Skip to content

/AWS1/CL_SGMRECOMMENDATIONJO02

Specifies mandatory fields for running an Inference Recommender job directly in the CreateInferenceRecommendationsJob API. The fields specified in ContainerConfig override the corresponding fields in the model package. Use ContainerConfig if you want to specify these fields for the recommendation job but don't want to edit them in your model package.

CONSTRUCTOR

IMPORTING

Optional arguments:

iv_domain TYPE /AWS1/SGMSTRING /AWS1/SGMSTRING

The machine learning domain of the model and its components.

Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

iv_task TYPE /AWS1/SGMSTRING /AWS1/SGMSTRING

The machine learning task that the model accomplishes.

Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

iv_framework TYPE /AWS1/SGMSTRING /AWS1/SGMSTRING

The machine learning framework of the container image.

Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

iv_frameworkversion TYPE /AWS1/SGMRECOMMENDATIONJOBFR00 /AWS1/SGMRECOMMENDATIONJOBFR00

The framework version of the container image.

io_payloadconfig TYPE REF TO /AWS1/CL_SGMRECOMMENDATIONJO03 /AWS1/CL_SGMRECOMMENDATIONJO03

Specifies the SamplePayloadUrl and all other sample payload-related fields.

iv_nearestmodelname TYPE /AWS1/SGMSTRING /AWS1/SGMSTRING

The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

it_supportedinstancetypes TYPE /AWS1/CL_SGMRECOMMENDATIONJO05=>TT_RECOMMENDATIONJOBSUPPEDIN00 TT_RECOMMENDATIONJOBSUPPEDIN00

A list of the instance types that are used to generate inferences in real-time.

iv_supportedendpointtype TYPE /AWS1/SGMRECOMMENDATIONJOBSU00 /AWS1/SGMRECOMMENDATIONJOBSU00

The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.

iv_datainputconfig TYPE /AWS1/SGMRECOMMENDATIONJOBDA00 /AWS1/SGMRECOMMENDATIONJOBDA00

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

it_supportedrspmimetypes TYPE /AWS1/CL_SGMRECOMMENDATIONJO13=>TT_RECOMMENDATIONJOBSUPPEDRS00 TT_RECOMMENDATIONJOBSUPPEDRS00

The supported MIME types for the output data.


Queryable Attributes

Domain

The machine learning domain of the model and its components.

Valid Values: COMPUTER_VISION | NATURAL_LANGUAGE_PROCESSING | MACHINE_LEARNING

Accessible with the following methods

Method Description
GET_DOMAIN() Getter for DOMAIN, with configurable default
ASK_DOMAIN() Getter for DOMAIN w/ exceptions if field has no value
HAS_DOMAIN() Determine if DOMAIN has a value

Task

The machine learning task that the model accomplishes.

Valid Values: IMAGE_CLASSIFICATION | OBJECT_DETECTION | TEXT_GENERATION | IMAGE_SEGMENTATION | FILL_MASK | CLASSIFICATION | REGRESSION | OTHER

Accessible with the following methods

Method Description
GET_TASK() Getter for TASK, with configurable default
ASK_TASK() Getter for TASK w/ exceptions if field has no value
HAS_TASK() Determine if TASK has a value

Framework

The machine learning framework of the container image.

Valid Values: TENSORFLOW | PYTORCH | XGBOOST | SAGEMAKER-SCIKIT-LEARN

Accessible with the following methods

Method Description
GET_FRAMEWORK() Getter for FRAMEWORK, with configurable default
ASK_FRAMEWORK() Getter for FRAMEWORK w/ exceptions if field has no value
HAS_FRAMEWORK() Determine if FRAMEWORK has a value

FrameworkVersion

The framework version of the container image.

Accessible with the following methods

Method Description
GET_FRAMEWORKVERSION() Getter for FRAMEWORKVERSION, with configurable default
ASK_FRAMEWORKVERSION() Getter for FRAMEWORKVERSION w/ exceptions if field has no va
HAS_FRAMEWORKVERSION() Determine if FRAMEWORKVERSION has a value

PayloadConfig

Specifies the SamplePayloadUrl and all other sample payload-related fields.

Accessible with the following methods

Method Description
GET_PAYLOADCONFIG() Getter for PAYLOADCONFIG

NearestModelName

The name of a pre-trained machine learning model benchmarked by Amazon SageMaker Inference Recommender that matches your model.

Valid Values: efficientnetb7 | unet | xgboost | faster-rcnn-resnet101 | nasnetlarge | vgg16 | inception-v3 | mask-rcnn | sagemaker-scikit-learn | densenet201-gluon | resnet18v2-gluon | xception | densenet201 | yolov4 | resnet152 | bert-base-cased | xceptionV1-keras | resnet50 | retinanet

Accessible with the following methods

Method Description
GET_NEARESTMODELNAME() Getter for NEARESTMODELNAME, with configurable default
ASK_NEARESTMODELNAME() Getter for NEARESTMODELNAME w/ exceptions if field has no va
HAS_NEARESTMODELNAME() Determine if NEARESTMODELNAME has a value

SupportedInstanceTypes

A list of the instance types that are used to generate inferences in real-time.

Accessible with the following methods

Method Description
GET_SUPPORTEDINSTANCETYPES() Getter for SUPPORTEDINSTANCETYPES, with configurable default
ASK_SUPPORTEDINSTANCETYPES() Getter for SUPPORTEDINSTANCETYPES w/ exceptions if field has
HAS_SUPPORTEDINSTANCETYPES() Determine if SUPPORTEDINSTANCETYPES has a value

SupportedEndpointType

The endpoint type to receive recommendations for. By default this is null, and the results of the inference recommendation job return a combined list of both real-time and serverless benchmarks. By specifying a value for this field, you can receive a longer list of benchmarks for the desired endpoint type.

Accessible with the following methods

Method Description
GET_SUPPORTEDENDPOINTTYPE() Getter for SUPPORTEDENDPOINTTYPE, with configurable default
ASK_SUPPORTEDENDPOINTTYPE() Getter for SUPPORTEDENDPOINTTYPE w/ exceptions if field has
HAS_SUPPORTEDENDPOINTTYPE() Determine if SUPPORTEDENDPOINTTYPE has a value

DataInputConfig

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. This field is used for optimizing your model using SageMaker Neo. For more information, see DataInputConfig.

Accessible with the following methods

Method Description
GET_DATAINPUTCONFIG() Getter for DATAINPUTCONFIG, with configurable default
ASK_DATAINPUTCONFIG() Getter for DATAINPUTCONFIG w/ exceptions if field has no val
HAS_DATAINPUTCONFIG() Determine if DATAINPUTCONFIG has a value

SupportedResponseMIMETypes

The supported MIME types for the output data.

Accessible with the following methods

Method Description
GET_SUPPORTEDRSPMIMETYPES() Getter for SUPPORTEDRESPONSEMIMETYPES, with configurable def
ASK_SUPPORTEDRSPMIMETYPES() Getter for SUPPORTEDRESPONSEMIMETYPES w/ exceptions if field
HAS_SUPPORTEDRSPMIMETYPES() Determine if SUPPORTEDRESPONSEMIMETYPES has a value