You are viewing documentation for version 2 of the AWS SDK for Ruby. Version 3 documentation can be found here.
Class: Aws::SageMaker::Types::InputConfig
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::InputConfig
- Defined in:
- (unknown)
Overview
When passing InputConfig as input to an Aws::Client method, you can use a vanilla Hash:
{
s3_uri: "S3Uri", # required
data_input_config: "DataInputConfig", # required
framework: "TENSORFLOW", # required, accepts TENSORFLOW, KERAS, MXNET, ONNX, PYTORCH, XGBOOST, TFLITE, DARKNET
}
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
Returned by:
Instance Attribute Summary collapse
-
#data_input_config ⇒ String
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form.
-
#framework ⇒ String
Identifies the framework in which the model was trained.
-
#s3_uri ⇒ String
The S3 path where the model artifacts, which result from model training, are stored.
Instance Attribute Details
#data_input_config ⇒ String
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
`{"input":[1,1024,1024,3]}`If using the CLI,
`{\"input\":[1,1024,1024,3]}`
Examples for two inputs:
If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}If using the CLI,
{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}
KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format,DataInputConfigshould be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
`{"input_1":[1,3,224,224]}`If using the CLI,
`{\"input_1\":[1,3,224,224]}`
Examples for two inputs:
If using the console,
{"input_1": [1,3,224,224], "input_2":[1,3,224,224]}If using the CLI,
{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}
MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.Examples for one input:
If using the console,
`{"data":[1,3,1024,1024]}`If using the CLI,
`{\"data\":[1,3,1024,1024]}`
Examples for two inputs:
If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}If using the CLI,
{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}
PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.Examples for one input in dictionary format:
If using the console,
`{"input0":[1,3,224,224]}`If using the CLI,
`{\"input0\":[1,3,224,224]}`
Example for one input in list format:
[[1,3,224,224]]Examples for two inputs in dictionary format:
If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}If using the CLI,
{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}
Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
XGBOOST: input data name and shape are not needed.
DataInputConfig supports the following parameters for CoreML
OutputConfig$TargetDevice (ML Model format):
shape: Input shape, for example{"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example:
{"input_1": {"shape": ["1..10", 224, 224, 3]}}Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example:
{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}
default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}type: Input type. Allowed values:ImageandTensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such asbiasandscale.bias: If the input type is an Image, you need to provide the bias vector.scale: If the input type is an Image, you need to provide a scale factor.
CoreML ClassifierConfig parameters can be specified using
OutputConfig$CompilerOptions. CoreML converter supports
Tensorflow and PyTorch models. CoreML conversion examples:
Tensor type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}
^
Tensor type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]
^
Image type input:
"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
Image type input without input name (PyTorch):
"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}
#framework ⇒ String
Identifies the framework in which the model was trained. For example: TENSORFLOW.
Possible values:
- TENSORFLOW
- KERAS
- MXNET
- ONNX
- PYTORCH
- XGBOOST
- TFLITE
- DARKNET
#s3_uri ⇒ String
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).