
AWS Well-Architected Framework

Serverless Applications Lens

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Serverless Applications Lens AWS Well-Architected Framework

Serverless Applications Lens: AWS Well-Architected Framework

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Serverless Applications Lens AWS Well-Architected Framework

Table of Contents

Abstract and introduction ... 1
Introduction ... 1
Custom lens availability .. 1

Definitions .. 2
Compute layer ... 2
Data layer ... 3
Messaging and streaming layer ... 3
User management and identity layer .. 4
Edge layer ... 4
Systems monitoring and deployment .. 4
Deployment approaches ... 5

All-at-once deployments ... 6
Blue/green deployments ... 6
Canary deployments ... 7

Lambda version control .. 7
Design principles ... 8
Scenarios .. 9

RESTful microservices .. 9
Characteristics .. 9
Reference architecture ... 10
Configuration notes .. 10

Alexa skills ... 11
Characteristics .. 12
Reference architecture ... 13
Configuration notes .. 14

Mobile backend ... 15
Characteristics .. 15
Reference architecture ... 16
Configuration notes .. 17

Streaming processing .. 18
Characteristics .. 18
Reference architecture ... 18
Configuration notes .. 19

Web application .. 20

iii

Serverless Applications Lens AWS Well-Architected Framework

Characteristics .. 21
Reference architecture ... 21
Configuration notes .. 22

Event-driven architectures .. 23
Reference architecture ... 23
Configuration notes .. 24

Pillars of the Well-Architected Framework ... 25
Operational excellence .. 25

Organization ... 26
Prepare .. 26
Operate ... 26
Evolve .. 37
Key AWS services .. 37
Resources .. 37

Security ... 39
Identity and access management .. 40
Detective controls ... 46
Infrastructure protection ... 46
Data protection ... 46
Incident response .. 48
Key AWS services .. 48
Resources .. 48

Reliability .. 49
Foundations .. 50
Change management ... 54
Failure management .. 54
Limits ... 57
Key AWS services .. 57
Resources .. 57

Performance efficiency .. 59
Selection ... 59
Optimize .. 64
Review ... 73
Monitoring .. 73
Tradeoffs ... 74
Key AWS services .. 74

iv

Serverless Applications Lens AWS Well-Architected Framework

Resources .. 74
Cost optimization ... 75

Cost-effective resources ... 76
Matching supply and demand ... 76
Expenditure and usage awareness .. 77
Optimizing over time ... 77
Resources .. 92

Sustainability ... 93
Conclusion .. 94
Contributors ... 95
Further reading .. 96
Document revisions ... 97
Notices .. 98
AWS Glossary ... 99

v

Serverless Applications Lens AWS Well-Architected Framework

Serverless Applications Lens - AWS Well-Architected
Framework

Publication date: July 14, 2022 (Document revisions)

This document describes the Serverless Applications Lens for the AWS Well-Architected
Framework. The document covers common serverless applications scenarios and identifies key
elements to ensure that your workloads are architected according to best practices.

Introduction

The AWS Well-Architected Framework helps you understand the pros and cons of decisions you
make while building systems on AWS. By using the Framework, you will learn architectural best
practices for designing and operating reliable, secure, efficient, and cost-effective systems in the
cloud. It provides a way for you to consistently measure your architectures against best practices
and identify areas for improvement. We believe that having well-architected systems greatly
increases the likelihood of business success.

In this Lens we focus on how to design, deploy, and architect your serverless application
workloads in the AWS Cloud. For brevity, we have only covered details from the Well-Architected
Framework that are specific to serverless workloads. You should still consider best practices and
questions that have not been included in this document when designing your architecture. We
recommend that you read the AWS Well-Architected Framework whitepaper.

This document is intended for those in technology roles, such as Chief Technology Officers (CTOs),
architects, developers, and operations team members. After reading this document, you will
understand AWS best practices and strategies to use when designing architectures for serverless
applications.

Custom lens availability

Custom lenses extend the best practice guidance provided by AWS Well-Architected Tool. AWS
WA Tool allows you to create your own custom lenses, or to use lenses created by others that have
been shared with you.

To determine if a custom lens is available for the lens described in this whitepaper, reach out to
your Technical Account Manager (TAM), Solutions Architect (SA), or Support.

Introduction 1

https://aws.amazon.com/well-architected
https://aws.amazon.com/well-architected
https://aws.amazon.com/well-architected
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/userguide/lenses-custom.html

Serverless Applications Lens AWS Well-Architected Framework

Definitions

The AWS Well-Architected Framework is based on six pillars: operational excellence, security,
reliability, performance efficiency, cost optimization, and sustainability. For serverless workloads,
AWS provides multiple core components (serverless and non-serverless) that allow you to design
robust architectures for your serverless applications. In this section, we will present an overview
of the services that will be used throughout this document. There are eight areas that you should
consider when building a serverless workload:

Topics

• Compute layer

• Data layer

• Messaging and streaming layer

• User management and identity layer

• Edge layer

• Systems monitoring and deployment

• Deployment approaches

• Lambda version control

Compute layer

The compute layer of your workload manages requests from external systems, controlling access
and verifying that requests are appropriately authorized. Your business logic will be deployed and
started by the runtime environment that it contains.

AWS Lambda lets you run stateless serverless applications on a managed platform that supports
microservice architectures, deployment, and management of execution at the function layer.

With Amazon API Gateway, you can run a fully managed REST API that integrates with Lambda
to apply your business logic, and includes traffic management, authorization and access control,
monitoring, and API versioning.

AWS Step Functions orchestrates serverless workflows including coordination, state, and function
chaining as well as combining long-running executions not supported within Lambda execution
limits by breaking into multiple steps or by calling workers running on Amazon Elastic Compute
Cloud (Amazon EC2) instances or on-premises.

Compute layer 2

https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Serverless Applications Lens AWS Well-Architected Framework

Data layer

The data layer of your workload manages persistent storage from within a system. It provides a
secure mechanism to store the states that your business logic will need. It provides a mechanism to
trigger events in response to data changes.

Amazon DynamoDB helps you build serverless applications by providing a managed NoSQL
database for persistent storage. Combined with DynamoDB Streams, you can respond in near
real-time to changes in your DynamoDB table by invoking Lambda functions. DynamoDB
Accelerator (DAX) adds a highly available in-memory cache for DynamoDB that delivers up to 10x
performance improvement from milliseconds to microseconds.

With Amazon Simple Storage Service (Amazon S3), you can build serverless web applications and
websites by providing a highly-available key-value store, from which static assets can be served via
a Content Delivery Network (CDN), such as Amazon CloudFront.

Amazon OpenSearch Service (OpenSearch Service) makes it easy to deploy, secure, operate, and
scale OpenSearch for log analytics, full-text search, application monitoring, and more. OpenSearch
Service is a fully managed service that provides both a search engine and analytics tools.

AWS AppSync is a managed GraphQL service with real-time and offline capabilities, as well as
enterprise-grade security controls that make developing applications simple. AWS AppSync
provides a data-driven API and consistent programming language for applications and devices to
connect to services such as DynamoDB, OpenSearch Service, and Amazon S3.

Messaging and streaming layer

The messaging layer of your workload manages communications between components. The
streaming layer manages real-time analysis and processing of streaming data.

Amazon Simple Notification Service (Amazon SNS) provides a fully managed messaging service
for pub/sub patterns using asynchronous Event Notifications and mobile push notifications for
microservices, distributed systems, and serverless applications.

Amazon Kinesis makes it easy to collect, process, and analyze real-time streaming data.
With Amazon Kinesis, you can run standard SQL, or build entire streaming applications using SQL.

Amazon Data Firehose captures, transforms, and loads streaming data into Managed Service for
Apache Flink, Amazon S3, Amazon Redshift, and OpenSearch Service, enabling near real-time
analytics with existing business intelligence tools.

Data layer 3

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/appsync/
https://aws.amazon.com/appsync/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/s3/
https://aws.amazon.com/sns/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/s3/
https://aws.amazon.com/redshift/
https://aws.amazon.com/opensearch-service/

Serverless Applications Lens AWS Well-Architected Framework

User management and identity layer

The user management and identity layer of your workload provides identity, authentication, and
authorization for both external and internal customers of your workload’s interfaces.

With Amazon Cognito, you can easily add user sign-up, sign-in, and data synchronization to
serverless applications. Amazon Cognito User Pools provide built-in sign-in screens and federation
with Facebook, Google, Amazon, and Security Assertion Markup Language (SAML). Amazon
Cognito Federated Identities let you securely provide scoped access to AWS resources that are part
of your serverless architecture.

Edge layer

The edge layer of your workload manages the presentation layer and connectivity to external
customers. It provides an efficient delivery method to external customers residing in distinct
geographical locations.

Amazon CloudFront provides a CDN that securely delivers web application content and data with
low latency and high transfer speeds.

Systems monitoring and deployment

The system monitoring layer of your workload manages system visibility through metrics and
creates contextual awareness of how it operates and behaves over time. The deployment layer
defines how your workload changes are promoted through a release management process.

With Amazon CloudWatch, you can access system metrics on all the AWS services you use,
consolidate system and application level logs, and create business key performance indicators
(KPIs) as custom metrics for your specific needs. It provides dashboards and alerts that can trigger
automated actions on the platform.

AWS X-Ray helps you analyze and debug serverless applications by providing distributed tracing
and service maps to easily identify performance bottlenecks by visualizing a request end-to-end.

AWS Serverless Application Model (AWS SAM) is an extension of AWS CloudFormation that is used
to package, test, and deploy serverless applications. The AWS Serverless Application Model CLI can
also enable faster debugging cycles when developing Lambda functions locally.

User management and identity layer 4

https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/lambda/

Serverless Applications Lens AWS Well-Architected Framework

Deployment approaches

A best practice for deployments in a microservice architecture is to ensure that a change does
not break the service contract of the consumer. If the API owner makes a change that breaks the
service contract and the consumer is not prepared for it, failures can occur.

Being aware of which consumers are using your APIs is the first step to ensure that deployments
are safe. Collecting metadata on consumers and their usage allows you to make data driven
decisions about the impact of changes. API Keys are an effective way to capture metadata about
the API consumer/clients and often used as a form of contact if a breaking change is made to an
API.

Some customers who want to take a risk-averse approach to breaking changes may choose to clone
the API and route customers to a different subdomain (for example, v2.my-service.com) to ensure
that existing consumers aren’t impacted. While this approach enables new deployments with a
new service contract, the tradeoff is that the overhead of maintaining dual APIs (and subsequent
backend infrastructure) requires additional overhead.

The table shows the different approaches to deployment:

Deployment Consumer
Impact

Rollback Event Model
Factors

Deployment
Speed

All-at-once All at once Redeploy older
version

Any event model
at low concurren
cy rate

Immediate

Blue/Green All at once with
some level
of productio
n environme
nt testing
beforehand

Revert traffic
to previous
environment

Better for
async and sync
event models
at medium
concurrency
workloads

Minutes to hours
of validatio
n, and then
immediate to
customers

Canary(or
Linear)

1–10% typical
initial traffic
shift, then

Revert 100%
of traffic
to previous
deployment

Better for high
concurrency
workloads

Minutes to hours

Deployment approaches 5

Serverless Applications Lens AWS Well-Architected Framework

Deployment Consumer
Impact

Rollback Event Model
Factors

Deployment
Speed

phased increases
, or all at once

All-at-once deployments

All-at-once deployments involve making changes on top of the existing configuration. An
advantage to this style of deployment is that backend changes to data stores, such as a relational
database, require a much smaller level of effort to reconcile transactions during the change cycle.
While this type of deployment style is low-effort and can be made with little impact in low-
concurrency models, it adds risk when it comes to rollback and usually causes downtime. Use this
deployment model for non-critical environments, such as development, where impact to customers
is not a risk.

Blue/green deployments

Another traffic shifting pattern is enabling blue/green deployments. This near zero-downtime
release enables traffic to shift to the new live environment (green) while still keeping the old
production environment (blue) warm in case a rollback is necessary. Since API Gateway allows you
to define what percentage of traffic is shifted to a particular environment; this style of deployment
can be an effective technique. Since blue/green deployments are designed to reduce downtime,
many customers adopt this pattern for production changes.

Serverless architectures that follow the best practice of statelessness and idempotency are
amenable to this deployment style because there is no affinity to the underlying infrastructure. You
should bias these deployments toward smaller incremental changes so that you can easily roll back
to a working environment if necessary.

You need the right indicators in place to know if a rollback is required. As a best practice, we
recommend customers using CloudWatch high-resolution metrics, which can monitor in 1-second
intervals, and quickly capture downward trends. Used with CloudWatch alarms, you can enable an
expedited rollback to occur. CloudWatch metrics can be captured on API Gateway, Step Functions,
Lambda (including custom metrics), and DynamoDB.

All-at-once deployments 6

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/

Serverless Applications Lens AWS Well-Architected Framework

Canary deployments

Canary deployments are a way for you to gradually release new software in a coordinated and safe
way that enable rapid deployment cycles. Canary deployments involve deploying a percentage of
requests to new code, and monitoring for errors, degradations, or regressions.

You can use Lambda function aliases with AWS CodeDeploy to support various canary deployment
strategies. AWS SAM comes with built-in support for CodeDeploy, which makes Canary
deployments even simpler. Operators can further control gradual deployments by leveraging pre-
traffic and post-traffic deployment hooks and CloudWatch alarms to trigger automated rollback.

Lambda version control

Like all software, maintaining versioning enables the quick visibility of previously functioning code
as well as the ability to revert back to a previous version if a new deployment is unsuccessful. AWS
Lambda allows you to publish one or more immutable versions for individual Lambda functions
such that previous versions cannot be changed. Each Lambda function version has a unique
Amazon Resource Name (ARN) and new version changes are auditable as they are recorded in AWS
CloudTrail. As a best practice in production, customers should enable versioning to use a reliable
architecture.

To simplify deployment operations and reduce the risk of error, Lambda function aliases activate
different variations of your Lambda function in your development workflow, such as development,
beta, and production. An example of this is when an API Gateway integration with Lambda points
to the ARN of a production alias. The production alias will point to a Lambda version. The value
of this technique is that it activates a safe deployment when promoting a new version to the live
environment because the Lambda alias within the caller configuration remains static, thus there are
fewer changes to make.

Canary deployments 7

https://aws.amazon.com/lambda/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-versions.html
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-aliases.html
https://aws.amazon.com/api-gateway/

Serverless Applications Lens AWS Well-Architected Framework

Design principles

The Well-Architected Framework identifies a set of general design principles to facilitate good
design in the cloud for serverless applications:

• Speedy, simple, singular: Functions are concise, short, single-purpose, and their environment
may live up to their request lifecycle. Transactions are efficiently cost-aware, and thus faster
initiations are preferred.

• Think concurrent requests, not total requests: Serverless applications take advantage of the
concurrency model, and tradeoffs at the design level are evaluated based on concurrency.

• Share nothing: Function runtime environment and underlying infrastructure are short-lived,
therefore local resources such as temporary storage is not guaranteed. State can be manipulated
within a state machine execution lifecycle, and persistent storage is preferred for highly durable
requirements.

• Assume no hardware affinity: Underlying infrastructure may change. Use code or dependencies
that are hardware-agnostic. CPU flags, for example, may not be available consistently.

• Orchestrate your application with state machines, not functions: Chaining Lambda executions
within the code to orchestrate the workflow of your application results in a monolithic and
tightly coupled application. Instead, use a state machine to orchestrate transactions and
communication flows.

• Use events to trigger transactions: Events such as writing a new Amazon S3 object or an
update to a database allow for transaction execution in response to business functionalities. This
asynchronous event behavior is often consumer agnostic and drives just-in-time processing to
achieve lean service design.

• Design for failures and duplicates: Operations triggered from requests or events must be
idempotent, as failures can occur and a given request or event can be delivered more than once.
Include appropriate retries for downstream calls.

8

Serverless Applications Lens AWS Well-Architected Framework

Scenarios

In this section, we cover the six key scenarios that are common in many serverless applications and
how they influence the design and architecture of your serverless application workloads on AWS.
We will present the assumptions we made for each of these scenarios, the common drivers for the
design, and a reference architecture of how these scenarios should be implemented.

Key scenarios

• RESTful microservices

• Alexa skills

• Mobile backend

• Streaming processing

• Web application

• Event-driven architectures

RESTful microservices

When building a microservice, think about how a business context can be delivered as a reusable
service for your consumers. The specific implementation will be tailored to individual use cases,
but there are several common themes across microservices to ensure that your implementation is
secure, resilient, and constructed to give the best experience for your customers.

Building serverless microservices on AWS enables you to not only take advantage of the serverless
capabilities themselves, but also to use other AWS services and features, as well as the ecosystem
of AWS and AWS Partner Network (APN) tools. Serverless technologies are built on top of fault-
tolerant infrastructure, enabling you to build reliable services for your mission-critical workloads.
The ecosystem of tooling enables you to streamline the build, automate tasks, orchestrate
dependencies, and monitor and govern your microservices. Lastly, AWS serverless tools are pay-
as-you-go, enabling you to grow the service with your business and keep your costs down during
entry phases and non-peak times.

Characteristics

• You want a secure, easy-to-operate framework that is simple to replicate and has high levels of
resiliency and availability.

RESTful microservices 9

Serverless Applications Lens AWS Well-Architected Framework

• You want to log utilization and access patterns to continually improve your backend to support
customer usage.

• You are seeking to use managed services as much as possible for your platforms, which reduces
the heavy lifting associated with managing common platforms, including security and scalability.

Reference architecture

Figure 1: Reference architecture for RESTful microservices

1. Customers leverage your microservices by making HTTP API calls. Ideally, your consumers
should have a tightly bound service contract to your API to achieve consistent expectations of
service levels and change control.

2. Amazon API Gateway hosts RESTful HTTP requests and responses to customers. In this scenario,
API Gateway provides built-in authorization, throttling, security, fault tolerance, request and
response mapping, and performance optimizations.

3. AWS Lambda contains the business logic to process incoming API calls and use DynamoDB as a
persistent storage.

4. Amazon DynamoDB persistently stores microservices data and scales based on demand.
Since microservices are often designed to do one thing well, a schemaless NoSQL data store is
regularly incorporated.

Configuration notes

• Use API Gateway logging to understand visibility of microservices consumer access behaviors.
This information is visible in Amazon CloudWatch Logs and can be quickly viewed through
Log Pivots, analyzed in CloudWatch Logs Insights or fed into other searchable engines such as
OpenSearch Service or Amazon S3 (with Amazon Athena). The information delivered gives key
visibility, such as:

Reference architecture 10

Serverless Applications Lens AWS Well-Architected Framework

• Understanding common customer locations, which may change geographically based on the
proximity of your backend.

• Understanding how customer input requests may have an impact on how you partition your
database.

• Understanding the semantics of abnormal behavior, which can be a security flag.

• Understanding errors, latency, and cache hits or misses to optimize configuration.

• This model provides a framework that is easy to deploy and maintain, and a secure environment
that will scale as your needs grow.

Alexa skills

The Alexa Skills Kit gives developers the ability to extend Alexa's capabilities by building natural
and engaging voice and visual experiences. Successful skills are habit-forming, where users
routinely come back because it offers something unique, it provides value in new, novel, and
frictionless ways.

The biggest cause of frustration from users is when the skill doesn’t behave as expected. It’s
essential to start by designing a voice interaction model and working backwards since some users
may say too little, too much, or possibly something unexpected. The voice design process involves
creating, scripting, and planning for expected as well as unexpected utterances.

Figure 2: Alexa Skill example design script

Alexa skills 11

Serverless Applications Lens AWS Well-Architected Framework

With a basic script in mind, you can use the following techniques before start building a skill:

• Outline the shortest route to completion.

• The shortest route to completion is generally when the user gives all information and slots at
once, an account is already linked if relevant, and other prerequisites are satisfied in a single
invocation of the skill.

• Outline alternate paths and decision trees.

• Often, what the user says doesn’t include all information necessary to complete the request. In
the flow, identify alternate pathways and user decisions.

• Outline behind-the-scenes decisions the system logic will have to make.

• Identify behind-the-scenes system decisions, for example with new or returning users. A
background system check might change the flow a user follows.

• Outline how the skill will help the user.

• Include clear directions in the help for what users can do with the skill. Based on the
complexity of the skill, the help might provide one simple response or many responses.

• Outline the account linking process, if present.

• Determine the information that is required for account linking. You also need to identify how
the skill will respond when account linking hasn’t been completed.

Characteristics

• You want to create a complete serverless architecture without managing any instances or
servers.

• You want your content to be decoupled from your skill as much as possible.

• You are looking to provide engaging voice experiences exposed as an API to optimize
development across wide-ranging Alexa devices, Regions, and languages.

• You want elasticity that scales up and down to meet the demands of users and handles
unexpected usage patterns.

Characteristics 12

Serverless Applications Lens AWS Well-Architected Framework

Reference architecture

Figure 3: Reference architecture for an Alexa Skill

1. Alexa users interact with Alexa skills by speaking to Alexa-enabled devices using voice as the
primary method of interaction.

2. Alexa-enabled devices listen for a wake word and activate as soon as one is recognized.
Supported wake words are Alexa, Computer, and Echo.

3. The Alexa Service performs common Speech Language Understanding (SLU) processing on
behalf of your Alexa Skill, including Automated Speech Recognition (ASR), Natural Language
Understanding (NLU), and Text to Speech (TTS) conversion.

4. Alexa Skills Kit (ASK) is a collection of self-service APIs, tools, documentation, and code
examples that make it fast and easy for you to add skills to Alexa. ASK is a trusted AWS Lambda
trigger, allowing for seamless integration.

5. Alexa Custom Skill gives you control over the user experience, allowing you to build a custom
interaction model. It is the most flexible type of skill, but also the most complex.

6. A Lambda function using the Alexa Skills Kit, allowing you to seamlessly build skills avoiding
unneeded complexity. Using it you can process different types of requests sent from the Alexa
Service and build speech responses.

Reference architecture 13

Serverless Applications Lens AWS Well-Architected Framework

7. A DynamoDB Database can provide a NoSQL data store. Using DynamoDB’s on-demand
scaling mechanism offers simple pay-per-request pricing for read and write requests so that
you only pay for what you use, and you do not need to worry about forecasting read and write
throughput. DynamoDB is commonly used by Alexa skills to persist user state and sessions.

8. Alexa Smart Home Skill allows you to control devices such as lights, thermostats, and smart
TVs using the Smart Home API. Smart Home skills are simpler to build than custom skills since
they don’t give you control over the interaction model.

9. A Lambda function is used to respond to device discovery and control requests from the Alexa
Service. Developers use it to control a wide-ranging number of devices including entertainment
devices, cameras, lighting, thermostats, locks, and many more.

10.AWS IoT allows developers to securely connect their devices to AWS and control interaction
between their Alexa skill and their devices.

11.An Alexa-enabled Smart Home can have an unlimited number of IoT connected devices
receiving and responding and to directives from an Alexa Skill.

12.Amazon S3 stores your skills static assets including images, content, and media. Its contents are
securely served using CloudFront.

13.Amazon CloudFront Content Delivery Network (CDN) provides a CDN that serves content
faster to geographically distributed mobile users and includes security mechanisms to static
assets in Amazon S3.

14.Account Linking is needed when your skill must authenticate with another system. This action
associates the Alexa user with a specific user in the other system.

Configuration notes

• Validate Smart Home request and response payloads by validating against the JSON schema for
all possible Alexa Smart Home messages sent by a skill to Alexa.

• Ensure that your Lambda function timeout is less than eight seconds and can handle requests
within that timeframe. (The Alexa Service timeout is eight seconds.)

• Follow best practices when creating your DynamoDB tables. Use on-demand tables when you
are not certain how much read or write capacity you need. You can use provisioned capacity with
automatic scaling enabled if you know read and write capacity and do not expect large spikes
in traffic. For Skills that are heavy on reads, DynamoDB Accelerator(DAX) can greatly improve
response times.

Configuration notes 14

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html

Serverless Applications Lens AWS Well-Architected Framework

• Account linking can provide user information that may be stored in an external system. Use
that information to provide contextual and personalized experience for your user. Alexa has
guidelines on Account Linking to provide frictionless experiences.

• Use the skill beta testing tool to collect early feedback on skill development, and for skills
versioning, to reduce impact on skills that are already live.

• Use ASK CLI to automate skill development and deployment.

Mobile backend

Users increasingly expect their mobile applications to have a fast, consistent, and feature-rich user
experience. At the same time, mobile user patterns are dynamic with unpredictable peak usage and
often have a global footprint.

The growing demand from mobile users means that applications need a rich set of mobile
services that work together seamlessly without sacrificing control and flexibility of the backend
infrastructure. Certain capabilities across mobile applications, are expected by default:

• Ability to query, mutate, and subscribe to database changes.

• Offline persistence of data and bandwidth optimizations when connected.

• Search, filtering, and discovery of data in applications.

• Analytics of user behavior.

• Targeted messaging through multiple channels (Push Notifications, SMS, Email).

• Rich content such as images and videos.

• Data synchronization across multiple devices and multiple users.

• Fine-grained authorization controls for viewing and manipulating data.

Building a serverless mobile backend on AWS enables you to provide these capabilities while
automatically managing scalability, elasticity, and availability in an efficient and cost effective way.

Characteristics

• You want to control application data behavior from the client and explicitly select what data you
want from the API.

• You want your business logic to be decoupled from your mobile application as much as possible.

Mobile backend 15

https://developer.amazon.com/blogs/alexa/post/0fbd9756-6ea0-43d5-b213-873ede1b0595/tips-for-successfully-adding-account-linking-to-your-alexa-skill

Serverless Applications Lens AWS Well-Architected Framework

• You are looking to provide business functionalities as an API to optimize development across
multiple platforms.

• You are seeking to use managed services to reduce undifferentiated heavy lifting of maintaining
mobile backend infrastructure while providing high levels of scalability and availability.

• You want to optimize your mobile backend costs based upon actual user demand instead of
paying for idle resources.

Reference architecture

Figure 4: Reference architecture for a mobile backend

1. Amazon Cognito is used for user management and as an identity provider for your mobile
application. Additionally, it allows mobile users to leverage existing social identities such as
Facebook, Twitter, Google+, and Amazon to sign in.

2. Mobile users interact with the mobile application backend by performing GraphQL operations
against AWS AppSync and AWS service APIs (for example, Amazon S3 and Amazon Cognito).

3. Amazon S3 stores mobile application static assets including certain mobile user data such as
profile images. Its contents are securely served via CloudFront.

4. AWS AppSync hosts GraphQL HTTP requests and responses to mobile users. In this scenario,
data from AWS AppSync is in real-time when devices are connected, and data is available offline

Reference architecture 16

Serverless Applications Lens AWS Well-Architected Framework

as well. Data sources for this scenario are Amazon DynamoDB, Amazon OpenSearch Service, or
AWS Lambda functions.

5. Amazon OpenSearch Service acts as a main search engine for your mobile application as well as
analytics.

6. Amazon DynamoDB provides persistent storage for your mobile application, including
mechanisms to expire unwanted data from inactive mobile users through a Time to Live (TTL)
feature.

7. An AWS Lambda function handles interaction with other third-party services, or calling other
AWS services for custom flows, which can be part of the GraphQL response to clients.

8. Amazon DynamoDB Streams captures item-level changes and enables a Lambda function to
update additional data sources.

9. An AWS Lambda function manages streaming data between DynamoDB and OpenSearch
Service, allowing customers to combine data sources logical GraphQL types and operations.

10.Amazon Pinpoint captures analytics from clients, including user sessions and custom metrics for
application insights.

11.Amazon Pinpoint delivers messages to all users or devices, or a targeted subset based
on analytics that have been gathered. Messages can be customized and sent using push
notifications, email, or SMS channels.

Configuration notes

• Performance test your Lambda functions with different memory and timeout settings to ensure
that you’re using the most appropriate resources for the job.

• Follow best practices when creating your DynamoDB tables and consider having AWS AppSync
automatically provision them from a GraphQL schema, which will use a well-distributed hash key
and create indexes for your operations. Make certain to calculate your read and write capacity,
and table partitioning to ensure reasonable response times.

• Use the AWS AppSync server-side data caching to optimize your application experience, as
all subsequent query requests to your API will be returned from the cache, which means data
sources won’t be contacted directly unless the TTL expires.

• Follow best practices when managing Amazon OpenSearch Service domains. Additionally,
Amazon OpenSearch Service provides an extensive guide on designing concerning sharding and
access patterns that also apply here.

Configuration notes 17

https://github.com/alexcasalboni/aws-lambda-power-tuning
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
https://docs.aws.amazon.com/appsync/latest/devguide/enabling-caching.html
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/scale.html

Serverless Applications Lens AWS Well-Architected Framework

• Use the fine-grained access controls of AWS AppSync, configured in resolvers, to filter GraphQL
requests down to the per-user or group level if necessary. This can be applied to AWS Identity
and Access Management (IAM) or Amazon Cognito user pools authorization with AWS AppSync.

• Use AWS Amplify and Amplify CLI to compose and integrate your application with multiple AWS
services. Amplify Console also takes care of deploying and managing stacks.

For low-latency requirements where near-to-none business logic is required, Amazon Cognito
Federated Identity can provide scoped credentials so that your mobile application can talk directly
to an AWS service, for example, when uploading a user’s profile picture, retrieve metadata files
from Amazon S3 scoped to a user.

Streaming processing

Ingesting and processing real-time streaming data requires scalability and low latency to support a
variety of applications such as activity tracking, transaction order processing, click-stream analysis,
data cleansing, metrics generation, log filtering, indexing, social media analysis, and IoT device
data telemetry and metering. These applications are often spiky and process thousands of events
per second.

Using AWS Lambda and Amazon Kinesis, you can build a serverless stream process that
automatically scales without provisioning or managing servers. Data processed by AWS Lambda
can be stored in DynamoDB and analyzed later.

Characteristics

• You want to create a complete serverless architecture without managing any instance or server
for processing streaming data.

• You want to use the Amazon Kinesis Producer Library (KPL) to take care of data ingestion from a
data producer-perspective.

Reference architecture

Here we are presenting a scenario for common stream processing, which is a reference architecture
for analyzing social media data:

Streaming processing 18

Serverless Applications Lens AWS Well-Architected Framework

Figure 5: Reference architecture for stream processing

1. Data producers use the Amazon Kinesis Producer Library (KPL) to send social media streaming
data to a Kinesis stream. Amazon Kinesis Agent and custom data producers that leverage the
Kinesis API can also be used.

2. An Amazon Kinesis stream collects, processes, and analyzes real-time streaming data produced
by data producers. Data ingested into the stream can be processed by a consumer, which, in this
case, is Lambda.

3. AWS Lambda acts as a consumer of the stream that receives an array of the ingested data as
a single event or invocation. Further processing is carried out by the Lambda function. The
transformed data is then stored in a persistent storage, which, in this case, is DynamoDB.

4. Amazon DynamoDB provides a fast and flexible NoSQL database service including triggers that
can integrate with AWS Lambda to make such data available elsewhere.

5. Business users can use a reporting interface on top of DynamoDB to gather insights out of
social media trend data.

Configuration notes

• Consider reviewing the Streaming Data Solutions whitepaper for batch processing, analytics on
streams, and other useful patterns.

• Consider using Firehose over Lambda when ingested data needs to be continuously loaded into
Amazon S3, Amazon Redshift, or Amazon OpenSearch Service.

Configuration notes 19

https://d1.awsstatic.com/whitepapers/whitepaper-streaming-data-solutions-on-aws-with-amazon-kinesis.pdf

Serverless Applications Lens AWS Well-Architected Framework

• Consider using Managed Service for Apache Flink over Lambda when standard SQL or Apache
Flink could be used to query streaming data, and load only its results into Amazon S3, Amazon
Redshift, OpenSearch Service, or Kinesis Data Streams.

• Use Lambda maximum retry attempts, maximum record age, bisect batch on function error, and
on-failure destination error controls to build more resilient stream processing applications. In
addition consider using Lambda’s custom checkpoint feature, where you can have more precise
control over how you choose to process batches containing failed messages.

• Duplicated records may occur, and you must use both retries and idempotency within your
application for both consumers and producers.

• Follow best practices for AWS Lambda stream-based invocation since that covers the effects on
batch size, concurrency per shard, and monitoring stream processing in more detail.

• When not using KPL, make certain to take into account partial failures for non-atomic
operations, such as PutRecords, since the Kinesis API returns both successfully and
unsuccessfully processed records upon ingestion time.

• If you are using Kinesis Data Streams in provision capacity mode, follow best practices when re-
sharding Kinesis Data Streams to accommodate a higher ingestion rate. Concurrency for stream
processing is dictated by the number of shards and by the parallelization factor. Therefore,
adjust it according to your throughput requirements.

• Consider using filtering event sources for AWS Lambda functions. Event filtering helps reduce
requests made to your Lambda functions, may simplify code, and can reduce overall cost. At the
time of writing, event filtering is only natively supported in CloudFormation and not in AWS CDK.
If you are using AWS CDK you can still support Lambda Event filtering by using Escape Hatches
to extend some functionality not directly available in CDK constructs.

• Consider using tumbling windows for AWS Lambda functions when you need to continuously
calculate aggregates over a time period, such as 30-second averages. This feature allows you to
do these types of aggregates without implementing a temporary datastore or using complicated
streaming analytics frameworks.

Web application

Web applications often have demanding requirements to ensure a consistent, secure, and
reliable user experience. Workloads which need to scale to thousands or millions of users require
provisioning infrastructure for peak loads or sophisticated auto-scaling mechanisms, when
available. On-premises workloads require significant capital expenditures and long lead times for
capacity provisioning.

Web application 20

https://aws.amazon.com/blogs/compute/new-aws-lambda-controls-for-stream-processing-and-asynchronous-invocations/
https://aws.amazon.com/blogs/compute/new-aws-lambda-controls-for-stream-processing-and-asynchronous-invocations/
https://aws.amazon.com/blogs/compute/optimizing-batch-processing-with-custom-checkpoints-in-aws-lambda/
https://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-duplicates.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#stream-events
https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecords.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-record-processor-scaling.html
https://aws.amazon.com/blogs/compute/new-aws-lambda-scaling-controls-for-kinesis-and-dynamodb-event-sources/
https://aws.amazon.com/blogs/compute/filtering-event-sources-for-aws-lambda-functions/
https://docs.aws.amazon.com/cdk/v2/guide/cfn_layer.html
https://aws.amazon.com/blogs/compute/using-aws-lambda-for-streaming-analytics/

Serverless Applications Lens AWS Well-Architected Framework

By taking a serverless-first approach on AWS you free yourself from the burden of managing
servers, perfecting auto-scaling policies or paying for idle resources. Serverless workloads on AWS
can provide the same, or better, security, reliability or performance when compared with server-
based workloads.

Characteristics

• You want a scalable, resilient, and highly-available web application that can go global in minutes.

• You are seeking to reduce operational overhead by using managed services.

• You want to optimize your costs based on user demand and usage, instead of paying for idle
resources.

• You want to create a framework that is easy to set up and operate, and that you can extend with
limited impact later.

Reference architecture

Figure 6: Reference architecture for a web application

Characteristics 21

Serverless Applications Lens AWS Well-Architected Framework

1. Amazon Cognito user pools provides user management and identity provider features for your
web application. Tokens issued by Amazon Cognito are used to authenticate users when making
request to Amazon API Gateway.

2. Amazon CloudFront provides a better user experience by accelerating content delivery of static
assets and calls to your backend compute layer. CloudFront brings content closer to clients using
AWS’s global Points of Presence (PoPs). CloudFront can also cache API calls to reduce calls to
compute backends while also providing optimal network routing for non-cacheable API calls.

3. Amazon S3 hosts web application static assets such as HTML, CSS, JavaScript and images.
Content is securely served through CloudFront.

4. Amazon API Gateway serves as the secure HTTPS endpoint. Web applications make REST API
calls to a public HTTPS endpoint using either a custom domain name or a unique API Gateway-
provided domain.

5. An AWS Lambda function provides create, read, update, and delete (CRUD) operations on top of
DynamoDB for your web application.

6. Amazon DynamoDB can provide a NoSQL data store which elastically scales with your web
application.

Configuration notes

• Follow best practices for deploying your serverless web application frontend on AWS. More
information can be found in the operational excellence pillar.

• For single-page web applications you can use AWS Amplify Hosting to manage atomic
deployments, cache expiration and custom domains.

• Refer to the security pillar for recommendations on authentication and authorization.

• Refer to the RESTful Microservices scenario for recommendations on web application backend.

• For web applications that offer personalized services, you can use API Gateway usage plans.
You can use Amazon Cognito user pools to scope users to specific resources or functionality. For
example, a premium user may have higher throughput for API calls, access to additional APIs and
additional storage.

• Refer to the Mobile Backend scenario if your application uses search capabilities that are not
covered in this scenario.

Configuration notes 22

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/restful-microservices.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-usage-plans.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/mobile-backend.html

Serverless Applications Lens AWS Well-Architected Framework

Event-driven architectures

Event-driven architectures are becoming a popular and preferable way of building large distributed
microservice-based applications. This approach helps you build scalable, resilient, agile and cost-
effective solutions.

Using AWS serverless services to implement event-driven approach will allow you to build scalable,
fault tolerant applications. You can use messaging services like Amazon SQS for reliable and
durable communication between microservices. For fan out of the events you can use Amazon SNS
topics. If you need event filtering and routing you can utilize Amazon EventBridge.

Typical use cases for event-driven architectures:

• Communication between microservices

• Integration with third-party SaaS applications

• Cross-account and cross region data replication

• Parallel event processing, fanout

Reference architecture

Every event-driven architecture consists of three main parts:

• Event sources

• Event routers

• Event destinations

The most common event sources could be other AWS services, your microservices or applications,
or third-party SaaS offerings. For routing those events, you can create rules matching specific
parts of the event and provide destinations of where to send them. You describe the rules and
destinations with the help of Amazon EventBridge.

Event-driven architectures 23

Serverless Applications Lens AWS Well-Architected Framework

Figure 7: Reference architecture for EventBridge deployment

When you are building event-driven microservices applications, it's important to agree on the
data contract for the event producers and consumers. This will help to validate the events and
automatically generate bindings for the used programming language. Amazon EventBridge allows
you to use schemas in OpenAPI 3 and JSONSchema Draft4 formats.

As all the event-driven applications are distributed it is important to use tracing to understand and
observe service dependencies and diagnose any bottlenecks and issues in the application. To use
tracing, you can enable integration between EventBridge and AWS X-Ray.

Configuration notes

EventBridge can introduce additional latency to the application. If latency is a concern, consider
using Amazon SNS and Amazon SQS for event filtering and routing.

Configuration notes 24

Serverless Applications Lens AWS Well-Architected Framework

The pillars of the Well-Architected Framework

This section describes each of the pillars, and includes definitions, best practices, questions,
considerations, and key AWS services that are relevant when architecting solutions for serverless
applications.

For brevity, we have only selected the questions from the Well-Architected Framework that are
specific to serverless workloads. Questions that have not been included in this document should
still be considered when designing your architecture. We recommend that you read the AWS Well-
Architected Framework whitepaper.

Pillars:

• Operational excellence pillar

• Security pillar

• Reliability pillar

• Performance efficiency pillar

• Cost optimization pillar

• Sustainability pillar

Operational excellence pillar

The operational excellence pillar includes the ability to run and monitor systems to deliver business
value and to continually improve supporting processes and procedures.

There are four best practices for operational excellence in the cloud:

• Organization

• Prepare

• Operate

• Evolve

The Well-Architected Framework Operational Excellence pillar covers many details and practices
for operational health. There are specific areas where you can look to drive operational excellence
within serverless applications.

Operational excellence 25

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

Serverless Applications Lens AWS Well-Architected Framework

Organization

There are no operational practices unique to serverless applications for this best practice.

Prepare

There are no operational practices unique to serverless applications for this best practice.

Operate

OPS 1: How do you understand the health of your serverless application?

See the AWS Well-Architected Framework whitepaper for operational excellence best practices in
the Operate section that apply to serverless applications.

Topics

• Metrics and alerts

• Centralized and structured logging

• Distributed tracing

• Prototyping

• Configuration

• Testing

• Deploying

Metrics and alerts

It’s important to understand Amazon CloudWatch metrics and dimensions for every AWS service
you intend to use so that you can put a plan in a place to assess its behavior and add custom
metrics where you see fit.

Amazon CloudWatch provides automated cross service and per service dashboards to help you
understand key metrics for the AWS services that you use. Use Lambda Powertools for supported
languages to create and capture custom CloudWatch metrics. When Lambda Powertools is not

Organization 26

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/cost-opti.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Automatic_Dashboards_Cross_Service.html

Serverless Applications Lens AWS Well-Architected Framework

available in your programming language of choice, use Amazon CloudWatch Embedded Metric
Format (EMF) libraries. EMF logs emitted by Lambda are processed asynchronously by CloudWatch
and do not impact the performance of your Serverless application.

The following guidelines can be used whether you are creating a dashboard or looking to
formulate a plan for new and existing applications when it comes to metrics:

• Business metrics

• Business KPIs that will measure your application performance against business goals and are
important to know when something is critically affecting your overall business, revenue-wise
or not.

• Examples: Orders placed, debit or credit card operations, flights purchased

• Customer experience metrics

• Customer experience data dictates not only the overall effectiveness of its UI and UX, but also
whether changes or anomalies are affecting customer experience in a particular section of your
application. Often times, these are measured in percentiles to prevent outliers when trying to
understand the impact over time and how it’s spread across your customer base.

• Examples: Perceived latency, time it takes to add an item to a basket or to check out, page load
times

• System metrics

• Vendor and application metrics are important to understand the health of your system,
uncover root causes from the metrics above, and gain insight into customer experience.

• Examples: Percentage of HTTP errors and successes, memory utilization, function duration,
error, or throttling, queue length, stream records length, integration latency

• Operational metrics

• Operational metrics are equally important to understand sustainability and maintenance of a
given system. These metrics are also crucial to pinpoint how stability progressed or degraded
over time.

• Examples: Number of tickets (successful and unsuccessful resolutions), number of times people
on-call were paged, availability, CI/CD pipeline stats (successful and failed deployments,
feedback time, cycle and lead time)

CloudWatch Alarms should be configured at both individual and aggregated levels. An individual-
level example is alarming on the Duration metric from Lambda or IntegrationLatency from API
Gateway when invoked through API, since different parts of the application likely have different

Operate 27

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Generation.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Generation.html

Serverless Applications Lens AWS Well-Architected Framework

profiles. In this instance, you can quickly identify a bad deployment that makes a function execute
for much longer than usual.

Aggregate-level examples include alarming, but are not limited to the following metrics:

• AWS Lambda: Duration, Errors, Throttles, and ConcurrentExecutions. For
stream-based invocations, alert on IteratorAge. For asynchronous invocations,
alert on DeadLetterErrors. When provisioned concurrency is enabled, use
ProvisionedConcurrencySpilloverInvocations.

• Amazon API Gateway: IntegrationLatency, Latency, 5XXError. For WebSocket API, use
ClientError, IntegrationError and ExecutionError.

• Application Load Balancer: HTTPCode_ELB_5XX_Count, RejectedConnectionCount,
HTTPCode_Target_5XX_Count, UnHealthyHostCount, LambdaInternalError,
LambdaUserError.

• AWS AppSync: 5XX and Latency.

• Amazon SQS: ApproximateAgeOfOldestMessage.

• Amazon Kinesis Data Streams: ReadProvisionedThroughputExceeded,
WriteProvisionedThroughputExceeded, GetRecords.,IteratorAgeMilliseconds,
PutRecord.Success, PutRecords.Success (if using Kinesis Producer Library) and
GetRecords.Success.

• Amazon SNS: NumberOfNotificationsFailed, NumberOfNotificationsFilteredOut-
InvalidAttributes.

• Amazon SES: Rejects, Bounces, Complaints, RenderingFailures.

• AWS Step Functions: ExecutionThrottled, ExecutionsFailed, ExecutionsTimedOut,
ActivitiesTimedOut, LambdaFunctionsTimedOut.

• Amazon EventBridge: FailedInvocations, ThrottledRules.

• Amazon S3: 5xxErrors, TotalRequestLatency.

• Amazon DynamoDB: ReadThrottleEvents, WriteThrottleEvents, SystemErrors,
ThrottledRequests, UserErrors.

Centralized and structured logging

Standardize your application logging to emit operational information about transactions,
correlation identifiers, request identifiers across components, and business outcomes using

Operate 28

Serverless Applications Lens AWS Well-Architected Framework

structured logging. Unstructured logging using print or console.log statements is unfavorable
as they are difficult to interpret and analyze programmatically, hard to add contextual information
to, and inconsistent. Structured logging libraries are advantageous because of configurable logging
levels, API consistency and common output formats, among other things. Use logging utilities from
Lambda Powertools to further simplify and enhance application logging.

JSON is a ubiquitous format which is often used as an output format and supported across logging
services. CloudWatch Logs Insights automatically discovers values in JSON which makes querying
and filtering simple. Judicious event logging from your application provides the ability to answer
arbitrary questions about the state of your workload such as user behavior, state of your system
and anomalous events, among other things. CloudWatch Logs Insights also facilitates finding
Lambda performance data from default log events.

Figure 8: CloudWatch Logs Insights query to find statistics on cold starts

Operate 29

Serverless Applications Lens AWS Well-Architected Framework

Consistently logging of correlation IDs and passing them to downstream systems allows tracing
and tracking of individual requests or invocations. As your system grows and more logging is
ingested, consider using appropriate logging levels and a sampling mechanism to log a small
percentage of logs in DEBUG mode. Log level configuration should be passed to downstream
systems for consistent tracing in a microservice architecture.

The Lambda Logs API can be used to send Lambda logs to locations other than CloudWatch. A
number of partner solutions provide Lambda layers which use the Lambda Logs API and make
integration with their systems easier. The recommendations and guidance here applies uniformly
regardless of log destination.

The following is an example of a structured logging using JSON as the output:

{
 "timestamp":"2019-11-26 18:17:33,774",
 "level":"INFO",
 "location":"cancel.cancel_booking:45",
 "service":"booking",
 "lambda_function_name":"test",
 "lambda_function_memory_size":"128",
 "lambda_function_arn":"arn:aws:lambda:eu-west-1:12345678910:function:test",
 "lambda_request_id":"52fdfc07-2182-154f-163f-5f0f9a621d72",
 "cold_start": "true",
 "message": {
 "operation":"update_item",
 "details:": {
 "Attributes": {
 "status":"CANCELLED"
 },
 "ResponseMetadata": {
 "RequestId":"G7S3SCFDEMEINPG6AOC6CL5IDNVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "HTTPStatusCode":200,
 "HTTPHeaders": {
 "server":"Server",
 "date":"Thu, 26 Nov 2019 18:17:33 GMT",
 "content-type":"application/x-amz-json-1.0",
 "content-length":"43",
 "connection":"keep-alive",
 "x-amzn-
requestid":"G7S3SCFDEMEINPG6AOC6CL5IDNVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "x-amz-crc32":"1848747586"
 },

Operate 30

Serverless Applications Lens AWS Well-Architected Framework

 "RetryAttempts":0
 }
 }
 }
}

Distributed tracing

Similar to non-serverless applications, anomalies can occur at larger scale in distributed systems.
Due to the nature of serverless architectures, it’s fundamental to have distributed tracing.

Making changes to your serverless application entails many of the same principles of deployment,
change, and release management used in traditional workloads. However, there are subtle changes
in how you use existing tools to accomplish these principles.

Active tracing with AWS X-Ray should be enabled to provide distributed tracing capabilities as well
as to enable visual service maps for faster troubleshooting. X-Ray helps you identify performance
degradation and quickly understand anomalies, including latency distributions.

Figure 9: AWS X-Ray Service Map visualizing a workload using AWS Lambda, Amazon DynamoDB and
Amazon EventBridge

Operate 31

Serverless Applications Lens AWS Well-Architected Framework

Service Maps are helpful to understand integration points that need attention and resiliency
practices. For integration calls, retries, backoffs, and possibly circuit breakers are necessary to
prevent faults from propagating to downstream services.

Another example is networking anomalies. You should not rely on default timeouts and retry
settings. Instead, tune them to fail fast if a socket read/write timeout happens where the default
can be seconds, if not minutes, in certain clients.

X-Ray also provides two powerful features that can improve the efficiency on identifying anomalies
within applications: annotations and subsegments.

Subsegments are helpful to understand how application logic is constructed and what external
dependencies it has to talk to. Annotations are key-value pairs with string, number, or Boolean
values that are automatically indexed by AWS X-Ray.

Combined, subsegments and annotations can help you quickly identify performance statistics
on specific operations and business transactions. Examples are a database query duration, or the
durations of a supporting function which parses an image.

Figure 10: AWS X-Ray Trace with subsegments beginning with ##

Operate 32

Serverless Applications Lens AWS Well-Architected Framework

Prototyping

OPS 2: How do you approach application lifecycle management?

Use infrastructure as code to create temporary environments for new features that you want
to prototype, and tear them down as you complete them. You can use dedicated accounts per
team or per developer depending, on the size of the team and the level of automation within the
organization.

Temporary environments allow for higher fidelity when working with managed services, and
increase levels of control to help you gain confidence that your workload integrates and operates
as intended.

Configuration

For configuration management, use environment variables for infrequent changes, such as logging
level and database connection strings. Use AWS Systems Manager Parameter Store (SSM) or AWS
AppConfig for dynamic configuration, such as feature toggles. Store sensitive data using AWS
Secrets Manager. In Lambda functions, lookup values by reference from these external systems
(SSM, AWS AppConfig, Secrets Manager) in the function’s global scope outside the handler to
reduce API calls. You can achieve the same goal of reducing API calls to configuration and secrets
stores using Lambda extensions which provide more fine-grained controls and the ability to re-
fetch values. Lambda extensions are powerful and flexible yet bring additional considerations
and challenges including integrations with unit tests and consistent delivery across functions and
runtimes. Lambda Powertools offer similar functionality to retrieve values from various providers
including SSM, AWS AppConfig, Secrets Manager, DynamoDB or custom stores.

Testing

Testing is commonly done through unit, integration, and acceptance tests. Developing robust
testing strategies allows you to emulate your serverless application under different loads and
conditions. Unit tests shouldn’t be different from non-serverless applications and, therefore, can
be designed to run locally without any changes. Integration tests shouldn’t mock services you can’t
control, since they might change and provide unexpected results. These tests are better performed
when using real services because they can provide the same environment a serverless application
would use when processing requests in production. Acceptance or end-to-end tests should be

Operate 33

https://aws.amazon.com/systems-manager/

Serverless Applications Lens AWS Well-Architected Framework

performed without any changes because the primary goal is to simulate the end users’ actions
through the available external interface. Therefore, there is no unique recommendation to be
aware of here. In general, Lambda and third-party tools that are available in the AWS Marketplace
can be used as a test harness in the context of performance testing. Here are some considerations
during performance testing to be aware of:

Metrics such as invoked maximum memory used and init duration are available in CloudWatch
Metrics. For more information, see the performance pillar section.

If your Lambda function is attached to Amazon Virtual Private Cloud (Amazon VPC), pay attention
to the available IP address space inside your subnet.

Creating modularized code as separate functions outside of the handler enables more unit-testable
functions.

Establishing externalized connection code (such as a connection pool to a relational database)
referenced in the Lambda function’s static constructor or initialization code (global scope, outside
the handler) will ensure that external connection thresholds are not reached if the Lambda
execution environment is reused.

Use a DynamoDB on-demand table unless your performance tests exceed current quotas in your
account.

Take into account any other service quotas that might be used within your serverless application
under performance testing.

Deploying

Use infrastructure as code and version control to enable tracking of changes and releases. Isolate
development and production stages in separate environments. This reduces errors caused by
manual processes and helps increase levels of control to help you gain confidence that your
workload operates as intended.

Use a serverless framework to model, prototype, build, package, and deploy serverless
applications, such as AWS Serverless Application Model or Serverless Framework. With
infrastructure as code (IaC) and a framework, you can add parameters to your serverless
application and its dependencies to ease deployment across isolated stages and across AWS
accounts.

Infrastructure frameworks like AWS Cloud Development Kit (AWS CDK) and Terraform play
important roles when managing AWS resources. Serverless-specific tools like AWS SAM and the

Operate 34

Serverless Applications Lens AWS Well-Architected Framework

Serverless Framework bring unique features to speed day-to-day development and are purpose-
built to minimize the code, test, and deploy loop.

Create separate stages or environments using CI/CD pipelines (for example, Gamma, Dev, and
Prod). A CI/CD pipeline can create the following resources in a beta AWS account: OrderAPIBeta,
OrderServiceBeta, OrderStateMachineBeta, OrderBucketBeta, and OrderTableBeta.
Similar, yet separate, resources can be created across different environments which might reside in
separate AWS accounts.

Operate 35

Serverless Applications Lens AWS Well-Architected Framework

Figure 11: CI/CD pipeline for multiple accounts

Operate 36

Serverless Applications Lens AWS Well-Architected Framework

When deploying to production, favor safe deployments over all-at-once systems as new changes
will gradually shift over time towards the end user in a canary or linear deployment. Use
CodeDeploy hooks (BeforeAllowTraffic, AfterAllowTraffic) and alarms to gain more
control over deployment validation, rollback, and any customization you may need for your
application.

You can also combine the use of synthetic traffic, custom metrics, and alerts as part of a rollout
deployment. These help you proactively detect errors with new changes that otherwise would have
impacted your customer experience.

Figure 12: AWS CodeDeploy Lambda deployment and hooks

Evolve

There are no operational practices unique to serverless applications for this best practice.

Key AWS services

Key AWS services for operational excellence include AWS Systems Manager Parameter Store,
AWS Serverless Application Model, CloudWatch, AWS CodePipeline, AWS X-Ray, Lambda, and API
Gateway.

Resources

Refer to the following resources to learn more about our best practices for operational excellence.

Evolve 37

Serverless Applications Lens AWS Well-Architected Framework

Documentation and blogs

• AWS SAM

• API Gateway stage variables

• Lambda environment variables

• Powertools for AWS Lambda (Python)

• Powertools for AWS Lambda (TypeScript)

• Powertools for AWS Lambda (Java)

• Powertools for AWS Lambda (.NET)

• CloudWatch Embedded Metric Format library for Python

• CloudWatch Embedded Metric Format library for Node.js

• CloudWatch Embedded Metric Format library for Java

• CloudWatch Embedded Metric Format library for .NET

• Operating Lambda: Logging and custom metrics

• Operating Lambda: Using CloudWatch Logs Insights

• Common CloudWatch Logs Insights queries

• Using AWS Lambda extensions to send logs to custom destinations

• Building well-architected serverless applications blog series

• X-Ray latency distribution

• Troubleshooting Lambda-based applications with X-Ray

• System Manager (SSM) Parameter Store

• AWS AppConfig integration with Lambda Extensions

• AWS Secrets Manager

• Cache secrets using AWS Lambda extensions

• Serverless Application example using CI/CD

• CI/CD for Serverless Applications - Workshop

• Serverless CI/CD for the Enterprise on AWS - Reference Deployment

• Using GitHub Actions to deploy serverless applications

• Serverless Application example automating Alerts and Dashboard

• AWS service quotas

Resources 38

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/stage-variables.html
https://docs.aws.amazon.com/lambda/latest/dg/env_variables.html
https://docs.powertools.aws.dev/lambda/python/latest/
https://docs.powertools.aws.dev/lambda/typescript/latest/
https://docs.powertools.aws.dev/lambda/java/
https://docs.powertools.aws.dev/lambda/dotnet/
https://github.com/awslabs/aws-embedded-metrics-python
https://github.com/awslabs/aws-embedded-metrics-node/
https://github.com/awslabs/aws-embedded-metrics-java
https://github.com/awslabs/aws-embedded-metrics-dotnet
https://aws.amazon.com/blogs/compute/operating-lambda-logging-and-custom-metrics/
https://aws.amazon.com/blogs/compute/operating-lambda-using-cloudwatch-logs-insights/
https://github.com/aws-samples/cloudwatch-logs-insights-queries
https://aws.amazon.com/blogs/compute/using-aws-lambda-extensions-to-send-logs-to-custom-destinations/
https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-introduction/
https://aws.amazon.com/blogs/aws/latency-distribution-graph-in-aws-x-ray/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-integration-lambda-extensions.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/cache-secrets-using-aws-lambda-extensions.html
https://github.com/awslabs/realworld-serverless-application/wiki/CI-CD
https://cicd.serverlessworkshops.io/
https://aws.amazon.com/quickstart/architecture/serverless-cicd-for-enterprise/
https://aws.amazon.com/blogs/compute/using-github-actions-to-deploy-serverless-applications/
https://github.com/awslabs/realworld-serverless-application/wiki/Serverless-Operations
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Serverless Applications Lens AWS Well-Architected Framework

• Stackery: Multi-Account Best Practices

Whitepapers

• Practicing Continuous Integration/Continuous Delivery on AWS

Third-party tools

• Serverless Developer Tools page including third-party frameworks/tools

• Stelligent: CodePipeline Dashboard for operational metrics

Security pillar

The security pillar includes the ability to protect information, systems, and assets while delivering
business value through risk assessments and mitigation strategies.

There are five best practice areas for security in the cloud:

• Identity and access management

• Detective controls

• Infrastructure protection

• Data protection

• Incident response

Serverless addresses some of today’s biggest security concerns because it removes infrastructure
management tasks such as operating system patching and updating binaries. Although the attack
surface is reduced compared to non-serverless architectures, the Open Web Application Security
Project (OWASP) and application security best practices still apply.

The questions in this section are designed to help you address specific ways an attacker could try
to gain access to or exploit misconfigured permissions, which could lead to abuse. The practices
described in this section strongly influence the security of your entire cloud platform and so they
should be validated carefully and reviewed frequently.

The Incident response category will not be described in this document because the practices from
the AWS Well-Architected Framework still apply.

Security 39

https://www.stackery.io/blog/multi-account-best-practices/
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/welcome.html
https://aws.amazon.com/serverless/developer-tools/
https://stelligent.com/2017/11/16/codepipeline-dashboard/

Serverless Applications Lens AWS Well-Architected Framework

Identity and access management

SEC 1: How do you control access to your serverless API?

APIs are often targeted by attackers because of the operations that they can perform and the
valuable data they can obtain. There are various security best practices to defend against these
attacks.

From an authentication and authorization perspective, there are currently five mechanisms to
authorize an API call within API Gateway:

• AWS_IAM authorization

• Amazon Cognito user pools

• API Gateway Lambda authorizer

• Resource policies

• Mutual TLS authentication

It is important to understand if, and how, any of these mechanisms are implemented. For
consumers who are currently located within your AWS environment or have the means to retrieve
AWS Identity and Access Management (IAM) temporary credentials to access your environment, you
can use AWS_IAM authorization and add least-privileged permissions to the respective IAM role to
securely invoke your API.

The following diagram illustrates using AWS_IAM authorization in this context:

Identity and access management 40

Serverless Applications Lens AWS Well-Architected Framework

Figure 13: AWS_IAM authorization

To add granularity into your IAM authorization you can implement tag-based access control, which
allows for better API-level control on the resources and actions.

If you have an existing Identity Provider (IdP), you can use an API Gateway Lambda authorizer to
invoke a Lambda function to authenticate or validate a given user against your IdP. You can use a
Lambda authorizer for custom validation logic based on identity metadata.

A Lambda authorizer can send additional information derived from a bearer token or request
context values to your backend service. For example, the authorizer can return a map containing
user IDs, user names, and scope. By using Lambda authorizers, your backend does not need to map
authorization tokens to user-centric data, allowing you to limit the exposure of such information to
just the authorization function.

Identity and access management 41

Serverless Applications Lens AWS Well-Architected Framework

Figure 14: API Gateway Lambda authorizer

If you don’t have an IdP, you can leverage Amazon Cognito user pools to either provide built-in user
management or integrate with external identity providers, such as Facebook, Twitter, Google+, and
Amazon.

This is commonly seen in the mobile backend scenario, where users authenticate by using existing
accounts in social media platforms to register or sign in with their email address or username. This
approach also provides granular authorization through OAuth Scopes.

Identity and access management 42

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html

Serverless Applications Lens AWS Well-Architected Framework

Figure 15: Amazon Cognito user pools

API Gateway API Keys is not a security mechanism and should not be used for authorization unless
it’s a public API. It should be used primarily to track a consumer’s usage across your API and could
be used in addition to the authorizers previously mentioned in this section.

When using Lambda authorizers, we strictly advise against passing credentials or any sort of
sensitive data through query string parameters or headers, otherwise you may open your system
up to abuse.

Amazon API Gateway resource policies are JSON policy documents that can be attached to an API
to control whether a specified AWS Principal can invoke the API.

This mechanism allows you to restrict API invocations by:

• Users from a specified AWS account, or any AWS IAM identity.

• Specified source IP address ranges or CIDR blocks.

• Specified virtual private clouds (VPCs) or VPC endpoints (in any account).

With resource policies, you can restrict common scenarios, such as only allowing requests coming
from known clients with a specific IP range or from another AWS account. If you plan to restrict

Identity and access management 43

Serverless Applications Lens AWS Well-Architected Framework

requests coming from private IP addresses, it’s recommended to use API Gateway private endpoints
instead.

Figure 16: Amazon API Gateway Resource Policy based on IP CIDR

With private endpoints, API Gateway will restrict access to services and resources inside your
VPC, or those connected through Direct Connect to your own data centers. To control access to
the VPC Endpoint you can add VPC endpoint policies so that you can grant or deny the access
to a particular APIs for the traffic going in your internal network. Combining private endpoints,
endpoint policies, and resource policies, an API can be limited to specific resource invocations
within a specific private IP range from a specific VPC endpoint. This combination is mostly used
on internal microservices where they may be in the same account, or another account. If you are
using API Gateway as a main endpoint to your backend HTTP(s) services you can enable client-
side SSL certificates so that the backend services can authenticate and verify requests from API
Gateway. When it comes to large deployments and multiple AWS accounts, organizations can use
cross-account Lambda authorizers in API Gateway to reduce maintenance and centralize security
practices. For example, API Gateway has the ability to use Amazon Cognito user pools in a separate
account. Lambda authorizers can also be created and managed in a separate account and then re-
used across multiple APIs managed by API Gateway. Both scenarios are common for deployments
with multiple microservices that need to standardize authorization practices across APIs.

Identity and access management 44

Serverless Applications Lens AWS Well-Architected Framework

Figure 17: API Gateway cross-account authorizers

For cases like Internet of Things (IoT) or application-to-application authentication, you can
configure a mutual TLS (mTLS) authentication. In this scenario, the client should present its
certificate to verify its identity when accessing API Gateway endpoint. You can also combine mTLS
with Lambda authorizers for a more granular authorization mechanism.

You can use AWS WAF to add protection of your APIs on the application network layer. You can
use managed rule groups to protect your APIs against well known attacks like SQL injection and
cross-site scripting (XSS), or if you have additional requirements you can also create your own rule
groups.

SEC 2: How are you managing the security boundaries of your serverless application?

With Lambda functions, it’s recommended that you follow least-privileged access and only allow
the access needed to perform a given operation. Attaching a role with more permissions than
necessary can open up your systems for abuse.

Identity and access management 45

Serverless Applications Lens AWS Well-Architected Framework

With the security context, having smaller functions that perform scoped activities contribute to a
more well-architected serverless application. Regarding IAM roles, sharing an IAM role within more
than one Lambda function will likely violate least-privileged access.

Detective controls

Log management is an important part of a well-architected design for reasons ranging from
security and forensics to regulatory or legal requirements.

It is equally important that you track vulnerabilities in application dependencies because attackers
can exploit known vulnerabilities found in dependencies regardless of which programming
language is used.

For application dependency vulnerability scans, there are several commercial and open-source
solutions, such as OWASP Dependency Check, that can integrate within your CI/CD pipeline. It’s
important to include all your dependencies, including AWS SDKs, as part of your version control
software repository.

Infrastructure protection

For scenarios where your serverless application needs to interact with other components deployed
in a virtual private cloud (VPC) or applications residing on-premises, it’s important to ensure that
networking boundaries are considered.

Lambda functions can be configured to access resources within a VPC. Control traffic at all layers
as described in the AWS Well-Architected Framework. For workloads that require outbound traffic
filtering due to compliance reasons, proxies can be used in the same manner that they are applied
in non-serverless architectures.

Enforcing networking boundaries solely at the application code level and giving instructions as to
what resources one could access is not recommended due to separation of concerns.

For service-to-service communication, favor dynamic authentication, such as temporary credentials
with AWS IAM over static keys. API Gateway and AWS AppSync both support IAM Authorization
that makes it ideal to protect communication to and from AWS services.

Data protection

Consider enabling API Gateway Access Logs and selectively choose only what you need, since the
logs might contain sensitive data, depending on your serverless application design. For this reason,
we recommend that you encrypt any sensitive data traversing your serverless application.

Detective controls 46

https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-logging.html

Serverless Applications Lens AWS Well-Architected Framework

API Gateway and AWS AppSync employ TLS across all communications, clients, and integrations.
Although HTTP payloads are encrypted in-transit, request path and query strings that are part of
a URL might not be. Therefore, sensitive data can be accidentally exposed via CloudWatch Logs if
sent to standard output.

Additionally, malformed or intercepted input can be used as an attack vector—either to gain access
to a system or cause a malfunction. Sensitive data should be protected at all times in all layers
possible, as discussed in detail in the AWS Well-Architected Framework. The recommendations in
that whitepaper still apply here.

With regard to API Gateway, sensitive data should be either encrypted at the client-side before
making its way as part of an HTTP request, or sent as a payload as part of an HTTP POST request.
That also includes encrypting any headers that might contain sensitive data prior to making a given
request.

Concerning Lambda functions or any integrations that API Gateway may be configured with,
sensitive data should be encrypted before any processing or data manipulation. This will prevent
data leakage if such data gets exposed in persistent storage or by standard output that is streamed
and persisted by CloudWatch Logs.

In the scenarios described earlier in this document, Lambda functions would persist encrypted data
in either DynamoDB, OpenSearch Service, or Amazon S3 along with encryption at rest. We strictly
advise against sending, logging, and storing unencrypted sensitive data, either as part of HTTP
request path or query strings, or in the standard output of a Lambda function.

Enabling logging in API Gateway where sensitive data is unencrypted is also discouraged. As
mentioned in the Detective controls subsection, you should consult your compliance team before
enabling API Gateway logging in such cases.

SEC 3: How do you implement application security in your workload?

Review security awareness documents authored by AWS Security bulletins and industry threat
intelligence as covered in the AWS Well-Architected Framework. OWASP guidelines for application
security still apply.

Validate and sanitize inbound events, and perform a security code review as you normally would
for non-serverless applications. For API Gateway, set up basic request validation as a first step to

Data protection 47

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/detective-controls.html

Serverless Applications Lens AWS Well-Architected Framework

ensure that the request adheres to the configured JSON-schema request model as well as any
required parameters in the URI, query string, or headers. Application-specific deep validation
should be implemented, whether that is as a separate Lambda function, library, framework, or
service.

To add protection for your code executing in Lambda runtime against any unintended and
unauthorised changes while it is moving in your CI/CD pipelines, you can add code signature.
Signing the code will confirm that it comes from a trusted source and is unaltered. AWS Signer
integrates with AWS Lambda to sign the code and enforce that only trusted code is deployed into
your runtime.

Store your secrets, such as database passwords or API keys, in a secrets manager that allows
for rotation, secure and audited access. Secrets Manager allows fine-grained policies for secrets
including auditing.

Incident response

There are no security practices unique to serverless applications for this best practice.

Key AWS services

Key AWS services for security are Amazon Cognito, IAM, Lambda, CloudWatch Logs, AWS
CloudTrail, AWS CodePipeline, Amazon S3, OpenSearch Service, DynamoDB, and Amazon Virtual
Private Cloud (Amazon VPC).

Resources

Refer to the following resources to learn more about our best practices for security.

Documentation and blogs

• AWS Lambda permissions

• API Gateway Request Validation

• API Gateway Lambda Authorizers

• Building fine-grained authorization using Amazon Cognito, API Gateway, and IAM

• Configuring VPC Access for AWS Lambda

• Using AWS Secrets Manager with Lambda

Incident response 48

https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-method-request-validation.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://aws.amazon.com/blogs/security/building-fine-grained-authorization-using-amazon-cognito-api-gateway-and-iam/
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html
https://aws.amazon.com/blogs/security/how-to-securely-provide-database-credentials-to-lambda-functions-by-using-aws-secrets-manager/

Serverless Applications Lens AWS Well-Architected Framework

• Caching data and configuration settings with AWS Lambda extensions

• Auditing Secrets with AWS Secrets Manager

• OWASP Input validation cheat sheet

• AWS Serverless Security Workshop

• Code signing for Lambda

Whitepapers

• Security Overview of AWS Lambda

• OWASP Top Ten

• OWASP Secure Coding Best Practices

• Snyk – Commercial Vulnerability DB and Dependency Check

• Using Hashicorp Vault with Lambda & API Gateway

Third-party tools

• OWASP Vulnerability Dependency Check

Reliability pillar

The reliability pillar includes the ability of a system to recover from infrastructure or service
disruptions, dynamically acquire computing resources to meet demand, and mitigate disruptions
such as misconfigurations or transient network issues.

There are three best practice areas for reliability in the cloud:

• Foundations

• Change management

• Failure management

To achieve reliability, a system must have a well-planned foundation and monitoring in place,
with mechanisms for handling changes in demand, requirements, or potentially defending an
unauthorized denial of service attack. The system should be designed to detect failure and, ideally,
automatically heal itself.

Reliability 49

https://aws.amazon.com/blogs/compute/caching-data-and-configuration-settings-with-aws-lambda-extensions/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/monitoring.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://github.com/aws-samples/aws-serverless-security-workshop
https://aws.amazon.com/blogs/aws/new-code-signing-a-trust-and-integrity-control-for-aws-lambda/
https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/security-overview-aws-lambda.html
https://owasp.org/www-project-top-ten/
https://owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://snyk.io/
https://learn.hashicorp.com/terraform/aws/lambda-api-gateway
https://owasp.org/index.php/OWASP_Dependency_Check

Serverless Applications Lens AWS Well-Architected Framework

Foundations

REL 1: How are you regulating inbound request rates?

Throttling

In a microservices architecture, API consumers may be in separate teams or even outside the
organization. This creates a vulnerability due to unknown access patterns, as well as the risk
of consumer credentials being compromised. The service API can potentially be affected if the
number of requests exceeds what the processing logic or backend can handle.

Additionally, events that trigger new transactions, such as an update in a database row or
new objects being added to an S3 bucket as part of the API, will trigger additional executions
throughout a Serverless application. Throttling should be enabled at the API level to enforce
access patterns established by a service contract. Defining a request access pattern strategy is
fundamental to establishing how a consumer should use a service, whether that is at the resource
or global level.

Returning the appropriate HTTP status codes within your API (such as a 429 for throttling) helps
consumers plan for throttled access by implementing back-off and retries accordingly.

For more granular throttling and metering usage, issuing API keys to consumers with usage plans
in addition to global throttling enables API Gateway to enforce quota and access patterns in
unexpected behavior. API keys also simplify the process for administrators to cut off access if an
individual consumer is making suspicious requests.

A common way to capture API keys is through a developer portal. This provides you, as the service
provider, with additional metadata associated with the consumers and requests. You may capture
the application, contact information, and business area or purpose, and store this data in a durable
data store, such as DynamoDB. This gives you additional validation of your consumers and provides
traceability of logging with identities, so that you can contact consumers for breaking change
upgrades or issues.

As discussed in the security pillar, API keys are not a security mechanism to authorize requests, and,
therefore, should only be used with one of the available authorization options available within API
Gateway.

Foundations 50

Serverless Applications Lens AWS Well-Architected Framework

Concurrency controls are sometimes necessary to protect specific workloads against service
failure as they may not scale as rapidly as Lambda. Concurrency controls enable you to control
the allocation of how many concurrent invocations of a particular Lambda function are set at the
individual Lambda function level.

Lambda invocations that exceed the concurrency set of an individual function will be throttled by
the AWS Lambda service and the result will vary depending on their event source. Synchronous
invocations return an HTTP 429 error, Asynchronous invocations will be queued and retried, while
Stream-based event sources will retry up to their record expiration time.

Figure 18: AWS Lambda concurrency controls

Controlling concurrency is particularly useful for the following scenarios:

• Sensitive backend or integrated systems that may have scaling limitations: In situations when
your Lambda functions call some legacy or sensitive backend, they may put too much pressure
on the downstream services since functions may scale too fast and produce many concurrent
requests. It is a good idea to limit the concurrency of your functions so that you can control the
amount of requests they produce.

• Protecting against recursive invocations: You may introduce a recursive call of your Lambda
functions accidentally. One of the most common cases is when using S3 - Lambda - S3 pattern

Foundations 51

https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

Serverless Applications Lens AWS Well-Architected Framework

reading, and then writing into the same S3 bucket. Limiting concurrency will let you decrease the
implications of such recursive calls and help you detect and fix them earlier.

• Database Connection Pool restrictions, such as a relational database, which may impose
concurrent limits: Many RDBMS have restrictions on the number of opened connections. Limiting
concurrency of the Lambda functions will allow you to limit the number of opened connections.
If using Amazon RDS databases consider using Amazon RDS Proxy as a connection pooling
mechanism.

• Critical Path Services: Ensure that high priority Lambda functions, such as authorization, do not
run out of concurrency due to runaway invocations from low priority functions (for example,
backend asynchronous processes). Since Lambda concurrency quotas are applied per account
and Region, it's possible for one function to consume concurrency such that other functions are
throttled.

• Ability to disable Lambda function (concurrency = 0) in the event of anomalies: In case of
failures, setting concurrency to zero will help you to immediately stop new invocations of your
Lambda functions.

• Limiting desired execution concurrency to protect against Distributed Denial of Service (DDoS)
attacks: Usually the protection against DDoS is done at the API Gateway level, but it is also a
good idea to introduce an additional guard rail on the function level.

Concurrency controls for Lambda functions also limit its ability to scale beyond the concurrency
set and draws from your account reserved concurrency pool. For asynchronous processing, use
Kinesis Data Streams to effectively control concurrency with a single shard as opposed to Lambda
function concurrency control. This gives you the flexibility to increase the number of shards or the
parallelization factor to increase concurrency of your Lambda function.

Foundations 52

https://aws.amazon.com/rds/proxy/

Serverless Applications Lens AWS Well-Architected Framework

Figure 19: Concurrency controls for synchronous and asynchronous requests

REL 2: How are you building resiliency into your serverless application?

Best practices

• Manage transaction, partial, and intermittent failures: Transaction failures might occur when
components are under high load. Partial failures can occur during batch processing, while
intermittent failures might occur due to network or other transient issues.

• Manage duplicate and unwanted events: Duplicate events can occur when a request is retried,
multiple consumers process the same message from a queue or stream, or when a request is
sent twice at different time intervals with the same parameters. Design your applications to
process multiple identical requests to have the same effect as making a single request. Events
not adhering to your schema should be discarded.

• Orchestrate long-running transactions: Long-running transactions can be processed by one or
multiple components. Favor state machines for long-running transaction instead of handling

Foundations 53

Serverless Applications Lens AWS Well-Architected Framework

them within application code in a single component or multiple synchronous dependency call
chains.

• Consider scaling patterns at burst rates: In addition to your baseline performance, consider
evaluating how your workload handles initial burst rates that may be expected or unexpected
peaks.

Asynchronous calls and events

Asynchronous calls reduce the latency on HTTP responses. Multiple synchronous calls, as well as
long-running wait cycles, may result in timeouts and locked code that prevents retry logic.

Event-driven architectures enable streamlining asynchronous initiations of code, thus limiting
consumer wait cycles. These architectures are commonly implemented asynchronously using
queues, streams, pub/sub, Webhooks, state machines, and event rule managers across multiple
components that perform a business functionality.

User experience is decoupled with asynchronous calls. Instead of blocking the entire experience
until the overall execution is completed, frontend systems receive a reference or job ID as part of
their initial request and they subscribe for real-time changes, or in legacy systems use an additional
API to poll its status. This decoupling allows the frontend to be more efficient by using event loops,
parallel, or concurrency techniques while making such requests and lazily loading parts of the
application when a response is partially or completely available.

The frontend becomes a key element in asynchronous calls as it becomes more robust with custom
retries and caching. It can halt an in-flight request if no response has been received within an
acceptable SLA, whether it's caused by an anomaly, transient condition, networking, or degraded
environments.

Alternatively, when synchronous calls are necessary, it’s recommended at a minimum to ensure
that the total run time doesn’t exceed the API Gateway or AWS AppSync maximum timeout.
Use an external service (for example, AWS Step Functions) to coordinate business transactions
across multiple services, to control states, and handle error handling that occurs along the request
lifecycle.

Change management

There are no operational practices unique to serverless applications for this best practice.

Failure management

Change management 54

Serverless Applications Lens AWS Well-Architected Framework

Certain parts of a serverless application are dictated by asynchronous calls to various components
in an event-driven fashion, such as by pub/sub and other patterns. When asynchronous calls fail,
they should be captured and retried whenever possible. Otherwise, data loss can occur, resulting in
a degraded customer experience.

Use a dead-letter queue mechanism to retain, investigate, and retry failed transactions.

• AWS Lambda allows failed transactions to be sent to a dedicated Amazon SQS dead-letter queue
on a per function basis.

• Amazon Kinesis Data Streams and Amazon DynamoDB Streams retry the entire batch of items.
Repeated errors block processing of the affected shard until the error is resolved or the items
expire.

• Within AWS Lambda, you can configure Maximum Retry Attempts, Maximum Record Age and
Destination on Failure to respectively control retry while processing data records, and effectively
remove poison-pill messages from the batch by sending its metadata to an Amazon SQS dead-
letter queue for further analysis.

AWS SDKs provide back-off and retry mechanisms by default when talking to other AWS services
that are sufficient in most cases. However, review and tune them to suit your needs, especially
HTTP keepalive, connection, and socket timeouts. Whenever possible, use Step Functions
to minimize the amount of custom try/catch, back-off, and retry logic within your Serverless
applications. For example, you can use a Step Functions integration to save failed state runs and
their state into a DLQ. For more information on costs trade-offs, see the cost optimization pillar
section.

Failure management 55

https://aws.amazon.com/lambda/
https://aws.amazon.com/sqs/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sqs/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-retry-timeout-sdk/

Serverless Applications Lens AWS Well-Architected Framework

Figure 20: Step Functions state machine with DLQ step

Partial failures can occur in non-atomic operations, such as PutRecords (Kinesis) and
BatchWriteItem (DynamoDB), since they return successful if at least one record has
been ingested successfully. Always inspect the response when using such operations, and
programmatically deal with partial failures. When consuming from Kinesis or DynamoDB Streams
use Lambda error handling controls, such as maximum record age, maximum retry attempts,
DLQ on failure, and Bisect batch on function error, to build additional resiliency into your

Failure management 56

Serverless Applications Lens AWS Well-Architected Framework

application. For synchronous parts that are transaction-based and depend on certain guarantees
and requirements, rolling back failed transactions as described by the Saga pattern also can be
achieved by using Step Functions state machines, which will decouple and simplify the logic of
your application.

Figure 21: Step Functions state machine Saga pattern

Choose the Step Functions type based on your workload. For short-running synchronous and
asynchronous high-volume workloads, use Step Functions - Sync Express. If you need to automate
long-running workflows and want to have additional durability and audit go with Step Functions
Standard.

Limits

In addition to what is covered in the Well-Architected Framework, consider reviewing limits for
burst and spiky use cases. For example, API Gateway and Lambda have different limits for steady
and burst request rates. Use scaling layers and asynchronous patterns when possible, and perform
load testing to ensure that your current account limits can sustain your actual customer demand.

Key AWS services

Key AWS services for reliability are AWS Marketplace, Trusted Advisor, CloudWatch Logs,
CloudWatch, API Gateway, Lambda, X-Ray, Step Functions, Amazon SQS, and Amazon SNS.

Resources

Refer to the following resources to learn more about our best practices for reliability.

Limits 57

http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/

Serverless Applications Lens AWS Well-Architected Framework

Documentation and blogs

• Quotas in Lambda

• Quotas in API Gateway

• Quotas and Limits in Kinesis Streams

• Service, Account, and Table Quotas in DynamoDB

• Quotas in Step Functions

• Getting started with testing serverless applications

• Monitoring Lambda Functions Logs

• Versioning Lambda

• Stages in API Gateway

• API Retries in AWS

• Step Functions error handling

• AWS Lambda and AWS X-Ray

• Error handling and automatic retries in AWS Lambda

• Lambda DLQ

• Lambda destinations

• Step Functions Wait state

• Step Functions Standard vs. Express Workflows

• Saga pattern

• Applying Saga pattern with Step Functions

• Designing durable serverless apps with DLQs for Amazon SNS, Amazon SQS, AWS Lambda

• Troubleshooting retry and timeout issues with AWS SDK

• Lambda resiliency controls for stream processing

Whitepapers

• Implementing Microservices on AWS

• Disaster Recovery of Workloads on AWS

Resources 58

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html#api-gateway-limits
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ServiceQuotas.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits-overview.html
https://aws.amazon.com/blogs/compute/getting-started-with-testing-serverless-applications/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
https://docs.aws.amazon.com/lambda/latest/dg/versioning-aliases.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/stages.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-handling-error-conditions.html#using-state-machine-error-conditions-step-4
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-async-destinations
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
http://microservices.io/patterns/data/saga.html
http://theburningmonk.com/2017/07/applying-the-saga-pattern-with-aws-lambda-and-step-functions/
https://aws.amazon.com/blogs/compute/designing-durable-serverless-apps-with-dlqs-for-amazon-sns-amazon-sqs-aws-lambda/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-retry-timeout-sdk/
https://aws.amazon.com/blogs/compute/new-aws-lambda-controls-for-stream-processing-and-asynchronous-invocations/
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/introduction.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html

Serverless Applications Lens AWS Well-Architected Framework

Performance efficiency pillar

The performance efficiency pillar focuses on the efficient use of computing resources to meet
requirements and the maintenance of that efficiency as demand changes and technologies evolve.

Performance efficiency in the cloud is composed of four areas:

• Selection

• Review

• Monitoring

• Tradeoffs

Take a data-driven approach to selecting a high-performance architecture. Gather data on all
aspects of the architecture, from the high-level design to the selection and configuration of
resource types. By reviewing your choices on a cyclical basis, you will ensure that you are taking
advantage of the continually evolving AWS Cloud.

Monitoring will ensure that you are aware of any deviance from expected performance and can
take action on it. Finally, you can make tradeoffs in your architecture to improve performance, such
as using compression or caching, or by relaxing consistency requirements.

Selection

PER 1: How have you optimized the performance of your serverless application?

Run performance tests on your serverless application using steady and burst rates. Using the result,
try tuning capacity units and the provisioning model, and load test after changes to help you select
the best configuration:

• Amazon API Gateway: Use Edge endpoints for geographically dispersed customers. Use Regional
for regional customers and when using other AWS services within the same Region.

• AWS Lambda: Test different memory settings since CPU, network, and storage IOPS are
allocated proportionally. Optimize static initialization and consider provisioned concurrency.

• AWS Step Functions: Test Standard and Express Workflows, consider the per second rates for
both execution start rate and state transition rate.

Performance efficiency 59

Serverless Applications Lens AWS Well-Architected Framework

• Amazon DynamoDB: Use on-demand for unpredictable application traffic, otherwise provisioned
mode for consistent traffic.

• Amazon Kinesis: Use enhanced-fan-out for dedicated input/output channels per consumer in
multiple consumer scenarios. Use an extended batch window for low volume transactions with
Lambda.

Amazon API Gateway

To build RESTful APIs, use REST APIs from Amazon API Gateway. REST APIs are intended for APIs
that require API proxy functionality and API management features in a single solution.

Amazon API Gateway Edge-optimized APIs provide a fully managed Amazon CloudFront
distribution to optimize access for geographically dispersed consumers. API requests are routed to
the nearest CloudFront Point of Presence (POP), which typically improves connection time.

Figure 22: Edge-optimized API Gateway deployment

The API Gateway Regional endpoint doesn’t provide a CloudFront distribution, and enables HTTP2
by default, which helps reduce overall latency when requests originate from the same Region.
Regional endpoints also allow you to associate your own Amazon CloudFront distribution or an
existing CDN.

Selection 60

Serverless Applications Lens AWS Well-Architected Framework

Figure 23: Regional Endpoint API Gateway deployment

This table can help you decide whether to deploy an Edge-optimized API or Regional API Endpoint:

Edge-optimized API Regional API Endpoint

API is accessed across
Regions. Includes API
Gateway-managed CloudFron
t distribution.

X

API is accessed within same
Region. Least request latency
when API is accessed from

X

Selection 61

Serverless Applications Lens AWS Well-Architected Framework

Edge-optimized API Regional API Endpoint

the same Region as API is
deployed.

Ability to associate own
CloudFront distribution.

X

AWS Lambda

Provisioned concurrency initializes a requested number of execution environments so that they
are prepared to respond immediately to your function's invocations. To enable your function
to scale without fluctuations in latency, use provisioned concurrency. By allocating provisioned
concurrency before an increase in invocations, you can ensure that all requests are served by
initialized instances with very low latency. AWS Lambda also integrates with Application Auto
Scaling. You can configure Application Auto Scaling to manage provisioned concurrency on a
schedule or based on utilization. Use scheduled scaling to increase provisioned concurrency in
anticipation of peak traffic.

Figure 24: Provisioned concurrency initializes a requested number of execution environments to
respond immediately to function's invocations

To optimize latency, you can customize the initialization behavior for functions that use
provisioned concurrency. You can run initialization code for provisioned concurrency instances

Selection 62

https://docs.aws.amazon.com/autoscaling/application/userguide/
https://docs.aws.amazon.com/autoscaling/application/userguide/

Serverless Applications Lens AWS Well-Architected Framework

without impacting latency, because the initialization code runs at allocation time. Configure
Amazon VPC access to your Lambda functions only when necessary. Set up a NAT gateway if your
VPC-enabled Lambda function needs access to the Internet. Be sure to check both the Security
Group and network Access Control List (ACL) to allow outbound requests from your Lambda
function. As covered in the AWS Well-Architected Framework, configure your NAT gateway, or NAT
instances across multiple Availability Zones for high availability and performance. This decision
tree can help you decide when to deploy your Lambda function in a VPC.

Figure 25: Decision tree for deploying a AWS Lambda function in an Amazon VPC

Selection 63

Serverless Applications Lens AWS Well-Architected Framework

For Lambda functions in VPC, avoid DNS resolution of public host names for underlying resources
in your VPC. For example, if your Lambda function accesses an Amazon RDS DB instance in your
VPC, launch the instance with the no-publicly-accessible option.

AWS Step Functions

AWS Step Functions offers both Standard or Express Workflow types. Standard Workflows are
ideal for long-running, durable, and auditable workflows. Express Workflows are ideal for high-
volume, event-processing workloads such as IoT data ingestion, streaming data processing and
transformation, and mobile application backends. A Standard Workflow has a maximum duration
of 1 year, compared to 5 minutes for an Express Workflow. Both Standard and Express Workflows
support execution history logging to Amazon CloudWatch Logs. Publishing logs doesn't block
or slow down executions, allowing you to select the log level required for the workflow. When
inspecting a workflow consider using Amazon CloudWatch Logs Insights to interactively search
and analyze your workflow log data. Using the GetExecutionHistory API to explore the execution
history for Standard Workflows may save you from writing code. AWS Step Functions state
transitions are throttled using a token bucket scheme. Estimate the state transitions expected
and match to quotas for bucket size and refill rates. Trade off between Standard Workflow with
throttling, or Express Workflow with unlimited bucket size and refill rate.

An Express Workflow can start either synchronously or asynchronously. Select a synchronous
invocation when you can wait for the result and prefer to develop applications without the need
to develop additional code to handle errors, retries, or execute parallel tasks. Synchronous Express
execution API calls do not contribute to the existing account capacity limits. Step Functions will
provide capacity on demand and will automatically scale with sustained workloads. Surges in
workloads may be throttled until capacity is available. A Synchronous Express Workflow can be
invoked from Amazon API Gateway, AWS Lambda, or by using the StartSyncExecution API call.

Invoke an Asynchronous Express Workflow if you don’t require an immediate response output such
as messaging services, or data processing that other services don’t depend on. An Asynchronous
Express Workflow returns a confirmation the workflow has started, and you poll Amazon
CloudWatch Logs for the result. An Asynchronous Express Workflow can be started in response to
an event, by a nested workflow in Step Functions, or by using the StartExecution API call.

Optimize

As a serverless architecture grows organically, there are certain mechanisms that are commonly
used across a variety of workload profiles. Despite performance testing, design tradeoffs should be

Optimize 64

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

Serverless Applications Lens AWS Well-Architected Framework

considered to increase your application’s performance, always keeping your SLA and requirements
in mind.

Topics

• Amazon API Gateway

• AWS Lambda

• AWS Step Functions

Amazon API Gateway

Amazon API Gateway and AWS AppSync caching can be enabled to improve performance for
applicable operations. DAX can improve read responses significantly as well as Global and Local
Secondary Indexes to prevent DynamoDB full table scan operations. These details and resources
were described in the Mobile Backend scenario.

API Gateway content encoding allows API clients to request the payload to be compressed before
being sent back in the response to an API request. This reduces the number of bytes that are sent
from API Gateway to API clients and decreases the time it takes to transfer the data. You can
enable content encoding in the API definition, and you can also set the minimum response size that
triggers compression. By default, APIs do not have content encoding support enabled.

AWS Lambda

Set your AWS Lambda function timeout a few seconds higher than the average execution to
account for any transient issues in downstream services used in the communication path. This also
applies when working with Step Functions activities, tasks, and Amazon SQS message visibility.
Choosing a default memory setting and timeout in AWS Lambda may have an undesired effect in
performance, cost, and operational procedures.

Setting the timeout much higher than the average execution may cause functions to execute
for longer upon code malfunction, resulting in higher costs and possibly reaching concurrency
limits depending on how such functions are invoked. Setting a timeout that equals one successful
function execution may trigger a serverless application to abruptly halt an execution if a transient
networking issue or abnormality in downstream services occur. Setting a timeout without
performing load testing and, more importantly, without considering upstream services, may result
in errors whenever any part reaches its timeout first.

Optimize 65

Serverless Applications Lens AWS Well-Architected Framework

Follow best practices for working with Lambda functions such as container reuse, minimizing
deployment package size to its runtime necessities, and minimizing the complexity of your
dependencies including frameworks that may not be optimized for fast startup. The latency 99th
percentile (P99) should always be taken into account, as one may not impact the application SLA
agreed to with other teams.

AWS Lambda Extensions count towards the deployment package size limit of your function. They
also can impact the performance of your function because they share function resources such
as CPU, memory, and storage. Account for the additional resources used when adding Lambda
extensions through Lambda layers or functions deployed as container images. If your extension
performs compute-intensive operations, you may see your function's execution duration increase.

Serverless applications may begin modeling monolithic applications, represented by a single AWS
Lambda function performing multiple tasks. Serverless applications may adopt this monolithic
approach as an easier way to get started, or developers may follow existing development practices
and paradigms, or simple applications may grow more complex over time. As you optimize your
serverless application, this monolithic approach may be less performant due to the bundle of
dependencies for everything that is not used on every execution path. Consider breaking down
your serverless application into microservices and remove unused dependencies from these
discrete functions. You will also gain performance in adapting new features and opting for code
optimized for the function use-case or integration.

Take advantage of Amazon API Gateway native routing functionality instead of using the routing
of web frameworks, which are well suited for web servers. Web frameworks inside the Lambda
function increases the size of the deployment package.

Optimize 66

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://aws.amazon.com/blogs/compute/working-with-lambda-layers-and-extensions-in-container-images/

Serverless Applications Lens AWS Well-Architected Framework

Figure 26: Amazon API Gateway simplified routing architecture

After a Lambda function has executed, AWS Lambda maintains the execution context for some
arbitrary time in anticipation of another Lambda function invocation. That allows you to use the
global scope for one-off expensive operations, for example establishing a database connection or
any initialization logic. In subsequent invocations, you can verify whether it’s still valid and reuse
the existing connection.

Consider connection pooling with Amazon RDS Proxy for your Lambda functions that interact
using SQL calls with your database instance. Amazon RDS Proxy handles the connection pooling
necessary for scaling simultaneous connections created by concurrent AWS Lambda functions. This
allows for reuse of existing connections, rather than creating new connections for every function
invocation.

Optimize 67

https://aws.amazon.com/rds/proxy/

Serverless Applications Lens AWS Well-Architected Framework

Figure 27: Amazon RDS Proxy allows you to efficiently scale to many more connections from your
serverless application

AWS Step Functions

AWS Step Functions monitor the Amazon CloudWatch metric ExecutionThrottled which reports
throttling on state transition, the number of StateEntered events, and retries that have been
throttled. Use this metric to determine if a quota increase for a Standard Workflow is required.

If an Express Workflow execution runs for more than the 5-minute maximum, it will fail with a
States.Timeout error and emit a ExecutionsTimedOut CloudWatch metric. Make use of
timeouts in your task to avoid an execution stuck waiting for a response. Specify a reasonable
TimeoutSeconds when you create the task. If you are receiving States.Timeout errors, consider
breaking the workflow into multiple workflow executions, revising your task code or creating a
Standard Workflow.

Asynchronous Transactions

Because your customers expect more modern and interactive user interfaces, you can no longer
sustain complex workflows using synchronous transactions. The more service interaction you need,
the more you end up chaining calls that may end up increasing the risk on service stability as well
as response time.

Modern UI frameworks, such as Angular.js, VueJS, and React, asynchronous transactions, and cloud
native workflows provide a sustainable approach to meet customer demand, as well as helping you
decouple components and focus on process and business domains instead.

These asynchronous transactions (or often times described as an event-driven architecture) kick
off downstream subsequent choreographed events in the cloud instead of constraining clients to
lock-and-wait (I/O blocking) for a response. Asynchronous workflows handle a variety of use cases
including, but not limited to: data Ingestion, ETL operations, and order or request fulfillment.

In these use-cases, data is processed as it arrives, and is retrieved as it changes. We outline best
practices for two common asynchronous workflows where you can learn a few optimization
patterns for integration and async processing.

Serverless Data Processing

In a serverless data processing workflow, data is ingested from clients into Kinesis (using the
Kinesis agent, SDK, or API), and arrives in Amazon S3.

Optimize 68

https://docs.aws.amazon.com/step-functions/latest/dg/procedure-cw-metrics.html#cloudwatch-step-functions-execution-metrics
https://docs.aws.amazon.com/step-functions/latest/dg/sfn-stuck-execution.html

Serverless Applications Lens AWS Well-Architected Framework

New objects kick off a Lambda function that is automatically executed. This function is commonly
used to transform or partition data for further processing and possibly stored in other destinations
such as DynamoDB, or another S3 bucket where data is in its final format.

As you may have different transformations for different data types, we recommend granularly
splitting the transformations into different Lambda functions for optimal performance. With this
approach, you have the flexibility to run data transformation in parallel and gain speed as well as
cost.

Figure 28: Asynchronous data ingestion

Firehose offers native data transformations that can be used as an alternative to Lambda, where no
additional logic is necessary for transforming records in Apache Log or System logs to CSV, JSON,
JSON to Parquet, or ORC.

A Kinesis data stream is a set of shards, each shard contains a sequence of data records. Lambda
reads records from the data stream and invokes your function synchronously with an event that
contains stream records. Lambda reads records in batches and invokes your function to process
records from the batch. Each batch contains records from a single shard or data stream.

To minimize latency and maximize read throughput of processing data from a Kinesis data stream,
build your consumer with the enhanced fan-out feature. This throughput is dedicated, which
means that consumers that use enhanced fan-out don't have to contend with other consumers that
are receiving data from the stream.

Optimize 69

https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html#shard
https://docs.aws.amazon.com/lambda/latest/dg/invocation-sync.html
https://docs.aws.amazon.com/kinesis/latest/dev/enhanced-consumers.html

Serverless Applications Lens AWS Well-Architected Framework

Avoid invoking your function with a small number of records. You can configure the event source
to buffer records for up to five minutes by configuring a CreateEventSourceMapping batch window
(MaximumBatchingWindowInSeconds). Lambda continues to read records from the stream until
it has gathered a full batch, or until the batch window expires.

Configure the CreateEventSourceMapping batch size (BatchSize) to control the maximum
number of records that can be sent to your function with each invoke. A larger batch size can
often more efficiently absorb the invoke overhead across a larger set of records, increasing your
throughput. Avoid stalled shards by configuring the event source mapping to retry with a smaller
batch size, limit the number of retries, or discard records that are too old. To retain discarded
events, configure the event source mapping to send details about failed batches to an Amazon SQS
queue or Amazon SNS topic.

Increase your Kinesis stream processing throughput using the CreateEventSourceMapping
ParallelizationFactor setting to increase concurrency by processing multiple batches from
each shard in parallel. Lambda can process up to 10 batches in each shard simultaneously keeping
in-order processing at the partition-key level. Increase the number of shards to directly increase the
number of maximum concurrent Lambda function invocations.

Use the Lambda emitted IteratorAge metric to estimate the latency between when a record is
added and when the function processes it.

Serverless Event Submission with Status Updates

Suppose you have an ecommerce site and a customer submits an order that kicks off an inventory
deduction and shipment process; or an enterprise application that submits a large query that may
take minutes to respond.

The processes required to complete this common transaction may require multiple service calls
that may take a couple of minutes to complete. Within those calls, you want to safeguard against
potential failures by adding retries and exponential backoffs, However, that can cause a less than
ideal user experience for whoever is waiting for the transaction to complete.

For long and complex workflows similar to this, you can integrate API Gateway or AWS AppSync
with Step Functions that upon new authorized requests will start this business workflow. Step
Functions responds immediately with an execution ID to the caller (Mobile App, SDK, web service).

For legacy systems, you can use the execution ID to poll Step Functions for the business workflow
status via another REST API. With WebSockets, whether you’re using REST or GraphQL, you can
receive business workflow status in real-time by providing updates in every step of the workflow.

Optimize 70

https://docs.aws.amazon.com/lambda/latest/dg/API_CreateEventSourceMapping.html#API_CreateEventSourceMapping_RequestSyntax
https://docs.aws.amazon.com/lambda/latest/dg/API_CreateEventSourceMapping.html#API_CreateEventSourceMapping_RequestSyntax
https://docs.aws.amazon.com/lambda/latest/dg/API_CreateEventSourceMapping.html#API_CreateEventSourceMapping_RequestSyntax
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html#events-kinesis-metrics

Serverless Applications Lens AWS Well-Architected Framework

Figure 29: Asynchronous workflow with Step Functions state machines

Another common scenario is integrating API Gateway directly with Amazon SQS or Kinesis as a
scaling layer. A Lambda function would only be necessary if additional business information or a
custom request ID format is expected from the caller.

Figure 30: Asynchronous workflow using a queue as a scaling layer

In this second example, Amazon SQS serves multiple purposes:

1. Storing the request record durably is important because the client can confidently proceed
throughout the workflow knowing that the request will eventually be processed.

2. Upon a burst of events that may temporarily overwhelm the backend, the request can be polled
for processing when resources become available.

Compared to the first example without a queue, Step Functions Standard Workflow is storing
the data durably without the need for a queue or state-tracking data sources. In both examples,
the best practice is to pursue an asynchronous workflow after the client submits the request and
avoiding the resulting response as blocking code if completion can take several minutes.

With WebSockets, AWS AppSync provides this capability out of the box with GraphQL
subscriptions. With subscriptions, an authorized client could listen for data mutations they’re
interested in. This is ideal for data that is streaming, or that may yield more than a single response.

With AWS AppSync, as status updates change in DynamoDB, clients can automatically subscribe
and receive updates as they occur and it’s the perfect pattern for when data drives the user

Optimize 71

Serverless Applications Lens AWS Well-Architected Framework

interface. With AWS AppSync you power your application with the right data, from one or more
data sources with a single network request using GraphQL. GraphQL works at the application layer
and provides a type system for defining schemas. These schemas serve as specifications to define
how operations should be performed on the data and how the data should be structured when
retrieved.

Figure 31: Asynchronous updates via WebSockets with AWS AppSync and GraphQL

Web Hooks can be implemented with Amazon SNS Topic HTTP subscriptions. Consumers can host
an HTTP endpoint that Amazon SNS will call back through a POST method upon an event (for
example, a data file arriving in Amazon S3). This pattern is ideal when the clients are configurable,
such as another microservice, which could host an endpoint. Alternatively, Step Functions supports
callbacks where a state machine will block until it receives a response for a given task.

Figure 32: Asynchronous notification via Webhook with Amazon SNS

Lastly, polling could be costly from both a cost- and resource-perspective due to multiple clients
constantly polling an API for status. If polling is the only option due to environment constraints, it’s
a best practice to establish SLAs with the clients to limit the number of empty polls.

Optimize 72

https://docs.aws.amazon.com/step-functions/latest/dg/callback-task-sample-sqs.html
https://docs.aws.amazon.com/step-functions/latest/dg/callback-task-sample-sqs.html

Serverless Applications Lens AWS Well-Architected Framework

Figure 33: Client polling for updates on transaction recently made

For example, if a large data warehouse query takes an average of two minutes for a response, the
client should poll the API after two minutes with exponential backoff if the data is not available.
There are two common patterns to ensure that clients aren’t polling more frequently than
expected: Throttling and Timestamp, for when is safe to poll again.

For timestamps, the system being polled can return an extra field with a timestamp or time period
showing when it is safe for the consumer to poll once again. This approach follows an optimistic
scenario where the consumer will respect and use this wisely, and in the event of abuse you can
also employ throttling for a more complete implementation.

Review

There are no performance efficiency practices unique to serverless applications for this best
practice.

Monitoring

Monitor the Amazon CloudWatch AWS Lambda performance and concurrency metrics to
understand performance details about a single invocation and the number of instances processing
events across a function.

See the AWS Well-Architected Framework whitepaper for best practices in the monitoring area for
performance efficiency that apply to serverless applications.

View the AWS Compute Optimizer identified recommendations for AWS Lambda function memory
sizes. AWS Compute Optimizer uses machine learning to analyze historical utilization metrics.

Review 73

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

Serverless Applications Lens AWS Well-Architected Framework

Tradeoffs

Configuring AWS Lambda-provisioned concurrency incurs charges to your AWS account. Consider
the functions you need to scale without fluctuations in latency. You can configure provisioned
concurrency on a version of a function, or on an alias.

See the AWS Well-Architected Framework whitepaper for best practices in the tradeoffs area for
performance efficiency that apply to serverless applications.

Key AWS services

Key AWS Services for performance efficiency are Amazon DynamoDB Accelerator, Amazon API
Gateway, AWS Step Functions, Amazon VPC, NAT gateway and AWS Lambda.

Resources

Refer to the following resources to learn more about our best practices for performance efficiency.

Documentation and blogs

• Operating Lambda: Performance optimization – Part 1

• Operating Lambda: Performance optimization – Part 2

• Operating Lambda: Performance optimization – Part 3

• Using Amazon RDS Proxy with AWS Lambda

• Understanding Container Reuse in AWS Lambda

• New for AWS Lambda – Predictable start-up times with Provisioned Concurrency

• Introducing AWS Lambda Extensions

• Best practices for organizing larger serverless applications

• Caching data and configuration settings with AWS Lambda extensions

• Best Practices When Using Athena with AWS Glue

• Analyzing log data with CloudWatch Logs Insights

• Serverless Patterns Collection

• AWS Lambda Power Tuning

• Caching Best Practices

Tradeoffs 74

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-2/
https://aws.amazon.com/blogs/compute/operating-lambda-performance-optimization-part-3/
https://aws.amazon.com/blogs/compute/using-amazon-rds-proxy-with-aws-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/new-for-aws-lambda-predictable-start-up-times-with-provisioned-concurrency/
https://aws.amazon.com/blogs/compute/introducing-aws-lambda-extensions-in-preview/
https://aws.amazon.com/blogs/compute/best-practices-for-organizing-larger-serverless-applications/
https://aws.amazon.com/blogs/compute/caching-data-and-configuration-settings-with-aws-lambda-extensions/
https://docs.aws.amazon.com/athena/latest/ug/glue-best-practices.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://serverlessland.com/patterns
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://aws.amazon.com/caching/best-practices/

Serverless Applications Lens AWS Well-Architected Framework

Developer guides

• What is AWS Lambda?

• Best practices for working with AWS Lambda functions

• Configuring a Lambda function to access resources in a VPC

• Using Lambda extensions - Impact on performance and resources

• Using AWS Lambda with Amazon SQS

• Managing concurrency for a Lambda function

• AWS Lambda FAQs

• Choosing between HTTP APIs and REST APIs

• Enabling API caching to enhance responsiveness

• Read/Write Capacity Mode

• Using Global Secondary Indexes in DynamoDB

• In-Memory Acceleration with DynamoDB Accelerator (DAX)

• Standard vs. Express Workflows

• Using AWS Step Functions with other services

• What Is Amazon Kinesis Data Streams?

• AppSync Data sources and resolvers

• Optimizing cold start performance for AWS Lambda

Cost optimization pillar

The cost optimization pillar includes the continual process of refinement and improvement of a
system over its entire lifecycle. From the initial design of your first proof of concept to the ongoing
operation of production workloads, adopting the practices in this document will enable you to
build and operate cost-aware systems that achieve business outcomes and minimize costs, thus
allowing your business to maximize its return on investment.

There are four best practice areas for cost optimization in the cloud:

• Cost-effective resources

• Matching supply and demand

• Expenditure and usage awareness

Cost optimization 75

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/using-extensions.html#using-extensions-reg
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html#configuration-concurrency-provisioned
https://aws.amazon.com/lambda/faqs/
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DAX.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-standard-vs-express.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/appsync/latest/devguide/tutorials.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/lambda-optimize-starttime.html

Serverless Applications Lens AWS Well-Architected Framework

• Optimizing over time

As with the other pillars, there are tradeoffs to consider. For example, do you want to optimize
for speed to market or for cost? In some cases, it’s best to optimize for speed — going to market
quickly, shipping new features, or simply meeting a deadline rather than investing in upfront cost
optimization.

Design decisions are sometimes guided by haste as opposed to empirical data, as the temptation
always exists to overcompensate just in case rather than spend time benchmarking for the most
cost-optimal deployment.

This often leads to drastically over-provisioned and under-optimized deployments. The following
sections provide techniques and strategic guidance for the initial and ongoing cost optimization of
your deployment.

Generally, serverless architectures tend to reduce costs because some of the services, such as AWS
Lambda, don’t cost anything while they’re idle. However, following certain best practices and
making tradeoffs will help you reduce the cost of these solutions even more.

Cost-effective resources

COST 1: How do you optimize your costs?

Serverless architectures are easier to manage in terms of correct resource allocation. Due to its pay-
per-value pricing model and scale based on demand, serverless effectively reduces the capacity
planning effort.

As covered in the operational excellence and performance pillars, optimizing your serverless
application has a direct impact on the value it produces and its cost.

As Lambda proportionally allocates CPU, network, and storage IOPS based on memory, the faster
the initiation, the cheaper and more value your function produces due to 1-ms billing incremental
dimension.

Matching supply and demand

The AWS serverless architecture is designed to scale based on demand and as such there are no
applicable practices to be followed.

Cost-effective resources 76

Serverless Applications Lens AWS Well-Architected Framework

Expenditure and usage awareness

As covered in the AWS Well-Architected Framework, the increased flexibility and agility that the
cloud enables encourages innovation and fast-paced development and deployment. It eliminates
the manual processes and time associated with provisioning on-premises infrastructure, including
identifying hardware specifications, negotiating price quotations, managing purchase orders,
scheduling shipments, and then deploying the resources.

As your serverless architecture grows, the number of Lambda functions, APIs, stages, and other
assets will multiply. Most of these architectures need to be budgeted and forecasted in terms of
costs and resource management, so tagging can help you here. You can allocate costs from your
AWS bill to individual functions and APIs and obtain a granulated view of your costs and usage per
project in AWS Cost Explorer.

A good implementation is to share the same key-value tag for assets that belong to the project
programmatically, and create custom reports based on the tags that you have created. This feature
will help you not only allocate your costs, but also identify which resources belong to which
projects. To gain practical experience on this topic refer to the Well Architected Labs. You can find
many cost optimization walkthroughs that include tagging as well.

Optimizing over time

See the AWS Well-Architected Framework whitepaper for cost optimization best practices in the
Optimizing over time section that apply to serverless applications.

Topics

• Lambda cost and performance optimization

• Logging ingestion and storage

• Leverage VPC endpoints

• DynamoDB on-demand and provisioned capacity

• AWS Step Functions Express Workflows

• Direct integrations

• Code optimization

Expenditure and usage awareness 77

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://www.wellarchitectedlabs.com/
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/cost-opti.html

Serverless Applications Lens AWS Well-Architected Framework

Lambda cost and performance optimization

With Lambda, there are no servers to manage, it scales automatically, and you only pay for what
you use. However, choosing the right memory size settings for a Lambda function is still an
important task. AWS Compute Optimizer supports Lambda functions and uses machine-learning to
provide memory size recommendations for Lambda functions.

This allows you to reduce costs and increase performance for your Lambda-based serverless
workloads.

These recommendations are available through the Compute Optimizer console, AWS CLI, AWS
SDK, and the Lambda console. Compute Optimizer continuously monitors Lambda functions, using
historical performance metrics to improve recommendations over time.

In addition, consider configuring new and existing functions to run on ARM or Graviton processors.
If your functions or dependencies do not require a given processor architecture (x86, ARM), you
might benefit in cost and performance by switching your functions architecture. We always
recommend load testing as results might vary for each use case, dependency, and runtime. For
example, you could create two versions of your function: one for x86 and one for ARM. With the
Alias feature, you could distribute a percentage of your traffic to a different processor architecture,
and use CloudWatch Metrics to measure duration and latency efficiency.

Logging ingestion and storage

AWS Lambda uses CloudWatch Logs to store the output of the executions to identify and
troubleshoot problems on executions as well as monitoring the serverless application. These will
impact the cost in the CloudWatch Logs service in two dimensions: ingestion and storage.

Set appropriate logging levels and remove unnecessary logging information to optimize log
ingestion. Use environment variables to control the application logging level and sample logging in
DEBUG mode to ensure you have additional insight when necessary.

Set log retention periods for new and existing CloudWatch Logs groups. For log archival, export
and set cost-effective storage classes that best suit your needs.

If you are using CloudWatch to record metrics in your Lambda Environment consider using the
CloudWatch Embedded Metric Format (EMF) instead of using the CloudWatch PutMetricData API.

EMF enables you to ingest complex high-cardinality application data in the form of logs and easily
generate actionable metrics from them. The embedded metric format is a JSON specification used

Optimizing over time 78

https://docs.aws.amazon.com/compute-optimizer/latest/ug/what-is-compute-optimizer.html
https://aws.amazon.com/cli/
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-versions.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-aliases.html

Serverless Applications Lens AWS Well-Architected Framework

to instruct CloudWatch Logs to automatically extract metric values embedded in structured log
events.

In such high-cardinality environments you might observe cost savings by having your Lambda
functions leverage the CloudWatch Embedded Metric Format since with EMF you do not pay the
per request charge of the CloudWatch PutMetricData API. With EMF you are only charged for Data
Ingestion per GB, Data Archival per GB and per Custom Metric.

The metrics created with EMF are created asynchronously by the CloudWatch service. This means
that by using EMF when processing logs might also reduce the execution duration of your Lambda
functions compared to using the PutMetricData API which is a synchronous call.

If you need to have a precise timestamp for each individual metric or you have dimensions with the
same key but different values, at the time of writing you will need to log separate EMF blobs. This
means increased data ingestion and storage per GB CloudWatch cost.

In those cases we recommend to evaluate if the increased log ingestion and storage cost of
EMF will be more expensive versus the benefit of not paying for the per request charge of the
CloudWatch PutMetricData API. Moreover if you need high resolution metrics CloudWatch
PutMetricData API might be a better fit versus EMF.

Leverage VPC endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a connection between your VPC and serverless services like AWS Lambda and AWS Step
Functions. You can use this connection to invoke your Serverless resources without crossing the
public internet.

To establish a private connection between your VPC and serverless resources, you can create an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, which enables you to
privately access APIs without needing an internet gateway or NAT device within your architecture.

Leveraging VPC endpoints will most likely contribute to cost savings if you are leveraging NAT
and Internet gateways for the sole purpose of accessing Serverless APIs from AWS resources that
do not have access to the internet. The cost optimisation is achieved from the fact that interface
endpoints are more cost effective VPC structures compared to NAT and Internet gateways.

The example diagrams below show two different patterns of Lambda functions accessing the
Amazon SNS service. In the first diagram, there are two NAT Gateways in two AZs for high
availability and an Internet Gateway. In the second diagram, there are interface endpoints in two

Optimizing over time 79

Serverless Applications Lens AWS Well-Architected Framework

AZs. The second pattern is more cost effective than the first one because interface endpoints are
more cost effective than using NAT and Internet Gateways combined.

Figure 34: Lambda function accessing Amazon SNS via NAT and Internet Gateways

Figure 35: Lambda function accessing Amazon SNS via interface endpoints

Optimizing over time 80

Serverless Applications Lens AWS Well-Architected Framework

DynamoDB on-demand and provisioned capacity

Amazon DynamoDB is a fully managed NoSQL database service with single-digit millisecond
performance at any scale, and is often used for serverless applications. DynamoDB has two pricing
models for read and write throughput: on-demand mode and provisioned mode.

On-demand mode

DynamoDB on-demand mode is a serverless throughput option that simplifies database
management and automatically scales to support your most demanding applications. DynamoDB
on-demand lets you create a table without worrying about capacity planning, monitoring usage,
and configuring scaling policies. DynamoDB on-demand mode offers pay-per-request pricing
for read and write requests so that you only pay for what you use. For on-demand mode tables,
you don't need to specify how much read and write throughput you expect your application to
perform.

On-demand mode is the default and recommended throughput option for most DynamoDB
workloads. DynamoDB handles all aspects of throughput management and scaling to support
workloads that can start small and scale to millions of requests per second. You can read and write
to your DynamoDB tables as needed without managing throughput capacity on the table. For more
information, see DynamoDB on-demand capacity mode.

Provisioned mode

In provisioned mode, you must specify the number of reads and writes per second that you require
for your application. You'll be charged based on the hourly read and write capacity you have
provisioned, not how much of that provisioned capacity you actually consumed. This helps you
govern your DynamoDB use to stay at or below a defined request rate in order to obtain cost
predictability.

You can choose to use provisioned capacity if you have steady workloads with predictable growth,
and if you can reliably forecast capacity requirements for your application. For more information,
see DynamoDB provisioned capacity mode.

AWS Step Functions Express Workflows

When you are creating a workflow with AWS Step Functions you will be given two options for the
type of workflow that you want to create: Standard or Express.

Standard Workflows are ideal for long-running, durable, and auditable workflows. Standard
Workflows can support an execution start rate of over 2K executions per second. They can run for

Optimizing over time 81

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html

Serverless Applications Lens AWS Well-Architected Framework

up to a year and you can retrieve the full execution history using the Step Functions API. Standard
Workflows employ an exactly-once execution model, where your tasks and states are never started
more than once unless you have specified the Retry behavior in your state machine. This makes
them suited to orchestrating non-idempotent actions, such as starting an Amazon EMR cluster or
processing payments. Standard Workflow executions are billed according to the number of state
transitions processed.

Because the Standard Workflows pricing is based on state transitions, try to avoid the pattern
of managing an asynchronous job by using a polling loop and prefer instead to use Callbacks or
the .sync Service integration where possible. Using Callbacks or the .sync Service integration will
most likely reduce the number of state transitions and cost. With the .sync Service integration in
particular, you can have Step Functions wait for a request to complete before progressing to the
next state. This is applicable for integrated services such as AWS Batch and Amazon ECS.

See diagrams below that describe each scenario:

Optimizing over time 82

https://docs.aws.amazon.com/step-functions/latest/apireference

Serverless Applications Lens AWS Well-Architected Framework

Figure 36: Job Poller

Optimizing over time 83

Serverless Applications Lens AWS Well-Architected Framework

Figure 37: Wait for Callback

For example, pausing the workflow until a callback is received from an external service.

Figure 38: Using the .sync Service Integration and waiting for a Fargate task completion

Express Workflows are ideal for high-volume, event-processing workloads such as IoT data
ingestion, streaming data processing and transformation, and mobile application backends. Express

Optimizing over time 84

Serverless Applications Lens AWS Well-Architected Framework

Workflows can support an execution start rate of over 100K executions per second. They can run
for up to five minutes. Express Workflows can run either synchronously or asynchronously and
employ an at-most-once or at-least-once workflow execution model, respectively. This means that
there is a possibility that an execution might be run more than once.

Ensure your Express Workflow state machine logic is idempotent and that it will not be affected
adversely by multiple concurrent executions of the same input.

Good examples of using Express Workflows is orchestrating idempotent actions, such as
transforming input data and storing with PUT in Amazon DynamoDB. Express Workflow executions
are billed by the number of executions, the duration of execution, and the memory consumed.
There are also cases where combining a Standard and an Express Workflow might offer a good
combination of cost optimization and functionality. An example of a combining Standard and
Express workflows is shown in the diagram below. More specifically, in the diagram below, the
Approve Order Request state might be implemented by integrating with a service like Amazon
SQS, and the workflow can be paused while waiting for a manual approval. This type of state
would be good fit for a Standard Workflow. Whereas for the Workflow to Update Backend
Systems state implementation you can start an execution of an Express Workflow to handle
backend updates. Express Workflows can be fast and cost-effective for steps where checkpointing
is not required.

Optimizing over time 85

Serverless Applications Lens AWS Well-Architected Framework

Figure 39: Express and Standard Workflows combined

In summary, deciding between Express and Standard Workflows largely depends your use
case. Consider using Express Workflows for a high throughput system, as Express Workflows
will probably be more cost-efficient compared to Standard Workflows for the same level of
throughput. In order to be able to determine which type of workflow is best for you, consider the
differences in execution semantics between Standard and Express Workflows on top of cost.

Direct integrations

If your Lambda function is not performing custom logic while integrating with other AWS services,
chances are that it may be unnecessary. API Gateway, AWS AppSync, Step Functions, EventBridge,

Optimizing over time 86

Serverless Applications Lens AWS Well-Architected Framework

and Lambda destinations can directly integrate with a number of services and provide you more
value and less operational overhead. Most public serverless applications provide an API with an
agnostic implementation of the contract provided, as described in RESTful Microservices. An
example scenario where a direct integration is a better fit is ingesting click stream data through a
REST API.

Figure 40: Sending data to Amazon S3 using Firehose

In this scenario, API Gateway will execute a Lambda function that will simply ingest the incoming
record into Firehose, which subsequently batches records before storing into a S3 bucket. As no
additional logic is necessary for this example, we can use an API Gateway service proxy to directly
integrate with Firehose.

Figure 41: Reducing cost of sending data to Amazon S3 by implementing AWS service proxy

With this approach, we remove the cost of using Lambda and unnecessary invocations by
implementing the AWS Service Proxy within API Gateway. A tradeoff when using the AWS Service
Proxy is that a direct integration might introduce some extra complexity if multiple shards are
necessary to meet the ingestion rate. In addition in the case that you need to transform the
messages being sent to Firehose from API Gateway you will need to use mapping templates at the
API Gateway layer. Adding mapping templates might introduce extra complexity on the debugging
and testing side versus using a Lambda function instead. If latency-sensitive, you can stream data

Optimizing over time 87

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/restful-microservices.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html

Serverless Applications Lens AWS Well-Architected Framework

directly to your Firehose by having the correct credentials at the expense of abstraction, contract,
and API features.

Figure 42: Reducing cost of sending data to Amazon S3 by streaming directly using the Firehose SDK

For scenarios where you need to connect with internal resources within your VPC or on-premises
and no custom logic is required, use API Gateway private integration.

Figure 43: Amazon API Gateway private integration over Lambda in VPC to access private resources

With this approach, API Gateway sends each incoming request to an Elastic Load Balancer that
you own in your VPC, which can forward the traffic to any backend, either in the same VPC or
on-premises through an IP address. For REST APIs, Network Load Balancer is supported as a
private integration. For HTTP APIs, both Application Load Balancer and Network Load Balancer are
supported. This approach has both cost and performance benefits as you don’t need an additional
hop to send requests to a private backend with the added benefits of authorization, throttling,

Optimizing over time 88

Serverless Applications Lens AWS Well-Architected Framework

and caching mechanisms. Another scenario is a fan-out pattern where Amazon SNS broadcasts
messages to all of its subscribers. This approach requires additional application logic to filter and
avoid an unnecessary Lambda invocation.

Figure 44: Amazon SNS without message attribute filtering

Amazon SNS can filter events based on message attributes and more efficiently deliver the
message to the correct subscriber.

Figure 45: Amazon SNS with message attribute filtering

Optimizing over time 89

Serverless Applications Lens AWS Well-Architected Framework

Code optimization

As covered in the performance pillar, optimizing your serverless application can effectively improve
the value it produces per execution.

The use of global variables to maintain connections to your data stores or other services and
resources will increase performance and reduce execution time, which also reduces the cost.
Moreover consider connection pooling with Amazon RDS Proxy for your Lambda functions that
interact using SQL calls with your relational database instance. Please refer to the documentation
for the database engines that are supported and also find more information, at the Serverless
performance pillar section.

An example where the use of managed service features can improve the value per execution is
retrieving and filtering objects from Amazon S3, since fetching large objects from Amazon S3
requires higher memory for Lambda functions.

Figure 46: Lambda function retrieving full S3 object

The previous diagram shows that when retrieving large objects from Amazon S3, we might increase
the memory consumption of the Lambda, increase the execution (so the function can transform,
iterate, or collect required data) and, in some cases, only part of this information is needed.

This is represented with three columns in red (data not required) and one column in green (data
required). Using Athena SQL queries to gather granular information needed for your execution
reduces the retrieval time and object size upon which to perform transformations.

Optimizing over time 90

https://aws.amazon.com/rds/proxy/

Serverless Applications Lens AWS Well-Architected Framework

Figure 47: Lambda with Athena object retrieval

The next diagram shows that by querying Athena to get the specific data, we reduce the size of
the object retrieved and, as an extra benefit, we can reuse that content since Athena saves its
query results in an S3 bucket and invokes the Lambda invocation as the results land in Amazon S3
asynchronously.

A similar approach could be using S3 Select, which enables applications to retrieve only a subset
of data from an object by using simple SQL expressions. As in the previous example with Athena,
retrieving a smaller object from Amazon S3 reduces execution time and the memory used by the
Lambda function.

Table: Lambda performance statistics using Amazon S3 vs S3 Select

Optimizing over time 91

Serverless Applications Lens AWS Well-Architected Framework

200 seconds 95 seconds

Download and process all keys

for key in src_keys:

response = s3_client.get_obje
ct(Bucket=src_bucket, Key=key)

contents = response['Body'].read()

for line in contents.split('\n')
[:-1]:

line_count +=1

try:

data = line.split(',')

srcIp = data[0][:8]

…

Select IP Address and Keys

for key in src_keys:

response = s3_client.select_o
bject_content

(Bucket=src_bucket, Key=key,
 expression =

SELECT SUBSTR(obj._1, 1, 8), obj._2
 FROM
s3object as obj)

contents = response['Body'].read()

for line in contents:

line_count +=1

try:

…

Resources

Refer to the following resources to learn more about our best practices for cost optimization.

Documentation and blogs

• CloudWatch Logs Retention

• Exporting CloudWatch Logs to Amazon S3

• Streaming CloudWatch Logs to OpenSearch Service

• Defining wait states in Step Functions state machines

• Coca-Cola Vending Pass State Machine Powered by Step Functions

• Building high throughput genomics batch workflows on AWS

Resources 92

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SettingLogRetention.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
https://docs.aws.amazon.com/step-functions/latest/dg/amazon-states-language-wait-state.html
https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/
https://aws.amazon.com/blogs/compute/building-high-throughput-genomics-batch-workflows-on-aws-workflow-layer-part-4-of-4/

Serverless Applications Lens AWS Well-Architected Framework

• Simplify your Pub/Sub Messaging with Amazon SNS Message Filtering

• S3 Select and Glacier Select

• Lambda Reference Architecture for MapReduce

• Serverless Application Repository App – Auto-set CloudWatch Logs group retention

• Ten resources every Serverless Architect should know

Whitepapers

• Optimizing Enterprise Economics with Serverless Architectures

Sustainability pillar

The sustainability pillar includes the ability to continually improve sustainability impacts by
reducing energy consumption and increasing efficiency across all components of a workload
by maximizing the benefits from the provisioned resources and minimizing the total resources
required.

There are no sustainability practices unique to this lens. For information on Sustainability, refer to
the Sustainability Pillar whitepaper.

Sustainability 93

https://aws.amazon.com/blogs/compute/simplify-pubsub-messaging-with-amazon-sns-message-filtering/
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://github.com/awslabs/lambda-refarch-mapreduce
https://serverlessrepo.aws.amazon.com/applications/arn:aws:serverlessrepo:us-east-1:374852340823:applications~auto-set-log-group-retention
https://aws.amazon.com/blogs/architecture/ten-things-serverless-architects-should-know/
https://docs.aws.amazon.com/whitepapers/latest/optimizing-enterprise-economics-with-serverless/optimizing-enterprise-economics-with-serverless.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Serverless Applications Lens AWS Well-Architected Framework

Conclusion

While serverless applications take the undifferentiated heavy-lifting off developers, there are still
important principles to apply.

For reliability, regular testing of failure paths provides you with a better chance of catching errors
before they reach production. For performance, starting backward from customer expectations
will allow you to design for optimal experience. There are a number of AWS tools to help optimize
performance.

For cost optimization, you can reduce waste within your serverless application by right-sizing
resources to support traffic demands, and improve value by optimizing your application. For
operations, your architecture should strive toward automation in responding to events.

Finally, a secure application will protect your organization’s sensitive information assets and meet
any compliance requirements at every layer.

The serverless landscape continues to evolve with the growth and maturation of tooling, processes,
and adoption. We will continue to update this paper to ensure that you have the resources and
knowledge needed to build and operate well-architected serverless systems on AWS.

94

Serverless Applications Lens AWS Well-Architected Framework

Contributors

The following individuals and organizations contributed to this document:

• Heitor Lessa, Principal Serverless Lead Well-Architected, Amazon Web Services

• Mark Bunch, Enterprise Solutions Architect, Amazon Web Services

• Dave Walker, Principal Specialist Solutions Architect, Amazon Web Services

• Richard Threlkeld, Sr. Product Manager Mobile, Amazon Web Services

• Roman Boiko, Sr. Serverless Solutions Architect, Amazon Web Services

• Leonidas Drakopoulos, Enterprise Solutions Architect, Amazon Web Services

• Karl Schween, Principal Solutions Architect, Amazon Web Services

• Brian Zambrano, Sr. Serverless Solutions Architect, Amazon Web Services

• Joe Mann, Sr. Partner Solutions Architect, Amazon Web Services

• Bruce Ross, Well-Architected Lens Leader, Amazon Web Services

95

Serverless Applications Lens AWS Well-Architected Framework

Further reading

For additional information, see the following:

• AWS Well-Architected Framework

• AWS Architecture Center

96

https://aws.amazon.com/well-architected
https://aws.amazon.com/architecture/

Serverless Applications Lens AWS Well-Architected Framework

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Major update Updates throughout for new
features and evolution of best
practices.

July 14, 2022

Minor update Updated links. March 10, 2021

Minor update Fixed formatting issue in
HTML and minor editorial
changes.

March 1, 2021

Minor update Fixed missing figure in HTML
and minor editorial changes.

July 15, 2020

Whitepaper updated Updates throughout for new
features and evolution of best
practice.

December 19, 2019

Whitepaper updated New scenarios for Alexa
and Mobile, and updates
throughout to reflect new
features and evolution of best
practice.

November 1, 2018

Initial publication Serverless Applications Lens
first published.

November 1, 2017

97

Serverless Applications Lens AWS Well-Architected Framework

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

98

Serverless Applications Lens AWS Well-Architected Framework

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

99

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Serverless Applications Lens
	Table of Contents
	Serverless Applications Lens - AWS Well-Architected Framework
	Introduction
	Custom lens availability

	Definitions
	Compute layer
	Data layer
	Messaging and streaming layer
	User management and identity layer
	Edge layer
	Systems monitoring and deployment
	Deployment approaches
	All-at-once deployments
	Blue/green deployments
	Canary deployments

	Lambda version control

	Design principles
	Scenarios
	RESTful microservices
	Characteristics
	Reference architecture
	Configuration notes

	Alexa skills
	Characteristics
	Reference architecture
	Configuration notes

	Mobile backend
	Characteristics
	Reference architecture
	Configuration notes

	Streaming processing
	Characteristics
	Reference architecture
	Configuration notes

	Web application
	Characteristics
	Reference architecture
	Configuration notes

	Event-driven architectures
	Reference architecture
	Configuration notes

	The pillars of the Well-Architected Framework
	Operational excellence pillar
	Organization
	Prepare
	Operate
	Metrics and alerts
	Centralized and structured logging
	Distributed tracing
	Prototyping
	Configuration
	Testing
	Deploying

	Evolve
	Key AWS services
	Resources
	Documentation and blogs
	Whitepapers
	Third-party tools

	Security pillar
	Identity and access management
	Detective controls
	Infrastructure protection
	Data protection
	Incident response
	Key AWS services
	Resources
	Documentation and blogs
	Whitepapers
	Third-party tools

	Reliability pillar
	Foundations
	Throttling
	Best practices
	Asynchronous calls and events

	Change management
	Failure management
	

	Limits
	Key AWS services
	Resources
	Documentation and blogs
	Whitepapers

	Performance efficiency pillar
	Selection
	Amazon API Gateway
	AWS Lambda
	AWS Step Functions

	Optimize
	Amazon API Gateway
	AWS Lambda
	AWS Step Functions
	Asynchronous Transactions
	Serverless Data Processing
	Serverless Event Submission with Status Updates

	Review
	Monitoring
	Tradeoffs
	Key AWS services
	Resources
	Documentation and blogs
	Developer guides

	Cost optimization pillar
	Cost-effective resources
	Matching supply and demand
	Expenditure and usage awareness
	Optimizing over time
	Lambda cost and performance optimization
	Logging ingestion and storage
	Leverage VPC endpoints
	DynamoDB on-demand and provisioned capacity
	AWS Step Functions Express Workflows
	Direct integrations
	Code optimization

	Resources
	Documentation and blogs
	Whitepapers

	Sustainability pillar

	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices
	AWS Glossary

