/AWS1/CL_SGMAUTOMLS3DATASOURCE¶
Describes the Amazon S3 data source.
CONSTRUCTOR¶
IMPORTING¶
Required arguments:¶
iv_s3datatype TYPE /AWS1/SGMAUTOMLS3DATATYPE /AWS1/SGMAUTOMLS3DATATYPE¶
The data type.
If you choose
S3Prefix,S3Uriidentifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training.The
S3Prefixshould have the following format:
s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILEIf you choose
ManifestFile,S3Uriidentifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training.A
ManifestFileshould have the format shown below:
[ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",
... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]If you choose
AugmentedManifestFile,S3Uriidentifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFileis available for V2 API jobs only (for example, for jobs created by callingCreateAutoMLJobV2).Here is a minimal, single-record example of an
AugmentedManifestFile:
{"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
"label-metadata": {"class-name": "cat"}For more information on
AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
iv_s3uri TYPE /AWS1/SGMS3URI /AWS1/SGMS3URI¶
The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
Queryable Attributes¶
S3DataType¶
The data type.
If you choose
S3Prefix,S3Uriidentifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training.The
S3Prefixshould have the following format:
s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILEIf you choose
ManifestFile,S3Uriidentifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training.A
ManifestFileshould have the format shown below:
[ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"},
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1",
"DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2",
... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ]If you choose
AugmentedManifestFile,S3Uriidentifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training.AugmentedManifestFileis available for V2 API jobs only (for example, for jobs created by callingCreateAutoMLJobV2).Here is a minimal, single-record example of an
AugmentedManifestFile:
{"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg",
"label-metadata": {"class-name": "cat"}For more information on
AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
Accessible with the following methods¶
| Method | Description |
|---|---|
GET_S3DATATYPE() |
Getter for S3DATATYPE, with configurable default |
ASK_S3DATATYPE() |
Getter for S3DATATYPE w/ exceptions if field has no value |
HAS_S3DATATYPE() |
Determine if S3DATATYPE has a value |
S3Uri¶
The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
Accessible with the following methods¶
| Method | Description |
|---|---|
GET_S3URI() |
Getter for S3URI, with configurable default |
ASK_S3URI() |
Getter for S3URI w/ exceptions if field has no value |
HAS_S3URI() |
Determine if S3URI has a value |