/AWS1/IF_ML=>CREATEMLMODEL()¶
About CreateMLModel¶
Creates a new MLModel using the DataSource and the recipe as
information sources.
An MLModel is nearly immutable. Users can update only the
MLModelName and the ScoreThreshold in an
MLModel without creating a new MLModel.
CreateMLModel is an asynchronous operation. In response to
CreateMLModel, Amazon Machine Learning (Amazon ML) immediately returns
and sets the MLModel status to PENDING. After the
MLModel has been created and ready is for use, Amazon ML sets the
status to COMPLETED.
You can use the GetMLModel operation to check the progress of the
MLModel during the creation operation.
CreateMLModel requires a DataSource with computed statistics,
which can be created by setting ComputeStatistics to true in
CreateDataSourceFromRDS, CreateDataSourceFromS3, or
CreateDataSourceFromRedshift operations.
Method Signature¶
METHODS /AWS1/IF_ML~CREATEMLMODEL
IMPORTING
!IV_MLMODELID TYPE /AWS1/ML_ENTITYID OPTIONAL
!IV_MLMODELNAME TYPE /AWS1/ML_ENTITYNAME OPTIONAL
!IV_MLMODELTYPE TYPE /AWS1/ML_MLMODELTYPE OPTIONAL
!IT_PARAMETERS TYPE /AWS1/CL_ML_TRAININGPARAMS_W=>TT_TRAININGPARAMETERS OPTIONAL
!IV_TRAININGDATASOURCEID TYPE /AWS1/ML_ENTITYID OPTIONAL
!IV_RECIPE TYPE /AWS1/ML_RECIPE OPTIONAL
!IV_RECIPEURI TYPE /AWS1/ML_S3URL OPTIONAL
RETURNING
VALUE(OO_OUTPUT) TYPE REF TO /aws1/cl_ml_createmlmodelout
RAISING
/AWS1/CX_ML_IDEMPOTENTPRMMIS00
/AWS1/CX_ML_INTERNALSERVEREX
/AWS1/CX_ML_INVALIDINPUTEX
/AWS1/CX_ML_CLIENTEXC
/AWS1/CX_ML_SERVEREXC
/AWS1/CX_RT_TECHNICAL_GENERIC
/AWS1/CX_RT_SERVICE_GENERIC.
IMPORTING¶
Required arguments:¶
iv_mlmodelid TYPE /AWS1/ML_ENTITYID /AWS1/ML_ENTITYID¶
A user-supplied ID that uniquely identifies the
MLModel.
iv_mlmodeltype TYPE /AWS1/ML_MLMODELTYPE /AWS1/ML_MLMODELTYPE¶
The category of supervised learning that this
MLModelwill address. Choose from the following types:
Choose
REGRESSIONif theMLModelwill be used to predict a numeric value.Choose
BINARYif theMLModelresult has two possible values.Choose
MULTICLASSif theMLModelresult has a limited number of values.For more information, see the Amazon Machine Learning Developer Guide.
iv_trainingdatasourceid TYPE /AWS1/ML_ENTITYID /AWS1/ML_ENTITYID¶
The
DataSourcethat points to the training data.
Optional arguments:¶
iv_mlmodelname TYPE /AWS1/ML_ENTITYNAME /AWS1/ML_ENTITYNAME¶
A user-supplied name or description of the
MLModel.
it_parameters TYPE /AWS1/CL_ML_TRAININGPARAMS_W=>TT_TRAININGPARAMETERS TT_TRAININGPARAMETERS¶
A list of the training parameters in the
MLModel. The list is implemented as a map of key-value pairs.The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000to2147483648. The default value is33554432.
sgd.maxPasses- The number of times that the training process traverses the observations to build theMLModel. The value is an integer that ranges from1to10000. The default value is10.
sgd.shuffleType- Whether Amazon ML shuffles the training data. Shuffling the data improves a model's ability to find the optimal solution for a variety of data types. The valid values areautoandnone. The default value isnone. We strongly recommend that you shuffle your data.
sgd.l1RegularizationAmount- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L1 normalization. This parameter can't be used whenL2is specified. Use this parameter sparingly.
sgd.l2RegularizationAmount- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08.The value is a double that ranges from
0toMAX_DOUBLE. The default is to not use L2 normalization. This parameter can't be used whenL1is specified. Use this parameter sparingly.
iv_recipe TYPE /AWS1/ML_RECIPE /AWS1/ML_RECIPE¶
The data recipe for creating the
MLModel. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
iv_recipeuri TYPE /AWS1/ML_S3URL /AWS1/ML_S3URL¶
The Amazon Simple Storage Service (Amazon S3) location and file name that contains the
MLModelrecipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.
RETURNING¶
oo_output TYPE REF TO /aws1/cl_ml_createmlmodelout /AWS1/CL_ML_CREATEMLMODELOUT¶
Domain /AWS1/RT_ACCOUNT_ID Primitive Type NUMC
Examples¶
Syntax Example¶
This is an example of the syntax for calling the method. It includes every possible argument and initializes every possible value. The data provided is not necessarily semantically accurate (for example the value "string" may be provided for something that is intended to be an instance ID, or in some cases two arguments may be mutually exclusive). The syntax shows the ABAP syntax for creating the various data structures.
DATA(lo_result) = lo_client->createmlmodel(
it_parameters = VALUE /aws1/cl_ml_trainingparams_w=>tt_trainingparameters(
(
VALUE /aws1/cl_ml_trainingparams_w=>ts_trainingparameters_maprow(
value = new /aws1/cl_ml_trainingparams_w( |string| )
key = |string|
)
)
)
iv_mlmodelid = |string|
iv_mlmodelname = |string|
iv_mlmodeltype = |string|
iv_recipe = |string|
iv_recipeuri = |string|
iv_trainingdatasourceid = |string|
).
This is an example of reading all possible response values
lo_result = lo_result.
IF lo_result IS NOT INITIAL.
lv_entityid = lo_result->get_mlmodelid( ).
ENDIF.