Cohere 嵌入 v4 - Amazon Bedrock

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

Cohere 嵌入 v4

Cohere Embed v4是一种支持文本和图像输入的多模态嵌入模型。它可以处理交错的文本和图像内容,因此非常适合文档理解、视觉搜索和多模式检索应用程序。该模型支持各种嵌入类型,包括 float、int8、uint8、二进制和 ubinary 格式,输出维度可配置为 256 到 1536。

的型号 ID Cohere Embed v4 为cohere.embed-v4

其他用法说明

  • 上下文长度:最多支持大约 12.8 万个令牌;对于 RAG 来说,较小的区块通常可以提高检索率和成本。

  • 图像大小:大于 2,458,624 像素的图像将缩减为该大小;对小于 3,136 像素的图像进行上采样。

  • 交错输入:对于类似页面的多模态内容,首选 inputs.content [],这样文本上下文(例如文件名、实体)就会随图像一起移动。

请求和响应

Request

内容类型:应用程序/json

{ "input_type": "search_document | search_query | classification | clustering", "texts": ["..."], // optional; text-only "images": ["data:<mime>;base64,..."], // optional; image-only "inputs": [ { "content": [ { "type": "text", "text": "..." }, { "type": "image_url", "image_url": "data:<mime>;base64,..." } ] } ], // optional; mixed (interleaved) text+image "embedding_types": ["float" | "int8" | "uint8" | "binary" | "ubinary"], "output_dimension": 256 | 512 | 1024 | 1536, "max_tokens": 128000, "truncate": "NONE | LEFT | RIGHT" }
参数

  • input_type(必填)-添加特殊标记以区分用例。允许:search_documentsearch_queryclassificationclustering。对于 Search/rag,请将语料库嵌入并使用进行search_document查询。search_query

  • 文本(可选)-要嵌入的字符串数组。每次通话最多 96 个。如果您使用texts,请不要发送images同一个呼叫。

  • 图像(可选)— 要嵌入的 data-URI base64 图像数组。每次通话最多 96 个。不要images一起texts发送。(inputs用于交错存取。)

  • inp uts(可选 mixed/fused ;modality)-一个列表,其中每个项目都有部分内容列表。每个部分都是{ "type": "text", "text": ... }{ "type": "image_url", "image_url": "data:<mime>;base64,..." }。在此处发送类似页面的交错内容(例如,PDF 页面图片 + 标题/元数据)。最多 96 件物品。

  • embedding_types(可选)— 一个或多个:float、、、int8uint8binary ubinary如果省略,则返回浮点嵌入。

  • 输出尺寸(可选)-选择向量长度。允许:256、、512102415361536如果未指定,则为默认值)。

  • max_token s(可选)-每个输入对象的截断预算。该模型最多支持大约 128,000 个代币;对于 RAG,请酌情缩小区块数量。

  • truncate(可选)— 如何处理超长输入:从一开始就LEFT丢弃标记;从结尾RIGHT丢弃;如果输入超过限制,则NONE返回错误。

限制和规模

  • 每个请求的项目:最多 96 张图片。原始图像文件类型必须采用 png、jpeg、webp 或 gif 格式,大小不超过 5 MB。

  • 请求大小上限:总有效载荷约为 20 MB。

  • 最大输入令牌:最多 12.8 万个代币。 图像文件将转换为标记,总令牌数应小于 128k。

  • 图像:缩减像素采样前的最大像素为 2,458,624 像素;对小于 3,136 像素的图像进行上采样。将图片提供为 data:<mime>;base64,....

  • 代币记账(每inputs件商品):来自图像输入的代币 ↑(图像像素 ε 784)x 来自交错文本和图像输入的 4 个代币 =(图像像素 ε 784)x 4 +(文本标记)

提示:对于 PDFs,将每个页面转换为图像,然后将页面元数据(例如 file_name、实体)与相邻文本部分中的页面元数据(例如 file_name、实体)inputs一起发送。

Response

内容类型:应用程序/json

如果您请求单一嵌入类型(例如,仅限float):

{ "id": "string", "embeddings": [[ /* length = output_dimension */ ]], "response_type": "embeddings_floats", "texts": ["..."], // present if text was provided "inputs": [ { "content": [ ... ] } ] // present if 'inputs' was used }

如果您请求了多种嵌入类型(例如["float","int8"]):

{ "id": "string", "embeddings": { "float": [[ ... ]], "int8": [[ ... ]] }, "response_type": "embeddings_by_type", "texts": ["..."], // when text used "inputs": [ { "content": [ ... ] } ] // when 'inputs' used }
  • 返回的向量数量与数组的长度或inputstexts数相匹配。

  • 每个向量的长度等于output_dimension(默认1536)。

不同输入类型的请求和响应

A) 带有紧凑的 int8 向量的交错页面(图片+标题)

请求

{ "input_type": "search_document", "inputs": [ { "content": [ { "type": "text", "text": "Quarterly ARR growth chart; outlier in Q3." }, { "type": "image_url", "image_url": "data:image/png;base64,{{BASE64_PAGE_IMG}}" } ] } ], "embedding_types": ["int8"], "output_dimension": 512, "truncate": "RIGHT", "max_tokens": 128000 }
响应(截断)

{ "id": "836a33cc-61ec-4e65-afaf-c4628171a315", "embeddings": { "int8": [[ 7, -3, ... ]] }, "response_type": "embeddings_by_type", "inputs": [ { "content": [ { "type": "text", "text": "Quarterly ARR growth chart; outlier in Q3." }, { "type": "image_url", "image_url": "data:image/png;base64,{{...}}" } ] } ] }

B) 纯文本语料库索引(默认浮点数,1536-dim)

请求

{ "input_type": "search_document", "texts": [ "RAG system design patterns for insurance claims", "Actuarial loss triangles and reserving primer" ] }
响应(示例)

{ "response_type": "embeddings_floats", "embeddings": [ [0.0135, -0.0272, ...], // length 1536 [0.0047, 0.0189, ...] ] }

代码示例

Text input
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate embeddings using the Cohere Embed v4 model. """ import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_text_embeddings(model_id, body, region_name): """ Generate text embedding by using the Cohere Embed model. Args: model_id (str): The model ID to use. body (str) : The reqest body to use. region_name (str): The AWS region to invoke the model on Returns: dict: The response from the model. """ logger.info("Generating text embeddings with the Cohere Embed model %s", model_id) accept = '*/*' content_type = 'application/json' bedrock = boto3.client(service_name='bedrock-runtime', region_name=region_name) response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) logger.info("Successfully generated embeddings with Cohere model %s", model_id) return response def main(): """ Entrypoint for Cohere Embed example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") region_name = 'us-east-1' model_id = 'cohere.embed-v4:0' text1 = "hello world" text2 = "this is a test" input_type = "search_document" embedding_types = ["float"] try: body = json.dumps({ "texts": [ text1, text2], "input_type": input_type, "embedding_types": embedding_types }) response = generate_text_embeddings(model_id=model_id, body=body, region_name=region_name) response_body = json.loads(response.get('body').read()) print(f"ID: {response_body.get('id')}") print(f"Response type: {response_body.get('response_type')}") print("Embeddings") embeddings = response_body.get('embeddings') for i, embedding_type in enumerate(embeddings): print(f"\t{embedding_type} Embeddings:") print(f"\t{embeddings[embedding_type]}") print("Texts") for i, text in enumerate(response_body.get('texts')): print(f"\tText {i}: {text}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print( f"Finished generating text embeddings with Cohere model {model_id}.") if __name__ == "__main__": main()
Mixed modalities
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate image embeddings using the Cohere Embed v4 model. """ import json import logging import boto3 import base64 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def get_base64_image_uri(image_file_path: str, image_mime_type: str): with open(image_file_path, "rb") as image_file: image_bytes = image_file.read() base64_image = base64.b64encode(image_bytes).decode("utf-8") return f"data:{image_mime_type};base64,{base64_image}" def generate_embeddings(model_id, body, region_name): """ Generate image embedding by using the Cohere Embed model. Args: model_id (str): The model ID to use. body (str) : The reqest body to use. region_name (str): The AWS region to invoke the model on Returns: dict: The response from the model. """ logger.info("Generating image embeddings with the Cohere Embed model %s", model_id) accept = '*/*' content_type = 'application/json' bedrock = boto3.client(service_name='bedrock-runtime', region_name=region_name) response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) logger.info("Successfully generated embeddings with Cohere model %s", model_id) return response def main(): """ Entrypoint for Cohere Embed example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") region_name = 'us-east-1' image_file_path = "image.jpg" image_mime_type = "image/jpg" text = "hello world" model_id = 'cohere.embed-v4:0' input_type = "search_document" image_base64_uri = get_base64_image_uri(image_file_path, image_mime_type) embedding_types = ["int8","float"] try: body = json.dumps({ "inputs": [ { "content": [ { "type": "text", "text": text }, { "type": "image_url", "image_url": "data:image/png;base64,{{image_base64_uri}}" } ] } ], "input_type": input_type, "embedding_types": embedding_types }) response = generate_embeddings(model_id=model_id, body=body, region_name=region_name) response_body = json.loads(response.get('body').read()) print(f"ID: {response_body.get('id')}") print(f"Response type: {response_body.get('response_type')}") print("Embeddings") embeddings = response_body.get('embeddings') for i, embedding_type in enumerate(embeddings): print(f"\t{embedding_type} Embeddings:") print(f"\t{embeddings[embedding_type]}") print("inputs") for i, input in enumerate(response_body.get('inputs')): print(f"\tinput {i}: {input}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print( f"Finished generating embeddings with Cohere model {model_id}.") if __name__ == "__main__": main()