Implemente um aplicativo de consumidor KCL para streams CDC do Amazon Keyspaces - Amazon Keyspaces (para Apache Cassandra)

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Implemente um aplicativo de consumidor KCL para streams CDC do Amazon Keyspaces

Este tópico fornece um step-by-step guia para implementar um aplicativo de consumidor KCL para processar streams CDC do Amazon Keyspaces.

  1. Pré-requisitos: Antes de começar, verifique se você tem:

  2. Nesta etapa, você adiciona a dependência KCL ao seu projeto. Para o Maven, adicione o seguinte ao seu pom.xml:

    <dependencies> <dependency> <groupId>software.amazon.kinesis</groupId> <artifactId>amazon-kinesis-client</artifactId> <version>3.1.0</version> </dependency> <dependency> <groupId>software.amazon.keyspaces</groupId> <artifactId>keyspaces-streams-kinesis-adapter</artifactId> <version>1.0.0</version> </dependency> </dependencies>
    nota

    Sempre verifique a versão mais recente do KCL no repositório KCL GitHub .

  3. Crie uma classe de fábrica que produza instâncias do processador de registros:

    import software.amazon.awssdk.services.keyspacesstreams.model.Record; import software.amazon.keyspaces.streamsadapter.adapter.KeyspacesStreamsClientRecord; import software.amazon.keyspaces.streamsadapter.model.KeyspacesStreamsProcessRecordsInput; import software.amazon.keyspaces.streamsadapter.processor.KeyspacesStreamsShardRecordProcessor; import software.amazon.kinesis.lifecycle.events.InitializationInput; import software.amazon.kinesis.lifecycle.events.LeaseLostInput; import software.amazon.kinesis.lifecycle.events.ShardEndedInput; import software.amazon.kinesis.lifecycle.events.ShutdownRequestedInput; import software.amazon.kinesis.processor.RecordProcessorCheckpointer; public class RecordProcessor implements KeyspacesStreamsShardRecordProcessor { private String shardId; @Override public void initialize(InitializationInput initializationInput) { this.shardId = initializationInput.shardId(); System.out.println("Initializing record processor for shard: " + shardId); } @Override public void processRecords(KeyspacesStreamsProcessRecordsInput processRecordsInput) { try { for (KeyspacesStreamsClientRecord record : processRecordsInput.records()) { Record keyspacesRecord = record.getRecord(); System.out.println("Received record: " + keyspacesRecord); } if (!processRecordsInput.records().isEmpty()) { RecordProcessorCheckpointer checkpointer = processRecordsInput.checkpointer(); try { checkpointer.checkpoint(); System.out.println("Checkpoint successful for shard: " + shardId); } catch (Exception e) { System.out.println("Error while checkpointing for shard: " + shardId + " " + e); } } } catch (Exception e) { System.out.println("Error processing records for shard: " + shardId + " " + e); } } @Override public void leaseLost(LeaseLostInput leaseLostInput) { System.out.println("Lease lost for shard: " + shardId); } @Override public void shardEnded(ShardEndedInput shardEndedInput) { System.out.println("Shard ended: " + shardId); try { // This is required. Checkpoint at the end of the shard shardEndedInput.checkpointer().checkpoint(); System.out.println("Final checkpoint successful for shard: " + shardId); } catch (Exception e) { System.out.println("Error while final checkpointing for shard: " + shardId + " " + e); throw new RuntimeException("Error while final checkpointing", e); } } @Override public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) { System.out.println("Shutdown requested for shard " + shardId); try { shutdownRequestedInput.checkpointer().checkpoint(); } catch (Exception e) { System.out.println("Error while checkpointing on shutdown for shard: " + shardId + " " + e); } } }
  4. Crie uma fábrica de registros conforme mostrado no exemplo a seguir.

    import software.amazon.kinesis.processor.ShardRecordProcessor; import software.amazon.kinesis.processor.ShardRecordProcessorFactory; import java.util.Queue; import java.util.concurrent.ConcurrentLinkedQueue; public class RecordProcessorFactory implements ShardRecordProcessorFactory { private final Queue<RecordProcessor> processors = new ConcurrentLinkedQueue<>(); @Override public ShardRecordProcessor shardRecordProcessor() { System.out.println("Creating new RecordProcessor"); RecordProcessor processor = new RecordProcessor(); processors.add(processor); return processor; } }
  5. Nesta etapa, você cria a classe base a ser configurada KCLv3 e o adaptador Amazon Keyspaces.

    import com.example.KCLExample.utils.RecordProcessorFactory; import software.amazon.keyspaces.streamsadapter.AmazonKeyspacesStreamsAdapterClient; import software.amazon.keyspaces.streamsadapter.StreamsSchedulerFactory; import java.util.Arrays; import java.util.List; import java.util.concurrent.ExecutionException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.cloudwatch.CloudWatchAsyncClient; import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient; import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest; import software.amazon.awssdk.services.dynamodb.model.DeleteTableResponse; import software.amazon.awssdk.services.keyspacesstreams.KeyspacesStreamsClient; import software.amazon.awssdk.services.kinesis.KinesisAsyncClient; import software.amazon.kinesis.common.ConfigsBuilder; import software.amazon.kinesis.common.InitialPositionInStream; import software.amazon.kinesis.common.InitialPositionInStreamExtended; import software.amazon.kinesis.coordinator.CoordinatorConfig; import software.amazon.kinesis.coordinator.Scheduler; import software.amazon.kinesis.leases.LeaseManagementConfig; import software.amazon.kinesis.processor.ProcessorConfig; import software.amazon.kinesis.processor.StreamTracker; import software.amazon.kinesis.retrieval.polling.PollingConfig; public class KCLTestBase { protected KeyspacesStreamsClient streamsClient; protected KinesisAsyncClient adapterClient; protected DynamoDbAsyncClient dynamoDbAsyncClient; protected CloudWatchAsyncClient cloudWatchClient; protected Region region; protected RecordProcessorFactory recordProcessorFactory; protected Scheduler scheduler; protected Thread schedulerThread; public void baseSetUp() { recordProcessorFactory = new RecordProcessorFactory(); setupKCLBase(); } protected void setupKCLBase() { region = Region.US_EAST_1; streamsClient = KeyspacesStreamsClient.builder() .region(region) .build(); adapterClient = new AmazonKeyspacesStreamsAdapterClient( streamsClient, region); dynamoDbAsyncClient = DynamoDbAsyncClient.builder() .region(region) .build(); cloudWatchClient = CloudWatchAsyncClient.builder() .region(region) .build(); } protected void startScheduler(Scheduler scheduler) { this.scheduler = scheduler; schedulerThread = new Thread(() -> scheduler.run()); schedulerThread.start(); } protected void shutdownScheduler() { if (scheduler != null) { scheduler.shutdown(); try { schedulerThread.join(30000); } catch (InterruptedException e) { System.out.println("Error while shutting down scheduler " + e); } } } protected Scheduler createScheduler(String streamArn, String leaseTableName) { String workerId = "worker-" + System.currentTimeMillis(); // Create ConfigsBuilder ConfigsBuilder configsBuilder = createConfigsBuilder(streamArn, workerId, leaseTableName); // Configure retrieval config for polling PollingConfig pollingConfig = new PollingConfig(streamArn, adapterClient); // Create the Scheduler return StreamsSchedulerFactory.createScheduler( configsBuilder.checkpointConfig(), configsBuilder.coordinatorConfig(), configsBuilder.leaseManagementConfig(), configsBuilder.lifecycleConfig(), configsBuilder.metricsConfig(), configsBuilder.processorConfig(), configsBuilder.retrievalConfig().retrievalSpecificConfig(pollingConfig), streamsClient, region ); } private ConfigsBuilder createConfigsBuilder(String streamArn, String workerId, String leaseTableName) { ConfigsBuilder configsBuilder = new ConfigsBuilder( streamArn, leaseTableName, adapterClient, dynamoDbAsyncClient, cloudWatchClient, workerId, recordProcessorFactory); configureCoordinator(configsBuilder.coordinatorConfig()); configureLeaseManagement(configsBuilder.leaseManagementConfig()); configureProcessor(configsBuilder.processorConfig()); configureStreamTracker(configsBuilder, streamArn); return configsBuilder; } private void configureCoordinator(CoordinatorConfig config) { config.skipShardSyncAtWorkerInitializationIfLeasesExist(true) .parentShardPollIntervalMillis(1000) .shardConsumerDispatchPollIntervalMillis(500); } private void configureLeaseManagement(LeaseManagementConfig config) { config.shardSyncIntervalMillis(0) .leasesRecoveryAuditorInconsistencyConfidenceThreshold(0) .leasesRecoveryAuditorExecutionFrequencyMillis(5000) .leaseAssignmentIntervalMillis(1000L); } private void configureProcessor(ProcessorConfig config) { config.callProcessRecordsEvenForEmptyRecordList(true); } private void configureStreamTracker(ConfigsBuilder configsBuilder, String streamArn) { StreamTracker streamTracker = StreamsSchedulerFactory.createSingleStreamTracker( streamArn, InitialPositionInStreamExtended.newInitialPosition(InitialPositionInStream.TRIM_HORIZON) ); configsBuilder.streamTracker(streamTracker); } public void deleteAllDdbTables(String baseTableName) { List<String> tablesToDelete = Arrays.asList( baseTableName, baseTableName + "-CoordinatorState", baseTableName + "-WorkerMetricStats" ); for (String tableName : tablesToDelete) { deleteTable(tableName); } } private void deleteTable(String tableName) { DeleteTableRequest deleteTableRequest = DeleteTableRequest.builder() .tableName(tableName) .build(); try { DeleteTableResponse response = dynamoDbAsyncClient.deleteTable(deleteTableRequest).get(); System.out.println("Table deletion response " + response); } catch (InterruptedException | ExecutionException e) { System.out.println("Error deleting table: " + tableName + " " + e); } } }
  6. Nesta etapa, você implementa a classe do processador de registros para que seu aplicativo comece a processar eventos de alteração.

    import software.amazon.kinesis.coordinator.Scheduler; public class KCLTest { private static final int APP_RUNTIME_SECONDS = 1800; private static final int SLEEP_INTERNAL_MS = 60*1000; public static void main(String[] args) { KCLTestBase kclTestBase; kclTestBase = new KCLTestBase(); kclTestBase.baseSetUp(); // Create and start scheduler String leaseTableName = generateUniqueApplicationName(); // Update below to your Stream ARN String streamArn = "arn:aws:cassandra:us-east-1:759151643516:/keyspace/cdc_sample_test/table/test_kcl_bool/stream/2025-07-01T15:52:57.529"; Scheduler scheduler = kclTestBase.createScheduler(streamArn, leaseTableName); kclTestBase.startScheduler(scheduler); // Wait for specified time before shutting down - KCL applications are designed to run forever, however in this // example we will shut it down after APP_RUNTIME_SECONDS long startTime = System.currentTimeMillis(); long endTime = startTime + (APP_RUNTIME_SECONDS * 1000); while (System.currentTimeMillis() < endTime) { try { // Print and sleep every minute Thread.sleep(SLEEP_INTERNAL_MS); System.out.println("Application is running"); } catch (InterruptedException e) { System.out.println("Interrupted while waiting for records"); Thread.currentThread().interrupt(); break; } } // Stop the scheduler kclTestBase.shutdownScheduler(); kclTestBase.deleteAllDdbTables(leaseTableName); } public static String generateUniqueApplicationName() { String timestamp = String.valueOf(System.currentTimeMillis()); String randomString = java.util.UUID.randomUUID().toString().substring(0, 8); return String.format("KCL-App-%s-%s", timestamp, randomString); } }

Práticas recomendadas

Siga estas melhores práticas ao usar a KCL com streams CDC do Amazon Keyspaces:

Como tratar erros

Implemente um tratamento robusto de erros em seu processador de registros para lidar com exceções sem problemas. Considere implementar a lógica de repetição para falhas transitórias.

Frequência de checkpoint

Equilibre a frequência dos pontos de verificação para minimizar o processamento duplicado e, ao mesmo tempo, garantir um rastreamento razoável do progresso. Pontos de verificação muito frequentes podem afetar o desempenho, enquanto pontos de verificação muito pouco frequentes podem levar a mais reprocessamento se um trabalhador falhar.

Escalabilidade de trabalhadores

Dimensione o número de trabalhadores com base no número de fragmentos em seu fluxo do CDC. Um bom ponto de partida é ter um trabalhador por fragmento, mas talvez seja necessário fazer ajustes com base nos requisitos de processamento.

Monitoramento

Use CloudWatch métricas fornecidas pela KCL para monitorar a integridade e o desempenho de seu aplicativo de consumo. As principais métricas incluem latência de processamento, idade do ponto de verificação e contagens de leasing.

Teste

Teste minuciosamente seu aplicativo de consumo, incluindo cenários como falhas de trabalho, refragmentação de streams e condições de carga variáveis.

Usando KCL com linguagens não Java

Embora a KCL seja principalmente uma biblioteca Java, você pode usá-la com outras linguagens de programação por meio do MultiLangDaemon. MultiLangDaemon É um daemon baseado em Java que gerencia a interação entre seu processador de registros não Java e a KCL.

O KCL fornece suporte para os seguintes idiomas:

  • Python

  • Ruby

  • Node.js

  • .NET

Para obter mais informações sobre o uso do KCL com linguagens não Java, consulte a documentação do MultiLangDaemon KCL.

Solução de problemas

Esta seção fornece soluções para problemas comuns que você pode encontrar ao usar a KCL com streams CDC do Amazon Keyspaces.

Processamento lento

Se seu aplicativo de consumidor estiver processando registros lentamente, considere:

  • Aumentar o número de instâncias de trabalho

  • Otimizando sua lógica de processamento de registros

  • Verificação de gargalos em sistemas a jusante

Processamento duplicado

Se você estiver vendo um processamento duplicado de registros, verifique sua lógica de ponto de verificação. Verifique se você está no ponto de verificação após processar os registros com sucesso.

Falhas de trabalhadores

Se os trabalhadores falharem com frequência, verifique:

  • Restrições de recursos (CPU, memória)

  • Problemas de conectividade de rede

  • Problemas com permissões

Problemas com a tabela de locação

Se você estiver enfrentando problemas com a tabela de leasing da KCL:

  • Verifique se seu aplicativo tem as permissões apropriadas para acessar a tabela Amazon Keyspaces

  • Verifique se a tabela tem taxa de transferência provisionada suficiente