
User Guide

AWS Secrets Manager

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Secrets Manager User Guide

AWS Secrets Manager: User Guide

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Secrets Manager User Guide

Table of Contents

What is Secrets Manager? ... 1
Get started with Secrets Manager .. 1
Compliance with standards .. 2
Pricing ... 2

Access Secrets Manager ... 4
Secrets Manager console .. 4
Command line tools ... 4
AWS SDKs ... 5
HTTPS Query API ... 5
Secrets Manager endpoints .. 6

Best practices ... 11
Store credentials and other sensitive information in AWS Secrets Manager 11
Find unprotected secrets in your code .. 11
Choose an encryption key for your secret .. 12
Use caching to retrieve secrets ... 12
Rotate your secrets .. 13
Mitigate risks of using CLI .. 13
Limit access to secrets .. 13

BlockPublicPolicy condition ... 14
Use caution with IP address conditions in policies .. 14
Limit requests with VPC endpoint conditions .. 15

Replicate secrets ... 15
Monitor secrets ... 15
Run your infrastructure on private networks ... 16

Tutorials ... 17
Amazon CodeGuru Reviewer ... 17
Replace hardcoded secrets ... 17

Step 1: Create the secret .. 18
Step 2: Update your code ... 20
Step 3: Update the secret ... 20
Next steps ... 21

Replace hardcoded DB credentials ... 21
Step 1: Create the secret .. 22
Step 2: Update your code ... 24

iii

AWS Secrets Manager User Guide

Step 3: Rotate the secret .. 24
Next steps ... 25

Alternating users rotation .. 26
Permissions ... 27
Prerequisites ... 27
Step 1: Create an Amazon RDS database user ... 30
Step 2: Create a secret for the user credentials ... 32
Step 3: Test the rotated secret .. 34
Step 4: Clean up resources ... 34
Next steps ... 35

Single user rotation ... 35
Permissions ... 36
Prerequisites ... 36
Step 1: Create an Amazon RDS database user ... 36
Step 2: Create a secret for the database user credentials .. 37
Step 3: Test the rotated password .. 38
Step 4: Clean up resources ... 39
Next steps ... 39

Create secrets ... 40
AWS CLI .. 43
AWS SDK .. 44
What's in a secret ... 44

Metadata ... 44
Secret versions ... 45

JSON structure of a secret ... 46
Amazon RDS and Aurora credentials .. 47
Amazon Redshift credentials .. 50
Amazon Redshift Serverless credentials .. 50
Amazon DocumentDB credentials ... 51
Amazon Timestream for InfluxDB secret structure .. 51
Amazon ElastiCache credentials .. 51
Active Directory credentials .. 52

Manage secrets .. 54
Update a secret value ... 54

AWS CLI ... 55
AWS SDK ... 55

iv

AWS Secrets Manager User Guide

Generate a password with Secrets Manager .. 55
Roll back a secret to a previous version ... 56
Change the encryption key for a secret .. 56

AWS CLI ... 57
Modify a secret ... 58

AWS CLI ... 60
AWS SDK ... 60

Find secrets .. 60
Search filters .. 61
AWS CLI ... 62
AWS SDK ... 62

Delete a secret .. 63
AWS CLI ... 64
AWS SDK ... 65

Restore a secret .. 65
AWS CLI ... 66
AWS SDK ... 66

Tag secrets ... 67
Review tag basics .. 67
Track costs using tagging ... 68
Understand tag restrictions .. 68
Tagging secrets in the console .. 69
AWS CLI ... 70
API .. 71
SDK ... 71

Multi-region replication .. 72
AWS CLI .. 73
AWS SDK .. 74
Promote a replica secret to a standalone secret ... 74

AWS CLI ... 75
AWS SDK ... 75

Prevent replication ... 75
Troubleshoot replication ... 77

A secret with the same name exists in the selected Region .. 77
No permissions available on the KMS key to complete the replication 77
The KMS key is disabled or not found ... 78

v

AWS Secrets Manager User Guide

You have not enabled the Region where the replication occurs ... 78
Get secrets .. 79

Java .. 80
Java with client-side caching ... 80
JDBC connection with credentials in a secret ... 86
Java AWS SDK ... 96

Python .. 98
Python with client-side caching .. 98
Python AWS SDK .. 104
Get a batch of secret values .. 106

.NET ... 107
.NET with client-side caching ... 108
SDK for .NET .. 114

Go .. 117
Go with client-side caching .. 118
Go AWS SDK .. 122

Rust ... 123
Rust with client-side caching ... 123
Rust .. 126

Amazon EKS .. 126
ASCP with IAM Roles for Service Accounts (IRSA) ... 126
ASCP with Pod Identity ... 127
Choosing the right approach ... 127
Install ASCP for Amazon EKS .. 127
Integrate ASCP with Pod Identity for Amazon EKS .. 132
Integrate ASCP with IRSA for Amazon EKS .. 135
ASCP examples .. 138

AWS Lambda ... 146
Get secrets with Lambda .. 146
Parameter Store integration .. 147

Secrets Manager Agent .. 147
How the Secrets Manager Agent works .. 147
Understanding Secrets Manager Agent caching .. 148
Build the Secrets Manager Agent ... 149
Install the Secrets Manager Agent ... 153
Retrieve secrets with the Secrets Manager Agent ... 157

vi

AWS Secrets Manager User Guide

Understanding the refreshNow parameter .. 160
Configuration options .. 162
Optional features .. 163
Logging ... 163
Security considerations ... 164

C++ .. 164
JavaScript ... 165
Kotlin .. 167
PHP ... 167
Ruby .. 168
AWS CLI .. 169

Get a group of secrets in a batch using the AWS CLI ... 170
AWS console ... 170
AWS Batch ... 171
CloudFormation .. 171
GitHub jobs ... 172

Prerequisites .. 173
Usage ... 173
Environment variable naming .. 174
Examples ... 175

GitLab ... 178
Considerations ... 178
Prerequisites .. 178
Integrating AWS Secrets Manager with GitLab .. 180
Troubleshooting .. 181

AWS IoT Greengrass .. 182
Parameter Store ... 182

Rotate secrets .. 183
Managed rotation .. 183
Rotate managed external secrets ... 185

Set Up Rotation in the Console .. 185
Set Up Rotation Using the CLI .. 186

Rotation by Lambda function ... 186
Automatic rotation for database secrets (console) .. 188
Automatic rotation for non-database secrets (console) ... 191
Automatic rotation (AWS CLI) .. 196

vii

AWS Secrets Manager User Guide

Lambda function rotation strategies .. 199
Lambda rotation functions ... 202
Rotation function templates .. 205
Permissions for rotation .. 213
Network access for AWS Lambda rotation function ... 217
Troubleshoot rotation .. 218

Rotation schedules .. 236
Rotation windows ... 237
Rate expressions ... 237
Cron expressions ... 237

Rotate a secret immediately ... 243
AWS CLI .. 243

Find secrets that aren't rotated .. 243
Cancel automatic rotation ... 244

Secrets managed by other services .. 245
Services that use secrets .. 246

App Runner .. 248
AWS App2Container ... 248
AWS AppConfig ... 248
Amazon AppFlow .. 249
AWS AppSync .. 249
Amazon Athena ... 249
Amazon Aurora ... 249
AWS CodeBuild ... 250
Amazon Data Firehose .. 250
AWS DataSync ... 250
Amazon DataZone .. 250
Direct Connect ... 251
AWS Directory Service ... 251
Amazon DocumentDB .. 251
AWS Elastic Beanstalk ... 252
Amazon Elastic Container Registry ... 252
Amazon Elastic Container Service ... 252
Amazon ElastiCache ... 253
AWS Elemental Live ... 253
AWS Elemental MediaConnect .. 253

viii

AWS Secrets Manager User Guide

AWS Elemental MediaConvert ... 254
AWS Elemental MediaLive .. 254
AWS Elemental MediaPackage .. 254
AWS Elemental MediaTailor ... 254
Amazon EMR ... 254
Amazon EventBridge .. 255
Amazon FSx ... 255
AWS Glue DataBrew ... 256
AWS Glue Studio .. 256
AWS IoT SiteWise ... 256
Amazon Kendra ... 256
Amazon Kinesis Video Streams ... 257
AWS Launch Wizard ... 257
Amazon Lookout for Metrics .. 257
Amazon Managed Grafana ... 257
AWS Managed Services ... 258
Amazon Managed Streaming for Apache Kafka .. 258
Amazon Managed Workflows for Apache Airflow ... 258
AWS Marketplace .. 258
AWS Migration Hub ... 259
AWS Panorama .. 259
AWS Parallel Computing Service .. 259
AWS ParallelCluster .. 260
Amazon Q .. 260
Amazon OpenSearch Ingestion ... 260
AWS OpsWorks for Chef Automate .. 261
Amazon Quick Suite ... 261
Amazon RDS .. 261
Amazon Redshift .. 261
Amazon Redshift query editor v2 ... 262
Amazon SageMaker AI ... 262
AWS SCT ... 263
Amazon Timestream for InfluxDB ... 263
AWS Toolkit for JetBrains ... 263
AWS Transfer Family .. 264
AWS Wickr .. 264

ix

AWS Secrets Manager User Guide

Secrets managed by third party applications ... 265
Key features .. 265
Integration Partners .. 266

Salesforce Client Secret .. 266
Big ID Refresh Token ... 268
Snowflake Key Pair .. 269

Security and permissions ... 271
Monitor and troubleshoot .. 273
Migrating existing secrets .. 273
Limitations and considerations ... 273

CloudFormation ... 275
Create a secret .. 275

JSON .. 276
YAML .. 276

Create a secret with Amazon RDS credentials with automatic rotation 277
Create a secret with Amazon Redshift credentials ... 277
Create a secret with Amazon DocumentDB credentials .. 277

JSON .. 277
YAML .. 282

How Secrets Manager uses CloudFormation .. 284
AWS CDK .. 285
Monitor secrets .. 286

Log with AWS CloudTrail ... 286
AWS CLI .. 287
CloudTrail entries .. 287

Monitor with CloudWatch .. 292
CloudWatch alarms .. 293

Match Secrets Manager events with EventBridge ... 294
Match all changes to a specified secret ... 294
Match events when a secret value rotates .. 295

Monitor secrets scheduled for deletion .. 295
Step 1: Configure CloudTrail log file delivery to CloudWatch Logs ... 296
Step 2: Create the CloudWatch alarm ... 296
Step 3: Test the CloudWatch alarm .. 297

Monitor secrets for compliance .. 298
Monitor Secrets Manager costs ... 299

x

AWS Secrets Manager User Guide

Detect threats with GuardDuty ... 299
Compliance validation ... 300

Compliance standards ... 300
Security .. 303

Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 304
Authentication and access control ... 306

Permissions reference .. 306
Secrets Manager administrator permissions ... 307
Permissions to access secrets ... 307
Permissions for Lambda rotation functions .. 307
Permissions for encryption keys ... 307
Permissions for replication ... 307
Identity-based policies .. 308
Resource-based policies .. 315
Control access to secrets using tags .. 322
AWS managed policies .. 323
Determine who has permissions to your secrets ... 328
Cross-account access .. 329
On-premises access .. 332

Data protection in Secrets Manager .. 333
Encryption at rest ... 333
Encryption in transit .. 334
Inter-network traffic privacy .. 334
Encryption key management ... 334

Secret encryption and decryption .. 335
Choosing a AWS KMS key ... 335
What is encrypted? .. 336
Encryption and decryption processes .. 337
Permissions for the KMS key ... 337
How Secrets Manager uses your KMS key .. 338
Key policy of the AWS managed key (aws/secretsmanager) ... 340
Secrets Manager encryption context .. 342
Monitor Secrets Manager interaction with AWS KMS ... 344

Infrastructure security ... 348
VPC endpoints (AWS PrivateLink) .. 348

Create an endpoint policy .. 349

xi

AWS Secrets Manager User Guide

Shared subnets .. 350
IPv4 and IPv6 access ... 350

What is IPv6? ... 351
Using dual-stack policies .. 351
Adding IPv6 to a policy ... 352
Verifying your client supports IPv6 .. 353

Resilience ... 355
Post-quantum TLS ... 355

Troubleshooting ... 357
"Access denied" messages .. 357
"Access denied" for temporary security credentials .. 357
Changes I make aren't always immediately visible. .. 358
“Cannot generate a data key with an asymmetric KMS key” when creating a secret 359
An AWS CLI or AWS SDK operation can't find my secret from a partial ARN 359
This secret is managed by an AWS service, and you must use that service to update it. 360
Python module import fails when using Transform:
AWS::SecretsManager-2024-09-16 ... 360

Quotas .. 361
Secrets Manager quotas ... 361
Add retries to your application ... 364

Document history .. 366
Earlier updates .. 367

xii

AWS Secrets Manager User Guide

What is AWS Secrets Manager?

AWS Secrets Manager helps you manage, retrieve, and rotate database credentials, application
credentials, OAuth tokens, API keys, and other secrets throughout their lifecycles. Many AWS
services store and use secrets in Secrets Manager.

Secrets Manager helps you improve your security posture, because you no longer need hard-coded
credentials in application source code. Storing the credentials in Secrets Manager helps avoid
possible compromise by anyone who can inspect your application or the components. You replace
hard-coded credentials with a runtime call to the Secrets Manager service to retrieve credentials
dynamically when you need them.

With Secrets Manager, you can configure an automatic rotation schedule for your secrets. This
enables you to replace long-term secrets with short-term ones, significantly reducing the risk of
compromise. Since the credentials are no longer stored with the application, rotating credentials
no longer requires updating your applications and deploying changes to application clients.

For other types of secrets you might have in your organization:

• AWS credentials – We recommend AWS Identity and Access Management.

• Encryption keys – We recommend AWS Key Management Service.

• SSH keys – We recommend Amazon EC2 Instance Connect.

• Private keys and certificates – We recommend AWS Certificate Manager.

Get started with Secrets Manager

If you are new to Secrets Manager, start with one of the following tutorials:

• the section called “Replace hardcoded secrets ”

• the section called “Replace hardcoded DB credentials ”

• the section called “Alternating users rotation”

• the section called “Single user rotation”

Other tasks you can do with secrets:

• Manage secrets

Get started with Secrets Manager 1

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Connect-using-EC2-Instance-Connect.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html

AWS Secrets Manager User Guide

• Control access to your secrets

• Get secrets

• Rotate secrets

• Monitor secrets

• Monitor secrets for compliance

• Create secrets in AWS CloudFormation

Compliance with standards

AWS Secrets Manager has undergone auditing for the multiple standards and can be part of your
solution when you need to obtain compliance certification. For more information, see Compliance
validation.

Pricing

When you use Secrets Manager, you pay only for what you use, with no minimum or setup fees.
There is no charge for secrets that are marked for deletion. For the current complete pricing list,
see AWS Secrets Manager Pricing. To monitor your costs, see the section called “Monitor Secrets
Manager costs”.

You can use the AWS managed key aws/secretsmanager that Secrets Manager creates to
encrypt your secrets for free. If you create your own KMS keys to encrypt your secrets, AWS charges
you at the current AWS KMS rate. For more information, see AWS Key Management Service Pricing.

When you turn on automatic rotation (except managed rotation), Secrets Manager uses an AWS
Lambda function to rotate the secret, and you are charged for the rotation function at the current
Lambda rate. For more information, see AWS Lambda Pricing.

If you enable AWS CloudTrail on your account, you can obtain logs of the API calls that Secrets
Manager sends out. Secrets Manager logs all events as management events. AWS CloudTrail stores
the first copy of all management events for free. However, you can incur charges for Amazon S3 for
log storage and for Amazon SNS if you enable notification. Also, if you set up additional trails, the
additional copies of management events can incur costs. For more information, see AWS CloudTrail
pricing.

Compliance with standards 2

https://aws.amazon.com/secrets-manager/pricing
https://aws.amazon.com/kms/pricing
https://aws.amazon.com//lambda/pricing/
https://aws.amazon.com/cloudtrail/pricing
https://aws.amazon.com/cloudtrail/pricing

AWS Secrets Manager User Guide

You can use cost allocation tags in Secrets Manager to track and categorize expenses associated
with specific secrets or projects. For more information, see the section called “Tag secrets” in this
guide and Using AWS cost allocation tags in the AWS Billing User Guide.

Pricing 3

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

AWS Secrets Manager User Guide

Access AWS Secrets Manager

You can work with Secrets Manager in any of the following ways:

• Secrets Manager console

• Command line tools

• AWS SDKs

• HTTPS Query API

• AWS Secrets Manager endpoints

Secrets Manager console

You can manage your secrets using the browser-based Secrets Manager console and perform
almost any task related to your secrets by using the console.

Command line tools

The AWS command line tools allows you to issue commands at your system command line to
perform Secrets Manager and other AWS tasks. This can be faster and more convenient than using
the console. The command line tools can be useful if you want to build scripts to perform AWS
tasks.

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called “Mitigate
the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

The command line tools automatically use the default endpoint for the service in an AWS Region.
You can specify a different endpoint for your API requests. See the section called “Secrets Manager
endpoints”.

AWS provides two sets of command line tools:

• AWS Command Line Interface (AWS CLI)

• AWS Tools for Windows PowerShell

Secrets Manager console 4

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/index.html
https://docs.aws.amazon.com//powershell/latest/reference/

AWS Secrets Manager User Guide

AWS SDKs

The AWS SDKs consist of libraries and sample code for various programming languages and
platforms. The SDKs include tasks such as cryptographically signing requests, managing errors, and
retrying requests automatically. To download and install any of the SDKs, see Tools for Amazon
Web Services.

The AWS SDKs automatically use the default endpoint for the service in an AWS Region. You
can specify a different endpoint for your API requests. See the section called “Secrets Manager
endpoints”.

For SDK documentation, see:

• C++

• Go

• Java

• JavaScript

• Kotlin

• .NET

• PHP

• Python (Boto3)

• Ruby

• Rust

• SAP ABAP

• Swift

HTTPS Query API

The HTTPS Query API gives you programmatic access to Secrets Manager and AWS. The HTTPS
Query API allows you to issue HTTPS requests directly to the service.

Although you can make direct calls to the Secrets Manager HTTPS Query API, we recommend that
you use one of the SDKs instead. The SDK performs many useful tasks you otherwise must perform
manually. For example, the SDKs automatically sign your requests and convert responses into a
structure syntactically appropriate to your language.

AWS SDKs 5

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#sdk
http://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_secrets_manager.html
https://docs.aws.amazon.com/sdk-for-go/api/service/secretsmanager/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SecretsManager.html
https://sdk.amazonaws.com/kotlin/api/latest/secretsmanager/index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/NSecretsManagerModel.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.SecretsManager.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SecretsManager.html
https://crates.io/crates/aws-sdk-secretsmanager
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/smr/index.html
https://awslabs.github.io/aws-sdk-swift/reference/0.x/AWSSecretsManager/Home
https://docs.aws.amazon.com/secretsmanager/latest/apireference/Welcome.html

AWS Secrets Manager User Guide

To make HTTPS calls to Secrets Manager, you connect to ???.

AWS Secrets Manager endpoints

To connect programmatically to Secrets Manager, you use an endpoint, the URL of the entry point
for the service. Secrets Manager endpoints are dual-stack endpoints, which means they support
both IPv4 and IPv6.

Secrets Manager offers endpoints that support Federal Information Processing Standard (FIPS)
140-2 in some Regions.

Secrets Manager supports TLS 1.2 and 1.3. Secrets Manager supports PQTLS in all regions except
China Regions.

Note

The Python AWS SDK and the AWS CLI attempt to call IPv6 and then IPv4 in sequence, so
if you don't have IPv6 enabled, it can take some time before the call times out and retries
with IPv4. To work around this issue, you can disable IPv6 completely or migrate to IPv6.

The following are the service endpoints for Secrets Manager. Note that the naming differs from the
typical dual-stack naming convention. For information about using dual-stack addressing in Secrets
Manager, see IPv4 and IPv6 access.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 secretsmanager.us-east-2.amazonaws.com

secretsmanager-fips.us-east-2.amazon
aws.com

HTTPS

HTTPS

US
East (N.
Virginia)

us-east-1 secretsmanager.us-east-1.amazonaws.com

secretsmanager-fips.us-east-1.amazon
aws.com

HTTPS

HTTPS

US
West (N.

us-
west-1

secretsmanager.us-west-1.amazonaws.com HTTPS

Secrets Manager endpoints 6

http://aws.amazon.com/compliance/fips/
http://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Californi
a)

secretsmanager-fips.us-west-1.amazon
aws.com

HTTPS

US West
(Oregon)

us-
west-2

secretsmanager.us-west-2.amazonaws.com

secretsmanager-fips.us-west-2.amazon
aws.com

HTTPS

HTTPS

Africa
(Cape
Town)

af-south-
1

secretsmanager.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

secretsmanager.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

secretsmanager.ap-south-2.amazonaws.com HTTPS

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

secretsmanager.ap-southeast-3.amazon
aws.com

HTTPS

Asia
Pacific
(Malaysia
)

ap-
southe
ast-5

secretsmanager.ap-southeast-5.amazon
aws.com

HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

secretsmanager.ap-southeast-4.amazon
aws.com

HTTPS

Secrets Manager endpoints 7

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Mumbai)

ap-
south-1

secretsmanager.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(New
Zealand)

ap-
southe
ast-6

secretsmanager.ap-southeast-6.amazon
aws.com

HTTPS

Asia
Pacific
(Osaka)

ap-
northe
ast-3

secretsmanager.ap-northeast-3.amazon
aws.com

HTTPS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

secretsmanager.ap-northeast-2.amazon
aws.com

HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

secretsmanager.ap-southeast-1.amazon
aws.com

HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

secretsmanager.ap-southeast-2.amazon
aws.com

HTTPS

Asia
Pacific
(Taipei)

ap-
east-2

secretsmanager.ap-east-2.amazonaws.com HTTPS

Asia
Pacific
(Thailand
)

ap-
southe
ast-7

secretsmanager.ap-southeast-7.amazon
aws.com

HTTPS

Secrets Manager endpoints 8

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

secretsmanager.ap-northeast-1.amazon
aws.com

HTTPS

Canada
(Central)

ca-centra
l-1

secretsmanager.ca-central-1.amazonaws.com

secretsmanager-fips.ca-central-1.ama
zonaws.com

HTTPS

HTTPS

Canada
West
(Calgary)

ca-
west-1

secretsmanager.ca-west-1.amazonaws.com

secretsmanager-fips.ca-west-1.amazon
aws.com

HTTPS

HTTPS

Europe
(Frankfur
t)

eu-
central-1

secretsmanager.eu-central-1.amazonaws.com HTTPS

Europe
(Ireland)

eu-
west-1

secretsmanager.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-
west-2

secretsmanager.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

secretsmanager.eu-south-1.amazonaws.com HTTPS

Europe
(Paris)

eu-
west-3

secretsmanager.eu-west-3.amazonaws.com HTTPS

Europe
(Spain)

eu-
south-2

secretsmanager.eu-south-2.amazonaws.com HTTPS

Europe
(Stockhol
m)

eu-
north-1

secretsmanager.eu-north-1.amazonaws.com HTTPS

Secrets Manager endpoints 9

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Europe
(Zurich)

eu-
central-2

secretsmanager.eu-central-2.amazonaws.com HTTPS

Israel
(Tel Aviv)

il-centra
l-1

secretsmanager.il-central-1.amazonaws.com HTTPS

Mexico
(Central)

mx-
central-1

secretsmanager.mx-central-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

secretsmanager.me-south-1.amazonaws.com HTTPS

Middle
East
(UAE)

me-
central-1

secretsmanager.me-central-1.amazonaws.com HTTPS

South
America
(São
Paulo)

sa-east-1 secretsmanager.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

secretsmanager.us-gov-east-1.amazona
ws.com

secretsmanager-fips.us-gov-east-1.am
azonaws.com

HTTPS

HTTPS

AWS
GovCloud
(US-
West)

us-gov-
west-1

secretsmanager.us-gov-west-1.amazona
ws.com

secretsmanager-fips.us-gov-west-1.am
azonaws.com

HTTPS

HTTPS

Secrets Manager endpoints 10

AWS Secrets Manager User Guide

AWS Secrets Manager best practices

Secrets Manager provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don't represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

Consider the following best practices for storing and managing secrets:

• Store credentials and other sensitive information in AWS Secrets Manager

• Find unprotected secrets in your code

• Choose an encryption key for your secret

• Use caching to retrieve secrets

• Rotate your secrets

• Mitigate risks of using CLI

• Limit access to secrets

• Replicate secrets

• Monitor secrets

• Run your infrastructure on private networks

Store credentials and other sensitive information in AWS
Secrets Manager

Secrets Manager can help improve your security posture and compliance, and reduce the risk of
unauthorized access to your sensitive information. Secrets Manager encrypts secrets at rest using
encryption keys that you own and store in AWS Key Management Service (AWS KMS). When you
retrieve a secret, Secrets Manager decrypts the secret and transmits it securely over TLS to your
local environment. For more information, see Create secrets.

Find unprotected secrets in your code

CodeGuru Reviewer integrates with Secrets Manager to use a secrets detector that finds
unprotected secrets in your code. The secrets detector searches for hardcoded passwords, database

Store credentials and other sensitive information in AWS Secrets Manager 11

AWS Secrets Manager User Guide

connection strings, user names, and more. For more information, see the section called “Amazon
CodeGuru Reviewer”.

Amazon Q can scan your codebase for security vulnerabilities and code quality issues to improve
the posture of your applications throughout the development cycle. For more information, see
Scanning your code with Amazon Q in the Amazon Q Developer User Guide.

Choose an encryption key for your secret

For most cases, we recommend using the aws/secretsmanager AWS managed key to encrypt
secrets. There is no cost for using it.

To be able to access a secret from another account or to apply a key policy to the encryption key,
use a customer managed key to encrypt the secret.

• In the key policy, assign the value secretsmanager.<region>.amazonaws.com to the
kms:ViaService condition key. This limits use of the key to only requests from Secrets
Manager.

• To further limit use of the key to only requests from Secrets Manager with the correct context,
use keys or values in the Secrets Manager encryption context as a condition for using the KMS
key by creating:

• A string condition operator in an IAM policy or key policy

• A grant constraint in a grant

For more information, see the section called “Secret encryption and decryption”.

Use caching to retrieve secrets

To use your secrets most efficiently, we recommend you use one of the following supported Secrets
Manager caching components to cache your secrets and update them only when required:

• Java with client-side caching

• Python with client-side caching

• .NET with client-side caching

• Go with client-side caching

• Rust with client-side caching

Choose an encryption key for your secret 12

https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/security-scans.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html#security-encryption-encryption-context
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html

AWS Secrets Manager User Guide

• AWS Parameters and Secrets Lambda Extension

• the section called “Amazon EKS”

• Use the section called “Secrets Manager Agent” to standardize consumption of secrets from
Secrets Manager across environments such as AWS Lambda, Amazon Elastic Container Service,
Amazon Elastic Kubernetes Service, and Amazon Elastic Compute Cloud.

Rotate your secrets

If you don't change your secrets for a long period of time, the secrets become more likely to be
compromised. With Secrets Manager, you can set up automatic rotation as often as every four
hours. Secrets Manager offers two strategies for rotation: Single user and Alternating users. For
more information, see Rotate secrets.

Mitigate risks of using CLI

When you use the AWS CLI to invoke AWS operations, you enter those commands in a command
shell. Most command shells offer features that could compromise your secrets, such as logging
and the ability to see the last entered command. Before you use the AWS CLI to enter sensitive
information, be sure to the section called “Mitigate the risks of using the AWS CLI to store your
AWS Secrets Manager secrets”.

Limit access to secrets

In IAM policy statements that control access to your secrets, use the principle of least privileged
access. You can use IAM roles and policies, resource policies, and attribute-based access control
(ABAC). For more information, see the section called “Authentication and access control”.

Topics

• Block broad access to secrets

• Use caution with IP address conditions in policies

• Limit requests with VPC endpoint conditions

Rotate your secrets 13

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Secrets Manager User Guide

Block broad access to secrets

In identity policies that allow the action PutResourcePolicy, we recommend you use
BlockPublicPolicy: true. This condition means that users can only attach a resource policy to
a secret if the policy doesn't allow broad access.

Secrets Manager uses Zelkova automated reasoning to analyze resource policies for broad access.
For more information about Zelkova, see How AWS uses automated reasoning to help you achieve
security at scale on the AWS Security Blog.

The following example shows how to use BlockPublicPolicy.

JSON

{
 "Version":"2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "secretsmanager:PutResourcePolicy",
 "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName-AbCdEf",
 "Condition": {
 "Bool": {
 "secretsmanager:BlockPublicPolicy": "true"
 }
 }
 }
}

Use caution with IP address conditions in policies

Use caution when you specify the IP address condition operators or the aws:SourceIp condition
key in a policy statement that allows or denies access to Secrets Manager. For example, if you
attach a policy that restricts AWS actions to requests from your corporate network IP address range
to a secret, then your requests as an IAM user invoking the request from the corporate network
work as expected. However, if you enable other services to access the secret on your behalf, such
as when you enable rotation with a Lambda function, that function calls the Secrets Manager
operations from an AWS-internal address space. Requests impacted by the policy with the IP
address filter fail.

BlockPublicPolicy condition 14

https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/
https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_IPAddress

AWS Secrets Manager User Guide

Also, the aws:sourceIP condition key is less effective when the request comes from an Amazon
VPC endpoint. To restrict requests to a specific VPC endpoint, use the section called “Limit requests
with VPC endpoint conditions”.

Limit requests with VPC endpoint conditions

To allow or deny access to requests from a particular VPC or VPC endpoint, use aws:SourceVpc
to limit access to requests from the specified VPC or aws:SourceVpce to limit access to requests
from the specified VPC endpoint. See the section called “Example: Permissions and VPCs”.

• aws:SourceVpc limits access to requests from the specified VPC.

• aws:SourceVpce limits access to requests from the specified VPC endpoint.

If you use these condition keys in a resource policy statement that allows or denies access to
Secrets Manager secrets, you can inadvertently deny access to services that use Secrets Manager to
access secrets on your behalf. Only some AWS services can run with an endpoint within your VPC.
If you restrict requests for a secret to a VPC or VPC endpoint, then calls to Secrets Manager from a
service not configured for the service can fail.

See the section called “VPC endpoints (AWS PrivateLink)”.

Replicate secrets

Secrets Manager can automatically replicate your secrets to multiple AWS Regions to meet your
resiliency or disaster recovery requirements. For more information, see Multi-region replication.

Monitor secrets

Secrets Manager enables you to audit and monitor secrets through integration with AWS logging,
monitoring, and notification services. For more information, see:

• the section called “Log with AWS CloudTrail ”

• the section called “Monitor with CloudWatch”

• the section called “Monitor secrets for compliance”

• the section called “Monitor Secrets Manager costs”

• the section called “Detect threats with GuardDuty”

Limit requests with VPC endpoint conditions 15

AWS Secrets Manager User Guide

Run your infrastructure on private networks

We recommend that you run as much of your infrastructure as possible on private networks that
are not accessible from the public internet. You can establish a private connection between your
VPC and Secrets Manager by creating an interface VPC endpoint. For more information, see the
section called “VPC endpoints (AWS PrivateLink)”.

Run your infrastructure on private networks 16

AWS Secrets Manager User Guide

AWS Secrets Manager tutorials

Topics

• Find unprotected secrets in your code with Amazon CodeGuru Reviewer

• Move hardcoded secrets to AWS Secrets Manager

• Move hardcoded database credentials to AWS Secrets Manager

• Set up alternating users rotation for AWS Secrets Manager

• Set up single user rotation for AWS Secrets Manager

Find unprotected secrets in your code with Amazon CodeGuru
Reviewer

Amazon CodeGuru Reviewer is a service that uses program analysis and machine learning to detect
potential defects that are difficult for developers to find and offers suggestions for improving your
Java and Python code. CodeGuru Reviewer integrates with Secrets Manager to find unprotected
secrets in your code. For the types of secrets it can find, see Types of secrets detected by CodeGuru
Reviewer in the Amazon CodeGuru Reviewer User Guide.

Once you've found hardcoded secrets, take action to replace them:

• the section called “Replace hardcoded DB credentials ”

• the section called “Replace hardcoded secrets ”

Move hardcoded secrets to AWS Secrets Manager

If you have plaintext secrets in your code, we recommend that you rotate them and store them
in Secrets Manager. Moving the secret to Secrets Manager solves the problem of the secret being
visible to anyone who sees the code, because going forward, your code retrieves the secret directly
from Secrets Manager. Rotating the secret revokes the current hardcoded secret so that it is no
longer valid.

For database credential secrets, see Move hardcoded database credentials to AWS Secrets Manager.

Before you begin, you need to determine who needs access to the secret. We recommend using two
IAM roles to manage permission to your secret:

Amazon CodeGuru Reviewer 17

https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/recommendations.html#secrets-found-types
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/recommendations.html#secrets-found-types

AWS Secrets Manager User Guide

• A role that manages the secrets in your organization. For more information, see the section
called “Secrets Manager administrator permissions”. You'll create and rotate the secret using this
role.

• A role that can use the secret at runtime, for example in this tutorial you use
RoleToRetrieveSecretAtRuntime. Your code assumes this role to retrieve the secret. In
this tutorial, you grant the role only the permission to retrieve one secret value, and you grant
permission by using the secret's resource policy. For other alternatives, see the section called
“Next steps”.

Steps:

• Step 1: Create the secret

• Step 2: Update your code

• Step 3: Update the secret

• Next steps

Step 1: Create the secret

The first step is to copy the existing hardcoded secret into Secrets Manager. If the secret is related
to an AWS resource, store it in the same Region as the resource. Otherwise, store it in the Region
that has the lowest latency for your use case.

To create a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose Other type of secret.

b. Enter your secret as Key/value pairs or in Plaintext. Some examples:

API key

Enter as key/value pairs:

ClientID : my_client_id

ClientSecret : wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Step 1: Create the secret 18

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

OAuth token

Enter as plaintext:

AKIAI44QH8DHBEXAMPLE

Digital certificate

Enter as plaintext:

-----BEGIN CERTIFICATE-----
EXAMPLE
-----END CERTIFICATE-----

Private key

Enter as plaintext:

–--- BEGIN PRIVATE KEY ----
EXAMPLE
––-- END PRIVATE KEY –---

c. For Encryption key, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key. You can also use your own customer managed
key, for example to access the secret from another AWS account. For information about
the costs of using a customer managed key, see Pricing.

d. Choose Next.

4. On the Choose secret type page, do the following:

a. Enter a descriptive Secret name and Description.

b. In Resource permissions, choose Edit permissions. Paste the following policy, which
allows RoleToRetrieveSecretAtRuntime to retrieve the secret, and then choose Save.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Step 1: Create the secret 19

AWS Secrets Manager User Guide

 "Principal": {
 "AWS":
 "arn:aws:iam::111122223333:role/RoleToRetrieveSecretAtRuntime"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

c. At the bottom of the page, choose Next.

5. On the Configure rotation page, keep rotation off. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Step 2: Update your code

Your code must assume the IAM role RoleToRetrieveSecretAtRuntime to be able to retrieve
the secret. For more information, see Switching to an IAM role (AWS API).

Next, you update your code to retrieve the secret from Secrets Manager using the sample code
provided by Secrets Manager.

To find the sample code

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. Scroll down to Sample code. Choose your programming language, and then copy the code
snippet.

In your application, remove the hardcoded secret and paste the code snippet. Depending on your
code language, you might need to add a call to the function or method in the snippet.

Test that your application works as expected with the secret in place of the hardcoded secret.

Step 3: Update the secret

The last step is to revoke and update the hardcoded secret. Refer to the source of the secret to
find instructions to revoke and update the secret. For example, you might need to deactivate the
current secret and generate a new secret.

Step 2: Update your code 20

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

To update the secret with the new value

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret.

3. On the Secret details page, scroll down and choose Retrieve secret value, and then choose
Edit.

4. Update the secret and then choose Save.

Next, test that your application works as expected with the new secret.

Next steps

After you remove a hardcoded secret from your code, some ideas to consider next:

• To find hardcoded secrets in your Java and Python applications, we recommend Amazon
CodeGuru Reviewer.

• You can improve performance and reduce costs by caching secrets. For more information, see Get
secrets.

• For secrets that you access from multiple Regions, consider replicating your secret to improve
latency. For more information, see Multi-region replication.

• In this tutorial, you granted RoleToRetrieveSecretAtRuntime only the permission to
retrieve the secret value. To grant the role more permissions, for example to get metadata about
the secret or to view a list of secrets, see the section called “Resource-based policies”.

• In this tutorial, you granted permission to RoleToRetrieveSecretAtRuntime by using the
secret's resource policy. For other ways to grant permission, see the section called “Identity-
based policies”.

Move hardcoded database credentials to AWS Secrets Manager

If you have plaintext database credentials in your code, we recommend that you move the
credentials to Secrets Manager and then rotate them immediately. Moving the credentials to
Secrets Manager solves the problem of the credentials being visible to anyone who sees the code,
because going forward, your code retrieves the credentials directly from Secrets Manager. Rotating
the secret updates the password and then revokes the current hardcoded password so that it is no
longer valid.

Next steps 21

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html

AWS Secrets Manager User Guide

For Amazon RDS, Amazon Redshift, and Amazon DocumentDB databases, use the steps in this
page to move hardcoded credentials to Secrets Manager. For other types of credentials and other
secrets, see the section called “Replace hardcoded secrets ”.

Before you begin, you need to determine who needs access to the secret. We recommend using two
IAM roles to manage permission to your secret:

• A role that manages the secrets in your organization. For more information, see the section
called “Secrets Manager administrator permissions”. You'll create and rotate the secret using this
role.

• A role that can use the credentials at runtime, RoleToRetrieveSecretAtRuntime in this
tutorial. Your code assumes this role to retrieve the secret.

Steps:

• Step 1: Create the secret

• Step 2: Update your code

• Step 3: Rotate the secret

• Next steps

Step 1: Create the secret

The first step is to copy the existing hardcoded credentials into a secret in Secrets Manager. For the
lowest latency, store the secret in the same Region as the database.

To create a secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose the type of database credentials to store:

• Amazon RDS database

• Amazon DocumentDB database

• Amazon Redshift data warehouse.

• For other types of secrets, see Replace hardcoded secrets .

Step 1: Create the secret 22

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/hardcoded.html

AWS Secrets Manager User Guide

b. For Credentials, enter the existing hardcoded credentials for the database.

c. For Encryption key, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key. You can also use your own customer managed
key, for example to access the secret from another AWS account. For information about
the costs of using a customer managed key, see Pricing.

d. For Database, choose your database.

e. Choose Next.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description.

b. In Resource permissions, choose Edit permissions. Paste the following policy, which
allows RoleToRetrieveSecretAtRuntime to retrieve the secret, and then choose Save.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS":
 "arn:aws:iam::111122223333:role/RoleToRetrieveSecretAtRuntime"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

c. At the bottom of the page, choose Next.

5. On the Configure rotation page, keep rotation off for now. You'll turn it on later. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Step 1: Create the secret 23

AWS Secrets Manager User Guide

Step 2: Update your code

Your code must assume the IAM role RoleToRetrieveSecretAtRuntime to be able to retrieve
the secret. For more information, see Switching to an IAM role (AWS API).

Next, you update your code to retrieve the secret from Secrets Manager using the sample code
provided by Secrets Manager.

To find the sample code

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. Scroll down to Sample code. Choose your language, and then copy the code snippet.

In your application, remove the hardcoded credentials and paste the code snippet. Depending on
your code language, you might need to add a call to the function or method in the snippet.

Test that your application works as expected with the secret in place of the hardcoded credentials.

Step 3: Rotate the secret

The last step is to revoke the hardcoded credentials by rotating the secret. Rotation is the process
of periodically updating a secret. When you rotate a secret, you update the credentials in both the
secret and the database. Secrets Manager can automatically rotate a secret for you on a schedule
you set.

Part of setting up rotation is ensuring that the Lambda rotation function can access both Secrets
Manager and your database. When you turn on automatic rotation, Secrets Manager creates the
Lambda rotation function in the same VPC as your database so that it has network access to the
database. The Lambda rotation function must also be able to make calls to Secrets Manager to
update the secret. We recommend that you create a Secrets Manager endpoint in the VPC so that
calls from Lambda to Secrets Manager don't leave AWS infrastructure. For instructions, see the
section called “VPC endpoints (AWS PrivateLink)”.

To turn on rotation

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

Step 2: Update your code 24

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

3. On the Secret details page, in the Rotation configuration section, choose Edit rotation.

4. In the Edit rotation configuration dialog box, do the following:

a. Turn on Automatic rotation.

b. Under Rotation schedule, enter your schedule in UTC time zone.

c. Choose Rotate immediately when the secret is stored to rotate your secret when you
save your changes.

d. Under Rotation function, choose Create a new Lambda function and enter a name for
your new function. Secrets Manager adds "SecretsManager" to the beginning of your
function name.

e. For Rotation strategy, choose Single user.

f. Choose Save.

To check that the secret rotated

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret.

3. On the Secret details page, scroll down and choose Retrieve secret value.

If the secret value changed, then rotation succeeded. If the secret value didn't change, you
need to Troubleshoot rotation by looking at the CloudWatch Logs for the rotation function.

Test that your application works as expected with the rotated secret.

Next steps

After you remove a hardcoded secret from your code, some ideas to consider next:

• You can improve performance and reduce costs by caching secrets. For more information, see Get
secrets.

• You can choose a different rotation schedule. For more information, see the section called
“Rotation schedules”.

• To find hardcoded secrets in your Java and Python applications, we recommend Amazon
CodeGuru Reviewer.

Next steps 25

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html

AWS Secrets Manager User Guide

Set up alternating users rotation for AWS Secrets Manager

In this tutorial, you learn how to set up alternating users rotation for a secret that contains
database credentials. Alternating users rotation is a rotation strategy where Secrets Manager
clones the user and then alternates which user's credentials are updated. This strategy is a good
choice if you need high availability for your secret, because one of the alternating users has current
credentials to the database while the other one is being updated. For more information, see the
section called “Alternating users”.

To set up alternating users rotation, you need two secrets:

• One secret with the credentials that you want to rotate.

• A second secret that has admin credentials.

This user has permissions to clone the first user and change the first users' password. In this
tutorial, you have Amazon RDS create this secret for an admin user. Amazon RDS also manages
the admin password rotation. For more information, see the section called “Managed rotation”.

The first part of this tutorial is setting up a realistic environment. To show you how rotation works,
this tutorial uses an example Amazon RDS MySQL database. For security, the database is in a
VPC that restricts inbound internet access. To connect to the database from your local computer
through the internet, you use a bastion host, a server in the VPC that can connect to the database,
but that also allows SSH connections from the internet. The bastion host in this tutorial is an
Amazon EC2 instance, and the security groups for the instance prevent other types of connections.

After you finish the tutorial, we recommend that you clean up the resources from the tutorial.
Don't use them in a production setting.

Secrets Manager rotation uses an AWS Lambda function to update the secret and the database. For
information about the costs of using a Lambda function, see Pricing.

Tutorial:

• Permissions

• Prerequisites

• Step 1: Create an Amazon RDS database user

• Step 2: Create a secret for the user credentials

• Step 3: Test the rotated secret

Alternating users rotation 26

AWS Secrets Manager User Guide

• Step 4: Clean up resources

• Next steps

Permissions

For the tutorial prerequisites, you need administrative permissions to your AWS account. In a
production setting, it is a best practice to use different roles for each of the steps. For example,
a role with database admin permissions would create the Amazon RDS database, and a role with
network admin permissions would set up the VPC and security groups. For the tutorial steps, we
recommend you continue using the same identity.

For information about how to set up permissions in a production environment, see the section
called “Authentication and access control”.

Prerequisites

For this tutorial, you need the following:

• Prereq A: Amazon VPC

• Prereq B: Amazon EC2 instance

• Prereq C: Amazon RDS database and a Secrets Manager secret for the admin credentials

• Prereq D: Allow your local computer to connect to the EC2 instance

Prereq A: Amazon VPC

In this step, you create a VPC that you can launch an Amazon RDS database and an Amazon EC2
instance into. In a later step, you'll use your computer to connect through the internet to the
bastion and then to the database, so you need to allow traffic out of the VPC. To do this, Amazon
VPC attaches an internet gateway to the VPC and adds a route in the route table so that traffic
destined for outside the VPC is sent to the internet gateway.

Within the VPC, you create a Secrets Manager endpoint and an Amazon RDS endpoint. When you
set up automatic rotation in a later step, Secrets Manager creates a Lambda rotation function
within the VPC so that it can access the database. The Lambda rotation function also calls
Secrets Manager to update the secret, and it calls Amazon RDS to get the database connection
information. By creating endpoints within the VPC, you ensure that calls from the Lambda function
to Secrets Manager and Amazon RDS don't leave AWS infrastructure. Instead, they are routed to
the endpoints within the VPC.

Permissions 27

AWS Secrets Manager User Guide

To create a VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose Create VPC.

3. On the Create VPC page, choose VPC and more.

4. Under Name tag auto-generation, under Auto-generate, enter SecretsManagerTutorial.

5. For DNS options, choose both Enable DNS hostnames and Enable DNS resolution.

6. Choose Create VPC.

To create a Secrets Manager endpoint within the VPC

1. In the Amazon VPC console, under Endpoints, choose Create Endpoint.

2. Under Endpoint settings, for Name, enter SecretsManagerTutorialEndpoint.

3. Under Services, enter secretsmanager to filter the list, and then select the Secrets
Manager endpoint in your AWS Region. For example, in the US East (N. Virginia), choose
com.amazonaws.us-east-1.secretsmanager.

4. For VPC, choose vpc**** (SecretsManagerTutorial).

5. For Subnets, select all Availability Zones, and then for each one, choose a Subnet ID to
include.

6. For IP address type, choose IPv4.

7. For Security groups, choose the default security group.

8. For Policy, choose Full access.

9. Choose Create endpoint.

To create an Amazon RDS endpoint within the VPC

1. In the Amazon VPC console, under Endpoints, choose Create Endpoint.

2. Under Endpoint settings, for Name, enter RDSTutorialEndpoint.

3. Under Services, enter rds to filter the list, and then select the Amazon RDS endpoint in
your AWS Region. For example, in the US East (N. Virginia), choose com.amazonaws.us-
east-1.rds.

4. For VPC, choose vpc**** (SecretsManagerTutorial).

Prerequisites 28

https://console.aws.amazon.com/vpc/

AWS Secrets Manager User Guide

5. For Subnets, select all Availability Zones, and then for each one, choose a Subnet ID to
include.

6. For IP address type, choose IPv4.

7. For Security groups, choose the default security group.

8. For Policy, choose Full access.

9. Choose Create endpoint.

Prereq B: Amazon EC2 instance

The Amazon RDS database you create in a later step will be in the VPC, so to access it, you need a
bastion host. The bastion host is also in the VPC, but in a later step, you configure a security group
to allow your local computer to connect to the bastion host with SSH.

To create an EC2 instance for a bastion host

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Instances and then choose Launch Instances.

3. Under Name and tags, for Name, enter SecretsManagerTutorialInstance.

4. Under Application and OS Images, keep the default Amazon Linux 2 AMI (HMV) Kernel
5.10.

5. Under Instance type, keep the default t2.micro.

6. Under Key pair, choose Create key pair.

In the Create key pair dialog box, for Key pair name, enter
SecretsManagerTutorialKeyPair, and then choose Create key pair.

The key pair is automatically downloaded.

7. Under Network settings, choose Edit, and then do the following:

a. For VPC, choose vpc-**** SecretsManagerTutorial.

b. For Auto-assign Public IP, choose Enable.

c. For Firewall, choose Select existing security group.

d. For Common security groups, choose default.

8. Choose Launch instance.

Prerequisites 29

https://console.aws.amazon.com/ec2/

AWS Secrets Manager User Guide

Prereq C: Amazon RDS database and a Secrets Manager secret for the admin
credentials

In this step, you create an Amazon RDS MySQL database and configure it so that Amazon RDS
creates a secret to contain the admin credentials. Then Amazon RDS automatically manages
rotation of the admin secret for you. For more information, see Managed rotation.

As part of creating your database, you specify the bastion host you created in the previous step.
Then Amazon RDS sets up security groups so that the database and the instance can access each
other. You add a rule to the security group attached to the instance to allow your local computer to
connect to it as well.

To create an Amazon RDS database with an Secrets Manager secret that contains the admin
credentials

1. In the Amazon RDS console, choose Create database.

2. In the Engine options section, for Engine type, choose MySQL.

3. In the Templates section, choose Free tier.

4. In the Settings section, do the following:

a. For DB instance identifier, enter SecretsManagerTutorial.

b. Under Credential settings, select Manage master credentials in AWS Secrets Manager.

5. In the Connectivity section, for Computer resource, choose Connect to an EC2 computer
resource, and then for EC2 Instance, choose SecretsManagerTutorialInstance.

6. Choose Create database.

Prereq D: Allow your local computer to connect to the EC2 instance

In this step, you configure the EC2 instance you created in Prereq B to allow your local computer
to connect to it. To do this, you edit the security group that Amazon RDS added in Prereq C to
include a rule that allows your computer's IP address to connect with SSH. The rule allows your
local computer (identified by your current IP address) to connect to the bastion host by using SSH
over the internet.

To allow your local computer to connect to the EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Prerequisites 30

https://console.aws.amazon.com/ec2/

AWS Secrets Manager User Guide

2. On the EC2 instance SecretsManagerTutorialInstance, on the Security tab, under Security
groups, choose sg-*** (ec2-rds-X).

3. Under Input rules, choose Edit inbound rules.

4. Choose Add rule, and then for the rule, do the following:

a. For Type, choose SSH.

b. For Source type, choose My IP.

Step 1: Create an Amazon RDS database user

First, you need a user whose credentials will be stored in the secret. To create the user, log into the
Amazon RDS database with admin credentials. For simplicity, in the tutorial, you create a user with
full permission to a database. In a production setting, this is not typical, and we recommend that
you follow the principle of least privilege.

To connect to the database, you use a MySQL client tool. In this tutorial, you use MySQL
Workbench, a GUI-based application. To install MySQL Workbench, see Download MySQL
Workbench.

To connect to the database, create a connection configuration in MySQL Workbench. For the
configuration, you need some information from both Amazon EC2 and Amazon RDS.

To create a database connection in MySQL Workbench

1. In MySQL Workbench, next to MySQL Connections, choose the (+) button.

2. In the Setup New Connection dialog box, do the following:

a. For Connection Name, enter SecretsManagerTutorial.

b. For Connection Method, choose Standard TCP/IP over SSH.

c. On the Parameters tab, do the following:

i. For SSH Hostname, enter the public IP address of the Amazon EC2 instance.

You can find the IP address on the Amazon EC2 console by choosing the instance
SecretsManagerTutorialInstance. Copy the IP address under Public IPv4 DNS.

ii. For SSH Username, enter ec2-user.

iii. For SSH Keyfile, choose the key pair file SecretsManagerTutorialKeyPair.pem you
downloaded in the previous prerequisite.

Step 1: Create an Amazon RDS database user 31

http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/downloads/workbench/

AWS Secrets Manager User Guide

iv. For MySQL Hostname, enter the Amazon RDS endpoint address.

You can find the endpoint address on the Amazon RDS console by choosing the
database instance secretsmanagertutorialdb. Copy the address under Endpoint.

v. For Username, enter admin.

d. Choose OK.

To retrieve the admin password

1. In the Amazon RDS console, navigate to your database.

2. On the Configuration tab, under Master Credentials ARN, choose Manage in Secrets
Manager.

The Secrets Manager console opens.

3. In the secret details page, choose Retrieve secret value.

4. The password appears in the Secret value section.

To create a database user

1. In MySQL Workbench, choose the connection SecretsManagerTutorial.

2. Enter the admin password you retrieved from the secret.

3. In MySQL Workbench, in the Query window, enter the following commands (including a strong
password) and then choose Execute. The rotation function tests the updated secret by using
SELECT, so the appuser must have that privilege at minimum.

CREATE DATABASE myDB;
CREATE USER 'appuser'@'%' IDENTIFIED BY 'EXAMPLE-PASSWORD';
GRANT SELECT ON myDB . * TO 'appuser'@'%';

In the Output window, you see the commands are successful.

Step 2: Create a secret for the user credentials

Next, you create a secret to store the credentials of the user you just created. This is the secret
you'll be rotating. You turn on automatic rotation, and to indicate the alternating users strategy,
you choose a separate superuser secret that has permission to change the first user's password.

Step 2: Create a secret for the user credentials 32

AWS Secrets Manager User Guide

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose Credentials for Amazon RDS database.

b. For Credentials, enter the username appuser and the password you entered for the
database user you created using MySQL Workbench.

c. For Database, choose secretsmanagertutorialdb.

d. Choose Next.

4. On the Configure secret page, for Secret name, enter SecretsManagerTutorialAppuser
and then choose Next.

5. On the Configure rotation page, do the following:

a. Turn on Automatic rotation.

b. For Rotation schedule, set a schedule of Days: 2 Days with Duration: 2h. Keep Rotate
immediately selected.

c. For Rotation function, choose Create a rotation function, and then for the function
name, enter tutorial-alternating-users-rotation.

d. For Rotation strategy, choose Alternating users, and then under Admin credential
secret, choose the secret named rds!cluster... which has a Description that includes
the name of the database you created in this tutorial secretsmanagertutorial,
for example Secret associated with primary RDS DB instance:
arn:aws:rds:Region:AccountId:db:secretsmanagertutorial.

e. Choose Next.

6. On the Review page, choose Store.

Secrets Manager returns to the secret details page. At the top of the page, you can see the
rotation configuration status. Secrets Manager uses CloudFormation to create resources such
as the Lambda rotation function and an execution role that runs the Lambda function. When
CloudFormation finishes, the banner changes to Secret scheduled for rotation. The first
rotation is complete.

Step 2: Create a secret for the user credentials 33

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

Step 3: Test the rotated secret

Now that the secret is rotated, you can check that the secret contains valid new credentials. The
password in the secret has changed from the original credentials.

To retrieve the new password from the secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret SecretsManagerTutorialAppuser.

3. On the Secret details page, scroll down and choose Retrieve secret value.

4. In the Key/value table, copy the Secret value for password.

To test the credentials

1. In MySQL Workbench, right-click the connection SecretsManagerTutorial and then choose
Edit Connection.

2. In the Manage Server Connections dialog box, for Username, enter appuser, and then
choose Close.

3. Back in MySQL Workbench, choose the connection SecretsManagerTutorial.

4. In the Open SSH Connection dialog box, for Password, paste the password you retrieved from
the secret, and then choose OK.

If the credentials are valid, then MySQL Workbench opens to the design page for the database.

This shows that the secret rotation is successful. The credentials in the secret have been updated
and it is a valid password to connect to the database.

Step 4: Clean up resources

If you want to try another rotation strategy, single user rotation, skip cleaning up resources and go
to the section called “Single user rotation”.

Otherwise, to avoid potential charges, and to remove the EC2 instance that has access to the
internet, delete the following resources you created in this tutorial and its prerequisites:

• Amazon RDS database instance. For instructions, see Deleting a DB instance in the Amazon RDS
User Guide.

Step 3: Test the rotated secret 34

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DeleteInstance.html

AWS Secrets Manager User Guide

• Amazon EC2 instance. For instructions, see Terminate an instance in the Amazon EC2 User Guide.

• Secrets Manager secret SecretsManagerTutorialAppuser. For instructions, see the section
called “Delete a secret”.

• Secrets Manager endpoint. For instructions, see Delete a VPC endpoint in the AWS PrivateLink
Guide.

• VPC endpoint. For instructions, see Delete your VPC in the AWS PrivateLink Guide.

Next steps

• Learn how to retrieve secrets in your applications.

• Learn about other rotation schedules.

Set up single user rotation for AWS Secrets Manager

In this tutorial, you learn how to set up single user rotation for a secret that contains database
credentials. Single user rotation is a rotation strategy where Secrets Manager updates a user's
credentials in both the secret and the database. For more information, see the section called
“Single user”.

After you finish the tutorial, we recommend that you clean up the resources from the tutorial.
Don't use them in a production setting.

Secrets Manager rotation uses an AWS Lambda function to update the secret and the database. For
information about the costs of using a Lambda function, see Pricing.

Contents

• Permissions

• Prerequisites

• Step 1: Create an Amazon RDS database user

• Step 2: Create a secret for the database user credentials

• Step 3: Test the rotated password

• Step 4: Clean up resources

• Next steps

Next steps 35

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html#terminating-instances-console
https://docs.aws.amazon.com/vpc/latest/privatelink/delete-vpc-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting

AWS Secrets Manager User Guide

Permissions

For the tutorial prerequisites, you need administrative permissions to your AWS account. In a
production setting, it is a best practice to use different roles for each of the steps. For example,
a role with database admin permissions would create the Amazon RDS database, and a role with
network admin permissions would set up the VPC and security groups. For the tutorial steps, we
recommend you continue using the same identity.

For information about how to set up permissions in a production environment, see the section
called “Authentication and access control”.

Prerequisites

The prerequisite for this tutorial is the section called “Alternating users rotation”. Don't clean up
the resources at the end of the first tutorial. After that tutorial, you have a realistic environment
with an Amazon RDS database and a Secrets Manager secret that contains admin credentials for
the database. You also have a second secret that contains credentials for a database user, but you
don't use that secret in this tutorial.

You also have a connection configured in MySQL Workbench to connect to the database with the
admin credentials.

Step 1: Create an Amazon RDS database user

First, you need a user whose credentials will be stored in the secret. To create the user, log into
the Amazon RDS database with admin credentials that are stored in a secret. For simplicity, in the
tutorial, you create a user with full permission to a database. In a production setting, this is not
typical, and we recommend that you follow the principle of least privilege.

To retrieve the admin password

1. In the Amazon RDS console, navigate to your database.

2. On the Configuration tab, under Master Credentials ARN, choose Manage in Secrets
Manager.

The Secrets Manager console opens.

3. In the secret details page, choose Retrieve secret value.

4. The password appears in the Secret value section.

Permissions 36

AWS Secrets Manager User Guide

To create a database user

1. In MySQL Workbench, right-click the connection SecretsManagerTutorial and then choose
Edit Connection.

2. In the Manage Server Connections dialog box, for Username, enter admin, and then choose
Close.

3. Back in MySQL Workbench, choose the connection SecretsManagerTutorial.

4. Enter the admin password you retrieved from the secret.

5. In MySQL Workbench, in the Query window, enter the following commands (including a strong
password) and then choose Execute. The rotation function tests the updated secret by using
SELECT, so the dbuser must have that privilege at minimum.

CREATE USER 'dbuser'@'%' IDENTIFIED BY 'EXAMPLE-PASSWORD';
GRANT SELECT ON myDB . * TO 'dbuser'@'%';

In the Output window, you see the commands are successful.

Step 2: Create a secret for the database user credentials

Next, you create a secret to store the credentials of the user you just created, and you turn on
automatic rotation, including an immediate rotation. Secrets Manager rotates the secret, which
means the password is programmatically generated – no human has seen this new password.
Having the rotation begin immediately can also help you determine if rotation is set up correctly.

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose Credentials for Amazon RDS database.

b. For Credentials, enter the username dbuser and the password you entered for the
database user you created using MySQL Workbench.

c. For Database, choose secretsmanagertutorialdb.

d. Choose Next.

4. On the Configure secret page, for Secret name, enter SecretsManagerTutorialDbuser
and then choose Next.

Step 2: Create a secret for the database user credentials 37

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

5. On the Configure rotation page, do the following:

a. Turn on Automatic rotation.

b. For Rotation schedule, set a schedule of Days: 2 Days with Duration: 2h. Keep Rotate
immediately selected.

c. For Rotation function, choose Create a rotation function, and then for the function
name, enter tutorial-single-user-rotation.

d. For Rotation strategy, choose Single user.

e. Choose Next.

6. On the Review page, choose Store.

Secrets Manager returns to the secret details page. At the top of the page, you can see the
rotation configuration status. Secrets Manager uses CloudFormation to create resources such
as the Lambda rotation function and an execution role that runs the Lambda function. When
CloudFormation finishes, the banner changes to Secret scheduled for rotation. The first
rotation is complete.

Step 3: Test the rotated password

After the first secret rotation, which might take a few seconds, you can check that the secret still
contains valid credentials. The password in the secret has changed from the original credentials.

To retrieve the new password from the secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret SecretsManagerTutorialDbuser.

3. On the Secret details page, scroll down and choose Retrieve secret value.

4. In the Key/value table, copy the Secret value for password.

To test the credentials

1. In MySQL Workbench, right-click the connection SecretsManagerTutorial and then choose
Edit Connection.

2. In the Manage Server Connections dialog box, for Username, enter dbuser, and then choose
Close.

3. Back in MySQL Workbench, choose the connection SecretsManagerTutorial.

Step 3: Test the rotated password 38

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

4. In the Open SSH Connection dialog box, for Password, paste the password you retrieved from
the secret, and then choose OK.

If the credentials are valid, then MySQL Workbench opens to the design page for the database.

Step 4: Clean up resources

To avoid potential charges, delete the secret you created in this tutorial. For instructions, see the
section called “Delete a secret”.

To clean up resources created in the previous tutorial, see the section called “Step 4: Clean up
resources”.

Next steps

• Learn how to retrieve secrets in your applications. See Get secrets.

• Learn about other rotation schedules. See the section called “Rotation schedules”.

Step 4: Clean up resources 39

AWS Secrets Manager User Guide

Create an AWS Secrets Manager secret

A secret can be a password, a set of credentials such as a user name and password, an OAuth token,
or other secret information that you store in an encrypted form in Secrets Manager.

Tip

For Amazon RDS and Amazon Redshift admin user credentials, we recommend you use
managed secrets. You create the managed secret through the managing service, and then
you can use managed rotation.

When you use the console to store database credentials for a source database that is replicated
to other Regions, the secret contains connection information for the source database. If you then
replicate the secret, the replicas are copies of the source secret and contain the same connection
information. You can add additional key/value pairs to the secret for regional connection
information.

To create a secret, you need the permissions granted by the SecretsManagerReadWrite managed
policy.

Secrets Manager generates a CloudTrail log entry when you create a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To create a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, do one of the following:

• To store database credentials, choose the type of database credentials to store. Then
choose the Database and then enter the Credentials.

• To store API keys, access tokens, credentials that aren't for databases, choose Other
type of secret.

40

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

In Key/value pairs, either enter your secret in JSON Key/value pairs, or choose the
Plaintext tab and enter the secret in any format. You can store up to 65536 bytes in
the secret. Some examples:

API key

Enter as key/value pairs:

ClientID : my_client_id

ClientSecret : wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

OAuth token

Enter as plaintext:

AKIAI44QH8DHBEXAMPLE

Digital certificate

Enter as plaintext:

-----BEGIN CERTIFICATE-----
EXAMPLE
-----END CERTIFICATE-----

Private key

Enter as plaintext:

–--- BEGIN PRIVATE KEY ----
EXAMPLE
––-- END PRIVATE KEY –---

• To store a managed external secrets from an Secrets Manager partner, choose Partner
secret. Then choose the partner and provide the details that identify the secret for
the partner. For details, see Using AWS Secrets Manager managed external secrets to
manage Third Party secrets.

b. For Encryption key, choose the AWS KMS key that Secrets Manager uses to encrypt the
secret value. For more information, see Secret encryption and decryption.

41

AWS Secrets Manager User Guide

• For most cases, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key.

• If you need to access the secret from another AWS account, or if you want to use your
own KMS key so that you can rotate it or apply a key policy to it, choose a customer
managed key from the list or choose Add new key to create one. For information
about the costs of using a customer managed key, see Pricing.

You must have the section called “Permissions for the KMS key”. For information
about cross-account access, see the section called “Cross-account access”.

c. Choose Next.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description. Secret names can contain 1-512
alphanumeric and /_+=.@- characters.

b. (Optional) If you are created an external secret, enter the metadata required by the
Secrets Manager partner that holds the secret.

c. (Optional) In the Tags section, add tags to your secret. For tagging strategies, see the
section called “Tag secrets”. Don't store sensitive information in tags because they aren't
encrypted.

d. (Optional) In Resource permissions, to add a resource policy to your secret, choose Edit
permissions. For more information, see the section called “Resource-based policies”.

e. (Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it later. For
more information, see Multi-region replication.

f. Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can also
keep rotation off for now and then turn it on later. For more information, see Rotate secrets.
Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.

42

AWS Secrets Manager User Guide

AWS CLI

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called “Mitigate
the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

Example Create a secret from database credentials in a JSON file

The following create-secret example creates a secret from credentials in a file. For more
information, see Loading AWS CLI parameters from a file in the AWS CLI User Guide.

For Secrets Manager to be able to rotate the secret, you must make sure the JSON matches the
JSON structure of a secret.

aws secretsmanager create-secret \
 --name MyTestSecret \
 --secret-string file://mycreds.json

Contents of mycreds.json:

{
 "engine": "mysql",
 "username": "saanvis",
 "password": "EXAMPLE-PASSWORD",
 "host": "my-database-endpoint.us-west-2.rds.amazonaws.com",
 "dbname": "myDatabase",
 "port": "3306"
}

Example Create a secret

The following create-secret example creates a secret with two key-value pairs.

aws secretsmanager create-secret \
 --name MyTestSecret \
 --description "My test secret created with the CLI." \
 --secret-string '{"user":"diegor","password":"EXAMPLE-PASSWORD"}'

Example Create a secret

The following create-secret example creates a secret with two tags.

AWS CLI 43

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/secretsmanager/create-secret.html
https://docs.aws.amazon.com//cli/latest/userguide/cli-usage-parameters-file.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/secretsmanager/create-secret.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/create-secret.html

AWS Secrets Manager User Guide

aws secretsmanager create-secret \
 --name MyTestSecret \
 --description "My test secret created with the CLI." \
 --secret-string '{"user":"diegor","password":"EXAMPLE-PASSWORD"}' \
 --tags '[{"Key": "FirstTag", "Value": "FirstValue"}, {"Key": "SecondTag", "Value":
 "SecondValue"}]'

AWS SDK

To create a secret by using one of the AWS SDKs, use the CreateSecret action. For more
information, see the section called “AWS SDKs”.

What's in a Secrets Manager secret?

In Secrets Manager, a secret consists of secret information, the secret value, plus metadata about
the secret. A secret value can be a string or binary.

To store multiple string values in one secret, we recommend that you use a JSON text string with
key-value pairs, for example:

{
 "host" : "ProdServer-01.databases.example.com",
 "port" : "8888",
 "username" : "administrator",
 "password" : "EXAMPLE-PASSWORD",
 "dbname" : "MyDatabase",
 "engine" : "mysql"
}

For database secrets, if you want to turn on automatic rotation, the secret must contain connection
information for the database in the correct JSON structure. For more information, see the section
called “JSON structure of a secret”.

Metadata

A secret's metadata includes:

• An Amazon Resource Name (ARN) with the following format:

AWS SDK 44

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html

AWS Secrets Manager User Guide

arn:aws:secretsmanager:<Region>:<AccountId>:secret:SecretName-6RandomCharacters

Secrets Manager includes six random characters at the end of the secret name to help ensure
that the secret ARN is unique. If the original secret is deleted, and then a new secret is created
with the same name, the two secrets have different ARNs because of these characters. Users with
access to the old secret don't automatically get access to the new secret because the ARNs are
different.

• The name of the secret, a description, a resource policy, and tags.

• The ARN for an encryption key, an AWS KMS key that Secrets Manager uses to encrypt and
decrypt the secret value. Secrets Manager stores secret text in an encrypted form and encrypts
the secret in transit. See the section called “Secret encryption and decryption”.

• Information about how to rotate the secret, if you set up rotation. See Rotate secrets.

Secrets Manager uses IAM permissions policies to make sure that only authorized users can access
or modify a secret. See Authentication and access control for AWS Secrets Manager.

A secret has versions that hold copies of the encrypted secret value. When you change the secret
value, or the secret is rotated, Secrets Manager creates a new version. See the section called “Secret
versions”.

You can use a secret across multiple AWS Regions by replicating it. When you replicate a secret,
you create a copy of the original or primary secret called a replica secret. The replica secret remains
linked to the primary secret. See Multi-region replication.

See Manage secrets.

Secret versions

A secret has versions that hold copies of the encrypted secret value. When you change the secret
value, or the secret is rotated, Secrets Manager creates a new version.

Secrets Manager doesn't store a linear history of secrets with versions. Instead, it keeps track of
three specific versions by labeling them:

• The current version – AWSCURRENT

• The previous version – AWSPREVIOUS

• The pending version (during rotation) – AWSPENDING

Secret versions 45

AWS Secrets Manager User Guide

A secret always has a version labeled AWSCURRENT, and Secrets Manager returns that version by
default when you retrieve the secret value.

You can also label versions with your own labels by calling update-secret-version-stage in
the AWS CLI. You can attach up to 20 labels to versions in a secret. Two versions of a secret can't
have the same staging label. Versions can have multiple labels.

Secrets Manager never removes labeled versions, but unlabeled versions are considered
deprecated. Secrets Manager removes deprecated versions when there are more than 100. Secrets
Manager doesn't remove versions created less than 24 hours ago.

The following figure shows a secret that has AWS labeled versions and customer labeled versions.
The versions without labels are considered deprecated and will be removed by Secrets Manager at
some point in the future.

JSON structure of AWS Secrets Manager secrets

You can store any text or binary in a Secrets Manager secret up to the maximum size of 65,536
Bytes.

If you use the section called “Rotation by Lambda function”, a secret must contain specific
JSON fields that the rotation function expects. For example, for a secret that contains database

JSON structure of a secret 46

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/update-secret-version-stage.html

AWS Secrets Manager User Guide

credentials, the rotation function connects to the database to update credentials, so the secret
must contain the database connection information.

If you use the console to edit rotation for a database secret, the secret must contain specific JSON
key-value pairs that identify the database. Secrets Manager uses these fields to query the database
to find the correct VPC to store a rotation function in.

JSON key names are case-sensitive.

Topics

• Amazon RDS and Aurora credentials

• Amazon Redshift credentials

• Amazon Redshift Serverless credentials

• Amazon DocumentDB credentials

• Amazon Timestream for InfluxDB secret structure

• Amazon ElastiCache credentials

• Active Directory credentials

Amazon RDS and Aurora credentials

To use the rotation function templates provided by Secrets Manager, use the following JSON
structure. You can add more key/value pairs, for example to contain connection information for
replica databases in other Regions.

DB2

For Amazon RDS Db2 instances, because users can't change their own passwords, you must
provide admin credentials in a separate secret.

{
 "engine": "db2",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": <TCP port number. If not specified, defaults to 3306>,
 "masterarn": "<ARN of the elevated secret>",
 "dbInstanceIdentifier": <optional: ID of the instance. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>",

Amazon RDS and Aurora credentials 47

AWS Secrets Manager User Guide

 "dbClusterIdentifier": <optional: ID of the cluster. Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
}

MariaDB

{
 "engine": "mariadb",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": <TCP port number. If not specified, defaults to 3306>,
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>",
 "dbInstanceIdentifier": <optional: ID of the instance. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>",
 "dbClusterIdentifier": <optional: ID of the cluster. Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
}

MySQL

{
 "engine": "mysql",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": <TCP port number. If not specified, defaults to 3306>,
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>",
 "dbInstanceIdentifier": <optional: ID of the instance. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>",
 "dbClusterIdentifier": <optional: ID of the cluster. Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
}

Oracle

{
 "engine": "oracle",

Amazon RDS and Aurora credentials 48

AWS Secrets Manager User Guide

 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name>",
 "port": <TCP port number. If not specified, defaults to 1521>,
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>",
 "dbInstanceIdentifier": <optional: ID of the instance. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>",
 "dbClusterIdentifier": <optional: ID of the cluster. Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
}

Postgres

{
 "engine": "postgres",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to 'postgres'>",
 "port": <TCP port number. If not specified, defaults to 5432>,
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>",
 "dbInstanceIdentifier": <optional: ID of the instance. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>",
 "dbClusterIdentifier": <optional: ID of the cluster. Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
}

SQLServer

{
 "engine": "sqlserver",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to 'master'>",
 "port": <TCP port number. If not specified, defaults to 1433>,
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>",
 "dbInstanceIdentifier": <optional: ID of the instance. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>",

Amazon RDS and Aurora credentials 49

AWS Secrets Manager User Guide

 "dbClusterIdentifier": <optional: ID of the cluster.Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
}

Amazon Redshift credentials

To use the rotation function templates provided by Secrets Manager, use the following JSON
structure. You can add more key/value pairs, for example to contain connection information for
replica databases in other Regions.

{
 "engine": "redshift",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "dbClusterIdentifier": "<optional: database ID. Required for configuring rotation in
 the console.>"
 "port": <optional: TCP port number. If not specified, defaults to 5439>
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>"
}

Amazon Redshift Serverless credentials

To use the rotation function templates provided by Secrets Manager, use the following JSON
structure. You can add more key/value pairs, for example to contain connection information for
replica databases in other Regions.

{
 "engine": "redshift",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "namespaceName": "<optional: namespace name, Required for configuring rotation in the
 console.> "
 "port": <optional: TCP port number. If not specified, defaults to 5439>
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>"

Amazon Redshift credentials 50

AWS Secrets Manager User Guide

}

Amazon DocumentDB credentials

To use the rotation function templates provided by Secrets Manager, use the following JSON
structure. You can add more key/value pairs, for example to contain connection information for
replica databases in other Regions.

{
 "engine": "mongo",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": <TCP port number. If not specified, defaults to 27017>,
 "ssl": <true|false. If not specified, defaults to false>,
 "masterarn": "<optional: ARN of the elevated secret. Required for the the section
 called “Alternating users”.>",
 "dbClusterIdentifier": "<optional: database cluster ID. Alternately, use
 dbInstanceIdentifier. Required for configuring rotation in the console.>"
 "dbInstanceIdentifier": "<optional: database instance ID. Alternately, use
 dbClusterIdentifier. Required for configuring rotation in the console.>"
}

Amazon Timestream for InfluxDB secret structure

To rotate Timestream secrets, you can use the the section called “Amazon Timestream for
InfluxDB” rotation templates.

For more information, see How Amazon Timestream for InfluxDB uses secrets in the Amazon
Timestream Developer Guide.

The Timestream secrets must be in the correct JSON structure to be able to use the rotation
templates. For more information, see What's in the secret in the Amazon Timestream Developer
Guide.

Amazon ElastiCache credentials

The following example shows the JSON structure for a secret that stores ElastiCache credentials.

{

Amazon DocumentDB credentials 51

https://docs.aws.amazon.com/timestream/latest/developerguide/timestream-for-influx-security-db-secrets.html
https://docs.aws.amazon.com/timestream/latest/developerguide/timestream-for-influx-security-db-secrets.html#timestream-for-influx-security-db-secrets-definition

AWS Secrets Manager User Guide

 "password": "<password>",
 "username": "<username>"
 "user_arn": "ARN of the Amazon EC2 user"
}

For more information, see Automatically rotating passwords for users in the Amazon ElastiCache
User Guide.

Active Directory credentials

AWS Directory Service uses secrets to store Active Directory credentials. For more information,
see Seamlessly join an Amazon EC2 Linux instance to your Managed AD Active Directory in the
AWS Directory Service Administration Guide. Seamless domain join requires the key names in the
following examples. If you don't use seamless domain join, you can change the names of the keys
in the secret using environment variables as described in the rotation function template code.

To rotate Active Directory secrets, you can use the Active Directory rotation templates.

Active Directory credential

{
 "awsSeamlessDomainUsername": "<username>",
 "awsSeamlessDomainPassword": "<password>"
}

If you want to rotate the secret, you include the domain directory ID.

{
 "awsSeamlessDomainDirectoryId": "d-12345abc6e",
 "awsSeamlessDomainUsername": "<username>",
 "awsSeamlessDomainPassword": "<password>"
}

If the secret is used in conjunction with a secret that contains a keytab, you include the keytab
secret ARNs.

{
 "awsSeamlessDomainDirectoryId": "d-12345abc6e",
 "awsSeamlessDomainUsername": "<username>",
 "awsSeamlessDomainPassword": "<password>",

Active Directory credentials 52

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/seamlessly_join_linux_instance.html

AWS Secrets Manager User Guide

 "directoryServiceSecretVersion": 1,
 "schemaVersion": "1.0",
 "keytabArns": [
 "<ARN of child keytab secret 1>,
 "<ARN of child keytab secret 2>,
 "<ARN of child keytab secret 3>,
],
 "lastModifiedDateTime": "2021-07-19 17:06:58"
}

Active Directory keytab

For information about using keytab files to authenticate to Active Directory accounts on
Amazon EC2, see Deploying and configuring Active Directory authentication with SQL Server
2017 on Amazon Linux 2.

{
 "awsSeamlessDomainDirectoryId": "d-12345abc6e",
 "schemaVersion": "1.0",
 "name": "< name>",
 "principals": [
 "aduser@MY.EXAMPLE.COM",
 "MSSQLSvc/test:1433@MY.EXAMPLE.COM"
],
 "keytabContents": "<keytab>",
 "parentSecretArn": "<ARN of parent secret>",
 "lastModifiedDateTime": "2021-07-19 17:06:58"
 "version": 1
}

Active Directory credentials 53

https://aws.amazon.com/blogs/database/deploying-and-configuring-active-directory-authentication-with-sql-server-2017-on-amazon-linux-2/
https://aws.amazon.com/blogs/database/deploying-and-configuring-active-directory-authentication-with-sql-server-2017-on-amazon-linux-2/

AWS Secrets Manager User Guide

Manage secrets with AWS Secrets Manager

Topics

• Update the value for an AWS Secrets Manager secret

• Generate a password with Secrets Manager

• Roll back a secret to a previous version

• Change the encryption key for an AWS Secrets Manager secret

• Modify an AWS Secrets Manager secret

• Find secrets in AWS Secrets Manager

• Delete an AWS Secrets Manager secret

• Restore an AWS Secrets Manager secret

• Tagging secrets in AWS Secrets Manager

Update the value for an AWS Secrets Manager secret

To update the value of your secret, you can use the console, the CLI, or an SDK. When you update
the secret value, Secrets Manager creates a new version of the secret with the staging label
AWSCURRENT. You can still access the old version, which has the label AWSPREVIOUS. You can also
add your own labels. For more information, see Secrets Manager versioning.

To update the secret value (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, on the Overview tab, in the Secret value section, choose Retrieve
secret value and then choose Edit.

Update a secret value 54

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

AWS CLI

To update the secret value (AWS CLI)

• When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called
“Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

The following put-secret-value creates a new version of a secret with two key-value pairs.

aws secretsmanager put-secret-value \
 --secret-id MyTestSecret \
 --secret-string "{\"user\":\"diegor\",\"password\":\"EXAMPLE-PASSWORD\"}"

The following put-secret-value creates a new version with a custom staging label. The
new version will have the labels MyLabel and AWSCURRENT.

aws secretsmanager put-secret-value \
 --secret-id MyTestSecret \
 --secret-string "{\"user\":\"diegor\",\"password\":\"EXAMPLE-PASSWORD\"}"
 --version-stages "MyLabel"

AWS SDK

We recommend you avoid calling PutSecretValue or UpdateSecret at a sustained rate of
more than once every 10 minutes. When you call PutSecretValue or UpdateSecret to update
the secret value, Secrets Manager creates a new version of the secret. Secrets Manager removes
unlabeled versions when there are more than 100, but it does not remove versions created less
than 24 hours ago. If you update the secret value more than once every 10 minutes, you create
more versions than Secrets Manager removes, and you will reach the quota for secret versions.

To update a secret value, use the following actions: UpdateSecret or PutSecretValue. For
more information, see the section called “AWS SDKs”.

Generate a password with Secrets Manager

A common pattern for using Secrets Manager is to generate a password in Secrets Manager and
then use that password in your database or service. You can do this using the following methods:

AWS CLI 55

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/put-secret-value.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/put-secret-value.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html

AWS Secrets Manager User Guide

• CloudFormation – See CloudFormation.

• AWS CLI – See get-random-password.

• AWS SDKs – See GetRandomPassword.

Roll back a secret to a previous version

You can revert a secret to a previous version by moving the labels attached to secret versions using
the AWS CLI. For information about how Secrets Manager stores versions of secrets, see the section
called “Secret versions”.

The following update-secret-version-stage example moves the AWSCURRENT staging label
to the previous version of a secret, which reverts the secret to the previous version. To find the
ID for the previous version, use list-secret-version-ids or view the versions in the Secrets
Manager console.

For this example, the version with the AWSCURRENT label is a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111 and the version with the AWSPREVIOUS label is a1b2c3d4-5678-90ab-cdef-
EXAMPLE22222. In this example, you move the AWSCURRENT label from version 11111 to 22222.
Because the AWSCURRENT label is removed from a version, update-secret-version-stage
automatically moves the AWSPREVIOUS label to that version (11111). The effect is that the
AWSCURRENT and AWSPREVIOUS versions are swapped.

aws secretsmanager update-secret-version-stage \
 --secret-id MyTestSecret \
 --version-stage AWSCURRENT \
 --move-to-version-id a1b2c3d4-5678-90ab-cdef-EXAMPLE22222 \
 --remove-from-version-id a1b2c3d4-5678-90ab-cdef-EXAMPLE11111

Change the encryption key for an AWS Secrets Manager secret

Secrets Manager uses envelope encryption with AWS KMS keys and data keys to protect each
secret value. For each secret, you can choose which KMS key to use. You can use the AWS managed
key aws/secretsmanager, or you can use a customer managed key. For most cases, we recommend
using aws/secretsmanager, and there is no cost for using it. If you need to access the secret from
another AWS account, or if you want to use your own KMS key so that you can rotate it or apply a
key policy to it, use a customer managed key. You must have the section called “Permissions for the
KMS key”. For information about the costs of using a customer managed key, see Pricing.

Roll back a secret to a previous version 56

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-random-password.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetRandomPassword.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/update-secret-version-stage.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/list-secret-version-ids.html

AWS Secrets Manager User Guide

You can change the encryption key for your secret. For example, if you want to access the secret
from another account, and the secret is currently encrypted using the AWS managed key aws/
secretsmanager, you can switch to a customer managed key.

Tip

If you want to rotate your customer managed key, we recommend using AWS KMS
automatic key rotation. For more information, see Rotating AWS KMS keys.

When you change the encryption key, Secrets Manager re-encrypts AWSCURRENT, AWSPENDING,
and AWSPREVIOUS versions with the new key. To avoid locking you out of the secret, Secrets
Manager keeps all existing versions encrypted with the previous key. That means you can decrypt
AWSCURRENT, AWSPENDING, and AWSPREVIOUS versions with the previous key or the new key. If
you don't have kms:Decrypt permission to the previous key, when you change the encryption
key, Secrets Manager can't decrypt the secret versions to re-encrypt them. In this case, the existing
versions are not re-encrypted.

To make it so AWSCURRENT can only be decrypted by the new encryption key, create a new version
of the secret with the new key. Then to be able to decrypt the AWSCURRENT secret version, you
must have permission to the new key.

If you deactivate the previous encryption key, you will not be able to decrypt any secret versions
except AWSCURRENT, AWSPENDING, and AWSPREVIOUS. If you have other labelled secret versions
that you want to retain access to, you need to recreate those versions with the new encryption key
using the the section called “AWS CLI”.

To change the encryption key for a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, in the Secrets details section, choose Actions, and then choose
Edit encryption key.

AWS CLI

If you change the encryption key for a secret and then deactivate the previous encryption key,
you will not be able to decrypt any secret versions except AWSCURRENT, AWSPENDING, and

AWS CLI 57

https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

AWSPREVIOUS. If you have other labelled secret versions that you want to retain access to, you
need to recreate those versions with the new encryption key using the the section called “AWS CLI”.

To change the encryption key for a secret (AWS CLI)

1. The following update-secret example updates the KMS key used to encrypt the secret
value. The KMS key must be in the same region as the secret.

aws secretsmanager update-secret \
 --secret-id MyTestSecret \
 --kms-key-id arn:aws:kms:us-west-2:123456789012:key/EXAMPLE1-90ab-cdef-fedc-
ba987EXAMPLE

2. (Optional) If you have secret versions that have custom labels, to re-encrypt them using the
new key, you must recreate those versions.

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called
“Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

a. Get the value of the secret version.

aws secretsmanager get-secret-value \
 --secret-id MyTestSecret \
 --version-stage MyCustomLabel

Make a note of the secret value.

b. Create a new version with that value.

aws secretsmanager put-secret-value \
 --secret-id testDescriptionUpdate \
 --secret-string "SecretValue" \
 --version-stages "MyCustomLabel"

Modify an AWS Secrets Manager secret

You can modify the metadata of a secret after it is created, depending on who created the secret.
For secrets created by other services, you might need to use the other service to update or rotate it.

Modify a secret 58

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/update-secret.html

AWS Secrets Manager User Guide

To determine who manages a secret, you can review the secret name. Secrets managed by other
services are prefixed with the ID of that service. Or, in the AWS CLI, call describe-secret, and then
review the field OwningService. For more information, see Secrets managed by other services.

For secrets you manage, you can modify the description, resource-based policy, the encryption
key, and tags. You can also change the encrypted secret value; however, we recommend you use
rotation to update secret values that contain credentials. Rotation updates both the secret in
Secrets Manager and the credentials on the database or service. This keeps the secret automatically
synchronized so when clients request a secret value, they always get a working set of credentials.
For more information, see Rotate secrets.

Secrets Manager generates a CloudTrail log entry when you modify a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To update a secret you manage (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, do any of the following:

Note that you can't change the name or ARN of a secret.

• To update the description, in the Secrets details section, choose Actions, and then choose
Edit description.

• To update the encryption key, see the section called “Change the encryption key for a
secret”.

• To update tags, on the Tags tab, choose Edit tags. See the section called “Tag secrets”.

• To update the secret value, see the section called “Update a secret value”.

• To update permissions for your secret, on the Overview tab, choose Edit permissions. See
the section called “Resource-based policies”.

• To update rotation for your secret, on the Rotation tab, choose Edit rotation. See Rotate
secrets.

• To replicate your secret to other Regions, see Multi-region replication.

• If your secret has replicas, you can change the encryption key for a replica. On the
Replication tab, select the radio button for the replica, and then on the Actions menu,
choose Edit encryption key. See the section called “Secret encryption and decryption”.

Modify a secret 59

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

• To change a secret so that it is managed by another service, you need to recreate the secret
in that service. See Secrets managed by other services.

AWS CLI

Example Update secret description

The following update-secret example updates the description of a secret.

aws secretsmanager update-secret \
 --secret-id MyTestSecret \
 --description "This is a new description for the secret."

AWS SDK

We recommend you avoid calling PutSecretValue or UpdateSecret at a sustained rate of
more than once every 10 minutes. When you call PutSecretValue or UpdateSecret to update
the secret value, Secrets Manager creates a new version of the secret. Secrets Manager removes
unlabeled versions when there are more than 100, but it does not remove versions created less
than 24 hours ago. If you update the secret value more than once every 10 minutes, you create
more versions than Secrets Manager removes, and you will reach the quota for secret versions.

To update a secret, use the following actions: UpdateSecret or ReplicateSecretToRegions.
For more information, see the section called “AWS SDKs”.

Find secrets in AWS Secrets Manager

When you search for secrets without a filter, Secrets Manager matches keywords in the secret
name, description, tag key, and tag value. Searching without filters is not case-sensitive and ignores
special characters, such as space, /, _, =, #, and only uses numbers and letters. When you search
without a filter, Secrets Manager analyzes the search string to convert it to separate words. The
words are separated by any change from uppercase to lowercase, from letter to number, or from
number/letter to punctuation. For example, entering the search term credsDatabase#892
searches for creds, Database, and 892 in name, description, and tag key and value.

Secrets Manager generates a CloudTrail log entry when you list secrets. For more information, see
the section called “Log with AWS CloudTrail ”.

AWS CLI 60

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/update-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html

AWS Secrets Manager User Guide

Secrets Manager is a regional service and only secrets within the selected region are returned.

Search filters

If you don't use any filters, Secrets Manager breaks the search string into words and then searches
all attributes for matches. This search is not case-sensitive. For example, searching for My_Secret
matches secrets with the word my or secret in the name, description, or tags.

You can apply the following filters to your search:

Name

Matches the beginning of secret names; case-sensitive. For example, Name: Data returns a
secret named DatabaseSecret, but not databaseSecret or MyData.

Description

Matches the words in secret descriptions, not case-sensitive. For example, Description: My
Description matches secrets with the following descriptions:

• My Description

• my description

• My basic description

• Description of my secret

Managed by

Finds secrets managed by services outside of AWS, for example:

• 1Password

• Akeyless

• CyberArk

• HashiCorp

Owning service

Matches the beginning of the managing service ID prefix, not case-sensitive. For example, my-
ser matches secrets managed by services with the prefix my-serv and my-service. For more
information, see Secrets managed by other services.

Replicated secrets

You can filter for primary secrets, replica secrets, or secrets that aren't replicated.

Search filters 61

AWS Secrets Manager User Guide

Tag keys

Matches the beginning of tag keys; case-sensitive. For example, Tag key: Prod returns secrets
with the tag Production and Prod1, but not secrets with the tag prod or 1 Prod.

Tag values

Matches the beginning of tag values; case-sensitive. For example, Tag value: Prod returns
secrets with the tag Production and Prod1, but not secrets with the tag value prod or 1
Prod.

AWS CLI

Example List the secrets in your account

The following list-secrets example gets a list of the secrets in your account.

aws secretsmanager list-secrets

Example Filter the list of secrets in your account

The following list-secrets example gets a list of the secrets in your account that have Test in
the name. Filtering by name is case sensitive.

aws secretsmanager list-secrets \
 --filters Key="name",Values="Test"

Example Find secrets that are managed by other AWS services

The following list-secrets example gets a list of secrets managed by a service. You specify the
service by ID. For more information, see Secrets managed by other services.

aws secretsmanager list-secrets \
 --filters Key="owning-service",Values="<service ID prefix>"

AWS SDK

To find secrets by using one of the AWS SDKs, use ListSecrets. For more information, see the
section called “AWS SDKs”.

AWS CLI 62

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html

AWS Secrets Manager User Guide

Delete an AWS Secrets Manager secret

Because of the critical nature of secrets, AWS Secrets Manager intentionally makes deleting a
secret difficult. Secrets Manager does not immediately delete secrets. Instead, Secrets Manager
immediately makes the secrets inaccessible and scheduled for deletion after a recovery window of
a minimum of seven days. Until the recovery window ends, you can recover a secret you previously
deleted. There is no charge for secrets that you have marked for deletion.

You can't delete a primary secret if it is replicated to other Regions. First delete the replicas, then
delete the primary secret. When you delete a replica, it is deleted immediately.

You can't directly delete a version of a secret. Instead, you remove all staging labels from the
version using the AWS CLI or AWS SDK. This marks the version as deprecated, and then Secrets
Manager can automatically delete the version in the background.

If you don't know whether an application still uses a secret, you can create an Amazon CloudWatch
alarm to alert you to any attempts to access a secret during the recovery window. For more
information, see Monitor when AWS Secrets Manager secrets scheduled for deletion are accessed.

To delete a secret, you must have secretsmanager:ListSecrets and
secretsmanager:DeleteSecret permissions.

Secrets Manager generates a CloudTrail log entry when you delete a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To delete a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. In the list of secrets, choose the secret you want to delete.

3. In the Secret details section, choose Actions, and then choose Delete secret.

4. In the Disable secret and schedule deletion dialog box, in Waiting period, enter the number
of days to wait before the deletion becomes permanent. Secrets Manager attaches a field
called DeletionDate and sets the field to the current date and time, plus the number of days
specified for the recovery window.

5. Choose Schedule deletion.

To view deleted secrets

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

Delete a secret 63

https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

2. On the Secrets page, choose Preferences

().

3. In the Preferences dialog box, select Show secrets scheduled for deletion, and then choose
Save.

To delete a replica secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose the primary secret.

3. In the Replicate Secret section, choose the replica secret.

4. From the Actions menu, choose Delete Replica.

AWS CLI

Example Delete a secret

The following delete-secret example deletes a secret. You can recover the secret with
restore-secret until the date and time in the DeletionDate response field. To delete a secret
that is replicated to other regions, first remove its replicas with remove-regions-from-
replication, and then call delete-secret.

aws secretsmanager delete-secret \
 --secret-id MyTestSecret \
 --recovery-window-in-days 7

Example Delete a secret immediately

The following delete-secret example deletes a secret immediately without a recovery window.
You can't recover this secret.

aws secretsmanager delete-secret \
 --secret-id MyTestSecret \
 --force-delete-without-recovery

AWS CLI 64

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/delete-secret.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/restore-secret.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/remove-regions-from-replication.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/remove-regions-from-replication.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/delete-secret.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/delete-secret.html

AWS Secrets Manager User Guide

Example Delete a replica secret

The following remove-regions-from-replication example deletes a replica secret in eu-
west-3. To delete a primary secret that is replicated to other regions, first delete the replicas and
then call delete-secret.

aws secretsmanager remove-regions-from-replication \
 --secret-id MyTestSecret \
 --remove-replica-regions eu-west-3

AWS SDK

To delete a secret, use the DeleteSecret command. To delete a version of a secret,
use the UpdateSecretVersionStage command. To delete a replica, use the
StopReplicationToReplica command. For more information, see the section called “AWS
SDKs”.

Restore an AWS Secrets Manager secret

Secrets Manager considers a secret scheduled for deletion deprecated and you can no longer
directly access it. After the recovery window has passed, Secrets Manager deletes the secret
permanently. Once Secrets Manager deletes the secret, you can't recover it. Before the end of
the recovery window, you can recover the secret and make it accessible again. This removes the
DeletionDate field, which cancels the scheduled permanent deletion.

To restore a secret and the metadata in the console, you must have
secretsmanager:ListSecrets and secretsmanager:RestoreSecret permissions.

Secrets Manager generates a CloudTrail log entry when you restore a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To restore a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. In the list of secrets, choose the secret you want to restore.

If deleted secrets don't appear in your list of secrets, choose Preferences

().

AWS SDK 65

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/remove-regions-from-replication.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/delete-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

In the Preferences dialog box, select Show secrets scheduled for deletion, and then choose
Save.

3. On the Secret details page, choose Cancel deletion.

4. In the Cancel secret deletion dialog box, choose Cancel deletion.

AWS CLI

Example Restore a previously deleted secret

The following restore-secret example restores a secret that was previously scheduled for
deletion.

aws secretsmanager restore-secret \
 --secret-id MyTestSecret

AWS SDK

To restore a secret marked for deletion, use the RestoreSecret command. For more information,
see the section called “AWS SDKs”.

AWS CLI 66

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/restore-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RestoreSecret.html

AWS Secrets Manager User Guide

Tagging secrets in AWS Secrets Manager

In AWS Secrets Manager, you can assign metadata to your secrets using tags. A tag is a key-value
pair that you define for a secret. Tags help you manage AWS resources and organize data, including
billing information.

With tags, you can:

• Manage, search, and filter secrets and other resources in your AWS account

• Control access to secrets based on attached tags

• Track and categorize expenses associated with specific secrets or projects

For more information about using tags to control access, see the section called “Control access to
secrets using tags”.

To learn about cost allocation tags, see Using AWS cost allocation tags in the AWS Billing User
Guide.

For information about tag quotas and naming restrictions, see Service quotas for Tagging in the
AWS General Reference guide. Tags are case-sensitive.

Secrets Manager generates a CloudTrail log entry when you tag or untag a secret. For more
information, see the section called “Log with AWS CloudTrail ”.

Tip

Use a consistent tagging scheme across all your AWS resources. For best practices, see the
Tagging Best Practices whitepaper.

Review tag basics

You can find secrets by tags in the console, AWS CLI, and SDKs. AWS also provides the Resource
Groups tool to create a custom console that consolidates and organizes your resources based on
their tags. To find secrets with a specific tag, see the section called “Find secrets”.

You can use the Secrets Manager console, AWS CLI, or Secrets Manager API to:

• Create a secret with tags

Tag secrets 67

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/general/latest/gr/arg.html#taged-reference-quotas
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html
https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html

AWS Secrets Manager User Guide

• Add tags to a secret

• List the tags for your secrets

• Remove tags from a secret

You can use tags to categorize your secrets. For example, you can categorize secrets by purpose,
owner, or environment. Because you define the key and value for each tag, you can create a custom
set of categories to meet your specific needs. Here are several examples of tags:

• Project: Project name

• Owner: Name

• Purpose: Load testing

• Application: Application name

• Environment: Production

Track costs using tagging

You can use tags to categorize and track your AWS costs. When you apply tags to your AWS
resources, including secrets, your AWS cost allocation report includes usage and costs aggregated
by tags. You can apply tags that represent business categories (such as cost centers, application
names, or owners) to organize your costs across multiple services. For more information, see Use
Cost Allocation Tags for Custom Billing Reports in the AWS Billing User Guide.

Understand tag restrictions

The following restrictions apply to tags.

Basic restrictions

• The maximum number of tags per resource (secret) is 50.

• Tag keys and values are case-sensitive.

• You can't change or edit tags for a deleted secret.

Tag key restrictions

• Each tag key must be unique. If you add a tag with a key that's already in use, your new tag
overwrites the existing key-value pair.

Track costs using tagging 68

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

AWS Secrets Manager User Guide

• You can't start a tag key with aws: because this prefix is reserved for use by AWS. AWS creates
tags that begin with this prefix on your behalf, but you can't edit or delete them.

• Tag keys must be between 1 and 128 Unicode characters in length.

• Tag keys must consist of the following characters: Unicode letters, digits, white space, and the
following special characters: _ . / = + - @.

Tag value restrictions

• Tag values must be between 0 and 255 Unicode characters in length.

• Tag values can be blank. Otherwise, they must consist of the following characters: Unicode
letters, digits, white space, and any of the following special characters: _ . / = + - @.

Tag secrets using the Secrets Manager console

You can manage tags for your secrets using the Secrets Manager console.

To access the tagging features, do the following:

1. Open the Secrets Manager console.

2. In the navigation bar, choose your preferred Region.

3. On the Secrets page, select a secret.

To view the tags for a secret

• On the Secret Details page, choose the Tags tab.

To create a secret with a tag

• Follow the steps in Create secrets.

To add or edit tags for a secret

1. On the Secret Details page, choose the Tags tab and then choose Edit tags.

2. Enter the tag key in the Key field. Optionally, enter a tag value in the Value field.

3. Choose Save. The new or updated tag appears in the list of tags.

Tagging secrets in the console 69

https://console.aws.amazon.com/secretsmanager

AWS Secrets Manager User Guide

Note

If the Save button is not enabled, the tag key or value might not meet the tag
restrictions. For more information, see Understand tag restrictions.

To remove a tag from a secret

1. On the Secret details page, choose the Tags tab, and then choose the Remove icon next to the
tag you want to remove.

2. Choose Save to confirm the removal, or select Undo to cancel.

Tag secrets using the AWS CLI

AWS CLI examples

Example Add a tag to a secret

The following tag-resource example shows how to attach a tag with shorthand syntax.

aws secretsmanager tag-resource \
 --secret-id MyTestSecret \
 --tags Key=FirstTag,Value=FirstValue

Example Add multiple tags to a secret

The following tag-resource example attaches two key-value tags to a secret.

aws secretsmanager tag-resource \
 --secret-id MyTestSecret \
 --tags '[{"Key": "FirstTag", "Value": "FirstValue"}, {"Key": "SecondTag",
 "Value": "SecondValue"}]'

Example Remove tags from a secret

The following untag-resource example removes two tags from a secret. For each tag, both key
and value are removed.

aws secretsmanager untag-resource \

AWS CLI 70

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/tag-resource.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/tag-resource.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/untag-resource.html

AWS Secrets Manager User Guide

 --secret-id MyTestSecret \
 --tag-keys '["FirstTag", "SecondTag"]'

Tag secrets using the Secrets Manager API

You can add, list, and remove tags using the Secrets Manager API. For examples, see the following
documentation:

• ListSecrets: Use ListSecrets to view the tags applied to a secret

• TagResource: Add tags to a secret

• Untag: Remove tags from a secret

Tag secrets using the Secrets Manager AWS SDK

To change tags for your secret, use the following API operations:

• ListSecrets: Use ListSecrets to view the tags applied to a secret

• TagResource: Add tags to a secret

• UntagResource: Remove tags from a secret

For more information about using the SDK, see the section called “AWS SDKs”.

API 71

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html

AWS Secrets Manager User Guide

Replicate AWS Secrets Manager secrets across Regions

You can replicate your secrets in multiple AWS Regions to support applications spread across
those Regions to meet Regional access and low latency requirements. If you later need to, you can
promote a replica secret to a standalone and then set it up for replication independently. Secrets
Manager replicates the encrypted secret data and metadata such as tags and resource policies
across the specified Regions.

The ARN for a replicated secret is the same as the primary secret except for the Region, for
example:

• Primary secret: arn:aws:secretsmanager:Region1:123456789012:secret:MySecret-
a1b2c3

• Replica secret: arn:aws:secretsmanager:Region2:123456789012:secret:MySecret-
a1b2c3

For pricing information for replica secrets, see AWS Secrets Manager Pricing.

When you store database credentials for a source database that is replicated to other Regions, the
secret contains connection information for the source database. If you then replicate the secret, the
replicas are copies of the source secret and contain the same connection information. You can add
additional key/value pairs to the secret for regional connection information.

If you turn on rotation for your primary secret, Secrets Manager rotates the secret in the primary
Region, and the new secret value propagates to all of the associated replica secrets. You don't have
to manage rotation individually for all of the replica secrets.

You can replicate secrets across all of your enabled AWS Regions. However, if you use Secrets
Manager in special AWS Regions such as AWS GovCloud (US) or China Regions, you can only
configure secrets and the replicas within these specialized AWS Regions. You can't replicate a secret
in your enabled AWS Regions to a specialized Region or replicate secrets from a specialized region
to a commercial region.

Before you can replicate a secret to another Region, you must enable that Region. For more
information, see Managing AWS Regions.

It is possible to use a secret across multiple Regions without replicating it by calling the Secrets
Manager endpoint in the Region where the secret is stored. For a list of endpoints, see the section

72

https://aws.amazon.com/secrets-manager/pricing/
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable

AWS Secrets Manager User Guide

called “Secrets Manager endpoints”. To use replication to improve your workload's resilience, see
Disaster Recovery (DR) Architecture on AWS, Part I: Strategies for Recovery in the Cloud.

Secrets Manager generates a CloudTrail log entry when you replicate a secret. For more
information, see the section called “Log with AWS CloudTrail ”.

To replicate a secret to other Regions (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, on the Replication tab, do one of the following:

• If your secret is not replicated, choose Replicate secret.

• If your secret is replicated, in the Replicate secret section, choose Add Region.

4. In the Add replica regions dialog box, do the following:

a. For AWS Region, choose the Region you want to replicate the secret to.

b. (Optional) For Encryption key, choose a KMS key to encrypt the secret with. The key must
be in the replica Region.

c. (Optional) To add another Region, choose Add more regions.

d. Choose Replicate.

You return to the secret details page. In the Replicate secret section, the Replication status
shows for each Region.

AWS CLI

Example Replicate a secret to another region

The following replicate-secret-to-regions example replicates a secret to eu-west-3. The
replica is encrypted with the AWS managed key aws/secretsmanager.

aws secretsmanager replicate-secret-to-regions \
 --secret-id MyTestSecret \
 --add-replica-regions Region=eu-west-3

AWS CLI 73

https://aws.amazon.com/blogs/architecture/disaster-recovery-dr-architecture-on-aws-part-i-strategies-for-recovery-in-the-cloud/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/replicate-secret-to-regions.html

AWS Secrets Manager User Guide

Example Create a secret and replicate it

The following example creates a secret and replicates it to eu-west-3. The replica is encrypted
with the AWS managed key aws/secretsmanager.

aws secretsmanager create-secret \
 --name MyTestSecret \
 --description "My test secret created with the CLI." \
 --secret-string "{\"user\":\"diegor\",\"password\":\"EXAMPLE-PASSWORD\"}"
 --add-replica-regions Region=eu-west-3

AWS SDK

To replicate a secret, use the ReplicateSecretToRegions command. For more information, see
the section called “AWS SDKs”.

Promote a replica secret to a standalone secret in AWS Secrets
Manager

A replica secret is a secret that is replicated from a primary in another AWS Region. It has the same
secret value and metadata as the primary, but it can be encrypted with a different KMS key. A
replica secret can't be updated independently from its primary secret, except for its encryption key.
Promoting a replica secret disconnects the replica secret from the primary secret and makes the
replica secret a standalone secret. Changes to the primary secret won't replicate to the standalone
secret.

You might want to promote a replica secret to a standalone secret as a disaster recovery solution if
the primary secret becomes unavailable. Or you might want to promote a replica to a standalone
secret if you want to turn on rotation for the replica.

If you promote a replica, be sure to update the corresponding applications to use the standalone
secret.

Secrets Manager generates a CloudTrail log entry when you promote a secret. For more
information, see the section called “Log with AWS CloudTrail ”.

To promote a replica secret (console)

1. Log in to the Secrets Manager at https://console.aws.amazon.com/secretsmanager/.

AWS SDK 74

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/create-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

2. Navigate to the replica region.

3. On the Secrets page, choose the replica secret.

4. On the replica secret details page, choose Promote to standalone secret.

5. In the Promote replica to standalone secret dialog box, enter the Region and then choose
Promote replica.

AWS CLI

Example Promote a replica secret to a primary

The following stop-replication-to-replica example removes the link between a replica
secret to the primary. The replica secret is promoted to a primary secret in the replica region. You
must call stop-replication-to-replica from within the replica region.

aws secretsmanager stop-replication-to-replica \
 --secret-id MyTestSecret

AWS SDK

To promote a replica to a standalone secret, use the StopReplicationToReplica command.
You must call this command from the replica secret Region. For more information, see the section
called “AWS SDKs”.

Prevent AWS Secrets Manager replication

Because secrets can be replicated using ReplicateSecretToRegions or when they are created
using CreateSecret, if you want to prevent users from replicating secrets, we recommend you
prevent actions that contain the AddReplicaRegions parameter. You can use a Condition
statement in your permission policies to only allow actions that don't add replica regions. See the
following policy examples for Condition statements you can use.

Example Prevent replication permission

The following policy example shows how to allow all actions that don't add replica regions.
This prevents users from replicating secrets through both ReplicateSecretToRegions and
CreateSecret.

AWS CLI 75

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/stop-replication-to-replica.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/stop-replication-to-replica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html

AWS Secrets Manager User Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:*",
 "Resource": "*",
 "Condition": {
 "Null": {
 "secretsmanager:AddReplicaRegions": "true"
 }
 }
 }
]
}

Example Allow replication permission only to specific Regions

The following policy shows how to allow all of the following:

• Create secrets without replication

• Create secrets with replication to Regions only in United States and Canada

• Replicate secrets to Regions only in United States and Canada

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:ReplicateSecretToRegions"
],
 "Resource": "*",
 "Condition": {

Prevent replication 76

AWS Secrets Manager User Guide

 "ForAllValues:StringLike": {
 "secretsmanager:AddReplicaRegions": [
 "us-*",
 "ca-*"
]
 }
 }
 }
]
}

Troubleshoot AWS Secrets Manager replication

AWS Secrets Manager replication might fail for various reasons. To check why a secret failed to
replicate, you can do one of the following:

• Call the DescribeSecret API operation

• Review AWS CloudTrail events

When replication fails:

• If there are no usable secret versions, Secrets Manager removes the secret from the replica
Region.

• If there are successfully replicated secret versions, they remain in the replica Region until you
explicitly remove them using the RemoveRegionsFromReplication API operation.

The following sections describe some common reasons for replication failures.

A secret with the same name exists in the selected Region

To resolve this issue, you can overwrite the duplicate name secret in the replica Region. Retry
replication, and then in the Retry replication dialog box, choose Overwrite.

No permissions available on the KMS key to complete the replication

Secrets Manager first decrypts the secret before re-encrypting with the new KMS key in the replica
Region. If you don't have kms:Decrypt permission to the encryption key in the primary Region,
you will encounter this error. To encrypt the replicated secret with a KMS key other than aws/

Troubleshoot replication 77

AWS Secrets Manager User Guide

secretsmanager, you need kms:GenerateDataKey and kms:Encrypt to the key. See the
section called “Permissions for the KMS key”.

The KMS key is disabled or not found

If the encryption key in the primary Region is disabled or deleted, Secrets Manager can't replicate
the secret. This error can occur even if you have changed the encryption key, if the secret has
custom labelled versions that were encrypted with the disabled or deleted encryption key. For
information about how Secrets Manager does encryption, see the section called “Secret encryption
and decryption”. To work around this issue, you can recreate the secret versions so that Secrets
Manager encrypts them with the current encryption key. For more information, see Change the
encryption key for a secret. Then retry replication.

aws secretsmanager put-secret-value \
 --secret-id testDescriptionUpdate \
 --secret-string "SecretValue" \
 --version-stages "MyCustomLabel"

You have not enabled the Region where the replication occurs

For information about how to enable a Region, see Managing AWS Regions. in the AWS Account
Management Reference Guide.

The KMS key is disabled or not found 78

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable

AWS Secrets Manager User Guide

Get secrets from AWS Secrets Manager

Secrets Manager generates a CloudTrail log entry when you retrieve a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

You can retrieve secret values using:

• Get a Secrets Manager secret value using Java

• Get a Secrets Manager secret value using Python

• Get a Secrets Manager secret value using .NET

• Get a Secrets Manager secret value using Go

• Get a Secrets Manager secret value using Rust

• Use AWS Secrets Manager secrets in Amazon Elastic Kubernetes Service

• Use AWS Secrets Manager secrets in AWS Lambda functions

• Using the AWS Secrets Manager Agent

• Get a Secrets Manager secret value using the C++ AWS SDK

• Get a Secrets Manager secret value using the JavaScript AWS SDK

• Get a Secrets Manager secret value using the Kotlin AWS SDK

• Get a Secrets Manager secret value using the PHP AWS SDK

• Get a Secrets Manager secret value using the Ruby AWS SDK

• Get a secret value using the AWS CLI

• Get a secret value using the AWS console

• Use AWS Secrets Manager secrets in AWS Batch

• Get an AWS Secrets Manager secret in an CloudFormation resource

• Use AWS Secrets Manager secrets in GitHub jobs

• Use AWS Secrets Manager in GitLab

• Use AWS Secrets Manager secrets in AWS IoT Greengrass

• Use AWS Secrets Manager secrets in Parameter Store

79

AWS Secrets Manager User Guide

Get a Secrets Manager secret value using Java

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

To connect to a database using the credentials in a secret, you can use the Secrets Manager SQL
Connection drivers, which wrap the base JDBC driver. This also uses client-side caching, so it can
reduce the cost for calling Secrets Manager APIs.

Topics

• Get a Secrets Manager secret value using Java with client-side caching

• Connect to a SQL database using JDBC with credentials in an AWS Secrets Manager secret

• Get a Secrets Manager secret value using the Java AWS SDK

Get a Secrets Manager secret value using Java with client-side caching

When you retrieve a secret, you can use the Secrets Manager Java-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Get secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

• A Java 8 or higher development environment. See Java SE Downloads on the Oracle website.

To download the source code, see Secrets Manager Java-based caching client component on
GitHub.

Java 80

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/aws/aws-secretsmanager-caching-java

AWS Secrets Manager User Guide

To add the component to your project, in your Maven pom.xml file, include the following
dependency. For more information about Maven, see the Getting Started Guide on the Apache
Maven Project website.

<dependency>
 <groupId>com.amazonaws.secretsmanager</groupId>
 <artifactId>aws-secretsmanager-caching-java</artifactId>
 <version>1.0.2</version>
</dependency>

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• SecretCache

• SecretCacheConfiguration

• SecretCacheHook

Example Retrieve a secret

The following code example shows a Lambda function that retrieves a secret string. It follows the
best practice of instantiating the cache outside of the function handler, so it doesn't keep calling
the API if you call the Lambda function again.

package com.amazonaws.secretsmanager.caching.examples;

 import com.amazonaws.services.lambda.runtime.Context;
 import com.amazonaws.services.lambda.runtime.RequestHandler;
 import com.amazonaws.services.lambda.runtime.LambdaLogger;

 import com.amazonaws.secretsmanager.caching.SecretCache;

 public class SampleClass implements RequestHandler<String, String> {

Java with client-side caching 81

https://maven.apache.org/guides/getting-started/index.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

AWS Secrets Manager User Guide

 private final SecretCache cache = new SecretCache();

 @Override public String handleRequest(String secretId, Context context) {
 final String secret = cache.getSecretString(secretId);

 // Use the secret, return success;

 }
 }

SecretCache

An in-memory cache for secrets requested from Secrets Manager. You use the section called
“getSecretString” or the section called “getSecretBinary” to retrieve a secret from the cache. You
can configure the cache settings by passing in a the section called “SecretCacheConfiguration”
object in the constructor.

For more information, including examples, see the section called “Java with client-side caching”.

Constructors

public SecretCache()

Default constructor for a SecretCache object.

public SecretCache(AWSSecretsManagerClientBuilder builder)

Constructs a new cache using a Secrets Manager client created using the provided
AWSSecretsManagerClientBuilder. Use this constructor to customize the Secrets Manager
client, for example to use a specific Region or endpoint.

public SecretCache(AWSSecretsManager client)

Constructs a new secret cache using the provided AWSSecretsManagerClient. Use this
constructor to customize the Secrets Manager client, for example to use a specific Region or
endpoint.

public SecretCache(SecretCacheConfiguration config)

Constructs a new secret cache using the provided the section called
“SecretCacheConfiguration”.

Java with client-side caching 82

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClientBuilder.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

Methods

getSecretString

public String getSecretString(final String secretId)

Retrieves a string secret from Secrets Manager. Returns a String.

getSecretBinary

public ByteBuffer getSecretBinary(final String secretId)

Retrieves a binary secret from Secrets Manager. Returns a ByteBuffer.

refreshNow

public boolean refreshNow(final String secretId) throws
InterruptedException

Forces the cache to refresh. Returns true if the refresh completed without error, otherwise false.

close

public void close()

Closes the cache.

SecretCacheConfiguration

Cache configuration options for a the section called “SecretCache”, such as max cache size and
Time to Live (TTL) for cached secrets.

Constructor

public SecretCacheConfiguration

Default constructor for a SecretCacheConfiguration object.

Methods

getClient

public AWSSecretsManager getClient()

Returns the AWSSecretsManagerClient that the cache retrieves secrets from.

Java with client-side caching 83

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

setClient

public void setClient(AWSSecretsManager client)

Sets the AWSSecretsManagerClient client that the cache retrieves secrets from.

getCacheHook

public SecretCacheHook getCacheHook()

Returns the the section called “SecretCacheHook” interface used to hook cache updates.

setCacheHook

public void setCacheHook(SecretCacheHook cacheHook)

Sets the the section called “SecretCacheHook” interface used to hook cache updates.

getMaxCacheSize

public int getMaxCacheSize()

Returns the maximum cache size. The default is 1024 secrets.

setMaxCacheSize

public void setMaxCacheSize(int maxCacheSize)

Sets the maximum cache size. The default is 1024 secrets.

getCacheItemTTL

public long getCacheItemTTL()

Returns the TTL in milliseconds for the cached items. When a cached secret exceeds this TTL, the
cache retrieves a new copy of the secret from the AWSSecretsManagerClient. The default is 1
hour in milliseconds.

The cache refreshes the secret synchronously when the secret is requested after the TTL. If the
synchronous refresh fails, the cache returns the stale secret.

setCacheItemTTL

public void setCacheItemTTL(long cacheItemTTL)

Java with client-side caching 84

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

Sets the TTL in milliseconds for the cached items. When a cached secret exceeds this TTL, the cache
retrieves a new copy of the secret from the AWSSecretsManagerClient. The default is 1 hour in
milliseconds.

getVersionStage

public String getVersionStage()

Returns the version of secrets that you want to cache. For more information, see Secret versions.
The default is "AWSCURRENT".

setVersionStage

public void setVersionStage(String versionStage)

Sets the version of secrets that you want to cache. For more information, see Secret versions. The
default is "AWSCURRENT".

SecretCacheConfiguration withClient

public SecretCacheConfiguration withClient(AWSSecretsManager client)

Sets the AWSSecretsManagerClient to retrieve secrets from. Returns the updated
SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration withCacheHook

public SecretCacheConfiguration withCacheHook(SecretCacheHook cacheHook)

Sets the interface used to hook the in-memory cache. Returns the updated
SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration withMaxCacheSize

public SecretCacheConfiguration withMaxCacheSize(int maxCacheSize)

Sets the maximum cache size. Returns the updated SecretCacheConfiguration object with the
new setting.

SecretCacheConfiguration withCacheItemTTL

public SecretCacheConfiguration withCacheItemTTL(long cacheItemTTL)

Java with client-side caching 85

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

Sets the TTL in milliseconds for the cached items. When a cached secret exceeds this TTL, the cache
retrieves a new copy of the secret from the AWSSecretsManagerClient. The default is 1 hour in
milliseconds. Returns the updated SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration withVersionStage

public SecretCacheConfiguration withVersionStage(String versionStage)

Sets the version of secrets that you want to cache. For more information, see Secret versions.
Returns the updated SecretCacheConfiguration object with the new setting.

SecretCacheHook

An interface to hook into a the section called “SecretCache” to perform actions on the secrets
being stored in the cache.

put

Object put(final Object o)

Prepare the object for storing in the cache.

Returns the object to store in the cache.

get

Object get(final Object cachedObject)

Derive the object from the cached object.

Returns the object to return from the cache

Connect to a SQL database using JDBC with credentials in an AWS
Secrets Manager secret

In Java applications, you can use the Secrets Manager SQL Connection drivers to connect to
MySQL, PostgreSQL, Oracle, MSSQLServer, Db2, and Redshift databases using credentials stored in
Secrets Manager. Each driver wraps the base JDBC driver, so you can use JDBC calls to access your
database. However, instead of passing a username and password for the connection, you provide
the ID of a secret. The driver calls Secrets Manager to retrieve the secret value, and then uses the

JDBC connection with credentials in a secret 86

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

credentials in the secret to connect to the database. The driver also caches the credentials using
the Java client-side caching library, so future connections don't require a call to Secrets Manager.
By default, the cache refreshes every hour and also when the secret is rotated. To configure the
cache, see the section called “SecretCacheConfiguration”.

You can download the source code from GitHub.

To use the Secrets Manager SQL Connection drivers:

• Your application must be in Java 8 or higher.

• Your secret must be one of the following:

• A database secret in the expected JSON structure. To check the format, in the Secrets Manager
console, view your secret and choose Retrieve secret value. Alternatively, in the AWS CLI, call
get-secret-value.

• An Amazon RDS managed secret. For this type of secret, you must specify an endpoint and
port when you establish the connection.

• An Amazon Redshift managed secret. For this type of secret, you must specify an endpoint and
port when you establish the connection.

If your database is replicated to other Regions, to connect to a replica database in another Region,
you specify the regional endpoint and port when you create the connection. You can store regional
connection information in the secret as extra key/value pairs, in SSM Parameter Store parameters,
or in your code configuration.

To add the driver to your project, in your Maven build file pom.xml, add the following dependency
for the driver. For more information, see Secrets Manager SQL Connection Library on the Maven
Central Repository website.

<dependency>
 <groupId>com.amazonaws.secretsmanager</groupId>
 <artifactId>aws-secretsmanager-jdbc</artifactId>
 <version>1.0.12</version>
</dependency>

The driver uses the default credential provider chain. If you run the driver on Amazon EKS, it might
pick up the credentials of the node it is running on instead of the service account role. To address
this, add version 1 of com.amazonaws:aws-java-sdk-sts to your Gradle or Maven project file
as a dependency.

JDBC connection with credentials in a secret 87

https://github.com/aws/aws-secretsmanager-jdbc
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://search.maven.org/artifact/com.amazonaws.secretsmanager/aws-secretsmanager-jdbc
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

AWS Secrets Manager User Guide

To set an AWS PrivateLink DNS endpoint URL and a region in the secretsmanager.properties
file:

drivers.vpcEndpointUrl = endpoint URL
drivers.vpcEndpointRegion = endpoint region

To override the primary region, set the AWS_SECRET_JDBC_REGION environment variable or make
the following change to the secretsmanager.properties file:

drivers.region = region

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Examples:

• Establish a connection to a database

• Establish a connection by specifying the endpoint and port

• Use c3p0 connection pooling to establish a connection

• Use c3p0 connection pooling to establish a connection by specifying the endpoint and port

Establish a connection to a database

The following example shows how to establish a connection to a database using the credentials
and connection information in a secret. Once you have the connection, you can use JDBC calls to
access the database. For more information, see JDBC Basics on the Java documentation website.

MySQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

JDBC connection with credentials in a secret 88

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

AWS Secrets Manager User Guide

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

PostgreSQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Oracle

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

MSSQLServer

// Load the JDBC driver

JDBC connection with credentials in a secret 89

AWS Secrets Manager User Guide

Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Db2

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Redshift

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection

JDBC connection with credentials in a secret 90

AWS Secrets Manager User Guide

conn = DriverManager.getConnection(URL, info);

Establish a connection by specifying the endpoint and port

The following example shows how to establish a connection to a database using the credentials in
a secret with an endpoint and port that you specify.

Amazon RDS managed secrets don't include the endpoint and port of the database. To connect to a
database using master credentials in a secret that's managed by Amazon RDS, you specify them in
your code.

Secrets that are replicated to other Regions can improve latency for the connection to the regional
database, but they do not contain different connection information from the source secret. Each
replica is a copy of the source secret. To store regional connection information in the secret, add
more key/value pairs for the endpoint and port information for the Regions.

Once you have the connection, you can use JDBC calls to access the database. For more
information, see JDBC Basics on the Java documentation website.

MySQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:mysql://example.com:3306";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

PostgreSQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver").newInstance();

JDBC connection with credentials in a secret 91

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

AWS Secrets Manager User Guide

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:postgresql://example.com:5432/database";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Oracle

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:oracle:thin:@example.com:1521/ORCL";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

MSSQLServer

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:sqlserver://example.com:1433";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

JDBC connection with credentials in a secret 92

AWS Secrets Manager User Guide

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Db2

// Load the JDBC driver
Class.forName("com.amazonaws.com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:db2://example.com:50000";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Redshift

// Load the JDBC driver
Class.forName("com.amazonaws.com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:redshift://example.com:5439";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Use c3p0 connection pooling to establish a connection

The following example shows how to establish a connection pool with a c3p0.properties
file that uses the driver to retrieve credentials and connection information from the secret. For

JDBC connection with credentials in a secret 93

AWS Secrets Manager User Guide

user and jdbcUrl, enter the secret ID to configure the connection pool. Then you can retrieve
connections from the pool and use them as any other database connections. For more information,
see JDBC Basics on the Java documentation website.

For more information about c3p0, see c3p0 on the Machinery For Change website.

MySQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver
c3p0.jdbcUrl=secretId

PostgreSQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver
c3p0.jdbcUrl=secretId

Oracle

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver
c3p0.jdbcUrl=secretId

MSSQLServer

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver
c3p0.jdbcUrl=secretId

Db2

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver
c3p0.jdbcUrl=secretId

Redshift

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver
c3p0.jdbcUrl=secretId

JDBC connection with credentials in a secret 94

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://www.mchange.com/projects/c3p0/

AWS Secrets Manager User Guide

Use c3p0 connection pooling to establish a connection by specifying the endpoint
and port

The following example shows how to establish a connection pool with a c3p0.properties file
that uses the driver to retrieve credentials in a secret with an endpoint and port that you specify.
Then you can retrieve connections from the pool and use them as any other database connections.
For more information, see JDBC Basics on the Java documentation website.

Amazon RDS managed secrets don't include the endpoint and port of the database. To connect to a
database using master credentials in a secret that's managed by Amazon RDS, you specify them in
your code.

Secrets that are replicated to other Regions can improve latency for the connection to the regional
database, but they do not contain different connection information from the source secret. Each
replica is a copy of the source secret. To store regional connection information in the secret, add
more key/value pairs for the endpoint and port information for the Regions.

MySQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver
c3p0.jdbcUrl=jdbc-secretsmanager:mysql://example.com:3306

PostgreSQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver
c3p0.jdbcUrl=jdbc-secretsmanager:postgresql://example.com:5432/database

Oracle

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver
c3p0.jdbcUrl=jdbc-secretsmanager:oracle:thin:@example.com:1521/ORCL

MSSQLServer

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver
c3p0.jdbcUrl=jdbc-secretsmanager:sqlserver://example.com:1433

JDBC connection with credentials in a secret 95

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

AWS Secrets Manager User Guide

Db2

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver
c3p0.jdbcUrl=jdbc-secretsmanager:db2://example.com:50000

Redshift

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver
c3p0.jdbcUrl=jdbc-secretsmanager:redshift://example.com:5439

Get a Secrets Manager secret value using the Java AWS SDK

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

• If you store database credentials in the secret, use the Secrets Manager SQL connection drivers
to connect to a database using the credentials in the secret.

• For other types of secrets, use the Secrets Manager Java-based caching component or call the
SDK directly with GetSecretValue or BatchGetSecretValue.

The following code examples show how to use GetSecretValue.

Required permissions: secretsmanager:GetSecretValue

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.secretsmanager.SecretsManagerClient;
import software.amazon.awssdk.services.secretsmanager.model.GetSecretValueRequest;
import software.amazon.awssdk.services.secretsmanager.model.GetSecretValueResponse;
import software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html

Java AWS SDK 96

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/model/GetSecretValueResult.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/model/BatchGetSecretValueResult.html

AWS Secrets Manager User Guide

 *
 * We recommend that you cache your secret values by using client-side caching.
 *
 * Caching secrets improves speed and reduces your costs. For more information,
 * see the following documentation topic:
 *
 * https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
 */
public class GetSecretValue {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <secretName>\s

 Where:
 secretName - The name of the secret (for example, tutorials/
MyFirstSecret).\s
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String secretName = args[0];
 Region region = Region.US_EAST_1;
 SecretsManagerClient secretsClient = SecretsManagerClient.builder()
 .region(region)
 .build();

 getValue(secretsClient, secretName);
 secretsClient.close();
 }

 public static void getValue(SecretsManagerClient secretsClient, String secretName)
 {
 try {
 GetSecretValueRequest valueRequest = GetSecretValueRequest.builder()
 .secretId(secretName)
 .build();

 GetSecretValueResponse valueResponse =
 secretsClient.getSecretValue(valueRequest);

Java AWS SDK 97

AWS Secrets Manager User Guide

 String secret = valueResponse.secretString();
 System.out.println(secret);

 } catch (SecretsManagerException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Get a Secrets Manager secret value using Python

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

Topics

• Get a Secrets Manager secret value using Python with client-side caching

• Get a Secrets Manager secret value using the Python AWS SDK

• Get a batch of Secrets Manager secret values using the Python AWS SDK

Get a Secrets Manager secret value using Python with client-side
caching

When you retrieve a secret, you can use the Secrets Manager Python-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Get secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

Python 98

AWS Secrets Manager User Guide

To use the component, you must have the following:

• Python 3.6 or later.

• botocore 1.12 or higher. See AWS SDK for Python and Botocore.

• setuptools_scm 3.2 or higher. See https://pypi.org/project/setuptools-scm/.

To download the source code, see Secrets Manager Python-based caching client component on
GitHub.

To install the component, use the following command.

$ pip install aws-secretsmanager-caching

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• SecretCache

• SecretCacheConfig

• SecretCacheHook

• @InjectSecretString

• @InjectKeywordedSecretString

Example Retrieve a secret

The following example shows how to get the secret value for a secret named mysecret.

import botocore
import botocore.session
from aws_secretsmanager_caching import SecretCache, SecretCacheConfig

client = botocore.session.get_session().create_client('secretsmanager')
cache_config = SecretCacheConfig()

Python with client-side caching 99

https://aws.amazon.com/sdk-for-python/
https://botocore.amazonaws.com/v1/documentation/api/latest/index.html
https://pypi.org/project/setuptools-scm/
https://github.com/aws/aws-secretsmanager-caching-python

AWS Secrets Manager User Guide

cache = SecretCache(config = cache_config, client = client)

secret = cache.get_secret_string('mysecret')

SecretCache

An in-memory cache for secrets retrieved from Secrets Manager. You use the section called
“get_secret_string” or the section called “get_secret_binary” to retrieve a secret from the cache.
You can configure the cache settings by passing in a the section called “SecretCacheConfig” object
in the constructor.

For more information, including examples, see the section called “Python with client-side caching”.

cache = SecretCache(
 config = the section called “SecretCacheConfig”,
 client = client
)

These are the available methods:

• get_secret_string

• get_secret_binary

get_secret_string

Retrieves the secret string value.

Request syntax

response = cache.get_secret_string(
 secret_id='string',
 version_stage='string')

Parameters

• secret_id (string): [Required] The name or ARN of the secret.

• version_stage (string): The version of secrets that you want to retrieve. For more
information, see secret versions. The default is 'AWSCURRENT'.

Return type

string

Python with client-side caching 100

https://botocore.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html

AWS Secrets Manager User Guide

get_secret_binary

Retrieves the secret binary value.

Request syntax

response = cache.get_secret_binary(
 secret_id='string',
 version_stage='string'
)

Parameters

• secret_id (string): [Required] The name or ARN of the secret.

• version_stage (string): The version of secrets that you want to retrieve. For more
information, see secret versions. The default is 'AWSCURRENT'.

Return type

base64-encoded string

SecretCacheConfig

Cache configuration options for a the section called “SecretCache” such as max cache size and Time
to Live (TTL) for cached secrets.

Parameters

max_cache_size (int)

The maximum cache size. The default is 1024 secrets.

exception_retry_delay_base (int)

The number of seconds to wait after an exception is encountered before retrying the request.
The default is 1.

exception_retry_growth_factor (int)pur

The growth factor to use for calculating the wait time between retries of failed requests. The
default is 2.

exception_retry_delay_max (int)

The maximum amount of time in seconds to wait between failed requests. The default is 3600.

Python with client-side caching 101

https://tools.ietf.org/html/rfc4648#section-4

AWS Secrets Manager User Guide

default_version_stage (str)

The version of secrets that you want to cache. For more information, see Secret versions. The
default is 'AWSCURRENT'.

secret_refresh_interval (int)

The number of seconds to wait between refreshing cached secret information. The default is
3600.

secret_cache_hook (SecretCacheHook)

An implementation of the SecretCacheHook abstract class. The default value is None.

SecretCacheHook

An interface to hook into a the section called “SecretCache” to perform actions on the secrets
being stored in the cache.

These are the available methods:

• put

• get

put

Prepares the object for storing in the cache.

Request syntax

response = hook.put(
 obj='secret_object'
)

Parameters

• obj (object) -- [Required] The secret or object that contains the secret.

Return type

object

Python with client-side caching 102

AWS Secrets Manager User Guide

get

Derives the object from the cached object.

Request syntax

response = hook.get(
 obj='secret_object'
)

Parameters

• obj (object): [Required] The secret or object that contains the secret.

Return type

object

@InjectSecretString

This decorator expects a secret ID string and the section called “SecretCache” as the first and
second arguments. The decorator returns the secret string value. The secret must contain a string.

from aws_secretsmanager_caching import SecretCache
from aws_secretsmanager_caching import InjectKeywordedSecretString,
 InjectSecretString

cache = SecretCache()

@InjectSecretString ('mysecret' , cache)
def function_to_be_decorated(arg1, arg2, arg3):

@InjectKeywordedSecretString

This decorator expects a secret ID string and the section called “SecretCache” as the first and
second arguments. The remaining arguments map parameters from the wrapped function to JSON
keys in the secret. The secret must contain a string in JSON structure.

For a secret that contains this JSON:

{
 "username": "saanvi",
 "password": "EXAMPLE-PASSWORD"

Python with client-side caching 103

AWS Secrets Manager User Guide

}

The following example shows how to extract the JSON values for username and password from
the secret.

from aws_secretsmanager_caching import SecretCache
 from aws_secretsmanager_caching import InjectKeywordedSecretString,
 InjectSecretString

 cache = SecretCache()

 @InjectKeywordedSecretString (secret_id = 'mysecret' , cache = cache ,
 func_username = 'username' , func_password = 'password')
 def function_to_be_decorated(func_username, func_password):
 print('Do something with the func_username and func_password parameters')

Get a Secrets Manager secret value using the Python AWS SDK

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

For Python applications, use the Secrets Manager Python-based caching component or call the SDK
directly with get_secret_value or batch_get_secret_value.

The following code examples show how to use GetSecretValue.

Required permissions: secretsmanager:GetSecretValue

"""
Purpose

Shows how to use the AWS SDK for Python (Boto3) with AWS
Secrets Manager to get a specific of secrets that match a
specified name
"""
import boto3
import logging

from get_secret_value import GetSecretWrapper

Configure logging

Python AWS SDK 104

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager/client/get_secret_value.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager/client/batch_get_secret_value.html

AWS Secrets Manager User Guide

logging.basicConfig(level=logging.INFO)

def run_scenario(secret_name):
 """
 Retrieve a secret from AWS Secrets Manager.

 :param secret_name: Name of the secret to retrieve.
 :type secret_name: str
 """
 try:
 # Validate secret_name
 if not secret_name:
 raise ValueError("Secret name must be provided.")
 # Retrieve the secret by name
 client = boto3.client("secretsmanager")
 wrapper = GetSecretWrapper(client)
 secret = wrapper.get_secret(secret_name)
 # Note: Secrets should not be logged.
 return secret
 except Exception as e:
 logging.error(f"Error retrieving secret: {e}")
 raise

class GetSecretWrapper:
 def __init__(self, secretsmanager_client):
 self.client = secretsmanager_client

 def get_secret(self, secret_name):
 """
 Retrieve individual secrets from AWS Secrets Manager using the get_secret_value
 API.
 This function assumes the stack mentioned in the source code README has been
 successfully deployed.
 This stack includes 7 secrets, all of which have names beginning with
 "mySecret".

 :param secret_name: The name of the secret fetched.
 :type secret_name: str
 """
 try:
 get_secret_value_response = self.client.get_secret_value(
 SecretId=secret_name

Python AWS SDK 105

AWS Secrets Manager User Guide

)
 logging.info("Secret retrieved successfully.")
 return get_secret_value_response["SecretString"]
 except self.client.exceptions.ResourceNotFoundException:
 msg = f"The requested secret {secret_name} was not found."
 logger.info(msg)
 return msg
 except Exception as e:
 logger.error(f"An unknown error occurred: {str(e)}.")
 raise

Get a batch of Secrets Manager secret values using the Python AWS
SDK

The following code example shows how to get a batch of Secrets Manager secret values.

Required permissions:

• secretsmanager:BatchGetSecretValue

• secretsmanager:GetSecretValue permission for each secret you want to retrieve.

• If you use filters, you must also have secretsmanager:ListSecrets.

For an example permissions policy, see the section called “Example: Permission to retrieve a group
of secret values in a batch”.

Important

If you have a VPCE policy that denies permission to retrieve an individual secret in the
group you are retrieving, BatchGetSecretValue will not return any secret values, and it
will return an error.

class BatchGetSecretsWrapper:
 def __init__(self, secretsmanager_client):
 self.client = secretsmanager_client

Get a batch of secret values 106

AWS Secrets Manager User Guide

 def batch_get_secrets(self, filter_name):
 """
 Retrieve multiple secrets from AWS Secrets Manager using the
 batch_get_secret_value API.
 This function assumes the stack mentioned in the source code README has been
 successfully deployed.
 This stack includes 7 secrets, all of which have names beginning with
 "mySecret".

 :param filter_name: The full or partial name of secrets to be fetched.
 :type filter_name: str
 """
 try:
 secrets = []
 response = self.client.batch_get_secret_value(
 Filters=[{"Key": "name", "Values": [f"{filter_name}"]}]
)
 for secret in response["SecretValues"]:
 secrets.append(json.loads(secret["SecretString"]))
 if secrets:
 logger.info("Secrets retrieved successfully.")
 else:
 logger.info("Zero secrets returned without error.")
 return secrets
 except self.client.exceptions.ResourceNotFoundException:
 msg = f"One or more requested secrets were not found with filter:
 {filter_name}"
 logger.info(msg)
 return msg
 except Exception as e:
 logger.error(f"An unknown error occurred:\n{str(e)}.")
 raise

Get a Secrets Manager secret value using .NET

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

Topics

.NET 107

AWS Secrets Manager User Guide

• Get a Secrets Manager secret value using .NET with client-side caching

• Get a Secrets Manager secret value using the SDK for .NET

Get a Secrets Manager secret value using .NET with client-side caching

When you retrieve a secret, you can use the Secrets Manager .NET-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Get secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

• .NET Framework 4.6.2 or higher, or .NET Standard 2.0 or higher. See Download .NET on the
Microsoft .NET website.

• The AWS SDK for .NET. See the section called “AWS SDKs”.

To download the source code, see Caching client for .NET on GitHub.

To use the cache, first instantiate it, then retrieve your secret by using GetSecretString or
GetSecretBinary. On successive retrievals, the cache returns the cached copy of the secret.

To get the caching package

• Do one of the following:

• Run the following .NET CLI command in your project directory.

dotnet add package AWSSDK.SecretsManager.Caching --version 1.0.6

.NET with client-side caching 108

https://dotnet.microsoft.com/en-us/download
https://github.com/aws/aws-secretsmanager-caching-net

AWS Secrets Manager User Guide

• Add the following package reference to your .csproj file.

<ItemGroup>
 <PackageReference Include="AWSSDK.SecretsManager.Caching" Version="1.0.6" /
>
</ItemGroup>

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• SecretsManagerCache

• SecretCacheConfiguration

• ISecretCacheHook

Example Retrieve a secret

The following code example shows a method that retrieves a secret named MySecret.

using Amazon.SecretsManager.Extensions.Caching;

namespace LambdaExample
{
 public class CachingExample
 {
 private const string MySecretName ="MySecret";

 private SecretsManagerCache cache = new SecretsManagerCache();

 public async Task<Response> FunctionHandlerAsync(string input, ILambdaContext
 context)
 {
 string MySecret = await cache.GetSecretString(MySecretName);

 // Use the secret, return success

.NET with client-side caching 109

AWS Secrets Manager User Guide

 }
 }
}

Example Configure the time to live (TTL) cache refresh duration

The following code example shows a method that retrieves a secret named MySecret and sets the
TTL cache refresh duration to 24 hours.

using Amazon.SecretsManager.Extensions.Caching;

namespace LambdaExample
{
 public class CachingExample
 {
 private const string MySecretName = "MySecret";

 private static SecretCacheConfiguration cacheConfiguration = new
 SecretCacheConfiguration
 {
 CacheItemTTL = 86400000
 };
 private SecretsManagerCache cache = new
 SecretsManagerCache(cacheConfiguration);
 public async Task<Response> FunctionHandlerAsync(string input, ILambdaContext
 context)
 {
 string mySecret = await cache.GetSecretString(MySecretName);

 // Use the secret, return success
 }
 }
}

SecretsManagerCache

An in-memory cache for secrets requested from Secrets Manager. You use the section called
“GetSecretString” or the section called “GetSecretBinary” to retrieve a secret from the cache. You
can configure the cache settings by passing in a the section called “SecretCacheConfiguration”
object in the constructor.

.NET with client-side caching 110

AWS Secrets Manager User Guide

For more information, including examples, see the section called “.NET with client-side caching”.

Constructors

public SecretsManagerCache()

Default constructor for a SecretsManagerCache object.

public SecretsManagerCache(IAmazonSecretsManager secretsManager)

Constructs a new cache using a Secrets Manager client created using the provided
AmazonSecretsManagerClient. Use this constructor to customize the Secrets Manager client, for
example to use a specific region or endpoint.

Parameters

secretsManager

The AmazonSecretsManagerClient to retrieve secrets from.

public SecretsManagerCache(SecretCacheConfiguration config)

Constructs a new secret cache using the provided the section called
“SecretCacheConfiguration”. Use this constructor to configure the cache, for example the
number of secrets to cache and how often it refreshes.

Parameters

config

A the section called “SecretCacheConfiguration” that contains configuration information for
the cache.

public SecretsManagerCache(IAmazonSecretsManager secretsManager,
SecretCacheConfiguration config)

Constructs a new cache using a Secrets Manager client created using the provided
AmazonSecretsManagerClient and a the section called “SecretCacheConfiguration”. Use this
constructor to customize the Secrets Manager client, for example to use a specific region or
endpoint as well as configure the cache, for example the number of secrets to cache and how
often it refreshes.

.NET with client-side caching 111

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html

AWS Secrets Manager User Guide

Parameters

secretsManager

The AmazonSecretsManagerClient to retrieve secrets from.

config

A the section called “SecretCacheConfiguration” that contains configuration information for
the cache.

Methods

GetSecretString

public async Task<String> GetSecretString(String secretId)

Retrieves a string secret from Secrets Manager.

Parameters

secretId

The ARN or name of the secret to retrieve.

GetSecretBinary

public async Task<byte[]> GetSecretBinary(String secretId)

Retrieves a binary secret from Secrets Manager.

Parameters

secretId

The ARN or name of the secret to retrieve.

RefreshNowAsync

public async Task<bool> RefreshNowAsync(String secretId)

Requests the secret value from Secrets Manager and updates the cache with any changes. If there
is no existing cache entry, creates a new one. Returns true if the refresh is successful.

.NET with client-side caching 112

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html

AWS Secrets Manager User Guide

Parameters

secretId

The ARN or name of the secret to retrieve.

GetCachedSecret

public SecretCacheItem GetCachedSecret(string secretId)

Returns the cache entry for the specified secret if it exists in the cache. Otherwise, retrieves the
secret from Secrets Manager and creates a new cache entry.

Parameters

secretId

The ARN or name of the secret to retrieve.

SecretCacheConfiguration

Cache configuration options for a the section called “SecretsManagerCache”, such as maximum
cache size and Time to Live (TTL) for cached secrets.

Properties

CacheItemTTL

public uint CacheItemTTL { get; set; }

The TTL of a cache item in milliseconds. The default is 3600000 ms or 1 hour. The maximum is
4294967295 ms, which is approximately 49.7 days.

MaxCacheSize

public ushort MaxCacheSize { get; set; }

The maximum cache size. The default is 1024 secrets. The maximum is 65,535.

VersionStage

public string VersionStage { get; set; }

.NET with client-side caching 113

AWS Secrets Manager User Guide

The version of secrets that you want to cache. For more information, see Secret versions. The
default is "AWSCURRENT".

Client

public IAmazonSecretsManager Client { get; set; }

The AmazonSecretsManagerClient to retrieve secrets from. If it is null, the cache instantiates a
new client. The default is null.

CacheHook

public ISecretCacheHook CacheHook { get; set; }

A the section called “ISecretCacheHook”.

ISecretCacheHook

An interface to hook into a the section called “SecretsManagerCache” to perform actions on the
secrets being stored in the cache.

Methods

Put

object Put(object o);

Prepare the object for storing in the cache.

Returns the object to store in the cache.

Get

object Get(object cachedObject);

Derive the object from the cached object.

Returns the object to return from the cache

Get a Secrets Manager secret value using the SDK for .NET

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

SDK for .NET 114

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html

AWS Secrets Manager User Guide

For .NET applications, use the Secrets Manager .NET-based caching component or call the SDK
directly with GetSecretValue or BatchGetSecretValue.

The following code examples show how to use GetSecretValue.

Required permissions: secretsmanager:GetSecretValue

 using System;
 using System.IO;
 using System.Threading.Tasks;
 using Amazon.SecretsManager;
 using Amazon.SecretsManager.Model;

 /// <summary>
 /// This example uses the Amazon Web Service Secrets Manager to retrieve
 /// the secret value for the provided secret name.
 /// </summary>
 public class GetSecretValue
 {
 /// <summary>
 /// The main method initializes the necessary values and then calls
 /// the GetSecretAsync and DecodeString methods to get the decoded
 /// secret value for the secret named in secretName.
 /// </summary>
 public static async Task Main()
 {
 string secretName = "<<{{MySecretName}}>>";
 string secret;

 IAmazonSecretsManager client = new AmazonSecretsManagerClient();

 var response = await GetSecretAsync(client, secretName);

 if (response is not null)
 {
 secret = DecodeString(response);

 if (!string.IsNullOrEmpty(secret))
 {
 Console.WriteLine($"The decoded secret value is: {secret}.");
 }
 else
 {
 Console.WriteLine("No secret value was returned.");

SDK for .NET 115

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TGetSecretValueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TBatchGetSecretValueRequest.html

AWS Secrets Manager User Guide

 }
 }
 }

 /// <summary>
 /// Retrieves the secret value given the name of the secret to
 /// retrieve.
 /// </summary>
 /// <param name="client">The client object used to retrieve the secret
 /// value for the given secret name.</param>
 /// <param name="secretName">The name of the secret value to retrieve.</param>
 /// <returns>The GetSecretValueReponse object returned by
 /// GetSecretValueAsync.</returns>
 public static async Task<GetSecretValueResponse> GetSecretAsync(
 IAmazonSecretsManager client,
 string secretName)
 {
 GetSecretValueRequest request = new GetSecretValueRequest()
 {
 SecretId = secretName,
 VersionStage = "AWSCURRENT", // VersionStage defaults to AWSCURRENT if
 unspecified.
 };

 GetSecretValueResponse response = null;

 // For the sake of simplicity, this example handles only the most
 // general SecretsManager exception.
 try
 {
 response = await client.GetSecretValueAsync(request);
 }
 catch (AmazonSecretsManagerException e)
 {
 Console.WriteLine($"Error: {e.Message}");
 }

 return response;
 }

 /// <summary>
 /// Decodes the secret returned by the call to GetSecretValueAsync and
 /// returns it to the calling program.
 /// </summary>

SDK for .NET 116

AWS Secrets Manager User Guide

 /// <param name="response">A GetSecretValueResponse object containing
 /// the requested secret value returned by GetSecretValueAsync.</param>
 /// <returns>A string representing the decoded secret value.</returns>
 public static string DecodeString(GetSecretValueResponse response)
 {
 // Decrypts secret using the associated AWS Key Management Service
 // Customer Master Key (CMK.) Depending on whether the secret is a
 // string or binary value, one of these fields will be populated.
 if (response.SecretString is not null)
 {
 var secret = response.SecretString;
 return secret;
 }
 else if (response.SecretBinary is not null)
 {
 var memoryStream = response.SecretBinary;
 StreamReader reader = new StreamReader(memoryStream);
 string decodedBinarySecret =
 System.Text.Encoding.UTF8.GetString(Convert.FromBase64String(reader.ReadToEnd()));
 return decodedBinarySecret;
 }
 else
 {
 return string.Empty;
 }
 }
 }

Get a Secrets Manager secret value using Go

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

Topics

• Get a Secrets Manager secret value using Go with client-side caching

• Get a Secrets Manager secret value using the Go AWS SDK

Go 117

AWS Secrets Manager User Guide

Get a Secrets Manager secret value using Go with client-side caching

When you retrieve a secret, you can use the Secrets Manager Go-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Get secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

• AWS SDK for Go. See the section called “AWS SDKs”.

To download the source code, see Secrets Manager Go caching client on GitHub.

To set up a Go development environment, see Golang Getting Started on the Go Programming
Language website.

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• type Cache

• type CacheConfig

• type CacheHook

Go with client-side caching 118

https://github.com/aws/aws-secretsmanager-caching-go
https://golang.org/doc/install

AWS Secrets Manager User Guide

Example Retrieve a secret

The following code example shows a Lambda function that retrieves a secret.

package main

import (
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-secretsmanager-caching-go/secretcache"
)

var (
 secretCache, _ = secretcache.New()
)

func HandleRequest(secretId string) string {
 result, _ := secretCache.GetSecretString(secretId)

 // Use the secret, return success
}

 func main() {
 lambda. Start(HandleRequest)
}

type Cache

An in-memory cache for secrets requested from Secrets Manager. You use the section called
“GetSecretString” or the section called “GetSecretBinary” to retrieve a secret from the cache.

The following example shows how to configure the cache settings.

// Create a custom secretsmanager client
client := getCustomClient()

// Create a custom CacheConfig struct
config := secretcache. CacheConfig{
 MaxCacheSize: secretcache.DefaultMaxCacheSize + 10,
 VersionStage: secretcache.DefaultVersionStage,
 CacheItemTTL: secretcache.DefaultCacheItemTTL,
}

// Instantiate the cache

Go with client-side caching 119

AWS Secrets Manager User Guide

cache, _ := secretcache.New(
 func(c *secretcache.Cache) { c. CacheConfig = config },
 func(c *secretcache.Cache) { c. Client = client },
)

For more information, including examples, see the section called “Go with client-side caching”.

Methods

New

func New(optFns ...func(*Cache)) (*Cache, error)

New constructs a secret cache using functional options, uses defaults otherwise. Initializes a
SecretsManager Client from a new session. Initializes CacheConfig to default values. Initialises LRU
cache with a default max size.

GetSecretString

func (c *Cache) GetSecretString(secretId string) (string, error)

GetSecretString gets the secret string value from the cache for given secret ID. Returns the secret
string and an error if operation failed.

GetSecretStringWithStage

func (c *Cache) GetSecretStringWithStage(secretId string, versionStage
string) (string, error)

GetSecretStringWithStage gets the secret string value from the cache for given secret ID and
version stage. Returns the secret string and an error if operation failed.

GetSecretBinary

func (c *Cache) GetSecretBinary(secretId string) ([]byte, error) {

GetSecretBinary gets the secret binary value from the cache for given secret ID. Returns the secret
binary and an error if operation failed.

GetSecretBinaryWithStage

func (c *Cache) GetSecretBinaryWithStage(secretId string, versionStage
string) ([]byte, error)

Go with client-side caching 120

AWS Secrets Manager User Guide

GetSecretBinaryWithStage gets the secret binary value from the cache for given secret ID and
version stage. Returns the secret binary and an error if operation failed.

type CacheConfig

Cache configuration options for a Cache, such as maximum cache size, default version stage, and
Time to Live (TTL) for cached secrets.

type CacheConfig struct {

 // The maximum cache size. The default is 1024 secrets.
 MaxCacheSize int

 // The TTL of a cache item in nanoseconds. The default is
 // 3.6e10^12 ns or 1 hour.
 CacheItemTTL int64

 // The version of secrets that you want to cache. The default
 // is "AWSCURRENT".
 VersionStage string

 // Used to hook in-memory cache updates.
 Hook CacheHook
}

type CacheHook

An interface to hook into a Cache to perform actions on the secret being stored in the cache.

Methods

Put

Put(data interface{}) interface{}

Prepares the object for storing in the cache.

Get

Get(data interface{}) interface{}

Derives the object from the cached object.

Go with client-side caching 121

AWS Secrets Manager User Guide

Get a Secrets Manager secret value using the Go AWS SDK

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

For Go applications, use the Secrets Manager Go-based caching component or call the SDK directly
with GetSecretValue or BatchGetSecretValue.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

 // Use this code snippet in your app.
 // If you need more information about configurations or implementing the sample code,
 visit the AWS docs:
 // https://aws.github.io/aws-sdk-go-v2/docs/getting-started/

 import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/secretsmanager"
)

 func main() {
 secretName := "<<{{MySecretName}}>>"
 region := "<<{{MyRegionName}}>>"

 config, err := config.LoadDefaultConfig(context.TODO(), config.WithRegion(region))
 if err != nil {
 log.Fatal(err)
 }

 // Create Secrets Manager client
 svc := secretsmanager.NewFromConfig(config)

 input := &secretsmanager.GetSecretValueInput{
 SecretId: aws.String(secretName),
 VersionStage: aws.String("AWSCURRENT"), // VersionStage defaults to AWSCURRENT if
 unspecified

Go AWS SDK 122

https://docs.aws.amazon.com/sdk-for-go/api/service/secretsmanager/#SecretsManager.GetSecretValue
https://docs.aws.amazon.com/sdk-for-go/api/service/secretsmanager/#SecretsManager.BatchGetSecretValue

AWS Secrets Manager User Guide

 }

 result, err := svc.GetSecretValue(context.TODO(), input)
 if err != nil {
 // For a list of exceptions thrown, see
 // https://<<{{DocsDomain}}>>/secretsmanager/latest/apireference/
API_GetSecretValue.html
 log.Fatal(err.Error())
 }

 // Decrypts secret using the associated KMS key.
 var secretString string = *result.SecretString

 // Your code goes here.
 }

Get a Secrets Manager secret value using Rust

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

Topics

• Get a Secrets Manager secret value using Rust with client-side caching

• Get a Secrets Manager secret value using the Rust AWS SDK

Get a Secrets Manager secret value using Rust with client-side caching

When you retrieve a secret, you can use the Secrets Manager Rust-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Get secrets.

The cache policy is First In First Out (FIFO), so when the cache must discard a secret, it discards the
oldest secret. By default, the cache refreshes secrets every hour. You can configure the following:

• max_size – The maximum number of cached secrets to maintain before evicting secrets that
have not been accessed recently.

Rust 123

AWS Secrets Manager User Guide

• ttl – The duration a cached item is considered valid before requiring a refresh of the secret
state.

The cache implementation does not include cache invalidation. The cache implementation is
focused around the cache itself, and is not security hardened or focused. If you require additional
security such as encrypting items in the cache, use the traits provided to modify the cache.

To use the component, you must have a Rust 2021 development environment with tokio. For
more information, see Getting started on the Rust Programming Language website.

To download the source code, see Secrets Manager Rust-based caching client component on
GitHub.

To install the caching component, use the following command.

cargo add aws_secretsmanager_caching

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Example Retrieve a secret

The following example shows how to get the secret value for a secret named MyTest.

use aws_secretsmanager_caching::SecretsManagerCachingClient;
use std::num::NonZeroUsize;
use std::time::Duration;

let client = match SecretsManagerCachingClient::default(
 NonZeroUsize::new(10).unwrap(),
 Duration::from_secs(60),
)
.await
{
 Ok(c) => c,
 Err(_) => panic!("Handle this error"),

Rust with client-side caching 124

https://www.rust-lang.org/learn/get-started
https://github.com/aws/aws-secretsmanager-agent/tree/main/aws_secretsmanager_caching

AWS Secrets Manager User Guide

};

let secret_string = match client.get_secret_value("MyTest", None, None).await {
 Ok(s) => s.secret_string.unwrap(),
 Err(_) => panic!("Handle this error"),
};

// Your code here

Example Instantiating Cache with a custom configuration and a custom client

The following example shows how to configure the cache and then get the secret value for a secret
named MyTest.

let config = aws_config::load_defaults(BehaviorVersion::latest())
 .await
 .into_builder()
 .region(Region::from_static("us-west-2"))
 .build();

let asm_builder = aws_sdk_secretsmanager::config::Builder::from(&config);

let client = match SecretsManagerCachingClient::from_builder(
 asm_builder,
 NonZeroUsize::new(10).unwrap(),
 Duration::from_secs(60),
)
.await
{
 Ok(c) => c,
 Err(_) => panic!("Handle this error"),
};

let secret_string = client
 .get_secret_value("MyTest", None, None)
 .await
 {
 Ok(c) => c.secret_string.unwrap(),
 Err(_) => panic!("Handle this error"),
 };

// Your code here
```     

Rust with client-side caching 125



AWS Secrets Manager User Guide

Get a Secrets Manager secret value using the Rust AWS SDK

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. However, we recommend that you cache your 
secret values by using client-side caching. Caching secrets improves speed and reduces your costs.

For Rust applications, use the Secrets Manager Rust-based caching component or call the SDK 
directly with GetSecretValue or BatchGetSecretValue.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

async fn show_secret(client: &Client, name: &str) -> Result<(), Error> { 
    let resp = client.get_secret_value().secret_id(name).send().await?; 

    println!("Value: {}", resp.secret_string().unwrap_or("No value!")); 

    Ok(())
}

Use AWS Secrets Manager secrets in Amazon Elastic Kubernetes 
Service

To show secrets from AWS Secrets Manager (ASCP) as files mounted in Amazon EKS Pods, you can 
use the AWS Secrets and Configuration Provider for the Kubernetes Secrets Store CSI Driver. The 
ASCP works with Amazon Elastic Kubernetes Service 1.17+ running an Amazon EC2 node group. 
AWS Fargate node groups are not supported. With the ASCP, you can store and manage your 
secrets in Secrets Manager and then retrieve them through your workloads running on Amazon 
EKS. If your secret contains multiple key-value pairs in JSON format, you can choose which ones 
to mount in Amazon EKS. The ASCP uses JMESPath syntax to query the key-value pairs in your 
secret. The ASCP also works with Parameter Store parameters. The ASCP offers two methods of 
authentication with Amazon EKS The first approach uses IAM Roles for Service Accounts (IRSA). The 
second approach uses Pod Identities. Each approach has its benefits and use cases.

ASCP with IAM Roles for Service Accounts (IRSA)

The ASCP with IAM Roles for Service Accounts (IRSA) allows you to mount secrets from AWS 
Secrets Manager as files in your Amazon EKS Pods. This approach is suitable when:

Rust 126

https://docs.rs/releases/search?query=aws-sdk-secretsmanager
https://docs.rs/releases/search?query=aws-sdk-secretsmanager


AWS Secrets Manager User Guide

• You need to mount secrets as files in your Pods.

• You're using Amazon EKS version 1.17 or later with Amazon EC2 node groups.

• You want to retrieve specific key-value pairs from JSON-formatted secrets.

For more information, see the section called “Integrate ASCP with IRSA for Amazon EKS”.

ASCP with Pod Identity

ASCP with EKS Pod Identity

The ASCP with Pod Identity method enhances security and simplifies configuration for accessing 
secrets in Amazon EKS. This approach is beneficial when:

• You need more granular permission management at the Pod level.

• You're using Amazon EKS version 1.24 or later.

• You want improved performance and scalability.

For more information, see the section called “Integrate ASCP with Pod Identity for Amazon EKS”.

Choosing the right approach

Consider the following factors when deciding between ASCP with IRSA and ASCP with Pod Identity:

• Amazon EKSversion: Pod Identity requires Amazon EKS 1.24+, while CSI driver works with 
Amazon EKS 1.17+.

• Security requirements: Pod Identity offers more granular control at the Pod level.

• Performance: Pod Identity generally performs better in high-scale environments.

• Complexity: Pod Identity simplifies setup by eliminating the need for separate service accounts.

Choose the method that best aligns with your specific requirements and Amazon EKS environment.

Install ASCP for Amazon EKS

This section explains how to install the AWS Secrets and Configuration Provider for Amazon EKS. 
With ASCP, you can mount secrets from Secrets Manager and parameters from AWS Systems 
Manager as files in Amazon EKS Pods.

ASCP with Pod Identity 127

URLtoVideo


AWS Secrets Manager User Guide

Prerequisites

• An Amazon EKS cluster

• Version 1.24 or later for Pod Identity

• Version 1.17 or later for IRSA

• The AWS CLI installed and configured

• kubectl installed and configured for your Amazon EKS cluster

• Helm (version 3.0 or later)

Install and configure the ASCP

The ASCP is available on GitHub in the secrets-store-csi-provider-aws repository. The repo also 
contains example YAML files for creating and mounting a secret.

During installation, you can configure the ASCP to use a FIPS endpoint. For a list of endpoints, see
the section called “Secrets Manager endpoints”.

To install the ASCP as an EKS add-on

1. Install eksctl (installation instructions)

2. Run the following command to install the add-on with the default configuration:

eksctl create addon --cluster <your_cluster> --name aws-secrets-store-csi-driver-
provider

If you'd like to configure the add-on, run the following installation command instead:

aws eks create-addon --cluster-name <your_cluster> --addon-name aws-secrets-store-
csi-driver-provider --configuration-values 'file://path/to/config.yaml'

The configuration file can be a YAML or JSON file. To see the configuration schema for the 
add-on:

a. Run the following command and note the latest version of the add-on:

aws eks describe-addon-versions --addon-name aws-secrets-store-csi-driver-
provider

Install ASCP for Amazon EKS 128

https://github.com/aws/secrets-store-csi-driver-provider-aws
https://docs.aws.amazon.com/eks/latest/eksctl/installation.html
https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/charts/secrets-store-csi-driver-provider-aws/values.yaml


AWS Secrets Manager User Guide

b. Run the following command to see the add-on's configuration schema, replacing
<version> with the version from the previous step:

aws eks describe-addon-configuration --addon-name aws-secrets-store-csi-driver-
provider --addon-version <version>

To install the ASCP by using Helm

1. To make sure the repo is pointing to the latest charts, use helm repo update.

2. Install the chart. The following is an example of the helm install command:

helm install -n kube-system secrets-provider-aws aws-secrets-manager/secrets-store-
csi-driver-provider-aws

a. To use a FIPS endpoint, add the following flag: --set useFipsEndpoint=true

b. To configure throttling, add the following flag: --set-json 
'k8sThrottlingParams={"qps": "number of queries per second", 
"burst": "number of queries per second"}'

c. If the Secrets Store CSI Driver is already installed on your cluster, add the following flag:
--set secrets-store-csi-driver.install=false. This will skip installing Secrets 
Store CSI Driver as a dependency.

To install by using the YAML in the repo

• Use the following commands.

helm repo add secrets-store-csi-driver https://kubernetes-sigs.github.io/secrets-
store-csi-driver/charts
helm install -n kube-system csi-secrets-store secrets-store-csi-driver/secrets-
store-csi-driver
kubectl apply -f https://raw.githubusercontent.com/aws/secrets-store-csi-driver-
provider-aws/main/deployment/aws-provider-installer.yaml

Install ASCP for Amazon EKS 129



AWS Secrets Manager User Guide

Verify the installations

To verify the installations of your EKS cluster, Secrets Store CSI driver, and ASCP plugin, follow 
these steps:

1. Verify the EKS cluster:

eksctl get cluster --name clusterName

This command should return information about your cluster.

2. Verify the Secrets Store CSI driver installation:

kubectl get pods -n kube-system -l app=secrets-store-csi-driver

You should see Pods running with names like csi-secrets-store-secrets-store-csi-
driver-xxx.

3. Verify the ASCP plugin installation:

YAML installation

$ kubectl get pods -n kube-system -l app=csi-secrets-store-provider-aws

Example output:

NAME                                     READY   STATUS    RESTARTS   AGE
csi-secrets-store-provider-aws-12345      1/1     Running   0          2m

Helm installation

$  kubectl get pods -n kube-system -l app=secrets-store-csi-driver-provider-aws

Example output:

NAME                                              READY   STATUS    RESTARTS   
 AGE
secrets-provider-aws-secrets-store-csi-driver-provider-67890       1/1     
 Running   0          2m

Install ASCP for Amazon EKS 130



AWS Secrets Manager User Guide

You should see Pods in the Running state.

After running these commands, if everything is set up correctly, you should see all components 
running without any errors. If you encounter any issues, you may need to troubleshoot by checking 
the logs of the specific Pods that are having problems.

Troubleshooting

1. To check the logs of the ASCP provider, run:

kubectl logs -n kube-system -l app=csi-secrets-store-provider-aws

2. Check the status of all pods in the kube-system namespace:

kubectl -n kube-system get pods

kubectl -n kube-system logs pod/PODID

All Pods related to the CSI driver and ASCP should be in the 'Running' state.

3. Check the CSI driver version:

kubectl get csidriver secrets-store.csi.k8s.io -o yaml

This command should return information about the installed CSI driver.

Additional resources

For more information about using ASCP with Amazon EKS, see the following resources:

• Using Pod Identity with Amazon EKS

• AWS Secrets Store CSI Driver on GitHub

Install ASCP for Amazon EKS 131

https://docs.aws.amazon.com/eks/latest/userguide/pod-identities.html
https://github.com/aws/secrets-store-csi-driver-provider-aws


AWS Secrets Manager User Guide

Use AWS Secrets and Configuration Provider CSI with Pod Identity for 
Amazon EKS

The AWS Secrets and Configuration Provider integration with the Pod Identity Agent for Amazon 
Elastic Kubernetes Service provides enhanced security, simplified configuration, and improved 
performance for applications running on Amazon EKS. Pod Identity simplifies IAM authentication 
for Amazon EKS when retrieving secrets from Secrets Manager or parameters from AWS Systems 
Manager Parameter Store.

Amazon EKS Pod Identity streamlines the process of configuring IAM permissions for Kubernetes 
applications by allowing permissions to be set up directly through Amazon EKS interfaces, reducing 
the number of steps and eliminating the need to switch between Amazon EKS and IAM services. 
Pod Identity enables the use of a single IAM role across multiple clusters without updating trust 
policies and supports role session tags for more granular access control. This approach not only 
simplifies policy management by allowing reuse of permission policies across roles but also 
enhances security by enabling access to AWS resources based on matching tags.

How it works

1. Pod Identity assigns an IAM role to the Pod.

2. ASCP uses this role to authenticate with AWS services.

3. If authorized, ASCP retrieves the requested secrets and makes them available to the Pod.

For more information, see Understand how Amazon EKS Pod Identity works in the Amazon EKS 
User Guide.

Prerequisites

Important

Pod Identity is supported only for Amazon EKS in the cloud. It is not supported for Amazon 
EKS Anywhere, Red Hat OpenShift Service on AWS, or self-managed Kubernetes clusters on 
Amazon EC2 instances.

• Amazon EKS cluster (version 1.24 or later)

• Access to AWS CLI and Amazon EKS cluster via kubectl

Integrate ASCP with Pod Identity for Amazon EKS 132

https://docs.aws.amazon.com/eks/latest/userguide/pod-id-abac.html#pod-id-abac-tags
https://docs.aws.amazon.com/eks/latest/userguide/pod-id-how-it-works.html
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/rosa/


AWS Secrets Manager User Guide

• Access to two AWS accounts (for cross-account access)

Install the Amazon EKS Pod Identity Agent

To use Pod Identity with your cluster, you must install the Amazon EKS Pod Identity Agent add-on.

To install the Pod Identity Agent

• Install the Pod Identity Agent add-on on your cluster:

eksctl create addon \ 
  --name eks-pod-identity-agent \ 
  --cluster clusterName \ 
  --region region 

Set up ASCP with Pod Identity

1. Create a permissions policy that grants secretsmanager:GetSecretValue and
secretsmanager:DescribeSecret permission to the secrets that the Pod needs to access. 
For an example policy, see the section called “Example: Permission to read and describe 
individual secrets”.

2. Create an IAM role that can be assumed by the Amazon EKS service principal for Pod Identity:

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
      { 
        "Effect": "Allow", 
        "Principal": { 
          "Service": "pods.eks.amazonaws.com" 
        }, 
        "Action": [ 
          "sts:AssumeRole", 
          "sts:TagSession" 
        ] 
      } 
    ] 

Integrate ASCP with Pod Identity for Amazon EKS 133



AWS Secrets Manager User Guide

  }

Attach the IAM policy to the role:

aws iam attach-role-policy \ 
  --role-name MY_ROLE \ 
  --policy-arn POLICY_ARN

3. Create a Pod Identity association. For an example, see Create a Pod Identity association  in the
Amazon EKS User Guide

4. Create the SecretProviderClass that specifies which secrets to mount in the Pod:

kubectl apply -f https://raw.githubusercontent.com/aws/secrets-store-csi-driver-
provider-aws/main/examples/ExampleSecretProviderClass-PodIdentity.yaml

The key difference in SecretProviderClass between IRSA and Pod Identity is the optional 
parameter usePodIdentity. It is an optional field that determines the authentication 
approach. When not specified, it defaults to using IAM Roles for Service Accounts (IRSA).

• To use EKS Pod Identity, use any of these values: "true", "True", "TRUE", "t", "T".

• To explicitly use IRSA, set to any of these values: "false", "False", "FALSE", "f", 
or "F".

5. Deploy the Pod that mounts the secrets under /mnt/secrets-store:

kubectl apply -f https://raw.githubusercontent.com/aws/secrets-store-csi-driver-
provider-aws/main/examples/ExampleDeployment-PodIdentity.yaml

6. If you use a private Amazon EKS cluster, make sure that the VPC that the cluster is in has an 
AWS STS endpoint. For information about creating an endpoint, see Interface VPC endpoints
in the AWS Identity and Access Management User Guide.

Verify the secret mount

To verify that the secret is mounted properly, run the following command:

kubectl exec -it $(kubectl get pods | awk '/pod-identity-deployment/{print $1}' | head 
 -1) -- cat /mnt/secrets-store/MySecret

Integrate ASCP with Pod Identity for Amazon EKS 134

https://docs.aws.amazon.com/eks/latest/userguide/pod-id-association.html#pod-id-association-create
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_interface_vpc_endpoints.html


AWS Secrets Manager User Guide

To set up Amazon EKS Pod Identity to access to secrets in Secrets Manager

1. Create a permissions policy that grants secretsmanager:GetSecretValue and
secretsmanager:DescribeSecret permission to the secrets that the Pod needs to access. 
For an example policy, see the section called “Example: Permission to read and describe 
individual secrets”.

2. Create a secret in Secrets Manager, if you do not already have one.

Troubleshoot

You can view most errors by describing the Pod deployment.

To see error messages for your container

1. Get a list of Pod names with the following command. If you aren't using the default 
namespace, use -n NAMESPACE.

kubectl get pods

2. To describe the Pod, in the following command, for PODID use the Pod ID from the Pods you 
found in the previous step. If you aren't using the default namespace, use -n NAMESPACE.

kubectl describe pod/PODID

To see errors for the ASCP

• To find more information in the provider logs, in the following command, for PODID use the ID 
of the csi-secrets-store-provider-aws Pod.

kubectl -n kube-system get pods
kubectl -n kube-system logs pod/PODID

Use AWS Secrets and Configuration Provider CSI with IAM Roles for 
Service Accounts (IRSA)

Topics

Integrate ASCP with IRSA for Amazon EKS 135



AWS Secrets Manager User Guide

• Prerequisites

• Set up access control

• Identify which secrets to mount

• Troubleshoot

Prerequisites

• Amazon EKS cluster (version 1.17 or later)

• Access to AWS CLI and Amazon EKS cluster via kubectl

Set up access control

The ASCP retrieves the Amazon EKS Pod Identity and exchanges it for an IAM role. You set 
permissions in an IAM policy for that IAM role. When the ASCP assumes the IAM role, it gets access 
to the secrets you authorized. Other containers can't access the secrets unless you also associate 
them with the IAM role.

To grant your Amazon EKS Pod access to secrets in Secrets Manager

1. Create a permissions policy that grants secretsmanager:GetSecretValue and
secretsmanager:DescribeSecret permission to the secrets that the Pod needs to access. 
For an example policy, see the section called “Example: Permission to read and describe 
individual secrets”.

2. Create an IAM OpenID Connect (OIDC) provider for the cluster if you don't already have one. 
For more information, see Create an IAM OIDC provider for your cluster in the Amazon EKS 
User Guide.

3. Create an IAM role for service account and attach the policy to it. For more information, see
Create an IAM role for a service account in the Amazon EKS User Guide.

4. If you use a private Amazon EKS cluster, make sure that the VPC that the cluster is in has an 
AWS STS endpoint. For information about creating an endpoint, see Interface VPC endpoints
in the AWS Identity and Access Management User Guide.

Integrate ASCP with IRSA for Amazon EKS 136

https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_interface_vpc_endpoints.html


AWS Secrets Manager User Guide

Identify which secrets to mount

To determine which secrets the ASCP mounts in Amazon EKS as files on the filesystem, you create 
a the section called “SecretProviderClass” YAML file. The SecretProviderClass lists the secrets 
to mount and the file name to mount them as. The SecretProviderClass must be in the same 
namespace as the Amazon EKS Pod it references.

Mount the secrets as files

The following instructions show how to mount secrets as files using example YAML files
ExampleSecretProviderClass.yaml and ExampleDeployment.yaml.

To mount secrets in Amazon EKS

1. Apply the SecretProviderClass to the Pod:

kubectl apply -f ExampleSecretProviderClass.yaml

2. Deploy your Pod:

kubectl apply -f ExampleDeployment.yaml

3. The ASCP mounts the files.

Troubleshoot

You can view most errors by describing the Pod deployment.

To see error messages for your container

1. Get a list of Pod names with the following command. If you aren't using the default 
namespace, use -n nameSpace.

kubectl get pods

2. To describe the Pod, in the following command, for podId use the Pod ID from the Pods you 
found in the previous step. If you aren't using the default namespace, use -n nameSpace.

kubectl describe pod/podId

Integrate ASCP with IRSA for Amazon EKS 137

https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/examples/ExampleSecretProviderClass-IRSA.yaml
https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/examples/ExampleDeployment-IRSA.yaml


AWS Secrets Manager User Guide

To see errors for the ASCP

• To find more information in the provider logs, in the following command, for podId use the ID 
of the csi-secrets-store-provider-aws Pod.

kubectl -n kube-system get pods
kubectl -n kube-system logs Pod/podId

• Verify that the SecretProviderClass CRD is installed:

kubectl get crd secretproviderclasses.secrets-store.csi.x-k8s.io

This command should return information about the SecretProviderClass custom resource 
definition.

• Verify that the SecretProviderClass object was created.

kubectl get secretproviderclass SecretProviderClassName -o yaml

AWS Secrets and Configuration Provider code examples

ASCP authentication and access control examples

Example: IAM policy allowing Amazon EKS Pod Identity service (pods.eks.amazonaws.com) to 
assume the role and tag the session:

JSON

{ 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "pods.eks.amazonaws.com" 
      }, 
      "Action": [ 

ASCP examples 138



AWS Secrets Manager User Guide

        "sts:AssumeRole", 
        "sts:TagSession" 
      ] 
    } 
  ]
}

SecretProviderClass

You use YAML to describe which secrets to mount in Amazon EKS using the ASCP. For examples, see
the section called “SecretProviderClass usage”.

SecretProviderClass YAML structure

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
   name: name
spec: 
  provider: aws 
  parameters: 
    region: 
    failoverRegion: 
    pathTranslation: 
    usePodIdentity: 
    preferredAddressType: 
    objects:

The parameters field contains the details of the mount request:

region

(Optional) The AWS Region of the secret. If you don't use this field, the ASCP looks up the 
Region from the annotation on the node. This lookup adds overhead to mount requests, so we 
recommend that you provide the Region for clusters that use large numbers of Pods.

If you also specify failoverRegion, the ASCP tries to retrieve the secret from both Regions. 
If either Region returns a 4xx error, for example for an authentication issue, the ASCP does not 
mount either secret. If the secret is retrieved successfully from region, then the ASCP mounts 
that secret value. If the secret is not retrieved successfully from region, but it is retrieved 
successfully from failoverRegion, then the ASCP mounts that secret value.

ASCP examples 139



AWS Secrets Manager User Guide

failoverRegion

(Optional) If you include this field, the ASCP tries to retrieve the secret from the Regions 
defined in region and this field. If either Region returns a 4xx error, for example for an 
authentication issue, the ASCP does not mount either secret. If the secret is retrieved 
successfully from region, then the ASCP mounts that secret value. If the secret is not retrieved 
successfully from region, but it is retrieved successfully from failoverRegion, then the 
ASCP mounts that secret value. For an example of how to use this field, see Multi-Region secret 
failover.

pathTranslation

(Optional) A single substitution character to use if the file name in Amazon EKS will contain the 
path separator character, such as slash (/) on Linux. The ASCP can't create a mounted file that 
contains a path separator character. Instead, the ASCP replaces the path separator character 
with a different character. If you don't use this field, the replacement character is underscore (_), 
so for example, My/Path/Secret mounts as My_Path_Secret.

To prevent character substitution, enter the string False.

usePodIdentity

(Optional) Determines the authentication approach. When not specified, it defaults to IAM Roles 
for Service Accounts (IRSA) (IRSA).

• To use EKS Pod Identity, use any of these values: "true"", "True", "TRUE", "t", or "T".

• To explicitly use IRSA, set to any of these values: "false", "False", "FALSE", "f", or
"F""=.

preferredAddressType

(Optional) Specifies the preferred IP address type for Pod Identity Agent endpoint 
communication. The field is only applicable when using EKS Pod Identity feature and will be 
ignored when using IAM Roles for Service Accounts.Values are case-insensitive. Valid values are:

• "ipv4", "IPv4"", or "IPV4" – Force the use of Pod Identity Agent IPv4 endpoint

• "ipv6", "IPv6", or "IPV6" – Force the use of Pod Identity Agent IPv6 endpoint

• not specified – Use auto endpoint selection, trying IPv4 endpoint first and falling back to IPv6 
endpoint if IPv4 fails

ASCP examples 140



AWS Secrets Manager User Guide

objects

A string containing a YAML declaration of the secrets to be mounted. We recommend using a 
YAML multi-line string or pipe (|) character.

objectName

Required. Specifies the name of the secret or parameter to be fetched. For Secrets Manager 
this is the SecretId parameter and can be either the friendly name or full ARN of the 
secret. For SSM Parameter Store, this is the Name of the parameter and can be either the 
name or full ARN of the parameter.

objectType

Required if you don't use a Secrets Manager ARN for objectName. Can be either
secretsmanager or ssmparameter.

objectAlias

(Optional) The file name of the secret in the Amazon EKS Pod. If you don't specify this field, 
the objectName appears as the file name.

filePermission

(Optional) The 4 digit octal string which specifies the file permission to mount secret with. If 
you don't specify this field it will default to "0644".

objectVersion

(Optional) The version ID of the secret. Not recommended because you must update the 
version ID every time you update the secret. By default the most recent version is used. If 
you include a failoverRegion, this field represents the primary objectVersion.

objectVersionLabel

(Optional) The alias for the version. The default is the most recent version AWSCURRENT. 
For more information, see the section called “Secret versions”. If you include a
failoverRegion, this field represents the primary objectVersionLabel.

jmesPath

(Optional) A map of the keys in the secret to the files to be mounted in Amazon EKS. To use 
this field, your secret value must be in JSON format. If you use this field, you must include 
the subfields path and objectAlias.

ASCP examples 141

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html#API_GetSecretValue_RequestParameters
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html#API_GetParameter_RequestParameters


AWS Secrets Manager User Guide

path

A key from a key-value pair in the JSON of the secret value. If the field contains a 
hyphen, use single quotes to escape it, for example: path: '"hyphenated-path"'

objectAlias

The file name to be mounted in the Amazon EKS Pod. If the field contains a hyphen, use 
single quotes to escape it, for example: objectAlias: '"hyphenated-alias"'

filePermission

(Optional) The 4 digit octal string which specifies the file permission to mount secret 
with. If you don't specify this field it will default to the parent object's file permission.

failoverObject

(Optional) If you specify this field, the ASCP tries to retrieve both the secret specified in the 
primary objectName and the secret specified in the failoverObject objectName sub-
field. If either returns a 4xx error, for example for an authentication issue, the ASCP does not 
mount either secret. If the secret is retrieved successfully from the primary objectName, 
then the ASCP mounts that secret value. If the secret is not retrieved successfully from 
the primary objectName, but it is retrieved successfully from the failover objectName, 
then the ASCP mounts that secret value. If you include this field, you must include the field
objectAlias. For an example of how to use this field, see Failover to a different secret.

You typically use this field when the failover secret isn't a replica. For an example of how to 
specify a replica, see Multi-Region secret failover.

objectName

The name or full ARN of the failover secret. If you use an ARN, the Region in the ARN 
must match the field failoverRegion.

objectVersion

(Optional) The version ID of the secret. Must match the primary objectVersion. Not 
recommended because you must update the version ID every time you update the secret. 
By default the most recent version is used.

objectVersionLabel

(Optional) The alias for the version. The default is the most recent version AWSCURRENT. 
For more information, see the section called “Secret versions”.

ASCP examples 142



AWS Secrets Manager User Guide

Create a basic SecretProviderClass configuration to mount secrets in your Amazon EKS Pods.

Pod Identity

SecretProviderClass to use a secret in the same Amazon EKS cluster:

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
  name: aws-secrets-manager
spec: 
  provider: aws 
  parameters: 
    objects: | 
      - objectName: "mySecret" 
        objectType: "secretsmanager" 
    usePodIdentity: "true"

IRSA

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
  name: deployment-aws-secrets
spec: 
  provider: aws 
  parameters: 
    objects: | 
        - objectName: "MySecret" 
          objectType: "secretsmanager"

SecretProviderClass usage

Use these examples to create SecretProviderClass configurations for different scenarios.

Example: Mount secrets by name or ARN

This example shows how to mount three different types of secrets:

• A secret specified by full ARN

• A secret specified by name

• A specific version of a secret

ASCP examples 143



AWS Secrets Manager User Guide

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
  name: aws-secrets
spec: 
  provider: aws 
  parameters: 
    objects: | 
      - objectName: "arn:aws:secretsmanager:us-east-2:777788889999:secret:MySecret2-
d4e5f6" 
      - objectName: "MySecret3" 
        objectType: "secretsmanager" 
      - objectName: "MySecret4" 
        objectType: "secretsmanager" 
        objectVersionLabel: "AWSCURRENT"

Example: Mount key-value pairs from a secret

This example shows how to mount specific key-value pairs from a JSON-formatted secret:

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
  name: aws-secrets
spec: 
  provider: aws 
  parameters: 
    objects: | 
      - objectName: "arn:aws:secretsmanager:us-east-2:777788889999:secret:MySecret-
a1b2c3" 
        jmesPath:  
            - path: username 
              objectAlias: dbusername 
            - path: password 
              objectAlias: dbpassword

Example: Mount secrets by file permission

This example shows how to mount a secret with a specific file permission

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass

ASCP examples 144



AWS Secrets Manager User Guide

metadata: 
  name: aws-secrets
spec: 
  provider: aws 
  parameters: 
    objects: | 
      - objectName: "mySecret" 
        objectType: "secretsmanager" 
        filePermission: "0600" 
        jmesPath:  
            - path: username 
              objectAlias: dbusername 
              filePermission: "0400"

Example: Failover configuration examples

These examples show how to configure failover for secrets.

Multi-Region secret failover

This example shows how to configure automatic failover for a secret replicated across multiple 
Regions:

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
  name: aws-secrets
spec: 
  provider: aws 
  parameters: 
    region: us-east-1 
    failoverRegion: us-east-2 
    objects: | 
      - objectName: "MySecret"

Failover to a different secret

This example shows how to configure failover to a different secret (not a replica):

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata: 
  name: aws-secrets

ASCP examples 145



AWS Secrets Manager User Guide

spec: 
  provider: aws 
  parameters: 
    region: us-east-1 
    failoverRegion: us-east-2 
    objects: | 
      - objectName: "arn:aws:secretsmanager:us-east-1:777788889999:secret:MySecret-
a1b2c3" 
        objectAlias: "MyMountedSecret" 
        failoverObject:  
          - objectName: "arn:aws:secretsmanager:us-
east-2:777788889999:secret:MyFailoverSecret-d4e5f6"

Additional resources

For more information about using ASCP with Amazon EKS, see the following resources:

• Using Pod Identity with Amazon EKS

• Using AWS Secrets and Configuration Provider

• AWS Secrets Store CSI Driver on GitHub

Use AWS Secrets Manager secrets in AWS Lambda functions

AWS Lambda is a serverless compute service that lets you run code without provisioning or 
managing servers. Parameter Store, a capability of AWS Systems Manager, provides secure, 
hierarchical storage for configuration data management and secrets management. You can use 
the AWS Parameters and Secrets Lambda Extension to retrieve and cache AWS Secrets Manager 
secrets and Parameter Store parameters in Lambda functions without using an SDK. For detailed 
information about using this extension, see Use Secrets Manager secrets in Lambda functions in 
the Lambda Developer Guide.

Using Secrets Manager secrets with Lambda

The Lambda Developer Guide provides comprehensive instructions for using Secrets Manager 
secrets in Lambda functions. To get started:

1. Follow the step-by-step tutorial in Use Secrets Manager secrets in Lambda functions, which 
includes:

• Creating a Lambda function with your preferred runtime (Python, Node.js, Java)

AWS Lambda 146

https://docs.aws.amazon.com/eks/latest/userguide/pod-identities.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/integrating_ascp_csi.html
https://github.com/aws/secrets-store-csi-driver-provider-aws
https://docs.aws.amazon.com/lambda/latest/dg/with-secrets-manager.html
https://docs.aws.amazon.com/lambda/latest/dg/with-secrets-manager.html


AWS Secrets Manager User Guide

• Adding the AWS Parameters and Secrets Lambda Extension as a layer

• Configuring the necessary permissions

• Writing code to retrieve secrets from the extension

• Testing your function

2. Learn about environment variables for configuring the extension's behavior, including cache 
settings and timeouts

3. Understand best practices for working with secret rotation

Using Secrets Manager and Lambda in a VPC

If your Lambda function runs in a VPC, you need to create a VPC endpoint so that the extension 
can make calls to Secrets Manager. For more information, see the section called “VPC endpoints 
(AWS PrivateLink)”.

Using the AWS Parameters and Secrets Lambda Extension

The extension can retrieve both Secrets Manager secrets and Parameter Store parameters. For 
detailed information about using Parameter Store parameters with the extension, see Using 
Parameter Store parameters in Lambda functions in the AWS Systems Manager User Guide.

The Systems Manager documentation includes:

• Detailed explanation of how the extension works with Parameter Store

• Instructions for adding the extension to a Lambda function

• Environment variables for configuring the extension

• Sample commands for retrieving parameters

• Complete list of extension ARNs for all supported architectures and regions

Using the AWS Secrets Manager Agent

How the Secrets Manager Agent works

The AWS Secrets Manager Agent is a client-side HTTP service that helps you standardize how you 
consume secrets from Secrets Manager across your compute environments. You can use it with the 
following services:

Parameter Store integration 147

https://docs.aws.amazon.com/systems-manager/latest/userguide/ps-integration-lambda-extensions.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ps-integration-lambda-extensions.html


AWS Secrets Manager User Guide

• AWS Lambda

• Amazon Elastic Container Service

• Amazon Elastic Kubernetes Service

• Amazon Elastic Compute Cloud

The Secrets Manager Agent retrieves and caches secrets in memory, allowing your applications to 
get secrets from localhost instead of making direct calls to Secrets Manager. The Secrets Manager 
Agent can only read secrets—it can't modify them.

Important

The Secrets Manager Agent uses the AWS credentials from your environment to call Secrets 
Manager. It includes protection against Server Side Request Forgery (SSRF) to help improve 
secret security. The Secrets Manager Agent uses the post-quantum ML-KEM key exchange 
as the highest-priority key exchange by default.

Understanding Secrets Manager Agent caching

The Secrets Manager Agent uses an in-memory cache that resets when the Secrets Manager Agent 
restarts. It periodically refreshes cached secret values based on the following:

• The default refresh frequency (TTL) is 300 seconds

• You can modify the TTL using a configuration file

• The refresh occurs when you request a secret after the TTL expires

Note

The Secrets Manager Agent doesn't include cache invalidation. If a secret rotates before the 
cache entry expires, the Secrets Manager Agent might return a stale secret value.

The Secrets Manager Agent returns secret values in the same format as the response of
GetSecretValue. Secret values aren't encrypted in the cache.

Topics

Understanding Secrets Manager Agent caching 148



AWS Secrets Manager User Guide

• Build the Secrets Manager Agent

• Install the Secrets Manager Agent

• Retrieve secrets with the Secrets Manager Agent

• Understanding the refreshNow parameter

• Configure the Secrets Manager Agent

• Optional features

• Logging

• Security considerations

Build the Secrets Manager Agent

Before you begin, ensure you have the standard development tools and Rust tools installed for 
your platform.

Note

Building the agent with the fips feature enabled on macOS currently requires the 
following workaround:

• Create an environment variable called SDKROOT which is set to the result of running
xcrun --show-sdk-path

RPM-based systems

To build on RPM-based systems

1. Use the install script provided in the repository.

The script generates a random SSRF token on startup and stores it in the file /var/run/
awssmatoken. The token is readable by the awssmatokenreader group that the install 
script creates.

2. To allow your application to read the token file, you need to add the user account that 
your application runs under to the awssmatokenreader group. For example, you can 
grant permissions for your application to read the token file with the following usermod 
command, where <APP_USER> is the user ID under which your application runs.

Build the Secrets Manager Agent 149



AWS Secrets Manager User Guide

sudo usermod -aG awssmatokenreader <APP_USER>

Install development tools

On RPM-based systems such as AL2023, install the Development Tools group:

sudo yum -y groupinstall "Development Tools"

3. Install Rust

Follow the instructions at Install Rust in the Rust documentation:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh # Follow the on-
screen instructions
. "$HOME/.cargo/env"

4. Build the agent

Build the Secrets Manager Agent using the cargo build command:

cargo build --release

You will find the executable under target/release/aws_secretsmanager_agent.

Debian-based systems

To build on Debian-based systems

1. Install development tools

On Debian-based systems such as Ubuntu, install the build-essential package:

sudo apt install build-essential

2. Install Rust

Follow the instructions at Install Rust in the Rust documentation:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh # Follow the on-
screen instructions

Build the Secrets Manager Agent 150

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install


AWS Secrets Manager User Guide

. "$HOME/.cargo/env"

3. Build the agent

Build the Secrets Manager Agent using the cargo build command:

cargo build --release

You will find the executable under target/release/aws_secretsmanager_agent.

Windows

To build on Windows

1. Set up development environment

Follow the instructions at Set up your dev environment on Windows for Rust in the
Microsoft Windows documentation.

2. Build the agent

Build the Secrets Manager Agent using the cargo build command:

cargo build --release

You will find the executable under target/release/
aws_secretsmanager_agent.exe.

Cross-compile natively

To cross-compile natively

1. Install cross-compile tools

On distributions where the mingw-w64 package is available such as Ubuntu, install the 
cross-compile toolchain:

# Install the cross compile tool chain
sudo add-apt-repository universe
sudo apt install -y mingw-w64

Build the Secrets Manager Agent 151

https://learn.microsoft.com/en-us/windows/dev-environment/rust/setup


AWS Secrets Manager User Guide

2. Add Rust build targets

Install the Windows GNU build target:

rustup target add x86_64-pc-windows-gnu

3. Build for Windows

Cross-compile the agent for Windows:

cargo build --release --target x86_64-pc-windows-gnu

You will find the executable at target/x86_64-pc-windows-gnu/release/
aws_secretsmanager_agent.exe.

Cross compile with Rust cross

To cross-compile using Rust cross

If the cross-compile tools are not available natively on the system, you can use the Rust cross 
project. For more information, see https://github.com/cross-rs/cross.

Important

We recommend 32GB disk space for the build environment.

1. Set up Docker

Install and configure Docker:

# Install and start docker
sudo yum -y install docker
sudo systemctl start docker
sudo systemctl enable docker # Make docker start after reboot

2. Configure Docker permissions

Add your user to the docker group:

# Give ourselves permission to run the docker images without sudo

Build the Secrets Manager Agent 152

https://github.com/cross-rs/cross


AWS Secrets Manager User Guide

sudo usermod -aG docker $USER
newgrp docker

3. Build for Windows

Install cross and build the executable:

# Install cross and cross compile the executable
cargo install cross
cross build --release --target x86_64-pc-windows-gnu

Install the Secrets Manager Agent

Choose your compute environment from the following installation options.

Amazon EC2

To install the Secrets Manager Agent on Amazon EC2

1. Navigate to configuration directory

Change to the configuration directory:

cd aws_secretsmanager_agent/configuration

2. Run installation script

Run the install script provided in the repository.

The script generates a random SSRF token on startup and stores it in the file /var/run/
awssmatoken. The token is readable by the awssmatokenreader group that the install 
script creates.

3. Configure application permissions

Add the user account that your application runs under to the awssmatokenreader group:

sudo usermod -aG awssmatokenreader APP_USER

Replace APP_USER with the user ID under which your application runs.

Install the Secrets Manager Agent 153



AWS Secrets Manager User Guide

Container Sidecar

You can run the Secrets Manager Agent as a sidecar container alongside your application by 
using Docker. Then your application can retrieve secrets from the local HTTP server the Secrets 
Manager Agent provides. For information about Docker, see the Docker documentation.

To create a sidecar container for the Secrets Manager Agent

1. Create agent Dockerfile

Create a Dockerfile for the Secrets Manager Agent sidecar container:

# Use the latest Debian image as the base
FROM debian:latest

# Set the working directory inside the container
WORKDIR /app  

# Copy the Secrets Manager Agent binary to the container
COPY secrets-manager-agent .  

# Install any necessary dependencies
RUN apt-get update && apt-get install -y ca-certificates  

# Set the entry point to run the Secrets Manager Agent binary
ENTRYPOINT ["./secrets-manager-agent"]

2. Create application Dockerfile

Create a Dockerfile for your client application.

3. Create Docker Compose file

Create a Docker Compose file to run both containers with a shared network interface:

Important

You must load AWS credentials and the SSRF token for the application to be able 
to use the Secrets Manager Agent. For Amazon EKS and Amazon ECS, see the 
following:

• Manage access in the Amazon EKS User Guide

Install the Secrets Manager Agent 154

https://docs.docker.com
https://docs.aws.amazon.com/eks/latest/userguide/cluster-auth.html


AWS Secrets Manager User Guide

• Amazon ECS task IAM role in the Amazon ECS Developer Guide

version: '3'
services: 
    client-application: 
    container_name: client-application 
    build: 
        context: . 
        dockerfile: Dockerfile.client 
    command: tail -f /dev/null  # Keep the container running 
     

    secrets-manager-agent: 
    container_name: secrets-manager-agent 
    build: 
        context: . 
        dockerfile: Dockerfile.agent 
    network_mode: "container:client-application"  # Attach to the client-
application container's network 
    depends_on: 
        - client-application

4. Copy agent binary

Copy the secrets-manager-agent binary to the same directory that contains your 
Dockerfiles and Docker Compose file.

5. Build and run containers

Build and run the containers using Docker Compose:

docker-compose up --build

6. Next steps

You can now use the Secrets Manager Agent to retrieve secrets from your client container. 
For more information, see the section called “Retrieve secrets with the Secrets Manager 
Agent”.

Install the Secrets Manager Agent 155

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html


AWS Secrets Manager User Guide

Lambda

You can package the Secrets Manager Agent as a Lambda extension. Then you can add it 
to your Lambda function as a layer and call the Secrets Manager Agent from your Lambda 
function to get secrets.

The following instructions show how to get a secret named MyTest by using the example script
secrets-manager-agent-extension.sh in https://github.com/aws/aws-secretsmanager-
agent to install the Secrets Manager Agent as a Lambda extension.

To create a Lambda extension for the Secrets Manager Agent

1. Package the agent layer

From the root of the Secrets Manager Agent code package, run the following commands:

AWS_ACCOUNT_ID=AWS_ACCOUNT_ID
LAMBDA_ARN=LAMBDA_ARN

# Build the release binary  
cargo build --release --target=x86_64-unknown-linux-gnu

# Copy the release binary into the `bin` folder
mkdir -p ./bin
cp ./target/x86_64-unknown-linux-gnu/release/aws_secretsmanager_agent ./bin/
secrets-manager-agent

# Copy the `secrets-manager-agent-extension.sh` example script into the 
 `extensions` folder.
mkdir -p ./extensions
cp aws_secretsmanager_agent/examples/example-lambda-extension/secrets-manager-
agent-extension.sh ./extensions

# Zip the extension shell script and the binary  
zip secrets-manager-agent-extension.zip bin/* extensions/*

# Publish the layer version
LAYER_VERSION_ARN=$(aws lambda publish-layer-version \ 
    --layer-name secrets-manager-agent-extension \ 
    --zip-file "fileb://secrets-manager-agent-extension.zip" | jq -r 
 '.LayerVersionArn')

2. Configure SSRF token

Install the Secrets Manager Agent 156

https://docs.aws.amazon.com/lambda/latest/dg/packaging-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/adding-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/adding-layers.html
https://github.com/aws/aws-secretsmanager-agent
https://github.com/aws/aws-secretsmanager-agent


AWS Secrets Manager User Guide

The default configuration of the agent will automatically set the SSRF token to the value 
set in the pre-set AWS_SESSION_TOKEN or AWS_CONTAINER_AUTHORIZATION_TOKEN
environment variables (the latter variable for Lambda functions with SnapStart enabled). 
Alternatively, you can define the AWS_TOKEN environment variable with an arbitrary value 
for your Lambda function instead as this variable takes precedence over the other two. If 
you choose to use the AWS_TOKEN environment variable, you must set that environment 
variable with a lambda:UpdateFunctionConfiguration call.

3. Attach layer to function

Attach the layer version to your Lambda function:

# Attach the layer version to the Lambda function
aws lambda update-function-configuration \ 
    --function-name $LAMBDA_ARN \ 
    --layers "$LAYER_VERSION_ARN"

4. Update function code

Update your Lambda function to query http://localhost:2773/secretsmanager/
get?secretId=MyTest with the X-Aws-codes-Secrets-Token header value set 
to the value of the SSRF token sourced from one the environment variables mentioned 
above to retrieve the secret. Be sure to implement retry logic in your application code to 
accommodate delays in initialization and registration of the Lambda extension.

5. Test the function

Invoke the Lambda function to verify that the secret is being correctly fetched.

Retrieve secrets with the Secrets Manager Agent

To retrieve a secret, call the local Secrets Manager Agent endpoint with the secret name or ARN as 
a query parameter. By default, the Secrets Manager Agent retrieves the AWSCURRENT version of the 
secret. To retrieve a different version, use either the versionStage or versionId parameter.

Important

To help protect the Secrets Manager Agent, you must include a SSRF token header as 
part of each request: X-Aws-Parameters-Secrets-Token. The Secrets Manager Agent 

Retrieve secrets with the Secrets Manager Agent 157



AWS Secrets Manager User Guide

denies requests that don't have this header or that have an invalid SSRF token. You can 
customize the SSRF header name in the the section called “Configuration options”.

Required permissions

The Secrets Manager Agent uses the AWS SDK for Rust, which uses the AWS credential provider 
chain. The identity of these IAM credentials determines the permissions the Secrets Manager Agent 
has to retrieve secrets.

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information about permissions, see the section called “Permissions reference”.

Important

After the secret value is pulled into the Secrets Manager Agent, any user with access to 
the compute environment and SSRF token can access the secret from the Secrets Manager 
Agent cache. For more information, see the section called “Security considerations”.

Example requests

curl

Example – Get a secret using curl

The following curl example shows how to get a secret from the Secrets Manager Agent. The 
example relies on the SSRF being present in a file, which is where it is stored by the install 
script.

curl -v -H \\ 
    "X-Aws-Parameters-Secrets-Token: $(/var/run/awssmatoken)" \\ 
    'http://localhost:2773/secretsmanager/get?secretId=YOUR_SECRET_ID' \\ 
    echo

Retrieve secrets with the Secrets Manager Agent 158

https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credentials.html
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credentials.html


AWS Secrets Manager User Guide

Python

Example – Get a secret using Python

The following Python example shows how to get a secret from the Secrets Manager Agent. 
The example relies on the SSRF being present in a file, which is where it is stored by the install 
script.

import requests
import json

# Function that fetches the secret from Secrets Manager Agent for the provided 
 secret id.  
def get_secret(): 
    # Construct the URL for the GET request 
    url = f"http://localhost:2773/secretsmanager/get?secretId=YOUR_SECRET_ID" 

    # Get the SSRF token from the token file 
    with open('/var/run/awssmatoken') as fp: 
        token = fp.read()  

    headers = { 
        "X-Aws-Parameters-Secrets-Token": token.strip() 
    } 

    try: 
        # Send the GET request with headers 
        response = requests.get(url, headers=headers) 

        # Check if the request was successful 
        if response.status_code == 200: 
            # Return the secret value 
            return response.text 
        else: 
            # Handle error cases 
            raise Exception(f"Status code {response.status_code} - {response.text}") 

    except Exception as e: 
        # Handle network errors 
        raise Exception(f"Error: {e}")

Retrieve secrets with the Secrets Manager Agent 159



AWS Secrets Manager User Guide

Understanding the refreshNow parameter

The Secrets Manager Agent uses an in-memory cache to store secret values, which it refreshes 
periodically. By default, this refresh occurs when you request a secret after the Time to Live (TTL) 
has expired, typically every 300 seconds. However, this approach can sometimes result in stale 
secret values, especially if a secret rotates before the cache entry expires.

To address this limitation, the Secrets Manager Agent supports a parameter called refreshNow
in the URL. You can use this parameter to force an immediate refresh of a secret's value, bypassing 
the cache and ensuring you have the most up-to-date information.

Default behavior (without refreshNow)

• Uses cached values until TTL expires

• Refreshes secrets only after TTL (default 300 seconds)

• May return stale values if secrets rotate before the cache expires

Behavior with refreshNow=true

• Bypasses the cache entirely

• Retrieves the latest secret value directly from Secrets Manager

• Updates the cache with the fresh value and resets the TTL

• Ensures you always get the most current secret value

Force-refresh a secret value

Important

The default value of refreshNow is false. When set to true, it overrides the TTL 
specified in the Secrets Manager Agent configuration file and makes an API call to Secrets 
Manager.

curl

Example – Force-refresh a secret using curl

The following curl example shows how to force the Secrets Manager Agent to refresh the secret. 
The example relies on the SSRF being present in a file, which is where it is stored by the install 
script.

Understanding the refreshNow parameter 160



AWS Secrets Manager User Guide

curl -v -H \\
"X-Aws-Parameters-Secrets-Token: $(/var/run/awssmatoken)" \\
'http://localhost:2773/secretsmanager/get?secretId=YOUR_SECRET_ID&refreshNow=true' \
\
echo

Python

Example – Force-refresh a secret using Python

The following Python example shows how to get a secret from the Secrets Manager Agent. 
The example relies on the SSRF being present in a file, which is where it is stored by the install 
script.

import requests
import json

# Function that fetches the secret from Secrets Manager Agent for the provided 
 secret id.  
def get_secret(): 
    # Construct the URL for the GET request 
    url = f"http://localhost:2773/secretsmanager/get?
secretId=YOUR_SECRET_ID&refreshNow=true" 

    # Get the SSRF token from the token file 
    with open('/var/run/awssmatoken') as fp: 
        token = fp.read()  

    headers = { 
        "X-Aws-Parameters-Secrets-Token": token.strip() 
    } 

    try: 
        # Send the GET request with headers 
        response = requests.get(url, headers=headers) 

        # Check if the request was successful 
        if response.status_code == 200: 
            # Return the secret value 
            return response.text 
        else: 
            # Handle error cases 
            raise Exception(f"Status code {response.status_code} - {response.text}") 

Understanding the refreshNow parameter 161



AWS Secrets Manager User Guide

    except Exception as e: 
        # Handle network errors 
        raise Exception(f"Error: {e}")

Configure the Secrets Manager Agent

To change the configuration of the Secrets Manager Agent, create a TOML config file, and then call
./aws_secretsmanager_agent --config config.toml.

Configuration options

log_level

The level of detail reported in logs for the Secrets Manager Agent: DEBUG, INFO, WARN, 
ERROR, or NONE. The default is INFO.

log_to_file

Whether to log to a file or stdout/stderr: true or false. The default is true.

http_port

The port for the local HTTP server, in the range 1024 to 65535. The default is 2773.

region

The AWS Region to use for requests. If no Region is specified, the Secrets Manager Agent 
determines the Region from the SDK. For more information, see Specify your credentials and 
default Region in the AWS SDK for Rust Developer Guide.

ttl_seconds

The TTL in seconds for the cached items, in the range 0 to 3600. The default is 300. 0 indicates 
that there is no caching.

cache_size

The maximum number of secrets that can be stored in the cache, in the range 1 to 1000. The 
default is 1000.

ssrf_headers

A list of header names the Secrets Manager Agent checks for the SSRF token. The default is "X-
Aws-Parameters-Secrets-Token, X-Vault-Token".

Configuration options 162

https://toml.io/en/
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credentials.html
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/credentials.html


AWS Secrets Manager User Guide

ssrf_env_variables

A list of environment variable names the Secrets Manager Agent checks in sequential order 
for the SSRF token. The environment variable can contain the token or a reference to the 
token file as in: AWS_TOKEN=file:///var/run/awssmatoken. The default is "AWS_TOKEN, 
AWS_SESSION_TOKEN, AWS_CONTAINER_AUTHORIZATION_TOKEN".

path_prefix

The URI prefix used to determine if the request is a path based request. The default is "/v1/".

max_conn

The maximum number of connections from HTTP clients that the Secrets Manager Agent 
allows, in the range 1 to 1000. The default is 800.

Optional features

The Secrets Manager Agent can be built with optional features by passing the --features flag to
cargo build. The available features are:

Build features

prefer-post-quantum

Makes X25519MLKEM768 the highest-priority key exchange algorithm. Otherwise, it is available 
but not highest-priority. X25519MLKEM768 is a hybrid, post-quantum-secure key exchange 
algorithm.

fips

Restricts the cipher suites used by the agent to only FIPS-approved ciphers.

Logging

Local logging

The Secrets Manager Agent logs errors locally to the file logs/
secrets_manager_agent.log or to stdout/stderr depending on the log_to_file config 
variable. When your application calls the Secrets Manager Agent to get a secret, those calls 
appear in the local log. They do not appear in the CloudTrail logs.

Optional features 163



AWS Secrets Manager User Guide

Log rotation

The Secrets Manager Agent creates a new log file when the file reaches 10 MB, and it stores up 
to five log files total.

AWS service logging

The log does not go to Secrets Manager, CloudTrail, or CloudWatch. Requests to get secrets 
from the Secrets Manager Agent do not appear in those logs. When the Secrets Manager Agent 
makes a call to Secrets Manager to get a secret, that call is recorded in CloudTrail with a user 
agent string containing aws-secrets-manager-agent.

You can configure logging options in the the section called “Configuration options”.

Security considerations

Domain of trust

For an agent architecture, the domain of trust is where the agent endpoint and SSRF token 
are accessible, which is usually the entire host. The domain of trust for the Secrets Manager 
Agent should match the domain where the Secrets Manager credentials are available in order 
to maintain the same security posture. For example, on Amazon EC2 the domain of trust for the 
Secrets Manager Agent would be the same as the domain of the credentials when using roles 
for Amazon EC2.

Important

Security conscious applications that are not already using an agent solution with the 
Secrets Manager credentials locked down to the application should consider using the 
language-specific AWS SDKs or caching solutions. For more information, see Get secrets.

Get a Secrets Manager secret value using the C++ AWS SDK

For C++ applications, call the SDK directly with GetSecretValue or BatchGetSecretValue.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

Security considerations 164

https://docs.aws.amazon.com/secretsmanager/latest/userguide/retrieving-secrets.html
https://docs.aws.amazon.com/goto/SdkForCpp/secretsmanager-2017-10-17/GetSecretValue
https://docs.aws.amazon.com/goto/SdkForCpp/secretsmanager-2017-10-17/BatchGetSecretValue


AWS Secrets Manager User Guide

//! Retrieve an AWS Secrets Manager encrypted secret.
/*! 
  \param secretID: The ID for the secret. 
  \return bool: Function succeeded. 
 */
bool AwsDoc::SecretsManager::getSecretValue(const Aws::String &secretID, 
                                            const Aws::Client::ClientConfiguration 
 &clientConfiguration) { 
    Aws::SecretsManager::SecretsManagerClient 
 secretsManagerClient(clientConfiguration); 

    Aws::SecretsManager::Model::GetSecretValueRequest request; 
    request.SetSecretId(secretID); 

    Aws::SecretsManager::Model::GetSecretValueOutcome getSecretValueOutcome = 
 secretsManagerClient.GetSecretValue( 
            request); 
    if (getSecretValueOutcome.IsSuccess()) { 
        std::cout << "Secret is: " 
                  << getSecretValueOutcome.GetResult().GetSecretString() << std::endl; 
    } 
    else { 
        std::cerr << "Failed with Error: " << getSecretValueOutcome.GetError() 
                  << std::endl; 
    } 

    return getSecretValueOutcome.IsSuccess();
}

Get a Secrets Manager secret value using the JavaScript AWS 
SDK

For JavaScript applications, call the SDK directly with getSecretValue or
batchGetSecretValue.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

import { 
  GetSecretValueCommand, 

JavaScript 165

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SecretsManager.html#getSecretValue-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SecretsManager.html#batchGetSecretValue-property


AWS Secrets Manager User Guide

  SecretsManagerClient,
} from "@aws-sdk/client-secrets-manager";

export const getSecretValue = async (secretName = "SECRET_NAME") => { 
  const client = new SecretsManagerClient(); 
  const response = await client.send( 
    new GetSecretValueCommand({ 
      SecretId: secretName, 
    }), 
  ); 
  console.log(response); 
  // { 
  //   '$metadata': { 
  //     httpStatusCode: 200, 
  //     requestId: '584eb612-f8b0-48c9-855e-6d246461b604', 
  //     extendedRequestId: undefined, 
  //     cfId: undefined, 
  //     attempts: 1, 
  //     totalRetryDelay: 0 
  //   }, 
  //   ARN: 'arn:aws:secretsmanager:us-east-1:xxxxxxxxxxxx:secret:binary-
secret-3873048-xxxxxx', 
  //   CreatedDate: 2023-08-08T19:29:51.294Z, 
  //   Name: 'binary-secret-3873048', 
  //   SecretBinary: Uint8Array(11) [ 
  //      98, 105, 110, 97, 114, 
  //     121,  32, 100, 97, 116, 
  //      97 
  //   ], 
  //   VersionId: '712083f4-0d26-415e-8044-16735142cd6a', 
  //   VersionStages: [ 'AWSCURRENT' ] 
  // } 

  if (response.SecretString) { 
    return response.SecretString; 
  } 

  if (response.SecretBinary) { 
    return response.SecretBinary; 
  }
};

JavaScript 166



AWS Secrets Manager User Guide

Get a Secrets Manager secret value using the Kotlin AWS SDK

For Kotlin applications, call the SDK directly with GetSecretValue or BatchGetSecretValue.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

suspend fun getValue(secretName: String?) { 
    val valueRequest = 
        GetSecretValueRequest { 
            secretId = secretName 
        } 

    SecretsManagerClient.fromEnvironment { region = "us-east-1" }.use { secretsClient -
> 
        val response = secretsClient.getSecretValue(valueRequest) 
        val secret = response.secretString 
        println("The secret value is $secret") 
    }
}

Get a Secrets Manager secret value using the PHP AWS SDK

For PHP applications, call the SDK directly with GetSecretValue or BatchGetSecretValue.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

<?php 

  /** 
    * Use this code snippet in your app. 
    * 
    * If you need more information about configurations or implementing the sample 
 code, visit the AWS docs: 
    * https://aws.amazon.com/developer/language/php/ 
    */ 
   
  require 'vendor/autoload.php'; 
   

Kotlin 167

https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://github.com/awslabs/aws-sdk-kotlin#generating-api-documentation
https://docs.aws.amazon.com//aws-sdk-php/v3/api/api-secretsmanager-2017-10-17.html#getsecretvalue
https://docs.aws.amazon.com//aws-sdk-php/v3/api/api-secretsmanager-2017-10-17.html#batchGetsecretvalue


AWS Secrets Manager User Guide

  use Aws\SecretsManager\SecretsManagerClient; 
  use Aws\Exception\AwsException; 
   
  /** 
    * This code expects that you have AWS credentials set up per: 
    * https://<<{{DocsDomain}}>>/sdk-for-php/v3/developer-guide/guide_credentials.html 
    */ 
   
  // Create a Secrets Manager Client 
  $client = new SecretsManagerClient([ 
      'profile' => 'default', 
      'version' => '2017-10-17', 
      'region' => '<<{{MyRegionName}}>>', 
  ]); 
   
  $secret_name = '<<{{MySecretName}}>>'; 
   
  try { 
      $result = $client->getSecretValue([ 
          'SecretId' => $secret_name, 
      ]); 
  } catch (AwsException $e) { 
      // For a list of exceptions thrown, see 
      // https://<<{{DocsDomain}}>>/secretsmanager/latest/apireference/
API_GetSecretValue.html 
      throw $e; 
  } 
   
  // Decrypts secret using the associated KMS key. 
  $secret = $result['SecretString']; 
   
  // Your code goes here

Get a Secrets Manager secret value using the Ruby AWS SDK

For Ruby applications, call the SDK directly with get_secret_value or
batch_get_secret_value.

The following code example shows how to get a Secrets Manager secret value.

Required permissions: secretsmanager:GetSecretValue

  # Use this code snippet in your app. 

Ruby 168

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SecretsManager/Client.html#get_secret_value-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SecretsManager/Client.html#batch_get_secret_value-instance_method


AWS Secrets Manager User Guide

  # If you need more information about configurations or implementing the sample code, 
 visit the AWS docs: 
  # https://aws.amazon.com/developer/language/ruby/ 
   
  require 'aws-sdk-secretsmanager' 
   
  def get_secret 
    client = Aws::SecretsManager::Client.new(region: '<<{{MyRegionName}}>>') 
   
    begin 
      get_secret_value_response = client.get_secret_value(secret_id: 
 '<<{{MySecretName}}>>') 
    rescue StandardError => e 
      # For a list of exceptions thrown, see 
      # https://<<{{DocsDomain}}>>/secretsmanager/latest/apireference/
API_GetSecretValue.html 
      raise e 
    end 
   
    secret = get_secret_value_response.secret_string 
    # Your code goes here. 
  end

Get a secret value using the AWS CLI

Required permissions: secretsmanager:GetSecretValue

Example Retrieve the encrypted secret value of a secret

The following get-secret-value example gets the current secret value.

aws secretsmanager get-secret-value \ 
    --secret-id MyTestSecret

Example Retrieve the previous secret value

The following get-secret-value example gets the previous secret value.

aws secretsmanager get-secret-value \ 
        --secret-id MyTestSecret 
        --version-stage AWSPREVIOUS

AWS CLI 169

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/get-secret-value.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/get-secret-value.html


AWS Secrets Manager User Guide

Get a group of secrets in a batch using the AWS CLI

Required permissions:

• secretsmanager:BatchGetSecretValue

• secretsmanager:GetSecretValue permission for each secret you want to retrieve.

• If you use filters, you must also have secretsmanager:ListSecrets.

For an example permissions policy, see the section called “Example: Permission to retrieve a group 
of secret values in a batch”.

Important

If you have a VPCE policy that denies permission to retrieve an individual secret in the 
group you are retrieving, BatchGetSecretValue will not return any secret values, and it 
will return an error.

Example Retrieve the secret value for a group of secrets listed by name

The following batch-get-secret-value example gets the secret value for three secrets.

aws secretsmanager batch-get-secret-value \ 
          --secret-id-list MySecret1 MySecret2 MySecret3

Example Retrieve the secret value for a group of secrets selected by filter

The following batch-get-secret-value example gets the secret value for the secrets that have 
a tag named "Test".

aws secretsmanager batch-get-secret-value \ 
          --filters Key="tag-key",Values="Test"

Get a secret value using the AWS console

To retrieve a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

Get a group of secrets in a batch using the AWS CLI 170

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/batch-get-secret-value.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/batch-get-secret-value.html
https://console.aws.amazon.com/secretsmanager/


AWS Secrets Manager User Guide

2. In the list of secrets, choose the secret you want to retrieve.

3. In the Secret value section, choose Retrieve secret value.

Secrets Manager displays the current version (AWSCURRENT) of the secret. To see other 
versions of the secret, such as AWSPREVIOUS or custom labeled versions, use the the section 
called “AWS CLI”.

Use AWS Secrets Manager secrets in AWS Batch

AWS Batch helps you to run batch computing workloads on the AWS Cloud. With AWS Batch, you 
can inject sensitive data into your jobs by storing your sensitive data in AWS Secrets Manager 
secrets and then referencing them in your job definition. For more information, see Specifying 
sensitive data using Secrets Manager.

Get an AWS Secrets Manager secret in an CloudFormation 
resource

With CloudFormation, you can retrieve a secret to use in another CloudFormation resource. A 
common scenario is to first create a secret with a password generated by Secrets Manager, and 
then retrieve the username and password from the secret to use as credentials for a new database. 
For information about creating secrets with CloudFormation, see CloudFormation.

To retrieve a secret in an CloudFormation template, you use a dynamic reference. When you create 
the stack, the dynamic reference pulls the secret value into the CloudFormation resource, so you 
don't have to hardcode the secret information. Instead, you refer to the secret by name or ARN. 
You can use a dynamic reference for a secret in any resource property. You can't use a dynamic 
reference for a secret in resource metadata such as AWS::CloudFormation::Init because that 
would make the secret value visible in the console.

A dynamic reference for a secret has the following pattern:

{{resolve:secretsmanager:secret-id:SecretString:json-key:version-stage:version-id}}

secret-id

The name or ARN of the secret. To access a secret in your AWS account, you can use the secret 
name. To access a secret in a different AWS account, use the ARN of the secret.

AWS Batch 171

https://docs.aws.amazon.com/batch/latest/userguide/specifying-sensitive-data-secrets.html
https://docs.aws.amazon.com/batch/latest/userguide/specifying-sensitive-data-secrets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html


AWS Secrets Manager User Guide

json-key (Optional)

The key name of the key-value pair whose value you want to retrieve. If you don't specify a
json-key, CloudFormation retrieves the entire secret text. This segment may not include the 
colon character ( :).

version-stage (Optional)

The version of the secret to use. Secrets Manager uses staging labels to keep track of different 
versions during the rotation process. If you use version-stage then don't specify version-
id. If you don't specify either version-stage or version-id, then the default is the
AWSCURRENT version. This segment may not include the colon character ( :).

version-id (Optional)

The unique identifier of the version of the secret to use. If you specify version-id, then don't 
specify version-stage. If you don't specify either version-stage or version-id, then the 
default is the AWSCURRENT version. This segment may not include the colon character ( :).

For more information, see Using dynamic references to specify Secrets Manager secrets.

Note

Do not create a dynamic reference using a backslash (\) as the final value. CloudFormation 
can't resolve those references, which causes a resource failure.

Use AWS Secrets Manager secrets in GitHub jobs

To use a secret in a GitHub job, you can use a GitHub action to retrieve secrets from AWS Secrets 
Manager and add them as masked Environment variables in your GitHub workflow. For more 
information about GitHub Actions, see Understanding GitHub Actions in the GitHub Docs.

When you add a secret to your GitHub environment, it is available to all other steps in your GitHub 
job. Follow the guidance in Security hardening for GitHub Actions to help prevent secrets in your 
environment from being misused.

You can set the entire string in the secret value as the environment variable value, or if the string 
is JSON, you can parse the JSON to set individual environment variables for each JSON key-value 
pair. If the secret value is a binary, the action converts it to a string.

GitHub jobs 172

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager
https://docs.github.com/en/actions/learn-github-actions/environment-variables
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions


AWS Secrets Manager User Guide

To view the environment variables created from your secrets, turn on debug logging. For more 
information, see Enabling debug logging in the GitHub Docs.

To use the environment variables created from your secrets, see Environment variables in the
GitHub Docs.

Prerequisites

To use this action, you first need to configure AWS credentials and set the AWS Region in your 
GitHub environment by using the configure-aws-credentials step. Follow the instructions in
Configure AWS Credentials Action For GitHub Actions to Assume role directly using GitHub OIDC 
provider. This allows you to use short-lived credentials and avoid storing additional access keys 
outside of Secrets Manager.

The IAM role the action assumes must have the following permissions:

• GetSecretValue on the secrets you want to retrieve.

• ListSecrets on all secrets.

• (Optional) Decrypt on the KMS key if the secrets are encrypted with a customer managed key.

For more information, see the section called “Authentication and access control”.

Usage

To use the action, add a step to your workflow that uses the following syntax.

- name: Step name
  uses: aws-actions/aws-secretsmanager-get-secrets@v2 
  with: 
    secret-ids: | 
       secretId1
      ENV_VAR_NAME, secretId2
    name-transformation: (Optional) uppercase|lowercase|none
    parse-json-secrets: (Optional) true|false

Parameters

secret-ids

Secret ARNS, names, and name prefixes.

Prerequisites 173

https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging
https://docs.github.com/en/actions/learn-github-actions/environment-variables
https://github.com/aws-actions/configure-aws-credentials


AWS Secrets Manager User Guide

To set the environment variable name, enter it before the secret ID, followed by a comma. 
For example ENV_VAR_1, secretId creates an environment variable named ENV_VAR_1
from the secret secretId. The environment variable name can consist of uppercase letters, 
numbers, and underscores.

To use a prefix, enter at least three characters followed by an asterisk. For example dev*
matches all secrets with a name beginning in dev. The maximum number of matching secrets 
that can be retrieved is 100. If you set the variable name, and the prefix matches multiple 
secrets, then the action fails.

name-transformation

By default, the step creates each environment variable name from the secret name, 
transformed to include only uppercase letters, numbers, and underscores, and so that it doesn't 
begin with a number. For the letters in the name, you can configure the step to use lowercase 
letters with lowercase or to not change the case of the letters with none. The default value is
uppercase.

parse-json-secrets

(Optional) By default, the action sets the environment variable value to the entire JSON string 
in the secret value. Set parse-json-secrets to true to create environment variables for 
each key-value pair in the JSON.

Note that if the JSON uses case-sensitive keys such as "name" and "Name", the action will have 
duplicate name conflicts. In this case, set parse-json-secrets to false and parse the JSON 
secret value separately.

Environment variable naming

The environment variables created by the action are named the same as the secrets that 
they come from. Environment variables have stricter naming requirements than secrets, so 
the action transforms secret names to meet those requirements. For example, the action 
transforms lowercase letters to uppercase letters. If you parse the JSON of the secret, then the 
environment variable name includes both the secret name and the JSON key name, for example
MYSECRET_KEYNAME. You can configure the action to not transform lowercase letters.

If two environment variables would end up with the same name, the action fails. In this case, you 
must specify the names you want to use for the environment variables as aliases.

Environment variable naming 174



AWS Secrets Manager User Guide

Examples of when the names might conflict:

• A secret named "MySecret" and a secret named "mysecret" would both become environment 
variables named "MYSECRET".

• A secret named "Secret_keyname" and a JSON-parsed secret named "Secret" with a key named 
"keyname" would both become environment variables named "SECRET_KEYNAME".

You can set the environment variable name by specifying an alias, as shown in the following 
example, which creates a variable named ENV_VAR_NAME.

secret-ids: | 
  ENV_VAR_NAME, secretId2

Blank aliases

• If you set parse-json-secrets: true and enter a blank alias, followed by a comma and then 
the secret ID, the action names the environment variable the same as the parsed JSON keys. The 
variable names do not include the secret name.

If the secret doesn't contain valid JSON, then the action creates one environment variable and 
names it the same as the secret name.

• If you set parse-json-secrets: false and enter a blank alias, followed by a comma and the 
secret ID, the action names the environment variables as if you did not specify an alias.

The following example shows a blank alias.

,secret2

Examples

Example 1 Get secrets by name and by ARN

The following example creates environment variables for secrets identified by name and by ARN.

- name: Get secrets by name and by ARN 
  uses: aws-actions/aws-secretsmanager-get-secrets@v2 
  with: 
    secret-ids: | 

Examples 175



AWS Secrets Manager User Guide

      exampleSecretName 
      arn:aws:secretsmanager:us-east-2:123456789012:secret:test1-a1b2c3 
      0/test/secret 
      /prod/example/secret 
      SECRET_ALIAS_1,test/secret 
      SECRET_ALIAS_2,arn:aws:secretsmanager:us-east-2:123456789012:secret:test2-a1b2c3 
      ,secret2

Environment variables created:

EXAMPLESECRETNAME: secretValue1
TEST1: secretValue2
_0_TEST_SECRET: secretValue3
_PROD_EXAMPLE_SECRET: secretValue4
SECRET_ALIAS_1: secretValue5
SECRET_ALIAS_2: secretValue6
SECRET2: secretValue7

Example 2 Get all secrets that begin with a prefix

The following example creates environment variables for all secrets with names that begin with
beta.

- name: Get Secret Names by Prefix 
  uses: 2 
  with: 
    secret-ids: | 
      beta*    # Retrieves all secrets that start with 'beta'

Environment variables created:

BETASECRETNAME: secretValue1
BETATEST: secretValue2
BETA_NEWSECRET: secretValue3

Example 3 Parse JSON in secret

The following example creates environment variables by parsing the JSON in the secret.

- name: Get Secrets by Name and by ARN 

Examples 176



AWS Secrets Manager User Guide

  uses: aws-actions/aws-secretsmanager-get-secrets@v2 
  with: 
    secret-ids: | 
      test/secret 
      ,secret2 
    parse-json-secrets: true

The secret test/secret has the following secret value.

{ 
  "api_user": "user", 
  "api_key": "key", 
  "config": { 
    "active": "true" 
  }
}

The secret secret2 has the following secret value.

{ 
  "myusername": "alejandro_rosalez", 
  "mypassword": "EXAMPLE_PASSWORD"
}

Environment variables created:

TEST_SECRET_API_USER: "user"
TEST_SECRET_API_KEY: "key"
TEST_SECRET_CONFIG_ACTIVE: "true"
MYUSERNAME: "alejandro_rosalez"
MYPASSWORD: "EXAMPLE_PASSWORD"

Example 4 Use lowercase letters for environment variable names

The following example creates an environment variable with a lowercase name.

- name: Get secrets 
  uses: aws-actions/aws-secretsmanager-get-secrets@v2 
  with: 
    secret-ids: exampleSecretName 

Examples 177



AWS Secrets Manager User Guide

    name-transformation: lowercase

Environment variable created:

examplesecretname: secretValue

Use AWS Secrets Manager in GitLab

AWS Secrets Manager integrates with GitLab. You can leverage Secrets Manager secrets to protect 
your GitLab credentials so they are no longer hardcoded in GitLab. Instead, GitLab Runner retrieves 
these secrets from Secrets Manager when your application runs a job in the GitLab CI/CD pipelines.

To use this integration, you'll create an OpenID Connect (OIDC) identity provider in IAM AWS 
Identity and Access Management and an IAM role. This allows GitLab Runner to access your Secrets 
Manager secret. For more information about GitLab CI/CD and OIDC, see GitLab documentation.

Considerations

If you're using a non-public GitLab instance, you cannot use this Secrets Manager integration. 
Instead, see GitLab documentation for non-public instances.

Prerequisites

To integrate Secrets Manager with GitLab, complete the following prerequisites:

1. Create an AWS Secrets Manager secret

You'll need an Secrets Manager secret which will be retrieved in your GitLab job and removes 
the need to hard-code these credentials. You'll need the Secrets Manager secret ID when 
you configure your GitLab pipeline. See Create an AWS Secrets Manager secret for more 
information.

2. Make GitLab your OIDC provider in the IAM console.

In this step, you’ll make GitLab your OIDC provider in the IAM console. For more information, 
see Create an OpenID Connect (OIDC) identity provider and GitLab documentation.

When creating the OIDC provider in the IAM console, use the following configurations:

a.

GitLab 178

https://docs.gitlab.com/runner/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_create_oidc.html
https://docs.gitlab.com/ci/cloud_services/aws/
https://docs.gitlab.com/ci/cloud_services/aws/#configure-a-non-public-gitlab-instance
https://docs.aws.amazon.com//IAM/latest/UserGuide/id_roles_providers_create_oidc.html
https://docs.gitlab.com/ci/cloud_services/aws/


AWS Secrets Manager User Guide

Set the provider URL to your GitLab instance. For example, gitlab.example.com.

b.
Set the audience or aud to sts.amazonaws.com.

3. Create an IAM role and policy

You'll need to create an IAM role and policy. This role is assumed by GitLab with AWS Security 
Token Service (STS). See Create a role using custom trust policies for more information.

a. In the IAM console, use the following settings when creating the IAM role:

• Set Trusted entity type to Web identity.

• Set Group to your GitLab group.

• Set Identity provider to the same provider URL (the GitLab instance) you used in 
step 2.

• Set Audience to the same audience you used in step 2.

b. The following is an example of a trust policy that allows GitLab to assume roles. Your trust 
policy should list your AWS account, GitLab URL, and project path.

{ 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": "sts:AssumeRoleWithWebIdentity", 
      "Principal": { 
        "Federated": "arn:aws:iam::111122223333:oidc-
provider/gitlab.example.com" 
      }, 
      "Condition": { 
        "StringEquals": { 
          "gitlab.example.com:aud": [ 
            "sts.amazon.com" 
          ] 
        }, 
        "StringLike": { 
          "gitlab.example.com:sub": [ 
            "project_path:mygroup/project-*:ref_type:branch-*:ref:main*" 
          ] 
        } 

Prerequisites 179

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com//IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.gitlab.com/user/project/


AWS Secrets Manager User Guide

      } 
    } 
  ]
}

c. You'll also need to create an IAM policy to allow GitLab access to AWS Secrets Manager. 
You can add this policy to your trust policy. For more information, see Create IAM policies.

{ 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Action": "secretsmanager:GetSecretValue", 
      "Resource": "arn:aws:secretsmanager:us-
east-1:111122223333:secret:your-secret" 
    } 
  ]
}

Integrating AWS Secrets Manager with GitLab

After completing the prerequisites, you can configure GitLab to use Secrets Manager to protect 
your credentials.

Configure GitLab pipeline to use Secrets Manager

You'll need to update your GitLab CI/CD configuration file with the following information:

• The audience of the token set to STS.

• The Secrets Manager secret ID.

• The IAM role you want GitLab Runner to assume when executing jobs in the GitLab pipeline.

• The AWS Region where the secret is stored.

GitLab fetches the secret from Secrets Manager and stores the value in a temporary file. The path 
to this file is stored in a CI/CD variable, similar to file type CI/CD variables.

The following is a snippet of the YAML file for a GitLab CI/CD configuration file:

Integrating AWS Secrets Manager with GitLab 180

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.gitlab.com/ci/yaml/yaml_optimization/
https://docs.gitlab.com/ci/variables/#use-file-type-cicd-variables


AWS Secrets Manager User Guide

variables: 
  AWS_REGION: us-east-1
  AWS_ROLE_ARN: 'arn:aws:iam::111122223333:role/gitlab-role'
job: 
  id_tokens: 
    AWS_ID_TOKEN: 
      aud: 'sts.amazonaws.com' 
  secrets: 
    DATABASE_PASSWORD: 
      aws_secrets_manager: 
        secret_id: "arn:aws:secretsmanager:us-east-1:111122223333:secret:secret-name"

For more information, see GitLab Secrets Manager integration documentation.

Optionally, you can test your OIDC configuration in GitLab. See GitLab documentation for testing 
OIDC configuration for more information.

Troubleshooting

The following can help you troubleshoot common issues you might encounter when integrating 
Secrets Manager with GitLab.

GitLab Pipeline issues

If you experience GitLab pipeline issues, ensure the following:

• Your YAML file is properly formatted. For more information, see GitLab documentation.

• Your GitLab pipeline is assuming the correct role, has the appropriate permissions, and access to 
the correct AWS Secrets Manager secret.

Additional resources

The following resources can help you troubleshoot issues with GitLab and AWS Secrets Manager:

• GitLab OIDC troubleshooting

• Debugging GitLab CI/CD Pipeline

• Troubleshooting

Troubleshooting 181

https://docs.gitlab.com/ci/secrets/aws_secrets_manager/
https://docs.gitlab.com/ci/cloud_services/aws/#test-the-oidc-configuration
https://docs.gitlab.com/ci/cloud_services/aws/#test-the-oidc-configuration
https://docs.gitlab.com/ee/ci/yaml/
https://docs.gitlab.com/ci/cloud_services/aws/#troubleshooting
https://docs.gitlab.com/ee/ci/troubleshooting.html


AWS Secrets Manager User Guide

Use AWS Secrets Manager secrets in AWS IoT Greengrass

AWS IoT Greengrass is software that extends cloud capabilities to local devices. This enables 
devices to collect and analyze data closer to the source of information, react autonomously to local 
events, and communicate securely with each other on local networks.

AWS IoT Greengrass lets you authenticate with services and applications from AWS IoT Greengrass 
devices without hard-coding passwords, tokens, or other secrets. You can use AWS Secrets Manager 
to securely store and manage your secrets in the cloud. AWS IoT Greengrass extends Secrets 
Manager to AWS IoT Greengrass core devices, so your connectors and Lambda functions can use 
local secrets to interact with services and applications.

To integrate a secret into a AWS IoT Greengrass group, you create a group resource that references 
the Secrets Manager secret. This secret resource references the cloud secret by using the associated 
ARN. To learn how to create, manage, and use secret resources, see Working with Secret Resources
in the AWS IoT Developer Guide.

To deploy secrets to the AWS IoT Greengrass Core, see Deploy secrets to the AWS IoT Greengrass 
core.

Use AWS Secrets Manager secrets in Parameter Store

AWS Systems Manager Parameter Store provides secure, hierarchical storage for configuration data 
management and secrets management. You can store data such as passwords, database strings, 
and license codes as parameter values. However, Parameter Store doesn't provide automatic 
rotation services for stored secrets. Instead, Parameter Store enables you to store your secret in 
Secrets Manager, and then reference the secret as a Parameter Store parameter.

When you configure Parameter Store with Secrets Manager, the secret-id Parameter Store 
requires a forward slash (/) before the name-string.

For more information, see Referencing AWS Secrets Manager Secrets from Parameter Store 
Parameters in the AWS Systems Manager User Guide.

AWS IoT Greengrass 182

https://docs.aws.amazon.com/greengrass/latest/developerguide/secrets-using.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/secrets.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/secrets.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html


AWS Secrets Manager User Guide

Rotate AWS Secrets Manager secrets

Rotation is the process of periodically updating a secret. When you rotate a secret, you update 
the credentials in both the secret and the database or service. In Secrets Manager, you can set up 
automatic rotation for your secrets. There are two forms of rotation:

• Managed rotation – For most managed secrets, you use managed rotation, where the service 
configures and manages rotation for you. Managed rotation doesn't use a Lambda function.

• Rotate Secrets Manager managed external secrets – For secrets held by Secrets Manager 
partners, you use managed external secrets rotation to update the secret on the partner's 
system. This doesn't require a Lambda function.

• the section called “Rotation by Lambda function” – For other types of secrets, Secrets Manager 
rotation uses a Lambda function to update the secret and the database or service.

Managed rotation for AWS Secrets Manager secrets

Some services offer managed rotation, where the service configures and manages rotation for 
you. With managed rotation, you don't use an AWS Lambda function to update the secret and the 
credentials in the database.

The following services offer managed rotation:

• Amazon Aurora offers managed rotation for master user credentials. For more information, see
Password management with Amazon Aurora and AWS Secrets Manager in the Amazon Aurora 
User Guide.

• Amazon ECS Service Connect offers managed rotation for AWS Private Certificate Authority TLS 
certificates. For more information, see TLS with Service Connect in the Amazon Elastic Container 
Service Developer Guide.

• Amazon RDS offers managed rotation for master user credentials. For more information, see
Password management with Amazon RDS and AWS Secrets Manager in the Amazon RDS User 
Guide.

• Amazon DocumentDB offers managed rotation for master user credentials. For more 
information, see Password management with Amazon DocumentDB and AWS Secrets Manager in 
the Amazon DocumentDB User Guide.

Managed rotation 183

https://docs.aws.amazon.com//AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-tls.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-secrets-manager.html


AWS Secrets Manager User Guide

• Amazon Redshift offers managed rotation for admin passwords. For more information, see
Managing Amazon Redshift admin passwords using AWS Secrets Manager in the Amazon 
Redshift Management Guide.

• managed external secrets offers managed rotation for secrets held by Secrets Manager 
partners. For more information, see Using AWS Secrets Manager managed external secrets to 
manage Third Party secrets.

Tip

For all other types of secrets, see the section called “Rotation by Lambda function”.

Rotation for managed secrets typically completes within one minute. During rotation, new 
connections that retrieve the secret may get the previous version of the credentials. In applications, 
we strongly recommend that you follow the best practice of using a database user created with the 
minimal privileges required for your application, rather than using the master user. For application 
users, for highest availability, you can use the Alternating users rotation strategy.

For secrets held by Secrets Manager partners,

To change the schedule for managed rotation

1. Open the managed secret in the Secrets Manager console. You can follow a link from the 
managing service, or search for the secret in the Secrets Manager console.

2. Under Rotation schedule, enter your schedule in UTC time zone in either the Schedule 
expression builder or as a Schedule expression. Secrets Manager stores your schedule as a
rate() or cron() expression. The rotation window automatically starts at midnight unless 
you specify a Start time. You can rotate a secret as often as every four hours. For more 
information, see Rotation schedules.

3. (Optional) For Window duration, choose the length of the window during which you want 
Secrets Manager to rotate your secret, for example 3h for a three hour window. The window 
must not extend into the next rotation window. If you don't specify Window duration, for 
a rotation schedule in hours, the window automatically closes after one hour. For a rotation 
schedule in days, the window automatically closes at the end of the day.

4. Choose Save.

Managed rotation 184

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html


AWS Secrets Manager User Guide

To change the schedule for managed rotation (AWS CLI)

• Call rotate-secret. The following example rotates the secret between 16:00 and 18:00 UTC 
on the 1st and 15th day of the month. For more information, see Rotation schedules.

aws secretsmanager rotate-secret \ 
    --secret-id MySecret \ 
    --rotation-rules \ 
        "{\"ScheduleExpression\": \"cron(0 16 1,15 * ? *)\", \"Duration\": \"2h\"}"

Rotate Secrets Manager managed external secrets

Secrets Manager has partnered with select software vendors to offer managed external secrets. 
This feature helps customers manage the secret lifecycle by handling rotations automatically. With 
managed external secrets, customers no longer need to maintain specific rotation logic for each 
secret stored with different partners. This will be handled by Secrets Manager.

To view the list of partners onboarded with Secrets Manager, see Managed external secrets 
Partners.

Set Up Rotation in the Console

To configure rotation for an existing managed external secret, created by specifying the secret type 
and value as specified by the respective integration partners, use the following steps:

1. Open the Secrets Manager console.

2. Select your managed external secret from the list.

3. Choose the Configuration tab.

4. In the Rotation configuration section, choose Edit rotation.

5. Turn on Automatic rotation.

6. Under Rotation metadata, add any partner-specific metadata required for rotation:

Follow the guidelines provided by your integration partner for other required metadata

7. In Service permissions for secret rotation, select or create an IAM role for rotation:

• Choose Create a new role to automatically create a role with necessary permissions

• Or select an existing role with appropriate permissions for your partner

Rotate managed external secrets 185

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/rotate-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/mes-partners.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/mes-partners.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/mes-partners.html


AWS Secrets Manager User Guide

By default, permissions are scoped to the individual partner in the region where the secret is 
created

8. Set your Rotation schedule (for example, rotate automatically every 30 days).

9. Choose Save to apply the rotation configuration.

The two key metadata fields configured during this process are:

Field Description

ExternalSecretRotationMetad 
ata

Partner-specific metadata required for rotation, such as API 
version for Salesforce

ExternalSecretRotationRoleA 
rn

The ARN of the IAM role used for rotation, with permissions 
scoped to the integration partner

For more information on these fields, see Using Secrets Manager managed external secrets to 
manage Third Party secrets.

Set Up Rotation Using the CLI

Run the following command to set up rotation for a Salesforce secret. This command specifies the 
secret ID, the IAM role ARN for rotation, the rotation schedule, and any partner-specific metadata 
required for the rotation process.

aws secretsmanager rotate-secret \ 
            --secret-id SampleSecret \ 
            --external-secret-rotation-role-arn arn:aws:iam::123412341234:role/xyz \ 
            --rotation-rules AutomaticallyAfterDays=1 \ 
            --external-secret-rotation-metadata 
 '[{"Key":"apiVersion","Value":"v65.0"}]'

Rotation by Lambda function

For many types of secrets, Secrets Manager uses an AWS Lambda function to update the secret and 
the database or service. For information about the costs of using a Lambda function, see Pricing.

Set Up Rotation Using the CLI 186

https://docs.aws.amazon.com/secretsmanager/latest/userguide/managed-external-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managed-external-secrets.html


AWS Secrets Manager User Guide

For some Secrets managed by other services, you use managed rotation. To use Managed rotation, 
you first create the secret through the managing service.

During rotation, Secrets Manager logs events that indicate the state of rotation. For more 
information, see the section called “Log with AWS CloudTrail ”.

To rotate a secret, Secrets Manager calls a  Lambda function according to the rotation schedule 
you set up. If you also manually update your secret value while automatic rotation is set up, then 
Secrets Manager considers that a valid rotation when it calculates the next rotation date.

During rotation, Secrets Manager calls the same function several times, each time with different 
parameters. Secrets Manager invokes the function with the following JSON request structure of 
parameters:

{ 
    "Step" : "request.type", 
    "SecretId" : "string", 
    "ClientRequestToken" : "string", 
    "RotationToken" : "string"
}

Parameters:

• Step – The rotation step: create_secret, set_secret, test_secret, or finish_secret. 
For more information, see the section called “Four steps in a rotation function”.

• SecretId – The ARN of the secret to rotate.

• ClientRequestToken – A unique identifier for the new version of the secret. This value helps 
ensure idempotency. For more information, see PutSecretValue: ClientRequestToken in the AWS 
Secrets Manager API Reference.

• RotationToken – A unique identifier that indicates the source of the request. Required for secret 
rotation using an assumed role or cross-account rotation, in which you rotate a secret in one 
account by using a Lambda rotation function in another account. In both cases, the rotation 
function assumes an IAM role to call Secrets Manager and then Secrets Manager uses the 
rotation token to validate the IAM role identity.

If any rotation step fails, Secrets Manager retries the entire rotation process multiple times.

Topics

Rotation by Lambda function 187

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html#SecretsManager-PutSecretValue-request-ClientRequestToken


AWS Secrets Manager User Guide

• Set up automatic rotation for Amazon RDS, Amazon Aurora, Amazon Redshift, or Amazon 
DocumentDB secrets

• Set up automatic rotation for non-database AWS Secrets Manager secrets

• Set up automatic rotation using the AWS CLI

• Lambda function rotation strategies

• Lambda rotation functions

• AWS Secrets Manager rotation function templates

• Lambda rotation function execution role permissions for AWS Secrets Manager

• Network access for AWS Lambda rotation function

• Troubleshoot AWS Secrets Manager rotation

Set up automatic rotation for Amazon RDS, Amazon Aurora, Amazon 
Redshift, or Amazon DocumentDB secrets

This tutorial describes how to set up the section called “Rotation by Lambda function” for database 
secrets. Rotation is the process of periodically updating a secret. When you rotate a secret, you 
update the credentials in both the secret and the database. In Secrets Manager, you can set up 
automatic rotation for your database secrets.

To set up rotation using the console, you need to first choose a rotation strategy. Then you 
configure the secret for rotation, which creates a Lambda rotation function if you don't already 
have one. The console also sets permissions for the Lambda function execution role. The last step 
is to make sure that the Lambda rotation function can access both Secrets Manager and your 
database through the network.

Warning

To turn on automatic rotation, you must have permission to create an IAM execution role 
for the Lambda rotation function and attach a permission policy to it. You need both
iam:CreateRole and iam:AttachRolePolicy permissions. Granting these permissions 
allows an identity to grant themselves any permissions.

Steps:

• Step 1: Choose a rotation strategy and (optionally) create a superuser secret

Automatic rotation for database secrets (console) 188



AWS Secrets Manager User Guide

• Step 2: Configure rotation and create a rotation function

• Step 3: (Optional) Set additional permissions conditions on the rotation function

• Step 4: Set up network access for the rotation function

• Next steps

Step 1: Choose a rotation strategy and (optionally) create a superuser secret

For information about the strategies offered by Secrets Manager, see the section called “Lambda 
function rotation strategies”.

If you choose the alternating users strategy, you must Create secrets and store database superuser 
credentials in it. You need a secret with superuser credentials because rotation clones the first user, 
and most users do not have that permission. Note that Amazon RDS Proxy does not support the 
alternating users strategy.

Step 2: Configure rotation and create a rotation function

To turn on rotation for an Amazon RDS, Amazon DocumentDB, or Amazon Redshift secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. On the Secret details page, in the Rotation configuration section, choose Edit rotation.

4. In the Edit rotation configuration dialog box, do the following:

a. Turn on Automatic rotation.

b. Under Rotation schedule, enter your schedule in UTC time zone in either the Schedule 
expression builder or as a Schedule expression. Secrets Manager stores your schedule as 
a rate() or cron() expression. The rotation window automatically starts at midnight 
unless you specify a Start time. You can rotate a secret as often as every four hours. For 
more information, see Rotation schedules.

c. (Optional) For Window duration, choose the length of the window during which you 
want Secrets Manager to rotate your secret, for example 3h for a three hour window. 
The window must not extend into the next rotation window. If you don't specify Window 
duration, for a rotation schedule in hours, the window automatically closes after one 
hour. For a rotation schedule in days, the window automatically closes at the end of the 
day.

Automatic rotation for database secrets (console) 189

https://console.aws.amazon.com/secretsmanager/


AWS Secrets Manager User Guide

d. (Optional) Choose Rotate immediately when the secret is stored to rotate your secret 
when you save your changes. If you clear the checkbox, then the first rotation will begin 
on the schedule you set.

If rotation fails, for example because Steps 3 and 4 are not yet completed, Secrets 
Manager retries the rotation process multiple times.

e. Under Rotation function, do one of the following:

• Choose Create a new Lambda function and enter a name for your new function. 
Secrets Manager adds SecretsManager to the beginning of the function name. 
Secrets Manager creates the function based on the appropriate template and sets the 
necessary permissions for the Lambda execution role.

• Choose Use an existing Lambda function to reuse a rotation function you used 
for another secret. The rotation functions listed under Recommended VPC 
configurations have the same VPC and security group as the database, which helps 
the function access the database.

f. For Rotation strategy, choose the Single user or Alternating users strategy. For more 
information, see the section called “Step 1: Choose a rotation strategy and (optionally) 
create a superuser secret”.

5. Choose Save.

Step 3: (Optional) Set additional permissions conditions on the rotation function

In the resource policy for your rotation function, we recommend that you include the context key
aws:SourceAccount to help prevent Lambda from being used as a confused deputy. For some 
AWS services, to avoid the confused deputy scenario, AWS recommends that you use both the
aws:SourceArn and aws:SourceAccount global condition keys. However, if you include the
aws:SourceArn condition in your rotation function policy, the rotation function can only be used 
to rotate the secret specified by that ARN. We recommend that you include only the context key
aws:SourceAccount so that you can use the rotation function for multiple secrets.

To update your rotation function resource policy

1. In the Secrets Manager console, choose your secret, and then on the details page, under
Rotation configuration, choose the Lambda rotation function. The Lambda console opens.

2. Follow the instructions at Using resource-based policies for Lambda to add a
aws:sourceAccount condition.

Automatic rotation for database secrets (console) 190

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html


AWS Secrets Manager User Guide

"Condition": { 
    "StringEquals": { 
        "AWS:SourceAccount": "123456789012" 
    }
},

If the secret is encrypted with a KMS key other than the AWS managed key aws/
secretsmanager, Secrets Manager grants the Lambda execution role permission to use the key. 
You can use the SecretARN encryption context to limit the use of the decrypt function, so the 
rotation function role only has access to decrypt the secret it is responsible for rotating.

To update your rotation function execution role

1. From the Lambda rotation function, choose Configuration, and then under Execution role, 
choose the Role name.

2. Follow the instructions at Modifying a role permissions policy to add a
kms:EncryptionContext:SecretARN condition.

"Condition": { 
    "StringEquals": { 
        "kms:EncryptionContext:SecretARN": "SecretARN" 
    }
},

Step 4: Set up network access for the rotation function

For more information, see the section called “Network access for AWS Lambda rotation function”.

Next steps

See the section called “Troubleshoot rotation”.

Set up automatic rotation for non-database AWS Secrets Manager 
secrets

This tutorial describes how to set up the section called “Rotation by Lambda function” for non-
database secrets. Rotation is the process of periodically updating a secret. When you rotate a 

Automatic rotation for non-database secrets (console) 191

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy


AWS Secrets Manager User Guide

secret, you update the credentials in both the secret and the database or service that the secret is 
for.

For database secrets, see Automatic rotation for database secrets (console).

Warning

To turn on automatic rotation, you must have permission to create an IAM execution role 
for the Lambda rotation function and attach a permission policy to it. You need both
iam:CreateRole and iam:AttachRolePolicy permissions. Granting these permissions 
allows an identity to grant themselves any permissions.

Steps:

• Step 1: Create a generic rotation function

• Step 2: Write the rotation function code

• Step 3: Configure the secret for rotation

• Step 4: Allow the rotation function to access Secrets Manager and your database or service

• Step 5: Allow Secrets Manager to invoke the rotation function

• Step 6: Set up network access for the rotation function

• Next steps

Step 1: Create a generic rotation function

To begin, create a Lambda rotation function. It will not have the code in it to rotate your secret, 
so you'll write that in a later step. For information about how a rotation function works, see the 
section called “Lambda rotation functions”.

In supported Regions, you can use AWS Serverless Application Repository to create the function 
from a template. For a list of supported Regions, see AWS Serverless Application Repository 
FAQs. In other Regions, you create the function from scratch and copy the template code into the 
function.

To create a generic rotation function

1. To determine whether AWS Serverless Application Repository is supported in your Region, see
AWS Serverless Application Repository endpoints and quotas in the AWS General Reference.

Automatic rotation for non-database secrets (console) 192

https://aws.amazon.com/serverless/serverlessrepo/faqs/
https://aws.amazon.com/serverless/serverlessrepo/faqs/
https://docs.aws.amazon.com/general/latest/gr/serverlessrepo.html


AWS Secrets Manager User Guide

2. Do one of the following:

• If AWS Serverless Application Repository is supported in your Region:

a. In the Lambda console, choose Applications and then choose Create application.

b. On the Create application page, choose the Serverless application tab.

c. In the search box under Public applications, enter
SecretsManagerRotationTemplate.

d. Select Show apps that create custom IAM roles or resource policies.

e. Choose the SecretsManagerRotationTemplate tile.

f. On the Review, configure and deploy page, in the Application settings tile, fill in the 
required fields.

• For endpoint, enter the endpoint for your Region, including https://. For a list of 
endpoints, see the section called “Secrets Manager endpoints”.

• To put the Lambda function in a VPC, include vpcSecurityGroupIds and
vpcSubnetIds.

g. Choose Deploy.

• If AWS Serverless Application Repository isn't supported in your Region:

a. In the Lambda console, choose Functions and then choose Create function.

b. On the Create function page, do the following:

i. Choose Author from scratch.

ii. For Function name, enter a name for your rotation function.

iii. For Runtime, choose Python 3.10.

iv. Choose Create function.

Step 2: Write the rotation function code

In this step, you write the code that updates the secret and the service or database that the secret 
is for. For information about what a rotation function does, including tips on writing your own 
rotation function, see the section called “Lambda rotation functions”. You can also use the Rotation 
function templates as reference.

Automatic rotation for non-database secrets (console) 193



AWS Secrets Manager User Guide

Step 3: Configure the secret for rotation

In this step, you set a rotation schedule for your secret and connect the rotation function to the 
secret.

To configure rotation and create an empty rotation function

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. On the Secret details page, in the Rotation configuration section, choose Edit rotation. In the
Edit rotation configuration dialog box, do the following:

a. Turn on Automatic rotation.

b. Under Rotation schedule, enter your schedule in UTC time zone in either the Schedule 
expression builder or as a Schedule expression. Secrets Manager stores your schedule as 
a rate() or cron() expression. The rotation window automatically starts at midnight 
unless you specify a Start time. You can rotate a secret as often as every four hours. For 
more information, see Rotation schedules.

c. (Optional) For Window duration, choose the length of the window during which you 
want Secrets Manager to rotate your secret, for example 3h for a three hour window. 
The window must not extend into the next rotation window. If you don't specify Window 
duration, for a rotation schedule in hours, the window automatically closes after one 
hour. For a rotation schedule in days, the window automatically closes at the end of the 
day.

d. (Optional) Choose Rotate immediately when the secret is stored to rotate your secret 
when you save your changes. If you clear the checkbox, then the first rotation will begin 
on the schedule you set.

e. Under Rotation function, choose the Lambda function you created in Step 1.

f. Choose Save.

Step 4: Allow the rotation function to access Secrets Manager and your database 
or service

The Lambda rotation function needs permission to access the secret in Secrets Manager, and it 
needs permission to access your database or service. In this step, you grant these permissions to 
the Lambda execution role. If the secret is encrypted with a KMS key other than the AWS managed 

Automatic rotation for non-database secrets (console) 194

https://console.aws.amazon.com/secretsmanager/


AWS Secrets Manager User Guide

key aws/secretsmanager, then you need to grant the Lambda execution role permission to use 
the key. You can use the SecretARN encryption context to limit the use of the decrypt function, so 
the rotation function role only has access to decrypt the secret it is responsible for rotating. For 
policy examples, see Permissions for rotation.

For instructions, see Lambda execution role in the AWS Lambda Developer Guide.

Step 5: Allow Secrets Manager to invoke the rotation function

To allow Secrets Manager to invoke the rotation function on the rotation schedule you set up, you 
need to grant lambda:InvokeFunction permission to the Secrets Manager service principal in 
the resource policy of the Lambda function.

In the resource policy for your rotation function, we recommend that you include the context key
aws:SourceAccount to help prevent Lambda from being used as a confused deputy. For some 
AWS services, to avoid the confused deputy scenario, AWS recommends that you use both the
aws:SourceArn and aws:SourceAccount global condition keys. However, if you include the
aws:SourceArn condition in your rotation function policy, the rotation function can only be used 
to rotate the secret specified by that ARN. We recommend that you include only the context key
aws:SourceAccount so that you can use the rotation function for multiple secrets.

To attach a resource policy to a Lambda function, see Using resource-based policies for Lambda.

The following policy allows Secrets Manager to invoke a Lambda function.

JSON

{ 
    "Version":"2012-10-17",        
    "Id": "default", 
    "Statement": [ 
    { 
        "Effect": "Allow", 
        "Principal": { 
            "Service": "secretsmanager.amazonaws.com" 
            }, 
        "Action": "lambda:InvokeFunction", 
        "Condition": { 
            "StringEquals": { 
                "AWS:SourceAccount": "123456789012" 
            } 

Automatic rotation for non-database secrets (console) 195

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html


AWS Secrets Manager User Guide

        }, 
        "Resource": "arn:aws:lambda:us-east-1:123456789012:function:function-
name" 
    } 
    ]
}

Step 6: Set up network access for the rotation function

In this step, you allow the rotation function to connect to both Secrets Manager and the service or 
database the secret is for. The rotation function must have access to both to be able to rotate the 
secret. See the section called “Network access for AWS Lambda rotation function”.

Next steps

When you configured rotation in Step 3, you set a schedule for rotating the secret. If rotation fails 
when it is scheduled, Secrets Manager will attempt the rotation multiple times. You can also start a 
rotation immediately by following the instructions in Rotate a secret immediately.

If rotation fails, see Troubleshoot rotation.

Set up automatic rotation using the AWS CLI

This tutorial describes how to set up the section called “Rotation by Lambda function” by using the 
AWS CLI. When you rotate a secret, you update the credentials in both the secret and the database 
or service that the secret is for.

You can also set up rotation using the console. For database secrets, see Automatic rotation for 
database secrets (console). For all other types of secrets, see Automatic rotation for non-database 
secrets (console).

To set up rotation using the AWS CLI, if you are rotating a database secret, you first need to choose 
a rotation strategy. If you choose the alternating users strategy, you must store a separate secret 
with credentials for a database superuser. Next, you write the rotation function code. Secrets 
Manager provides templates you can base your function on. Then you create a Lambda function 
with your code and set permissions for both the Lambda function and the Lambda execution role. 
The next step is to make sure that the Lambda function can access both Secrets Manager and your 
database or service through the network. Finally, you configure the secret for rotation.

Steps:

Automatic rotation (AWS CLI) 196



AWS Secrets Manager User Guide

• Prerequisite for database secrets: Choose a rotation strategy

• Step 1: Write the rotation function code

• Step 2: Create the Lambda function

• Step 3: Set up network access

• Step 4: Configure the secret for rotation

• Next steps

Prerequisite for database secrets: Choose a rotation strategy

For information about the strategies offered by Secrets Manager, see the section called “Lambda 
function rotation strategies”.

Option 1: Single user strategy

If you choose the single user strategy, you can continue with Step 1.

Option 2: Alternating users strategy

If you choose the alternating users strategy, you must:

• Create a secret and store database superuser credentials in it. You need a secret with superuser 
credentials because alternating users rotation clones the first user, and most users do not have 
that permission.

• Add the ARN of the superuser secret to the original secret. For more information, see the section 
called “JSON structure of a secret”.

Note that Amazon RDS Proxy does not support the alternating users strategy.

Step 1: Write the rotation function code

To rotate a secret, you need a rotation function. A rotation function is a Lambda function that 
Secrets Manager calls to rotate your secret. For more information, see the section called “Rotation 
by Lambda function”. In this step, you write the code that updates the secret and the service or 
database that the secret is for.

Secrets Manager provides templates for Amazon RDS, Amazon Aurora, Amazon Redshift, and 
Amazon DocumentDB database secrets in Rotation function templates.

Automatic rotation (AWS CLI) 197



AWS Secrets Manager User Guide

To write the rotation function code

1. Do one of the following:

• Check the list of rotation function templates. If there is one that matches your service and 
rotation strategy, copy the code.

• For other types of secrets, you write your own rotation function. For instructions, see the 
section called “Lambda rotation functions”.

2. Save the file in a ZIP file my-function.zip along with any required dependencies.

Step 2: Create the Lambda function

In this step, you create the Lambda function using the ZIP file you created in Step 1. You also set 
the Lambda execution role, which is the role that Lambda assumes when the function is invoked.

To create a Lambda rotation function and execution role

1. Create a trust policy for the Lambda execution role and save it as a JSON file. For examples 
and more information, see the section called “Permissions for rotation”. The policy must:

• Allow the role to call Secrets Manager operations on the secret.

• Allow the role to call the service that the secret is for, for example, to create a new 
password.

2. Create the Lambda execution role and apply the trust policy you created in the previous step 
by calling iam create-role.

aws iam create-role \ 
    --role-name rotation-lambda-role \ 
    --assume-role-policy-document file://trust-policy.json

3. Create the Lambda function from the ZIP file by calling lambda create-function.

aws lambda create-function \ 
  --function-name my-rotation-function \ 
  --runtime python3.7 \ 
  --zip-file fileb://my-function.zip \ 
  --handler .handler \ 
  --role arn:aws:iam::123456789012:role/service-role/rotation-lambda-role

Automatic rotation (AWS CLI) 198

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html


AWS Secrets Manager User Guide

4. Set a resource policy on the Lambda function to allow Secrets Manager to invoke it by calling
lambda add-permission.

aws lambda add-permission \ 
  --function-name my-rotation-function \ 
  --action lambda:InvokeFunction \ 
  --statement-id SecretsManager \ 
  --principal secretsmanager.amazonaws.com \ 
  --source-account 123456789012

Step 3: Set up network access

For more information, see the section called “Network access for AWS Lambda rotation function”.

Step 4: Configure the secret for rotation

To turn on automatic rotation for your secret, call rotate-secret. You can set a rotation 
schedule with a cron() or rate() schedule expression, and you can set a rotation window 
duration. For more information, see the section called “Rotation schedules”.

aws secretsmanager rotate-secret \ 
    --secret-id MySecret \ 
    --rotation-lambda-arn arn:aws:lambda:Region:123456789012:function:my-rotation-
function \ 
    --rotation-rules "{\"ScheduleExpression\": \"cron(0 16 1,15 * ? *)\", \"Duration\": 
 \"2h\"}"

Next steps

See the section called “Troubleshoot rotation”.

Lambda function rotation strategies

For the section called “Rotation by Lambda function”, for database secrets, Secrets Manager offers 
two rotation strategies.

Rotation strategy: single user

This strategy updates credentials for one user in one secret. For Amazon RDS Db2 instances, 
because users can't change their own passwords, you must provide admin credentials in a separate 

Lambda function rotation strategies 199

https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/rotate-secret.html


AWS Secrets Manager User Guide

secret. This is the simplest rotation strategy, and it is appropriate for most use cases. In 
particular, we recommend you use this strategy for credentials for one-time (ad hoc) or interactive 
users.

When the secret rotates, open database connections are not dropped. While rotation is happening, 
there is a short period of time between when the password in the database changes and when the 
secret is updated. During this time, there is a low risk of the database denying calls that use the 
rotated credentials. You can mitigate this risk with an appropriate retry strategy. After rotation, 
new connections use the new credentials.

Rotation strategy: alternating users

This strategy updates credentials for two users in one secret. You create the first user, and during 
the first rotation, the rotation function clones it to create the second user. Every time the secret 
rotates, the rotation function alternates which user's password it updates. Because most users 
don't have permission to clone themselves, you must provide the credentials for a superuser in 
another secret. We recommend using the single-user rotation strategy when cloned users in your 
database don't have the same permissions as the original user, and for credentials for one-time (ad 
hoc) or interactive users.

This strategy is appropriate for databases with permission models where one role owns the 
database tables and a second role has permission to access the database tables. It is also 
appropriate for applications that require high availability. If an application retrieves the secret 
during rotation, the application still gets a valid set of credentials. After rotation, both user and
user_clone credentials are valid. There is even less chance of applications getting a deny during 
this type of rotation than single user rotation. If the database is hosted on a server farm where the 
password change takes time to propagate to all servers, there is a risk of the database denying calls 
that use the new credentials. You can mitigate this risk with an appropriate retry strategy.

Secrets Manager creates the cloned user with the same permissions as the original user. If you 
change the original user's permissions after the clone is created, you must also change the cloned 
user's permissions.

For example, if you create a secret with a database user's credentials, the secret contains one 
version with those credentials.

Lambda function rotation strategies 200

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/


AWS Secrets Manager User Guide

First rotation – The rotation function creates a clone of your user with a generated password, and 
those credentials become the current secret version.

Second rotation – The rotation function updates the password for the original user.

Third rotation – The rotation function updates the password for the cloned user.

Lambda function rotation strategies 201



AWS Secrets Manager User Guide

Lambda rotation functions

In the section called “Rotation by Lambda function”, an AWS Lambda function rotates the secret. 
AWS Secrets Manager uses staging labels to identify secret versions during rotation.

If AWS Secrets Manager doesn't provide a rotation function template for your secret type, you can 
create a custom rotation function. Follow these guidelines when writing your rotation function:

Best practices for custom rotation functions

• Use the generic rotation template as a starting point.

• Be cautious with debugging or logging statements. They can write information to Amazon 
CloudWatch Logs. Ensure logs don't contain sensitive information.

For log statement examples, see the the section called “Rotation function templates” source 
code.

• For security, AWS Secrets Manager only allows a Lambda rotation function to rotate the secret 
directly. The rotation function can't call another Lambda function to rotate the secret.

• For debugging guidance, see Testing and debugging serverless applications.

• If you use external binaries and libraries, for example to connect to a resource, you're responsible 
for patching and updating them.

• Package your rotation function and any dependencies in a ZIP file, such as my-function.zip.

Warning

Setting the provisioned concurrency parameter to a value lower than 10 can cause 
throttling due to insufficient execution threads for the Lambda function. For more 

Lambda rotation functions 202

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html


AWS Secrets Manager User Guide

information, see  Understanding reserved concurrency and provisioned concurrency in the 
AWS Lambda AWS Lambda Developer Guide.

Four steps in a rotation function

Topics

• createSecret: Create a new version of the secret

• setSecret: Change the credentials in the database or service

• testSecret: Test the new secret version

• finishSecret: Finish the rotation

createSecret: Create a new version of the secret

The method createSecret first checks if a secret exists by calling get_secret_value
with the passed-in ClientRequestToken. If there's no secret, it creates a new secret with
create_secret and the token as the VersionId. Then it generates a new secret value with
get_random_password. Next it calls put_secret_value to store it with the staging label
AWSPENDING. Storing the new secret value in AWSPENDING helps ensure idempotency. If rotation 
fails for any reason, you can refer to that secret value in subsequent calls. See How do I make my 
Lambda function idempotent.

Tips for writing your own rotation function

• Ensure the new secret value only includes characters that are valid for the database or service. 
Exclude characters by using the ExcludeCharacters parameter.

• As you test your function, use the AWS CLI to see version stages: call describe-secret and 
look at VersionIdsToStages.

• For Amazon RDS MySQL, in alternating users rotation, Secrets Manager creates a cloned user 
with a name no longer than 16 characters. You can modify the rotation function to allow longer 
usernames. MySQL version 5.7 and higher supports usernames up to 32 characters, however 
Secrets Manager appends "_clone" (six characters) to the end of the username, so you must keep 
the username to a maximum of 26 characters.

Lambda rotation functions 203

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_secret_value
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.create_secret
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_random_password
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.put_secret_value
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html


AWS Secrets Manager User Guide

setSecret: Change the credentials in the database or service

The method setSecret changes the credential in the database or service to match the new secret 
value in the AWSPENDING version of the secret.

Tips for writing your own rotation function

• If you pass statements to a service that interprets statements, like a database, use query 
parameterization. For more information, see Query Parameterization Cheat Sheet on the OWASP 
web site.

• The rotation function is a privileged deputy that has the authorization to access and modify 
customer credentials in both the Secrets Manager secret and the target resource. To prevent 
a potential confused deputy attack, you need to make sure that an attacker cannot use the 
function to access other resources. Before you update the credential:

• Check that the credential in the AWSCURRENT version of the secret is valid. If the AWSCURRENT
credential isn't valid, abandon the rotation attempt.

• Check that the AWSCURRENT and AWSPENDING secret values are for the same resource. For a 
username and password, check that the AWSCURRENT and AWSPENDING usernames are the 
same.

• Check that the destination service resource is the same. For a database, check that the
AWSCURRENT and AWSPENDING host names are the same.

• In rare cases, you might want to customize an existing rotation function for a database. For 
example, with alternating users rotation, Secrets Manager creates the cloned user by copying 
the runtime configuration parameters of the first user. If you want to include more attributes, 
or change which ones are granted to the cloned user, you need to update the code in the
set_secret function.

testSecret: Test the new secret version

Next, the Lambda rotation function tests the AWSPENDING version of the secret by using it to 
access the database or service. Rotation functions based on Rotation function templates test the 
new secret by using read access.

finishSecret: Finish the rotation

Finally, the Lambda rotation function moves the label AWSCURRENT from the previous secret 
version to this version, which also removes the AWSPENDING label in the same API call. Secrets 

Lambda rotation functions 204

https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://www.postgresql.org/docs/8.0/runtime-config.html


AWS Secrets Manager User Guide

Manager adds the AWSPREVIOUS staging label to the previous version, so that you retain the last 
known good version of the secret.

The method finish_secret uses update_secret_version_stage to move the staging label
AWSCURRENT from the previous secret version to the new secret version. Secrets Manager 
automatically adds the AWSPREVIOUS staging label to the previous version, so that you retain the 
last known good version of the secret.

Tips for writing your own rotation function

• Don't remove AWSPENDING before this point, and don't remove it by using a separate API call, 
because that can indicate to Secrets Manager that the rotation did not complete successfully. 
Secrets Manager adds the AWSPREVIOUS staging label to the previous version, so that you retain 
the last known good version of the secret.

When rotation is successful, the AWSPENDING staging label might be attached to the same version 
as the AWSCURRENT version, or it might not be attached to any version. If the AWSPENDING staging 
label is present but not attached to the same version as AWSCURRENT, then any later invocation 
of rotation assumes that a previous rotation request is still in progress and returns an error. When 
rotation is unsuccessful, the AWSPENDING staging label might be attached to an empty secret 
version. For more information, see Troubleshoot rotation.

AWS Secrets Manager rotation function templates

AWS Secrets Manager provides a set of rotation function templates that help automate the secure 
management of credentials for various database systems and services. The templates are ready-to-
use Lambda functions that implement best practices for credential rotation, helping you maintain 
your security posture without manual intervention.

The templates support two primary rotation strategies:

• Single-user rotation which updates the credentials for a single user.

• Alternating-users rotation which maintains two separate users to help eliminate downtime during 
credential changes.

Secrets Manager also provides a generic template that serves as a starting point for any type of 
secret.

To use the templates, see:

Rotation function templates 205

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.update_secret_version_stage


AWS Secrets Manager User Guide

• Automatic rotation for database secrets (console)

• Automatic rotation for non-database secrets (console)

To write your own rotation function, see Write a rotation function.

Templates

• Amazon RDS and Amazon Aurora

• Amazon RDS Db2 single user

• Amazon RDS Db2 alternating users

• Amazon RDS MariaDB single user

• Amazon RDS MariaDB alternating users

• Amazon RDS and Amazon Aurora MySQL single user

• Amazon RDS and Amazon Aurora MySQL alternating users

• Amazon RDS Oracle single user

• Amazon RDS Oracle alternating users

• Amazon RDS and Amazon Aurora PostgreSQL single user

• Amazon RDS and Amazon Aurora PostgreSQL alternating users

• Amazon RDS Microsoft SQLServer single user

• Amazon RDS Microsoft SQLServer alternating users

• Amazon DocumentDB (with MongoDB compatibility)

• Amazon DocumentDB single user

• Amazon DocumentDB alternating users

• Amazon Redshift

• Amazon Redshift single user

• Amazon Redshift alternating users

• Amazon Timestream for InfluxDB

• Amazon Timestream for InfluxDB single user

• Amazon Timestream for InfluxDB alternating users

• Amazon ElastiCache

• Active Directory

• Active Directory credentialsRotation function templates 206



AWS Secrets Manager User Guide

• Active Directory keytab

• Other types of secrets

Amazon RDS and Amazon Aurora

Amazon RDS Db2 single user

• Template name: SecretsManagerRDSDb2RotationSingleUser

• Rotation strategy: Rotation strategy: single user.

• SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSDb2RotationSingleUser/lambda_function.py

• Dependency: python-ibmdb

Amazon RDS Db2 alternating users

• Template name: SecretsManagerRDSDb2RotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSDb2RotationMultiUser/lambda_function.py

• Dependency: python-ibmdb

Amazon RDS MariaDB single user

• Template name: SecretsManagerRDSMariaDBRotationSingleUser

• Rotation strategy: Rotation strategy: single user.

• SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSMariaDBRotationSingleUser/lambda_function.py

• Dependency: PyMySQL 1.0.2. If you use sha256 password for authentication, PyMySQL[rsa]. 
For information about using packages with compiled code in a Lambda runtime, see How do I 
add Python packages with compiled binaries to my deployment package and make the package 
compatible with Lambda? in AWS Knowledge Center.

Rotation function templates 207

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationSingleUser/lambda_function.py
https://github.com/ibmdb/python-ibmdb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationMultiUser/lambda_function.py
https://github.com/ibmdb/python-ibmdb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationSingleUser/lambda_function.py
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible


AWS Secrets Manager User Guide

Amazon RDS MariaDB alternating users

• Template name: SecretsManagerRDSMariaDBRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSMariaDBRotationMultiUser/lambda_function.py

• Dependency: PyMySQL 1.0.2. If you use sha256 password for authentication, PyMySQL[rsa]. 
For information about using packages with compiled code in a Lambda runtime, see How do I 
add Python packages with compiled binaries to my deployment package and make the package 
compatible with Lambda? in AWS Knowledge Center.

Amazon RDS and Amazon Aurora MySQL single user

• Template name: SecretsManagerRDSMySQLRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py

• Dependency: PyMySQL 1.0.2. If you use sha256 password for authentication, PyMySQL[rsa]. 
For information about using packages with compiled code in a Lambda runtime, see How do I 
add Python packages with compiled binaries to my deployment package and make the package 
compatible with Lambda? in AWS Knowledge Center.

Amazon RDS and Amazon Aurora MySQL alternating users

• Template name: SecretsManagerRDSMySQLRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSMySQLRotationMultiUser/lambda_function.py

• Dependency: PyMySQL 1.0.2. If you use sha256 password for authentication, PyMySQL[rsa]. 
For information about using packages with compiled code in a Lambda runtime, see How do I 

Rotation function templates 208

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationMultiUser/lambda_function.py
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationMultiUser/lambda_function.py
https://repost.aws/knowledge-center/lambda-python-package-compatible


AWS Secrets Manager User Guide

add Python packages with compiled binaries to my deployment package and make the package 
compatible with Lambda? in AWS Knowledge Center.

Amazon RDS Oracle single user

• Template name: SecretsManagerRDSOracleRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSOracleRotationSingleUser/lambda_function.py

• Dependency: python-oracledb 2.4.1

Amazon RDS Oracle alternating users

• Template name: SecretsManagerRDSOracleRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSOracleRotationMultiUser/lambda_function.py

• Dependency: python-oracledb 2.4.1

Amazon RDS and Amazon Aurora PostgreSQL single user

• Template name: SecretsManagerRDSPostgreSQLRotationSingleUser

• Rotation strategy: Rotation strategy: single user.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSPostgreSQLRotationSingleUser/lambda_function.py

• Dependency: PyGreSQL 5.2.5

Amazon RDS and Amazon Aurora PostgreSQL alternating users

• Template name: SecretsManagerRDSPostgreSQLRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

Rotation function templates 209

https://repost.aws/knowledge-center/lambda-python-package-compatible
https://repost.aws/knowledge-center/lambda-python-package-compatible
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationSingleUser/lambda_function.py
https://github.com/oracle/python-oracledb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationMultiUser/lambda_function.py
https://github.com/oracle/python-oracledb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationSingleUser/lambda_function.py


AWS Secrets Manager User Guide

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSPostgreSQLRotationMultiUser/lambda_function.py

• Dependency: PyGreSQL 5.2.5

Amazon RDS Microsoft SQLServer single user

• Template name: SecretsManagerRDSSQLServerRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSSQLServerRotationSingleUser/lambda_function.py

• Dependency: Pymssql 2.2.2

Amazon RDS Microsoft SQLServer alternating users

• Template name: SecretsManagerRDSSQLServerRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon RDS and Aurora credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRDSSQLServerRotationMultiUser/lambda_function.py

• Dependency: Pymssql 2.2.2

Amazon DocumentDB (with MongoDB compatibility)

Amazon DocumentDB single user

• Template name: SecretsManagerMongoDBRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon DocumentDB credentials”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerMongoDBRotationSingleUser/lambda_function.py

• Dependency: PyMongo 4.2.0

Rotation function templates 210

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationSingleUser/lambda_function.py


AWS Secrets Manager User Guide

Amazon DocumentDB alternating users

• Template name: SecretsManagerMongoDBRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon DocumentDB credentials”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerMongoDBRotationMultiUser/lambda_function.py

• Dependency: PyMongo 4.2.0

Amazon Redshift

Amazon Redshift single user

• Template name: SecretsManagerRedshiftRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon Redshift credentials”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRedshiftRotationSingleUser/lambda_function.py

• Dependency: PyGreSQL 5.2.5

Amazon Redshift alternating users

• Template name: SecretsManagerRedshiftRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon Redshift credentials”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRedshiftRotationMultiUser/lambda_function.py

• Dependency: PyGreSQL 5.2.5

Amazon Timestream for InfluxDB

To use these templates, see How Amazon Timestream for InfluxDB uses secrets in the Amazon 
Timestream Developer Guide.

Rotation function templates 211

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationMultiUser/lambda_function.py
https://docs.aws.amazon.com/timestream/latest/developerguide/timestream-for-influx-security-db-secrets.html


AWS Secrets Manager User Guide

Amazon Timestream for InfluxDB single user

• Template name: SecretsManagerInfluxDBRotationSingleUser

• Expected SecretString structure: the section called “Amazon Timestream for InfluxDB secret 
structure”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerInfluxDBRotationSingleUser/lambda_function.py

• Dependency: InfluxDB 2.0 python client

Amazon Timestream for InfluxDB alternating users

• Template name: SecretsManagerInfluxDBRotationMultiUser

• Expected SecretString structure: the section called “Amazon Timestream for InfluxDB secret 
structure”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerInfluxDBRotationMultiUser/lambda_function.py

• Dependency: InfluxDB 2.0 python client

Amazon ElastiCache

To use this template, see Automatically rotating passwords for users in the Amazon ElastiCache 
User Guide.

• Template name: SecretsManagerElasticacheUserRotation

• Expected SecretString structure: the section called “Amazon ElastiCache credentials”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerElasticacheUserRotation/lambda_function.py

Active Directory

Active Directory credentials

• Template name: SecretsManagerActiveDirectoryRotationSingleUser

• Expected SecretString structure: the section called “Active Directory credentials”.

Rotation function templates 212

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerInfluxDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerInfluxDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerInfluxDBRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerInfluxDBRotationMultiUser/lambda_function.py
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerElasticacheUserRotation/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerElasticacheUserRotation/lambda_function.py


AWS Secrets Manager User Guide

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerActiveDirectoryRotationSingleUser/lambda_function.py

Active Directory keytab

• Template name: SecretsManagerActiveDirectoryAndKeytabRotationSingleUser

• Expected SecretString structure: the section called “Active Directory credentials”.

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerActiveDirectoryAndKeytabRotationSingleUser/lambda_function.py

• Dependencies: msktutil

Other types of secrets

Secrets Manager provides this template as a starting point for you to create a rotation function for 
any type of secret.

• Template name: SecretsManagerRotationTemplate

• Source code:  https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/ 
master/SecretsManagerRotationTemplate/lambda_function.py

Lambda rotation function execution role permissions for AWS Secrets 
Manager

For the section called “Rotation by Lambda function”, when Secrets Manager uses a Lambda 
function to rotate a secret, Lambda assumes an IAM execution role and provides those credentials 
to the Lambda function code. For instructions about how to set up automatic rotation, see:

• Automatic rotation for database secrets (console)

• Automatic rotation for non-database secrets (console)

• Automatic rotation (AWS CLI)

The following examples show inline policies for Lambda rotation function execution roles. To 
create an execution role and attach a permissions policy, see AWS Lambda execution role.

Examples:

Permissions for rotation 213

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerActiveDirectoryRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerActiveDirectoryRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerActiveDirectoryAndKeytabRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerActiveDirectoryAndKeytabRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRotationTemplate/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRotationTemplate/lambda_function.py
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html


AWS Secrets Manager User Guide

• Policy for a Lambda rotation function execution role

• Policy statement for customer managed key

• Policy statement for alternating users strategy

Policy for a Lambda rotation function execution role

The following example policy allows the rotation function to:

• Run Secrets Manager operations for SecretARN.

• Create a new password.

• Set up the required configuration if your database or service runs in a VPC. See Configuring a 
Lambda function to access resources in a VPC.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "secretsmanager:DescribeSecret", 
                "secretsmanager:GetSecretValue", 
                "secretsmanager:PutSecretValue", 
                "secretsmanager:UpdateSecretVersionStage" 
            ], 
            "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName-AbCdEf" 
    }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "secretsmanager:GetRandomPassword" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Action": [ 
                "ec2:CreateNetworkInterface", 

Permissions for rotation 214

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html


AWS Secrets Manager User Guide

                "ec2:DeleteNetworkInterface", 
                "ec2:DescribeNetworkInterfaces", 
                "ec2:DetachNetworkInterface" 
            ], 
            "Resource": "*", 
            "Effect": "Allow" 
        } 
    ]
}

Policy statement for customer managed key

If the secret is encrypted with a KMS key other than the AWS managed key aws/
secretsmanager, then you need to grant the Lambda execution role permission to use the 
key. You can use the SecretARN encryption context to limit the use of the decrypt function, so 
the rotation function role only has access to decrypt the secret it is responsible for rotating. The 
following example shows a statement to add to the execution role policy to decrypt the secret 
using the KMS key.

        { 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 
                "kms:DescribeKey", 
                "kms:GenerateDataKey" 
            ], 
            "Resource": "KMSKeyARN", 
            "Condition": { 
                "StringEquals": { 
                    "kms:EncryptionContext:SecretARN": "SecretARN" 
                } 
            } 
        }

To use the rotation function for multiple secrets that are encrypted with a customer managed key, 
add a statement like the following example to allow the execution role to decrypt the secret.

        { 
            "Effect": "Allow", 
            "Action": [ 
                "kms:Decrypt", 

Permissions for rotation 215



AWS Secrets Manager User Guide

                "kms:DescribeKey", 
                "kms:GenerateDataKey" 
            ], 
            "Resource": "KMSKeyARN", 
            "Condition": { 
                "StringEquals": { 
                    "kms:EncryptionContext:SecretARN": [ 
                        "arn1", 
                        "arn2" 
                    ] 
                } 
            } 
        }

Policy statement for alternating users strategy

For information about the alternating users rotation strategy, see the section called “Lambda 
function rotation strategies”.

For a secret that contains Amazon RDS credentials, if you are using the alternating users strategy 
and the superuser secret is managed by Amazon RDS, then you must also allow the rotation 
function to call read-only APIs on Amazon RDS so that it can get the connection information for 
the database. We recommend you attach the AWS managed policy AmazonRDSReadOnlyAccess.

The following example policy allows the function to:

• Run Secrets Manager operations for SecretARN.

• Retrieve the credentials in the superuser secret. Secrets Manager uses the credentials in the 
superuser secret to update the credentials in the rotated secret.

• Create a new password.

• Set up the required configuration if your database or service runs in a VPC. For more information, 
see Configuring a Lambda function to access resources in a VPC.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 

Permissions for rotation 216

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSReadOnlyAccess.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html


AWS Secrets Manager User Guide

            "Effect": "Allow", 
            "Action": [ 
                "secretsmanager:DescribeSecret", 
                "secretsmanager:GetSecretValue", 
                "secretsmanager:PutSecretValue", 
                "secretsmanager:UpdateSecretVersionStage" 
            ], 
            "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName-AbCdEf" 
    }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "secretsmanager:GetSecretValue" 
            ], 
            "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName-AbCdEf" 
    }, 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "secretsmanager:GetRandomPassword" 
            ], 
            "Resource": "*" 
        }, 
        { 
            "Action": [ 
                "ec2:CreateNetworkInterface", 
                "ec2:DeleteNetworkInterface", 
                "ec2:DescribeNetworkInterfaces", 
                "ec2:DetachNetworkInterface" 
            ], 
            "Resource": "*", 
            "Effect": "Allow" 
        } 
    ]
}

Network access for AWS Lambda rotation function

For the section called “Rotation by Lambda function”, when Secrets Manager uses a Lambda 
function to rotate a secret, the Lambda rotation function must be able to access the secret. If your 

Network access for AWS Lambda rotation function 217



AWS Secrets Manager User Guide

secret contains credentials, then the Lambda function must also be able to access the source of 
those credentials, such as a database or service.

To access a secret

Your Lambda rotation function must be able to access a Secrets Manager endpoint. If your 
Lambda function can access the internet, then you can use a public endpoint. To find an 
endpoint, see the section called “Secrets Manager endpoints”.

If your Lambda function runs in a VPC that doesn't have internet access, we recommend you 
configure Secrets Manager service private endpoints within your VPC. Your VPC can then 
intercept requests addressed to the public regional endpoint and redirect them to the private 
endpoint. For more information, see VPC endpoints (AWS PrivateLink).

Alternatively, you can enable your Lambda function to access a Secrets Manager public 
endpoint by adding a NAT gateway or an internet gateway to your VPC, which allows traffic 
from your VPC to reach the public endpoint. This exposes your VPC to more risk because an IP 
address for the gateway can be attacked from the public Internet.

(Optional) To access the database or service

For secrets such as API keys, there is no source database or service that you need to update 
along with the secret.

If your database or service is running on an Amazon EC2 instance in a VPC, we recommend that 
you configure your Lambda function to run in the same VPC. Then the rotation function can 
communicate directly with your service. For more information, see Configuring VPC access.

To allow the Lambda function to access the database or service, you must make sure that the 
security groups attached to your Lambda rotation function allow outbound connections to 
the database or service. You must also make sure that the security groups attached to your 
database or service allow inbound connections from the Lambda rotation function.

Troubleshoot AWS Secrets Manager rotation

For many services, Secrets Manager uses a Lambda function to rotate secrets. For more 
information, see the section called “Rotation by Lambda function”. The Lambda rotation function 
interacts with the database or service the secret is for as well as Secrets Manager. When rotation 
doesn't work the way you expect, you should first check the CloudWatch logs.

Troubleshoot rotation 218

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-configuring


AWS Secrets Manager User Guide

Note

Some services can manage secrets for you, including managing automatic rotation. For 
more information, see the section called “Managed rotation”.

Topics

• How to troubleshoot secret rotation failures in AWS Lambda functions

• No activity after "Found credentials in environment variables"

• No activity after "createSecret"

• Error: "Access to KMS is not allowed"

• Error: "Key is missing from secret JSON"

• Error: "setSecret: Unable to log into database"

• Error: "Unable to import module 'lambda_function'"

• Upgrade an existing rotation function from Python 3.7 to 3.9

• Upgrade an existing rotation function from Python 3.9 to 3.10

• AWS Lambda secret rotation with PutSecretValue failed

• Error: "Error when executing lambda <arn> during <a rotation> step"

How to troubleshoot secret rotation failures in AWS Lambda functions

If you're experiencing secret rotation failures with your Lambda functions, use the following steps 
to troubleshoot and resolve the issue.

Possible causes

• Insufficient concurrent executions for the Lambda function

• Race conditions due to multiple API calls during rotation

• Incorrect Lambda function logic

• Networking issues between the Lambda function and the database

General troubleshooting steps

1. Analyze CloudWatch logs:

Troubleshoot rotation 219



AWS Secrets Manager User Guide

• Look for specific error messages or unexpected behavior in the Lambda function logs

• Verify that all rotation steps (CreateSecret, SetSecret, TestSecret, FinishSecret) are being 
attempted

2. Review API calls during rotation:

• Avoid making mutating API calls on the secret during Lambda rotation

• Ensure there's no race condition between RotateSecret and PutSecretValue calls

3. Verify Lambda function logic:

• Confirm you're using the latest AWS sample code for secret rotation

• If using custom code, review it for proper handling of all rotation steps

4. Check network configuration:

• Verify security group rules allow the Lambda function to access the database

• Ensure proper VPC endpoint or public endpoint access for Secrets Manager

5. Test secret versions:

• Verify that the AWSCURRENT version of the secret allows database access

• Check if AWSPREVIOUS or AWSPENDING versions are valid

6. Clear pending rotations:

• If rotation consistently fails, clear the AWSPENDING staging label and retry rotation

7. Check Lambda concurrency settings:

• Verify that concurrency settings are appropriate for your workload

• If you suspect concurrency issues, see the "Troubleshooting concurrency-related rotation 
failures" section

No activity after "Found credentials in environment variables"

If there is no activity after "Found credentials in environment variables", and the task duration is 
long, for example the default Lambda timeout of 30000ms, then the Lambda function may be 
timing out while trying to reach the Secrets Manager endpoint.

Troubleshoot rotation 220



AWS Secrets Manager User Guide

Your Lambda rotation function must be able to access a Secrets Manager endpoint. If your Lambda 
function can access the internet, then you can use a public endpoint. To find an endpoint, see the 
section called “Secrets Manager endpoints”.

If your Lambda function runs in a VPC that doesn't have internet access, we recommend you 
configure Secrets Manager service private endpoints within your VPC. Your VPC can then intercept 
requests addressed to the public regional endpoint and redirect them to the private endpoint. For 
more information, see VPC endpoints (AWS PrivateLink).

Alternatively, you can enable your Lambda function to access a Secrets Manager public endpoint 
by adding a NAT gateway or an internet gateway to your VPC, which allows traffic from your VPC 
to reach the public endpoint. This exposes your VPC to more risk because an IP address for the 
gateway can be attacked from the public Internet.

No activity after "createSecret"

The following are issues that can cause rotation to stop after createSecret:

The VPC Network ACLs do not allow HTTPS traffic in and out.

For more information, see Control traffic to subnets using Network ACLs in the Amazon VPC 
User Guide.

Lambda function timeout configuration is too short to perform the task.

For more information, see Configuring Lambda function options in the AWS Lambda Developer 
Guide.

The Secrets Manager VPC endpoint does not allow the VPC CIDRs on ingress in the assigned 
security groups.

For more information, see Control traffic to resources using security groups in the Amazon VPC 
User Guide.

The Secrets Manager VPC endpoint policy does not allow Lambda to use the VPC endpoint.

For more information, see the section called “VPC endpoints (AWS PrivateLink)”.

The secret uses alternating users rotation, the superuser secret is managed by Amazon RDS, 
and the Lambda function can't access the RDS API.

For alternating users rotation where the superuser secret is managed by another AWS service, 
the Lambda rotation function must be able to call the service endpoint to get the database 

Troubleshoot rotation 221

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html


AWS Secrets Manager User Guide

connection information. We recommend that you configure a VPC endpoint for the database 
service. For more information, see:

• Amazon RDS API and interface VPC endpoints in the Amazon RDS User Guide.

• Working with VPC endpoints in the Amazon Redshift Management Guide.

Error: "Access to KMS is not allowed"

If you see ClientError: An error occurred (AccessDeniedException) when calling 
the GetSecretValue operation: Access to KMS is not allowed, the rotation function 
does not have permission to decrypt the secret using the KMS key that was used to encrypt the 
secret. There might be a condition in the permissions policy that limits the encryption context 
to a specific secret. For information about the required permission, see the section called “Policy 
statement for customer managed key”.

Error: "Key is missing from secret JSON"

A Lambda rotation function requires the secret value to be in a specific JSON structure. If you 
see this error, then the JSON might be missing a key that the rotation function tried to access. 
For information about the JSON structure for each type of secret, see the section called “JSON 
structure of a secret”.

Error: "setSecret: Unable to log into database"

The following are issues that can cause this error:

The rotation function can't access the database.

If the task duration is long, for example over 5000ms, then the Lambda rotation function might 
not be able to access the database over the network.

If your database or service is running on an Amazon EC2 instance in a VPC, we recommend that 
you configure your Lambda function to run in the same VPC. Then the rotation function can 
communicate directly with your service. For more information, see Configuring VPC access.

To allow the Lambda function to access the database or service, you must make sure that the 
security groups attached to your Lambda rotation function allow outbound connections to 
the database or service. You must also make sure that the security groups attached to your 
database or service allow inbound connections from the Lambda rotation function.

Troubleshoot rotation 222

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-working-with-endpoints.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-configuring


AWS Secrets Manager User Guide

The credentials in the secret are incorrect.

If the task duration is short, then the Lambda rotation function might not be able to 
authenticate with the credentials in the secret. Check the credentials by logging in manually 
with the information in the AWSCURRENT and AWSPREVIOUS versions of the secret using the 
AWS CLI command get-secret-value.

The database uses scram-sha-256 to encrypt passwords.

If your database is Aurora PostgreSQL version 13 or later and uses scram-sha-256 to encrypt 
passwords, but the rotation function uses libpq version 9 or older which does not support
scram-sha-256, then the rotation function can't connect to the database.

To determine which database users use scram-sha-256 encryption

• See Checking for users with non-SCRAM passwords in the blog SCRAM Authentication in 
RDS for PostgreSQL 13.

To determine which version of libpq your rotation function uses

1. On a Linux-based computer, on the Lambda console, navigate to your rotation function and 
download the deployment bundle. Uncompress the zip file into a work directory.

2. At a command line, in the work directory, run:

readelf -a libpq.so.5 | grep RUNPATH

3. If you see the string PostgreSQL-9.4.x, or any major version less than 10, then the 
rotation function doesn't support scram-sha-256.

• Output for a rotation function that doesn't support scram-sha-256:

0x000000000000001d (RUNPATH) Library runpath: [/
local/p4clients/pkgbuild-a1b2c/workspace/build/
PostgreSQL/PostgreSQL-9.4.x_client_only.123456.0/AL2_x86_64/
DEV.STD.PTHREAD/build/private/tmp/brazil-path/build.libfarm/lib:/
local/p4clients/pkgbuild-a1b2c/workspace/src/PostgreSQL/build/
private/install/lib]

• Output for a rotation function that supports scram-sha-256:

0x000000000000001d (RUNPATH) Library runpath: [/
local/p4clients/pkgbuild-a1b2c/workspace/build/

Troubleshoot rotation 223

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://aws.amazon.com/blogs/database/scram-authentication-in-rds-for-postgresql-13/
https://aws.amazon.com/blogs/database/scram-authentication-in-rds-for-postgresql-13/


AWS Secrets Manager User Guide

PostgreSQL/PostgreSQL-10.x_client_only.123456.0/AL2_x86_64/
DEV.STD.PTHREAD/build/private/tmp/brazil-path/build.libfarm/lib:/
local/p4clients/pkgbuild-a1b2c/workspace/src/PostgreSQL/build/
private/install/lib]

• Output for a rotation function that supports scram-sha-256:

0x000000000000001d (RUNPATH) Library runpath: [/local/
p4clients/pkgbuild- a1b2c /workspace/build/PostgreSQL/
PostgreSQL-14.x_client_only. 123456 .0/AL2_x86_64/
DEV.STD.PTHREAD/build/private/tmp/brazil-path/build.libfarm/lib:/
local/p4clients/pkgbuild- a1b2c /workspace/src/PostgreSQL/build/
private/install/lib]

• Output for a rotation function that supports scram-sha-256:

0x000000000000001d (RUNPATH) Library runpath: [/local/p4clients/
pkgbuild- a1b2c/workspace/build/PostgreSQL/PostgreSQL- 
14.x_client_only.123456.0/AL2_x86_64/DEV.STD.PTHREAD/build/
private/tmp/brazil- path/build.libfarm/lib:/local/p4clients/
pkgbuild- a1b2c/workspace/src/PostgreSQL/build/private/install/
lib]

Note

If you set up automatic secret rotation before December 30, 2021, your rotation 
function bundled an earlier version of libpq that doesn't support scram-sha-256. To 
support scram-sha-256, you need to recreate your rotation function.

The database requires SSL/TLS access.

If your database requires an SSL/TLS connection, but the rotation function uses an unencrypted 
connection, then the rotation function can't connect to the database. Rotation functions for 
Amazon RDS (except Oracle and Db2) and Amazon DocumentDB automatically use Secure 
Socket Layer (SSL) or Transport Layer Security (TLS) to connect to your database, if it is 
available. Otherwise they use an unencrypted connection.

Troubleshoot rotation 224



AWS Secrets Manager User Guide

Note

If you set up automatic secret rotation before December 20, 2021, your rotation 
function might be based on an earlier template that did not support SSL/TLS. To 
support connections that use SSL/TLS, you need to recreate your rotation function.

To determine when your rotation function was created

1. In the Secrets Manager console https://console.aws.amazon.com/secretsmanager/, 
open your secret. In the Rotation configuration section, under Lambda rotation 
function, you see the Lambda function ARN, for example, arn:aws:lambda:aws-
region:123456789012:function:SecretsManagerMyRotationFunction
. Copy the function name from the end of the ARN, in this example 
SecretsManagerMyRotationFunction .

2. In the AWS Lambda console https://console.aws.amazon.com/lambda/, under Functions, 
paste your Lambda function name in the search box, choose Enter, and then choose the 
Lambda function.

3. In the function details page, on the Configuration tab, under Tags, copy the value next to 
the key aws:cloudformation:stack-name.

4. In the AWS CloudFormation console https://console.aws.amazon.com/cloudformation, 
under Stacks, paste the key value in the search box, and then choose Enter.

5. The list of stacks filters so that only the stack that created the Lambda rotation function 
appears. In the Created date column, view the date the stack was created. This is the date 
the Lambda rotation function was created.

Error: "Unable to import module 'lambda_function'"

You might receive this error if you're running an earlier Lambda function that was automatically 
upgraded from Python 3.7 to a newer version of Python. To resolve the error, you can change the 
Lambda function version back to Python 3.7, and then the section called “Upgrade an existing 
rotation function from Python 3.7 to 3.9”. For more information, see Why did my Secrets Manager 
Lambda function rotation fail with a “pg module not found“ error? in AWS re:Post.

Troubleshoot rotation 225

https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/cloudformation/
https://repost.aws/knowledge-center/secrets-manager-lambda-rotation
https://repost.aws/knowledge-center/secrets-manager-lambda-rotation


AWS Secrets Manager User Guide

Upgrade an existing rotation function from Python 3.7 to 3.9

Some rotation functions created before November 2022 used Python 3.7. The AWS SDK for Python 
stopped supporting Python 3.7 in December 2023. For more information, see Python support 
policy updates for AWS SDKs and Tools. To switch to a new rotation function that uses Python 3.9, 
you can add a runtime property to an existing rotation function or recreate the rotation function.

To find which Lambda rotation functions use Python 3.7

1. Sign in to the AWS Management Console and open the AWS Lambda console at https:// 
console.aws.amazon.com/lambda/.

2. In the list of Functions, filter for SecretsManager.

3. In the filtered list of functions, under Runtime, look for Python 3.7.

To upgrade to Python 3.9:

• Option 1: Recreate the rotation function using CloudFormation

• Option 2: Update the runtime for the existing rotation function using CloudFormation

• Option 3: For AWS CDK users, upgrade the CDK library

Option 1: Recreate the rotation function using CloudFormation

When you use the Secrets Manager console to turn on rotation, Secrets Manager uses 
CloudFormation to create the necessary resources, including the Lambda rotation function. If you 
used the console to turn on rotation, or you created the rotation function using a CloudFormation 
stack, you can use the same CloudFormation stack to recreate the rotation function with a new 
name. The new function uses the more recent version of Python.

To find the CloudFormation stack that created the rotation function

• On the Lambda function details page, on the Configuration tab, choose Tags. View the ARN 
next to aws:cloudformation:stack-id.

The stack name is embedded in the ARN, as shown in the following example.

• ARN: arn:aws:cloudformation:us-
west-2:408736277230:stack/SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda-3CUDHZMDMBO8/79fc9050-2eef-11ed-80f0-021fb13c0537

Troubleshoot rotation 226

https://aws.amazon.com/blogs/developer/python-support-policy-updates-for-aws-sdks-and-tools/
https://aws.amazon.com/blogs/developer/python-support-policy-updates-for-aws-sdks-and-tools/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/


AWS Secrets Manager User Guide

• Stack name: SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda

To recreate a rotation function (CloudFormation)

1. In CloudFormation, search for the stack by name, and then choose Update.

If a dialog box appears recommending you update the root stack, choose Go to root stack, and 
then choose Update.

2. On the Update stack page, under Prepare template, choose Edit in Application Composer, 
and then under Edit template in Application Composer, choose the button Edit in 
Application Composer.

3. In Application Composer, do the following:

a. In the template code, in SecretRotationScheduleHostedRotationLambda, 
replace the value for "functionName": "SecretsManagerTestRotationRDS"
with a new function name, for example in JSON, "functionName": 
"SecretsManagerTestRotationRDSupdated"

b. Choose Update template.

c. In the Continue to CloudFormation dialog box, choose Confirm and continue to 
CloudFormation.

4. Continue through the CloudFormation stack workflow and then choose Submit.

Option 2: Update the runtime for the existing rotation function using CloudFormation

When you use the Secrets Manager console to turn on rotation, Secrets Manager uses 
CloudFormation to create the necessary resources, including the Lambda rotation function. If you 
used the console to turn on rotation, or you created the rotation function using a CloudFormation 
stack, you can use the same CloudFormation stack to update the runtime for the rotation function.

To find the CloudFormation stack that created the rotation function

• On the Lambda function details page, on the Configuration tab, choose Tags. View the ARN 
next to aws:cloudformation:stack-id.

The stack name is embedded in the ARN, as shown in the following example.

Troubleshoot rotation 227



AWS Secrets Manager User Guide

• ARN: arn:aws:cloudformation:us-
west-2:408736277230:stack/SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda-3CUDHZMDMBO8/79fc9050-2eef-11ed-80f0-021fb13c0537

• Stack name: SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda

To update the runtime for a rotation function (CloudFormation)

1. In CloudFormation, search for the stack by name, and then choose Update.

If a dialog box appears recommending you update the root stack, choose Go to root stack, and 
then choose Update.

2. On the Update stack page, under Prepare template, choose Edit in Application Composer, 
and then under Edit template in Application Composer, choose the button Edit in 
Application Composer.

3. In Application Composer, do the following:

a. In the template JSON, for the SecretRotationScheduleHostedRotationLambda, 
under Properties, under Parameters, add "runtime": "python3.9".

b. Choose Update template.

c. In the Continue to CloudFormation dialog box, choose Confirm and continue to 
CloudFormation.

4. Continue through the CloudFormation stack workflow and then choose Submit.

Option 3: For AWS CDK users, upgrade the CDK library

If you used the AWS CDK prior to version v2.94.0 to set up rotation for your secret, you can update 
the Lambda function by upgrading to v2.94.0 or later. For more information, see the AWS Cloud 
Development Kit (AWS CDK) v2 Developer Guide.

Upgrade an existing rotation function from Python 3.9 to 3.10

Secrets Manager is transitioning from Python 3.9 to 3.10 for Lambda rotation functions. To switch 
to a new rotation function that uses Python 3.10, you'll need to follow the upgrade path based on 
your deployment method. Use the following procedures to upgrade both the Python version and 
the underlying dependencies.

Troubleshoot rotation 228

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html


AWS Secrets Manager User Guide

To find which Lambda rotation functions use Python 3.9

1. Sign in to the AWS Management Console and open the AWS Lambda console at https:// 
console.aws.amazon.com/lambda/.

2. In the list of Functions, filter for SecretsManager.

3. In the filtered list of functions, under Runtime, look for Python 3.9.

Update paths by deployment method

The Lambda rotation functions identified in this list can be deployed through Secrets Manager 
console, AWS Serverless Application Repository apps, or CloudFormation transforms. Each of these 
deployment strategies have a distinct update path.

Use one of the following procedures to update your Lambda rotation functions, depending on how 
your function was deployed.

AWS Secrets Manager console-deployed functions

A new Lambda function must be deployed through AWS Secrets Manager console as you cannot 
manually update dependencies for existing Lambda functions.

Use the following procedure to upgrade AWS Secrets Manager console-deployed functions.

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Under AWS Secrets Manager, select Secrets. Select the secret that uses the Lambda 
function you want to update.

3. Navigate to the Rotations tab and select the Update rotation configurations option.

4. Under Rotation functions, choose Create a new function, and enter a new name for the 
Lambda rotation function.

a. (Optional) Once the update is complete, you can test the updated Lambda function 
to confirm it works as expected. Under the Rotation tab, select Rotate Secret 
Immediately to initiate an immediate rotation.

b. (Optional) You can view your function logs and the Python version used at runtime in 
Amazon CloudWatch. For more information, see Viewing CloudWatch Logs for Lambda 
functions in the AWS Lambda Developer Guide.

5. Once the new rotation function is set up, you can delete the old rotation function.

Troubleshoot rotation 229

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs-view.html#monitoring-cloudwatchlogs-console
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs-view.html#monitoring-cloudwatchlogs-console


AWS Secrets Manager User Guide

AWS Serverless Application Repository deployments

The following procedure shows how to upgrade AWS Serverless Application Repository 
deployments. The Lambda functions deployed through AWS Serverless Application Repository 
have a banner stating This function belongs to an application. Click here to 
manage it. which includes a link to the Lambda application to which the function belongs.

Important

AWS Serverless Application Repository availability is AWS Region dependent.

Use the following procedure to update AWS Serverless Application Repository deployed 
functions.

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Navigate to the Configurations tab of the Lambda function that needs to be updated.

• You'll need the following information about your function when updating the 
deployed AWS Serverless Application Repository application. You can find this 
information in the Lambda console.

• Lambda application's name

• The Lambda application name can be found by using the link 
in the banner. For example, the banner states the following
serverlessrepo-SecretsManagerRedshiftRotationSingleUser. The 
name in this example is SecretsManagerRedshiftRotationSingleUser.

• Lambda rotation function name

• Secrets Manager endpoint

• The endpoint can be found under the Configurations and the Environment 
variables tabs assigned to the SECRETS_MANAGER_ENDPOINT variable.

3. To upgrade Python, you must update the semantic version of the serverless application. 
See Updating Applications in the AWS Serverless Application Repository Developer Guide.

Troubleshoot rotation 230

https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-how-to-consume-new-version.html#update-applications


AWS Secrets Manager User Guide

Custom Lambda rotation functions

If you created custom Lambda rotation functions, you’ll need to upgrade each package 
dependencies and runtimes for these functions. For more information, see Upgrade Lambda 
function runtime to latest version.

AWS::SecretsManager-2024-09-16 transform macro

If the Lambda function is deployed through this transform, updating the stacks using existing 
template will allow you to use the updated Lambda runtime.

Use the following procedure to update CloudFormation stack using existing template.

1. Open the CloudFormation console at https://console.aws.amazon.com/cloudformation.

2. On the Stacks page, select the stack that you want to update.

3. Choose Update on the stack details pane.

4. For Choose a template update method, select Direct update.

5. On the Specify template page, select Use existing template.

6. Keep all other options at their default values, and then choose Update stack.

If you experience issues updating the stack, see Determine the cause of a stack failure in the
CloudFormation User Guide.

AWS::SecretsManager-2020-07-23 transform macro

We recommend you migrate to the newer transform version if you're using
AWS::SecretsManager-2020-07-23. See Introducing an enhanced version of the AWS 
Secrets Manager transform: AWS::SecretsManager-2024-09-16 in the AWS Security Blog
for more information. If you continue to use AWS::SecretsManager-2020-07-23, 
you can experience a mismatch error between your runtime version and the Lambda 
function code artifacts. For more information, see AWS::SecretsManager::RotationSchedule 
HostedRotationLambda in the CloudFormation Template Reference.

If you experience issues updating the stack, Determine the cause of a stack failure in the
CloudFormation User Guide.

Verify Python upgrade

Troubleshoot rotation 231

https://repost.aws/knowledge-center/lambda-upgrade-function-runtime
https://repost.aws/knowledge-center/lambda-upgrade-function-runtime
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-direct.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-direct.html
https://console.aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/determine-root-cause-for-stack-failures.html
https://aws.amazon.com/blogs/security/introducing-an-enhanced-version-of-the-aws-secrets-manager-transform-awssecretsmanager-2024-09-16/
https://aws.amazon.com/blogs/security/introducing-an-enhanced-version-of-the-aws-secrets-manager-transform-awssecretsmanager-2024-09-16/
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-properties-secretsmanager-rotationschedule-hostedrotationlambda.html#cfn-secretsmanager-rotationschedule-hostedrotationlambda-runtime
https://docs.aws.amazon.com/AWSCloudFormation/latest/TemplateReference/aws-properties-secretsmanager-rotationschedule-hostedrotationlambda.html#cfn-secretsmanager-rotationschedule-hostedrotationlambda-runtime
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/determine-root-cause-for-stack-failures.html


AWS Secrets Manager User Guide

To verify the Python upgrade, open the Lambda console (https://console.aws.amazon.com/ 
lambda/) and access the Function page. Select the function you updated. Under Code source
section, review the files included in the directory and ensure the Python .so file is version 3.10.

AWS Lambda secret rotation with PutSecretValue failed

If you use an assumed role or a cross-account rotation with Secrets Manager and you find a
RotationFailed event in CloudTrail with the message: Pending secret version VERSION_ID for 
Secret SECRET_ARN  was not created by Lambda LAMBDA_ARN. Remove the AWSPENDING
staging label and restart rotation, then you need to update your Lambda function to use the
RotationToken parameter.

Update Lambda rotation function to include RotationToken

1. Download the Lambda function code

• Open the Lambda console

• In the navigation pane, choose Functions

• Select your Lambda secret rotation function for Function name

• For Download, choose one of Function code .zip, AWS SAM file, Both

• Choose OK to save the function on your local machine.

2. Edit Lambda_handler

Include the rotation_token parameter in the create_secret step for cross-account rotation:

def lambda_handler(event, context): 
    """Secrets Manager Rotation Template 

    This is a template for creating an AWS Secrets Manager rotation lambda 

    Args: 
        event (dict): Lambda dictionary of event parameters. These keys must 
 include the following: 
            - SecretId: The secret ARN or identifier 
            - ClientRequestToken: The ClientRequestToken of the secret version 
            - Step: The rotation step (one of createSecret, setSecret, testSecret, 
 or finishSecret) 
            - RotationToken: the rotation token to put as parameter for 
 PutSecretValue call 

Troubleshoot rotation 232

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/


AWS Secrets Manager User Guide

        context (LambdaContext): The Lambda runtime information 

    Raises: 
        ResourceNotFoundException: If the secret with the specified arn and stage 
 does not exist 

        ValueError: If the secret is not properly configured for rotation 

        KeyError: If the event parameters do not contain the expected keys 

    """ 
    arn = event['SecretId'] 
    token = event['ClientRequestToken'] 
    step = event['Step'] 
    # Add the rotation token 
    rotation_token = event['RotationToken'] 

    # Setup the client 
    service_client = boto3.client('secretsmanager', 
 endpoint_url=os.environ['SECRETS_MANAGER_ENDPOINT']) 

    # Make sure the version is staged correctly 
    metadata = service_client.describe_secret(SecretId=arn) 
    if not metadata['RotationEnabled']: 
        logger.error("Secret %s is not enabled for rotation" % arn) 
        raise ValueError("Secret %s is not enabled for rotation" % arn) 
    versions = metadata['VersionIdsToStages'] 
    if token not in versions: 
        logger.error("Secret version %s has no stage for rotation of secret %s." % 
 (token, arn)) 
        raise ValueError("Secret version %s has no stage for rotation of secret 
 %s." % (token, arn)) 
    if "AWSCURRENT" in versions[token]: 
        logger.info("Secret version %s already set as AWSCURRENT for secret %s." % 
 (token, arn)) 
        return 
    elif "AWSPENDING" not in versions[token]: 
        logger.error("Secret version %s not set as AWSPENDING for rotation of 
 secret %s." % (token, arn)) 
        raise ValueError("Secret version %s not set as AWSPENDING for rotation of 
 secret %s." % (token, arn)) 
    # Use rotation_token 
    if step == "createSecret": 

Troubleshoot rotation 233



AWS Secrets Manager User Guide

        create_secret(service_client, arn, token, rotation_token) 

    elif step == "setSecret": 
        set_secret(service_client, arn, token) 
     
    elif step == "testSecret": 
        test_secret(service_client, arn, token) 
         
    elif step == "finishSecret": 
        finish_secret(service_client, arn, token) 
         
    else: 
        raise ValueError("Invalid step parameter")             
           

3. Edit create_secret code

Revise the create_secret function to accept and use the rotation_token parameter:

# Add rotation_token to the function
def create_secret(service_client, arn, token, rotation_token):
"""Create the secret

This method first checks for the existence of a secret for the passed in token. If 
 one does not exist, it will generate a
new secret and put it with the passed in token.

Args:
service_client (client): The secrets manager service client

arn (string): The secret ARN or other identifier

token (string): The ClientRequestToken associated with the secret version

rotation_token (string): the rotation token to put as parameter for PutSecretValue 
 call

Raises:
ResourceNotFoundException: If the secret with the specified arn and stage does not 
 exist

"""
# Make sure the current secret exists

Troubleshoot rotation 234



AWS Secrets Manager User Guide

service_client.get_secret_value(SecretId=arn, VersionStage="AWSCURRENT")

# Now try to get the secret version, if that fails, put a new secret
try:
service_client.get_secret_value(SecretId=arn, VersionId=token, 
 VersionStage="AWSPENDING")
logger.info("createSecret: Successfully retrieved secret for %s." % arn)
except service_client.exceptions.ResourceNotFoundException:
# Get exclude characters from environment variable
exclude_characters = os.environ['EXCLUDE_CHARACTERS'] if 'EXCLUDE_CHARACTERS' in 
 os.environ else '/@"\'\\'
# Generate a random password
passwd = service_client.get_random_password(ExcludeCharacters=exclude_characters)

# Put the secret, using rotation_token
service_client.put_secret_value(SecretId=arn, ClientRequestToken=token, 
 SecretString=passwd['RandomPassword'], VersionStages=['AWSPENDING'], 
 RotationToken=rotation_token)
logger.info("createSecret: Successfully put secret for ARN %s and version %s." % 
 (arn, token)) 
           

4. Upload the updated Lambda function code

After updating your Lambda function code, upload it to rotate your secret.

Error: "Error when executing lambda <arn> during <a rotation> step"

If you're experiencing intermittent secret rotation failures with your Lambda function getting stuck 
in a loop of sets, for example between CreateSecret and SetSecret, the issue may be related to 
concurrency settings.

Concurrency troubleshooting steps

Warning

Setting the provisioned concurrency parameter to a value lower than 10 can cause 
throttling due to insufficient execution threads for the Lambda function. For more 
information, see  Understanding reserved concurrency and provisioned concurrency in the 
AWS Lambda AWS Lambda Developer Guide.

Troubleshoot rotation 235

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-zip.html#configuration-function-update
https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#reserved-and-provisioned


AWS Secrets Manager User Guide

1. Check and adjust Lambda concurrency settings:

• Verify that reserved_concurrent_executions is not set too low (for example, 1)

• If using reserved concurrency, set it to at least 10

• Consider using unreserved concurrency for more flexibility

2. For provisioned concurrency:

• Don't set the provisioned concurrency parameter explicitly (for example, in Terraform).

• If you must set it, use a value of at least 10.

• Test thoroughly to make sure the chosen value works for your use case.

3. Monitor and adjust concurrency:

• Calculate concurrency using this formula: Concurrency = (average requests per second) 
* (average request duration in seconds). For more information, see Estimating reserved 
concurrency.

• Observe and record values during rotations to determine the appropriate concurrency 
settings.

• Be careful when setting low concurrency values. They can cause throttling if there aren't 
enough available execution threads.

For more information on configuring Lambda concurrency, see Configuring reserved concurrency
and Configuring provisioned concurrency in the AWS Lambda Developer Guide.

Rotation schedules

Secrets Manager rotates your secret on a schedule during a rotation window that you set. To set 
the schedule and window, you use a cron() or rate() expression along with a window duration. 
Secrets Manager rotates your secret at any time during the rotation window. You can rotate a 
secret as often as every four hours within a rotation window as small as one hour.

To turn on rotation, see:

• the section called “Managed rotation”

• the section called “Automatic rotation for database secrets (console)”

• the section called “Automatic rotation for non-database secrets (console)”

Rotation schedules 236

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html#estimating-reserved-concurrency
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html#estimating-reserved-concurrency
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html


AWS Secrets Manager User Guide

Secrets Manager rotation schedules use UTC time zone.

Rotation windows

A Secrets Manager rotation window is similar to a maintenance window. You set the rotation 
window when you want your secret rotated, and Secrets Manager rotates your secret at some time 
during the rotation window.

Secrets Manager rotation windows always start on the hour. For a rotation schedule that uses a
rate() expression in days, the rotation window starts at midnight. You can set the start time for 
the rotation window by using a cron() expression. For examples, see the section called “Cron 
expressions”.

By default, the rotation window closes after one hour for a rotation schedule in hours, and at the 
end of the day for a rotation schedule in days.

To change the length of the rotation window, set the Window duration. You can set the rotation 
window as small as one hour. The rotation window must not extend into the next rotation window. 
In other words, for a rotation schedule in hours, confirm that the rotation window is less than or 
equal to the number of hours between rotations. For a rotation schedule in days, confirm that the 
start hour plus the window duration is less than or equal to 24 hours.

Rate expressions

Secrets Manager rate expressions have the following format, where Value is a positive integer and
Unit can be hour, hours, day, or days:

rate(Value Unit)

You can rotate a secret as often as every four hours. The maximum rotation period is 999 days. 
Examples:

• rate(4 hours) means the secret is rotated every four hours.

• rate(1 day) means the secret is rotated every day.

• rate(10 days) means the secret is rotated every 10 days.

Cron expressions

Secrets Manager cron expressions have the following format:

Rotation windows 237



AWS Secrets Manager User Guide

cron(Minutes Hours Day-of-month Month Day-of-week Year)

A cron expression that includes increments of hours resets each day. For example, cron(0 4/12 
* * ? *) means 4:00 AM, 4:00 PM, and then the next day 4:00 AM, 4:00 PM. Secrets Manager 
rotation schedules use UTC time zone.

Example schedule Expression

Every eight hours starting at midnight. cron(0 /8 * * ? *)

Every eight hours starting at 8:00 AM. cron(0 8/8 * * ? *)

Every ten hours, starting at 2:00 AM.

The rotation windows will start at 2:00, 12:00, 
and 22:00, and then the next day at 2:00, 
12:00, and 22:00.

cron(0 2/10 * * ? *)

Every day at 10:00 AM. cron(0 10 * * ? *)

Every Saturday at 6:00 PM. cron(0 18 ? * SAT *)

The first day of every month at 8:00 AM. cron(0 8 1 * ? *)

Every three months on the first Sunday at 1:00 
AM.

cron(0 1 ? 1/3 SUN#1 *)

The last day of every month at 5:00 PM. cron(0 17 L * ? *)

Monday through Friday at 8:00 AM. cron(0 8 ? * MON-FRI *)

First and 15th day of every month at 4:00 PM. cron(0 16 1,15 * ? *)

First Sunday of every month at midnight. cron(0 0 ? * SUN#1 *)

Starting in January, every 11 months on the 
first Monday at midnight.

cron(0 0 ? 1/11 2#1 *)

Cron expressions 238



AWS Secrets Manager User Guide

Cron expression requirements in Secrets Manager

Secrets Manager has some restrictions on what you can use for cron expressions. A cron expression 
for Secrets Manager must have 0 in the minutes field because Secrets Manager rotation windows 
start on the hour. It must have * in the year field, because Secrets Manager does not support 
rotation schedules that are more than a year apart. The following table shows the options you can 
use.

Fields Values Wildcards

Minutes Must be 0 None

Hours 0–23 Use / (forward slash) to 
specify increments. For 
example 2/10 means every 
10 hours beginning at 2:00 
AM. You can rotate a secret as 
often as every four hours.

Day-of-month 1–31 Use , (comma) to include 
additional values. For 
example 1,15 means the first 
and 15th day of the month.

Use - (dash) to specify a 
range. For example 1–15
means days 1 through 15 of 
the month.

Use * (asterisk) to includes 
all values in the field. For 
example * means every day 
of the month.

The ? (question mark) 
wildcard specifies one or 
another. You can't specify the
Day-of-month  and Day-

Cron expressions 239



AWS Secrets Manager User Guide

Fields Values Wildcards

of-week  fields in the same 
cron expression. If you specify 
a value in one of the fields, 
you must use a ? (question 
mark) in the other.

Use / (forward slash) to 
specify increments. For 
example, 1/2 means every 
two days starting on day 1, in 
other words, day 1, 3, 5, and 
so on.

Use L to specify the last day 
of the month.

Use DAYL to specify the last 
named day of the month. For 
example SUNL means the last 
Sunday of the month.

Cron expressions 240



AWS Secrets Manager User Guide

Fields Values Wildcards

Month 1–12 or JAN–DEC Use , (comma) to include 
additional values. For 
example, JAN,APR,J 
UL,OCT  means January, 
April, July, and October.

Use - (dash) to specify a 
range. For example 1–3
means months 1 through 3 of 
the year.

Use * (asterisk) to includes 
all values in the field. For 
example * means every 
month.

Use / (forward slash) to 
specify increments. For 
example, 1/3 means every 
third month, starting on 
month 1, in other words 
month 1, 4, 7, and 10.

Cron expressions 241



AWS Secrets Manager User Guide

Fields Values Wildcards

Day-of-week 1–7 or SUN–SAT Use # to specify the day of 
the week within a month. For 
example, TUE#3 means the 
third Tuesday of the month.

Use , (comma) to include 
additional values. For 
example 1,4 means the first 
and fourth day of the week.

Use - (dash) to specify a 
range. For example 1–4
means days 1 through 4 of 
the week.

Use * (asterisk) to includes 
all values in the field. For 
example * means every day 
of the week.

The ? (question mark) 
wildcard specifies one or 
another. You can't specify the
Day-of-month  and Day-
of-week  fields in the same 
cron expression. If you specify 
a value in one of the fields, 
you must use a ? (question 
mark) in the other.

Use / (forward slash) to 
specify increments. For 
example, 1/2 means every 
second day of the week, 
starting on the first day, so 
day 1, 3, 5, and 7.

Cron expressions 242



AWS Secrets Manager User Guide

Fields Values Wildcards

Use L to specify the last day 
of the week.

Year Must be * None

Rotate an AWS Secrets Manager secret immediately

You can only rotate a secret that has rotation configured. To determine whether a secret has 
been configured for rotation, in the console, view the secret and scroll down to the Rotation 
configuration section. If Rotation status is Enabled, then the secret is configured for rotation. If 
not, see Rotate secrets.

To rotate a secret immediately (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose your secret.

3. On the secret details page, under Rotation configuration, choose Rotate secret immediately.

4. In the Rotate secret dialog box, choose Rotate.

AWS CLI

Example Rotate a secret immediately

The following rotate-secret example starts an immediate rotation. The secret must already have 
rotation configured.

$ aws secretsmanager rotate-secret \ 
    --secret-id MyTestSecret

Find secrets that aren't rotated

You can use AWS Config to evaluate your secrets to see if they are rotating in compliance with your 
standards. You define your internal security and compliance requirements for secrets using AWS 
Config rules. Then AWS Config can identify secrets that don't conform to your rules. You can also 

Rotate a secret immediately 243

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/rotate-secret.html


AWS Secrets Manager User Guide

track changes to secret metadata, rotation configuration, the KMS key used for secret encryption, 
the Lambda rotation function, and tags associated with a secret.

If you have secrets in multiple AWS accounts and AWS Regions in your organization, you can 
aggregate that configuration and compliance data. For more information, see Multi-account Multi-
Region data aggregation.

To assess whether secrets are rotating

1. Follow the instructions on Evaluating your resources with AWS Config rules, and choose from 
of the following rules:

• secretsmanager-rotation-enabled-check — Checks whether rotation is configured 
for secrets stored in Secrets Manager.

• secretsmanager-scheduled-rotation-success-check— Checks whether the last 
successful rotation is within the configured rotation frequency. The minimum frequency for 
the check is daily.

• secretsmanager-secret-periodic-rotation— Checks whether secrets were rotated 
within the specified number of days.

2. Optionally, configure AWS Config to notify you when secrets aren't compliant. For more 
information, see Notifications that AWS Config sends to an Amazon SNS topic.

Cancel automatic rotation in Secrets Manager

If you configured automatic rotation for a secret and you want to stop rotating it, you can cancel 
rotation.

To cancel automatic rotation

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose your secret.

3. On the secret details page, under Rotation configuration, choose Edit rotation.

4. In the Edit rotation configuration dialog box, turn off Automatic rotation, and then choose
Save.

Secrets Manager retains the rotation configuration information so that you can use it in the 
future if you decide to turn rotation back on.

Cancel automatic rotation 244

https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html
https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html
https://docs.aws.amazon.com/config/latest/developerguide/evaluating-your-resources.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-rotation-enabled-check.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-scheduled-rotation-success-check.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-secret-periodic-rotation.html
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://console.aws.amazon.com/secretsmanager/


AWS Secrets Manager User Guide

AWS Secrets Manager secrets managed by other AWS 
services

Many AWS services store and use secrets in AWS Secrets Manager. In some cases, these secrets 
are managed secrets, which means that the service that created them helps manage them. For 
example, some managed secrets include managed rotation, so you don't have to configure rotation 
yourself. The managing service might also restrict you from updating secrets or deleting them 
without a recovery period, which helps prevent outages because the managing service depends on 
the secret.

Note

Managed secrets can only be created by the AWS service that manages them.

Managed secrets use a naming convention that includes the managing service ID to help identify 
them.

Secret name: ServiceID!MySecret
Secret ARN : arn:aws:us-east-1:ServiceID!MySecret-a1b2c3

IDs for services that manage secrets

• appflow – the section called “Amazon AppFlow”

• databrew – the section called “AWS Glue DataBrew”

• datasync – the section called “AWS DataSync”

• directconnect – the section called “Direct Connect”

• ecs-sc – the section called “Amazon Elastic Container Service”

• events – the section called “Amazon EventBridge”

• marketplace-deployment – the section called “AWS Marketplace”

• opsworks-cm – the section called “AWS OpsWorks for Chef Automate”

• pcs – the section called “AWS Parallel Computing Service”

• rds – the section called “Amazon RDS”

245



AWS Secrets Manager User Guide

• redshift – the section called “Amazon Redshift”

• sqlworkbench – the section called “Amazon Redshift query editor v2”

To find secrets that are managed by other AWS services, see Find managed secrets.

AWS services that use AWS Secrets Manager secrets

Get information about how each of the following AWS services integrate with Secrets Manager.

• How AWS App Runner uses AWS Secrets Manager

• How AWS App2Container uses AWS Secrets Manager

• How AWS AppConfig uses AWS Secrets Manager

• How Amazon AppFlow uses AWS Secrets Manager

• How AWS AppSync uses AWS Secrets Manager

• How Amazon Athena uses AWS Secrets Manager

• How Amazon Aurora uses AWS Secrets Manager

• How AWS CodeBuild uses AWS Secrets Manager

• How Amazon Data Firehose uses AWS Secrets Manager

• How AWS DataSync uses AWS Secrets Manager

• How Amazon DataZone uses AWS Secrets Manager

• How AWS Direct Connect uses AWS Secrets Manager

• How AWS Directory Service uses AWS Secrets Manager

• How Amazon DocumentDB (with MongoDB compatibility) uses AWS Secrets Manager

• How AWS Elastic Beanstalk uses AWS Secrets Manager

• How Amazon Elastic Container Registry uses AWS Secrets Manager

• Amazon Elastic Container Service

• How Amazon ElastiCache uses AWS Secrets Manager

• How AWS Elemental Live uses AWS Secrets Manager

• How AWS Elemental MediaConnect uses AWS Secrets Manager

• How AWS Elemental MediaConvert uses AWS Secrets Manager

• How AWS Elemental MediaLive uses AWS Secrets Manager

Services that use secrets 246



AWS Secrets Manager User Guide

• How AWS Elemental MediaPackage uses AWS Secrets Manager

• How AWS Elemental MediaTailor uses AWS Secrets Manager

• How Amazon EMR uses Secrets Manager

• How Amazon EventBridge uses AWS Secrets Manager

• How Amazon FSx uses AWS Secrets Manager secrets

• How AWS Glue DataBrew uses AWS Secrets Manager

• How AWS Glue Studio uses AWS Secrets Manager

• How AWS IoT SiteWise uses AWS Secrets Manager

• How Amazon Kendra uses AWS Secrets Manager

• How Amazon Kinesis Video Streams uses AWS Secrets Manager

• How AWS Launch Wizard uses AWS Secrets Manager

• How Amazon Lookout for Metrics uses AWS Secrets Manager

• How Amazon Managed Grafana uses AWS Secrets Manager

• How AWS Managed Services uses AWS Secrets Manager

• How Amazon Managed Streaming for Apache Kafka uses AWS Secrets Manager

• How Amazon Managed Workflows for Apache Airflow uses AWS Secrets Manager

• AWS Marketplace

• How AWS Migration Hub uses AWS Secrets Manager

• How AWS Panorama uses Secrets Manager

• How AWS Parallel Computing Service uses AWS Secrets Manager

• How AWS ParallelCluster uses AWS Secrets Manager

• How Amazon Q uses Secrets Manager

• How Amazon OpenSearch Ingestion uses Secrets Manager

• How AWS OpsWorks for Chef Automate uses AWS Secrets Manager

• How Amazon Quick Suite uses AWS Secrets Manager

• How Amazon RDS uses AWS Secrets Manager

• How Amazon Redshift uses AWS Secrets Manager

• Amazon Redshift query editor v2

• How Amazon SageMaker AI uses AWS Secrets Manager

Services that use secrets 247



AWS Secrets Manager User Guide

• How AWS Schema Conversion Tool uses AWS Secrets Manager

• How Amazon Timestream for InfluxDB uses AWS Secrets Manager

• How AWS Toolkit for JetBrains uses AWS Secrets Manager

• How AWS Transfer Family uses AWS Secrets Manager secrets

• How AWS Wickruses AWS Secrets Manager secrets

How AWS App Runner uses AWS Secrets Manager

AWS App Runner is an AWS service that provides a fast, simple, and cost-effective way to deploy 
from source code or a container image directly to a scalable and secure web application in the AWS 
Cloud. You don't need to learn new technologies, decide which compute service to use, or know 
how to provision and configure AWS resources.

With App Runner, you can reference secrets and configurations as environment variables in your 
service when you create a service or update the service's configuration. For more information, see
Referencing environment variables and Managing environment variables in the AWS App Runner 
Developer Guide.

How AWS App2Container uses AWS Secrets Manager

AWS App2Container is a command line tool to help you lift and shift applications that run in your 
on-premises data centers or on virtual machines, so that they run in containers that are managed 
by Amazon ECS, Amazon EKS, or AWS App Runner.

App2Container uses Secrets Manager to manage the credentials for connecting your worker 
machine to application servers in order to run remote commands. For more information, see
Manage secrets for AWS App2Container in the AWS App2Container User Guide.

How AWS AppConfig uses AWS Secrets Manager

AWS AppConfig is a capability of AWS Systems Manager that you can use to create, manage, and 
quickly deploy application configurations. A configuration can contain credential data or other 
sensitive information stored in Secrets Manager. When you create a freeform configuration profile, 
you can choose Secrets Manager as the source of your configuration data. For more information, 
see Creating a freeform configuration profile in the AWS AppConfig User Guide. For information 
about how AWS AppConfig handles secrets that have automatic rotation turned on, see Secrets 
Manager key rotation in the AWS AppConfig User Guide.

App Runner 248

https://docs.aws.amazon.com/apprunner/latest/dg/env-variable.html
https://docs.aws.amazon.com/apprunner/latest/dg/env-variable-manage.html
https://docs.aws.amazon.com/app2container/latest/UserGuide/manage-secrets.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-free-form-configurations
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-security.html#appconfig-security-secrets-manager-key-rotation
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-security.html#appconfig-security-secrets-manager-key-rotation


AWS Secrets Manager User Guide

How Amazon AppFlow uses AWS Secrets Manager

Amazon AppFlow is a fully-managed integration service that enables you to securely exchange 
data between software as a service (SaaS) applications, such as Salesforce, and AWS services, such 
as Amazon Simple Storage Service (Amazon S3) and Amazon Redshift.

In Amazon AppFlow, when you configure an SaaS application as a source or destination, you create 
a connection. This includes information required for connecting to the SaaS applications, such 
as authentication tokens, user names, and passwords. Amazon AppFlow stores your connection 
data in a Secrets Manager managed secret with the prefix appflow. The cost of storing the secret 
is included with the charge for Amazon AppFlow. For more information, see Data protection in 
Amazon AppFlow in the Amazon AppFlow User Guide.

How AWS AppSync uses AWS Secrets Manager

AWS AppSync provides a robust, scalable GraphQL interface for application developers to combine 
data from multiple sources, including Amazon DynamoDB, AWS Lambda, and HTTP APIs.

AWS AppSync uses the credentials in a Secrets Manager secret to connect to Amazon RDS and 
Aurora. For more information, see Tutorial: Aurora Serverless in the AWS AppSync Developer Guide.

How Amazon Athena uses AWS Secrets Manager

Amazon Athena is an interactive query service that makes it easy to analyze data directly in 
Amazon Simple Storage Service (Amazon S3) using standard SQL.

Amazon Athena data source connectors can use the Athena Federated Query feature with Secrets 
Manager secrets to query data. For more information, see Using Amazon Athena Federated Query
in the Amazon Athena User Guide.

How Amazon Aurora uses AWS Secrets Manager

Amazon Aurora is a fully managed relational database engine that's compatible with MySQL and 
PostgreSQL.

To manage master user credentials for Aurora, Aurora can create a managed secret for you. You are 
charged for that secret. Aurora also manages rotation for these credentials. For more information, 
see Password management with Amazon Aurora and AWS Secrets Manager in the Amazon Aurora 
User Guide.

Amazon AppFlow 249

https://docs.aws.amazon.com/appflow/latest/userguide/data-protection.html#encryption-rest
https://docs.aws.amazon.com/appflow/latest/userguide/data-protection.html#encryption-rest
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-rds-resolvers.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com//AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html


AWS Secrets Manager User Guide

For other Aurora credentials, see Create secrets.

When you call the Amazon RDS Data API, you can pass credentials for the database by using a 
secret in Secrets Manager. For more information, see Using the Data API for Aurora Serverless in 
the Amazon Aurora User Guide.

When you use the Amazon RDS query editor to connect to a database, you can store credentials for 
the database in Secrets Manager. For more information, see Using the query editor in the Amazon 
RDS User Guide.

How AWS CodeBuild uses AWS Secrets Manager

AWS CodeBuild is a fully managed build service in the cloud. CodeBuild compiles your source code, 
runs unit tests, and produces artifacts ready to deploy.

You can store your private registry credentials using Secrets Manager. For more information, see
Private registry with AWS Secrets Manager sample for CodeBuild in the AWS CodeBuild User Guide.

How Amazon Data Firehose uses AWS Secrets Manager

You can use Amazon Data Firehose to deliver real-time streaming data to various streaming 
destinations. When the destination requires a credentials or key, Firehose retrieves a secret from 
Secrets Manager at runtime to connect to the destination. For more information, see Authenticate 
with AWS Secrets Manager in Amazon Data Firehose in the Amazon Data Firehose Developer Guide.

How AWS DataSync uses AWS Secrets Manager

AWS DataSync is an online data transfer service that simplifies, automates, and accelerates moving 
data between storage systems and services.

Some of the storage systems supported by DataSync require credentials to read and write data. 
DataSync uses Secrets Manager to store or access storage credentials. You can configure DataSync 
to create secrets on your behalf or you can provide a custom secret. Service-managed secrets begin 
with the prefix aws-datasync. You are charged only for the use of secrets that you create outside 
of DataSync. See Providing credentials for storage locations in the AWS DataSync User Guide.

How Amazon DataZone uses AWS Secrets Manager

Amazon DataZone is a data management service that enables you to catalog, discover, govern, 
share, and analyze your data. You can use data assets from tables and views from an Amazon 

AWS CodeBuild 250

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/data-api.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-private-registry.html
https://docs.aws.amazon.com/firehose/latest/dev/using-secrets-manager.html
https://docs.aws.amazon.com/firehose/latest/dev/using-secrets-manager.html
https://docs.aws.amazon.com/datasync/latest/userguide/location-credentials.html


AWS Secrets Manager User Guide

Redshift cluster that is crawled using an AWS Glue crawler job. To connect to Amazon Redshift, 
you provide Amazon DataZone credentials in a Secrets Manager secret. For more information, see
Create a data source for an Amazon Redshift database using a new AWS Glue connection in the
Amazon DataZone User Guide.

How AWS Direct Connect uses AWS Secrets Manager

Direct Connect links your internal network to an Direct Connect location over a standard Ethernet 
fiber-optic cable. With this connection, you can create virtual interfaces directly to public AWS 
services.

Direct Connect stores a connectivity association key name and connectivity association key pair 
(CKN/CAK pair) in a managed secret with the prefix directconnect. The cost of the secret is 
included with the charge for Direct Connect. To update the secret, you must use Direct Connect 
rather than Secrets Manager. For more information, see Associate a MACsec CKN/CAK with a LAG 
in the Direct Connect User Guide.

How AWS Directory Service uses AWS Secrets Manager

Directory Service provides multiple ways to use Microsoft Active Directory (AD) with other AWS 
services. You can join an Amazon EC2 instance to your directory using secrets for credentials. For 
more information, in the Direct Connect User Guide, see:

• Seamlessly join a Linux EC2 instance to your AWS Managed Microsoft AD directory

• Seamlessly join a Linux EC2 instance to your AD Connector directory

• Seamlessly join a Linux EC2 instance to your Simple AD directory

How Amazon DocumentDB (with MongoDB compatibility) uses AWS 
Secrets Manager

Amazon DocumentDB (with MongoDB compatibility) is a fully managed document database service 
that supports MongoDB workloads. Amazon DocumentDB integrates with Secrets Manager to 
manage primary user passwords for your clusters, enhancing security and simplifying credential 
management.

Amazon DocumentDB generates the password, stores it in Secrets Manager, and manages the 
secret settings. By default, Amazon DocumentDB rotates the secret every seven days, but you 
can modify the rotation schedule if needed. When you create or modify an Amazon DocumentDB 

Direct Connect 251

https://docs.aws.amazon.com/datazone/latest/userguide/create-redshift-data-source-new-glue-connection-username.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/associate-key-lag.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/seamlessly_join_linux_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ad_connector_seamlessly_join_linux_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/simple_ad_seamlessly_join_linux_instance.html


AWS Secrets Manager User Guide

cluster, you can specify that it should manage the primary user password in Secrets Manager. For 
more information, see Password management with Amazon DocumentDB and Secrets Manager in 
the Amazon DocumentDB Developer Guide.

How AWS Elastic Beanstalk uses AWS Secrets Manager

With AWS Elastic Beanstalk, you can quickly deploy and manage applications in the AWS Cloud 
without having to learn about the infrastructure that runs those applications. Elastic Beanstalk can 
launch Docker environments by building an image described in a Dockerfile or pulling a remote 
Docker image. To authenticate with the online registry that hosts the private repository, Elastic 
Beanstalk uses a Secrets Manager secret. For more information, see Docker configuration in the
AWS Elastic Beanstalk Developer Guide.

How Amazon Elastic Container Registry uses AWS Secrets Manager

Amazon Elastic Container Registry (Amazon ECR) is an AWS managed container image registry 
service that is secure, scalable, and reliable. You can use the Docker CLI, or your preferred client, to 
push and pull images to and from your repositories. For each upstream registry containing images 
you want to cache in your Amazon ECR private registry, you must create a pull through cache rule. 
For upstream registries that require authentication, you must store the credentials in an Secrets 
Manager secret. You can create the Secrets Manager secret in either the Amazon ECR or Secrets 
Manager consoles. For more information, see Creating a pull through cache rule  in the Amazon 
ECR User Guide.

Amazon Elastic Container Service

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service 
that helps you easily deploy, manage, and scale containerized applications. You can inject sensitive 
data into your containers by referencing Secrets Manager secrets. For more information, see the 
following pages in the Amazon Elastic Container Service Developer Guide:

• Tutorial: Specifying sensitive data using Secrets Manager secrets

• Retrieve secrets programmatically through your application

• Retrieve secrets through environment variables

• Retrieve secrets for logging configuration

Amazon ECS supports FSx for Windows File Server volumes for containers. Amazon ECS uses the 
credentials stored in a Secrets Manager secret to domain join the Active Directory and attach the 

AWS Elastic Beanstalk 252

https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-secrets-manager.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/single-container-docker-configuration.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/pull-through-cache-creating-rule.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-tutorial.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-app-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-envvar-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-logconfig.html


AWS Secrets Manager User Guide

FSx for Windows File Server file system. For more information, see Tutorial: Using FSx for Windows 
File Server file systems with Amazon ECS and FSx for Windows File Server volumes in the Amazon 
Elastic Container Service Developer Guide.

You can reference container images in private registries outside of AWS that require authentication 
by using a Secrets Manager secret with the registry credentials. For more information, see Private 
registry authentication for tasks in the Amazon Elastic Container Service Developer Guide.

When you use Amazon ECS Service Connect, Amazon ECS uses Secrets Manager managed secrets
to store AWS Private Certificate Authority TLS certificates. The cost of storing the secret is included 
with the charges for Amazon ECS. To update the secret, you must use Amazon ECS rather than 
Secrets Manager. For more information, see TLS with Service Connect in the Amazon Elastic 
Container Service Developer Guide.

How Amazon ElastiCache uses AWS Secrets Manager

In ElastiCache you can use a feature called Role-Based Access Control (RBAC) to secure the cluster. 
You can store these credentials in Secrets Manager. Secrets Manager provides a rotation template
for this type of secret. For more information, see Automatically rotating passwords for users in the
Amazon ElastiCache User Guide.

How AWS Elemental Live uses AWS Secrets Manager

AWS Elemental Live is a real-time video service that lets you create live outputs for broadcast and 
streaming delivery.

AWS Elemental Live uses a secret ARN to get a secret that contains an encryption key from 
Secrets Manager. Elemental Live uses the encryption key to encrypt/decrypt the video. For more 
information, see How delivery from AWS Elemental Live to MediaConnect works at runtime in the
Elemental Live User Guide.

How AWS Elemental MediaConnect uses AWS Secrets Manager

AWS Elemental MediaConnect is a service that makes it easy for broadcasters and other premium 
video providers to reliably ingest live video into the AWS Cloud and distribute it to multiple 
destinations inside or outside the AWS Cloud.

You can use static key encryption to protect your sources, outputs, and entitlements, and you store 
your encryption key in AWS Secrets Manager. For more information, see Static key encryption in 
AWS Elemental MediaConnect in the AWS Elemental MediaConnect User Guide.

Amazon ElastiCache 253

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-wfsx-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-wfsx-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/wfsx-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-tls.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://docs.aws.amazon.com/elemental-live/latest/ug/setting-up-live-as-contribution-encoder-for-mediaconnect-how-it-works-at-runtime.html
https://docs.aws.amazon.com/mediaconnect/latest/ug/encryption-static-key.html
https://docs.aws.amazon.com/mediaconnect/latest/ug/encryption-static-key.html


AWS Secrets Manager User Guide

How AWS Elemental MediaConvert uses AWS Secrets Manager

AWS Elemental MediaConvert is a file-based video processing service that provides scalable 
video processing for content owners and distributors with media libraries of any size. To use 
MediaConvert to encode Kantar watermarks, you use Secrets Manager to store your Kantar 
credentials. For more information, see Using Kantar for audio watermarking in AWS Elemental 
MediaConvert outputs in the AWS Elemental MediaConvert User Guide.

How AWS Elemental MediaLive uses AWS Secrets Manager

AWS Elemental MediaLive is a real-time video service that lets you create live outputs for broadcast 
and streaming delivery. If your organization uses AWS Elemental Link devices with AWS Elemental 
MediaLive or AWS Elemental MediaConnect, you must deploy the device and configure the device. 
For more information, see Setting up MediaLive as a trusted entity in the MediaLive User Guide.

How AWS Elemental MediaPackage uses AWS Secrets Manager

AWS Elemental MediaPackage is a just-in-time video packaging and origination service that runs 
in the AWS Cloud. With MediaPackage, you can deliver highly secure, scalable, and reliable video 
streams to a wide variety of playback devices and content delivery networks (CDNs). For more 
information, see Secrets Manager access for CDN authorization in the AWS Elemental MediaPackage 
User Guide.

How AWS Elemental MediaTailor uses AWS Secrets Manager

AWS Elemental MediaTailor is a scalable ad insertion and channel assembly service that runs in the 
AWS Cloud.

MediaTailor supports Secrets Manager access token authentication to your source locations. 
With Secrets Manager access token authentication, MediaTailor uses a Secrets Manager secret to 
authenticate requests to your origin. For more information, see Configuring AWS Secrets Manager 
access token authentication in the AWS Elemental MediaTailor User Guide.

How Amazon EMR uses Secrets Manager

Amazon EMR is a platform that simplifies running big data frameworks, such as Apache Hadoop 
and Apache Spark, on AWS to process and analyze vast amounts of data. When you use these 
frameworks and related open-source projects such as Apache Hive and Apache Pig, you can process 
data for analytics and business intelligence workloads. You can also use Amazon EMR to transform 

AWS Elemental MediaConvert 254

https://docs.aws.amazon.com/mediaconvert/latest/ug/kantar-watermarking.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/kantar-watermarking.html
https://docs.aws.amazon.com/medialive/latest/ug/device-iam-for-medialive.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up-create-trust-rel-policy-cdn.html
https://docs.aws.amazon.com/mediatailor/latest/ug/channel-assembly-access-configuration-access-configuring.html
https://docs.aws.amazon.com/mediatailor/latest/ug/channel-assembly-access-configuration-access-configuring.html


AWS Secrets Manager User Guide

and move large amounts of data into and out of other AWS data stores and databases, such as 
Amazon S3 and Amazon DynamoDB.

How Amazon EMR running on Amazon EC2 uses Secrets Manager

When you create a cluster in Amazon EMR, you can provide application configuration data to the 
cluster with a secret in Secrets Manager. For more information, see Store sensitive configuration 
data in Secrets Manager in the Amazon EMR Management Guide.

In addition, when you create an EMR Notebook, you can store your private Git-based registry 
credentials using Secrets Manager. For more information, see Add a Git-based Repository to 
Amazon EMR in the Amazon EMR Management Guide.

How EMR Serverless uses Secrets Manager

EMR Serverless provides a serverless runtime environment to simplify the operation of analytics 
applications so that you don’t have to configure, optimize, secure, or operate clusters.

You can store your data in AWS Secrets Manager and then use the secret ID in your EMR Serverless 
configurations. This way, you don't pass sensitive configuration data in plain text and expose it to 
external APIs.

For more information, see Secrets Manager for data protection with EMR Serverless in the Amazon 
EMR Serverless User Guide.

How Amazon EventBridge uses AWS Secrets Manager

Amazon EventBridge is a serverless event bus service that you can use to connect your applications 
with data from a variety of sources.

When you create an Amazon EventBridge API destination, EventBridge stores the connection for 
it in a Secrets Manager managed secret with the prefix events. The cost of storing the secret 
is included with the charge for using an API destination. To update the secret, you must use 
EventBridge rather than Secrets Manager. For more information, see API destinations in the
Amazon EventBridge User Guide.

How Amazon FSx uses AWS Secrets Manager secrets

Amazon FSx for Windows File Server provides fully managed Microsoft Windows file servers, 
backed by a fully native Windows file system. When you create or manage file shares, you can 

Amazon EventBridge 255

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/storing-sensitive-data.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/storing-sensitive-data.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-git-repo-add.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-git-repo-add.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/secrets-manager.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destinations.html


AWS Secrets Manager User Guide

pass credentials from an AWS Secrets Manager secret. For more information, see File shares and
Migrating file share configurations to Amazon FSx in the Amazon FSx for Windows File Server User 
Guide.

How AWS Glue DataBrew uses AWS Secrets Manager

AWS Glue DataBrew is a visual data preparation tool that you can use to clean and normalize 
data without writing any code. In DataBrew, a set of data transformation steps is called a recipe. 
AWS Glue DataBrew provides the DETERMINISTIC_DECRYPT, DETERMINISTIC_ENCRYPT, 
and CRYPTOGRAPHIC_HASH recipe steps to perform transformations on personally identifiable 
information (PII) in a dataset, which use an encryption key stored in a Secrets Manager secret. If 
you use the DataBrew default secret to store the encryption key, DataBrew creates a managed 
secret with the prefix databrew. The cost of storing the secret is included with the charge for 
using DataBrew. If you create a new secret to store the encryption key, DataBrew creates a secret 
with the prefix AwsGlueDataBrew. You are charged for that secret.

How AWS Glue Studio uses AWS Secrets Manager

AWS Glue Studio is a graphical interface that makes it easy to create, run, and monitor extract, 
transform, and load (ETL) jobs in AWS Glue. You can use Amazon OpenSearch Service as a data 
store for your extract, transform, and load (ETL) jobs by configuring the Elasticsearch Spark 
Connector in AWS Glue Studio. To connect to the OpenSearch cluster, you can use a secret 
in Secrets Manager. For more information, see Tutorial: Using the AWS Glue Connector for 
Elasticsearch in the AWS Glue Developer Guide.

How AWS IoT SiteWise uses AWS Secrets Manager

AWS IoT SiteWise is a managed service that lets you collect, model, analyze, and visualize data 
from industrial equipment at scale. You can use the AWS IoT SiteWise console to create a gateway. 
Then add data sources, local servers or industrial equipment that are connected to gateways. 
If your source requires authentication, use a secret to authenticate. For more information, see
Configuring data source authentication in the AWS IoT SiteWise User Guide.

How Amazon Kendra uses AWS Secrets Manager

Amazon Kendra is a highly accurate and intelligent search service that enables your users to 
search unstructured and structured data using natural language processing and advanced search 
algorithms.

AWS Glue DataBrew 256

https://docs.aws.amazon.com/fsx/latest/WindowsGuide/managing-file-shares.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/migrate-file-share-config-to-fsx.html
https://docs.aws.amazon.com/databrew/latest/dg/recipe-actions.DETERMINISTIC_DECRYPT.html
https://docs.aws.amazon.com/databrew/latest/dg/recipe-actions.DETERMINISTIC_ENCRYPT.html
https://docs.aws.amazon.com/databrew/latest/dg/recipe-actions.CRYPTOGRAPHIC_HASH.html
https://docs.aws.amazon.com/glue/latest/ug/tutorial-elastisearch-connector.html
https://docs.aws.amazon.com/glue/latest/ug/tutorial-elastisearch-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-source-authentication-ggv2.html


AWS Secrets Manager User Guide

You can index documents stored in a database by specifying a secret that contains credentials for 
the database. For more information, see Using a database data source in the Amazon Kendra User 
Guide.

How Amazon Kinesis Video Streams uses AWS Secrets Manager

You can use Amazon Kinesis Video Streams to connect to IP cameras on customer premises, locally 
record and store video from the cameras, and stream videos to the cloud for long-term storage, 
playback, and analytical processing. To record and upload media from IP cameras, you deploy the 
Kinesis Video Streams Edge Agent to AWS IoT Greengrass. You store the credentials required to 
access the media files that are streamed to the camera in an Secrets Manager secret. For more 
information, see Deploy the Amazon Kinesis Video Streams Edge Agent to AWS IoT Greengrass in 
the Amazon Kinesis Video Streams Developer Guide.

How AWS Launch Wizard uses AWS Secrets Manager

AWS Launch Wizard for Active Directory is a service that applies AWS Cloud application best 
practices to guide you through setting up a new Active Directory infrastructure, or adding domain 
controllers to an existing infrastructure, either in the AWS Cloud or on premises.

AWS Launch Wizard requires domain administrator credentials to be added to Secrets Manager to 
join your domain controllers to Active Directory. For more information, see Set up for AWS Launch 
Wizard for Active Directory in the AWS Launch Wizard User Guide.

How Amazon Lookout for Metrics uses AWS Secrets Manager

Amazon Lookout for Metrics is a service that finds anomalies in your data, determines their root 
causes, and enables you to quickly take action. You can use Amazon Redshift or Amazon RDS as a 
datasource for an Lookout for Metrics detector. To configure the datasource, you use a secret that 
contains the database password. For more information, see Using Amazon RDS with Lookout for 
Metrics and Using Amazon Redshift with Lookout for Metrics in the Amazon Lookout for Metrics 
Developer Guide.

How Amazon Managed Grafana uses AWS Secrets Manager

Amazon Managed Grafana is a fully managed and secure data visualization service that you can 
use to instantly query, correlate, and visualize operational metrics, logs, and traces from multiple 
sources. When you use Amazon Redshift as a data source, you can provide Amazon Redshift 

Amazon Kinesis Video Streams 257

https://docs.aws.amazon.com/kendra/latest/dg/data-source-database.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/gs-edge-gg.html
https://docs.aws.amazon.com/launchwizard/latest/userguide/launch-wizard-ad-setting-up.html
https://docs.aws.amazon.com/launchwizard/latest/userguide/launch-wizard-ad-setting-up.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-rds.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-rds.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-redshift.html


AWS Secrets Manager User Guide

credentials by using an AWS Secrets Manager secret. For more information, see Configuring 
Amazon Redshift in the Amazon Managed Grafana User Guide.

How AWS Managed Services uses AWS Secrets Manager

AWS Managed Services is an enterprise service that provides ongoing management of your AWS 
infrastructure. AMS Self-Service Provisioning (SSP) mode provides full access to native AWS service 
and API Capabilities in AMS managed accounts. For information about how to request access to 
Secrets Manager in AMS, see AWS Secrets Manager (AMS self-service provisioning) in the AMS 
Advanced User Guide.

How Amazon Managed Streaming for Apache Kafka uses AWS Secrets 
Manager

Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that 
enables you to build and run applications that use Apache Kafka to process streaming data. You 
can control access to your Amazon MSK clusters using usernames and passwords that are stored 
and secured using AWS Secrets Manager. For more information, see Username and password 
authentication with AWS Secrets Manager in the Amazon Managed Streaming for Apache Kafka 
Developer Guide.

How Amazon Managed Workflows for Apache Airflow uses AWS Secrets 
Manager

Amazon Managed Workflows for Apache Airflow is a managed orchestration service for Apache 
Airflow that makes it easier to setup and operate end-to-end data pipelines in the cloud at scale.

You can configure an Apache Airflow connection using a Secrets Manager secret. For more 
information, see Configuring an Apache Airflow connection using a Secrets Manager secret and
Using a secret key in AWS Secrets Manager for an Apache Airflow variable in the Amazon Managed 
Workflows for Apache Airflow User Guide.

AWS Marketplace

When you use AWS Marketplace Quick Launch, AWS Marketplace distributes your software along 
with the license key. AWS Marketplace stores the license key in your account as a Secrets Manager
managed secret. The cost of storing the secret is included with the charges for AWS Marketplace. 

AWS Managed Services 258

https://docs.aws.amazon.com/grafana/latest/userguide/Redshift-config.html
https://docs.aws.amazon.com/grafana/latest/userguide/Redshift-config.html
https://docs.aws.amazon.com/managedservices/latest/userguide/secrets-manager.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://airflow.apache.org/
https://airflow.apache.org/
https://docs.aws.amazon.com/mwaa/latest/userguide/connections-secrets-manager.html
https://docs.aws.amazon.com/mwaa/latest/userguide/samples-secrets-manager-var.html


AWS Secrets Manager User Guide

To update the secret, you must use AWS Marketplace rather than Secrets Manager. For more 
information, see Configure Quick Launch in the AWS Marketplace Seller Guide.

How AWS Migration Hub uses AWS Secrets Manager

AWS Migration Hub provides a single location to track migration tasks across multiple AWS tools 
and partner solutions.

AWS Migration Hub Orchestrator simplifies and automates the migration of servers and enterprise 
applications to AWS. Migration Hub Orchestrator uses a secret for the connection information to 
your source server. For more information, in the AWS Migration Hub Orchestrator User Guide, see:

• Migrate SAP NetWeaver applications to AWS

• Rehost applications on Amazon EC2

Migration Hub Strategy Recommendations offers migration and modernization strategy 
recommendations for viable transformation paths for your applications. Strategy 
Recommendations can analyze SQL Server databases, using a secret for the connection 
information. For more information, see Strategy Recommendations database analysis.

How AWS Panorama uses Secrets Manager

AWS Panorama is a service that brings computer vision to your on-premises camera network. You 
use AWS Panorama to register an appliance, update its software, and deploy applications to it. 
When you register a video stream as a data source for your application, if the stream is password 
protected, AWS Panorama stores the credentials for it in a Secrets Manager secret. For more 
information, see Managing camera streams in AWS Panorama in the AWS Panorama Developer 
Guide.

How AWS Parallel Computing Service uses AWS Secrets Manager

AWS Parallel Computing Service (AWS PCS) is a managed service that makes it easier to run and 
scale high performance computing (HPC) and distributed machine learning workloads on AWS.

To connect to the cluster job scheduler, AWS PCS creates a managed secret with the prefix pcs
to store the scheduler key. The cost of storing the secret is included with the charge for AWS 
PCS. AWS PCS automatically deletes the secret when you delete your AWS PCS cluster. For more 
information, see Working with cluster secrets in AWS PCS in the AWS PCS User Guide.

AWS Migration Hub 259

https://docs.aws.amazon.com/marketplace/latest/userguide/saas-product-settings.html#saas-quick-launch
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/migrate-sap.html
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/rehost-on-ec2.html
https://docs.aws.amazon.com/migrationhub-strategy/latest/userguide/database-analysis.html
https://docs.aws.amazon.com/panorama/latest/dev/appliance-cameras.html
https://docs.aws.amazon.com/pcs/latest/userguide/working-with_clusters_secrets.html


AWS Secrets Manager User Guide

Important

Don't modify or delete AWS PCS cluster secrets.

How AWS ParallelCluster uses AWS Secrets Manager

AWS ParallelCluster is an open source cluster management tool that you can use to deploy 
and manage high performance computing (HPC) clusters in the AWS Cloud. You can create a 
multiple user environment that includes an AWS ParallelCluster that's integrated with an AWS 
Managed Microsoft AD (Active Directory). The AWS ParallelCluster uses a Secrets Manager secret 
for validating logins to Active Directory. For more information, see Integrating Active Directory in 
the AWS ParallelCluster User Guide.

How Amazon Q uses Secrets Manager

To authenticate Amazon Q to access your data source, you provide your data source access 
credentials to Amazon Q using an Secrets Manager secret. If you use the console, you can choose to 
create a new secret or use an existing one. For more information, see Concepts – Authentication in 
the Amazon Q Developer Guide.

How Amazon OpenSearch Ingestion uses Secrets Manager

Amazon OpenSearch Ingestion is a fully managed, serverless data collector that streams real-time 
logs, metrics, and trace data to Amazon OpenSearch Service domains and OpenSearch Serverless 
collections. You can use OpenSearch Ingestion pipelines with Secrets Manager to securely manage 
your credentials. For more information, see:

• Using an OpenSearch Ingestion pipeline with Atlassian Services

• Using an OpenSearch Ingestion pipeline with Amazon DocumentDB

• Using an OpenSearch Ingestion pipeline with Confluent Cloud Kafka

• Using an OpenSearch Ingestion pipeline with Kafka

• Migrating data from self-managed OpenSearch clusters using Amazon OpenSearch Ingestion

AWS ParallelCluster 260

https://docs.aws.amazon.com/parallelcluster/latest/ug/tutorials_05_multi-user-ad.html
https://docs.aws.amazon.com/amazonq/latest/business-use-dg/connector-concepts.html#connector-authentication
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-atlassian.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-docdb.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-confluent-kafka.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-self-managed-kafka.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-self-managed-opensearch.html


AWS Secrets Manager User Guide

How AWS OpsWorks for Chef Automate uses AWS Secrets Manager

OpsWorks is a configuration management service that helps you configure and operate 
applications in a cloud enterprise by using OpsWorks for Puppet Enterprise or AWS OpsWorks for 
Chef Automate.

When you create a new server in AWS OpsWorks CM, OpsWorks CM stores information for the 
server in a Secrets Manager managed secret with the prefix opsworks-cm. The cost of the secret 
is included in the charge for OpsWorks. For more information, see Integration with AWS Secrets 
Manager in the OpsWorks User Guide.

How Amazon Quick Suite uses AWS Secrets Manager

Amazon Quick Suite is a cloud-scale business intelligence (BI) service you can use for analytics, 
data visualization, and reporting. You can use a variety of data sources in Quick Suite. If you store 
database credentials in Secrets Manager secrets, Quick Suite can use those secrets to connect to 
the databases. For more information, see Using AWS Secrets Manager secrets in place of database 
credentials in Amazon Quick Suite in the Amazon Quick Suite User Guide.

How Amazon RDS uses AWS Secrets Manager

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, 
operate, and scale a relational database in the AWS Cloud.

To manage master user credentials for Amazon Relational Database Service (Amazon RDS), 
including Aurora, Amazon RDS can create a managed secret for you. You are charged for that 
secret. Amazon RDS also manages rotation for these credentials. For more information, see
Password management with Amazon RDS and AWS Secrets Manager in the Amazon RDS User 
Guide.

For other Amazon RDS credentials, see Create secrets.

When you use the Amazon RDS query editor to connect to a database, you can store credentials for 
the database in Secrets Manager. For more information, see Using the query editor in the Amazon 
RDS User Guide.

How Amazon Redshift uses AWS Secrets Manager

Amazon Redshift is a fully managed, petabyte-scale data warehouse service in the cloud.

AWS OpsWorks for Chef Automate 261

https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager
https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager
https://docs.aws.amazon.com/quicksight/latest/user/secrets-manager-integration.html
https://docs.aws.amazon.com/quicksight/latest/user/secrets-manager-integration.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html


AWS Secrets Manager User Guide

To manage admin credentials for Amazon Redshift, Amazon Redshift can create a managed 
secret for you. You are charged for that secret. Amazon Redshift also manages rotation for these 
credentials. For more information, see Managing Amazon Redshift admin passwords using AWS 
Secrets Manager in the Amazon Redshift Management Guide.

For other Amazon Redshift credentials, see Create secrets.

When you call the Amazon Redshift Data API, you can pass credentials for the cluster by using a 
secret in Secrets Manager. For more information, see Using the Amazon Redshift Data API.

When you use the Amazon Redshift query editor to connect to a database, Amazon Redshift can 
store your credentials in a Secrets Manager secret with the prefix redshiftqueryeditor. You are 
charged for that secret. For more information, see Querying a database using the query editor in 
the Amazon Redshift Management Guide.

For query editor v2, see the section called “Amazon Redshift query editor v2”.

Amazon Redshift query editor v2

Amazon Redshift query editor v2 is a web-based SQL client application that you can use to author 
and run queries on your Amazon Redshift data warehouse. When you use the Amazon Redshift 
query editor v2 to connect to a database, Amazon Redshift can store your credentials in a Secrets 
Manager managed secret with the prefix sqlworkbench. The cost of storing the secret is included 
with the charge for using Amazon Redshift. To update the secret, you must use Amazon Redshift 
rather than Secrets Manager. For more information, see Working with query editor v2  in the
Amazon Redshift Management Guide.

For the previous query editor, see the section called “Amazon Redshift”.

How Amazon SageMaker AI uses AWS Secrets Manager

SageMaker AI is a fully managed machine learning service. With SageMaker AI, data scientists 
and developers can quickly and easily build and train machine learning models, and then directly 
deploy them into a production-ready hosted environment. It provides an integrated Jupyter 
authoring notebook instance for easy access to your data sources for exploration and analysis, so 
you don't have to manage servers.

You can associate Git repositories with your Jupyter notebook instances to save your notebooks in 
a source control environment that persists even if you stop or delete your notebook instance. You 

Amazon Redshift query editor v2 262

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html


AWS Secrets Manager User Guide

can manage your private repositories credentials using Secrets Manager. For more information, see
Associate Git Repositories with Amazon SageMaker Notebook Instances in the Amazon SageMaker 
AI Developer Guide.

To import data from Databricks, Data Wrangler stores your JDBC URL in Secrets Manager. For more 
information, see Import data from Databricks (JDBC).

To import data from Snowflake, Data Wrangler stores your credentials in a Secrets Manager secret. 
For more information, see Import data from Snowflake.

How AWS Schema Conversion Tool uses AWS Secrets Manager

You can use the AWS Schema Conversion Tool (AWS SCT) to convert your existing database schema 
from one database engine to another. You can convert relational OLTP schema, or data warehouse 
schema. Your converted schema is suitable for an Amazon Relational Database Service (Amazon 
RDS) MySQL, MariaDB, Oracle, SQL Server, PostgreSQL DB, an Amazon Aurora DB cluster, or an 
Amazon Redshift cluster. The converted schema can also be used with a database on an Amazon 
Elastic Compute Cloud instance or stored as data on an S3 bucket.

When you convert a database schema, AWS SCT can use database credentials that you store in 
AWS Secrets Manager. For more information, see Using AWS Secrets Manager in the AWS SCT user 
interface in the AWS Schema Conversion Tool User Guide.

How Amazon Timestream for InfluxDB uses AWS Secrets Manager

Timestream for InfluxDB is a managed time-series database engine that makes it easy for you to 
run InfluxDB databases on AWS for real-time time-series applications using open-source APIs. With 
Timestream for InfluxDB, you can set up, operate, and scale time-series workloads that can answer 
queries with single-digit millisecond query response time.

When you create a Timestream for InfluxDB database, Timestream automatically creates a secret to 
store the admin credentials. For more information, see How Timestream for InfluxDB uses secrets
in the Timestream Developer Guide.

How AWS Toolkit for JetBrains uses AWS Secrets Manager

The AWS Toolkit for JetBrains is an open source plugin for the integrated development 
environments (IDEs) from JetBrains. The toolkit makes it easier for developers to develop, debug, 
and deploy serverless applications that use AWS. When connecting to an Amazon Redshift cluster 

AWS SCT 263

https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-import.html#data-wrangler-databricks
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-import.html#data-wrangler-snowflake
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_UserInterface.html#CHAP_UserInterface.SecretsManager
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_UserInterface.html#CHAP_UserInterface.SecretsManager
https://docs.aws.amazon.com/timestream/latest/developerguide/timestream-for-influx-security-db-secrets.html


AWS Secrets Manager User Guide

using the toolkit, you can authenticate using a Secrets Manager secret. For more information, see
Accessing Amazon Redshift clusters in the AWS Toolkit for JetBrains User Guide.

How AWS Transfer Family uses AWS Secrets Manager secrets

AWS Transfer Family is a secure transfer service that enables you to transfer files into and out of 
AWS storage services.

Transfer Family now supports using Basic authentication for servers that use the Applicability 
Statement 2 (AS2) protocol. You can create a new Secrets Manager secret or choose an existing 
secret for your credentials. For more information, see Basic authentication for AS2 connectors in 
the AWS Transfer Family User Guide.

To authenticate Transfer Family users, you can use AWS Secrets Manager as an identity provider. 
For more information, see Working with custom identity providers in the AWS Transfer Family User 
Guide and the blog article Enable password authentication for AWS Transfer Family using AWS 
Secrets Manager.

You can use Pretty Good Privacy (PGP) decryption with the files that Transfer Family processes 
with workflows. To use decryption in a workflow step, you provide a PGP key that you manage in 
Secrets Manager. For more information, see Generate and manage PGP keys in the AWS Transfer 
Family User Guide.

How AWS Wickruses AWS Secrets Manager secrets

AWS Wickr is an end-to-end encrypted service that helps organizations and government agencies 
to communicate securely through one-to-one and group messaging, voice and video calling, file 
sharing, screen sharing, and more. You can automate workflows using Wickr data retention bots. 
If the bot will have access to AWS services, then you should create a Secrets Manager secret to 
store the bot credentials. For more information, see Start the data retention bot in the AWS Wickr 
Administration Guide.

AWS Transfer Family 264

https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/redshift-access-prerequisities.html
https://docs.aws.amazon.com/transfer/latest/userguide/as2-connectors-details.html#as2-basic-auth
https://docs.aws.amazon.com/transfer/latest/userguide/custom-identity-provider-users.html
https://aws.amazon.com/blogs/storage/enable-password-authentication-for-aws-transfer-family-using-aws-secrets-manager-updated/
https://aws.amazon.com/blogs/storage/enable-password-authentication-for-aws-transfer-family-using-aws-secrets-manager-updated/
https://docs.aws.amazon.com/transfer/latest/userguide/key-management.html#pgp-key-management
https://docs.aws.amazon.com/wickr/latest/adminguide/starting-data-retention-bot.html#data-retention-startup-asm


AWS Secrets Manager User Guide

Using AWS Secrets Manager managed external secrets to 
manage Third Party secrets

Managed external secrets is a new secret type in AWS Secrets Manager that enables you to store 
and automatically rotate credentials from integration partners. This feature eliminates the need to 
create and maintain custom AWS Lambda functions for rotating integration partner secrets. For a 
complete list of all onboarded partners see Integration Partners.

When you build applications on AWS, your workloads often need to interact with third-party 
applications through secure credentials such as API keys, OAuth tokens, or credential pairs. 
Previously, you had to develop custom approaches to secure and manage these credentials, 
including building complex rotation Lambda functions that were unique to each application and 
required ongoing maintenance.

Managed external secrets provides a standardized approach for storing third-party credentials 
in a predefined format prescribed by each partner. The feature includes automatic rotation that 
is enabled (by default on the console) during secret creation, complete transparency and user 
controls for secret management workflows, and the full feature set offered by Secrets Manager 
including fine-grained permissions management, observability, governance, compliance, disaster 
recovery, and monitoring controls.

Key features

Managed external secrets offers several key capabilities that simplify third-party credential 
management:

• Lambda-free managed rotation eliminates the overhead of creating and managing custom 
rotation functions. When you create an external, rotation is automatically enabled with no 
Lambda functions deployed in your account.

• Predefined secret formats ensure that secrets can be properly associated with the integration 
partner and include the metadata needed for rotation. Each partner defines the required format.

• Integrated partner ecosystem provides support for multiple partners through a standardized 
onboarding process. Partners integrate directly with Secrets Manager to offer programmatic 
guidance for secret creation and managed rotation capabilities.

• Complete auditability maintains full transparency through AWS CloudTrail logging for all 
rotation activities, secret value updates, and management operations.

Key features 265



AWS Secrets Manager User Guide

Managed external secrets Partners

Secrets Manager natively integrates with third party applications to rotate secrets held by the 
partner. Each partner defines the metadata and secret value fields required to rotate the secrets.

The secret value contains fields that are required for connecting with your third party client and are 
stored during the CreateSecret call. The rotation metadata holds the fields that are used to update 
the secret during rotation and are used in the RotateSecret call. These fields will be defined by the 
integration partner to allow managed rotation flows.

For rotation to function properly, you must provide Secrets Manager with specific permissions to 
manage the secret lifecycle. For more information see Security and Permissions

The following topics include a description of each of the metadata fields required to rotate the 
secret as well as a description of each of the fields required in the Secrets Manager secret to rotate.

Topics

Integration Partner Secret type

Salesforce SalesforceClientSecret

BigID BigIDClientSecret

Snowflake SnowflakeKeyPairAuthentication

Salesforce Client Secret

Secret Value Fields

The following are the fields that must be contained in the Secrets Manager secret:

{ 
  "consumerKey": "client ID",  
  "consumerSecret": "client secret",  
  "baseUri": "https://domain.my.salesforce.com",  
  "appId": "app ID",  
  "consumerId": "consumer ID"
}

Integration Partners 266

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html


AWS Secrets Manager User Guide

consumerKey

The consumer key, also known as the client ID, is the credential identifier for the OAuth 2.0 
credentials. You can retrieve the consumer key directly from the Salesforce External Client App 
Manager OAuth settings.

consumerSecret

The consumer secret, also known as the client secret, is the private password used with the 
consumer key to authenticate using the OAuth 2.0 client credentials flow. You can retrieve the 
consumer secret directly from the Salesforce External Client App Manager OAuth settings..

baseUri

The base URI is your Salesforce Org's base URL used to interact with Salesforce APIs. This takes 
the form of the following example: https://domainName.my.salesforce.com.

appId

The App ID is the identifier for your Salesforce External Client Application (ECA). You can 
retrieve this by calling the Salesforce OAuth Usage endpoint. It must begin with 0x and contain 
only alphanumeric characters. This field refers to the external_client_app_identifier in the
Salesforce rotation guide.

consumerId

The consumer ID is the identifier for your Salesforce External Client Application (ECA) consumer. 
You can retrieve this by calling the Salesforce OAuth Credentials by App ID endpoint. This field 
refers to the consumer_id in the Salesforce rotation guide.

Secret Metadata Fields

The following are the metadata fields required to rotate a secret held by Salesforce.

{ 
  "apiVersion": "v65.0", 
  "adminSecretArn": "arn:aws:secretsmanager:us-
east-1:111122223333:secret:SalesforceClientSecret"
}

Salesforce Client Secret 267

https://help.salesforce.com/s/articleView?id=xcloud.eca_stage_oauth_credentials.htm&type=5
https://help.salesforce.com/s/articleView?id=xcloud.eca_stage_oauth_credentials.htm&type=5


AWS Secrets Manager User Guide

apiVersion

The Salesforce API version is your Salesforce organization's API version. The version should be at 
least v65.0. It must be in the format vXX.X where X is a numeric character.

adminSecretArn

(Optional) The admin secret ARN is the Amazon Resource Name (ARN) for the secret that 
contains the administrative OAuth credentials that are to used to rotate this Salesforce client 
secret. At a minimum the admin secret should contain a consumerKey and consumerSecret 
value within the secret structure. It is an optional field and if omitted, during rotation Secrets 
Manager will use the OAuth credentials within this secret to authenticate with Salesforce.

Usage Flow

Customers storing Salesforce Secrets in AWS Secrets Manager have an option to rotate a secret 
with the credentials stored in the same secret or use the credentials in the Admin secret for 
rotation. You can create your secret using the CreateSecret call with the secret value containing 
the fields mentioned above and secret type as SalesforceClientSecret. The rotation configurations 
can be set using a RotateSecret call. This call requires the specification of the metadata fields as 
in the example above - If you opt for a rotation using credentials in the same secret, you can skip 
the adminSecretArn field. Additionally, customers must provide a role ARN in the RotateSecret
call which grants the service the required permissions to rotate the secret. For an example of a 
permissions policy see Security and Permissions.

For customers opting to rotate their secrets using a seperate set of credentials (stored in an Admin 
Secret), be sure to create the Admin Secret in AWS Secrets Manager following the exact same steps 
as your consumer secret. You must provide the ARN of this Admin Secret in the rotation metadata 
in a RotateSecret call for your consumer secret.

The rotation logic follows the guidance provided by Salesforce.

Big ID Refresh Token

Secret Value Fields

The following are the fields that must be contained in the Secrets Manager secret:

{ 
  "hostname": "Host Name", 

Big ID Refresh Token 268

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html


AWS Secrets Manager User Guide

  "refreshToken": "Refresh Token"  
}

hostname

This is the hostname where your BigID instance is hosted. You must enter the fully qualified 
domain name of your instance.

refreshToken

The JWT user refresh token generated in the BigID Console via Administration  →  Access 
Management  →  Select User  →  Generate Token  →  Save

Usage Flow

You can create your secret using the CreateSecret call with the secret value containing the fields 
mentioned above and secret type as BigIDClientSecret. The rotation configurations can be set 
using a RotateSecret call. You must also provide a role ARN in the RotateSecret call which grants 
the service the required permissions to rotate the secret. For example of a permissions policy see
Security and Permissions. Note that the rotation metadata field can be left empty for this partner.

Snowflake Key Pair

Secret Value Fields

The following are the fields that must be contained in the Secrets Manager secret:

{ 
  "account": "Your Account Identifier", 
  "user": "Your user name", 
  "privateKey": "Your private Key", 
  "publicKey": "Your public Key", 
  "passphrase": "Your Passphrase"
}

user

The Snowflake username associated with this key-pair authentication. This user must be 
configured in Snowflake to accept key-pair authentication, and the public key must be assigned 
to this user's profile.

Snowflake Key Pair 269

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html


AWS Secrets Manager User Guide

account

Your Snowflake account identifier used to establish the connection. This can be extracted from 
your Snowflake URL (the portion before .snowflakecomputing.com)

privateKey

The RSA private key in PEM format used for authentication. The BEGIN/END markers are 
optional.

publicKey

The public key counterpart in PEM format corresponding to the private key. The BEGIN/END 
markers are optional.

passphrase

(Optional) This field refers to the passphrase used to decrypt the encrypted private key.

Secret Metadata Fields

The following are the metadata fields for Snowflake:

{ 
  "cryptographicAlgorithm": "Your Cryptographic algorithm", 
  "encryptPrivateKey": "True/False"
}

cryptographicAlgorithm

(Optional) This refers to the algorithm used for key generation. You have a choice of 3 
algorithms: RS256|RS384|RS512 . This field is optional and the default algorithm chosen is 
RS256.

encryptPrivateKey

(Optional) This field can be used to choose if you want to encrypt your private key. It is false by 
default. The passphrase for encryption is randomly generated.

Usage Flow

You can create your secret using the CreateSecret call with the secret value containing the fields 
mentioned above and secret type as SnowflakeKeyPairAuthentication. The rotation configurations 

Snowflake Key Pair 270

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html


AWS Secrets Manager User Guide

can be set using a RotateSecret call. You can optionally provide the secret metadata field(s) based 
on your requirement. You must also provide a role ARN in the RotateSecret call which grants the 
service the required permissions to rotate the secret. For example of a permissions policy see
Security and Permissions. Note that the rotation metadata field can be left empty for this partner.

Security and permissions

Managed external secrets does not require you to share admin-level privileges of your third party 
application accounts with AWS. Instead, the rotation process uses credentials and metadata you 
provide to make authorized API calls to the third party application for credential updates and 
validation.

Managed external secrets maintain the same security standards as other Secrets Manager secret 
types. Secret values are encrypted at rest using your KMS keys and in transit using TLS. Access to 
secrets is controlled through IAM policies and resource-based policies. When using a Customer 
Managed Key to encrypt your secret, you will need to update the IAM policy of the rotation role 
and CMK trust policy to provide the required permissions to ensure successful rotation.

For rotation to function properly, you must provide Secrets Manager with specific permissions 
to manage the secret lifecycle. These permissions can be scoped to individual secrets and follow 
the principle of least privilege. The rotation role you provide is validated during setup and used 
exclusively for rotation operations.

You can restrict the IP ingress to your external resource by only allowing the AWS IP ranges for EC2 
in the region where your secret exists. This list of IP ranges can change so you should refresh your 
ingress rules periodically.

AWS Secrets Manager also offers single touch solutions to create the IAM policy with the 
permissions necessary to manage the secret when creating the secret through the Secrets Manager 
console. The permissions for this role are scoped down for each integration partner in each region.

Example Permissions Policy:

{ 
  "Version": "2012-10-17",        
  "Statement": [ 
    { 
      "Sid": "AllowRotationAccess", 
      "Action": [ 
        "secretsmanager:DescribeSecret", 

Security and permissions 271

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html


AWS Secrets Manager User Guide

        "secretsmanager:GetSecretValue", 
        "secretsmanager:PutSecretValue", 
        "secretsmanager:UpdateSecretVersionStage" 
      ], 
      "Resource": "*", 
      "Effect": "Allow", 
      "Condition": { 
        "StringEquals": { 
          "secretsmanager:resource/Type": "SalesforceClientSecret" 
        } 
      } 
    }, 
    { 
      "Sid": "AllowPasswordGenerationAccess", 
      "Action": [ 
        "secretsmanager:GetRandomPassword" 
      ], 
      "Resource": "*", 
      "Effect": "Allow" 
    } 
  ]
}

Note: The list of secret types that are available for secretsmanager:resource/Type can be found in
Integration Partners.

Example Trust Policy:

{ 
  "Version": "2012-10-17",        
  "Statement": [ 
    { 
      "Sid": "SecretsManagerPrincipalAccess", 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "secretsmanager.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole", 
      "Condition": { 
        "StringEquals": { 
          "aws:SourceAccount": "111122223333" 
        }, 
        "ArnLike": { 

Security and permissions 272



AWS Secrets Manager User Guide

          "aws:SourceArn": "arn:aws:secretsmanager:us-east-1:111122223333:secret:*" 
        } 
      } 
    } 
  ]
}

Monitor and troubleshoot managed external secrets

Managed external secrets provide comprehensive monitoring capabilities through AWS CloudTrail 
logs and Amazon CloudWatch metrics. All rotation activities are logged with detailed information 
about success, failure, and any errors encountered during the process.

Common issues in the rotation workflow include an incorrect configuration of role permissions 
or the secret value. Failure to set these fields is the format specified by the integration partners 
can cause rotation failures, as the service will be unable to access the secret or connect with 
the integration partner client to update the secret. Other issues could be network connectivity 
problems, credential expiration, or partner service availability. The managed rotation service 
includes retry logic and error handling to maximize reliability

You can monitor rotation schedules, success rates, and performance metrics through Amazon 
CloudWatch. You can configure custom alarms through event bridge to alert you of rotation 
failures or other issues that require attention.

Migrating existing secrets

You have an option to migrate your existing partner secrets to managed external secrets. This can 
be done with an UpdateSecret call. You must update the secret value and metadata as mentioned 
in the guide. If you already have custom rotation logic set up for these secrets, you must first 
cancel the rotation using a CancelRotateSecret call.

Limitations and considerations

Managed external secrets does not support ephemeral secrets with lifespans less than four hours. 
Secrets associated with public key infrastructure certificates are also not supported.

The managed external secrets are supported only for partners that have onboarded with AWS 
Secrets Manager. For a complete list, see Integration Partners. Don't see your partner on the list?
Tell them to Onboard to AWS Secrets Manager

Monitor and troubleshoot 273

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-pattern.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CancelRotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/mes-onboarding/secrets-manager-mes-onboarding.html


AWS Secrets Manager User Guide

If you update or rotate secret values directly from the partner client service outside of the Secrets 
Manager rotation engine, the synchronization between systems may break. While Secrets Manager 
provides console warnings and programmatic prevention for manual secret value updates, you can 
still modify values directly in your third party application. To re-establish synchronization after out-
of-band updates, you must update the secret value to reflect the correct secret and then invoke the
RotateSecret API to ensure continued successful rotations.

Limitations and considerations 274

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html


AWS Secrets Manager User Guide

Create AWS Secrets Manager secrets in AWS 
CloudFormation

You can create secrets in a CloudFormation stack by using the  AWS::SecretsManager::Secret
resource in a CloudFormation template, as shown in Create a secret.

To create an admin secret for Amazon RDS or Aurora, we recommend you use
ManageMasterUserPassword in AWS::RDS::DBCluster. Then Amazon RDS creates the secret 
and manages rotation for you. For more information, see Managed rotation.

For Amazon Redshift and Amazon DocumentDB credentials, first create a secret with a 
password generated by Secrets Manager, and then use a dynamic reference to retrieve the 
username and password from the secret to use as credentials for a new database. Next, use 
the  AWS::SecretsManager::SecretTargetAttachment resource to add details about 
the database to the secret that Secrets Manager needs to rotate the secret. Finally, to turn on 
automatic rotation, use the  AWS::SecretsManager::RotationSchedule resource and 
provide a rotation function and a schedule. See the following examples:

• Create a secret with Amazon Redshift credentials

• Create a secret with Amazon DocumentDB credentials

To attach a resource policy to your secret, use the  AWS::SecretsManager::ResourcePolicy
resource.

For information about creating resources with CloudFormation, see Learn template basics in the 
CloudFormation User Guide. You can also use the AWS Cloud Development Kit (AWS CDK). For 
more information, see AWS Secrets Manager Construct Library.

Create an AWS Secrets Manager secret with CloudFormation

This example creates a secret named CloudFormationCreatedSecret-a1b2c3d4e5f6. The 
secret value is the following JSON, with a 32-character password that is generated when the secret 
is created.

{ 

Create a secret 275

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secret.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secrettargetattachment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-rotationschedule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-resourcepolicy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
https://docs.aws.amazon.com/cdk/api/latest/docs/aws-secretsmanager-readme.html


AWS Secrets Manager User Guide

    "password": "EXAMPLE-PASSWORD", 
    "username": "saanvi"
}

This example uses the following CloudFormation resource:

• AWS::SecretsManager::Secret

For information about creating resources with CloudFormation, see Learn template basics in the 
CloudFormation User Guide.

JSON

{ 
    "Resources": { 
        "CloudFormationCreatedSecret": { 
            "Type": "AWS::SecretsManager::Secret", 
            "Properties": { 
                "Description": "Simple secret created by CloudFormation.", 
                "GenerateSecretString": { 
                    "SecretStringTemplate": "{\"username\": \"saanvi\"}", 
                    "GenerateStringKey": "password", 
                    "PasswordLength": 32 
                } 
            } 
        } 
    }
}

YAML

Resources: 
  CloudFormationCreatedSecret: 
    Type: 'AWS::SecretsManager::Secret' 
    Properties: 
      Description: Simple secret created by CloudFormation. 
      GenerateSecretString: 
        SecretStringTemplate: '{"username": "saanvi"}' 
        GenerateStringKey: password 
        PasswordLength: 32

JSON 276

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secret.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html


AWS Secrets Manager User Guide

Create an AWS Secrets Manager secret with automatic rotation 
and an Amazon RDS MySQL DB instance with CloudFormation

To create an admin secret for Amazon RDS or Aurora, we recommend you use
ManageMasterUserPassword, as shown in the example Create a Secrets Manager secret for a 
master password in AWS::RDS::DBCluster. Then Amazon RDS creates the secret and manages 
rotation for you. For more information, see Managed rotation.

Create an AWS Secrets Manager secret and an Amazon Redshift 
cluster with CloudFormation

To create an admin secret for Amazon Redshift, we recommend you use the examples on
AWS::Redshift::Cluster and AWS::RedshiftServerless::Namespace.

Create an AWS Secrets Manager secret and an Amazon 
DocumentDB instance with CloudFormation

This example creates a secret and an Amazon DocumentDB instance using the credentials in the 
secret as the user and password. The secret has a resource-based policy attached that defines who 
can access the secret. The template also creates a Lambda rotation function from the Rotation 
function templates and configures the secret to automatically rotate between 8:00 AM and 10:00 
AM UTC on the first day of every month. As a security best practice, the instance is in an Amazon 
VPC.

This example uses the following CloudFormation resources for Secrets Manager:

• AWS::SecretsManager::Secret

• AWS::SecretsManager::SecretTargetAttachment

• AWS::SecretsManager::RotationSchedule

For information about creating resources with CloudFormation, see Learn template basics in the 
CloudFormation User Guide.

JSON

{ 

Create a secret with Amazon RDS credentials with automatic rotation 277

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-redshift-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-redshiftserverless-namespace.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secret.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secrettargetattachment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-rotationschedule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html


AWS Secrets Manager User Guide

   "AWSTemplateFormatVersion":"2010-09-09", 
   "Transform":"AWS::SecretsManager-2020-07-23", 
   "Resources":{ 
      "TestVPC":{ 
         "Type":"AWS::EC2::VPC", 
         "Properties":{ 
            "CidrBlock":"10.0.0.0/16", 
            "EnableDnsHostnames":true, 
            "EnableDnsSupport":true 
         } 
      }, 
      "TestSubnet01":{ 
         "Type":"AWS::EC2::Subnet", 
         "Properties":{ 
            "CidrBlock":"10.0.96.0/19", 
            "AvailabilityZone":{ 
               "Fn::Select":[ 
                  "0", 
                  { 
                     "Fn::GetAZs":{ 
                        "Ref":"AWS::Region" 
                     } 
                  } 
               ] 
            }, 
            "VpcId":{ 
               "Ref":"TestVPC" 
            } 
         } 
      }, 
      "TestSubnet02":{ 
         "Type":"AWS::EC2::Subnet", 
         "Properties":{ 
            "CidrBlock":"10.0.128.0/19", 
            "AvailabilityZone":{ 
               "Fn::Select":[ 
                  "1", 
                  { 
                     "Fn::GetAZs":{ 
                        "Ref":"AWS::Region" 
                     } 
                  } 
               ] 
            }, 

JSON 278



AWS Secrets Manager User Guide

            "VpcId":{ 
               "Ref":"TestVPC" 
            } 
         } 
      }, 
      "SecretsManagerVPCEndpoint":{ 
         "Type":"AWS::EC2::VPCEndpoint", 
         "Properties":{ 
            "SubnetIds":[ 
               { 
                  "Ref":"TestSubnet01" 
               }, 
               { 
                  "Ref":"TestSubnet02" 
               } 
            ], 
            "SecurityGroupIds":[ 
               { 
                  "Fn::GetAtt":[ 
                     "TestVPC", 
                     "DefaultSecurityGroup" 
                  ] 
               } 
            ], 
            "VpcEndpointType":"Interface", 
            "ServiceName":{ 
               "Fn::Sub":"com.amazonaws.${AWS::Region}.secretsmanager" 
            }, 
            "PrivateDnsEnabled":true, 
            "VpcId":{ 
               "Ref":"TestVPC" 
            } 
         } 
      }, 
      "MyDocDBClusterRotationSecret":{ 
         "Type":"AWS::SecretsManager::Secret", 
         "Properties":{ 
            "GenerateSecretString":{ 
               "SecretStringTemplate":"{\"username\": \"someadmin\",\"ssl\": true}", 
               "GenerateStringKey":"password", 
               "PasswordLength":16, 
               "ExcludeCharacters":"\"@/\\" 
            }, 
            "Tags":[ 

JSON 279



AWS Secrets Manager User Guide

               { 
                  "Key":"AppName", 
                  "Value":"MyApp" 
               } 
            ] 
         } 
      }, 
      "MyDocDBCluster":{ 
         "Type":"AWS::DocDB::DBCluster", 
         "Properties":{ 
            "DBSubnetGroupName":{ 
               "Ref":"MyDBSubnetGroup" 
            }, 
            "MasterUsername":{ 
               "Fn::Sub":"{{resolve:secretsmanager:
${MyDocDBClusterRotationSecret}::username}}" 
            }, 
            "MasterUserPassword":{ 
               "Fn::Sub":"{{resolve:secretsmanager:
${MyDocDBClusterRotationSecret}::password}}" 
            }, 
            "VpcSecurityGroupIds":[ 
               { 
                  "Fn::GetAtt":[ 
                     "TestVPC", 
                     "DefaultSecurityGroup" 
                  ] 
               } 
            ] 
         } 
      }, 
      "DocDBInstance":{ 
         "Type":"AWS::DocDB::DBInstance", 
         "Properties":{ 
            "DBClusterIdentifier":{ 
               "Ref":"MyDocDBCluster" 
            }, 
            "DBInstanceClass":"db.r5.large" 
         } 
      }, 
      "MyDBSubnetGroup":{ 
         "Type":"AWS::DocDB::DBSubnetGroup", 
         "Properties":{ 
            "DBSubnetGroupDescription":"", 

JSON 280



AWS Secrets Manager User Guide

            "SubnetIds":[ 
               { 
                  "Ref":"TestSubnet01" 
               }, 
               { 
                  "Ref":"TestSubnet02" 
               } 
            ] 
         } 
      }, 
      "SecretDocDBClusterAttachment":{ 
         "Type":"AWS::SecretsManager::SecretTargetAttachment", 
         "Properties":{ 
            "SecretId":{ 
               "Ref":"MyDocDBClusterRotationSecret" 
            }, 
            "TargetId":{ 
               "Ref":"MyDocDBCluster" 
            }, 
            "TargetType":"AWS::DocDB::DBCluster" 
         } 
      }, 
      "MySecretRotationSchedule":{ 
         "Type":"AWS::SecretsManager::RotationSchedule", 
         "DependsOn":"SecretDocDBClusterAttachment", 
         "Properties":{ 
            "SecretId":{ 
               "Ref":"MyDocDBClusterRotationSecret" 
            }, 
            "HostedRotationLambda":{ 
               "RotationType":"MongoDBSingleUser", 
               "RotationLambdaName":"MongoDBSingleUser", 
               "VpcSecurityGroupIds":{ 
                  "Fn::GetAtt":[ 
                     "TestVPC", 
                     "DefaultSecurityGroup" 
                  ] 
               }, 
               "VpcSubnetIds":{ 
                  "Fn::Join":[ 
                     ",", 
                     [ 
                        { 
                           "Ref":"TestSubnet01" 

JSON 281



AWS Secrets Manager User Guide

                        }, 
                        { 
                           "Ref":"TestSubnet02" 
                        } 
                     ] 
                  ] 
               } 
            }, 
            "RotationRules":{ 
              "Duration": "2h", 
              "ScheduleExpression": "cron(0 8 1 * ? *)" 
            } 
         } 
      } 
   }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::SecretsManager-2020-07-23
Resources: 
  TestVPC: 
    Type: AWS::EC2::VPC 
    Properties: 
      CidrBlock: 10.0.0.0/16 
      EnableDnsHostnames: true 
      EnableDnsSupport: true 
  TestSubnet01: 
    Type: AWS::EC2::Subnet 
    Properties: 
      CidrBlock: 10.0.96.0/19 
      AvailabilityZone: !Select 
        - '0' 
        - !GetAZs 
          Ref: AWS::Region 
      VpcId: !Ref TestVPC 
  TestSubnet02: 
    Type: AWS::EC2::Subnet 
    Properties: 
      CidrBlock: 10.0.128.0/19 
      AvailabilityZone: !Select 
        - '1' 

YAML 282



AWS Secrets Manager User Guide

        - !GetAZs 
          Ref: AWS::Region 
      VpcId: !Ref TestVPC 
  SecretsManagerVPCEndpoint: 
    Type: AWS::EC2::VPCEndpoint 
    Properties: 
      SubnetIds: 
        - !Ref TestSubnet01 
        - !Ref TestSubnet02 
      SecurityGroupIds: 
        - !GetAtt TestVPC.DefaultSecurityGroup 
      VpcEndpointType: Interface 
      ServiceName: !Sub com.amazonaws.${AWS::Region}.secretsmanager 
      PrivateDnsEnabled: true 
      VpcId: !Ref TestVPC 
  MyDocDBClusterRotationSecret: 
    Type: AWS::SecretsManager::Secret 
    Properties: 
      GenerateSecretString: 
        SecretStringTemplate: '{"username": "someadmin","ssl": true}' 
        GenerateStringKey: password 
        PasswordLength: 16 
        ExcludeCharacters: '"@/\' 
      Tags: 
        - Key: AppName 
          Value: MyApp 
  MyDocDBCluster: 
    Type: AWS::DocDB::DBCluster 
    Properties: 
      DBSubnetGroupName: !Ref MyDBSubnetGroup 
      MasterUsername: !Sub '{{resolve:secretsmanager:
${MyDocDBClusterRotationSecret}::username}}' 
      MasterUserPassword: !Sub '{{resolve:secretsmanager:
${MyDocDBClusterRotationSecret}::password}}' 
      VpcSecurityGroupIds: 
        - !GetAtt TestVPC.DefaultSecurityGroup 
  DocDBInstance: 
    Type: AWS::DocDB::DBInstance 
    Properties: 
      DBClusterIdentifier: !Ref MyDocDBCluster 
      DBInstanceClass: db.r5.large 
  MyDBSubnetGroup: 
    Type: AWS::DocDB::DBSubnetGroup 
    Properties: 

YAML 283



AWS Secrets Manager User Guide

      DBSubnetGroupDescription: '' 
      SubnetIds: 
        - !Ref TestSubnet01 
        - !Ref TestSubnet02 
  SecretDocDBClusterAttachment: 
    Type: AWS::SecretsManager::SecretTargetAttachment 
    Properties: 
      SecretId: !Ref MyDocDBClusterRotationSecret 
      TargetId: !Ref MyDocDBCluster 
      TargetType: AWS::DocDB::DBCluster 
  MySecretRotationSchedule: 
    Type: AWS::SecretsManager::RotationSchedule 
    DependsOn: SecretDocDBClusterAttachment 
    Properties: 
      SecretId: !Ref MyDocDBClusterRotationSecret 
      HostedRotationLambda: 
        RotationType: MongoDBSingleUser 
        RotationLambdaName: MongoDBSingleUser 
        VpcSecurityGroupIds: !GetAtt TestVPC.DefaultSecurityGroup 
        VpcSubnetIds: !Join 
          - ',' 
          - - !Ref TestSubnet01 
            - !Ref TestSubnet02 
      RotationRules: 
        Duration: 2h 
        ScheduleExpression: cron(0 8 1 * ? *) 
       

How Secrets Manager uses AWS CloudFormation

When you use the console to turn on rotation, Secrets Manager uses AWS CloudFormation 
to create resources for rotation. If you create a new rotation function during that process, 
CloudFormation creates an AWS::Serverless::Function based on the appropriate Rotation 
function templates. Then CloudFormation sets the RotationSchedule, which sets the rotation 
function and rotation rules for the secret. You can view the CloudFormation stack by choosing
View stack in the banner after you turn on automatic rotation.

For information about turning on automatic rotation, see Rotate secrets.

How Secrets Manager uses CloudFormation 284

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-rotationschedule.html


AWS Secrets Manager User Guide

Create AWS Secrets Manager secrets in AWS Cloud 
Development Kit (AWS CDK)

To create, manage, and retrieve secrets in a CDK app, you can use the AWS Secrets Manager 
Construct Library, which contains ResourcePolicy, RotationSchedule, Secret,
SecretRotation, and SecretTargetAttachment constructs.

A good practice for using secrets in CDK applications is to first create the secret by using console or 
the CLI, and then import the secret into your CDK application.

For examples, see:

• Create a secret

• Import a secret

• Retrieve a secret

• Grant permission to use the secret

• Rotate a secret

• Rotate a database secret

• Replicate a secret to other Regions

For more information about the CDK, see the AWS Cloud Development Kit (AWS CDK) v2 Developer 
Guide.

285

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.ResourcePolicy.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.RotationSchedule.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.Secret.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.SecretRotation.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.SecretTargetAttachment.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#creating-json-secrets
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#importing-secrets
https://docs.aws.amazon.com/cdk/v2/guide/get-secrets-manager-value.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#grant-permission-to-use-the-secret-to-a-role
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#rotating-a-secret
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#rotating-database-credentials
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#replicating-secrets
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html


AWS Secrets Manager User Guide

Monitor AWS Secrets Manager secrets

AWS provides monitoring tools to watch Secrets Manager secrets, report when something is wrong, 
and take automatic actions when appropriate. You can use the logs if you need to investigate 
any unexpected usage or change, and then you can roll back unwanted changes. You can also set 
automated checks for inappropriate usage of secrets and any attempts to delete secrets.

Topics

• Log AWS Secrets Manager events with AWS CloudTrail

• Monitor AWS Secrets Manager with Amazon CloudWatch

• Match AWS Secrets Manager events with Amazon EventBridge

• Monitor when AWS Secrets Manager secrets scheduled for deletion are accessed

• Monitor AWS Secrets Manager secrets for compliance by using AWS Config

• Monitor Secrets Manager costs

• Detect threats with Amazon GuardDuty

Log AWS Secrets Manager events with AWS CloudTrail

AWS CloudTrail records all API calls for Secrets Manager as events, including calls from the Secrets 
Manager console, as well as several other events for rotation and secret version deletion. For a list 
of the log entries in Secrets Manager records, see CloudTrail entries.

You can use the CloudTrail console to view the last 90 days of recorded events. For an ongoing 
record of events in your AWS account, including events for Secrets Manager, create a trail so that 
CloudTrail delivers log files to an Amazon S3 bucket. See Creating a trail for your AWS account. You 
can also configure CloudTrail to receive CloudTrail log files from multiple AWS accounts and AWS 
Regions.

You can configure other AWS services to further analyze and act upon the data collected in 
CloudTrail logs. See AWS service integrations with CloudTrail logs. You can also get notifications 
when CloudTrail publishes new log files to your Amazon S3 bucket. See Configuring Amazon SNS 
notifications for CloudTrail.

To retrieve Secrets Manager events from CloudTrail logs (console)

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

Log with AWS CloudTrail 286

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://console.aws.amazon.com/cloudtrail/


AWS Secrets Manager User Guide

2. Ensure that the console points to the Region where your events occurred. The console shows 
only those events that occurred in the selected Region. Choose the Region from the drop-
down list in the upper-right corner of the console.

3. In the left-hand navigation pane, choose Event history.

4. Choose Filter criteria and/or a Time range to help you find the event that you're looking for. 
For example:

a. To see all Secrets Manager events, for Lookup attributes, choose Event source. Then, for
Enter event source, choose secretsmanager.amazonaws.com.

b. To see all events for a secret, for Lookup attributes, choose Resource name. Then, for
Enter a resource name, enter the name of the secret.

5. To see additional details, choose the expand arrow next to the event. To see all of the 
information available, choose View event.

AWS CLI

Example Retrieve Secrets Manager events from CloudTrail logs

The following lookup-events example looks up Secrets Manager events.

aws cloudtrail lookup-events \ 
    --region us-east-1 \ 
    --lookup-attributes 
 AttributeKey=EventSource,AttributeValue=secretsmanager.amazonaws.com

AWS CloudTrail entries for Secrets Manager

AWS Secrets Manager writes entries to your AWS CloudTrail log for all Secrets Manager operations 
and for other events related to rotation and deletion. For information about taking action on these 
events, see Match Secrets Manager events with EventBridge.

Log entry types

• Log entries for Secrets Manager operations

• Log entries for deletion

• Log entries for replication

• Log entries for rotation

AWS CLI 287

https://docs.aws.amazon.com//cli/latest/reference/cloudtrail/lookup-events.html


AWS Secrets Manager User Guide

Log entries for Secrets Manager operations

Events that are generated by calls to Secrets Manager operations have "detail-type": ["AWS 
API Call via CloudTrail"].

Note

Before February 2024, some Secrets Manager operations reported events that contained 
"aRN" instead of "arn" for the secret ARN. For more information, see AWS re:Post.

The following are CloudTrail entries generated when you or a service call Secrets Manager 
operations through the API, SDK, or CLI.

BatchGetSecretValue

Generated by the BatchGetSecretValue operation. For information about retrieving secrets, see
Get secrets.

CancelRotateSecret

Generated by the CancelRotateSecret operation. For information about rotation, see Rotate 
secrets.

CreateSecret

Generated by the CreateSecret operation. For information about creating secrets, see Manage 
secrets.

DeleteResourcePolicy

Generated by the DeleteResourcePolicy operation. For information about permissions, see the 
section called “Authentication and access control”.

DeleteSecret

Generated by the DeleteSecret operation. For information about deleting secrets, see the 
section called “Delete a secret”.

DescribeSecret

Generated by the DescribeSecret operation.

GetRandomPassword

Generated by the GetRandomPassword operation.

CloudTrail entries 288

https://repost.aws/knowledge-center/secrets-manager-arn
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CancelRotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetRandomPassword.html


AWS Secrets Manager User Guide

GetResourcePolicy

Generated by the GetResourcePolicy operation. For information about permissions, see the 
section called “Authentication and access control”.

GetSecretValue

Generated by the GetSecretValue and BatchGetSecretValue operations. For information about 
retrieving secrets, see Get secrets.

ListSecrets

Generated by the ListSecrets operation. For information about listing secrets, see the section 
called “Find secrets”.

ListSecretVersionIds

Generated by the ListSecretVersionIds operation.

PutResourcePolicy

Generated by the PutResourcePolicy operation. For information about permissions, see the 
section called “Authentication and access control”.

PutSecretValue

Generated by the PutSecretValue operation. For information about updating a secret, see the 
section called “Modify a secret”.

RemoveRegionsFromReplication

Generated by the RemoveRegionsFromReplication operation. For information about replicating 
a secret, see Multi-region replication.

ReplicateSecretToRegions

Generated by the ReplicateSecretToRegions operation. For information about replicating a 
secret, see Multi-region replication.

RestoreSecret

Generated by the RestoreSecret operation. For information about restoring a deleted secret, see
the section called “Restore a secret”.

RotateSecret

Generated by the RotateSecret operation. For information about rotation, see Rotate secrets.

CloudTrail entries 289

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecretVersionIds.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RemoveRegionsFromReplication.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RestoreSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html


AWS Secrets Manager User Guide

StopReplicationToReplica

Generated by the StopReplicationToReplica operation. For information about replicating a 
secret, see Multi-region replication.

TagResource

Generated by the TagResource operation. For information about tagging a secret, see the 
section called “Tag secrets”.

UntagResource

Generated by the UntagResource operation. For information about untagging a secret, see the 
section called “Tag secrets”.

UpdateSecret

Generated by the UpdateSecret operation. For information about updating a secret, see the 
section called “Modify a secret”.

UpdateSecretVersionStage

Generated by the UpdateSecretVersionStage operation. For information about version stages, 
see the section called “Secret versions”.

ValidateResourcePolicy

Generated by the ValidateResourcePolicy operation. For information about permissions, see the 
section called “Authentication and access control”.

Log entries for deletion

In addition to events for Secrets Manager operations, Secrets Manager generates the following 
events related to deletion. These events have "detail-type": ["AWS Service Event via 
CloudTrail"].

CancelSecretVersionDelete

Generated by the Secrets Manager service. If you call DeleteSecret on a secret that has 
versions, and then later call RestoreSecret, Secrets Manager logs this event for each secret 
version that was restored. For information about restoring a deleted secret, see the section 
called “Restore a secret”.

CloudTrail entries 290

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ValidateResourcePolicy.html


AWS Secrets Manager User Guide

EndSecretVersionDelete

Generated by the Secrets Manager service when a secret version is deleted. For more 
information, see the section called “Delete a secret”.

StartSecretVersionDelete

Generated by the Secrets Manager service when Secrets Manager starts deletion for a secret 
version. For information about deleting secrets, see the section called “Delete a secret”.

SecretVersionDeletion

Generated by the Secrets Manager service when Secrets Manager deletes a deprecated secret 
version. For more information, see Secret versions.

Log entries for replication

In addition to events for Secrets Manager operations, Secrets Manager generates the following 
events related to replication. These events have "detail-type": ["AWS Service Event via 
CloudTrail"].

ReplicationFailed

Generated by the Secrets Manager service when replication fails. For information about 
replicating a secret, see Multi-region replication.

ReplicationStarted

Generated by the Secrets Manager service when Secrets Manager starts replicating a secret. For 
information about replicating a secret, see Multi-region replication.

ReplicationSucceeded

Generated by the Secrets Manager service when a secret is successfully replicated. For 
information about replicating a secret, see Multi-region replication.

Log entries for rotation

In addition to events for Secrets Manager operations, Secrets Manager generates the following 
events related to rotation. These events have "detail-type": ["AWS Service Event via 
CloudTrail"].

CloudTrail entries 291



AWS Secrets Manager User Guide

RotationStarted

Generated by the Secrets Manager service when Secrets Manager starts rotating a secret. For 
information about rotation, see Rotate secrets.

RotationAbandoned

Generated by the Secrets Manager service when Secrets Manager abandons a rotation attempt 
and removes the AWSPENDING label from an existing version of a secret. Secrets Manager 
abandons rotation when you create a new version of a secret during rotation. For information 
about rotation, see Rotate secrets.

RotationFailed

Generated by the Secrets Manager service when rotation fails. For information about rotation, 
see the section called “Troubleshoot rotation”.

RotationSucceeded

Generated by the Secrets Manager service when a secret is successfully rotated. For information 
about rotation, see Rotate secrets.

TestRotationStarted

Generated by the Secrets Manager service when Secrets Manager starts testing rotation for a 
secret that is not scheduled for immediate rotation. For information about rotation, see Rotate 
secrets.

TestRotationSucceeded

Generated by the Secrets Manager service when Secrets Manager successfully tests rotation 
for a secret that is not scheduled for immediate rotation. For information about rotation, see
Rotate secrets.

TestRotationFailed

Generated by the Secrets Manager service when Secrets Manager tests rotation for a secret that 
is not scheduled for immediate rotation and rotation failed. For information about rotation, see
the section called “Troubleshoot rotation”.

Monitor AWS Secrets Manager with Amazon CloudWatch

Using Amazon CloudWatch, you can monitor AWS services and create alarms to let you know when 
metrics change. CloudWatch keeps these statistics for 15 months, so you can access historical 

Monitor with CloudWatch 292



AWS Secrets Manager User Guide

information and gain a better perspective on how your web application or service is performing. 
For AWS Secrets Manager, you can monitor the number of secrets in your account, including secrets 
marked for deletion, and API calls to Secrets Manager, including calls made through the console. 
For information about how to monitor metrics, see Use CloudWatch metrics in the CloudWatch User 
Guide.

To find Secrets Manager metrics

1. On the CloudWatch console, under Metrics, choose All metrics.

2. In the Metrics search, box, enter secret.

3. Do the following:

• To monitor the number of secrets in your account, choose AWS/SecretsManager, and 
then select SecretCount. This metric is published hourly.

• To monitor API calls to Secrets Manager, including calls made through the console, choose
Usage > By AWS Resource, and then select the API calls to monitor. For a list of Secrets 
Manager APIs, see Secrets Manager operations.

4. Do the following:

• To create a graph of the metric, see Graphing metrics in the Amazon CloudWatch User 
Guide.

• To detect anomalies, see Using CloudWatch anomaly detection in the Amazon CloudWatch 
User Guide.

• To get statistics for a metric, see Get statistics for a metric in the Amazon CloudWatch User 
Guide.

CloudWatch alarms

You can create a CloudWatch alarm that sends an Amazon SNS message when the value of a metric 
changes and causes the alarm to change state. You can set an alarm on the Secrets Manager metric
ResourceCount, which is the number of secrets in your account. You can also set alarms on An 
alarm watches a metric over a time period you specify, and performs actions based on the value of 
the metric relative to a given threshold over a number of time periods. Alarms invoke actions for 
sustained state changes only. CloudWatch alarms do not invoke actions simply because they are 
in a particular state; the state must have changed and been maintained for a specified number of 
periods.

CloudWatch alarms 293

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_Operations.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/graph_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Anomaly_Detection.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/getting-metric-statistics.html


AWS Secrets Manager User Guide

For more information, see  Using Amazon CloudWatch alarms and Create a CloudWatch alarm 
based on anomaly detection in the CloudWatch User Guide.

You can also set alarms that watch for certain thresholds, and send notifications or take actions 
when those thresholds are met. For more information, see the Amazon CloudWatch User Guide.

Match AWS Secrets Manager events with Amazon EventBridge

In Amazon EventBridge, you can match Secrets Manager events from CloudTrail log entries. 
You can configure EventBridge rules that look for these events and then send new generated 
events to a target to take action. For a list of CloudTrail entries that Secrets Manager logs, see
CloudTrail entries. For instructions to set up EventBridge, see Getting started with EventBridge in 
the EventBridge User Guide.

Match all changes to a specified secret

Note

Because some Secrets Manager events return the ARN of the secret with different 
capitalization, in event patterns that match more than one action, to specify a secret by 
ARN, you may need to include both the keys arn and aRN. For more information, see AWS 
re:Post.

The following example shows an EventBridge event pattern that matches log entries for changes 
to a secret.

{ 
    "source": ["aws.secretsmanager"], 
    "detail-type": ["AWS API Call via CloudTrail"], 
    "detail": { 
        "eventSource": ["secretsmanager.amazonaws.com"], 
        "eventName": ["DeleteResourcePolicy", "PutResourcePolicy", "RotateSecret", 
 "TagResource", "UntagResource", "UpdateSecret"], 
        "responseElements": { 
            "arn": ["arn:aws:secretsmanager:us-west-2:012345678901:secret:mySecret-
a1b2c3"] 
        } 
    }
}

Match Secrets Manager events with EventBridge 294

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_Anomaly_Detection_Alarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_Anomaly_Detection_Alarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html
https://repost.aws/knowledge-center/secrets-manager-arn
https://repost.aws/knowledge-center/secrets-manager-arn


AWS Secrets Manager User Guide

Match events when a secret value rotates

The following example shows an EventBridge event pattern that matches CloudTrail log entries 
for secret value changes that occur from manual updates or automatic rotation. Because some of 
these events are from Secrets Manager operations and some are generated by the Secrets Manager 
service, you must include the detail-type for both.

{ 
    "source": ["aws.secretsmanager"], 
    "$or": [ 
        { "detail-type": ["AWS API Call via CloudTrail"] },  
        { "detail-type": ["AWS Service Event via CloudTrail"] } 
    ], 
    "detail": { 
        "eventSource": ["secretsmanager.amazonaws.com"], 
        "eventName": ["PutSecretValue", "UpdateSecret", "RotationSucceeded"] 
    }
}

Monitor when AWS Secrets Manager secrets scheduled for 
deletion are accessed

You can use a combination of AWS CloudTrail, Amazon CloudWatch Logs, and Amazon Simple 
Notification Service (Amazon SNS) to create an alarm that notifies you of any attempts to access 
a secret pending deletion. If you receive a notification from an alarm, you might want to cancel 
deletion of the secret to give yourself more time to determine if you really want to delete it. 
Your investigation might result in the secret being restored because you still need the secret. 
Alternatively, you might need to update the user with details of the new secret to use.

The following procedures explain how to receive a notification when a request for the
GetSecretValue operation that results in a specific error message written to your CloudTrail 
log files. Other API operations can be performed on the secret without triggering the alarm. This 
CloudWatch alarm detects usage that might indicate a person or application using outdated 
credentials.

Before you begin these procedures, you must turn on CloudTrail in the AWS Region and account 
where you intend to monitor AWS Secrets Manager API requests. For instructions, go to Creating a 
trail for the first time in the AWS CloudTrail User Guide.

Match events when a secret value rotates 295

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html


AWS Secrets Manager User Guide

Step 1: Configure CloudTrail log file delivery to CloudWatch Logs

You must configure delivery of your CloudTrail log files to CloudWatch Logs. You do this so 
CloudWatch Logs can monitor them for Secrets Manager API requests to retrieve a secret pending 
deletion.

To configure CloudTrail log file delivery to CloudWatch Logs

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. On the top navigation bar, choose the AWS Region to monitor secrets.

3. In the left navigation pane, choose Trails, and then choose the name of the trail to configure 
for CloudWatch.

4. On the Trails Configuration page, scroll down to the CloudWatch Logs section, and then 
choose the edit icon 

( ).

5. For New or existing log group, type a name for the log group, such as CloudTrail/
MyCloudWatchLogGroup.

6. For IAM role, you can use the default role named CloudTrail_CloudWatchLogs_Role. This role 
has a default role policy with the required permissions to deliver CloudTrail events to the log 
group.

7. Choose Continue to save your configuration.

8. On the AWS CloudTrail will deliver CloudTrail events associated with API activity in your 
account to your CloudWatch Logs log group page, choose Allow.

Step 2: Create the CloudWatch alarm

To receive a notification when a Secrets Manager GetSecretValue API operation requests to 
access a secret pending deletion, you must create a CloudWatch alarm and configure notification.

To create a CloudWatch alarm

1. Sign in to the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the top navigation bar, choose the AWS Region where you want to monitor secrets.

3. In the left navigation pane, choose Logs.

Step 1: Configure CloudTrail log file delivery to CloudWatch Logs 296

https://console.aws.amazon.com/cloudtrail/
https://console.aws.amazon.com/cloudwatch/


AWS Secrets Manager User Guide

4. In the list of Log Groups, select the check box next to the log group you created in the 
previous procedure, such as CloudTrail/MyCloudWatchLogGroup. Then choose Create Metric 
Filter.

5. For Filter Pattern, type or paste the following:

{ $.eventName = "GetSecretValue" && $.errorMessage = "*secret because it was marked 
 for deletion*" }

Choose Assign Metric.

6. On the Create Metric Filter and Assign a Metric page, do the following:

a. For Metric Namespace, type CloudTrailLogMetrics.

b. For Metric Name, type AttemptsToAccessDeletedSecrets.

c. Choose Show advanced metric settings, and then if necessary for Metric Value, type 1.

d. Choose Create Filter.

7. In the filter box, choose Create Alarm.

8. In the Create Alarm window, do the following:

a. For Name, type AttemptsToAccessDeletedSecretsAlarm.

b. Whenever:, for is:, choose >=, and then type 1.

c. Next to Send notification to:, do one of the following:

• To create and use a new Amazon SNS topic, choose New list, and then type a new topic 
name. For Email list:, type at least one email address. You can type more than one 
email address by separating them with commas.

• To use an existing Amazon SNS topic, choose the name of the topic to use. If a list 
doesn't exist, choose Select list.

d. Choose Create Alarm.

Step 3: Test the CloudWatch alarm

To test your alarm, create a secret and then schedule it for deletion. Then, try to retrieve the secret 
value. You shortly receive an email at the address you configured in the alarm. It alerts you to the 
use of a secret scheduled for deletion.

Step 3: Test the CloudWatch alarm 297



AWS Secrets Manager User Guide

Monitor AWS Secrets Manager secrets for compliance by using 
AWS Config

You can use AWS Config to evaluate your secrets to see if they are in compliance with your 
standards. You define your internal security and compliance requirements for secrets using AWS 
Config rules. Then AWS Config can identify secrets that don't conform to your rules. You can also 
track changes to secret metadata, rotation configuration, the KMS key used for secret encryption, 
the Lambda rotation function, and tags associated with a secret.

You can configure AWS Config to notify you of changes. For more information, see Notifications 
that AWS Config sends to an Amazon SNS topic.

If you have secrets in multiple AWS accounts and AWS Regions in your organization, you can 
aggregate that configuration and compliance data. For more information, see Multi-account Multi-
Region data aggregation.

To assess whether secrets are in compliance

• Follow the instructions on Evaluating your resources with AWS Config rules, and choose one of 
the following rules:

• secretsmanager-secret-unused— Checks whether secrets were accessed within the 
specified number of days.

• secretsmanager-using-cmk — Checks whether secrets are encrypted using the AWS 
managed key aws/secretsmanager or a customer managed key you created in AWS KMS.

• secretsmanager-rotation-enabled-check — Checks whether rotation is configured 
for secrets stored in Secrets Manager.

• secretsmanager-scheduled-rotation-success-check— Checks whether the last 
successful rotation is within the configured rotation frequency. The minimum frequency for 
the check is daily.

• secretsmanager-secret-periodic-rotation— Checks whether secrets were rotated 
within the specified number of days.

Monitor secrets for compliance 298

https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html
https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html
https://docs.aws.amazon.com/config/latest/developerguide/evaluating-your-resources.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-secret-unused.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-using-cmk.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-rotation-enabled-check.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-scheduled-rotation-success-check.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-secret-periodic-rotation.html


AWS Secrets Manager User Guide

Monitor Secrets Manager costs

You can use Amazon CloudWatch to monitor estimated AWS Secrets Manager charges. For 
more information, see Creating a billing alarm to monitor your estimated AWS charges in the
CloudWatch User Guide.

Another option for monitoring your costs is AWS Cost Anomaly Detection. For more information, 
see Detecting unusual spend with AWS Cost Anomaly Detection in the AWS Cost Management User 
Guide.

For information about monitoring your Secrets Manager usage, see the section called “Monitor 
with CloudWatch” and the section called “Log with AWS CloudTrail ”.

For information about AWS Secrets Manager pricing, see the section called “Pricing”.

Detect threats with Amazon GuardDuty

Amazon GuardDuty is a threat detection service that helps you protect your accounts, containers, 
workloads, and the data with your AWS environment. By using machine learning (ML) models and 
anomaly and threat detection capabilities, GuardDuty continuously monitors different log sources 
to identify and prioritize potential security risks and malicious activities in your environment. For 
example, GuardDuty will detect potential threats such as unusual or suspicious access to secrets, 
and credential exfiltration in case it detects credentials that were created exclusively for an Amazon 
EC2 instance through an instance launch role but are being used from another account within AWS. 
For more information, see the Amazon GuardDuty User Guide.

Another example use-case for detection is anomalous behavior. For example, if AWS Secrets 
Manager typically gets create-secret, get-secret-value, describe-secret, and list-
secrets calls from an entity using the Java SDK, and then a different entity begins calling batch-
get-secret-value and get-secret-value using the AWS CLI from outside of the VPN, 
GuardDuty can report a finding that the second entity is anomalously invoking APIs. For more 
information, see GuardDuty IAM finding type CredentialAccess:IAMUser/AnomalousBehavior.

Monitor Secrets Manager costs 299

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/cost-management/latest/userguide/manage-ad.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_finding-types-iam.html#credentialaccess-iam-anomalousbehavior


AWS Secrets Manager User Guide

Compliance validation for AWS Secrets Manager

Your compliance responsibility when using Secrets Manager is determined by the sensitivity of your 
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the 
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural 
considerations and provide steps for deploying security- and compliance-focused baseline 
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper  – This whitepaper describes how 
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your 
industry and location.

• AWS Config assesses how well your resource configurations comply with internal practices, 
industry guidelines, and regulations. For more information, see the section called “Monitor 
secrets for compliance”.

• AWS Security Hub CSPM provides a comprehensive view of your security state within AWS 
that helps you check your compliance with security industry standards and best practices. For 
information about using Security Hub CSPM to evaluate Secrets Manager resources, see AWS 
Secrets Manager controls in the AWS Security Hub CSPM User Guide.

• IAM Access Analyzer analyzes policies, including condition statements in a policy, that allow 
an external entity to access a secret. For more information, see Previewing access with Access 
Analyzer.

• AWS Systems Manager provides predefined runbooks for Secrets Manager. For more information, 
see Systems Manager Automation runbook reference for Secrets Manager.

• You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Compliance standards

AWS Secrets Manager has undergone auditing for the following standards and can be part of your 
solution when you need to obtain compliance certification.

• HIPAA – AWS has expanded its Health Insurance Portability and Accountability Act (HIPAA) 
compliance program to include AWS Secrets Manager as a HIPAA-eligible service. If you have an 

Compliance standards 300

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/secretsmanager-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/secretsmanager-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-preview-access-apis.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-preview-access-apis.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-ref-asm.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/


AWS Secrets Manager User Guide

executed Business Associate Agreement (BAA) with AWS, you can use Secrets Manager to help 
build your HIPAA-compliant applications. AWS offers a HIPAA-focused whitepaper for customers 
who are interested in learning more about how they can leverage AWS for the processing and 
storage of health information. For more information, see HIPAA Compliance.

• PCI Participating Organization – AWS Secrets Manager has an Attestation of Compliance for 
Payment Card Industry (PCI) Data Security Standard (DSS) version 3.2 at Service Provider Level 1. 
Customers who use AWS products and services to store, process, or transmit cardholder data can 
use AWS Secrets Manager as they manage their own PCI DSS compliance certification. For more 
information about PCI DSS, including how to request a copy of the AWS PCI Compliance Package, 
see PCI DSS Level 1.

• ISO – AWS Secrets Manager has successfully completed compliance certification for ISO/IEC 
27001, ISO/IEC 27017, ISO/IEC 27018, and ISO 9001. For more information, see ISO 27001, ISO 
27017, ISO 27018, ISO 9001.

• AICPA SOC – System and Organization Control (SOC) reports are independent third-party 
examination reports that demonstrate how Secrets Manager achieves key compliance controls 
and objectives. The purpose of these reports is to help you and your auditors understand the 
AWS controls that are established to support operations and compliance. For more information, 
see SOC Compliance.

• FedRAMP – The Federal Risk and Authorization Management Program (FedRAMP) is a 
government-wide program that provides a standardized approach to security assessment, 
authorization, and continuous monitoring for cloud products and services. The FedRAMP 
Program also provides provisional authorizations for services and regions for East/West and 
GovCloud to consume government or regulated data. For more information, see  FedRAMP 
Compliance.

• Department of Defense – The Department of Defense (DoD) Cloud Computing Security 
Requirements Guide (SRG) provides a standardized assessment and authorization process for 
cloud service providers (CSPs) to gain a DoD provisional authorization, so that they can serve 
DoD customers. For more information, see  DoD SRG Resources

• IRAP – The Information Security Registered Assessors Program (IRAP) enables Australian 
government customers to validate that appropriate controls are in place and determine the 
appropriate responsibility model for addressing the requirements of the Australian government 
Information Security Manual (ISM) produced by the Australian Cyber Security Centre (ACSC). For 
more information, see  IRAP Resources

• OSPAR – Amazon Web Services (AWS) achieved the Outsourced Service Provider’s Audit Report 
(OSPAR) attestation. AWS alignment with the Association of Banks in Singapore (ABS) Guidelines 

Compliance standards 301

https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/compliance/iso-27001-faqs/
https://aws.amazon.com/compliance/iso-27017-faqs/
https://aws.amazon.com/compliance/iso-27017-faqs/
https://aws.amazon.com/compliance/iso-27018-faqs/
https://aws.amazon.com/compliance/iso-9001-faqs/
https://aws.amazon.com/compliance/soc-faqs/
https://aws.amazon.com/compliance/fedramp/
https://aws.amazon.com/compliance/fedramp/
https://aws.amazon.com/compliance/dod/
https://aws.amazon.com/compliance/irap/


AWS Secrets Manager User Guide

on Control Objectives and Procedures for Outsourced Service Providers (ABS Guidelines) 
demonstrates to customers AWS commitment to meeting the high expectations for cloud service 
providers set by the financial services industry in Singapore. For more information, see  OSPAR 
Resources

Compliance standards 302

https://aws.amazon.com/compliance/OSPAR/
https://aws.amazon.com/compliance/OSPAR/


AWS Secrets Manager User Guide

Security in AWS Secrets Manager

Security at AWS is the highest priority. As an AWS customer, you benefit from a data center and 
network architecture built to meet the requirements of the most security-sensitive organizations.

You and AWS share the responsibility for security. The shared responsibility model describes this as 
security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services you can use securely. Third-party 
auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance 
Programs. To learn about the compliance programs that apply to AWS Secrets Manager, see AWS 
Services in Scope by Compliance Program.

• Security in the cloud – Your AWS service determines your responsibility. You are also responsible 
for other factors including the sensitivity of your data, your company’s requirements, and 
applicable laws and regulations.

For more resources, see  Security Pillar – AWS Well-Architected Framework.

Topics

• Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets

• Authentication and access control for AWS Secrets Manager

• Data protection in AWS Secrets Manager

• Secret encryption and decryption in AWS Secrets Manager

• Infrastructure security in AWS Secrets Manager

• Using an AWS Secrets Manager VPC endpoint

• Control API access with IAM policies

• Resiliency in AWS Secrets Manager

• Post-quantum TLS

303

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html


AWS Secrets Manager User Guide

Mitigate the risks of using the AWS CLI to store your AWS 
Secrets Manager secrets

When you use the AWS Command Line Interface (AWS CLI) to invoke AWS operations, you enter 
those commands in a command shell. For example, you can use the Windows command prompt or 
Windows PowerShell, or the Bash or Z shell, among others. Many of these command shells include 
functionality designed to increase productivity. But this functionality can be used to compromise 
your secrets. For example, in most shells, you can use the up arrow key to see the last entered 
command. The command history feature can be exploited by anyone who accesses your unsecured 
session. Also, other utilities that work in the background might have access to your command 
parameters, with the intended goal of helping you perform your tasks more efficiently. To mitigate 
such risks, ensure you take the following steps:

• Always lock your computer when you walk away from your console.

• Uninstall or disable console utilities you don't need or no longer use.

• Ensure the shell or the remote access program, if you are using one or the other, don't log typed 
commands.

• Use techniques to pass parameters not captured by the shell command history. The following 
example shows how you can type the secret text into a text file, and then pass the file to the 
AWS Secrets Manager command and immediately destroy the file. This means the typical shell 
history doesn't capture the secret text.

The following example shows typical Linux commands but your shell might require slightly 
different commands:

$ touch secret.txt                                                                    
        # Creates an empty text file
$ chmod go-rx secret.txt                                                              
        # Restricts access to the file to only the user
$ cat > secret.txt                                                                    
        # Redirects standard input (STDIN) to the text file
ThisIsMyTopSecretPassword^D                                                           
        # Everything the user types from this point up to the CTRL-D (^D) is saved in 
 the file
$ aws secretsmanager create-secret --name TestSecret --secret-string file://
secret.txt       # The Secrets Manager command takes the --secret-string parameter 
 from the contents of the file

Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 304



AWS Secrets Manager User Guide

$ shred -u secret.txt                                                                 
        # The file is destroyed so it can no longer be accessed.

After you run these commands, you should be able to use the up and down arrows to scroll 
through the command history and see that the secret text isn't displayed on any line.

Important

By default, you can't perform an equivalent technique in Windows unless you first reduce 
the size of the command history buffer to 1.

To configure the Windows Command Prompt to have only 1 command history buffer of 1 
command

1. Open an Administrator command prompt (Run as administrator).

2. Choose the icon in the upper left and then choose Properties.

3. On the Options tab, set Buffer Size and Number of Buffers both to 1, and then choose OK.

4. Whenever you have to type a command you don't want in the history, immediately follow it 
with one other command, such as:

echo.

This ensures you flush the sensitive command.

For the Windows Command Prompt shell, you can download the SysInternals SDelete tool, and 
then use commands similar to the following:

C:\> echo. 2> secret.txt                                                                
        # Creates an empty file
C:\> icacls secret.txt /remove "BUILTIN\Administrators" "NT AUTHORITY/SYSTEM" /
inheritance:r   # Restricts access to the file to only the owner
C:\> copy con secret.txt /y                                                             
        # Redirects the keyboard to text file, suppressing prompt to overwrite
THIS IS MY TOP SECRET PASSWORD^Z                                                        
      # Everything the user types from this point up to the CTRL-Z (^Z) is saved in the 
 file

Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 305

https://docs.microsoft.com/en-us/sysinternals/downloads/sdelete


AWS Secrets Manager User Guide

C:\> aws secretsmanager create-secret --name TestSecret --secret-string file://
secret.txt      # The Secrets Manager command takes the --secret-string parameter from 
 the contents of the file
C:\> sdelete secret.txt                                                                 
        # The file is destroyed so it can no longer be accessed.

Authentication and access control for AWS Secrets Manager

Secrets Manager uses AWS Identity and Access Management (IAM) to secure access to secrets. 
IAM provides authentication and access control. Authentication verifies the identity of individuals' 
requests. Secrets Manager uses a sign-in process with passwords, access keys, and multi-factor 
authentication (MFA) tokens to verify the identity of the users. See Signing in to AWS. Access 
control ensures that only approved individuals can perform operations on AWS resources such 
as secrets. Secrets Manager uses policies to define who has access to which resources, and which 
actions the identity can take on those resources. See Policies and permissions in IAM.

Topics

• Permissions reference for AWS Secrets Manager

• Secrets Manager administrator permissions

• Permissions to access secrets

• Permissions for Lambda rotation functions

• Permissions for encryption keys

• Permissions for replication

• Identity-based policies

• Resource-based policies

• Control access to secrets using attribute-based access control (ABAC)

• AWS managed policy for AWS Secrets Manager

• Determine who has permissions to your AWS Secrets Manager secrets

• Access AWS Secrets Manager secrets from a different account

• Access secrets from an on-premises environment

Permissions reference for AWS Secrets Manager

The permissions reference for Secrets Manager is available at Actions, resources, and condition keys 
for AWS Secrets Manager in the Service Authorization Reference.

Authentication and access control 306

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecretsmanager.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awssecretsmanager.html


AWS Secrets Manager User Guide

Secrets Manager administrator permissions

To grant Secrets Manager administrator permissions, follow the instructions at Adding and 
removing IAM identity permissions, and attach the following policies:

• SecretsManagerReadWrite

• IAMFullAccess

We recommend you do not grant administrator permissions to end users. While this allows 
your users to create and manage their secrets, the permission required to enable rotation 
(IAMFullAccess) grants significant permissions that are not appropriate for end users.

Permissions to access secrets

By using IAM permission policies, you control which users or services have access to your secrets. A
permissions policy describes who can perform which actions on which resources. You can:

• the section called “Identity-based policies”

• the section called “Resource-based policies”

Permissions for Lambda rotation functions

Secrets Manager uses AWS Lambda functions to rotate secrets. The Lambda function must have 
access to the secret as well as the database or service that the secret contains credentials for. See
Permissions for rotation.

Permissions for encryption keys

Secrets Manager uses AWS Key Management Service (AWS KMS) keys to encrypt secrets. The 
AWS managed key aws/secretsmanager automatically has the correct permissions. If you 
use a different KMS key, Secrets Manager needs permissions to that key. See the section called 
“Permissions for the KMS key”.

Permissions for replication

By using IAM permission policies, you control which users or services can replicate your secrets to 
other Regions. See the section called “Prevent replication”.

Secrets Manager administrator permissions 307

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html


AWS Secrets Manager User Guide

Identity-based policies

You can attach permissions policies to IAM identities: users, user groups, and roles. In an identity-
based policy, you specify which secrets the identity can access and the actions the identity can 
perform on the secrets. For more information, see Adding and removing IAM identity permissions.

You can grant permissions to a role that represents an application or user in another service. For 
example, an application running on an Amazon EC2 instance might need access to a database. You 
can create an IAM role attached to the EC2 instance profile and then use a permissions policy to 
grant the role access to the secret that contains credentials for the database. For more information, 
see Using an IAM role to grant permissions to applications running on Amazon EC2 instances. 
Other services that you can attach roles to include Amazon Redshift, AWS Lambda, and Amazon 
ECS.

You can also grant permissions to users authenticated by an identity system other than IAM. For 
example, you can associate IAM roles to mobile app users who sign in with Amazon Cognito. The 
role grants the app temporary credentials with the permissions in the role permission policy. Then 
you can use a permissions policy to grant the role access to the secret. For more information, see
Identity providers and federation.

You can use identity-based policies to:

• Grant an identity access to multiple secrets.

• Control who can create new secrets, and who can access secrets that haven't been created yet.

• Grant an IAM group access to secrets.

Examples:

• Example: Permission to retrieve individual secret values

• Example: Permission to read and describe individual secrets

• Example: Permission to retrieve a group of secret values in a batch

• Example: Wildcards

• Example: Permission to create secrets

• Example: Deny a specific AWS KMS key to encrypt secrets

Identity-based policies 308

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/redshift/latest/dg/c-getting-started-using-spectrum.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html


AWS Secrets Manager User Guide

Example: Permission to retrieve individual secret values

To grant permission to retrieve secret values, you can attach policies to secrets or identities. For 
help determining which type of policy to use, see Identity-based policies and resource-based 
policies. For information about how to attach a policy, see the section called “Resource-based 
policies” and the section called “Identity-based policies”.

This example is useful when you want to grant access to an IAM group. To grant permission to 
retrieve a group of secrets in a batch API call, see the section called “Example: Permission to 
retrieve a group of secret values in a batch”.

Example Read a secret that is encrypted using a customer managed key

If a secret is encrypted using a customer managed key, you can grant access to read the secret by 
attaching the following policy to an identity. \

JSON

{
"Version":"2012-10-17",        
"Statement": [
{ 
  "Effect": "Allow", 
  "Action": "secretsmanager:GetSecretValue", 
  "Resource": "arn:aws:secretsmanager:us-east-1:123456789012:secret:secretName-
AbCdEf"
},
{ 
  "Effect": "Allow", 
  "Action": "kms:Decrypt", 
  "Resource": "arn:aws:kms:us-east-1:123456789012:key/key-id"
}
]
}

Example: Permission to read and describe individual secrets

Example Read and describe one secret

You can grant access to a secret by attaching the following policy to an identity.

Identity-based policies 309

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html


AWS Secrets Manager User Guide

JSON

{
"Version":"2012-10-17",        
"Statement": [ 
  { 
    "Effect": "Allow", 
    "Action": [ 
      "secretsmanager:GetSecretValue", 
      "secretsmanager:DescribeSecret" 
      ], 
      "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName-AbCdEf" 
    }
]
}

Example: Permission to retrieve a group of secret values in a batch

Example Read a group of secrets in a batch

You can grant access to retrieve a group of secrets in a batch API call by attaching the following 
policy to an identity. The policy restricts the caller so that they can only retrieve the secrets 
specified by SecretARN1, SecretARN2, and SecretARN3, even if the batch call includes other 
secrets. If the caller also requests other secrets in the batch API call, Secrets Manager won't return 
them. For more information, see BatchGetSecretValue..

JSON

{
"Version":"2012-10-17",        
"Statement": [
{ 
  "Effect": "Allow", 
  "Action": [ 
    "secretsmanager:BatchGetSecretValue", 
    "secretsmanager:ListSecrets" 
  ], 
  "Resource": "*"
},

Identity-based policies 310

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html


AWS Secrets Manager User Guide

{ 
  "Effect": "Allow", 
  "Action": [ 
    "secretsmanager:GetSecretValue" 
  ], 
  "Resource": [ 
    "arn:aws:secretsmanager:us-east-1:123456789012:secret:secretName1-AbCdEf", 
    "arn:aws:secretsmanager:us-east-1:123456789012:secret:secretName2-AbCdEf", 
    "arn:aws:secretsmanager:us-east-1:123456789012:secret:secretName3-AbCdEf" 
    ]
}
]
}

Example: Wildcards

You can use wildcards to include a set of values in a policy element.

Example Access all secrets in a path

The following policy grants access to retrieve all secrets with a name beginning with "TestEnv/".

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": { 
        "Effect": "Allow", 
        "Action": "secretsmanager:GetSecretValue", 
        "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:TestEnv/*" 
    }
}

Example Access metadata on all secrets

The following policy grants DescribeSecret and permissions beginning with List:
ListSecrets and ListSecretVersionIds.

Identity-based policies 311



AWS Secrets Manager User Guide

JSON

{
"Version":"2012-10-17",        
"Statement": {
"Effect": "Allow",
"Action": [ 
  "secretsmanager:DescribeSecret", 
  "secretsmanager:List*"
],
"Resource": "*"
}
}

Example Match secret name

The following policy grants all Secrets Manager permissions for a secret by name. To use this 
policy, see the section called “Identity-based policies”.

To match a secret name, you create the ARN for the secret by putting together the Region, 
Account ID, secret name, and the wildcard (?) to match individual random characters. Secrets 
Manager appends six random characters to secret names as part of their ARN, so you can use this 
wildcard to match those characters. If you use the syntax "another_secret_name-*", Secrets 
Manager matches not only the intended secret with the 6 random characters, but also matches
"another_secret_name-<anything-here>a1b2c3".

Because you can predict all of the parts of the ARN of a secret except the 6 random characters, 
using the wildcard character '??????' syntax enables you to securely grant permissions to a 
secret that doesn't yet exist. Be aware, however, if you delete the secret and recreate it with the 
same name, the user automatically receives permission to the new secret, even though the 6 
characters changed.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 

Identity-based policies 312



AWS Secrets Manager User Guide

            "Effect": "Allow", 
            "Action": "secretsmanager:*", 
            "Resource": [ 
                "arn:aws:secretsmanager:us-
east-1:123456789012:secret:a_specific_secret_name-a1b2c3", 
                "arn:aws:secretsmanager:us-
east-1:123456789012:secret:another_secret_name-??????" 
            ] 
        } 
    ]
}

Example: Permission to create secrets

To grant a user permissions to create a secret, we recommend you attach a permissions policy to an 
IAM group the user belongs to. See IAM user groups.

Example Create secrets

The following policy grants permission to create secrets and view a list of secrets. To use this policy, 
see the section called “Identity-based policies”.

JSON

{
"Version":"2012-10-17",        
"Statement": [
{ 
  "Effect": "Allow", 
  "Action": [ 
    "secretsmanager:CreateSecret", 
    "secretsmanager:ListSecrets" 
  ], 
  "Resource": "*"
}
]
}

Identity-based policies 313

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html


AWS Secrets Manager User Guide

Example: Deny a specific AWS KMS key to encrypt secrets

Important

To deny a customer managed key, we recommend you restrict access using a key policy or 
key grant. For more information, see Authentication and access control for AWS KMS in the
AWS Key Management Service Developer Guide.

Example Deny the AWS managed key aws/secretsmanager

The following policy denies the use of the AWS managed key aws/secretsmanager for creating 
or updating secrets. This policy requires secrets to be encrypted using a customer managed key. 
The policy includes two statements:

1. The first statement, Sid: "RequireCustomerManagedKeysOnSecrets", denies requests for 
creating or updating secrets using the AWS managed key aws/secretsmanager.

2. The second statement, Sid: "RequireKmsKeyIdParameterOnCreate", denies requests for 
creating secrets that don't include a KMS key, because Secrets Manager would default to using 
the AWS managed key aws/secretsmanager.

JSON

{
"Version":"2012-10-17",        
"Statement": [ 
  { 
      "Sid": "RequireCustomerManagedKeysOnSecrets", 
      "Effect": "Deny", 
      "Action": [ 
          "secretsmanager:CreateSecret", 
          "secretsmanager:UpdateSecret" 
      ], 
      "Resource": "*", 
      "Condition": { 
          "StringLikeIfExists": { 
              "secretsmanager:KmsKeyArn": "<key_ARN_of_the_AWS_managed_key>" 
          } 
      } 

Identity-based policies 314

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html


AWS Secrets Manager User Guide

  }, 
  { 
      "Sid": "RequireKmsKeyIdParameterOnCreate", 
      "Effect": "Deny", 
      "Action": "secretsmanager:CreateSecret", 
      "Resource": "*", 
      "Condition": { 
          "Null": { 
              "secretsmanager:KmsKeyArn": "true" 
          } 
      } 
  }
]
}

Resource-based policies

In a resource-based policy, you specify who can access the secret and the actions they can perform 
on the secret. You can use resource-based policies to:

• Grant access to a single secret to multiple users and roles.

• Grant access to users or roles in other AWS accounts.

When you attach a resource-based policy to a secret in the console, Secrets Manager uses the 
automated reasoning engine Zelkova and the API ValidateResourcePolicy to prevent you 
from granting a wide range of IAM principals access to your secrets. Alternatively, you can call the
PutResourcePolicy API with the BlockPublicPolicy parameter from the CLI or SDK.

Important

Resource policy validation and the BlockPublicPolicy parameter help protect your 
resources by preventing public access from being granted through the resource policies 
that are directly attached to your secrets. In addition to using these features, carefully 
inspect the following policies to confirm that they do not grant public access:

• Identity-based policies attached to associated AWS principals (for example, IAM roles)

• Resource-based policies attached to associated AWS resources (for example, AWS Key 
Management Service (AWS KMS) keys)

Resource-based policies 315

https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/


AWS Secrets Manager User Guide

To review permissions to your secrets, see Determine who has permissions to your secrets.

To view, change, or delete the resource policy for a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, on the Overview tab, in the Resource permissions section, choose
Edit permissions.

4. In the code field, do one of the following, and then choose Save:

• To attach or modify a resource policy, enter the policy.

• To delete the policy, clear the code field.

AWS CLI

Example Retrieve a resource policy

The following get-resource-policy example retrieves the resource-based policy attached to a 
secret.

aws secretsmanager get-resource-policy \ 
    --secret-id MyTestSecret

Example Delete a resource policy

The following delete-resource-policy example deletes the resource-based policy attached to 
a secret.

aws secretsmanager delete-resource-policy \ 
    --secret-id MyTestSecret

Example Add a resource policy

The following put-resource-policy example adds a permissions policy to a secret, checking 
first that the policy does not provide broad access to the secret. The policy is read from a file. For 
more information, see Loading AWS CLI parameters from a file in the AWS CLI User Guide.

Resource-based policies 316

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-resource-policy.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/delete-resource-policy.html
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/put-resource-policy.html
https://docs.aws.amazon.com//cli/latest/userguide/cli-usage-parameters-file.html


AWS Secrets Manager User Guide

aws secretsmanager put-resource-policy \ 
    --secret-id MyTestSecret \ 
    --resource-policy file://mypolicy.json \ 
    --block-public-policy

Contents of mypolicy.json:

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "AWS": "arn:aws:iam::123456789012:role/MyRole" 
            }, 
            "Action": "secretsmanager:GetSecretValue", 
            "Resource": "*" 
        } 
    ]
}

AWS SDK

To retrieve the policy attached to a secret, use GetResourcePolicy.

To delete a policy attached to a secret, use DeleteResourcePolicy.

To attach a policy to a secret, use PutResourcePolicy. If there is already a policy attached, the 
command replaces it with the new policy. The policy must be formatted as JSON structured text. 
See JSON policy document structure.

For more information, see the section called “AWS SDKs”.

Examples

Examples:

• Example: Permission to retrieve individual secret values

• Example: Permissions and VPCs

Resource-based policies 317

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies-introduction


AWS Secrets Manager User Guide

• Example: Service principal

Example: Permission to retrieve individual secret values

To grant permission to retrieve secret values, you can attach policies to secrets or identities. For 
help determining which type of policy to use, see Identity-based policies and resource-based 
policies. For information about how to attach a policy, see the section called “Resource-based 
policies” and the section called “Identity-based policies”.

This example is useful when you want to grant access to a single secret to multiple users or 
roles. To grant permission to retrieve a group of secrets in a batch API call, see the section called 
“Example: Permission to retrieve a group of secret values in a batch”.

Example Read one secret

You can grant access to a secret by attaching the following policy to the secret.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "AWS": "arn:aws:iam::111122223333:role/EC2RoleToAccessSecrets" 
            }, 
            "Action": "secretsmanager:GetSecretValue", 
            "Resource": "*" 
        } 
    ]
}

Example: Permissions and VPCs

If you need to access Secrets Manager from within a VPC, you can make sure that requests to 
Secrets Manager come from the VPC by including a condition in your permissions policies. For 
more information, see Limit requests with VPC endpoint conditions and the section called “VPC 
endpoints (AWS PrivateLink)”.

Resource-based policies 318

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html


AWS Secrets Manager User Guide

Make sure that requests to access the secret from other AWS services also come from the VPC, 
otherwise this policy will deny them access.

Example Require requests to come through a VPC endpoint

The following policy allows a user to perform Secrets Manager operations only when the request 
comes through the VPC endpoint vpce-1234a5678b9012c.

JSON

{
"Id": "example-policy-1",
"Version":"2012-10-17",        
"Statement": [
{ 
  "Sid": "RestrictGetSecretValueoperation", 
  "Effect": "Deny", 
  "Principal": "*", 
  "Action": "secretsmanager:GetSecretValue", 
  "Resource": "*", 
  "Condition": { 
    "StringNotEquals": { 
      "aws:sourceVpce": "vpce-12345678"
    } 
  }
}
]
}

Example Require requests to come from a VPC

The following policy allows commands to create and manage secrets only when they come from
vpc-12345678. In addition, the policy allows operations that use access the secret encrypted 
value only when the requests come from vpc-2b2b2b2b. You might use a policy like this one if 
you run an application in one VPC, but you use a second, isolated VPC for management functions.

JSON

{
"Id": "example-policy-2",

Resource-based policies 319



AWS Secrets Manager User Guide

"Version":"2012-10-17",        
"Statement": [
{ 
  "Sid": "AllowAdministrativeActionsfromONLYvpc-12345678", 
  "Effect": "Deny", 
  "Principal": "*", 
  "Action": [ 
    "secretsmanager:Create*", 
    "secretsmanager:Put*", 
    "secretsmanager:Update*", 
    "secretsmanager:Delete*", 
    "secretsmanager:Restore*", 
    "secretsmanager:RotateSecret", 
    "secretsmanager:CancelRotate*", 
    "secretsmanager:TagResource", 
    "secretsmanager:UntagResource" 
  ], 
  "Resource": "*", 
  "Condition": { 
    "StringNotEquals": { 
      "aws:sourceVpc": "vpc-12345678" 
    } 
  }
},
{ 
  "Sid": "AllowSecretValueAccessfromONLYvpc-2b2b2b2b", 
  "Effect": "Deny", 
  "Principal": "*", 
  "Action": [ 
    "secretsmanager:GetSecretValue" 
  ], 
  "Resource": "*", 
  "Condition": { 
    "StringNotEquals": { 
      "aws:sourceVpc": "vpc-2b2b2b2b" 
    } 
  }
}
]
}

Resource-based policies 320



AWS Secrets Manager User Guide

Example: Service principal

If the resource policy attached to your secret includes an AWS service principal, we recommend 
that you use the aws:SourceArn and aws:SourceAccount global condition keys. The ARN and 
account values are included in the authorization context only when a request comes to Secrets 
Manager from another AWS service. This combination of conditions avoids a potential confused 
deputy scenario.

If a resource ARN includes characters that are not permitted in a resource policy, you cannot 
use that resource ARN in the value of the aws:SourceArn condition key. Instead, use the
aws:SourceAccount condition key. For more information, see IAM requirements.

Service principals are not typically used as principals in a policy attached to a secret, but some AWS 
services require it. For information about resource policies that a service requires you to attach to a 
secret, see the service's documentation.

Example Allow a service to access a secret using a service principal

JSON

{
"Version":"2012-10-17",        
"Statement": [
{ 
  "Effect": "Allow", 
  "Principal": { 
    "Service": [ 
      "s3.amazonaws.com" 
    ] 
  }, 
  "Action": "secretsmanager:GetSecretValue", 
  "Resource": "*", 
  "Condition": { 
    "ArnLike": { 
      "aws:sourceArn": "arn:aws:s3::123456789012:*" 
    }, 
    "StringEquals": { 
      "aws:sourceAccount": "123456789012" 
    } 
  }

Resource-based policies 321

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-names


AWS Secrets Manager User Guide

}
]
}

Control access to secrets using attribute-based access control (ABAC)

Attribute-based access control (ABAC) is an authorization strategy that defines permissions 
based on attributes or characteristics of the user, the data, or the environment, such as the 
department, business unit, or other factors that could affect the authorization outcome. In AWS, 
these attributes are called tags.

Using tags to control permissions is helpful in environments that are growing rapidly and helps 
with situations where policy management becomes cumbersome. ABAC rules are evaluated 
dynamically at runtime, which means that the users' access to applications and data and the 
type of allowed operations automatically change based on the contextual factors in the policy. 
For example, if a user changes department, access is automatically adjusted without the need 
to update permissions or request new roles. For more information, see: What is ABAC for AWS?,
Define permissions to access secrets based on tags., and Scale your authorization needs for Secrets 
Manager using ABAC with IAM Identity Center.

Example: Allow an identity access to secrets that have specific tags

The following policy allows DescribeSecret access on secrets with a tag with the key
ServerName and the value ServerABC. If you attach this policy to an identity, the identity has 
permission to any secrets with that tag in the account.

JSON

{ 
  "Version":"2012-10-17",        
  "Statement": { 
  "Effect": "Allow", 
  "Action": "secretsmanager:DescribeSecret", 
  "Resource": "*", 
  "Condition": { 
    "StringEquals": { 
      "secretsmanager:ResourceTag/ServerName": "ServerABC" 
      } 
    } 

Control access to secrets using tags 322

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://aws.amazon.com/blogs/security/scale-your-authorization-needs-for-secrets-manager-using-abac-with-iam-identity-center/
https://aws.amazon.com/blogs/security/scale-your-authorization-needs-for-secrets-manager-using-abac-with-iam-identity-center/


AWS Secrets Manager User Guide

  }
}

Example: Allow access only to identities with tags that match secrets' tags

The following policy allows any identities in the account GetSecretValue access to any secrets 
in the account where the identity's AccessProject tag has the same value as the secret's
AccessProject tag.

JSON

{ 
  "Version":"2012-10-17",        
  "Statement": { 
  "Effect": "Allow", 
  "Principal": { 
    "AWS": "123456789012" 
  }, 
  "Condition": { 
    "StringEquals": { 
      "aws:ResourceTag/AccessProject": "${ aws:PrincipalTag/AccessProject }" 
    } 
  }, 
  "Action": "secretsmanager:GetSecretValue", 
  "Resource": "*" 
  }
}

AWS managed policy for AWS Secrets Manager

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS 
managed policies are designed to provide permissions for many common use cases so that you can 
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your 
specific use cases because they're available for all AWS customers to use. We recommend that you 
reduce permissions further by defining  customer managed policies that are specific to your use 
cases.

AWS managed policies 323

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies


AWS Secrets Manager User Guide

You cannot change the permissions defined in AWS managed policies. If AWS updates the 
permissions defined in an AWS managed policy, the update affects all principal identities (users, 
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed 
policy when a new AWS service is launched or new API operations become available for existing 
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: SecretsManagerReadWrite

This policy provides read/write access to AWS Secrets Manager, including permission to describe 
Amazon RDS, Amazon Redshift, and Amazon DocumentDB resources, and permission to use 
AWS KMS to encrypt and decrypt secrets. This policy also provides permission to create AWS 
CloudFormation change sets, get rotation templates from an Amazon S3 bucket that is managed 
by AWS, list AWS Lambda functions, and describe Amazon EC2 VPCs. These permissions are 
required by the console to set up rotation with existing rotation functions.

To create new rotation functions, you must also have permission to create AWS CloudFormation 
stacks and AWS Lambda execution roles. You can assign the IAMFullAccess managed policy. See
Permissions for rotation.

Permissions details

This policy includes the following permissions.

• secretsmanager – Allows principals to perform all Secrets Manager actions.

• cloudformation – Allows principals to create CloudFormation stacks. This is required so that 
principals using the console to turn on rotation can create Lambda rotation functions through 
CloudFormation stacks. For more information, see the section called “How Secrets Manager uses 
CloudFormation”.

• ec2 – Allows principals to describe Amazon EC2 VPCs. This is required so that principals using 
the console can create rotation functions in the same VPC as the database of the credentials they 
are storing in a secret.

• kms – Allows principals to use AWS KMS keys for cryptographic operations. This is required so 
that Secrets Manager can encrypt and decrypt secrets. For more information, see the section 
called “Secret encryption and decryption”.

AWS managed policies 324

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/IAMFullAccess.html


AWS Secrets Manager User Guide

• lambda – Allows principals to list Lambda rotation functions. This is required so that principals 
using the console can choose existing rotation functions.

• rds – Allows principals to describe clusters and instances in Amazon RDS. This is required so that 
principals using the console can choose Amazon RDS clusters or instances.

• redshift – Allows principals to describe clusters in Amazon Redshift. This is required so that 
principals using the console can choose Amazon Redshift clusters.

• redshift-serverless – Allows principals to describe namespaces in Amazon Redshift 
Serverless. This is required so that principals using the console can choose Amazon Redshift 
Serverless namespaces.

• docdb-elastic – Allows principals to describe elastic clusters in Amazon DocumentDB. This is 
required so that principals using the console can choose Amazon DocumentDB elastic clusters.

• tag – Allows principals to get all resources in the account that are tagged.

• serverlessrepo – Allows principals to create CloudFormation change sets. This is required so 
that principals using the console can create Lambda rotation functions. For more information, 
see the section called “How Secrets Manager uses CloudFormation”.

• s3 – Allows principals to get objects from an Amazon S3 bucket that is managed by AWS. 
This bucket contains Lambda Rotation function templates. This permission is required so that 
principals using the console can create Lambda rotation functions based on the templates 
in the bucket. For more information, see the section called “How Secrets Manager uses 
CloudFormation”.

To view the policy, see SecretsManagerReadWrite JSON policy document.

AWS managed policy: AWSSecretsManagerClientReadOnlyAccess

This policy provides read-only access to AWS Secrets Manager secrets for client applications. It 
allows principals to retrieve secret values and describe secret metadata, along with the necessary 
AWS KMS permissions to decrypt secrets that are encrypted with customer-managed keys.

Permissions details

This policy includes the following permissions.

• secretsmanager – Allows principals to retrieve secret values and describe secret metadata.

• kms – Allows principals to decrypt secrets using AWS KMS keys. This permission is scoped to keys 
used by Secrets Manager through service-specific conditions.

AWS managed policies 325

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/SecretsManagerReadWrite.html#SecretsManagerReadWrite-json


AWS Secrets Manager User Guide

To view more details about the policy, including the latest version of the JSON policy document, 
see AWSSecretsManagerClientReadOnlyAccess in the AWS Managed Policy Reference Guide.

Secrets Manager updates to AWS managed policies

View details about updates to AWS managed policies for Secrets Manager.

Change Description Date Version

AWSSecretsManagerC 
lientReadOnlyAcces 
s – New managed 
policy

Secrets Manager 
created a new 
managed policy to 
provide read-only 
access to secrets for 
client applications. 
This policy allows 
retrieving secret 
values and describing 
secret metadata, with 
the necessary AWS 
KMS permissions to 
decrypt secrets.

November 5, 2025 v1

SecretsManagerRead 
Write – Update to an 
existing policy

This policy was 
updated to allow 
describe access to 
Amazon Redshift 
Serverless so that 
console users can 
choose a Amazon 
Redshift Serverles 
s namespace when 
they create an 
Amazon Redshift 
secret.

March 12, 2024 v5

AWS managed policies 326

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AWSSecretsManagerClientReadOnlyAccess.html


AWS Secrets Manager User Guide

Change Description Date Version

SecretsManagerRead 
Write – Update to an 
existing policy

This policy was 
updated to allow 
describe access to 
Amazon DocumentD 
B elastic clusters so 
that console users 
can choose an elastic 
cluster when they 
create an Amazon 
DocumentDB secret.

September 12, 2023 v4

SecretsManagerRead 
Write – Update to an 
existing policy

This policy was 
updated to allow 
describe access to 
Amazon Redshift 
so that console 
users can choose a 
Amazon Redshift 
cluster when they 
create an Amazon 
Redshift secret. The 
update also added 
new permissions to 
allow read access 
to an Amazon S3 
bucket managed by 
AWS that stores the 
Lambda rotation 
function templates.

June 24, 2020 v3

AWS managed policies 327



AWS Secrets Manager User Guide

Change Description Date Version

SecretsManagerRead 
Write – Update to an 
existing policy

This policy was 
updated to allow 
describe access to 
Amazon RDS clusters 
so that console users 
can choose a cluster 
when they create an 
Amazon RDS secret.

May 3, 2018 v2

SecretsManagerRead 
Write – New policy

Secrets Manager 
created a policy to 
grant permissions 
that are needed for 
using the console 
with all read/writ 
e access to Secrets 
Manager.

April 04, 2018 v1

Determine who has permissions to your AWS Secrets Manager secrets

By default, IAM identities don't have permission to access secrets. When authorizing access to a 
secret, Secrets Manager evaluates the resource-based policy attached to the secret and all identity-
based policies attached to the IAM user or role sending the request. To do this, Secrets Manager 
uses a process similar to the one described in Determining whether a request is allowed or denied
in the IAM User Guide.

When multiple policies apply to a request, Secrets Manager uses a hierarchy to control permissions:

1. If a statement in any policy with an explicit deny matches the request action and resource:

The explicit deny overrides everything else and blocks the action.

2. If there is no explicit deny, but a statement with an explicit allow matches the request action 
and resource:

The explicit allow grants the action in the request access to the resources in the statement.

Determine who has permissions to your secrets 328

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow


AWS Secrets Manager User Guide

If the identity and the secret are in two different accounts, there must be an allow in both the 
resource policy for the secret and the policy attached to the identity, otherwise AWS denies the 
request. For more information, see Cross-account access.

3. If there is no statement with an explicit allow that matches the request action and resource:

AWS denies the request by default, which is called an implicit deny.

To view the resource-based policy for a secret

• Do one of the following:

• Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/. 
In the secret details page for your secret, in the Resource permissions section, choose Edit 
permissions.

• Use the AWS CLI to call get-resource-policy or AWS SDK to call
GetResourcePolicy.

To determine who has access through identity-based policies

• Use the IAM policy simulator. See Testing IAM policies with the IAM policy simulator

Access AWS Secrets Manager secrets from a different account

To allow users in one account to access secrets in another account (cross-account access), you must 
allow access both in a resource policy and in an identity policy. This is different than granting 
access to identities in the same account as the secret.

Cross-account permission is effective only for the following operations:

• CancelRotateSecret

• DeleteResourcePolicy

• DeleteSecret

• DescribeSecret

• GetRandomPassword

• GetResourcePolicy

• GetSecretValue

Cross-account access 329

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/get-resource-policy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_CancelRotateSecret.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_DeleteSecret.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_DescribeSecret.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_GetRandomPassword.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_GetSecretValue.html


AWS Secrets Manager User Guide

• ListSecretVersionIds

• PutResourcePolicy

• PutSecretValue

• RemoveRegionsFromReplication

• ReplicateSecretToRegions

• RestoreSecret

• RotateSecret

• StopReplicationToReplica

• TagResource

• UntagResource

• UpdateSecret

• UpdateSecretVersionStage

• ValidateResourcePolicy

You can use the BlockPublicPolicy parameter with the PutResourcePolicy action to help 
protect your resources by preventing public access from being granted through the resource 
policies that are directly attached to your secrets. You can also use IAM Access Analyzer to verify 
cross-account access.

You must also allow the identity to use the KMS key that the secret is encrypted with. This is 
because you can't use the AWS managed key (aws/secretsmanager) for cross-account access. 
Instead, you must encrypt your secret with a KMS key that you create, and then attach a key policy 
to it. There is a charge for creating KMS keys. To change the encryption key for a secret, see the 
section called “Modify a secret”.

Important

Resource-based policies granting secretsmanager:PutResourcePolicy permission 
gives principals, even those in other accounts, the ability to modify your resource-based 
policies. This permission lets principals escalate existing permissions like obtaining full 
administrative access to secrets. We recommend you apply the principle of least privileged 
access to your policies. For more information, see Resource-based policies.

Cross-account access 330

https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_ListSecretVersionIds.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_RemoveRegionsFromReplication.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_RestoreSecret.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_ValidateResourcePolicy.html
https://docs.aws.amazon.com//secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-preview-access
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege


AWS Secrets Manager User Guide

The following example policies assume you have a secret and encryption key in Account1, and an 
identity in Account2 that you want to allow to access the secret value.

Step 1: Attach a resource policy to the secret in Account1

• The following policy allows ApplicationRole in Account2 to access the secret in
Account1. To use this policy, see the section called “Resource-based policies”.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Principal": { 
                "AWS": "arn:aws:iam::111122223333:role/ApplicationRole" 
            }, 
            "Action": "secretsmanager:GetSecretValue", 
            "Resource": "*" 
        } 
    ]
}

Step 2: Add a statement to the key policy for the KMS key in Account1

• The following key policy statement allows ApplicationRole in Account2 to use the KMS 
key in Account1 to decrypt the secret in Account1. To use this statement, add it to the key 
policy for your KMS key. For more information, see Changing a key policy.

{ 
  "Effect": "Allow", 
  "Principal": { 
    "AWS": "arn:aws:iam::Account2:role/ApplicationRole" 
  }, 
  "Action": [ 
    "kms:Decrypt", 
    "kms:DescribeKey" 
  ], 
  "Resource": "*"

Cross-account access 331

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html


AWS Secrets Manager User Guide

}

Step 3: Attach an identity policy to the identity in Account2

• The following policy allows ApplicationRole in Account2 to access the secret in Account1
and decrypt the secret value by using the encryption key which is also in Account1. To 
use this policy, see the section called “Identity-based policies”. You can find the ARN for 
your secret in the Secrets Manager console on the secret details page under Secret ARN. 
Alternatively, you can call describe-secret.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": "secretsmanager:GetSecretValue", 
            "Resource": "arn:aws:secretsmanager:us-
east-1:123456789012:secret:secretName-AbCdEf" 
        }, 
        { 
            "Effect": "Allow", 
            "Action": "kms:Decrypt", 
            "Resource": "arn:aws:kms:us-
east-1:123456789012:key/EncryptionKey" 
        } 
    ]
}

Access secrets from an on-premises environment

You can use AWS Identity and Access Management Roles Anywhere to obtain temporary security 
credentials in IAM for workloads such as servers, containers, and applications that run outside 
of AWS. Your workloads can use the same IAM policies and IAM roles that you use with AWS 
applications to access AWS resources. With IAM Roles Anywhere, you can use Secrets Manager to 
store and manage credentials that can be accessed by resources in AWS as well as on-premises 
devices such as application servers. For more information, see the IAM Roles Anywhere User Guide.

On-premises access 332

https://docs.aws.amazon.com//cli/latest/reference/secretsmanager/describe-secret.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html


AWS Secrets Manager User Guide

Data protection in AWS Secrets Manager

The AWS shared responsibility model applies to data protection in AWS Secrets Manager. As 
described in this model, AWS is responsible for protecting the global infrastructure that runs all 
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on 
this infrastructure. This content includes the security configuration and management tasks for the 
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For 
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up 
individual user accounts with AWS Identity and Access Management (IAM). That way each user is 
given only the permissions necessary to fulfill their job duties. We also recommend that you secure 
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. Secrets Manager supports TLS 1.2 and 1.3 in 
all Regions. Secrets Manager also supports a hybrid post-quantum key exchange option for TLS 
(PQTLS) network encryption protocol.

• Sign your programmatic requests to Secrets Manager by using an access key ID and a secret 
access key associated with an IAM principal. Or you can use AWS Security Token Service (AWS 
STS) to generate temporary security credentials to sign requests.

• Set up API and user activity logging with AWS CloudTrail. See the section called “Log with AWS 
CloudTrail ”.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. See the section called “Secrets Manager 
endpoints”.

• If you use the AWS CLI to access Secrets Manager, the section called “Mitigate the risks of using 
the AWS CLI to store your AWS Secrets Manager secrets”.

Encryption at rest

Secrets Manager uses encryption via AWS Key Management Service (AWS KMS) to protect the 
confidentiality of data at rest. AWS KMS provides a key storage and encryption service used by 
many AWS services. Every secret in Secrets Manager is encrypted with a unique data key. Each data 
key is protected by a KMS key. You can choose to use default encryption with the Secrets Manager 

Data protection in Secrets Manager 333

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#enable-mfa-for-privileged-users
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html


AWS Secrets Manager User Guide

AWS managed key for the account, or you can create your own customer managed key in AWS 
KMS. Using a customer managed key gives you more granular authorization controls over your KMS 
key activities. For more information, see the section called “Secret encryption and decryption”.

Encryption in transit

Secrets Manager provides secure and private endpoints for encrypting data in transit. The secure 
and private endpoints allows AWS to protect the integrity of API requests to Secrets Manager. AWS 
requires API calls be signed by the caller using X.509 certificates and/or a Secrets Manager Secret 
Access Key. This requirement is stated in the Signature Version 4 Signing Process (Sigv4).

If you use the AWS Command Line Interface (AWS CLI) or any of the AWS SDKs to make calls to 
AWS, you configure the access key to use. Then those tools automatically use the access key to sign 
the requests for you. See the section called “Mitigate the risks of using the AWS CLI to store your 
AWS Secrets Manager secrets”.

Inter-network traffic privacy

AWS offers options for maintaining privacy when routing traffic through known and private 
network routes.

Traffic between service and on-premises clients and applications

You have two connectivity options between your private network and AWS Secrets Manager:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site 
VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

Traffic between AWS resources in the same Region

If you want to secure traffic between Secrets Manager and API clients in AWS, set up an AWS 
PrivateLink to privately access Secrets Manager API endpoints.

Encryption key management

When Secrets Manager needs to encrypt a new version of the protected secret data, Secrets 
Manager sends a request to AWS KMS to generate a new data key from the KMS key. Secrets 
Manager uses this data key for envelope encryption. Secrets Manager stores the encrypted data 

Encryption in transit 334

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://aws.amazon.com/privatelink/
https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping


AWS Secrets Manager User Guide

key with the encrypted secret. When the secret needs to be decrypted, Secrets Manager asks AWS 
KMS to decrypt the data key. Secrets Manager then uses the decrypted data key to decrypt the 
encrypted secret. Secrets Manager never stores the data key in unencrypted form and removes 
the key from memory as soon as possible. For more information, see the section called “Secret 
encryption and decryption”.

Secret encryption and decryption in AWS Secrets Manager

Secrets Manager uses envelope encryption with AWS KMS keys and data keys to protect each 
secret value. Whenever the secret value in a secret changes, Secrets Manager requests a new data 
key from AWS KMS to protect it. The data key is encrypted under a KMS key and stored in the 
metadata of the secret. To decrypt the secret, Secrets Manager first decrypts the encrypted data 
key using the KMS key in AWS KMS.

Secrets Manager does not use the KMS key to encrypt the secret value directly. Instead, it uses the 
KMS key to generate and encrypt a 256-bit Advanced Encryption Standard (AES) symmetric data 
key, and uses the data key to encrypt the secret value. Secrets Manager uses the plaintext data key 
to encrypt the secret value outside of AWS KMS, and then removes it from memory. It stores the 
encrypted copy of the data key in the metadata of the secret.

Topics

• Choosing a AWS KMS key

• What is encrypted?

• Encryption and decryption processes

• Permissions for the KMS key

• How Secrets Manager uses your KMS key

• Key policy of the AWS managed key (aws/secretsmanager)

• Secrets Manager encryption context

• Monitor Secrets Manager interaction with AWS KMS

Choosing a AWS KMS key

When you create a secret, you can choose any symmetric encryption customer managed key in 
the AWS account and Region, or you can use the AWS managed key for Secrets Manager (aws/

Secret encryption and decryption 335

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys


AWS Secrets Manager User Guide

secretsmanager). If you choose the AWS managed key aws/secretsmanager and it doesn't 
already exist yet, Secrets Manager creates it and associates it with the secret. You can use the same 
KMS key or different KMS keys for each secret in your account. You might want to use different 
KMS keys to set custom permissions on the keys for a group of secrets, or if you want to audit 
particular operations for those keys. Secrets Manager supports only symmetric encryption KMS 
keys. If you use a KMS key in an external key store, cryptographic operations on the KMS key might 
take longer and be less reliable and durable because the request has to travel outside of AWS.

For information about changing the encryption key for a secret, see the section called “Change the 
encryption key for a secret”.

When you change the encryption key, Secrets Manager re-encrypts AWSCURRENT, AWSPENDING, 
and AWSPREVIOUS versions with the new key. To avoid locking you out of the secret, Secrets 
Manager keeps all existing versions encrypted with the previous key. That means you can decrypt
AWSCURRENT, AWSPENDING, and AWSPREVIOUS versions with the previous key or the new key. If 
you don't have kms:Decrypt permission to the previous key, when you change the encryption 
key, Secrets Manager can't decrypt the secret versions to re-encrypt them. In this case, the existing 
versions are not re-encrypted.

To make it so AWSCURRENT can only be decrypted by the new encryption key, create a new version 
of the secret with the new key. Then to be able to decrypt the AWSCURRENT secret version, you 
must have permission to the new key.

You can deny permission to the AWS managed key aws/secretsmanager and require secrets are 
encrypted with a customer managed key. For more information, see the section called “Example: 
Deny a specific AWS KMS key to encrypt secrets”.

To find the KMS key associated with a secret, view the secret in the console or call ListSecrets or
DescribeSecret. When the secret is associated with the AWS managed key for Secrets Manager 
(aws/secretsmanager), these operations do not return a KMS key identifier.

What is encrypted?

Secrets Manager encrypts the secret value, but it does not encrypt the following:

• Secret name and description

• Rotation settings

• ARN of the KMS key associated with the secret

What is encrypted? 336

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/keystore-external.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html


AWS Secrets Manager User Guide

• Any attached AWS tags

Encryption and decryption processes

To encrypt the secret value in a secret, Secrets Manager uses the following process.

1. Secrets Manager calls the AWS KMS GenerateDataKey operation with the ID of the KMS key for 
the secret and a request for a 256-bit AES symmetric key. AWS KMS returns a plaintext data key 
and a copy of that data key encrypted under the KMS key.

2. Secrets Manager uses the plaintext data key and the Advanced Encryption Standard (AES) 
algorithm to encrypt the secret value outside of AWS KMS. It removes the plaintext key from 
memory as soon as possible after using it.

3. Secrets Manager stores the encrypted data key in the metadata of the secret so it is available to 
decrypt the secret value. However, none of the Secrets Manager APIs return the encrypted secret 
or the encrypted data key.

To decrypt an encrypted secret value:

1. Secrets Manager calls the AWS KMS Decrypt operation and passes in the encrypted data key.

2. AWS KMS uses the KMS key for the secret to decrypt the data key. It returns the plaintext data 
key.

3. Secrets Manager uses the plaintext data key to decrypt the secret value. Then it removes the 
data key from memory as soon as possible.

Permissions for the KMS key

When Secrets Manager uses a KMS key in cryptographic operations, it acts on behalf of the user 
who is accessing or updating the secret value. You can grant permissions in an IAM policy or a key 
policy. The following Secrets Manager operations require AWS KMS permissions.

• CreateSecret

• GetSecretValue

• PutSecretValue

• UpdateSecret

• ReplicateSecretToRegions

Encryption and decryption processes 337

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html


AWS Secrets Manager User Guide

To allow the KMS key to be used only for requests that originate in Secrets Manager, 
in the permissions policy, you can use the kms:ViaService condition key with the
secretsmanager.<Region>.amazonaws.com value.

You can also use the keys or values in the encryption context as a condition for using the KMS key 
for cryptographic operations. For example, you can use a string condition operator in an IAM or key 
policy document, or use a grant constraint in a grant. KMS key grant propagation can take up to 
five minutes. For more information, see CreateGrant.

How Secrets Manager uses your KMS key

Secrets Manager calls the following AWS KMS operations with your KMS key.

GenerateDataKey

Secrets Manager calls the AWS KMS GenerateDataKey operation in response to the following 
Secrets Manager operations.

• CreateSecret – If the new secret includes a secret value, Secrets Manager requests a new data 
key to encrypt it.

• PutSecretValue – Secrets Manager requests a new data key to encrypt the specified secret 
value.

• ReplicateSecretToRegions – To encrypt the replicated secret, Secrets Manager requests a data 
key for the KMS key in the replica Region.

• UpdateSecret – If you change the secret value or the KMS key, Secrets Manager requests a 
new data key to encrypt the new secret value.

The RotateSecret operation does not call GenerateDataKey, because it does not change the 
secret value. However, if RotateSecret invokes a Lambda rotation function that changes the 
secret value, its call to the PutSecretValue operation triggers a GenerateDataKey request.

Decrypt

Secrets Manager calls the Decrypt operation in response to the following Secrets Manager 
operations.

• GetSecretValue and BatchGetSecretValue – Secrets Manager decrypts the secret value before 
returning it to the caller. To decrypt an encrypted secret value, Secrets Manager calls the 
AWS KMS Decrypt operation to decrypt the encrypted data key in the secret. Then, it uses 
the plaintext data key to decrypt the encrypted secret value. For batch commands, Secrets 
Manager can reuse the decrypted key, so not all calls result in a Decrypt request.

How Secrets Manager uses your KMS key 338

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html#asm-encryption-context
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


AWS Secrets Manager User Guide

• PutSecretValue and UpdateSecret – Most PutSecretValue and UpdateSecret requests 
do not trigger a Decrypt operation. However, when a PutSecretValue or UpdateSecret
request attempts to change the secret value in an existing version of a secret, Secrets 
Manager decrypts the existing secret value and compares it to the secret value in the request 
to confirm that they are the same. This action ensures the that Secrets Manager operations 
are idempotent. To decrypt an encrypted secret value, Secrets Manager calls the AWS KMS
Decrypt operation to decrypt the encrypted data key in the secret. Then, it uses the plaintext 
data key to decrypt the encrypted secret value.

• ReplicateSecretToRegions – Secrets Manager first decrypts the secret value in the primary 
Region before re-encrypting the secret value with the KMS key in the replica Region.

Encrypt

Secrets Manager calls the Encrypt operation in response to the following Secrets Manager 
operations:

• UpdateSecret – If you change the KMS key, Secrets Manager re-encrypts the data key that 
protects the AWSCURRENT, AWSPREVIOUS, and AWSPENDING secret versions with the new key.

DescribeKey

Secrets Manager calls the DescribeKey operation to determine whether to list the KMS key 
when you create or edit a secret in the Secrets Manager console.

Validating access to the KMS key

When you establish or change the KMS key that is associated with secret, Secrets Manager 
calls the GenerateDataKey and Decrypt operations with the specified KMS key. These calls 
confirm that the caller has permission to use the KMS key for these operation. Secrets Manager 
discards the results of these operations; it does not use them in any cryptographic operation.

You can identify these validation calls because the value of the SecretVersionId key
encryption context in these requests is RequestToValidateKeyAccess.

Note

In the past, Secrets Manager validation calls did not include an encryption context. You 
might find calls with no encryption context in older AWS CloudTrail logs.

How Secrets Manager uses your KMS key 339

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html#asm-encryption-context


AWS Secrets Manager User Guide

Key policy of the AWS managed key (aws/secretsmanager)

The key policy for the AWS managed key for Secrets Manager (aws/secretsmanager) gives users 
permission to use the KMS key for specified operations only when Secrets Manager makes the 
request on the user's behalf. The key policy does not allow any user to use the KMS key directly.

This key policy, like the policies of all AWS managed keys, is established by the service. You cannot 
change the key policy, but you can view it at any time. For details, see  Viewing a key policy.

The policy statements in the key policy have the following effect:

• Allow users in the account to use the KMS key for cryptographic operations only when the 
request comes from Secrets Manager on their behalf. The kms:ViaService condition key 
enforces this restriction.

• Allows the AWS account to create IAM policies that allow users to view KMS key properties and 
revoke grants.

• Although Secrets Manager does not use grants to gain access to the KMS key, the policy also 
allows Secrets Manager to create grants for the KMS key on the user's behalf and allows the 
account to revoke any grant that allows Secrets Manager to use the KMS key. These are standard 
elements of policy document for an AWS managed key.

The following is a key policy for an example AWS managed key for Secrets Manager.

JSON

{ 
  "Id": "auto-secretsmanager-2", 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Sid": "Allow access through AWS Secrets Manager for all principals in the 
 account that are authorized to use AWS Secrets Manager", 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": [ 
          "*" 
        ] 
      }, 
      "Action": [ 

Key policy of the AWS managed key (aws/secretsmanager) 340

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html


AWS Secrets Manager User Guide

        "kms:Encrypt", 
        "kms:Decrypt", 
        "kms:ReEncrypt*", 
        "kms:CreateGrant", 
        "kms:DescribeKey" 
      ], 
      "Resource": "*", 
      "Condition": { 
        "StringEquals": { 
          "kms:CallerAccount": "111122223333", 
          "kms:ViaService": "secretsmanager.us-west-2.amazonaws.com" 
        } 
      } 
    }, 
    { 
      "Sid": "Allow access through AWS Secrets Manager for all principals in the 
 account that are authorized to use AWS Secrets Manager", 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": [ 
          "*" 
        ] 
      }, 
      "Action": "kms:GenerateDataKey*", 
      "Resource": "*", 
      "Condition": { 
        "StringEquals": { 
          "kms:CallerAccount": "111122223333" 
        }, 
        "StringLike": { 
          "kms:ViaService": "secretsmanager.us-west-2.amazonaws.com" 
        } 
      } 
    }, 
    { 
      "Sid": "Allow direct access to key metadata to the account", 
      "Effect": "Allow", 
      "Principal": { 
        "AWS": [ 
          "arn:aws:iam::111122223333:root" 
        ] 
      }, 
      "Action": [ 
        "kms:Describe*", 

Key policy of the AWS managed key (aws/secretsmanager) 341



AWS Secrets Manager User Guide

        "kms:Get*", 
        "kms:List*", 
        "kms:RevokeGrant" 
      ], 
      "Resource": "*" 
    } 
  ]
}

Secrets Manager encryption context

An encryption context is a set of key–value pairs that contain arbitrary non-secret data. When 
you include an encryption context in a request to encrypt data, AWS KMS cryptographically binds 
the encryption context to the encrypted data. To decrypt the data, you must pass in the same 
encryption context.

In its GenerateDataKey and Decrypt requests to AWS KMS, Secrets Manager uses an encryption 
context with two name–value pairs that identify the secret and its version, as shown in the 
following example. The names do not vary, but combined encryption context values will be 
different for each secret value.

"encryptionContext": { 
    "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-secret-
a1b2c3", 
    "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
}

You can use the encryption context to identify these cryptographic operation in audit records and 
logs, such as AWS CloudTrail and Amazon CloudWatch Logs, and as a condition for authorization in 
policies and grants.

The Secrets Manager encryption context consists of two name-value pairs.

• SecretARN – The first name–value pair identifies the secret. The key is SecretARN. The value is 
the Amazon Resource Name (ARN) of the secret.

"SecretARN": "ARN of an Secrets Manager secret"

Secrets Manager encryption context 342

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html


AWS Secrets Manager User Guide

For example, if the ARN of the secret is arn:aws:secretsmanager:us-
east-2:111122223333:secret:test-secret-a1b2c3, the encryption context would 
include the following pair.

"SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-secret-
a1b2c3"

• SecretVersionId – The second name–value pair identifies the version of the secret. The key is
SecretVersionId. The value is the version ID.

"SecretVersionId": "<version-id>"

For example, if the version ID of the secret is EXAMPLE1-90ab-cdef-fedc-ba987SECRET1, the 
encryption context would include the following pair.

"SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"

When you establish or change the KMS key for a secret, Secrets Manager sends GenerateDataKey
and Decrypt requests to AWS KMS to validate that the caller has permission to use the KMS key for 
these operations. It discards the responses; it does not use them on the secret value.

In these validation requests, the value of the SecretARN is the actual ARN of the secret, but the
SecretVersionId value is RequestToValidateKeyAccess, as shown in the following example 
encryption context. This special value helps you to identify validation requests in logs and audit 
trails.

"encryptionContext": { 
    "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-secret-
a1b2c3", 
    "SecretVersionId": "RequestToValidateKeyAccess"
}

Note

In the past, Secrets Manager validation requests did not include an encryption context. You 
might find calls with no encryption context in older AWS CloudTrail logs.

Secrets Manager encryption context 343

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html


AWS Secrets Manager User Guide

Monitor Secrets Manager interaction with AWS KMS

You can use AWS CloudTrail and Amazon CloudWatch Logs to track the requests that Secrets 
Manager sends to AWS KMS on your behalf. For information about monitoring the use of secrets, 
see Monitor secrets.

GenerateDataKey

When you create or change the secret value in a secret, Secrets Manager sends a
GenerateDataKey request to AWS KMS that specifies the KMS key for the secret.

The event that records the GenerateDataKey operation is similar to the following example 
event. The request is invoked by secretsmanager.amazonaws.com. The parameters include 
the Amazon Resource Name (ARN) of the KMS key for the secret, a key specifier that requires a 
256-bit key, and the encryption context that identifies the secret and version.

{ 
    "eventVersion": "1.05", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AROAIGDTESTANDEXAMPLE:user01", 
        "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "sessionContext": { 
            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2018-05-31T23:23:41Z" 
            } 
        }, 
        "invokedBy": "secretsmanager.amazonaws.com" 
    }, 
    "eventTime": "2018-05-31T23:23:41Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "GenerateDataKey", 
    "awsRegion": "us-east-2", 
    "sourceIPAddress": "secretsmanager.amazonaws.com", 
    "userAgent": "secretsmanager.amazonaws.com", 
    "requestParameters": { 
        "keyId": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab", 
        "keySpec": "AES_256", 

Monitor Secrets Manager interaction with AWS KMS 344

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context


AWS Secrets Manager User Guide

        "encryptionContext": { 
            "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-
secret-a1b2c3", 
            "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1" 
        } 
    }, 
    "responseElements": null, 
    "requestID": "a7d4dd6f-6529-11e8-9881-67744a270888", 
    "eventID": "af7476b6-62d7-42c2-bc02-5ce86c21ed36", 
    "readOnly": true, 
    "resources": [ 
        { 
            "ARN": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab", 
            "accountId": "111122223333", 
            "type": "AWS::KMS::Key" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "recipientAccountId": "111122223333"
}

Decrypt

When you get or change the secret value of a secret, Secrets Manager sends a Decrypt request 
to AWS KMS to decrypt the encrypted data key. For batch commands, Secrets Manager can 
reuse the decrypted key, so not all calls result in a Decrypt request.

The event that records the Decrypt operation is similar to the following example event. The 
user is the principal in your AWS account who is accessing the table. The parameters include the 
encrypted table key (as a ciphertext blob) and the encryption context that identifies the table 
and the AWS account. AWS KMS derives the ID of the KMS key from the ciphertext.

{ 
    "eventVersion": "1.05", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AROAIGDTESTANDEXAMPLE:user01", 
        "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "sessionContext": { 
            "attributes": { 

Monitor Secrets Manager interaction with AWS KMS 345

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context


AWS Secrets Manager User Guide

                "mfaAuthenticated": "false", 
                "creationDate": "2018-05-31T23:36:09Z" 
            } 
        }, 
        "invokedBy": "secretsmanager.amazonaws.com" 
    }, 
    "eventTime": "2018-05-31T23:36:09Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "Decrypt", 
    "awsRegion": "us-east-2", 
    "sourceIPAddress": "secretsmanager.amazonaws.com", 
    "userAgent": "secretsmanager.amazonaws.com", 
    "requestParameters": { 
        "encryptionContext": { 
            "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-
secret-a1b2c3", 
            "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1" 
        } 
    }, 
    "responseElements": null, 
    "requestID": "658c6a08-652b-11e8-a6d4-ffee2046048a", 
    "eventID": "f333ec5c-7fc1-46b1-b985-cbda13719611", 
    "readOnly": true, 
    "resources": [ 
        { 
            "ARN": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab", 
            "accountId": "111122223333", 
            "type": "AWS::KMS::Key" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "recipientAccountId": "111122223333"
}

Encrypt

When you change the KMS key associated with a secret, Secrets Manager sends an Encrypt
request to AWS KMS to re-encrypt the AWSCURRENT, AWSPREVIOUS, and AWSPENDING secret 
versions with the new key. When you replicate a secret to another Region, Secrets Manager also 
sends an Encrypt request to AWS KMS.

Monitor Secrets Manager interaction with AWS KMS 346

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html


AWS Secrets Manager User Guide

The event that records the Encrypt operation is similar to the following example event. The 
user is the principal in your AWS account who is accessing the table.

{ 
    "eventVersion": "1.08", 
    "userIdentity": { 
        "type": "IAMUser", 
        "principalId": "AROAIGDTESTANDEXAMPLE:user01", 
        "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01", 
        "accountId": "111122223333", 
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE", 
        "sessionContext": { 
            "attributes": { 
                "creationDate": "2023-06-09T18:11:34Z", 
                "mfaAuthenticated": "false" 
            } 
        }, 
        "invokedBy": "secretsmanager.amazonaws.com" 
    }, 
    "eventTime": "2023-06-09T18:11:34Z", 
    "eventSource": "kms.amazonaws.com", 
    "eventName": "Encrypt", 
    "awsRegion": "us-east-2", 
    "sourceIPAddress": "secretsmanager.amazonaws.com", 
    "userAgent": "secretsmanager.amazonaws.com", 
    "requestParameters": { 
        "keyId": "arn:aws:kms:us-east-2:111122223333:key/EXAMPLE1-f1c8-4dce-8777-
aa071ddefdcc", 
        "encryptionAlgorithm": "SYMMETRIC_DEFAULT", 
        "encryptionContext": { 
            "SecretARN": "arn:aws:secretsmanager:us-
east-2:111122223333:secret:ChangeKeyTest-5yKnKS", 
            "SecretVersionId": "EXAMPLE1-5c55-4d7c-9277-1b79a5e8bc50" 
        } 
    }, 
    "responseElements": null, 
    "requestID": "129bd54c-1975-4c00-9b03-f79f90e61d60", 
    "eventID": "f7d9ff39-15ab-47d8-b94c-56586de4ab68", 
    "readOnly": true, 
    "resources": [ 
        { 
            "accountId": "AWS Internal", 
            "type": "AWS::KMS::Key", 

Monitor Secrets Manager interaction with AWS KMS 347



AWS Secrets Manager User Guide

            "ARN": "arn:aws:kms:us-west-2:111122223333:key/EXAMPLE1-f1c8-4dce-8777-
aa071ddefdcc" 
        } 
    ], 
    "eventType": "AwsApiCall", 
    "managementEvent": true, 
    "recipientAccountId": "111122223333", 
    "eventCategory": "Management"
}

Infrastructure security in AWS Secrets Manager

As a managed service, AWS Secrets Manager is protected by the AWS global network security. For 
information about AWS security services and how AWS protects infrastructure, see AWS Cloud 
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

Access to Secrets Manager via the network is through AWS published APIs using TLS. Secrets 
Manager APIs are callable from any network location. However, Secrets Manager supports
resource-based access policies, which can include restrictions based on the source IP address. You 
can also use Secrets Manager resource policies to control access to secrets from specific virtual 
private cloud (VPC) endpoints, or specific VPCs. Effectively, this isolates network access to a given 
secret from only the specific VPC within the AWS network. For more information, see the section 
called “VPC endpoints (AWS PrivateLink)”.

Using an AWS Secrets Manager VPC endpoint

We recommend that you run as much of your infrastructure as possible on private networks that 
are not accessible from the public internet. You can establish a private connection between your 
VPC and Secrets Manager by creating an interface VPC endpoint. Interface endpoints are powered 
by AWS PrivateLink, a technology that enables you to privately access Secrets Manager APIs 
without an internet gateway, NAT device, VPN connection, or Direct Connect connection. Instances 
in your VPC don't need public IP addresses to communicate with Secrets Manager APIs. Traffic 
between your VPC and Secrets Manager does not leave the AWS network. For more information, 
see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

When Secrets Manager rotates a secret by using a Lambda rotation function, for example a secret 
that contains database credentials, the Lambda function makes requests to both the database 

Infrastructure security 348

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html


AWS Secrets Manager User Guide

and Secrets Manager. When you turn on automatic rotation by using the console, Secrets Manager 
creates the Lambda function in the same VPC as your database. We recommend that you create a 
Secrets Manager endpoint in the same VPC so that requests from the Lambda rotation function to 
Secrets Manager don't leave the Amazon network.

If you enable private DNS for the endpoint, you can make API requests to Secrets Manager using its 
default DNS name for the Region, for example, secretsmanager.us-east-1.amazonaws.com. 
For more information, see Accessing a service through an interface endpoint in the Amazon VPC 
User Guide.

You can make sure that requests to Secrets Manager come from the VPC access by including a 
condition in your permissions policies. For more information, see the section called “Example: 
Permissions and VPCs”.

You can use AWS CloudTrail logs to audit your use of secrets through the VPC endpoint.

To create a VPC endpoint for Secrets Manager

1. See Creating an interface endpoint in the Amazon VPC User Guide. Use one of the following 
service names:

• com.amazonaws.region.secretsmanager

• com.amazonaws.region.secretsmanager-fips

2. To control access to the endpoint, see Control access to VPC endpoints using endpoint policies.

3. To use IPv6 and dual-stack addressing, see IPv4 and IPv6 access.

Create an endpoint policy for your interface endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default 
endpoint policy allows full access to Secrets Manager through the interface endpoint. To control 
the access allowed to Secrets Manager from your VPC, attach a custom endpoint policy to the 
interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

Create an endpoint policy 349

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html


AWS Secrets Manager User Guide

For more information, see Control access to services using endpoint policies in the AWS PrivateLink 
Guide.

Example: VPC endpoint policy for Secrets Manager actions

The following is an example of a custom endpoint policy. When you attach this policy to your 
interface endpoint, it grants access to the listed Secrets Manager actions on the specified secret.

JSON

{ 
  "Version":"2012-10-17",        
  "Statement": [ 
    { 
      "Sid": "Allow all users to use GetSecretValue and DescribeSecret on the 
 specified secret.", 
      "Effect": "Allow", 
      "Principal": "*", 
      "Action": [ 
        "secretsmanager:GetSecretValue", 
        "secretsmanager:DescribeSecret" 
      ], 
      "Resource": "arn:aws:secretsmanager:us-
east-1:111122223333:secret:secretName-AbCdEf" 
    } 
  ]
}

Shared subnets

You can't create, describe, modify, or delete VPC endpoints in subnets that are shared with you. 
However, you can use the VPC endpoints in subnets that are shared with you. For information 
about VPC sharing, see Share your VPC with other accounts in the Amazon Virtual Private Cloud 
User Guide.

Control API access with IAM policies

If you use IAM policies to control access to AWS services based on IP addresses, you might 
need to update your policies to include IPv6 address ranges. This guide explains the differences 

Shared subnets 350

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html


AWS Secrets Manager User Guide

between IPv4 and IPv6 and describes how to update your IAM policies to support both protocols. 
Implementing these changes helps you maintain secure access to your AWS resources while 
supporting IPv6.

What is IPv6?

IPv6 is the next generation IP standard intended to eventually replace IPv4. The previous version, 
IPv4, uses a 32-bit addressing scheme to support 4.3 billion devices. IPv6 instead uses 128-bit 
addressing to support approximately 340 trillion trillion trillion (or 2 to the 128th power) devices.

For more information, see the VPC IPv6 web page.

These are examples of IPv6 addresses:

2001:cdba:0000:0000:0000:0000:3257:9652 # This is a full, unabbreviated IPv6 address.
2001:cdba:0:0:0:0:3257:9652             # The same address with leading zeros in each 
 group omitted
2001:cdba::3257:965                     # A compressed version of the same address.

IAM dual-stack (IPv4 and IPv6) policies

You can use IAM policies to control access to Secrets Manager APIs and prevent IP addresses 
outside the configured range from accessing Secrets Manager APIs.

The secretsmanager.{region}.amazonaws.com dual-stack endpoint for Secrets Manager APIs 
supports both IPv6 and IPv4.

If you need to support both IPv4 and IPv6, update your IP address filtering policies to handle IPv6 
addresses. Otherwise, you might not be able to connect to Secrets Manager over IPv6.

Who should make this change?

This change affects you if you use dual addressing with policies that contain aws:sourceIp. Dual 
addressing means that the network supports both IPv4 and IPv6.

If you use dual addressing, update your IAM policies that currently use IPv4 format addresses to 
include IPv6 format addresses.

Who should not make this change?

This change doesn't affect you if you only use IPv4 networks.

What is IPv6? 351

https://aws.amazon.com/vpc/ipv6/


AWS Secrets Manager User Guide

Adding IPv6 to an IAM policy

IAM policies use the aws:SourceIp condition key to control access from specific IP addresses. 
If your network uses dual addressing (IPv4 and IPv6), update your IAM policies to include IPv6 
address ranges.

In the Condition element of your policies, use the IpAddress and NotIpAddress operators 
for IP address conditions. Don't use string operators, as they can't handle the various valid IPv6 
address formats.

These examples use aws:SourceIp. For VPCs, use aws:VpcSourceIp instead.

The following is the Denies access to AWS based on the source IP reference policy from the IAM 
User Guide. The NotIpAddress in the Condition element to lists two IPv4 address ranges,
192.0.2.0/24 and 203.0.113.0/24, which will be denied access to the API.

JSON

{ 
    "Version":"2012-10-17",        
    "Statement": { 
        "Effect": "Deny", 
        "Action": "*", 
        "Resource": "*", 
        "Condition": { 
            "NotIpAddress": { 
                "aws:SourceIp": [ 
                    "192.0.2.0/24", 
                    "203.0.113.0/24" 
                ] 
            }, 
            "Bool": { 
                "aws:ViaAWSService": "false" 
            } 
        } 
    }
}

To update this policy, change the Condition element to include the IPv6 address ranges
2001:DB8:1234:5678::/64 and 2001:cdba:3257:8593::/64.

Adding IPv6 to a policy 352

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html


AWS Secrets Manager User Guide

Note

Don't remove the existing IPv4 addresses. They're needed for backward compatibility.

"Condition": { 
                "NotIpAddress": { 
                    "aws:SourceIp": [ 
                        "192.0.2.0/24", <<DO NOT REMOVE existing IPv4 address>> 
                        "203.0.113.0/24", <<DO NOT REMOVE existing IPv4 address>> 
                         "2001:DB8:1234:5678::/64", <<New IPv6 IP address>> 
                        "2001:cdba:3257:8593::/64" <<New IPv6 IP address>>
                    ] 
                }, 
                "Bool": { 
                    "aws:ViaAWSService": "false" 
                } 
            }

To update this policy for a VPC, use aws:VpcSourceIp instead of aws:SourceIp:

"Condition": { 
                "NotIpAddress": { 
                    "aws:VpcSourceIp": [ 
                        "10.0.2.0/24", <<DO NOT REMOVE existing IPv4 address>> 
                        "10.0.113.0/24", <<DO NOT REMOVE existing IPv4 address>> 
                         "fc00:DB8:1234:5678::/64", <<New IPv6 IP address>> 
                        "fc00:cdba:3257:8593::/64" <<New IPv6 IP address>>
                    ] 
                }, 
                "Bool": { 
                    "aws:ViaAWSService": "false" 
                } 
            }

Verifying your client supports IPv6

If you use the secretsmanager.{region}.amazonaws.com endpoint, verify that you can connect to it. 
The following steps describe how to perform the verification.

Verifying your client supports IPv6 353



AWS Secrets Manager User Guide

This examples uses Linux and curl version 8.6.0 and uses the AWS Secrets Manager service  which 
has IPv6 enabled endpoints located at the amazonaws.com endpoint.

Note

The secretsmanager.{region}.amazonaws.com differs from the typical dual-stack naming 
convention. For a full list of Secrets Manager endpoints, see AWS Secrets Manager 
endpoints.
Change the AWS Region to the same Region where your service is located. In this example, 
we use the US East (N. Virginia) – us-east-1 endpoint.

1. Determine if the endpoint resolves with an IPv6 address using the following dig command.

$ dig +short AAAA secretsmanager.us-east-1.amazonaws.com  

> 2600:1f18:e2f:4e05:1a8a:948e:7c08:c1c3

2. Determine if the client network can make an IPv6 connection using the following curl
command. A 404 response code means the connection succeeded, while a 0 response code 
means the connection failed.

$ curl --ipv6 -o /dev/null --silent -w "\nremote ip: %{remote_ip}\nresponse code: 
 %{response_code}\n" https://secretsmanager.us-east-1.amazonaws.com  

> remote ip: 2600:1f18:e2f:4e05:1a8a:948e:7c08:c1c3
> response code: 404

If a remote IP was identified and the response code is not 0, a network connection was successfully 
made to the endpoint using IPv6. The remote IP should be an IPv6 address because the operating 
system should select the protocol that is valid for the client.

If the remote IP is blank or the response code is 0, the client network or the network path to the 
endpoint is IPv4-only. You can verify this configuration with the following curl command.

$ curl -o /dev/null --silent -w "\nremote ip: %{remote_ip}\nresponse code: 
 %{response_code}\n" https://secretsmanager.us-east-1.amazonaws.com  

> remote ip: 3.123.154.250

Verifying your client supports IPv6 354

https://docs.aws.amazon.com/general/latest/gr/secretsmanager.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints
https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints


AWS Secrets Manager User Guide

> response code: 404

Resiliency in AWS Secrets Manager

AWS builds the global infrastructure around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which connect with low-
latency, high-throughput, and highly redundant networking. With Availability Zones, you can 
design and operate applications and databases that automatically fail over between zones without 
interruption. Availability Zones allow you to be more highly available, fault tolerant, and scalable 
than traditional single or multiple data center infrastructures.

For more information on resiliency and disaster recovery, refer to Reliability Pillar – AWS Well-
Architected Framework.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Post-quantum TLS

Secrets Manager supports a hybrid post-quantum key exchange option for the Transport Layer 
Security (TLS) network encryption protocol. You can use this TLS option when you connect to 
Secrets Manager API endpoints. We're offering this feature before post-quantum algorithms 
are standardized so you can begin testing the effect of these key exchange protocols on Secrets 
Manager calls. These optional hybrid post-quantum key exchange features are at least as secure 
as the TLS encryption we use today and are likely to provide additional security benefits. However, 
they affect latency and throughput compared to the classic key exchange protocols in use today. 
The Secrets Manager Agent uses the post-quantum ML-KEM key exchange as the highest-priority 
key exchange by default.

To protect data encrypted today against potential future attacks, AWS is participating with the 
cryptographic community in the development of quantum-resistant or post-quantum algorithms. 
We've implemented hybrid post-quantum key exchange cipher suites in Secrets Manager 
endpoints. These hybrid cipher suites, which combine classic and post-quantum elements, ensure 
that your TLS connection is at least as strong as it would be with classic cipher suites. However, 
because the performance characteristics and bandwidth requirements of hybrid cipher suites are 
different from those of classic key exchange mechanisms, we recommend that you test them on 
your API calls.

Secrets Manager supports PQTLS in all Regions except China Regions.

Resilience 355

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://aws.amazon.com/about-aws/global-infrastructure/


AWS Secrets Manager User Guide

To configure hybrid post-quantum TLS

1. Add the AWS Common Runtime client to your Maven dependencies. We recommend using the 
latest available version. For example, this statement adds version 2.20.0.

<dependency> 
  <groupId>software.amazon.awssdk</groupId> 
  <artifactId>aws-crt-client</artifactId> 
  <version>2.20.0</version>
</dependency>

2. Add the AWS SDK for Java 2.x to your project and initialize it. Enable the hybrid post-quantum 
cipher suites on your HTTP client.

SdkAsyncHttpClient awsCrtHttpClient = AwsCrtAsyncHttpClient.builder() 
            .postQuantumTlsEnabled(true) 
            .build();

3. Create the Secrets Manager asynchronous client.

SecretsManagerAsyncClient SecretsManagerAsync = SecretsManagerAsyncClient.builder() 
            .httpClient(awsCrtHttpClient) 
            .build();

Now when you call Secrets Manager API operations, your calls are transmitted to the Secrets 
Manager endpoint using hybrid post-quantum TLS.

For more information about using hybrid post-quantum TLS, see:

• AWS SDK for Java 2.x Developer Guide and the AWS SDK for Java 2.x released blog post.

• Introducing s2n-tls, a New Open Source TLS Implementation and Using s2n-tls.

• Post-Quantum Cryptography at the National Institute for Standards and Technology (NIST).

• Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 
(TLS).

Post-quantum TLS for Secrets Manager is available in all AWS Regions except China.

Post-quantum TLS 356

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://aws.amazon.com/blogs/developer/aws-sdk-for-java-2-x-released/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.github.io/s2n-tls/usage-guide/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid-01
https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid-01


AWS Secrets Manager User Guide

Troubleshooting AWS Secrets Manager

Use the information here to help you diagnose and fix issues that you might encounter when you're 
working with Secrets Manager.

For issues related to rotation, see the section called “Troubleshoot rotation”.

Topics

• "Access denied" messages

• "Access denied" for temporary security credentials

• Changes I make aren't always immediately visible.

• “Cannot generate a data key with an asymmetric KMS key” when creating a secret

• An AWS CLI or AWS SDK operation can't find my secret from a partial ARN

• This secret is managed by an AWS service, and you must use that service to update it.

• Python module import fails when using Transform: AWS::SecretsManager-2024-09-16

"Access denied" messages

When you make an API call such as GetSecretValue or CreateSecret to Secrets Manager, you must 
have IAM permissions to make that call. When you use the console, the console makes the same 
API calls on your behalf, so you must also have IAM permissions. An administrator can grant 
permissions by attaching an IAM policy to your IAM user, or to a group that you're a member of. 
If the policy statements that grant those permissions include any conditions, such as time-of-day 
or IP address restrictions, you also must meet those requirements when you send the request. For 
information about viewing or modifying policies for an IAM user, group, or role, see Working with 
Policies in the IAM User Guide. For information about permissions required for Secrets Manager, see
the section called “Authentication and access control”.

If you're signing API requests manually, without using the AWS SDKs, verify you correctly signed 
the request.

"Access denied" for temporary security credentials

Verify the IAM user or role you're using to make the request has the correct permissions. 
Permissions for temporary security credentials derive from an IAM user or role. This means the 

"Access denied" messages 357

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html


AWS Secrets Manager User Guide

permissions are limited to those granted to the IAM user or role. For more information about how 
permissions for temporary security credentials are determined, see Controlling Permissions for 
Temporary Security Credentials in the IAM User Guide.

Verify that your requests are signed correctly and that the request is well-formed. For details, 
see the toolkit documentation for your chosen SDK, or Using Temporary Security Credentials to 
Request Access to AWS Resources in the IAM User Guide.

Verify that your temporary security credentials haven't expired. For more information, see
Requesting Temporary Security Credentials in the IAM User Guide.

For information about permissions required for Secrets Manager, see the section called 
“Authentication and access control”.

Changes I make aren't always immediately visible.

Secrets Manager uses a distributed computing model called eventual consistency. Any change 
that you make in Secrets Manager (or other AWS services) takes time to become visible from all 
possible endpoints. Some of the delay results from the time it takes to send the data from server 
to server, from replication zone to replication zone, and from region to region around the world. 
Secrets Manager also uses caching to improve performance, but in some cases this can add time. 
The change might not be visible until the previously cached data times out.

Design your global applications to account for these potential delays. Also, ensure that they work 
as expected, even when a change made in one location isn't instantly visible at another.

For more information about how some other AWS services are affected by eventual consistency, 
see:

• Managing data consistency in the Amazon Redshift Database Developer Guide

• Amazon S3 Data Consistency Model in the Amazon Simple Storage Service User Guide

• Ensuring Consistency When Using Amazon S3 and Amazon EMR for ETL Workflows in the AWS 
Big Data Blog

• Amazon EC2 Eventual Consistency in the Amazon EC2 API Reference

Changes I make aren't always immediately visible. 358

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access.html
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/redshift/latest/dg/managing-data-consistency.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Introduction.html#ConsistencyModel
https://aws.amazon.com/blogs/big-data/ensuring-consistency-when-using-amazon-s3-and-amazon-elastic-mapreduce-for-etl-workflows/
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-api-troubleshooting.html#eventual-consistency


AWS Secrets Manager User Guide

“Cannot generate a data key with an asymmetric KMS key” 
when creating a secret

Secrets Manager uses a symmetric encryption KMS key associated with a secret to generate a data 
key for each secret value. You can't use an asymmetric KMS key. Verify you are using a symmetric 
encryption KMS key instead of an asymmetric KMS key. For instructions, see Identifying asymmetric 
KMS keys.

An AWS CLI or AWS SDK operation can't find my secret from a 
partial ARN

In many cases, Secrets Manager can find your secret from part of an ARN rather than the full ARN. 
However, if your secret's name ends in a hyphen followed by six characters, Secrets Manager might 
not be able to find the secret from only part of an ARN. Instead, we recommend that you use the 
complete ARN or the name of the secret.

More details

Secrets Manager includes six random characters at the end of the secret name to help ensure that 
the secret ARN is unique. If the original secret is deleted, and then a new secret is created with the 
same name, the two secrets have different ARNs because of these characters. Users with access to 
the old secret don't automatically get access to the new secret because the ARNs are different.

Secrets Manager constructs an ARN for a secret with Region, account, secret name, and then a 
hyphen and six more characters, as follows:

arn:aws:secretsmanager:us-east-2:111122223333:secret:SecretName-abcdef

If your secret name ends with a hyphen and six characters, using only part of the ARN can appear 
to Secrets Manager as though you are specifying a full ARN. For example, you might have a secret 
named MySecret-abcdef with the ARN

arn:aws:secretsmanager:us-east-2:111122223333:secret:MySecret-abcdef-nutBrk

If you call the following operation, which only uses part of the secret ARN, then Secrets Manager 
might not find the secret.

“Cannot generate a data key with an asymmetric KMS key” when creating a secret 359

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html


AWS Secrets Manager User Guide

$ aws secretsmanager describe-secret --secret-id arn:aws:secretsmanager:us-
east-2:111122223333:secret:MySecret-abcdef

This secret is managed by an AWS service, and you must use 
that service to update it.

If you encounter this message while trying to modify a secret, the secret can only be updated by 
using the managing service listed in the message. For more information, see Secrets managed by 
other services.

To determine who manages a secret, you can review the secret name. Secrets managed by other 
services are prefixed with the ID of that service. Or, in the AWS CLI, call describe-secret, and then 
review the field OwningService.

Python module import fails when using Transform: 
AWS::SecretsManager-2024-09-16

If you're using the Transform: AWS::SecretsManager-2024-09-16 and encounter Python 
module import failures when your rotation Lambda function runs, the issue is likely caused by 
an incompatible Runtime value. With this transform version, AWS CloudFormation manages the 
runtime version, code, and shared object files for you. You don't need to manage these yourself.

This secret is managed by an AWS service, and you must use that service to update it. 360

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html


AWS Secrets Manager User Guide

AWS Secrets Manager quotas

Secrets Manager read APIs have high TPS quotas, and control plane APIs that are less 
frequently called have lower TPS quotas. We recommend you avoid calling PutSecretValue
or UpdateSecret at a sustained rate of more than once every 10 minutes. When you call
PutSecretValue or UpdateSecret to update the secret value, Secrets Manager creates a new 
version of the secret. Secrets Manager removes unlabeled versions when there are more than 100, 
but it does not remove versions created less than 24 hours ago. If you update the secret value more 
than once every 10 minutes, you create more versions than Secrets Manager removes, and you will 
reach the quota for secret versions.

You may operate multiple regions in your account, and each quota is specific to each region.

When an application in one AWS account uses a secret owned by a different account, it's known as 
a cross-account request. For cross-account requests, Secrets Manager throttles the account of the 
identity that makes the requests, not the account that owns the secret. For example, if an identity 
from account A uses a secret in account B, the secret use applies only to the quotas in account A.

Secrets Manager quotas

Name Default Adjustabl 
e

Description

Combined rate of DeleteResourcePoli 
cy, GetResourcePolicy, PutResour 
cePolicy, and ValidateResourcePolicy 
API requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
DeleteResourcePoli 
cy, GetResourcePolicy, 
PutResourcePolicy, and 
ValidateResourcePolicy 
API requests combined.

Combined rate of PutSecretValue, 
RemoveRegionsFromReplication, 
ReplicateSecretToRegion, StopRepli 
cationToReplica, UpdateSecret, and 
UpdateSecretVersionStage API requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
PutSecretValue, 
RemoveRegionsFromR 
eplication, Replicate 
SecretToRegion, 

Secrets Manager quotas 361



AWS Secrets Manager User Guide

Name Default Adjustabl 
e

Description

StopReplicationToR 
eplica, UpdateSecret, 
and UpdateSecretVersio 
nStage API requests 
combined.

Combined rate of RestoreSecret API 
requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
RestoreSecret API 
requests.

Combined rate of RotateSecret and 
CancelRotateSecret API requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
RotateSecret and 
CancelRotateSecret API 
requests combined.

Combined rate of TagResource and 
UntagResource API requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
TagResource and 
UntagResource API 
requests combined.

Rate of BatchGetSecretValue API 
requests

Each supported 
Region: 100 per 
second

No The maximum transacti 
ons per second for 
BatchGetSecretValue API 
requests.

Rate of CreateSecret API requests Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
CreateSecret API 
requests.

Secrets Manager quotas 362



AWS Secrets Manager User Guide

Name Default Adjustabl 
e

Description

Rate of DeleteSecret API requests Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
DeleteSecret API 
requests.

Rate of DescribeSecret API requests Each supported 
Region: 40,000 
per second

No The maximum transacti 
ons per second for 
DescribeSecret API 
requests.

Rate of GetRandomPassword API 
requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
GetRandomPassword API 
requests.

Rate of GetSecretValue API requests Each supported 
Region: 10,000 
per second

No The maximum transacti 
ons per second for 
GetSecretValue API 
requests.

Rate of ListSecretVersionIds API 
requests

Each supported 
Region: 50 per 
second

No The maximum transacti 
ons per second for 
ListSecretVersionIds API 
requests.

Rate of ListSecrets API requests Each supported 
Region: 100 per 
second

No The maximum transacti 
ons per second for 
ListSecrets API requests.

Resource-based policy length Each supported 
Region: 20,480

No The maximum number of 
characters in a resource- 
based permissions policy 
attached to a secret.

Secrets Manager quotas 363



AWS Secrets Manager User Guide

Name Default Adjustabl 
e

Description

Secret value size Each supported 
Region: 65,536 
Bytes

No The maximum size of an 
encrypted secret value. 
If the secret value is a 
string, then this is the 
number of characters 
permitted in the secret 
value.

Secrets Each supported 
Region: 500,000

No The maximum number 
of secrets in each AWS 
Region of this AWS 
account.

Staging labels attached across all 
versions of a secret

Each supported 
Region: 20

No The maximum number of 
staging labels attached 
across all versions of a 
secret.

Versions per secret Each supported 
Region: 100

No The maximum number of 
versions of a secret.

Add retries to your application

Your AWS client might see calls to Secrets Manager fail due to unexpected issues on the client side. 
Or calls might fail due to rate limiting from Secrets Manager. When you exceed an API request 
quota, Secrets Manager throttles the request. It rejects an otherwise valid request and returns a 
throttling error. For both kinds of failures, we recommend you retry the call after a brief waiting 
period. This is called a backoff and retry strategy.

If you experience the following errors, you might want to add retries to your application code:

Transient errors and exceptions

• RequestTimeout

• RequestTimeoutException

Add retries to your application 364

https://docs.aws.amazon.com/general/latest/gr/api-retries.html


AWS Secrets Manager User Guide

• PriorRequestNotComplete

• ConnectionError

• HTTPClientError

Service-side throttling and limit errors and exceptions

• Throttling

• ThrottlingException

• ThrottledException

• RequestThrottledException

• TooManyRequestsException

• ProvisionedThroughputExceededException

• TransactionInProgressException

• RequestLimitExceeded

• BandwidthLimitExceeded

• LimitExceededException

• RequestThrottled

• SlowDown

For more information, as well as example code, on retries, exponential backoff, and jitter, see the 
following resources:

• Exponential Backoff and Jitter

• Timeouts, retries and backoff with jitter

• Error retries and exponential backoff in AWS.

Add retries to your application 365

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter
https://docs.aws.amazon.com/general/latest/gr/api-retries.html


AWS Secrets Manager User Guide

Document history

The following table describes the important changes to the documentation since the last release of 
AWS Secrets Manager. For notification about updates to this documentation, you can subscribe to 
an RSS feed.

Change Description Date

New AWS managed policy Secrets Manager has released 
a new managed policy
AWSSecretsManagerC 
lientReadOnlyAcces 
s  that provides read-only 
access to secrets for client 
applications. For information, 
see Secrets Manager updates 
to AWS managed policies.

November 5, 2025

Added support for cost 
allocation tags

Secrets Manager now 
supports cost allocation 
tags, allowing customers 
to categorize and track 
costs by department, team, 
or application. For more 
information, see Using cost 
allocation tags with AWS 
Secrets Manager.

May 27, 2025

Added IPv6 and dual-stack 
support

Secrets Manager now 
supports dual-stack endpoints 
. See IPv4 and IPv6 access for 
more information.

December 20, 2024

Secrets Manager change to 
AWS managed policy

The SecretsManagerRead 
Write  managed policy 
now includes redshift- 
serverless  permissio 

March 12, 2024

366

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-policies.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-policies.html#security-iam-awsmanpol-updates
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cost-allocation-tags.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cost-allocation-tags.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/cost-allocation-tags.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/ip-access.html


AWS Secrets Manager User Guide

n. For more information, see
AWS managed policy for AWS 
Secrets Manager

Earlier updates

The following table describes important changes in each release of the AWS Secrets Manager User 
Guide before February 2024.

Change Description Date

General availability This is the initial public 
release of Secrets Manager.

Apr 4, 2018

Earlier updates 367

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-policies.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-policies.html

	AWS Secrets Manager
	Table of Contents
	What is AWS Secrets Manager?
	Get started with Secrets Manager
	Compliance with standards
	Pricing

	Access AWS Secrets Manager
	Secrets Manager console
	Command line tools
	AWS SDKs
	HTTPS Query API
	AWS Secrets Manager endpoints

	AWS Secrets Manager best practices
	Store credentials and other sensitive information in AWS Secrets Manager
	Find unprotected secrets in your code
	Choose an encryption key for your secret
	Use caching to retrieve secrets
	Rotate your secrets
	Mitigate risks of using CLI
	Limit access to secrets
	Block broad access to secrets
	Use caution with IP address conditions in policies
	Limit requests with VPC endpoint conditions

	Replicate secrets
	Monitor secrets
	Run your infrastructure on private networks

	AWS Secrets Manager tutorials
	Find unprotected secrets in your code with Amazon CodeGuru Reviewer
	Move hardcoded secrets to AWS Secrets Manager
	Step 1: Create the secret
	Step 2: Update your code
	Step 3: Update the secret
	Next steps

	Move hardcoded database credentials to AWS Secrets Manager
	Step 1: Create the secret
	Step 2: Update your code
	Step 3: Rotate the secret
	Next steps

	Set up alternating users rotation for AWS Secrets Manager
	Permissions
	Prerequisites
	Prereq A: Amazon VPC
	Prereq B: Amazon EC2 instance
	Prereq C: Amazon RDS database and a Secrets Manager secret for the admin credentials
	Prereq D: Allow your local computer to connect to the EC2 instance

	Step 1: Create an Amazon RDS database user
	Step 2: Create a secret for the user credentials
	Step 3: Test the rotated secret
	Step 4: Clean up resources
	Next steps

	Set up single user rotation for AWS Secrets Manager
	Permissions
	Prerequisites
	Step 1: Create an Amazon RDS database user
	Step 2: Create a secret for the database user credentials
	Step 3: Test the rotated password
	Step 4: Clean up resources
	Next steps


	Create an AWS Secrets Manager secret
	AWS CLI
	AWS SDK
	What's in a Secrets Manager secret?
	Metadata
	Secret versions

	JSON structure of AWS Secrets Manager secrets
	Amazon RDS and Aurora credentials
	Amazon Redshift credentials
	Amazon Redshift Serverless credentials
	Amazon DocumentDB credentials
	Amazon Timestream for InfluxDB secret structure
	Amazon ElastiCache credentials
	Active Directory credentials


	Manage secrets with AWS Secrets Manager
	Update the value for an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Generate a password with Secrets Manager
	Roll back a secret to a previous version
	Change the encryption key for an AWS Secrets Manager secret
	AWS CLI

	Modify an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Find secrets in AWS Secrets Manager
	Search filters
	AWS CLI
	AWS SDK

	Delete an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Restore an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Tagging secrets in AWS Secrets Manager
	Review tag basics
	Track costs using tagging
	Understand tag restrictions
	Tag secrets using the Secrets Manager console
	Tag secrets using the AWS CLI
	AWS CLI examples

	Tag secrets using the Secrets Manager API
	Tag secrets using the Secrets Manager AWS SDK


	Replicate AWS Secrets Manager secrets across Regions
	AWS CLI
	AWS SDK
	Promote a replica secret to a standalone secret in AWS Secrets Manager
	AWS CLI
	AWS SDK

	Prevent AWS Secrets Manager replication
	Troubleshoot AWS Secrets Manager replication
	A secret with the same name exists in the selected Region
	No permissions available on the KMS key to complete the replication
	The KMS key is disabled or not found
	You have not enabled the Region where the replication occurs


	Get secrets from AWS Secrets Manager
	Get a Secrets Manager secret value using Java
	Get a Secrets Manager secret value using Java with client-side caching
	SecretCache
	Constructors
	Methods
	getSecretString
	getSecretBinary
	refreshNow
	close


	SecretCacheConfiguration
	Constructor
	Methods
	getClient
	setClient
	getCacheHook
	setCacheHook
	getMaxCacheSize
	setMaxCacheSize
	getCacheItemTTL
	setCacheItemTTL
	getVersionStage
	setVersionStage
	SecretCacheConfiguration withClient
	SecretCacheConfiguration withCacheHook
	SecretCacheConfiguration withMaxCacheSize
	SecretCacheConfiguration withCacheItemTTL
	SecretCacheConfiguration withVersionStage


	SecretCacheHook
	put
	get


	Connect to a SQL database using JDBC with credentials in an AWS Secrets Manager secret
	Establish a connection to a database
	Establish a connection by specifying the endpoint and port
	Use c3p0 connection pooling to establish a connection
	Use c3p0 connection pooling to establish a connection by specifying the endpoint and port

	Get a Secrets Manager secret value using the Java AWS SDK

	Get a Secrets Manager secret value using Python
	Get a Secrets Manager secret value using Python with client-side caching
	SecretCache
	get_secret_string
	get_secret_binary

	SecretCacheConfig
	SecretCacheHook
	put
	get

	@InjectSecretString
	@InjectKeywordedSecretString

	Get a Secrets Manager secret value using the Python AWS SDK
	Get a batch of Secrets Manager secret values using the Python AWS SDK

	Get a Secrets Manager secret value using .NET
	Get a Secrets Manager secret value using .NET with client-side caching
	SecretsManagerCache
	Constructors
	Methods
	GetSecretString
	GetSecretBinary
	RefreshNowAsync
	GetCachedSecret


	SecretCacheConfiguration
	Properties
	CacheItemTTL
	MaxCacheSize
	VersionStage
	Client
	CacheHook


	ISecretCacheHook
	Methods
	Put
	Get



	Get a Secrets Manager secret value using the SDK for .NET

	Get a Secrets Manager secret value using Go
	Get a Secrets Manager secret value using Go with client-side caching
	type Cache
	Methods
	New
	GetSecretString
	GetSecretStringWithStage
	GetSecretBinary
	GetSecretBinaryWithStage


	type CacheConfig
	type CacheHook
	Methods
	Put
	Get



	Get a Secrets Manager secret value using the Go AWS SDK

	Get a Secrets Manager secret value using Rust
	Get a Secrets Manager secret value using Rust with client-side caching
	Get a Secrets Manager secret value using the Rust AWS SDK

	Use AWS Secrets Manager secrets in Amazon Elastic Kubernetes Service
	ASCP with IAM Roles for Service Accounts (IRSA)
	ASCP with Pod Identity
	Choosing the right approach
	Install ASCP for Amazon EKS
	Prerequisites
	Install and configure the ASCP
	Verify the installations
	Troubleshooting
	Additional resources

	Use AWS Secrets and Configuration Provider CSI with Pod Identity for Amazon EKS
	How it works
	Prerequisites
	Install the Amazon EKS Pod Identity Agent
	Set up ASCP with Pod Identity
	Verify the secret mount

	Troubleshoot

	Use AWS Secrets and Configuration Provider CSI with IAM Roles for Service Accounts (IRSA)
	Prerequisites
	Set up access control
	Identify which secrets to mount
	Mount the secrets as files

	Troubleshoot

	AWS Secrets and Configuration Provider code examples
	ASCP authentication and access control examples
	Example: IAM policy allowing Amazon EKS Pod Identity service (pods.eks.amazonaws.com) to assume the role and tag the session:

	SecretProviderClass
	SecretProviderClass YAML structure
	Create a basic SecretProviderClass configuration to mount secrets in your Amazon EKS Pods.
	SecretProviderClass usage
	Example: Mount secrets by name or ARN
	Example: Mount key-value pairs from a secret
	Example: Mount secrets by file permission
	Example: Failover configuration examples
	Multi-Region secret failover
	Failover to a different secret



	Additional resources


	Use AWS Secrets Manager secrets in AWS Lambda functions
	Using Secrets Manager secrets with Lambda
	Using Secrets Manager and Lambda in a VPC

	Using the AWS Parameters and Secrets Lambda Extension

	Using the AWS Secrets Manager Agent
	How the Secrets Manager Agent works
	Understanding Secrets Manager Agent caching
	Build the Secrets Manager Agent
	Install the Secrets Manager Agent
	Retrieve secrets with the Secrets Manager Agent
	Required permissions
	Example requests

	Understanding the refreshNow parameter
	Force-refresh a secret value

	Configure the Secrets Manager Agent
	Optional features
	Logging
	Security considerations

	Get a Secrets Manager secret value using the C++ AWS SDK
	Get a Secrets Manager secret value using the JavaScript AWS SDK
	Get a Secrets Manager secret value using the Kotlin AWS SDK
	Get a Secrets Manager secret value using the PHP AWS SDK
	Get a Secrets Manager secret value using the Ruby AWS SDK
	Get a secret value using the AWS CLI
	Get a group of secrets in a batch using the AWS CLI

	Get a secret value using the AWS console
	Use AWS Secrets Manager secrets in AWS Batch
	Get an AWS Secrets Manager secret in an CloudFormation resource
	Use AWS Secrets Manager secrets in GitHub jobs
	Prerequisites
	Usage
	Environment variable naming
	Examples

	Use AWS Secrets Manager in GitLab
	Considerations
	Prerequisites
	Integrating AWS Secrets Manager with GitLab
	Configure GitLab pipeline to use Secrets Manager

	Troubleshooting
	GitLab Pipeline issues
	Additional resources


	Use AWS Secrets Manager secrets in AWS IoT Greengrass
	Use AWS Secrets Manager secrets in Parameter Store

	Rotate AWS Secrets Manager secrets
	Managed rotation for AWS Secrets Manager secrets
	Rotate Secrets Manager managed external secrets
	Set Up Rotation in the Console
	Set Up Rotation Using the CLI

	Rotation by Lambda function
	Set up automatic rotation for Amazon RDS, Amazon Aurora, Amazon Redshift, or Amazon DocumentDB secrets
	Step 1: Choose a rotation strategy and (optionally) create a superuser secret
	Step 2: Configure rotation and create a rotation function
	Step 3: (Optional) Set additional permissions conditions on the rotation function
	Step 4: Set up network access for the rotation function
	Next steps

	Set up automatic rotation for non-database AWS Secrets Manager secrets
	Step 1: Create a generic rotation function
	Step 2: Write the rotation function code
	Step 3: Configure the secret for rotation
	Step 4: Allow the rotation function to access Secrets Manager and your database or service
	Step 5: Allow Secrets Manager to invoke the rotation function
	Step 6: Set up network access for the rotation function
	Next steps

	Set up automatic rotation using the AWS CLI
	Prerequisite for database secrets: Choose a rotation strategy
	Option 1: Single user strategy
	Option 2: Alternating users strategy

	Step 1: Write the rotation function code
	Step 2: Create the Lambda function
	Step 3: Set up network access
	Step 4: Configure the secret for rotation
	Next steps

	Lambda function rotation strategies
	Rotation strategy: single user
	Rotation strategy: alternating users

	Lambda rotation functions
	Four steps in a rotation function
	createSecret: Create a new version of the secret
	setSecret: Change the credentials in the database or service
	testSecret: Test the new secret version
	finishSecret: Finish the rotation


	AWS Secrets Manager rotation function templates
	Amazon RDS and Amazon Aurora
	Amazon RDS Db2 single user
	Amazon RDS Db2 alternating users
	Amazon RDS MariaDB single user
	Amazon RDS MariaDB alternating users
	Amazon RDS and Amazon Aurora MySQL single user
	Amazon RDS and Amazon Aurora MySQL alternating users
	Amazon RDS Oracle single user
	Amazon RDS Oracle alternating users
	Amazon RDS and Amazon Aurora PostgreSQL single user
	Amazon RDS and Amazon Aurora PostgreSQL alternating users
	Amazon RDS Microsoft SQLServer single user
	Amazon RDS Microsoft SQLServer alternating users

	Amazon DocumentDB (with MongoDB compatibility)
	Amazon DocumentDB single user
	Amazon DocumentDB alternating users

	Amazon Redshift
	Amazon Redshift single user
	Amazon Redshift alternating users

	Amazon Timestream for InfluxDB
	Amazon Timestream for InfluxDB single user
	Amazon Timestream for InfluxDB alternating users

	Amazon ElastiCache
	Active Directory
	Active Directory credentials
	Active Directory keytab

	Other types of secrets

	Lambda rotation function execution role permissions for AWS Secrets Manager
	Policy for a Lambda rotation function execution role
	Policy statement for customer managed key
	Policy statement for alternating users strategy

	Network access for AWS Lambda rotation function
	Troubleshoot AWS Secrets Manager rotation
	How to troubleshoot secret rotation failures in AWS Lambda functions
	Possible causes
	General troubleshooting steps

	No activity after "Found credentials in environment variables"
	No activity after "createSecret"
	Error: "Access to KMS is not allowed"
	Error: "Key is missing from secret JSON"
	Error: "setSecret: Unable to log into database"
	Error: "Unable to import module 'lambda_function'"
	Upgrade an existing rotation function from Python 3.7 to 3.9
	Option 1: Recreate the rotation function using CloudFormation
	Option 2: Update the runtime for the existing rotation function using CloudFormation
	Option 3: For AWS CDK users, upgrade the CDK library

	Upgrade an existing rotation function from Python 3.9 to 3.10
	Update paths by deployment method

	AWS Lambda secret rotation with PutSecretValue failed
	Error: "Error when executing lambda <arn> during <a rotation> step"
	Concurrency troubleshooting steps



	Rotation schedules
	Rotation windows
	Rate expressions
	Cron expressions
	Cron expression requirements in Secrets Manager


	Rotate an AWS Secrets Manager secret immediately
	AWS CLI

	Find secrets that aren't rotated
	Cancel automatic rotation in Secrets Manager

	AWS Secrets Manager secrets managed by other AWS services
	AWS services that use AWS Secrets Manager secrets
	How AWS App Runner uses AWS Secrets Manager
	How AWS App2Container uses AWS Secrets Manager
	How AWS AppConfig uses AWS Secrets Manager
	How Amazon AppFlow uses AWS Secrets Manager
	How AWS AppSync uses AWS Secrets Manager
	How Amazon Athena uses AWS Secrets Manager
	How Amazon Aurora uses AWS Secrets Manager
	How AWS CodeBuild uses AWS Secrets Manager
	How Amazon Data Firehose uses AWS Secrets Manager
	How AWS DataSync uses AWS Secrets Manager
	How Amazon DataZone uses AWS Secrets Manager
	How AWS Direct Connect uses AWS Secrets Manager
	How AWS Directory Service uses AWS Secrets Manager
	How Amazon DocumentDB (with MongoDB compatibility) uses AWS Secrets Manager
	How AWS Elastic Beanstalk uses AWS Secrets Manager
	How Amazon Elastic Container Registry uses AWS Secrets Manager
	Amazon Elastic Container Service
	How Amazon ElastiCache uses AWS Secrets Manager
	How AWS Elemental Live uses AWS Secrets Manager
	How AWS Elemental MediaConnect uses AWS Secrets Manager
	How AWS Elemental MediaConvert uses AWS Secrets Manager
	How AWS Elemental MediaLive uses AWS Secrets Manager
	How AWS Elemental MediaPackage uses AWS Secrets Manager
	How AWS Elemental MediaTailor uses AWS Secrets Manager
	How Amazon EMR uses Secrets Manager
	How Amazon EMR running on Amazon EC2 uses Secrets Manager
	How EMR Serverless uses Secrets Manager

	How Amazon EventBridge uses AWS Secrets Manager
	How Amazon FSx uses AWS Secrets Manager secrets
	How AWS Glue DataBrew uses AWS Secrets Manager
	How AWS Glue Studio uses AWS Secrets Manager
	How AWS IoT SiteWise uses AWS Secrets Manager
	How Amazon Kendra uses AWS Secrets Manager
	How Amazon Kinesis Video Streams uses AWS Secrets Manager
	How AWS Launch Wizard uses AWS Secrets Manager
	How Amazon Lookout for Metrics uses AWS Secrets Manager
	How Amazon Managed Grafana uses AWS Secrets Manager
	How AWS Managed Services uses AWS Secrets Manager
	How Amazon Managed Streaming for Apache Kafka uses AWS Secrets Manager
	How Amazon Managed Workflows for Apache Airflow uses AWS Secrets Manager
	AWS Marketplace
	How AWS Migration Hub uses AWS Secrets Manager
	How AWS Panorama uses Secrets Manager
	How AWS Parallel Computing Service uses AWS Secrets Manager
	How AWS ParallelCluster uses AWS Secrets Manager
	How Amazon Q uses Secrets Manager
	How Amazon OpenSearch Ingestion uses Secrets Manager
	How AWS OpsWorks for Chef Automate uses AWS Secrets Manager
	How Amazon Quick Suite uses AWS Secrets Manager
	How Amazon RDS uses AWS Secrets Manager
	How Amazon Redshift uses AWS Secrets Manager
	Amazon Redshift query editor v2
	How Amazon SageMaker AI uses AWS Secrets Manager
	How AWS Schema Conversion Tool uses AWS Secrets Manager
	How Amazon Timestream for InfluxDB uses AWS Secrets Manager
	How AWS Toolkit for JetBrains uses AWS Secrets Manager
	How AWS Transfer Family uses AWS Secrets Manager secrets
	How AWS Wickruses AWS Secrets Manager secrets


	Using AWS Secrets Manager managed external secrets to manage Third Party secrets
	Key features
	Managed external secrets Partners
	Salesforce Client Secret
	Secret Value Fields
	Secret Metadata Fields
	Usage Flow

	Big ID Refresh Token
	Secret Value Fields
	Usage Flow

	Snowflake Key Pair
	Secret Value Fields
	Secret Metadata Fields
	Usage Flow


	Security and permissions
	Monitor and troubleshoot managed external secrets
	Migrating existing secrets
	Limitations and considerations

	Create AWS Secrets Manager secrets in AWS CloudFormation
	Create an AWS Secrets Manager secret with CloudFormation
	JSON
	YAML

	Create an AWS Secrets Manager secret with automatic rotation and an Amazon RDS MySQL DB instance with CloudFormation
	Create an AWS Secrets Manager secret and an Amazon Redshift cluster with CloudFormation
	Create an AWS Secrets Manager secret and an Amazon DocumentDB instance with CloudFormation
	JSON
	YAML

	How Secrets Manager uses AWS CloudFormation

	Create AWS Secrets Manager secrets in AWS Cloud Development Kit (AWS CDK)
	Monitor AWS Secrets Manager secrets
	Log AWS Secrets Manager events with AWS CloudTrail
	AWS CLI
	AWS CloudTrail entries for Secrets Manager
	Log entries for Secrets Manager operations
	Log entries for deletion
	Log entries for replication
	Log entries for rotation


	Monitor AWS Secrets Manager with Amazon CloudWatch
	CloudWatch alarms

	Match AWS Secrets Manager events with Amazon EventBridge
	Match all changes to a specified secret
	Match events when a secret value rotates

	Monitor when AWS Secrets Manager secrets scheduled for deletion are accessed
	Step 1: Configure CloudTrail log file delivery to CloudWatch Logs
	Step 2: Create the CloudWatch alarm
	Step 3: Test the CloudWatch alarm

	Monitor AWS Secrets Manager secrets for compliance by using AWS Config
	Monitor Secrets Manager costs
	Detect threats with Amazon GuardDuty

	Compliance validation for AWS Secrets Manager
	Compliance standards

	Security in AWS Secrets Manager
	Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets
	Authentication and access control for AWS Secrets Manager
	Permissions reference for AWS Secrets Manager
	Secrets Manager administrator permissions
	Permissions to access secrets
	Permissions for Lambda rotation functions
	Permissions for encryption keys
	Permissions for replication
	Identity-based policies
	Example: Permission to retrieve individual secret values
	Example: Permission to read and describe individual secrets
	Example: Permission to retrieve a group of secret values in a batch
	Example: Wildcards
	Example: Permission to create secrets
	Example: Deny a specific AWS KMS key to encrypt secrets

	Resource-based policies
	AWS CLI
	AWS SDK
	Examples
	Example: Permission to retrieve individual secret values
	Example: Permissions and VPCs
	Example: Service principal


	Control access to secrets using attribute-based access control (ABAC)
	Example: Allow an identity access to secrets that have specific tags
	Example: Allow access only to identities with tags that match secrets' tags

	AWS managed policy for AWS Secrets Manager
	AWS managed policy: SecretsManagerReadWrite
	AWS managed policy: AWSSecretsManagerClientReadOnlyAccess
	Secrets Manager updates to AWS managed policies

	Determine who has permissions to your AWS Secrets Manager secrets
	Access AWS Secrets Manager secrets from a different account
	Access secrets from an on-premises environment

	Data protection in AWS Secrets Manager
	Encryption at rest
	Encryption in transit
	Inter-network traffic privacy
	Encryption key management

	Secret encryption and decryption in AWS Secrets Manager
	Choosing a AWS KMS key
	What is encrypted?
	Encryption and decryption processes
	Permissions for the KMS key
	How Secrets Manager uses your KMS key
	Key policy of the AWS managed key (aws/secretsmanager)
	Secrets Manager encryption context
	Monitor Secrets Manager interaction with AWS KMS

	Infrastructure security in AWS Secrets Manager
	Using an AWS Secrets Manager VPC endpoint
	Create an endpoint policy for your interface endpoint
	Shared subnets

	Control API access with IAM policies
	What is IPv6?
	IAM dual-stack (IPv4 and IPv6) policies
	Who should make this change?
	Who should not make this change?

	Adding IPv6 to an IAM policy
	Verifying your client supports IPv6

	Resiliency in AWS Secrets Manager
	Post-quantum TLS

	Troubleshooting AWS Secrets Manager
	"Access denied" messages
	"Access denied" for temporary security credentials
	Changes I make aren't always immediately visible.
	“Cannot generate a data key with an asymmetric KMS key” when creating a secret
	An AWS CLI or AWS SDK operation can't find my secret from a partial ARN
	This secret is managed by an AWS service, and you must use that service to update it.
	Python module import fails when using Transform: AWS::SecretsManager-2024-09-16

	AWS Secrets Manager quotas
	Secrets Manager quotas
	Add retries to your application

	Document history
	Earlier updates


