);
Java

AR RBIERRA 2, B x 4~ AWS Encryption SDK for Java. kA~ 3, EH x AWS Encryption

SDK for Java EFRABEFHAEF CMM, AR 3, x, RETFTLAERAAWS KMS 2 E #47
0, XR—HEAHNMBMREFRRER,

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);
JavaScript Browser

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)
JavaScript Node.js

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

FERBEZAET . Step-by-step 322

AWS Encryption SDK FERARER

- BIEEZARMER (Java M Python) HE4AIL (C M JavaScript) » XLERHIFER AWS Key
Management Service (AWS KMS) EZ4ARERFHFRBEMNAWS KMS Z4AE,

C

// Create an AWS KMS keyring

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);
Java

AR RBIERARA 2, B9 x 4> AWS Encryption SDK for Java. kA~ 3, EHH x AWS Encryption
SDK for Java EFAHRFEZLAEF CMM. EAMAE 3. x, IREATLERAWS KMS 7 Z%4A
I, XR—ERHNMBEMRERFHRRE R,

// Create an AWS KMS master key provider

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn);

JavaScript Browser

ENREED , BUTR L EAFIE, ZRHI7E webpack (kms.webpack.config) FE X
FEIE , webpack FHEZEITHRFTEIL. ©EBY AWS KMS & in MiEH 812 AWS KMS
EFmREEEFRM, AE , HTHEZRANE , E2aEEFKEMHES AWS KMS key
(generatorKeyId)—i2{%i% A #E B B

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

FERBEZAET . Step-by-step 323

AWS Encryption SDK FERARER

/* Create an AWS KMS keyring
* You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeylId,
keyIds,
1))

JavaScript Node.js

/* Create an AWS KMS keyring
& The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider

The input is the Amazon Resource Name (ARN)

of an AWS KMS key

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

- DIEEENEMEEESR (ZFCMM),

R ER CMM EEERERARLRFRTARELE, A5 , £5%7 CMM LEBEEFZLH
.

£ AWS Encryption SDK for C , A LAMIEE CMM (BIZNERIA CMM) SRR EAIF QIR R TF
CMM, ZRBINZHFPRIERE CMM,

ERIEEREF CMM g , BA BN ZRASRMEFENSI B, BXEZEE , H5H the section
called “5| it

FERBEZAET . Step-by-step 324

AWS Encryption SDK FERARER

// Create the caching CMM

// Set the partition ID to NULL.

// Set the required maximum age value to 60 seconds.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

LT RGIEARA 2, B x 4 AWS Encryption SDK for Java. MXZA 3. B9 x AWS Encryption
SDK for Java A X HFEZHAELE , BEEXIFAWS KMS 7 EF4A | X2 —FhER /0 INZH 8
BEERAR,

/*
* Security thresholds
* Max entry age is required.
£ Max messages (and max bytes) per entry are optional
*/
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)

.withCache(cache)
.withMaxAge(MAX_ENTRY_AGE_SECONDS,

TimeUnit.SECONDS)
.withMessageUselLimit (MAX_ENTRY_MSGS)
.build();

JavaScript Browser

/*

FERBEZAET . Step-by-step 325

AWS Encryption SDK FERARER

* Security thresholds
ik Max age (in milliseconds) is required.
ks Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

D

JavaScript Node.js

/-k
* Security thresholds
* Max age (in milliseconds) is required.
* Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

1)

Python

Security thresholds

Max entry age is required.

Max messages (and max bytes) per entry are optional
#

MAX_ENTRY_AGE_SECONDS = 60.0

MAX_ENTRY_MESSAGES = 10

Create a caching CMM

FERBEZAET . Step-by-step 326

AWS Encryption SDK FERARER

caching_cmm = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=MAX_ENTRY_MESSAGES

XRBEBRTHEIRE, ARE , ILMAIIRE AWS Encryption SDK BREEF , B RNINEECH
EEEEEE,

NRBEMZHNEZRENFADEABRERAZF , BEELNESF CMM MAREZARBEFH
Hfth CMM,

(® Note

MREMBHFERREFMARIARDNEESE , EHFLEFRPEEZFEARD. NEKRD AWS
Encryption SDK R HIERS , NMEABTEHHETF.

F£EH AWS Encryption SDK for C , ZAI SBIZEEF CMM W& , ABLEZAE,

RINERT , WEHEXKDKRMNBEFTZREIRT , AWS Encryption SDK FEEFZHIERH. EATE
REEBYIBEN D ERE |, BFH aws_cryptosdk_session_set_message_bound 753%1%
EHENRAKD, REXFHIDEEXRDNILR, IREFREEXRNDMBHIR , MBFRERS K
M,

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
session, output_buffer, output_capacity, &output_produced,
input_buffer, input_len, &input_consumed);

FERBEZAET . Step-by-step 327

AWS Encryption SDK FERARER

/* Release your references to the caching CMM and the session. */
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

AR RBIERRA 2, B x 4~ AWS Encryption SDK for Java. hR4s 3, EH x AWS Encryption
SDK for Java EFA#BEZHAEF CMM. EAMAE 3. x, REATAEHAAWS KMS 72 %403 ,
X2—MERNMEMBREFHRRE R,

// When the call to encryptData specifies a caching CMM,

// the encryption operation uses the data key cache

final AwsCrypto encryptionSdk = AwsCrypto.standard();

return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser
const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

£ for Node.js R EFAEE CMM B |, Zencrypt HZEBEA AN KE, AWS Encryption SDK

for JavaScript IR KiEM , WFRLEFHEZH. IREHTKE , BRUMNBXHEBEIZE

E , MEREFSIN, MRETMEAXHBEKE (W, ERIERBEEN) , FRMUEK
H TR A (B

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,

the encryption operation uses the data key cache

#

encrypted_message, header = client.encrypt(
source=plaintext_source,
materials_manager=caching_cmm

FERBEZAET . Step-by-step 328

AWS Encryption SDK FERARER
BERZMAEEFETH . MBFRHE

EMBRFAFEE , ZEERBREAERBIERAZET. ©f¥step-by-step TEPHRBASKTLUETT
B9 IR

ZRBIRN AWS KMS key Bl 2R ZFMERHAREEFRNER R, RE , EATMEFNERHE
HEFRBAR R - PMEBEHNZERENERF CMM, £ Java M Python , IIZBERIEEEF
CMM, EMZMNAXHFEURMZE LT, £ CH , &F CMM REQFEFIEEN , AFAMBFRRE
HaiE,

EETIXE R, BEERME AWS KMS key#) Amazon FREF (ARN) . BREERER AWS
KMS key SA4 B ERIEZ4A.

BREUBNEABREZHAEFNERARX RS , S0 BEZHEF RO,

C

* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is
* located at

& http://aws.amazon.com/apache2.0/

* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and

* limitations under the License.

*/

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
bytes already allocated)
size_t *ciphertext_len, // length of output will go here
size_t ciphertext_capacity,
const char *kms_key_arn,
int max_entry_age,

BRZEAEE R MBEZRFR 329

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK FERARER

int cache_capacity) {
const uint64_t MAX_ENTRY_MSGS = 100;

struct aws_allocator *allocator = aws_default_allocator();

// Load error strings for debugging
aws_cryptosdk_load_error_strings();

// Create a keyring
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr().Build(kms_key_arn);

// Create a cache
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

// Create a caching CMM
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(
allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
if (!caching_cmm) abort();

if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
abort();

// Create a session
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);
if (!session) abort();

// Encryption context

struct aws_hash_table *enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

if (!enc_ctx) abort();

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");

if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
abort();

// Plaintext data to be encrypted

const char *my_data = "My plaintext data";

size_t my_data_len strlen(my_data);

if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

BRZEAEE R MBEZRFR 330

AWS Encryption SDK

FRARER

// When the session uses a caching CMM,

key cache
// specified in the caching CMM.
size_t bytes_read;
if (aws_cryptosdk_session_process(

if (laws_cryptosdk_session_is_done(session) || bytes_read

abort();

session,

ciphertext,
ciphertext_capacity,
ciphertext_len,
(const uint8_t *)my_data,
my_data_len,
&bytes_read))
abort();

aws_cryptosdk_session_destroy(session);
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

AR RBIERARA 2, B9 x 4 AWS Encryption SDK for Java. WS 3.

!= my_data_len)

the encryption operation uses the data

H & x AWS Encryption

SDK for Java EFAHBEFHAEF CMM, FERMRA 3. x , IRIBATLAERAWS KMS 25 E &AL
XE—ERNNBEMREERRLER,

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import
import
import
import
import
import
import
import
import

com.
com.
com.
com.
com.
com.
com.
com.

amazonaws.
amazonaws.
.encryptionsdk.
amazonaws.

amazonaws

amazonaws.

amazonaws

amazonaws.
amazonaws.

encryptionsdk.
encryptionsdk.

encryptionsdk.
encryptionsdk.
.encryptionsdk.
encryptionsdk.
encryptionsdk.

AwsCrypto;

CryptoMaterialsManager;
MasterKeyProvider;
caching.CachingCryptoMaterialsManager;
caching.CryptoMaterialsCache;
caching.LocalCryptoMaterialsCache;
kmssdkv2.KmsMasterKey;
kmssdkv2.KmsMasterKeyProvider;

java.nio.charset.StandardCharsets;

BRZEAEE R MBEZRFR

331

AWS Encryption SDK FERARER

import java.util.Collections;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
* <p>

* Encrypts a string using an &KMS; key and data key caching

* <p>

* Arguments:

*
* <]i>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
& see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/

developerguide/find-cmk-id-arn.html
* Max entry age: Maximum time (in seconds) that a cached entry can be used
* Cache capacity: Maximum number of entries in the cache
* </o0l>
*/
public class SimpleDataKeyCachingExample {

/*
* Security thresholds
ks Max entry age is required.
& Max messages (and max bytes) per data key are optional
*/
private static final int MAX_ENTRY_MSGS = 100;

public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
cacheCapacity) {
// Plaintext data to be encrypted
byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

// Encryption context

// Most encrypted data should have an associated encryption context

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =
Collections.singletonMap("purpose", "test");

// Create a master key provider
MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.buildex()

BRZEAEE R MBEZRFR 332

AWS Encryption SDK FERARER

.buildStrict(kmsKeyArn);

// Create a cache
CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

// Create a caching CMM
CryptoMaterialsManager cachingCmm =

CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
.withCache(cache)
.withMaxAge(maxEntryAge, TimeUnit.SECONDS)
.withMessageUseLimit(MAX_ENTRY_MSGS)
.build();

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, myData,
encryptionContext).getResult();
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring
* to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.

*/

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
WebCryptoCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-browser’
import { toBase64 } from 'eaws-sdk/util-base64-browser'

BRZEAEE R MBEZRFR 333

AWS Encryption SDK FERARER

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient() .
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* This is injected by webpack.
* The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
values when bundling.
* The credential values are pulled from @aws-sdk/credential-provider-node
* Use any method you like to get credentials into the browser.
* See kms.webpack.config
*/
declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {
/* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
generates and encrypts the data key.
* The caller needs kms:GenerateDataKey permission on the &KMS; key in
generatorKeyId.
*/
const generatorKeyId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding additional KMS keys that can decrypt.
* The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds', this &KMS; key is identified by its key ARN.

BRZEAEE R MBEZRFR 334

AWS Encryption SDK FERARER

* In practice, you would specify different &KMS; keys,
* or omit the “keyIds' parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f"',

/* Need a client provider that will inject correct credentials.

* The credentials here are injected by webpack from your environment bundle is
created

* The credential values are pulled using @aws-sdk/credential-provider-node.

* See kms.webpack.config

* You should inject your credential into the browser in a secure manner

* that works with your application.

*/

const { accessKeyId, secretAccessKey, sessionToken } = credentials

/* getClient takes a KMS client constructor
* and optional configuration values.
* The credentials can be injected here,
* because browsers do not have a standard credential discovery process the way
Node.js does.
*/
const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken,
I
b

/* You must configure the KMS keyring with your &KMS; keys */
const keyring = new KmsKeyringBrowser({

clientProvider,

generatorKeylId,

keyIds,
1)

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,

BRZEAEE R MBEZRFR 335

AWS Encryption SDK FERARER

* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum number of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,
cache,
partition,
maxAge,

BRZEAEE R MBEZRFR 336

AWS Encryption SDK FERARER

maxBytesEncrypted,
maxMessagesEncrypted,

1)

/* Encryption context is a *very* powerful tool for controlling
* and managing access.
* When you pass an encryption context to the encrypt function,
* the encryption context is cryptographically bound to the ciphertext.
* If you don't pass in the same encryption context when decrypting,
* the decrypt function fails.
* The encryption context is ***not*** secret!
* Encrypted data is opaque.
* You can use an encryption context to assert things about the encrypted data.
* The encryption context helps you to determine
* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate

malicious interference.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
*
* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
*/
const encryptionContext = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2',

/* Find data to encrypt. */
const plainText = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data.

* The caching CMM only reuses data keys

* when it know the length (or an estimate) of the plaintext.

* However, in the browser,

* you must provide all of the plaintext to the encrypt function.

* Therefore, the encrypt function in the browser knows the length of the
plaintext

* and does not accept a plaintextLength option.

*/

BRZEAEE R MBEZRFR

AWS Encryption SDK FERARER

const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

/* Log the plain text

* only for testing and to show that it works.

*/

console.log('plainText:', plainText)
document.write('</br>plainText:' + plainText + '</br>")

/* Log the base64-encoded result
* so that you can try decrypting it with another AWS Encryption SDK
implementation.
*/
const resultBase64 = toBase64(result)
console.log(resultBase64)
document.write(resultBaseb4)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Log the clear message
* only for testing and to show that it works.

*/

BRZEAEE R MBEZRFR 338

AWS Encryption SDK FERARER

document.write('</br>Decrypted:' + plaintext)
console.log(plaintext)

/* Return the values to make testing easy. */
return { plainText, plaintext }

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
NodeCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from 'e@aws-crypto/client-node'’

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient()".
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

export async function cachingCMMNodeSimpleTest() {
/* An &KMS; key is required to generate the data key.
* You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
*/
const generatorKeylId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding alternate &KMS; keys that can decrypt.
* Access to kms:Encrypt is required for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.

BRZEAEE R MBEZRFR 339

AWS Encryption SDK

FRARER

* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key

* and the additional key are actually the same &KMS; key.

* In “generatorId’, this &KMS; key is identified by its alias ARN.

* In “keyIds®, this &KMS; key is identified by its key ARN.

* In practice, you would specify different &KMS; keys,

* or omit the “keyIds® parameter.

* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [

'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* The &KMS; keyring must be configured with the desired &KMS; keys
* This example passes the keyring to the caching CMM
* instead of using it directly.
*/

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

BRZEAEE R MBEZRFR

340

AWS Encryption SDK

const partition = 'local partition name'

/*

*

maxAge is the time in milliseconds that an entry will be cached.
Elements are actively removed from the cache.

*/
const maxAge = 1000 * 60

/*

*

The maximum amount of bytes that will be encrypted under a single data key.
This value is optional,
but you should configure the lowest value possible.

*/
const maxBytesEncrypted = 100

/*

*

The maximum number of messages that will be encrypted under a single data key.
This value is optional,
but you should configure the lowest value possible.

*/

const maxMessagesEncrypted = 10

const cachingCMM = new NodeCachingMaterialsManager({

*

*

backingMaterials: keyring,
cache,

partition,

maxAge,

maxBytesEncrypted,
maxMessagesEncrypted,

Encryption context is a *very* powerful tool for controlling

and managing access.

When you pass an encryption context to the encrypt function,

the encryption context is cryptographically bound to the ciphertext.

If you don't pass in the same encryption context when decrypting,

the decrypt function fails.

The encryption context is ***not*** secret!

Encrypted data is opaque.

You can use an encryption context to assert things about the encrypted data.
The encryption context helps you to determine

whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
For example, if you are are only expecting data from 'us-west-2',

the appearance of a different AWS Region in the encryption context can indicate

malicious interference.

*

See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

concepts.html#encryption-context

BRZEAEE R MBEZRFR

FRARER

341

AWS Encryption SDK FERARER

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
*/
const encryptionContext = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2',

/* Find data to encrypt. A simple string. */
const cleartext = 'asdf'

/* Encrypt the data.
* The caching CMM only reuses data keys
* when it know the length (or an estimate) of the plaintext.
* If you do not know the length,
* because the data is a stream
* provide an estimate of the largest expected value.

* If your estimate is smaller than the actual plaintext length
* the AWS Encryption SDK will throw an exception.

* If the plaintext is not a stream,
* the AWS Encryption SDK uses the actual plaintext length
* instead of any length you provide.

*/

const { result } = await encrypt(cachingCMM, cleartext, {
encryptionContext,
plaintextLength: 4,

1)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

BRZEAEE R MBEZRFR 342

AWS Encryption SDK FERARER

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Return the values so the code can be tested. */
return { plaintext, result, cleartext, messageHeader }

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

or in the "license" file accompanying this file. This file is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific

#
#
#
#
#
#
http://aws.amazon.com/apache2.0/
#
#
#
#
language governing permissions and limitations under the License.

"""Example of encryption with data key caching.
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
"""Encrypts a string using an &KMS; key and data key caching.

:param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key

BRZEAEE R MBEZRFR 343

AWS Encryption SDK FERARER

:param float max_age_in_cache: Maximum time in seconds that a cached entry can
be used

:param int cache_capacity: Maximum number of entries to retain in cache at once

Data to be encrypted

my_data = "My plaintext data"

Security thresholds
Max messages (or max bytes per) data key are optional
MAX_ENTRY_MESSAGES = 100

Create an encryption context
encryption_context = {"purpose": "test"}

Set up an encryption client with an explicit commitment policy. Note that if
you do not explicitly choose a

commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

Create a master key provider for the &KMS; key
key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

Create a local cache
cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

Create a caching CMM

caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=max_age_in_cache,
max_messages_encrypted=MAX_ENTRY_MESSAGES,

When the call to encrypt data specifies a caching CMM,
the encryption operation uses the data key cache specified
in the caching CMM
encrypted_message, _header = client.encrypt(
source=my_data, materials_manager=caching_cmm,
encryption_context=encryption_context

)

BRZEAEE R MBEZRFR 344

AWS Encryption SDK FERARER

return encrypted_message

REZFZEHE
EXBREEAEEN , CRERBEE CVM BHATHRE HE,

ZeHEADTRHASNMNEFNREZANCANEKE UREMN BEZARFHOSBEE. RBEE
FRENEMAEREHAEN , 27 CMM F 2 REZFNRIERH, MREFFEEIEMHE , T
SEYMBREREAZERE , ARRRRENEFHEL, BN BEZANERER (EEFZH)
BRI AXLERERN,

— iR, BEABRENRANEEBRAENREEFE,

AWS Encryption SDK R ZFEAZARERHBNZNBIEZH, i, RN ELEHERET LR,
XERFBRUVFEZANEARXBISEIHENEZRS. T , BTEFHNREXEEZR (RRIAER
) | BREFEREFXLEZHANSE, i K EERERHEZAMEN TS BNRIE

AXRZBEFELZLRENTRH , S AWS Encryption SDKHE “ AWS Z2 8% sy ‘Gl EHRIER
HEFEREEENNARERE .

(® Note

&7 CMM EEFIE U THRE. MRREEMERNE , NEF CMM EHRIAE.
EifZABIERAEE , AWS Encryption SDK B Java H Python SEIUR i —ANZ2 N %3 41 %
BE(ZER). ZE2FEAENGET BRREXRGH , FEFRM@AL PUT HR, BIUEFERAZ
ZE, K MARFEFRERLZLREIREN 0. BXEZEL , HSH Java M Python HEZE
®217.

RREAMR (LF)

HWEEENXENEANEK , NFAMZEENER, ZEANXEDR, BE@A—NKT 0 HE,
AWS Encryption SDK T BR#l & K F iR {E,

P BB S I & AWS Encryption SDK EX T UM N ENHRKXER , EFEAZERH AWS
Encryption SDK for JavaScriptBr k.

FERURREARENERELRE , ErRERENNARFNRENEFFZH. B0 UEREARIRRE
—HERASRKERBRRE, TUAERAZERFIBEZAERRY , ERRERD MBS EME |
URZEHEEFHRRE TR REZTCNBERR,

REEFREHE 345

https://en.wikipedia.org/wiki/Key_derivation_function
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK FERARER

B R AH S (iR)

BEEEZFENHEZATUNZNR R, ZENRT, FaA 13 2/32 2EHE. RIAME
N 2132 MNHEE

MEIMEENFRHAPHNERRREBSEY AUMNEAS RS , BIREBED /NN AT SARBIER
M BR B AT RE O R AV K BB
MEZENZRRFTE (Wit)

EEEFNBEZATUNBENRAFHTR. ZEN R, HFHA 0 F 2763 - 1 ZHAE. Ik
E)2763-1, HEAEO N , BREEMNBEEHEFNERNERRERRAZE.

EFEZRER , FEFEIRERPNFTR, MRELENF RN LN T HED LR
B, IMERTRATRIER , EFNREZHAEINEFPHREL,

BREEBHEFFAERE

REBNARFIUERARANBERAZREXE MATREEELRDE, ATHMETRIAZRURE
FIETIH —EFAER.

F&

- BEFAEENTHELSR

- BIENEMBESR

- QRETNEMEEERS

- EREEAEERETEEWERNE?

- MBETX : MMAREEFZRE

- RNNAEFREEEREFNBIERN ?

BREBHEFWIELSN

ENZRBRBEIENERDERRIEZAEER , AWS Encryption SDK AEEFHERSERITHE
WHEZA, NRKIBFRHVCED , eFEASTFAREZHAMNERE. 8 , SERFHNEREZSR |
MBEERE—H,

FRERARNPHIBEFERAREZRAZTF , ORABE. XIHEF CMM BT EBEEHNITEAF
THEE, B TBEZITRH , FROEERRNRINEMNEZERF,

BREZAEFHFEAEE 346

AWS Encryption SDK FERARER

BREFN BEZHEFLEERAESENEMREES (EF CMM) , E7F CMM 2—fE AN
FBEESE (CMM) |, ZEERESEFNEM CMM #TRE, (EEEZZHRMUEFIZHRN ,
AWS Encryption SDK Fa|E—1EIA CMM,) & CMM EFHERM CMM REINHEZH. EfF
CMM s #HITRIEBN EELRERE.

ATBHIENEFEPEREROBEZH , IERBNEFE CMMs EXEFNNEMBNUTERES
MRESR AR AL,

- EEEH
« MELETX (EERZER)
- DXEW (ATHRIRERE CMM BIFRFEH)

« (NEFR) NEREZH

@ Note
1R 34 B 2 455 P BRAP AR R R | F & AWS Encryption SDK B 5IE 548,

LTFITHERNET MAEEFNFEFREZANER TAERBENZER, XETHEREA T HME
ZRRBPERALUENEEEN , BSBEENEF CMM,

MBBREMARTER

RENEZEMBMAEF

1. NARFERIBHIE AWS Encryption SDK #{T%,
ZEREE - NEZAREEFREHHR. AWS Encryption SDK BlE—NSXHHAREEFIE
AT EHRKIA CMM,

2. [@ CMM AWS Encryption SDK REMZ## (FKEUINBHE) -

3. CMM ERHEZ4AIF (C M JavaScript) i EZ4ARME (Java # Python) IRAEMZEM R, X ATRE
B RBAMBZRS |, H70 AWS Key Management Service (AWS KMS), CMM 0% #1 k1R B 44
AWS Encryption SDK.,

4. AWS Encryption SDK £ i A X A BEA AN BIEHTNE. ©HRELS S Y INEE S 74
BRENMNZBEERNR.

BREREFNIELSR 347

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK FERARER

Request to
encrypt data
A Encrypted
User DATA e Y|V message
I A
AWS ‘ DATA
—_—
Encryption o 2 Ener
ypt

SDK P —— W

Get cryptographic r

materials =

Cryptographic

materials
manager (CMM) N
Get master keys
CMM Generate data key
ERAZEFENZEHE

REUINZ MR H B RFHRERS

1. NARFERIHIE AWS Encryption SDK # 1T 1%
ZIEREETEREENEMBEES (CMM) XBNEFMEMREESE (EF CVM) , RE
BEFRARMEBEFIFHE , AWS Encryption SDK F 81222 IAH CMM,

2. ZFRITEQEREENESF CMM REMEM R

3. &fF CMM \NEFHIERMEM K.

a. MREFRICET , FEHCENEZERENHRNERE , HEEEFONEHREESET
CMM,

NREFFEFSEZLHE , NERF CMM FLEZFERERZFRTERZ, B , EBHNER
BHIZ5EARERE SRR ATET—#,

b. MREERAINERMNTEID , £17 CMM FiFREEM CMM £ HIERA,
JKFE CMM ME 4R (C M JavaScript) REZFARMIERF (Java F Python) SREUINZE A

B, XS REA— MRS , 10 AWS Key Management Service, &t CMM [EIE #4988
XA ME B AR E L EF CMM,

BREREFNIELSR 348

AWS Encryption SDK FERARER
Z%F CMM EEFHRREFFHOMEM L
4. &% CMM iz #HREI4 AWS Encryption SDK,

5. AWS Encryption SDK f & X A HE R AN BAEHTINE, ©HERELSL R - INZE S P EEN
ZRENNZREENA.

Request to
User encrypt data Encrypted
message ==

Cachlng
DATA CM M H’_
AWS T

Encryption 05‘-—’ DATA og Encrypt
SDK cryptographlc
materials T T
Caching
CMM
QUEW cache — Keys in Save in cache

cache? < %
A

Get cryptographic materials
CMM

Get master keys
Generate data key

Return to SDK

IEMEMBET

AWS Encryption SDK EXL THIFEZHEFEFEANMEMRREFNER, I, &
7 CMM Rt ExEF I ENFFEENSESSOEA (LRU) &7, E6lE
i B FHISEH , B Java F Python FfYLocalCryptoMaterialsCache#d
BB JavaScript, A #Y getLocalCryptographicMaterialsCache BI¥{=; C A
fMaws_cryptosdk_materials_cache_local_newfdi& %X

FEFUSEREFEEEE SEM. BRENCREEFNFZEUARENEF, EXFTREEME
EURFEREE, SUUREXEAABESF NHATAEXIEREARBTNESR.

EolZAEFN , BALRERRE B, ZEFIUREFNEAZER. ZREAYTRITERSR
[RHEEZAEARBNERER.

BIEMEM B EE 349

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK FERARER

AWS Encryption SDK for Java fl AWS Encryption SDK for Python B 12# T — N MEMREF
(NullCryptoMaterialsCache). NullCryptoMaterialsCache R EIFTEGETIREH KIR , H ERKPUTER
EfHEIE R, B LATEMR NullCryptoMaterialsCache A , t A E B EEFRBHNARBFFE
RERZEEF.

£ AWS Encryption SDK , /M NEMREFHEEFENEZMEEESS (£17F CMM) HXxE, &7
CMM NEEFHIREBEZR , FHREZAREEEY , AFBRFRTRIEENZSHRE,. EEIBRERE
CMM i , BA S EHFEANEEUREREEENHERFANEM CMM RERARBER.

SIEZFMEMBEERR

ESRSRERASE LEEUEEENEFNEMNEESR (ZF CMM) . RF , EMEIERL
FEOERFIEEZTF CMM , MARMENEM B EESR (CMM) HERARBREFREHR,

BRMRE CMMs, EIZRIMBERSR (MAXBNEME) BEERATENGE TR :

- CMM %473k (C =% JavaScript) S EZHIRMESF (Java F Python) MxEk, HFAITETE
K CMM REMESFZEMBIET , CMM NEZBAR R EHARBEFREM B, 7£ Java F Python
B, CMM EAEZHER. MERBHEBIERL, £ C M JavaScript , ZEAREK. MZEFIRE
hnZ# &t

. E1F CMM 5—ANEfF (fImAET) MER CMM B%E, ERF X TEQERESF CMM =4t
mEMBES , ZF CMM ZHMNEFHRIUX LM, MRETBEER , £7F CMM FERHEEHM
CMM A, RE , TR AT IEEH W B B2 S LB,

% CMM BRHANTEHENEFRERBENZ2HE, ATRLNEREET CMM FREHHH
BHNTH , FIAETAEREARENES DEREF TR BEMRLITH.
ERRZAREREFEEWLERNE ?

BEZRAZTHEERANEXNNBEREREEFY. SMREBESTHEHIHNATE, ERERE
ERBEZAZFHERAREZENFZHHEERRS (ZF CVM) LiRBEREEHERN , BAg2ANZ
EEFEERA,

NMFEREFHSRE
BT NZREMRMIIBERAZFNRESEUATTE

- PAXHERN
- MENBEZHR (—IHZD)

DIREFMEM R EER 350

AWS Encryption SDK FRAR ISR
« B LETX

- HEZXZE®H (NRER)

- EEEH

- TEE, SRRATXREZSRENER TSRS

NEZEREFHFRE
HT@ZREMMIBFEZAZFNRECEUTRE !

- PAXHIERN
- ERWIERHA (NREH)
- THE SERATXRLZERENERITHES

e LT e RERFESE

B AR AMZERENERFIEENE LT, A3, MZF L TXERBEZAZFPRISHRNE
Ao ZETNAWEENEETREBERA A , IEREZAXRE THRNER CMM,

NEELTXR-AISEEFNBHRENREN ., EMBHE , LT XEMNE S XHED N K
&, LEFTEEMAMEENME LT X@ERHIE, EH AWS Encryption SDK , 1% £ T X #EH A 0
ERENBIEZ AR NEEE

EEABERAZEN , BEAUERNE L TXNNERELRBENEFRERA,. MELTXE
BEZH—ERFEEFERED (EREFRE DN -). AEEMBLTXEEN , T2EA
ZENREZH, IREBENZBERTERAZEREZY BEEMENME LT, MRERREH
XEHFERS FEETRNMNE LT X

MR E T XHAR TR BRUER. NRERARPKISENS ETY WEEFRBFAEREE
2% E T Y55 ERTE,

BNNAEFREERETHNRERNA?

BREBZAZFR-HUARE NTREENARFNIFEARREERNN. T2, ATEFE LN
e, BSMEETHENHETREZSER , ARBERBZRETARTRRK,

HTHEZASFEEERAKEZS At , FHENRRERRL TERFHBEZHANREA
R, YXMBIBEZAEER | NEEFELR T AWS Encryption SDK 8% AWS KMS

& LT AR EFRE 351

AWS Encryption SDK FERARER

GenerateDataKeyiRERBI BB HKIEF, B2 , NEEXNAKEEEMHEEY (SFBEERMB LT
XHEEZES) WRERANNARERY , EFT 2L ERE M.

ERELHNEIEEEERE AWS Encryption SDK 2EFERAEZFEFNHERR , B2HUTHER,

- EEFPEMBENAES K RECBRFTREZANAAME, ERREZHEEFEUE |, QIBH
ZHANARXBNAERD, flan , MREFEANZE AWS KMS EZ{ARMEFIZHRE , BE
CloudTrail B EH 1 & GenerateDataKey Y,

« L8 AWS Encryption SDK AN R EH MZFEFERMIREMNINZES, flm , mBREFEHRAHR
AWS Encryption SDK for Java , & tbE K B T [E % F A K ParsedCiphertextX R, £ AWS
Encryption SDK for JavaScript , tk&encryptedDataKeys/E MM RN BMessageHeader, EEEF
RABERAN , MFEEFRNNEREZARTEHERN,

BRERZRHEE A

ZRNIRSEZAEFEABEFT - EEANNRNARFRE , P , MRS MRZJLERNBEFF
EETENXEF,

EXMERT , ENRBEENBERBE , XHH TN , REEARSMNXEFEPH Kinesis

Jito AWS Lambda BE#R (EFtiR) NR#HITHRE , ARFHNEBEEATXEHHPH DynamoDB .
B A K2 F0H B um E A AWS Encryption SDK #l AWS KMS ZEAREREF . BRI KMS #1
A, S NERBENERREEE SN AREER,

AT LATE Java and Python R EX L REIARERRB, ZRHESIE—NEXELRRRN
CloudFormation &4k,

BiRZAET R 352

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK FERARER

Producers

(4 \ \e\u—central—l)
Amazon _ AWS KMS
Kinesis
A)‘JS Lambd\a\)
\[Consumer I Consumer Consumer Consumer
£ A\ v
Amazon Amazon
DynamoDB DynamoDB
. VAN v

S E2 ZER TS

TRERT A EFRZRHIFHE KMS FRRE (BIMXEE8Y) B EIRHBEN 1%,

£ RBER
S EPREVHERE SARENE SAXEEY
PR 1 TE R

ERBEZR NEHREZH B (81K

(us-west-2) (eu-central-1) 1)

RiBEFLER 353

AWS Encryption SDK

FRARER

EEE
ity BT

EREER

EE

it 17

1 1

1 rps/100)R 1 rps/100)R
Ed Ed]

BB IREBYIIERY
BERERSE tIRE
B0 0EE1 500

rps

SNEEE1 500
rps/100 JRfE
H

BRBAEETHRD

ZARBRBIE Java M Python REIEEAAR M EFHHSBEZRARFIR, ZRBAURTRNRib
FFRB —MNATNERENRELESE , S NATHREBRENBIEEAE (AWS Lambda B
B). BEXEMHEENHRERAEEIRNIFAEE , S HERT AWS Encryption SDKH Javadoc

Python 3%,

1

1 rps/100 X
Ed]

Total

500

500

500

BNXEHE
P im %

BIEZAEFERA T AWS Encryption SDK XEHFIERIEES.

BEXREPEABEZHEFNZEAZIN K =B AWS Encryption SDK , {55 :

» C/C++ : caching_cmm.cpp

« Java : SimpleDataKeyCachingExample. java

- JavaScript ¥ %88 : caching_cmm.ts

« JavaScript Node.js: caching_cmm.ts

» Python : data_key caching_basic.py

500

5
BIMNXEEY
Y P ERE
1000

10

R RB

354

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK FERARER

Producer

FMEERBUBE |, FFEFZERHA JSON , EAXNERITMNE , AERBEIZFHEET S B FH Kinesi
s e AWS Encryption SDK AWS [X i

ZRBENLTEZFNEMBEERR (EF CMM) |, FREETHEFMAER AWS KMS EEHFREHERE
FXE, &fF CMM R A FZAREEFNEEZR (NEXNNEME) . EERAREZFRIE
BEEERITRE , AXBLRENZTE2HRE,

BTXNELEZNEREESZF CMM MIFEERZFNEM B EESR (CMM) RERARMERERF , i
ZRERBEZAZRE.

Java

AR RBIERRA 2, B x 4~ AWS Encryption SDK for Java. W4~ 3. EH x AWS Encryption
SDK for Java EFRAEZFIET CMM, AR 3, x, RETLAERAAWS KMS 2 EZA
X2—MERNMEBEMBREFHRRE R,

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

* http://aws.amazon.com/apache2.0

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.MasterKeyProvider;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;

import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;

83 R Bl 355

https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK FERARER

import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;

import java.util.Arraylist;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.UUID;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.kinesis.KinesisClient;

import software.amazon.awssdk.services.kms.KmsClient;

/**
* Pushes data to Kinesis Streams in multiple Regions.
*/

public class MultiRegionRecordPusher {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
private static final long MAX_ENTRY_USES = 100;

private static final int MAX_CACHE_ENTRIES = 100;

private final String streamName_;

private final ArraylList<KinesisClient> kinesisClients_;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

/**
* Creates an instance of this object with Kinesis clients for all target
Regions and a cached
* key provider containing KMS master keys in all target Regions.
*/
public MultiRegionRecordPusher(final Region[] regions, final String
kmsAliasName,
final String streamName) {
streamName_ = streamName;
crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();
kinesisClients_ = new ArraylList<>();

AwsCredentialsProvider credentialsProvider =
DefaultCredentialsProvider.builder().build();

83 R Bl 356

AWS Encryption SDK FERARER

// Build KmsMasterKey and AmazonKinesisClient objects for each target region
List<KmsMasterKey> masterKeys = new ArraylList<>();
for (Region region : regions) {
kinesisClients_.add(KinesisClient.buildexr()
.credentialsProvider(credentialsProvider)
.region(region)
.build());

KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
.defaultRegion(region)
.builderSuppliex(() ->
KmsClient.builder().credentialsProvider(credentialsProvider))
.buildStrict(kmsAliasName)
.getMasterKey(kmsAliasName);

masterKeys.add(regionMasterKey);

// Collect KmsMasterKey objects into single provider and add cache
MasterKeyProvider<?> masterKeyProvider =
MultipleProviderFactory.buildMultiProvider(
KmsMasterKey.class,
masterKeys

);

cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
.withMasterKeyProvider(masterKeyProvider)
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.withMessageUselLimit(MAX_ENTRY_USES)
.build();

/**
* JSON serializes and encrypts the received record data and pushes it to all
target streams.
*/
public void putRecord(final Map<Object, Object> data) {
String partitionKey = UUID.randomUUID().toString();
Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("stream", streamName_);

// JSON serialize data

83 R Bl 357

AWS Encryption SDK FERARER

String jsonData = Jackson.toJsonString(data);

// Encrypt data

CryptoResult<byte[], ?> result = crypto_.encryptData(
cachingMaterialsManager_,
jsonData.getBytes(),
encryptionContext

);

byte[] encryptedData = result.getResult();

// Put records to Kinesis stream in all Regions
for (KinesisClient regionalKinesisClient : kinesisClients_) {
regionalKinesisClient.putRecord(builder ->
builder.streamName(streamName_)
.data(SdkBytes.fromByteArray(encryptedData))
.partitionKey(partitionKey));

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import json

import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy
from aws_encryption_sdk.key_providers.kms import KMSMasterKey

83 R Bl 358

AWS Encryption SDK FERARER

import boto3

class MultiRegionRecordPusher(object):
"""Pushes data to Kinesis Streams in multiple Regions."""
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 300.0
MAX_ENTRY_MESSAGES_ENCRYPTED = 100

def __init_ (self, regions, kms_alias_name, stream_name):
self._kinesis_clients = []
self._stream_name = stream_name

Set up EncryptionSDKClient
_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Set up KMSMasterKeyProvider with cache
_key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

Add MasterKey and Kinesis client for each Region
for region in regions:
self._kinesis_clients.append(boto3.client('kinesis’,
region_name=region))
regional_master_key = KMSMasterKey(
client=boto3.client('kms', region_name=region),
key_id=kms_alias_name
)

_key_provider.add_master_key_provider(regional_master_key)

cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
self._materials_manager = CachingCryptoMaterialsManager(
master_key_provider=_key_provider,
cache=cache,
max_age=self.MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED

def put_record(self, record_data):
"""JSON serializes and encrypts the received record data and pushes it to
all target streams.

:param dict record_data: Data to write to stream

83 R Bl 359

AWS Encryption SDK FERARER

Kinesis partition key to randomize write load across stream shards
partition_key = uuid.uuid4().hex

encryption_context = {'stream': self._stream_name}

JSON serialize data
json_data = json.dumps(record_data)

Encrypt data

encrypted_data, _header = _client.encrypt(
source=json_data,
materials_manager=self._materials_manager,
encryption_context=encryption_context

)

Put records to Kinesis stream in all Regions
for client in self._kinesis_clients:
client.put_record(
StreamName=self._stream_name,
Data=encrypted_data,
PartitionKey=partition_key

EHE

WIEHTRIR R — A Kinesis B4 A H AWS Lambda B, HEZHRFILEMNEFE , FHHAX
IBXREARIE—XFFH Amazon DynamoDB %,

BEABRABR—# , HRWABEXN Decrypt TEZNBAFERAEZFNEMEEERR (EF CVMM) I
BRBEZRER.

Java RBEAEENETBERX THEXZARMERF AWS KMS key, BENETEEATHER ,
BiXR&EXEK. Python RBEAKXIERN , £1F AWS Encryption SDK A NZ K IEZ AN EMRD
REANHHFTHRE,

Java

LUTRRBIERRA 2, B x 4~ AWS Encryption SDK for Java. hR4s 3, EH x AWS Encryption
SDK for Java EFRAEFIHET CMM, AR 3, x, REATLAERAWS KMS 2 EZA
X2—MERNMEBEMBREFHRRE R,

83 R Bl 360

https://aws.amazon.com/kinesis/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK FERARER

WRBAETECEERX THRENEZHRMER. AWS Encryption SDK REESEH AWS KMS
keys 18 E WK EZIBRIE R

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;

import com.amazonaws.services.lambda.runtime.Context;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;

import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;

import java.io.UnsupportedEncodingException;

import java.nio.ByteBuffer;

import java.nio.charset.StandardCharsets;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;

import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
* Decrypts all incoming Kinesis records and writes records to DynamoDB.
*/

public class LambdaDecryptAndwWrite {

83 R Bl 361

AWS Encryption SDK FERARER

private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
private static final int MAX_CACHE_ENTRIES = 100;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

private final DynamoDbTable<Item> table_;

/**
* Because the cache is used only for decryption, the code doesn't set the max
bytes or max
* message security thresholds that are enforced only on on data keys used for
encryption.
*/
public LambdaDecryptAndWrite() {
String kmsKeyArn = System.getenv('"CMK_ARN");
cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

.withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.build();

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

String tableName = System.getenv("TABLE_NAME");
DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

/**
* @param event
* @param context
*/
public void handleRequest(KinesisEvent event, Context context)
throws UnsupportedEncodingException {
for (KinesisEventRecord record : event.getRecords()) {
ByteBuffer ciphertextBuffer = record.getKinesis().getData();
byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

// Decrypt and unpack record
CryptoResult<byte[], ?> plaintextResult =
crypto_.decryptData(cachingMaterialsManager_,
ciphertext);

83 R Bl 362

AWS Encryption SDK FERARER

// Verify the encryption context value
String streamArn = record.getEventSourceARN();
String streamName = streamArn.substring(streamArn.index0f("/") + 1);
if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
throw new IllegalStateException("Wrong Encryption Context!");

// Write record to DynamoDB

String jsonItem = new String(plaintextResult.getResult(),
StandardCharsets.UTF_8);

System.out.println(jsonItem);

table_.putItem(Item.fromJSON(jsonItem));

private static class Item {

static Item fromJSON(String jsonText) {
// Parse JSON and create new Item
return new Item();

Python

It Python KBEAINEX TEAFZZARMEFH#HITHE, ZKB AT AWS Encryption SDK &
REAMZEHEZ AN SEZANEITHE, ZSESEEEASEER , EXHEXT |, &9
EETHTHENTEZER.

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except

in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

83 R Bl 363

AWS Encryption SDK FERARER

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.
import baseb4

import json

import logging

import os

from aws_encryption_sdk import EncryptionSDKClient,
DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
LocalCryptoMaterialsCache, CommitmentPolicy

import boto3

_LOGGER = logging.getlLogger(__name__)
_is_setup = False

CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

def setup():

"""Sets up clients that should persist across Lambda invocations."""
global encryption_sdk_client
encryption_sdk_client =

EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

global materials_manager
key_provider = DiscoveryAwsKmsMasterKeyProvider()
cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

Because the cache is used only for decryption, the code doesn't set
the max bytes or max message security thresholds that are enforced
only on on data keys used for encryption.
materials_manager = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS
)
global table
table_name = os.environ.get('TABLE_NAME')
table = boto3.resource('dynamodb').Table(table_name)
global _is_setup
_is_setup = True

83 R Bl 364

AWS Encryption SDK FERARER

def lambda_handler(event, context):
"""Decrypts all incoming Kinesis records and writes records to DynamoDB."""
_LOGGER.debug('New event:"')
_LOGGER.debug(event)
if not _is_setup:
setup()
with table.batch_writer() as batch:
for record in event.get('Records', []):
Record data baseb4-encoded by Kinesis
ciphertext = baseb64.b64decode(record['kinesis']['data'])

Decrypt and unpack record

plaintext, header = encryption_sdk_client.decrypt(
source=ciphertext,
materials_manager=materials_manager

)

item = json.loads(plaintext)

Verify the encryption context value

stream_name = record['eventSourceARN'].split('/', 1)[1]
if stream_name != header.encryption_context['stream']:

raise ValueError('Wrong Encryption Context!')

Write record to DynamoDB
batch.put_item(Item=item)

HIEREAEFZ B . CloudFormation 1y

It CloudFormation #iRIZE 7T FAIE HEM AWS BIRREBILHIFEZHEFRH,

JSON

"Parameters": {

"SourceCodeBucket": {
"Type": "String",
"Description": "S3 bucket containing Lambda source code zip files"

.

"PythonLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"

CloudFormation &4 365

AWS Encryption SDK FERARER

},
"PythonLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
I
"JavalLambdaS3Key": {
"Type": "String",

"Description": "S3 key containing Python Lambda source code zip file"
},
"JavalLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
1,
"KeyAliasSuffix": {
"Type": "String",
"Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"
},
"StreamName": {
"Type": "String",
"Description": "Name to use for Kinesis Stream"

}I

"Resources": {
"InputStream": {
"Type": "AWS::Kinesis::Stream",
"Properties": {
"Name": {
"Ref'": "StreamName"

1,
"ShardCount": 2

1,
"PythonLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [
{
"AttributeName": "id",
"AttributeType": "S"

1,

CloudFormation &4 366

AWS Encryption SDK FERARER

"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"

1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

I
"PythonLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

},
"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AwWSLambdaBasicExecutionRole"
1,
"Policies": [
{
"PolicyName": "PythonLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

CloudFormation &4 367

AWS Encryption SDK FERARER

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}"
}
I

{
"Effect": "Allow",

"Action": [
"dynamodb:PutItem"
1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}*"
}
I

{
"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:

${AWS: :AccountId}:stream/${InputStream}"
}

},
"PythonLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Python consumer",
"Runtime": "python2.7",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"PythonLambdaRole",
"Arn"

CloudFormation &4 368

AWS Encryption SDK

FRARER

iy

"Handler":

"aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",

"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"

I
"S3Key": {

"Ref": "PythonLambdaS3Key"
},

"S30bjectVersion": {
"Ref": "PythonLambdaObjectVersionId"

1,
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "PythonLambdaOutputTable"

1,
"PythonLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:

${AWS: :AccountId}:stream/${InputStream}"
},
"FunctionName": {
"Ref": "PythonLambdaFunction"
I
"StartingPosition": "TRIM_HORIZON"

1,
"JavalLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{

CloudFormation &4

369

AWS Encryption SDK FERARER

"AttributeName": "id",
"AttributeType": "S"

}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

iy
"JavalLambdaRole": {

"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
},
"Action": "sts:AssumeRole"
}

},
"ManagedPolicyArns": [
"arn:aws:iam::aws:policy/service-role/
AwWSLambdaBasicExecutionRole"
1,
"Policies": [
{
"PolicyName": "JavalLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

CloudFormation &4 370

AWS Encryption SDK FERARER

"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:

${AWS: :AccountId}:table/${JavalLambdaOutputTable}"
}
I

{
"Effect": "Allow",

"Action": [
"dynamodb:PutItem"
1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${JavaLambdaOutputTable}*"
}
I

{
"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:

${AWS: :AccountId}:stream/${InputStream}"
}

},
"JavaLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Java consumer",
"Runtime": "java8",
"MemorySize": 512,
"Timeout": 90,

CloudFormation &4 371

AWS Encryption SDK

FRARER

"Role": {
"Fn::GetAtt": [
"JavalLambdaRole",

"Azn"
]
I
"Handler":
""com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
I
"S3Key": {
"Ref": "JavalLambdaS3Key"
},
"S30bjectVersion": {
"Ref": "JavalLambdaObjectVersionId"
}
},

"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "JavalLambdaOutputTable"

I
"CMK_ARN": {
"Fn::GetAtt": [
"RegionKinesisCMK",
"Azn"
]
}

I
"JavalLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"
},

"FunctionName": {

: :handleRequest",

CloudFormation &4

372

AWS Encryption SDK FERARER

"Ref": "JavalLambdaFunction"

iy
"StartingPosition": "TRIM_HORIZON"

1,
"RegionKinesisCMK": {
"Type": "AWS: :KMS: :Key",
"Properties": {
"Description": "Used to encrypt data passing through Kinesis Stream
in this region",
"Enabled": true,
"KeyPolicy": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": {
"Fn::Sub": "arn:aws:iam::${AWS: :AccountId}:root"

},

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey",
"kms:CreateAlias",
"kms:DeleteAlias",
"kms:DescribeKey",
"kms:DisableKey",
"kms:EnableKey",
"kms:PutKeyPolicy",
"kms:ScheduleKeyDeletion",
"kms:UpdateAlias",
"kms :UpdateKeyDescription"

1,

"Resource": "*"

"Effect": "Allow",
"Principal": {
"AWS": [
{
"Fn::GetAtt": [
"PythonLambdaRole",
"Arn"

CloudFormation &4 373

AWS Encryption SDK

FRARER

]
I
{
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"
]
}
]
I
"Action": "kms:Decrypt",
"Resource": "*"

},
"RegionKinesisCMKAlias": {
"Type": "AWS::KMS::Alias",
"Properties": {
"AliasName": {
"Fn::Sub": "alias/${KeyAliasSuffix}"
},
"TargetKeyId": {
"Ref": "RegionKinesisCMK"

}
}
}
}
}
YAML
Parameters:
SourceCodeBucket:
Type: String
Description: S3 bucket containing Lambda source code zip files
PythonLambdaS3Key:

Type: String

Description: S3 key containing Python Lambda source code zip file

PythonLambdaObjectVersionId:
Type: String

CloudFormation &4

374

AWS Encryption SDK FERARER

Description: S3 version id for S3 key containing Python Lambda source code
zip file
JavalLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
JavalLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
KeyAliasSuffix:
Type: String
Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
StreamName:
Type: String
Description: Name to use for Kinesis Stream
Resources:
InputStream:
Type: AWS::Kinesis::Stream
Properties:
Name: !Ref StreamName
ShardCount: 2
PythonLambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1
PythonLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:

CloudFormation &4 375

AWS Encryption SDK

FRARER

${AWS: :

${AWS: :

${AWS: :

Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:
PolicyName: PythonLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
AccountId}:table/${PythonLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
AccountId}:table/${PythonLambdaOutputTable}*
Effect: Allow
Action:
- kinesis:GetRecords
- kinesis:GetShardIterator
- kinesis:DescribeStream
- kinesis:ListStreams
Resource: !Sub arn:aws:kinesis:${AWS::Region}:
AccountId}:stream/${InputStream}

PythonLambdaFunction:

Type: AWS::Lambda: :Function
Properties:
Description: Python consumer
Runtime: python2.7
MemorySize: 512

Timeout: 90
Role: !GetAtt PythonLambdaRole.Azrn
Handler:

aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler

Code:
S3Bucket: !Ref SourceCodeBucket

CloudFormation &4

376

AWS Encryption SDK

FRARER

S3Key: !Ref PythonLambdaS3Key
S30bjectVersion: !Ref PythonlLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !'Ref PythonLambdaOutputTable
PythonLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref PythonLambdaFunction
StartingPosition: TRIM_HORIZON
JavalambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1
JavalLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:

PolicyName: JavalLambdaAccess

CloudFormation &4

377

AWS Encryption SDK FERARER

PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem
Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS: :AccountId}:table/${JavalLambdaOutputTable}*
Effect: Allow
Action:

- kinesis:GetRecords
kinesis:GetShardIterator
kinesis:DescribeStream
kinesis:ListStreams

Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
JavalLambdaFunction:
Type: AWS::Lambda::Function
Properties:

Description: Java consumer
Runtime: java8
MemorySize: 512
Timeout: 90
Role: !GetAtt JavalLambdaRole.Arn
Handler:
com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite: :handleRequest
Code:
S3Bucket: !Ref SourceCodeBucket
S3Key: !Ref JavalambdaS3Key
S30bjectVersion: !Ref JavalLambdaObjectVersionId
Environment:
Variables:
TABLE_NAME: !Ref JavalLambdaOutputTable
CMK_ARN: !GetAtt RegionKinesisCMK.Azrn
JavalLambdaSourceMapping:

CloudFormation &4 378

AWS Encryption SDK FERARER

Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref JavalLambdaFunction
StartingPosition: TRIM_HORIZON
RegionKinesisCMK:
Type: AWS::KMS: :Key
Properties:
Description: Used to encrypt data passing through Kinesis Stream in this
region
Enabled: true
KeyPolicy:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
Action:
Data plane actions
- kms:Encrypt
- kms:GenerateDataKey
Control plane actions
- kms:CreateAlias
- kms:DeleteAlias
- kms:DescribeKey
- kms:DisableKey
- kms:EnableKey
- kms:PutKeyPolicy
- kms:ScheduleKeyDeletion
- kms:UpdateAlias
- kms:UpdateKeyDescription
Resource: '*'

Effect: Allow
Principal:
AWS:
- !GetAtt PythonLambdaRole.Arn
- lGetAtt JavalLambdaRole.Arn
Action: kms:Decrypt
Resource: '*'

CloudFormation &4 379

AWS Encryption SDK FERARER

RegionKinesisCMKAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: !Sub alias/${KeyAliasSuffix}
TargetKeyId: !Ref RegionKinesisCMK

CloudFormation &4 380

AWS Encryption SDK FERARER

#YhRA< AWS Encryption SDK

AWS Encryption SDK & SR EAE L RAES , LELERMi RIS MNREPTLNEE, TE
FRARSHER , Fl0 1.xx BiH 2.xx , RER—MEAENR , TeeFEBRRBMITRFEE. R
AN EARERALFTEMENAS BEBRTHRANTHREREZIEM, RERFTHER , F
WM x1x ERA x2.x, RARGERS , EVEEEEFANTE,

REATRE , BEAPMERIZIES AWS Encryption SDK R RAN . FNRAH 43 /2
EXRBRREESRIMR. AXEERFEES IENRANFAEE , BSREGIIHUbF#EESR
KISUPPORT_POLICY.rstX#4,

HARDVEFERHKREENRENBRAZEROIIIEEN , BN REFRIRANFEDRNEHREH,
flan | BRAS 1.7.x 1 1.8.x BURIT AL ERA , ATREBIIEM 1.7 x ZBTH MR AR BIMRA 2.0.x REEIR
x, BXEZER , HZH TB/RH AWS Encryption SDK,

@ Note

RASHH x RREERAFXERANEM[MAT . FlE0, BRA 1.7.x RIRFAB 1.7 FFLH
RRA , B3 1.7.1 M 1.7.9,

L2 IEEH VI EE AWS 1% CLIARAS 1.7 FRHH. x M 2.0, x. B, AWS &
CLI FRASH 1.8, xHUMRT 1.7 Mo x F AWS 0% CLI 2.1, x BUX 2.0 xo. BXREMEEL ,
B2 Faws-encryption-sdk-clifE i EE RV X Z 20 5 GitHub,

THRBRTBHERIES IFNWREAZEMHNEEXS, AWS Encryption SDK

C

BXRBEEXRNFEMREE , BSHEFEMEEPH changelog.md. aws-encryption-sdk-c GitHub

FERA HHER SDK X ERAEEMwmE
HABY ER
1.X 1.0 IR End-of-Support Bt E&
1.7 # AWS Encryption
SDK E#7 A #5 By £ HA

c 381

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FRARER

2.x 2.0
2.2
2.3
C# /.NET

A AP AHEE 2.0
. x RESRA,
BXEZER , S
BIRRA 1.7 Xo

#E#H AWS Encryptio
n SDK. BXEZ(E

1%\ y iﬁé}lﬂ 20 H&O

Xo

HE MBI R,

T X AWS KMS
ZXEBRANZE.

IEX%f (GA)

BXMEERMFEMEA , BSREEFEEEDH changelog.md, aws-encryption-sdk-net GitHub

FERAK HAEE
3.X 3.1.0
4.x 4.0

IR

T X AWS KMS
DREBHAH. FAEN
iz £ T3 CMM H3E
X# RSA ZHATRI X
¥. AWSKMS

SDK £ ERA £ E
AR B
TR IE

AWS Encryption SDK
SEHAT.NET 89 3.x kR
EEH AL ;
BFHEE 4. xo

IEX % (GA)

C#/.NET

382

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER
ST E (CLI)

BXRIEERMFMIEE , HSFHAWS 1% CLI R AR F4 EF B changelog.rst, aws-
encryption-sdk-cli GitHub

FERAK HAEE SDK X ERA%/E
HART ER
1.X 1.0 IR End-of-Support B E%
1.7 # AWS Encryption
SDK E#raJ %5 By £ HA
A AP HEE 2.0

o x REB/RA,
BXEZEE , B
B 1.70 Xo

2.X 2.0 HIEH AWS Encryptio End-of-Support i B¢
n SDK. BXEZ(E
B B2 2.0 i,
Xo

2.1 BBR--discove
ry SRANHE
#h--wrappin
g-keys &%
#discovery B,

AWS 1n%% CLI By
2.1.0 RAZRE T Ht
WIBIBES M 2.0 i,

2.2 HE MBI R,

3.x 3.0 ®i7Tx AWS KMS End-of-Support B E%
SXERANZE

4x 4.0 AWS % CLI FEX [FX%% (GA)
Python 2 5 Python

WHITHE@E (CLI) 383

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FRARER

4.1

4.2

Java

3.4. MEMA4F1E,
X £ AWS hn%8 CLI
B, N2 Python
3.5 HEBRA,

AWS 1z CLI 7B X
Python 3.5, M 4.1
MRAFH, x £ AWS
iz CLI &, (N #
Python 3.6 R E & X
K,

AWS n# CLI 78
X #F Python 3.60 M
WA 4.2 g, x £
AWS % CLI # , {X
% # Python 3.7 RE
[S1TNS

BXFIEEXRMNFMIAEE | ESHEMEESR changelog.rst, aws-encryption-sdk-java GitHub

EBRAE FHAEE
1.x 1.0

1.3

1.6.1

SDK EEMmA % /E
AR B

MR AR End-of-Support Bt E&

B0 T XS B AR E
ERNBEZAZEN
X, BEBREMR IV
Ko

#MAAwsCrypto
.encryptS
tring() MHHH
B NAwsCrypto

Java

384

https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FRARER

1.7

2.X 20

2.2

2.3

24

.decryptS

tring() M. AwsCrypto

.encryptD
ata() AwsCrypto
.decryptDatal()

AWS Encryption
SDK E# AJ# By R 1
A AP AEE 2.0
. x RESRA,
BXEZER , FHS
BIRRA 1.7 Xo

#EH AWS Encryptio
n SDK. BXEZ(E

I%\ y "l.%%}lﬁl 20 ﬁ}io

Xo

HE MBI R,

T X AWS KMS
ZXEBRANZE.

I T X R AWS
SDK for Java 2.x.

IEX%f (GA)

M 2.x R4S AWS
Encryption SDK for
Java ffF 2024 Fit
AP ER,

Java

385

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FRARER

3.x

Go

BRABERNFMAGA , F

FERAK

0.1, x

JavaScript

BXRAMBERNFMAEA |, 1B

FEMRA

1.x

3.0

HAEE

0.1.0

FAER

1.0

1.7

AWS Encryption SDK
for Java S# RRHE

% (MPL) £,

BT XX FRFIIEXS
#r RSA AWS KMS
AR, AWS KMS
ECDH #4A3F, AWS
KMS 2B &R, R
% AES AR, RHA
RSA Z4AIR, KRB
ECDH Z43k, 2%
ARFFTENMBELT
X CMM B ¥,

IEX%f (GA)

S8 L F#E Go B ZHH changelog.md, aws-encryption-sdk GitHub

FIBRA

SDK £ ERAE T E

HART B

IEX % (GA)

SR 1FM#E R changelog.md, aws-encryption-sdk-javascript GitHub

IR

AWS Encryption
SDK E# a7 By R 58

SDK EERAETE
AR B}

End-of-Support B E%

386

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FRARER

2.X

3.x

4.x

Python

20

2.2

2.3

3.0

4.0

A AP AHEE 2.0
. x RESRA,
BXEZER , S
BIRRA 1.7 Xo

#E#H AWS Encryptio
n SDK. BXEZ(E

1%\ y iﬁé}lﬂ 20 H&O

Xo

HE MBI R,

T X AWS KMS
ZXEBRANZE.

BERTR1I0MCIZE
=EE. AREBAR
DABEXHFENTR 8 M
TR 10,

FERZA 3 kms -
client FEEEA
AWS KMS Z4A3R,
AWS Encryption SDK
for JavaScript

End-of-Support ¥ B

Maintenance

IR 3.x B
AWS Encryption SDK
for JavaScript f¥F
2024 £1 B 17 B4
FRo

IEX%f (GA)

BXRAFIEERMFMAE |, BSEEMEDH changelog.rst, aws-encryption-sdk-python GitHub

FERAK

1.x

FAEER

1.0

IR

SDK EEMmA 4 /E
HART B

End-of-Support Bt E&

Python

387

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

FRARER

2.X

3.

4.x

1.3

1.7

20

2.2

2.3

3.0

4.0

B0 T 3 E AR E
ERNBERAETN
X, BEBEM IV
o

AWS Encryption
SDK E# AJ # B R 1
A AP AEE 2.0
. x RESRA,
BXEZER , FS
BIRRA 1.7 Xo

#EH AWS Encryptio
n SDK. BXEZ(E

I%\ y iﬁéjlﬂ 20 H}io

Xo

HE MBI R,

T X AWS KMS
ZXEBRANZE.

AWS Encryption SDK
for Python A B X%
Python 2 =% Python
3.40 MERRAIF1H,
H & x AWS Encryptio
n SDK for Python , X
% # Python 3.5 RE
STEENS

AWS Encryption SDK
for Python 5471 #HE
EFE (MPL) &£

End-of-Support ¥ B

IEX%f (GA)

IEX%f (GA)

Python

388

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

Rust

BXAFIEEXMEMIAEE | 519 L7 E Rust B &% # changelog.md, aws-encryption-sdk
GitHub

EBRAE HAER SDK EEMmA % /E
AR B

1.x 1.0 IR IEXN & (GA)

RATEE
LATRHIRER T 238 AWS Encryption SDKIRA Z B EEX 5,

F&

« BT 1.7.x BARA
« BRZA 1.7.x

o hRZA 2.0.x

« hRZA 2.2.x

« hRZA 2.3.x

KT 1.7.x BIRRZAS

® Note
28 1.xo B x NhRAX AWS Encryption SDK & FiZend-of-supportfi 2. RETIT , HR
RFA % Z| AWS Encryption SDK EA TN ERBIESHWEMTARE. M 1.7 288 AWS
Encryption SDK MR F LK. x , BREARE 1.7, xo BREZER , BSH TBRH AWS
Encryption SDK,

1.7 AWS Encryption SDK Z B RA. x REEEMN L LIhEE , BIEE Galois/Counter ERX T EAE
FnZbrEE L (AES-GCM) #1TH1%, ETF HMAC B extract-and-expandZ 4 k4 Ih&E (HKDF), &
B 256 U NZFEH. B , XEREAFTZHFERMNEENRESE , SBEBEHEE,

Rust 389

https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

My 1.7 .x

® Note
2 1. xo B x MRA AWS Encryption SDK &k F iZend-of-supportB E

MRAS 1.7, x EEFHBIRHRALN AFASR AWS Encryption SDK | 2.0 lte x REERAK, WIRER
Z42& AWS Encryption SDK , ATRABKI LERRAS , MIEH mIZE S BT 7 AR ATF 15,

RA1.7.x TEMEERE | K| AFAEKREHRHE R AWS Encryption SDKEIITH . ZARANIE 6 5] 3%
B AFLEEHRRE , MEERK 20X HRE. HFIEFHMEE , EXXRTLEH. A, ZEAEE
FEE , UL B EERERME 2 LB R AFTE# I EE,

WA 1.7x BEULTEX :
AWS KMS EZ4ARBEFEH (XF)

WA 1.7, x [AWS Encryption SDK for Java 15| A 7 #E¥IE B AWS Encryption SDK for
Python , XLMERBETEEXNZANEXTERXE AWS KMS ERAREERF. LRAK
¥4 AWS Encryption SDK @ 51T E (CLI) R TERLMWENR, BXEZER , HSH EH AWS
KMS FZARMERF.

. EFRERT , AWS KMS S RAEHEFEEAERASR XERHRFRERLEENS
HR T B RS, XR—F AWS Encryption SDK B{EXE , TRELEANIEEMAN
DEHA.

. ERTERT . AWS KMS T BARUBFTEAEMREH. STRERXERERFHRT
M. EREN | XERARFTAERECNESARBNBNKESE, B2 LUEA
FRENDEERARANEEN AWS IS, IS LS TR | EXERNESNRETE,

£ 1.7 lRAF | SIERHRAE AWS KMS HEZRRMUEFNNERBERFH. x HERE 2.0
PR, xo XEMBERBRFLEFARMER , XERHEEFFEAZEEN TREBHAHITM
%, B , XERHEEFFANBEREZANIEZARBECNENREZR K MAEZREE
NWaxRZEH, APUESETEFERMNFTHECRANSEZAMEEMG | I/ EHM AWS KMS
keys #:[X AWS K X i,

AWS KMS =ZANHERBUSELTL. MBRMBZR , AWS KMS EZREAZRIBENEH,
AWS KMS key

hRA 1.7.x 390

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

AWS KMS Z4REREHT (1k)

WA 1.7, x 7 AWS Encryption SDK for C 1 AWS Encryption SDK for JavaScript SSEL 507
—/NETHIEIEER , FMAWS KMS RIVZAIRRHBIFNHEE AWS K. IXPNFTHIK S iFERE 2 A%
B, BEXREBEMNEENSESER. EXEZER , B5H B3 AWS KMS HEE,

AWS KMS tARBIVHEBRBURBEL, EFHRERT |, FEE AWS KMS AT HRUT ER
MREMERF. AWSKMS R HAHRRERIER T EXCIER,
FE4A ID %48 AWS KMS BB %

M AT IRAEFFIR. x , BEBNBNBIEZRHAN , AWS Encryption SDK 284 AWS KMS key £
F D AWS KMS ec rypt RERTIEE. AWS KMS key MEMNINZEBIE A F I THIE+R AWS
Encryption SDK SREXZ4H ID B, IR FEFEARBENR,

FRE AN AWS KMS key #iii% KMS RAMZNBEX T FEEERH ID , BXRHER
. AWS KMSEHRZARMKEFFIEELERH—F , IMMUETHER AWS KMS RERAETE
ERNIRRHARITHER,

£ F 2 4R AR R B X T

FRAS 1.7 x AR ER R ERAZHAEMBNNEXF. B2 , TEEREHA &R E %X
Fo WEMATEEBIFEMURNEXFZE , T BB HEERZARENBRNINEXF
HNAERF. ATHRATEZRZZAREMNEZENER , EXTEEFNEE[ANEF,

EXHEATH , FEAREK 1.7, x BEHFNAREXEHREBRE , ZRERE

T =& AWS Encryption SDK AJ LAE A ZAAEHITMBREE . ERA 1.7.x

|, ForbidEncryptAllowDecrypt @A ERBNWE—BERE , ATHENENBRZRE, It
{E AP LlE AWS Encryption SDK A2 Z AR BENMELE4HITMNE. EATERAM AWS
Encryption SDK 7~ i Fi 28 4R i R 2 55 3o

RERA 1.7 FRE—NEMWEEREE, x, BINEREEFERARRAEF APIs 5| ABFTIR

AR AL B E, BAEREZE TSN REREEARIREK 21x HEHEHRRN

require-encrypt-require-decrypt., #x , B0 LA B BT A i SR Ko
wEBARENELEN

A1 7x BERNIBFZHRENTFELEN,, —MNEELSE 31 TEHE. B2aXEFENE

EEH—# XAENTNEEZEGSBITEFEAAES-GCMBH TN, 2560 248 ME FHMACH
AR E BB (H extract-and-expand KDF)o

BE , ATNBENRNEEZEHTQER. XEFEZEHSPMERAE 1.7.x , LB NAREFMET
HER, MEERAE 2.0x RESREAPEAXLEENS

hRA 1.7.x 391

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK

CMM I E K

FRARER

ARZAS 1.7.x BIA T NBININBEM REESR (CMM) REMNER , AREBARE, LERNELR
ETBHAEMN CMM RF£ZMEEZ, BEXFMAER , BSRALHNEREEESHN AP XXHEH GitHub 77
f& E

WX 2.0.x

AR 2.0, x XEFFRENFTL LA AWS Encryption SDK |, BiEIEENSERAMBARE. I
TIEIXLEINAE | MRAS 2.0.x BFEX AWS Encryption SDKEHIRAMNE X E R, B0 LB B RAR
1.7 X RIXLEERMITFHERE. K 2.0x BERAE 1.7.x FE|AWFEFHEE , BUTHIEMER,

® Note

MRZA 2, Xo AWS Encryption SDK for Python AWS Encryption SDK for JavaScript, # AWS
0% CLI iy x &b FiZend-of-supporthi £ o

BXUEBHEIRREES ZFM4EH Ik AWS Encryption SDK IRAHEER |, FS I EGitHUbE
fitt FE B9 SUPPORT_POLICY . rst 3,

AWS KMS EZ4AiRMHE

1.7 RAERTHECERBNRE AWS KMS ERARMEFWERE. x B 2.0 REPBR. xo
M EEX R IES TRAEME AWS KMS TRARMER.
150 P 22 4R A& i D022 A AR 38 b 38 3L 7

IR 2.0.x AIAMEASR T EAZHRERMBNBRENBZELF, EITHHEARERBEAZERE. 2
IWERT , BAFERBAREHTNE , H AENBBEAZHRENBNNENF, BRIFEFEDX
% REE , BN AWS Encryption SDK F &2 H4E{A AWS Encryption SDKER B (SIERRA
1.7.x) INZH MBI F

/A Important

MINBERT |, BRAE 2.0x FLBEREMAEABHABENBNNEXT. WRENNAHARERF
AR BT EABRARENENMNZENF , BEM AllowDecrypt REHAE RIEEH,

FEMRAS 2.0.x B, AiEREREF=1ENE :

R 2.0.x 392

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FRARIERE
« ForbidEncryptAllowDecrypt — AWS Encryption SDK o3& E A B 4AR B #H TN, 0 LUAE
REARTERAZRARENENINE T,
- RequireEncryptAllowDecrypt — AWS Encryption SDK 247 i i 2 A A HE HE TN, LA
fREE AT ERABARENMBNNE T,
- RequireEncryptRequireDecrypt (ERik) - AWS Encryption SDK 2470 {5 F 2740 & ¥ # 17 00
2, NEABARERBNE T,

MREEMNN RHRA TR AWS Encryption SDK BIRRAS 2.0, x , NABERKIEEN—ME , Z
EURRETUBREBENAEFTREINMEREE N, BENENER , B2 BELRE,

A 2.2.x
/InT XNHFELE MBS MBHIEZRFAN I,

® Note

MRZA 2, Xo AWS Encryption SDK for Python AWS Encryption SDK for JavaScript, # AWS
% CLI A #9 x end-of-support 4k F F £ .

ARG EIRRIZIES I F M4 It AWS Encryption SDK lRAKEER |, HS R HGItHubF
it EERHISUPPORT_POLICY.rstX .

BFER

NTUHBRNTNRFEEMLE , AWS Encryption SDK ‘ZIELL T IHEE -

- FEREX - RELBEMERARTRERAX , SFERIEIHRFER (WREE) . LINEERBS
IHEERIEBRFEBZFEARAYN, BHERECERABTER (RANEELZEHR) MENKEN ,
BEEFALLIhAE, 6l , BT AWS Encryption CLI SR LURERAEBHIE , Rt EFERHFEZLR
BEANMNERZ- -bufferZ#,

- RXEWHEZER - HWIIRENBRZRSIBENNENTF, MRBZEINBXFFHHEFEE , N
BENAK, FRKIETUBEERITISZCHETERLECZZEHPHIAE,

BR il hn 25 3 2 25 4

SR BAE MBS PR BN BIE R AN E, b IhaE] LAAS BY IR TE I 22 e A0 U B B 4R R Y E 2 4R
RERFIRAL , REEHZNRZBERNEXF.

RER BT AERBONEE , SRANBRIEEA. B0 A AR L X 04 R R M 1T 7 24
= BK. TEFRHEA,

hRA 2.2.x 393

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

My 2.3.x

®|INT X AWS KMS ZXIFEZRANLIF. BXEZELR | HSH FRHZXE AWS KMS keyso

® Note

AWS tn% CLI X#M 3.0 IRFF IR ZXFEHR. Xo

MRZ 2, Xo AWS Encryption SDK for Python AWS Encryption SDK for JavaScript, # AWS
% CLI A #9 x end-of-support &b F F £ o

ARG EIRRIEIES I EM4 Ik AWS Encryption SDK liRAKER , HS R HGItHubTE
it EERISUPPORT_POLICY.rstX .

IR 2.3.x 394

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK FERARER

ERIREY AWS Encryption SDK

AWS Encryption SDK X FZ A ERENREES U , SAXNHFRELNTF RE#EERIT XN,
GitHubfEN HERE | BAIBWEXNSMES FAZKITMRA AWS Encryption SDK &Y,

B L R E M 2.0 IRAHAR ., x RESIA AWS Encryption SDK B HARA. B2 , 2.0 x R4
AWS Encryption SDK 5| A T EEMFH L L , HP—LREAENR, EN1.7.x ZEIRAEFHE
R 2.0x REBRA , XMEEHERZHEAR 1.xo ATHNETTESERBETHRESR , hNARERF
EREBOMRA , FHIIZ£ERBE AWS Encryption SDK& TR,

BXEERAHEE AWS Encryption SDK , IS WA M4 AWS Encryption SDK,

/A Important

ERARIZIHRAE 1.x , BDEEM 1.7.x ZETHREFARBRAE 2.0.x RESHERE, WARE
BEFEARE 2.0 k. x REBMRAHIANSAFRE#HIHEE , W AWS Encryption SDK T34 f# 2
FEIBRATMZERZEL. AWS Encryption SDK

(® Note

NET AWS Encryption SDK & B4 = 3.0 fiRo Xo AWS Encryption SDK & F.NET i
FIEMRA#HZEF 2.0 P ANEZEREREK, B x N AWS Encryption SDK, FTFEE HEMRK
B BIERN A 22 F R B R R

AWS in# CLI : A E Bt , H#A 1.7, x AWS 1% CLI 1.8 WiTBHH. x RS
£/ 2.0, x AWS tn#& CLI 2.1 WEBHBP, xo BXREZELR , HSH AWS % CLI KR
Ko

L2 EER MR E AWS 1% CLI ARA 1.7 FEHH. x F 2.0, x. B2, AWS %
CLI lRAHN 1.8, xBMRT 1.7 lRo x M AWS % CLI 2.1, x BUX 2.0, xo BXREFHAFE ,
B ZHaws-encryption-sdk-clifZ i EE PV X L £ 5 GitHub,

A

WMRIEFREE AWS Encryption SDK , i5Z % AWS Encryption SDK i& B T 2K RI21E S W RFT IR
A, BINMESANFIEZ2IEE AWS Encryption SDK , @iEFERZNNE, B4AREMZHE
o AWS Encryption SDK

395

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK FERARER

HEAs

BIMNBUERRNETRAARBISZH TARA. £ 1. AWS Encryption SDK B x KR4 IEend-of-
support &b FH B , REREBIESNESRA BRI, BXENEEIESH AWS Encryption SDK
WX FMETFRESNFAER , FSH FHNLEF,

AWS Encryption SDK fx7A 2.0, x RESMRARME THN LT LRI R ENHKIE. ER ,
AWS Encryption SDK fRAH 2.0, x BEFAOERENEAENR. NARZLDE , BEHEER
WIRIBIE S PN RIREATBERITEAE 1.xo MREHEFHRE 1.x ELEBBHRINET , BIUR
2ERBEREK 2.0x REGHRE, XMNASTIREXEE , N TFomXNARFAEAML,

BXRXLEERAEKIE AWS Encryption SDK I EZEEENEZFEE , BFZHAWS Z2BEHPHNHT
FPigin® . & Keylds MZREAHRE

EE AR EFE S SRAFB) AWS SDK for Java 2.x 2 AWS Encryption SDK for Java &5 % R &4+
£

o W{AERFEBE AWS Encryption SDK

- EH AWS KMS = RARMERF

- EF AWS KMS $ARLE

- RELHABERR

o WIEBEE SFIRAHITHELERR

IAEBFEBE AWS Encryption SDK

M 1.7 Z81#) AWS Encryption SDK [RAERRT. x 2| 2.0 ke x RESRAE , BUAE LT EE
ERBAAREHITNE, B , EHNARFNEITEMENNENF. NREFEAHZ AWS KMS
FRARMER , XN EFIETEEXNSIKIAEL TR T ZARUEFNTERE.

(® Note

AEBEHNM AWS Encryption SDK EHIRAEB IR 2.0 x HESRANAFMiRIt. W
RIBTHE AWS Encryption SDK , M AT SAFEBRINIR B T 3L BN FF 45 55 F & ¥ B9 AT A AR AR

MATERMERE 396

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK FERARER

NBRHDTEREZFTERZRNNMBXFNERTR , BIOIBWED SN TREMRBTIBNTE, &
T —MBzE , FRASHREEERHA2AHE, INTEAZEFINIHANARFARE
=

MER 1 RIERN N AR ERMBI&EMTRAE 1.x

EHMEER TENREESNRIMRAR 1.x. EFHEMEK 2 281, FHANR, BEBEIHBHINEHRS
ZRIBEIFFE BAREN,

/A Important
IR UFERFTARAS 1.x 3 AWS Encryption SDKARZR 1.7.x RE SR,

B 1. x lRAEEHEBHIAMA , AWS Encryption SDK BB 3 ABRA 2.0, AWS Encryption SDK
x REBRA. ZRFRARTERAE 2.0.x WHFHIEE , BB AIREIBRRITHVELLRIAE, SIAF
BELENHAHR AWS KMS TZARMER , HEATBLIZAREREZBEXNELZEAHTLEEE
=

- BMFRAE , SFEIAR AWS KMS T2 REEBFIEERL, % Python ¥ , FHRITFAFHE
o BFTRA 1.x FANKBITREMNESE 2.0x REGREHBER.

o FIRH A RIEBATEIREB N ForbidEncryptAllowDecrypt. REIXZRIHRAF M —E X
B 1. x A&, YEERARRAS APIs 5| ARRRAR , EERIEE, HZBIBIRE 20X RES
WRARE , HAp BN AR FIELRERABAREMENNENF. BXEZSEER , 55H the
section called “i% & &K & & KRE,

- MREFEA AWS KMS TZAREER , MAF EREFAREEBFER I X EFREXN AN
BN ERARMEEF. AWS Encryption SDK for Java, AWS Encryption SDK for Python#l AWS
N CLI FE#HTHERH. IREERINEATEATEZARMKER , RIMNBUES AT TFEIESZ
f, BEANSERARFIANEE AWS IKFHNEH, LIEMAAIEDR , BEARBINBWNRESE
B, AXESER , B50 B AWS KMS T ZHAREER.

- WMREFEA AWS KMS Discovery Z4H , BINBWEA NG A A THREZNDEZHARGNIEE
AWS Tk P 2R K IFIE S, LTIEHA LR , BHRBRNBUNZESE, BXESZER,
ESH EH AWS KMS ARE,

BB 1 R R AR R B RAARA 1.x 397

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK FERARER

BTER 2 : RHER N R AR P E AT B SR AT AR A

B ENH I BERIRA 1.x BRAE , BUUARFRAR 2.0x RESHRA. RA& 2.0, x BEXFT
B RHIRAKE KE R AWS Encryption SDK, B2 , TR EIZBHMER 1 WEWNERRE , JUBERE
ER B RIMRAAT H 48,

EEMERFRA N , FEIANEHAE REIBLIEEN ForbidEncryptAllowDecrypt, R,
REZHBERE , S ZRBECSH T ETBE RequireEncryptAllowDecrypt , AET B EIE
INZE RequireEncryptRequireDecrypt. RITEBWRE—RITESE , HlmA TER,

1. 8%, FIENAIERIEIRERN ForbidEncryptAllowDecrypt. AWS Encryption SDK A LAfE A
RARERBRBEE , B REABHARERITNE,

2. HBEMER , NABEREEHR N RequireEncryptAllowDecrypt. AWS Encryption SDK F#4
FERBAARENENEEHTMNE, HEREATRERAZARERBENBEXF,

IR A R EH A RequireEncryptAllowDecrypt Z 81 , FHEIAEHRITRA 1.x B
BMEEN SERELERNNBEXXFNEANARZERFHNEN. 1.7 AWS Encryption SDK Z &l iR
KRR, x TEMREZERZARBMENELE,

Xt RENARFRAMERNEFRY , MEELRENEREABARELENENT, XHHEE

B ETRS O] LR £ R SRBE IR B EHT N RequireEncryptRequireDecrypt. X FHELERN

RARER , Byt Amazon SQS RASIFHES#HITNEZNNARER , XAREREESFSFEB KN
B B EF MBS M BREA DR MBHRMEMNEZEXF. N THMNARR , flmmEs S3 WK ,
BUREETH., EFMNEBENER LEMENR.

3. MRLHEZBETMAREABAABEMENER , WA ANAERBEHRN
RequireEncryptRequireDecrypt., WEAHRERESNBIFEBRACAZAAREHTMENRE, L
REANRINEE , ALEBLTERBIEE , ERMNBWWEXHEM. WREWNAEFERRERAZH
ABEMEZENMEZEXT , AEREFHE BN ATEZSFENEMAEEZRR,

B AWS KMS ER4ARMHEEF

EFBBRIFRA 1. x lRAH AWS Encryption SDK , RER 2.0 ke x REBRA , BATRHES
AWS KMS W EZHARMEBFBERNESFEEXIANEL TERXN VBN ERARMER. BRERE
FRMERERK 1.7.x PHEAHEMRAK 2.0.x FBBR. A AWS Encryption SDK for Java, AWS
Encryption SDK for Python 1 AWS Encryption CLI N AEFAEAZEEHRTHINEHR, KTFHHR
B E R A EFH B,

B ER 2 : RHIEHY BL R e SE T B BT R AR 398

AWS Encryption SDK FERARER

® Note
Python # , T FAES. XFHEBERIRBPEEEFTNHD .

MREERABE AWS KMS 24 (TREZARMBERF) , WA I IR, AWS KMS EHH
TomFASMER, XERAREREEENTERARTINEMBER,

AVHNRFERNBAREESINRB LR, BEXREHNENRBNZERY , BSRENEEES
GitHubfF i FERY “ROI” 80, I , XLERBIBEEEM key ARNs RFKR AWS KMS keys. &3 H
TBENERAREERFN | ATUEREAMERE AWS KMS ZHITAFRKRR. AWS KMS key #l

ROUZATHENEERHREARESF , KAERAEH ARN.
THRAXIBNESER

X3 T FrE AWS Encryption SDK AF° , IBHE T A {A1% B BB A i B K the section called “1% B & HY
R R

¥¥F AWS Encryption SDK for C #1 AWS Encryption SDK for JavaScript AP , EEHREH AWS
KMS 4AREE T fR4A R B AR EE#T,

=

x
- EBFEHEN

3
3

- EBFRIER

TR B HEERN

EHBIRFRASE 1. x HRAH AWS Encryption SDK , E=HERXT , AERPRUEFSRIBRE
ZEARMER. ECBEXT , XTEENBENBREZENEFEANTEEH. X AWS Encryption SDK
FRALEENSEZH. CAANEZARMEFRTUEATANBEHBEZANRERSF AWS KMS
key REZHIE , BIEETEH AWS KMS keys AWS Ik 7 3 X F1 X 13,

1.7 AWS Encryption SDK fRAEAFSIA T EREXNEBHARERERF. x. XEFTRPAREEFERKIR
IREZRARMER HE 17X FEAHE 20x PBKR, EFBEEXTEAZBAREEFE—#
AWS Encryption SDK &£k,

LTREBZTATNENEENREX THNERARRERF.

FEBEFHEESX 399

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK FERARER

Java
IR R R E B ARA AWS Encryption SDK for Java 1.6.2 S E R AN B A2 F H#yK53,

AR HZKmsMasterKeyProvider . builder () FERSEHIMLAER AWS KMS EZR4ARHE
5 AWS KMS key E N B4R,

// Create a master key provider

// Replace the example key ARN with a valid one

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.withKeysForEncryption(awsKmsKey)
.build();

bR IR R ERA AWS Encryption SDK for Java fRA 1.7.x RESRANNARFEFHRB, BX
STEM R , S BasicEncryptionExample.javas

BIE A REIEAR Builder.build() M Builder.withKeysForEncryption() A EFEMRA
1.7.x RHERAHERAE 2.0.x FBER,

RNTEHFAFEEEXNTHEZRHRREER |, WRBENERSZN AR SR
Builder.buildStrict() FZEMNBEA. LRHIEEE—1 AWS KMS key ERBEZH |, B
ZBuilder.buildStrict()HAEAURAZNIIFER AWS KMS keys,

// Create a master key provider in strict mode
// Replace the example key ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

Python

B RBIR REA AWS Encryption SDK for PythonhR 2 1.4.1 W BREFF KRB, ARBEH
KMSMasterKeyProvider , HERRZA 1.7.x FHEAHERAE 2.0x F Bk, @EN , E2EREMW
MBHIEZAMNZH AWS KMS key , TIAEE AWS KMS keys I ER F40,

HERE , KMSMasterKey AARFAHBER. MBEMBERN , ©NEALIEEN, AWS KMS key

FEBEFHEESX 400

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK FERARER

Create a master key provider

Replace the example key ARN with a valid one

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvidex(
key_ids=[key_1, key_2]

I RBI R REHA AWS Encryption SDK for Pythonhk4s 1.7.x N FARFHHNRE, BXTEBRA ,
&2 basic_encryption.pye

RNTEFAERERXTHERARMESF | LLRBRX KMSMasterKeyProvider () KA A &
AX StrictAwsKmsMasterKeyProvider() M,

Create a master key provider in strict mode

Replace the example key ARNs with valid values from your AWS
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

AWS Encryption CLI
It 745135 B 204A] 5 A A28 AWS CLI BRZR 1.1.7 SE BRAH 1T NEFFEE,

FEMRA 117 RERRAF |, NEe , BAUEEE-IMRSNEEH (RNSEER) |, Sl AWS
KMS key, SR , IRIFEEANRAENETEZAREERF ENEEEEEASEEH. AWS
N CLI AT LA AR B 22 A AT N2 Y 2R B4R

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \

EHE R EN 401

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK FERARER

--input hello.txt \

--master-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

e RGIE B aNfAIGEFA A2 AWS CLI BRAS 1.7 #HATINZERNMER, x RESRE. BXTERH , i§
S5 AWS Nz CLI B3R5l

--master-keys SEEMAE 1.7.x FHEAHERK 2.0x PR, ZSBBNENFREZB ST
F=W --wrapping-keys ¥R, ZSHXEFHREXNANERX, PREXRE -7 AWS
Encryption SDK £k , I RKREEAMENSEEZA.

EARARI™HKES | BENMBNBEZRER --wrapping-keys BN RABHIEEIEZH.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

EBE=HER 402

AWS Encryption SDK FERARER
BRI AIMEX

M 1.7 BRAEFFIR. x, AWS Encryption SDK HIEHUERI AWS KMS EH AR EFEHHKE |
HRMEH EMBNBZRNIEESERA, MENSTBAIEERLEFH, OREXEEERT , EEA
F##% ARNs 9 AWS KMS keys B4R THISEBRM. flan , IR EE N AWS KMS keys B {52 5l
BHITIRG , BAMREEZRIHAT|HEFZFH ARNs |, MEkEFNBHFL, A, BTFEARERT
WERPRHBEFOTHARUTREREIZAEMAESF , DS S FERAEIBREN -6 , R
EARITHEERN TN ERHAEMERF.

EXMERT , BUMERIEX TEAZFZARHERF, XEFRARKEFTATEEESRE
8, Rt TAERTINE, E@REN XERHEFTUEAERANZREZANTEZR. B
2, 5ETAAREENERERBREEFTE , fUUELANER THEME., EXIEXNTHERAE
ZARBEFN , BRI ERANTEBARFINEE AWS IKF . WRITFEESZER TR |, B
HRBRMNBUNRESREKR. BX AWS 7 XMKFHER , FS6 (AWS —#&kS%E) 8 Amazon &
R Fo

UTRAEFHREXTREA T NS AWS KMS HEFARHEFNERIEX T OIEZATHE AWS
KMS WERHRHEF, RUEXTHEFHARHABEFEARNTEF A THEEN S RFZHRT
aws 7 XHFERA AWS IKFHEHR. REX—RB ROIKBLEERKS HiERGF BRS—
MRREFNZEENS —MNARFEZREN XRE-—HIEERENHEREK,

Java

I RBIFRREEA AWS Encryption SDK for Javahk A 1.7 x RESRAEHNNAEFPHNRE., BXE
EHRHI , ESH DiscoveryDecryptionExample.javas

NTROUEATFMBENFEREX THERARMERER |, L RGIFEA Builder.buildStrict()
FiE. NTERBLATHRENEMEX TN EZRARMER |, LWROIER
Builder.buildDiscovery() /A%, %Builder.buildDiscovery()FEX
FADiscoveryFilter , FfBR#| AWS Encryption SDK AWS KMS keys JI§E AWS 2 X Fbk

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your AWS ##.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting
// Replace the example account IDs with valid values.

BB RIER 403

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/

AWS Encryption SDK FERARER

DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.aslList("111122223333",
""444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildDiscovery(accounts);

Python

Bt RBIZR REA AWS Encryption SDK for Python iR 1.7.x iE BAN N ARFHHRB. &
RTBRPH , iS5 discovery_kms_provider.py,

NTHEBEATMENREXTHEZHARMEES , LROIERA
StrictAwsKmsMasterKeyProvider. EEAXIMENX TRIEH THRZH

FRZ4ARMERF |, DiscoveryFilteriZi2 2 F AWS Encryption SDK
ffDiscoveryAwsKmsMasterKeyProvider SR AWS KMS keys 5 ER AWS 75 Xtk -~
H,

Create a master key provider in strict mode

Replace the example key ARN and alias ARNs with valid values from your AWS ##.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

key_2 = "arn:aws:kms:us-
west-2:444455556666:key/la2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
partition="aws",
account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
discovery_filter=accounts

AWS Encryption CLI

LRG3 BA G SE A ANZE AWS CLI AR 1.7 #HITINEBMMBEE, x HESRA. WA 1.7.x FFi4
MEZEMBEZNBFTEEA - -wrapping-keys 8. --wrapping-keys S ZEHFFHEXMAN
B, BXZTETRHl , ESH the section called “Rfl"s

BB EZIER 404

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK FERARER

MEN |, W REEESEZ XEXLFEN., BEE , W ROIEAENRN true B --wrapping-
keys S discovery BHBARIERLZIMER,

7 T4 AWS Encryption SDK JUAEXIMERX TEANSIEZARBE N B ENHERH AWS
WP, LERBIER T - -wrapping-keysZ#fdiscovery-partitionfldiscovery-
account B, XET%EEMNIE discovery BHIREB RN true AN, HMERFEH
discovery-partition # discovery-account B ; B3 HANER,

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyAlias \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--output .

E#T AWS KMS 4ARLE

FE AWS KMS Z4AIFAWS Encryption SDK for C, AWS Encryption SDK 5& A F.NET HZH B K
RV IBIE R MR RT3 E 2 EFERAWS Encryption SDK for JavaScript X H{EL ik, MR ECIE
T AWS KMS Discovery Z4A3h | EERERITIIRE,

F 3 AWS KMS ARLE 405

AWS Encryption SDK FERARER

® Note

.NET AWS Encryption SDK BV & RIRAZ 3.0 fxo Xo .NET BYFRBERRAERZFF 2.0 5| Ay
ZERERE. AWS Encryption SDK #J x /> AWS Encryption SDK, FTHEEREMARB IR
AN A2 & HAREIHIRAE,

LREFBIRFRAET 1. x HRASHEY AWS Encryption SDK , & 7] LA & I3 8 8515 & T R A R =)
AWS KMS Xigi A NZ AR EMBNFEANSEZARBNSENTHERH. AWS KMS AWS K 7 i
R IFEAML R AWS Encryption SDK HIE#0E,

A5 R R BIE R 04T E) AWS KMS Regional Discovery ZR4A 387 il & 1 56 & &4
THAEXIBNEZER

X} FFFE AWS Encryption SDK AiF? , B T #R IR B B H A i B K the section called “1R B & H)
A R EE

3¥F AWS Encryption SDK for Java AWS Encryption SDK for Python, &1 AWS f1% CLI AF , &
T EERARERFAENEHthe section called “E 3 AWS KMS FZ4ARERF",

R ARFP AR M T RLUEBE, RHEIEIZE AWS KMS Regional Discovery AR |, iZZ 43R
N EEEREE (BENM) (us-west-2) KiBfERATEH, RHFIRT 1.7 28 AWS Encryption
SDK RAHEI X8, xo BEEMAE 1.7.x RESREFHAE R

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildex()
.WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

F 3 AWS KMS ARLE 406

AWS Encryption SDK FERARER

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

M AT BRAEFFIR. x , BRI EE A ARINZAIRRMN AWS KMS RIS IREE. LRI ISR AWS
KMS keys AWS Encryption SDK AJ A TH#ZNREINIEEE D XMk~ iyo XMk~ . EEM AR
ZH, WEXE , FEHRSX , HFERGIKS IDs BN ERNKS,

C

BXRZERH , HSHE : kms_discovery.cppo

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.AddAccount("444455556666")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildexr ()

WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter))
JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
aws' }

1)

JavaScript Node.js

BXRTERH , ESH : kms_filtered_discovery.ts,

E#H AWS KMS 4B RLE 407

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK FERARER

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
'aws' }

1)

R B S HY A R

FHRAEBRENNEBRFERABEANEBNAN, ERHLEZSEY , M 1.7 REFH. x,
AWS Encryption SDK AT EZARENNELEN. EHELENBER ﬁﬁﬁ&ﬁﬂﬁlﬁﬁiﬂbﬂ&‘%ﬂ
RE EEAREEREERE. FARARENZMNBZRIER AWS Encryption SDK &{ERE,

REARERERIBIEE_SINEEHAMED , BDNRFTIRATHE 1. x RAE=Z AWS Encryption
SDK to MRZ 2.0, x RESRA, iﬁE#EE&ﬁWFE%HﬁF BRATNNAEFBEINEFE ZH
WNHEB#ITELEMNR, BXEBER , HSH I EBZAEE AWS Encryption SDK,

A 2.0x REGRAS , FERBREF=TMERE. EEFRE 1.x (MRE 1.7xFFH) , X
ForbidEncryptAllowDecrypt B,

« ForbidEncryptAllowDecrypt— AWS Encryption SDK o A B4R B TN, WLAER
£ A =T 58 A 4R ARSI Y N 38 3LF

EENBRE1xF XRE—NERE. HAUBEREETZSERFEAZHAREHRTHREZHTSME
RZBAREH TN, PEIEEXETNLENEAEREEARIRE 2.0x RESRAN B3 ER
N require-encrypt-require-decrypt. #& , A LL2 B BT R AE K BE o

« RequireEncryptAllowDecrypt— AWS Encryption SDK H4&FE A RARE I TINER, "IUAER
EARTEAZARENBNMNBEXF. A 2.0x PINAT HE.

« RequireEncryptRequireDecrypt— AWS Encryption SDK A4 i B4R RE B 1T I B MR,
RRZA 2.0.x FINA T Bb{E, fERMRA 2.0 x FIESRAF |, X2ERIAE

ERFERA 1.x F , BE—BEXHAEREEENRN ForbidEncryptAllowDecrypt. EBEIARA 2.0.x
BEEmAzE , BANEEERERINBRESRERKE, RIECHEMBEESERABARENE ,
BN B DGR AE KB EH N RequireEncryptRequireDecrypts

5
lﬁ}lﬂ
u

HY ZR G SR B 408

AWS Encryption SDK FERARER

B ROUER T MAERFIRA 1., HA 20x REBRATREFERM, WHERATENHE
7E,
TREXEBNESES

3F AWS Encryption SDK for Java AWS Encryption SDK for Python, %1 AWS Encryption CLI , &7
T ERERARUEFFTENERhe section called “E 3 AWS KMS EZ4AREREF",

*F AWS Encryption SDK for C 1 AWS Encryption SDK for JavaScript , {51 H 7 fR4A LB K Al E
o E# AWS KMS 4f Bt

AR B AR Y A i SRR

BERANAERKRES ZRESKEMBAERE. XEROERT AR TERF, EERRHRREZ
Bl , BEE NAEBMEE PHSHERT *.

C

M 1.7 lRAEFFIR. H x AWS Encryption SDK for C , & A LAfiE
Faws_cryptosdk_session_set_commitment_policyBBAMBMMB R FIRBERE R
B, BRBEMNAERKERTEZRERARANME NZENBRRRE,

aws_cryptosdk_session_new_from_keyring A
aws_cryptosdk_session_new_from_cmm EREIEIRA 1.7.x FFHFAHERA 2.0.x A
B, XERBHIRESEN aws_cryptosdk_session_new_from_keyring_2 #
aws_cryptosdk_session_new_from_cmm_2 E¥EK,

EHRFRA 1.x FEH aws_cryptosdk_session_new_from_keyring_2

M aws_cryptosdk_session_new_from_cmm_2 B , EEFEH
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT #&i% KEL{E A
aws_cryptosdk_session_set_commitment_policy Ei¥. FEMRA 2.0.x RESK
A BALEBAAED , FEREERE. B 2.0.x RESRANERINEE KN
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT,

BXRTENRG , HZH string.cppo

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */
const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

INAATIR (B A8 Y A i SRR 409

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK FERARER

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Encrypt your data */

size_t plaintext_consumed_output;

aws_cryptosdk_session_process(encrypt_session,
ciphertext_output,
ciphertext_buf_sz_output,
ciphertext_len_output,
plaintext_input,
plaintext_len_input,
&plaintext_consumed_output)

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);
struct aws_cryptosdk_session *decrypt_session =
*aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */

size_t ciphertext_consumed_output;

aws_cryptosdk_session_process(decxrypt_session,
plaintext_output,
plaintext_buf_sz_output,
plaintext_len_output,
ciphertext_input,
ciphertext_len_input,

HNAIIR (B S8 B A i R 410

AWS Encryption SDK FERARER

&ciphertext_consumed_output)

C#/ .NET

Zrequire-encrypt-require-decrypt{E=2 AWS Encryption SDK & F.NET BWFFE
MRS BRIA G SR B, BRIV HAWIRENRESKEK , BXHEMLE, B2, WREMRE
A for NET R##2 H AWS Encryption SDK TZAREN 5 —fiESZIMENZX , NFE
ENAERBEERNH. AWS Encryption SDK REQUIRE_ENCRYPT_ALLOW_DECRYPT
FORBID_ENCRYPT_ALLOW_DECRYPTEN , INFE X FMZHEIHE KM,

£ f AWS Encryption SDK or .NET A , &8 LAy B9S2 f5l1% & & % SR B AWS Encryption
SDK, fEfCommitmentPolicyZ¥EHl{tAwsEncryptionSdkConfigi®R , REFEH
BEXN RBIZEEHl, AWS Encryption SDK A5 , A EBE AWS Encryption SDK 3£
BEncrypt()MDecrypt()FHi%.

I R BIF RE RBEIRB N require-encrypt-allow-decrypto

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig

{
CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

var encryptionContext = new Dictionary<string, string>()

{
{"purpose", "test"}encryptionSdk

};

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

HNAIIR (B S8 B A i R 411

AWS Encryption SDK FERARER

var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

B AWS 1% CLI FiREAEFER , FFEH--commitment-policyS ., S EHIEMA 1.8.x
F 5l A

ERHFBRAE 1.x R, HEBE --encrypt & --decrypt s SHFER --wrapping-keys ¥
Bt , BEH forbid-encrypt-allow-decrypt {EH --commitment-policy 8., &N --
commitment-policy SHEM.

A 2.1.x RESRAF |, --commitment-policy S, AL , BRIAF require-
encrypt-require-decrypt {8 , EF 2B DB EA T FERABARBEMBNNEF, B
2, BNBEWEEFEMBN#ZRARAPRERERERR , MEHTHEF MBEDER.

WERBIEE T AE R, MMRA 1.8.x FFHR , b RBHEFEHEN --master-keys SHH --
wrapping-keys 8. BXEZEE , BSH the section called “E# AWS KMS FZARMRE
F'o BXTERE , ES AWS % CLI B R H6l.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used
$ aws-encryption-cli --encrypt \
--input hello.txt \

HNAIIR (B S8 B A i R 412

AWS Encryption SDK FERARER

--wrapping-keys key=$keyArn \

--commitment-policy forbid-encrypt-allow-decrypt \
--metadata-output ~/metadata \
--encryption-context purpose=test \

--output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

M 1.7 RAFFER, EHe x AWS Encryption SDK for Java , #&X48X & AWS Encryption SDK & i
FIX REVAWSCryptoEBliR B 7 A E K, ZRERBKEBEERATEZEFHDEAANFEMZEMN
REBRE,

EHRHFN 1 BRAF | ZAwsCrypto() WERKEHFER. 7£ 2.0 RAEFBER
T AWS Encryption SDK for Java 1Y x fRA. x. ZMEEREHFA Builder
2., Builder.withCommitmentPolicy() J53%# CommitmentPolicy MEKEEK,

EHRHFRA 1.x F , Builder ZE£EE Builder.withCommitmentPolicy()
% 3EH CommitmentPolicy.ForbidEncryptAllowDecrypt 8., MARZAK
2.0.x FF#A , Builder.withCommitmentPolicy() AERNAEI ; BRIAER
CommitmentPolicy.RequireEncryptRequireDecrypt,

BXRTENRE , S SetCommitmentPolicyExample.javas

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.ForbidEncxryptAllowDecrypt)
.build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()

HNAIIR (B S8 B A i R 413

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK FERARER

.buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult
masterKeyProvider,
sourcePlaintext,
encryptionContext);
byte[] ciphertext = encryptResult.getResult();

crypto.encryptData(

// Decrypt your ciphertext

CryptoResult<byte[], KmsMasterKey> decryptResult
masterKeyProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

crypto.decryptData(

JavaScript

M 1.7 BRAFFIR. x 5 AWS Encryption SDK for JavaScript , &7 LA7E 18 B SE Bl 2 7 im iy
#buildClient B ERATRB&ABE KR, AWS Encryption SDK buildClient B EBE R REE
REEMMRE, #HITMBENRZN , ZHBIRERFHITENEAE RN EERH encrypt M
decrypt E¥,

EBFMA 1.x & |, buildClient BHEEE
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT £#k, MIRA 2.0.x FF#h , &% RKHE
SER LA, BIAERN CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,

Node.js 3% 5T 2BV CIBHEE |, ME—XBE TR RB[FEEABWVRERIL.

AT RBIEAZ AWS KMS AR IR 1T INE, FHY buildClient BEUCRAE REIEIRE N
FORBID_ENCRYPT_ALLOW_DECRYPT , ENH A 1.x WERIAE, buildClient IREIVEFH
% encrypt Ml decrypt BEGE BT IRIRE HY A KB

import { buildClient } from '@aws-crypto/client-node’
const { encrypt, decrypt } =
buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

HNAIIR (B S8 B A i R 414

AWS Encryption SDK FERARER

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

M 1.7 RAFFIR, EHe x AWS Encryption SDK for Python , #&31{£& AWS Encryption SDK & F°
WA FI XN REVENcryptionSDKClientEANZE T A& HE K, BRENAE R ERATHAEFERZ
B IHEHIE encrypt M decrypt @A,

EHRHFRA 1.x A , EncryptionSDKClient MERKEE
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT B#{H, MHIRA 2.0.x FFih , &EiEXR
BESER AEI |, BRIAE N CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,

W RBIE AT EncryptionSDKClient MEREBH A B RIEIZERN 1.7.x BIA

B, BEEBEH{LERT AWS Encryption SDKHI B ik, YEENEF K AR

encrypt, decrypt = stream J53ARt , XEHFZRBFINITRIZEN A B RE, LROEER
TStrictAwsKmsMasterKeyProviderZKWFMIEEE , ZMWERBIEE T AWS KMS keys 1]
B INEE R AR

BREERY , HSH set_commitment.pyo

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_AL

// Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

)

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
master_key_provider=aws_kms_strict_master_key_provider

HNAIIR (B S8 B A i R 415

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK FERARER

Decrypt your ciphertext

decrypted, decrypt_header = client.decxypt(
source=ciphertext,
master_key_provider=aws_kms_strict_master_key_provider

Rust

Zrequire-encrypt-require-decrypt{E= for Rust FTERAAH AWS Encryption
SDK BRIAFRE R, BALUNHBAERENRERRE , BXHEXE. ER , IREFER
for Rust K% H AWS Encryption SDK TEAREN S —MESZIMBHNZEX , NFE
ENAERBEERXNH. AWS Encryption SDK REQUIRE_ENCRYPT_ALLOW_DECRYPT
FORBID_ENCRYPT_ALLOW_DECRYPTEN , MEZEXFHEHEHXES KM,

£ f AWS Encryption SDK or Rust A , & 8] LAy B9 3L f5li% & 2 1% 2R B AWS Encryption
SDK, fEfcomitment_policyZ#=fl{tAwsEncryptionSdkConfigi R , RiaEH
BENRBIESEHl, AWS Encryption SDK A5 , A EBE AWS Encryption SDK 3£4i
BEncrypt()MDecrypt ()5 %,

B RBI &E FMIREB RN forbid-encrypt-allow-decrypto

// Configure the commitment policy on the AWS Encryption SDK instance

let esdk_config = AwsEncryptionSdkConfig::builder()
.commitment_policy(ForbidEncryptAllowDecrypt)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

HNAIIR (B S8 B A i R 416

AWS Encryption SDK FERARER

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

HNAIIR (B S8 B A i R 417

AWS Encryption SDK FERARER

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
&commitPolicyForbidEncryptAllowDecxypt})
if err !'= nil {
panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS keyring

awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,

HNAIIR (B S8 B A i R 418

AWS Encryption SDK FERARER

}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err != nil {
panic(err)

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
esdktypes.EncryptInput{

Plaintext: [Ibyte(exampleText),
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

b

if err !'= nil {
panic(err)

}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
esdktypes.DecryptInput{

Ciphertext: res.Ciphertext,
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1)

if err !'= nil {
panic(err)

}

X iE 8 B B HRHTARAF AT R HEBR

ERNARFEFRT 2.0 RZ8l. x RESRA AWS Encryption SDK , EFEI&HFM 1. x lRAH |
AWS Encryption SDK R RHET£IHE, XPNEWTEHEEEMERAE 2.0.x RE SR AJEEEE
HZHEIR. BXFEAER (3ETH) |, BSH TBIRE AWS Encryption SDK,

/A Important
IO UFERFTARAS 1.x 3 AWS Encryption SDKARZR 1.7 .x RE SR,

T B F S AR AN 1T R HE AR 419

AWS Encryption SDK FERARER

® Note

AWS tn# CLI : RIEFEHXMRA 1.7 2E, HHBH x AWS Encryption SDK & TR
1.8, AWS 1% CLI Ry xo AIERHXIARAS 2.0 51 H. EAFH x AWS Encryption SDK &
AT 2.1, AWS %8 CLI Y xo

FZ = EER MR TE AWS 1% CLIARA 1.7 AEWH. x 2.0, xo B2, AWS %
CLI BRAR 1.8, xBRT 1.7 fR. x F AWS p1Z CLI 2.1, x B 2.0, x. BXHFHAEE ,
EZ #aws-encryption-sdk-clifZ i E PR L 20 F GitHub,

REB B HEFHBERP MR BN & T IER.
F&

- FAEBBRANR

- BRiEPR A RBNEEZEH

« BCIEPIR : AiE KRB I F

- BHRARBIERR

- HfttnZHE

- HfttnZHE

- EREEEM

FAFBRAOX R

RA2.0x BEJLMEAEN , BEBREAE1.7.x DHERANIBRMEREK, Hi, BEME, AER
HESRER, SAHR, BERERIRKIFSHR (BRTENEREES) , BEARIZHN 1,
AWS Encryption SDK A T EHERIBES W x AR, (ARESLTAREER 1.7 x RESHRE,) EFE
RASHFRE 1.x i, BUUEBRRERFS 2T RERABRTE,

MRFEVEARIRAE 20x HESHRAE , BERAENFEESNEXES , RAGAERBEEWN
REERIBRFFS.

BLEMHR : AiaRENEEZEH

MREEENEEZEHSENARRREFR | MFFRA SRV HIEEPRER,

FRARBHRHXIR 420

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r

AWS Encryption SDK FERARER

NBRMEREIR , BOREEEZEN. BIAMBRT , AWS Encryption SDK 2% 5 &I 7% R I F*
RNBREZENEE, BR , IREMITEEEEENS (FINTERLENELEN) FRRERER
HABRRERENEEZEN

AT R REEEEN
ForbidEncryptAllowDecrypt ERTEERBARENEEZEYS , fl0

AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (0378) (EBZX
£)

AES_256_GCM_IV12_TAG16_HKDF
_SHA256 (0178) (TEHEZR)

RequireEncryptAllowDecrypt EMEERAAENELEML , flm
AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (0578) (EBZ
)

RequireEncryptRequireDecrypt

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (0478) (FEEZR)

MREEREEEEZEATBI AR , WHRREHNNEMBEESR (CMM) R THREZEE
fro BIA CMM R2EEHREZEN , EAEN CMM Tat2. WERY , FSHEEN CMM X
Mo

BLE PR : AW RN INE T

RequireEncryptRequireDecrypt& iz KB R 1F AWS Encryption SDK &% & F 2 £ & 1% 127
HEE ., INREERME AWS Encryption SDK BRARAEZARHEE |, N LREE B REIR

N RLIEEIR |, 1] RequireEncryptRequireDecrypt FRiE R ZH , BRRAAE XK
FERZRARENEZENNZ XX FEHERZAREHTHRENEN NS , IEFHEMNAERL
B, MREEI AR , TSP RMEBXFREER , IENENAERBENEXRRN
RequireEncryptAllowDecrypt,.

BLEMPER « A RN X7 421

AWS Encryption SDK FERARER

MREANEREAARBRTRE 1x (17X BRESRE) WERT , M 1.7.x ZBIRRAEFAREI R
K 20X RESRABELLLEIR , AAAERERIZHIRE 1.x , HEARIREK 2.0x KRESHREZ
B ZMRAZBBEFAE V. BXHBEER | HSH WATEBHEEE AWS Encryption SDK,

217 A IR UE K W

BEERATHAENENEEN , TRSGKIBARERIERABNERES. IRTERAALRY , B
NNFEEFHBRBEZHSHENE - BERATE, ESEMEZIETRIIRERS , BHAE TN
iR R A RE A SN B SRV E B

AR IRTRR AWS Encryption SDKRIREIZZHBHZNMZE LS. WEIRAERFHFENEEREIE
BRIRHER, IREEZHER , FONARFURSELZEEHRE REFLLEFTES.

H At hn 2% B (&

EHERRZTHSHE, BRAEA AWS KMS Discovery AR AIER T EHARMEF INE
HE

FHAEELSLENAENBENIEZANZRARIERARMER. BXNRHABEE AWS KMS
keys , & (AWS Key Management Service FF X E1Em) AWS KMS keyH I EF HBARHMNE
EXT B R BR

H b hn 3 iR (=

MR MEHERBZEZBKY , MERE AWS Encryption SDK o3& (A<) BEHEFNEMAMNE
BHREER,

MREEEANRIEEERFZHANZHNIERHRMER , WX AWS Encryption SDK ERZIEEM
SRFH, FHRINEEANERTECABEREED —PMNEBEREH kns :Decrypt NEWNITEZ, W
REFEANRERAAZE AWS KMS keys , M AT AEHEXIERX TEHAAWS KMS RINZHRHER
FRMEFRBEHEE, MRBERD , EREBPNXZH , FRIEATHRBZEENZBARESREEMEN
%40,

NRENNARFLEINEREEZHE WEEITUEIEHRRBES., BHR. TRHARHEFIE
EREKBRAB, ER , ERLEERT , BAESRERHE R AREFERE AWS Encryption SDK
FHIARA

MEBEMMELR |, BHEERAE, 1.7 AWS Encryption SDK Z BIBIARA, x 7o & fif 22 (i) 2240 &3 D22 /Y
B Xo

TR ARG B0 IE K TR 422

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK FERARER

o MERFTHRA 1.x BIJRE] AWS Encryption SDK £BIRABERZ LM, B EEE EHUHIT BT
BUTREFEAEIRET NS R,

o EMRAE 20X RESREPFHRERBZHARBEHTNEE (FENAERBREN
RequireEncryptAllowDecrypt) , A LAELREIRRZA 1.7.x W3EEMEHRA, 1.7 AWS
Encryption SDK Z BIBIRRAR . x Foi&#% 25 5 F 25 8 A I B8 1Y 25 30,

MREEFEENSTEARAREREZHWENEA T EATARBRTME | WRFASHEHTH
R, MRMBREEN RETURLHG WALEREHSEXNHR TR TER, NREEE
R, ETUERGERENENNEFTEHEHN TR,

EREEEM 423

AWS Encryption SDK FERARER

= [&
%R RE

« H ? B AWS Encryption SDK A& AWS SDKs ?

« 5 Amazon S3 m#E % 7~ iwm A il AWS Encryption SDK R[E ?

o XML NZE E AWS Encryption SDK , li—Ffp 2 ZRIAEE 2

o IMAERDBILEE (V) ARFEE#EML ?

o WMAER., MBENBEZSNBEZR?

- MMAERERA T BB BIENBIEZHE ?

o WA BIE A 5 H & EE —#2 AWS Encryption SDK 171 ?
« AWS Encryption SDKEERX A RN MEZERFEIEMSZS DIE ?

- RERUUEHECHERHREER?

s ERB USRS NIEZHMERIE ?

o BRALAGEABLEHIEREH#ITINE AWS Encryption SDK ?

» AWS Encryption SDK MZ HM## 2 input/output (1/0) 2 A3 1THY 2

? B AWS Encryption SDK F[& AWS SDKs ?

AWS SDKs##t T T 5 Amazon Web Services XE M E (AWS) , E¥E AWS Key Management
Service (AWS KMS), HIFLF S (HIAIAWS Encryption SDK EH T .NET B9) R E R 8
EH4mEBESH AWS SDK, AWS Encryption SDKR B HEEFARRERARERFHEH AWS
KMS Z4Art , HMiES XM EEZHEMH AWS SDK, BXRFMEER , S AWS Encryption SDK
RIZIES PEAXREHNREEBEENEE,

BRI LAE A AWS SDKs #1722 HE AWS KMS , BiENZNBELERE (FANKNBRZRAREZRH
4,096 71) , URERATEFHRNBNEEZRH. B2 , £ERBEZHAN , XAEBEENNZEHE
RERE , BEEANASHBERANZRE,. Z2EFAAEIERI AWS KMS, E6 NZNEIE
2, AEHRBREZHNHZEIE, AWS Encryption SDK J RS,

AWS Encryption SDK 2t 7T — MEAT Ui EMREKEN BEHITMEZNRZNE, HERBES
fl, FASEENIEZEXNERTNE , RARREMNZELR , HASSNEHIENBZFTENNZE
EZANEERNBENR. 2 T7THRZNHR , REANBHEENZED —NSRZH (T) , RE
AWS Encryption SDK iR [E] R i 45 ST A B 48

1 ? B AWS Encryption SDK A& AWS SDKs ? 424

https://aws.amazon.com/tools/

AWS Encryption SDK FERARER

IBAILATE A AWS KMS keys AEE% %4 AWS Encryption SDK , BEXFEMEN, EBAILUFERAES
ERNMZZAURKEZAEERRN A EHLZLERNINZEZL ., AWS Encryption SDK Bl &
®HB AWS kP, thRTBAE A,

5 Amazon S3 M#Z & FimA{ AWS Encryption SDK F[& ?

) Amazon S3 INZE % 7 i 7 81748 £ 1 5 b (] 2 7718 AR %5 (Amazon S3) Service REYEHE AWS
SDKs R MBRMBERINEE, XEFF#HS Amazon S3 ERBEE -2 , FAERTEZNESE
& RV EE

79 0] BATR 6 T2 AR 3t 5 B9 BRI AWS Encryption SDK 2t N MAEZRNAE, AWS Encryption SDK #
Amazon S3 MEBEFIHFHRE , AN EMNERBERXTRENE .

SEHLE 2R & L AWS Encryption SDK , BB—fh 2 2RIAE X ?

AWS Encryption SDK 15 i & & h1 %45 # (AES) Galois/Counter = T X #R& % (GCM) (#7 AES-
GCM) RINZRENEIE, HAFENSHIMRAMIENHEEZPFHITER , LEXN NBHIENEIEZH
BTN

¥ F AES-GCM , BUIAEEZEH = AES-GCM , BF 256 U4, BARE (HKDF), BFZXRHNEH
i, AWS Encryption SDK &3 192 fu Ml 128 (U NZZPBURMBE L , TERFI A MBZLHE
o

EMBERRAT , YIREEE (V) KERN 12 MNFT ; SORIEFREKER 16 NrT. BAER
T , SDK FERAHBIEZRPBIENE T HVAC HF extract-and-expand4Aifk4E B (HKDF) B9 % ASRIR4E
AES-GCM m#Z#Z4 , ERMHE &R FEEE L (ECDSA) &5,

BXRERECRANEENGEE BERXXENELENH,

BXRAXENEENXREFEMAES BERELESE,

WMAE R ARICEE (IV) ARFEEFEMLL ?

AWS Encryption SDK EREEM A EZNBMMEETRRN IV EH, LEEF IVs BREERKEFLE
£. (1 AWS Encryption SDK for Java 1 1.3.0 R4 Z & AWS Encryption SDK for Python , ©1]
27 AWS Encryption SDK BEHLEK — P HE— IV B,)

IV #Zf# £ AWS Encryption SDK REIWINZEEH, EXEZER , S HAWS Encryption SDK E
EXSE,

5 Amazon S3 IN#E % F %A AWS Encryption SDK R[E ? 425

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK FERARER
ML, MEMBREBNBIERH ?

FERRT EERNBARREZRAREEF.

FE AWS KMS Z4A 3R M = R REEF AWS Encryption SDK £ AWS KMS
GenerateDataKeyAP| BEE BN EERY , AEHSEZHATHE#TNE., ENZHA KMS
ZATHBREZARAR |, IR AWS KMS Encrypt 21, EMZHIEZRS |, 416EH AWS KMS
RERE, BXREAEE , HSHEFH “ AWS Encryption SDK M3E” FEIAWS KMS Z4iH. GitHub

Htt AR RSN ERESNRESRAZERBERAHAHITNENREZ, BXFEHAER , HSH
(HSE) B9 “EZR S0 P ERHREBLARMERERF AWS Encryption SDK 3B, GitHub

AR ER A T IR X BIEAVRBEZRS 2

ftbl1 ¥R AWS Encryption SDK #iX %, EMZHEN , ZF R TESMERERS , FHHFNEN
RASNENBE-EEEECRENNZENEES, ERZERIERN , AWS Encryption SDK M
RUEERRIREUNBNHEZSR MEHATHE RAREAZBHBZERIEE.

AR N2 Ry B4R 2R 4R B EL N 34 — 2 AWS Encryption SDK 7
fit ?

Y IR ES AWS Encryption SDK IREI—&NZEE |, @S NBHERENEHIEZANE —
BIEEWH, HERRTEELFANES : 5k MEX, HENRLXTEMZNBRBERZHUREXEELE
XHEARBRBEE, HEEXNEENZNEE, NREZEHGEHFZLR , WHERXBREEEXS
WITTHl, BEXEZELR |, 219 AWS Encryption SDK EEK RS #E,

AWS Encryption SDK JE B XL RN MBZHRIFEE NS DI 2
18 INEY T84 £ 80 AWS Encryption SDK BURFZAEE |, BFEUATHEE :

. BASTEIEA AN
. AL SR B

. ERRHEMZE S HRITHKIE (AAD) SR X AAD BKE
. BETPRTBANRBNED

o MUK (FERER DSGERT)

WMAER, MRENBHESNRIERA ? 426

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK FERARER

HIEFERABIARE (— M AWSKMS key ENBEZA (REZEH) . T AAD, SERMEBIBENT
ZEWMBREL) i, FFHELR 600 £1, AWS Encryption SDK —#&3R % |, &0 LA IR R iR
AWS Encryption SDK #8111 KB REDHTTEE , TEIERHUN AAD. BXEZER , 2 AWS
Encryption SDK SEERRSZE,

BANERABCHETRARMER ?

P> *EE"‘EJ%E’JS‘Z?—:E’JE& ES RUAT2BATE. B2 A MAXENESHBATLEELEE
X nEMEEEER (CMMs) Ms), EZRARERERF. BHK., I&%ﬁ%ﬂ’aﬁ%%ﬁo

BRAWUERAS N ERHMERE ?

AL, ERLEAKMEREZSR (REEZR) MBRERR WEELTFAEXERTER THERE
TR

EEAZNSEZANESE BE- T ERS N EREANBHARIERHREEF. EERAES
et , BUNR - M ERS I ERFHNEZARRZERZAR.

LEFERASNIEBHAMBEIER , & AWS Encryption SDK A —MNIBEFHAER AR BER

H. BEBARE-HN , ERF LEARBATR. REQREBFNHERAURAIERANEN
BEZANEIR, RAERNZSE MEALMIREZANZRRERHR. ERNNZESESMENHK
BURMEZNBEZSR SMEEBAEF M NBENBERA,

nZEREE T UERANZERERERANEA—NIERARMBE. AWS Encryption SDK EHTIE
REAKRBEMBENBERR. ARG, eEAAXRIEZRAUBRERIE.
3 AT LA A R L 34 SR B 1T 0% AWS Encryption SDK ?

M A ZSEYmIEE S 2T AWS Encryption SDK A LUMBRRBFT (FEHEA). VIOR (FTR)
M=ZRFE, N AWS Encryption SDK ET i FX# /0 B, BIMAEMIIENEEZIESRMA T AR
5,

AWS Encryption SDK & M #& % input/output (1/0) Fi 2 AN B 1T
2

AWS Encryption SDK S| ZHERKE RV MBHBZER. 1/0 IFRRHFEZHRITEZIEE A FARITINE
BE, fltn , e LUEEREMR LNBEAXEE AEREER 2N EBITME, & , ©IUNER

HRBUUERAACHEEARMERF 2 427

AWS Encryption SDK FERARER

MRAPBEMEX , AEREER AN ERTHR, RNASNIERAECANZIHNREEESRA TN
ZMEZ R R B,

.N AWS Encryption SDK ET xR X 1/0 B,

AWS Encryption SDK m# M ## % input/output (1/0) F2MHITH ? 428

A

WS Encryption SDK FERARER

AWS Encryption SDK &%

ARERME T EEEES AWS Encryption SDKRBNMEBEN AT HSENES . WRETEEN
BEHCHRANEBE NARTFRERER,

= AWS Encryption SDK EXFHREBES2—HEA , BSREREES.

BXRENEH AWS Encryption SDK SR EZMHE , IHZSFEFHIAWS Encryption SDK #58
GitHub,

AWS Encryption SDK f i 3) 5 R IR B 28 Z BENA N NZBEZANENMNEEEIER.
LTEBENATXEEEZNBELEN. IUERZEENE-LE SUTUERNBEASZFRIEA

BRENE .
£

AWS Encryption SDK EE& XS %

AWS Encryption SDK ;& 2 4& = 7Rl

AWS Encryption SDK# IE X2 5 AR inEE (AAD) &
AWS Encryption SDK x5 #

AWS Encryption SDK #l#a{tm &5 &

AWS KMS & E A RB AR

AWS Encryption SDK jHEK XS &

AUHEREH T EEHES AWS Encryption SDKRENINZEAIMHESEZNE R, IRETFEN
BEACHREAMEE , NARFFELEE.

Z AWS Encryption SDK A X E#ENRIBES 2 —FER , ESHERES,

BXTENIEH AWS Encryption SDK SEFEZRMHE , ESHEFHAWS Encryption SDK 38
GitHub,

HEHASE 429

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK FERARER

Y INERE AWS Encryption SDK REI B & MBHHIE (BX) MFrENEREZANENMN RSN
RMEES. BETHRZBEEHRNEBREMEANZEHNE £FETHEERN,

HERRNBEELRANED : 5k MEX. BERLEBERT , HERXNEBEE=ZANE2 (HE). HE
BARNEFTINFENLEFNFZTFS , B#A big-endian X, HERAMRLTTHR , AERE
X, REEME (WRE).

AWS Encryption SDK 354 5 ¢ B AR M BRRIRAZ —. REBARENELEAEANE
HEIRA 1, HEERE N EREAHE AN B 2,

25

. A

. EXS

- HELEH

PRk

HEMALEMENBERAUREREREXARARANES . TRERT EHEBIRE 1 Mk
R 2 PHEBIRANFR, FTREERANGEF M.

THEEERTEZFZFREZRANEERAPAFE, BEAXARTEMNRAFTENE.

@ Note
B RFEKRFREERD S REFURFHFBERE,

PRL G
FE SHEAME AR 1 SHEAME IR 2
KE (T) KE (79)
Version 1 1
Type 1 FHFE
Algorithm 1D 2 2

R 430

AWS Encryption SDK

FRARER

FE

Message |ID

AAD Length

Encrypted Data Key Count

Encrypted Data Key(s)

Content Type

Reserved

IV Length

Frame Length

Algorithm Suite Data

Header Authentication

JITES

ZOBBARABARA, RAERN 152, A

B AR 1
KE (F)

16

2

MEMEE TR, W2 F

AAD KEZEHER 0.

TE, WFRHNKEERE
Bl 2 NFTH (AAD KEF
B)o

WMRME ETXAZE , MIEFR
XHFEE AAD FK,

2

TE, BN EIEZE B

ST RERE,
1

4

1

4

A

TR, BB LR
%

HEEARA 2

KE (F7)

32

2

MRMZEETXRAZE, N 2F

AAD KEZEHER 0.

TE, WFRHNKEERE
B 2 NFTH (AAD KEF
B)o

WMRME ETXAZE , MIEFR
XHFEE AAD FK,

2

TE, BN EIEZHE B
BNRPENKERE,

1
Tt
T

o

TE, HEBCEERENEEZR

TE, HEBEENEZER

HRREFPRBAFEDT 01 5 02

FRKLEH

431

AWS Encryption SDK FERARER

RH

ZOHEMRHRRE, ZRBEREHNTE, BE—ZENXERRNBFLRIINMZHIE, HER
Bl 128 , E+ARHEBRTEFRBENFTT 80,
WFEREEERIEAE 2 AFREFERE,

B ID
FRNELZNRRT. XR2— I HEEN 16 U ERFSERN 2 FTE. BXELNEZER |, ES
IEAWS Encryption SDK &5 #&,

SHE ID

BEHEKHE , BTHRAESR. EEID:

. ME—H#FRIRINERE R

- FHEARABHERIHEEX,

« BE-FFURZEHESINBRNERFERBEZR,

 B5IE7E AWS Encryption SDKHAEEAEEFABEZARSBEHEN.

EEHBARRTARA 1 Py 128 7 , TERRAS 2 2 256 fi.

AAD K
Ht 2T 5 HRIENHEE (AAD) WKE. ZR—ITMERN 16 UENSEHRN 2 FTE , EEES
2 AAD KYZ T,

MBI ETFXRNZE , N AAD KEFERWEN 0,
AAD

Ht 23 5HRIENHIE AAD BEBEANNIEZE LT , IR—1MREXNKE Hb , §MEN
EHRE—1 UTF-8 FBNFRFE. NELTIXHERAN—IFTFIFAT AAD B, SIRMELT
XHZ, MERKHTEE AAD FRo

EFERAEEZANEEN , MBLTXSMEE {'aws-crypto-public-key', Qtxt} H#{E
. Qtxt XRARHE SEC 1 2.0 Wi EJ H# 1T Base64 mIBHMEML R Q. MFE LT XA ETEH
SNNE , BMER AAD R ARKE RN 2M6 -1 F15,

TRERTHR AAD HFER. BEXZBIE UTF-8 FRARBREBARFHIN, FTREERNIN
P Bt AN EY

e ey A 432

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK FERARER

AAD 413
= £ KE (F%)
Key-Value Pair Count 2
Key Length 2
Key TE, FTEAM2ANFEN (BKE) FEEW
E.
Value Length 2
Value TE, EFTEAM2ANFEN (EKE) FEEW
1=
BEXITHK

AAD FHVRENK. XR—IMEREHN 16 L EFSEHW 2 FHE , ©EE AAD RPRREX
. AAD R ABEXNEN 2M6-1 1

WMEREME LT XHMEZELTIXANZ , WE AAD EHFFELEZFR.
ZHARE
RENHNERKE. ZR-IMERN 16 UTHSERN 2 FTE , CEELSRNFTE
R
BENNE. X2 UTF-8 FBHFTF5.
BEKE
BEXHNEKE. IR MEREN 16 ULHSEHN 2 FTHE , CEEESENFTE.
e
BEXNNE. X2 UTF-8 mBHNFTF,
INEBIEZ AT

MENBEZRAY. IR—NMERN 16 NTHSBHEN 2 FTE , CEENENRERAR. 2
FHEHRMEZBEZANZEAEN 65535 (2M6-1)

R 433

AWS Encryption SDK FERARER

hnE By B IE B4

NENBRERBRAFS . FIKEANFHBEZARISIBANKERE. ZFFE2EEL -1
MEZBBERH.

TRERTARSNMNEZNBEZANFZR. ZTR2EEROIRFH IO,

ERBIERAE

FEB KE (F7)

Key Provider ID Length 2

Key Provider ID TE, ST 2MFT (BHAREER D
KE) PEENE.

Key Provider Information Length 2

Key Provider Information TE, ETHEAM 2MNFT (BIARUERER
KE) REERE,

Encrypted Data Key Length 2

Encrypted Data Key TE, ETHE 2NFT (MENBFERAK

E) PiEENE.

ZHARME ID KE

RARMEFFRAFNKE. XR—IHEEN 16 UEHSBBW 2 FWE , EEETEEHER
HERF ID NFTE

ZHRMEE ID

ZARBEFRAN. CATEINBENREZANRHAER , FETUHRTY B
ZARBREEERE
ZHRAEBFEENKE, IR—IERN 16 UEFSBUMN 2 FTE , cEELSHHREMH
BREENFTH,
ZHREEER

ZARBEFES . IRHEARHEFREN.

R 434

AWS Encryption SDK FERARER

M AWS KMS BREZF4ARBERE L EEFEHZ AWS KMS AR08t |, IWEEEH Amazon &R
Z# (ARN)o AWS KMS key

NEHBFEZARE

MENBEZANKE. IR-—MERN 16 UXHSERN 2 FHE , CEETMBENEIE
ZHANF T

bR By BIE B4

MEZENBEZH, XRZPHEREEFNZHBENZZH,

RS

+

¥

INERHAEAYRE (FEMIm) o

® Note

RO RERE M #E, 1N AWS Encryption SDK Z#& & M IER MR, MELESS
AR AWS Encryption SDK AT A4 B IERRMREY 32 XX, PRI X IFHVIE S S0] LAAR 532 5K
ot 0 JE W0 28 3 F

IR D B — EE KNS ; BN REMMEN, MRABNRE 2, E+ARFRTERR
BRZFI 02,

SEMBBE AW E ; RE—HVINE Blob, IFMABRNRE 1, B+ ARFRTEPRBAFH
01,

ExRE

B 4 FTFH, ZELAHN 0, SETAHFRTERRBAIFT 00 00 00 00 (B, EF
0K 32 (UEBHEN 4 FTFH).,

B BUE S B EURA 2 S
K

DRER (V) HKE, SE—IMREN 8 UEHSBRY 1 THE , CEESS IV HTHH,
TEEERH BN IV THERE.

BFREFESEIRAE 2 PARHE |, ZRANBFEEERLPEABES IV BENEEZEH.

R 435

AWS Encryption SDK FERARER

LIRS

MBFEBIMOKE, XR—NERN 32 UEFSER 4 ZTE , ZERESMMHNFT
o HBIENFEMBIERN , BRRYL , L Content Type FERIENRN 1 8%, ZEXTA 0.

(® Note

RugefE AmiEE, 1 AWS Encryption SDK X3S M IERMBIE, HELEES
AR AWS Encryption SDK AT A B IER MY 25 3. FTE X FFHYE S SEINEB AT DARE 22 5K
st 0 I W N 28 3 F

BEAEHEE
ERCHENEEZMENIEHSE. RENATHEEZRE, HRKEER 0,
b F BRI H BRI 1 PR,

FRCIAE

RS MBRIERBERHEENEZREN, RAFORIERERMI L EITEN. ©a82 IV HNEH
BIFfRE, 71 RZEE AR e,

R B HRIELS
TR MR 1.0 FRVKE (F17) MR 2.0 FRVKE (F17)
\Y TE, HEBHENEEW TaER
IV FHERE,
Authentication Tag TE, HERHENEZNSG ZTEB. HERHEENEZNS
BRI ZLF T ERE,. BRI ZLF T ERE.
7T

ATUHERXSORIEFENAKEE (V).

I FBREEERIMA 2 WARLPREFE, HEBIRE 2 (RXFHEHERLPERABEE. IV
ENEEEN.
B HRUEFRE

AN BRIEE. EATHNEHIRANBTRITE ORI,

R 436

AWS Encryption SDK FERARER

IEN &1

HEENTEMENEE (MANEBEX) EXEWHRTRARRE (FEMZEN) o UTFILFNAT S

RNBRBEAGEB EXEN, HEEINMRAE 1 M 2 PRUER EXEHHERE.

£
- FEMIE
. DUEE

SEmE R
SEMBIEREEFM— IV FES AAD HIEA blob F I,

@ Note

BEFE A MEIE, 1N AWS Encryption SDK X35 G E A IER MBI, B R LESZID
2’3 AWS Encryption SDK A LA L IE MBI B2 3, PTG X HV1E S SS TN ER AT LA 7 22 B ot K0 FE o
&=,

TRER T ARFEMBIENFR, FTREERHIEFH N,

IEMIIE X
FER KE (F1)
\Y TE, ETERLH IV Length FHHIEEHN
B,
Encrypted Content Length 8
Encrypted Content TE, ETHEASNFT (MEBENABZKE) F
EENE.
Authentication Tag TE, AFANEESRE,
7Y

EmEEE—EEANHBIILEE (V).

EX4%H

437

AWS Encryption SDK FERARER

MEATKE

MENNE (REX) HKE, XR—IMEREN 64 UEHSERN 8 FTE , ClEETEMEN
NENFZTH

MBEREY , RTFWERARENRN 2763 -1 X 8 XFT (8 EiB). 1B3RFRL , BT RN E AR MAYFR
Hl , A{EN 2736 - 32 5, 64 FHFT (64 GiB).

(® Note
BT Java IBEERH , ZFRTEIH Java Kt — S RZERHN 2231 -1 H2 FFH
(2 GiB)o
mEAR

MEEEZRENNZEAR (BEX) o
B OHRUFRE

EXHEHRIEE. ©ATXEREXRTEHRIE,

LR HE

EWBET , BNBERINEEKENSS (FHRIM) , EAM—FT=/ IV FEE AAD 251 AWS
Encryption SDK tn#Z&mi,

(® Note
RABEEAMEYE. X AWS Encryption SDK X #& St fE AR IEE IR, MRELES KN
#2 AWS Encryption SDK A BA4E B(IERMIEY 230 PR < IR HY1E 5 SR LD o] AR 22 X ot A 3
& X F.

NTFEFHEE MKE (MANNZEATHKE) TRERTEN. MANEAFZTHN 2/32-1, HE
RHYER AWM 2732 - 1,

HEFMPRENN : EANKL, SBREELNTERAMBEZLMARK,

EX4%H 438

AWS Encryption SDK FERARER

HERHNAAEEAMERSEENMKE, RAMARERTRINMKE.,

i 3E P Y A AR ER 0 RNy A A KE MR

- ZFWMKE - NENBHASKESEAMOKERR | 1HSTERSSRENEABURE
HWE (0) KENSAWMAR, RE , SETENAESMENRLMAR. EXHELT , 84
DB W FE S AR o

C KBRS - MBEMBENATKE RSN KENEREN | INS Ta S 2 JRN SR
MER , FRE (0) KENELH, RE , BETHENEGSRENELANER, EXHERT , &
I IR E S AR R

. FEMKENER - DEMBHHBKEFLEAMOMKENEREY BLNTL2ERY
2. BAMMNRE T R KE.

c NFIMKE - MENBEOASKE N TEAMGNKE | WSS SFERENSLMER. B
LI D BN T A RO I EE

TRERTARMBFER, FTRZEEREIRF IR
W IE 34559 - HE AL

FER KE (FT)

Sequence Number 4

\Y TE, STHEMRKLW IV Length FTHHIEEN
B,

Encrypted Content FE, ETENRKH Frame Length HIEERN
B,

Authentication Tag TE, AEANERE (EFRXR Algorithm ID &
1:) lj%):l:_o

FH5

mF5S. ERBENMITHRES. SRE—IMEREN 32 LEFSBHWN 4 FHE,

B IELAMFIIE 1 T, FENMBTRIRTRS |, FELRE — MR ER EEMN 1, &
n, BELERE LA REER.

EX4%H 439

AWS Encryption SDK FERARER

0]

A HILEE (V). ZFXTEIERABELNTENEEFHEMMPETEN Vo HKER
ERNEEEMHETE,
mERE

MEEERENMMZRNS (ZEX) o

IEY FHRILE, R TXNENMFETS BRI

M IE 3455 - BRLE 00

P KE (F%)

Sequence Number End 4

Sequence Number 4

IV TE, FTERLM IV Length FHHIEEN
E,

Encrypted Content Length 4

Encrypted Content FE, ETEIMNA4NET (MBHRBEKE) &
*EEH’J{EO

Authentication Tag TE, AEANERE (EFRXR Algorithm ID &
*EA-E) l;%):Eo

FIS&EE

LMBE TR, ZEETARBRTEFRBRN 4 FT FF FF FF FFo
F5=

mF5S. ERBEENMITHRES. XRE—IMEREN 32 LEFSBHMN 4 FHE,

B IELAMFIIE 1 T, FENMBTRIRTFRS |, FELRE — MR ER EEMN 1, &
n, BESERE LA REER.

IEX 4R 440

AWS Encryption SDK FERARER

e
MEARAL R (V). TR TRAEMBEMLN N HE RO MTTETEN IV, IV KER
B E A EN

MEREKE

[
@
b
=
S
B
S
)
=
4

MENHRENEKE, IR—IMEBRANVUELHEEBN 4 FTHE, B
o

EAR
MBEERENWMBRE (EX).

BHRIFRE

WEY H D IIEE, TR TNENNRTS ORI,

REL

EERAEELANEEN HESNETEHE, BFREIESEHERAMEX LIHENBFES,
TRERTARMENFR, FTRIZERHIRFHINE, BERIAMA 1 M 2 pryESRES M8
o

RESE
FE KE (F%)
Signature Length 2
Signature TE, ETHERM2AMED (ZXBKE) FiEEN
B,
ZEKE

FENKE. IR—IMERN 16 LEHSERN 2 FHE , cEEETSLBENFTH

RSx5S 441

AWS Encryption SDK FERARER

AWS Encryption SDK ;H 21& =X =4l

AREEM T EEHES AWS Encryption SDKERBEHNMZERNAIHSEZENER, MREFTEEN
EECHRAMNEBE , WAETREELER.

= AWS Encryption SDK EXEMREBIES 22— ER , HSREREES.

BXRENEH AWS Encryption SDK SEIEZMASE , TS FEFHIAWS Encryption SDK 38
GitHubo,

UTEBERT AWS Encryption SDK SEERRW REl, BNRAABERT U+ ARFHRTERTH
FRBFET BEREXXEFTMRRABTN A,

£}

o IR CHERRE 1)

o IR CHERIRE 2)

« JEmERYE OHSMEMAE 1)

MEAE (HBRBARA 1)

TR RBIERT EEHIRAE 1 hiniEay s 88X,

Fem - +

| Header |

Fem - +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see ###i#)

6E7COFBD 4DF4A999 717C22A2 DDFE1A27 Message ID (random 128-bit value)

Q08E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("QThis")

0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("lan")

SEEAER R 442

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK FERARER

000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D7@ 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-

public-key")

632D6B65 79

0044 AAD Key-Value Pair 4, Value Length (68)

416A4173 7569326F 7430364C 4B77715A AAD Key-Value Pair 4, Value
("AjAsui2ot@6LKwgzZXDInU/Aqc2vD+@0kp0Z1cc8Tg2qd7rs5aLTg71vfUEW/86+/5w=="")

58444A6E 552F4171 63327644 2B304F6B

704F5A31 63633854 67327164 37727335

614C5467 376C7666 5545572F 38362B2F

35773D3D

0002 EncryptedDataKeyCount (2)

0007 Encrypted Data Key 1, Key Provider ID Length
(7)

6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-

kms™)

004B Encrypted Data Key 1, Key Provider
Information Length (75)

61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider

Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9alle6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536

Q0A7 Encrypted Data Key 1, Encrypted Data Key
Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key

956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C3F F02C897B
7A12EB19 8BF2D802 0110803B 24003D1F
A5474FBC 392360B5 CB9997E@ 6A17DE4C
A6BD7332 6BF86DAB 60D8CCB8 8295DBE9
4707E356 ADA3735A 7C52D778 B3135A47
9F224BF9 E67E87

MR (HEMERMRAS 1) 443

AWS Encryption SDK

FRARER

0007
(7)
6177732D 6B6D73
kms™)
Q04E

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:

be3435b423ff")
656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335
00A7

Length (167)
01010200 78FAFFFB
QE57BD87 3F6QF4E6
AF787150 69000000
86F70D01 Q0706A06F
092A8648 86F70D01
48016503 Q4012E30
D218B674 5BBC6102
E470AA27 DEAB660B
57DCC69B AAB1294F
72EBAAFD E24E3ED8
556FBD58 9E621C
02
00000000
ocC
00000100
4ECBD5CQ 9899CA65
0B896144 QCA27950

00000001

6BD3FESC ADBCB213
1F6471EQ A51AF310
F5AFA33C 7D2E8C6C
FBDOA@C3 C6E3FB59
BDEE43A8 OF0QQF49E
A90DB923 699A1495
201E3AD9 1EA6DAl4
DEB7F372 375ECB28

6B6D733A

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040C36
01108038
3EQCES8EQ
21202C01
7168EQFA

923D2347
CA571201

5B89E8F1
10FASEF6
9C5D5175
C125DBF2
ACBBD8B2
C3B31B50
7F6496DB
9BF84B6D

63612D63

ca-central-1:111122223333:

31323232
31336361
2D616134
6666

AC72F79B
5A002C94
092A8648
00306806
06096086
CD985E12
0320E3CD
8B1A89E4
9A50D323
DB40508F

4DA58029

FOC76EDF
A212AF8E
89AC7939
1C785089
0A48A830
6BC104A4
2863889F

Encrypted Data Key 2,

Encrypted Data Key 2,

Encrypted Data Key 2,

Encrypted Data Key 2,
key/9bl3casb-afcc-46a8-aas47-

Key Provider ID Length

Key Provider ID ("aws-

Key Provider

Key Provider

Encrypted Data Key 2, Encrypted Data Key

Encrypted Data Key 2, Encrypted Data Key

Content Type (2, framed data)

Reserved

IV Length (12)
Frame Length (256)
IV

Authentication Tag

Frame 1, Sequence Number (1)

Frame 1, IV

Frame 1, Encrypted Content

MR (HRRARE 1)

444

AWS Encryption SDK

FRARER

CB8OA167
A7D9D2CC
6D1E798B
0041BC78
BB732F27
57F2BB80
E866C042
A820055F
5262DB34
O4EE3CC5
00000002
F1140984
216C7C6A
A1042608
A41455B4
A884C1EL
23DFEE28
7597C901
1FF787AB
778D7CEE
ED7@B1F3
C8760D55
95941F7E
AC65B6EF
2A57F1FD
DF1172C2
3B16F868
FECDC4A4
A61FQA3B
FFFFFFFF
00000003
35F74F11
0000008E
F7A53D37
B965AD1F
BA9FA7C4
88859500
4ALE52A3
3A043180
CO51AD55
6ADCO17D
B66B6ASA
811234FD

9C361C4B
5150D414
AEBA4CDB
3E5F2F41
D83DC36D
066971C2
E1382369
FB47E428
59F5D37E
379732B5

FF25F943
2234F395
8A8BCB3F
9A78BAC9
705FF696
E74B225A
65EF3502
2E38FD77
3C36625F
79729B47
7779520A
5CBAEACS
08262D74
E7060503
FA63CF54
1BBC5E4D
8577F08B
A3E45A84

25410F01

2F467237
AS10AAS5SF
B25AF82E
7096FABB
8E41484D
DF25E5C5
A437F6BC
BA41CDA4
80FDB433
8D589683

5EC0Q7438
AF75F509
ADOQ@SESF
8AF157FD
CCOEBCO5
DEEAQG62F
12E9926B
41876F14
76E46522
F56751FA

959BE514
FoD2D9B9
B58CF384
36E54E68
E540D297
732F2C0C
546575D4
125D129C
FF3A985C
E7D9B5FC
81D54F9B
CEC13B62
44670624
AC37E197
E6E2B9B6
0B6919B3
99D766A1
4D151493

DDOE@4BF

6FBDOB57
SEFFFFF4
64A0LE3A
3ACAD32A
270B7AQF
3676E449
139E9E55
COF17A83
8A4L8D6AL
51F6F39A

7A4822B4
FCE118BD
1A571B77
461E959A
00D87803
4F36255D
BA4OE2FC
3B6261D9
E8213640
8E5F26AD

304670BF
D72EC004
2709B7BD
446A8285
27C6BDA2
6D5EBF22
43D44B96
76F7D320
@2FCESF5
EC45219D
1464757D
A3657F7F
2F297A84
A86F582B
@8D5ABCF
E5545670
63ECA38F

D1DFE830
BC7D431C
A@915526
75CFEDOC
ED61810C
@986557F
6199FD60
3823F9EC
21CB

040B3E3B

Frame 1, Authentication Tag
Frame 2, Sequence Number (2)
Frame 2, IV

Frame 2, Encrypted Content

Frame 2, Authentication Tag

Final Frame, Sequence Number End

Final Frame, Sequence Number (3)

Final Frame, IV

Final Frame, Encrypted Content Length (142)
Final Frame, Encrypted Content

Final Frame, Authentication Tag

MR (HRRARE 1)

445

AWS Encryption SDK

FRARER

| Footer |

0066

30640230
639AED00O
758B309F
5208B133
3C6A7D5E
7E06808D
A13762FF

Signature Length (102)

085C1D3C
F7624854
5EFD9D5D
02301DF7
4F8B894E
OFE79002
844D

63424E15
F8CF2203
2EQ7ADOB
2DFC877A
83D98E7C
E24422B9

B2244448
D7198A28
467B8317
66838028
E350F424
98A0D130

Signature

MR (H B 2)

TR RBIERTHEEHEIRA 2 ik izayE 88K,

02

0578
122747eb
cc621a30
008e
0004
0005
30546869
0002
6973
0003
31616e
000a
656e6372
0008
32636f6e
0007
6578616d
0015
6177732d

632d6b65
0044

21dfe39b 38631c6l 7fad7340
32allcc3 216d0204 fd148459

73

79707469

74657874

706c¢c65

6f6e

63727970 746f2d70 75626c69
public-key")

79

41746733 72703845 41345161 36706669
("QXRnM3JwOEVBNFFhNnBmaTk3MULTNTk3NHpOMn1ZWE5vSmtwRHFPc@dIYkVaVDRGME50M1FKRStmbTFVY@1WdThnPTO=

Version (2.0)
Algorithm ID (see Algorithms reference)

Message ID (random 256-bit value)
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

Count (4)

1,
1,
1,
1,
2,
2,
2,
2,
3,
3,
3,
3,
4,
4,

Key-Value Pair 4,
Key-Value Pair 4,

Key Length (5)
Key ("@This")
Value Length (2)
Value ("is")

Key Length (3)
Key ("1lan")

Value Length (10)
Value ("encryption")
Key Length (8)
Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)
Key ("aws-crypto-

Value Length (68)
Value

AR (HRERARE 2)

446

AWS Encryption SDK FERARER

39373149 53353937 347a4e32 7959584e
6T4abb70 44714F73 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675

38673d3d

0001 Encrypted Data Key Count (1)

0007 Encrypted Data Key 1, Key Provider ID Length
(7)

6177732d 6b6d73 Encrypted Data Key 1, Key Provider ID ("aws-

kms™)

004b Encrypted Data Key 1, Key Provider
Information Length (75)

61726e3a 6177733a 6b6d733a 75732d77 Encrypted Data Key 1, Key

Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537efl-
d8dc-4780-9f5a-55776cbb2f7f")
6573742d 32323635 38393536 36303038
33333a6b 65792f62 33353337 6566312d
64386463 2d343738 302d3966 35612d35
35373736 63626232 663766

00a7 Encrypted Data Key 1, Encrypted Data Key
Length (167)
01010100 7840f38c 275e3109 7416c107 Encrypted Data Key 1, Encrypted Data Key

29515057 1964ada3 eflc2le9 4c8badbd
bc9dofb4 14000000 7e307c06 092a8648
86f70d01 0706a06f 306d0201 00306806
09228648 86f70d01 0701301e 06096086
48016503 04012e30 11040c39 32d75294
06063803 8460802 ©110803b 2a46bc23
413196d2 903bfld7 3ed98fc8 a94acbed
e00ee2l16 74ecl349 12777577 7fad52a5
ba62e9e4 f2ac8df6 bcbl758f 2ce®fb2l
cc9ee5c9 7203bb

02 Content Type (2, framed data)
00001000 Frame Length (4096)

05cd@35b 29d5499d 4587570b 87502afe Algorithm Suite Data (key commitment)
634f7b2c c3df2aa9 88al0105 4a2c7687

76cb339f 2536741f 59alc202 4f2594ab Authentication Tag

Fem - +

| Body |

Fem - +

frffffff Final Frame, Sequence Number End
00000001 Final Frame, Sequence Number (1)
00000000 00000000 00000001 Final Frame, IV

00000009 Final Frame, Encrypted Content Length (9)
fab6e39cb 02927399 3e Final Frame, Encrypted Content

MR (HERRMRA 2) 447

AWS Encryption SDK

FRARER

f683a564

0067

30650230
ade70b3f
967d91d8
869cade2
e5054803
074217ea
3657e2b0

405d68db

+

+

2ale47ad
2a2bc3b8
42d92baf
023100aa
110c9ed8
3b@1b660
9368hbd

eeb0656¢c

98867925
50eb9lef
357bba48
ael2deosf
11b2e0@8a
534ac921

d57c9eb0

cl712e8f
56cfdd18
f636c7a0
8a0afe85
c4a052a9
bf@91d12

FEMIBIE (HEMEIARAE 1)
ST RBIER T HEMBIRHE BN,

(@ Note

Final Frame, Authentication Tag

Signature Length (103)
Signature

R AT RefE A #E, X AWS Encryption SDK X #it5 SefE ARV IER MR, NELESKIMN
AWS Encryption SDK BJ BA4E B IE R IAYEE X o PR ISR IE 5 SRULHD AT DA% 22 A ot A I ot
nEXF,

80
data)
0378

B8929B01 753D4A45 C0217F39 4Q4F70FF

008E
0004
0005
30746869
0002
6973
0003
31616E
000A

73

Version (1.0)
Type (128, customer authenticated encrypted

Algorithm ID (see ####)
Message ID (random 128-bit value)
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

Count (4)
1, Key Length (5)

1, Key ("@This")

1, Value Length (2)
1, Value ("is")

2, Key Length (3)

2, Key ("1an")

2, Value Length (10)

FEMEIE (HEAERA 1)

448

AWS Encryption SDK

FRARER

656E6372 79774690
0008

32636F6E 74657874
0007

6578616D 706C65
0015

6F6E

6177732D 63727970 746F2D70 75626C69

public-key")
632D6B65 79
0044

41734738 67473949 6E4C5075 3136594B

("AsG89gGOINLPul6YK1qXTOD+nykG8YqHAhgecj8aXfD2e5B4gtVE73dZkyC1A+TAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D

4F513D3D
0002
0007
(7)
6177732D 6B6D73
kms™")
004B

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A

a755-138a6d9alle6")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
Q0A7
Length (167)

01010200 7857A1C1
956C4702 23DCE8D7
02A4EF29 7F000000
86F70D01 0706A06F
092A8648 86F70D01
48016503 04012E30
OF2A0383 659EF802
3A33605C 48840656
E9A33EBE 33F46461
418E1151 21311A75
3E2DEBD5 CB@@5D

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C28
0110803B
C38BCB1F
0591FECA
E575ECCS

75732D77

32323333
3831382D
35352D31

4LECA7C83
973E3CED
092A8648
00306806
06096086
4116449A
B23A8133
9CCE7369
947262F3
61A286E0

AAD
AAD
AAD
AAD
AAD
AAD
AAD

AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Key-Value
Key-Value

Encrypted Data
Encrypted Data

Encrypted Data

Encrypted Data

Encrypted Data
us-west-2:111122223333:key/715c0818-5825-4245-

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

Pair
Pair
Pair
Pair
Pair
Pair
Pair

Pair
Pair

Value ("encryption")

Key Length (8)
Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)
Key ("aws-crypto-

Value Length (68)
Value

Key Count (2)
Key Provider ID Length

Key

Key

Key

Key

1,

1,

1,

1,

Key Provider ID ("aws-

Key Provider

Key Provider

FEMEIE (HEAERA 1)

449

AWS Encryption SDK

FRARER

0007

(7)
6177732D
kms™)
Q04E

6B6D73

Information Length (78)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

be3435b423ff")

656E7472
32333333
34622D61
372D6265
00OA7

616C2D31
333A6B65
6663632D
33343335

Length (167)

01010200
OE57BD87
AF787150
86F70D01
092A8648
48016503
76616EF2
FDD@1BD9S
3CC686D7
71F18A46
2A363C2A
01

00000000
ocC

00000000
734C1BBE
2C82BB23

D39DD3E5
00000000
E8B6F955
5871BA4C
59455BD8
E4159DFE
6766ECD5
55FCDAS5B
C7D75BCC

78FAFFFB
3F60F4E6
69000000
0706A06F
86F70D01
04012E30
A6B30D02
B0979082
F3CF7C7A
80QE2C43F
E11397

032F7025
4CBF4AAB

915E0201
0000028E
B5F22FE4
93F78436
D76479DF
C8A944B6
E3F54653
9F5318BC
10FQ5EAS

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040CB2
01108038
099FDBFC
CCC52639
A34CQES8

84CDASDO
8F5C6002

77A4AB11

FD890224
1085E4F8
C28D2E0B
685643FC
DF205D30
F4265B06
OE2F2F40

63612D63

Encrypted Data Key 2, Key Provider ID Length

Encrypted Data Key 2, Key Provider ID ("aws-

Encrypted Data Key 2, Key Provider

Encrypted Data Key 2, Key Provider

ca-central-1:111122223333:key/9bl3casb-afcc-46a8-aa47-

31323232
31336361
2D616134
6666

AC72F79B
5A002C94
092A8648
00306806
06096086
A820D0CC
8073D0OF1
F7B13548
122A1495
11D05114

622E886C

4E1D5155
D61ECE28
BDB3D5D3
EA24122B
0081D2D8
2FE7C741
47A60344

Encrypted Data Key 2, Encrypted Data Key

Encrypted Data Key 2, Encrypted Data Key

Content Type (1, nonframed data)
Reserved

IV Length (12)

Frame Length (@, nonframed data)
IV

Authentication Tag

IV
Encrypted Content Length (654)
Encrypted Content

FEMEIE (HEAERA 1)

450

AWS Encryption SDK

FRARER

ECE10AA7
95FE9(C58
31E4F48A
B48A2068
CO9B21A10
9D86E334
54C0C231
B8178484
12B0000OC
A5BA8Q4F
A15D0551
5E2034DB
46B2C979
€2394012
C6FFB914
1BABBAE4
F3CB6B86
B731839B
E3862DF6
6920AA76
D4ESDF5C
6932E67C
63490741
978A019C
66DFF333
2C15100C
9247EF61
76EQ8ESB
E24FDE26
C4A46ALE
2EAFDOCB
1E3305D9
6276C5F1
50715406
65B2E942

0067

30650230
CBE194F1
BE84B355
1BEB8281
15599638

559AF633
€65329D1
9B1CCO47
8060DF60
371E6179
701E1442
AD43571A
7EB73A4F
8429F504
7F190927
DAEBA4AF
4D19E7CD
AB84EE12
AF20A97E
FEFD4DES
BE55325E
71666C06
CF711F6A
338E02B5
OBF8ES03
491EE86B
C64B3A26
3AB79D60
FE49EEQA
OE10226F
6A2AA3F1
3E7B7EQD
9ADCDF8C
3044C856
B5AB72FE
BOEB8B83
0COE2294
A3B7ES51E
822D1682

24BEEAGE
+

+

7229DDF5
1CCOF8CF
3CED1721
023100B2
889F72C3

9DE2C21B
377C4CD7
EE5A0719
B492A737
78FAFB0OB
EA5DA288
B9071925
AAE46B26
936B2492
5D2DF651
2060D0OD5
EEA6CF7E
202FD6DF
369BCBDA
88F5AFE1
4FB7E602
6BF74E1B
84CA95F5
C345CFF8
552C5A04
20C33FE1
B8988B25
D8AEFBES
OE96BF@D
0A1B219C
88251874
29F3AD89
C886D4FD
BFO8F051
096041F1
AEQ5885A
ESAD7E3B
422D365D
80BOF2E5
A513F918

B86A5B64
D27B7F8B
A@BE2A1B
0OCB323EF
B15D1700

12AC8087
EA103EC1
704211E5
21B0DB21
BAAEC3F4
64485077
609A4ES9
F5B374B8
AAF47E94
B59D4C2F
CB1DA4E6
549C86AC
E7E3CO9F
62459D3E
98488557
C1CO4BEE
OF881F31
958D3B44
A31D54F3
917CCD11
5D21FQAD
CFA33E2B
2F48E25A
D6074DDB
BES54E4C2
FDCO94F6B
FA14A29C
A69F6CB4
1ADAD329
F3F3571B
8F2D2793
8E4DECS96
E4C0259C
5C94

CCEC1DE3

54E4D627
F50658C0
8E3F449E
58A4ACE3
5FB26E61

Authentication Tag

Signature Length (103)
Signature

FEMEIE (HEAERA 1)

451

AWS Encryption SDK FERARER

331F3614 BC40@7CEE B86A66FA CBF74D9E
34CB7E4B 363A38

AWS Encryption SDKH IE X £33 & 1738 UE B9 Fff i ¥4 (AAD) &

AREREM T EEHES AWS Encryption SDKERENMZRERNAIHSZNER, MREFEEN
EECHREANEE , WAETREELER.

Z AWS Encryption SDK EXFHEBIES2—HEA , BEREEIES.

BXRENEH AWS Encryption SDK SEMEZMHAE , HZSFHFHIAWS Encryption SDK #58
GitHub,

NFBMNNERE | BBHMN AES-GCM EERMEMAT & BRI EKIE (AAD), X&EA Tk
Wi E X EHE. B X AAD R EE Galois/Counter =X (GCM) FMIEAAFRNEZEFELR , TSI EE
BiRERENEW ;. Galois/Counter =, (GCM) #l G MAC,

TR#ERTAKIEX AAD NFER, FTRIRERHINRFFF AT

IEX AAD 414
FER KE (F7)
Message |ID 16
Body AAD Content TE, BZHRUTIIRFPHIENX AAD AR,
Sequence Number 4
Content Length 8

HE ID

FEEEARL R IREMNMERE Message ID {Ho
IEX AAD B&

ERRYIE XX B IEREEEN UTF-8 i {E.

IEX AAD &% 452

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK FERARER

3 FIEMIERIE , BER AWSKMSEncryptionClient Single Block fE.
33 F i ZhiE R B9 EH T |, FE A AWSKMSEncryptionClient Frame {Eo

X F B iE P Ay R K it , B EH AWSKMSEncryptionClient Final Frame {B.
F35

fRRRA 2 NERFSBHHN 4 FTE
NTFmEE , XEMFIS,

X TFIEMEIE , FERE 1 (ETAEFIRTERRBDN 4 F1 00 00 00 01),
NEKE

NIMBEERUENANBENKE (FT). Z2—MEEN 64 UTHSERHN 8 FTE,
AWS Encryption SDK E£5#&

ARERM T EEHES AWS Encryption SDKREBWMZEFNAIESENER. IRETEEN
BEHCHRENEZE WAEARELER.

E AWS Encryption SDK EXEFHNREBIEE 2 —FFERH , BSREEIES.

BXRENEH AWS Encryption SDK SRR EZMHAE , IHZSFFHIAWS Encryption SDK H58
GitHub,

MEFREEWEBCHE , ZEULLERMEASFH AR B AWS Encryption SDK , NEE T & 047
AWS Encryption SDK i X FHHEEZEH R NE R BEIE.

AWS Encryption SDK XU TEEEHN . FTE AES-GCM EZXZEHHE—N 12 T B ER
— 16 F17H) AES-GCM B M IRIEFRE, BRIAEEEHE AWS Encryption SDK kR4] AT i 2 47 72
BEREMR. BXFAEE , BSHNRERBANELEN,

BEtE 453

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

FRARER

AWS Encryption SDK ExEH#

XD

05

04

03

03

02

01

01

78

78

78

46

14

78

46

HEER
TS

0x02

0x02

0x01

0x01

0x01

0x01

0x01

&&=

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

HER
HKE
()

256

256

256

192

128

256

192

BHIRE
W3

HKDF
D94
SHA-512

HKDF
PR
SHA-512

HKDF
PR
SHA-384

HKDF
Bk
SHA-384

HKDF
PR
SHA-256

HKDF
A%
SHA-256

HKDF
BB
SHA-256

LHEE

ECDSA
D94

P-384 #
SHA-384

I

ECDSA
BB

P-384 #
SHA-384

ECDSA
BB

P-384 #l
SHA-384

ECDSA
PV
P-256 A
SHA-256

7

A EE
L3

HKDF
D94
SHA-512

HKDF
954
SHA-512

%

x

7

BEEN
BERE
(F)

32 (&
i)

FEH

454

AWS Encryption SDK FERARER

8%ID HEBX NEEZX BE=R RPARE ZXREZE BHEAE FEIEEH

N PFKE Bk &iE BREKE
(1) (Z%H)
01 14 0x01 AES- 128 HKDF I ¥ TEH
GCM ALK
SHA-256
00 78 0x01 AES- 256 ¥ ¥ 7 TEH
GCM
00 46 0x01 AES- 192 ¥ ¥ ¥ TEH
GCM
00 14 0x01 AES- 128 T % ¥ TEH
GCM

B ID

— N2 FHHARFE , ATH - RREEXRE, ZEFFEENBEXFHEERLF,
H B ARA

SHERXHMRAE, TERARENELEHERAEERIRA 2 (0x02) . ZEZHAENELE
HEREBAERARA 1 (0x01) o

EEEHBERE

BETELZEHNEREKE (UFTREMN) . AEHEERIMAE 2 (0x02) THUHFE, EHE
BRARAR 2 (0x02) 1 , LEBIEHINEE S4RLH Algorithm suite data FE&H., XIFEH
AENEEEGERA Q2 FTTENBHAREFTRE, BXESZGERE , BERAZIKRPHEBHAREE
o

BEZHKE

BIEZANKE (LML R4) . AWS Encryption SDK 3 256 i, 192 v 128 (v %40, &
BEZARHBANIEZHERN,

ERESO G | HIEZHAAEET HVAC B extract-and-expand4A k& BBk (HKDF) 895
Ao HKDF W95 AEMBREEZFNBIEMZEZRH, BXREZER , BSRZIKRTNERREE
o

BEtE 455

AWS Encryption SDK

&&=

FRARER

En#EE—BEANBHINER. FHEEXEH AWS Encryption SDK A Galois/Counter &
X (GCM) SR MBIRAE (AES) INZE L,

HEAAREE L
BATFiItERAREZFBNEL, WHEEMEEHEEBRLMN Algorithm suite data &+ , A
FRIEFRARENEIEEA.
BREEZEMHTMBRARENEARY , i55H Cryptology ePrint AEADs FHH I Z IR,
REARERE L
ETF HMAC # extract-and-expandZ£AiRAE BRI (HKDF) , AT REBEME R, AWS
Encryption SDK £/ RFC 5869 #E X i HKDF,
RBEBAAENEEZEN (B ID01xx - 03xx)
- FRANKHEEHZ SHA-384 = SHA-256 , BUR T EEZEH,
o NTFREGEK :

« TEAMEZL. BRIERFC, MEHRXENISETNFHR. FHRRKESTRFHEBWEHK
E ; B, SHA-384 1 48 N217 , SHA-256 1 32 NFT,

« MANBEMBHEREFZASRIERAREEFNBEEZER,
s ITTRPRE :
« WARENZHA R RIS R A
- MAGERNEERE IDFES ID (REIAF) RRE—BHER.
- HHNEMHHKERRBEZARE, ZAHRENZEEEZPHHRENZEZR,

wEZARENEEZEN (B ID 04xx MO5xx)
- EANRASEER SHA-512,
« WTRIFHR :

« INEELR - 256 UKV INBEFEHE. FESKRRA 2 (0x02) F , WEFME MessagelD
FERH,

- MIRMEMEEREFZASRHERRAREEFNBEEZER,
- T RSR
- HANBENZRARRINS RO H.

BEix5E

456

https://eprint.iacr.org/2020/1153
https://tools.ietf.org/html/rfc5869

AWS Encryption SDK FERARIER
- BANRZEREKNIRFWINFEESIH DERIVEKEY FRFHR UTF-8 REZFT,
- WMAGERNER ID MBHFE (RLIAF) BERE—ENER.
- BHMEMBNKERKERARKE, ZHERAENBEEERNBENZER,

H B

EEEMPERAERRANRE, BXESZER , FSH EERASE,
LREZX

BATEMBXFREMNEX LERBFEANEREL, AWS Encryption SDK £ AME &=
%#E% (ECDSA) , EAMAFMT :

- FERANMEMLRE P-384 & P-256 Mi%k (HEE IDIEE) . XEMERERTEERAE (DSS)
(FIPS PUB 186-4) F 7 XK,

- FRANBFEBE SHA-384 (5 P-384 #i4k) 5 SHA-256 (B P-256 B4k) .

AWS Encryption SDK #]#8{t R &S &

ARHEIEM T EEWES AWS Encryption SDKRENMZEERNAIHSENER, MREFTEEN
EBECHHRANEE , ITEFRFERER,

Z AWS Encryption SDK £ X FHERIES 2 —H&EA , BEREEIES.

BXRENEH AWS Encryption SDK SEREZRWAE , ESFEHPHAWS Encryption SDK H5E
GitHub,

AWS Encryption SDK B XIFMNEEZEMHMENBILEE (IVs), R R TESERANFSIS
gE—N IV, LEER—HRFRHNHE MR EEFHERN IV,

B 96 L (12 FT) IV REITH MR TIRF BB big-endian 71 BEAHER

« 64y : 0 (REUERIRER)
« 32V MFSIS, WTARKEHRIERE , ZE2HBNE,

ESIABUEZAEF2H , AWS Encryption SDK B2 FEAFNBERERMBESLHES , mMAFE
SHEER IVSHNERN . BIERNHRERE Vs EZBZLRZEN , RABRBEZHANRBESF
A, ZSDKEIABEEEFANEZANBIERAZTR , BA1KTT SDK AR IVsH R,

NpikEESE 457

http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK FERARER
FATHEETEETESHNHEEY Vs 2EFENELNMNBEBATAINRZEHITHRRA . 1A |, &
EFHBREZARACEAEEEARERBNELES. EAEEHBIEHAIRERBNHEEMS IV B
BRARENZRZS , JUETEIMEZ L RNER T INZE 2432 &EE. AWS Encryption SDK

AWS KMS 4 Z4A LB FE R AT

AWS KMS 7 EZ AN EA M - W BRBEZARNEGZER , AEARBED D X BRHANE—IREH
NENBEBARITNE, ZRREATHF[EANZHRENTE HVAC SHA-256 B HAREHLERK
BEUL TR ARER 32 FTTHNEEENR.

- —/N16 FEH BN INE L
- B XER
- BAAREEFRIRA aws-kms-hierarchy 8 UTF-8 4R {E

SEZANEARENSEEN FATE 16 FHEORIEFERM TR AR AES-GCM-256 Xt 8A L
BREZANBERETINE,

- RENTEZHAAE AES-GCM HZBEA

- BEEHARE AES-GCM HE

- £/ 12 FTHWRENABILEE (IV) R AES-GCM IV

- BEUTRFILENEMEINRIERE (AAD)

(=] KE (FT) FRRE RN
"aws-kms-hierarchy" 17 UTF-8 4m#3

7 XEAIRIRAF TE UTF-8 43

2 X B R 16 UTF-8 4w#3

nz £ TE UTF-8 w8 2R EXY

AWS KMS 72 /= A _L B R AR 4R35 458

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK FERARER

{ AWS Encryption SDK F X &I /M) HXHEHELIExK

REBANE T H>X AWS Encryption SDK F A A RSN EEFH,

£}
« RITAVERT
- BHIEH

BRITHY EHT
TEMAT E 2017 F 11 BRME XN —LEEFTH, RTUELSIELNIETULIN , RITLE

BEMN , U EANRAA R BEREEENNRBREL, BREAXEZERNEA |, BT
%] RSS iR

EE oL zF
EXRM whT AWS KMS ECDH 48 2024 66 A 17 H
R F Ra w EC DH Z4RIRHY 3T
o
AWS Encryption SDK for Java ~ AWS Encryption SDK for Java 2023 £ 12 B 6 H
hRZ 3.x EmMHRHEESER, HmT
NEZEARNAFEN IR LT X
CMM B,
AWS Encryption SDK i& BT AWSKMS 7E%4 2023 % 10 A 12 H
T .NET R 4.x W, FrENMNELTX CMM
FMIEFTFR RSA BRI,
AWS KMS
EXKT 5| AXY.NET AWS Encryption 2022 5 A 17 H
SDK B &%
NHEE X & “BF E%4 (CMK)” AWS 2021 £8 H30 H

Key Management Service — 1A
N “AWS KMS keyHl KMS
=5,

RILHER 459

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key

AWS Encryption SDK

FRARER

EXEH

EXEH

EXEH

EXEH

EXEH

TS bR

EXEH

AN X EY 2 AWS Key
Management Service, (AWS
KMS) 2 Xig#H. ZXEE
HARTREK AWS KMS 4R
AWS X1 |, ATLE#HREAR ,
RREMNEEMEENESR ID M
B

NI E R R R R H B AR
EASVEES: IR =R

Fbn AWS % CLI R4S 1.8 B9
EXRBMRARINFERT T X
. x REX AWS hnz CLI
W2 1.7, x 0 AWS % CLI
2.1, x KB AWS 1Nz CLI
200 Xo

AN} E#H AWS Encryption

SDK A 1.7.x 1 2.0.x 9 1IE
NEBRAYY , BFEHES
KRigm. IBEME. EMNE
2. EFNERREESEE. E
FNEEENSE. EFNNE
ERXSZEURFHEERLK
=l

AN EF T AWS Encryption
SDK for JavaScripti& F MR 32
=R

AN EF T AWS Encryption
SDK for JavaScriptZA FF U izt ik
B E =

AN EF T AWS Encryption
SDK for Cif A i Y 344,

20216 A8 H

2021 5 H 11 H

2020 £10 A 27 H

2020 9 A 24 H

2019 10 A1 H

2019 6 A21 H

2019 5 H 16 B

RILHER

460

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html

AWS Encryption SDK

FRARER

il 5T AR %07 AWS Encryption SDK 2019 2 A5H
for CTi 5 AR B X%
FThR A ¥ b0 AWS Encryption SDK# 2017 £ 11 A 20 H
TITSRER XY,
BHIER

TRNET 2017 F 11 Az 8iX (AWS Encryption SDK F X A RIEE) MENEEE R,

B DU Sy
HHRA ANTHEBZAEEFETUN 2017 F7 A31H
EBFTINAE.

FINT B8 SDK MBEHLAE K ZE
Vs 7 ¥iE 5 E MR the section
called “¢R{LEMESZE” IVsE

=
Lo

0 the section called “#”
FHREBREES , BEFHM
FMRIEEES

2R MHEHEBRXSEXHET &R 2017 £3 B 21 H
AWS Encryption SDK & i
B — NN,

0T B2 AWS Encryption
SDK X ENEZEH.

AR AR BRIt 2 %% , AWS Encryption 2017 €3 A 21 H
SDK I £ ik X #Python4wi2ig

£ Java.

H IR A AWS Encryption SDK #4832 2016 £3 22 H
AR IR,

FHEH

461

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK FERARER

AXETHRBERE, EARXANBEREBERERXFEER , W —EUERXEXX RN,

cdIxii

	AWS Encryption SDK
	Table of Contents
	那是什么 AWS Encryption SDK？
	在开源存储库中开发
	与加密库和服务的兼容性
	支持和维护
	了解更多信息
	发送反馈
	中的概念 AWS Encryption SDK
	信封加密
	数据密钥
	包装密钥
	密钥环和主密钥提供程序
	加密上下文
	加密的消息
	算法套件
	加密材料管理器
	对称和非对称加密
	密钥承诺
	承诺策略
	数字签名

	AWS Encryption SDK 工作原理
	如何 AWS Encryption SDK 加密数据
	如何 AWS Encryption SDK 解密加密的消息

	中支持的算法套件 AWS Encryption SDK
	建议：具有密钥派生、签名和密钥承诺的 AES-GCM
	其他支持的算法套件

	使用 wit AWS Encryption SDK h AWS KMS
	的最佳实践 AWS Encryption SDK
	正在配置 AWS Encryption SDK
	选择编程语言
	选择包装密钥
	使用多区域 AWS KMS keys
	选择算法套件
	限制加密数据密钥
	创建发现筛选条件
	配置所需的加密上下文 CMM
	设置承诺策略
	使用串流数据
	缓存数据密钥

	密钥存储在 AWS Encryption SDK
	密钥商店术语和概念
	实施最低权限
	创建密钥库
	配置密钥存储操作
	配置您的关键商店操作
	静态配置
	发现配置

	创建有效的分支密钥
	轮换您的活动分支密钥

	密钥环
	密钥环的工作方式
	密钥环兼容性
	对加密密钥环的不同要求
	兼容的密钥环和主密钥提供程序

	AWS KMS 钥匙圈
	AWS KMS 密钥环所需权限
	在 AWS KMS 钥匙圈 AWS KMS keys 中识别
	创建密 AWS KMS 钥环
	使用 AWS KMS 发现密钥环
	使用 AWS KMS 区域发现密钥环

	AWS KMS 分层钥匙圈
	工作原理
	先决条件
	所需的权限
	选择缓存
	默认缓存
	MultiThreaded 缓存
	StormTracking 缓存
	共享缓存

	创建分层密钥环
	使用静态分支密钥 ID 创建分层密钥环
	使用分支密钥 ID 供应商创建分层密钥环

	AWS KMS ECDH 钥匙圈
	AWS KMS ECDH 密钥环所需的权限
	创建 AWS KMS ECDH 密钥环
	创建 AWS KMS ECDH 发现密钥环

	原始 AES 密钥环
	原始 RSA 密钥环
	未加工的 ECDH 钥匙圈
	创建原始的 ECDH 密钥环
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	多重密钥环

	AWS Encryption SDK 编程语言
	AWS Encryption SDK for C
	正在安装 AWS Encryption SDK for C
	使用 AWS Encryption SDK for C
	加密和解密数据的模式
	引用计数

	AWS Encryption SDK for C 例子
	加密和解密字符串
	加密字符串
	解密字符串

	AWS Encryption SDK 对于.NET
	AWS Encryption SDK 为.NET 安装的
	AWS Encryption SDK 为.NET 调试
	AWS Encryption SDK 查看.NET 示例
	加密适用于 .NET 的 AWS Encryption SDK 中的数据
	在适用于 .NET 的 AWS Encryption SDK 中在严格模式下解密
	在 for .NET 中使用发现密钥环进行解密 AWS Encryption SDK

	AWS Encryption SDK for Go
	先决条件
	安装

	AWS Encryption SDK for Java
	先决条件
	安装
	AWS Encryption SDK for Java 例子
	加密和解密字符串
	加密和解密字节流
	使用多密钥环加密和解密字节流

	AWS Encryption SDK for JavaScript
	的兼容性 AWS Encryption SDK for JavaScript
	AWS Encryption SDK for JavaScript 兼容性
	浏览器兼容性

	正在安装 AWS Encryption SDK for JavaScript
	中的模块 AWS Encryption SDK for JavaScript
	JavaScript Node.js 的模块
	JavaScript 浏览器模块
	适用于所有实施的模块

	AWS Encryption SDK for JavaScript 例子
	使用密钥环加密 AWS KMS 数据
	使用密钥环解密数据 AWS KMS

	AWS Encryption SDK for Python
	先决条件
	安装
	AWS Encryption SDK for Python 示例代码
	加密和解密字符串
	加密和解密字节流

	AWS Encryption SDK 对于 Rust
	先决条件
	安装
	AWS Encryption SDK 对于 Rust 的示例代码
	在 for Rust 中加密和解密数据 AWS Encryption SDK

	AWS Encryption SDK 命令行界面
	安装 AWS Encryption SDK 命令行界面
	安装必备组件
	安装和更新 AWS 加密 CLI

	如何使用 AWS 加密 CLI
	如何加密和解密数据
	如何指定包装密钥
	包装密钥参数属性
	如何指定多个包装密钥

	如何提供输入
	如何指定输出位置
	如何使用加密上下文
	如何指定承诺策略
	如何在配置文件中存储参数

	AWS 加密 CLI 的示例
	加密文件
	解密文件
	加密目录中的所有文件
	解密目录中的所有文件
	在命令行上加密和解密
	使用多个主密钥
	在脚本中加密和解密
	使用数据密钥缓存

	AWS Encryption SDK CLI 语法和参数参考
	AWS 加密 CLI 语法
	AWS 加密 CLI 命令行参数
	高级参数

	AWS 加密 CLI 的版本
	版本 1.8。 AWS 加密 CLI 的 x 项更改
	版本 2.1。 AWS 加密 CLI 的 x 项更改
	版本 1.9.x 和 2.2.x 对 AWS Encryption CLI 的更改
	版本 3.0。 AWS 加密 CLI 的 x 项更改

	数据密钥缓存
	如何使用数据密钥缓存
	使用数据密钥缓存： Step-by-step
	数据密钥缓存示例：加密字符串

	设置缓存安全阈值
	数据密钥缓存详细信息
	数据密钥缓存的工作方式
	加密数据而不进行缓存
	使用缓存加密数据

	创建加密材料缓存
	创建缓存加密材料管理器
	在数据密钥缓存条目中包含哪些内容？
	加密上下文：如何选择缓存条目
	我的应用程序是否使用缓存的数据密钥？

	数据密钥缓存示例
	本地缓存结果
	数据密钥缓存示例代码
	Producer
	使用者

	数据密钥缓存示例： CloudFormation 模板

	的版本 AWS Encryption SDK
	C
	C# /.NET
	命令行界面 (CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	版本详情
	低于 1.7.x 的版本
	版本 1.7.x
	版本 2.0.x
	版本 2.2.x
	版本 2.3.x

	迁移你的 AWS Encryption SDK
	如何迁移和部署 AWS Encryption SDK
	阶段 1：将您的应用程序更新到最新版本 1.x
	阶段 2：将您的应用程序更新到最新版本

	更新 AWS KMS 主密钥提供程序
	迁移到严格模式
	迁移到发现模式

	更新 AWS KMS 钥匙圈
	设置您的承诺策略
	如何设置您的承诺策略

	对迁移到至最新版本进行故障排除
	弃用或移除的对象
	配置冲突：承诺策略和算法套件
	配置冲突：承诺策略和加密文字
	密钥承诺验证失败
	其他加密故障
	其他加密故障
	回滚注意事项

	常见问题
	和？有何 AWS Encryption SDK 不同 AWS SDKs？
	与 Amazon S3 加密客户端有何 AWS Encryption SDK 不同？
	支持哪些加密算法 AWS Encryption SDK，哪一种是默认算法？
	如何生成初始化向量 (IV) 以及将其存储在何处？
	如何生成、加密和解密每个数据密钥？
	如何跟踪用于加密我的数据的数据密钥？
	如何将加密的数据密钥与其加密数据一起 AWS Encryption SDK 存储？
	AWS Encryption SDK 消息格式会给我的加密数据增加多少开销？
	我是否可以使用自己的主密钥提供程序？
	我是否可以使用多个包装密钥加密数据？
	我可以使用哪些数据类型进行加密 AWS Encryption SDK？
	AWS Encryption SDK 加密和解密 input/output (I/O) 流是如何进行的？

	AWS Encryption SDK 参考
	AWS Encryption SDK 消息格式参考
	标头结构
	正文结构
	非帧数据
	帧数据

	脚注结构

	AWS Encryption SDK 消息格式示例
	帧数据（消息格式版本 1）
	帧数据（消息格式版本 2）
	非帧数据（消息格式版本 1）

	AWS Encryption SDK的正文经过身份验证的附加数据 (AAD) 参考
	AWS Encryption SDK 算法参考
	AWS Encryption SDK 初始化向量参考
	AWS KMS 分层钥匙圈技术细节

	《 AWS Encryption SDK 开发者指南》的文档历史记录
	最近的更新
	早期更新

	

