As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Processador do framework do TensorFlow
O TensorFlow é uma biblioteca de machine learning e inteligência artificial de código aberto. O TensorFlowProcessor no Amazon SageMaker Python SDK oferece a capacidade de executar trabalhos de processamento com scripts do TensorFlow. Ao usar o TensorFlowProcessor, você pode aproveitar um contêiner do Docker integrado na Amazon com um ambiente gerenciado pelo TensorFlow para não precisar trazer seu próprio contêiner.
O exemplo de código a seguir mostra como você pode usar o TensorFlowProcessor para executar seu trabalho de processamento usando uma imagem do Docker fornecida e mantida pelo SageMaker AI. Observe que, ao executar o trabalho, você pode especificar um diretório contendo seus scripts e dependências no argumento source_dir e pode ter um arquivo requirements.txt localizado dentro do seu diretório source_dir que especifica as dependências dos seu(s) script(s) de processamento. O processamento do SageMaker instala as dependências em requirements.txt no contêiner para você.
from sagemaker.tensorflow import TensorFlowProcessor from sagemaker.processing import ProcessingInput, ProcessingOutput from sagemaker import get_execution_role #Initialize the TensorFlowProcessor tp = TensorFlowProcessor( framework_version='2.3', role=get_execution_role(), instance_type='ml.m5.xlarge', instance_count=1, base_job_name='frameworkprocessor-TF', py_version='py37' ) #Run the processing job tp.run( code='processing-script.py', source_dir='scripts', inputs=[ ProcessingInput( input_name='data', source=f's3://{BUCKET}/{S3_INPUT_PATH}', destination='/opt/ml/processing/input/data' ), ProcessingInput( input_name='model', source=f's3://{BUCKET}/{S3_PATH_TO_MODEL}', destination='/opt/ml/processing/input/model' ) ], outputs=[ ProcessingOutput( output_name='predictions', source='/opt/ml/processing/output', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}' ) ] )
Se você tiver um arquivo requirements.txt, ele deverá ser uma lista das bibliotecas que você deseja instalar no contêiner. O caminho para source_dir pode ser um caminho de URI relativo, absoluto ou do Amazon S3. No entanto, se você usar um URI do Amazon S3, ele deverá apontar para um arquivo tar.gz. Você pode ter vários scripts no diretório que você especificar para source_dir. Para saber mais sobre a classe de TensorFlowProcessor, consulte estimador do TensorFlow