Using a manifest file to import
                    images
You can create a dataset using an Amazon SageMaker AI Ground Truth format manifest file. You
                can use the manifest file from an Amazon SageMaker AI Ground Truth job. If your images and
                labels aren't in the format of a SageMaker AI Ground Truth manifest file, you can create a
                SageMaker AI format manifest file and use it to import your labeled images. 
The CreateDataset operation is updated to allow you to optionally
                specify tags when creating a new dataset. Tags are key-value pairs that you can use
                to categorize and manage your resources. 
                Creating a dataset with
                        a SageMaker AI Ground Truth manifest file (Console)
                The following procedure shows you how to create a dataset by using a SageMaker AI
                    Ground Truth format manifest file. 
                - 
                        
Create a manifest file for your training dataset by doing one of the
                            following:
                        
                        If you want to create a test dataset, repeat step 1 to create the test
                            dataset.
                        
                     Open the Amazon Rekognition console at
    https://console.aws.amazon.com/rekognition/.
- 
                        
Choose Use Custom Labels.
                     - 
                        
Choose Get started. 
                     - 
                        
In the left navigation pane, choose
                            Projects.
                     - 
                        
In the Projects page, choose the project to which
                            you want to add a dataset. The details page for your project is
                            displayed.
                     - 
                        
Choose Create dataset. The Create
                                dataset page is shown.
                     - 
                        
In Starting configuration, choose either
                                Start with a single dataset or Start
                                with a training dataset. To create a higher quality
                            model, we recommend starting with separate training and test
                            datasets.
                        
                            - Single dataset
 - 
                                    
                                         
                                         
                                         
                                    - 
                                            
In the Training dataset
                                                  details section, choose
                                                  Import images labeled by SageMaker
                                                  Ground Truth.
                                         - 
                                            
In .manifest file location
                                                enter the location of the manifest file that you
                                                created in step 1.
                                            
                                         - 
                                            
Choose Create Dataset. The
                                                datasets page for your project opens.
                                         
 
                                 
                            - Separate training and test datasets
 - 
                                    
                                         
                                         
                                         
                                         
                                         
                                    - 
                                            
In the Training dataset
                                                  details section, choose
                                                  Import images labeled by SageMaker
                                                  Ground Truth.
                                         - 
                                            
In .manifest file location
                                                enter the location of the training dataset manifest
                                                file you created in step 1.
                                         - 
                                            
In the Test dataset details
                                                section, choose Import images labeled by
                                                  SageMaker Ground Truth.
                                            Your training and test datasets can have
                                                  different image sources.
 
                                         - 
                                            
In .manifest file location
                                                enter the location of the test dataset manifest file
                                                you created in step 1.
                                         - 
                                            
Choose Create Datasets. The
                                                datasets page for your project opens.
                                         
 
                                 
                        
                     - 
                        
If you need to add or change labels, do Labeling images.
                     - 
                        
Follow the steps in Training a model (Console) to train your model.
                     
 
             
                Creating a dataset with a
                        SageMaker AI Ground Truth manifest file (SDK)
                The following procedure shows you how to create training or test datasets from
                    a manifest file by using the CreateDataset API.
                You can use an existing manifest file, such as the output from an SageMaker AI Ground Truth job,
                    or create your own manifest file. 
                - 
                            
If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more information, see
                            Step 4: Set up the AWS CLI and AWS SDKs.
                             - 
                        
Create a manifest file for your training dataset by doing one of the
                            following:
                        
                        If you want to create a test dataset, repeat step 2 to create the test
                            dataset.
                     - 
                        
Use the following example code to create the training and test
                            dataset.
                        
                            - AWS CLI
 - 
                                    
Use the following code to create a dataset. Replace the
                                        following:
                                    
                                         
                                         
                                         
                                         
                                    - 
                                            
project_arn — the ARN of the
                                                project that you want to add the test dataset
                                                to.
                                         - 
                                            
type — the type of dataset
                                                that you want to create (TRAIN or TEST)
                                         - 
                                            
bucket — the bucket that
                                                contains the manifest file for the dataset.
                                         - 
                                            
manifest_file — the path and
                                                file name of the manifest file.
                                         
 
                                    aws rekognition create-dataset --project-arn project_arn \
  --dataset-type type \
  --dataset-source '{ "GroundTruthManifest": { "S3Object": { "Bucket": "bucket", "Name": "manifest_file" } } }' \
  --profile custom-labels-access
  --tags '{"key1": "value1", "key2": "value2"}'
                                 
                            - Python
 - 
                                    
Use the following values to create a dataset. Supply the
                                        following command line parameters:
                                    
                                         
                                         
                                         
                                         
                                    - 
                                            
project_arn — the ARN of the
                                                project that you want to add the test dataset
                                                to.
                                         - 
                                            
dataset_type — the type of
                                                dataset that you want to create (train
                                                or test).
                                         - 
                                            
bucket — the bucket that
                                                contains the manifest file for the dataset.
                                         - 
                                            
manifest_file — the path and
                                                file name of the manifest file.
                                         
 
                                    #Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-custom-labels-developer-guide/blob/master/LICENSE-SAMPLECODE.)
import argparse
import logging
import time
import json
import boto3
from botocore.exceptions import ClientError
logger = logging.getLogger(__name__)
def create_dataset(rek_client, project_arn, dataset_type, bucket, manifest_file):
    """
    Creates an Amazon Rekognition Custom Labels dataset.
    :param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
    :param project_arn: The ARN of the project in which you want to create a dataset.
    :param dataset_type: The type of the dataset that you want to create (train or test).
    :param bucket: The S3 bucket that contains the manifest file.
    :param manifest_file: The path and filename of the manifest file.
    """
    try:
        #Create the project
        logger.info("Creating %s dataset for project %s",dataset_type, project_arn)
        dataset_type = dataset_type.upper()
        dataset_source = json.loads(
            '{ "GroundTruthManifest": { "S3Object": { "Bucket": "'
            + bucket
            + '", "Name": "'
            + manifest_file
            + '" } } }'
        )
        response = rek_client.create_dataset(
            ProjectArn=project_arn, DatasetType=dataset_type, DatasetSource=dataset_source
        )
        dataset_arn=response['DatasetArn']
        logger.info("dataset ARN: %s",dataset_arn)
        finished=False
        while finished is False:
            dataset=rek_client.describe_dataset(DatasetArn=dataset_arn)
            status=dataset['DatasetDescription']['Status']
            
            if status == "CREATE_IN_PROGRESS":
                logger.info("Creating dataset: %s ",dataset_arn)
                time.sleep(5)
                continue
            if status == "CREATE_COMPLETE":
                logger.info("Dataset created: %s", dataset_arn)
                finished=True
                continue
            if status == "CREATE_FAILED":
                error_message = f"Dataset creation failed: {status} : {dataset_arn}"
                logger.exception(error_message)
                raise Exception (error_message)
                
            error_message = f"Failed. Unexpected state for dataset creation: {status} : {dataset_arn}"
            logger.exception(error_message)
            raise Exception(error_message)
            
        return dataset_arn
   
    
    except ClientError as err:
        logger.exception("Couldn't create dataset: %s",err.response['Error']['Message'])
        raise
def add_arguments(parser):
    """
    Adds command line arguments to the parser.
    :param parser: The command line parser.
    """
    parser.add_argument(
        "project_arn", help="The ARN of the project in which you want to create the dataset."
    )
    parser.add_argument(
        "dataset_type", help="The type of the dataset that you want to create (train or test)."
    )
    parser.add_argument(
        "bucket", help="The S3 bucket that contains the manifest file."
    )
    
    parser.add_argument(
        "manifest_file", help="The path and filename of the manifest file."
    )
def main():
    logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
    try:
        #Get command line arguments.
        parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
        add_arguments(parser)
        args = parser.parse_args()
        print(f"Creating {args.dataset_type} dataset for project {args.project_arn}")
        #Create the dataset.
        session = boto3.Session(profile_name='custom-labels-access')
        rekognition_client = session.client("rekognition")
        dataset_arn=create_dataset(rekognition_client, 
            args.project_arn,
            args.dataset_type,
            args.bucket,
            args.manifest_file)
        print(f"Finished creating dataset: {dataset_arn}")
    except ClientError as err:
        logger.exception("Problem creating dataset: %s", err)
        print(f"Problem creating dataset: {err}")
if __name__ == "__main__":
    main()    
  
                                 
                            - Java V2
 - 
                                    
Use the following values to create a dataset. Supply the
                                        following command line parameters:
                                    
                                         
                                         
                                         
                                         
                                    - 
                                            
project_arn — the ARN of the
                                                project that you want to add the test dataset
                                                to.
                                         - 
                                            
dataset_type — the type of
                                                dataset that you want to create (train
                                                or test).
                                         - 
                                            
bucket — the bucket that
                                                contains the manifest file for the dataset.
                                         - 
                                            
manifest_file — the path and
                                                file name of the manifest file.
                                         
 
                                    /*
   Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
   SPDX-License-Identifier: Apache-2.0
*/
package com.example.rekognition;
import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import software.amazon.awssdk.services.rekognition.model.CreateDatasetRequest;
import software.amazon.awssdk.services.rekognition.model.CreateDatasetResponse;
import software.amazon.awssdk.services.rekognition.model.DatasetDescription;
import software.amazon.awssdk.services.rekognition.model.DatasetSource;
import software.amazon.awssdk.services.rekognition.model.DatasetStatus;
import software.amazon.awssdk.services.rekognition.model.DatasetType;
import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;
import software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse;
import software.amazon.awssdk.services.rekognition.model.GroundTruthManifest;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import software.amazon.awssdk.services.rekognition.model.S3Object;
import java.util.logging.Level;
import java.util.logging.Logger;
public class CreateDatasetManifestFiles {
    public static final Logger logger = Logger.getLogger(CreateDatasetManifestFiles.class.getName());
    public static String createMyDataset(RekognitionClient rekClient, String projectArn, String datasetType,
            String bucket, String name) throws Exception, RekognitionException {
        try {
            logger.log(Level.INFO, "Creating {0} dataset for project : {1} from s3://{2}/{3} ",
                    new Object[] { datasetType, projectArn, bucket, name });
            DatasetType requestDatasetType = null;
            switch (datasetType) {
            case "train":
                requestDatasetType = DatasetType.TRAIN;
                break;
            case "test":
                requestDatasetType = DatasetType.TEST;
                break;
            default:
                logger.log(Level.SEVERE, "Could not create dataset. Unrecognized dataset type: {0}", datasetType);
                throw new Exception("Could not create dataset. Unrecognized dataset type: " + datasetType);
            }
            GroundTruthManifest groundTruthManifest = GroundTruthManifest.builder()
                    .s3Object(S3Object.builder().bucket(bucket).name(name).build()).build();
            DatasetSource datasetSource = DatasetSource.builder().groundTruthManifest(groundTruthManifest).build();
            CreateDatasetRequest createDatasetRequest = CreateDatasetRequest.builder().projectArn(projectArn)
                    .datasetType(requestDatasetType).datasetSource(datasetSource).build();
            CreateDatasetResponse response = rekClient.createDataset(createDatasetRequest);
            boolean created = false;
            do {
                DescribeDatasetRequest describeDatasetRequest = DescribeDatasetRequest.builder()
                        .datasetArn(response.datasetArn()).build();
                DescribeDatasetResponse describeDatasetResponse = rekClient.describeDataset(describeDatasetRequest);
                DatasetDescription datasetDescription = describeDatasetResponse.datasetDescription();
                DatasetStatus status = datasetDescription.status();
                logger.log(Level.INFO, "Creating dataset ARN: {0} ", response.datasetArn());
                switch (status) {
                case CREATE_COMPLETE:
                    logger.log(Level.INFO, "Dataset created");
                    created = true;
                    break;
                case CREATE_IN_PROGRESS:
                    Thread.sleep(5000);
                    break;
                case CREATE_FAILED:
                    String error = "Dataset creation failed: " + datasetDescription.statusAsString() + " "
                            + datasetDescription.statusMessage() + " " + response.datasetArn();
                    logger.log(Level.SEVERE, error);
                    throw new Exception(error);
                default:
                    String unexpectedError = "Unexpected creation state: " + datasetDescription.statusAsString() + " "
                            + datasetDescription.statusMessage() + " " + response.datasetArn();
                    logger.log(Level.SEVERE, unexpectedError);
                    throw new Exception(unexpectedError);
                }
            } while (created == false);
            return response.datasetArn();
        } catch (RekognitionException e) {
            logger.log(Level.SEVERE, "Could not create dataset: {0}", e.getMessage());
            throw e;
        }
    }
    public static void main(String[] args) {
        String datasetType = null;
        String bucket = null;
        String name = null;
        String projectArn = null;
        String datasetArn = null;
        final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_type> <dataset_arn>\n\n" + "Where:\n"
                + "   project_arn - the ARN of the project that you want to add copy the datast to.\n\n"
                + "   dataset_type - the type of the dataset that you want to create (train or test).\n\n"
                + "   bucket - the S3 bucket that contains the manifest file.\n\n"
                + "   name - the location and name of the manifest file within the bucket.\n\n";
        if (args.length != 4) {
            System.out.println(USAGE);
            System.exit(1);
        }
        projectArn = args[0];
        datasetType = args[1];
        bucket = args[2];
        name = args[3];
        try {
            // Get the Rekognition client
            RekognitionClient rekClient = RekognitionClient.builder()
                .credentialsProvider(ProfileCredentialsProvider.create("custom-labels-access"))
                .region(Region.US_WEST_2)
                .build();
             // Create the dataset
            datasetArn = createMyDataset(rekClient, projectArn, datasetType, bucket, name);
            System.out.println(String.format("Created dataset: %s", datasetArn));
            rekClient.close();
        } catch (RekognitionException rekError) {
            logger.log(Level.SEVERE, "Rekognition client error: {0}", rekError.getMessage());
            System.exit(1);
        } catch (Exception rekError) {
            logger.log(Level.SEVERE, "Error: {0}", rekError.getMessage());
            System.exit(1);
        }
    }
}
                                 
                        
                     - 
                        
If you need to add or change labels, see Managing Labels (SDK).
                     - 
                        
Follow the steps in Training a model (SDK) to
                            train your model.
                     
 
             
                Create dataset request
                
                    The following is the foramt of the CreateDataset operation request:
                
                
{
"DatasetSource": {
"DatasetArn": "string",
"GroundTruthManifest": {
"S3Object": {
"Bucket": "string",
"Name": "string",
"Version": "string"
}
}
},
"DatasetType": "string",
"ProjectArn": "string",
"Tags": {
"string": "string"
}
}