AWS 文档 SDK 示例
使用 AWS SDK 的 Amazon Bedrock 运行时系统的代码示例
以下代码示例演示如何将 Amazon Bedrock 运行时与 AWS 软件开发工具包(SDK)结合使用。
场景是向您展示如何通过在一个服务中调用多个函数或与其他 AWS 服务 服务结合来完成特定任务的代码示例。
更多资源
Amazon Bedrock 运行时系统用户指南——有关 Amazon Bedrock 运行时系统的更多信息。
Amazon Bedrock 运行时系统 API 参考——有关所有可用的 Amazon Bedrock 运行时系统操作的详细信息。
AWS 开发人员中心
——您可以按类别或全文搜索筛选的代码示例。 AWS SDK 示例
——GitHub 存储库,其中包含首选语言的完整代码。包括有关设置和运行代码的说明。
开始使用
以下代码示例演示了如何开始使用 Amazon Bedrock。
- Go
-
- 适用于 Go V2 的 SDK
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 package main import ( "context" "encoding/json" "flag" "fmt" "log" "os" "strings" "github.com/aws/aws-sdk-go-v2/aws" "github.com/aws/aws-sdk-go-v2/config" "github.com/aws/aws-sdk-go-v2/service/bedrockruntime" ) // Each model provider defines their own individual request and response formats. // For the format, ranges, and default values for the different models, refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html type ClaudeRequest struct { Prompt string `json:"prompt"` MaxTokensToSample int `json:"max_tokens_to_sample"` // Omitting optional request parameters } type ClaudeResponse struct { Completion string `json:"completion"` } // main uses the AWS SDK for Go (v2) to create an Amazon Bedrock Runtime client // and invokes Anthropic Claude 2 inside your account and the chosen region. // This example uses the default settings specified in your shared credentials // and config files. func main() { region := flag.String("region", "us-east-1", "The AWS region") flag.Parse() fmt.Printf("Using AWS region: %s\n", *region) ctx := context.Background() sdkConfig, err := config.LoadDefaultConfig(ctx, config.WithRegion(*region)) if err != nil { fmt.Println("Couldn't load default configuration. Have you set up your AWS account?") fmt.Println(err) return } client := bedrockruntime.NewFromConfig(sdkConfig) modelId := "anthropic.claude-v2" prompt := "Hello, how are you today?" // Anthropic Claude requires you to enclose the prompt as follows: prefix := "Human: " postfix := "\n\nAssistant:" wrappedPrompt := prefix + prompt + postfix request := ClaudeRequest{ Prompt: wrappedPrompt, MaxTokensToSample: 200, } body, err := json.Marshal(request) if err != nil { log.Panicln("Couldn't marshal the request: ", err) } result, err := client.InvokeModel(ctx, &bedrockruntime.InvokeModelInput{ ModelId: aws.String(modelId), ContentType: aws.String("application/json"), Body: body, }) if err != nil { errMsg := err.Error() if strings.Contains(errMsg, "no such host") { fmt.Printf("Error: The Bedrock service is not available in the selected region. Please double-check the service availability for your region at https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/.\n") } else if strings.Contains(errMsg, "Could not resolve the foundation model") { fmt.Printf("Error: Could not resolve the foundation model from model identifier: \"%v\". Please verify that the requested model exists and is accessible within the specified region.\n", modelId) } else { fmt.Printf("Error: Couldn't invoke Anthropic Claude. Here's why: %v\n", err) } os.Exit(1) } var response ClaudeResponse err = json.Unmarshal(result.Body, &response) if err != nil { log.Fatal("failed to unmarshal", err) } fmt.Println("Prompt:\n", prompt) fmt.Println("Response from Anthropic Claude:\n", response.Completion) }-
有关 API 详细信息,请参阅《适用于 Go 的 AWS SDK API Reference》中的 InvokeModel
。
-
- JavaScript
-
- SDK for JavaScript (v3)
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 /** * @typedef {Object} Content * @property {string} text * * @typedef {Object} Usage * @property {number} input_tokens * @property {number} output_tokens * * @typedef {Object} ResponseBody * @property {Content[]} content * @property {Usage} usage */ import { fileURLToPath } from "node:url"; import { BedrockRuntimeClient, InvokeModelCommand, } from "@aws-sdk/client-bedrock-runtime"; const AWS_REGION = "us-east-1"; const MODEL_ID = "anthropic.claude-3-haiku-20240307-v1:0"; const PROMPT = "Hi. In a short paragraph, explain what you can do."; const hello = async () => { console.log("=".repeat(35)); console.log("Welcome to the Amazon Bedrock demo!"); console.log("=".repeat(35)); console.log("Model: Anthropic Claude 3 Haiku"); console.log(`Prompt: ${PROMPT}\n`); console.log("Invoking model...\n"); // Create a new Bedrock Runtime client instance. const client = new BedrockRuntimeClient({ region: AWS_REGION }); // Prepare the payload for the model. const payload = { anthropic_version: "bedrock-2023-05-31", max_tokens: 1000, messages: [{ role: "user", content: [{ type: "text", text: PROMPT }] }], }; // Invoke Claude with the payload and wait for the response. const apiResponse = await client.send( new InvokeModelCommand({ contentType: "application/json", body: JSON.stringify(payload), modelId: MODEL_ID, }), ); // Decode and return the response(s) const decodedResponseBody = new TextDecoder().decode(apiResponse.body); /** @type {ResponseBody} */ const responseBody = JSON.parse(decodedResponseBody); const responses = responseBody.content; if (responses.length === 1) { console.log(`Response: ${responses[0].text}`); } else { console.log("Haiku returned multiple responses:"); console.log(responses); } console.log(`\nNumber of input tokens: ${responseBody.usage.input_tokens}`); console.log(`Number of output tokens: ${responseBody.usage.output_tokens}`); }; if (process.argv[1] === fileURLToPath(import.meta.url)) { await hello(); }-
有关 API 详细信息,请参阅《AWS SDK for JavaScript API Reference》中的 InvokeModel。
-
- Python
-
- 适用于 Python 的 SDK (Boto3)
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 使用 InvokeModel 操作向模型发送提示。
""" Uses the Amazon Bedrock runtime client InvokeModel operation to send a prompt to a model. """ import logging import json import boto3 from botocore.exceptions import ClientError logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def invoke_model(brt, model_id, prompt): """ Invokes the specified model with the supplied prompt. param brt: A bedrock runtime boto3 client param model_id: The model ID for the model that you want to use. param prompt: The prompt that you want to send to the model. :return: The text response from the model. """ # Format the request payload using the model's native structure. native_request = { "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 512, "temperature": 0.5, "topP": 0.9 } } # Convert the native request to JSON. request = json.dumps(native_request) try: # Invoke the model with the request. response = brt.invoke_model(modelId=model_id, body=request) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract and print the response text. response_text = model_response["results"][0]["outputText"] return response_text except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") raise def main(): """Entry point for the example. Uses the AWS SDK for Python (Boto3) to create an Amazon Bedrock runtime client. Then sends a prompt to a model in the region set in the callers profile and credentials. """ # Create an Amazon Bedrock Runtime client. brt = boto3.client("bedrock-runtime") # Set the model ID, e.g., Amazon Titan Text G1 - Express. model_id = "amazon.titan-text-express-v1" # Define the prompt for the model. prompt = "Describe the purpose of a 'hello world' program in one line." # Send the prompt to the model. response = invoke_model(brt, model_id, prompt) print(f"Response: {response}") logger.info("Done.") if __name__ == "__main__": main()使用 Converse 操作向模型发送用户消息。
""" Uses the Amazon Bedrock runtime client Converse operation to send a user message to a model. """ import logging import boto3 from botocore.exceptions import ClientError logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def converse(brt, model_id, user_message): """ Uses the Converse operation to send a user message to the supplied model. param brt: A bedrock runtime boto3 client param model_id: The model ID for the model that you want to use. param user message: The user message that you want to send to the model. :return: The text response from the model. """ # Format the request payload using the model's native structure. conversation = [ { "role": "user", "content": [{"text": user_message}], } ] try: # Send the message to the model, using a basic inference configuration. response = brt.converse( modelId=model_id, messages=conversation, inferenceConfig={"maxTokens": 512, "temperature": 0.5, "topP": 0.9}, ) # Extract and print the response text. response_text = response["output"]["message"]["content"][0]["text"] return response_text except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") raise def main(): """Entry point for the example. Uses the AWS SDK for Python (Boto3) to create an Amazon Bedrock runtime client. Then sends a user message to a model in the region set in the callers profile and credentials. """ # Create an Amazon Bedrock Runtime client. brt = boto3.client("bedrock-runtime") # Set the model ID, e.g., Amazon Titan Text G1 - Express. model_id = "amazon.titan-text-express-v1" # Define the message for the model. message = "Describe the purpose of a 'hello world' program in one line." # Send the message to the model. response = converse(brt, model_id, message) print(f"Response: {response}") logger.info("Done.") if __name__ == "__main__": main()-
有关 API 详细信息,请参阅《AWS SDK for Python (Boto3) API Reference》中的 InvokeModel。
-