/AWS1/IF_ML=>CREATEDATASOURCEFROMREDSHIFT()¶
About CreateDataSourceFromRedshift¶
Creates a DataSource from a database hosted on an Amazon Redshift cluster. A
DataSource references data that can be used to perform either CreateMLModel, CreateEvaluation, or CreateBatchPrediction
operations.
CreateDataSourceFromRedshift is an asynchronous operation. In response to CreateDataSourceFromRedshift, Amazon Machine Learning (Amazon ML) immediately returns and sets the DataSource status to PENDING.
After the DataSource is created and ready for use, Amazon ML sets the Status parameter to COMPLETED.
DataSource in COMPLETED or PENDING states can be
used to perform only CreateMLModel, CreateEvaluation, or CreateBatchPrediction operations.
If Amazon ML can't accept the input source, it sets the Status parameter to FAILED and includes an error message in the Message
attribute of the GetDataSource operation response.
The observations should be contained in the database hosted on an Amazon Redshift cluster
and should be specified by a SelectSqlQuery query. Amazon ML executes an
Unload command in Amazon Redshift to transfer the result set of
the SelectSqlQuery query to S3StagingLocation.
After the DataSource has been created, it's ready for use in evaluations and
batch predictions. If you plan to use the DataSource to train an
MLModel, the DataSource also requires a recipe. A recipe
describes how each input variable will be used in training an MLModel. Will
the variable be included or excluded from training? Will the variable be manipulated;
for example, will it be combined with another variable or will it be split apart into
word combinations? The recipe provides answers to these questions.
You can't change an existing datasource, but you can copy and modify the settings from an
existing Amazon Redshift datasource to create a new datasource. To do so, call
GetDataSource for an existing datasource and copy the values to a
CreateDataSource call. Change the settings that you want to change and
make sure that all required fields have the appropriate values.
Method Signature¶
METHODS /AWS1/IF_ML~CREATEDATASOURCEFROMREDSHIFT
IMPORTING
!IV_DATASOURCEID TYPE /AWS1/ML_ENTITYID OPTIONAL
!IV_DATASOURCENAME TYPE /AWS1/ML_ENTITYNAME OPTIONAL
!IO_DATASPEC TYPE REF TO /AWS1/CL_ML_REDSHIFTDATASPEC OPTIONAL
!IV_ROLEARN TYPE /AWS1/ML_ROLEARN OPTIONAL
!IV_COMPUTESTATISTICS TYPE /AWS1/ML_COMPUTESTATISTICS OPTIONAL
RETURNING
VALUE(OO_OUTPUT) TYPE REF TO /aws1/cl_ml_credatasrcfrmred01
RAISING
/AWS1/CX_ML_IDEMPOTENTPRMMIS00
/AWS1/CX_ML_INTERNALSERVEREX
/AWS1/CX_ML_INVALIDINPUTEX
/AWS1/CX_ML_CLIENTEXC
/AWS1/CX_ML_SERVEREXC
/AWS1/CX_RT_TECHNICAL_GENERIC
/AWS1/CX_RT_SERVICE_GENERIC.
IMPORTING¶
Required arguments:¶
iv_datasourceid TYPE /AWS1/ML_ENTITYID /AWS1/ML_ENTITYID¶
A user-supplied ID that uniquely identifies the
DataSource.
io_dataspec TYPE REF TO /AWS1/CL_ML_REDSHIFTDATASPEC /AWS1/CL_ML_REDSHIFTDATASPEC¶
The data specification of an Amazon Redshift
DataSource:
DatabaseInformation -
DatabaseName- The name of the Amazon Redshift database.
ClusterIdentifier- The unique ID for the Amazon Redshift cluster.DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
SelectSqlQuery - The query that is used to retrieve the observation data for the
Datasource.S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the
SelectSqlQueryquery is stored in this location.DataSchemaUri - The Amazon S3 location of the
DataSchema.DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUriis specified.DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
DataSource.Sample -
"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
iv_rolearn TYPE /AWS1/ML_ROLEARN /AWS1/ML_ROLEARN¶
A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:
A security group to allow Amazon ML to execute the
SelectSqlQueryquery on an Amazon Redshift clusterAn Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
S3StagingLocation
Optional arguments:¶
iv_datasourcename TYPE /AWS1/ML_ENTITYNAME /AWS1/ML_ENTITYNAME¶
A user-supplied name or description of the
DataSource.
iv_computestatistics TYPE /AWS1/ML_COMPUTESTATISTICS /AWS1/ML_COMPUTESTATISTICS¶
The compute statistics for a
DataSource. The statistics are generated from the observation data referenced by aDataSource. Amazon ML uses the statistics internally duringMLModeltraining. This parameter must be set totrueif theDataSourceneeds to be used forMLModeltraining.
RETURNING¶
oo_output TYPE REF TO /aws1/cl_ml_credatasrcfrmred01 /AWS1/CL_ML_CREDATASRCFRMRED01¶
Domain /AWS1/RT_ACCOUNT_ID Primitive Type NUMC
Examples¶
Syntax Example¶
This is an example of the syntax for calling the method. It includes every possible argument and initializes every possible value. The data provided is not necessarily semantically accurate (for example the value "string" may be provided for something that is intended to be an instance ID, or in some cases two arguments may be mutually exclusive). The syntax shows the ABAP syntax for creating the various data structures.
DATA(lo_result) = lo_client->createdatasourcefromredshift(
io_dataspec = new /aws1/cl_ml_redshiftdataspec(
io_databasecredentials = new /aws1/cl_ml_reddatabasecreds(
iv_password = |string|
iv_username = |string|
)
io_databaseinformation = new /aws1/cl_ml_redshiftdatabase(
iv_clusteridentifier = |string|
iv_databasename = |string|
)
iv_datarearrangement = |string|
iv_dataschema = |string|
iv_dataschemauri = |string|
iv_s3staginglocation = |string|
iv_selectsqlquery = |string|
)
iv_computestatistics = ABAP_TRUE
iv_datasourceid = |string|
iv_datasourcename = |string|
iv_rolearn = |string|
).
This is an example of reading all possible response values
lo_result = lo_result.
IF lo_result IS NOT INITIAL.
lv_entityid = lo_result->get_datasourceid( ).
ENDIF.