本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
创建自定义模型(AWS SDK)
要使用存储在 Amazon S3 中经过 SageMaker AI 训练的 Amazon Nova 模型创建自定义模型,您可以使用 CreateCustomModel API 操作。您可以使用以下代码,通过适用于 Python 的 SDK(Boto3)创建自定义模型。这段代码创建自定义模型,然后检查其状态,直到模型处于 ACTIVE 状态并可供使用。
要使用代码,请更新以下参数。这段示例代码还包括可选参数,例如 clientRequestToken 用于幂等性,modelTags 用于资源标记。
-
modelName – 为模型指定唯一名称。
-
s3Uri – 指定存储模型构件的 Amazon 托管的 Amazon S3 存储桶的路径。当您运行第一个 SageMaker AI 训练作业时,SageMaker AI 会创建这个存储桶。
-
roleArn – 指定 IAM 服务角色的 Amazon 资源名称(ARN),Amazon Bedrock 将代入该角色来代表您执行任务。有关创建此角色的更多信息,请参阅 为导入预训练模型创建服务角色。
-
modelKmsKeyArn(可选)– 指定用于在 Amazon Bedrock 中加密模型的 AWS KMS 密钥。如果您未提供 AWS KMS 密钥,Amazon Bedrock 会使用 AWS 托管的 AWS KMS 密钥对模型进行加密。有关加密的信息,请参阅导入的自定义模型的加密。
创建自定义模型后,模型将显示在 ListCustomModels 响应中,customizationType 为 imported。要跟踪新模型的状态,您可以使用 GetCustomModel API 操作。
import boto3 import uuid from botocore.exceptions import ClientError import time def create_custom_model(bedrock_client): """ Creates a custom model in Amazon Bedrock from a SageMaker AI-trained Amazon Nova model stored in Amazon S3. Args: bedrock_client: The Amazon Bedrock client instance Returns: dict: Response from the CreateCustomModel API call """ try: # Create a unique client request token for idempotency client_request_token = str(uuid.uuid4()) # Define the model source configuration model_source_config = { 's3DataSource': { 's3Uri': 's3://amzn-s3-demo-bucket/folder/', } } # Create the custom model response = bedrock_client.create_custom_model( # Required parameters modelName='modelName', roleArn='serviceRoleArn', modelSourceConfig=model_source_config, # Optional parameters clientRequestToken=client_request_token, modelKmsKeyArn='keyArn', modelTags=[ { 'key': 'Environment', 'value': 'Production' }, { 'key': 'Project', 'value': 'AIInference' } ] ) print(f"Custom model creation initiated. Model ARN: {response['modelArn']}") return response except ClientError as e: print(f"Error creating custom model: {e}") raise def list_custom_models(bedrock_client): """ Lists all custom models in Amazon Bedrock. Args: bedrock_client: An Amazon Bedrock client. Returns: dict: Response from the ListCustomModels API call """ try: response = bedrock_client.list_custom_models() print(f"Total number of custom models: {len(response['modelSummaries'])}") for model in response['modelSummaries']: print("ARN: " + model['modelArn']) print("Name: " + model['modelName']) print("Status: " + model['modelStatus']) print("Customization type: " + model['customizationType']) print("------------------------------------------------------") return response except ClientError as e: print(f"Error listing custom models: {e}") raise def check_model_status(bedrock_client, model_arn): """ Checks the status of a custom model creation. Args: model_arn (str): The ARN of the custom model bedrock_client: An Amazon Bedrock client. Returns: dict: Response from the GetCustomModel API call """ try: max_time = time.time() + 60 * 60 # 1 hour while time.time() < max_time: response = bedrock_client.get_custom_model(modelIdentifier=model_arn) status = response.get('modelStatus') print(f"Job status: {status}") if status == 'Failed': print(f"Failure reason: {response.get('failureMessage')}") break if status == 'Active': print("Model is ready for use.") break time.sleep(60) except ClientError as e: print(f"Error checking model status: {e}") raise def main(): bedrock_client = boto3.client(service_name='bedrock', region_name='REGION') # Create the custom model model_arn = create_custom_model(bedrock_client)["modelArn"] # Check the status of the model if model_arn: check_model_status(bedrock_client, model_arn) # View all custom models list_custom_models(bedrock_client) if __name__ == "__main__": main()