adws

Guia do Desenvolvedor

AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK: Guia do Desenvolvedor

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

As marcas comerciais e imagens de marcas da Amazon nao podem ser usadas no contexto de
nenhum produto ou servigo que nao seja da Amazon, nem de qualquer maneira que possa gerar
confusao entre os clientes ou que deprecie ou desprestigie a Amazon. Todas as outras marcas
comerciais que nao pertencem a Amazon pertencem a seus respectivos proprietarios, que podem ou
nao ser afiliados, patrocinados pela Amazon ou ter conexao com ela.

AWS Encryption SDK Guia do Desenvolvedor

Table of Contents

O que € 0 AWS ENCrypltion SDK? ..o e s eeeeeessannaaanaas 1
Desenvolvido em repositérios de cOdigo abertouvveeiiiiiiiiiiii e 2
Compatibilidade com bibliotecas e servigos de criptografiacoooiiiiiiiiiii 3
SUPOIE € MANUIENGADoeviiiiiiice et e e e et e e e e e e e e e e e e e e e e eeeeeeeeeeseesnssaannnaaaas 4
A T=] o= T 4 F- S EERSUPRR 4
NV = T oo 4= o = 4 o <RSP 5
(@7 0] [=Y | (o PR 6

criptografia €NVEIOPAAQAeeiiieic e e e e e e e 7
(O g F= AT 0 L= 0 =T Lo - RSP 9
Chave de encapSUIAMENTOuuiiiiii e e e e e e e e e e e e e e e e ———— 9
Tokens de autenticacao e provedores de chaves mestrascceevviiiiieiiiiiccie e, 10
Contexto de Criptografiaccooci oo ————————— 12
Mensagem Criptografadaoooeiiiiiiiicc e 13
Pacote de algoritmOSi oo e e e aaaa—— 14
Gerenciador de material de criptografiaoovviiiiiiiiii 14
Criptografia simétrica € asSiMEtriCacccooiiiiiiiiiie e, 15
Confirmagao d& ChAVEoooiiiee e e e e e e e e e e e e e e eeeees 16
Politica de COMPIOMISSOovuiiiiiiiiccee eeeeesesassanaes 17
ASSINAIUraS dIGItAISeevveiiei e e e e e e e e ra 19
ST=T] o= Weto] g aTo I IS B G (1] o Tox o] o = RSP 20
Como o AWS Encryption SDK criptografa 0s dadosooooemiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee, 20
Como o AWS Encryption SDK decifra uma mensagem criptografadaccccceeceiieeeeenennn. 21
Pacotes de algoritmos COMPALIVEISuuueeiiiiiiii e e e e e e e e e e e e e eeeeaaanes 22
Recomendado: AES-GCM com derivacao de chave, assinatura e confirmagao de chave 22
Outros pacotes de algoritmos COMPALIVEISuuiiiiiieieiieeieceeceeeeeeeee e 23

Interagindo Com AWS KIMS ...ttt e e e e e e e e e aaaaaeaeeeeeees 25

Praticas reCOMENAATASuuiiiiiiiiiiiiie et e e e e e e e e e ettt e e e e e e e e e e e e e e e e e e nnnreneeeeees 27

Como CONFIGUIAr 0 SDKttt e e e ettt e s e e e e e e e eaaaeaaaeeeeeeeereennnnnees 32
Selecdo de uma linguagem de Programacaoceeeeveuriuruuuuiiieiaeeaaeeeeeaaaaaaeeeeeeeeeeeeeeeaerranna————— 32
Selecdo de chaves de encapsulamENtOuueiiiiiiiii e 33
Usando varias regioes AWS KIMS KEYSoooiiiiiiiiiiieceee ettt 34
Escolher um pacote de algoritmOcoouiiiiiii e 56
Limitar as chaves de dados criptografadasuuiiiiiiiiiiiiii 68
Criacao de um filtro de deSCODEIAoooiiiiiiieee e 74

AWS Encryption SDK Guia do Desenvolvedor

Exigindo contextos de criptografia ... ————- 77
Como definir uma politica de COMPIrOMISSOuvuiuiiiiiiciiee e 85
Trabalhar com streaming de dadOsSooiiiiiiiiiii e 85
Armazenamento em cache de chaves de dadosciiiiiiiiiii i 86
REPOSItOrIOS A€ ChAVES ... oot e e e e e e e e e e e e e e e e e aeeeeees 87
Principais conceitos e terminologia da 10jacoouueiiiiiiiiiii e 87
Implementacao de permissdes de privilégio MINIMOooovviiiiiiiiiiiiieei e, 88
Crie um armazenamento A€ ChAVESuuiiiiiiiiiiii e e e e e e e e e e as 89
Configurar as principais agées do armazenamentocoooiiiiiiiiiiiiieiiiie e 90
Configure suas principais agdes de armazenamentouuuueiiiiiiiieeeiieeeeeeeeeeee e 91
Crie chaves de ramifiCaCaA0uuuuuuiiiiii eeeaneeaaaaaas 96
Alternar a chave de ramificaga@o ativa ..o 100
o) T Es R e [T= T (=T g o= Vo= (o R 103
Como os tokens de autenticagao fuNCIONAMccooooiiiiiiiiiiiiic e 103
Compatibilidade dos tokens de autentiCagaoccccoeeeiiiiiiiiiiiiiieeer e 105
Requisitos variados para tokens de autenticagao de criptografiaccccooiiiiiiiiiiiininnn, 106
Tokens de autenticacao e provedores de chaves mestras compativeisccccooeeieenn 106
AWS KMS CRAVEITOSeeeieiiiiiieee ettt e e e e e e e ettt e e e e e e e e e e e e e e s e nnnnsnaeeeeeeeeaaaeaeens 108
Permissdes necessarias para tokens de autenticacdo do AWS KMSooomiimiiiiiiceennn. 110
Identificacdo AWS KMS keys em um AWS KMS chaveiroccccooeeeiieiiiiiiiiiiiiiiieeeeeei, 111
Criando UM AWS KIMS ChAVEII0cooiiiiiieiiieeeieceeee et e e e e e e e e e e e 111
Usando um chaveiro AWS KMS DISCOVEIYcccooiiieiiiieeeeeeeeeeeeeeee et 126
Usando um chaveiro de descoberta AWS KMS regionalcccoooieiiiiiiiiiiiieiiinn 134
AWS KMS Chaveiros hi€rarqQUICOScoooiiiiiiiiiiiieeii s e e e e e e e e e e e e as 142
(@70 4T I (1] o o o - RSP 144
PrE-rEQUISITOSuiiiii ittt et e e e e e e ettt e e e e e e e e e e e e aaaaeeaeeaees 146
Permissfes ODFQatOriasuuuuuiiiiiii e e e e e e e e e e e e 147
ESCOING UM CaACNE ... e 147
Criar um token de autenticag@o hierarquiCOoooiiiiiiiiiiiiiiecccee e 161
AWS KMS chaveiroS ECDHooeiiiiiiiiiiiii ettt e e e e e e e e e e e e e e e s nnnnnes 169
Permissdes necessarias para AWS KMS chaveiros ECDHccccoooeeiiiiiiiiiiiie, 170
Criando um AWS KMS chaveiro ECDH ... 171
Criando um AWS KMS chaveiro de descoberta ECDHcccceiiiiiiiiiiiiiiieeeeeee 178
Tokens de autenticag@o AES RAWcoooiiiiiiiiieecee e 184
Tokens de autenticac@o brutos do RSA ... 191
Chaveiros ECDH DIULOS ...ttt e e e e e e e et r e e e e e aaaaeaeesaaeannnes 201

AWS Encryption SDK Guia do Desenvolvedor

Criando um chaveiro ECDH DIULOcoiiiiiiiiiieecceeee e a e e e 202
Multitokens de QULENTICAGAODcciiiiiiiieie e e e e e e e a e 220
[ITalo[WE=Tol=Ta IS Re (ST o] oo =1 1 F=Tor= o LR 230
O SEEPPPRR 230
10153 =1 = P PPPPURURRR 231
USO O C SDK ..ottt e et e e e ettt e e e e e e e e e e e e e e e e nnbr e et e e e e aaeaaaeaaeeaaaas 232
(Y] o] [0 1 PP 237
N SRR 245
TaTSy ez 1 P= T =R oo o 0] 01 =T PR 246
1Y o T8 =TT PSSR 247
(Y] o] [0 1< TP 247
T USRS 256
PrE-TEQUISITOSuieiii ittt et e e e e e e e e e ettt e e e e e e e e e e aaaaaaeeaeenees 257
11 2= 1 F=Tor= o 1 PSRRI 257
= - U 258
PrE-TEQUISITOSuieiii ittt et e e e e e e e e e ettt e e e e e e e e e e aaaaaaeeaeenees 258
11 2= 1 F=Tor= o 1 PSRRI 260
(Y] o] [0 1< TP 261
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 274
CompPatiDIlIAAAE ..o aaaaaaaas 275
11 2= 1 F=Tor= o 1 PSRRI 277
1Y/ Yo 11] o 1O PEERRPRRR 278
(Y] o] [0 1< TP 281
Y 1 T o PP 289
PrE-TEQUISITOSuieiii ittt et e e e e e e e e e ettt e e e e e e e e e e aaaaaaeeaeenees 290

T 1S 2= 1 F=To7= Lo 1 PSSP 290
(Y] o] [0 1< PP 292
] O PSESERRPRR 299
PrE-rEQUISITOSuiiiii ittt et e e e e e e ettt e e e e e e e e e e e e aaaaeeaeeaees 300

T 1S 2= 1 F=To7= Lo 1 PSSP 300
(Y] o] [0 1< PP 301
Interface de linha de COMANAO ... e e e e e eas 303
1T} e= 1 = = T O I o [RSP 305
COMO USAr @ CLI e e e e et e e e e e e e e e e e e e e e e e nnnnreeees 308
(Y] o] [0 1< PP 322
Referéncia da sintaxe € de par@metrosuciiiiiiiiiiiii e 347

AWS Encryption SDK Guia do Desenvolvedor

BT T T P 362
Armazenamento em cache de chaves de dadOsciiiiiiiiii i 365
Como usar o armazenamento em cache de chaves de dadosccccccvvieeeeiiiiiiccccciiiiee, 366
Usando o cache de chaves de dados: Step-by-Stepoooviiiiiiiiiiiieiicccceee e, 367
Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 375
Definir limites de seguranga do CACNEuuuiiiiiiie e 391
Detalhes do armazenamento em cache de chaves de dadoseuuuiiiiiiiiiiiieee 393
Como o armazenamento em cache de chaves de dados funcionacccccccceeveiiiiinnnnnee. 393
Criar um cache de material de criptografiauuueiiiiiiiiiii 397
Criar um gerenciador de material de criptografia de armazenamento em cache 398

O que é uma entrada de chave de dados em Cache?oooovvmmiriiiiiiiiiicccee e, 399
Contexto de criptografia: como selecionar entradas do cachecccoooviiiicccicceenn. 400
Meu aplicativo esta usando chaves de dados armazenadas em cache?ccccccennnn. 400
Exemplo de armazenamento em cache de chaves de dadoscoooviiiiiiiiiiicciec e, 401
Resultados do Cache 0Caloooo i s 402
COIgO dE EXEMPIO ...t e e e e e e e e e e e ————————————————————————— 403
CloudFormation MOEIOuuiiiiiiiiiiiiee e e e e e e e e aaeeeeeeeeaannns 415
Versdes do AWS ENCryption SDKt e e e e e e aaaaaaas 430
O SEEPPPRRR 431
L0 - 1 N P PEERERURUR 432
Interface de linha de comando (CLI)cccoooiiiiiii i 432
= - O 435
T USRS 437
JAVA S It ..ottt e et e e e e et e e e e ———— e eeeeeeaaaaaaaeeaeteerrra——————————— 438
Y 1 T o PP 439
] O PSESERRPRR 441
DetalN@s da VEISA0uiiiiiiiee e e ettt a e e e e e 441
VErsSOES ANTEIIOrES @ 1.7.X coeiiiiiiiiiiiieie et et e e e e e e e ettt ettt e e e e e e e e e e e s s s st eeeeeeeeeeaaaeeeeeesaannns 442

RV 7= Lo e 0 G 442

RV 7= Lo 0) GRS 445
QYT T Lo G 447
QYT ST Lo G 448
Migrando seu AWS ENCryption SDK ... 449
Como migrar € IMPIANTAToooii e e e e e e e e e e e e e e eeees 451
Etapa 1: atualize a aplicagao para a versao 1.x mais recenteccceeevvviiiiiiieieeeeeiiiceeenn, 451
Etapa 2: atualize a aplicagao para a versao mais recenteccccoovevviiiiiieiieiceiiiee e, 452

Vi

AWS Encryption SDK Guia do Desenvolvedor

Atualizando provedores de chaves AWS KMS MeStrasueciiiiiiiiiiiiiiiiiceeieeeeeeeeee 454
Migracao para 0 MOdO €SILOoovueiii i 455
Migrar para 0 Modo de deSCODEIMAccoeiiiiiiie e e 458

Atualizando AWS KMS ChaVEIrOSccccuuiiiiiiiiiiiieiee ettt e e e e e eeeeaaeeas 462

Como definir sua politica de COMPrOMISSOcccccieiiiiiiiiiieeieeeeeeeee e e e e e e e e e e e e e e e e eeeeeeanes 464
Como definir sua politica de COMPIrOMISSOuuuuiiiiiiieei e 466

Solucéo de problemas de migragao para as versdes mais reCentesccceceeeeeeeeeeeeeeeeeeeeneennn. 477
Objetos descontinuados OU rE€MOVIAOSciiiiiiiiieii e e e e e e e 478
Conflito de configuragao: politica de compromisso e pacote de algoritmoscccccee...... 478
Conflito de configuracao: politica de compromisso e texto cifrado ..., 479
Falha na validacdo do confirmacao de chaveoovviiiiiiiiiiiii e, 480
Outras falhas de criptografia ... 480
Outras falhas de decriptografia ..., 480
CoNSIdEragies SODIE FEVEISAOcoevviieeiiiiiieeiee ee e e e e e e e e e aaaaaaaaes 481

Perguntas frEQUENTES ...ttt a e e e e e e e e e e e 482

Como o € AWS Encryption SDK diferente do AWS SDKS?ccooiiiiiiiiiiieeeeee e 482

Como ele € AWS Encryption SDK diferente do cliente de criptografia Amazon S37? 483

Quais algoritmos criptograficos séo suportados pelo AWS Encryption SDK e qual € o

72T L= To 11 PP PPPPPPPP 483

Como o vetor de inicializagao (V) é gerado e onde é armazenado?ccccccceeeeieeeiieeeeeeeeeeenns, 484

Como cada chave de dados é gerada, criptografada e descriptografada?ccccceeeeeeeeeinn. 484

Como fago para controlar as chaves de dados que foram usadas para criptografar meus

o =T Lo T 2 SEUERRPRRR 485

Como eles AWS Encryption SDK armazenam chaves de dados criptografadas com seus dados

(o4 0] (o]0 [=1 £= o [0 1 SO PP PUPRTPPOUPPPINt 485

Quanta sobrecarga o formato da AWS Encryption SDK mensagem adiciona aos meus dados

(o4 0] (o]0 | =1 £= [0 [0 1 SO PP PUPPTRPPOUPPPPNt 485

Posso usar meu proprio provedor de chaves mestras?ooovvviviiiiiiiiicicccceeeeeee e 486

Posso criptografar dados com mais de uma chave de encapsulamento?cccccoeevvvvivnnnnes 486

Com quais tipos de dados posso criptografar? AWS Encryption SDKooovviiiiiiiiiiieeeennn. 487

Como os fluxos AWS Encryption SDK criptografam e descriptografam input/output (E/S)? 487

= 1= =1 T - S SUREUPRPR 488

Referéncia do formato de MENSAQENSooeviiiiiiiiiiic e 488
Estrutura do Cabegalioiiii 489
S (0 (0 =T e (o T oo] o o TSP 497
EStrutura dO rOdapeot a e e e e e e e e e e aaa—a———— 503

Vii

AWS Encryption SDK Guia do Desenvolvedor

Exemplos de formatos de MENSAQENScccooeiiiiiiiiiiieeeeeeeee e 503
Dados emoldurados (formato de mensagem VEersao 1)ccoooeeieiiiiiiiiiiiiceeee e 504
Dados emoldurados (formato de mensagem VErsa0 2)cccceoeeeeeeiiiiieeieeeeeeee e 508
Dados nao emoldurados (formato de mensagem versao 1)coooovvimiiiiiiiiiiiicciceeeeeee e 510

Referéncia de AAD dE COIMPOcooiiiiieeeeee ettt e e e e e e e e e e aaaaaaaaeeeens 514

Referéncia de algoritMOScooeeii it e e ————————— 515

Referéncia do vetor de iNiCIaliZagaoooooiiiiiiiiiiic e 520

AWS KMS Detalhes técnicos do chaveiro hierarquiCocccoooiiiiiiiiiiiiiceee e 521

[[15Y o] Teto Jo [Re (oo U 41T o | (o RS SPT 523

ALUALIZAGOES FECENTES ...ttt e e e e et e e e e e e e e s e e e e e eeaasa e e eeeeeennnnas 523

LN (V=] [Toto Lo T L a1 (=T o] = 526

.. dxxviii

viii

AWS Encryption SDK Guia do Desenvolvedor

O que € o AWS Encryption SDK?

AWS Encryption SDK E uma biblioteca de criptografia do lado do cliente projetada para facilitar que
todos criptografem e descriptografem dados usando os padrdes e as melhores praticas do setor.
Ele permite que vocé se concentre na funcionalidade principal do aplicativo, em vez de sobre como
melhor criptografar e descriptografar os dados. AWS Encryption SDK E fornecido gratuitamente sob
a licenga Apache 2.0.

As AWS Encryption SDK respostas a perguntas como as seguintes para voceé:

» Qual algoritmo de criptografia devo usar?

« Como, ou em qual modo, devo usar esse algoritmo?

« Como faco para gerar a chave de criptografia?

« Como fago para proteger a chave de criptografia € onde devo armazena-la?

» Como posso tornar meus dados criptografados portateis?

» Como faco para garantir que o destinatario pretendido possa ler meus dados criptografados?

« Como posso garantir que meus dados criptografados ndo sejam modificados entre 0 momento em
que sao gravados e o momento em que sao lidos?

« Como faco para usar as chaves de dados que AWS KMS retornam?

Com o AWS Encryption SDK, vocé define um provedor de chave mestra ou um chaveiro que
determina quais chaves de agrupamento vocé usa para proteger seus dados. Em seguida, vocé
criptografa e descriptografa seus dados usando métodos simples fornecidos pelo. AWS Encryption
SDK O AWS Encryption SDK faz o resto.

Sem isso AWS Encryption SDK, vocé pode se esfor¢car mais na criagado de uma solugao de
criptografia do que na funcionalidade principal do seu aplicativo. Ele AWS Encryption SDK responde
a essas perguntas fornecendo as seguintes coisas.

Uma implementacéo padrao que segue as melhores praticas de criptografia

Por padrao, o AWS Encryption SDK gera uma chave de dados exclusiva para cada objeto de
dados que ele criptografa. Isso segue a melhor pratica de criptografia de usar chaves de dados
exclusivas para cada operagao de criptografia.

AWS Encryption SDK Guia do Desenvolvedor

Ele AWS Encryption SDK criptografa seus dados usando um algoritmo de chave simétrica,
autenticado e seguro. Para obter mais informacgdes, consulte the section called “Pacotes de
algoritmos compativeis”.

Uma estrutura para protegcao de chaves de dados com chaves de encapsulamento

O AWS Encryption SDK protege as chaves de dados que criptografam seus dados,
criptografando-as sob uma ou mais chaves de encapsulamento. Ao fornecer uma estrutura para
criptografar chaves de dados com mais de uma chave de empacotamento, isso AWS Encryption
SDK ajuda a tornar seus dados criptografados portateis.

Por exemplo, criptografe dados com uma entrada AWS KMS key AWS KMS e uma chave

do seu HSM local. E possivel usar qualquer uma das duas chaves de encapsulamento para
descriptografar os dados, caso alguma nao esteja disponivel ou o chamador n&do tenha permissao
para usar as duas chaves.

Uma mensagem formatada que armazena chaves de dados criptografadas com os dados
criptografados

Ele AWS Encryption SDK armazena os dados criptografados e a chave de dados criptografados
juntos em uma mensagem criptografada que usa um formato de dados definido. Isso significa
que vocé nao precisa acompanhar ou proteger as chaves de dados que criptografam seus dados,
pois elas AWS Encryption SDK fazem isso por vocé.

Algumas implementagdes de linguagem do AWS Encryption SDK exigem um AWS SDK, mas AWS
Encryption SDK nao exigem um Conta da AWS e nao dependem de nenhum AWS servico. Vocé
Conta da AWS s¢ precisa de um se optar por usar AWS KMS keyspara proteger seus dados.

Desenvolvido em repositorios de cédigo aberto

O AWS Encryption SDK é desenvolvido em repositérios de cddigo aberto em. GitHub E possivel
usar esses repositorios para visualizar o codigo, ler e enviar problemas e encontrar informacdes
especificas para sua implementagao de linguagem.

» AWS Encryption SDK for C — aws-encryption-sdk-c

AWS Encryption SDK para 0.NET — diretério.NET do aws-encryption-sdk repositério.

AWS CLI de criptografia — aws-encryption-sdk-cli

AWS Encryption SDK for Java — aws-encryption-sdk-java

AWS Encryption SDK para JavaScript — aws-encryption-sdk-javascript

Desenvolvido em repositérios de cédigo aberto 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/

AWS Encryption SDK Guia do Desenvolvedor

* AWS Encryption SDK for Python — aws-encryption-sdk-python

* AWS Encryption SDK para Rust — diretério Rust do repositério. aws-encryption-sdk
* AWS Encryption SDK para Go — diretério Go do aws-encryption-sdk repositério

Compatibilidade com bibliotecas e servigcos de criptografia

O AWS Encryption SDK é suportado em varias linguagens de programacao. As implementacgoes

de linguagem s&o interoperaveis E possivel criptografar com uma implementacao de linguagem e
descriptografar com outra. A interoperabilidade pode estar sujeita as restricdes de linguagem. Em
caso afirmativo, essas restricdes estardao descritas no tépico sobre a implementagao de linguagem.
Além disso, ao criptografar e descriptografar, € necessario usar tokens de autenticagado compativeis
ou chaves mestras e provedores de chaves mestras. Para obter detalhes, consulte the section called
“Compatibilidade dos tokens de autenticacao”.

No entanto, eles AWS Encryption SDK nao podem interoperar com outras bibliotecas. Como cada
biblioteca retorna dados criptografados em um formato diferente, vocé nao pode criptografar com
uma biblioteca e descriptografar com outra.

DynamoDB Encryption Client e criptografia do lado do cliente do Amazon S3

AWS Encryption SDK Nao é possivel descriptografar dados criptografados pelo DynamoDB
Encryption Client ou pela criptografia do lado do cliente do Amazon S3. Essas bibliotecas nao
conseguem decifrar a mensagem criptografada que retornam. AWS Encryption SDK

AWS Key Management Service (AWS KMS)

Eles AWS Encryption SDK podem usar chaves AWS KMS keysde dados para proteger seus
dados, incluindo chaves KMS multirregionais. Por exemplo, vocé pode configurar o AWS
Encryption SDK para criptografar seus dados em um ou mais AWS KMS keys em seu Conta da
AWS. No entanto, vocé deve usar o AWS Encryption SDK para descriptografar esses dados.

AWS Encryption SDK Nao € possivel descriptografar o texto cifrado que as operagdes Encrypt

ou retornam. AWS KMSReEncrypt Da mesma forma, a operacao AWS KMSDecrypt ndo pode

descriptografar a mensagem criptografada que ela retorna. AWS Encryption SDK

O AWS Encryption SDK suporta somente chaves KMS de criptografia simétrica. Nao é possivel

usar uma chave assimétrica do KMS para criptografia ou assinatura no AWS Encryption SDK.
O AWS Encryption SDK gera suas proprias chaves de assinatura ECDSA para pacotes de
algoritmos que assinam mensagens.

Compatibilidade com bibliotecas e servigos de criptografia 3

https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks

AWS Encryption SDK Guia do Desenvolvedor

Suporte e manutencao

O AWS Encryption SDK usa a mesma politica de manutencao que o AWS SDK e as ferramentas

usam, incluindo suas fases de controle de versao e ciclo de vida. Como pratica recomendada,

recomendamos que vocé use a versao mais recente disponivel do AWS Encryption SDK para

sua linguagem de programacéo e atualize a medida que novas versdes forem langadas. Quando
uma versao exige alteragdes significativas, como a atualizagcdo de AWS Encryption SDK versdes
anteriores a 1.7. x para as versoes 2.0. x e posteriormente, fornecemos instrucées detalhadas para
ajuda-lo.

Cada implementacao de linguagem de programacao do AWS Encryption SDK é desenvolvida em um
GitHub repositério de codigo aberto separado. E provavel que o ciclo de vida e a fase do suporte de
cada versao variem entre os repositérios. Por exemplo, uma determinada versao do AWS Encryption
SDK pode estar na fase de disponibilidade geral (suporte total) em uma linguagem de programacao,
mas a end-of-support fase em uma linguagem de programacéo diferente. Recomendamos que

vocé use uma versao totalmente compativel sempre que possivel e evite versdes que ja ndo sejam
compativeis.

Para encontrar a fase do ciclo de vida das AWS Encryption SDK versbes da sua linguagem de
programacao, consulte o SUPPORT_POLICY.rst arquivo em cada AWS Encryption SDK repositorio.

» AWS Encryption SDK for C — Support_policy.rst

* AWS Encryption SDK para 0.NET — Support_policy.rst

» AWS CLI de criptografia — Support_policy.rst

« AWS Encryption SDK for Java — Support_policy.rst

* AWS Encryption SDK para JavaScript — Support_policy.rst

* AWS Encryption SDK for Python — Support_policy.rst

Para obter mais informacdes, consulte Versoes do AWS Encryption SDK e AWS SDKs e a politica de

manutencao de ferramentas no Guia de referéncia de ferramentas AWS SDKs e ferramentas.

Saiba mais

Para obter mais informagdes sobre a AWS Encryption SDK criptografia do lado do cliente,
experimente essas fontes.

Suporte e manutengao 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Encryption SDK Guia do Desenvolvedor

» Para obter ajuda com os termos e conceitos usados neste SDK, consulte Conceitos no AWS
Encryption SDK.

» Para obter as diretrizes de praticas recomendadas, consulte Melhores praticas para o AWS
Encryption SDK.

» Para obter informagdes sobre como o SDK funciona, consulte Saiba como o SDK funciona.

» Para obter exemplos que mostram como configurar op¢des no AWS Encryption SDK,
consulteConfigurando o AWS Encryption SDK.

» Para obter informacgdes técnicas, consulte a Referéncia.

» Para obter as especificagbes técnicas do AWS Encryption SDK, consulte a AWS Encryption SDK
Especificacao em GitHub.

» Para obter respostas as suas perguntas sobre o uso do AWS Encryption SDK, leia e publique no
Forum de discussao sobre ferramentas AWS criptograficas.

Para obter informacdes sobre implementagées do AWS Encryption SDK em diferentes linguagens de
programacao.

C: Veja AWS Encryption SDK for C a documentagao em AWS Encryption SDK C e o aws-
encryption-sdk-crepositorio ativado GitHub.

* C#/.NET: Consulte AWS Encryption SDK para 0.NET e ative o aws-encryption-sdk-netdiretério do
aws-encryption-sdk repositério. GitHub

* Interface de linha de comando: consulteAWS Encryption SDK interface de linha de comando, leia
os documentos da CLI de AWS criptografia e aws-encryption-sdk-clido repositorio em. GitHub

+ Java: vejaAWS Encryption SDK for Java, o AWS Encryption SDK Javadoc e o aws-encryption-sdk-

javarepositorio ativado. GitHub

JavaScript: Veja the section called “JavaScript” e ative 0 aws-encryption-sdk-javascriptrepositorio.
GitHub

* Python: veja AWS Encryption SDK for Python a documentacao do AWS Encryption SDK Python e
o repositorio em. aws-encryption-sdk-python GitHub

Enviar comentarios

Os seus comentarios sao bem-vindos. Se voceé tiver uma pergunta ou comentario, ou um problema a
relatar, use os seguintes recursos.

Enviar comentarios 5

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK Guia do Desenvolvedor

Se vocé descobrir uma possivel vulnerabilidade de segurangca no AWS Encryption SDK, notifique a
AWS seguranca. Nao crie um GitHub problema publico.

Para fornecer feedback sobre o AWS Encryption SDK, registre um problema no GitHub repositorio
da linguagem de programacgao que vocé esta usando.

Para fornecer comentarios sobre esta documentacao, use os links Feedback nesta pagina. Vocé
também pode registrar um problema ou contribuir para aws-encryption-sdk-docso repositorio de
cédigo aberto desta documentagcdo em. GitHub

Conceitos no AWS Encryption SDK

Esta secdo apresenta os conceitos usados no AWS Encryption SDK e fornece um glossario € uma
referéncia. Ele foi projetado para ajudar vocé a entender como AWS Encryption SDK funciona e os
termos que usamos para descrevé-lo.

Precisa de ajuda?

Saiba como ele AWS Encryption SDK usa criptografia de envelope para proteger seus dados.

Saiba mais sobre os elementos da criptografia envelopada: as chaves de dados que protegem
seus registros e as chaves de encapsulamento que protegem suas chaves de dados.

Saiba mais sobre os tokens de autenticacdo e osprovedores de chaves mestras que determinam

quais chaves de encapsulamento vocé usa.

Saiba mais sobre o contexto de criptografia que adiciona integridade ao seu processo de
criptografia. E opcional, mas é uma pratica recomendada que incentivamos.

Saiba mais sobre a mensagem criptografada que os métodos de criptografia retornam.

Entao vocé esta pronto para usar o AWS Encryption SDK em sua linguagem de programacao
preferida.

Topicos

criptografia envelopada

Chave de dados

Chave de encapsulamento

Tokens de autenticagao e provedores de chaves mestras

Contexto de criptografia

Conceitos 6

https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK

Guia do Desenvolvedor

Mensagem criptografada

Pacote de algoritmos

Gerenciador de material de criptografia

Criptografia simétrica e assimétrica

Confirmacéao de chave

Politica de compromisso

Assinaturas digitais

criptografia envelopada

A seguranca dos dados criptografados depende em parte da protecado da chave de dados que pode
descriptografa-los. Uma pratica recomendada aceita para proteger a chave de dados é criptografa-la.
Para fazer isso, vocé precisa de outra chave de criptografia, conhecida como chave de criptografia
de chave ou chave de encapsulamento. Essa pratica de uso de uma chave do KMS para criptografar

chaves de dados é conhecida como criptografia envelopada.

Protecao de chaves de dados

O AWS Encryption SDK criptografa cada mensagem com uma chave de dados exclusiva. Em

seguida, ele criptografa cada chave de dados sob a chave de encapsulamento especificada. Ele

armazena as chaves de dados criptografadas junto com os dados criptografados na mensagem

criptografada que as operacgdes de criptografia retornam.

Para especificar sua chave de encapsulamento, use um token de autenticacao ou umprovedor de

chave mestra.

0_‘ DATA
Data key Plaintext
data
Wrapping key Data key

Ly

Algorithm
suite

O3

Encryption
algorithm

& —_
A

Ciphertext
Encrypted
p.. Message
Encrypted
data key

criptografia envelopada

AWS Encryption SDK Guia do Desenvolvedor

Criptografar os mesmos dados com varias chaves de encapsulamento

E possivel criptografar a chave de dados sob varias chaves de encapsulamento. Talvez vocé
queira fornecer chaves de encapsulamento distintas para usuarios diferentes ou chaves

de encapsulamento de tipos variados ou em locais diferentes. Cada uma das chaves de
encapsulamento criptografa a mesma chave de dados. Ele AWS Encryption SDK armazena todas
as chaves de dados criptografadas com os dados criptografados na mensagem criptografada.

Para descriptografar os dados, vocé precisa fornecer pelo menos uma chave de encapsulamento
que possa descriptografar uma das chaves de dados criptografadas.

Wrapping Wrapping Wrapping
key A key B key C
Data key

o~ - o~

Encrypted Encrypted Encrypted
data key data key data key

Combinagao de pontos fortes de varios algoritmos

Para criptografar seus dados, por padréo, o AWS Encryption SDK usa um sofisticado conjunto
de algoritmos com criptografia simétrica AES-GCM, uma funcéo de derivacdo de chave (HKDF)
e assinatura. Para criptografar a chave de dados, vocé pode especificar um algoritmo de
criptografia simétrico ou assimétrico apropriado a sua chave de encapsulamento.

Em geral, os algoritmos de criptografia de chaves simétricas sdo mais rapidos e produzem textos
cifrados menores que a criptografia de chave publica ou assimétrica. No entanto, os algoritmos
de chave publica fornecem separacéao inerente de fungdes e gerenciamento de chaves mais facil.
Para combinar as forgas de cada um, vocé pode criptografar dados brutos com criptografia de
chave simétrica e, em seguida, criptografar a chave de dados com criptografia de chave publica.

criptografia envelopada 8

AWS Encryption SDK Guia do Desenvolvedor

Chave de dados

A chave de ados € uma chave de criptografia que o AWS Encryption SDK usa para criptografar

os dados. Cada chave de dados é uma matriz de bytes que cumpre os requisitos para chaves
criptograficas. A menos que vocé esteja usando o cache de chaves de dados, ele AWS Encryption
SDK usa uma chave de dados exclusiva para criptografar cada mensagem.

Vocé néo precisa especificar, gerar, implementar, estender, proteger ou usar chaves de dados. O
AWS Encryption SDK faz esse trabalho para vocé quando vocé chama as operagdes de criptografia
e descriptografia.

Para proteger suas chaves de dados, eles as AWS Encryption SDK criptografam sob uma ou mais
chaves de criptografia de chave conhecidas como chaves de empacotamento ou chaves mestras.
Depois de AWS Encryption SDK usar suas chaves de dados em texto simples para criptografar seus
dados, ele os remove da memodria o mais rapido possivel. Depois, ele armazena as chaves de dados
criptografadas junto com os dados criptografados na mensagem criptografada que as operagdes de

criptografia retornam. Para obter detalhes, consulte the section called “Saiba como o SDK funciona”.

@ Tip
No AWS Encryption SDK, distinguimos as chaves de dados das chaves de criptografia de
dados. Varios dos pacotes de algoritmos, incluindo o pacote padrao, usam uma funcao de

derivacao de chaves que impede que a chave de dados atinja seus limites de criptografia.

A funcao de derivacao de chaves usa a chave de dados como entrada e retorna uma chave
de criptografia de dados que é realmente usada para criptografar os dados. Por esse motivo,
sempre dizemos que os dados sao criptografados "sob" uma chave de dados em vez de
"pela" chave de dados.

Cada chave de dados criptografada inclui metadados, incluindo o identificador da chave de
encapsulamento que a criptografou. Esses metadados facilitam a identificacdo de chaves de
empacotamento validas durante a descriptografia. AWS Encryption SDK

Chave de encapsulamento

Uma chave de encapsulamento € uma chave de criptografia que o AWS Encryption SDK usa
para criptografar a chave de dados que criptografa seus registros. Cada chave de dados em texto

simples pode ser criptografada sob uma ou mais chaves mestras. Vocé determina quais chaves de

Chave de dados 9

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Guia do Desenvolvedor

encapsulamento serdo usadas para proteger seus dados ao configurar um token de autenticacao ou
um provedor de chave mestra.

® Note

A chave de encapsulamento refere-se as chaves em um token de autenticagao ou provedor
de chave mestra. A chave mestra geralmente esta associada a classe MasterKey que vocé
instancia ao usar um provedor de chave mestra.

O AWS Encryption SDK suporta varias chaves de agrupamento comumente usadas, como AWS Key
Management Service (AWS KMS) simétricas AWS KMS keys(incluindo chaves KMS multirregionais),
chaves brutas AES-GCM (Advanced Encryption Standard/Galois Counter Mode) e chaves RSA
brutas. Vocé também pode estender ou implementar suas préprias chaves de encapsulamento.

Quando vocé usa a criptografia envelopada, precisa proteger suas chaves de encapsulamento
contra acesso n&o autorizado. E possivel fazer isso de uma das seguintes maneiras:

» Use um servigo web projetado para essa finalidade, como o AWS Key Management Service (AWS
KMS).

* Use um hardware security module (HSM - modulo de seguranca de hardware), como os oferecidos
pelo AWS CloudHSM.

» Use outras ferramentas e servigos de gerenciamento de chaves.

Se vocé nao tem um sistema de gerenciamento de chaves, recomendamos AWS KMS. Ele
AWS Encryption SDK se integra AWS KMS para ajudar vocé a proteger e usar suas chaves de
embalagem. No entanto, AWS Encryption SDK n&o requer AWS nenhum AWS servigo.

Tokens de autenticacao e provedores de chaves mestras

Para especificar as chaves de agrupamento que vocé usa para criptografia e decodificagao, use um
chaveiro ou um provedor de chave mestra. Vocé pode usar os chaveiros e os provedores de chaves
mestras que eles AWS Encryption SDK fornecem ou criar suas préprias implementag¢des. O AWS
Encryption SDK fornece tokens de autenticagao e provedores de chaves mestras compativeis entre
si, sujeitos a restrigdes de linguagem. Para obter detalhes, consulte Compatibilidade dos tokens de

autenticacao.

Tokens de autenticagcéo e provedores de chaves mestras 10

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK Guia do Desenvolvedor

Um token de autenticagao gera, criptografa e descriptografa chaves de dados. Ao definir um token
de autenticagao, vocé pode especificar as chaves de encapsulamento que criptografam suas

chaves de dados. A maioria dos tokens de autenticagado especificam pelo menos uma chave de
encapsulamento ou um servigo que fornece e protege chaves de encapsulamento. Vocé também
pode definir um token de autenticacdo sem chaves de encapsulamento ou um token de autenticagao
mais complexo com opg¢des de configuragao adicionais. Para obter ajuda para escolher e usar os
chaveiros que AWS Encryption SDK definem, consulteTokens de autenticacao.

Os chaveiros sao compativeis com as seguintes linguagens de programacao:

* AWS Encryption SDK for C

« AWS Encryption SDK para JavaScript

* AWS Encryption SDK para o.NET

* Versao 3. x do AWS Encryption SDK for Java

» Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia opcional da
Biblioteca de Provedores de Material Criptografico (MPL).

* Versao 1. x do AWS Encryption SDK para Rust
* Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Um provedor de chave mestra € uma alternativa a um token de autenticagao. O provedor de chave
mestra retorna as chaves de encapsulamento (ou chaves mestras) que vocé especificar. Cada
chave mestra é associada a um provedor de chaves mestras, mas um provedor de chaves mestras
normalmente fornece varias chaves mestras. Os provedores de chaves mestras sao compativeis
com Java, Python e a AWS CLI de criptografia.

Vocé deve especificar um token de autenticagao (ou provedor de chave mestra) para criptografia.
Vocé pode especificar o mesmo token de autenticagao (ou provedor de chave mestra), ou um
diferente, para descriptografia. Ao criptografar, ele AWS Encryption SDK usa todas as chaves

de empacotamento que vocé especificar para criptografar a chave de dados. Ao descriptografar,
o AWS Encryption SDK usa somente as chaves de encapsulamento que vocé especificar para
descriptografar uma chave de dados criptografada. Especificar chaves de encapsulamento para

decodificacdo é opcional, mas € uma pratica recomendada. AWS Encryption SDK

Para obter detalhes sobre como especificar chaves de encapsulamento, consulte. Selecao de
chaves de encapsulamento

Tokens de autenticagcéo e provedores de chaves mestras 11

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

Contexto de criptografia

Para melhorar a seguranca de suas operagdes de criptografia, inclua um contexto de criptografia em
todas as solicitacdes para criptografar dados. O uso de um contexto de criptografia € opcional, mas é
uma melhor pratica de criptografia que recomendamos.

Um contexto de criptografia € um conjunto de pares de chave-valor que contém dados autenticados
adicionais arbitrarios e nao secretos. O contexto de criptografia pode conter todos os dados que vocé
escolher, mas geralmente consiste em dados que sao uteis para registro em log e rastreamento,
como dados sobre o tipo de arquivo, a finalidade ou a propriedade. Quando vocé criptografa dados,
o contexto de criptografia é associado de maneira criptografica aos dados criptografados de forma
gue o mesmo contexto de criptografia seja necessario para descriptografar os dados. O AWS
Encryption SDK inclui o contexto de criptografia em texto simples no cabegalho da mensagem
criptografada retornada por ele.

O contexto de criptografia AWS Encryption SDK usado consiste no contexto de criptografia que vocé
especifica e em um par de chaves publicas que o gerenciador de materiais criptograficos (CMM)

adiciona. Especificamente, sempre que vocé usar um algoritmo de criptografia com assinatura,

o CMM adicionara um par de nome/valor ao contexto de criptografia consistindo em um nome
reservado, aws-crypto-public-key, e um valor representando a chave de verificagao publica.

O aws-crypto-public-key nome no contexto de criptografia € reservado pelo AWS Encryption
SDK e nao pode ser usado como nome em nenhum outro par no contexto de criptografia. Para obter
detalhes, consulte AAD na Referéncia do formato de mensagens.

O exemplo de contexto de criptografia a seguir consiste nos dois pares de contexto de criptografia
especificados na solicitacao e no par de chaves publicas adicionado pelo CMM.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

Para descriptografar os dados, vocé passa a mensagem criptografada. Como o AWS Encryption

SDK pode extrair o contexto de criptografia do cabegalho da mensagem criptografada, vocé néo

precisa fornecer o contexto de criptografia separadamente. No entanto, o contexto de criptografia
pode ajudar a confirmar se vocé esta descriptografando a mensagem criptografada correta.

* Na interface de linha de comando do AWS Encryption SDK (CLI), se vocé fornecer um contexto de
criptografia em um comando de descriptografia, a CLI verificara se os valores estdo presentes no

contexto da mensagem criptografada antes de retornar os dados em texto simples.

Contexto de criptografia 12

AWS Encryption SDK Guia do Desenvolvedor

« Em outras implementacdes de linguagens de programacao, a resposta de descriptografia inclui
o contexto de criptografia e os dados em texto simples. A funcao de descriptografia em seu
aplicativo sempre deve verificar se o contexto de criptografia na resposta de descriptografia inclui
o contexto de criptografia na solicitacdo de criptografia (ou um subconjunto) antes de retornar os
dados em texto simples.

® Note

As versdes a seguir oferecem suporte ao contexto de criptografia necessario CMM, que vocé

pode usar para exigir um contexto de criptografia em todas as solicitagcées de criptografia.

* Versao 3. x do AWS Encryption SDK for Java
» Versao 4. x do AWS Encryption SDK para o.NET

» Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia
opcional da Biblioteca de Provedores de Material Criptografico (MPL).

» Versao 1. x do AWS Encryption SDK para Rust
» Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Ao escolher um contexto de criptografia, lembre-se de que ele ndo € um segredo. O contexto de
criptografia € exibido em texto nao criptografado no cabecalho da mensagem criptografada retornada
pelo AWS Encryption SDK . Se vocé estiver usando AWS Key Management Service, o contexto de
criptografia também podera aparecer em texto simples em registros e registros de auditoria, como.
AWS CloudTrail

Para obter exemplos de envio e verificagcdo de um contexto de criptografia no seu cédigo, consulte os
exemplos da linguagem de programacao de sua preferéncia.

Mensagem criptografada

Quando vocé criptografa dados com o AWS Encryption SDK, ele retorna uma mensagem
criptografada.

Uma mensagem criptografada € uma estrutura de dados formatados portatil que inclui os dados
criptografados junto com as cépias criptografadas das chaves de dados, o ID do algoritmo e,
opcionalmente, um contexto de criptografia e uma assinatura digital. As operagdes de criptografia

Mensagem criptografada 13

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

no AWS Encryption SDK retornam uma mensagem criptografada, e as operacdes de descriptografia
usam uma mensagem criptografada como entrada.

A combinacgao de dados criptografados e de suas chaves de dados criptografadas simplifica a
operagao e elimina a necessidade de armazenar e gerenciar chaves de dados criptografadas
independentemente dos dados que elas criptografam.

Para obter informacdes técnicas sobre a mensagem criptografada, consulte Formato da mensagem
criptografada.

Pacote de algoritmos

O AWS Encryption SDK usa um conjunto de algoritmos para criptografar e assinar os dados na
mensagem criptografada que as operagdes de criptografia e descriptografia retornam. O AWS
Encryption SDK é compativel com varios pacotes de algoritmos. Todos os conjuntos compativeis
usam o Advanced Encryption Standard (AES) como o algoritmo principal € 0 combinam com outros
algoritmos e valores.

O AWS Encryption SDK estabelece um conjunto de algoritmos recomendado como padréo para
todas as operagdes de criptografia. O padrao pode ser alterado conforme os padrdes e as praticas
recomendadas sédo aprimoradas. Vocé pode especificar um pacote de algoritmos alternativo em
solicitagdes de criptografia de dados ou ao criar um gerenciador de materiais criptograficos (CMM),

mas, a menos que um alternativo seja necessario para sua situagao, € melhor usar o padrdo. O
padrao atual € AES-GCM com uma funcao de derivacao de extract-and-expand chave (HKDF)

baseada em HMAC, compromisso de chave, uma assinatura de algoritmo de assinatura digital de

curva eliptica (ECDSA) e uma chave de criptografia de 256 bits.

Se sua aplicagao exigir alta performance e os usuarios que criptografam dados e aqueles que os
descriptografam forem igualmente confiaveis, considere especificar um pacote de algoritmos sem
uma assinatura digital. No entanto, recomendamos fortemente um pacote de algoritmos que inclua
confirmagéo de chave e uma fungao de derivagao de chave. Os pacotes de algoritmos que n&o tém
esses atributos sdo compativeis apenas para compatibilidade com versdes anteriores.

Gerenciador de material de criptografia

O gerenciador de material de criptografia (CMM) monta o material criptografico usado para
criptografar e descriptografar dados. O material criptografico inclui texto n&o criptografado e chaves
de dados criptografadas e uma chave de assinatura de mensagem opcional. Vocé nunca interage
diretamente com o CMM. Os métodos de criptografia e descriptografia o processam para vocé.

Pacote de algoritmos 14

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Guia do Desenvolvedor

Vocé pode usar o CMM padrao ou o CMM de cache que ele AWS Encryption SDK fornece, ou
escrever um CMM personalizado. E é possivel especificar explicitamente um CMM, mas isso nao

€ obrigatdrio. Quando vocé especifica um provedor de chaveiro ou chave mestra, AWS Encryption
SDK ele cria um CMM padrao para vocé. O CMM padrao obtém o material de criptografia ou de
descriptografia do token de autenticacdo ou do provedor de chave mestra que vocé especificar. Isso
pode envolver uma chamada a um servigo criptografico, como o AWS Key Management Service
(AWS KMS).

Como o CMM atua como uma ligagao entre o AWS Encryption SDK e um chaveiro (ou provedor
de chave mestra), € um ponto ideal para personalizagao e extensado, como suporte para aplicagéo
de politicas e armazenamento em cache. O AWS Encryption SDK fornece um CMM de cache para
suportar o cache de chaves de dados.

Criptografia simétrica e assimétrica

A criptografia simétrica usa a mesma chave para criptografar e descriptografar dados.

A criptografia assimétrica usa um par de chaves de dados matematicamente relacionado. Uma chave
no par criptografa os dados; somente a outra chave no par pode descriptografar os dados.

O AWS Encryption SDK usa criptografia de envelope. Ele criptografa os dados com uma chave

de dados simétrica. Ele criptografa a chave de dados simétrica com uma ou mais chaves de
encapsulamento simétricas ou assimétricas. Ele retorna uma mensagem criptografada que inclui os
dados criptografados e pelo menos uma copia criptografada da chave de dados.

Criptografar dados (criptografia simétrica)

Para criptografar seus dados, o AWS Encryption SDK usa uma chave de dados simétrica e um
conjunto de algoritmos que inclui um algoritmo de criptografia simétrica. Para descriptografar os

dados, o AWS Encryption SDK usa a mesma chave de dados e 0 mesmo conjunto de algoritmos.

Criptografar chave de dados (criptografia simétrica ou assimétrica)

O token de autenticacao ou o provedor de chave mestra que vocé fornece para uma operacgao

de criptografia e descriptografia determina como a chave de dados simétrica sera criptografada
e descriptografada. Vocé pode escolher um provedor de chaveiro ou chave mestra que use
criptografia simétrica, como um AWS KMS chaveiro, ou um que use criptografia assimétrica,
como um chaveiro RSA bruto ou. JceMasterKey

Criptografia simétrica e assimétrica 15

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Guia do Desenvolvedor

Confirmacgao de chave

O AWS Encryption SDK suporta o comprometimento da chave (as vezes conhecido como robustez),
uma propriedade de seguranga que garante que cada texto cifrado possa ser descriptografado
somente em um unico texto simples. Para fazer isso, a confirmacéo de chave garante que somente
a chave de dados que criptografou sua mensagem seja usada para descriptografa-la. Criptografar e
descriptografar com o confirmacao de chave € uma pratica recomendada do AWS Encryption SDK.

A maioria das cifras simétricas modernas (incluindo AES) criptografa um texto simples com uma
unica chave secreta, como a chave de dados exclusiva que o AWS Encryption SDK usa para

criptografar cada mensagem de texto simples. Descriptografar esses dados com a mesma chave
de dados retorna um texto sem formatacao idéntico ao original. A decodificagdo com uma chave
diferente geralmente falhara. No entanto, € possivel decifrar um texto cifrado com duas chaves
diferentes. Em casos raros, € possivel encontrar uma chave que possa descriptografar alguns bytes
do o texto cifrado em um texto simples diferente, mas ainda inteligivel.

AWS Encryption SDK Sempre criptografa cada mensagem de texto simples em uma chave de dados
exclusiva. Ele pode criptografar essa chave de dados em varias chaves de encapsulamento, mas

as chaves de encapsulamento (ou chaves mestras) sempre criptografam a mesma chave de dados.
No entanto, uma mensagem criptografada sofisticada e criada manualmente pode, na verdade,
conter chaves de dados diferentes, cada uma criptografada por uma chave de encapsulamento
diferente. Por exemplo, se um usuario descriptografar a mensagem criptografada, ela retornara 0x0
(falso), enquanto outro usuario descriptografando a mesma mensagem criptografada obtera 0x1
(verdadeiro).

Para evitar esse cenario, 0 AWS Encryption SDK suporta o comprometimento da chave ao
criptografar e descriptografar. Quando AWS Encryption SDK criptografa uma mensagem com
comprometimento de chave, ele vincula criptograficamente a chave de dados exclusiva que produziu
o texto cifrado a cadeia de caracteres de confirmacao da chave, um identificador de chave de

dados nao secreto. Em seguida, ele armazena o string de compromisso chave nos metadados

da mensagem criptografada. Ao decifrar uma mensagem com comprometimento de chave, AWS
Encryption SDK verifica se a chave de dados € a unica chave para essa mensagem criptografada.
Se a verificacdo da chave de dados falhar, a operacao de descriptografia falhara.

O suporte para confirmacao de chaves foi apresentado na versao 1.7. x, que pode descriptografar
mensagens com confirmag¢ao de chave, mas n&o pode criptografar com confirmagao de chave.
Vocé pode usar essa versao para implantar totalmente a capacidade de descriptografar texto cifrado
com confirmacao de chave. A versao 2.0.x inclui suporte total para os compromissos de chave.

Confirmacgao de chave 16

AWS Encryption SDK Guia do Desenvolvedor

Por padréo, ela criptografa e descriptografa somente com confirmagao de chave. Essa é uma
configuracao ideal para aplicativos que nao precisam decifrar texto cifrado criptografado por versdes
anteriores do. AWS Encryption SDK

Embora criptografar e descriptografar com confirmacgao de chave seja uma pratica recomendada,
deixamos que vocé decida quando ela sera usada e ajustamos o ritmo em que vocé a adota. A
partir da versao 1.7. x, AWS Encryption SDK suporta uma politica de compromisso que define o
conjunto de algoritmos padrao e limita os conjuntos de algoritmos que podem ser usados. Essa
politica determina se seus dados sao criptografados e descriptografados com confirmacao de chave.

A confirmacgao de chave resulta em uma mensagem criptografada um pouco maior (+ 30 bytes) e
que leva mais tempo para ser processada. Se sua aplicagao for muito sensivel ao tamanho ou a
performance, vocé podera optar por ndo aceitar a confirmagao de chave. Mas faga isso somente se
for necessario.

Para obter mais informacdes sobre a migragao para as versodes 1.7.x e 2.0.x, incluindo seus atributos
de confirmacéao de chave, consulte Migrando seu AWS Encryption SDK. Para obter informacdes
técnicas sobre confirmag&o de chave, consulte the section called “Referéncia de algoritmos” ethe
section called “Referéncia do formato de mensagens”.

Politica de compromisso

Uma politica de compromisso € uma definicao de configuragdao que determina se a aplicagao
criptografa e descriptografa com confirmacao de chave. Criptografar e descriptografar com o
confirmacao de chave é uma pratica recomendada do AWS Encryption SDK.

A politica de compromisso tem trés valores.

® Note

Talvez seja necessario rolar horizontalmente ou verticalmente para ver a tabela inteira.

Politica de compromisso 17

AWS Encryption SDK Guia do Desenvolvedor

Valores da politica de compromisso

Valor Criptografa com Criptografa sem Descriptografa Descriptografa
confirmacéao de confirmacéao de com confirmagdo sem confirmacéao
chave chave de chave de chave

ForbidEnc

ryptAllowDecrypt

RequireEn

cryptAllo

wDecrypt

RequireEn

cryptRequ

ireDecrypt

A configuragao da politica de compromisso foi introduzida na AWS Encryption SDK versao 1.7. x. Ela
€ valida em todas as linguagens de programacao suportadas.

* O ForbidEncryptAllowDecrypt descriptografa com ou sem confirmacéo de chave, mas nao
criptografa com confirmacao de chave. Esse valor, introduzido na versao 1.7. x, foi projetado
para preparar todos os hosts que executam seu aplicativo para decifrar com comprometimento
de chave antes mesmo de encontrarem um texto cifrado criptografado com comprometimento de
chave.

* O RequireEncryptAllowDecrypt sempre criptografa com confirmacao de chave. Ele pode
descriptografar textos cifrados criptografados com ou sem confirmagao de chave. Este valor,
introduzido na versao 2.0.x, permite que vocé comece a criptografar com confirmacgao de chave,
mas ainda descriptografe textos cifrados herdados sem confirmacao de chave.

* RequireEncryptRequireDecrypt: criptografa e descriptografa somente com confirmagao de
chave. Esse valor € o padrao para a versao 2.0x. Use-o valor quando tiver certeza de que todos os
seus textos cifrados estao criptografados com a confirmacao de chave.

A configuracao da politica de compromisso determina quais pacotes de algoritmos vocé pode
usar. A partir da versao 1.7. x, o pacote de algoritmos de AWS Encryption SDK suporte para

Politica de compromisso 18

AWS Encryption SDK Guia do Desenvolvedor

comprometimento de chaves; com e sem assinatura. Se vocé especificar um pacote de algoritmos
que entre em conflito com sua politica de compromisso, o AWS Encryption SDK retornara um erro.

Para obter ajuda para definir sua politica de compromisso, consulte Como definir sua politica de

COMpPromisso.

Assinaturas digitais

Ele AWS Encryption SDK criptografa seus dados usando um algoritmo de criptografia autenticado, o
AES-GCM, e o processo de decodificacao verifica a integridade e a autenticidade de uma mensagem
criptografada sem usar uma assinatura digital. Mas como o AES-GCM usa chaves simétricas,
qualquer pessoa que possa descriptografar a chave de dados usada para descriptografar o texto
cifrado também pode criar manualmente um novo texto cifrado, causando uma possivel preocupacgao
de segurancga. Por exemplo, se vocé usar um AWS KMS key como chave de encapsulamento,

um usuario com kms : Decrypt permissoes podera criar textos cifrados criptografados sem ligar.
kms:Encrypt

Para evitar esse problema, o AWS Encryption SDK suporta a adicdo de uma assinatura do Algoritmo
de Assinatura Digital de Curva Eliptica (ECDSA) ao final das mensagens criptografadas. Quando

um conjunto de algoritmos de assinatura € usado, AWS Encryption SDK ele gera uma chave privada
temporaria e um par de chaves publicas para cada mensagem criptografada. O AWS Encryption
SDK armazena a chave publica no contexto de criptografia da chave de dados e descarta a chave
privada. Isso garante que ninguém possa criar outra assinatura que seja verificada com a chave
publica. O algoritmo vincula a chave publica a chave de dados criptografada como dados adicionais
autenticados no cabecalho da mensagem, impedindo que usuarios que sé podem descriptografar
mensagens alterem a chave publica ou afetem a verificagao da assinatura.

A verificagao de assinatura adiciona um custo significativo de performance a descriptografia. Se os
usuarios que criptografam dados e os usuarios que decifram os dados forem igualmente confiaveis,
considere usar um pacote de algoritmos que nao inclua assinatura.

® Note

Se o chaveiro ou 0 acesso ao material criptografico da embalagem nao delimitarem entre
criptografadores e decodificadores, as assinaturas digitais nao fornecerao valor criptografico.

Assinaturas digitais 19

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS os chaveiros, incluindo o AWS KMS chaveiro RSA assimétrico, podem delinear entre
criptografadores e decodificadores com base nas politicas de chaves e nas politicas do IAM. AWS
KMS

Devido a sua natureza criptografica, os seguintes chaveiros ndo podem delimitar entre
criptografadores e decodificadores:

AWS KMS Chaveiro hierarquico
AWS KMS Chaveiro ECDH

» Token de autenticacao bruto do AES

» Token de autenticacao bruto do RSA
Chaveiro ECDH bruto

Como AWS Encryption SDK funciona

Os fluxos de trabalho desta secao explicam como AWS Encryption SDK criptografa dados e
descriptografa mensagens criptografadas. Esses fluxos de trabalho descrevem o processo
basico usando os atributos padrao. Para obter detalhes sobre como definir e usar componentes
personalizados, consulte o GitHub repositorio de cada implementagao de linguagem compativel.

O AWS Encryption SDK usa criptografia de envelope para proteger seus dados. Cada mensagem

é criptografada em uma chave de dados exclusiva. Em seguida, a chave de dados ¢ criptografada
pelas chaves de encapsulamento que vocé especificar. Para descriptografar a mensagem
criptografada, ele AWS Encryption SDK usa as chaves de encapsulamento que vocé especifica para
descriptografar pelo menos uma chave de dados criptografada. Em seguida, ele pode descriptografar
o texto cifrado e retornar uma mensagem de texto simples.

Precisa de ajuda com a terminologia que usamos no AWS Encryption SDK? Consulte the section
called “Conceitos”.

Como o AWS Encryption SDK criptografa os dados

AWS Encryption SDK Ele fornece métodos que criptografam cadeias de caracteres, matrizes de
bytes e fluxos de bytes. Para obter exemplos de codigo, consulte o tépico Exemplos em cada segéo
de Linguagens de programacao.

1. Crie um token de autenticacao (ou um provedor de chave mestra) que especifique as chaves de
agrupamento que protegem seus dados.

Saiba como o SDK funciona 20

AWS Encryption SDK Guia do Desenvolvedor

2. Transmita o chaveiro e os dados do texto simples para um método de criptografia.
Recomendamos transmitir um contexto de criptografia opcional, ndo secreto.

3. O método de criptografia solicita materiais de criptografia ao token de autenticacao. O chaveiro
retorna chaves de criptografia de dados exclusivas para a mensagem: uma chave de dados em
texto simples e uma cépia dessa chave de dados criptografada por cada uma das chaves de
encapsulamento especificadas.

4. O método de criptografia usa a chave de dados de texto nao criptografado para criptografar os
dados e, em seguida, descarta a chave de dados de texto ndo criptografado. Se vocé fornecer
um contexto de criptografia (uma pratica recomendada do AWS Encryption SDK '), o método

de criptografia também vinculara de forma criptografica o contexto de criptografia aos dados
criptografados.

5. O método de criptografia retorna uma mensagem criptografada que contém os dados

criptografados, as chaves de dados criptografadas e outros metadados, incluindo o contexto de
criptografia, se vocé o usou.

Como o AWS Encryption SDK decifra uma mensagem criptografada

AWS Encryption SDK Fornece métodos que decifram a mensagem criptografada e retornam texto

sem formatacgao. Para obter exemplos de cddigo, consulte o topico Exemplos em cada se¢ao de
Linguagens de programacao.

O token de autenticacao (ou o provedor de chave mestra) que descriptografara a mensagem

criptografada deve ser compativel com aquele usado para criptografar a mensagem. Uma das
chaves de encapsulamento dele deve ser capaz descriptografar uma chave de dados criptografada
na mensagem criptografada. Para obter informacdes sobre compatibilidade com tokens de
autenticagao e provedores de chaves mestra, consulte the section called “Compatibilidade dos
tokens de autenticacao”.

1. Crie um token de autenticagcao ou provedor de chave mestra com chaves de encapsulamento que
possam descriptografar seus dados. E possivel usar o mesmo token de autenticagéo fornecido
para o método de criptografia ou um token diferente.

2. Transmita a mensagem criptografada e o token de autenticagdo para um método de
descriptografia.

3. O método de descriptografia solicita que o token de autenticagao ou o provedor de chave mestra
descriptografe uma das chaves de dados criptografadas na mensagem criptografada. Ele passa
informagdes da mensagem criptografada, incluindo as chaves de dados criptografadas.

Como o AWS Encryption SDK decifra uma mensagem criptografada 21

AWS Encryption SDK Guia do Desenvolvedor

4. O token de autenticacado usa suas chaves de empacotamento para descriptografar uma das
chaves de dados criptografadas. A resposta incluira a chave de dados em texto simples, se
for bem-sucedida. Caso nenhuma das chaves de encapsulamento especificadas pelo token
de autenticagao ou provedor da chave mestra possa descriptografar uma chave de dados
criptografada, a chamada de descriptografia falhara.

5. O método de descriptografia usa a chave de dados de texto simples para descriptografar os
dados, descarta a chave de dados de texto simples e retorna os dados de texto simples.

Suites de algoritmos compativeis no AWS Encryption SDK

Um pacote de algoritmos € uma colegao de algoritmos criptograficos e de valores relacionados.
Os sistemas de criptografia usam a implementagao do algoritmo para gerar a mensagem de texto
cifrado.

O conjunto de algoritmos usa o AWS Encryption SDK algoritmo Advanced Encryption Standard
(AES) em Galois/Counter Modo (GCM), conhecido como AES-GCM, para criptografar dados brutos.
O AWS Encryption SDK suporta chaves de criptografia de 256 bits, 192 bits e 128 bits. O tamanho
do vetor de inicializacao (1V) € sempre 12 bytes. O tamanho da tag de autenticacao € sempre 16
bytes.

Por padrao, o AWS Encryption SDK usa um conjunto de algoritmos com AES-GCM com uma
funcao de derivagao de extract-and-expand chave (HKDF) baseada em HMAC, assinatura e uma
chave de criptografia de 256 bits. Se a politica de compromisso exigir comprometimento de chave,

ela AWS Encryption SDK seleciona um conjunto de algoritmos que também oferece suporte ao
comprometimento de chave; caso contrario, seleciona um conjunto de algoritmos com derivagao e
assinatura de chaves, mas nao com compromisso de chave.

Recomendado: AES-GCM com derivacao de chave, assinatura e
confirmacao de chave

Ele AWS Encryption SDK recomenda um conjunto de algoritmos que deriva uma chave de
criptografia AES-GCM fornecendo uma chave de criptografia de dados de 256 bits para a fungao
de derivacao de chave (HKDF) baseada em HMAC. extract-and-expand AWS Encryption SDK
Isso adiciona uma assinatura do Algoritmo de Assinatura Digital de Curva Eliptica (ECDSA). Para
oferecer suporte ao comprometimento da chave, esse pacote de algoritmos também deriva uma

sequéncia de caracteres de comprometimento da chave, um identificador de chave de dados
nao secreto, que € armazenado nos metadados da mensagem criptografada. Essa sequéncia

Pacotes de algoritmos compativeis 22

https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Guia do Desenvolvedor

de comprometimento da chave também € derivada por meio do HKDF usando um procedimento
semelhante a derivagao da chave de criptografia de dados.

AWS Encryption SDK Suite de algoritmos

Algoritmo de Tamanho Algoritmo de Algoritmo de Confirmacéao de
criptografia da chave de derivacao de assinatura chave
criptografia de chave

dados (em bits)

AES-GCM 256 HKDF com ECDSA com HKDF com
SHA-384 P-384 e SHA-512
SHA-384

A HKDF ajuda a evitar a reutilizagao acidental de uma chave de criptografia de dados e reduz o risco
de sobreuso de chaves de dados.

Para assinatura, esse pacote de algoritmos usa ECDSA com um algoritmo de fun¢ao hash
criptografica (SHA-384). O ECDSA ¢ usado por padrao, mesmo quando ele nao é especificado

pela politica da chave mestra subjacente. A assinatura da mensagem verifica se o remetente foi
autorizado a criptografar mensagens e fornece o nao repudio. Isso € especialmente util quando a
politica de autorizagao de uma chave mestra permite que um conjunto de usuarios criptografe dados
e outro conjunto de usuarios descriptografe os dados.

Conuuntos de algoritmos com confirmacao de chave garantem que cada texto cifrado seja
descriptografado em apenas um texto simples. Eles fazem isso validando a chave de dados usada
como entrada para o algoritmo de criptografia. Ao criptografar, esses conjuntos de algoritmos
derivam um HMAC de comprometimento fundamental. Antes de descriptografar, eles validam que a
chave de dados corresponde a sequéncia de conformacao da chave. Caso contrario, a chamada de
descriptografia falhara.

Outros pacotes de algoritmos compativeis

O AWS Encryption SDK suporta os seguintes conjuntos de algoritmos alternativos para
compatibilidade com versdes anteriores. Em geral, ndo recomendamos esses pacotes de algoritmos.
No entanto, reconhecemos que a assinatura pode prejudicar significativamente a performance, por
isso oferecemos um pacote de confirmacao de chaves com derivacado de chaves para esses casos.

Outros pacotes de algoritmos compativeis 23

AWS Encryption SDK Guia do Desenvolvedor

Para aplicagdes que precisam fazer concessodes de performance mais significativas, continuamos
oferecendo pacotes que nao possuem assinatura, confirmacao de chaves e derivagcao de chaves.

AES-GCM sem confirmagao de chave

Os conjuntos de algoritmos sem confirmagao de chave nao validam a chave de dados antes

da descriptografia. Como resultado, esses conjuntos de algoritmos podem descriptografar um
unico texto cifrado em diferentes mensagens de texto simples. No entanto, como os pacotes de
algoritmos com confirmagao de chave produzem uma mensagem criptografada um pouco maior
(+30 bytes) e demoram mais para serem processados, eles podem ndo ser a melhor opgéo para
cada aplicacgao.

O AWS Encryption SDK suporta um conjunto de algoritmos com derivagcao de chave,
compromisso de chave, assinatura e outro com derivagcéo de chave e compromisso de chave,
mas nao assinatura. Nao recomendamos usar um pacote de algoritmos sem confirmacao de
chave. Se necessario, recomendamos um pacote de algoritmos com derivagao e confirmacao de
chaves, mas sem assinatura. No entanto, se o perfil de performance da aplicagcao for compativel
com o uso de um pacote de algoritmos, usar um pacote de algoritmos com confirmacéao de
chaves, derivagao de chaves e assinatura € uma pratica recomendada.

AES-GCM sem assinatura

Os conjuntos de algoritmos sem assinatura carecem da assinatura ECDSA, que fornece
autenticidade e nao repudio. Use esse conjunto apenas quando os usuarios que criptografam
dados e os que os descriptografam sao igualmente confiaveis.

Ao usar um pacote de algoritmos sem assinatura, recomendamos escolher um com derivagao e
confirmacéao de chave.

AES-GCM sem derivagao de chaves

Pacotes de algoritmos sem derivagdo usam a criptografia de dados como a chave de criptografia
do AES-GCM, em vez de usar uma funcao de derivagao de chaves para derivar uma chave
exclusiva. Nos desencorajamos o uso dessa suite para gerar texto cifrado, mas ela € AWS
Encryption SDK compativel por motivos de compatibilidade.

Para obter mais informacgdes sobre como esses pacotes sao representados e usados na biblioteca,
consulte the section called “Referéncia de algoritmos”.

Outros pacotes de algoritmos compativeis 24

AWS Encryption SDK Guia do Desenvolvedor

Usando o AWS Encryption SDK com AWS KMS

Para usar o AWS Encryption SDK, vocé precisa configurar chaveiros ou provedores de

chaves mestras com chaves de agrupamento. Se vocé nao tiver uma infraestrutura de chaves,
recomendamos usar o AWS Key Management Service (AWS KMS). Muitos dos exemplos de codigo
no AWS Encryption SDK exigem um AWS KMS key.

Para interagir AWS KMS, é AWS Encryption SDK necessario o AWS SDK da linguagem de
programacao de sua preferéncia. A biblioteca AWS Encryption SDK cliente trabalha com o AWS
SDKs para oferecer suporte as chaves mestras armazenadas em AWS KMS.

Para se preparar para usar o AWS Encryption SDK com AWS KMS

1. Crie um Conta da AWS. Para saber como, consulte Como eu crio e ativo uma nova conta da
Amazon Web Services? no Centro de AWS Conhecimento.

2. Crie uma criptografia AWS KMS key simétrica. Para obter ajuda, consulte Criacao de chaves no
Guia do desenvolvedor AWS Key Management Service .

® Tip
Para usar o AWS KMS key programaticamente, vocé precisara do ID da chave ou do
Amazon Resource Name (ARN) do. AWS KMS key Para ajudar a descorbri 0 ID ou o
ARN de uma AWS KMS key, consulte Descobrir o ID de chave e o ARN no Guia do
desenvolvedor do AWS Key Management Service .

3. Gere um ID de chave de acesso e uma chave de acesso de seguranca. Vocé pode usar o ID
da chave de acesso e a chave de acesso secreta para um usuario do IAM ou AWS Security
Token Service para criar uma nova sessdo com credenciais de seguranga temporarias que
incluem um ID de chave de acesso, chave de acesso secreta e token de sessdo. Como pratica
recomendada de seguranca, recomendamos que vocé use credenciais temporarias em vez das
credenciais de longo prazo associadas as suas contas de usuario do IAM ou AWS (raiz).

Para criar um usuario do IAM com uma chave de acesso, consulte Criacao de usuarios do IAM
no Guia do usuario do IAM.

Para gerar mais informagdes sobre credenciais de seguranga temporarias, consulte Solicitacao
de credenciais de seguranca temporarias no Guia do usuario do IAM.

25

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Encryption SDK Guia do Desenvolvedor

4.

Defina suas AWS credenciais usando as instrugdes em AWS SDK for JavaAWS SDK for
JavaScript, AWS SDK para Python (Boto)ou AWS SDK para C++(para C) e o ID da chave de
acesso e a chave de acesso secreta que vocé gerou na etapa 3. Se vocé gerou credenciais

temporarias, também precisara especificar o token de sessao.

Este procedimento AWS SDKs permite assinar solicitacdes AWS para vocé. As amostras
de cdédigo AWS Encryption SDK que interagem com AWS KMS pressupdem que vocé tenha
concluido essa etapa.

Baixe e instale AWS Encryption SDK o. Para saber como, consulte as instru¢des de instalagcao
da linguagem de programacao que vocé deseja usar.

26

https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK Guia do Desenvolvedor

Melhores praticas para o AWS Encryption SDK

O foi AWS Encryption SDK projetado para facilitar a prote¢gao de seus dados usando os padrdes e as
melhores praticas do setor. Embora muitas praticas recomendadas tenham sido selecionadas para
vocé nos valores padrao, algumas delas sao opcionais, mas recomendadas sempre que seja pratico.

Use a versao mais recente

Ao comegar a usar o AWS Encryption SDK, use a versdo mais recente oferecida na linguagem
de programacao de sua preferéncia. Se vocé estiver usando o AWS Encryption SDK, atualize

para cada versao mais recente assim que possivel. Isso assegura que vocé esteja usando a
configuragdo recomendada e aproveitando as novas propriedades de seguranga para proteger
seus dados. Para obter detalhes sobre as versdes compativeis, incluindo orientacdes para
migracgao e implantagéo, consulte Suporte e manutencao e Versées do AWS Encryption SDK.

Se uma nova versao descontinuar elementos em seu cédigo, substitua-os assim que possivel.
Os avisos de descontinuagao e os comentarios de cddigo geralmente recomendam uma boa
alternativa.

Para tornar as atualizagdes significativas mais faceis e menos propensas a erros, ocasionalmente
fornecemos uma versao temporaria ou transitéria. Use essas versoes e a documentagao que

as acompanha para garantir que vocé possa atualizar a aplicagdo sem interromper seu fluxo de
trabalho de producao.

Use os valores padrao

O AWS Encryption SDK projeta as melhores praticas em seus valores padrao. Sempre

que possivel, use-os. Para casos em que aplicar o padréo seja pouco pratico, fornecemos
alternativas, como pacotes de algoritmos sem assinatura. Também oferecemos oportunidades
de personalizacao para usuarios avangados, como chaveiros personalizados, fornecedores
de chaves mestras e gerenciadores de material criptografico (). CMMs Use essas alternativas
avangadas com cuidado e fagca com que um engenheiro de seguranca verifique suas escolhas
sempre que possivel.

Usar um contexto de criptografia

Para melhorar a seguranga de suas operagdes de criptografia, inclua um contexto de criptografia

com um valor significativo em todas as solicitagdes para criptografar dados. O uso de um
contexto de criptografia € opcional, mas € uma melhor pratica de criptografia que recomendamos.
Ele oferece dados autenticados adicionais (AAD) para criptografia autenticada no AWS

27

AWS Encryption SDK Guia do Desenvolvedor

Encryption SDK. Embora n&o seja secreto, o contexto de criptografia pode ajudar vocé a proteger
a integridade e a autenticidade de seus dados criptografados.

No AWS Encryption SDK, vocé especifica um contexto de criptografia somente ao criptografar.
Ao descriptografar, o AWS Encryption SDK usa o contexto de criptografia no cabegalho da
mensagem criptografada que ele retorna. AWS Encryption SDK Antes da aplicagao retornar

os dados de texto simples, verifique se o contexto de criptografia usado para criptografar a
mensagem esta incluido no contexto de criptografia usado ao descriptografar a mensagem. Para
obter detalhes, consulte os exemplos na sua linguagem de programacgao.

Quando vocé usa a interface de linha de comando, ele AWS Encryption SDK verifica o contexto
de criptografia para vocé.

Proteja suas chaves de encapsulamento

Isso AWS Encryption SDK gera uma chave de dados exclusiva para criptografar cada
mensagem de texto simples. Em seguida, ele criptografa a chave de dados com as chaves
de encapsulamento fornecidas por vocé. Se suas chaves de encapsulamento forem perdidas
ou excluidas, seus dados criptografados serao irrecuperaveis. Se suas chaves nao estiverem
protegidas, seus dados podem ficar vulneraveis.

Use chaves de encapsulamento protegidas por uma infraestrutura de chave segura, como o AWS
Key Management Service (AWS KMS). Ao usar chaves AES ou RSA brutas, utilize uma fonte de

randomizagao e armazenamento duravel que atenda aos seus requisitos de seguranga. Gerar e
armazenar chaves de empacotamento em um mddulo de seguranga de hardware (HSM) ou em
um servigo que fornece HSMs, como AWS CloudHSM, é uma pratica recomendada.

Use os mecanismos de autorizagdo da sua infraestrutura de chaves para limitar o acesso as
chaves de encapsulamento somente aos usuarios que exigem elas. Implemente principios de
praticas recomendadas, como privilégio minimo. Ao usar AWS KMS keys, use as principais
politicas e as politicas do IAM que implementam os principios das melhores praticas.

Especifique suas chaves de encapsulamento

A especificagao das chaves de encapsulamento de forma explicita ao descriptografar e

criptografar € sempre um pratica recomendada. Ao fazer isso, 0 AWS Encryption SDK usa
somente as chaves que vocé especificar. Essa pratica garante que vocé use somente as chaves
de criptografia que pretende utilizar. Para AWS KMS agrupar chaves, ele também melhora o
desempenho ao impedir que vocé use chaves inadvertidamente em uma regidao Conta da AWS
ou regiao diferente ou tente descriptografar com chaves que vocé nao tem permissao para usar.

28

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK Guia do Desenvolvedor

Ao criptografar, os chaveiros e os fornecedores de chaves mestras que os AWS Encryption SDK
suprimentos exigem que vocé especifique as chaves de empacotamento. Eles utilizam somente
as chaves de encapsulamento que vocé especificar, nenhuma outra. Vocé também precisa
especificar chaves de agrupamento ao criptografar e descriptografar com chaveiros AES brutos,
chaveiros RSA brutos e chaves. JCEMaster

No entanto, ao descriptografar com AWS KMS chaveiros e provedores de chaves mestras, vocé
nao precisa especificar chaves de empacotamento. Eles AWS Encryption SDK podem obter o
identificador da chave a partir dos metadados da chave de dados criptografada. No entanto,
recomendamos que vocé especifique as chaves de encapsulamento, ja que esta € uma pratica
recomendada.

Para apoiar essa pratica recomendada ao trabalhar com chaves de AWS KMS empacotamento,
recomendamos o seguinte:

+ Use AWS KMS chaveiros que especifiquem as chaves de embrulho. Ao criptografar e
descriptografar, esses tokens de autenticagcdo usam somente as chaves de encapsulamento
especificadas por voceé.

» Ao usar chaves AWS KMS mestras e provedores de chaves mestras, use os construtores de
modo estrito introduzidos na versao 1.7. x do AWS Encryption SDK. Eles criam provedores
que criptografam e descriptografam somente com as chaves de encapsulamento que vocé
especificar. Os construtores de provedores de chave mestra que sempre descriptografam com
qualquer chave de encapsulamento foram descontinuados na versao 1.7.x e excluidos na
versao 2.0.x.

Quando especificar chaves de AWS KMS encapsulamento para descriptografia é impraticavel,
vocé pode usar provedores de descoberta. O AWS Encryption SDK em C e JavaScript suporta
chaveiros AWS KMS Discovery. Os provedores de chaves mestras com um modo de descoberta

estdo disponiveis para Java e Python nas versdes 1.7.x e posteriores. Esses provedores
de descoberta, que sao usados somente para descriptografar com chaves de AWS KMS
agrupamento, orientam explicitamente o uso de qualquer chave de empacotamento AWS
Encryption SDK que criptografe uma chave de dados.

Se vocé precisar usar um provedor de descoberta, use os atributos de filtro de descoberta para
limitar as chaves de encapsulamento que eles usam. Por exemplo, o token de autenticacao

de descoberta regional do AWS KMS usa somente as chaves de encapsulamento em uma
determinada Regido da AWS. Vocé também pode configurar AWS KMS chaveiros e provedores
de chaves AWS KMS mestras para usar somente as chaves de encapsulamento em particular.

29

AWS Encryption SDK Guia do Desenvolvedor

Contas da AWS Além disso, como sempre, use politicas de chaves e politicas do IAM para
controlar o acesso as suas chaves de AWS KMS empacotamento.

Use assinaturas digitais

E uma pratica recomendada usar um pacote de algoritmos com assinatura. Assinaturas digitais
confirmam que o remetente da mensagem foi autorizado a envia-la e protegem a integridade
da mensagem. Todas as versdes do AWS Encryption SDK usam pacotes de algoritmos com
assinatura por padrao.

Se seus requisitos de seguranga nao incluirem assinaturas digitais, vocé pode selecionar um
pacote de algoritmos sem assinaturas digitais. No entanto, recomendamos o uso de assinaturas
digitais, especialmente quando um grupo de usuarios criptografa dados e um grupo diferente de
usuarios descriptografa esses dados.

Use o confirmacéao de chave

E uma pratica recomendada usar o atributo de seguranca de confirmacéo de chave. Ao verificar
a identidade da chave de dados exclusiva que criptografou seus dados, a confirmacao de chave
impede que vocé descriptografe qualquer texto cifrado que possa resultar em mais de uma
mensagem de texto simples.

O AWS Encryption SDK fornece suporte completo para criptografia e descriptografia com

comprometimento de chave a partir da versao 2.0. x. Por padrado, todas as suas mensagens séao

criptografadas e decriptografadas com confirmagao de chave. Versédo 1.7. x dos AWS Encryption
SDK podem decifrar textos cifrados com comprometimento fundamental. Ela foi projetada para
ajudar os usuarios de versodes anteriores a implantar a versao 2.0.x com sucesso.

O suporte para confirmacao de chaves inclui novos pacotes de algoritmos e um novo formato

de mensagem que produz um texto cifrado apenas 30 bytes maior do que um texto cifrado sem

confirmagéo de chave. O design minimiza seu impacto na performance para que a maioria dos
usuarios possa aproveitar os beneficios da confirmagao de chave. Se seu aplicativo for muito
sensivel ao tamanho e ao desempenho, vocé pode decidir usar a configuracdo da politica de
compromisso para desabilitar o comprometimento da AWS Encryption SDK chave ou permitir que
eles descriptografem mensagens sem compromisso, mas faga isso somente se necessario.

Limite o numero de chaves de dados criptografadas

E uma pratica recomendada limitar o nimero de chaves de dados criptografadas nas mensagens

que vocé descriptografa, especialmente mensagens de fontes ndo confiaveis. Descriptografar
uma mensagem com varias chaves de dados criptografadas que vocé nao pode descriptografar

30

AWS Encryption SDK Guia do Desenvolvedor

pode gerar atrasos prolongados, aumentar despesas, limitar a capacidade da aplicagao e de
outros que compartilham sua conta e potencialmente esgotar sua infraestrutura de chaves. Uma
mensagem criptografada pode conter até 65.535 (2216 - 1) chaves de dados criptografadas. Para
obter detalhes, consulte Limitar as chaves de dados criptografadas.

Para obter mais informacdes sobre os recursos AWS Encryption SDK de seguranca subjacentes a
essas melhores praticas, consulte Criptografia aprimorada do lado do cliente: compromisso explicito
Keylds e fundamental no Blog de seguranga.AWS

31

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Guia do Desenvolvedor

Configurando o AWS Encryption SDK

O foi AWS Encryption SDK projetado para ser facil de usar. Embora o AWS Encryption SDK tenha
varias opc¢oes de configuragao, os valores padrao sdo cuidadosamente escolhidos para serem
praticos e seguros para a maioria dos aplicativos. No entanto, talvez seja necessario ajustar sua
configuracao para melhorar a performance ou incluir um atributo personalizado em seu design.

Ao configurar sua implementacgao, analise as AWS Encryption SDK melhores praticas e implemente
0 maximo possivel.

Topicos

» Selecdo de uma linguagem de programacao

» Selecdo de chaves de encapsulamento

* Usando varias regides AWS KMS keys

» Escolher um pacote de algoritmo

* Limitar as chaves de dados criptografadas

» Criacao de um filtro de descoberta

» Configurando o contexto de criptografia necessario (CMM)

» Como definir uma politica de compromisso

» Trabalhar com streaming de dados

 Armazenamento em cache de chaves de dados

Selecao de uma linguagem de programacao

O AWS Encryption SDK esta disponivel em varias linguagens de programacao. As implementagoes

de linguagem sao projetadas para serem totalmente interoperaveis e oferecer os mesmos atributos,
embora possam ser implementadas de maneiras diferentes. Normalmente, vocé usa a biblioteca
compativel com sua aplicagdo. No entanto, pode selecionar uma linguagem de programacéao para
uma implementacgao especifica. Por exemplo, se vocé preferir trabalhar com chaveiros, vocé pode
escolher o AWS Encryption SDK for C ou 0. AWS Encryption SDK para JavaScript

Selecdo de uma linguagem de programagao 32

AWS Encryption SDK Guia do Desenvolvedor

Selecao de chaves de encapsulamento

Isso AWS Encryption SDK gera uma chave de dados simétrica exclusiva para criptografar cada
mensagem. A menos que vocé esteja usando o armazenamento em cache de chaves de dados,
vocé nao precisa configurar, gerenciar ou usar as chaves de dados. Ele AWS Encryption SDK faz
iSSO por voceé.

No entanto, vocé deve selecionar uma ou mais chaves de encapsulamento para criptografar cada
chave de dados. O AWS Encryption SDK é compativel com chaves simétricas AES e chaves
assimétricas RSA em tamanhos diferentes. Ele também é compativel com a criptografia simétrica
AWS KMS keys do AWS Key Management Service(AWS KMS). Vocé é responsavel pela segurancga
e durabilidade de suas chaves de empacotamento, por isso recomendamos que vocé use uma chave

de criptografia em um mddulo de seguranga de hardware ou em um servigo de infraestrutura de
chaves, como AWS KMS.

Para especificar suas chaves de agrupamento para criptografia e descriptografia, vocé usa um
chaveiro (C, Java, JavaScript .NET e Python) ou um provedor de chave mestra (Java, Python,

CLI de criptografia). AWS E possivel especificar uma chave de encapsulamento ou varias

chaves de encapsulamento do mesmo tipo ou de tipos diferentes. Se vocé usar varias chaves de
encapsulamento para empacotar uma chave de dados, cada chave de encapsulamento criptografara
uma cdpia da mesma chave de dados. As chaves de dados criptografadas (uma por chave de
empacotamento) sdo armazenadas com os dados criptografados na mensagem criptografada

que elas AWS Encryption SDK retornam. Para descriptografar os dados, primeiro use uma de

suas chaves de empacotamento para AWS Encryption SDK descriptografar uma chave de dados
criptografada.

Para especificar um AWS KMS key em um chaveiro ou provedor de chave mestra, use um
identificador de AWS KMS chave compativel. Para obter detalhes sobre os identificadores de chave
de uma AWS KMS chave, consulte Identificadores de chave no Guia do AWS Key Management
Service desenvolvedor.

Ao criptografar com o AWS Encryption SDK for Java,, AWS Encryption SDK para JavaScript
AWS Encryption SDK for Python, ou com a CLI de AWS criptografia, vocé pode usar qualquer
identificador de chave valido (ID da chave, ARN da chave, nome do alias ou ARN do alias) para
uma chave KMS. Ao criptografar com o AWS Encryption SDK for C, vocé s6 pode usar um ID de
chave ou ARN de chave.

Se vocé especificar um nome de alias ou ARN de alias para uma chave KMS ao criptografar, o
AWS Encryption SDK salvara o ARN da chave atualmente associado a esse alias; ele ndo salvara

Selegéo de chaves de encapsulamento 33

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

o alias. As alteragdes no alias ndo afetam a chave do KMS usada para descriptografar suas
chaves de dados.

» Ao descriptografar no modo estrito (onde vocé especifica chaves de encapsulamento especificas),
vocé deve usar um ARN de chave para identificar as AWS KMS keys. Esse requisito aplica-se a
todas as implementacgdes de linguagem do AWS Encryption SDK.

Quando vocé criptografa com um AWS KMS chaveiro, ele AWS Encryption SDK armazena o ARN
da chave AWS KMS key nos metadados da chave de dados criptografada. Ao descriptografar no
modo estrito, AWS Encryption SDK verifica se 0 mesmo ARN da chave aparece no chaveiro (ou no
provedor da chave mestra) antes de tentar usar a chave de empacotamento para descriptografar

a chave de dados criptografada. Se vocé usar um identificador de chave diferente, eles ndo AWS
Encryption SDK reconhecerdo nem usarao o AWS KMS key, mesmo que os identificadores se
refiram a mesma chave.

Para especificar uma chave AES bruta ou um par de chaves RSA brutas como chave de
agrupamento em um token de autenticagéo, vocé deve especificar um namespace e um nome.

Em um provedor de chave mestra, o Provider ID é o equivalente do namespace e o Key ID

€ o equivalente do nome. Ao descriptografar, vocé deve usar exatamente 0 mesmo namespace e
nome para cada chave de encapsulamento bruta que vocé usou ao criptografar. Se vocé usar um
namespace ou nome diferente, eles ndo AWS Encryption SDK reconhecerdao nem usarao a chave de
encapsulamento, mesmo que o material da chave seja 0 mesmo.

Usando varias regidoes AWS KMS keys

Vocé pode usar chaves multirregionais AWS Key Management Service (AWS KMS) como chaves

de encapsulamento no. AWS Encryption SDK Se vocé criptografar com uma chave multirregional

em uma Regiao da AWS, podera descriptografar usando uma chave multirregional relacionada em
outra. Regido da AWS O suporte para chaves multirregionais foi introduzido na verséo 2.3. x do AWS
Encryption SDK e verséo 3.0. x da CLI AWS de criptografia.

AWS KMS As chaves multirregionais sao um conjunto de AWS KMS keys chaves diferentes
Regides da AWS que tém o mesmo material de chave e ID de chave. E possivel usar essas chaves
relacionadas como se fossem a mesma chave em regides diferentes. As chaves multirregionais
oferecem suporte a cenarios comuns de recuperagao de desastres e backup que exigem criptografia
em uma regido e descriptografia em uma regiao diferente sem fazer uma chamada entre regides
para. AWS KMS Para obter mais informagdes sobre chaves multirregionais, consulte Usar chaves
multirregionais no Guia do Desenvolvedor do AWS Key Management Service .

Usando varias regides AWS KMS keys 34

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Guia do Desenvolvedor

Para oferecer suporte a chaves multirregionais, AWS Encryption SDK inclui chaveiros com AWS
KMS reconhecimento de varias regides e fornecedores de chaves mestras. O novo multi-Region-
aware simbolo em cada linguagem de programacao oferece suporte as chaves de regidao unica e
multirregiao.

» Para chaves de regiao unica, o multi-Region-aware simbolo se comporta exatamente como o AWS
KMS chaveiro de regido unica e o provedor da chave mestra. Ele tenta descriptografar o texto
cifrado somente com a chave de regiao unica que criptografou os dados.

» Para chaves multirregionais, o multi-Region-aware simbolo tenta descriptografar o texto cifrado

com a mesma chave multirregional que criptografou os dados ou com a chave de réplica

multirregional relacionada na regido especificada.

Nos provedores de multi-Region-aware chaveiros e chaves mestras que usam mais de uma chave
KMS, vocé pode especificar varias chaves de regiao unica e multirregiao. No entanto, vocé pode
especificar somente uma chave de cada conjunto de chaves de réplica multirregional relacionadas.
Se vocé especificar mais de um identificador de chave com o mesmo ID de chave, a chamada do
construtor falhara.

Vocé também pode usar uma chave multirregional com os fornecedores padrao de AWS KMS
chaveiros de regidao unica e chave mestra. No entanto, deve usar a mesma chave multirregional na
mesma regiao para criptografar e descriptografar. Os tokens de autenticagao de regido unica e os
provedores de chaves mestras tentam descriptografar o texto cifrado somente com as chaves que
criptografaram os dados.

Os exemplos a seguir mostram como criptografar e descriptografar dados usando chaves
multirregionais e os novos fornecedores de multi-Region-aware chaveiros e chaves mestras. Esses
exemplos criptografam dados na us-east-1 regido e descriptografam os dados na regido usando
chaves de réplica us-west-2 multirregionais relacionadas em cada regidao. Antes de executar esses
exemplos, substitua o exemplo de ARN de chave multirregional por um valor valido da sua Conta da
AWS.

C

Para criptografar com uma chave multirregional, use o método
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () para instanciar o token
de autenticacao. Especifique uma chave multirregional.

Usando varias regides AWS KMS keys 35

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK Guia do Desenvolvedor

Esse exemplo simples ndo inclui um contexto de criptografia. Para obter um exemplo que usa um

contexto de criptografia em C, consulte Criptografar e descriptografar strings.

Para ver um exemplo completo, consulte kms_multi_region_keys.cpp no AWS Encryption SDK for
C repositorio em GitHub.

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
ik aws_cryptosdk_session_process_full is designed for non-streaming data
*/
aws_cryptosdk_session_process_full(
session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/.NET

Para criptografar com uma chave multirregional na regido Leste dos EUA (Norte da Virginia) (us-
east-1), instancie um CreateAwsKmsMrkKeyringInput objeto com um identificador de chave
para a chave multirregional e um cliente para a regido especificada. AWS KMS Em seguida, use
o método CreateAwsKmsMrkKeyring() para criar o token de autenticagao.

Usando varias regides AWS KMS keys 36

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Guia do Desenvolvedor

O método CreateAwsKmsMrkKeyring() cria um token de autenticagcdo com exatamente uma
chave multirregional. Para criptografar com varias chaves de encapsulamento, incluindo uma
chave multirregional, use o método CreateAwsKmsMrkMultiKeyring().

Para obter um exemplo completo, consulte AwsKmsMrkKeyringExample.cs no AWS Encryption
SDK repositorio.NET em. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

string mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Create the keyring

// You can specify the Region or get the Region from the key ARN

var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEastl),
KmsKeyId = mrkUSEastl

};

var mrkEncryptKeyring =

materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
{"purpose", "test"}
};

// Encrypt your plaintext data.

var encryptInput = new EncryptInput

{
Plaintext = plaintext,
Keyring = mrkEncryptKeyring,
EncryptionContext = encryptionContext

Usando varias regides AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

Este exemplo criptografa o arquivo hello. txt com uma chave multirregional na regiao us-
east-1. Como o exemplo especifica um ARN de chave que tem um elemento de regido, esse
exemplo ndo usa oatributo region do parametro - -wrapping-keys.

Quando o ID da chave de encapsulamento ndo especifica uma regido, vocé pode usar o atributo
region de --wrapping-keys para especificar a regido, como --wrapping-keys key=
$keyID region=us-east-1.

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEastl=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890@ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$mrkUSEastl \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

Java

Para criptografar com uma chave multirregional, instancie uma chave
AwsKmsMrkAwareMasterKeyProvider e especifique uma chave multirregional.

Para ver um exemplo completo, consulte BasicMultiRegionKeyEncryptionExample.javano AWS
Encryption SDK for Java repositorio em. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

Usando varias regides AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK Guia do Desenvolvedor

final String mrkUSEastl = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
AwsKmsMrkAwareMasterKeyProvider
.builder()
.buildStrict(mrkUSEastl);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
"Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
crypto.encryptData(
kmsMrkProvider,
encryptionContext,
sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

Para criptografar com uma chave mulirregional, use o método
buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr () para criar o token de autenticacao
e especificar uma chave multirregional.

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositério em. AWS
Encryption SDK para JavaScript GitHub

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(

Usando varias regides AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK para JavaScript gets the Region from the key ARN
*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr({
generatorKeyId: multiRegionUsEastKey,
clientProvider,

D

/* Set the encryption context */
const context = {
purpose: 'test',

/* Test data to encrypt */
const cleartext = new Uint8Array([1l, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
encryptionContext: context,

D

Usando varias regides AWS KMS keys 40

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

Para criptografar com uma chave mulirregional, use o método
buildAwsKmsMrkAwareStrictMultiKeyringNode() para criar o token de autenticagao e
especificar uma chave multirregional.

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositério em. AWS
Encryption SDK para JavaScript GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region
import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-east-1
*/
const multiRegionUsEastKey =
'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsEastKey,

1)

/* Specify an encryption context */
const context = {
purpose: 'test',

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
encryptionContext: context,

1)

Usando varias regides AWS KMS keys 41

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

Python

Para criptografar com uma chave AWS KMS multirregional, use o
MRKAwareStrictAwsKmsMasterKeyProvider () método e especifique uma chave
multirregional.

Para ver um exemplo completo, consulte mrk_aware_kms_provider.py no AWS Encryption SDK
for Python repositorio em GitHub.

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_east_1]

Set the encryption context
encryption_context = {
"purpose": "test"

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
key_provider=strict_mrk_key_provider

Em seguida, mova seu texto cifrado para a regidao us-west-2. Nao é necessario recriptografar o
texto cifrado.

Para descriptografar o texto cifrado no modo estrito na us-west-2 regiao, instancie o simbolo
multi-Region-aware com o ARN da chave multirregional relacionada na regido. us-west-2 Se

Usando varias regides AWS KMS keys 42

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

vocé especificar o ARN da chave de uma chave multirregional relacionada em uma regiao diferente

(incluindo us-east-1 onde ela foi criptografada), o multi-Region-aware simbolo fard uma chamada
entre regides para isso. AWS KMS key

Ao descriptografar no modo estrito, o multi-Region-aware simbolo requer uma chave ARN. Ele aceita
somente um ARN de chave de cada conjunto de chaves de varias regides relacionadas.

Antes de executar esses exemplos, substitua o exemplo de chave multirregional ARN por um valor
valido de seu. Conta da AWS

C

Para descriptografar no modo estrito com uma chave multirregional, use o método
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder () para instanciar o token
de autenticagao. Especifique a chave multirregional relacionada na regiao local (us-west-2).

Para ver um exemplo completo, consulte kms_multi_region_keys.cpp no AWS Encryption SDK for
C repositério em GitHub.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Buildexr().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data

Usando varias regides AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Guia do Desenvolvedor
*/
aws_cryptosdk_session_process_full(

session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/ .NET

Para descriptografar no modo estrito com uma unica chave multirregional, use os mesmos
construtores e métodos usados para montar a entrada e criar o token de autenticagao para
criptografia. Instancie um CreateAwsKmsMrkKeyringInput objeto com o ARN da chave de
uma chave multirregional relacionada e um AWS KMS cliente para a regido Oeste dos EUA
(Oregon) (us-west-2). Em seguida, use o método CreateAwsKmsMrkKeyring() para criar um
token de autenticacdo multirregional com uma chave do KMS multirregional.

Para obter um exemplo completo, consulte AwsKmsMrkKeyringExample.cs no AWS Encryption
SDK repositorio.NET em. GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab";

// Instantiate the keyring input

// You can specify the Region or get the Region from the key ARN

var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
KmsKeyId = mrkUSWest2

i

// Create the multi-Region keyring
var mrkDecryptKeyring =
materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

Usando varias regides AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

// Decrypt the ciphertext
var decryptInput = new DecryptInput

{
Ciphertext = ciphertext,

Keyring = mrkDecryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Para descriptografar com a chave multirregional relacionada na regido us-west-2, use o atributo
key do parametro - -wrapping-keys para especificar o ARN da chave.

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$mrkUSWest2 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

Java

Para descriptografar no modo estrito, instancie uma AwsKmsMrkAwareMasterKeyProvider e
especifique a chave multirregional na regiao local (us-west-2).

Para ver um exemplo completo, consulte BasicMultiRegionKeyEncryptionExample.java no AWS

Encryption SDK for Java repositorio em. GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()

Usando varias regides AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK Guia do Desenvolvedor

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
the Region field.

String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider

// in strict mode

AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =

AwsKmsMrkAwareMasterKeyProvider.buildexr ()
.buildStrict(mrkUSWest2);

// Decrypt your ciphertext

CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
kmsMrkProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript Browser

Para descriptografar em modo estrito, use o método
buildAwsKmsMrkAwareStrictMultiKeyringBrowsexr () para criar o token de autenticacao
e especifique a chave multirregional na regido local (us-west-2).

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositério em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Usando varias regides AWS KMS keys 46

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate an AWS KMS client
* The AWS Encryption SDK para JavaScript gets the Region from the key ARN

*/

const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab’

/* Instantiate the keyring */

const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser ({
generatorKeyId: multiRegionUsWestKey,
clientProvider,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

Para descriptografar em modo estrito, use o método
buildAwsKmsMrkAwareStrictMultiKeyringNode() para criar o token de autenticagao e
especifique a chave multirregional na regido local (us-west-2).

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositério em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */
import { buildClient } from '@aws-crypto/client-node'
/* Instantiate the client

const { decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Usando varias regides AWS KMS keys 47

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
* Specify a multi-Region key in us-west-2
*/
const multiRegionUsWestKey =
'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcdl2ab34cd56ef1234567890ab’

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
generatorKeyId: multiRegionUsWestKey,
1)

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

Para descriptografar no modo estrito, use o método
MRKAwareStrictAwsKmsMasterKeyProvider () para criar o provedor de chave mestra.
Especifique a chave multirregional relacionada na regiao local (us-west-2).

Para ver um exemplo completo, consulte mrk_aware_kms_provider.py no AWS Encryption SDK
for Python repositorio em GitHub.

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
Region field

mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/

mrk-1234abcdl2ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider

in strict mode

strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
key_ids=[mrk_us_west_2]

Decrypt your ciphertext

Usando varias regides AWS KMS keys 48

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=strict_mrk_key_provider

Vocé também pode descriptografar no modo de descoberta com chaves AWS KMS multirregionais.
Ao descriptografar no modo de descoberta, vocé nao especifica nenhuma AWS KMS keys. (Para
obter informagdes sobre chaveiros de AWS KMS descoberta de uma unica regiao, consulteUsando
um chaveiro AWS KMS Discovery.)

Se vocé criptografou com uma chave multirregional, o multi-Region-aware simbolo no modo de
descoberta tentara descriptografar usando uma chave multirregional relacionada na regiao local. Se
nao existir nenhuma, a chamada falhara. No modo de descoberta, eles ndo AWS Encryption SDK
tentarao fazer uma chamada entre regides para a chave multirregional usada para criptografia.

(® Note

Se vocé usar um multi-Region-aware simbolo no modo de descoberta para criptografar
dados, a operagao de criptografia falhara.

O exemplo a seguir mostra como descriptografar com o multi-Region-aware simbolo no modo de
descoberta. Como vocé nao especifica um AWS KMS key, eles AWS Encryption SDK devem obter
a regiao de uma fonte diferente. Quando possivel, especifique explicitamente a regido local. Caso
contrario, AWS Encryption SDK obtém a regiao local da regiao configurada no AWS SDK para sua
linguagem de programacao.

Antes de executar esses exemplos, substitua o exemplo de ID da conta e ARN da chave
multirregional por valores validos do seu. Conta da AWS

C

Para descriptografar no modo de descoberta com uma chave multirregional, use o método

Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Buildex ()para criar o token de
autenticacao e o método

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Buildexr () para criar o filtro de
descoberta. Para especificar a regido local, defina uma ClientConfiguration e especifique-a
no AWS KMS cliente.

Usando varias regides AWS KMS keys 49

AWS Encryption SDK Guia do Desenvolvedor

Para ver um exemplo completo, consulte kms_multi_region_keys.cpp no AWS Encryption SDK for
C repositorio em GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
y
* filter is optional, but it's a best practice that we recommend.

*/
const char *account_id = "111122223333";
const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter: :Builder(partition).AddAccount(account_id).Buil

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
Aws: :MakeShared<Aws: :KMS: :KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
Aws: :Cryptosdk: :KmsMrkAwareSymmetricKeyring: :Builder()
WithKmsClient(kms_client)
.BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),

AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
& aws_cryptosdk_session_process_full is designed for non-streaming data
*/

aws_cryptosdk_session_process_full(

Usando varias regides AWS KMS keys 50

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Guia do Desenvolvedor

session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C#/.NET

Para criar um chaveiro de multi-Region-aware descoberta no AWS Encryption SDK para.NET,
instancie um CreateAwsKmsMrkDiscoveryKeyringInput objeto que leve um AWS KMS
cliente para um determinado Regido da AWS cliente e um filtro de descoberta opcional que
limita as chaves KMS a uma particao e conta especificas AWS . Em seguida, chame o método
CreateAwsKmsMrkDiscoveryKeyring() do objeto . Para obter um exemplo completo,
consulte AwsKmsMrkDiscoveryKeyringExample.cs no AWS Encryption SDK repositorio.NET em.
GitHub

Para criar um chaveiro de multi-Region-aware descoberta para mais de um Regidao da AWS, use
0 CreateAwsKmsMrkDiscoveryMultiKeyring() método para criar um chaveiro multiplo ou
use CreateAwsKmsMrkDiscoveryKeyring() para criar varios chaveiros de multi-Region-
aware descoberta e, em seguida, use o CreateMultiKeyring() método para combina-los em
um chaveiro multiplo.

Para ver um exemplo, consulte AwskKmsMrkDiscoveryMultiKeyringExample.cs.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();
List<string> account = new List<string> { "111122223333" },;

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{

AccountIds = account,

Partition = "aws"

Usando varias regides AWS KMS keys 51

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

// Create the keyring

var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = mrkDiscoveryFilter

};

var mrkDiscoveryKeyring =

materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = mrkDiscoveryKeyring
I
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Para descriptografar no modo de descoberta, use o atributo discovery do parametro. - -
wrapping-keys Os atributos discovery-account e discovery-partition criam um filtro de
descoberta que € opcional, mas recomendado.

Para especificar a regiao, esse comando inclui o atributo region do parametro --wrapping-
keys.

Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \
region=us-west-2 \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output

Usando varias regides AWS KMS keys 52

AWS Encryption SDK Guia do Desenvolvedor

Java

Para especificar a regiao local, use o parametro builder().withDiscoveryMrkRegion.
Caso contrario, o AWS Encryption SDK obtém a regido local da regido configurada no AWS SDK
for Java.

Para ver um exemplo completo, consulte DiscoveryMultiRegionDecryptionExample.java no AWS
Encryption SDK for Java repositorio em. GitHub

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
AwsKmsMrkAwareMasterKeyProvider
.builder()
.withDiscoveryMrkRegion(Region.US_WEST_2)
.buildDiscovery(discoveryFilter);

// Decrypt your ciphertext

final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
.decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

Para descriptografar no modo de descoberta com uma chave multirregional simétrica, use o
método AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser().

Para ver um exemplo completo, consulte kms_multi_region_discovery.ts no repositério em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
buildClient,
CommitmentPolicy,
KMS,

Usando varias regides AWS KMS keys 53

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

} from '@aws-crypto/client-browser"'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
client,
discoveryFilter,

1)

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

Para descriptografar no modo de descoberta com uma chave multirregional simétrica, use o
método AwsKmsMrkAwareSymmetricDiscoveryKeyringNode().

Para ver um exemplo completo, consulte kms_multi_region_discovery.ts no repositério em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
buildClient,

Usando varias regides AWS KMS keys 54

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

CommitmentPolicy,
KMS,
} from '@aws-crypto/client-node’

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
client,
discoveryFilter,

D

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

Para descriptografar no modo de descoberta com uma chave multirregional, use o método
MRKAwareDiscoveryAwsKmsMasterKeyProvider().

Para ver um exemplo completo, consulte mrk_aware_kms_provider.py no AWS Encryption SDK
for Python repositorio em GitHub.

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

Use the multi-Region method to create the master key provider

Usando varias regides AWS KMS keys 55

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

in discovery mode
mrk_discovery_key_provider =
MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext

plaintext, _ = client.decrypt(
source=ciphertext,
key_provider=mrk_discovery_key_provider

Escolher um pacote de algoritmo

O AWS Encryption SDK suporta varios algoritmos de criptografia simétrica e assimétrica para
criptografar suas chaves de dados sob as chaves de encapsulamento que vocé especificar. No
entanto, quando ele usa essas chaves de dados para criptografar seus dados, o AWS Encryption
SDK padrédo é um conjunto de algoritmos recomendado que usa o algoritmo AES-GCM com
derivagao de chaves, assinaturas digitais e comprometimento de chaves. Embora o pacote de
algoritmos padrao seja adequado para a maioria das aplicagdes, vocé pode escolher um conjunto
alternativo de algoritmos. Por exemplo, alguns modelos de confianga seriam satisfeitos com

um pacote de algoritmos sem assinaturas digitais. Para obter informagdes sobre os pacotes de
algoritmos compativeis com o AWS Encryption SDK , consulte Suites de algoritmos compativeis no
AWS Encryption SDK.

Os exemplos a seguir mostram como selecionar um pacote de algoritmos alternativo ao criptografar.
Esses exemplos selecionam um pacote de algoritmos recomendado AES-GCM com derivagao e
confirmacao de chaves, mas sem assinaturas digitais. Ao criptografar com um pacote de algoritmos
que néo inclui assinaturas digitais, use o modo de descriptografia somente sem assinatura ao
descriptografar. Esse modo, que falha se encontrar um texto cifrado assinado, € mais util ao
transmitir a decodificagao.

C

Para especificar um conjunto alternativo de algoritmos no AWS Encryption

SDK for C, vocé deve criar um CMM explicitamente. Em seguida, use o
aws_cryptosdk_default_cmm_set_alg_id com o CMM e o pacote de algoritmos
selecionado.

/* Specify an algorithm suite without signing */

Escolher um pacote de algoritmo 56

AWS Encryption SDK Guia do Desenvolvedor

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* To set an alternate algorithm suite, create an cryptographic
materials manager (CMM) explicitly
*/
struct aws_cryptosdk_cmm *cmm =
aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
then release the CMM reference
*/
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
Use aws_cryptosdk_session_process_full with non-streaming data

*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
ciphertext,

ciphertext_buf_sz,

&ciphertext_len,

plaintext,

plaintext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

Ao descriptografar dados que foram criptografados sem assinaturas digitais, use.
AWS_CRYPTOSDK_DECRYPT_UNSIGNED Isso faz com que a descriptografia falhe se encontrar um
texto cifrado assinado.

/* Decrypt unsigned streaming data */

Escolher um pacote de algoritmo 57

AWS Encryption SDK Guia do Desenvolvedor

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create a session for decrypting with the AWS KMS keyring
Then release the keyring reference
*/

struct aws_cryptosdk_session *session =

aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {

return AWS_OP_ERR;

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
Use aws_cryptosdk_session_process_full with non-streaming data
*/
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
session,
plaintext,

plaintext_buf_sz,

&plaintext_len,

ciphertext,

ciphertext_len)) {
aws_cryptosdk_session_destroy(session);
return AWS_OP_ERR;

C#/.NET

Para especificar um conjunto alternativo de algoritmos no AWS Encryption SDK para.NET,
especifique a AlgorithmSuiteId propriedade de um Encryptinputobjeto. O AWS Encryption

Escolher um pacote de algoritmo 58

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs

AWS Encryption SDK Guia do Desenvolvedor

SDK for.NET inclui constantes que vocé pode usar para identificar seu conjunto de algoritmos
preferido.

O AWS Encryption SDK for.NET nao tem um método para detectar texto cifrado assinado durante
a decodificagdo de streaming porque essa biblioteca ndo oferece suporte a dados de streaming.

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring

var keyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

AlgoxrithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
i

var encryptOutput = encryptionSdk.Encrypt(encxyptInput);

AWS Encryption CLI

Ao criptografar o arquivo hello. txt, este exemplo usa o parametro --algorithm para
especificar um pacote de algoritmos sem assinaturas digitais.

Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \

Escolher um pacote de algoritmo 59

https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK Guia do Desenvolvedor

--wrapping-keys key=$keyArn \

--algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
--metadata-output ~/metadata \

--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output hello.txt.encrypted \

--decode

Ao descriptografar, este exemplo usa o parametro --decrypt-unsigned. Esse parametro
€ recomendado para garantir que vocé esteja descriptografando texto cifrado nao assinado,
especialmente com a CLI, que esta sempre transmitindo entrada e saida.

Decrypt unsigned streaming data

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--max-encrypted-data-keys 1 \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output

Java

Para especificar um pacote ade algoritmos alternativo, use o método
AwsCrypto.builder().withEncryptionAlgorithm(). Este exemplo usa um pacote de
algoritmos alternativo sem assinaturas digitais.

// Specify an algorithm suite without signing

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withEncryptionAlgorithm(CxyptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

Escolher um pacote de algoritmo 60

AWS Encryption SDK Guia do Desenvolvedor

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
Map<String, String> encryptionContext = Collections.singletonMap("Example",
"FileStreaming");

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

Ao transmitir dados para descriptografia, use o método
createUnsignedMessageDecryptingStream() para garantir que todo texto cifrado que
vocé esta descriptografando n&o esteja assinado.

// Decrypt unsigned streaming data

// Instantiate the client

AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.withMaxEncryptedDataKeys(1)
.build();

// Create a master key provider in strict mode

String awsKmsKey = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.buildexr()
.buildStrict(awsKmsKey);

// Decrypt the encrypted message

FileInputStream in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<KmsMasterKey> decryptingStream =
crypto.createUnsignedMessageDecxyptingStream(masterKeyProvider, in);

// Return the plaintext data

// Write the plaintext data to disk

FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);

Escolher um pacote de algoritmo 61

AWS Encryption SDK Guia do Desenvolvedor

decryptingStream.close();

JavaScript Browser

Para especificar um pacote de algoritmos alternativo, use o parametro suiteId com um valor
enum AlgorithmSuiteIdentifier.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

Ao descriptografar, use o método padrao decrypt. O AWS Encryption SDK para JavaScript no

navegador ndo tem um modo decrypt-unsignedporque o navegador ndo € compativel com
streaming.

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

Escolher um pacote de algoritmo 62

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

Para especificar um pacote de algoritmos alternativo, use o parametro suiteId com um valor
enum AlgorithmSuiteIdentifier.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

const { result } = await encrypt(keyring, cleartext, { suiteld:
AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
encryptionContext: context, })

Ao descriptografar dados que foram criptografados sem assinaturas digitais, use o Stream.
decryptUnsignedMessage Esse método falhara se encontrar texto cifrado assinado.

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Escolher um pacote de algoritmo 63

AWS Encryption SDK Guia do Desenvolvedor

Python

Para especificar um algoritmo de criptografia alternativo, use o parametro algorithm com um
valor enum Algorithm.

Specify an algorithm suite without signing

Instantiate a client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
algorithm=Algoxithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
key_provider=kms_key_provider

)

Ao descriptografar mensagens que foram criptografadas sem assinaturas digitais, use o modo de
decrypt-unsigned streaming, especialmente ao descriptografar durante o streaming.

Decrypt unsigned streaming data

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_F
max_encrypted_data_keys=1)

Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Decrypt with decrypt-unsigned

Escolher um pacote de algoritmo 64

AWS Encryption SDK Guia do Desenvolvedor

with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
"wb") as plaintext:
with client.stream(mode="decrypt-unsigned",
source=ciphertext,
key_provider=master_key_provider) as decryptor:
for chunk in decryptor:
plaintext.write(chunk)

Verify that the encryption context
assert all(
pair in decryptor.header.encryption_context.items() for pair in
encryptor.header.encryption_context.items()
)

return ciphertext_filename, cycled_plaintext_filename

Rust

Para especificar um conjunto alternativo de algoritmos no AWS Encryption SDK for Rust,
especifique a algorithm_suite_id propriedade em sua solicitagao de criptografia.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);
// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;

let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

Escolher um pacote de algoritmo 65

AWS Encryption SDK Guia do Desenvolvedor

Go

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(raw_aes_keyring.clone())
.encryption_context(encryption_context.clone())
.algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)
// Instantiate the AWS Encryption SDK client

encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {
panic(err)

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

Escolher um pacote de algoritmo 66

AWS Encryption SDK Guia do Desenvolvedor

// Optional: Create an encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err != nil {
panic(err)

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{

Plaintext: [Ibyte(exampleText),
EncryptionContext: encryptionContext,
Keyring: aesKeyring,
AlgorithmSuiteId: &algorithmSuiteld,
1))
if err != nil {
panic(err)
}

Escolher um pacote de algoritmo 67

AWS Encryption SDK Guia do Desenvolvedor

Limitar as chaves de dados criptografadas

Vocé pode limitar o numero de chaves de dados criptografadas em uma mensagem criptografada.
Esse atributo de praticas recomendadas pode ajudar vocé a detectar um token de autenticagao
mal configurado ao criptografar ou um texto cifrado malicioso ao descriptografar. Isso também evita
chamadas desnecessarias, caras e potencialmente exaustivas para sua infraestrutura principal.
Limitar as chaves de dados criptografadas tem mais valor quando vocé esta descriptografando
mensagens de uma fonte nao confiavel.

Embora a maioria das mensagens criptografadas tenha uma chave de dados criptografada para
cada chave de encapsulamento usada na criptografia, uma mensagem criptografada pode conter
até 65.535 chaves de dados criptografadas. Um agente mal-intencionado pode criar uma mensagem
criptografada com milhares de chaves de dados criptografadas, nenhuma delas capaz de ser
descriptografada. Como resultado, eles AWS Encryption SDK tentariam descriptografar cada chave
de dados criptografada até esgotar as chaves de dados criptografadas na mensagem.

Para limitar as chaves de dados criptografadas, use o parametro MaxEncryptedDataKeys.
Esse parametro esta disponivel para todas as linguagens de programagao compativeis a partir
das versodes 1.9.x e 2.2.x do AWS Encryption SDK. Ele € opcional e valido ao criptografar e
descriptografar. Os exemplos a seguir descriptografam dados que foram criptografados sob trés
chaves de encapsulamento diferentes. O valor de MaxEncryptedDataKeys foi definido como 3.

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_arnl, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

Limitar as chaves de dados criptografadas 68

AWS Encryption SDK Guia do Desenvolvedor

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C#/ .NET

Para limitar as chaves de dados criptografadas no AWS Encryption SDK para.NET, instancie
um cliente AWS Encryption SDK para 0.NET e defina seu MaxEncryptedDataKeys parametro
opcional com o valor desejado. Em seguida, chame o métodoDecrypt () na instancia do AWS
Encryption SDK configurada.

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
};

var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

Limitar as chaves de dados criptografadas 69

AWS Encryption SDK Guia do Desenvolvedor

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$key_arnl key=%$key_arn2 key=$key_arn3 \
--buffer \
--max-encrypted-data-keys 3 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
.withMaxEncryptedDataKeys(3)
Lbuild();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
.buildStrict(keyArnl, keyArn2, keyArn3);

// Decrypt

final CryptoResult<byte[], KmsMasterKey> decryptResult =
crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {

Limitar as chaves de dados criptografadas 70

AWS Encryption SDK Guia do Desenvolvedor

accessKeyId: string
secretAccessKey: string
sessionToken: string
}
const clientProvider = getClient(KMS, {
credentials: { accessKeyld, secretAccessKey, sessionToken }

1)

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
clientProvider,
keyIds: [keyArnl, keyArn2, keyArn3],
1))

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring

const keyring = new KmsKeyringBrowser({
keyIds: [keyArnl, keyArn2, keyArn3],

1)

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(
key_ids=[key_arnl, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
key_provider=master_key_provider)

Limitar as chaves de dados criptografadas 71

AWS Encryption SDK Guia do Desenvolvedor

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys

let esdk_config = AwsEncryptionSdkConfig::builder()
.max_encrypted_data_keys(max_encrypted_data_keys)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate “max_encrypted_data_keys raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > @, "max_encrypted_data_keys MUST be greater than
0");

let mut i = 0;
while i < max_encrypted_data_keys {
let aes_key_bytes = generate_aes_key_bytes();

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

raw_aes_keyrings.push(raw_aes_keyring);
i+=1;
// Create a Multi Keyring with “max_encrypted_data_keys® AES Keyrings

let generator_keyring = raw_aes_keyrings.remove(Q);

let multi_keyring = mpl
.create_multi_keyring()

Limitar as chaves de dados criptografadas 72

AWS Encryption SDK Guia do Desenvolvedor

Go

.generator(generator_keyring)
.child_keyrings(raw_aes_keyrings)
.send()

.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
MaxEncryptedDataKeys: &maxEncryptedDataKeys,

)

if err !'= nil {
panic(err)

}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Generate 'maxEncryptedDataKeys™ raw AES keyrings to use with your keyring
rawAESKeyrings := make([]Jmpltypes.IKeyring, @, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
key, err := generate256KeyBytesAES()

Limitar as chaves de dados criptografadas 73

AWS Encryption SDK Guia do Desenvolvedor

if err !'= nil {
panic(err)
}
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: key,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err != nil {
panic(err)
}
rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
1++

// Create a Multi Keyring with “max_encrypted_data_keys"™ AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: rawAESKeyrings[0],
ChildKeyrings: rawAESKeyrings[1l:],

}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err != nil {
panic(err)
}

Criacao de um filtro de descoberta

Ao descriptografar dados criptografados com chaves do KMS, é uma pratica recomendada
descriptografar no modo estrito, ou seja, limitar as chaves de empacotamento usadas somente as
que vocé especificar. No entanto, se necessario, vocé também podera descriptografar no modo

de descoberta, onde vocé nao especifica nenhuma chave de empacotamento. Nesse modo, AWS
KMS pode descriptografar a chave de dados criptografada usando a chave KMS que a criptografou,
independentemente de quem possui ou tem acesso a essa chave KMS.

Se vocé precisar descriptografar no modo de descoberta, recomendamos que vocé sempre use
um filtro de descoberta, que limita as chaves KMS que podem ser usadas as de uma particao
especificada. Conta da AWS O filtro de descoberta € opcional, mas é uma pratica recomendada.

Criagao de um filtro de descoberta 74

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Encryption SDK Guia do Desenvolvedor

Use a tabela a seguir para determinar o valor da particdo do seu filtro de descoberta.

Regiao Partition
Regides da AWS aws

Regides da China aws-cn
AWS GovCloud (US) Regions aws-us-gov

Os exemplos nesta secdo mostram como criar um filtro de descoberta. Antes de usar o cédigo,
substitua os valores de exemplo por valores validos para a particdo Conta da AWS e.

C
Para obter um exemplo completo, consulte: kms_discovery.cpp no AWS Encryption SDK for C.

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";

const char *partition = "aws";

const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter

Aws: :Cryptosdk: :KmsKeyring: :DiscoveryFilter::Builder(partition).AddAccount(account_id).Buil
C#/ .NET

Para obter um exemplo completo, consulte DiscoveryFilterExample.cs no AWS Encryption SDK
for.NET.

// Create a discovery filter for an AWS account and partition

List<string> account = new List<string> { "111122223333" },;

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()

{
AccountIds = account,
Partition = "aws"

Criagao de um filtro de descoberta 75

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \

--input hello.txt.encrypted \

--wrapping-keys discovery=true \
discovery-account=111122223333 \
discovery-partition=aws \

--encryption-context purpose=test \

--metadata-output ~/metadata \

--max-encrypted-data-keys 1 \

--buffer \

--output .

Java

Para obter um exemplo completo, consulte DiscoveryDecryptionExample.java no AWS Encryption
SDK for Java.

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

Para obter exemplos completos, consulte kms_filtered_discovery.ts (Node.js) e

kms_multi_region_discovery.ts (Navegador) no. AWS Encryption SDK para JavaScript.

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {

accountIDs: ['111122223333'],

partition: 'aws',

Python

Para obter um exemplo completo, consulte discovery _kms_provider.py no AWS Encryption SDK

for Python.

Create the discovery filter and specify the region

Criagao de um filtro de descoberta 76

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

decrypt_kwargs = dict(
discovery_filter=DiscoveryFilter(account_ids="111122223333",
partition="aws"),
discovery_region="us-west-2",

Rust

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![111122223333.to_string()])
.partition("aws".to_string())
.build()?;

Go

import (
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

)

discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{111122223333},
Partition: "aws",

}

Configurando o contexto de criptografia necessario (CMM)

Vocé pode usar o contexto de criptografia necessario CMM para exigir contextos de criptografia

em suas operagdes criptograficas. Um contexto de criptografia € um conjunto de pares de chave/
valor ndo secretos. O contexto de criptografia € associado de maneira criptografica aos dados
criptografados de forma que o mesmo contexto de criptografia é necessario para descriptografar o
campo. Ao usar o CMM de contexto de criptografia necessario, é possivel especificar uma ou mais
chaves de contexto de criptografia necessarias (chaves obrigatdrias) que devem ser incluidas em
todas as chamadas de criptografia e descriptografia.

(® Note

O contexto de criptografia necessario (CMM) sé é suportado pelas seguintes versoes:

Exigindo contextos de criptografia 7

AWS Encryption SDK Guia do Desenvolvedor

* Versao 3. x do AWS Encryption SDK for Java
» Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia
opcional da Biblioteca de Provedores de Material Criptografico (MPL).

» Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Se vocé criptografar dados usando o contexto de criptografia necessario CMM, s6 podera
descriptografa-los com uma dessas versdes suportadas.

Ao criptografar, AWS Encryption SDK verifica se todas as chaves de contexto de criptografia
necessarias estao incluidas no contexto de criptografia que vocé especificou. Os AWS Encryption
SDK sinais dos contextos de criptografia que vocé especificou. Somente os pares de chave/valor
gue nao sao chaves obrigatorias sao serializados e armazenados em texto simples no cabecgalho da
mensagem criptografada retornada pela operacao de criptografia.

Ao descriptografar, vocé deve fornecer um contexto de criptografia que contenha todos os pares de
chave/valor que representam as chaves necessarias. O AWS Encryption SDK usa esse contexto de
criptografia e os pares de valores-chave armazenados no cabecalho da mensagem criptografada
para reconstruir o contexto de criptografia original que vocé especificou na operacgao de criptografia.
Se o AWS Encryption SDK nao puder reconstruir o contexto de criptografia original, a operagao de
descriptografia falhara. Se vocé fornecer um par de chave/valor que contenha a chave necessaria
com um valor incorreto, a mensagem criptografada nao podera ser descriptografada. Vocé deve
fornecer o mesmo par de chave/valor especificado na criptografia.

/A Important

Considere cuidadosamente quais valores vocé escolhe para as chaves necessarias

no contexto de criptografia. Vocé devera fornecer as mesmas chaves e os valores
correspondentes novamente na descriptografia. Se vocé nao conseguir reproduzir as chaves
necessarias, a mensagem criptografada nao podera ser descriptografada.

Os exemplos a seguir inicializam um AWS KMS chaveiro com o contexto de criptografia necessario
CMM.

Exigindo contextos de criptografia 78

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

C#/.NET

var encryptionContext = new Dictionary<string, string>()

{

{"encryption", "context"},

{"is not", "secret"},

{"but adds", "useful metadata"},

{"that can help you", "be confident that"},

{"the data you are handling", "is what you think it is"}
};

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = kmsKey
I

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
// If you pass in a keyring but no underlying cmm, it will result in a failure
because only cmm is supported.
RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

};

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

Java

// Instantiate the AWS Encryption SDK

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

Exigindo contextos de criptografia 79

AWS Encryption SDK Guia do Desenvolvedor

// Create your encryption context

final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");

encryptionContext.put("is not", "secret");

encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.aslList("encryption",
"context");

// Create the keyring

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
.kmsKeyId(keyArn)
.kmsClient(KmsClient.create())
.build();

IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
materialProviders.CreateDefaultCryptographicMaterialsManagexr(
CreateDefaultCryptographicMaterialsManagerInput.builder()
.keyring(kmsKeyring)
.build()
);
ICryptographicMaterialsManager requiredCMM =
materialProviders.CreateRequiredEncryptionContextCMM(
CreateRequiredEncryptionContextCMMInput.buildex()
.requiredEncryptionContextKeys(requiredEncryptionContextKeys)
.underlyingCMM(cmm)
.build()
);

Python

Para usar o CMM AWS Encryption SDK for Python com o contexto de criptografia necessario,
vocé também deve usar a biblioteca de fornecedores de materiais (MPL).

Exigindo contextos de criptografia 80

AWS Encryption SDK Guia do Desenvolvedor

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create your encryption context
encryption_context: Dict[str, str] = {
"keyl": "valuel",
"key2": "value2",
"requiredKeyl": "requiredValuel",
"requiredKey2": "requiredValue2"

Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKeyl", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=boto3.client('kms', region_name="us-west-2")

)

kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
mpl.create_default_cryptographic_materials_managexr(
CreateDefaultCryptographicMaterialsManagerInput(
keyring=kms_keyring

required_ec_cmm: ICryptographicMaterialsManager = \
mpl.create_required_encryption_context_cmm(
CreateRequiredEncryptionContextCMMInput(
required_encryption_context_keys=required_encryption_context_keys,
underlying_cmm=underlying_cmm,

Exigindo contextos de criptografia 81

AWS Encryption SDK Guia do Desenvolvedor

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

let sdk_config =

aws_config: :load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context

let encryption_context = HashMap::from([
("keyl".to_string(), "valuel".to_string()),
("key2".to_string(), "value2".to_string()),
("requiredKeyl".to_string(), "requiredValuel".to_string()),
("requiredKey2".to_string(), "requiredValue2".to_string()),

1);

// Create a list of required encryption context keys

let required_encryption_context_keys: Vec<String> = vec![
"requiredKeyl".to_string(),
"requiredKey2".to_string(),

1;

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

// Create the required encryption context CMM
let underlying_cmm = mpl
.create_default_cryptographic_materials_manager()

Exigindo contextos de criptografia 82

AWS Encryption SDK Guia do Desenvolvedor

.keyring(kms_keyring)
.send()
.await?;

let required_ec_cmm = mpl
.create_required_encryption_context_cmm()
.underlying_cmm(underlying_cmm.clone())
.required_encryption_context_keys(required_encryption_context_keys)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
0.Region = defaultKmsKeyRegion

1)

Exigindo contextos de criptografia 83

AWS Encryption SDK Guia do Desenvolvedor

// Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Create a list of required encryption context keys

requiredEncryptionContextKeys := []string{}

requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
"requiredKeyl", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err != nil {
panic(err)

// Create the required encryption context CMM
underlyingCMM, err :=
matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err != nil {
panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
UnderlyingCMM: underlyingCMM,
RequiredEncryptionContextKeys: requiredEncryptionContextKeys,
}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
requiredEncryptionContextInput)

Exigindo contextos de criptografia 84

AWS Encryption SDK Guia do Desenvolvedor

if err !'= nil {
panic(err)

}

Como definir uma politica de compromisso

Uma politica de compromisso € uma definicao de configuragao que determina se sua aplicagao
criptografa e descriptografa com confirmacao de chave. Criptografar e descriptografar com o
confirmagéo de chave é uma pratica recomendada do AWS Encryption SDK.

Definir e ajustar sua politica de compromisso € uma etapa fundamental na migracdo das versoes
1.7 .x e anteriores do AWS Encryption SDK az versdes 2.0x posteriores. Essa progressao é explicada
em detalhes no topico de migracao.

O valor padrao da politica de compromisso nas versdes mais recentes do AWS Encryption SDK
(a partir da versao 2.0.x), RequireEncryptRequireDecrypt, € ideal para a maioria das
situagdes. No entanto, se vocé precisar descriptografar um texto cifrado que foi criptografado
sem confirmacao de chave, talvez seja necessario alterar sua politica de compromisso para
RequireEncryptAllowDecrypt. Para obter exemplos de como definir uma politica de
compromisso em cada linguagem de programacao, consulte Como definir sua politica de

COMpPromisso.

Trabalhar com streaming de dados

Ao transmitir dados para decodificagao, lembre-se de que eles AWS Encryption SDK retornam texto
simples descriptografado apds a conclusao das verificagdes de integridade, mas antes da verificagao
da assinatura digital. Para garantir que vocé nao retorne ou use texto simples até que a assinatura
seja verificada, recomendamos que vocé armazene o texto simples transmitido até que todo o
processo de descriptografia seja concluido.

Esse problema surge somente quando vocé esta transmitindo texto cifrado para decodificagao e
somente quando vocé esta usando um pacote de algoritmos, como opacote de algoritmos padrao,
que inclui assinaturas digitais.

Para facilitar o armazenamento em buffer, algumas implementacées de AWS Encryption SDK
linguagem, como AWS Encryption SDK para JavaScript no Node.js, incluem um recurso de buffer
como parte do método decrypt. A CLI de criptografia da AWS , que sempre transmite entrada e

Como definir uma politica de compromisso 85

AWS Encryption SDK Guia do Desenvolvedor

saida, introduziu um parametro - -buffer nas versdes 1.9.x e 2.2.x.. Em outras implementacoes de
linguagem, vocé pode usar os atributos de buffer existentes. (O AWS Encryption SDK for.NET n&o
oferece suporte a streaming.)

Se vocé estiver usando um pacote de algoritmos sem assinaturas digitais, certifique-se de usar o
atributo decrypt-unsigned em cada implementacao de linguagem. Esse atributo descriptografa
o texto cifrado, mas falhara se encontrar um texto cifrado assinado. Para obter detalhes, consulte
Escolher um pacote de algoritmo.

Armazenamento em cache de chaves de dados

Em geral, a reutilizagdo de chaves de dados € desencorajada, mas AWS Encryption SDK oferece
uma opg¢ao de armazenamento em cache de chaves de dados que fornece reutilizagao limitada de

chaves de dados. O armazenamento em cache de chaves de dados pode melhorar a performance
de algumas aplicagbes e reduzir as chamadas para sua infraestrutura de chaves. Antes de usar o
armazenamento em cache de chaves de dados em produgao, ajuste os limites de seguranca e teste,
para garantir que os beneficios superem as desvantagens da reutilizagdo de chaves de dados.

Armazenamento em cache de chaves de dados 86

AWS Encryption SDK Guia do Desenvolvedor

Lojas principais no AWS Encryption SDK

No AWS Encryption SDK, um armazenamento de chaves € uma tabela do Amazon DynamoDB
que persiste os dados hierarquicos usados pelo chaveiro hierarquico. AWS KMS O armazenamento
de chaves ajuda a reduzir o numero de chamadas que vocé precisa fazer AWS KMS para realizar
operacoes criptograficas com o chaveiro hierarquico.

O armazenamento de chaves persiste e gerencia as chaves de ramificagdo que o chaveiro
hierarquico usa para realizar a criptografia de envelope e proteger as chaves de criptografia de
dados. O armazenamento de chaves armazena a chave de ramificagao ativa e todas as versoes
anteriores da chave de ramificacdo. A chave de ramificacao ativa € a versao mais recente da chave
de ramificagao. O chaveiro hierarquico usa uma chave de criptografia de dados exclusiva para

cada solicitacao de criptografia e criptografa cada chave de criptografia de dados com uma chave

de empacotamento exclusiva derivada da chave de ramificagcdo ativa. O token de autenticacéo
hierarquico depende da hierarquia estabelecida entre as chaves de ramificagao ativas e suas chaves
de agrupamento derivadas.

Principais conceitos e terminologia da loja
Armazenamento de chaves

A tabela do DynamoDB que persiste dados hierarquicos, como chaves de ramificagao e chaves
de beacon.

Chave raiz

Uma chave KMS de criptografia simétrica que gera e protege as chaves de ramificagao e as
chaves de beacon em seu armazenamento de chaves.

Chave de ramificagao

Uma chave de dados que € reutilizada para derivar uma chave de empacotamento exclusiva para
criptografia de envelopes. Vocé pode criar varias chaves de ramificagdo em um repositorio de
chaves, mas cada chave de ramificagao s6 pode ter uma versado de chave de ramificacéo ativa
por vez. A chave de ramificagao ativa € a versao mais recente da chave de ramificagao.

As chaves de ramificagdo sao derivadas do AWS KMS keys uso da
GenerateDataKeyWithoutPlaintext operagéo kms:.

Principais conceitos e terminologia da loja 87

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Guia do Desenvolvedor

Chave de encapsulamento

Uma chave de dados exclusiva usada para criptografar a chave de criptografia de dados usada
nas operagoes de criptografia.

As chaves de empacotamento sdo derivadas das chaves de ramificagdo. Para obter mais
informacgdes sobre o processo de derivagado de chaves, consulte Detalhes técnicos do AWS KMS
chaveiro hierarquico.

Chave de criptografia de dados

Uma chave de dados usada em operacoes de criptografia. O chaveiro hierarquico usa uma chave
de criptografia de dados exclusiva para cada solicitagao de criptografia.

Implementacao de permissoes de privilégio minimo

Ao usar um armazenamento de chaves e AWS KMS chaveiros hierarquicos, recomendamos que
vocé siga o principio do menor privilégio definindo as seguintes fungoes:

Administrador do armazenamento de chaves

Os administradores do armazenamento de chaves sao responsaveis por criar e gerenciar

o armazenamento de chaves e as chaves de ramificagao que ele persiste e protege. Os
administradores do armazenamento de chaves devem ser os Unicos usuarios com permissoes

de gravacgao na tabela do Amazon DynamoDB que serve como seu armazenamento de chaves.
Eles devem ser 0s unicos usuarios com acesso a operagoes privilegiadas de administrador, como
CreateKeye. VersionKey Vocé s6 pode realizar essas operagdes ao configurar estaticamente
suas acgdes de armazenamento de chaves.

CreateKeyé uma operacgao privilegiada que pode adicionar um novo ARN de chave KMS a sua
lista de permissdes de armazenamento de chaves. Essa chave KMS pode criar novas chaves de
ramificacado ativas. Recomendamos limitar o acesso a essa operagao porque, depois que uma
chave KMS ¢é adicionada ao armazenamento de chaves da filial, ela ndo pode ser excluida.

Usuario da loja de chaves

Na maioria dos casos de uso, o usuario do armazenamento de chaves so6 interage com

o0 armazenamento de chaves por meio do chaveiro hierarquico enquanto criptografa,
descriptografa, assina e verifica dados. Como resultado, eles s6 precisam de permissdes de
leitura para a tabela do Amazon DynamoDB que serve como seu armazenamento de chaves.
Os usuarios do armazenamento de chaves s6 devem precisar acessar as operacdes de uso que

Implementacgao de permissdes de privilégio minimo 88

AWS Encryption SDK Guia do Desenvolvedor

possibilitam as operagdes criptograficasGetActiveBranchKey, comoGetBranchKeyVersion,
e. GetBeaconKey Eles ndo precisam de permissdes para criar ou gerenciar as chaves de
ramificacdo que usam.

Vocé pode realizar operagdes de uso quando suas agoes de armazenamento de chaves sao
configuradas estaticamente ou quando estdo configuradas para descoberta. Vocé nao pode
realizar operag¢des de administrador (CreateKeyeVersionKey) quando suas agdes de
armazenamento de chaves estao configuradas para descoberta.

Se o0 administrador do armazenamento de chaves da filial tiver permitido varias chaves KMS
no armazenamento de chaves da filial, recomendamos que os usuarios do armazenamento
de chaves configurem suas agdes de armazenamento de chaves para descoberta, para que o
chaveiro hierarquico possa usar varias chaves KMS.

Crie um armazenamento de chaves

Antes de criar chaves de ramificacdo ou usar um AWS KMS chaveiro hierarquico, vocé deve criar
seu armazenamento de chaves, uma tabela do Amazon DynamoDB que gerencia e protege suas
chaves de ramificagao.

/A Important

Nao exclua a tabela do DynamoDB que persiste suas chaves de ramificagao. Se vocé excluir
essa tabela, ndo conseguira descriptografar nenhum dado criptografado usando o chaveiro
hierarquico.

Siga os procedimentos de criar uma tabela no Amazon DynamoDB Developer Guide, usando os
seguintes valores de string obrigatorios para a chave de particdo e a chave de classificagao.

Chave de particao Chave de classificacao

Tabela base branch-key-id type

Nome do armazenamento de chaves logicas

Crie um armazenamento de chaves 89

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS Encryption SDK Guia do Desenvolvedor

Ao nomear a tabela do DynamoDB que serve como seu armazenamento de chaves, € importante
considerar cuidadosamente o nome légico do armazenamento de chaves que vocé especificara ao
configurar suas a¢des de armazenamento de chaves. O nome do armazenamento l6gico de chaves
atua como um identificador para seu armazenamento de chaves e nao pode ser alterado depois de
ser definido inicialmente pelo primeiro usuario. Vocé deve sempre especificar o mesmo nome ldgico
de armazenamento de chaves em suas acoes de armazenamento de chaves.

Deve haver um one-to-one mapeamento entre o nome da tabela do DynamoDB e o0 nome do
armazenamento de chaves logicas. O nome do armazenamento légico de chaves é vinculado
criptograficamente a todos os dados armazenados na tabela para simplificar as operagdes de
restauracédo do DynamoDB. Embora o nome do armazenamento de chaves logicas possa ser
diferente do nome da tabela do DynamoDB, ¢é altamente recomendavel especificar o nome da tabela
do DynamoDB como o nome do armazenamento de chaves légicas. Caso o nome da tabela mude
apos a restauracao da tabela do DynamoDB a partir de um backup, o0 nome do armazenamento
l6gico de chaves pode ser mapeado para o novo nhome da tabela do DynamoDB para garantir que o
chaveiro hierarquico ainda possa acessar seu armazenamento de chaves.

Nao inclua informacgdes confidenciais ou sigilosas em seu nome logico de armazenamento de
chaves. O nome do armazenamento de chaves ldgicas € exibido em texto simples em AWS KMS
CloudTrail eventos como o. tablename

Préximas etapas

1. the section called “Configurar as principais acbées do armazenamento”

2. the section called “Crie chaves de ramificacdo”

3. Crie um AWS KMS chaveiro hierarquico

Configurar as principais agcdes do armazenamento

As agdes do armazenamento de chaves determinam quais operagdes seus usuarios podem realizar
e como seu AWS KMS chaveiro hierarquico usa as chaves KMS listadas como permitidas em seu
armazenamento de chaves. O AWS Encryption SDK suporta as seguintes configuragdes de agdes de
armazenamento principais.

Estatico

Quando vocé configura estaticamente seu armazenamento de chaves, o armazenamento
de chaves s6 pode usar a chave KMS associada ao ARN da chave KMS que vocé fornece

Configurar as principais agdes do armazenamento 90

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK Guia do Desenvolvedor

kmsConfiguration ao configurar suas agdes de armazenamento de chaves. Uma excegao
€ langcada se um ARN de chave KMS diferente for encontrado ao criar, versionar ou obter uma
chave de ramificagao.

Vocé pode especificar uma chave KMS multirregional na suakmsConfiguration, mas todo o
ARN da chave, incluindo a regido, persiste nas chaves de ramificagdo derivadas da chave KMS.
Vocé néo pode especificar uma chave em uma regiao diferente. Vocé deve fornecer exatamente
a mesma chave multirregional para que os valores correspondam.

Ao configurar estaticamente suas a¢des de armazenamento de chaves, vocé pode realizar
operagdes de uso (GetActiveBranchKey,GetBranchKeyVersion,GetBeaconKey) e
operacgdes administrativas (CreateKeyeVersionKey). CreateKeyé uma operagao privilegiada
que pode adicionar um novo ARN de chave KMS a sua lista de permissdes de armazenamento
de chaves. Essa chave KMS pode criar novas chaves de ramificagao ativas. Recomendamos
limitar o acesso a essa operagao porque, depois que uma chave KMS é adicionada ao
armazenamento de chaves, ela ndo pode ser excluida.

Descoberta

Quando vocé configura suas agdes de armazenamento de chaves para descoberta, o
armazenamento de chaves pode usar qualquer AWS KMS key ARN que esteja na lista de
permissdes em seu armazenamento de chaves. No entanto, uma excecao € lancada quando uma
chave KMS multirregional &€ encontrada e a regido no ARN da chave nao corresponde a regiao do
AWS KMS cliente que esta sendo usada.

Ao configurar seu armazenamento de chaves para descoberta, vocé ndo pode realizar operag¢des
administrativas, como CreateKey VersionKey e. Vocé s6 pode realizar as operagdes de uso
que permitem operagdoes de criptografia, descriptografia, assinatura e verificagao. Para obter mais
informacgdes, consulte the section called “Implementacao de permissdes de privilégio minimo”.

Configure suas principais agdes de armazenamento

Antes de configurar suas agdes de armazenamento de chaves, verifique se os pré-requisitos a seguir
foram atendidos.

+ Determine quais operagoes vocé precisa realizar. Para obter mais informagoes, consulte the
section called “Implementacao de permissdes de privilégio minimo”.

* Escolha um nome de armazenamento de chaves logicas

Configure suas principais agdes de armazenamento 91

AWS Encryption SDK Guia do Desenvolvedor

Deve haver um one-to-one mapeamento entre o nome da tabela do DynamoDB e o0 nome do
armazenamento de chaves logicas. O nome do armazenamento logico de chaves é vinculado
criptograficamente a todos os dados armazenados na tabela para simplificar as operacgoes de
restauracdo do DynamoDB. Ele n&o pode ser alterado depois de definido inicialmente pelo
primeiro usuario. Vocé deve sempre especificar o mesmo nome loégico de armazenamento de
chaves em suas acdes de armazenamento de chaves. Para obter mais informacgdes, consulte
logical key store name.

Configuracao estatica

O exemplo a seguir configura estaticamente as principais agdes do armazenamento. Vocé deve
especificar o nome da tabela do DynamoDB que serve como seu armazenamento de chaves, um
nome légico para o armazenamento de chaves e o ARN da chave KMS que identifica uma chave
KMS de criptografia simétrica.

® Note

Considere cuidadosamente o ARN da chave KMS que vocé especifica ao configurar
estaticamente seu servico de armazenamento de chaves. A CreateKey operacéo adiciona o
ARN da chave KMS a sua lista de permissdes do armazenamento de chaves da filial. Depois
que uma chave KMS é adicionada ao armazenamento de chaves da filial, ela ndo pode ser
excluida.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.buildexr()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()
.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

Configure suas principais agdes de armazenamento 92

AWS Encryption SDK Guia do Desenvolvedor

C#/.NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName

I

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationKmsKeyArn(
value=kms_key_id

)I

Rust

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))
.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_store_name)
.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))
.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Configure suas principais agdes de armazenamento 93

AWS Encryption SDK Guia do Desenvolvedor

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"

)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
Value: kmsKeyArn,

}

keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
DdbTableName: keyStoreTableName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

1

if err !'= nil {
panic(err)

}

Configuragao de descoberta

O exemplo a seguir configura as principais agdes de armazenamento para descoberta. Vocé deve
especificar o nome da tabela do DynamoDB que serve como seu armazenamento de chaves e um
nome légico de armazenamento de chaves.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.buildexr()

.ddbClient(DynamoDbClient.create())

.ddbTableName(keyStoreName)

.logicalKeyStoreName(logicalKeyStoreName)

.kmsClient(KmsClient.create())

.kmsConfiguration(KMSConfiguration.buildex()
.discovery(Discovery.builder().build())
.build())

.build()).build();

Configure suas principais agdes de armazenamento 94

AWS Encryption SDK

Guia do Desenvolvedor

C#/.NET

var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
config=KeyStoreConfig(
ddb_client=ddb_client,
ddb_table_name=key_store_name,
logical_key_store_name=logical_key_store_name,
kms_client=kms_client,
kms_configuration=KMSConfigurationDiscovery(
value=Discovery()

),

Rust

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_ store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery::builder().build()?))

.build()?;

Go

import (

keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/

awscryptographykeystoresmithygenerated"

Configure suas principais agdes de armazenamento

95

AWS Encryption SDK Guia do Desenvolvedor

keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{

DdbTableName: keyStoreName,
KmsConfiguration: &kmsConfig,
LogicalKeyStoreName: logicalKeyStoreName,
DdbClient: ddbClient,
KmsClient: kmsClient,

)

if err !'= nil {
panic(err)

}

Crie uma chave de ramificagao ativa

Uma chave de ramificagdo é uma chave de dados derivada de uma AWS KMS key que o AWS

KMS chaveiro hierarquico usa para reduzir o numero de chamadas feitas. AWS KMS A chave de
ramificagdo ativa é a versdo mais recente da chave de ramificagdo. O chaveiro hierarquico gera uma
chave de dados exclusiva para cada solicitagdo de criptografia e criptografa cada chave de dados
com uma chave de empacotamento exclusiva derivada da chave de ramificacao ativa.

Para criar uma nova chave de ramificacao ativa, vocé deve configurar estaticamente suas a¢des

de armazenamento de chaves. CreateKeyé uma operacgéo privilegiada que adiciona o ARN da
chave KMS especificado na configuracao das agées do armazenamento de chaves a sua lista de
permissdes do armazenamento de chaves. Em seguida, a chave KMS é usada para gerar a nova
chave de ramificagao ativa. Recomendamos limitar o acesso a essa operagao porque, depois que
uma chave KMS ¢é adicionada ao armazenamento de chaves, ela ndo pode ser excluida.

Vocé pode colocar uma chave KMS na lista de permissdes em seu armazenamento de chaves

ou pode incluir varias chaves KMS na lista de permissdes atualizando o ARN da chave KMS

que vocé especificou na configuracdo de agées do armazenamento de chaves e chamando
novamente. CreateKey Se vocé colocar varias chaves do KMS na lista de permissdes, os usuarios
do armazenamento de chaves devem configurar suas agdes de armazenamento de chaves para
descoberta, de forma que possam usar qualquer uma das chaves da lista de permissdes ao qual
tenham acesso. Para obter mais informagdes, consulte the section called “Configurar as principais
acdes do armazenamento”.

Crie chaves de ramificagéo 96

AWS Encryption SDK Guia do Desenvolvedor

Permissdes obrigatorias

Para criar chaves de ramificacao, vocé precisa das ReEncrypt permissdes kms:
GenerateDataKeyWithoutPlaintext e kms: na chave KMS especificada nas agdes do seu
armazenamento de chaves.

Crie uma chave de ramificacao

A operagao a seguir cria uma nova chave de ramificagdo ativa usando a chave KMS que vocé
especificou na configuracao de agdes do armazenamento de chaves e adiciona a chave de
ramificacao ativa a tabela do DynamoDB que serve como seu armazenamento de chaves.

Ao chamar CreateKey, vocé pode optar por especificar os valores opcionais a seguir.
* branchKeyIdentifier: define um branch-key-id personalizado.

Para criar um branch-key-id personalizado, vocé também deve incluir um contexto de
criptografia adicional com o parametro encryptionContext.

* encryptionContext: define um conjunto opcional de pares chave-valor ndo secretos que
fornecem dados autenticados adicionais (AAD) no contexto de criptografia incluido na chamada
kms:. GenerateDataKeyWithoutPlaintext

Esse contexto de criptografia adicional & exibido com o prefixo aws-crypto-ec:.

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",
"custom branch key id");

final String BranchKey = keystore.CreateKey(
CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

.build()).branchKeyIdentifier();

C#/ .NET

var additionalEncryptionContext = new Dictionary<string, string>();

Crie chaves de ramificagéo 97

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK

Guia do Desenvolvedor

additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");
var branchKeyId = keystore.CreateKey(new CreateKeyInput
{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL
1)
Python
additional_encryption_context = {"Additional Encryption Context for": "custom branch
key id"}

branch_key_id: str = keystore.create_key(
CreateKeyInput(
branch_key_identifier = "custom-branch-key-id", # OPTIONAL

encryption_context = additional_encryption_context, # OPTIONAL

Rust

let additional_encryption_context = HashMap::from([

("Additional Encryption Context for".to_string(), "custom branch key

id".to_string())
1);

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL
.encryption_context(additional_encryption_context) // OPTIONAL

.send()
.await?
.branch_key_identifier
.unwrap();
Go
encryptionContext := map[string]lstring{
"Additional Encryption Context for'": "custom branch key id",

Crie chaves de ramificagéo

98

AWS Encryption SDK Guia do Desenvolvedor

branchKey, err := keyStore.CreateKey(context.Background(),
keystoretypes.CreateKeyInput{
BranchKeyIdentifier: &customBranchKeyId,

EncryptionContext: additional_encryption_context,
1))
if err != nil {

return "", err
}

Primeiro, a operagao CreateKey gera os valores a seguir.

« Um Identificador Unico Universal (UUID) versdo 4 para o branch-key-id (a menos que vocé
tenha especificado um branch-key-id personalizado).

* Um UUID da versao 4 para a versao da chave de ramificagao

* Um timestamp no formato de data e hora ISO 8601 e em UTC (Tempo Universal Coordenado).

Em seguida, a CreateKey operagdao chama kms: GenerateDataKeyWithoutPlaintext usando a

seguinte solicitagao.

"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
1,
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"

Em seguida, a CreateKey operagdo chama kms: ReEncrypt para criar um registro ativo para a
chave de ramificac&o atualizando o contexto de criptografia.

Por ultimo, a CreateKey operagdo chama ddb: Transact\Writeltems para escrever um novo item que
persistira com a chave de ramificagao na tabela que vocé criou na Etapa 2. O item tem os seguintes

atributos:

Crie chaves de ramificagéo 99

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Encryption SDK Guia do Desenvolvedor

"branch-key-id" : branch-key-id,

"type" : "branch:ACTIVE",

" the branch key returned by the GenerateDataKeyWithoutPlaintext call,
"version": "branch:version:the branch key version UUID",

enc

"create-time" : "timestamp",

"kms-arn" : "the KMS key ARN you specified in Step 1",
"hierarchy-version" : "1",

"aws-crypto-ec:contextKey": "contextValue"

Alternar a chave de ramificacao ativa

S6 pode haver uma versao ativa para cada chave de ramificagcao por vez. Normalmente, cada versao
de chave de ramificacao ativa € usada para atender a varias solicitacées. Porém, vocé controla até
que ponto as chaves de ramificacdo ativas sao reutilizadas e determina com que frequéncia a chave
de ramificagcao ativa é alternada.

As chaves de ramificacdo ndo sdo usadas para criptografar chaves de dados em texto simples.
Eles sdo usados para derivar as chaves de empacotamento exclusivas que criptografam chaves de
dados de texto simples. O processo de derivacdo da chave de empacotamento produz uma chave de

empacotamento exclusiva de 32 bytes com 28 bytes de randomizacgao. Isso significa que uma chave
de ramificagao pode derivar mais de 79 octilhdes, ou 296, chaves de empacotamento exclusivas
antes que ocorra o desgaste criptografico. Apesar desse risco de exaustao muito baixo, talvez seja
necessario alternar suas chaves de ramificagdes ativas devido a regras comerciais ou contratuais ou
regulamentacdes governamentais.

A versao ativa da chave de ramificagdo permanece ativa até que vocé a alterne. As versdes
anteriores da chave de ramificacdo ativa ndo serao usadas para realizar operacdes de criptografia
e nao podem ser usadas para derivar novas chaves de agrupamento, mas ainda podem ser
consultadas e fornecer chaves de agrupamento para descriptografar as chaves de dados que
criptografaram enquanto estavam ativas.

Permissdes obrigatorias

Para girar as chaves de ramificagdo, vocé precisa das ReEncrypt permissdes kms:
GenerateDataKeyWithoutPlaintext e kms: na chave KMS especificada nas a¢des do seu
armazenamento de chaves.

Gire uma chave de ramificacao ativa

Alternar a chave de ramificagao ativa 100

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Guia do Desenvolvedor

Use a VersionKey operagao para girar sua chave de ramificagdo ativa. Quando vocé alterna

a chave de ramificagao ativa, uma nova chave de ramificacido é criada para substituir a versao
anterior. O branch-key-id ndo muda quando vocé alterna a chave de ramificagao ativa. Vocé
deve especificar o branch-key-id que identificara a chave de ramificagao ativa atual quando vocé
chamar VersionKey.

Java

keystore.VersionKey/(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
);

C#/ .NET

keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Python

keystore.version_key(
VersionKeyInput(
branch_key_identifier=branch_key_id

Rust

keystore.version_key()
.branch_key_identifier(branch_key_id)
.send()
.await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
BranchKeyIdentifier: branchKeyId,

)

if err !'= nil {
return err

Alternar a chave de ramificagao ativa 101

AWS Encryption SDK Guia do Desenvolvedor

}

Alternar a chave de ramificagéo ativa 102

AWS Encryption SDK Guia do Desenvolvedor

Tokens de autenticacao

As implementagdes de linguagem de programagao suportadas usam chaveiros para realizar a
criptografia de envelopes. Tokens de autenticagdo geram, criptografam e descriptografam chaves
de dados. Os tokens de autenticagao determinam a origem das chaves de dados exclusivas que
protegem cada mensagem, bem como as chaves de encapsulamento que criptografam essa chave

de dados. Vocé especifica um token de autenticagao ao criptografar e especifica 0 mesmo ou outro
token de autenticagao ao descriptografar. Vocé pode usar os tokens de autenticagao fornecidos pelo
SDK ou elaborar seus proprios tokens de autenticagao personalizados compativeis.

E possivel usar cada token individualmente ou combina-los em um multitoken de autenticacéo.
Embora a maioria dos tokens de autenticagdo possa gerar, criptografar e descriptografar chaves
de dados, vocé pode criar um que execute apenas uma operagao, por exemplo, um token que gere
apenas chaves de dados, e usa-lo em combinagao com outros.

Recomendamos que vocé use um chaveiro que proteja suas chaves de agrupamento e execute
operacoes criptograficas dentro de um limite seguro, como o AWS KMS chaveiro, que usa AWS KMS
keys that never leave () sem criptografia. AWS Key Management ServiceAWS KMS Vocé também
pode escrever um chaveiro que use chaves de agrupamento armazenadas em seus moédulos de
seguranca de hardware (HSMs) ou protegidas por outros servigos de chave mestra. Para obter
detalhes, consulte o topico Interface do token de autenticacdo na Especificagdo do AWS Encryption
SDK..

Os chaveiros desempenham o papel de chaves mestras e provedores de chaves mestras usados

em outras implementacdes de linguagens de programagao. Se vocé usar diferentes implementagdes
de linguagem do AWS Encryption SDK para criptografar e descriptografar seus dados, certifique-se
de usar tokens de autenticacao e provedores de chaves mestras compativeis. Para obter detalhes,
consulte Compatibilidade dos tokens de autenticacio.

Este tdpico explica como usar o recurso de chaveiro do AWS Encryption SDK e como escolher um
chaveiro.

Como os tokens de autenticagao funcionam

Quando vocé criptografa dados, AWS Encryption SDK ele solicita materiais de criptografia ao
chaveiro. O token de autenticacao retorna uma chave dados de texto simples e uma cépia da
chave de dados que é criptografada por cada uma das chaves de encapsulamento no token de

Como os tokens de autenticagao funcionam 103

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK Guia do Desenvolvedor

autenticagdao. O AWS Encryption SDK usa a chave de texto simples para criptografar os dados e,
em seguida, destrdi a chave de dados de texto sem formatacdo. Em seguida, AWS Encryption SDK
retorna uma mensagem criptografada que inclui as chaves de dados criptografadas e os dados
criptografados.

AWS Encryption SDK

Cryptographic Materials Manager (CMM)

| A
_ ﬁ Plaintext data key
Get encryption
materials
‘ Encrypted data keys
k
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

Ao descriptografar dados, vocé pode usar o mesmo token de autenticagdo usado para criptografar
os dados ou um token diferente. Para descriptografar os dados, um token de autenticagao de
descriptografia deve incluir (ou ter acesso a) pelo menos uma chave de encapsulamento no token de
autenticagao de criptografia.

Ele AWS Encryption SDK passa as chaves de dados criptografadas da mensagem criptografada
para o chaveiro e solicita que o chaveiro decifre qualquer uma delas. O token de autenticagao usa
suas chaves de empacotamento para descriptografar uma das chaves de dados criptografadas

e retorna uma chave de dados de texto simples. O AWS Encryption SDK usa a chave de dados
de texto simples para descriptografar os dados. Se nenhuma das chaves de empacotamento no
token de autenticagao puder descriptografar qualquer uma das chaves de dados criptografadas, a
operacao de descriptografia falhara.

Como os tokens de autenticagao funcionam 104

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK

Cryptographic Materials Manager (CMM)

Get decryption

materials Encrypted data keys *

Plaintext data key

k4
Keyring
Wrapping Key 1 Wrapping Key 2 Wrapping Key 3

Vocé pode usar um unico token de autenticagao ou também combinar tokens de autenticacao

do mesmo ou outro tipo em um multitoken de autenticacdo. Quando vocé criptografa dados, o
multitoken de autenticacao retorna uma copia da chave de dados criptografada por todas as
chaves de empacotamento em todos os tokens de autenticagao que compreendem o multitoken de
autenticacdo. E possivel descriptografar os dados usando um token de autenticacdo com qualquer
uma das chaves de encapsulamento no multitoken de autenticacgéo.

Compatibilidade dos tokens de autenticacao

Embora as diferentes implementag¢des de linguagem do AWS Encryption SDK tenham algumas
diferencgas arquiteténicas, elas sao totalmente compativeis, sujeitas as restricdes de linguagem. Vocé
pode criptografar seus dados usando uma implementacgao de linguagem e descriptografa-los em
qualquer outra implementacao de linguagem. No entanto, € necessario usar as mesmas chaves de
encapsulamento, ou correspondentes, para criptografar e descriptografar suas chaves de dados.
Para obter informacdes sobre restricdes de linguagem, consulte o topico sobre a implementacéo de
cada linguagem, como the section called “Compatibilidade” no AWS Encryption SDK para JavaScript
topico.

Compatibilidade dos tokens de autenticagao 105

AWS Encryption SDK Guia do Desenvolvedor

Os chaveiros sao compativeis com as seguintes linguagens de programacao:

* AWS Encryption SDK for C

« AWS Encryption SDK para JavaScript

* AWS Encryption SDK para o.NET

» Versao 3. x do AWS Encryption SDK for Java

* Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia opcional da
Biblioteca de Provedores de Material Criptografico (MPL).

* AWS Encryption SDK para Rust
* AWS Encryption SDK para Go

Requisitos variados para tokens de autenticagao de criptografia

Em implementa¢des de AWS Encryption SDK linguagem diferentes da AWS Encryption SDK for

C, todas as chaves agrupadas em um chaveiro de criptografia (ou varios chaveiros) ou provedor

de chave mestra devem ser capazes de criptografar a chave de dados. Se alguma chave de
encapsulamento falhar na criptografia, o método de criptografia falhara. Como resultado, o chamador
deve ter as permissdes necessarias para todas as chaves no token de autenticagdo. Se vocé usar
um token de autenticacéo para criptografar dados, sozinho ou em um token de autenticagdo multiplo,
a operacao de criptografia falhara.

A excecédo é a AWS Encryption SDK for C, em que a operagao de criptografia ignora um chaveiro
de descoberta padrao, mas falha se vocé especificar um chaveiro de descoberta de varias regides,
sozinho ou em um chaveiro com varias chaves.

Tokens de autenticacao e provedores de chaves mestras compativeis

A tabela a seguir mostra quais chaves mestras e fornecedores de chaves mestras sao

compativeis com os chaveiros fornecidos pela empresa AWS Encryption SDK . Qualquer pequena
incompatibilidade devido as restricdes de linguagem é explicada no topico sobre a implementagao de
linguagem.

Token de autenticacao: Provedor de chaves mestras:

AWS KMS chaveiro KMSMasterChave (Java)

KMSMasterKeyProvider (Java)

Requisitos variados para tokens de autenticagéo de criptografia 106

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html

AWS Encryption SDK

Guia do Desenvolvedor

Token de autenticacgao:

AWS KMS Chaveiro
hierarquico

AWS KMS Chaveiro
ECDH

Token de autenticacao
bruto do AES

Provedor de chaves mestras:

KMSMasterChave (Python)

KMSMasterKeyProvider (Python)

® Note

O AWS Encryption SDK for Python e AWS Encryption SDK
for Java n&o inclui uma chave mestra ou um provedor de
chave mestra que seja equivalente ao chaveiro AWS KMS

regional Discovery.

Compativel com as seguintes linguagens e versdes de programacao:

* Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado
com a dependéncia opcional da Biblioteca de Provedores de
Material Criptografico (MPL).

* Versao 1. x do AWS Encryption SDK para Rust

* Versao 0.1. x ou posterior do AWS Encryption SDK for Go
Compativel com as seguintes linguagens e versdes de programagao:

* Verséao 3. x do AWS Encryption SDK for Java
* Verséao 4. x do AWS Encryption SDK para o.NET

* Verséao 4. x do AWS Encryption SDK for Python, quando usado
com a dependéncia opcional da Biblioteca de Provedores de
Material Criptografico (MPL).

* Versédo 1. x do AWS Encryption SDK para Rust
* Verséao 0.1. x ou posterior do AWS Encryption SDK for Go

Quando sao usados com chaves de criptografia simétrica:
JceMasterKey(Java)

RawMasterKey(Python)

Tokens de autenticagdo e provedores de chaves mestras compativeis 107

https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Guia do Desenvolvedor

Token de autenticacéao: Provedor de chaves mestras:
Token de autenticacao Quando sao usados com chaves de criptografia assimétrica:
bruto do RSA JceMasterKey(Java)
RawMasterKey(Python)
® Note

O token de autenticagdo RSA bruto ndo oferece suporte a
chaves do KMS assimétricas. Se vocé quiser usar chaves
RSA KMS assimétricas, versao 4. x do AWS Encryption SDK
for.NET suporta AWS KMS chaveiros que usam criptogra

fia simétrica (SYMMETRIC_DEFAULT) ou RSA assimétrica.
AWS KMS keys

Chaveiro ECDH bruto Compativel com as seguintes linguagens e versdes de programacao:

* Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado
com a dependéncia opcional da Biblioteca de Provedores de
Material Criptografico (MPL).

* Versao 1. x do AWS Encryption SDK para Rust
* Verséao 0.1. x ou posterior do AWS Encryption SDK for Go

AWS KMS chaveiros

Um AWS KMS chaveiro € usado AWS KMS keyspara gerar, criptografar e descriptografar chaves de
dados. AWS Key Management Service (AWS KMS) protege suas chaves KMS e executa operagoes
criptograficas dentro do limite do FIPS. E recomendéavel usar um token de autenticagdo do AWS
KMS ou um token de autenticagdo com propriedades de seguranga semelhantes sempre que
possivel.

Todas as implementagdes de linguagem de programacgao que oferecem suporte a chaveiros
oferecem suporte a AWS KMS chaveiros que usam chaves KMS de criptografia simétrica. As

AWS KMS chaveiros 108

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Encryption SDK Guia do Desenvolvedor

implementacdes de linguagem de programacao a seguir também oferecem suporte a AWS KMS
chaveiros que usam chaves RSA KMS assimétricas:

* Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia opcional da
Biblioteca de Provedores de Material Criptografico (MPL).

* Versao 1. x do AWS Encryption SDK para Rust
» Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Se vocé tentar incluir uma chave do KMS assimétrica em um token de autenticagao de criptografia
que esteja em outra implementacao de linguagem, a chamada de criptografia falhara. Se vocé inclui-
la em um token de autenticacédo de descriptografia, ele sera ignorado.

Vocé pode usar uma chave AWS KMS multirregional em um AWS KMS chaveiro ou provedor de
chave mestra a partir da versao 2.3. x do AWS Encryption SDK e versao 3.0. x da CLI AWS de
criptografia. Para obter detalhes e exemplos de uso do multi-Region-aware simbolo, consulteUsando
varias regioes AWS KMS keys. Para obter mais informagdes sobre chaves multirregionais, consulte

Usar chaves multirregionais no Guia do Desenvolvedor do AWS Key Management Service .

(® Note

Todas as mengdes aos chaveiros KMS AWS Encryption SDK se referem aos chaveiros.
AWS KMS

AWS KMS os chaveiros podem incluir dois tipos de chaves de embrulho:

« Chave geradora: gera uma chave de dados em texto simples e a criptografa. Um token de
autenticagao que criptografa dados deve ter uma chave geradora.

« Chaves adicionais: criptografa a chave de dados em texto simples gerada pela chave do gerador.
AWS KMS os chaveiros podem ter zero ou mais chaves adicionais.

Vocé deve ter uma chave geradora para criptografar mensagens. Quando um AWS KMS chaveiro
tem apenas uma chave KMS, essa chave é usada para gerar e criptografar a chave de dados.

Ao descriptografar, a chave geradora é opcional e a distingdo entre chaves geradoras e chaves
adicionais é ignorada.

AWS KMS chaveiros 109

https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Guia do Desenvolvedor

Como todos os chaveiros, os AWS KMS chaveiros podem ser usados de forma independente ou em
um chaveiro multiplo com outros chaveiros do mesmo tipo ou de um tipo diferente.

Topicos

* Permissbes necessarias para tokens de autenticacdo do AWS KMS

Identificacdo AWS KMS keys em um AWS KMS chaveiro

Criando um AWS KMS chaveiro

Usando um chaveiro AWS KMS Discovery

Usando um chaveiro de descoberta AWS KMS regional

Permissdes necessarias para tokens de autenticacdo do AWS KMS

O AWS Encryption SDK nao requer um Conta da AWS e nao depende de nenhum AWS service
(Servigo da AWS). No entanto, para usar um AWS KMS chaveiro, vocé precisa de uma Conta da
AWS e das seguintes permissdes minimas AWS KMS keys no seu chaveiro.

» Para criptografar com um AWS KMS chaveiro, vocé precisa da GenerateDataKey permissao kms:
na chave do gerador. Vocé precisa da permissdo KMS:Encrypt em todas as chaves adicionais no
chaveiro. AWS KMS

+ Para descriptografar com um AWS KMS chaveiro, vocé precisa da permissdo kms:Decrypt em
pelo menos uma chave no chaveiro. AWS KMS

» Para criptografar com um chaveiro multiplo composto por AWS KMS chaveiros, vocé precisa da
GenerateDataKey permissdo kms: na chave do gerador no chaveiro do gerador. Vocé precisa da
permissdo KMS:Encrypt em todas as outras chaves em todos os outros chaveiros. AWS KMS

» Para criptografar com um AWS KMS chaveiro RSA assimétrico, vocé nao precisa de kms:
GenerateDataKey ou kms:Encrypt porque vocé deve especificar o material de chave publica

que deseja usar para criptografia ao criar o chaveiro. Nenhuma AWS KMS chamada ¢ feita ao
criptografar com este chaveiro. Para descriptografar com um AWS KMS chaveiro RSA assimétrico,
vocé precisa da permissao KMS:Decrypt.

Para obter informacdes detalhadas sobre permissdes para AWS KMS keys, consulte Acesso e
permissoes a chave KMS no Guia do AWS Key Management Service desenvolvedor.

Permissdes necessarias para tokens de autenticagdo do AWS KMS 110

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Guia do Desenvolvedor

Identificacao AWS KMS keys em um AWS KMS chaveiro

Um AWS KMS chaveiro pode incluir um ou mais AWS KMS keys. Para especificar um AWS KMS key
em um AWS KMS chaveiro, use um identificador de AWS KMS chave compativel. Os identificadores
de chave que vocé pode usar para identificar um AWS KMS key em um chaveiro variam de acordo
com a operacgao e a implementacao da linguagem. Para obter detalhes sobre os identificadores de
chave de uma AWS KMS key, consulteldentificadores de chave no Guia do Desenvolvedor do AWS
Key Management Service .

Como pratica recomendada, use o identificador de chave mais especifico que seja pratico para sua
tarefa.

« Em um chaveiro de criptografia para o AWS Encryption SDK for C, vocé pode usar um ARN de
chave ou um alias ARN para identificar chaves KMS. Em todas as outras implementagées de
linguagem, vocé pode usar um ID de chave, ARN de chave, nome de alias ou ARN de alias para
criptografar dados.

« Em um token de autenticag¢ao de descriptografia, vocé deve usar um ARN de chave para identificar
AWS KMS keys. Esse requisito aplica-se a todas as implementagdes de linguagem do AWS
Encryption SDK. Para obter detalhes, consulte Selecdo de chaves de encapsulamento.

« Em um token de autenticagao usado para criptografia e descriptografia, vocé deve usar um ARN
de chave para identificar AWS KMS keys. Esse requisito aplica-se a todas as implementagdes de
linguagem do AWS Encryption SDK.

Se vocé especificar um nome de alias ou um ARN de alias para uma chave do KMS em um token
de autenticacao de criptografia, a operacao de criptografia salvara o ARN de chave atualmente
associado ao alias nos metadados da chave de dados criptografada. Isso n&o salva o alias. As
alteragdes no alias ndo afetam a chave do KMS usada para descriptografar suas chaves de dados
criptografadas.

Criando um AWS KMS chaveiro

Vocé pode configurar cada AWS KMS chaveiro com um unico AWS KMS key ou varios AWS

KMS keys no mesmo ou em um diferente Contas da AWS e. Regides da AWS AWS KMS keys
Deve ser uma chave KMS de criptografia simétrica (SYMMETRIC_DEFAULT) ou uma chave KMS
RSA assimétrica. Também é possivel usar uma chave KMS multirregional criptografia simétrica. E
possivel usar um ou mais tokens de autenticacdo do AWS KMS em um multitoken de autenticacao.

Identificagdo AWS KMS keys em um AWS KMS chaveiro 111

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Encryption SDK Guia do Desenvolvedor

Vocé pode criar um AWS KMS chaveiro que criptografe e descriptografe dados, ou vocé pode criar
AWS KMS chaveiros especificamente para criptografar ou descriptografar. Ao criar um AWS KMS
chaveiro para criptografar dados, vocé deve especificar uma chave geradora, AWS KMS key que é
usada para gerar uma chave de dados em texto simples e criptografa-la. A chave de dados nao tem
relacdo matematica com a chave KMS. Em seguida, se quiser, vocé pode especificar outras AWS
KMS keys que criptografem a mesma chave de dados de texto sem formatacao. Para descriptografar
um campo criptografado protegido por esse chaveiro, o chaveiro de decodificacdo que vocé usa
deve incluir pelo menos um dos definidos no chaveiro, ou ndo. AWS KMS keys AWS KMS keys(Um
AWS KMS chaveiro sem AWS KMS keys é conhecido como chaveiro AWS KMS Discovery.)

Em implementag¢des de AWS Encryption SDK linguagem diferentes da AWS Encryption SDK for

C, todas as chaves agrupadas em um chaveiro de criptografia ou em varios chaveiros devem

ser capazes de criptografar a chave de dados. Se alguma chave de encapsulamento falhar na
criptografia, o método de criptografia falhara. Como resultado, o chamador deve ter as permissoées
necessarias para todas as chaves no token de autenticagdo. Se vocé usar um token de autenticacao
para criptografar dados, sozinho ou em um token de autenticacdo multiplo, a operacao de criptografia
falhara. A excecgao € a AWS Encryption SDK for C, em que a operacgao de criptografia ignora um
chaveiro de descoberta padrao, mas falha se vocé especificar um chaveiro de descoberta de varias
regiodes, sozinho ou em um chaveiro com varias chaves.

Os exemplos a seguir criam um AWS KMS chaveiro com uma chave geradora e uma chave
adicional. Tanto a chave geradora quanto a chave adicional sdo chaves KMS de criptografia
simétrica. Esses exemplos usam ARNs a chave para identificar as chaves KMS. Essa € uma pratica
recomendada para AWS KMS chaveiros usados para criptografia e um requisito para AWS KMS
chaveiros usados para decodificagdo. Para obter detalhes, consulte Identificacdo AWS KMS keys em
um AWS KMS chaveiro.

C

Para identificar um AWS KMS key em um chaveiro de criptografia no AWS Encryption SDK for C,
especifigue o ARN da chave ou o ARN do alias. Em um token de autenticagdo de descriptografia,
€ necessario usar um ARN de chave. Para obter detalhes, consulte Identificacdo AWS KMS keys
em um AWS KMS chaveiro.

Para obter um exemplo completo, consulte string.cpp.

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Criando um AWS KMS chaveiro 112

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Guia do Desenvolvedor

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(generator_key, {additional_key});

C#/.NET

Para criar um chaveiro com uma ou mais chaves KMS no AWS Encryption SDK para.NET, use o
CreateAwsKmsMultiKeyring() método. Este exemplo usa duas chaves do AWS KMS . Para
especificar uma chave do KMS, use o parametro Generator. O parametro KmsKeyIds, que
especifica chaves KMS adicionais, € opcional.

A entrada para este chaveiro nao requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrao para cada regiao representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do Generator parametro estiver
na regido Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criara um AWS KMS
cliente padréao para a us-west-2 regido. Se vocé precisar personalizar o cliente do AWS KMS ,
use o método CreateAwsKmsKeyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK
para.NET, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN de
chave, nome de alias ou ARN de alias. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteldentificacao AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir usa a versao 4. x do AWS Encryption SDK para o.NET e o
CreateAwsKmsKeyring() método para personalizar o AWS KMS cliente.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput

{

Generator = generatorKey,

Criando um AWS KMS chaveiro 113

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

KmsKeyIds = additionalKeys
};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK para
JavaScript, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN da
chave, nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteldentificacao AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padrao,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte kms_simple.ts no repositério em. AWS Encryption SDK
para JavaScript GitHub

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider getClient(KMS, { credentials })

const generatorKeyId 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeylId,
keyIds: [additionalKey]

1)

Criando um AWS KMS chaveiro 114

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK para
JavaScript, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN da
chave, nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteldentificacao AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte kms_simple.ts no repositério em. AWS Encryption SDK
para JavaScript GitHub

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
generatorKeylId,
keyIds: [additionalKey]

1)

Java

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
CreateAwsKmsMultiKeyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parametro generator. O parametro kmsKeyIds, que
especifica chaves KMS adicionais, € opcional.

Criando um AWS KMS chaveiro 115

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

A entrada para este chaveiro nao requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrao para cada regiao representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do Generator parametro estiver
na regiao Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criara um AWS KMS
cliente padréo para a us-west-2 regido. Se vocé precisar personalizar o cliente do AWS KMS ,
use o método CreateAwsKmsKeyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Java, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN da chave,
nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS
KMS chaveiro, consulteldentificacdo AWS KMS keys em um AWS KMS chaveiro.

Para ver um exemplo completo, consulte BasicEncryptionKeyringExample.java no AWS
Encryption SDK for Java repositorio em. GitHub

// Instantiate the AWS Encryption SDK and material providers

final AwsCrypto crypto = AwsCrypto.builder().build();

final MaterialProviders materialProviders = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(generatorKey)
.kmsKeyIds(additionalKey)
.build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
create_aws_kms_multi_keyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parametro generator. O parametro kms_key_ids, que
especifica chaves KMS adicionais, € opcional.

Criando um AWS KMS chaveiro 116

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK Guia do Desenvolvedor

A entrada para este chaveiro nao requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrao para cada regiao representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do generator parametro estiver
na regiao Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criara um AWS KMS
cliente padréo para a us-west-2 regido. Se vocé precisar personalizar o cliente do AWS KMS ,
use o método create_aws_kms_keyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for

Python, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN da chave,
nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS
KMS chaveiro, consulteldentificacao AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir instancia o AWS Encryption SDK cliente com a politica de compromisso
padrdo,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para ver um exemplo completo, consulte
aws_kms_multi_keyring_example.py no AWS Encryption SDK for Python repositério em GitHub.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
CreateAwsKmsMultiKeyringInput(
generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

Criando um AWS KMS chaveiro 117

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK Guia do Desenvolvedor

)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Rust

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
create_aws_kms_multi_keyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parametro generator. O parametro kms_key_ids, que
especifica chaves KMS adicionais, € opcional.

A entrada para este chaveiro ndo requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrao para cada regido representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do generator parametro estiver
na regiao Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criara um AWS KMS
cliente padréao para a us-west-2 regido. Se vocé precisar personalizar o cliente do AWS KMS ,
use o método create_aws_kms_keyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Rust, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN da chave,
nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS
KMS chaveiro, consulteldentificacado AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir instancia o AWS Encryption SDK cliente com a politica de compromisso
padrao,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para obter um exemplo completo, consulte
aws_kms_keyring_example.rs no diretério Rust do repositério em. aws-encryption-sdk GitHub

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),

Criando um AWS KMS chaveiro 118

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK Guia do Desenvolvedor

("is not".to_string(), "secret".to_string()),

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
input=kms_multi_keyring_input

Go

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
create_aws_kms_multi_keyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parametro generator. O parametro kms_key_ids, que
especifica chaves KMS adicionais, € opcional.

A entrada para este chaveiro ndo requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrao para cada regido representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do generator parametro estiver
na regiao Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criara um AWS KMS
cliente padréo para a us-west-2 regido. Se vocé precisar personalizar o cliente do AWS KMS ,
use o método create_aws_kms_keyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Go, vocé pode usar qualquer identificador de chave valido: um ID de chave, ARN da chave, nome
do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS KMS
chaveiro, consulteldentificacao AWS KMS keys em um AWS KMS chaveiro.

Criando um AWS KMS chaveiro 119

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

O exemplo a seguir instancia o AWS Encryption SDK cliente com a politica de compromisso
padrao,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring

awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{
Generator: "&arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
KmsKeyIds: []string{"arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

Criando um AWS KMS chaveiro 120

AWS Encryption SDK Guia do Desenvolvedor

}
awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
awsKmsMultiKeyringInput)

AWS Encryption SDK Também suporta AWS KMS chaveiros que usam chaves RSA KMS
assimétricas. Os AWS KMS chaveiros RSA assimétricos sé podem conter um par de chaves.

Para criptografar com um AWS KMS chaveiro RSA assimétrico, vocé ndo precisa de kms:
GenerateDataKey ou kms:Encrypt porque vocé deve especificar o material de chave publica que

deseja usar para criptografia ao criar o chaveiro. Nenhuma chamada do AWS KMS é feita ao
criptografar com este token de autenticagao. Para descriptografar com um AWS KMS chaveiro RSA

assimétrico, vocé precisa da permissao KMS:Decrypt.

@ Note

Para criar um AWS KMS chaveiro que use chaves RSA KMS assimétricas, vocé deve usar
uma das seguintes implementagdes de linguagem de programacgao:

» Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

» Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia
opcional da Biblioteca de Provedores de Material Criptografico (MPL).

* Versao 1. x do AWS Encryption SDK para Rust
» Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Os exemplos a seguir usam o CreateAwsKmsRsaKeyring método para criar um AWS KMS
chaveiro com uma chave RSA KMS assimétrica. Para criar um AWS KMS chaveiro RSA assimétrico,
fornecga os seguintes valores.

+ kmsClient: criar um novo AWS KMS cliente
+ kmsKeyID: o ARN da chave que identifica sua chave RSA KMS assimétrica

* publicKey: a ByteBuffer de um arquivo PEM codificado em UTF-8 que representa a chave
publica da chave para a qual vocé passou kmsKeyID

* encryptionAlgorithm: o algoritmo de criptografia deve ser RSAES_OAEP_SHA_256 ou
RSAES_OAEP_SHA_1

Criando um AWS KMS chaveiro 121

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

C#/ .NET

Para criar um AWS KMS chaveiro RSA assimétrico, vocé deve fornecer o ARN da chave publica
e da chave privada da sua chave RSA KMS assimétrica. A chave publica deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = AWS KMS RSA private key ARN,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

Para criar um AWS KMS chaveiro RSA assimétrico, vocé deve fornecer o ARN da chave publica
e da chave privada da sua chave RSA KMS assimétrica. A chave publica deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()

// Specify algorithmSuite without asymmetric signing here

//

// ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),

// ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),

// ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),

// ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),

// ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),

// ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_ TAG16_HKDF_SHA256)
.build();

Criando um AWS KMS chaveiro 122

AWS Encryption SDK Guia do Desenvolvedor

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a KMS RSA keyring.
// This keyring takes in:

// - kmsClient

// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key

// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId

// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1

final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsaKeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

Para criar um AWS KMS chaveiro RSA assimétrico, vocé deve fornecer o ARN da chave publica
e da chave privada da sua chave RSA KMS assimétrica. A chave publica deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers library

Criando um AWS KMS chaveiro 123

AWS Encryption SDK Guia do Desenvolvedor

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
public_key="public_key",
kms_key_id="kms_key_id",
encryption_algorithm="RSAES_OAEP_SHA_ 256",
kms_client=kms_client

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
input=keyring_input

Rust

Para criar um AWS KMS chaveiro RSA assimétrico, vocé deve fornecer o ARN da chave publica
e da chave privada da sua chave RSA KMS assimétrica. A chave publica deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;

Criando um AWS KMS chaveiro 124

AWS Encryption SDK Guia do Desenvolvedor

let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring

let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(kms_key_id)
.public_key(aws_smithy_types::Blob::new(public_key))

.encryption_algorithm(aws_sdk_kms: :types: :EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(kms_client)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

Criando um AWS KMS chaveiro 125

AWS Encryption SDK Guia do Desenvolvedor

1)

// Optional: Create an encryption context

encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{

KmsClient: kmsClient,
KmsKeyId: kmsKeyID,
PublicKey: kmsPublicKey,
EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
awsKmsRSAKeyringInput)
if err !'= nil {
panic(err)
}

Usando um chaveiro AWS KMS Discovery

Ao descriptografar, € uma pratica recomendada especificar as chaves de encapsulamento que
podem ser usadas. AWS Encryption SDK Para seguir essa pratica recomendada, use um chaveiro
de AWS KMS decodificacdo que limite as chaves de AWS KMS encapsulamento as que vocé
especificar. No entanto, vocé também pode criar um chaveiro de AWS KMS descoberta, ou seja, um
AWS KMS chaveiro que nao especifique nenhuma chave de agrupamento.

AWS Encryption SDK Fornece um chaveiro de AWS KMS descoberta padrdo e um chaveiro de
descoberta para chaves AWS KMS multirregionais. Para obter informagdes sobre como usar chaves
de varias regides com o AWS Encryption SDK, consulte Usando varias regioes AWS KMS keys.

Usando um chaveiro AWS KMS Discovery 126

AWS Encryption SDK Guia do Desenvolvedor

Como nao especifica nenhuma chave de encapsulamento, um token de autenticacdo de descoberta
nao pode criptografar dados. Se vocé usar um token de autenticagao para criptografar dados,
sozinho ou em um token de autenticagdo multiplo, a operagao de criptografia falhara. A excecéao é
a AWS Encryption SDK for C, em que a operacao de criptografia ignora um chaveiro de descoberta
padrao, mas falha se vocé especificar um chaveiro de descoberta de varias regides, sozinho ou em
um chaveiro com varias chaves.

Ao descriptografar, um chaveiro de descoberta permite que vocé solicite AWS Encryption SDK AWS
KMS a decodificacao de qualquer chave de dados criptografada usando AWS KMS key aquela que a
criptografou, independentemente de quem a possui ou tem acesso a ela. AWS KMS key A chamada
sera bem-sucedida somente quando o chamador tiver a permissdo kms :Decrypt na AWS KMS
key.

/A Important

Se voceé incluir um chaveiro de AWS KMS descoberta em um chaveiro de decodificagao
multipla, o chaveiro de descoberta substituira todas as restricbes de chave KMS

especificadas por outros chaveiros no chaveiro multiplo. O token de autenticagdo multiplo

se comporta como o token de autenticacao menos restritivo. Um token de autenticacao de
descoberta do AWS KMS nao tem efeito na criptografia quando usado sozinho ou em um

multitoken de autenticacao.

AWS Encryption SDK Ele fornece um chaveiro AWS KMS Discovery para sua conveniéncia. No
entanto, recomendamos que vocé use um token de autenticagdo mais limitado sempre que possivel
pelas razbes a seguir.

» Autenticidade — Um chaveiro de AWS KMS descoberta pode usar qualquer chave usada para
criptografar uma chave de dados na mensagem criptografada, apenas para AWS KMS key que
o chamador tenha permissao para usa-la para descriptografar. AWS KMS key Isso pode n&o
ser o AWS KMS key que o chamador pretende usar. Por exemplo, uma das chaves de dados
criptografadas pode ter sido criptografada de forma menos segura AWS KMS key que qualquer
pessoa possa usar.

 Laténcia e desempenho — Um chaveiro de AWS KMS descoberta pode ser visivelmente mais
lento do que outros chaveiros porque AWS Encryption SDK tenta descriptografar todas as
chaves de dados criptografadas, incluindo aquelas criptografadas AWS KMS keys em outras
regioes, Contas da AWS e AWS KMS keys que o chamador n&o tem permissao para usar para
descriptografia.

Usando um chaveiro AWS KMS Discovery 127

AWS Encryption SDK Guia do Desenvolvedor

Se vocé usa um chaveiro de descoberta, recomendamos que vocé use um filtro de descoberta para

limitar as chaves KMS que podem ser usadas para aquelas em particbes Contas da AWS e particbes
especificadas. Os filtros de descoberta sdo compativeis com as versdes 1.7.x e posteriores do AWS
Encryption SDK. Para obter ajuda para encontrar o ID e a particao da sua conta, consulte Seus
Conta da AWS identificadores e formato ARN no. Referéncia geral da AWS

O cdédigo a seguir instancia um chaveiro de AWS KMS descoberta com um filtro de descoberta que
limita as chaves KMS que AWS Encryption SDK podem ser usadas as da aws particao e da conta de
exemplo 111122223333.

Antes de usar esse codigo, substitua os valores de exemplo Conta da AWS e de partigdo por valores
validos para sua particdo Conta da AWS e. Se as chaves do KMS estiverem em regides da China,
use o valor de particdo aws-cn. Se as chaves do KMS estiverem em AWS GovCloud (US) Regions,
use o valor de particdo aws-us-gov. Para todas as outras Regides da AWS, use o valor de particao
aws.

C

Para obter um exemplo completo, consulte: kms_discovery.cpp.

std: :shared_ptr<KmsKeyring::> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder()
.BuildDiscovery(discovery_filter));

C#/ .NET

O exemplo a seguir usa a versao 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key

Usando um chaveiro AWS KMS Discovery 128

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Guia do Desenvolvedor

var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

{
AccountIds = account,
Partition = "aws"

i

var kmsDiscoveryKeyring =
mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser
Em JavaScript, vocé deve especificar explicitamente a propriedade de descoberta.

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
KmsKeyringBrowser,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
const clientProvider = getClient(KMS, { credentials })
const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
i)

JavaScript Node.js

Em JavaScript, vocé deve especificar explicitamente a propriedade de descoberta.

Usando um chaveiro AWS KMS Discovery 129

AWS Encryption SDK Guia do Desenvolvedor

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagodes, consulte the section called “Limitar as chaves de dados criptografadas”.

Java

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true

const keyring = new KmsKeyringNode({

discovery,

discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
1)

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Usando um chaveiro AWS KMS Discovery 130

AWS Encryption SDK Guia do Desenvolvedor

)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
CreateAwsKmsDiscoveryKeyringInput(
kms_client=kms_client,
discovery_filter=DiscoveryFiltexr(
account_ids=[aws_account_id],
partition="aws"

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
input=discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.
let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

Usando um chaveiro AWS KMS Discovery 131

AWS Encryption SDK Guia do Desenvolvedor

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
.create_aws_kms_discovery_keyring()
.kms_client(kms_client.clone())
.discovery_filter(discovery_filter)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

Usando um chaveiro AWS KMS Discovery 132

AWS Encryption SDK Guia do Desenvolvedor

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err != nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

if err != nil {
panic(err)
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{kmsKeyAccountID},
Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
KmsClient: kmsClient,

DiscoveryFilter: &discoveryFilter,
}
awsKmsDiscoveryKeyring, err :=
matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
awsKmsDiscoveryKeyringInput)
if err != nil {
panic(err)

Usando um chaveiro AWS KMS Discovery 133

AWS Encryption SDK Guia do Desenvolvedor

Usando um chaveiro de descoberta AWS KMS regional

Um chaveiro de descoberta AWS KMS regional € um chaveiro que nao especifica as chaves ARNs
KMS. Em vez disso, ele permite que AWS Encryption SDK o decodifique usando somente as chaves
KMS em particular. Regiées da AWS

Ao descriptografar com um chaveiro de descoberta AWS KMS regional, ele AWS Encryption SDK
descriptografa qualquer chave de dados criptografada que tenha sido criptografada sob um no
especificado. AWS KMS key Regido da AWS Para ter sucesso, o chamador deve ter kms :Decrypt
permissao em pelo menos um dos AWS KMS keys itens especificados Regidao da AWS que
criptografou uma chave de dados.

Como outros token de autenticagao de descoberta, o token de autenticagdo de descoberta regional
nao afeta a criptografia. Ele funciona somente ao descriptografar mensagens criptografadas. Se vocé
usar um token de autenticagao de descoberta regional em um multitoken de autenticagao usado para
criptografar e descriptografar, ele so6 sera efetivo durante a descriptografia. Se vocé usar um token
de autenticacao de descoberta multirregional para criptografar dados, sozinho ou em um token de
autenticagao com varios tokens de autenticagio, a operagao de criptografia falhara.

/A Important

Se vocé incluir um chaveiro de descoberta AWS KMS regional em um chaveiro de
descriptografia multiplo, o chaveiro de descoberta regional substituira todas as restricoes

de chave KMS especificadas por outros chaveiros no chaveiro multiplo. O token de
autenticagao multiplo se comporta como o token de autenticagdo menos restritivo. Um token
de autenticacao de descoberta do AWS KMS nao tem efeito na criptografia quando usado
sozinho ou em um multitoken de autenticacao.

O chaveiro de descoberta regional nas AWS Encryption SDK for C tentativas de descriptografar
somente com chaves KMS na regiao especificada. Ao usar um chaveiro de descoberta no AWS
Encryption SDK para JavaScript e AWS Encryption SDK para.NET, vocé configura a regiao no

AWS KMS cliente. Essas AWS Encryption SDK implementagdes nao filtram as chaves KMS por
regiao, mas AWS KMS falhardo em uma solicitagcao de descriptografia de chaves KMS fora da regiao
especificada.

Se vocé usa um chaveiro de descoberta, recomendamos que vocé use um filtro de descoberta para
limitar as chaves KMS usadas na descriptografia aquelas em partigdes e particdes especificadas.

Usando um chaveiro de descoberta AWS KMS regional 134

AWS Encryption SDK Guia do Desenvolvedor

Contas da AWS Os filtros de descoberta sdo compativeis com as versdes 1.7.x e posteriores do
AWS Encryption SDK.

Por exemplo, o codigo a seguir cria um chaveiro de descoberta AWS KMS regional com um filtro de
descoberta. Esse chaveiro limita as duas AWS Encryption SDK chaves KMS na conta 111122223333
na regidao Oeste dos EUA (Oregon) (us-west-2).

C
Para exibir esse token de autenticacdo e o método create_kms_client em um exemplo
funcional, consulte kms_discovery.cpp.
std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")
.Build());
struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Buildex()
.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery(discovery_filter))
C#/ .NET

O AWS Encryption SDK for.NET nao tem um chaveiro de descoberta regional dedicado. Porém,
vocé pode usar varias técnicas para limitar as chaves KMS usadas ao descriptografar para uma
regiao especifica.

A maneira mais eficiente de limitar as regides em um chaveiro de descoberta € usar um chaveiro
de multi-Region-aware descoberta, mesmo que vocé tenha criptografado os dados usando
somente chaves de regiao unica. Quando encontra chaves de regido unica, o multi-Region-aware
chaveiro n&o usa nenhum recurso multirregional.

O token de autenticagao retornado pelo método CreateAwsKmsMrkDiscoveryKeyring()
filtra as chaves do por regido antes de chamar o AWS KMS. Ele envia uma solicitagcao

de descriptografia AWS KMS somente quando a chave de dados criptografada foi
criptografada por uma chave KMS na regido especificada pelo Region paréametro no objeto.
CreateAwsKmsMrkDiscoveryKeyringInput

Os exemplos a seguir usam a versao 4.x do AWS Encryption SDK para .NET.

Usando um chaveiro de descoberta AWS KMS regional 135

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Guia do Desenvolvedor

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{

AccountIds = account,

Partition = "aws"

I

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
Region = RegionEndpoint.USWest2,
DiscoveryFilter = filter

};

var kmsRegionalDiscoveryKeyring =
mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

Vocé também pode limitar as chaves KMS a uma determinada Regido da AWS especificando
uma regiao na sua instancia do AWS KMS cliente () AmazonKeyManagementServiceClient.

No entanto, essa configuragdo é menos eficiente e potencialmente mais cara do que usar um
chaveiro de multi-Region-aware descoberta. Em vez de filtrar as chaves KMS por regido antes da
chamada AWS KMS, o AWS Encryption SDK for.NET chama AWS KMS cada chave de dados
criptografada (até decifrar uma) e se baseia em limitar as chaves KMS que usa AWS KMS a
regiao especificada.

O exemplo a seguir usa a versao 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" },;
// Create the discovery filter,

// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

Usando um chaveiro de descoberta AWS KMS regional 136

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK Guia do Desenvolvedor

{
KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
DiscoveryFilter = new DiscoveryFilter()
{
AccountIds = account,
Partition = "aws"
}
I

var kmsRegionalDiscoveryKeyring =
mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

O exemplo a seguir usa a buildClient fungado para especificar a politica de compromisso
padrao,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
)

JavaScript Node.js

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padrdo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para

Usando um chaveiro de descoberta AWS KMS regional 137

AWS Encryption SDK Guia do Desenvolvedor

limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver esse chaveiro e a 1imitRegions fungcdo em um exemplo pratico, consulte
kms_regional_discovery.ts.

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
1)

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK

Usando um chaveiro de descoberta AWS KMS regional 138

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_xregion)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
CreateAwsKmsMrkDiscoveryKeyringInput(
kms_client=kms_client,
region=mrk_replica_decrypt_region,
discovery_filter=DiscoveryFilter(
account_ids=[111122223333],
partition="aws"

regional_discovery_keyring: IKeyring =
mat_prov.create_aws_kms_mrk_discovery_keyring(
input=regional_discovery_keyring_input

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;

Usando um chaveiro de descoberta AWS KMS regional 139

AWS Encryption SDK

Guia do Desenvolvedor

Go

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client

let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
.region(Region: :new(mrk_replica_decrypt_region.clone()))
.build();

let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.account_ids(vec![aws_account_id.to_string()])
.partition("aws".to_string())
.build()?;

// Create the regional discovery keyring

let discovery_keyring = mpl
.create_aws_kms_mrk_discovery_keyring()
.kms_client(decrypt_kms_client)
.region(mrk_replica_decrypt_region)
.discovery_filter(discovery_filter)
.send()
.await?;

import (
"context"

Usando um chaveiro de descoberta AWS KMS regional

140

AWS Encryption SDK Guia do Desenvolvedor

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D)
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}
// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
AccountIds: []string{awsAccountID},
Partition: "aws",
}

// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{

Usando um chaveiro de descoberta AWS KMS regional 141

AWS Encryption SDK Guia do Desenvolvedor

KmsClient: kmsClient,
Region: alternateRegionMrkKeyRegion,
DiscoveryFilter: &discoveryFilter,

}
awsKmsMrkDiscoveryKeyring, err :=
matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
awsKmsMrkDiscoveryInput)
if err !'= nil {
panic(err)

Ele AWS Encryption SDK para JavaScript também exporta uma excludeRegions fungéo para

o Node.js e o0 navegador. Essa fungao cria um chaveiro de descoberta AWS KMS regional que é
omitido AWS KMS keys em regides especificas. O exemplo a seguir cria um chaveiro de descoberta
AWS KMS regional que pode ser usado AWS KMS keys na conta 111122223333 em todos, Regiao
da AWS exceto no Leste dos EUA (Norte da Virginia) (us-east-1).

O AWS Encryption SDK for C nao tem um método analogo, mas vocé pode implementa-lo criando
um personalizado ClientSupplier.

Este exemplo mostra o cédigo para Node.js.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({

clientProvider,

discovery,

discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }

1)

AWS KMS Chaveiros hierarquicos

Com o AWS KMS chaveiro hierarquico, vocé pode proteger seus materiais criptograficos com uma
chave KMS de criptografia simétrica sem ligar AWS KMS toda vez que criptografar ou descriptografar
dados. E uma boa opcao para aplicativos que precisam minimizar as chamadas e aplicativos que
podem reutilizar alguns materiais criptograficos sem violar seus requisitos de segurangca. AWS KMS

O chaveiro hierarquico é uma solugdo de armazenamento em cache de materiais criptograficos
que reduz o numero de AWS KMS chamadas usando chaves de ramificagado AWS KMS protegidas

AWS KMS Chaveiros hierarquicos 142

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK Guia do Desenvolvedor

persistentes em uma tabela do Amazon DynamoDB e, em seguida, armazenando localmente em
cache materiais de chave de ramificacdo usados em operacgodes de criptografia e descriptografia. A
tabela do DynamoDB serve como o0 armazenamento de chaves que gerencia e protege as chaves
de ramificagdo. Ele armazena a chave de ramificacao ativa e todas as versdes anteriores da chave
de ramificagdo. A chave de ramificagcao ativa € a versao mais recente da chave de ramificagao.

O chaveiro hierarquico usa uma chave de dados exclusiva para criptografar cada mensagem e
criptografa cada chave de criptografia de dados para cada solicitagao de criptografia e criptografa
cada chave de criptografia de dados com uma chave de empacotamento exclusiva derivada da
chave de ramificacao ativa. O token de autenticagao hierarquico depende da hierarquia estabelecida
entre as chaves de ramificagao ativas e suas chaves de agrupamento derivadas.

O token de autenticagao hierarquico normalmente usa cada versao da chave de ramificagao para
atender a varias solicitacoes. Porém, vocé controla até que ponto as chaves de ramificacao ativas
sao reutilizadas e determina com que frequéncia a chave de ramificacao ativa é alternada. A versao
ativa da chave de ramificagdo permanece ativa até que vocé a alterne. As versdes anteriores da
chave de ramificacao ativa ndo serao usadas para realizar operagdes de criptografia, mas ainda
podem ser consultadas e usadas em operacdes de descriptografia.

Quando vocé instancia o token de autenticacao hierarquico, ele cria um cache local. Vocé especifica
um limite de cache que define o tempo maximo em que os materiais da chave de ramificagao

sdo armazenados no cache local antes de expirarem e serem despejados do cache. O chaveiro
hierarquico faz uma AWS KMS chamada para descriptografar a chave de ramificagao e montar os
materiais da chave de ramificagdo na primeira vez em que a € especificado em uma branch-key-
id operagao. Em seguida, os materiais da chave de ramificagdo sdo armazenados no cache local

e reutilizados para todas as operacgdes de criptografia e descriptografia que especificam branch-
key-id até que o limite do cache expire. Armazenar materiais de chave de filial no cache local reduz
AWS KMS as chamadas. Por exemplo, considere um limite de cache de 15 minutos. Se vocé realizar
10.000 operacgdes de criptografia dentro desse limite de cache, o AWS KMS chaveiro tradicional
precisaria fazer 10.000 AWS KMS chamadas para satisfazer 10.000 operagdes de criptografia.

Se vocé tiver um ativobranch-key-1id, o chaveiro hierarquico sé precisara fazer uma AWS KMS

chamada para satisfazer 10.000 operagdes de criptografia.

O cache local separa os materiais de criptografia dos materiais de decodificacdo. Os materiais de
criptografia sdo reunidos a partir da chave de ramificagédo ativa e reutilizados em todas as operagdes
de criptografia até que o limite de cache expire. Os materiais de descriptografia sdo reunidos a partir
do ID e da versao da chave de ramificagéo identificados nos metadados do campo criptografado

e sdo reutilizados para todas as operacdes de descriptografia relacionadas ao ID e a verséo da
chave de ramificacdo até que o limite de cache expire. O cache local pode armazenar varias versoes

AWS KMS Chaveiros hierarquicos 143

AWS Encryption SDK Guia do Desenvolvedor

da mesma chave de ramificagdo ao mesmo tempo. Quando o cache local é configurado para usar
umbranch key ID supplier, ele também pode armazenar materiais de chave de ramificagao de varias

chaves de ramificacado ativas ao mesmo tempo.

(® Note

Todas as mengdes ao chaveiro hierarquico no AWS Encryption SDK referem-se ao chaveiro
hierarquico. AWS KMS

Compatibilidade com linguagens de programagao
O chaveiro hierarquico é suportado pelas seguintes linguagens e versdes de programagao:

* Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia opcional do
MPL.

* Versdo 1. x do AWS Encryption SDK para Rust
* Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Topicos

* Como funciona

* Pré-requisitos

» Permissodes obrigatorias

e Escolha um cache

» Criar um token de autenticacao hierarquico

Como funciona

As instrugdes a seguir descrevem como o token de autenticagéo hierarquico reune materiais de
criptografia e descriptografia e as diferentes chamadas que o token de autenticagao faz para
operagoes de criptografia e descriptografia. Para obter detalhes técnicos sobre a derivagao da chave
de empacotamento e os processos de criptografia da chave de dados em texto simples, consulte
Detalhes técnicos do token de autenticacao hierarquico do AWS KMS.

Como funciona 144

AWS Encryption SDK Guia do Desenvolvedor

Criptografar e assinar

O passo a passo a seguir descreve como o token de autenticagcao hierarquico reune materiais de
criptografia e obtém uma chave de empacotamento exclusiva.

1. O método de criptografia solicita materiais de criptografia ao token de autenticacao hierarquico.
O token de autenticagao gera uma chave de dados em texto simples e, em seguida, verifica se
ha materiais de ramificagao validos no cache local para gerar a chave de empacotamento. Se
houver materiais de chave de filial validos, o chaveiro prossegue para a Etapa 4.

2. Se nao houver materiais de chave de ramificagao validos, o chaveiro hierarquico consulta o
armazenamento de chaves em busca da chave de ramificacio ativa.

a. O armazenamento de chaves faz chamadas AWS KMS para descriptografar a chave de
ramificacao ativa e retorna a chave de ramificagado ativa em texto simples. Os dados que
identificam a chave de ramificagao ativa sdo serializados para fornecer dados autenticados
adicionais (AAD) na chamada de descriptografia para o AWS KMS.

b. O armazenamento de chaves retorna a chave de ramificacdo em texto simples e os dados
que a identificam, como a versao da chave de ramificagao.

3. O token de autenticagao hierarquico reune materiais de chave de ramificacdo (a chave de
ramificacdo em texto simples e a versédo da chave de ramificagcdo) e armazena uma cépia deles
no cache local.

4. O token de autenticagao hierarquico deriva uma chave de empacotamento exclusiva da
chave de ramificagao de texto simples e um sal aleatério de 16 bytes. Ele usa a chave de
encapsulamento derivada para criptografar uma cépia da chave de dados em texto simples.

O método de criptografia usa os materiais de criptografia para criptografar os dados. Para obter mais
informacgdes, consulte Como o AWS Encryption SDK criptografa dados.

Descriptografar e verificar

O passo a passo a seguir descreve como o token de autenticagao hierarquico reune materiais de
descriptografia e descriptografa a chave de dados criptografada.

1. O método de descriptografia identifica a chave de dados criptografada da mensagem
criptografada e a transmite para o token de autenticacao hierarquico.

2. O token de autenticacao hierarquico desserializa os dados que identificam a chave de
dados criptografada, incluindo a versédo da chave de ramificagédo, o sal de 16 bytes e outras
informagdes que descrevem como a chave de dados foi criptografada.

Como funciona 145

AWS Encryption SDK Guia do Desenvolvedor

Para obter mais informacgdes, consulte AWS KMS Detalhes técnicos do chaveiro hierarquico.

3. O token de autenticagao hierarquico verifica se ha materiais de chave de ramificagao validos no
cache local que correspondam a versao da chave de ramificagao identificada na Etapa 2. Se
houver materiais de chave de ramificacao validos, o token de autenticacao prosseguira para a
Etapa 6 .

4. Se nao houver materiais de chave de ramificagao validos, o chaveiro hierarquico consulta o
armazenamento de chaves em busca da chave de ramificacdo que corresponde a versao da
chave de ramificagao identificada na Etapa 2.

a. O armazenamento de chaves faz chamadas AWS KMS para descriptografar a chave
de ramificacao e retorna a chave de ramificagao ativa em texto simples. Os dados que
identificam a chave de ramificagao ativa sédo serializados para fornecer dados autenticados
adicionais (AAD) na chamada de descriptografia para o AWS KMS.

b. O armazenamento de chaves retorna a chave de ramificagdo em texto simples e os dados
que a identificam, como a versao da chave de ramificagéo.

5. O token de autenticacao hierarquico reune materiais de chave de ramificacdo (a chave de
ramificacdo em texto simples e a versado da chave de ramificagdo) e armazena uma cépia deles
no cache local.

6. O token de autenticacao hierarquico usa os materiais de chave de ramificagdo montados e o sal
de 16 bytes identificado na Etapa 2 para reproduzir a chave de empacotamento exclusiva que
criptografou a chave de dados.

7. O token de autenticacao hierarquico usa a chave de encapsulamento reproduzida para
descriptografar a chave de dados e retorna a chave de dados em texto simples.

O método de decodificagao usa os materiais de decodificacdo e a chave de dados de texto simples
para descriptografar a mensagem criptografada. Para obter mais informacgdes, consulte Como o
AWS Encryption SDK decodifica uma mensagem criptografada.

Pré-requisitos

Antes de criar e usar um chaveiro hierarquico, verifique se os seguintes pré-requisitos foram
atendidos.

* Vocé, ou o administrador do armazenamento de chaves, criou um armazenamento de chaves e

criou pelo menos uma chave de ramificacéo ativa.

Pré-requisitos 146

AWS Encryption SDK Guia do Desenvolvedor

» Vocé configurou suas principais acées de armazenamento.

® Note

A forma como vocé configura suas a¢des de armazenamento de chaves determina quais
operagodes vocé pode realizar e quais chaves KMS o chaveiro hierarquico pode usar. Para
obter mais informacoées, consulte Principais acoes do armazenamento.

* Vocé tem as AWS KMS permissdes necessarias para acessar e usar as chaves de
armazenamento e ramificacdo de chaves. Para obter mais informacdes, consulte the section called
“Permissdes obrigatorias”.

» Vocé analisou os tipos de cache compativeis e configurou o tipo de cache que melhor atende as
suas necessidades. Para obter mais informacgdes, consulte the section called “Escolha um cache”.

Permissodes obrigatorias

O AWS Encryption SDK nao requer um Conta da AWS e nao depende de nenhum AWS service
(Servigo da AWS). No entanto, para usar um chaveiro hierarquico, vocé precisa de uma Conta da
AWS e das seguintes permissdes minimas sobre a (s) criptografia AWS KMS key(6es) simétrica (s)
em seu armazenamento de chaves.

» Para criptografar e descriptografar dados com o chaveiro hierarquico, vocé precisa do
KMS:Decrypt.

» Para criar e girar chaves de ramificacado, vocé precisa de kms: GenerateDataKeyWithoutPlaintext e
kms:. ReEncrypt

Para obter mais informacgdes sobre como controlar o acesso as chaves da filial e ao armazenamento
de chaves, consultethe section called “Implementacao de permissoes de privilégio minimo”.

Escolha um cache

O chaveiro hierarquico reduz o numero de chamadas feitas ao AWS KMS armazenar em cache
localmente os materiais de chave de ramificacdo usados nas operacgdes de criptografia e
descriptografia. Antes de criar seu chaveiro hierarquico, vocé precisa decidir que tipo de cache
deseja usar. Vocé pode usar o cache padrao ou personalizar o cache para melhor atender as suas
necessidades.

Permissdes obrigatérias 147

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Guia do Desenvolvedor

O chaveiro hierarquico suporta os seguintes tipos de cache:

« the section called “Cache padrao”

* the section called “MultiThreaded cache”

« the section called “StormTracking cache”

+ the section called “Cache compartilhado”

/A Important

Todos os tipos de cache compativeis foram projetados para suportar ambientes de varios
processos.

No entanto, quando usado com o AWS Encryption SDK for Python, o chaveiro hierarquico
nao oferece suporte a ambientes multiencadeados. Para obter mais informacgées, consulte o

arquivo Python README .rst no repositoério -library em. aws-cryptographic-material-providers
GitHub

Cache padrao

Para a maioria dos usuarios, o cache Default atende aos requisitos de segmentacgao. O cache
Default foi projetado para oferecer suporte a ambientes com muitos threads. Quando uma entrada
de materiais de chave de ramificagdo expira, o cache padrao impede que varios segmentos

sejam chamados, AWS KMS notificando um segmento de que a entrada de materiais de chave de
ramificagdo expirara com 10 segundos de antecedéncia. Isso garante que somente um thread envie
uma solicitacdo AWS KMS para atualizar o cache.

O padrao e StormTracking os caches oferecem suporte ao mesmo modelo de segmentagao,
mas vocé so precisa especificar a capacidade de entrada para usar o cache padrao. Para
personalizagdes de cache mais granulares, use o. the section called “StormTracking cache”

A menos que vocé queira personalizar o numero de entradas de materiais de chave de ramificagao
que podem ser armazenadas no cache local, vocé nao precisa especificar um tipo de cache ao criar
o chaveiro hierarquico. Se vocé nao especificar um tipo de cache, o chaveiro hierarquico usa o tipo
de cache padrao e define a capacidade de entrada como 1000.

Para personalizar o cache padrao, especifique os seguintes valores:

Escolha um cache 148

https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main

AWS Encryption SDK Guia do Desenvolvedor

» Capacidade de entrada: limita o numero de entradas de materiais de chave da ramificagao que
podem ser armazenadas no cache local.

Java

.cache(CacheType.builder()
.Default(DefaultCache.buildex()
.entryCapacity(100)

.build())

C#/.NET

CacheType defaultCache = new CacheType

{
Default = new DefaultCache{EntryCapacity = 100}

};
Python

default_cache = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

Rust

let cache: CacheType = CacheType: :Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?z,
);

Go

cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
3,
}

Escolha um cache 149

AWS Encryption SDK Guia do Desenvolvedor

MultiThreaded cache

O MultiThreaded cache é seguro para uso em ambientes com varios processos, mas nao fornece
nenhuma funcionalidade para minimizar as chamadas do Amazon AWS KMS DynamoDB. Como
resultado, quando uma entrada de materiais de chave de ramificagao expirar, todos os tdpicos seréao
notificados ao mesmo tempo. Isso pode resultar em varias AWS KMS chamadas para atualizar o
cache.

Para usar o MultiThreaded cache, especifique os seguintes valores:

» Capacidade de entrada: limita o numero de entradas de materiais de chave da ramificagao que
podem ser armazenadas no cache local.

« Tamanho de entrada de limpeza de tail: define o numero de entradas a serem limpas se a
capacidade de entrada for atingida.

Java
.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.buildexr()
.entryCapacity(100)
.entryPruningTailSize(1)
.build())
C#/ .NET

CacheType multithreadedCache = new CacheType

{
MultiThreaded = new MultiThreadedCache
{
EntryCapacity = 100,
EntryPruningTailSize = 1
}
};
Python

multithreaded_cache = CacheTypeMultiThreaded(
value=MultiThreadedCache(
entry_capacity=100,
entry_pruning_tail_size=1

Escolha um cache 150

AWS Encryption SDK

Guia do Desenvolvedor

)

Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildex()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

Go

var entryPruningTailSize int32 =1
cache := mpltypes.CacheTypeMemberMultiThreaded{
Value: mpltypes.MultiThreadedCache{
EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
1,
}

StormTracking cache

O StormTracking cache foi projetado para suportar ambientes altamente multisegmentados. Quando
uma entrada de materiais de chave de ramificagao expira, o StormTracking cache impede que varios
segmentos sejam chamados AWS KMS notificando um segmento de que a entrada de materiais de
chave de ramificagao expirara com antecedéncia. Isso garante que somente um thread envie uma

solicitagdo AWS KMS para atualizar o cache.

Para usar o StormTracking cache, especifique os seguintes valores:

» Capacidade de entrada: limita o numero de entradas de materiais de chave da ramificagao que

podem ser armazenadas no cache local.

Valor padrao: 1000 entradas

« Tamanho de entrada de limpeza de tail: define o numero de entradas de materiais de chave da

ramificagdo a serem limpas por vez.

Valor padrao: 1 entrada

Escolha um cache

151

AWS Encryption SDK Guia do Desenvolvedor

» Periodo de caréncia: define o numero de segundos antes da expiragdo em que € feita uma
tentativa de atualizar os materiais de chave da ramificacao.

Valor padrao: 10 segundos

* Intervalo de caréncia: define o numero de segundos entre as tentativas de atualizar os materiais de
chave da ramificagéo.

Valor padrao: 1 segundo

» Fan out: define o numero de tentativas simultdneas que podem ser feitas para atualizar os
materiais de chave da ramificagao.

Valor padrao: 20 tentativas

+ Tempo de ativacéo (TTL) em transito: define o numero de segundos até que uma tentativa de
atualizar os materiais de chave de ramificagao atinja o tempo limite. Sempre que o cache retorna
NoSuchEntry em resposta a GetCacheEntry, essa chave de ramificagdo é considerada em
transito até que a mesma chave seja gravada com uma entrada PutCache.

Valor padrao: 10 segundos

» Suspensao: define o numero de milissegundos em que um thread deve dormir se fanOQut for
excedido.

Valor padrao: 20 milissegundos

Java

.cache(CacheType.builder()
.StormTracking(StormTrackingCache.buildex()
.entryCapacity(100)
.entryPruningTailSize(1)

.gracePeriod(10)
.gracelnterval(1)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

C#/ .NET

CacheType stormTrackingCache = new CacheType

Escolha um cache 152

AWS Encryption SDK

Guia do Desenvolvedor

{

StormTracking = new StormTrackingCache
{

EntryCapacity = 100,

EntryPruningTailSize = 1,

FanOut = 20,

GraceInterval = 1,

GracePeriod = 10,

InFlightTTL = 10,

SleepMilli = 20

};
Python

storm_tracking_cache = CacheTypeStormTracking(
value=StormTrackingCache(
entry_capacity=100,
entry_pruning_tail_size=1,
fan_out=20,
grace_interval=1,
grace_period=10,
in_flight_ttl=10,
sleep_milli=20

Rust

CacheType: :StormTracking(

StormTrackingCache: :buildex()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(20)
.in_flight_ttl(10)
.sleep_milli(20)

.build()?)

Go

var entryPruningTailSize int32 =1

Escolha um cache

153

AWS Encryption SDK Guia do Desenvolvedor

cache := mpltypes.CacheTypeMemberStormTracking{
Value: mpltypes.StormTrackingCache{

EntryCapacity: 100,
EntryPruningTailSize: &entryPruningTailSize,
GraceInterval: 1,

GracePeriod: 10,

FanOut: 20,

InFlightTTL: 10,

SleepMilli: 20,
.

}

Cache compartilhado

Por padrao, o chaveiro hierarquico cria um novo cache local toda vez que vocé instancia o chaveiro.
No entanto, o cache compartilhado pode ajudar a conservar memoria, permitindo que vocé
compartilhe um cache em varios chaveiros hierarquicos. Em vez de criar um novo cache de materiais
criptograficos para cada chaveiro hierarquico que vocé instancia, o cache compartilhado armazena
somente um cache na memodria, que pode ser usado por todos os chaveiros hierarquicos que fazem
referéncia a ele. O cache compartilhado ajuda a otimizar o uso da meméria, evitando a duplicagao
de materiais criptograficos nos chaveiros. Em vez disso, os chaveiros hierarquicos podem acessar o
mesmo cache subjacente, reduzindo o consumo geral de memoria.

Ao criar seu cache compartilhado, vocé ainda define o tipo de cache. Vocé pode especificar um
the section called “Cache padrao”the section called “MultiThreaded cache”, ou the section called

“StormTracking cache” como o tipo de cache ou substituir qualquer cache personalizado compativel.

Particoes

Varios chaveiros hierarquicos podem usar um unico cache compartilhado. Ao criar um chaveiro
hierarquico com um cache compartilhado, vocé pode definir uma ID de particdo opcional. O ID

da parti¢cao distingue qual chaveiro hierarquico esta sendo gravado no cache. Se dois chaveiros
hierarquicos fizerem referéncia ao mesmo ID de partigdo e ID de chave de ramificag&ological key
store name, os dois chaveiros compartilhardo as mesmas entradas de cache no cache. Se voceé criar
dois chaveiros hierarquicos com o mesmo cache compartilhado, mas com uma particao diferente
IDs, cada chaveiro acessara somente as entradas do cache de sua prépria particdo designada no
cache compartilhado. As particdes atuam como divisdes légicas dentro do cache compartilhado,

Escolha um cache 154

AWS Encryption SDK Guia do Desenvolvedor

permitindo que cada chaveiro hierarquico opere de forma independente em sua prépria particao
designada, sem interferir nos dados armazenados na outra particao.

Se vocé pretende reutilizar ou compartilhar as entradas de cache em uma particéo, vocé deve definir
seu proprio ID de particdo. Quando vocé passa a ID da particao para seu chaveiro hierarquico, o
chaveiro pode reutilizar as entradas de cache que ja estdo presentes no cache compartilhado, em
vez de precisar recuperar e reautorizar os materiais da chave de ramificagdo novamente. Se vocé
nao especificar uma ID de particdo, uma ID de particdo exclusiva sera automaticamente atribuida ao
chaveiro toda vez que vocé instanciar o chaveiro hierarquico.

Os procedimentos a seguir demonstram como criar um cache compartilhado com o tipo de cache
padrao e passa-lo para um chaveiro hierarquico.

1. Crieum CryptographicMaterialsCache (CMC) usando a Material Providers Library (MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

// Create a CacheType object for the Default cache
final CacheType cache =
CacheType.builder()
.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCachelInput cryptographicMaterialsCachelInput =
CreateCryptographicMaterialsCacheInput.builder()
.cache(cache)
.build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCachelInput);

C#/ NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

Escolha um cache 155

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCachelnput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCachelnput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
value=DefaultCache(
entry_capacity=100,

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
cache=cache,

shared_cryptographic_materials_cache =
mat_prov.create_cryptographic_materials_cache(
cryptographic_materials_cache_input

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(

Escolha um cache 156

AWS Encryption SDK Guia do Desenvolvedor

DefaultCache: :buildex()
.entry_capacity(100)
.build()?,

);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
create_cryptographic_materials_cache()
.cache(cache)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
Value: mpltypes.DefaultCache{
EntryCapacity: 100,
},

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCacheInput)
if err !'= nil {

Escolha um cache 157

AWS Encryption SDK Guia do Desenvolvedor

panic(err)

2. Crie um CacheType objeto para o cache compartilhado.

Passe o0 sharedCryptographicMaterialsCache que vocé criou na Etapa 1 para o novo
CacheType objeto.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.builder()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
value=shared_cryptographic_materials_cache

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =

CacheType: :Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=

mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

Escolha um cache 158

AWS Encryption SDK Guia do Desenvolvedor

3.

Passe o sharedCache objeto da Etapa 2 para seu chaveiro hierarquico.

Ao criar um chaveiro hierarquico com um cache compartilhado, vocé pode, opcionalmente,
definir um partitionID para compartilhar entradas de cache em varios chaveiros hierarquicos.
Se vocé nao especificar uma ID de particdo, o chaveiro hierarquico atribuira automaticamente ao
chaveiro uma ID de particdo exclusiva.

® Note

Seus chaveiros hierarquicos compartilharao as mesmas entradas de cache em um
cache compartilhado se vocé criar dois ou mais chaveiros que fagam referéncia ao
mesmo ID de particdo e ID de chave de logical key store name ramificagdo. Se vocé nao
quiser que varios chaveiros compartilhem as mesmas entradas de cache, use uma ID de
particao exclusiva para cada chaveiro hierarquico.

O exemplo a seguir cria um chaveiro hierarquico com um branch key ID supplier limite
de cache de 600 segundos. Para obter mais informagdes sobre os valores definidos na
seguinte configuracao de chaveiro hierarquico, consulte. the section called “Criar um token de

autenticacao hierarquico”

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.tt1lSeconds(600)
.cache(sharedCache)
.partitionID(partitionID)
.build();

final IKeyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

{

Escolha um cache 159

AWS Encryption SDK Guia do Desenvolvedor

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

Cache = sharedCache,

TtlSeconds = 600,

PartitionId = partitionID
};
var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring

keyring_input: CreateAwsKmsHierarchicalKeyringInput =

CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=shared_cache,
partition_id=partition_id

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to
// pass it to different Hierarchical Keyrings, it will still point to the
same
// underlying cache, and increment the reference count accordingly.
.cache(shared_cache.clone())
.ttl_seconds(600)
.partition_id(partition_id.clone())
.send()
.await?;

Escolha um cache 160

AWS Encryption SDK Guia do Desenvolvedor

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
KeyStore: keyStorel,
BranchKeyId: &branchKeyId,
TtlSeconds: 600,
Cache: &shared_cache,
PartitionId: é&partitionId,
}

keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {

panic(err)

Criar um token de autenticagao hierarquico

Para criar um chaveiro hierarquico, vocé deve fornecer os seguintes valores:

« Um nome de armazenamento de chaves

O nome da tabela do DynamoDB que vocé, ou o administrador do armazenamento de chaves,
criou para servir como seu armazenamento de chaves.

Um tempo de vida do cache (TTL)

A quantidade de tempo, em segundos, em que uma entrada de materiais de chave de ramificagcao
no cache local pode ser usada antes de expirar. O limite de cache TTL determina a frequéncia com
que o cliente liga AWS KMS para autorizar o uso das chaves de ramificagdo. Este valor deve ser
maior que zero. Depois que o limite de cache TTL expirar, a entrada nunca sera atendida e sera
removida do cache local.

« Um identificador de chave de ramificacao

Vocé pode configurar estaticamente o branch-key-id que identifica uma unica chave de
ramificacdo ativa em seu armazenamento de chaves ou fornecer um fornecedor de ID de chave de
filial.

Criar um token de autenticagao hierarquico 161

AWS Encryption SDK Guia do Desenvolvedor

O fornecedor da ID da chave de filial usa os campos armazenados no contexto de criptografia para
determinar qual chave de filial € necessaria para descriptografar um registro.

E altamente recomendavel usar um fornecedor de ID de chave de filial para bancos de dados

de varios locatarios em que cada inquilino tenha sua propria chave de filial. Vocé pode usar o
fornecedor da ID da chave da filial para criar um nome amigavel para a chave da filial, IDs a fim
de facilitar o reconhecimento da ID correta da chave da filial para um inquilino especifico. Por
exemplo, 0 nome amigavel permite que vocé se refira a uma chave de ramificagdo como tenantl
em vez de b3f61619-4d35-48ad-a275-050f87e15122.

Para operacoes de descriptografia, vocé pode configurar estaticamente um unico token de
autenticacao hierarquico para restringir a descriptografia a um unico locatario ou usar o fornecedor
da ID da chave da ramificagdo para identificar qual locatario é responsavel por descriptografar um
registro.

* (Opcional) Um cache

Se vocé quiser personalizar o tipo de cache ou o numero de entradas de materiais de chave
de ramificagdo que podem ser armazenadas no cache local, especifique o tipo de cache e a
capacidade de entrada ao inicializar o token de autenticagao.

O chaveiro hierarquico suporta os seguintes tipos de cache: Padrao, MultiThreaded
StormTracking, e Compartilhado. Para obter mais informacgdes e exemplos que demonstram como
definir cada tipo de cache, consultethe section called “Escolha um cache”.

Se vocé nao especificar um cache, o token de autenticagao hierarquico usara automaticamente o
tipo de cache Default e definira a capacidade de entrada como 1000.

* (Opcional) Uma ID de particao

Se vocé especificar othe section called “Cache compartilhado”, vocé pode, opcionalmente, definir
uma ID de parti¢cdo. O ID da particao distingue qual chaveiro hierarquico esta sendo gravado

no cache. Se vocé pretende reutilizar ou compartilhar as entradas de cache em uma partigao,
vocé deve definir seu proprio ID de particdo. Vocé pode especificar qualquer string para o ID

da particdo. Se vocé nao especificar uma ID de particdo, uma ID de particdo exclusiva sera
automaticamente atribuida ao chaveiro na criagao.

Para obter mais informacdes, consulte Partitions.

Criar um token de autenticagao hierarquico 162

AWS Encryption SDK Guia do Desenvolvedor

® Note

Seus chaveiros hierarquicos compartilharao as mesmas entradas de cache em um cache
compartilhado se vocé criar dois ou mais chaveiros que fagam referéncia ao mesmo ID
de particao e ID de chave de logical key store name ramificagdo. Se vocé nao quiser que
varios chaveiros compartilhem as mesmas entradas de cache, use uma ID de partigao

exclusiva para cada chaveiro hierarquico.

* (Opcional) Uma lista de Tokens de Concessao

Se vocé controlar o acesso a chave do KMS no token de autenticagao hierarquico com
concessoes, devera fornecer todos os tokens de concessao necessarios ao inicializar o token de
autenticacao.

Crie um chaveiro hierarquico com uma ID de chave de ramificacao estatica

Os exemplos a seguir demonstram como criar um chaveiro hierarquico com um ID de chave de
ramificagao estaticothe section called “Cache padrao”, o e um TTL de limite de cache de 600

segundos.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput

{

Criar um token de autenticagao hierarquico 163

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Guia do Desenvolvedor

KeyStore = keystore,
BranchKeyId = branch-key-id,
TtlSeconds = 600

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id=branch_key_id,
ttl_seconds=600

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id(branch_key_id)
.ttl_seconds(600)
.send()
.await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
panic(err)
}
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

Criar um token de autenticagao hierarquico 164

AWS Encryption SDK Guia do Desenvolvedor

KeyStore: keyStore,
BranchKeyId: &branchKeyID,
TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

Crie um chaveiro hierarquico com um fornecedor de ID de chave de filial

Os procedimentos a seguir demonstram como criar um chaveiro hierarquico com um fornecedor de
ID de chave de filial.

1. Crie um fornecedor de ID de chave de filial

O exemplo a seguir cria nomes amigaveis para duas chaves de ramificagado e faz chamadas
CreateDynamoDbEncryptionBranchKeyIdSupplier para criar um fornecedor de ID de
chave de filial.

Java

// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.buildexr().build())
Lbuild();
final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))

Criar um token de autenticagao hierarquico 165

AWS Encryption SDK Guia do Desenvolvedor

.build()).branchKeyIdSupplier();

C#/.NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{
DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)
}) .BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
tenant_1_id=branch_key_id_a,
tenant_2_id=branch_key_id_b,

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier: :new(

&branch_key_id_a,

&branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name

Criar um token de autenticagao hierarquico 166

AWS Encryption SDK Guia do Desenvolvedor

keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}
2. Criar um token de autenticagao hierarquico

Os exemplos a seguir inicializam um chaveiro hierarquico com o fornecedor de ID de chave
de filial criado na Etapa 1, um limite de cache TLL de 600 segundos e um tamanho maximo de
cache de 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)

.branchKeyIdSupplier(branchKeyIdSupplier)

.ttlSeconds(600)

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{

Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Criar um token de autenticagao hierarquico 167

AWS Encryption SDK Guia do Desenvolvedor

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
CreateAwsKmsHierarchicalKeyringInput(
key_store=keystore,
branch_key_id_supplier=branch_key_id_supplier,
ttl_seconds=600,
cache=CacheTypeDefault(
value=DefaultCache(
entry_capacity=100

),

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
input=keyring_input

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_store.clone())
.branch_key_id_supplier(branch_key_id_supplier)
.ttl_seconds(600)
.send()
.await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

KeyStore: keyStore,
BranchKeyIdSupplier: &keySupplier,
TtlSeconds: 600,

Criar um token de autenticagao hierarquico 168

AWS Encryption SDK Guia do Desenvolvedor

hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
hkeyringInput)
if err !'= nil {
panic(err)

}

AWS KMS chaveiros ECDH

Um chaveiro AWS KMS ECDH usa um acordo de chave assimétrica AWS KMS keyspara derivar
uma chave de embalagem simétrica compartilhada entre duas partes. Primeiro, o chaveiro usa

o algoritmo de acordo de chaves Elliptic Curve Diffie-Hellman (ECDH) para derivar um segredo
compartilhado da chave privada no par de chaves KMS do remetente e da chave publica do
destinatario. Em seguida, o chaveiro usa o segredo compartilhado para derivar a chave de
empacotamento compartilhada que protege suas chaves de criptografia de dados. A fungao de
derivagao de chave que o AWS Encryption SDK usa (KDF_CTR_HMAC_SHA384) para derivar a chave
de empacotamento compartilhada esta em conformidade com as recomendagdes do NIST para
derivagao de chaves.

A funcao de derivagao de chave retorna 64 bytes de material de chaveamento. Para garantir que
ambas as partes usem o material de codificagao correto, AWS Encryption SDK usam os primeiros
32 bytes como chave de compromisso € os ultimos 32 bytes como chave de empacotamento
compartilhada. Na descriptografia, se o chaveiro ndo puder reproduzir a mesma chave de
compromisso e chave de encapsulamento compartilhada armazenadas no texto cifrado do cabegalho
da mensagem, a operacao falhara. Por exemplo, se vocé criptografar dados com um chaveiro
configurado com a chave privada de Alice e a chave publica de Bob, um chaveiro configurado com
a chave privada de Bob e a chave publica de Alice reproduzira a mesma chave de compromisso

e chave de empacotamento compartilhada e podera descriptografar os dados. Se a chave publica
de Bob nao for de um par de chaves KMS, Bob podera criar um chaveiro ECDH bruto para
descriptografar os dados.

O chaveiro AWS KMS ECDH criptografa os dados com uma chave simétrica usando o AES-GCM. A
chave de dados € entédo criptografada em envelope com a chave de empacotamento compartilhada
derivada usando o AES-GCM. Cada chaveiro AWS KMS ECDH pode ter apenas uma chave de
embrulho compartilhada, mas vocé pode incluir varios chaveiros AWS KMS ECDH, sozinhos ou com

outros chaveiros, em um chaveiro multiplo.

Compatibilidade com linguagens de programagao

AWS KMS chaveiros ECDH 169

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Guia do Desenvolvedor

O chaveiro AWS KMS ECDH foi introduzido na versao 1.5.0 da Biblioteca de Provedores de Material
Criptografico (MPL) e é suportado pelas seguintes linguagens e versdes de programagéo:

* Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia opcional do
MPL.

* Versao 1. x do AWS Encryption SDK para Rust
» Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Topicos

» Permissdes necessarias para AWS KMS chaveiros ECDH

e Criando um AWS KMS chaveiro ECDH

e Criando um AWS KMS chaveiro de descoberta ECDH

Permissodes necessarias para AWS KMS chaveiros ECDH

AWS Encryption SDK Nao requer uma AWS conta e ndao depende de nenhum AWS servigo. No
entanto, para usar um chaveiro AWS KMS ECDH, vocé precisa de uma AWS conta e das seguintes
permissdes minimas AWS KMS keys no seu chaveiro. As permissdes variam de acordo com o
esquema de contrato de chaves que vocé usa.

» Para criptografar e descriptografar dados usando o esquema de contrato de
KmsPrivateKeyToStaticPublicKey chave, vocé precisa de kms: GetPublicKey e kms:

DeriveSharedSecret no par de chaves KMS assimétrico do remetente. Se vocé fornecer

diretamente a chave publica codificada em DER do remetente ao instanciar seu chaveiro,
precisara apenas da DeriveSharedSecret permissdo kms: no par de chaves KMS assimétrico do
remetente.

+ Para descriptografar dados usando o esquema de contrato de KmsPublicKeyDiscovery
chaves, vocé precisa das GetPublicKey permissdes kms: DeriveSharedSecret e kms: no par de
chaves assimeétrico KMS especificado.

Permissdes necessarias para AWS KMS chaveiros ECDH 170

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Guia do Desenvolvedor

Criando um AWS KMS chaveiro ECDH

Para criar um chaveiro AWS KMS ECDH que criptografe e descriptografe dados, vocé deve usar o
esquema de contrato de chave. KmsPrivateKeyToStaticPublicKey Para inicializar um chaveiro
AWS KMS ECDH com o esquema de contrato de KmsPrivateKeyToStaticPublicKey chaves,
fornega os seguintes valores:

ID do remetente AWS KMS key

Deve identificar um par de chaves KMS de curva eliptica (ECC) assimétrica recomendado pelo
NIST com um valor de. KeyUsage KEY_AGREEMENT A chave privada do remetente € usada para
derivar o segredo compartilhado.

(Opcional) Chave publica do remetente

Deve ser uma chave publica X.509 codificada por DER, também conhecida como
SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

A AWS KMS GetPublicKeyoperacgao retorna a chave publica de um par de chaves KMS
assimeétrico no formato codificado em DER exigido.

Para reduzir o numero de AWS KMS chamadas que seu chaveiro faz, vocé pode fornecer
diretamente a chave publica do remetente. Se nenhum valor for fornecido para a chave publica do
remetente, o chaveiro liga AWS KMS para recuperar a chave publica do remetente.

Chave publica do destinatario

Vocé deve fornecer a chave publica X.509 codificada em DER do destinatario, também conhecida
como SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

A AWS KMS GetPublicKeyoperacgao retorna a chave publica de um par de chaves KMS
assimétrico no formato codificado em DER exigido.

Especificagao da curva

Identifica a especificagdo da curva eliptica nos pares de chaves especificados. Os pares de chaves
do remetente e do destinatario devem ter a mesma especificacdo de curva.

Valores validos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

(Opcional) Uma lista de Tokens de Concesséao

Criando um AWS KMS chaveiro ECDH 171

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Guia do Desenvolvedor

Se vocé controlar o acesso a chave KMS em seu chaveiro AWS KMS ECDH com concessoes,
devera fornecer todos os tokens de concessao necessarios ao inicializar o chaveiro.

C#/.NET

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente, a chave
publica do remetente e a chave publica do destinatario. Este exemplo usa o SenderPublicKey
parametro opcional para fornecer a chave publica do remetente. Se vocé nao fornecer a chave
publica do remetente, o chaveiro liga AWS KMS para recuperar a chave publica do remetente. Os
pares de chaves do remetente e do destinatario estdo na ECC_NIST_P256 curva.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{
SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
SenderPublicKey = BobPublicKey,
RecipientPublicKey = AlicePublicKey

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Criando um AWS KMS chaveiro ECDH 172

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Guia do Desenvolvedor

Java

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente, a chave
publica do remetente e a chave publica do destinatario. Este exemplo usa o senderPublicKey
parametro opcional para fornecer a chave publica do remetente. Se vocé nao fornecer a chave
publica do remetente, o chaveiro liga AWS KMS para recuperar a chave publica do remetente. Os
pares de chaves do remetente e do destinatario estdo na ECC_NIST_P256 curva.

// Retrieve public keys

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab") ;
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput.builder()
.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Python

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente, a chave
publica do remetente e a chave publica do destinatario. Este exemplo usa o0 senderPublicKey
parametro opcional para fornecer a chave publica do remetente. Se vocé nao fornecer a chave
publica do remetente, o chaveiro liga AWS KMS para recuperar a chave publica do remetente. Os
pares de chaves do remetente e do destinatario estdo na ECC_NIST_P256 curva.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,

Criando um AWS KMS chaveiro ECDH 173

AWS Encryption SDK Guia do Desenvolvedor

KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
KmsPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Retrieve public keys

Must be DER-encoded X.509 public keys

bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput(
sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
sender_public_key = bob_public_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente,

a chave publica do remetente e a chave publica do destinatario. Este exemplo usa o
sender_public_key parametro opcional para fornecer a chave publica do remetente. Se vocé
nao fornecer a chave publica do remetente, o chaveiro liga AWS KMS para recuperar a chave
publica do remetente.

Criando um AWS KMS chaveiro ECDH 174

AWS Encryption SDK Guia do Desenvolvedor

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =

aws_config: :load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =

std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =

std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput::builder()

.sender_kms_identifier(arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key
.sender_public_key(public_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

Criando um AWS KMS chaveiro ECDH 175

AWS Encryption SDK Guia do Desenvolvedor

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err !'= nil {

Criando um AWS KMS chaveiro ECDH 176

AWS Encryption SDK Guia do Desenvolvedor

panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err !'= nil {
panic(err)
}
publicKeyRecipient, err :=
utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err != nil {
panic(err)

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
Value: kmsEcdhStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

Criando um AWS KMS chaveiro ECDH 177

AWS Encryption SDK Guia do Desenvolvedor

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhStaticConfiguration,
KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhKeyringInput)
if err != nil {
panic(err)
}

Criando um AWS KMS chaveiro de descoberta ECDH

Ao descriptografar, € uma pratica recomendada especificar as chaves que eles podem usar. AWS
Encryption SDK Para seguir essa pratica recomendada, use um chaveiro AWS KMS ECDH com
o esquema de contrato de KmsPrivateKeyToStaticPublicKey chaves. No entanto, vocé
também pode criar um chaveiro de descoberta AWS KMS ECDH, ou seja, um chaveiro AWS KMS
ECDH que pode descriptografar qualquer mensagem em que a chave publica do par de chaves
KMS especificado corresponda a chave publica do destinatario armazenada no texto cifrado da
mensagem.

/A Important

Ao descriptografar mensagens usando o esquema de contrato de
KmsPublicKeyDiscovery chave, vocé aceita todas as chaves publicas,
independentemente de quem as possua.

Para inicializar um chaveiro AWS KMS ECDH com o esquema de contrato de
KmsPublicKeyDiscovery chaves, fornega os seguintes valores:

« AWS KMS key ID do destinatario

Deve identificar um par de chaves KMS de curva eliptica (ECC) assimétrica recomendado pelo
NIST com um valor de. KeyUsage KEY_AGREEMENT

» Especificagao da curva

Criando um AWS KMS chaveiro de descoberta ECDH 178

AWS Encryption SDK Guia do Desenvolvedor

Identifica a especificagao da curva eliptica no par de chaves KMS do destinatario.

Valores validos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

* (Opcional) Uma lista de Tokens de Concessao

Se vocé controlar o acesso a chave KMS em seu chaveiro AWS KMS ECDH com concessoes,
devera fornecer todos os tokens de concessao necessarios ao inicializar o chaveiro.

C#/ .NET

O exemplo a seguir cria um chaveiro de descoberta AWS KMS ECDH com um par de chaves
KMS na curva. ECC_NIST_P256 Vocé deve ter as DeriveSharedSecret permissées kms:
GetPublicKey e kms: no par de chaves KMS especificado. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave publica do par de chaves KMS especificado corresponda a
chave publica do destinatario armazenada no texto cifrado da mensagem.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations

{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Criando um AWS KMS chaveiro de descoberta ECDH 179

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Guia do Desenvolvedor

Java

O exemplo a seguir cria um chaveiro de descoberta AWS KMS ECDH com um par de chaves
KMS na curva. ECC_NIST_P256 Vocé deve ter as DeriveSharedSecret permissdes kms:
GetPublicKey e kms: no par de chaves KMS especificado. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave publica do par de chaves KMS especificado corresponda a
chave publica do destinatario armazenada no texto cifrado da mensagem.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput.builder()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Python

O exemplo a seguir cria um chaveiro de descoberta AWS KMS ECDH com um par de chaves
KMS na curva. ECC_NIST_P256 Vocé deve ter as DeriveSharedSecret permissées kms:
GetPublicKey e kms: no par de chaves KMS especificado. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave publica do par de chaves KMS especificado corresponda a

chave publica do destinatario armazenada no texto cifrado da mensagem.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateAwsKmsEcdhKeyringInput,
KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
KmsPublicKeyDiscoveryInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Criando um AWS KMS chaveiro de descoberta ECDH 180

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Guia do Desenvolvedor

)

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(
kms_client = boto3.client('kms', region_name="us-west-2"),
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput(
recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_azrn)
.build()?;

Criando um AWS KMS chaveiro de descoberta ECDH 181

AWS Encryption SDK Guia do Desenvolvedor

Go

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err !'= nil {

panic(err)

Criando um AWS KMS chaveiro de descoberta ECDH 182

AWS Encryption SDK Guia do Desenvolvedor

}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

)
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
&mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
Value: kmsEcdhDiscoveryStaticConfigurationInput,

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{

CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
KmsClient: kmsClient,

}
awsKmsEcdhDiscoveryKeyring, err :=
matProv.CreateAwsKmsEcdhKeyring(context.Background(),
awsKmsEcdhDiscoveryKeyringInput)
if err !'= nil {
panic(err)

Criando um AWS KMS chaveiro de descoberta ECDH 183

AWS Encryption SDK Guia do Desenvolvedor

Tokens de autenticacao AES Raw

O AWS Encryption SDK permite que vocé use uma chave simétrica AES que vocé fornece como
uma chave de empacotamento que protege sua chave de dados. Vocé precisa gerar, armazenar

e proteger o material de chaves, de preferéncia em um méddulo de seguranga de hardware (HSM)
ou em um sistema de gerenciamento de chaves. Use um token de autenticacdo AES bruto quando
precisar fornecer a chave de empacotamento e criptografar as chaves de dados local ou offline.

O token de autenticagao bruto do AES usa o algoritmo AES-GCM e uma chave de empacotamento
que vocé especifica como uma matriz de bytes para criptografar chaves de dados. E possivel
especificar somente uma chave de encapsulamento em cada token de autenticacido bruto do AES,
mas vocé pode incluir varios tokens de autenticagcado brutos do AES, sozinhos ou com outros tokens
de autenticagao, em um multitoken de autenticacao.

O chaveiro AES bruto é equivalente e interopera com a JceMasterKeyclasse no AWS Encryption

SDK for Java e com a RawMasterKeyclasse no AWS Encryption SDK for Python quando séo

usados com chaves de criptografia AES. Vocé pode criptografar dados com uma implementagao e
descriptografa-los com qualquer outra implementagdo usando a mesma chave de encapsulamento.
Para obter detalhes, consulte Compatibilidade dos tokens de autenticacao.

Nomes e namespaces de chaves

Para identificar a chave AES em um token de autenticacao, o token de autenticacido bruto do AES
usa um namespace de chave e um nome de chave fornecidos por vocé. Esses valores nao sao
secretos. Eles aparecem em texto simples no cabegalho da mensagem criptografada que a operagéo

de criptografia retorna. Recomendamos usar um namespace de chave em seu HSM ou sistema de
gerenciamento de chaves e um nome de chave que identifique a chave AES nesse sistema.

(® Note

O namespace da chave e o nome da chave s&o equivalentes aos campos ID do provedor (ou
provedor) e ID da chave no JceMasterKey e no RawMasterKey.

O AWS Encryption SDK for C e AWS Encryption SDK para.NET reserva o valor do
namespace aws-kms chave para as chaves KMS. Nao use esse valor de namespace em

um token de autenticacdo AES bruto ou um token de autenticacdo RSA bruto com essas
bibliotecas.

Tokens de autenticagdo AES Raw 184

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Guia do Desenvolvedor

Se vocé cria tokens de autenticacao diferentes para criptografar e descriptografar determinada

mensagem, 0 namespace € os valores do nome sao cruciais. Se 0 namespace € o nome da chave

no token de autenticacdo de decodificacdo nao corresponderem exatamente e com distingao

entre maiusculas e minusculas ao namespace e ao nome da chave no token de autenticagao de
criptografia, o token de autenticacdo de decodificacdo ndo sera usado, mesmo que os bytes do

material da chave sejam idénticos.

Por exemplo, € possivel definir um token de autenticacdo AES bruto com namespace HSM_0Q1 e

nome de chave AES_256_012. Em seguida, vocé usa esse token de autenticagado para criptografar

alguns dados. Para descriptografar esses dados, construa um token de autenticagao bruto do AES

bruto com 0 mesmo namespace de chave, nome de chave e material de chave.

O exemplo a seguir mostra como criar um token de autenticagédo bruto do AES. A variavel
AESWrappingKey representa o material principal que vocé fornece.

C
Para instanciar um chaveiro AES bruto no AWS Encryption SDK for C, use.
aws_cryptosdk_raw_aes_keyring_new() Para obter um exemplo completo, consulte
raw_aes_keyring.c.
struct aws_allocator *alloc = aws_default_allocator();
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");
struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
wrapping_key_len);
C#/ .NET

Para criar um chaveiro AES bruto AWS Encryption SDK para 0.NET, use o

materialProviders.CreateRawAesKeyring() método. Para ver um exemplo completo,

consulte Raw AESKeyring Example.cs.

O exemplo a seguir usa a versao 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Tokens de autenticagdo AES Raw

185

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
material.

// In production, use key material from a secure source.

var aesWrappingKey = new
MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = aesWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

O AWS Encryption SDK para JavaScript no navegador obtém suas primitivas

criptograficas da WebCryptoAPI. Antes de construir o chaveiro, vocé deve usa-lo
RawAesKeyringWebCrypto.importCryptoKey() para importar o material bruto da chave
para o WebCrypto backend. Isso garante que o chaveiro esteja completo, mesmo que todas as
chamadas sejam WebCrypto assincronas.

Em seguida, para instanciar um token de autenticacdo AES bruto, use o método
RawAesKeyringWebCrypto(). Vocé deve especificar o algoritmo de encapsulamento AES
(“pacote de encapsulamento”) com base no tamanho do seu material de chave. Para obter um
exemplo completo, consulte aes_simple.ts (Browser). JavaScript

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter

mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
RawAesWrappingSuiteIdentifier,
RawAesKeyringWebCrypto,

Tokens de autenticagdo AES Raw 186

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

synchronousRandomValues,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */

const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
rawAesKey,
wrappingSuite

)

const rawAesKeyring = new RawAesKeyringWebCrypto({
keyName,
keyNamespace,
wrappingSuite,
aesWrappingKey
1))

JavaScript Node.js

Para instanciar um chaveiro AES bruto no AWS Encryption SDK para JavaScript for Node.js,
crie uma instancia da classe. RawAesKeyringNode Vocé deve especificar o algoritmo de
encapsulamento AES (“pacote de encapsulamento”) com base no tamanho do seu material de
chave. Para obter um exemplo completo, consulte aes_simple.ts (Node.js). JavaScript

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter

mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
RawAesKeyringNode,

Tokens de autenticagdo AES Raw 187

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

buildClient,

CommitmentPolicy,

RawAesWrappingSuiteIdentifier,
} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
keyName,
keyNamespace,
aesWrappingKey,
wrappingSuite,

1)

Java

Para instanciar um chaveiro AES bruto no AWS Encryption SDK for Java, use.
matProv.CreateRawAesKeyring()

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

O exemplo a seguir instancia o AWS Encryption SDK cliente com a politica de compromisso
padréo,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para ver um exemplo completo, consulte
raw_aes_keyring_example.py no AWS Encryption SDK for Python repositério em GitHub.

Tokens de autenticagdo AES Raw 188

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK

Guia do Desenvolvedor

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_012"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

Instantiate the material providers

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(

config=MaterialProvidersConfig()

Create Raw AES keyring

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(

key_namespace=key_name_space,

key_name=key_name,

wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";

Tokens de autenticagdo AES Raw

189

AWS Encryption SDK Guia do Desenvolvedor

let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()
.await?;

Go

import (

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

Tokens de autenticagdo AES Raw 190

AWS Encryption SDK Guia do Desenvolvedor

}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"

var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context

encryptionContext := map[string]string{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {
panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
WrappingKey: aesWrappingKey,
WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagl6,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
aesKeyRingInput)
if err !'= nil {
panic(err)

Tokens de autenticacao brutos do RSA

O token de autenticagao bruto do RSA realiza a criptografia e a descriptografia assimétricas das
chaves de dados na memoria local com chaves de encapsulamento publica e privada fornecidas.
Vocé precisa gerar, armazenar e proteger a chave privada, de preferéncia em um modulo de
segurancga de hardware (HSM) ou com o sistema de gerenciamento de chaves. A fungéo de
criptografia criptografa a chave de dados com chave publica do RSA. A fungéo de descriptografia
descriptografa a chave de dados usando a chave privada. Vocé pode selecionar entre os varios
modos de padding do RSA.

Tokens de autenticagdo brutos do RSA 191

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h

AWS Encryption SDK Guia do Desenvolvedor

Um token de autenticagao bruto do RSA que criptografa e descriptografa deve incluir uma chave
publica e um par de chaves privadas assimétricas. No entanto, é possivel criptografar dados com um
token de autenticagao bruto do RSA que tenha apenas uma chave publica e descriptografar dados
com um token de autenticac&o bruto do RSA que tenha apenas uma chave privada. E possivel incluir
qualquer token de autenticagao bruto do RSA em um multitoken de autenticacdo. Se vocé configurar
um token de autenticacao bruto do RSA com uma chave publica e privada, certifique-se de que

eles facam parte do mesmo par de chaves. Algumas implementacgdes de linguagem do nao AWS
Encryption SDK construirdo um chaveiro RSA bruto com chaves de pares diferentes. Outras pessoas
confiam em vocé para verificar se suas chaves sdo do mesmo par de chaves.

O chaveiro RSA bruto € equivalente e interopera com o JceMasterKeyin the AWS Encryption

SDK for Java e o RawMasterKeyin the AWS Encryption SDK for Python quando sdo usados com
chaves de criptografia assimétrica RSA. Vocé pode criptografar dados com uma implementacao e
descriptografa-los com qualquer outra implementacdo usando a mesma chave de encapsulamento.
Para obter detalhes, consulte Compatibilidade dos tokens de autenticacao.

® Note

O token de autenticagao bruto do RSA nao oferece suporte a chaves assimétricas do
KMS. Se vocé quiser usar chaves RSA KMS assimétricas, as seguintes linguagens de
programacao oferecem suporte a AWS KMS chaveiros que usam RSA assimétrico: AWS
KMS keys

* Versao 3. x do AWS Encryption SDK for Java
» Versao 4. x do AWS Encryption SDK para o.NET

» Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia
opcional da Biblioteca de Provedores de Material Criptografico (MPL).

» Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Se vocé criptografar dados com um chaveiro RSA bruto que inclua a chave publica de uma
chave RSA KMS, nem o AWS Encryption SDK nem podera descriptografa-lo. AWS KMS
Vocé néo pode exportar a chave privada de uma chave KMS AWS KMS assimétrica para um
chaveiro RSA bruto. A operacdo de AWS KMS descriptografia ndo pode descriptografar a
mensagem criptografada retornada. AWS Encryption SDK

Tokens de autenticagdo brutos do RSA 192

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

Ao criar um chaveiro RSA bruto no AWS Encryption SDK for C, certifique-se de fornecer o conteudo
do arquivo PEM que inclui cada chave como uma string C terminada em nulo, ndo como um caminho
ou nome de arquivo. Ao criar um token de autenticagao bruto do RSA no JavaScript, lembre-se da
potencial incompatibilidade com outras implementag¢des de linguagem.

Namespaces € nomes

Para identificar a chave RSA em um token de autenticagao, o token de autenticagao bruto do RSA
usa um namespace de chave e um nome de chave fornecidos por vocé. Esses valores nao sao
secretos. Eles aparecem em texto simples no cabegalho da mensagem criptografada que a operagao
de criptografia retorna. Recomendamos usar um namespace de chave e um nome de chave que
identifique o par de chaves RSA (ou a sua chave privada) no HSM ou no sistema de gerenciamento
de chaves.

(@ Note

O namespace da chave e o nome da chave sao equivalentes aos campos ID do provedor (ou
provedor) e ID da chave no JceMasterKey e no RawMasterKey.

O AWS Encryption SDK for C reserva o valor do namespace da aws - kms chave para as
chaves KMS. Ndo o use em um token de autenticacdo bruto do AES ou em um token de
autenticagao bruto do RSA com o AWS Encryption SDK for C.

Se vocé cria tokens de autenticacao diferentes para criptografar e descriptografar determinada
mensagem, o0 namespace e o0s valores do nome sao cruciais. Se 0 namespace € o nome da chave
no token de autenticacdo de descriptografia ndo corresponderem exatamente e com distingao

entre maiusculas e minusculas ao namespace e ao nome da chave no token de autenticacao de
criptografia, o token de autenticagdo de descriptografia ndo sera usado, mesmo que as chaves sejam
do mesmo par de chaves.

O namespace da chave e o0 nome da chave do material da chave nos tokens de autenticagao de
criptografia e decodificagdo devem ser os mesmos, independentemente de o token de autenticagao
conter a chave publica RSA, a chave privada RSA ou ambas as chaves no par de chaves. Por
exemplo, suponha que vocé criptografe dados com um token de autenticagédo RSA bruto para uma
chave publica RSA com o namespace de chave HSM_Q@1 e nome de chave RSA_2048_06. Para
descriptografar esses dados, construa um token de autenticagdo RSA bruto com a chave privada (ou
par de chaves) e 0 mesmo namespace e nome de chave.

Modo de preenchimento

Tokens de autenticagéo brutos do RSA 193

AWS Encryption SDK Guia do Desenvolvedor

Vocé deve especificar um modo de preenchimento para tokens de autenticagdao RSA brutos usados
para criptografia e descriptografia, ou usar atributos de sua implementacao de linguagem que o
especifiquem para voceé.

O AWS Encryption SDK suporta os seguintes modos de preenchimento, sujeitos as restricbes de
cada idioma. Recomendamos um modo de preenchimento OAEP, particularmente OAEP com
SHA-256 e com preenchimento SHA-256. MGF1 O modo PKCS1de preenchimento € suportado
somente para compatibilidade com versoes anteriores.

* OAEP com SHA-1 e com preenchimento SHA-1 MGF1

* OAEP com SHA-256 e com preenchimento SHA-256 MGF 1

* OAEP com SHA-384 e com preenchimento SHA-384 MGF1

* OAEP com SHA-512 e com preenchimento SHA-512 MGF1

PKCS1 Preenchimento v1.5

Os exemplos a seguir mostram como criar um chaveiro RSA bruto com a chave publica e privada de
um par de chaves RSA e o OAEP com SHA-256 e com o modo de preenchimento SHA-256. MGF1
As variaveis RSAPublicKey e RSAPrivateKey representam o material principal fornecido por
voCé.

C

Para criar um chaveiro RSA bruto no AWS Encryption SDK for C, use.
aws_cryptosdk_raw_rsa_keyring_new

Ao criar um chaveiro RSA bruto no AWS Encryption SDK for C, certifique-se de fornecer
o conteudo do arquivo PEM que inclui cada chave como uma string C terminada em nulo,
nao como um caminho ou nome de arquivo. Para obter um exemplo completo, consulte
raw_rsa_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
alloc,
key_namespace,

Tokens de autenticagdo brutos do RSA 194

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c

AWS Encryption SDK Guia do Desenvolvedor

key_name,

private_key_from_pem,
public_key_from_pem,
AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C#/.NET

Para instanciar um chaveiro RSA bruto no para.NET, AWS Encryption SDK use o método.
materialProviders.CreateRawRsaKeyring() Para ver um exemplo completo, consulte
Raw RSAKeyring Example.cs.

O exemplo a seguir usa a versao 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));

var privateKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
PublicKey = publicKey,
PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

O AWS Encryption SDK para JavaScript no navegador obtém suas primitivas criptograficas da
WebCryptobiblioteca. Antes de construir o chaveiro, vocé deve usa-lo importPublicKey()

Tokens de autenticagdo brutos do RSA 195

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

AWS Encryption SDK Guia do Desenvolvedor

and/or importPrivateKey() paraimportar o material bruto da chave para o WebCrypto
backend. Isso garante que o chaveiro esteja completo, mesmo que todas as chamadas sejam
WebCrypto assincronas. O objeto usado pelos métodos de importagao inclui o algoritmo de
encapsulamento e seu modo de preenchimento.

Depois de importar o material da chave, use o método RawRsaKeyringWebCrypto() para
instanciar o token de autenticagao. Ao criar um chaveiro RSA bruto JavaScript, esteja ciente da
possivel incompatibilidade com outras implementagdes de linguagem.

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter

mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte rsa_simple.ts (Browser). JavaScript

import {
RsaImportableKey,
RawRsaKeyringWebCrypto,
buildClient,
CommitmentPolicy,

} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
privateRsaJwKKey

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey(
publicRsaJwKKey

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringWebCrypto({
keyName,
keyNamespace,
publicKey,

Tokens de autenticagdo brutos do RSA 196

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

privateKey,

D

JavaScript Node.js

Para instanciar um chaveiro RSA bruto no AWS Encryption SDK para JavaScript Node.js, crie
uma nova instancia da classe. RawRsaKeyringNode O paradmetro wrapKey contém a chave
publica. O parametro unwrapKey contém a chave privada. O construtor RawRsaKeyringNode
calcula um modo de preenchimento padrao, embora vocé possa especificar um modo de
preenchimento preferencial.

Ao criar um chaveiro RSA bruto JavaScript, esteja ciente da possivel incompatibilidade com

outras implementacgdes de linguagem.

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padréo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte rsa_simple.ts (Node.js). JavaScript

import {
RawRsaKeyringNode,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
const keyNamespace = 'HSM_01'

const keyName = 'RSA_2048 06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName ("RSA_2048_06")

Tokens de autenticagdo brutos do RSA 197

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

O exemplo a seguir instancia o AWS Encryption SDK cliente com a politica de compromisso
padrao,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para ver um exemplo completo, consulte
raw_rsa_keyring_example.py no AWS Encryption SDK for Python repositério em GitHub.

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_ 06"

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Create Raw RSA keyring

keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
public_key=RSAPublicKey,
private_key=RSAPrivateKey

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
input=keyring_input

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Tokens de autenticagdo brutos do RSA

198

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK Guia do Desenvolvedor

// Optional: Create an encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "RSA 2048 06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring

let raw_rsa_keyring = mpl
.create_raw_rsa_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.padding_scheme(PaddingScheme: :0aepSha256Mgf1)
.public_key(aws_smithy_types::Blob::new(RSAPublicKey))
.private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
.send()
.await?;

Go

// Instantiate the material providers library
matProv, err :=
awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderss

// Create Raw RSA keyring

rsaKeyRingInput :=
awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
KeyName: "rsa",

KeyNamespace: '"rsa-keyring",

PaddingScheme:

awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcsl,

Tokens de autenticagdo brutos do RSA 199

AWS Encryption SDK Guia do Desenvolvedor

Go

PublicKey: pem.EncodeToMemory(publicKeyBlock),
PrivateKey: pem.EncodeToMemory(privateKeyBlock),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)
}
// Optional: Create an encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048 06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

Tokens de autenticagdo brutos do RSA 200

AWS Encryption SDK Guia do Desenvolvedor

if err !'= nil {
panic(err)

// Create Raw RSA keyring

rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
KeyName: keyName,
KeyNamespace: keyNamespace,
PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgf1,

PublicKey: (RSAPublicKey),
PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
rsaKeyRingInput)
if err !'= nil {
panic(err)
}

Chaveiros ECDH brutos

O chaveiro ECDH bruto usa os pares de chaves publicas-privadas de curva eliptica que vocé
fornece para derivar uma chave de empacotamento compartilhada entre duas partes. Primeiro,

o chaveiro obtém um segredo compartilhado usando a chave privada do remetente, a chave

publica do destinatario e o algoritmo de acordo de chave Elliptic Curve Diffie-Hellman (ECDH).

Em seguida, o chaveiro usa o segredo compartilhado para derivar a chave de empacotamento
compartilhada que protege suas chaves de criptografia de dados. A fungéo de derivagao de chave
que o AWS Encryption SDK usa (KDF_CTR_HMAC_SHA384) para derivar a chave de empacotamento
compartilhada esta em conformidade com as recomendacdes do NIST para derivagédo de chaves.

A funcao de derivagao de chave retorna 64 bytes de material de chave. Para garantir que ambas
as partes usem o material de chave correto, AWS Encryption SDK usam os primeiros 32 bytes
como chave de compromisso e os ultimos 32 bytes como chave de empacotamento compartilhada.
Na descriptografia, se o chaveiro ndo puder reproduzir a mesma chave de compromisso e chave
de encapsulamento compartilhada armazenadas no texto cifrado do cabegalho da mensagem, a
operacao falhara. Por exemplo, se vocé criptografar dados com um chaveiro configurado com a
chave privada de Alice e a chave publica de Bob, um chaveiro configurado com a chave privada
de Bob e a chave publica de Alice reproduzira a mesma chave de compromisso e chave de
empacotamento compartilhada e podera descriptografar os dados. Se a chave publica de Bob for

Chaveiros ECDH brutos 201

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Guia do Desenvolvedor

de um AWS KMS key par, Bob podera criar um chaveiro AWS KMS ECDH para descriptografar os
dados.

O chaveiro ECDH bruto criptografa os dados com uma chave simétrica usando o AES-GCM. A
chave de dados € entédo criptografada em envelope com a chave de empacotamento compartilhada
derivada usando o AES-GCM. Cada chaveiro Raw ECDH pode ter apenas uma chave de embrulho
compartilhada, mas vocé pode incluir varios chaveiros Raw ECDH, sozinhos ou com outros
chaveiros, em um chaveiro multiplo.

Vocé é responsavel por gerar, armazenar e proteger suas chaves privadas, preferencialmente em
um modulo de seguranga de hardware (HSM) ou sistema de gerenciamento de chaves. Os pares
de chaves do remetente e do destinatario devem estar na mesma curva eliptica. O AWS Encryption
SDK suporta as seguintes especificagdes de curva eliptica:

 ECC_NIST_P256
 ECC_NIST_P384
 ECC_NIST_P512

Compatibilidade com linguagens de programagao

O chaveiro ECDH bruto foi introduzido na verséo 1.5.0 da Biblioteca de Provedores de Material
Criptografico (MPL) e € suportado pelas seguintes linguagens e versdes de programagéo:

* Versao 3. x do AWS Encryption SDK for Java
* Versao 4. x do AWS Encryption SDK para o.NET

* Versao 4. x do AWS Encryption SDK for Python, quando usado com a dependéncia opcional do
MPL.
* Versédo 1. x do AWS Encryption SDK para Rust

* Versao 0.1. x ou posterior do AWS Encryption SDK for Go

Criando um chaveiro ECDH bruto

O chaveiro Raw ECDH suporta trés esquemas de contrato
principais:RawPrivateKeyToStaticPublicKey, e.
EphemeralPrivateKeyToStaticPublicKey PublicKeyDiscovery O esquema de contrato de
chave selecionado determina quais operagdes criptograficas vocé pode realizar e como os materiais
de chaveamento s&do montados.

Criando um chaveiro ECDH bruto 202

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

Topicos

+ RawPrivateKeyToStaticPublicKey

* EphemeralPrivateKeyToStaticPublicKey

» PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Use o esquema de contrato de RawPrivateKeyToStaticPublicKey chave para configurar
estaticamente a chave privada do remetente e a chave publica do destinatario no chaveiro. Esse
esquema de contrato chave pode criptografar e descriptografar dados.

Para inicializar um chaveiro ECDH bruto com o esquema de contrato de
RawPrivateKeyToStaticPublicKey chave, fornega os seguintes valores:

» Chave privada do remetente

Vocé deve fornecer a chave privada codificada por PEM do remetente (PrivateKeyInfo estruturas
PKCS #8), conforme definido na RFC 5958.

* Chave publica do destinatario

Vocé deve fornecer a chave publica X.509 codificada em DER do destinatario, também conhecida
como SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

Vocé pode especificar a chave publica de um contrato de chave assimétrica (par de chaves KMS)
ou a chave publica de um par de chaves gerado fora do. AWS

» Especificagdo da curva

Identifica a especificacao da curva eliptica nos pares de chaves especificados. Os pares de chaves
do remetente e do destinatario devem ter a mesma especificacéo de curva.

Valores validos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/.NET

// Instantiate material providers

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

Criando um chaveiro ECDH bruto 203

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Guia do Desenvolvedor

// Create the Raw ECDH static keyring
var staticConfiguration = new RawEcdhStaticConfigurations()
{
RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
{
SenderStaticPrivateKey = BobPrivateKey,
RecipientPublicKey = AlicePublicKey
}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

O exemplo Java a seguir usa o esquema de contrato de RawPrivateKeyToStaticPublicKey
chave para configurar estaticamente a chave privada do remetente e a chave publica do
destinatario. Ambos os pares de chaves estdo na ECC_NIST_P256 curva.

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput.builder()

Criando um chaveiro ECDH bruto 204

AWS Encryption SDK Guia do Desenvolvedor

// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()
)
.build()
).build();

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

O exemplo de Python a seguir usa o esquema de contrato de
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey chave para
configurar estaticamente a chave privada do remetente e a chave publica do destinatario. Ambos
os pares de chaves estdo na ECC_NIST_P256 curva.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
RawPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Must be a PEM-encoded private key

bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(

Criando um chaveiro ECDH bruto 205

AWS Encryption SDK Guia do Desenvolvedor

curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
RawPrivateKeyToStaticPublicKeyInput(
sender_static_private_key = bob_private_key,
recipient_public_key = alice_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)
Rust

O exemplo de Python a seguir usa o esquema de contrato de
raw_ecdh_static_configuration chave para configurar estaticamente a chave privada do

remetente e a chave publica do destinatario. Ambos os pares de chaves devem estar na mesma
curva.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Create keyring input
let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput::buildexr()

// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
Lbuild()?;

Criando um chaveiro ECDH bruto 206

AWS Encryption SDK Guia do Desenvolvedor

let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring

let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]string{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",

Criando um chaveiro ECDH bruto 207

AWS Encryption SDK Guia do Desenvolvedor

}

// Create keyring input

rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
SenderStaticPrivateKey: privateKeySender,
RecipientPublicKey: publicKeyRecipient,

}

rawECDHStaticConfiguration :=

&mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
Value: rawEcdhStaticConfigurationInput,

}

rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: rawECDHStaticConfiguration,

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)

EphemeralPrivateKeyToStaticPublicKey

Os chaveiros configurados com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chaves criam um novo par de chaves localmente e
derivam uma chave de empacotamento compartilhada exclusiva para cada chamada criptografada.

Esse esquema de contrato de chave so6 pode criptografar mensagens. Para

descriptografar mensagens criptografadas com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chave, vocé deve usar um esquema de

contrato de chave de descoberta configurado com a mesma chave publica do destinatario. Para
descriptografar, vocé pode usar um chaveiro ECDH bruto com o algoritmo de acordo de chave ou,
se a PublicKeyDiscoverychave publica do destinatario for de um par de chaves KMS de acordo

Criando um chaveiro ECDH bruto 208

AWS Encryption SDK Guia do Desenvolvedor

de chave assimétrico, vocé pode AWS KMS usar um chaveiro ECDH com o esquema de contrato de
chave. KmsPublicKeyDiscovery

Para inicializar um chaveiro ECDH bruto com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chave, fornega os seguintes valores:

» Chave publica do destinatario

Vocé deve fornecer a chave publica X.509 codificada em DER do destinatario, também conhecida
como SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

Vocé pode especificar a chave publica de um contrato de chave assimétrica (par de chaves KMS)
ou a chave publica de um par de chaves gerado fora do. AWS

» Especificagao da curva
Identifica a especificagdo da curva eliptica na chave publica especificada.

Ao criptografar, o chaveiro cria um novo par de chaves na curva especificada e usa a nova chave
privada e a chave publica especificada para derivar uma chave de empacotamento compartilhada.

Valores validos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/.NET

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chaves. Ao criptografar, o chaveiro criara um
novo par de chaves localmente na curva especificadaECC_NIST_P256.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()
{
EphemeralPrivateKeyToStaticPublicKey = new
EphemeralPrivateKeyToStaticPublicKeyInput
{
RecipientPublicKey = AlicePublicKey
}
};

Criando um chaveiro ECDH bruto 209

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Guia do Desenvolvedor

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = ephemeralConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chaves. Ao criptografar, o chaveiro criara um
novo par de chaves localmente na curva especificadaECC_NIST_P256.

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput.buildex()
.recipientPublicKey(recipientPublicKey)
.build()
)
.build()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemerallnput);

}

Criando um chaveiro ECDH bruto 210

AWS Encryption SDK Guia do Desenvolvedor

Python

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey
chaves. Ao criptografar, o chaveiro criara um novo par de chaves localmente na curva
especificadaECC_NIST_P256.

import boto3

from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
EphemeralPrivateKeyToStaticPublicKeyInput,

)

from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models

import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme =
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput(
recipient_public_key = recipient_public_key,

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
ephemeral_raw_ecdh_static_configuration chaves. Ao criptografar, o chaveiro criara
um novo par de chaves localmente na curva especificada.

Criando um chaveiro ECDH bruto 211

AWS Encryption SDK Guia do Desenvolvedor

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =

std::fs::read_to_string(Path: :new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput::buildex()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

Criando um chaveiro ECDH bruto 212

AWS Encryption SDK Guia do Desenvolvedor

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {
panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{
"encryption": "context",
"is not": "secret",
"but adds": "useful metadata",
"that can help you": "be confident that",
"the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {

panic(err)

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
Value: ephemeralRawEcdhStaticConfigurationInput,

Criando um chaveiro ECDH bruto 213

AWS Encryption SDK Guia do Desenvolvedor

}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err !'= nil {

panic(err)

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,

}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
rawEcdhKeyRingInput)
if err !'= nil {
panic(err)
}

PublicKeyDiscovery

Ao descriptografar, € uma pratica recomendada especificar as chaves de encapsulamento que
podem ser usadas. AWS Encryption SDK Para seguir essa pratica recomendada, use um chaveiro
ECDH que especifique a chave privada do remetente e a chave publica do destinatario. No entanto,
vocé também pode criar um chaveiro de descoberta de ECDH bruto, ou seja, um chaveiro ECDH
bruto que pode descriptografar qualquer mensagem em que a chave publica da chave especificada
corresponda a chave publica do destinatario armazenada no texto cifrado da mensagem. Esse
esquema de contrato de chave s6 pode descriptografar mensagens.

/A Important

Ao descriptografar mensagens usando o esquema de contrato de PublicKeyDiscovery
chave, vocé aceita todas as chaves publicas, independentemente de quem as possua.

Para inicializar um chaveiro ECDH bruto com o esquema de contrato de PublicKeyDiscovery
chave, fornega os seguintes valores:

« Chave privada estatica do destinatario

Criando um chaveiro ECDH bruto 214

AWS Encryption SDK Guia do Desenvolvedor

Vocé deve fornecer a chave privada codificada por PEM do destinatario (PrivateKeylnfo estruturas
PKCS #8), conforme definido na RFC 5958.

» Especificagao da curva

Identifica a especificagao da curva eliptica na chave privada especificada. Os pares de chaves do
remetente e do destinatario devem ter a mesma especificagao de curva.

Valores validos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
PublicKeyDiscovery chaves. Esse chaveiro pode descriptografar qualquer mensagem em
que a chave publica da chave privada especificada corresponda a chave publica do destinatario
armazenada no texto cifrado da mensagem.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{
PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey
}
};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = discoveryConfiguration

iy

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Criando um chaveiro ECDH bruto 215

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK Guia do Desenvolvedor

Java

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
PublicKeyDiscovery chaves. Esse chaveiro pode descriptografar qualquer mensagem em
que a chave publica da chave privada especificada corresponda a chave publica do destinatario
armazenada no texto cifrado da mensagem.

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.buildexr()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()

)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Python

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
RawEcdhStaticConfigurationsPublicKeyDiscovery chaves. Esse chaveiro pode
descriptografar qualquer mensagem em que a chave publica da chave privada especificada
corresponda a chave publica do destinatario armazenada no texto cifrado da mensagem.

Criando um chaveiro ECDH bruto 216

AWS Encryption SDK Guia do Desenvolvedor

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
CreateRawEcdhKeyringInput,
RawEcdhStaticConfigurationsPublicKeyDiscovery,
PublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
curve_spec = ECDHCurveSpec.ECC_NIST_P256,
key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
PublicKeyDiscoveryInput(
recipient_static_private_key = recipient_private_key,

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
discovery_raw_ecdh_static_configuration chaves. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave publica da chave privada especificada corresponda a chave
publica do destinatario armazenada no texto cifrado da mensagem.

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Criando um chaveiro ECDH bruto 217

AWS Encryption SDK Guia do Desenvolvedor

// Optional: Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

// Load keys from UTF-8 encoded PEM files.

let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();

file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
PublicKeyDiscoveryInput::buildex()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_inf

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Criando um chaveiro ECDH bruto 218

AWS Encryption SDK Guia do Desenvolvedor

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

if err !'= nil {

panic(err)
}
// Optional: Create your encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}
// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err != nil {

panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
RecipientStaticPrivateKey: privateKeyRecipient,

discoveryRawEcdhStaticConfiguration :=
&mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
Value: discoveryRawEcdhStaticConfigurationInput,

Criando um chaveiro ECDH bruto 219

AWS Encryption SDK Guia do Desenvolvedor

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
CurveSpec: ecdhCurveSpec,
KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,

}
discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
discoveryRawEcdhKeyringInput)
if err !'= nil {
panic(err)
}

Multitokens de autenticacao

E possivel combinar tokens de autenticacdo em um multitoken de autenticacdo. Um multitoken de
autenticacao € um token que consiste em um ou mais tokens de autenticacio individuais do mesmo
ou de outro tipo. O efeito € como se estivesse usando varios tokens de autenticagdo em uma série.
Quando vocé usa um multitoken de autenticagcéo para criptografar dados, qualquer uma das chaves
de empacotamento em qualquer um de seus tokens de autenticagdo pode descriptografar esses
dados.

Ao criar um multitoken de autenticagao para criptografar dados, é possivel designar um dos tokens
de autenticagao como o token de autenticagdo gerador. Todos os outros tokens de autenticagdo sao
conhecidos como tokens de autenticagdo filho. O token de autenticacdo gerador cria e criptografa a
chave de dados em texto simples. Depois, todas as chaves de empacotamento em todos os tokens
filho criptografam a mesma chave de dados em texto simples. O multitoken de autenticagao retorna
a chave em texto simples e uma chave de dados criptografada para cada chave de empacotamento
do multitoken de autenticagao. Se o token de autenticagao gerador for um token de autenticacéo

do KMS, a chave geradora no token de autenticagdo do AWS KMS gerara e criptografara a chave
de texto simples. Em seguida, todas as chaves adicionais AWS KMS keys no AWS KMS chaveiro e

todas as chaves de embrulho em todos os chaveiros secundarios do chaveiro multiplo criptografam a
mesma chave de texto sem formatacao.

Se vocé criar um chaveiro multiplo sem gerador de chaves, podera usa-lo sozinho para
descriptografar dados, mas n&o para criptografar. Ou, para usar um chaveiro multiplo sem chaveiro
gerador em operagoes de criptografia, vocé pode especifica-lo como um chaveiro secundario em

Multitokens de autenticacéo 220

AWS Encryption SDK Guia do Desenvolvedor

outro chaveiro multiplo. Um chaveiro multiplo sem chaveiro gerador ndo pode ser designado como
chaveiro gerador em outro chaveiro multiplo.

Ao descriptografar, ele AWS Encryption SDK usa os chaveiros para tentar descriptografar uma das
chaves de dados criptografadas. Os tokens de autenticagdo sdo chamados na ordem em que sao
especificados no multitoken de autenticagdo. O processamento para assim que qualquer chave em
qualquer token de autenticagao pode descriptografar uma chave de dados criptografada.

A partir da versao 1.7. x, quando uma chave de dados criptografada é criptografada em um chaveiro
AWS Key Management Service (AWS KMS) (ou provedor de chave mestra), AWS Encryption SDK
sempre passa 0 ARN da chave para AWS KMS keyKeyId o pardametro da AWS KMS operagao
Decrypt. Essa é uma pratica AWS KMS recomendada que garante que vocé decodifique a chave de
dados criptografada com a chave de empacotamento que vocé pretende usar.

Para ver um exemplo pratico de um multitoken de autenticagao, consulte:

* C: multi_keyring.cpp

C# /.NET: .cs MultiKeyringExample

JavaScript Node.js: multi_keyring.ts

JavaScript Navegador: multi_keyring.ts

Java: MultiKeyringExample.java

Python: multi_keyring_example.py

Para criar um multitoken de autenticacao, primeiro instancie os tokens de autenticagao filho. Neste
exemplo, usamos um AWS KMS chaveiro e um chaveiro AES bruto, mas vocé pode combinar
qualquer chaveiro compativel em um chaveiro multiplo.

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */

struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,

AWS_CRYPTOSDK_AES256);

Multitokens de autenticacéo 221

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c

AWS Encryption SDK Guia do Desenvolvedor

C#/.NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

JavaScript Browser

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padrdo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
KmsKeyringBrowser,
KMS,
getClient,
RawAesKeyringWebCrypto,
RawAesWrappingSuiteIdentifier,
MultiKeyringWebCrypto,
buildClient,
CommitmentPolicy,
synchronousRandomValues,

} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
wrappingSuite, masterKey })

Multitokens de autenticacéo 222

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

O exemplo a seguir usa a buildClient fungao para especificar a politica de compromisso
padrao,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter

mais informacgdes, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
MultiKeyringNode,
KmsKeyringNode,
RawAesKeyringNode,
RawAesWrappingSuiteIdentifier,
buildClient,
CommitmentPolicy,

} from 'eaws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
unencryptedMasterKey })

Java

// Define the raw AES keyring.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

final CreateRawAesKeyringInput createRawAesKeyringInput =

CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.

Multitokens de autenticacéo 223

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK Guia do Desenvolvedor

final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()

.generator(kmsKeyArn)

.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

O exemplo a seguir instancia o AWS Encryption SDK cliente com a politica de compromisso
padréo,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

kms_keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(

generator=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=kms_keyring_input

Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_@12"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=AESWrappingKey,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=raw_aes_keyring_input

Multitokens de autenticacéo 224

AWS Encryption SDK Guia do Desenvolvedor

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =

aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name(key_name)
.key_namespace(key_namespace)
.wrapping_key(aws_smithy_types::Blob: :new(AESWrappingKey))
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagl6)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Multitokens de autenticacéo 225

AWS Encryption SDK Guia do Desenvolvedor

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err !'= nil {

panic(err)

// Create an AWS KMS client

cfg, err := config.LoadDefaultConfig(context.TODO())

if err !'= nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

D

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"

Multitokens de autenticacéo 226

AWS Encryption SDK Guia do Desenvolvedor

var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{

KeyName: keyName,

KeyNamespace: keyNamespace,

WrappingKey: AESWrappingKey,

WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tagls,
}

aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),

aesKeyRingInput)

Em seguida, crie o multitoken de autenticacao e especifique seu token gerador, se houver. Neste
exemplo, criamos um chaveiro multiplo no qual o chaveiro € o AWS KMS chaveiro do gerador € o

chaveiro AES é o chaveiro infantil.

C
No construtor de multitoken de autenticacdo no C, vocé especifica apenas seu token de
autenticagao gerador.
struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
kms_keyring);
Para adicionar um token de autenticacao filho ao multitoken de autenticagao, use o método
aws_cryptosdk_multi_keyring_add_child. Vocé precisa chamar o método uma vez para
cada token de autenticacao filho que adicionar.
// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);
C#/ .NET

O construtor.NET CreateMultiKeyringInput permite definir um token de autenticagao
gerador e tokens de autenticagao secundarios. O objeto CreateMultiKeyringInput
resultante é imutavel.

var createMultiKeyringInput = new CreateMultiKeyringInput

{

Generator = kmsKeyring,

Multitokens de autenticacéo 227

AWS Encryption SDK Guia do Desenvolvedor

ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);
JavaScript Browser

JavaScript varios chaveiros sao imutaveis. O construtor JavaScript de varios chaveiros permite
que vocé especifique o chaveiro do gerador e varios chaveiros infantis.

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
[aesKeyring]);

JavaScript Node.js

JavaScript varios chaveiros sao imutaveis. O construtor JavaScript de varios chaveiros permite
que vocé especifique o chaveiro do gerador e varios chaveiros infantis.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
[aesKeyring]);

Java

O CreateMultiKeyringInput construtor Java permite definir um gerador de chaveiros e um
chaveiro secundario. O objeto createMultiKeyringInput resultante é imutavel.

final CreateMultiKeyringInput createMultiKeyringInput =

CreateMultiKeyringInput.buildex()
.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonlList(rawAesKeyring))
.build();

IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
generator=kms_keyring,
child_keyrings=[raw_aes_keyring]

Multitokens de autenticacéo 228

AWS Encryption SDK

Guia do Desenvolvedor

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
input=multi_keyring_input

Rust

let multi_keyring = mpl
.create_multi_keyring()
.generator(kms_keyring.clone())
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()
.await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
Generator: awsKmsKeyring,
ChildKeyrings: [Impltypes.IKeyring{rawAESKeyring},
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
createMultiKeyringInput)
if err !'= nil {
panic(err)

}

Agora, é possivel usar o multitoken de autenticagdo para criptografar e descriptografar dados.

Multitokens de autenticacéo

229

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK linguagens de programacao

O AWS Encryption SDK esta disponivel para as seguintes linguagens de programacao. As
implementacdes de linguagem s3o interoperaveis E possivel criptografar com uma implementacao
de linguagem e descriptografar com outra. A interoperabilidade pode estar sujeita as restricoes de
linguagem. Em caso afirmativo, essas restricdes estarao descritas no topico sobre a implementacao
de linguagem. Além disso, ao criptografar e descriptografar, € necessario usar tokens de
autenticagao compativeis ou chaves mestras e provedores de chaves mestras. Para obter mais
detalhes, consulte the section called “Compatibilidade dos tokens de autenticacao”.

Topicos

* AWS Encryption SDK for C

* AWS Encryption SDK para o.NET

* AWS Encryption SDK para Go

* AWS Encryption SDK for Java

* AWS Encryption SDK para JavaScript
* AWS Encryption SDK for Python

* AWS Encryption SDK para Rust

* AWS Encryption SDK interface de linha de comando

AWS Encryption SDK for C

O AWS Encryption SDK for C fornece uma biblioteca de criptografia do lado do cliente para
desenvolvedores que estdo escrevendo aplicativos em C. Ela também serve como base para
implementacdes de linguagens de programacao de nivel superior. AWS Encryption SDK

Como todas as implementagées do AWS Encryption SDK, o AWS Encryption SDK for C oferece
recursos avangados de protecao de dados. Os recursos incluem criptografia de envelope, AAD

(additional authenticated data - dados autenticados adicionais) e pacotes de algoritmos de chave

simétrica segura e autenticada, como o AES-GCM de 256 bits com derivagcdo de chave e assinatura.

Todas as implementagdes especificas de linguagem do AWS Encryption SDK s&o totalmente
interoperaveis. Por exemplo, vocé pode criptografar dados com o AWS Encryption SDK for C e

descriptografa-los com qualquer implementacao de linguagem compativel, incluindo a CLI de
criptografia. AWS

C 230

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK for C Isso requer que AWS SDK para C++ o interaja com AWS Key
Management Service (AWS KMS). Vocé precisa usa-lo somente se estiver usando o AWS KMS
token de autenticacao opcional. No entanto, AWS Encryption SDK nao requer AWS KMS nenhum
outro AWS servico.

Saiba mais

+ Para obter detalhes sobre a programag&o com o AWS Encryption SDK for C, consulte os exemplos
em C, os exemplos no aws-encryption-sdk-c repositério em GitHub e a documentacao da AWS
Encryption SDK for C API.

» Para uma discussao sobre como usar o para criptografar dados AWS Encryption SDK for C para
qgue vocé possa descriptografa-los em varios Regides da AWS, consulte Como descriptografar
textos cifrados em varias regidoes com o em C no Blog de Seguranca. AWS Encryption SDK AWS

Topicos

* Instalando o AWS Encryption SDK for C

» Usando o AWS Encryption SDK for C

» AWS Encryption SDK for C exemplos

Instalando o AWS Encryption SDK for C

Instale a versdo mais recente do AWS Encryption SDK for C.

® Note

Todas as versdes AWS Encryption SDK for C anteriores a 2.0.0 estdo em end-of-
supportfase.

Vocé pode atualizar com segurancga a partir da versao 2.0.x e posteriores até a versao mais
recente do AWS Encryption SDK for C sem realizar altera¢des no codigo ou nos dados. No
entanto, os novos atributos de seguranca introduzidos na versao 2.0.x ndo sao compativeis

com versodes anteriores. Para atualizar a partir de versdes anteriores a 1.7.x até a verséao 2.0.
X e posteriores, primeiro sera necessario atualizar para a versao 1.x mais recente do AWS
Encryption SDK for C. Para obter detalhes, consulte Migrando seu AWS Encryption SDK.

Instalar 231

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Vocé pode encontrar instru¢des detalhadas para instalar e criar o AWS Encryption SDK for C no
arquivo README do aws-encryption-sdk-crepositério. Ele inclui instrucdes para criar nas plataformas
Amazon Linux, Ubuntu, macOS e Windows.

Antes de comecar, decida se deseja usar tokens de autenticacao do AWS KMS no AWS Encryption
SDK. Se vocé usa um AWS KMS chaveiro, vocé precisa instalar o. AWS SDK para C++ O AWS SDK
€ necessario para interagir com AWS Key Management Service(AWS KMS). Quando vocé AWS
Encryption SDK usa AWS KMS chaveiros, eles usam AWS KMS para gerar e proteger as chaves de
criptografia que protegem seus dados.

Vocé nao precisa instalar o AWS SDK para C++ se estiver usando outro tipo de chaveiro, como um
chaveiro AES bruto, um chaveiro RSA bruto ou um chaveiro multiplo que n&o inclua um chaveiro.
AWS KMS No entanto, ao usar um tipo de token de autenticacao bruto, vocé precisa gerar e proteger
suas proprias chaves de encapsulamento brutas.

Se vocé estiver com problemas com a instalagao, registre um problema no repositorio do aws -
encryption-sdk-c ou use os links de feedback desta pagina.

Usando o AWS Encryption SDK for C

Este tépico explica alguns dos recursos do AWS Encryption SDK for C que nao sao suportados em
outras implementacgdes de linguagem de programacéao.

Esses exemplos mostram como usar a verséo 2.0.x e versdes posteriores do AWS Encryption SDK
for C. Para exemplos que usam versdes anteriores, encontre sua versdo na lista de lancamentos do
aws-encryption-sdk-c repositorio em. GitHub

Para obter detalhes sobre a programag&o com o AWS Encryption SDK for C, consulte os exemplos
em C, os exemplos no aws-encryption-sdk-c repositorio em GitHub e a documentacao da AWS
Encryption SDK for C API.

Consulte também: Tokens de autenticagao

Topicos

» Padrbes para criptografar e descriptografar dados

» Contagem de referéncias

Uso do C SDK 232

https://github.com/aws/aws-encryption-sdk-c/#readme
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK Guia do Desenvolvedor

Padrdes para criptografar e descriptografar dados

Ao usar o AWS Encryption SDK for C, vocé segue um padrao semelhante a este: cria um chaveiro,
cria um CMM que usa o chaveiro, cria uma sessao que usa o CMM (e o chaveiro) e, em seguida,
processa a sessao.

1. Carregar sequéncias de erro.

Chame o método aws_cryptosdk_load_error_strings() no codigo C++ ou C++. Ele
carrega informacgdes de erro que sao muito uteis para depuracgao.

Vocé so precisa chama-lo uma vez, como no método main.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Crie um token de autenticacao.

Configure o token de autenticagdo com as chaves de empacotamento que vocé deseja usar para
criptografar suas chaves de dados. Este exemplo usa um AWS KMS chaveiro com um AWS KMS
key, mas vocé pode usar qualquer tipo de chaveiro em seu lugar.

Para identificar um AWS KMS key em um chaveiro de criptografia no AWS Encryption SDK for C,
especifigue o ARN da chave ou o ARN do alias. Em um token de autenticagdo de descriptografia,

€ necessario usar um ARN de chave. Para obter detalhes, consulte Identificacdo AWS KMS keys
em um AWS KMS chaveiro.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(KEY_ARN);

3. Crie uma sessao.

No AWS Encryption SDK for C, vocé usa uma sessao para criptografar uma unica mensagem de
texto simples ou descriptografar uma unica mensagem de texto cifrado, independentemente do
tamanho. A sessdo mantém o estado da mensagem durante todo o processamento.

Configure a sessao com um alocador, um token de autenticagcdo e um modo:
AWS_CRYPTOSDK_ENCRYPT ou AWS_CRYPTOSDK_DECRYPT. Se vocé precisar alterar o modo da
sessao, use o método aws_cryptosdk_session_reset.

Uso do C SDK 233

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

Quando vocé cria uma sessdao com um chaveiro, ele cria AWS Encryption SDK for C
automaticamente um gerenciador de materiais criptograficos (CMM) padrao para vocé. Vocé nao
precisa criar, manter ou destruir esse objeto.

Por exemplo, a sesséo a seguir usa o alocador e o token de autenticagao definido na etapa 1. Ao
criptografar dados, o modo é o AWS_CRYPTOSDK_ENCRYPT.

struct aws_cryptosdk_session * session =
aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

4. Criptografe ou descriptografe os dados.

Para processar os dados na sessao, use o método aws_cryptosdk_session_process.

Se o buffer de entrada for grande o suficiente para conter todo o texto simples, e o buffer

de saida for grande o suficiente para conter todo o texto cifrado, vocé pode chamar
aws_cryptosdk_session_process_full. No entanto, se precisar lidar com dados de
streaming, vocé podera chamar aws_cryptosdk_session_process em um loop. Para obter
um exemplo, consulte o file_streaming.cpp . O aws_cryptosdk_session_process_full é
introduzido nas AWS Encryption SDK versdes 1.9. x e 2.2. x.

Quando a sessao é configurada para criptografar dados, os campos em texto simples descrevem
a entrada e os campos de texto cifrado descrevem a saida. O campo plaintext contém

a mensagem que vocé deseja criptografar, e o campo ciphertext obtém a mensagem
criptografada retornada pelo método de criptografia.

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
ciphertext,
ciphertext_buffer_size,
&ciphertext_length,
plaintext,
plaintext_length)

Quando a sesséo é configurada para descriptografar dados, os campos em texto cifrado
descrevem a entrada e os campos em texto cifrado descrevem a saida. O campo ciphertext
contém a mensagem criptografada retornada pelo método de criptografia, e o campo plaintext
obtém a mensagem em texto simples retornada pelo método de descriptografia.

Uso do C SDK 234

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK Guia do Desenvolvedor

Para descriptografar os dados, chame o método aws_cryptosdk_session_process_full.

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
plaintext,
plaintext_buffer_size,
&plaintext_length,
ciphertext,
ciphertext_length)

Contagem de referéncias

Para evitar vazamentos de memodria, libere as referéncias a todos os objetos que vocé criou ao
concluir. Caso contrario, ocorrerao vazamentos de memoéria. O SDK fornece métodos para facilitar
essa tarefa.

Sempre que vocé criar um objeto pai com um dos seguintes objetos filho, o objeto pai obtém e
mantém uma referéncia ao objeto filho, da seguinte forma:

* Um token de autenticacdo, como criar uma sessao com um token de autenticagao

* Um gerenciador de materiais criptograficos (CMM) padrdao, como criar uma sessao ou um CMM
personalizado com um CMM padrao

* Um cache de chaves de dados, como criar um CMM de armazenamento em cache com um token
de autenticagcdo e um cache

A menos que precise de uma referéncia independente ao objeto filho, vocé pode liberar a referéncia
ao objeto filho assim que criar o objeto pai. A referéncia restante ao objeto filho é liberada quando o
objeto pai é destruido. Esse padrao garante que vocé mantenha a referéncia a cada objeto somente
pelo tempo necessario e ndo ocorra vazamento de memdéria causado por referéncias nao liberadas.

Vocé so é responsavel por liberar referéncias aos objetos filho que cria explicitamente. Vocé nao

€ responsavel por gerenciar referéncias a objetos criados pelo SDK para vocé. Se o SDK criar um
objeto, como o CMM padrao que o método aws_cryptosdk_caching_cmm_new_from_keyring
adiciona a uma sessao, o SDK gerenciara a criagao e a destruicdo do objeto e suas referéncias.

No exemplo a seguir, ao criar uma sessao com um token de autenticacao, a sessao obtém uma

referéncia ao token de autenticacdo e mantém essa referéncia até que a sesséo seja destruida.

Uso do C SDK 235

AWS Encryption SDK Guia do Desenvolvedor

Se vocé nao precisar manter uma referéncia adicional ao token de autenticagao, podera usar o
método aws_cryptosdk_keyring_release para liberar o objeto do token de autenticagao
assim que a sesséao for criada. Esse método diminui a contagem de referéncias para o token de
autenticacao. A referéncia da sessao ao token de autenticagao € liberada quando vocé chama
aws_cryptosdk_session_destroy para destruir a sessao.

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
object.
aws_cryptosdk_keyring_release(keyring);

Para tarefas mais complexas, como reutilizar um token de autenticagao para varias sessoes ou
especificar um pacote de algoritmos em um CMM, talvez seja necessario manter uma referéncia
independente ao objeto. Se assim for, ndo chame os métodos de liberagao imediatamente. Em vez
disso, libere as referéncias quando vocé nao estiver mais usando os objetos, além de destruir a
sessao.

Essa técnica de contagem de referéncia também funciona quando vocé esta usando alternativas
CMMs, como o CMM de cache para armazenamento em cache de chaves de dados. Ao criar

um CMM de armazenamento em cache de um cache e de um token de autenticagcdo, o CMM de
armazenamento em cache obtém uma referéncia aos dois objetos. A menos que precise delas para
outra tarefa, vocé pode liberar suas referéncias independentes para cache e o token de autenticagao
assim que o CMM de armazenamento em cache for criado. Depois, ao criar uma sessao com o CMM
de armazenamento em cache, vocé pode liberar sua referéncia para o CMM de armazenamento em
cache.

Observe que vocé so é responsavel por liberar referéncias a objetos que cria explicitamente. Os
objetos criados pelos métodos para vocé, como o CMM padrao que é subjacente ao CMM de
armazenamento em cache, sdo gerenciados pelo método.

/ Create the caching CMM from a cache and a keyring.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);

Uso do C SDK 236

AWS Encryption SDK Guia do Desenvolvedor

aws_cryptosdk_keyring_release(kms_keyring);
// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,

AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

Y coo

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for C exemplos

Os exemplos a seguir mostram como usar o para AWS Encryption SDK for C criptografar e
descriptografar dados.

Esses exemplos mostram como usar as versoes 2.0.x e posteriores do AWS Encryption SDK for C.
Para exemplos que usam versdes anteriores, encontre sua versao na lista de lancamentos do aws-
encryption-sdk-c repositorio em. GitHub

Quando vocé instala e constréi o AWS Encryption SDK for C, o codigo-fonte desses e de outros
exemplos é incluido no examples subdiretério e eles sdo compilados e incorporados ao build
diretorio. Vocé também pode encontra-los no subdiretorio de exemplos do aws-encryption-sdk-
crepositorio em. GitHub

Topicos

 Criptografar e descriptografar strings

Criptografar e descriptografar strings

O exemplo a seguir mostra como usar o para AWS Encryption SDK for C criptografar e
descriptografar uma string.

Este exemplo apresenta o AWS KMS chaveiro, um tipo de chaveiro que usa um AWS KMS key in
AWS Key Management Service (AWS KMS) para gerar e criptografar chaves de dados. O exemplo
inclui codigo escrito em C++. AWS Encryption SDK for C Isso exige que AWS SDK para C++ vocé
ligue AWS KMS ao usar AWS KMS chaveiros. Se vocé estiver usando um chaveiro que nao interage

Exemplos 237

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Guia do Desenvolvedor

com AWS KMS, como um chaveiro AES bruto, um chaveiro RSA bruto ou um chaveiro multiplo que
nao inclui um AWS KMS chaveiro, isso ndo é necessario. AWS SDK para C++

Para obter ajuda na criagdo de um AWS KMS key, consulte Criacao de chaves no Guia do AWS
Key Management Service desenvolvedor. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteldentificacao AWS KMS keys em um AWS KMS chaveiro.

Consulte o exemplo de codigo completo: string.cpp

Topicos

 Criptografar uma string

» Descriptografar uma string

Criptografar uma string

A primeira parte deste exemplo usa um AWS KMS chaveiro com um AWS KMS key para criptografar
uma string de texto sem formatacéo.

Etapa 1. Carregar sequéncias de erro.

Chame o método aws_cryptosdk_load_error_strings() no codigo C++ ou C++. Ele
carrega informacgdes de erro que sao muito uteis para depuracgao.

Vocé so precisa chama-lo uma vez, como no método main.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Etapa 2: estruturar o token de autenticagao.

Crie um AWS KMS chaveiro para criptografia. O chaveiro neste exemplo é configurado com um
AWS KMS key, mas vocé pode configurar um AWS KMS chaveiro com varios AWS KMS keys,
inclusive AWS KMS keys em contas diferentes Regides da AWS e diferentes.

Para identificar um AWS KMS key em um chaveiro de criptografia no AWS Encryption SDK for C,
especifigue o ARN da chave ou o ARN do alias. Em um token de autenticagdo de descriptografia,
€ necessario usar um ARN de chave. Para obter detalhes, consulte Identificacado AWS KMS keys
em um AWS KMS chaveiro.

Identificacdo AWS KMS keys em um AWS KMS chaveiro

Exemplos 238

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

Ao criar um chaveiro com varios AWS KMS keys, vocé especifica o AWS KMS key usado para
gerar e criptografar a chave de dados de texto simples e uma matriz opcional de outros AWS
KMS keys que criptografam a mesma chave de dados de texto sem formatacéo. Nesse caso,
vocé especifica somente o gerador AWS KMS key.

Antes de executar esse cdodigo, substitua o ARN da chave de exemplo por um valido.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

Etapa 3: Criar uma sesséo.
Crie uma sessao usando o alocador, um enumerador de modo e o token de autenticagao.

Cada sesséao requer um modo: AWS_CRYPTOSDK_ENCRYPT para criptografar ou
AWS_CRYPTOSDK_DECRYPT para descriptografar. Para alterar o modo de uma sessao existente,
use o método aws_cryptosdk_session_reset.

Depois de criar um sessdo com o token de autenticagéo, vocé podera liberar sua referéncia ao
token de autenticagdo usando o método fornecido pelo SDK. A sessao retém uma referéncia
ao objeto token de autenticagao durante sua vida util. Referéncias ao token de autenticagéo e
aos objetos de sesséo sdo liberadas quando vocé destroi a sessdo. Essa técnica de contagem
de referéncia ajuda a evitar vazamentos de memoria e a evitar que os objetos sejam liberados
enquanto estao em uso.

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Etapa 4: Definir o contexto de criptografia.

Um contexto de criptografia sdo dados autenticados adicionais arbitrarios e que ndo séo secretos.

Quando vocé fornece um contexto de criptografia na criptografia, ele vincula AWS Encryption
SDK criptograficamente o contexto de criptografia ao texto cifrado, de forma que o0 mesmo

Exemplos 239

AWS Encryption SDK Guia do Desenvolvedor

contexto de criptografia seja necessario para descriptografar os dados. O uso de um contexto de
criptografia € opcional, mas o recomendamos como uma melhor pratica.

Primeiro, crie uma tabela de hash que inclua as strings de contexto de criptografia.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_keyl, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_valuel, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_keyl, (void *)enc_ctx_valuel, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

Obtenha um ponteiro mutavel para o contexto de criptografia na sessao. Depois, use a fungao
aws_cryptosdk_enc_ctx_clone para copiar o contexto de criptografia na sessao. Mantemos
a copia em my_enc_ctx para que possamos validar o valor depois de descriptografar os dados.

O contexto de criptografia faz parte da sessao, nao € um parametro transmitido para a fungao de
processo da sessao. Isso garante que o mesmo contexto de criptografia seja usado para todos os
segmentos de uma mensagem, mesmo se a fungao de processo de sessao for chamada varias
vezes para criptografar a mensagem inteira.

struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

Etapa 5: Criptografar a string.

Para criptografar a string em texto simples, use o método
aws_cryptosdk_session_process_full com a sessdo no modo de criptografia. Esse
meétodo, introduzido nas AWS Encryption SDK versdes 1.9. x e 2.2. x, foi projetado para
criptografia e decodificagdao sem streaming. Para lidar com dados de streaming, chame o
aws_cryptosdk_session_process continuamente.

Exemplos 240

AWS Encryption SDK Guia do Desenvolvedor

Na criptografia, os campos em texto simples sdo campos de entrada; os campos em texto cifrado
sao campos de saida. Concluido o processamento, o campo ciphertext_output contera a
mensagem criptografada, incluindo o texto cifrado real, as chaves de dados criptografadas e o
contexto de criptografia. Vocé pode descriptografar essa mensagem criptografada usando o AWS
Encryption SDK para qualquer linguagem de programagao compativel.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
ciphertext_output,
ciphertext_buf_sz_output,
&ciphertext_len_output,
plaintext_input,
plaintext_len_input)) {
aws_cryptosdk_session_destroy(session);
return 8;

Passo 6: Limpar a sessao.
A etapa final destroi a sesséo, inclusive as referéncias ao CMM e ao token de autenticagao.

Se vocé preferir, em vez de destruir a sessao, reutilize-a com o0 mesmo token de autenticagao

e CMM para descriptografar a string, ou para criptografar ou descriptografar outras mensagens.
Para usar a sessao para descriptografia, use o método aws_cryptosdk_session_reset para
alterar o modo para AWS_CRYPTOSDK_DECRYPT.

Descriptografar uma string

A segunda parte deste exemplo descriptografa uma mensagem criptografada que contém o texto
cifrado da string original.

Etapa 1: carregar sequéncias de erro.

Chame o método aws_cryptosdk_load_error_strings() no codigo C++ ou C++. Ele
carrega informacgdes de erro que sao muito uteis para depuracgao.

Vocé so6 precisa chama-lo uma vez, como no método main.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Exemplos 241

AWS Encryption SDK Guia do Desenvolvedor

Etapa 2: estruturar o token de autenticagao.

Ao descriptografar dados AWS KMS, vocé passa a mensagem criptografada que a API de

criptografia retornou. A API Decrypt ndo aceita uma AWS KMS key entrada. Em vez disso, AWS
KMS usa o mesmo AWS KMS key para descriptografar o texto cifrado usado para criptografa-
lo. No entanto, AWS Encryption SDK permite que vocé especifique um AWS KMS chaveiro sem
AWS KMS keys criptografar e descriptografar.

Ao descriptografar, vocé pode configurar um chaveiro apenas com o AWS KMS keys que

deseja usar para descriptografar a mensagem criptografada. Por exemplo, talvez vocé queira
criar um chaveiro apenas com o AWS KMS key que é usado por uma fungéo especifica em

sua organizagao. Eles nunca AWS Encryption SDK usardo um, AWS KMS key a menos que
apareca no chaveiro de decodificagdo. Se o SDK nao conseguir descriptografar as chaves de
dados criptografadas usando o AWS KMS keys chaveiro fornecido por vocé, seja porque nada
do chaveiro foi usado para criptografar nenhuma das AWS KMS keys chaves de dados ou
porque o chamador ndo tem permissao para usar o chaveiro para descriptografar, a chamada de
descriptografia falhara. AWS KMS keys

Ao especificar um AWS KMS key para um chaveiro de decodificacdo, vocé deve usar o ARN da

chave. Os alias ARNs sao permitidos somente em chaveiros de criptografia. Para obter ajuda
para identificar o AWS KMS keys em um AWS KMS chaveiro, consulteldentificacao AWS KMS
keys em um AWS KMS chaveiro.

Neste exemplo, especificamos um chaveiro configurado com o mesmo AWS KMS key usado para
criptografar a string. Antes de executar esse codigo, substitua o ARN da chave de exemplo por
um valido.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

Etapa 3: Criar uma sesséo.

Crie uma sessao usando o alocador e o token de autenticagcao. Para configurar a sessao para
descriptografia, configure a sessdo com o modo AWS_CRYPTOSDK_DECRYPT.

Depois de criar uma sessao com um token de autenticacao, vocé podera liberar sua referéncia ao
token de autenticacdo usando o método fornecido pelo SDK. A sessao mantém uma referéncia

Exemplos 242

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

ao objeto token de autenticacdo durante sua vida util, e a sessao e o token de autenticacdo sao
liberados quando vocé destroi a sessao. Essa técnica de contagem de referéncia ajuda a evitar
vazamentos de memoria e a evitar que os objetos sejam liberados enquanto estdo em uso.

struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Etapa 4: Descriptografar a string.

Para descriptografar a string, use o método aws_cryptosdk_session_process_full com
a sessao configurada para descriptografia. Esse método, introduzido nas versdes 1.9.x e 2.2.x
do AWS Encryption SDK , foi projetado para criptografia e descriptografia que nao sejam de
streaming. Para lidar com dados de streaming, chame o aws_cryptosdk_session_process
continuamente.

Na descriptografia, os campos em texto cifrado sdo campos de entrada, e os campos em
texto simples sao campos de saida. O campo ciphertext_input contém a mensagem
criptografada retornada pelo método de criptografia. Quando o processamento for concluido, o
campo plaintext_output contera a string em texto simples (descriptografada).

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,

plaintext_output,
plaintext_buf_sz_output,
&plaintext_len_output,
ciphertext_input,
ciphertext_len_input)) {

aws_cryptosdk_session_destroy(session);

return 13;

Etapa 5: Verificar o contexto de criptografia.

Verifique se o contexto de criptografia real, o que foi usado para descriptografar a mensagem,
contém o contexto de criptografia fornecido ao criptografar a mensagem. O contexto de

Exemplos 243

AWS Encryption SDK Guia do Desenvolvedor

criptografia real pode incluir pares extras porque o gerenciador de materiais criptograficos (CMM)

pode adicionar pares ao contexto de criptografia fornecido antes de criptografar a mensagem.

No AWS Encryption SDK for C, vocé nao precisa fornecer um contexto de criptografia ao
descriptografar porque o contexto de criptografia esta incluido na mensagem criptografada que o
SDK retorna. No entanto, antes que a mensagem em texto simples seja retornada, sua fungao de
descriptografia deve verificar se todos os pares no contexto de criptografia fornecido aparecem no
contexto que foi usado para descriptografar a mensagem.

Primeiro, obtenha um ponteiro somente leitura para a tabela de hash na sessao. Essa tabela de
hash contém o contexto de criptografia que foi usado para descriptografar a mensagem.

const struct aws_hash_table *session_enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr(session);

Depois, percorra o contexto na tabela de hash my_enc_ctx que vocé copiou ao efetuar a
criptografia. Verifique se cada par na tabela de hash my_enc_ctx que foi usada para efetuar
a criptografia aparece na tabela de hash session_enc_ctx que foi usada para efetuar a
descriptografia. Se alguma chave estiver ausente ou se essa chave tiver um valor diferente,
interrompa o processamento e escreva uma mensagem de erro.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);

aws_hash_iter_next(&iter)) {

struct aws_hash_element *session_enc_ctx_kv_pair;

aws_hash_table_find(session_enc_ctx, iter.element.key,
&session_enc_ctx_kv_pair)

if (!session_enc_ctx_kv_pair ||
laws_string_eq(
(struct aws_string *)iter.element.value, (struct aws_string
*)session_enc_ctx_kv_pair->value)) {
fprintf(stderr, "Wrong encryption context!\n");
abort();

Passo 6: Limpar a sessao.

Depois de verificar o contexto de criptografia, destrua a sessao ou a reutilize. Se precisar
reconfigura-la, use o método aws_cryptosdk_session_reset.

Exemplos 244

AWS Encryption SDK Guia do Desenvolvedor

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK para o.NET

O AWS Encryption SDK for .NET € uma biblioteca de criptografia do lado do cliente para
desenvolvedores que estdo escrevendo aplicativos em C# e em outras linguagens de
programacao.NET. E compativel com Windows, macOS e Linux.

(® Note

A versao 4.0.0 do AWS Encryption SDK para.NET se desvia da Especificagdo da AWS
Encryption SDK Mensagem. Como resultado, as mensagens criptografadas pela versao
4.0.0 s6 podem ser descriptografadas pela versao 4.0.0 ou posterior do para.NET. AWS
Encryption SDK Eles ndo podem ser descriptografados por nenhuma outra implementagao
de linguagem de programacao.

A versao 4.0.1 do AWS Encryption SDK para.NET grava mensagens de acordo com

a Especificacdo da AWS Encryption SDK Mensagem e é interoperavel com outras
implementacgdes de linguagem de programacao. Por padrao, a versao 4.0.1 pode ler
mensagens criptografadas pela versao 4.0.0. No entanto, se vocé nao quiser descriptografar
mensagens criptografadas pela versao 4.0.0, vocé pode especificar a propriedade
NetV4_0_0_RetryPolicy para impedir que o cliente leia essas mensagens. Para obter
mais informagdes, consulte as notas de versao v4.0.1 no aws-encryption-sdk repositério em.
GitHub

O AWS Encryption SDK for .NET difere de algumas das outras implementac¢des de linguagem de
programacao do AWS Encryption SDK das seguintes maneiras:

* N&o ha suporte para armazenamento em cache de chaves de dados

(® Note

Versédo 4. O x of the AWS Encryption SDK for.NET suporta o AWS KMS chaveiro
hierarquico, uma solugao alternativa de cache de materiais criptograficos.

* N&o ha suporte para streaming de dados

* Nao ha registros ou rastreamentos de pilha do AWS Encryption SDK para .NET

.NET 245

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1

AWS Encryption SDK Guia do Desenvolvedor

* Requer o AWS SDK for .NET

O AWS Encryption SDK para o.NET inclui todos os recursos de segurancga introduzidos nas versoes
2.0. x e posteriores de outras implementagdes de linguagem do AWS Encryption SDK. No entanto,
se vocé estiver usando o for. NET AWS Encryption SDK para descriptografar dados que foram
criptografados por uma versao pré-2.0. versao x outra implementacao de linguagem do AWS
Encryption SDK, talvez seja necessario ajustar sua politica de compromisso. Para obter detalhes,
consulte Como definir sua politica de compromisso.

O AWS Encryption SDK for .NET € um produto do AWS Encryption SDK in Dafny, uma linguagem de
verificagdo formal na qual vocé escreve especificagdes, o codigo para implementa-las e as provas
para testa-las. O resultado € uma biblioteca que implementa os atributos do AWS Encryption SDK
em uma estrutura que garante a corregao funcional.

Saiba mais

» Para ver exemplos que mostram como configurar opgées no AWS Encryption SDK, como
especificar um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar
chaves AWS KMS multirregionais, consulte. Configurando o AWS Encryption SDK

+ Para obter detalhes sobre a programagao com o AWS Encryption SDK para.NET, consulte o aws -
encryption-sdk-netdiretorio do aws-encryption-sdk repositério em GitHub.

Topicos

« Instalando o AWS Encryption SDK para 0.NET

» Depurando o para o.NET AWS Encryption SDK

 AWS Encryption SDK para exemplos do.NET

Instalando o AWS Encryption SDK para o.NET

O AWS Encryption SDK para 0.NET esta disponivel como
AWS.Cryptography.EncryptionSDKpacote em NuGet. Para obter detalhes sobre como instalar

e criar o AWS Encryption SDK para.NET, consulte o arquivo README.md no repositorio. aws -
encryption-sdk-net

Instalar e compilar 246

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme

AWS Encryption SDK Guia do Desenvolvedor

Versao 3.x

Versao 3. x do AWS Encryption SDK para o.NET oferece suporte a o.NET Framework 4.5.2
— 4.8 somente no Windows. E compativel com o .NET Core 3.0+ e o .NET 5.0 e versdes
posteriores em todos os sistemas operacionais compativeis.

Versao 4.x

Versao 4. x do AWS Encryption SDK para o.NET oferece suporte a 0.NET 6.0 e 0o.NET
Framework net48 e versdes posteriores. Versao 4. x requer o AWS SDK para .NET v3.

O AWS Encryption SDK for .NET exige o SDK for .NET mesmo se vocé nao estiver usando as
chaves AWS Key Management Service (AWS KMS). Ele € instalado com o NuGet pacote. No
entanto, a menos que vocé esteja usando AWS KMS chaves, AWS Encryption SDK 0.NET n&o exige
AWS credenciais ou interagdo com nenhum AWS servigo. Conta da AWS Para obter ajuda para
configurar uma AWS conta, se necessario, consulteUsando o AWS Encryption SDK com AWS KMS.

Depurando o para o.NET AWS Encryption SDK

O AWS Encryption SDK for.NET nao gera nenhum registro. As exce¢des no AWS Encryption SDK
for.NET geram uma mensagem de exce¢ao, mas nenhum rastreamento de pilha.

Para ajudar na depuracéo, certifique-se de habilitar o login no SDK for .NET. Os registros e
mensagens de erro do SDK for .NET podem ajuda-lo a distinguir os erros decorrentes do e os SDK
for NET do para.NET. AWS Encryption SDK Para obter ajuda com o SDK for .NET registro, consulte
AWSLoggingo Guia do AWS SDK for .NET desenvolvedor. (Para ver o topico, expanda a se¢do Abrir
para ver o conteudo do .NET Framework.)

AWS Encryption SDK para exemplos do.NET

Os exemplos a seguir mostram os padrdes basicos de codificagcdo que vocé usa ao programar com o
AWS Encryption SDK para 0.NET. Especificamente, vocé instancia a biblioteca AWS Encryption SDK
e os fornecedores de materiais. Em seguida, antes de chamar cada método, vocé deve instanciar um
objeto que define a entrada para o método. Isso € muito parecido com o padrao de codificagdo usado
no SDK for .NET.

Para ver exemplos que mostram como configurar op¢des no AWS Encryption SDK, como especificar
um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar chaves AWS
KMS multirregionais, consulte. Configurando o AWS Encryption SDK

Depuragéo 247

https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS Encryption SDK Guia do Desenvolvedor

Para obter mais exemplos de programacao com o AWS Encryption SDK para.NET, consulte os
exemplos no aws-encryption-sdk-net diretério do aws-encryption-sdk repositério em
GitHub.

Criptografia de dados no AWS Encryption SDK para .NET

Este exemplo mostra o padrao basico para criptografar dados. Ele criptografa um pequeno arquivo
com chaves de dados protegidas por uma chave de AWS KMS empacotamento.

Etapa 1: Instanciar a biblioteca AWS Encryption SDK e a biblioteca dos fornecedores de materiais.

Comece instanciando a biblioteca AWS Encryption SDK e a biblioteca dos fornecedores de
materiais. Vocé usara os métodos do AWS Encryption SDK para criptografar e descriptografar
dados. Vocé usara os métodos na biblioteca de fornecedores de materiais para criar os tokens de
autenticagao que especificam quais chaves protegem seus dados.

A forma como vocé instancia a biblioteca AWS Encryption SDK e a biblioteca de fornecedores
de materiais difere entre as versdes 3. x e 4. x do AWS Encryption SDK para 0.NET. Todas as
etapas a seguir sdo as mesmas para ambas as versdes 3. x e 4. x do AWS Encryption SDK para
o.NET.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders(
Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Etapa 2: crie um objeto de entrada para o token de autenticagao.

Cada método que cria um token de autenticagao tem uma classe de objeto de
entrada correspondente. Por exemplo, para criar o objeto de entrada para o método
CreateAwsKmsKeyring(), crie uma instancia da classe CreateAwsKmsKeyringInput.

Exemplos 248

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK Guia do Desenvolvedor

Embora a entrada desse token de autenticacdo nao especifique uma chave geradora, a unica
chave do KMS especificada pelo parametro KmsKeyId é a chave geradora. Ela gera e criptografa
a chave de dados que criptografa os dados.

Esse objeto de entrada requer um AWS KMS cliente para Regidao da AWS a chave KMS. Para
criar um AWS KMS cliente, instancie a AmazonKeyManagementServiceClient classe

no. SDK for .NET Chamar o construtor AmazonKeyManagementServiceClient() sem
parametros cria um cliente com os valores padrao.

Em um AWS KMS chaveiro usado para criptografar com 0.NET, vocé pode identificar as

chaves KMS usando o ID da chave, o ARN da chave, o nome do alias ou o ARN do alias. AWS
Encryption SDK Em um AWS KMS chaveiro usado para descriptografia, vocé deve usar um ARN
de chave para identificar cada chave KMS. Se vocé planeja reutilizar seu token de autenticagao
de criptografia para descriptografar, use um identificador ARN de chave para todas as chaves
KMS.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

Etapa 3: criar o token de autenticagao.

Para criar o token de autenticagdo, chame o método do token de autenticagdo com o objeto de
entrada do token de autenticagdo. Este exemplo usa o método CreateAwsKmsKeyring(), que
usa apenas uma chave do KMS.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Etapa 4: defina um contexto de criptografia.

Um contexto de criptografia € um elemento opcional, mas altamente recomendado, de operagdes
criptograficas no AWS Encryption SDK. Vocé pode definir um ou mais pares de chave-valor nao
secretos.

Exemplos 249

AWS Encryption SDK Guia do Desenvolvedor

® Note

Com a versao 4. No AWS Encryption SDK caso do.NET, vocé pode exigir um contexto
de criptografia em todas as solicitagées de criptografia com o contexto de criptografia
necessario CMM.

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()

{
{"purpose", "test"}
i

Etapa 5: crie o objeto de entrada para a criptografia.

Antes de chamar o método Encrypt(), crie uma instancia da classe EncryptInput.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

Etapa 6: criptografe o texto sem formatagao.

Use o Encrypt () método do AWS Encryption SDK para criptografar o texto sem formatacao
usando o chaveiro que vocé definiu.

O EncryptOutput que o método Encrypt() retornatem métodos para obter a mensagem
criptografada (Ciphertext), o contexto de criptografia e o pacote de algoritmos.

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Etapa 7: obtenha a mensagem criptografada.

O Decrypt () método em AWS Encryption SDK for.NET usa o Ciphertext membro da
EncryptOutput instancia.

Exemplos 250

AWS Encryption SDK Guia do Desenvolvedor

O membro Ciphertext do objeto EncryptOutput é a mensagem criptografada, um objeto
portatil que inclui dados criptografados, chaves de dados criptografadas e metadados, incluindo o
contexto de criptografia. E possivel armazenar com seguranga a mensagem criptografada por um
periodo prolongado ou envia-la ao método Decrypt () para recuperar o texto sem formatagao.

var encryptedMessage = encryptOutput.Ciphertext;

Descriptografia em modo estrito no AWS Encryption SDK para .NET

As praticas recomendadas indicam que vocé especifique as chaves usadas para descriptografar
dados, uma opgao conhecida como modo estrito. O AWS Encryption SDK usa somente as chaves
KMS que vocé especifica em seu chaveiro para descriptografar o texto cifrado. As chaves no token
de autenticagao de descriptografia devem incluir pelo menos uma das chaves que criptografaram os
dados.

Este exemplo mostra o padrao basico de descriptografia no modo estrito com o AWS Encryption
SDK para .NET.

Etapa 1: Instanciar a biblioteca AWS Encryption SDK e os fornecedores de materiais.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Etapa 2: criar o objeto de entrada para seu token de autenticagao.

Para especificar os parametros do método do token de autenticagao, crie um objeto de
entrada. Cada método de chaveiro no AWS Encryption SDK for.NET tem um objeto de entrada
correspondente. Como esse exemplo usa 0 método CreateAwsKmsKeyring() para criar o
token de autenticagao, ele instancia a classe CreateAwsKmsKeyringInput para a entrada.

Em um token de autenticagao de descriptografia, vocé deve usar um ARN de chave para
identificar chaves do KMS.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object

Exemplos 251

AWS Encryption SDK Guia do Desenvolvedor

var kmsKeyringInput = new CreateAwsKmsKeyringInput

{

KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn
i

Etapa 3: criar o token de autenticagao.

Para criar o token de autenticacdo da descriptografia, este exemplo usa o método
CreateAwsKmsKeyring() e o objeto de entrada do token de autenticagao.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Etapa 4: crie o objeto de entrada para descriptografar.
Para criar o objeto de entrada para o método Decrypt (), instancie a classe DecryptInput.

O parémetro Ciphertext do construtor DecryptInput() usa o membro Ciphertext do
objeto EncryptOutput que o método Encrypt () retornou. A propriedade Ciphertext
representa a mensagem criptografada, que inclui os dados criptografados, as chaves de dados
criptografadas e os metadados que o AWS Encryption SDK necessita para descriptografar a
mensagem.

Com a versao 4. No AWS Encryption SDK caso do.NET, vocé pode usar o
EncryptionContext parametro opcional para especificar seu contexto de criptografia no
Decrypt() método.

Use o parametro EncryptionContext para verificar se o contexto de criptografia usado na
criptografia esta incluido no contexto de criptografia usado para descriptografar o texto cifrado.
AWS Encryption SDK Isso adiciona pares ao contexto de criptografia, incluindo a assinatura
digital, se vocé estiver usando um conjunto de algoritmos com assinatura, como o conjunto de
algoritmos padrao.

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{
Ciphertext = encryptedMessage,
Keyring = keyring,
EncryptionContext = encryptionContext // OPTIONAL

Exemplos 252

AWS Encryption SDK Guia do Desenvolvedor

i

Etapa 5: descriptografe o texto cifrado.
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Etapa 6: verifique o contexto de criptografia — versao 3.x

O Decrypt () método da versao 3. x do AWS Encryption SDK for.NET n&o usa um contexto
de criptografia. Ele obtém os valores do contexto de criptografia dos metadados na mensagem
criptografada. No entanto, antes de retornar ou usar o texto simples, € recomendavel verificar
se o contexto de criptografia usado para descriptografar o texto cifrado inclui o contexto de
criptografia que vocé forneceu ao criptografar.

Verifique se o contexto de criptografia usado na criptografia esta incluido no contexto de
criptografia usado para descriptografar o texto cifrado. AWS Encryption SDK Isso adiciona pares
ao contexto de criptografia, incluindo a assinatura digital, se vocé estiver usando um conjunto de
algoritmos com assinatura, como o conjunto de algoritmos padrao.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var

decryptContextValue)

|| !decryptContextValue.Equals(contextValue))
{

throw new Exception("Encryption context does not match expected values");
}

Descriptografando com um chaveiro de descoberta no for NET AWS Encryption SDK

Em vez de especificar as chaves KMS para a descriptografia, vocé pode fornecer um token de
autenticacao de descoberta do AWS KMS , que € um token de autenticacdo que nio especifica
nenhuma chave KMS. Um chaveiro de descoberta permite AWS Encryption SDK descriptografar

os dados usando qualquer chave KMS criptografada, desde que o chamador tenha permisséao de
descriptografia na chave. Para obter as melhores praticas, adicione um filtro de descoberta que limita
as chaves KMS que podem ser usadas para aquelas especificas Contas da AWS de uma particao
especificada.

Exemplos 253

AWS Encryption SDK Guia do Desenvolvedor

O AWS Encryption SDK for.NET fornece um chaveiro de descoberta basico que requer um AWS
KMS cliente e um chaveiro de descoberta multiplo que exige que vocé especifique um ou mais.
Regides da AWS Tanto o cliente quanto as regides limitam as chaves do KMS que podem ser
usadas para descriptografar a mensagem criptografada. Os objetos de entrada dos dois tokens de
autenticagao usam o filtro de descoberta recomendado.

O exemplo a seguir mostra o padrao para descriptografar dados com um token de autenticacao de
descoberta do AWS KMS e um filtro de descoberta.

Etapa 1: Instanciar a biblioteca AWS Encryption SDK e a biblioteca dos fornecedores de materiais.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Etapa 2: criar o objeto de entrada para o token de autenticagao.

Para especificar os parametros do método do token de autenticacao, crie um

objeto de entrada. Cada método de chaveiro no AWS Encryption SDK for.NET

tem um objeto de entrada correspondente. Como esse exemplo usa o método
CreateAwsKmsDiscoveryKeyring() para criar o token de autenticagao, ele instancia a classe
CreateAwsKmsDiscoveryKeyringInput para a entrada.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
DiscoveryFilter = new DiscoveryFilter()

{
AccountIds = accounts,
Partition = "aws"

1
Etapa 3: criar o token de autenticagao.

Para criar o token de autenticacdo da descriptografia, este exemplo usa o método
CreateAwsKmsDiscoveryKeyring() e o objeto de entrada do token de autenticagéo.

Exemplos 254

AWS Encryption SDK Guia do Desenvolvedor

var discoveryKeyring =
materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

Etapa 4: crie o objeto de entrada para descriptografar.

Para criar o objeto de entrada para o método Decrypt (), instancie a classe DecryptInput.
O valor do parametro Ciphertext é o membro Ciphertext do objeto EncryptOutput que o
método Encrypt() retorna.

Com a versao 4. No AWS Encryption SDK caso do.NET, vocé pode usar o
EncryptionContext parametro opcional para especificar seu contexto de criptografia no
Decrypt () método.

Use o parametro EncryptionContext para verificar se o contexto de criptografia usado na
criptografia esta incluido no contexto de criptografia usado para descriptografar o texto cifrado.
AWS Encryption SDK Isso adiciona pares ao contexto de criptografia, incluindo a assinatura
digital, se vocé estiver usando um conjunto de algoritmos com assinatura, como o conjunto de
algoritmos padrao.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput

{

Ciphertext = ciphertext,

Keyring = discoveryKeyring,

EncryptionContext = encryptionContext // OPTIONAL
};

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Etapa 5: verificar o contexto de criptografia - versao 3.x

O Decrypt () método da versao 3. x do AWS Encryption SDK for.NET nao usa um contexto

de criptografiaDecrypt (). Ele obtém os valores do contexto de criptografia dos metadados na
mensagem criptografada. No entanto, antes de retornar ou usar o texto simples, € recomendavel
verificar se o contexto de criptografia usado para descriptografar o texto cifrado inclui o contexto
de criptografia que vocé forneceu ao criptografar.

Verifique se o contexto de criptografia usado na criptografia foi incluido no contexto de criptografia
usado para descriptografar o texto cifrado. AWS Encryption SDK Isso adiciona pares ao contexto

Exemplos 255

AWS Encryption SDK Guia do Desenvolvedor

de criptografia, incluindo a assinatura digital, se vocé estiver usando um conjunto de algoritmos
com assinatura, como o conjunto de algoritmos padrao.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
decryptContextValue)
| | !'decryptContextValue.Equals(contextValue))

throw new Exception("Encryption context does not match expected values");

AWS Encryption SDK para Go

Este topico explica como instalar e usar o AWS Encryption SDK for Go. Para obter detalhes sobre
a programacao com o AWS Encryption SDK for Go, consulte o diretorio go do aws-encryption-sdk
repositorio on GitHub.

O AWS Encryption SDK for Go difere de algumas das outras implementag¢des de linguagem de
programacao do AWS Encryption SDK das seguintes maneiras:

» Nao ha suporte para armazenamento em cache de chaves de dados. No entanto, o AWS
Encryption SDK for Go suporta o AWS KMS chaveiro hierarquico, uma solugao alternativa de
cache de materiais criptograficos.

* Nao ha suporte para streaming de dados

O AWS Encryption SDK for Go inclui todos os recursos de seguranga introduzidos nas versdes 2.0. x
e posteriores de outras implementacdes de linguagem do AWS Encryption SDK. No entanto, se vocé
estiver usando o for Go AWS Encryption SDK para descriptografar dados que foram criptografados
por uma versao pre-2.0. versao x outra implementacao de linguagem do AWS Encryption SDK,
talvez seja necessario ajustar sua politica de compromisso. Para obter detalhes, consulte Como

definir sua politica de compromisso.

O AWS Encryption SDK for Go € um produto do AWS Encryption SDK in Dafny, uma linguagem de
verificagdo formal na qual vocé escreve especificagdes, o codigo para implementa-las e as provas

Go 256

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK Guia do Desenvolvedor

para testa-las. O resultado € uma biblioteca que implementa os atributos do AWS Encryption SDK
em uma estrutura que garante a corregao funcional.

Saiba mais

« Para ver exemplos que mostram como configurar opgées no AWS Encryption SDK, como
especificar um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar
chaves AWS KMS multirregionais, consulte. Configurando o AWS Encryption SDK

» Para ver exemplos de como configurar e usar o AWS Encryption SDK for Go, consulte os
exemplos de Go no aws-encryption-sdk repositério em GitHub.

Topicos

» Pré-requisitos

* Instalacao

Pré-requisitos
Antes de instalar o AWS Encryption SDK for Go, verifique se vocé tem os seguintes pré-requisitos.
Uma versao compativel do Go

O Go 1.23 ou posterior € exigido pelo AWS Encryption SDK for Go.

Para obter mais informag6es sobre como baixar e instalar o Go, consulte Instalacao do Go.

Instalacao

Instale a versdo mais recente do AWS Encryption SDK for Go. Para obter detalhes sobre como
instalar e criar o AWS Encryption SDK for Go, consulte o README.md no diretério go do repositério
em. aws-encryption-sdk GitHub

Para instalar a versao mais recente

* Instale o AWS Encryption SDK for Go

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

* Instale a Biblioteca de Provedores de Material Criptografico (MPL)

Pré-requisitos 257

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples
https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS Encryption SDK for Java

Este tdpico explica como instalar e usar o AWS Encryption SDK for Java. Para obter detalhes sobre
a programacao com o AWS Encryption SDK for Java, consulte o aws-encryption-sdk-javarepositorio
em GitHub. Para obter a documentagao da API, consulte o Javadoc para AWS Encryption SDK for
Java.

Topicos

* Pré-requisitos

* Instalacao

« AWS Encryption SDK for Java exemplos

Pré-requisitos
Antes de instalar o AWS Encryption SDK for Java, verifique se vocé tem os seguintes pré-requisitos.
Um ambiente de desenvolvimento Java

Vocé precisara do Java 8 ou posterior. No site da Oracle, acesse Java SE Downloads e faga
download e instale o Java SE Development Kit (JDK).

Se vocé usa o Oracle JDK, também precisara fazer download e instalar os arquivos de politica de
jurisdi¢ao de forca ilimitada JCE (Java Cryptography Extension).

Bouncy Castle

AWS Encryption SDK for Java Isso requer o Bouncy Castle.

» AWS Encryption SDK for Java as versdes 1.6.1 e posteriores usam o Bouncy Castle para
serializar e desserializar objetos criptograficos. Vocé pode usar o Bouncy Castle ou o Bouncy
Castle FIPS para atender a esse requisito. Para obter ajuda na instalagao e configuragao
do Bouncy Castle FIPS, consulte a documentacao do BC FIPS, especialmente os Guias do
Usuario e a Politica de Seguranga. PDFs

» As versoes anteriores do AWS Encryption SDK for Java usam a API de criptografia do Bouncy
Castle para Java. Este requisito sé é atendido por ndo FIPS Bouncy Castle.

Java 258

https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/

AWS Encryption SDK Guia do Desenvolvedor

Se vocé nao tiver o Bouncy Castle, acesse Baixar Bouncy Castle for Java para baixar o arquivo

do provedor que corresponde ao seu JDK. Vocé também pode usar o Apache Maven para obter

o artefato para o provedor padrao do Bouncy Castle (bcprov-ext-jdk150n) ou o artefato para o
Bouncy Castle FIPS (bc-fips).

AWS SDK for Java

Verséo 3. x of the AWS Encryption SDK for Java requer o AWS SDK for Java 2.x, mesmo se vocé
nao usar AWS KMS chaveiros.

Versao 2. x ou anterior do AWS Encryption SDK for Java ndo requer AWS SDK for Java o.

No entanto, AWS SDK for Java € necessario usar AWS Key Management Service(AWS KMS)
como provedor de chave mestra. A partir da AWS Encryption SDK for Java versao 2.4.0, o AWS
Encryption SDK for Java suporta as versdes 1.x e 2.x do. AWS SDK for Java AWS Encryption
SDK os cédigos para AWS SDK for Java 1.x e 2.x séo interoperaveis. Por exemplo, vocé pode
criptografar dados com AWS Encryption SDK codigo compativel com AWS SDK for Java 1.x e
descriptografa-los usando codigo compativel AWS SDK for Java 2.x (ou vice-versa). As versdes
AWS Encryption SDK for Java anteriores a 2.4.0 suportam apenas AWS SDK for Java 1.x. Para
obter informagdes sobre como atualizar sua versdo do AWS Encryption SDK, consulteMigrando
seu AWS Encryption SDK.

Ao atualizar seu AWS Encryption SDK for Java cddigo de AWS SDK for Java 1.x para AWS
SDK for Java 2.x, substitua as referéncias a AWSKMSinterface em AWS SDK for Java 1.x por
referéncias a KmsClientinterface em. AWS SDK for Java 2.x O AWS Encryption SDK for Java
nao suporta a KmsAsyncClientinterface. Além disso, atualize seu codigo para usar os objetos

relacionados ao AWS KMS no namespace kmssdkv2, em vez do namespace kms.

Para instalar o AWS SDK for Java, use o Apache Maven.

* Para importar todo o AWS SDK for Java como uma dependéncia, declare-o no arquivo

pom.xml.

» Para criar uma dependéncia somente para o AWS KMS mddulo na AWS SDK for Java versao
1.x, siga as instrugbes para especificar médulos especificos e defina 0. artifactId aws-
java-sdk-kms

» Para criar uma dependéncia somente para o AWS KMS modulo na AWS SDK for Java
versdo 2.x, siga as instrugdes para especificar moédulos especificos. Defina o groupId como
software.amazon.awssdk e artifactId como kms.

Para ver mais mudancas, consulte O que ha de diferente entre a AWS SDK for Java versao 1.x e
a 2.x no Guia do AWS SDK for Java 2.x desenvolvedor.

Pré-requisitos 259

https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html

AWS Encryption SDK Guia do Desenvolvedor

Os exemplos de Java no Guia do AWS Encryption SDK Desenvolvedor usam AWS SDK for Java
2.x0.

Instalacao

Instalar a versao mais recente do AWS Encryption SDK for Java.

® Note

Todas as versdes AWS Encryption SDK for Java anteriores a 2.0.0 estdo em end-of-
supportfase.

Vocé pode atualizar com seguranga a partir da versao 2.0.x e posteriores até a versao
mais recente do AWS Encryption SDK for Java sem realizar alteragées no cédigo ou nos
dados. No entanto, os novos atributos de seguranca introduzidos na versao 2.0.x nao sao
compativeis com versdes anteriores. Para atualizar a partir de versdes anteriores a 1.7.x
até a versao 2.0. x e posteriores, primeiro sera necessario atualizar para a versao 1.x
mais recente do AWS Encryption SDK. Para obter detalhes, consulte Migrando seu AWS
Encryption SDK.

Vocé pode instalar o AWS Encryption SDK for Java das seguintes maneiras.

Manualmente

Para instalar o AWS Encryption SDK for Java, clone ou baixe o aws-encryption-sdk-java
GitHubrepositério.

Uso do Apache Maven

O AWS Encryption SDK for Java esta disponivel por meio do Apache Maven com a seguinte
definicdo de dependéncia.

<dependency>
<groupId>com.amazonaws</groupIld>
<artifactId>aws-encryption-sdk-java</artifactId>
<version>3.0.0</version>

</dependency>

Instalacao 260

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/

AWS Encryption SDK Guia do Desenvolvedor

Depois de instalar o SDK, comece examinando o exemplo de codigo Java neste guia e o Javadoc
ativado. GitHub

AWS Encryption SDK for Java exemplos

Os exemplos a seguir mostram como usar o para AWS Encryption SDK for Java criptografar e
descriptografar dados. Esses exemplos mostram como usar a versao 3. x e posterior do AWS
Encryption SDK for Java. Versao 3. x do AWS Encryption SDK for Java requer AWS SDK for Java
2.x 0. Versao 3. x do AWS Encryption SDK for Java substitui os fornecedores de chaves mestras
por chaveiros. Para exemplos que usam versdes anteriores, encontre sua versao na lista de
langamentos do aws-encryption-sdk-javarepositorio em GitHub.

Topicos

 Criptografar e descriptografar strings

 Criptografar e descriptografar streams de bytes

 Criptografando e descriptografando fluxos de bytes com um chaveiro multiplo

Criptografar e descriptografar strings

O exemplo a seguir mostra como usar a versio 3. x do AWS Encryption SDK for Java para
criptografar e descriptografar strings. Antes de usar a string, converta-a em uma matriz de bytes.

Este exemplo usa um AWS KMS chaveiro. Ao criptografar com um AWS KMS chaveiro, vocé pode
usar um ID de chave, ARN de chave, nome de alias ou ARN de alias para identificar as chaves KMS.
Ao descriptografar, vocé deve usar um ARN de chave para identificar as chaves KMS.

Quando vocé chama o método encryptData(), ele retorna uma mensagem criptografada
(CryptoResult) que inclui o texto cifrado, as chaves de dados criptografadas e o contexto de

criptografia. Quando vocé chama getResult no objeto CryptoResult, ele retorna uma versao
de cadeia codificada em base 64 da mensagem criptografada que vocé pode passar para o método
decryptData().

Da mesma forma, quando vocé chamadecryptData(), o CryptoResult objeto que ele retorna
contém a mensagem de texto sem formatagao e um AWS KMS key ID. Antes que seu aplicativo
retorne o texto sem formatagao, verifique se 0o AWS KMS key ID e o contexto de criptografia na
mensagem criptografada sao os que vocé espera.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

Exemplos 261

https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases
https://github.com/aws/aws-encryption-sdk-java/

AWS Encryption SDK

Guia do Desenvolvedor

package com.

amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import

software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.
import java.
import java.
import java.

/**
* Encrypts

*

nio.charset.StandardCharsets;
util.Arrays;
util.Collections;

util.Map;

and then decrypts data using an AWS KMS Keyring.

* <p>Arguments:

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
customer master

X key (CMK), see 'Viewing Keys' at

& http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
*

*/

public class BasicEncryptionKeyringExample {

private static final byte[] EXAMPLE_DATA = "Hello
World".getBytes(StandardCharsets.UTF_8);

public static void main(final String[] args) {
final String keyArn = args[Q];

encryptAndDecryptWithKeyring(keyArn);

public static void encryptAndDecryptWithKeyring(final String keyArn) {
// 1. Instantiate the SDK

// This
commitment

builds the AwsCrypto client with the RequireEncryptRequireDecrypt
policy,

Exemplos

262

AWS Encryption SDK Guia do Desenvolvedor

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with a
committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

final AwsCrypto crypto =

AwsCrypto.buildex()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.

// This example creates a multi keyring, which automatically creates the KMS
client.

final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
final IKeyring kmsKeyring =
materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create an encryption context

// We recommend using an encryption context whenever possible

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =

Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

// 4. Encrypt the data

final CryptoResult<byte[], ?> encryptResult =
crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);

final byte[] ciphertext = encryptResult.getResult();

// 5. Decrypt the data
final CryptoResult<byte[], ?> decryptResult =
crypto.decryptData(
kmsKeyring,
ciphertext,

Exemplos 263

AWS Encryption SDK Guia do Desenvolvedor

// Verify that the encryption context in the result contains the
// encryption context supplied to the encryptData method
encryptionContext);

// 6. Verify that the decrypted plaintext matches the original plaintext
assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);

Criptografar e descriptografar streams de bytes

O exemplo a seguir mostra como usar o para AWS Encryption SDK criptografar e descriptografar
fluxos de bytes.

Este exemplo usa um chaveiro AES bruto.

Ao criptografar, o método AwsCrypto.builder() .withEncryptionAlgorithm()
€ usado para especificar um conjunto de algoritmos sem assinaturas digitais.

Ao descriptografar, para garantir que o texto cifrado nao esteja assinado, este

exemplo usa o método createUnsignedMessageDecryptingStream(). O
createUnsignedMessageDecryptingStream() método falhara se encontrar um texto cifrado
com uma assinatura digital.

Se vocé estiver criptografando com o conjunto de algoritmos padrao, que inclui assinaturas digitais,
use o método createDecryptingStream() em seu lugar, conforme mostrado no préoximo
exemplo.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoAlgorithm;

import com.amazonaws.encryptionsdk.CryptoInputStream;

import com.amazonaws.encryptionsdk.jce.JceMasterKey;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;

import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;

Exemplos 264

AWS Encryption SDK

Guia do Desenvolvedor

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import
import
import
import
import
import
import
import
import

/**

* <p>

java
java
java

java.
java.
java.
java.

.io.FileInputStream;
.io.FileOutputStream;
.i0.I0Exception;

nio.ByteBuffer;
security.SecureRandom;
util.Collections;
util.Map;

javax.crypto.SecretKey;

javax.crypto.spec.SecretKeySpec;

* Encrypts and then decrypts a file under a random key.

* <p>

* Arguments:

*

* Name of file containing plaintext data to encrypt
*

* <p>

* This program demonstrates using a standard Java {@link SecretKey} object as a {elink
IKeyring} to
* encrypt and decrypt streaming data.

*/

public class FileStreamingKeyringExample {

private static String srcFile;

public static void main(String[] args) throws IOException {
srcFile = args[0];

// In this example, we generate a random key. In practice,
// you would get a key from an existing store
SecretKey cryptoKey = retrieveEncryptionKey();

// Create a Raw Aes Keyring using the random key and an AES-GCM encryption
algorithm

final MaterialProviders materialProviders

= MaterialProviders.builder()

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

.build();

Exemplos

265

AWS Encryption SDK Guia do Desenvolvedor

final CreateRawAesKeyringInput keyringInput =
CreateRawAesKeyringInput.builder()

.wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
.keyNamespace("Example")
.keyName ("RandomKey")
.wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAGl6)
.build();

IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

// Instantiate the SDK.

// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,

// which means this client only encrypts using committing algorithm suites and
enforces

// that the client will only decrypt encrypted messages that were created with
a committing

// algorithm suite.

// This is the default commitment policy if you build the client with

// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

// This example encrypts with an algorithm suite that doesn't include signing
for faster decryption,

// since this use case assumes that the contexts that encrypt and decrypt are
equally trusted.

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

.withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
.build();

// Create an encryption context to identify the ciphertext
Map<String, String> context = Collections.singletonMap("Example",
"FileStreaming");

// Because the file might be too large to load into memory, we stream the data,
instead of

//loading it all at once.

FileInputStream in = new FileInputStream(srcFile);

CryptoInputStream<JQceMasterKey> encryptingStream =
crypto.createEncryptingStream(keyring, in, context);

FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
IO0Utils.copy(encryptingStream, out);
encryptingStream.close();

Exemplos 266

AWS Encryption SDK Guia do Desenvolvedor

out.close();

// Decrypt the file. Verify the encryption context before returning the
plaintext.

// Since the data was encrypted using an unsigned algorithm suite, use the
recommended

// createUnsignedMessageDecryptingStream method, which only accepts unsigned
messages.

in = new FileInputStream(srcFile + ".encrypted");

CryptoInputStream<JceMasterKey> decryptingStream =
crypto.createUnsignedMessageDecryptingStream(keyring, in);

// Does it contain the expected encryption context?

if
(!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Exampl
{

throw new IllegalStateException("Bad encryption context");

// Write the plaintext data to disk.

out = new FileOutputStream(srcFile + ".decrypted");
IO0Utils.copy(decryptingStream, out);
decryptingStream.close();

out.close();

/**
* In practice, this key would be saved in a secure location.
* For this demo, we generate a new random key for each operation.
*/
private static SecretKey retrieveEncryptionKey() {
SecureRandom rnd = new SecureRandom();
byte[] rawKey = new byte[16]; // 128 bits
rnd.nextBytes(rawKey);
return new SecretKeySpec(rawKey, "AES");

Criptografando e descriptografando fluxos de bytes com um chaveiro multiplo

O exemplo a seguir mostra como usar o AWS Encryption SDK com um chaveiro multiplo. Quando

vocé usa um multitoken de autenticagao para criptografar dados, qualquer uma das chaves de
empacotamento em qualquer um de seus tokens de autenticacdo pode descriptografar esses dados.
Este exemplo usa um AWS KMS chaveiro e um chaveiro RSA bruto como chaveiros secundarios.

Exemplos 267

AWS Encryption SDK Guia do Desenvolvedor

Este exemplo criptografa com o pacote de algoritmos padrao, que inclui uma assinatura digital.
Durante o streaming, ele AWS Encryption SDK libera texto sem formatacao apds as verificagdes de
integridade, mas antes de verificar a assinatura digital. Para evitar o uso do texto simples até que

a assinatura seja verificada, este exemplo armazena o texto simples em buffer e o grava no disco
somente apos a conclusao da descriptografia e da verificagao.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoOutputStream;

import com.amazonaws.util.IOUtils;

import software.amazon.cryptography.materialproviders.IKeyring;

import software.amazon.cryptography.materialproviders.MaterialProviders;

import
software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;

import software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import software.amazon.cryptography.materialproviders.model.PaddingScheme;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.nio.ByteBuffer;

import java.security.GeneralSecurityException;
import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.util.Collections;

/**
* <p>

* Encrypts a file using both AWS KMS Key and an asymmetric key pair.

* <p>

* Arguments:

*

* Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,

Exemplos 268

AWS Encryption SDK Guia do Desenvolvedor

& see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html

*

* <]i>Name of file containing plaintext data to encrypt

* </o0l>

* <p>

* You might use AWS Key Management Service (AWS KMS) for most encryption and
decryption operations, but

* still want the option of decrypting your data offline independently of AWS KMS. This
sample

* demonstrates one way to do this.

* <p>

* The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair

* so that either key alone can decrypt it. You might commonly use the AWS KMS key for
decryption. However,

* at any time, you can use the private RSA key to decrypt the ciphertext independent
of AWS KMS.

* <p>

* This sample uses the RawRsaKeyring to generate a RSA public-private key pair

* and saves the key pair in memory. In practice, you would store the private key in a
secure offline

* location, such as an offline HSM, and distribute the public key to your development
team.

*/
public class EscrowedEncryptKeyringExample {

private static ByteBuffer publicEscrowKey;
private static ByteBuffer privateEscrowKey;

public static void main(final String[] args) throws Exception {
// This sample generates a new random key for each operation.
// In practice, you would distribute the public key and save the private key in
secure
// storage.
generateEscrowKeyPair();

final String kmsArn = args[0];
final String fileName = args[1];

standardEncrypt(kmsArn, fileName);
standardDecrypt(kmsArn, fileName);

escrowDecrypt(fileName);

Exemplos 269

AWS Encryption SDK Guia do Desenvolvedor

private static void standardEncrypt(final String kmsArn, final String fileName)
throws Exception {
// Encrypt with the KMS key and the escrowed public key
// 1. Instantiate the SDK
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
commitment policy,
// which means this client only encrypts using committing algorithm suites and
enforces
// that the client will only decrypt encrypted messages that were created with
a committing
// algorithm suite.
// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"
// or “AwsCrypto.standard() .
final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS
client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()

Exemplos 270

AWS Encryption SDK Guia do Desenvolvedor

.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();

IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Encrypt the file
// To simplify this code example, we omit the encryption context. Production

code should always

crypto.

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName);

final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");
final CryptoOutputStream<?> encryptingStream =
createEncryptingStream(multiKeyring, out);

IOUtils.copy(in, encryptingStream);
in.close();
encryptingStream.close();

private static void standardDecrypt(final String kmsArn, final String fileName)

throws

Exception {
// Decrypt with the AWS KMS key and the escrow public key.

// 1. Instantiate the SDK.
// This builds the AwsCrypto client with the RequireEncryptRequireDecrypt

commitment policy,

// which means this client only encrypts using committing algorithm suites and

enforces

// that the client will only decrypt encrypted messages that were created with

a committing

// algorithm suite.

// This is the default commitment policy if you build the client with
// “AwsCrypto.builder().build()"

// or “AwsCrypto.standard() .

final AwsCrypto crypto = AwsCrypto.builder()

.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

// 2. Create the AWS KMS keyring.
// This example creates a multi keyring, which automatically creates the KMS

client.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
Lbuild();
Exemplos 271

AWS Encryption SDK Guia do Desenvolvedor

final CreateAwsKmsMultiKeyringInput keyringInput =
CreateAwsKmsMultiKeyringInput.builder()
.generator(kmsArn)
.build();
IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

// 3. Create the Raw Rsa Keyring with Public Key.
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.build();
IKeyring rsaPublicKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 4. Create the multi-keyring.
final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.buildex()
.generator(kmsKeyring)
.childKeyrings(Collections.singletonList(rsaPublicKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

// 5. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");

// Since we are using a signing algorithm suite, we avoid streaming decryption
directly to the output file,

// to ensure that the trailing signature is verified before writing any
untrusted plaintext to disk.

final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(multiKeyring, plaintextBuffer);

IOUtils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

final ByteArrayInputStream plaintextReader = new
ByteArrayInputStream(plaintextBuffer.toByteArray());

I0Utils.copy(plaintextReader, out);

Exemplos 272

AWS Encryption SDK Guia do Desenvolvedor

out.close();

private static void escrowDecrypt(final String fileName) throws Exception {
// You can decrypt the stream using only the private key.
// This method does not call AWS KMS.

// 1. Instantiate the SDK
final AwsCrypto crypto = AwsCrypto.standard();

// 2. Create the Raw Rsa Keyring with Private Key.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateRawRsaKeyringInput encryptingKeyringInput =
CreateRawRsaKeyringInput.builder()
.keyName("Escrow")
.keyNamespace("Escrow")
.paddingScheme(PaddingScheme.0AEP_SHA512_MGF1)
.publicKey(publicEscrowKey)
.privateKey(privateEscrowKey)
.build();
IKeyring escrowPrivateKeyring =
matProv.CreateRawRsaKeyring(encryptingKeyringInput);

// 3. Decrypt the file

// To simplify this code example, we omit the encryption context. Production
code should always

// use an encryption context.

final FileInputStream in = new FileInputStream(fileName + ".encrypted");

final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");

final CryptoOutputStream<?> decryptingStream =
crypto.createDecryptingStream(escrowPrivateKeyring, out);

IOUtils.copy(in, decryptingStream);

in.close();

decryptingStream.close();

private static void generateEscrowKeyPair() throws GeneralSecurityException {
final KeyPairGenerator kg = KeyPairGenerator.getInstance('"RSA");
kg.initialize(4096); // Escrow keys should be very strong
final KeyPair keyPair = kg.generateKeyPair();

Exemplos 273

AWS Encryption SDK Guia do Desenvolvedor

publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

AWS Encryption SDK para JavaScript

O foi AWS Encryption SDK para JavaScript projetado para fornecer uma biblioteca de criptografia
do lado do cliente para desenvolvedores que estao escrevendo aplicativos de navegador da Web
JavaScript ou aplicativos de servidor Web em Node.js.

Como todas as implementagées do AWS Encryption SDK, o AWS Encryption SDK para JavaScript
oferece recursos avangados de protecdo de dados. Os recursos incluem criptografia de envelope,
AAD (additional authenticated data - dados autenticados adicionais) e pacotes de algoritmos de
chave simétrica segura e autenticada, como o AES-GCM de 256 bits com derivagao de chave e
assinatura.

Todas as implementacgdes especificas do AWS Encryption SDK idioma foram projetadas para serem
interoperaveis, sujeitas as restricdes da linguagem. Para obter detalhes sobre as restricbes de
linguagem para JavaScript, consulte. the section called “Compatibilidade”

Saiba mais

» Para obter detalhes sobre a programagao com o AWS Encryption SDK para JavaScript, consulte o
aws-encryption-sdk-javascriptrepositério em GitHub.

+ Para exemplos de programagéo, consulte os the section called “Exemplos” médulos example-
browser e example-node no repositdrio. aws-encryption-sdk-javascript

» Para ver um exemplo real do uso do AWS Encryption SDK para JavaScript para criptografar dados
em um aplicativo da Web, consulte Como habilitar a criptografia em um navegador com o AWS

Encryption SDK para JavaScript e o Node.js no blog de segurangca. AWS

Topicos

» Compatibilidade do AWS Encryption SDK para JavaScript

* Instalando o AWS Encryption SDK para JavaScript

* Modulos no AWS Encryption SDK para JavaScript

JavaScript 274

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK Guia do Desenvolvedor

» AWS Encryption SDK para JavaScript exemplos

Compatibilidade do AWS Encryption SDK para JavaScript

O foi AWS Encryption SDK para JavaScript projetado para ser interoperavel com outras
implementacgdes de linguagem do. AWS Encryption SDKNa maioria dos casos, vocé pode

criptografar dados com o AWS Encryption SDK para JavaScript e descriptografa-los com qualquer

outra implementacgao de linguagem, incluindo a AWS Encryption SDK interface de linha de comando.
E vocé pode usar o AWS Encryption SDK para JavaScript para descriptografar mensagens
criptografadas produzidas por outras implementagdes de linguagem do. AWS Encryption SDK

No entanto, ao usar o AWS Encryption SDK para JavaScript, vocé precisa estar ciente de alguns
problemas de compatibilidade na implementagao da JavaScript linguagem e nos navegadores da
Web.

Além disso, ao usar implementag¢des de linguagem diferentes, configure provedores de chaves
mestras, chaves mestras e tokens de autenticacdo compativeis. Para obter detalhes, consulte
Compatibilidade dos tokens de autenticacao.

AWS Encryption SDK para JavaScript compatibilidade

A JavaScript implementacdo do AWS Encryption SDK difere das implementagdes de outras
linguagens das seguintes maneiras:

» A operacéo de criptografia do AWS Encryption SDK para JavaScript ndo retorna texto cifrado sem
moldura. No entanto, o AWS Encryption SDK para JavaScript decifrara o texto cifrado emoldurado
e nao emoldurado retornado por outras implementacgdes de linguagem do. AWS Encryption SDK

» Comecgando com o Node.js versao 12.9.0, o Node.js é compativel com as seguintes opgdes de
empacotamento de chave RSA:

« OAEP com SHA1, SHA256, ou SHA384 SHA512
« OAEP com e com SHA1 MGF1 SHA1
« PKCS1v15

» Antes da versado 12.9.0, o Node.js era compativel apenas com as seguintes op¢des de
empacotamento de chave RSA:

* OAEP com e com SHA1 MGF1 SHA1
« PKCS1v15

Compatibilidade 275

AWS Encryption SDK Guia do Desenvolvedor

Compatibilidade do navegador

Alguns navegadores da Web nao sdo compativeis com operagdes de criptografia basicas exigidas
pelo AWS Encryption SDK para JavaScript . Vocé pode compensar algumas das operagdes
ausentes configurando um substituto para a WebCrypto APl que o navegador implementa.

Limitagdes de navegador da Web

As seguintes limitagdes sao comuns a todos os navegadores da Web:

* A WebCrypto API n&o oferece suporte ao encapsulamento de PKCS1v15 chaves.

* Os navegadores nao sdo compativeis com chaves de 192 bits.

Operagdes de criptografia necessarias

AWS Encryption SDK para JavaScript Isso requer as seguintes operagdes em navegadores da
web. Se um navegador ndo for compativel com estas operagdes, ele sera incompativel com o AWS
Encryption SDK para JavaScript.

« O navegador deve incluir crypto.getRandomValues(), que € um método para gerar
valores de criptografia aleatérios. Para obter informagdes sobre as versdes do navegador
da Web compativeiscrypto.getRandomValues(), consulte Posso usar criptografia.
getRandomValues()? .

Fallback necessario

O AWS Encryption SDK para JavaScript requer as seguintes bibliotecas e opera¢des em
navegadores da web. Se vocé oferecer suporte a um navegador da Web que ndo atenda a esses
requisitos, devera configurar um fallback. Caso contrario, as tentativas de usar o AWS Encryption
SDK para JavaScript com o navegador falharao.

« A WebCrypto API, que executa operacgdes criptograficas basicas em aplicativos da web, ndo esta
disponivel para todos os navegadores. Para obter informagdes sobre as versdes do navegador da
Web compativeis com a criptografia da Web, consulte Posso usar criptografia da Web?.

» As versdes modernas do navegador Safari ndo oferecem suporte a criptografia AES-GCM de
zero bytes, o que é necessario. AWS Encryption SDK Se o navegador implementa a WebCrypto
API, mas nao consegue usar o AES-GCM para criptografar zero bytes, ele AWS Encryption SDK
para JavaScript usa a biblioteca de fallback somente para criptografia de zero bytes. Ele usa a
WebCrypto API para todas as outras operagoes.

Compatibilidade 276

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography

AWS Encryption SDK Guia do Desenvolvedor

Para configurar um fallback para qualquer limitagado, adicione as seguintes instru¢des ao seu
cédigo. Na fungao configureFallback especifique uma biblioteca que seja compativel com os
recursos ausentes. O exemplo a seguir usa a Microsoft Research JavaScript Cryptography Library
(msrcrypto), mas vocé pode substitui-la por uma biblioteca compativel. Para obter um exemplo
completo, consulte fallback.ts.

import { configureFallback } from 'eaws-crypto/client-browser'
configureFallback(msrCrypto)

Instalando o AWS Encryption SDK para JavaScript

O AWS Encryption SDK para JavaScript consiste em uma cole¢gao de médulos interdependentes.
Varios dos modulos sdo apenas colegdes de modulos projetados para funcionar em conjunto. Alguns
modulos séo projetados para funcionar de forma independente. Alguns modulos sdo necessarios
para todas as implementagdes; alguns outros sdo necessarios apenas para casos especiais. Para
obter informagdes sobre os médulos no AWS Encryption SDK formulario JavaScript, consulte
Modulos no AWS Encryption SDK para JavaScript € o README . md arquivo em cada um dos modulos
no aws-encryption-sdk-javascriptrepositério em GitHub.

® Note

Todas as versdes AWS Encryption SDK para JavaScript anteriores a 2.0.0 estdo em end-of-
supportfase.

Vocé pode atualizar com segurancga a partir da versao 2.0.x e posteriores até a versao mais
recente do AWS Encryption SDK para JavaScript sem realizar alteragées no cédigo ou nos
dados. No entanto, os novos atributos de seguranca introduzidos na versao 2.0.x nao sao

compativeis com versdes anteriores. Para atualizar a partir de versdes anteriores a 1.7.x
até a versao 2.0. x e posteriores, primeiro sera necessario atualizar para a versao 1.x mais
recente do AWS Encryption SDK para JavaScript. Para obter detalhes, consulte Migrando
seu AWS Encryption SDK.

Para instalar os modulos, use o gerenciador de pacotes npm.

Por exemplo, para instalar o client-node moédulo, que inclui todos os mddulos que vocé precisa
programar com o AWS Encryption SDK para JavaScript no Node.js, use o comando a seguir.

npm install @aws-crypto/client-node

Instalagcao 277

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm

AWS Encryption SDK Guia do Desenvolvedor

Para instalar o client-browser mdédulo, que inclui todos os médulos que vocé precisa programar
com o AWS Encryption SDK para JavaScript no navegador, use o comando a seguir.

npm install @aws-crypto/client-browser

Para exemplos praticos de como usar o AWS Encryption SDK para JavaScript, consulte os exemplos
nos example-browser mddulos example-node e no aws-encryption-sdk-javascriptrepositorio em
GitHub.

Modulos no AWS Encryption SDK para JavaScript

Os modulos do AWS Encryption SDK para JavaScript facilitam a instalagdo do cddigo necessario
para seus projetos.

Modulos para JavaScript Node.js
no do cliente

Inclui todos os mddulos que vocé precisa programar com o AWS Encryption SDK para JavaScript
em Node.js.

caching-materials-manager-node

Exporta fungdes que oferecem suporte ao recurso de cache de chaves de dados AWS Encryption
SDK para JavaScript no Node.js.

decrypt-node

Exporta fungdes que descriptografam e verificam mensagens criptografadas que representam
dados e streams de dados. Incluido no médulo client-node.

encrypt-node

Exporta fungdes que criptografam e assinam diferentes tipos de dados. Incluido no médulo
client-node.

example-node

Exporta exemplos funcionais de programac¢ao com o AWS Encryption SDK para JavaScript em
Node.js. Inclui exemplos de diferentes tipos de tokens de autenticagao e diferentes tipos de
dados.

Médulos 278

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node

AWS Encryption SDK Guia do Desenvolvedor

hkdf-node

Exporta uma funcao de derivacao de chave (HKDF) baseada em HMAC que o Node.js usa AWS
Encryption SDK para JavaScript em conjuntos de algoritmos especificos. O AWS Encryption SDK
para JavaScript no navegador usa a fungdo HKDF nativa na WebCrypto API.

integration-node

Define testes que verificam se o AWS Encryption SDK para JavaScript em Node.js € compativel
com outras implementacgdes de linguagem do AWS Encryption SDK.

kms-keyring-node

Exporta fungdes que oferecem suporte a AWS KMS chaveiros no Node.js.

raw-aes-keyring-node

Exporta fungdes que sao compativeis com tokens de autenticacao brutos do AES no Node.js.

raw-rsa-keyring-node

Exporta fungdes compativeis com tokens de autenticacao brutos do RSA em Node.js.

Modulos para JavaScript navegador

client-browser

Inclui todos os modulos que vocé precisa programar com o AWS Encryption SDK para JavaScript
no navegador.

caching-materials-manager-browser

Exporta fungdes que oferecem suporte ao recurso de cache de chave de dados para JavaScript o

navegador.

decrypt-browser

Exporta fungdes que descriptografam e verificam mensagens criptografadas que representam
dados e streams de dados.

encrypt-browser

Exporta fungdes que criptografam e assinam diferentes tipos de dados.

Médulos 279

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser

AWS Encryption SDK Guia do Desenvolvedor

example-browser

Exemplos praticos de programac¢ao com o AWS Encryption SDK para JavaScript no navegador.
Inclui exemplos de diferentes tipos de tokens de autenticacao e diferentes tipos de dados.

integration-browser

Define testes que verificam se o AWS Encryption SDK for Java script no navegador € compativel
com outras implementacgdes de linguagem do AWS Encryption SDK.

kms-keyring-browser

Exporta fungdes compativeis com tokens de autenticacao do AWS KMS no navegador.

raw-aes-keyring-browser

Exporta fungdes compativeis com tokens de autenticacao brutos do AES no navegador.

raw-rsa-keyring-browser

Exporta fungdes compativeis com tokens de autenticacao brutos do RSA no navegador.

Modulos para todas as implementagdes

cache-material

E compativel com o recurso de armazenamento em cache de chaves de dados. Fornece cédigo
para montar o material de criptografia que € armazenado em cache com cada chave de dados.

kms-keyring

Exporta fungdes compativeis com tokens de autenticacao do KMS.

material-management

Implementa o gerenciador de material de criptografia (CMM).

raw-keyring

Exporta fungdes necessarias para tokens de autenticacédo brutos do AES e do RSA.

serialize

Exporta fungdes que o SDK usa para serializar sua saida.

web-crypto-backend

Exporta fungdes que usam a WebCrypto APl AWS Encryption SDK para JavaScript no
navegador.

Médulos 280

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK para JavaScript exemplos

Os exemplos a seguir mostram como usar o AWS Encryption SDK para JavaScript para criptografar
e descriptografar dados.

Vocé pode encontrar mais exemplos de uso do AWS Encryption SDK para JavaScript nos mddulos
example-node e example-browser no repositorio em. aws-encryption-sdk-javascript GitHub Esses
modulos de exemplo ndo sdo instalados quando vocé instala os modulos client-browser ou
client-node.

Consulte os exemplos de codigo completos: né: kms_simple.ts, navegador: kms_simple.ts

Topicos

» Criptografando dados com um chaveiro AWS KMS

» Descriptografando dados com um chaveiro AWS KMS

Criptografando dados com um chaveiro AWS KMS

O exemplo a seguir mostra como usar o para AWS Encryption SDK para JavaScript criptografar e
descriptografar uma string curta ou uma matriz de bytes.

Este exemplo apresenta um AWS KMS chaveiro, um tipo de chaveiro que usa um AWS KMS key
para gerar e criptografar chaves de dados. Para obter ajuda na criagdo de um AWS KMS key,
consulte Criacao de chaves no Guia do AWS Key Management Service desenvolvedor. Para obter
ajuda para identificar o AWS KMS keys em um AWS KMS chaveiro, consulte Identificacao AWS KMS
keys em um AWS KMS chaveiro

Etapa 1: defina a politica de compromisso.

A partir da versao 1.7. x do AWS Encryption SDK para JavaScript, vocé pode definir a politica de
compromisso ao chamar a nova buildClient fungdo que instancia um AWS Encryption SDK
cliente. A funcdo buildClient assume um valor enumerado que representa sua politica de
compromisso. Ela retorna as fungbes encrypt e decrypt atualizadas, que reforcam sua politica
de compromisso quando vocé criptografa e descriptografa.

Os exemplos a seguir usam a buildClient fung¢ao para especificar a politica de compromisso
padrdo,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informagdes, consulte the section called “Limitar as chaves de dados criptografadas”.

Exemplos 281

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Browser

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-node’

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Etapa 2: estruturar o token de autenticagao.
Crie um AWS KMS chaveiro para criptografia.

Ao criptografar com um AWS KMS chaveiro, vocé deve especificar uma chave geradora, ou seja,
uma AWS KMS key que seja usada para gerar a chave de dados em texto simples e criptografa-
la. Vocé também pode especificar zero ou mais chaves adicionais que criptografam a mesma
chave de dados de texto simples. O chaveiro retorna a chave de dados em texto simples e uma
copia criptografada dessa chave de dados para cada um AWS KMS key no chaveiro, incluindo a
chave do gerador. Para descriptografar os dados, vocé precisa descriptografar qualquer uma das
chaves de dados criptografadas.

Para especificar o AWS KMS keys para um chaveiro de criptografia no AWS Encryption SDK para
JavaScript, vocé pode usar qualquer identificador de AWS KMS chave compativel. Este exemplo

usa uma chave geradora, que é identificada por seu ARN de alias, e uma chave adicional, que é
identificada por um ARN de chave.

Exemplos 282

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

® Note

Se vocé planeja reutilizar seu AWS KMS chaveiro para descriptografar, vocé deve usar a
chave para identificar o que estda no ARNs chaveiro. AWS KMS keys

Antes de executar esse codigo, substitua os identificadores de exemplo por AWS KMS key
identificadores validos. Vocé deve ter as permissoes necessarias para usar as AWS KMS keys no
token de autenticagao.

JavaScript Browser

Comece fornecendo suas credenciais para o navegador. Os AWS Encryption SDK para
JavaScript exemplos usam o webpack. DefinePlugin, que substitui as constantes de

credenciais por suas credenciais reais. Mas vocé pode usar qualquer método para fornecer
suas credenciais. Em seguida, use as credenciais para criar um AWS KMS cliente.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

Em seguida, especifique AWS KMS keys a chave do gerador e a chave adicional. Em
seguida, crie um AWS KMS chaveiro usando o AWS KMS cliente e 0. AWS KMS keys

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })

JavaScript Node.js

const generatorKeyld = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt’

Exemplos 283

https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Guia do Desenvolvedor

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Etapa 3: defina o contexto de criptografia.

Um contexto de criptografia sdo dados autenticados adicionais arbitrarios e que ndo séo secretos.
Quando vocé fornece um contexto de criptografia na criptografia, ele vincula AWS Encryption
SDK criptograficamente o contexto de criptografia ao texto cifrado, de forma que o mesmo
contexto de criptografia seja necessario para descriptografar os dados. O uso de um contexto de
criptografia € opcional, mas o recomendamos como uma melhor pratica.

Crie um objeto simples que inclua os pares de contexto de criptografia. A chave e o valor em
cada par devem ser uma string.

JavaScript Browser

const context = {
stage: 'demo',
purpose: 'simple demonstration app’,
origin: 'us-west-2'

}
JavaScript Node.js

const context = {
stage: 'demo',
purpose: 'simple demonstration app',
origin: 'us-west-2'

}

Etapa 4: criptografar os dados.

Para criptografar os dados de texto simples, chame a fungéo encrypt. Passe o AWS KMS
chaveiro, os dados em texto simples e o contexto de criptografia.

A fungado encrypt retorna uma mensagem criptografada (result) que contém os dados
criptografados, as chaves de dados criptografadas e metadados importantes, incluindo o contexto
de criptografia e a assinatura.

Exemplos 284

AWS Encryption SDK Guia do Desenvolvedor

Vocé pode descriptografar essa mensagem criptografada usando o AWS Encryption SDK para
qualquer linguagem de programagao compativel.

JavaScript Browser

const plaintext = new Uint8Array([1l, 2, 3, 4, 5])

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
context })

JavaScript Node.js

const plaintext = 'asdf'

const { result }
context 1})

await encrypt(keyring, plaintext, { encryptionContext:

Descriptografando dados com um chaveiro AWS KMS

Vocé pode usar o AWS Encryption SDK para JavaScript para descriptografar a mensagem
criptografada e recuperar os dados originais.

Neste exemplo, descriptografamos os dados que criptografamos no exemplo the section called
“Criptografando dados com um chaveiro AWS KMS”.

Etapa 1: defina a politica de compromisso.

A partir da versao 1.7. x do AWS Encryption SDK para JavaScript, vocé pode definir a politica de
compromisso ao chamar a nova buildClient fungdo que instancia um AWS Encryption SDK
cliente. A funcdo buildClient assume um valor enumerado que representa sua politica de
compromisso. Ela retorna as fungbes encrypt e decrypt atualizadas, que reforcam sua politica
de compromisso quando vocé criptografa e descriptografa.

Os exemplos a seguir usam a buildClient fungéo para especificar a politica de compromisso
padrao,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Vocé também pode usar o buildClient para
limitar o numero de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informacgdes, consulte the section called “Limitar as chaves de dados criptografadas”.

JavaScript Browser

import {

Exemplos 285

AWS Encryption SDK Guia do Desenvolvedor

KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
} from 'eaws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

)

JavaScript Node.js

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
} from '@aws-crypto/client-node’

const { encrypt, decrypt } = buildClient(

CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Etapa 2: estruturar o token de autenticagao.

Para descriptografar os dados, passe a mensagem criptografada (result) que a fungao
encrypt retornou. A mensagem criptografada inclui os dados criptografados, as chaves

de dados criptografadas e metadados importantes, incluindo o contexto de criptografia e a
assinatura.

Vocé também deve especificar um token de autenticacao do AWS KMS ao descriptografar.

Vocé pode usar o mesmo token de autenticagao usado para criptografar os dados ou um token
de autenticacao diferente. Para ter sucesso, pelo menos um AWS KMS key no chaveiro de
decodificagdo deve ser capaz de descriptografar uma das chaves de dados criptografadas na
mensagem criptografada. Como nenhuma chave de dados € gerada, vocé nao precisa especificar
uma chave geradora em um token de autenticagao de descriptografia. Se vocé fizer isso, a chave
geradora e as chaves adicionais serao tratadas da mesma maneira.

Para especificar um AWS KMS key para um chaveiro de decodificagcdo no AWS Encryption
SDK para JavaScript, vocé deve usar a chave ARN. Caso contrario, AWS KMS key o n&o sera

Exemplos 286

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

reconhecido. Para obter ajuda para identificar o AWS KMS keys em um AWS KMS chaveiro,
consulte Identificacdo AWS KMS keys em um AWS KMS chaveiro

(@ Note
Se vocé usar o mesmo chaveiro para criptografar e descriptografar, use a chave ARNs
para identificar o que esta no chaveiro. AWS KMS keys

Neste exemplo, criamos um chaveiro que inclui apenas um dos do AWS KMS keys chaveiro de
criptografia. Antes de executar esse cddigo, substitua o ARN da chave de exemplo por um valido.
Vocé deve ter a permissdo kms :Decrypt na AWS KMS key.

JavaScript Browser

Comece fornecendo suas credenciais para o navegador. Os AWS Encryption SDK para
JavaScript exemplos usam o webpack. DefinePlugin, que substitui as constantes de
credenciais por suas credenciais reais. Mas vocé pode usar qualquer método para fornecer
suas credenciais. Em seguida, use as credenciais para criar um AWS KMS cliente.

declare const credentials: {accessKeyId: string, secretAccessKey:string,

sessionToken:string }

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
1)

Em seguida, crie um AWS KMS chaveiro usando o AWS KMS cliente. Este exemplo usa
apenas um dos AWS KMS keys do chaveiro de criptografia.

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"]

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

Exemplos 287

https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

const keylIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringNode({ keyIds })

Etapa 3: decifrar os dados.

Chame a fungédo decrypt. Passe o token de autenticagao de descriptografia que vocé acabou
de criar (keyring) e a mensagem criptografada que a fungao encrypt retornou (result).

O AWS Encryption SDK usa o chaveiro para descriptografar uma das chaves de dados
criptografadas. Ele usa a chave de dados de texto simples para descriptografar os dados.

Se a chamada for bem-sucedida, o campo plaintext contera os dados de texto simples
(descriptografados). O campo messageHeader contém metadados sobre o processo de
descriptografia, incluindo o contexto de criptografia usado para descriptografar os dados.

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

JavaScript Node.js

const { plaintext, messageHeader } await decrypt(keyring, result)

Etapa 4: Verifique o contexto de criptografia.

O contexto de criptografia que foi usado para descriptografar os dados € incluido no cabegalho
da mensagem (messageHeader) que a fungdo decrypt retorna. Antes do aplicativo retornar
os dados de texto simples, verifique se o contexto de criptografia fornecido durante a criptografia
esta incluido no contexto de criptografia usado ao descriptografar. Uma incompatibilidade pode
indicar que os dados foram adulterados ou que vocé nao descriptografou o texto cifrado correto.

Ao verificar o contexto de criptografia, ndo exija uma correspondéncia exata. Ao usar um
algoritmo de criptografia com a assinatura, o gerenciador de material de criptografia (CMM)

adiciona a chave de assinatura publica ao contexto de criptografia antes de criptografar a
mensagem. Mas todos os pares de contexto de criptografia que vocé enviou devem ser incluidos
no contexto de criptografia que foi retornado.

Exemplos 288

AWS Encryption SDK Guia do Desenvolvedor

Primeiro, obtenha o contexto de criptografia do cabecalho da mensagem. Depois, verifique se
cada par de chave-valor no contexto de criptografia original (context) corresponde a um par de
chave-valor no contexto de criptografia retornado (encryptionContext).

JavaScript Browser

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

b
JavaScript Node.js

const { encryptionContext } = messageHeader

Object
.entries(context)
.forEach(([key, value]) => {
if (encryptionContext[key] !== value) throw new Error('Encryption Context
does not match expected values')

1)

Se a verificacdo de contexto de criptografia for bem-sucedida, vocé podera retornar os dados de
texto simples.

AWS Encryption SDK for Python

Este tépico explica como instalar e usar o AWS Encryption SDK for Python. Para obter detalhes
sobre a programacgao com o AWS Encryption SDK for Python, consulte o aws-encryption-sdk-
pythonrepositério em GitHub. Para obter a documentagéo da API, consulte Ler os documentos.

Topicos
* Pré-requisitos

* Instalagéo
» AWS Encryption SDK for Python cddigo de exemplo

Python 289

https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

Pré-requisitos

Antes de instalar o AWS Encryption SDK for Python, verifique se vocé tem os seguintes pré-
requisitos.

Uma versado compativel do Python

O Python 3.8 ou posterior € exigido pelas AWS Encryption SDK for Python versées 3.2.0 e
posteriores.

(® Note

A Biblioteca de Provedores de Material AWS Criptografico (MPL) é uma dependéncia
opcional para a AWS Encryption SDK for Python introduzida na verséo 4. x. Se vocé
pretende instalar o MPL, vocé deve usar o Python 3.11 ou posterior.

As versoes anteriores do AWS Encryption SDK oferecem suporte ao Python 2.7 e ao Python 3.4
e posteriores, mas recomendamos que vocé use a versao mais recente do. AWS Encryption SDK

Para fazer download do Python, consulte Downloads do Python.

A ferramenta de instalagao do pip para Python

O Python 3.6 e versodes posteriores incluem pip, embora vocé possa querer atualiza-lo. Para
obter mais informagoes sobre a atualizag&o ou a instalagdo do pip consulte Instalacdo na
documentacgao do pip.

Instalacao

Instalar a versao mais recente do AWS Encryption SDK for Python.

(® Note

Todas as versdes AWS Encryption SDK for Python anteriores a 3.0.0 estdo em end-of-
supportfase.

Vocé pode atualizar com seguranga a partir da versao 2.0.x e posteriores até a versao
mais recente do AWS Encryption SDK sem realizar alteragées no cédigo ou nos dados. No
entanto, os novos atributos de seguranca introduzidos na versao 2.0.x ndo sao compativeis

Pré-requisitos 290

https://github.com/aws/aws-cryptographic-material-providers-library
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

com versodes anteriores. Para atualizar a partir de versdes anteriores a 1.7.x até a versao 2.0.
X e posteriores, primeiro sera necessario atualizar para a versao 1.x mais recente do AWS
Encryption SDK. Para obter detalhes, consulte Migrando seu AWS Encryption SDK.

Use pip para instalar o AWS Encryption SDK for Python, conforme mostrado nos exemplos a seguir.

Para instalar a versao mais recente

pip install "aws-encryption-sdk[MPL]"

O [MPL] sufixo instala a Biblioteca de Provedores de Material AWS Criptografico (MPL). O MPL
contém construg¢des para criptografar e descriptografar seus dados. O MPL é uma dependéncia

opcional para o AWS Encryption SDK for Python introduzido na verséo 4. x. E altamente
recomendavel instalar o MPL. No entanto, se vocé nao pretende usar o MPL, pode omitir o
[MPL] sufixo.

Para obter mais detalhes sobre o uso do pip para instalar e atualizar pacotes, consulte Instalagéo de
pacotes.

AWS Encryption SDK for Python Isso requer a biblioteca de criptografia (pyca/cryptography) em
todas as plataformas. Todas as versdes do pip instalam e criam automaticamente a biblioteca
cryptography no Windows. O pip 8.1 e versdes posteriores instala e compila cxryptography

automaticamente no Linux. Se vocé usar uma versao anterior do pip e seu ambiente Linux n&o tiver
as ferramentas necessarias para criar a biblioteca cryptography, sera necessario instala-las. Para
obter mais informagdes, consulte Building Cryptography on Linux.

As versoes 1.10.0 e 2.5.0 do AWS Encryption SDK for Python fixam a dependéncia criptografica
entre 2.5.0 e 3.3.2. Outras versdes do AWS Encryption SDK for Python instalam a versdo mais
recente da criptografia. Se vocé precisar de uma versio do cryptography posterior a 3.3.2,
recomendamos que use a versao principal mais recente do AWS Encryption SDK for Python.

Para obter a versao de desenvolvimento mais recente do AWS Encryption SDK for Python, acesse o
aws-encryption-sdk-pythonrepositorio em GitHub.

Depois de instalar o AWS Encryption SDK for Python, comece examinando o codigo de exemplo do

Python neste guia.

Instalagcao 291

https://github.com/aws/aws-cryptographic-material-providers-library
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK for Python codigo de exemplo

Os exemplos a seguir mostram como usar o para AWS Encryption SDK for Python criptografar e
descriptografar dados.

Os exemplos nesta se¢do mostram como usar a versao 4. x do AWS Encryption SDK for Python
com a dependéncia opcional da Biblioteca de Provedores de Material Criptografico ()aws -

cryptographic-material-providers. Para ver exemplos que usam versdes anteriores ou
instalagdes sem a biblioteca de fornecedores de materiais (MPL), encontre sua versao na lista de
lancamentos do aws-encryption-sdk-pythonrepositério em. GitHub

Quando vocé usa a versao 4. x do AWS Encryption SDK for Python com o MPL, ele usa chaveiros
para realizar a criptografia de envelopes. AWS Encryption SDK Fornece chaveiros compativeis
com os fornecedores de chaves mestras que vocé usou nas versdes anteriores. Para obter mais
informacgdes, consulte the section called “Compatibilidade dos tokens de autenticacao”. Para
exemplos de migragéo de provedores de chaves mestras para chaveiros, consulte Exemplos de
migracéo no aws-encryption-sdk-python repositério em; GitHub

Topicos

» Criptografar e descriptografar strings

» Criptografar e descriptografar streams de bytes

Criptografar e descriptografar strings

O exemplo a seguir mostra como usar o para criptografar e AWS Encryption SDK descriptografar
cadeias de caracteres. Este exemplo usa um AWS KMS chaveiro com uma chave KMS de
criptografia simétrica.

Este exemplo instancia o AWS Encryption SDK cliente com a politica de compromisso padréo,.
REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para obter mais informacdes, consulte the section called
“Como definir sua politica de compromisso”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and

Exemplos 292

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK Guia do Desenvolvedor

decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
EXAMPLE_DATA

with an encryption context. This example also includes some sanity checks for
demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

import boto3

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
kms_key_id: str

"""Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

Usage: encrypt_and_decrypt_with_keyring(kms_key_id)

:param kms_key_id: KMS Key identifier for the KMS key you want to use for
encryption and

decryption of your data keys.

:type kms_key_id: string

1. Instantiate the encryption SDK client.
This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,

Exemplos 293

AWS Encryption SDK Guia do Desenvolvedor

which enforces that this client only encrypts using committing algorithm suites
and enforces

that this client will only decrypt encrypted messages that were created with a
committing

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(

commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. Create a boto3 client for KMS.
kms_client = boto3.client('kms', region_name="us-west-2")

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Create your keyring
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
kms_key_id=kms_key_id,
kms_client=kms_client

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
input=keyring_input

5. Encrypt the data with the encryptionContext.
ciphertext, _ = client.encrypt(
source=EXAMPLE_DATA,
keyring=kms_keyring,
encryption_context=encryption_context

Exemplos 294

AWS Encryption SDK Guia do Desenvolvedor

6. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert ciphertext != EXAMPLE_DATA, \
"Ciphertext and plaintext data are the same. Invalid encryption"

7. Decrypt your encrypted data using the same keyring you used on encrypt.
plaintext_bytes, _ = client.decrypt(
source=ciphertext,
keyring=kms_keyring,
Provide the encryption context that was supplied to the encrypt method
encryption_context=encryption_context,

8. Demonstrate that the decrypted plaintext is identical to the original
plaintext.

(This is an example for demonstration; you do not need to do this in your own
code.)
assert plaintext_bytes == EXAMPLE_DATA, \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

Criptografar e descriptografar streams de bytes

O exemplo a seguir mostra como usar o para AWS Encryption SDK criptografar e descriptografar
fluxos de bytes. Este exemplo usa um chaveiro AES bruto.

Este exemplo instancia o AWS Encryption SDK cliente com a politica de compromisso padréo,.
REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para obter mais informacodes, consulte the section called
“Como definir sua politica de compromisso”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
load into

memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
loading it

all at once in memory. In this example, we demonstrate file streaming for encryption
and decryption

Exemplos 295

AWS Encryption SDK Guia do Desenvolvedor

using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
‘plaintext_filename™ with an encryption context to an output (encrypted) file
‘ciphertext_filename .

It then decrypts the ciphertext from “ciphertext_filename® to a new file
“decrypted_filename .

This example also includes some sanity checks for demonstration:

1. Ciphertext and plaintext data are not the same

2. Encryption context is correct in the decrypted message header

3. Decrypted plaintext value matches EXAMPLE_DATA

These sanity checks are for demonstration in the example only. You do not need these in
your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
example

in the AWS Encryption SDK for Python.

import filecmp

import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
CreateRawAesKeyringInput

from aws_cryptographic_material_providers.mpl.references import IKeyring

from typing import Dict # noga pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
plaintext_filename: str,
ciphertext_filename: str,
decrypted_filename: str

"""Demonstrate a streaming encrypt/decrypt cycle.

Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
ciphertext_filename
decrypted_filename)

:param plaintext_filename: filename of the plaintext data

:type plaintext_filename: string

Exemplos 296

AWS Encryption SDK Guia do Desenvolvedor

:param ciphertext_filename: filename of the ciphertext data

:type ciphertext_filename: string

:param decrypted_filename: filename of the decrypted data

:type decrypted_filename: string

1. Instantiate the encryption SDK client.

This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment

policy,

which enforces that this client only encrypts using committing algorithm suites

and enforces

that this client will only decrypt encrypted messages that were created with a

committing

an

algorithm suite.

This is the default commitment policy if you were to build the client as

“client = aws_encryption_sdk.EncryptionSDKClient() .

client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

2. The key namespace and key name are defined by you.

and are used by the Raw AES keyring to determine

whether it should attempt to decrypt an encrypted data key.
key_name_space = "Some managed raw keys"

key_name = "My 256-bit AES wrapping key"

3. Optional: create encryption context.
Remember that your encryption context is NOT SECRET.
encryption_context: Dict[str, str] = {

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",

4. Generate a 256-bit AES key to use with your keyring.
In practice, you should get this key from a secure key management system such as
HSM.

Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
static_key = secrets.token_bytes(32)

5. Create a Raw AES keyring
We choose to use a raw AES keyring, but any keyring can be used with streaming.

Exemplos 297

AWS Encryption SDK Guia do Desenvolvedor

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
config=MaterialProvidersConfig()

keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
key_namespace=key_name_space,
key_name=key_name,
wrapping_key=static_key,
wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
input=keyring_input

6. Encrypt the data stream with the encryptionContext
with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
ct_file:
with client.stream(
mode="'e"',
source=pt_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as encryptor:
for chunk in encryptor:
ct_file.write(chunk)

7. Demonstrate that the ciphertext and plaintext are different.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
"Ciphertext and plaintext data are the same. Invalid encryption"

8. Decrypt your encrypted data stream using the same keyring you used on
encrypt.
with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
pt_file:
with client.stream(
mode='d",
source=ct_file,
keyring=raw_aes_keyring,
encryption_context=encryption_context
) as decryptor:
for chunk in decryptor:

Exemplos 298

AWS Encryption SDK Guia do Desenvolvedor

pt_file.write(chunk)

10. Demonstrate that the decrypted plaintext is identical to the original
plaintext.
(This is an example for demonstration; you do not need to do this in your own
code.)
assert filecmp.cmp(plaintext_filename, decrypted_filename), \
"Decrypted plaintext should be identical to the original plaintext. Invalid
decryption"

AWS Encryption SDK para Rust

Este tdpico explica como instalar e usar o AWS Encryption SDK for Rust. Para obter detalhes sobre a
programacao com o AWS Encryption SDK for Rust, consulte o diretério Rust do aws-encryption-sdk
repositério em. GitHub

O AWS Encryption SDK for Rust difere de algumas das outras implementa¢des de linguagem de
programacao do das seguintes AWS Encryption SDK maneiras:

» Nao ha suporte para armazenamento em cache de chaves de dados. No entanto, o AWS

Encryption SDK for Rust suporta o AWS KMS chaveiro hierarquico, uma solugéo alternativa de

cache de materiais criptograficos.

* Nao ha suporte para streaming de dados

O AWS Encryption SDK for Rust inclui todos os recursos de seguranga introduzidos nas versdes

2.0. x e posteriores de outras implementag¢des de linguagem do AWS Encryption SDK. No entanto,
se vocé estiver usando o for Rust AWS Encryption SDK para descriptografar dados que foram
criptografados por um pré-2.0. versao x outra implementacgéo de linguagem do AWS Encryption SDK,
talvez seja necessario ajustar sua politica de compromisso. Para obter detalhes, consulte Como

definir sua politica de compromisso.

O AWS Encryption SDK for Rust € um produto do AWS Encryption SDK in Dafny, uma linguagem de
verificagdo formal na qual vocé escreve especificagdes, o codigo para implementa-las e as provas
para testa-las. O resultado € uma biblioteca que implementa os atributos do AWS Encryption SDK
em uma estrutura que garante a corre¢ao funcional.

Saiba mais

Rust 299

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK Guia do Desenvolvedor

» Para ver exemplos que mostram como configurar opgées no AWS Encryption SDK, como
especificar um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar
chaves AWS KMS multirregionais, consulte. Configurando o AWS Encryption SDK

» Para exemplos que mostram como configurar e usar o AWS Encryption SDK for Rust, consulte os
exemplos do Rust no aws-encryption-sdk repositorio em. GitHub

Topicos
* Pré-requisitos

* Instalagéo
* AWS Encryption SDK para codigo de exemplo de Rust

Pré-requisitos
Antes de instalar o AWS Encryption SDK for Rust, verifique se vocé tem os seguintes pré-requisitos.
Instale Rust and Cargo

Instale a versé&o estavel atual do Rust usando o rustup.

Para obter mais informagdes sobre como baixar e instalar o rustup, consulte os procedimentos de

instalacao no The Cargo Book.

Instalacao

O AWS Encryption SDK for Rust esta disponivel como caixa em aws -esdkCrates.io. Para obter
detalhes sobre como instalar e construir o AWS Encryption SDK para Rust, consulte o README.md
no repositorio em. aws-encryption-sdk GitHub

Vocé pode instalar o AWS Encryption SDK for Rust das seguintes maneiras.
Manualmente

Para instalar o AWS Encryption SDK for Rust, clone ou baixe o aws-encryption-sdk GitHub
repositério.

Usando Crates.io

Execute o seguinte comando Cargo no diretério do seu projeto:

Pré-requisitos 300

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples
https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline

AWS Encryption SDK Guia do Desenvolvedor

cargo add aws-esdk

Ou adicione a seguinte linha ao seu Cargo.toml:

aws-esdk = "<version>"

AWS Encryption SDK para codigo de exemplo de Rust

Os exemplos a seguir mostram os padrdes basicos de codificagdo que vocé usa ao programar com
o AWS Encryption SDK for Rust. Especificamente, vocé instancia a biblioteca AWS Encryption SDK
e os fornecedores de materiais. Em seguida, antes de chamar cada método, vocé instancia o objeto
que define a entrada para o método.

Para exemplos que mostram como configurar op¢des no AWS Encryption SDK, como especificar um
conjunto alternativo de algoritmos e limitar chaves de dados criptografadas, consulte os exemplos de
Rust no aws-encryption-sdk repositorio em. GitHub

Criptografando e descriptografando dados no for Rust AWS Encryption SDK

Este exemplo mostra o padrao basico para criptografar e descriptografar dados. Ele criptografa um
pequeno arquivo com chaves de dados protegidas por uma chave de AWS KMS empacotamento.

Etapa 1: Instancie o. AWS Encryption SDK

Vocé usara os métodos do AWS Encryption SDK para criptografar e descriptografar dados.

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client esdk_client::Client::from_conf(esdk_config)?;

Etapa 2: Crie um AWS KMS cliente.

let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

Opcional: crie seu contexto de criptografia.

let encryption_context = HashMap::from([

Exemplos 301

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK Guia do Desenvolvedor

("encryption".to_string(), "context".to_string()),

("is not".to_string(), "secret".to_string()),

("but adds".to_string(), "useful metadata".to_string()),

("that can help you".to_string(), "be confident that".to_string()),

("the data you are handling".to_string(), "is what you think it
is".to_string()),

1)

Etapa 3: Instanciar a biblioteca de fornecedores de materiais.

Vocé usara os métodos na biblioteca de fornecedores de materiais para criar os tokens de
autenticagao que especificam quais chaves protegem seus dados.

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Etapa 4: Crie um AWS KMS chaveiro.

Para criar o token de autenticagdo, chame o método do token de autenticagdo com o objeto de

entrada do token de autenticagdo. Este exemplo usa o create_aws_kms_keyring() método e
especifica uma chave KMS.

let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

Etapa 5: criptografar o texto sem formatacao.

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()
.await?;

let ciphertext = encryption_response
.ciphertext

Exemplos 302

AWS Encryption SDK Guia do Desenvolvedor

.expect("Unable to unwrap ciphertext from encryption response");

Etapa 6: descriptografe seus dados criptografados usando o mesmo chaveiro que vocé usou na
criptografia.

let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

let decrypted_plaintext = decryption_response
.plaintext
.expect("Unable to unwrap plaintext from decryption
response");

AWS Encryption SDK interface de linha de comando

A interface de linha de AWS Encryption SDK comando (CLI de AWS criptografia) permite que vocé
use o para AWS Encryption SDK criptografar e descriptografar dados interativamente na linha de
comando e em scripts. Vocé nao precisa ter competéncia em criptografia ou em programacgéo.

® Note

Versdes da CLI de AWS criptografia anteriores a 4.0.0 estdo em fase. end-of-support

Vocé pode atualizar com seguranca a partir da versao 2.1.x e posteriores até a versao mais
recente da CLI de criptografia da AWS sem realizar alteragdes no cddigo ou nos dados. No
entanto, os novos atributos de seguranca introduzidos na versao 2.1.x ndo sao compativeis
com versodes anteriores. Para atualizar a partir da versado 1.7. x ou anterior, vocé deve
primeiro atualizar para a ultima 1. versdo x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versdao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

Interface de linha de comando 303

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Como todas as implementagées do AWS Encryption SDK, o AWS Encryption CLI oferece recursos
avancgados de protecdo de dados. Os atributos incluem criptografia envelopada, dados autenticados

adicionais (AAD) e pacotes de algoritmos de chave simétrica segura e autenticada, como o AES-

GCM de 256 bits com derivacao de chave, confirmacao de chave e assinatura.

A CLI de AWS criptografia € baseada no AWS Encryption SDK for Pythone é compativel com Linux,
macOS e Windows. Vocé pode executar comandos e scripts para criptografar e descriptografar

seus dados no shell de sua preferéncia no Linux ou macOS, em uma janela do prompt de comando
(cmd.exe) no Windows e em um console em qualquer sistema. PowerShell

Todas as implementagdes especificas de linguagem do AWS Encryption SDK, incluindo a AWS
CLI de criptografia, sado interoperaveis. Por exemplo, vocé pode criptografar dados com o AWS
Encryption SDK for Javae descriptografa-los com a CLI de criptografia. AWS

Este tépico apresenta a CLI de AWS criptografia, explica como instala-la e usa-la e fornece varios
exemplos para ajudar vocé a comecgar. Para comecar rapidamente, consulte Como criptografar e

descriptografar seus dados com a AWS CLI de criptografia no blog de seguranga. AWS Para obter

informacgdes mais detalhadas, consulte Leia os documentos e junte-se a nds no desenvolvimento da
CLI de AWS criptografia aws-encryption-sdk-clino repositério em. GitHub

desempenho

A CLI de AWS criptografia € baseada no. AWS Encryption SDK for Python Cada vez que executa
a CLI, vocé inicia uma nova instancia do runtime do Python. Para melhorar o desempenho, sempre
que possivel, use um unico comando em vez de uma série de comandos independentes. Por
exemplo, execute um comando que processe 0s arquivos em um diretério de forma recursiva, em
vez de executar comandos separados para cada arquivo.

Topicos

+ Instalando a interface de linha de AWS Encryption SDK comando

» Como usar a CLI AWS de criptografia

Exemplos da CLI AWS de criptografia

AWS Encryption SDK Referéncia de sintaxe e parametros da CLI

Versdes da CLI AWS de criptografia

Interface de linha de comando 304

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Instalando a interface de linha de AWS Encryption SDK comando

Este topico explica como instalar a CLI AWS de criptografia. Para obter informag¢des detalhadas,
consulte o aws-encryption-sdk-clirepositorio GitHub e leia os documentos.

Topicos

* Instalar os pré-requisitos

+ Instalando e atualizando a CLI AWS de criptografia

Instalar os pré-requisitos

A CLI de AWS criptografia é baseada no. AWS Encryption SDK for Python Para instalar a CLI do
AWS Encryption, vocé precisa do Python e da ferramenta de gerenciamento de pacotes pip do
Python. O Python e o pip estédo disponiveis em todas as plataformas compativeis.

Instale os seguintes pré-requisitos antes de instalar a CLI de criptografia AWS ,
Python
O Python 3.8 ou posterior € exigido pelas versdes 4.2.0 e posteriores do Encryption AWS CLI.

As versdes anteriores da CLI de AWS criptografia oferecem suporte ao Python 2.7 e 3.4 e
versdes posteriores, mas recomendamos que vocé use a versao mais recente da CLI de
criptografia. AWS

O Python esta incluido na maioria das instalagées do Linux e do macOS, mas é necessario
atualizar para o Python 3.6 ou versées posteriores. E recomendavel usar a vers&o mais recente
do Python. No Windows, vocé precisa instalar o Python: ele ndo é instalado por padrao. Para
fazer download do Python, consulte Downloads do Python.

Para determinar se o Python esta instalado, na linha de comando, digite:

python
Para verificar a versao do Python, use o parametro -V (V maiusculo).

python -V

No Windows, depois de instalar o Python, adicione o caminho para o arquivo Python.exe ao
valor da variavel de ambiente Path.

Instalar a CLI do 305

https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://www.python.org/downloads/

AWS Encryption SDK Guia do Desenvolvedor

Por padrao, o Python é instalado em todos os diretérios de usuario ou em um diretério de perfil
de usuario ($home ou %Suserprofile%) no subdiretério AppData\Local\Programs\Python.
Para encontrar o local do arquivo Python. exe no sistema, verifique uma das seguintes chaves
de registro. Vocé pode usar PowerShell para pesquisar o registro.

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip

pip € o gerenciador de pacotes do Python. Para instalar a CLI de AWS criptografia e suas
dependéncias, vocé precisa da pip versao 8.1 ou posterior. Para obter ajuda para instalar ou
atualizar o pip, consulte Instalacdo na documentagao do pip.

Nas instalagdes do Linux, as versdes pip anteriores a 8.1 ndo podem criar a biblioteca de
criptografia exigida pela CLI de AWS criptografia. Se vocé optar por ndo atualizar sua versao do
pip, podera instalar as ferramentas de compilagdo separadamente. Para obter mais informacgoes,
consulte Criacao de criptografia no Linux.

AWS Command Line Interface

O AWS Command Line Interface (AWS CLI) é necessario somente se vocé estiver usando AWS
KMS keys in AWS Key Management Service (AWS KMS) com a CLI de AWS criptografia. Se
vocé estiver usando um provedor de chave mestra diferente, AWS CLI isso n&o € obrigatdrio.

Para usar AWS KMS keys com a CLI de AWS criptografia, vocé precisa instalar e configurar o.
AWS CLI A configuracao disponibiliza as credenciais que vocé usa para autenticar para a AWS
KMS AWS CLI de criptografia.

Instalando e atualizando a CLI AWS de criptografia

Instale a versdo mais recente da CLI AWS de criptografia. Quando vocé usa pip para instalar a CLI
de AWS criptografia, ela instala automaticamente as bibliotecas de que a CLI precisa, incluindo a
biblioteca de criptografia Python e a. AWS Encryption SDK for PythonAWS SDK para Python (Boto3)

(® Note

Versdes da CLI de AWS criptografia anteriores a 4.0.0 estdo em fase. end-of-support

Instalar a CLI do 306

https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://cryptography.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Vocé pode atualizar com seguranca a partir da versao 2.1.x e posteriores até a versao mais
recente da CLI de criptografia da AWS sem realizar alteragdes no cddigo ou nos dados. No
entanto, os novos atributos de seguranca introduzidos na versao 2.1.x ndo sao compativeis
com versodes anteriores. Para atualizar a partir da versao 1.7. x ou anterior, vocé deve
primeiro atualizar para a ultima 1. versédo x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.

Novos recursos de seguranca foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versdao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

Para instalar a versao mais recente da CLI AWS de criptografia
pip install aws-encryption-sdk-cli
Para atualizar para a versdo mais recente da CLI de AWS criptografia
pip install --upgrade aws-encryption-sdk-cli
Para encontrar os numeros de versao da sua CLI de AWS criptografia e AWS Encryption SDK
aws-encryption-cli --version
A saida lista os numeros de versao de ambas as bibliotecas.
aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0
Para atualizar para a versdo mais recente da CLI de AWS criptografia

pip install --upgrade aws-encryption-sdk-cli

A instalagao da CLI de AWS criptografia também instala a versao mais recente do AWS SDK para
Python (Boto3), se ainda nao estiver instalada. Se o Boto3 estiver instalado, o instalador verifica a
versao do Boto3 e a atualiza, se necessario.

Instalar a CLI do 307

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Para encontrar sua versao instalada do Boto3
pip show boto3
Para atualizar para a versao mais recente do Boto3

pip install --upgrade boto3

Para instalar a versdo da CLI de AWS criptografia atualmente em desenvolvimento, consulte o aws-
encryption-sdk-clirepositorio em. GitHub

Para obter mais detalhes sobre o uso do pip para instalar e atualizar pacotes do Python, consulte a
documentacao do pip.

Como usar a CLI AWS de criptografia

Este tdpico explica como usar os parametros na CLI AWS de criptografia. Para obter exemplos,
consulte Exemplos da CLI AWS de criptografia. Para obter a documentag&o completa, consulte Leia
os documentos. A sintaxe mostrada nesses exemplos é para a versédo 2.1 do AWS Encryption CLI. x
e mais tarde.

(® Note

Versdes da CLI de AWS criptografia anteriores a 4.0.0 estdo em fase. end-of-support
Vocé pode atualizar com seguranga a partir da versao 2.1.x e posteriores até a versao mais

recente da CLI de criptografia da AWS sem realizar alteragdes no cddigo ou nos dados. No
entanto, os novos atributos de seguranca introduzidos na versao 2.1.x ndo sao compativeis

com versodes anteriores. Para atualizar a partir da versao 1.7. x ou anterior, vocé deve
primeiro atualizar para a ultima 1. versédo x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versdao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

Para obter um exemplo de como usar o atributo de seguranga que limita as chaves de dados
criptografadas, consulte Limitar as chaves de dados criptografadas.

Como usar a CLI 308

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Para ver um exemplo de como usar chaves AWS KMS multirregionais, consulteUsando varias
regioes AWS KMS keys.

Topicos

« Como criptografar e descriptografar dados

+ Como especificar chaves de encapsulamento

+ Como fornecer entrada

» Como especificar o local de saida

* Como usar um contexto de criptografia

« Como especificar uma politica de compromisso

+ Como armazenar parametros em um arquivo de configuracao

Como criptografar e descriptografar dados

A CLI de AWS criptografia usa os recursos do AWS Encryption SDK para facilitar a criptografia e a
descriptografia de dados com seguranca.

@ Note

O parametro --master-keys foi descontinuado na versao 1.8. x da CLI de criptografia

da AWS e removido na versao 2.1.x.. Em vez disso, use o parametro --wrapping-keys.

A partir da versao 2.1.x, o parametro - -wrapping-keys passou a ser necessario ao
criptografar e descriptografar. Para obter detalhes, consulte AWS Encryption SDK Referéncia
de sintaxe e parametros da CLI.

Ao criptografar dados na CLI de AWS criptografia, vocé especifica seus dados de texto sem
formatagao e uma chave de encapsulamento (ou chave mestra), como in (). AWS KMS key
AWS Key Management Service AWS KMS Se estiver usando um provedor de chaves mestras
personalizado, vocé também precisara especificar o provedor. Vocé também especifica locais de
saida para a mensagem criptografada e para os metadados sobre a operagao de criptografia. Um
contexto de criptografia € opcional, mas recomendado.

Na verséo 1.8.x, o parametro - -commitment-policy é obrigatorio quando vocé usar o
parametro - -wrapping-keys; caso contrario ele nao sera valido. A partir da versao 2.1x, o
parametro - -commitment-policy passou a ser opcional, mas € recomendado.

Como usar a CLI 309

AWS Encryption SDK Guia do Desenvolvedor

aws-encryption-cli --encrypt --input myPlaintextData \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myEncryptedMessage \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

A CLI de AWS criptografia criptografa seus dados com uma chave de dados exclusiva. Em
seguida, ele criptografa cada chave de dados sob a chave de encapsulamento especificada.

Ela retorna uma mensagem criptografada e os metadados sobre a operagcdo. A mensagem
criptografada contém os dados criptografados (texto cifrado) e uma cépia criptografada da chave
de dados. Vocé nao precisa se preocupar com o armazenamento, o gerenciamento ou a perda da
chave de dados.

» Ao descriptografar os dados, vocé passa sua mensagem criptografada, o contexto de criptografia
opcional e o local para a saida do texto ndo criptografado e os metadados. Vocé também
especifica as chaves de encapsulamento que a CLI de AWS criptografia pode usar para
descriptografar a mensagem ou informa a CLI de AWS criptografia que ela pode usar qualquer
chave de encapsulamento que criptografe a mensagem.

A partir da versao 1.8.x, o parametro --wrapping-keys passou a ser opcional, mas é
recomendado. A partir da versao 2.1.x, o parametro - -wrapping-keys passou a ser necessario
ao criptografar e descriptografar.

Ao descriptografar, vocé pode usar o atributo key do parametro --wrapping-keys para
especificar as chaves de encapsulamento que descriptografam seus dados. Especificar uma chave
de AWS KMS encapsulamento ao descriptografar é opcional, mas € uma pratica recomendada que
impede que vocé use uma chave que vocé nao pretendia usar. Se estiver usando um provedor de
chaves mestras personalizado, vocé devera especificar o provedor.

Se vocé nao usar o atributo de chave, devera definir o atributo de descoberta do --wrapping-
keys parametro comotrue, o que permite que a CLI de AWS criptografia seja descriptografada
usando qualquer chave de encapsulamento que criptografou a mensagem.

E uma pratica recomendada usar o parametro - -max-encrypted-data-keys, para evitar a
descriptografia de uma mensagem malformada com um numero excessivo de chaves de dados
criptografadas. Especifique o numero esperado de chaves de dados criptografadas (um para cada

Como usar a CLI 310

AWS Encryption SDK Guia do Desenvolvedor

chave de encapsulamento usada na criptografia) ou uma quantidade maxima razoavel (como 5).
Para obter detalhes, consulte Limitar as chaves de dados criptografadas.

O parametro --buffer retorna texto simples somente apos o processamento de todas as
entradas, incluindo a verificagdo da assinatura digital, se houver uma.

O parametro --decrypt-unsigned descriptografa o texto cifrado e garante que as mensagens
nao sejam assinadas antes de serem descriptografadas. Use esse parametro se vocé usou o
parametro - -algorithm e selecionou um pacote de algoritmos sem assinatura digital para
criptografar dados. Se o texto cifrado for assinado, a descriptografia falhara.

Vocé pode usar --decrypt ou --decrypt-unsigned para fazer a descriptografia, mas nao
ambos.

aws-encryption-cli --decrypt --input myEncryptedMessage \
--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
--output myPlaintextData \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt

A CLI de AWS criptografia usa a chave de empacotamento para descriptografar a chave de dados
na mensagem criptografada. Em seguida, ela usa a chave de dados para descriptografar os
dados. Ela retorna os dados em texto nao criptografado e os metadados sobre a operacao.

Como especificar chaves de encapsulamento

Ao criptografar dados na CLI de AWS criptografia, vocé precisa especificar pelo menos uma chave
de encapsulamento (ou chave mestra). Vocé pode usar AWS KMS keys in AWS Key Management

Service (AWS KMS), agrupar chaves de um provedor de chave mestra personalizado ou ambos.
O provedor de chaves mestras personalizado pode ser qualquer provedor de chaves mestras
compativel com o Python.

Para especificar as chaves de encapsulamento nas versdes 1.8.x e posteriores, use o parametro
--wrapping-keys (-w). O valor deste parametro é uma colec&o de atributos com o formato
attribute=value. Os atributos que vocé usa dependem do provedor de chaves mestras e do
comando.

Como usar a CLI 311

AWS Encryption SDK Guia do Desenvolvedor

+ AWS KMS. Em comandos encrypt, vocé deve especificar um parametro - -wrapping-keys com
um atributo key. A partir da versao 2.1.x, o parametro - -wrapping-keys também passou a ser
necessario em comandos de descriptografia. Ao descriptografar, o parametro --wrapping-keys
deve ter um atributo key ou um atributo discovery (mas nao os dois) com o valor de true. Todos
os outros atributos sao opcionais.

* Provedor de chaves mestres personalizado. Vocé deve especificar um paréametro --wrapping-
keys em cada comando. O valor do parametro deve ter os atributos key e provider.

Vocé pode incluir varios parametros - -wrapping-keys e varios atributos key no mesmo comando.

Encapsulando os atributos dos parametros de chave

O valor do parametro --wrapping-keys consiste nos seguintes atributos e seus valores. Um
parametro - -wrapping-keys (ou parametro --master-keys) é necessario em todos os
comandos de criptografia. A partir da versao 2.1.x, o parametro - -wrapping-keys também passou
a ser necessario em comandos de descriptografia.

Se um nome ou valor de atributo incluir espagos ou caracteres especiais, coloque 0 nome e o valor
entre aspas. Por exemplo, .--wrapping-keys key=12345 "provider=my cool provider"

Chave: especifique uma chave de encapsulamento

Use o atributo key para identificar uma chave de encapsulamento. Ao criptografar, o valor pode
ser qualquer identificador de chave que o provedor de chaves mestras reconhece.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

Em um comando encrypt, cada valor do parametro vocé deve incluir pelo menos um atributo key
e um valor. Para criptografar sua chave de dados em varias chaves de encapsulamento, use
varios atributos key.

aws-encryption-cli --encrypt --wrapping-keys
key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d

Nos comandos de criptografia usados AWS KMS keys, o valor da chave pode ser o ID da chave,
o ARN da chave, um nome de alias ou 0 ARN do alias. Por exemplo, este comando encrypt usa
um ARN do alias no valor do atributo key. Para obter detalhes sobre os identificadores de chave
de um AWS KMS key, consulte Identificadores de chave no Guia do AWS Key Management
Service desenvolvedor.

Como usar a CLI 312

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

Em comandos decrypt que usam um provedor de chaves mestres personalizado, os atributos key
e provider sao necessarios.

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101"'

Nos comandos de descriptografia usados AWS KMS, vocé pode usar o atributo chave para
especificar o a ser usado AWS KMS keys para descriptografia ou o atributo de descoberta com
um valor de, true que permite que a AWS CLI de criptografia use qualquer AWS KMS key um
que tenha sido usado para criptografar a mensagem. Se vocé especificar um AWS KMS key, ele

devera ser uma das chaves de encapsulamento usadas para criptografar a mensagem.

A especificagao da chave de encapsulamento € uma AWS Encryption SDK pratica recomendada.

Isso garante que vocé use o AWS KMS key que pretende usar.

Em um comando decrypt, o valor do atributo key deve ser um ARN de chave.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Descoberta: use qualquer um AWS KMS key ao descriptografar

Se vocé nao precisar limitar o uso AWS KMS keys ao descriptografar, vocé pode usar o
atributo de descoberta com um valor de. true Um valor de true permite que a CLI de AWS
criptografia decodifique usando qualquer AWS KMS key uma que criptografe a mensagem. Se
vocé nao especificar um atributo discovery, a descoberta sera false (padrao). O atributo de
descoberta € valido somente em comandos de descriptografia e somente quando a mensagem
foi criptografada com. AWS KMS keys

O atributo discovery com o valor definido como true € uma alternativa ao uso do atributo key
para especificar uma AWS KMS keys. Ao descriptografar uma mensagem criptografada com
AWS KMS keys, cada --wrapping-keys parametro deve ter um atributo-chave ou um atributo
de descoberta com um valor detrue, mas nao ambos.

Quando a descoberta € verdadeira, € uma pratica recomendada usar os atributos discovery-
partition e discovery-account para limitar o AWS KMS keys uso aos atributos especificados por

Como usar a CLI 313

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

vocé. Contas da AWS No exemplo a seguir, os atributos de descoberta permitem que a CLI de
AWS criptografia use qualquer um dos atributos AWS KMS key especificados. Contas da AWS

aws-encryption-cli --decrypt --wrapping-keys \
discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Provider: especifique o provedor de chaves mestras

O atributo provider identifica o provedor de chaves mestres. O valor padréao é aws-kms que

representa o AWS KMS. Se estiver usando outro provedor de chaves mestres, o atributo provider
sera necessario.

--wrapping-keys key=12345 provider=my_custom_provider

Para obter mais informacdes sobre o0 uso de provedores de chaves mestras personalizadas
(que nao sejam AWS KMS), consulte o topico Configuragao avangada no arquivo README do
repositério da CLI e criptografia da AWS.

Regiao: Especifique uma Regido da AWS

Use o atributo de regidao para especificar o Regiao da AWS de um AWS KMS key. Esse atributo é
valido apenas em comandos encrypt e somente quando o provedor de chaves mestras € o AWS
KMS.

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS Os comandos CLI de criptografia usam o Regido da AWS que é especificado no valor do
atributo chave se incluir uma regido, como um ARN. Se o valor da chave especificar um Regiédo
da AWS, o atributo regido sera ignorado.

O atributo region tem precedéncia sobre outras especificagdes de regido. Se vocé nao usar
um atributo de regido, os comandos da CLI de AWS criptografia usarao o Regiao da AWS
especificado em seu perfil AWS CLI nomeado, se houver, ou em seu perfil padrao.

Como usar a CLI 314

https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Guia do Desenvolvedor

Profile: especifique um perfil nomeado

Use o atributo profile para especificar um AWS CLI perfil nomeado da . Os perfis nomeados
podem incluir credenciais e uma Regido da AWS. Esse atributo é valido somente quando o
provedor de chaves mestras é o AWS KMS.

--wrapping-keys key=alias/primary-key profile=admin-1

Vocé pode usar o atributo profile para especificar credenciais alternativas em comandos encrypt
e decrypt. Em um comando encrypt, a CLI de AWS criptografia usa Regido da AWS o no perfil
nomeado somente quando o valor da chave n3o inclui uma regido e ndo ha nenhum atributo de
regido. Em um comando decrypt, o perfil Regido da AWS in the name é ignorado.

Como especificar varias chaves mestras
Vocé pode especificar varias chaves de encapsulamento (ou chaves mestras) em cada comando.

Se vocé especificar mais de uma chave de encapsulamento, a primeira chave de encapsulamento
gerara (e criptografara) a chave de dados usada para criptografar seus dados. As outras chaves

de encapsulamento criptografam a mesma chave de dados. A mensagem criptografada resultante
contém os dados criptografados ("texto cifrado") e uma colecado de chaves de dados criptografadas,
criptografadas por cada chave de encapsulamento. Qualquer uma das chaves de encapsulamento
podem descriptografar uma chave de dados e descriptografar os dados.

Ha duas maneiras de especificar varias chaves de encapsulamento:

* Incluir varios atributos key no valor do parametro --wrapping-keys.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

* Incluir varios parametros --wrapping-keys no mesmo comando. Use essa sintaxe quando os
valores dos atributos que vocé especificar ndo se aplicarem a todas as chaves de encapsulamento
no comando.

--wrapping-keys region=us-east-2 key=alias/test_key \

Como usar a CLI 315

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Guia do Desenvolvedor

--wrapping-keys region=us-west-1 key=alias/test_key

O atributo de descoberta com um valor de true permite que a CLI de AWS criptografia use qualquer
um AWS KMS key que criptografe a mensagem. Se vocé usar varios parametros - -wrapping-
keys no mesmo comando, o uso de discovery=true em qualquer parametro --wrapping-keys
substituira efetivamente os limites do atributo key em outros parametros - -wrapping-keys.

Por exemplo, no comando a seguir, o atributo chave no primeiro --wrapping-keys parametro
limita a CLI de AWS criptografia ao especificado. AWS KMS key No entanto, o atributo de descoberta
no segundo --wrapping-keys parametro permite que a CLI de AWS criptografia use qualquer
AWS KMS key uma das contas especificadas para descriptografar a mensagem.

aws-encryption-cli --decrypt \
--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
--wrapping-keys discovery=true \
discovery-partition=aws \
discovery-account=111122223333 \
discovery-account=444455556666

Como fornecer entrada

A operacao de AWS criptografia na CLI de criptografia usa dados de texto simples como entrada

e retorna uma mensagem criptografada. A operacao de descriptografia usa uma mensagem
criptografada como entrada e retorna dados de texto nao criptografado.

O --input parametro (-1i), que informa a CLI de AWS criptografia onde encontrar a entrada, é
obrigatério em todos os comandos da AWS CLI de criptografia.

Vocé pode fornecer entrada de qualquer uma das seguintes formas:

* Usar um arquivo.

--input myData.txt

« Usar um padrao de nome de arquivo.

--input testdir/*.xml

Como usar a CLI 316

AWS Encryption SDK Guia do Desenvolvedor

» Use um diretério ou um padrao de nome de diretério. Quando a entrada € um diretério, o
parémetro --recursive (-, -R) € necessario.

--input testdir --recursive

* Redirecionar a entrada para o comando (stdin). Use um valor de - para o parametro --input. (O
parametro - -input sempre € necessario.)

echo 'Hello World' | aws-encryption-cli --encrypt --input -

Como especificar o local de saida

O --output parametro informa a CLI de AWS criptografia onde gravar os resultados da operagao
de criptografia ou descriptografia. E necessario em todos os comandos da CLI de AWS criptografia.
A CLI de criptografia da AWS cria um novo arquivo de saida para cada arquivo de entrada na
operacao.

Se um arquivo de saida ja existir, por padrao, a CLI de AWS criptografia imprime um aviso e, em
seguida, sobrescreve o arquivo. Para evitar a substituicdo, use o parametro --interactive, que
solicita sua confirmacgéo antes de substituir, ou --no-overwrite, que ignora a entrada se a saida
puder provocar uma substituicdo. Para suprimir o aviso de substituicado, use --quiet. Para capturar
erros e avisos da CLI de AWS criptografia, use 2>&1 o operador de redirecionamento para grava-los
no fluxo de saida.

(® Note

Os comandos que substituem arquivos de saida comecam excluindo o arquivo de saida. Se
o comando falhar, o arquivo de saida talvez ja tenha sido excluido.

Vocé pode definir o local da saida de varias maneiras.

» Especificar um nome de arquivo. Se vocé especificar um caminho para o arquivo, todos os
diretérios no caminho devem existir antes do comando ser executado.

--output myEncryptedData.txt

» Especificar um diretério. O diretério de saida deve existir antes do comando ser executado.

Como usar a CLI 317

AWS Encryption SDK Guia do Desenvolvedor

Se a entrada contiver subdiretérios, o comando reproduzira os subdiretérios no diretério
especificado.

--output Test

Quando o local de saida € um diretério (sem nomes de arquivo), a CLI de AWS criptografia cria
nomes de arquivos de saida com base nos homes dos arquivos de entrada mais um sufixo.

As operagdes de criptografia acrescentam .encrypted ao nome do arquivo de entrada e as
operagdes de descriptografia acrescentam .decrypted. Para alterar o sufixo, use o parametro - -
suffix.

Por exemplo, se vocé criptografar file.txt, o comando encrypt criara file.txt.encrypted.
Se vocé descriptografar file.txt.encrypted, o comando decrypt criara
file.txt.encrypted.decrypted.

» Gravar na linha de comando (stdout). Insira um valor de - para o parémetro --output. Vocé
pode usar --output - pararedirecionar a saida em outro comando ou programa.

--output -

Como usar um contexto de criptografia

A CLI de AWS criptografia permite que vocé fornega um contexto de criptografia nos comandos
de criptografia e descriptografia. Ele ndo é necessario, mas € uma melhor pratica criptografica que
recomendamos.

Um contexto de criptografia € um tipo de dados autenticados adicionais arbitrarios e que nao sao
segredos. Na CLI de criptografia da AWS , o contexto de criptografia consiste em uma colecao de
pares name=value. Vocé pode usar qualquer conteudo nos pares, incluindo informacdes sobre os
arquivos; dados que o ajudam a encontrar a operagao de criptografia em logs; ou dados que suas
concessodes ou politicas exigem.

Em um comando encrypt

O contexto de criptografia que vocé especifica em um comando encrypt, junto com qualquer par que
o CMM adicionar, é associado de maneira criptografica aos dados criptografados. Ele também é

Como usar a CLI 318

AWS Encryption SDK Guia do Desenvolvedor

incluido (em nao criptografado) na mensagem criptografada que o comando retorna. Se vocé estiver
usando um AWS KMS key, o contexto de criptografia também podera aparecer em texto simples em
registros e registros de auditoria, como. AWS CloudTrail

O exemplo a seguir mostra um contexto de criptografia com trés pares name=value.

--encryption-context purpose=test dept=IT class=confidential

Em um comando decrypt

Em um comando decrypt, o contexto de criptografia ajuda a confirmar se vocé esta
descriptografando a mensagem criptografada correta.

Nao é necessario fornecer um contexto de criptografia em um comando decrypt, mesmo que

um contexto de criptografia tenha sido usado na criptografia. No entanto, se vocé fizer isso, a

CLI de AWS criptografia verificara se cada elemento no contexto de criptografia do comando
decrypt corresponde a um elemento no contexto de criptografia da mensagem criptografada. Se um
elemento ndo corresponder, o comando decrypt falhara.

Por exemplo, o comando a seguir descriptografa a mensagem criptografada somente se o contexto
de criptografia incluir dept=1IT.

aws-encryption-cli --decrypt --encryption-context dept=IT ...

Um contexto de criptografia € uma parte importante de sua estratégia de segurancga. No entanto, ao
escolher um contexto de criptografia, lembre-se de que seus valores ndo sao secretos. Nao inclua
dados confidenciais no contexto de criptografia.

Como especificar um contexto de criptografia

* Em um comando encrypt, use o parametro --encryption-context com um ou mais pares
name=value. Use um espacgo para separar cada par.

--encryption-context name=value [name=value]

* Em um comando decrypt, o valor do parametro --encryption-context pode incluir pares
name=value, elementos name (sem valores) ou uma combinagado de ambos.

--encryption-context name[=value] [name] [name=value]

Como usar a CLI 319

AWS Encryption SDK Guia do Desenvolvedor

Se o name ou o0 value em um par de name=value incluir espagos ou caracteres especiais, coloque
o par inteiro entre aspas.

--encryption-context "department=software engineering" "Regido da AWS=us-west-2"

Por exemplo, este comando encrypt inclui um contexto de criptografia com dois pares,
purpose=test e dept=23.

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

Esse comando decrypt tem éxito. O contexto de criptografia em cada comando é um subconjunto do
contexto de criptografia original.

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test

No entanto, esses comandos decrypt falhardo. O contexto de criptografia na mensagem
criptografada ndo contém os elementos especificos.

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

Como especificar uma politica de compromisso

Para definir a politica de compromisso para o comando, use o parametro --commitment-policy.
Esse parametro foi apresentado na versao 1.8.x.. Ele 'é valido em comandos de criptografia e
descriptografia. A politica de compromisso que vocé definir sera valida somente para o comando no
qual ela aparece. Se vocé nao definir uma politica de compromisso para um comando, a CLI de AWS
criptografia usara o valor padrao.

Por exemplo, o valor do parametro a seguir define a politica de compromisso como require-
encrypt-allow-decrypt, que sempre criptografa com o confirmagao de chave, mas
descriptografa um texto cifrado criptografado com ou sem confirmagao de chave.

Como usar a CLI 320

AWS Encryption SDK Guia do Desenvolvedor

--commitment-policy require-encrypt-allow-decrypt

Como armazenar parametros em um arquivo de configuragao

Vocé pode economizar tempo e evitar erros de digitagao salvando os parametros e valores da CLI de
AWS criptografia usados com frequéncia nos arquivos de configuragao.

Um arquivo de configuragao € um arquivo de texto que contém parametros e valores para um
comando CLI de AWS criptografia. Ao fazer referéncia a um arquivo de configuragdo em um
comando da CLI de criptografia da AWS , a referéncia é substituida pelos parametros e valores
no arquivo de configuragao. O efeito sera 0 mesmo como se vocé tivesse digitado o conteudo do
arquivo na linha de comando. Um arquivo de configuracao pode ter qualquer nome e pode ser
localizado em qualquer diretério que o usuario atual pode acessar.

O arquivo de configuragao de exemplo a seguir, key . conf, especifica duas AWS KMS keys em
diferentes regiodes.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

Para usar o arquivo de configuracdo em um comando, prefixe 0 nome do arquivo com uma arroba
(@). Em um PowerShell console, use um caractere de crase para escapar do sinal arroba (" @).

Este comando de exemplo usa o arquivo key.conf em um comando encrypt.

Bash
$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir
PowerShell

PS C:\> aws-encryption-cli -e “@key.conf -i .\Hello.txt -o .\TestDir

Regras do arquivo de configuragao

As regras para uso de arquivos de configuragao sao:

Como usar a CLI 321

AWS Encryption SDK Guia do Desenvolvedor

» Vocé pode incluir varios parametros em cada arquivo de configuragao e lista-los em qualquer
ordem. Liste cada parametro com seus valores (se houver) em uma linha separada.

» Use # para adicionar um comentario a toda ou a parte de uma linha.

» Vocé pode incluir referéncias a outros arquivos de configuracdo. Nao use uma craqueta para
escapar da @ placa, mesmo dentro PowerShell.

» Se vocé usar aspas em um arquivo de configuragao, o texto entre aspas nao pode abranger varias
linhas.

Por exemplo, este € o conteudo de um arquivo encrypt.conf de exemplo.

Archive Files

--encrypt

--output /archive/logs

--recursive

--interactive

--encryption-context class=unclassified dept=IT
--suffix # No suffix

--metadata-output ~/metadata

@caching.conf # Use limited caching

Vocé também pode incluir varios arquivos de configuragdo em um comando. Este comando de
exemplo usa os arquivos de configuragdo encrypt.conf e master-keys.conf.

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log “@encrypt.conf “@master-keys.conf

Préximo: Experimente os exemplos da CLI de criptografia da AWS

Exemplos da CLI AWS de criptografia

Use os exemplos a seguir para testar a CLI de AWS criptografia na plataforma de sua preferéncia.
Para obter ajuda com chaves mestras e outros parametros, consulte Como usar a CLI AWS de

Exemplos 322

AWS Encryption SDK Guia do Desenvolvedor

criptografia. Para obter uma referéncia rapida, consulte AWS Encryption SDK Referéncia de sintaxe
e parametros da CLI.

® Note

Os exemplos a seguir usam a sintaxe da AWS Encryption CLI versao 2.1. x.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

Para obter um exemplo de como usar o atributo de segurancga que limita as chaves de dados
criptografadas, consulte Limitar as chaves de dados criptografadas.

Para ver um exemplo de como usar chaves AWS KMS multirregionais, consulteUsando varias
regioes AWS KMS keys.

Topicos

» Criptografar um arquivo

» Descriptografar um arquivo

» Criptografar todos os arquivos em um diretério

» Descriptografar todos os arquivos em um diretorio

» Criptografar e descriptografar na linha de comando

» Uso de varias chaves mestras

» Criptografar e descriptografar em scripts

« Usar o armazenamento em cache de chaves de dados

Criptografar um arquivo

Este exemplo usa a CLI de AWS criptografia para criptografar o conteudo do hello. txt arquivo,
que contém uma string “Hello World”.

Quando vocé executa um comando de criptografia em um arquivo, a CLI de AWS criptografia obtém
o conteudo do arquivo, gera uma chave de dados exclusiva, criptografa o conteudo do arquivo sob a

chave de dados e, em seguida, grava a mensagem criptografada em um novo arquivo.

Exemplos 323

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

O primeiro comando salva a chave ARN de an AWS KMS key na $keyArn variavel. Ao criptografar
com um AWS KMS key, vocé pode identifica-lo usando um ID de chave, ARN da chave, nome do
alias ou ARN do alias. Para obter detalhes sobre os identificadores de chave de um AWS KMS key,
consulte Identificadores de chave no Guia do AWS Key Management Service desenvolvedor.

O segundo comando criptografa o conteudo do arquivo. O comando usa o parametro --encrypt
para especificar a operagao, e o parametro --input para indicar o arquivo a ser criptografado. O
--wrapping-keysparametro e seu atributo de chave obrigatério fazem com que o comando use o
AWS KMS key representado pela chave ARN.

O comando usa o parametro --metadata-output para especificar um arquivo de texto para
os metadados sobre a operacgéao de criptografia. Como pratica recomendada, o comando usa o
parametro - -encryption-context para especificar um contexto de criptografia.

Esse comando também usa o parametro - -commitment-policy para definir explicitamente
a politica de compromisso. Na versao 1.8. x, ele € necessario quando vocé usa o parametro - -
wrapping-keys. A partir da versédo 2.1x, o parametro - -commitment-policy passou a ser
opcional, mas é recomendado.

O valor do paréametro --output, um ponto (.), informa o comando para gravar o arquivo de saida no
diretério atual.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--commitment-policy require-encrypt-require-decrypt \
--output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Exemplos 324

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

PS C:\> aws-encryption-cli --encrypt °
--input Hello.txt
--wrapping-keys key=$keyArn °
--metadata-output $home\Metadata.txt
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--output .

~

~

Quando o comando encrypt é bem-sucedido, ele ndo retorna nenhuma saida. Para determinar se

o comando foi bem-sucedido, verifique o valor booliano na variavel $?. Quando o comando é bem-
sucedido, o valor de $? é @ (Bash) ou True (PowerShell). Quando o comando falha, o valor de $? é
diferente de zero (Bash) ou False (PowerShell).

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

Vocé também pode usar um comando de listagem de diretério para ver se o comando encrypt criou
um novo arquivo, hello.txt.encrypted. Como o comando encrypt ndo especificou um nome de
arquivo para a saida, a CLI de AWS criptografia gravou a saida em um arquivo com 0 mesmo nome
do arquivo de entrada mais .encrypted um sufixo. Para usar outro sufixo ou suprimir o sufixo, use
o parametro --suffix.

O arquivo hello.txt.encrypted contém uma mensagem criptografada que inclui o texto cifrado

do arquivo hello. txt, uma copia criptografada da chave de dados e metadados adicionais
incluindo o contexto de criptografia.

Bash

$ 1s
hello.txt hello.txt.encrypted

Exemplos 325

AWS Encryption SDK Guia do Desenvolvedor

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Descriptografar um arquivo

Este exemplo usa a CLI de AWS criptografia para descriptografar o conteudo do
Hello.txt.encrypted arquivo que foi criptografado no exemplo anterior.

O comando decrypt usa o parametro --decrypt para indicar a operagao, e o parametro --input
para identificar o arquivo a ser descriptografado. O valor do parametro - -output € um ponto que
representa o diretério atual.

O parametro --wrapping-keys com um atributo key especifica a chave de encapsulamento
usada para descriptografar a mensagem criptografada. Em comandos de descriptografia com AWS

KMS keys, o valor do atributo chave deve ser um ARN de chave. O parametro --wrapping-keys
€ obrigatdério em comandos encrypt. Se vocé usar AWS KMS keys, podera usar o atributo key

prara especificar AWS KMS keys para descritografar ou o atributo discovery com um valor definido
comotrue (mas ndo ambos). Se estiver usando outro provedor de chaves mestras, os atributos key
e provider serdo necessarios.

A partir da versdo 2.1x, o pardmetro --commitment-policy passou a ser opcional, mas é
recomendado. Usa-lo explicitamente deixa clara sua intengcdo, mesmo se vocé especificar o valor
padrdo, require-encrypt-require-decrypt.

O paréametro --encryption-context € opcional no comando decrypt, mesmo quando um
contexto de criptografia é fornecido no comando encrypt. Nesse caso, 0 comando decrypt usa o

mesmo contexto de criptografia que foi fornecido no comando encrypt. Antes de descriptografar, a
AWS CLI de criptografia verifica se o contexto de criptografia na mensagem criptografada inclui um
par. purpose=test Caso contrario, o comando decrypt falhara.

Exemplos 326

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

O parametro --metadata-output especifica um arquivo de metadados sobre a operacao de
descriptografia. O valor do parametro --output, um ponto (.), grava o arquivo de saida no diretério
atual.

E uma pratica recomendada usar o parametro - -max-encrypted-data-keys, para evitar a
descriptografia de uma mensagem malformada com um numero excessivo de chaves de dados
criptografadas. Especifique o numero esperado de chaves de dados criptografadas (um para cada
chave de encapsulamento usada na criptografia) ou uma quantidade maxima razoavel (como 5).
Para obter detalhes, consulte Limitar as chaves de dados criptografadas.

Ele --buffer retorna texto sem formatacdo somente apds o processamento de todas as entradas,
incluindo a verificagdo da assinatura digital, se houver uma.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy require-encrypt-require-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input Hello.txt.encrypted °
--wrapping-keys key=$keyArn °
--commitment-policy require-encrypt-require-decrypt °
--encryption-context purpose=test °
--metadata-output $home\Metadata.txt
--max-encrypted-data-keys 1 °
--buffer °

~

Exemplos 327

AWS Encryption SDK Guia do Desenvolvedor

--output .

Quando um comando decrypt € bem-sucedido, ele ndo retorna nenhuma saida. Para determinar se
o comando foi bem-sucedido, obtenha o valor da variavel $?. Vocé também pode usar um comando
de listagem de diretério para ver se o comando criou um novo arquivo com um sufixo .decrypted.
Para ver o conteudo de texto nao criptografado, use um comando para obter o conteudo do arquivo,
como cat ou Get-Content.

Bash

$ 1s
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

Directory: C:\TestCLI

Mode LastWriteTime Length Name

-a---- 9/17/2017 1:01 PM 11 Hello.txt

-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

Criptografar todos os arquivos em um diretério

Este exemplo usa a CLI de AWS criptografia para criptografar o conteudo de todos os arquivos em
um diretorio.

Quando um comando afeta varios arquivos, a CLI de AWS criptografia processa cada arquivo
individualmente. Ela obtém o conteudo do arquivo, obtém uma chave de dados exclusiva para

Exemplos 328

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK Guia do Desenvolvedor

o arquivo da chave mestre, criptografa o conteudo do arquivo sob a chave de dados e grava os
resultados em um novo arquivo no diretério de saida. Como resultado, vocé pode descriptografar os
arquivos de saida de maneira independente.

Essa listagem do diretério TestDir mostra os arquivos de texto nao criptografado que desejamos
criptografar.

Bash

$ 1s testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

Directory: C:\TestDir

Mode LastWriteTime Length Name

-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt

-a---- 9/17/2017 1:44 PM 46 Employees.csv

O primeiro comando salva o Amazon Resource Name (ARN) de an AWS KMS key na $keyArn
variavel.

O segundo comando criptografa o conteudo dos arquivos no diretorio TestDir e grava os arquivos
de conteudo criptografado no TestEnc. Se o diretério TestEnc nao existir, o comando falhara.
Como o local de entrada é um diretorio, o parédmetro --recursive € obrigatorio.

O parametro --wrapping-keys e seu atributo-chave obrigatoério especificam a chave de
encapsulamento a ser usada. O comando encrypt inclui um contexto de criptografia, dept=1IT.
Quando vocé especifica um contexto de criptografia em um comando que criptografa varios arquivos,
o0 mesmo contexto de criptografia € usado para todos os arquivos.

O comando também tem um --metadata-output parametro para informar a CLI de AWS
criptografia onde gravar os metadados sobre as operacdes de criptografia. A CLI de AWS criptografia
grava um registro de metadados para cada arquivo criptografado.

Exemplos 329

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK Guia do Desenvolvedor

A partir da versao 2.1.x, 0 --commitment-policy parameter passou a ser opcional, mas é
recomendado. Se o comando ou script falhar porque ndo consegue decifrar um texto cifrado, a
configuracao explicita da politica de compromisso pode ajudar a detectar o problema rapidamente.

Quando o comando é concluido, a CLI de AWS criptografia grava os arquivos criptografados
TestEnc no diretdrio, mas nao retorna nenhuma saida.

O ultimo comando lista os arquivos no diretério TestEnc. Ha um arquivo de saida de conteudo
criptografado para cada arquivo de entrada de conteudo de texto nao criptografado. Como o
comando nao especificou um sufixo alternativo, o comando encrypt acrescentou .encrypted a
cada um dos nomes de arquivos de entrada.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.

$ keyArn=arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input testdir --recursive\
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--output testenc

$ 1s testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt °
--input .\TestDir --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT

~

--commitment-policy require-encrypt-require-decrypt °

Exemplos 330

AWS Encryption SDK Guia do Desenvolvedor

~

--metadata-output .\Metadata\Metadata.txt
--output .\TestEnc

PS C:\> dir .\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Descriptografar todos os arquivos em um diretorio

Este exemplo descriptografa todos os arquivos em um diretério. Ele comega com os arquivos no
diretério TestEnc que foram criptografados no exemplo anterior.

Bash

$ 1s testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

Directory: C:\TestEnc

Mode LastWriteTime Length Name

-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted

-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Esse comando decrypt descriptografa todos os arquivos no TestEnc diretério e grava os arquivos

de texto simples no diretorio. TestDec O --wrapping-keys parametro com um atributo de chave

e um valor de ARN de chave informa a AWS CLI de criptografia qual usar AWS KMS keys para
descriptografar os arquivos. O comando usa o --interactive parametro para fazer com que a CLI

de AWS criptografia avise vocé antes de sobrescrever um arquivo com o mesmo nome.

Exemplos 331

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

Esse comando também usa o contexto de criptografia que foi fornecido quando os arquivos foram
criptografados. Ao descriptografar varios arquivos, a AWS CLI de criptografia verifica o contexto de
criptografia de cada arquivo. Se a verificagao do contexto de criptografia em qualquer arquivo falhar,
a CLI de AWS criptografia rejeitara o arquivo, gravara um aviso, registrara a falha nos metadados e
continuara verificando os arquivos restantes. Se a CLI de AWS criptografia falhar ao descriptografar
um arquivo por qualquer outro motivo, todo o comando decrypt falhara imediatamente.

Neste exemplo, as mensagens criptografadas em todos os arquivos de entrada contém o

elemento do contexto de criptografia de dept=IT. No entanto, se vocé estiver descriptografando
mensagens com diferentes contextos de criptografia, vocé ainda podera verificar parte do contexto
de criptografia. Por exemplo, se algumas mensagens tiverem um contexto de criptografia de
dept=finance e outras tiverem dept=1IT, vocé podera verificar se o contexto de criptografia
sempre contém um nome dept sem especificar o valor. Se desejar ser mais especifico, vocé podera
descriptografar os arquivos em comandos separados.

O comando decrypt n&o retorna nenhuma saida, mas vocé pode usar um comando de listagem de
diretorios para ver se ele criou novos arquivos com o sufixo .decrypted. Para ver o conteudo de
texto nao criptografado, use um comando para obter o conteudo do arquivo.

Bash

To run this example, replace the fictitious key ARN with a valid master key
identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
--input testenc --recursive \
--wrapping-keys key=$keyArn \
--encryption-context dept=IT \
--commitment-policy require-encrypt-require-decrypt \
--metadata-output ~/metadata \
--max-encrypted-data-keys 1 \
--buffer \
--output testdec --interactive

$ 1s testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
employees.csv.encrypted.decrypted

Exemplos 332

AWS Encryption SDK Guia do Desenvolvedor

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
identifier.

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt °
--input C:\TestEnc --recursive °
--wrapping-keys key=$keyArn °
--encryption-context dept=IT
--commitment-policy require-encrypt-require-decrypt °
--metadata-output $home\Metadata.txt °
--max-encrypted-data-keys 1 °
--buffer °
--output C:\TestDec --interactive

~

PS C:\> dir .\TestDec

Mode LastWriteTime Length Name
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Criptografar e descriptografar na linha de comando

Estes exemplos mostram como redirecionar a entrada para comandos (stdin) e gravar a saida na
linha de comando (stdout). Eles explicam como representar stdin e stdout em um comando e como
usar ferramentas de codificacdo Base64 internas para impedir que o shell interprete caracteres nao
ASCII incorretamente.

Este exemplo redireciona uma string de texto nao criptografado para um comando encrypt e salva a
mensagem criptografada em uma variavel. Em seguida, ele redireciona a mensagem criptografada
na variavel para um comando decrypt, que grava sua saida no pipeline (stdout).

O exemplo consiste em trés comandos:

« O primeiro comando salva a chave ARN de an AWS KMS key na $keyArn variavel.

Exemplos 333

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

* O segundo comando redireciona a string Hello World para o comando encrypt e salva o
resultado na variavel $encrypted.

Os parametros --input e --output sao obrigatérios em todos os comandos da CLI de
criptografia da AWS . Para indicar que a entrada esta sendo redirecionada para o comando
(stdin), use um hifen (-) para o valor do parametro - -input. Para enviar a saida para a linha de
comando (stdout), use um hifen para o valor do parametro - -output.

O parametro - -encode codifica a saida em Base64 antes de retorna-la. Isso evita que o shell
interprete incorretamente os caracteres ndo ASCII na mensagem criptografada.

Como esse comando € apenas uma prova de conceito, omitimos o contexto de criptografia e
suprimimos os metadados (-S).

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \

--input - --output - --
encode \
--wrapping-keys key=
$keyArn)
PowerShell

~

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S
--input - --output - --
encode °

Exemplos 334

AWS Encryption SDK Guia do Desenvolvedor

--wrapping-keys key=
$keyArn

« O terceiro comando redireciona a mensagem criptografada na variavel $encrypted para
descriptografar o comando.

Esse comando decrypt usa --input - para indicar que a entrada é proveniente do pipeline
(stdin) e do --output - para enviar a saida para o pipeline (stdout). (O parametro de entrada
usa o local da entrada, nao os bytes reais da entrada. Portanto, vocé nao pode usar a variavel
$encrypted como o valor do parametro - -input.)

Este exemplo usa o atributo de descoberta do --wrapping-keys parametro para permitir que
a CLI de AWS criptografia use qualquer um para AWS KMS key descriptografar os dados. Ele
nao especifica uma politica de compromisso, portanto, usa o valor padrao para a versao 2.1.x e

posteriores, require-encrypt-require-decrypt.

Como a saida foi criptografada e, em seguida, codificada, o comando decrypt usa o parametro
--decode para decodificar a entrada codificada em Base64 antes de descriptografa-la. Vocé
também pode usar o parametro - -decode para decodificar a entrada codificada em Base64 antes
de criptografa-la.

Novamente, 0 comando omite o contexto de criptografia e suprime os metadados (-S).

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
--input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
--input - --output - --decode --buffer -S
Hello World

Vocé também pode executar operag¢des de criptografia e descriptografia em um unico comando sem
a variavel de intervencgao.

Exemplos 335

AWS Encryption SDK Guia do Desenvolvedor

Como no exemplo anterior, os parametros --input e --output tém um valor - e o comando usa o
parametro - -encode para codificar a saida, e o parametro --decode para decodificar a entrada.

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --

output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S

Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |
aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --

output - --encode -S |
aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
- --output - --decode -S

Hello World

Uso de varias chaves mestras

Este exemplo mostra como usar varias chaves mestras ao criptografar e descriptografar dados na
CLI de criptografia. AWS

Quando vocé usa varias chaves mestras para criptografar dados, qualquer uma das chaves

mestras pode ser usada para descriptografar os dados. Essa estratégia garante que vocé possa
descriptografar os dados mesmo que uma das chaves mestras esteja indisponivel. Se vocé estiver
armazenando os dados criptografados em varios Regioes da AWS, essa estratégia permite usar uma
chave mestra na mesma regiao para descriptografar os dados.

Quando vocé criptografa com varias chaves mestras, a primeira chave mestra desempenha
uma fungao especial. Ela gera a chave de dados que € usada para criptografar os dados. As
demais chaves mestras criptografam a chave de dados de texto n&o criptografado. A mensagem

Exemplos 336

AWS Encryption SDK Guia do Desenvolvedor

criptografada resultante inclui os dados criptografados e uma coleg&o de chaves de dados
criptografadas, uma para cada chave mestre. Embora a primeira chave mestra tenha gerado a chave
de dados, qualquer uma das chaves mestras podera descriptografar uma das chaves de dados, que
pode ser usada para descriptografar os dados.

Criptografia com trés chaves mestres

Este comando de exemplo usa trés chaves de encapsulamento para criptografar o arquivo
Finance.log, uma em cada uma das trés Regides da AWS.

Ele grava a mensagem criptografada no diretério Archive. O comando usa o parametro --suffix
sem nenhum valor para suprimir o sufixo. Portanto, os nomes dos arquivos de entrada e saida serao
0 Mesmos.

O comando usa o parametro --wrapping-keys com trés atributos key. Vocé também pode usar
varios parametros --wrapping-keys no mesmo comando.

Para criptografar o arquivo de log, a CLI de AWS criptografia solicita que a primeira chave de
encapsulamento na lista$key1,, gere a chave de dados que ela usa para criptografar os dados. Em
seguida, ela usa cada uma das outras chaves de encapsulamento para criptografar uma copia de
texto nao criptografado da mesma chave de dados. A mensagem criptografada no arquivo de saida
inclui todas as trés chaves de dados criptografadas.

Bash

$ keyl=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3cad

$ aws-encryption-cli --encrypt --input /logs/finance.log \
--output /archive --suffix \
--encryption-context class=log \
--metadata-output ~/metadata \
--wrapping-keys key=$keyl key=$key2 key=$key3

PowerShell

PS C:\> $keyl = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef"

Exemplos 337

AWS Encryption SDK Guia do Desenvolvedor

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6fla2b3c4d’

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log °
--output D:\Archive --suffix °
--encryption-context class=log °
--metadata-output $home\Metadata.txt
--wrapping-keys key=$keyl key=$key2 key=$key3

~

Este comando descriptografa a copia criptografada do arquivo Finance.log e grava-o em um
arquivo Finance.log.clear no diretério Finance. Para descriptografar dados criptografados
abaixo de trés AWS KMS keys, vocé pode especificar os mesmos trés AWS KMS keys ou qualquer
subconjunto deles. Este exemplo especifica somente um dos AWS KMS keys.

Para informar a CLI de AWS criptografia qual usar AWS KMS keys para descriptografar seus dados,
use o atributo chave do parémetro. --wrapping-keys Ao descriptografar com AWS KMS keys, o
valor do atributo chave deve ser um ARN da chave.

Vocé deve ter permissao para chamar a AP| Decrypt no que vocé especificar. AWS KMS keys Para
obter mais informacdes, consulte Autenticacao e controle de acesso do AWS KMS.

Como pratica recomendada, estes exemplos usam o parametro --max-encrypted-data-

keys para evitar a descriptografia de uma mensagem malformada com um numero excessivo de
chaves de dados criptografadas. Embora o exemplo use somente uma chave de encapsulamento
para decodificacdo, a mensagem criptografada tem trés (3) chaves de dados criptografadas; uma
para cada uma das trés chaves de encapsulamento usadas na criptografia. Especifique o numero
esperado de chaves de dados criptografadas ou um valor maximo razoavel, como 5. Se especificar
um valor maximo menor que 3, o comando falhara. Para obter detalhes, consulte Limitar as chaves
de dados criptografadas.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
--wrapping-keys key=$keyl \
--output /finance --suffix '.clear' \
--metadata-output ~/metadata \
--max-encrypted-data-keys 3 \
--buffer \
--encryption-context class=log

Exemplos 338

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Guia do Desenvolvedor

PowerShell

PS C:\> aws-encryption-cli --decrypt °
--input D:\Archive\Finance.log °
--wrapping-keys key=$keyl °
--output D:\Finance --suffix '.clear’
--metadata-output .\Metadata\Metadata.txt °
--max-encrypted-data-keys 3 °
--buffer °
--encryption-context class=log

Criptografar e descriptografar em scripts

Este exemplo mostra como usar a CLI AWS de criptografia em scripts. Vocé pode escrever scripts
que apenas criptografam e descriptografam dados ou scripts que criptografam ou descriptografam
como parte de um processo de gerenciamento de dados.

Neste exemplo, o script obtém uma colegao de arquivos de log, compacta-os, criptografa-os e,
em seguida, copia os arquivos criptografados em um bucket do Amazon S3. Esse script processa
cada arquivo separadamente, para que vocé possa descriptografa-los e expandi-los de maneira
independente.

Ao compactar e criptografar arquivos, certifique-se de compactar antes de criptografar. Dados
criptografados corretamente ndo podem ser compactados.

/A Warning

Tenha cuidado ao compactar dados que incluam segredos e dados que possam ser
controlados por um ator mal-intencionado. O tamanho final dos dados compactados pode
revelar inadvertidamente informagdes confidenciais sobre seu conteudo.

Bash

Continue running even if an operation fails.
set +e

dir=$1
encryptionContext=$2
s3bucket=$3

Exemplos 339

AWS Encryption SDK Guia do Desenvolvedor

s3folder=%$4
masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){

gzip -gf $1
}
encrypt(){
-e encrypt
-i input
-0 output
--metadata-output unique file for metadata
-m masterKey read from environment variable
-c encryption context read from the second argument.
-v be verbose

aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
"${encryptionContext}" -v

}

s3put (){
copy file argument 1 to s3 location passed into the script.
aws s3 cp ${1} ${s3bucket}/${s3folder}

}

Validate all required arguments are present.
if ["${dir}" 1 && ["${encryptionContextl}"] && ["${s3bucket}"] &&
["${s3folder}"] && ["${masterKey}" 1; then

Is $dir a valid directory?

test -d "${dir}"

if [$? -ne 0]; then
echo "Input is not a directory; exiting"
exit 1

fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
do
echo "Working on $f"
compress ${f}

Exemplos 340

AWS Encryption SDK

Guia do Desenvolvedor

done
else

echo " and ENV var \$masterKey must be set"
exit 255
fi
PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive

Para

(

encrypt ${f}.gz
rm -f ${f}.gz
s3put ${f}.gz.encrypted

’

echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"

m

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String[]]

$FilePath,

[Parameter()]
[Switch]
$Recurse,

[Parameter(Mandatory=$true)]
[String]
$wrappingKeyID,

[Parameter()]
[String]
$masterKeyProvider = 'aws-kms',

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$ZipDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]
[String]

$EncryptDirectory,

[Parameter()]

Exemplos

341

AWS Encryption SDK

Guia do Desenvolvedor

BEGIN {3}

[String]

$EncryptionContext,

[Parameter(Mandatory)]
[ValidateScript({Test-Path $_3})]

[String]

$MetadataDirectory,

[Parameter(Mandatory)]
[ValidateScript({Test-S3Bucket -BucketName $_3})]

[String]

$S3Bucket,

[Parameter()]

[String]

$S3BucketFolder

PROCESS {
if ($files = dir $FilePath -Recurse:$Recurse)

{

Step 1: Compress
foreach ($file in $files)

{

$fileName = $file.Name
try

{
Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -

DestinationPath $ZipDirectory\$filename.zip

}
catch
{
Write-Error "Zip failed on $file.FullName"
}

Step 2: Encrypt
if (-not (Test-Path "$ZipDirectory\$filename.zip"))

{

Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"

}

else

{

Exemplos

342

AWS Encryption SDK Guia do Desenvolvedor

2>&1 captures command output
$err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip"
-0 $EncryptDirectory °
-m key=$wrappingKeyID provider=
$masterKeyProvider °
-c¢ $EncryptionContext °
--metadata-output $MetadataDirectory °

-v) 2>&1

Check error status
if ($? -eq $false)
{

Write the error

$err
}
elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
{

Step 3: Write to S3 bucket
if ($S3BucketFolder)

{
Write-S30bject -BucketName $S3Bucket -File

"$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

}

else

{
Write-S30bject -BucketName $S3Bucket -File
"$EncryptDirectory\$fileName.zip.encrypted"

}

Usar o armazenamento em cache de chaves de dados

Este exemplo usa o armazenamento em cache de chaves de dados em um comando que criptografa
um grande numero de arquivos.

Exemplos 343

AWS Encryption SDK Guia do Desenvolvedor

Por padrao, a CLI de AWS criptografia (e outras versées da AWS Encryption SDK) gera uma
chave de dados exclusiva para cada arquivo criptografado. Embora o uso de uma chave de
dados exclusiva para cada operacao seja uma pratica recomendada de criptografia, a reutilizagao
limitada de chaves de dados € aceitavel em algumas situagdes. Se vocé estiver considerando

0 armazenamento em cache de chaves de dados, consulte um engenheiro de segurancga para
compreender os requisitos de seguranga do seu aplicativo e determinar os limites de seguranca
apropriados para voceé.

Neste exemplo, 0 armazenamento em cache de chaves de dados acelera a operacao de criptografia
reduzindo a frequéncia de solicitagdes ao provedor de chaves mestras.

O comando neste exemplo criptografa um diretério grande com varios subdiretérios que contém

um total de aproximadamente 800 pequenos arquivos de log. O primeiro comando salva o ARN da
AWS KMS key em uma variavel keyARN. O segundo comando criptografa todos os arquivos no
diretério de entrada (recursivamente) e os grava em um diretorio de arquivo morto. O comando usa o
parametro - -suffix para especificar o sufixo .archive.

O parametro - -caching permite o armazenamento em cache da chave de dados. O atributo
capacity, que limita o numero de chaves de dados no cache, esta definido como 1, porque o
processamento de arquivos seriais nunca usa mais de uma chave de dados de cada vez. O atributo
max_age, que determina por quanto tempo a chave de dados armazenada em cache pode ser
usada, esta definido como 10 segundos.

O atributo opcional max_messages_encrypted esta definido como 10 mensagens, portanto, uma
unica chave de dados nunca é usada para criptografar mais de 10 arquivos. A limitagdo do numero
de arquivos criptografados por cada chave de dados reduz o numero de arquivos que devem ser
afetados no caso improvavel de uma chave de dados estar comprometida.

Para executar esse comando em arquivos de log gerados pelo sistema operacional, vocé pode
precisar de permissdes de administrador (sudo no Linux; Run as Administrator (Executar como
administrador) no Windows).

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
--input /var/log/httpd --recursive \
--output ~/archive --suffix .archive \

Exemplos 344

AWS Encryption SDK

Guia do Desenvolvedor

PowerShell

--wrapping-keys key=$keyArn \

--encryption-context class=log \

--suppress-metadata \

--caching capacity=1 max_age=10 max_messages_encrypted=10

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt °

--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'
--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata °

--caching capacity=1 max_age=10

max_messages_encrypted=10

Para testar o efeito do armazenamento em cache da chave de dados, este exemplo usa o cmdlet

Measure-Command em. PowerShell Ao executar esse exemplo sem o0 armazenamento em cache

da chave de dados, ele demora cerca de 25 segundos para ser concluido. Esse processo gera uma

nova chave de dados para cada arquivo no diretério.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °

Days

Hours
Minutes
Seconds
Milliseconds
Ticks
TotalDays
TotalHours

0

: 0

0

: 25

. 453

: 254531202

: 0.000294596298611111
: 0.00707031116666667

--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °
--encryption-context class=log °
--suppress-metadata }

Exemplos

345

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK Guia do Desenvolvedor

TotalMinutes : 0.42421867
TotalSeconds ¢ 25.4531202
TotalMilliseconds : 25453.1202

O armazenamento em cache da chave de dados acelera o processo, mesmo quando vocé limita
cada chave de dados para um maximo de 10 arquivos. O comando agora demora menos de 12
segundos para ser concluido e reduz o numero de chamadas ao provedor de chaves mestras para
1/10 do valor original.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °

--encryption-context class=log °

--suppress-metadata °

--caching capacity=1 max_age=10
max_messages_encrypted=10}

Days 1 0

Hours : 0

Minutes 0

Seconds ;11

Milliseconds . 813

Ticks : 118132640

TotalDays : 0.000136727592592593
TotalHours : 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264

TotalMilliseconds : 11813.264

Se vocé eliminar a restricdo max_messages_encrypted, todos os arquivos serao criptografados
com a mesma chave de dados. Essa alteracdo aumenta o risco de reutilizacdo de chaves de dados
sem tornar o processo muito mais rapido. No entanto, ela reduz o numero de chamadas ao provedor
de chaves mestras para 1.

PS C:\> Measure-Command {aws-encryption-cli --encrypt °
--input C:\Windows\Logs --recursive °
--output $home\Archive --suffix '.archive'

--wrapping-keys key=$keyARN °

Exemplos 346

AWS Encryption SDK Guia do Desenvolvedor

--encryption-context class=log °
--suppress-metadata °
--caching capacity=1 max_age=10}

Days 1 0

Hours : 0

Minutes 0

Seconds : 10

Milliseconds . 252

Ticks : 102523367

TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367

TotalMilliseconds : 10252.3367

AWS Encryption SDK Referéncia de sintaxe e parametros da CLI

Este tdpico fornece diagramas da sintaxe e breves descri¢des dos parametros para ajuda-lo a usar
a interface da linha de comando (CLI) do AWS Encryption SDK . Para obter ajuda com chaves
mestras e outros parametros, consulte Como usar a CLI AWS de criptografia. Para obter exemplos,

consulte Exemplos da CLI AWS de criptografia. Para obter a documentacdo completa, consulte Leia
os documentos.

Topicos

» AWS Sintaxe da CLI de criptografia

« AWS Parametros de linha de comando da CLI de criptografia

» Parédmetros avancados

AWS Sintaxe da CLI de criptografia

Esses diagramas de sintaxe da CLI de AWS criptografia mostram a sintaxe de cada tarefa que vocé
executa com a CLI de criptografia. AWS Eles representam a sintaxe recomendada na versao 2.1 do
AWS Encryption CLI. x e mais tarde.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS Encryption
CLI. x e 2.0. x. No entanto, a versdo AWS 1.8 do Encryption CLI. x substitui a versdo 1.7. x e CLI

Referéncia da sintaxe e de parametros 347

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a consultoria de seguranca
relevante no aws-encryption-sdk-clirepositério em GitHub.

(@ Note

A menos que indicado na descrigao do parametro, cada parametro ou atributo pode ser
usado apenas uma vez em cada comando.

Se vocé usar um atributo que um parametro ndo suporta, a CLI de AWS criptografia ignora
esse atributo nao suportado sem um aviso ou erro.

Obter ajuda

Para obter a sintaxe completa da CLI de AWS criptografia com descrigdes de parametros, use ou.
--help -h

aws-encryption-cli (--help | -h)

Obter a versao

Para obter o numero da versao da sua instalagdo do AWS Encryption CLI, use. --version
Certifique-se de incluir a versao ao fazer perguntas, relatar problemas ou compartilhar dicas
sobre como usar a CLI de AWS criptografia.

aws-encryption-cli --version

Criptografar dados

O diagrama da sintaxe a seguir mostra os parametros usados por um comando encrypt.

aws-encryption-cli --encrypt
--input <input> [--recursive] [--decode]
--output <output> [--interactive] [--no-overwrite] [--suffix
[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
key=<keyID> [key=<keyID>]
[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]
--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]

Referéncia da sintaxe e de parametros 348

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

[--encryption-context <encryption_context> [<encryption_context>

.11
[--max-encrypted-data-keys <integer>]
[--algorithm <algorithm_suite>]
[--caching <attributes>]
[--frame-length <length>]
[-v | -vv | -vvv | -vvvv]
[--quiet]

Descriptografar dados
O diagrama da sintaxe a seguir mostra os parametros usados por um comando decrypt.

Na versao 1.8.x, o parametro --wrapping-keys é opcional ao descriptografar, mas é

recomendado. A partir da versao 2.1.x, o parametro - -wrapping-keys passou a ser necessario

ao criptografar e descriptografar. Para AWS KMS keys, vocé pode usar o atributo key para
especificar chaves de encapsulamento (pratica recomendada) ou definir o atributo discovery
comotrue, o que ndo limita as chaves de encapsulamento que podem ser usadas pela CLI de

criptografia da AWS .

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
--input <input> [--recursive] [--decode]

--output <output> [--interactive] [--no-overwrite] [--suffix

[<suffix>]] [--encode]
--wrapping-keys [--wrapping-keys]
[key=<keyID>] [key=<keyID>]

[discovery={true|false}] [discovery-partition=<aws-partition-

name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>]

[provider=<provider-name>] [region=<aws-region>]
[profile=<aws-profile>]

--metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
[--commitment-policy <commitment-policy>]
[--encryption-context <encryption_context> [<encryption_context>
.11

[--buffer]

[--max-encrypted-data-keys <integer>]
[--caching <attributes>]
[--max-length <length>]

[-v | -vv | -vvv | -vvvv]

[--quiet]

Referéncia da sintaxe e de parametros

349

AWS Encryption SDK Guia do Desenvolvedor

Usar arquivos de configuragao

Vocé pode fazer referéncia a arquivos de configuragdo que contém parametros e seus valores.
Isso é equivalente a digitar os parametros e os valores no comando. Para ver um exemplo,
consulte Como armazenar parametros em um arquivo de configuragao.

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the e@.
aws-encryption-cli “@<configuration_file>
AWS Parametros de linha de comando da CLI de criptografia

Essa lista fornece uma descricdo basica dos parametros do comando AWS Encryption CLI. Para
obter uma descricado completa, consulte a aws-encryption-sdk-clidocumentacao.

--encrypt (-e)

Criptografa os dados de entrada. Cada comando deve ter um parametro --encrypt, --
decrypt ou --decrypt-unsigned.

--decrypt (-d)

Descriptografa os dados de entrada. Cada comando deve ter um parametro --encrypt, --
decrypt ou --decrypt-unsigned.

--decrypt-unsigned [Introduzido nas versdes 1.9.x e 2.2.X]

O parametro --decrypt-unsigned descriptografa o texto cifrado e garante que as mensagens
nao sejam assinadas antes de serem descriptografadas. Use esse parametro se vocé usou o
parametro - -algorithm e selecionou um pacote de algoritmos sem assinatura digital para
criptografar dados. Se o texto cifrado for assinado, a descriptografia falhara.

Vocé pode usar --decrypt ou --decrypt-unsigned para fazer a descriptografia, mas nao
ambos.

--wrapping-keys (-w) [Introduzido na vers&o 1.8.x]

Especifica as chaves de encapsulamento (ou chaves mestras) usadas em operagdes de

criptografia e descriptografia. Vocé pode usar varios parametros de - -wrapping-keys em cada
comando.

Referéncia da sintaxe e de parametros 350

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

A partir da versao 2.1.x, o parametro - -wrapping-keys passou a ser necessario ao criptografar
e descriptografar comandos. Na versao 1.8. x, os comandos encrypt requerem um parametro - -
wrapping-keys ou --master-keys. Nos comandos decrypt fs versdo 1.8. x um parametro - -
wrapping-keys é opcional, mas recomendado.

Ao usar usam um provedor de chaves mestres personalizado, os comandos encrypt e decrypt
exigem os atributos key e provider. Ao usar AWS KMS keys, os comandos de criptografia exigem
um atributo chave. Os comandos decrypt exigem que um atributokey ou um atributo discovery
sejam definidos com um valor de true (mas ndo ambos). Usar o atributo key ao descriptografar
€ uma pratica recomendada do AWS Encryption SDK. Ela particularmente importante se vocé

estiver descriptografando lotes de mensagens desconhecidas, como aquelas em um bucket do
Amazon S3 ou em uma fila do Amazon SQS.

Para ver um exemplo de como usar chaves AWS KMS multirregionais como chaves de
agrupamento, consulte. Usando varias regioes AWS KMS keys

Attributes: o valor do parametro --wrapping-keys consiste nos seguintes atributos. O formato
¢ attribute_name=value.

key

Identifica a chave de encapsulamento usada na operagao. O formato € um par de key=ID.
Vocé pode especificar varios atributos key em cada valor do pardmetro --wrapping-keys.

« Comandos encrypt: todos os comandos encrypt exigem o atributo key. Quando vocé usa um
comando AWS KMS key in a encrypt, o valor do atributo chave pode ser um ID de chave,
ARN de chave, nome de alias ou ARN de alias. Para obter descri¢des dos identificadores
de AWS KMS chave, consulte Identificadores de chave no Guia do AWS Key Management
Service desenvolvedor.

+ Comandos decrypt: ao descriptografar com as AWS KMS keys, o pardmetro --wrapping-
keys exige que o valor de um atributokey seja definido como um ARN de chave ou que o

valor de um atributo discovery seja definido como true (mas ndo ambos). Usar o atributo
key é uma pratica recomendada do AWS Encryption SDK. Ao descriptografar com um
provedor de chave mestra personalizado, o atributo key é obrigatorio.

(® Note

Para especificar uma chave de AWS KMS encapsulamento em um comando de
descriptografia, o valor do atributo chave deve ser um ARN de chave. Se vocé usar

Referéncia da sintaxe e de parametros 351

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

um ID de chave, nome de alias ou ARN de alias, a AWS CLI de criptografia nao
reconhecera a chave de empacotamento.

Vocé pode especificar varios atributos key em cada valor do pardmetro --wrapping-keys.
No entanto, qualquer atributo provider, region e profile em um parametro - -wrapping-keys
sera aplicavel a todas chaves de encapsulamento no valor desse parametro. Para especificar
chaves de encapsulamento com diferentes valores de atributos, use varios parametros - -
wrapping-keys no comando.

discovery

Permite que a CLI de AWS criptografia use qualquer uma para AWS KMS key descriptografar
a mensagem. O valor de discovery pode ser true oufalse. O valor padrao é false. O
atributo discovery é valido apenas em comandos decrypt e somente quando o provedor de
chaves mestras for do AWS KMS.

Ao descriptografar com AWS KMS keys, o --wrapping-keys parametro requer um atributo-
chave ou um atributo de descoberta com um valor de true (mas ndo ambos). Se vocé usar

o atributo key, podera usar um atributo de discovery com um valor definido como false para
rejeitar explicitamente a descoberta.

* False(padrdao) — Quando o atributo de descoberta nao é especificado ou seu valor
éfalse, a CLI de AWS criptografia descriptografa a mensagem usando somente o AWS
KMS keys especificado pelo atributo-chave do parametro. --wrapping-keys Se vocé nao
especificar um atributo key quando discovery for false, o comando decrypt falhara. Esse
valor oferece suporte a uma pratica AWS recomendada de CLI de criptografia.

* True— Quando o valor do atributo de descoberta étrue, a CLI de AWS criptografia obtém
os metadados AWS KMS keys da mensagem criptografada e os usa AWS KMS keys para
descriptografar a mensagem. O atributo de descoberta com um valor de true se comporta
como as versdes da AWS CLI de criptografia antes da versao 1.8. x que nao permitia que
vocé especificasse uma chave de empacotamento ao descriptografar. No entanto, sua
intencao de usar qualquer um AWS KMS key é explicita. Se vocé especificar um atributo
key quando discovery for true, o comando decrypt falhara.

O true valor pode fazer com que a CLI de AWS criptografia seja usada AWS KMS keys
em diferentes Contas da AWS regides ou tente usar algo AWS KMS keys que o usuario nao
esteja autorizado a usar.

Referéncia da sintaxe e de parametros 352

AWS Encryption SDK Guia do Desenvolvedor

Quando a descoberta étrue, é uma pratica recomendada usar os atributos discovery-partition
e discovery-account para limitar o AWS KMS keys uso aos atributos especificados por voceé.
Contas da AWS

discovery-account

Limita o AWS KMS keys usado para descriptografia aos especificados. Conta da AWS O
unico valor valido para esse atributo € um ID de Conta da AWS.

Esse atributo € opcional e valido somente em comandos de descriptografia com os AWS KMS
keys quais o atributo de descoberta esta definido true e o atributo de particdo de descoberta
€ especificado.

Cada atributo da conta descoberta usa apenas uma Conta da AWS ID, mas vocé pode
especificar varios atributos da conta descoberta no mesmo parametro. - -wrapping-keys
Todas as contas especificadas em um determinado parametro --wrapping-keys devem
estar na particao da AWS especificada.

discovery-partition
Especifica a AWS particdo das contas no atributo discovery-account. Seu valor deve ser uma

AWS particdoaws, comoaws -cn, ouaws-gov-cloud. Para obter mais informagdes, consulte
Nomes de atributo da Amazon no Referéncia geral da AWS.

Esse atributo é obrigatério quando vocé usa o atributo discovery-account. Vocé pode
especificar somente um atributo discovery-partition em cada parametro --wrapping keys.
Para especificar Contas da AWS em varias partices, use um --wrapping-keys parametro
adicional.

provider
Identifica o provedor de chaves mestres. O formato € um par de provider=ID. O valor padrao,

aws-kms, representa. AWS KMS Esse atributo é necessario somente quando o provedor da
chave mestra ndo é AWS KMS.

region

Identifica o Regido da AWS de um AWS KMS key. Esse atributo é valido somente para AWS
KMS keys. E usado apenas quando o identificador da chave n&o especifica uma regido; caso
contrario, é ignorado. Quando usado, ele substitui a regido padrao no perfil chamado AWS
CLI.

Referéncia da sintaxe e de parametros 353

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK Guia do Desenvolvedor

perfil

Identifica um perfil AWS CLI nomeado. Esse atributo é valido somente para AWS KMS keys. A
regiao no perfil € usada apenas quando o identificador da chave n&o especifica uma regiéao e

nao ha nenhum atributo region no comando.
--input (-i)
Especifica o local dos dados a serem criptografados ou descriptografados. Esse parametro é

obrigatdrio. O valor pode ser um caminho para um arquivo ou diretério ou um nome de arquivo
padrdo. Se vocé estiver redirecionando a entrada para o comando (stdin), use -.

Se a entrada nao existir, o comando é concluido com éxito sem erro ou aviso.

--recursive (-r, -R)

Executa a operagao nos arquivos no diretdrio de entrada e em seus subdiretorios. Esse
parametro é necessario quando o valor de --input é um diretorio.

--decode
Decodifica entrada codificada em Base64.

Se estiver descriptografando uma mensagem que foi criptografada e, em seguida, codificado,
vocé devera decodificar a mensagem antes de descriptografa-la. Esse parametro faz isso para
VOCé.

Por exemplo, se vocé tiver usado o parametro - -encode em um comando encrypt, use o
parametro - -decode no comando decrypt correspondente. Vocé também pode usar esse
parametro para decodificar a entrada codificada em Base64 antes de criptografa-la.

--output (-0)

Especifica um destino para a saida. Esse parametro € obrigatério. O valor pode ser um nome de
arquivo, um diretdrio existente ou -, que grava a saida na linha de comando (stdout).

Se o diretdrio de saida especificado ndo existir, 0 comando falhara. Se a entrada contiver
subdiretorios, a AWS CLI de criptografia reproduzira os subdiretorios no diretorio de saida que
vocé especificar.

Por padréo, a CLI AWS de criptografia sobrescreve arquivos com o mesmo nome. Para alterar
esse comportamento, use os parametros --interactive ou --no-overwrite. Para suprimir
o aviso de substituicdo, use o parametro --quiet.

Referéncia da sintaxe e de parametros 354

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Guia do Desenvolvedor

® Note

Se um comando que deve substituir um arquivo de saida falhar, o arquivo de saida sera
excluido.

--interactive

Solicita antes de substituir o arquivo.

--no-overwrite

Nao substitui arquivos. Em vez disso, se o0 arquivo de saida existir, a CLI de AWS criptografia
ignora a entrada correspondente.

--sufixo

Especifica um sufixo de nome de arquivo personalizado para arquivos criados pela AWS CLI
de criptografia. Para indicar nenhum sufixo, use o pardmetro sem um valor (- -suffix).

Por padrao, quando o parametro - -output nao especifica um nome de arquivo, 0 nome
do arquivo de saida tem 0 mesmo nome que o0 nome do arquivo de entrada mais o sufixo.
O sufixo para comandos encrypt € .encrypted. O sufixo para comandos decrypt é
.decrypted.

--encode

Aplica codificagdo de Base64 (de binario para texto) a saida. A codificagédo impede que o
programa shell do host interprete incorretamente caracteres ndao ASCII no texto de saida.

Use esse parametro ao gravar uma saida criptografada em stdout (--output -),
especialmente em um PowerShell console, mesmo quando estiver canalizando a saida para
outro comando ou salvando-a em uma variavel.

--metadata-output

Especifica um local para metadados sobre as operagdes de criptografia. Insira um caminho e um
nome de arquivo. Se o diretdrio nao existir, 0 comando falhara. Para gravar os metadados na
linha de comando (stdout), use -.

Vocé nao pode gravar a saida do comando (--output) e a saida dos metadados (- -
metadata-output) em stdout no mesmo comando. Além disso, quando o valor de --input

Referéncia da sintaxe e de parametros 355

AWS Encryption SDK Guia do Desenvolvedor

ou --output for um diretério (sem nomes de arquivos), vocé nao podera gravar a saida de
metadados no mesmo diretério ou em qualquer subdiretorio desse diretorio.

Se vocé especificar um arquivo existente, por padrao, a CLI de AWS criptografia anexara novos
registros de metadados a qualquer conteudo do arquivo. Esse recurso permite que vocé crie
um unico arquivo que contém os metadados de todas as suas operagdes de criptografia. Para
substituir o conteudo em um arquivo existente, use o parametro --overwrite-metadata.

A CLI de AWS criptografia retorna um registro de metadados formatado em JSON para cada
operacao de criptografia ou descriptografia que o comando executa. Cada registro de metadados
inclui os caminhos completos para os arquivos de entrada e de saida, o contexto de criptografia,
o pacote de algoritmos e outras informacgdes valiosas que vocé pode usar para rever a operagao
e verificar se ela atende a seus padrdes de seguranca.

--overwrite-metadata

Substitui o conteudo no arquivo de saida de metadados. Por padrao, o parametro - -
metadata-output acrescenta metadados a qualquer conteudo existente no arquivo.

--suppress-metadata (-S)

Suprime os metadados sobre a operagao de criptografia ou de descriptografia.

--commitment-policy

Especifica a politica de compromisso para comandos encrypt e decrypt. A politica de

compromisso determina se sua mensagem sera criptografada e descriptografada com o atributo
de segurancga confirmacao de chave.

O parametro --commitment-policy foi introduzido na versao 1.8.x.. Ele 'é valido em
comandos de criptografia e descriptografia.

Na versao 1.8. x, a CLI de AWS criptografia usa a politica de forbid-encrypt-allow-
decrypt compromisso para todas as operagdes de criptografia e descriptografia. Quando vocé
usa o parametro --wrapping-keys em um comando encrypt ou decrypt, € obrigatério que
um parametro - -commitment-policy seja definido com o valor forbid-encrypt-allow-
decrypt. Se vocé néo usar o parametro--wrapping-keys, o parametro - -commitment-
policy sera invalido. Definir uma politica de compromisso explicitamente impede que sua
politica de compromisso seja alterada automaticamente para require-encrypt-require-
decrypt quando vocé atualizar para a versao 2.1.x

Referéncia da sintaxe e de parametros 356

AWS Encryption SDK Guia do Desenvolvedor

A partir da versao 2.1.x, todos os valores da politica de compromisso sao compativeis. O
parametro - -commitment-policy é opcional e o valor padrdo € require-encrypt-
require-decrypt.

Esse parametro tem os valores a seguir:

« forbid-encrypt-allow-decrypt: ndo é possivel criptografar com confirmagao de chave.
Ele pode descriptografar textos cifrados criptografados com ou sem confirmagao de chave.

Na versao 1.8.x, esse € o unico valor valido. A CLI de AWS criptografia usa a politica de
forbid-encrypt-allow-decrypt compromisso para todas as operagdes de criptografia e
descriptografia.

* require-encrypt-allow-decrypt: criptografa somente com confirmagao de chave.
Descriptografa com e sem compromisso chave. Esse valor foi introduzido na versao 2.1.x..

* require-encrypt-require-decrypt (padrao): criptografa e descriptografa somente com
confirmagao de chave. Esse valor foi introduzido na verséo 2.1.x.. E o valor padrdo em versées
2.1.x. e posteriores. Com esse valor, a CLI de AWS criptografia ndo descriptografara nenhum
texto cifrado que tenha sido criptografado com versdées anteriores do. AWS Encryption SDK

Para obter informacdes detalhadas sobre como definir sua politica de compromisso, consulte
Migrando seu AWS Encryption SDK.

--encryption-context (-c)

Especifica um contexto de criptografia para a operagéo. Esse parametro ndo é obrigatorio, mas é

recomendado.

* Em um comando --encrypt, insira um ou mais pares de name=value. Use espagos para
separar os pares.

* Em um comando --decrypt, insira pares de name=value, elementos name sem valores ou
ambos.

Se o name ou 0 value em um par de name=value incluir espagos ou caracteres
especiais, coloque o par inteiro entre aspas. Por exemplo, .--encryption-context
"department=software development"

--buffer (-b) [Introduzido nas versdes 1.9.x e 2.2.X]

Retorna texto simples somente apds o processamento de todas as entradas, incluindo a
verificacao da assinatura digital, se houver uma.

Referéncia da sintaxe e de parametros 357

AWS Encryption SDK Guia do Desenvolvedor

-- max-encrypted-data-keys [Introduzido nas versdes 1.9. x e 2.2. X]

Especifica 0 numero maximo de chaves de dados criptografadas em uma mensagem
criptografada. Esse parametro é opcional.

Os valores validos sdo 1-65.535. Se vocé omitir esse parametro, a CLI de AWS criptografia nao
impde nenhum maximo. Uma mensagem criptografada pode conter até 65.535 (2416 - 1) chaves
de dados criptografadas.

Vocé pode usar esse parametro em comandos encrypt para evitar a malformacao de uma
mensagem. Vocé pode usa-lo em comandos decrypt para detectar mensagens maliciosas e
evitar descriptografar mensagens com varias chaves de dados criptografadas que vocé nao
pode descriptografar. Para obter detalhes e um exemplo, consulte Limitar as chaves de dados
criptografadas.

--help (-h)

Imprime o0 uso e a sintaxe na linha de comando.

--version

Obtém a versao da CLI AWS de criptografia.

-V | -wV | -vvv | -vvvv
Exibe informagdes, avisos € mensagens de depuracao detalhados. Os detalhes na saida
aumentam com o numero de vs no parametro. A configuragdo mais detalhada (-vvvv) retorna

dados em nivel de depuragdo da AWS CLI de criptografia e de todos os componentes que ela
usa.

--quiet (-q)
Suprime mensagens de aviso, como a mensagem que aparece quando vocé substitui um arquivo
de saida.

--master-keys (-m) [Descontinuado]

(® Note

O paréametro --master-keys foi descontinuado na versao 1.8.x foi removido na versao
2.1.x. Em vez dele, use o parametro --wrapping-keys.

Referéncia da sintaxe e de parametros 358

AWS Encryption SDK Guia do Desenvolvedor

Especifica as chaves mestres usadas em operagdes de criptografia e descriptografia. Vocé pode
usar varios parametros de chaves mestras em cada comando.

O parametro --master-keys é necessario em comandos encrypt. Ele € necessario em
comandos decrypt somente quando vocé estiver usando um provedor de chaves mestras
personalizado (que nao seja do AWS KMS).

Attributes: o valor do parametro --master-keys consiste nos seguintes atributos. O formato é
attribute_name=value.

key

Identifica a chave de encapsulamento usada na operagao. O formato € um par de key=ID. O
atributo key é obrigatério em todos os comandos encrypt.

Quando vocé usa um comando AWS KMS key in a encrypt, o valor do atributo chave pode ser
um ID de chave, ARN de chave, nome de alias ou ARN de alias. Para obter detalhes sobre
identificadores de AWS KMS chave, consulte Identificadores de chave no Guia do AWS Key
Management Service desenvolvedor.

O atributo key € necessario em comandos decrypt quando o provedor de chaves mestras n&o
for o AWS KMS. O atributo key nao € permitido em comandos que descriptografam dados que
foram criptografados com uma AWS KMS key.

Vocé pode especificar varios atributos key em cada valor do parametro --master-keys. No
entanto, qualquer atributo provider, region e profile aplica-se a todas as chaves mestres no
valor do parametro. Para especificar chaves mestras com diferentes valores de atributos, use
varios parametros --master-keys no comando.

provider

Identifica o provedor de chaves mestres. O formato € um par de provider=ID. O valor padrao,

aws-kms, representa. AWS KMS Esse atributo é necessario somente quando o provedor da
chave mestra ndo é AWS KMS.

region

|dentifica o Regido da AWS de um AWS KMS key. Esse atributo é valido somente para AWS
KMS keys. E usado apenas quando o identificador da chave n&o especifica uma regido; caso
contrario, é ignorado. Quando usado, ele substitui a regido padrao no perfil chamado AWS
CLI.

Referéncia da sintaxe e de parametros 359

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

perfil

Identifica um perfil AWS CLI nomeado. Esse atributo € valido somente para AWS KMS keys. A
regiao no perfil € usada apenas quando o identificador da chave n&o especifica uma regiao e

nao ha nenhum atributo region no comando.

Parametros avancados
--algorithm

Especifica um pacote de algoritmos alternativo. Esse parametro € opcional e valido apenas em

comandos encrypt.

Se vocé omitir esse parametro, a CLI de AWS criptografia usara um dos conjuntos de algoritmos
padrao para AWS Encryption SDK o apresentado na versao 1.8. x. Ambos os algoritmos padréao
usam o AES-GCM com um HKDF, uma assinatura ECDSA e uma chave de criptografia de 256
bits. Um usa confirmagao de chave; o outro ndo. A escolha do pacote de algoritmos padrao é
determinada pela politica de compromisso do comando.

Os pacotes de algoritmo padrédo sao recomendados para a maioria das operagdes de criptografia.
Para obter uma lista de valores validos, consulte os valores do parametro algorithm em Leia os

documentos.

--frame-length

Cria uma saida com o tamanho da moldura especificado. Esse parametro € opcional e valido
apenas em comandos encrypt.

Digite um valor em bytes. Os valores validos sao 0 e 1-2231-1. Um valor igual a 0 indica dados
sem moldura. O padrao é 4.096 (bytes).

® Note

Sempre que possivel, use dados com moldura. O AWS Encryption SDK suporta dados
nao emoldurados somente para uso antigo. Algumas implementagdes de linguagem
do ainda AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as
implementacgdes de linguagem compativeis podem descriptografar texto cifrado e nao
emoldurado.

Referéncia da sintaxe e de parametros 360

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK Guia do Desenvolvedor

--max-length

Indica o tamanho maximo da moldura (ou o tamanho maximo do conteudo de mensagens sem
moldura) a ser lido em mensagens criptografadas. Esse parametro € opcional e valido apenas em
comandos decrypt. Ele foi projetado para protegao contra a descriptografia de texto cifrado mal-
intencionado extremamente grande.

Digite um valor em bytes. Se vocé omitir esse parametro, o AWS Encryption SDK nao limitara o
tamanho do quadro ao descriptografar.

--caching

Habilita o recurso de armazenamento em cache de chaves de dados, que reutiliza chaves de
dados, em vez de gerar uma nova chave de dados para cada arquivo de entrada. Esse parametro
€ compativel com um cenario avang¢ado. Nao deixe de ler a documentacdo Armazenamento em
cache de chaves de dados antes de usar esse recurso.

O parametro --caching tem os seguintes atributos.

capacity (obrigatorio)
Determina o nidmero maximo de entradas no cache.

O valor minimo € 1. Nao ha um valor maximo.

max_age (obrigatorio)

Determina o tempo em que as entradas do cache sao usadas, em segundos, a partir do
momento em que sao adicionadas ao cache.

Digite um valor maior que 0. N&o ha um valor maximo.

max_messages_encrypted (opcional)

Determina o numero maximo de mensagens que uma entrada armazenada em cache pode
criptografar.

Os valores validos sao 1-2"32. O valor padrao é 232 (mensagens).

max_bytes_encrypted (opcional)

Determina o numero maximo de bytes que uma entrada armazenada em cache pode
criptografar.

Referéncia da sintaxe e de parametros 361

AWS Encryption SDK Guia do Desenvolvedor

Os valores validos sdo 0 e 1-2”63 - 1. O valor padrao é 263 - 1 (mensagens). Um valor de
0 permite usar armazenamento em cache de chaves de dados somente quando vocé esta
criptografando strings de mensagem vazias.

Versdes da CLI AWS de criptografia

Recomendamos que vocé use a versao mais recente da CLI de AWS criptografia.

® Note

Versdes da CLI de AWS criptografia anteriores a 4.0.0 estdo em fase. end-of-support

Vocé pode atualizar com seguranca a partir da versao 2.1.x e posteriores até a versao mais
recente da CLI de criptografia da AWS sem realizar alteragdes no cddigo ou nos dados. No
entanto, os novos atributos de seguranca introduzidos na versao 2.1.x nao sao compativeis

com versodes anteriores. Para atualizar a partir da versao 1.7. x ou anterior, vocé deve
primeiro atualizar para a ultima 1. versédo x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versdao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

Para obter informagdes sobre versdes significativas do AWS Encryption SDK, consulteVersoes do
AWS Encryption SDK.

Qual versao devo usar?
Se vocé é novo na CLI AWS de criptografia, use a versao mais recente.

Para descriptografar dados criptografados por uma versao AWS Encryption SDK anterior a 1.7. x,
migre primeiro para a versao mais recente da CLI de AWS criptografia. Faga todas as alteracoes

recomendadas antes de atualizar para a versao 2.1.x ou versdes posteriores. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.

Saiba mais

» Para obter informagdes detalhadas sobre as alteragdes e orientagdes para migrar para essas
novas versodes, consulte Migrando seu AWS Encryption SDK.

Versoes 362

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

» Para obter descricbes dos novos parametros e atributos da CLI de AWS criptografia, consulte.
AWS Encryption SDK Referéncia de sintaxe e parametros da CLI

As listas a seguir descrevem a alteragao na CLI de AWS criptografia nas versées 1.8. x e 2.1. x.

Versao 1.8. x mudangas na CLI AWS de criptografia

* Descontinua o parametro --master-keys. Em vez disso, use o parametro --wrapping-keys.

 Adiciona o parametro --wrapping-keys (-w). Compativel com todos os atributos do parametro
--master-keys. Também adiciona os seguintes atributos opcionais, que séo validos somente ao
descriptografar com AWS KMS keys.

+ discovery
« discovery-partition

« discovery-account

Para provedores de chaves mestras personalizadas, os comandos --encrypt e--decrypt
exigem um parametro - -wrapping-keys ou um parametro --master-keys (mas nao ambos).
Além disso, um --encrypt comando com AWS KMS keys requer um --wrapping-keys
parametro ou um --master-keys parametro (mas nao ambos).

Em um --decrypt comando com AWS KMS keys, o --wrapping-keys parametro € opcional,
mas recomendado, pois € obrigatdrio na versao 2.1. x. Se vocé usa-lo, devera especificar o key ou
o atributo discovery com um valor definido como true (mas ndo ambos).

 Adiciona o parametro --commitment-policy. O Unico valor valido é forbid-encrypt-
allow-decrypt. A politica de compromisso forbid-encrypt-allow-decrypt é usada em
todos os comandos encrypt e decrypt.

Na versao 1.8.x, quando vocé usa o parametro --wrapping-keys, € necessario definir um
parametro - -commitment-policy com o valor forbid-encrypt-allow-decrypt. Definiro
valor explicitamente impede que sua politica de compromisso seja alterada automaticamente para
require-encrypt-require-decrypt quando vocé atualizar para a verséo 2.1.x.

Versao 2.1. x mudangas na CLI AWS de criptografia

* Remove o parametro --master-keys. Em vez disso, use o parametro --wrapping-keys.

Versoes 363

AWS Encryption SDK Guia do Desenvolvedor

* O parametro --wrapping-keys € obrigatério em comandos encrypt. Vocé deve especificar o
atributo key ou o atributo discovery com um valor definido como true (mas nao ambos).

» O parametro --commitment-policy oferece suporte aos seguintes valores: Para obter
detalhes, consulte Como definir sua politica de compromisso.

« forbid-encrypt-allow-decrypt
* require-encrypt-allow-decrypt
* require-encrypt-require decrypt (padrao)

* O parametro --commitment-policy é opcional na versédo 2.1.x.. O valor padréao é require-
encrypt-require-decrypt.

Alteracdes das versdes 1.9x e 2.2.x na CLI de criptografia da AWS

+ Adiciona o parametro --decrypt-unsigned. Para obter detalhes, consulte Versao 2.2x.
+ Adiciona o parametro --buffer. Para obter detalhes, consulte Versao 2.2x.

+ Adiciona o parametro --max-encrypted-data-keys. Para obter detalhes, consulte Limitar as
chaves de dados criptografadas.

Versao 3.0. x mudancgas na CLI AWS de criptografia

» Adiciona suporte para chaves AWS KMS multirregionais. Para obter mais detalhes, consulte
Usando varias regides AWS KMS keys.

Versoes 364

AWS Encryption SDK Guia do Desenvolvedor

Armazenamento em cache de chaves de dados

O armazenamento em cache de chaves de dados armazena chaves de dados e o material
criptografico relacionado em um cache. Quando vocé criptografa ou descriptografa dados, ele
AWS Encryption SDK procura uma chave de dados correspondente no cache. Se encontrar uma
correspondéncia, ele usara a chave de dados armazenada em cache em vez de gerar uma nova. O
armazenamento em cache de chaves de dados pode melhorar o desempenho, reduzir os custos e
ajudar vocé a manter os limites do servico a medida que seu aplicativo € escalado.

O aplicativo podera se beneficiar do armazenamento em cache de chaves de dados se:

» Puder reutilizar chaves de dados.
» Gerar varias chaves de dados.

» As operacgdes de criptografia estiverem inaceitavelmente lentas, caras, limitadas ou usarem
recursos de forma intensiva.

O armazenamento em cache pode reduzir o uso de servigos criptograficos, como AWS Key
Management Service (JAWS KMS. Se vocé esta atingindo seu AWS KMS requests-per-secondlimite,
0 armazenamento em cache pode ajudar. Seu aplicativo pode usar chaves em cache para atender a
algumas de suas solicitagbes de chave de dados em vez de chamar AWS KMS. (Vocé também pode
criar um caso no AWS Support Center para aumentar o limite da conta.)

AWS Encryption SDK Isso ajuda vocé a criar e gerenciar seu cache de chaves de dados. Ele fornece
um cache local e um gerenciador de armazenamento em cache de materiais criptograficos (CMM
de armazenamento em cache) que interage com o cache e impde limites de seguranca definidos

por vocé. Juntos, esses componentes ajudam vocé a se beneficiar da eficiéncia de reutilizacdo de
chaves de dados mantendo a seguranca do sistema.

O armazenamento em cache da chave de dados é um recurso opcional do AWS Encryption SDK que
vocé deve usar com cautela. Por padrao, AWS Encryption SDK gera uma nova chave de dados para
cada operacao de criptografia. Essa técnica € compativel com as melhores praticas criptograficas,
que desencorajam a reutilizagao excessiva de chaves de dados. Em geral, use o armazenamento
em cache de chaves de dados somente quando ele for necessario para atender as suas metas de
desempenho. Em seguida, use os limites de seguranca do armazenamento em cache de chaves de

dados para garantir que vocé use a quantidade minima de armazenamento em cache necessario
para atender a suas metas de desempenho e custo.

365

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/

AWS Encryption SDK Guia do Desenvolvedor

Versao 3. x of the suporta AWS Encryption SDK for Java apenas o CMM de armazenamento em
cache com a interface antiga de provedores de chaves mestras, nao a interface de chaveiro. No
entanto, versao 4. x do AWS Encryption SDK para o0.NET, versao 3. x do AWS Encryption SDK for
Java, versao 4. x do AWS Encryption SDK for Python, versao 1. x do AWS Encryption SDK para
Rust e versao 0.1. x ou versodes posteriores do AWS Encryption SDK for Go suportam o AWS KMS
chaveiro hierarquico, uma solugao alternativa de cache de materiais criptograficos. O conteudo

criptografado com o AWS KMS chaveiro hierarquico sé pode ser descriptografado com o chaveiro
hierarquico. AWS KMS

Para ver uma discussao detalhada dessas vantagens e desvantagens de seguranca, consulte AWS
Encryption SDK: Como decidir se 0 armazenamento em cache de chaves de dados € ideal para sua
aplicagéo no Blog de seguranga da AWS .

Topicos

* Como usar o armazenamento em cache de chaves de dados

» Definir limites de seguranca do cache

* Detalhes do armazenamento em cache de chaves de dados

* Exemplo de armazenamento em cache de chaves de dados

Como usar o armazenamento em cache de chaves de dados

Este tdpico mostra como usar o armazenamento em cache de chaves de dados em seu aplicativo.
Ele fornece uma demonstracao passo a passo do processo. Em seguida, ele combina as etapas em
um exemplo simples que usa o armazenamento em cache da chave de dados em uma operagéo
para criptografar uma string.

Esses exemplos mostram como usar a verséo 2.0.x e versOes posteriores do AWS Encryption SDK.
Para exemplos que usam versoes anteriores, encontre sua vers&o na lista de langamentos do GitHub
repositorio da sua linguagem de programacao.

Para obter exemplos completos e testados do uso do armazenamento em cache de chaves de dados
no AWS Encryption SDK, consulte:

* C/C++: caching_cmm.cpp

+ Java: SimpleDataKeyCachingExample.java

» JavaScript Navegador: caching_cmm.ts

» JavaScript Node.js: caching_cmm.ts

Como usar o armazenamento em cache de chaves de dados 366

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts

AWS Encryption SDK Guia do Desenvolvedor

» Python: data_key_caching_basic.py

O AWS Encryption SDK para .NET nao oferece é compativel com o cache de chaves de dados.

Topicos

* Usando o cache de chaves de dados: Step-by-step

* Armazenamento em cache de chaves de dados de exemplo: criptografar uma string

Usando o cache de chaves de dados: Step-by-step

Essas step-by-step instrugcdes mostram como criar os componentes necessarios para implementar o
armazenamento em cache de chaves de dados.

» Crie um cache de chave de dados. Nesses exemplos, usamos o cache local que o AWS
Encryption SDK fornece. Limitamos o cache a 10 chaves de dados.

C
// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);
Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versao 3. x, vocé também pode usar o AWS KMS chaveiro hierarquico, uma solugao
alternativa de cache de materiais criptograficos.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

Usando o cache de chaves de dados: Step-by-step 367

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Browser

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

const cache = getlLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

« Crie um provedor de chave mestra (Java e Python) ou um chaveiro (C e). JavaScript Esses
exemplos usam um provedor de chave mestra AWS Key Management Service (AWS KMS) ou um
AWS KMS chaveiro compativel.

C

// Create an AWS KMS keyring

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);
Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.

Usando o cache de chaves de dados: Step-by-step 368

AWS Encryption SDK Guia do Desenvolvedor

Com a versao 3. x, vocé também pode usar o AWS KMS chaveiro hierarquico, uma solugao
alternativa de cache de materiais criptograficos.

// Create an AWS KMS master key provider

// The input is the Amazon Resource Name (ARN)

// of an AWS KMS key

MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder().buildStrict(kmsKeyAzrn);

JavaScript Browser

No navegador, vocé deve injetar suas credenciais com seguranga. Este exemplo define
credenciais em um webpack (kms.webpack.config) que resolve credenciais no runtime. Ele cria
uma instancia AWS KMS cliente-provedor a partir de um AWS KMS cliente e das credenciais.
Ent&o, ao criar o chaveiro, ele passa o provedor do cliente para o construtor junto com o AWS
KMS key (. generatorKeyId)

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken
}
b

/* Create an AWS KMS keyring
* You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
clientProvider,
generatorKeyId,
keyIds,
b

JavaScript Node.js

/* Create an AWS KMS keyring
& The input is the Amazon Resource Name (ARN)

Usando o cache de chaves de dados: Step-by-step 369

AWS Encryption SDK Guia do Desenvolvedor

*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider

The input is the Amazon Resource Name (ARN)

of an AWS KMS key

key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

» Crie um gerenciador de armazenamento em cache de materiais criptograficos (CMM de

armazenamento em cache).

Associe o CMM de armazenamento em cache ao seu cache e seu provedor de chaves mestras.
Em seguida, defina os limites de seguranca do cache no CMM de armazenamento em cache.

No AWS Encryption SDK for C, vocé pode criar um CMM de cache a partir de um CMM
subjacente, como o CMM padrao, ou de um chaveiro. Este exemplo cria o CMM de
armazenamento em cache de um token de autenticagao.

Depois de criar o CMM de armazenamento em cache, vocé pode liberar suas referéncias para
o token de autenticagdo e o cache. Para obter detalhes, consulte the section called “Contagem
de referéncias”.

// Create the caching CMM

// Set the partition ID to NULL.

// Set the required maximum age value to 60 seconds.

struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.

Usando o cache de chaves de dados: Step-by-step 370

AWS Encryption SDK Guia do Desenvolvedor

aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x of the
AWS Encryption SDK for Java nao oferece suporte ao cache de chaves de dados, mas suporta
o AWS KMS chaveiro hierarquico, uma solugao alternativa de cache de materiais criptograficos.

/*
* Security thresholds
& Max entry age is required.
& Max messages (and max bytes) per entry are optional
*/
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)

.withCache(cache)
.withMaxAge(MAX_ENTRY_AGE_SECONDS,

TimeUnit.SECONDS)
.withMessageUseLimit (MAX_ENTRY_MSGS)
.build();

JavaScript Browser

/*
* Security thresholds
& Max age (in milliseconds) is required.
& Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManagexr({
backingMaterials: keyring,

Usando o cache de chaves de dados: Step-by-step 371

AWS Encryption SDK Guia do Desenvolvedor

cache,
maxAge,
maxMessagesEncrypted

D

JavaScript Node.js

/-k
* Security thresholds
* Max age (in milliseconds) is required.
* Max messages (and max bytes) per entry are optional.
*/
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
maxAge,
maxMessagesEncrypted

1)

Python

Security thresholds

Max entry age is required.

Max messages (and max bytes) per entry are optional
#

MAX_ENTRY_AGE_SECONDS = 60.0

MAX_ENTRY_MESSAGES = 10

Create a caching CMM

caching_cmm = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=MAX_ENTRY_MESSAGES

Usando o cache de chaves de dados: Step-by-step 372

AWS Encryption SDK Guia do Desenvolvedor

Isso é tudo o que vocé precisa fazer. Em seguida, deixe que AWS Encryption SDK eles gerenciem o
cache para vocé ou adicione sua propria logica de gerenciamento de cache.

Quando desejar usar o armazenamento em cache de chaves de dados em uma chamada para
criptografar ou descriptografar dados, especifiqgue o CMM de armazenamento em cache em vez de
especificar um provedor de chaves mestras ou outro CMM.

® Note

Se estiver criptografando streamings de dados ou quaisquer dados de tamanho
desconhecido, certifique-se de especificar o tamanho dos dados na solicitagdo. O AWS
Encryption SDK nao usa cache de chave de dados ao criptografar dados de tamanho
desconhecido.

No AWS Encryption SDK for C, vocé cria uma sessdo com o CMM de cache e, em seguida,
processa a sessao.

Por padrao, quando o tamanho da mensagem é desconhecido e ilimitado, as chaves

de dados AWS Encryption SDK nao sdo armazenadas em cache. Para permitir o

armazenamento em cache quando nao se sabe o tamanho exato dos dados, use o método
aws_cryptosdk_session_set_message_bound para definir o tamanho maximo da
mensagem. Defina o vinculo maior do que o tamanho estimado da mensagem. Se o tamanho real
da mensagem exceder o vinculo, ocorrera uma falha na operagao da criptografia.

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
session, output_buffer, output_capacity, &output_produced,
input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */

Usando o cache de chaves de dados: Step-by-step 373

AWS Encryption SDK Guia do Desenvolvedor

aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versao 3. x, vocé também pode usar o AWS KMS chaveiro hierarquico, uma solugao

alternativa de cache de materiais criptograficos.

// When the call to encryptData specifies a caching CMM,

// the encryption operation uses the data key cache

final AwsCrypto encryptionSdk = AwsCrypto.standard();

return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser
const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

Quando vocé usa o CMM de cache no AWS Encryption SDK para JavaScript for Node.js, o
encrypt método requer o tamanho do texto simples. Se vocé nao fornecer, a chave de dados
nao sera armazenada em cache. Se vocé fornecer um tamanho, mas os dados de texto simples
fornecidos excederem esse tamanho, a operagao de criptografia falhara. Se vocé nao souber o
tamanho exato do texto simples, como quando estiver fazendo streaming de dados, fornega o
maior valor esperado.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,

the encryption operation uses the data key cache

#

encrypted_message, header = client.encrypt(
source=plaintext_source,

Usando o cache de chaves de dados: Step-by-step 374

AWS Encryption SDK Guia do Desenvolvedor

materials_manager=caching_cmm

Armazenamento em cache de chaves de dados de exemplo: criptografar
uma string
Este codigo de exemplo simples usa o armazenamento em cache de chaves de dados ao

criptografar uma string. Ele combina o cédigo do step-by-step procedimento em um codigo de teste
que vocé pode executar.

O exemplo cria um cache local e um provedor de chave mestra ou token de autenticacao para

uma AWS KMS key. Em seguida, ele usa o cache local e o provedor de chaves mestras ou

o token de autenticagao para criar um CMM de armazenamento em cache com os limites de
seguranca adequados. Em Java e em Python, a solicitagdo de criptografia especifica o CMM de
armazenamento em cache, os dados de texto simples a serem criptografados e um contexto de
criptografia. Em C, o CMM de armazenamento em cache € especificado na sessé&o, e a sessdo e
fornecida para a solicitagao de criptografia.

Para executar estes exemplos, vocé precisa fornecer o nome do atributo da Amazon (ARN) de uma

AWS KMS key. Verifique se vocé tem permissao para usar a AWS KMS key para gerar uma chave
de dados.

Para obter exemplos reais mais detalhados de como criar e usar um cache de chave mestra,
consulte Exemplo de cddigo de armazenamento em cache de chaves de dados.

C

* Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.

* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
* this file except in compliance with the License. A copy of the License is
* located at

X http://aws.amazon.com/apache2.0/

* or in the "license" file accompanying this file. This file is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied. See the License for the specific language governing permissions and

* limitations under the License.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 375

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK Guia do Desenvolvedor

*/

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
bytes already allocated)
size_t *ciphertext_len, // length of output will go here
size_t ciphertext_capacity,
const char *kms_key_arn,
int max_entry_age,
int cache_capacity) {
const uint64_t MAX_ENTRY_MSGS = 100;

struct aws_allocator *allocator = aws_default_allocator();

// Load error strings for debugging
aws_cryptosdk_load_error_strings();

// Create a keyring
struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(kms_key_azrn);

// Create a cache
struct aws_cryptosdk_materials_cache *cache =
aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

// Create a caching CMM
struct aws_cryptosdk_cmm *caching_cmm =
aws_cryptosdk_caching_cmm_new_from_keyring(
allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
if (!caching_cmm) abort();

if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
abort();

// Create a session
struct aws_cryptosdk_session *session =
aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
caching_cmm);
if (!session) abort();

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 376

AWS Encryption SDK Guia do Desenvolvedor

// Encryption context

struct aws_hash_table *enc_ctx =
aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

if (l!enc_ctx) abort();

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");

if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
abort();

// Plaintext data to be encrypted

const char *my_data = "My plaintext data";

size_t my_data_len = strlen(my_data);

if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

// When the session uses a caching CMM, the encryption operation uses the data
key cache
// specified in the caching CMM.
size_t bytes_read;
if (aws_cryptosdk_session_process(
session,
ciphertext,
ciphertext_capacity,
ciphertext_len,
(const uint8_t *)my_data,
my_data_1len,
&bytes_read))
abort();
if (laws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
abort();

aws_cryptosdk_session_destroy(session);
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versao 3. x, vocé também pode usar o AWS KMS chaveiro hierarquico, uma solugao

alternativa de cache de materiais criptograficos.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 377

AWS Encryption SDK

Guia do Desenvolvedor

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import
import
import
import
import
import
import
import
import
import
import
import

/**
* <p>

* Encr

* <p>

com.
com.
com.
com.
com.
com.
com.
com.

java.
java.
java.
java.

ypts

amazonaws

amazonaws.
.encryptionsdk.
.encryptionsdk.
amazonaws.

amazonaws
amazonaws

amazonaws.
amazonaws.

amazonaws

.encryptionsdk.

encryptionsdk.

encryptionsdk.
encryptionsdk.
encryptionsdk.

.encryptionsdk.
nio.charset.StandardCharsets;
util.Collections;
util.Map;

util.concurrent.TimeUnit;

AwsCrypto;

CryptoMaterialsManager;
MasterKeyProvider;
caching.CachingCryptoMaterialsManager;
caching.CryptoMaterialsCache;
caching.LocalCryptoMaterialsCache;
kmssdkv2.KmsMasterKey;
kmssdkv2.KmsMasterKeyProvider;

a string using an &KMS; key and data key caching

* Arguments:

*

* <1i>KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,

*

see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/
developerguide/find-cmk-id-arn.html
* Max entry age: Maximum time (in seconds) that a cached entry can be used

* Cache capacity: Maximum number of entries in the cache

>

public class SimpleDataKeyCachingExample {

* </ol
*/
/*
*/

Security thresholds
Max entry age is required.

Max messages (and max bytes) per data key are optional

private static final int MAX_ENTRY_MSGS = 100;

public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int

cacheCapacity) {

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string

378

AWS Encryption SDK Guia do Desenvolvedor

// Plaintext data to be encrypted
byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

// Encryption context

// Most encrypted data should have an associated encryption context

// to protect integrity. This sample uses placeholder values.

// For more information see:

// blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management

final Map<String, String> encryptionContext =
Collections.singletonMap("purpose", "test");

// Create a master key provider
MasterKeyProvider<KmsMasterKey> keyProvider =
KmsMasterKeyProvider.builder()
.buildStrict(kmsKeyAzrn);

// Create a cache
CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

// Create a caching CMM
CryptoMaterialsManager cachingCmm =

CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
.withCache(cache)
.withMaxAge(maxEntryAge, TimeUnit.SECONDS)
.withMessageUselLimit(MAX_ENTRY_MSGS)
.build();

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, myData,
encryptionContext).getResult();
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 379

AWS Encryption SDK Guia do Desenvolvedor

* to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.

*/

import {
KmsKeyringBrowser,
KMS,
getClient,
buildClient,
CommitmentPolicy,
WebCryptoCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from 'eaws-crypto/client-browser'
import { toBase64 } from '@aws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient() .
*/

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

/* This is injected by webpack.
* The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
values when bundling.
* The credential values are pulled from @aws-sdk/credential-provider-node
* Use any method you like to get credentials into the browser.
* See kms.webpack.config
*/
declare const credentials: {
accessKeyId: string
secretAccessKey: string
sessionToken: string

/* This is done to facilitate testing. */

export async function testCachingCMMExample() {
/* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
generates and encrypts the data key.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 380

AWS Encryption SDK Guia do Desenvolvedor

* The caller needs kms:GenerateDataKey permission on the &KMS; key in
generatorKeyId.
*/
const generatorKeyld =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding additional KMS keys that can decrypt.
* The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds', this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds' parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* Need a client provider that will inject correct credentials.

* The credentials here are injected by webpack from your environment bundle is
created

* The credential values are pulled using @aws-sdk/credential-provider-node.

* See kms.webpack.config

* You should inject your credential into the browser in a secure manner

* that works with your application.

*/

const { accessKeyId, secretAccessKey, sessionToken } = credentials

/* getClient takes a KMS client constructor
* and optional configuration values.
* The credentials can be injected here,
* because browsers do not have a standard credential discovery process the way
Node.js does.
*/
const clientProvider = getClient(KMS, {
credentials: {
accessKeylId,
secretAccessKey,
sessionToken,

iy

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 381

AWS Encryption SDK Guia do Desenvolvedor

1)

/* You must configure the KMS keyring with your &KMS; keys */
const keyring = new KmsKeyringBrowser({

clientProvider,

generatorKeyld,

keyIds,
1)

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value
* as the second parameter. This value is in milliseconds.
*/
const capacity = 100
const cache = getLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum number of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 382

AWS Encryption SDK

Guia do Desenvolvedor

*/
const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest practical value.

*

/

const maxMessagesEncrypted = 10

const cachingCMM

*

*

backingMaterials:

cache,
partition,
maxAge,

new WebCryptoCachingMaterialsManager({
keyring,

maxBytesEncrypted,
maxMessagesEncrypted,

Encryption context is a *very* powerful tool for controlling

and managing access.

When you pass an encryption context to the encrypt function,

the encryption

context is cryptographically bound to the ciphertext.

If you don't pass in the same encryption context when decrypting,
the decrypt function fails.

The encryption
Encrypted data
You can use an
The encryption

context is ***not*** secret!

is opaque.

encryption context to assert things about the encrypted data.
context helps you to determine

whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
For example, if you are are only expecting data from 'us-west-2',

the appearance

of a different AWS Region in the encryption context can indicate

malicious interference.
* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*

/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 383

AWS Encryption SDK Guia do Desenvolvedor

}

/* Find data to encrypt. */
const plainText = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data.

* The caching CMM only reuses data keys

* when it know the length (or an estimate) of the plaintext.

* However, in the browser,

* you must provide all of the plaintext to the encrypt function.

* Therefore, the encrypt function in the browser knows the length of the
plaintext

* and does not accept a plaintextLength option.

*/

const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

/* Log the plain text

* only for testing and to show that it works.

*/
console.log('plainText:', plainText)
document.write('</br>plainText:' + plainText + '</br>")

/* Log the base64-encoded result

* so that you can try decrypting it with another AWS Encryption SDK
implementation.

*/

const resultBase64 = toBaseb64(result)

console.log(resultBase64)

document.write(resultBaseb4)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 384

AWS Encryption SDK Guia do Desenvolvedor

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Log the clear message
* only for testing and to show that it works.
*/
document.write('</br>Decrypted:' + plaintext)
console.log(plaintext)

/* Return the values to make testing easy. */
return { plainText, plaintext }

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
KmsKeyringNode,
buildClient,
CommitmentPolicy,
NodeCachingMaterialsManager,
getLocalCryptographicMaterialsCache,
} from 'e@aws-crypto/client-node’

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
policy,
* which enforces that this client only encrypts using committing algorithm suites
* and enforces that this client
* will only decrypt encrypted messages
* that were created with a committing algorithm suite.
* This is the default commitment policy
* if you build the client with “buildClient()".
*/

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 385

AWS Encryption SDK Guia do Desenvolvedor

const { encrypt, decrypt } = buildClient(
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

export async function cachingCMMNodeSimpleTest() {
/* An &KMS; key is required to generate the data key.
* You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
*/
const generatorKeyId =
'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt’

/* Adding alternate &KMS; keys that can decrypt.
* Access to kms:Encrypt is required for every &KMS; key in keyIds.
* You might list several keys in different AWS Regions.
* This allows you to decrypt the data in any of the represented Regions.
* In this example, the generator key
* and the additional key are actually the same &KMS; key.
* In “generatorId’, this &KMS; key is identified by its alias ARN.
* In “keyIds®, this &KMS; key is identified by its key ARN.
* In practice, you would specify different &KMS; keys,
* or omit the “keyIds® parameter.
* This is *only* to demonstrate how the &KMS; key ARNs are configured.
*/
const keyIds = [
'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f",

/* The &KMS; keyring must be configured with the desired &KMS; keys
* This example passes the keyring to the caching CMM
* instead of using it directly.
*/

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

/* Create a cache to hold the data keys (and related cryptographic material).
* This example uses the local cache provided by the Encryption SDK.
* The ‘capacity’ value represents the maximum number of entries
* that the cache can hold.
* To make room for an additional entry,
* the cache evicts the oldest cached entry.
* Both encrypt and decrypt requests count independently towards this threshold.
* Entries that exceed any cache threshold are actively removed from the cache.
* By default, the SDK checks one item in the cache every 60 seconds (60,000
milliseconds).
* To change this frequency, pass in a “proactiveFrequency’ value

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 386

AWS Encryption SDK Guia do Desenvolvedor

* as the second parameter. This value is in milliseconds.
*/

const capacity = 100

const cache = getlLocalCryptographicMaterialsCache(capacity)

/* The partition name lets multiple caching CMMs share the same local
cryptographic cache.

* By default, the entries for each CMM are cached separately. However, if you
want these CMMs to share the cache,

* use the same partition name for both caching CMMs.

* If you don't supply a partition name, the Encryption SDK generates a random
name for each caching CMM.

* As a result, sharing elements in the cache MUST be an intentional operation.

*/

const partition = 'local partition name'

/* maxAge is the time in milliseconds that an entry will be cached.
* Elements are actively removed from the cache.
*/

const maxAge = 1000 * 60

/* The maximum amount of bytes that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxBytesEncrypted = 100

/* The maximum number of messages that will be encrypted under a single data key.
* This value is optional,
* but you should configure the lowest value possible.
*/

const maxMessagesEncrypted = 10

const cachingCMM = new NodeCachingMaterialsManager({
backingMaterials: keyring,
cache,
partition,
maxAge,
maxBytesEncrypted,
maxMessagesEncrypted,

1)

/* Encryption context is a *very* powerful tool for controlling
* and managing access.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 387

AWS Encryption SDK Guia do Desenvolvedor

* When you pass an encryption context to the encrypt function,

* the encryption context is cryptographically bound to the ciphertext.

* If you don't pass in the same encryption context when decrypting,

* the decrypt function fails.

* The encryption context is ***not*** secret!

* Encrypted data is opaque.

* You can use an encryption context to assert things about the encrypted data.

* The encryption context helps you to determine

* whether the ciphertext you retrieved is the ciphertext you expect to decrypt.

* For example, if you are are only expecting data from 'us-west-2',

* the appearance of a different AWS Region in the encryption context can indicate
malicious interference.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context

*

* Also, cached data keys are reused ***only*** when the encryption contexts
passed into the functions are an exact case-sensitive match.

* See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

*/

const encryptionContext = {

stage: 'demo',

purpose: 'simple demonstration app',

origin: 'us-west-2',

/* Find data to encrypt. A simple string. */
const cleartext = 'asdf'

/* Encrypt the data.
* The caching CMM only reuses data keys
* when it know the length (or an estimate) of the plaintext.
* If you do not know the length,
* because the data is a stream
* provide an estimate of the largest expected value.

* If your estimate is smaller than the actual plaintext length
* the AWS Encryption SDK will throw an exception.

* If the plaintext is not a stream,

* the AWS Encryption SDK uses the actual plaintext length
* instead of any length you provide.

*/

const { result } = await encrypt(cachingCMM, cleartext, {

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 388

AWS Encryption SDK Guia do Desenvolvedor

encryptionContext,
plaintextLength: 4,
)

/* Decrypt the data.
* NOTE: This decrypt request will not use the data key
* that was cached during the encrypt operation.
* Data keys for encrypt and decrypt operations are cached separately.
*/

const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

/* Grab the encryption context so you can verify it. */
const { encryptionContext: decryptedContext } = messageHeader

/* Verify the encryption context.

* If you use an algorithm suite with signing,

* the Encryption SDK adds a name-value pair to the encryption context that
contains the public key.

* Because the encryption context might contain additional key-value pairs,

* do not include a test that requires that all key-value pairs match.

* Instead, verify that the key-value pairs that you supplied to the “encrypt’
function are included in the encryption context that the ‘decrypt’ function

returns.
*/

Object.entries(encryptionContext).forEach(([key, value]) => {
if (decryptedContext[key] !== value)

throw new Error('Encryption Context does not match expected values')

D

/* Return the values so the code can be tested. */
return { plaintext, result, cleartext, messageHeader }

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of

the License is located at

http://aws.amazon.com/apache2.0/

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 389

AWS Encryption SDK Guia do Desenvolvedor

or in the "license" file accompanying this file. This file is

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""
import aws_encryption_sdk

from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
"""Encrypts a string using an &KMS; key and data key caching.

:param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key

:param float max_age_in_cache: Maximum time in seconds that a cached entry can
be used

:param int cache_capacity: Maximum number of entries to retain in cache at once

Data to be encrypted

my_data = "My plaintext data"

Security thresholds
Max messages (or max bytes per) data key are optional
MAX_ENTRY_MESSAGES = 100

Create an encryption context
encryption_context = {"purpose": "test"}

Set up an encryption client with an explicit commitment policy. Note that if
you do not explicitly choose a

commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.

client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_R

Create a master key provider for the &KMS; key
key_provider =
aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

Create a local cache
cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

Create a caching CMM

caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 390

AWS Encryption SDK Guia do Desenvolvedor

max_age=max_age_in_cache,
max_messages_encrypted=MAX_ENTRY_MESSAGES,

When the call to encrypt data specifies a caching CMM,
the encryption operation uses the data key cache specified
in the caching CMM
encrypted_message, _header = client.encrypt(
source=my_data, materials_manager=caching_cmm,
encryption_context=encryption_context

)

return encrypted_message

Definir limites de seguranca do cache

Quando vocé implementa o armazenamento em cache de chave de dados, precisa configurar os
limites de seguranga impostos pelo CMM de armazenamento em cache.

Os limites de segurancga ajudam a limitar duragédo do uso de cada chave de dados e o volume de
dados protegido em cada chave de dados. O CMM de armazenamento em cache retorna as chaves
de dados armazenadas em cache somente quando a entrada do cache estiver em conformidade
com todos os limites de seguranga. Se a entrada do cache exceder o limite, ela ndo sera usada para
a operacao atual e sera removida do cache assim que possivel. O primeiro uso de cada chave de
dados (antes do armazenamento em cache) € isento desses limites.

Como regra, use a quantidade minima de armazenamento em cache necessaria para atender a suas
metas de custos e de desempenho.

O AWS Encryption SDK unico armazena em cache as chaves de dados que sao criptografadas
usando uma funcao de derivacao de chave. Além disso, ele estabelece limites maximos para alguns
dos valores de limites. Essas restricdes garantem que as chaves de dados nao sejam reutilizadas
além dos limites criptograficos. No entanto, como as chaves de dados de texto sem criptografia

sdo armazenadas em cache (na memoaria, por padrao), tente minimizar o tempo em que as chaves
sao salvas. Além disso, tente limitar os dados que poderao ser expostos se uma chave estiver
comprometida.

Para obter exemplos de como definir limites de seguranga de cache, consulte AWS Encryption SDK:

Como decidir se 0 armazenamento em cache de chaves de dados é adequado para seu aplicativo no

blog de AWS seguranga.

Definir limites de seguranga do cache 391

https://en.wikipedia.org/wiki/Key_derivation_function
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/

AWS Encryption SDK Guia do Desenvolvedor

® Note

O CMM do armazenamento em cache impode todos os limites a seguir. Se vocé nao
especificar um valor opcional, o CMM de armazenamento em cache usara o valor padrao.
Para desativar temporariamente o0 armazenamento em cache de chaves de dados, as
implementacgdes de Java e Python do AWS Encryption SDK fornecem um cache de materiais
criptograficos nulo (cache nulo). O cache nulo retorna um erro para cada solicitacédo GET

e nao responde a solicitagbes PUT. Recomendamos usar o cache nulo em vez de definir

a capacidade do cache ou os limites de seguranga como 0. Para obter mais informacoes,
consulte o cache nulo em Java e Python.

Idade maxima (obrigatorio)

Determina por quanto tempo uma entrada armazenada em cache pode ser usada, a partir do
momento em que foi adicionada. Este valor é obrigatorio. Digite um valor maior que 0. AWS
Encryption SDK Isso ndo limita o valor maximo de idade.

Todas as implementacgdes de linguagem do AWS Encryption SDK definem a idade maxima em
segundos, exceto a AWS Encryption SDK para JavaScript, que usa milissegundos.

Use o intervalo mais curto que ainda permita que seu aplicativo se beneficie do cache. Vocé
pode usar o limite maximo de idade como uma politica de rotagao de chaves. Use-o para limitar
a reutilizacao de chaves de dados, minimizar a exposigao de material criptografico e remover
chaves de dados cujas politicas podem ter sido alteradas enquanto estavam armazenadas em
cache.

Numero maximo de mensagens criptografadas (opcional)

Especifica 0 numero maximo de mensagens que uma chave de dados armazenada em cache
pode criptografar. Este valor € opcional. Digite um valor entre 1 e 2232 mensagens. O valor
padréo € 232 mensagens.

Defina o numero de mensagens protegidas por cada chave armazenada em cache para que seja
grande o suficiente para obter o valor da reutilizagao, mas pequeno o suficiente para limitar o
numero de mensagens que podem ser expostas se uma chave for comprometida.

Numero maximo de bytes criptografados (opcional)

Especifica 0 numero maximo de bytes que uma chave de dados armazenada em cache pode
criptografar. Este valor é opcional. Digite um valor entre 0 e 2*63 - 1. O valor padrao é 263 -

Definir limites de seguranga do cache 392

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK Guia do Desenvolvedor

1. Um valor de 0 permite usar armazenamento em cache de chaves de dados somente quando
vocé esta criptografando strings de mensagem vazias.

Os bytes na solicitagao atual s&o incluidos ao avaliar esse limite. Se os bytes processados, mais
os bytes atuais, excederem o limite, a chave de dados armazenada em cache sera removida do
cache, mesmo que ela tenha sido usada em uma solicitagcdo menor.

Detalhes do armazenamento em cache de chaves de dados

A maioria dos aplicativos pode usar a implementagao padrao do armazenamento em cache de chave
de dados sem escrever codigo personalizado. Esta secdo descreve a implementacao padrao e
alguns detalhes sobre as opgoes.

Topicos

 Como o armazenamento em cache de chaves de dados funciona

 Criar um cache de material de criptografia

 Criar um gerenciador de material de criptografia de armazenamento em cache

* O que é uma entrada de chave de dados em cache?

Contexto de criptografia: como selecionar entradas do cache

» Meu aplicativo esta usando chaves de dados armazenadas em cache?

Como o0 armazenamento em cache de chaves de dados funciona

Quando vocé usa o armazenamento em cache de chave de dados em uma solicitagao para
criptografar ou descriptografar dados, o AWS Encryption SDK primeiro pesquisa uma chave de
dados no cache que corresponde a solicitagdo. Se localizar uma correspondéncia valida, ele usa a
chave de dados armazenada em cache para criptografar os dados. Caso contrario, ele gerara uma
nova chave de dados, da mesma forma como o faria sem o cache.

O armazenamento em cache da chave de dados nao € usado para dados de tamanho desconhecido,
como streaming de dados. Isso permite que o CMM de armazenamento em cache imponha o limite
maximo de bytes corretamente. Para evitar esse comportamento, adicione o tamanho da mensagem

a solicitagao de criptografia.

Além de um cache, o armazenamento em cache de chaves de dados usa um gerenciador de

armazenamento em cache de materiais criptograficos (CMM de armazenamento em cache). O CMM

Detalhes do armazenamento em cache de chaves de dados 393

AWS Encryption SDK Guia do Desenvolvedor

de armazenamento em cache € um gerenciador de materiais criptograficos (CMM) especializado
que interage com um cache e um CMM subjacente. (Quando vocé especifica um provedor de chaves
mestra ou um token de autenticagdo, o AWS Encryption SDK cria um CMM padrao para voceé.)

O CMM de armazenamento em cache armazena em cache as chaves de dados que seu CMM
subjacente retorna. Também impde limites de seguranga de cache definidos por vocé.

Para evitar que a chave de dados errada seja selecionada do cache, todo armazenamento em
cache compativel CMMs exige que as seguintes propriedades dos materiais criptograficos em cache
correspondam a solicitacao de materiais.

» Pacote de algoritmos

« Contexto de criptografia (mesmo quando vazio)

* Nome da particdo (uma string que identifica o CMM de armazenamento em cache)

* (Somente descriptografia) chaves de dados criptografadas

® Note

O AWS Encryption SDK cache das chaves de dados somente quando o conjunto de
algoritmos usa uma fungéo de derivagéo de chave.

Os seguintes fluxos de trabalho mostram como uma solicitagao para criptografar dados é processada
com e sem armazenamento em cache da chave de dados. Eles mostram como o0 armazenamento
em cache de componentes que vocé cria, incluindo o cache e o CMM de armazenamento em cache,
sdo usados no processo.

Criptografar dados sem armazenamento em cache

Para obter materiais de criptografia sem armazenamento em cache:

1. Um aplicativo solicita que AWS Encryption SDK os dados sejam criptografados.

A solicitacido especifica um provedor de chaves mestres ou um token de autenticacdo. O AWS
Encryption SDK cria um CMM padréo que interage com a chave mestra ou com o token de
autenticacgao.

2. Ele AWS Encryption SDK solicita ao CMM materiais de criptografia (obtenha materiais
criptograficos).

Como o armazenamento em cache de chaves de dados funciona 394

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Guia do Desenvolvedor

3.

4.

O CMM solicita ao seu chaveiro (C e JavaScript) ou provedor de chave mestra (Java e Python)
materiais criptograficos. Isso pode envolver uma chamada para um servigo criptografico, como
AWS Key Management Service (AWS KMS). O CMM retorna os materiais de criptografia para o
AWS Encryption SDK.

O AWS Encryption SDK usa a chave de dados em texto simples para criptografar os dados. Ele
armazena os dados criptografados e as chaves de dados criptografadas em uma mensagem
criptografada, que ele retorna ao usuario.

Request to
encrypt data
Encrypted
User DATA e Y|V message

AWS
Encryption 00 Encrypt
SDK h P —— WL

Get cryptographic r

A

I A
‘ DATA

materials

Cryptographic

materials
manager (CMM) N
Get master keys
CMM Generate data key

Criptografar dados com armazenamento em cache

Para obter materiais de criptografia com armazenamento de chaves de dados em cache:

1.

Um aplicativo solicita que AWS Encryption SDK os dados sejam criptografados.

A solicitagado especifica um gerenciador de armazenamento em cache materiais criptograficos
(CMM de armazenamento em cache) associado a um gerenciador de materiais criptograficos
(CMM) subjacente. Quando vocé especifica um provedor de chaves mestras ou um token de

autenticacao, o AWS Encryption SDK cria um CMM padrao para vocé.

2. O SDK solicita ao CMM de armazenamento em cache especificado materiais de criptografia.

Como o armazenamento em cache de chaves de dados funciona 395

AWS Encryption SDK Guia do Desenvolvedor

3. O CMM de armazenamento em cache solicita materiais de criptografia do cache.

a. Se encontrar uma correspondéncia, o cache atualizara a idade e usara os valores da entrada
do cache correspondente, retornando os materiais de criptografia armazenados em cache ao
CMM de armazenamento em cache.

Se a entrada do cache estiver em conformidade com os limites de seguranca, o CMM de
armazenamento em cache a retorna ao SDK. Caso contrario, ele instruira o cache a remover a
entrada e prosseguir como se nao houvesse correspondéncia.

b. Se o cache nao puder encontrar uma correspondéncia valida, o CMM de armazenamento em
cache solicitara que CMM subjacente gere uma nova chave de dados.

O CMM subjacente obtém os materiais criptograficos de seu chaveiro (C e JavaScript) ou
provedor de chave mestra (Java e Python). Isso pode envolver uma chamada a um servigo
criptografico, como o AWS Key Management Service. O CMM subjacente retorna o texto
simples e copias criptografadas da chave de dados ao CMM de armazenamento em cache.

O CMM de armazenamento em cache salva os novos materiais de criptografia no cache.

4. O CMM de armazenamento em cache retorna os materiais de criptografia para o AWS Encryption
SDK.

5. O AWS Encryption SDK usa a chave de dados em texto simples para criptografar os dados. Ele
armazena os dados criptografados e as chaves de dados criptografadas em uma mensagem
criptografada, que ele retorna ao usuario.

Como o armazenamento em cache de chaves de dados funciona 396

AWS Encryption SDK Guia do Desenvolvedor

Request to
User encrypt data Encrypted
message ==
Caching
=
AWS T
Encryption Get "‘r—r DATA og Encrypt
SDK cryptographic
materials T T

Return to SDK

|

Keys in
Query cache [¥ Save in cache ’.

cache? ’.

A

Caching
CMM

Get cryptographic materials

CMM

v

Get master keys
Generate data key

Criar um cache de material de criptografia

AWS Encryption SDK Define os requisitos para um cache de materiais criptograficos usado no
cache de chaves de dados. Também fornece um cache local, que € um cache least recently used

(LRU - menos usado recentemente) configuravel e na memoria. Para criar uma instancia do cache
local, use o LocalCryptoMaterialsCache construtor em Java e Python, getLocalCryptographic
MaterialsCache a fungao JavaScript em ou aws_cryptosdk_materials_cache_local_newo
construtor em C.

O cache local contém légica para gerenciamento basico do cache, incluindo adigdo, remogao e
correspondéncia de entradas armazenadas em cache e manutengao do cache. Vocé nao precisa
escrever nenhuma logica de gerenciamento de cache personalizado. O cache local pode ser usado
como esta, ser personalizado ou substituido por cache compativel.

Quando cria um cache local, vocé define sua capacidade, isto €, o nUmero maximo de entradas que
o cache pode conter. Essa configuragao ajuda a criar um cache eficiente com reutilizagao limitada de
chaves de dados.

O AWS Encryption SDK for Java e o AWS Encryption SDK for Python também fornecem um
cache de materiais criptograficos nulo ()NullCryptoMaterialsCache. O NullCryptoMaterialsCache

Criar um cache de material de criptografia 397

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK Guia do Desenvolvedor

retorna um erro para todas GET as operagdes e nao responde as PUT operagdes. Vocé pode usar o
NullCryptoMaterialsCache em testes ou para desativar temporariamente o armazenamento em cache
em um aplicativo que inclui cédigo de armazenamento em cache.

No AWS Encryption SDK, cada cache de materiais criptograficos € associado a um gerenciador
de materiais criptograficos em cache (CMM). O CMM de armazenamento em cache obtém chaves

de dados do cache, coloca chaves de dados no cache e impde os limites de seguranca que vocé

define. Ao criar umCMM de armazenamento em cache, vocé especifica o cache que ele usa e o
CMM subjacente ou o provedor de chaves mestras que gera as chaves de dados que ele armazena
em cache.

Criar um gerenciador de material de criptografia de armazenamento em
cache

Para habilitar o armazenamento em cache da chave de dados, vocé cria um cache e um gerenciador
de armazenamento em cache (CMM de armazenamento em cache). Em seguida, em suas
solicitagdes para criptografar ou descriptografar dados, vocé especifica um CMM de armazenamento
em cache em vez de um gerenciador de materiais criptograficos (CMM) pardao, um provedor de

chaves mestras ou um token de autenticacao.

Existem dois tipos de CMMs. Os dois obtém chaves de dados (e o material criptografico
relacionado), mas de diferentes maneiras, da seguinte forma:

+ Uma CMM esta associada a um chaveiro (C ou JavaScript) ou a um provedor de chave mestra
(Java e Python). Quando o SDK solicita ao CMM materiais de criptografia ou descriptografia,
o CMM obtém os materiais de seu token de autenticacdo ou do provedor de chaves mestras.
Em Java e Python, o CMM usa as chaves mestras para gerar, criptografar ou descriptografar
as chaves de dados. Em C e JavaScript, o chaveiro gera, criptografa e retorna os materiais
criptograficos.

« Um CMM de armazenamento em cache esta associado a um cache, como um cache local e a um
CMM subjacente. Quando o SDK solicita materiais criptograficos ao CMM de armazenamento em
cache, o CMM de armazenamento em cache tenta obté-los do cache. Se ndo conseguir encontrar
uma correspondéncia, o CMM de armazenamento em cache solicitara os materiais ao seu CMM
subjacente. Depois, ele armazenara os novos materiais criptograficos antes de retorna-los ao
chamador.

Criar um gerenciador de material de criptografia de armazenamento em cache 398

AWS Encryption SDK Guia do Desenvolvedor

O CMM de armazenamento em cache também impde limites de seguranca que vocé define para
cada entrada do cache. Como os limites de seguranca sao definidos e impostos pelo CMM de
armazenamento em cache, vocé pode usar qualquer cache compativel, mesmo que o cache nao
esteja projetado para material confidencial.

O que é uma entrada de chave de dados em cache?

O cache de chaves de dados armazena chaves de dados e o material criptografico relacionado

em um cache. Cada entrada inclui os elementos listados a seguir. Vocé pode considerar essas
informacdes uteis ao decidir se deseja usar o atributo de armazenamento em cache de chave de
dados e ao configurar os limites de seguranga em um gerenciador de armazenamento em cache de
materiais criptograficos (CMM de armazenamento em cache).

Entradas armazenadas em cache para solicitacdes de criptografia

As entradas adicionadas a um cache de chave de dados como resultado de uma operacgao de
criptografia incluem os seguintes elementos:

» Chave de dados de texto nao criptografado

» Chaves de dados criptografadas (uma ou mais)

» Contexto de criptografia

» Chave de assinatura de mensagem (se uma for usada)

» Pacote de algoritmos

* Metadados, incluindo contadores de uso para impor limites de seguranca

Entradas armazenadas em cache para solicitacdes de descriptografia

As entradas adicionadas a um cache de chave de dados como resultado de uma operacgao de
descriptografia incluem os seguintes elementos:

» Chave de dados de texto nao criptografado

» Chave de verificacdo de assinatura (se uma for usada)

* Metadados, incluindo contadores de uso para impor limites de seguranca

O que é uma entrada de chave de dados em cache? 399

AWS Encryption SDK Guia do Desenvolvedor

Contexto de criptografia: como selecionar entradas do cache

Vocé pode especificar um contexto de criptografia em qualquer solicitagao para criptografar dados.
No entanto, o contexto de criptografia desempenha uma funcéo especial no armazenamento em
cache de chaves de dados. Ele permite criar subgrupos de chaves de dados em seu cache, mesmo
quando as chaves de dados forem originarias do mesmo CMM de armazenamento em cache.

Um contexto de criptografia € um conjunto de pares de chave-valor que contém dados arbitrarios

nao secretos. Durante a criptografia, o contexto de criptografia € associado de maneira criptografica
aos dados criptografados de forma que o mesmo contexto de criptografia € necessario para
descriptografar os dados. No AWS Encryption SDK, o contexto de criptografia € armazenado na
mensagem criptografada com os dados criptografados e as chaves de dados.

Ao usar um cache de chave de dados, vocé também pode usar o contexto de criptografia para
selecionar chaves de dados armazenadas em cache especificas para suas operacgdes de
criptografia. O contexto de criptografia € salvo na entrada do cache com a chave de dados (ele faz
parte do ID de entrada do cache). As chaves de dados armazenadas em cache so sao reutilizadas
quando os contextos de criptografia correspondem. Se desejar reutilizar determinadas chaves de
dados para uma solicitagao de criptografia, especifique o mesmo contexto de criptografia. Para evitar
essas chaves de dados, especifique outro contexto de criptografia.

O contexto de criptografia € sempre opcional, mas é recomendado. Se vocé nao especificar um
contexto de criptografia na solicitacdo, um contexto de criptografia vazio sera incluido no identificador
de entrada do cache e correspondido a cada solicitagao.

Meu aplicativo esta usando chaves de dados armazenadas em cache?

O armazenamento em cache de chaves de dados € uma estratégia de otimizagao muito eficaz
para determinados aplicativos e cargas de trabalho. No entanto, como isso implica algum risco,
€ importante determinar o quao eficaz é provavel que seja para a sua situagao e decidir se os
beneficios superam os riscos.

Como o armazenamento em cache de chaves de dados reutiliza chaves de dados, o efeito

mais obvio € a redugcdo do numero de chamadas para gerar novas chaves de dados. Quando o
armazenamento em cache da chave de dados é implementado, ele AWS Encryption SDK chama
a AWS KMS GenerateDataKey operagdo somente para criar a chave de dados inicial e quando
o cache falha. Mas, o armazenamento em cache melhora o desempenho de forma perceptivel
somente em aplicativos que geram varias chaves de dados com as mesmas caracteristicas,
incluindo o mesmo contexto de criptografia e pacote de algoritmos.

Contexto de criptografia: como selecionar entradas do cache 400

AWS Encryption SDK Guia do Desenvolvedor

Para determinar se sua implementagao do AWS Encryption SDK esta realmente usando chaves de
dados do cache, experimente as técnicas a seguir.

* Nos logs da infraestrutura de sua chave mestra, verifique a frequéncia de chamadas para criar
novas chaves de dados. Quando o armazenamento em cache de chaves de dados esta efetivo,
o numero de chamadas para criar novas chaves deve cair de forma perceptivel. Por exemplo,
se vocé estiver usando um provedor de chave AWS KMS mestra ou um chaveiro, pesquise
GenerateDataKeychamadas nos CloudTrail registros.

« Compare as mensagens criptografadas que o AWS Encryption SDK retorna em resposta a
diferentes solicitagdes de criptografia. Por exemplo, se vocé estiver usando o AWS Encryption
SDK for Java, compare o ParsedCiphertextobjeto de diferentes chamadas de criptografia. No AWS
Encryption SDK para JavaScript, compare o conteudo da encryptedDataKeys propriedade do
MessageHeader. Quando as chaves de dados sao reutilizadas, as chaves de dados criptografadas

na mensagem criptografada s&o idénticas.

Exemplo de armazenamento em cache de chaves de dados

Este exemplo usa armazenamento em cache de chaves de dados com um cache local para acelerar
uma aplicagcao em que os dados gerados por varios dispositivos sao criptografados e armazenados
em diferentes regides.

Nesse cenario, varios produtores de dados geram, criptografam e gravam dados em um stream
do Kinesis em cada regido. As fungdes do AWS Lambda (consumidoras) descriptografam os
streams e gravam dados de texto simples em uma tabela do DynamoDB na regido. Os produtores
e os consumidores de dados usam o AWS Encryption SDK e um AWS KMS provedor de chaves
mestras do . Para reduzir as chamadas ao KMS, cada produtor e consumidor tem seu proprio
armazenamento em cache local.

Vocé pode encontrar o cédigo-fonte desses exemplos em Java e Python. A amostra também inclui
um CloudFormation modelo que define os recursos para as amostras.

Exemplo de armazenamento em cache de chaves de dados 401

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK Guia do Desenvolvedor

Producers

(4 \ \e\u—central—l)
Amazon _ AWS KMS
Kinesis
A)‘JS Lambd\a\)
\[Consumer I \[Consumer I Consumer Consumer
£ A\ v
Amazon Amazon
DynamoDB DynamoDB
. VAN v

Resultados do cache local

A tabela a seguir mostra que um armazenamento em cache local reduz o total de chamadas ao KMS
(por segundo por regido) neste exemplo em 1% de seu valor original.

Solicitagdes de produtores

Solicitagdes por segundo por cliente Clientes por Média de
regiao solicitagdes

Resultados do cache local 402

AWS Encryption SDK Guia do Desenvolvedor

por segundo

Gerar chaves Criptogra Total (por -
de dados (us- far chave de regiao) por regiac
west-2) dados (eu-
central-1)

Sem cache 1 1 1 500 500

Cache local 1 rps/100 1 rps/100 1 rps/100 500 5
usos usos usos

Solicitagdes de consumidor
Solicitagdes por segundo por cliente Cliente por Média de
_ regiao solicitagdes

Descripto Produtores Total por segundo
grafar chave por regido
de dados

Sem cache 1 rps por 500 500 2 1.000
produtor

Cache local 1 rps por 500 5 2 10
produtor/100
usos

Exemplo de cddigo de armazenamento em cache de chaves de dados

Este exemplo de cddigo cria uma implementagao basica do armazenamento em cache de chaves
de dados com um cache local em Java e Python. O cédigo cria duas instancias de um cache local:
uma para produtores de dados que estao criptografando dados e outra para consumidores de

dados (AWS Lambda fung¢des) que estdo descriptografando dados. Para obter detalhes sobre a
implementagdo do armazenamento em cache de chaves de dados em cada linguagem, consulte a
documentagéo de Javadoc e Python para o AWS Encryption SDK.

O armazenamento em cache de chaves de dados esta disponivel para todas as linguagens de
programacao suportadas AWS Encryption SDK .

Cédigo de exemplo 403

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

Para obter exemplos completos e testados do uso do armazenamento em cache de chaves de dados
no AWS Encryption SDK, consulte:

C/C++: caching_cmm.cpp

Java: SimpleDataKeyCachingExample.java

JavaScript Navegador: caching_cmm.ts

JavaScript Node.js: caching_cmm.ts

Python: data_key_caching_basic.py

Produtor

O produtor obtém um mapa, o converte em JSON, usa o AWS Encryption SDK para criptografa-lo e
envia o registro de texto cifrado para um stream do Kinesis em cada um. Regido da AWS

O codigo define um gerenciador de materiais criptograficos de armazenamento em cache (CMM de

armazenamento em cache) e o associa a um cache local e a um provedor de chave mestrado AWS
KMS subjacente. O CMM de amazenamento em cache armazena em cache as chaves de dados

(e o material criptografico relacionado) do provedor de chaves mestras. Ele também interage com o
cache em nome do SDK e impde os limites de seguranca que vocé define.

Como a chamada para o método de criptografia especifica um CMM de armazenamento em cache,
em vez de um gerenciador de materiais criptograficos (CMM) ou provedor de chave mestra comum,

a criptografia usara o cache de chave de dados.
Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versao 3. x, vocé também pode usar o AWS KMS chaveiro hierarquico, uma solugao
alternativa de cache de materiais criptograficos.

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

*

* http://aws.amazon.com/apache2.0

Cédigo de exemplo 404

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK Guia do Desenvolvedor

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;

import com.amazonaws.encryptionsdk.CommitmentPolicy;

import com.amazonaws.encryptionsdk.CryptoResult;

import com.amazonaws.encryptionsdk.MasterKeyProvider;

import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;

import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;

import java.util.Arraylist;

import java.util.HashMap;

import java.util.list;

import java.util.Map;

import java.util.UUID;

import java.util.concurrent.TimeUnit;

import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.kinesis.KinesisClient;

import software.amazon.awssdk.services.kms.KmsClient;

/**
* Pushes data to Kinesis Streams in multiple Regions.
*/

public class MultiRegionRecordPusher {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
private static final long MAX_ENTRY_USES = 100;

private static final int MAX_CACHE_ENTRIES = 100;

private final String streamName_;

private final ArraylList<KinesisClient> kinesisClients_;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

Cédigo de exemplo 405

AWS Encryption SDK Guia do Desenvolvedor

/**
* Creates an instance of this object with Kinesis clients for all target
Regions and a cached
* key provider containing KMS master keys in all target Regions.
*/
public MultiRegionRecordPusher(final Region[] regions, final String
kmsAliasName,
final String streamName) {
streamName_ = streamName;
crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();
kinesisClients_ = new ArraylList<>();

AwsCredentialsProvider credentialsProvider =
DefaultCredentialsProvider.builder().build();

// Build KmsMasterKey and AmazonKinesisClient objects for each target region
List<KmsMasterKey> masterKeys = new ArraylList<>();
for (Region region : regions) {
kinesisClients_.add(KinesisClient.buildex()
.credentialsProvider(credentialsProvider)
.region(region)
.build());

KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
.defaultRegion(region)
.builderSupplier(() ->
KmsClient.builder().credentialsProvider(credentialsProvider))
.buildStrict(kmsAliasName)
.getMasterKey(kmsAliasName);

masterKeys.add(regionMasterKey);

// Collect KmsMasterKey objects into single provider and add cache
MasterKeyProvider<?> masterKeyProvider =
MultipleProviderFactory.buildMultiProvider(
KmsMasterKey.class,
masterKeys

);

cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

Cédigo de exemplo 406

AWS Encryption SDK Guia do Desenvolvedor

.withMasterKeyProvider(masterKeyProvider)

.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.withMessageUseLimit(MAX_ENTRY_USES)

.build();

/**
* JSON serializes and encrypts the received record data and pushes it to all
target streams.
*/
public void putRecord(final Map<Object, Object> data) {
String partitionKey = UUID.randomUUID().toString();
Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("stream", streamName_);

// JSON serialize data
String jsonData = Jackson.toJsonString(data);

// Encrypt data

CryptoResult<byte[], ?> result = crypto_.encryptData(
cachingMaterialsManager_,
jsonData.getBytes(),
encryptionContext

);

byte[] encryptedData = result.getResult();

// Put records to Kinesis stream in all Regions
for (KinesisClient regionalKinesisClient : kinesisClients_) {
regionalKinesisClient.putRecord(builder ->
builder.streamName(streamName_)
.data(SdkBytes.fromByteArray(encryptedData))
.partitionKey(partitionKey));

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Cédigo de exemplo 407

AWS Encryption SDK Guia do Desenvolvedor

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import json

import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy

from aws_encryption_sdk.key_providers.kms import KMSMasterKey

import boto3

class MultiRegionRecordPusher(object):
"""Pushes data to Kinesis Streams in multiple Regions.
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 300.0
MAX_ENTRY_MESSAGES_ENCRYPTED = 100

def __init_ (self, regions, kms_alias_name, stream_name):
self._kinesis_clients = []
self._stream_name = stream_name

Set up EncryptionSDKClient
_client =
EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Set up KMSMasterKeyProvider with cache
_key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

Add MasterKey and Kinesis client for each Region
for region in regions:
self._kinesis_clients.append(boto3.client('kinesis’,
region_name=region))
regional_master_key = KMSMasterKey(
client=boto3.client('kms', region_name=region),

Cédigo de exemplo 408

AWS Encryption SDK Guia do Desenvolvedor

key_id=kms_alias_name

)

_key_provider.add_master_key_provider(regional_master_key)

cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
self._materials_manager = CachingCryptoMaterialsManager/(
master_key_provider=_key_provider,
cache=cache,
max_age=self.MAX_ENTRY_AGE_SECONDS,
max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED

def put_record(self, record_data):
"""JSON serializes and encrypts the received record data and pushes it to

all target streams.

:param dict record_data: Data to write to stream
Kinesis partition key to randomize write load across stream shards
partition_key = uuid.uuid4().hex

encryption_context = {'stream': self._stream_name}

JSON serialize data
json_data = json.dumps(record_data)

Encrypt data

encrypted_data, _header = _client.encrypt(
source=json_data,
materials_manager=self._materials_manager,
encryption_context=encryption_context

Put records to Kinesis stream in all Regions
for client in self._kinesis_clients:
client.put_record(
StreamName=self._stream_name,
Data=encrypted_data,
PartitionKey=partition_key

Cédigo de exemplo 409

AWS Encryption SDK Guia do Desenvolvedor

Consumidor

O consumidor de dados € uma fungao do AWS Lambda acionada por eventos do Kinesis. Ele
descriptografa e desserializa cada registro e grava o registro de texto simples em uma tabela do
Amazon DynamoDB na mesma regiéo.

Como o cédigo do produtor, o cédigo do consumidor habilita 0 armazenamento em cache da chave
de dados usando um gerenciador de materiais criptograficos de cache (caching CMM) em chamadas
para o método de descriptografia.

O codigo Java cria um provedor de chave mestra no modo estrito com um especificado AWS KMS
key. O modo estrito ndo é necessario ao descriptografar, mas € uma pratica recomendada. O cédigo
Python usa o modo de descoberta, que permite AWS Encryption SDK usar qualquer chave de
empacotamento que criptografe uma chave de dados para descriptografa-la.

Java

O exemplo a seguir usa a versao 2. x do AWS Encryption SDK for Java. Versao 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versao 3. x, vocé também pode usar o AWS KMS chaveiro hierarquico, uma solugao

alternativa de cache de materiais criptograficos.

Esse codigo cria um provedor de chave mestra para descriptografia no modo estrito. O AWS
Encryption SDK pode usar somente o AWS KMS keys que vocé especificar para descriptografar
sua mensagem.

/*
* Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use
this file except
* in compliance with the License. A copy of the License is located at

*

* http://aws.amazon.com/apache2.0

*

* or in the "license" file accompanying this file. This file is distributed on an
"AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

* specific language governing permissions and limitations under the License.

*/

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

Cédigo de exemplo 410

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK Guia do Desenvolvedor

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

/**

com.amazonaws.encryptionsdk.AwsCrypto;
com.amazonaws.encryptionsdk.CommitmentPolicy;
com.amazonaws.encryptionsdk.CryptoResult;
com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
com.amazonaws.services.lambda.runtime.Context;
com.amazonaws.services.lambda.runtime.events.KinesisEvent;
com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
com.amazonaws.util.BinaryUtils;
java.io.UnsupportedEncodingException;

java.nio.ByteBuffer;

java.nio.charset.StandardCharsets;

java.util.concurrent.TimeUnit;
software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
software.amazon.awssdk.enhanced.dynamodb.TableSchema;

* Decrypts all incoming Kinesis records and writes records to DynamoDB.

*/
public

class LambdaDecryptAndWrite {

private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
private static final int MAX_CACHE_ENTRIES = 100;

private final CachingCryptoMaterialsManager cachingMaterialsManager_;
private final AwsCrypto crypto_;

private final DynamoDbTable<Item> table_;

/**
* Because the cache is used only for decryption, the code doesn't set the max
bytes or max
* message security thresholds that are enforced only on on data keys used for
encryption.
*/
public LambdaDecryptAndWrite() {
String kmsKeyArn = System.getenv("CMK_ARN");
cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

.withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
.withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
.withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
.build();

Cadigo de exemplo 411

AWS Encryption SDK Guia do Desenvolvedor

crypto_ = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
.build();

String tableName = System.getenv("TABLE_NAME");
DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

/**
* @param event
* @param context
*/
public void handleRequest(KinesisEvent event, Context context)
throws UnsupportedEncodingException {
for (KinesisEventRecord record : event.getRecords()) {
ByteBuffer ciphertextBuffer = record.getKinesis().getData();
byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

// Decrypt and unpack record
CryptoResult<byte[], ?> plaintextResult =
crypto_.decryptData(cachingMaterialsManager_,
ciphertext);

// Verify the encryption context value
String streamArn = record.getEventSourceARN();
String streamName = streamArn.substring(streamArn.index0f("/") + 1);
if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
throw new IllegalStateException("Wrong Encryption Context!");

// Write record to DynamoDB

String jsonItem = new String(plaintextResult.getResult(),
StandardCharsets.UTF_8);

System.out.println(jsonItem);

table_.putItem(Item.fromJSON(jsonItem));

private static class Item {

static Item fromJSON(String jsonText) {

Cadigo de exemplo 412

AWS Encryption SDK Guia do Desenvolvedor

// Parse JSON and create new Item
return new Item();

Python

Esse codigo Python é descriptografado com um provedor de chave mestra no modo de
descoberta. Ele permite ao AWS Encryption SDK usar qualquer chave de encapsulamento
que criptografe uma chave de dados para descriptografa-la. O modo estrito, no qual vocé
especifica as chaves de encapsulamento que podem ser usadas para decodificacdo, € uma
pratica recomendada.

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the

specific language governing permissions and limitations under the License.

import base6b4

import json

import logging

import os

from aws_encryption_sdk import EncryptionSDKClient,
DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
LocalCryptoMaterialsCache, CommitmentPolicy

import boto3

_LOGGER = logging.getlLogger(__name__)
_is_setup = False

CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

Cédigo de exemplo 413

AWS Encryption SDK

Guia do Desenvolvedor

def

setup():

"""Sets up clients that should persist across Lambda invocations.
global encryption_sdk_client

encryption_sdk_client =

EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

def

global materials_manager
key_provider = DiscoveryAwsKmsMasterKeyProvider()
cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

Because the cache is used only for decryption, the code doesn't set
the max bytes or max message security thresholds that are enforced
only on on data keys used for encryption.
materials_manager = CachingCryptoMaterialsManager(
master_key_provider=key_provider,
cache=cache,
max_age=MAX_ENTRY_AGE_SECONDS
)
global table
table_name = os.environ.get('TABLE_NAME')
table = boto3.resource('dynamodb').Table(table_name)
global _is_setup
_is_setup = True

lambda_handler(event, context):

"""Decrypts all incoming Kinesis records and writes records to DynamoDB."""

_LOGGER.debug('New event:"')
_LOGGER.debug(event)
if not _is_setup:
setup()
with table.batch_writer() as batch:
for record in event.get('Records', []):
Record data baseb4-encoded by Kinesis
ciphertext = baseb64.b64decode(record['kinesis']['data'])

Decrypt and unpack record

plaintext, header = encryption_sdk_client.decrypt(
source=ciphertext,
materials_manager=materials_manager

)

item = json.loads(plaintext)

Cadigo de exemplo

414

AWS Encryption SDK Guia do Desenvolvedor

Verify the encryption context value

stream_name = record['eventSourceARN'].split('/', 1)[1]

if stream_name != header.encryption_context['stream']:
raise ValueError('Wrong Encryption Context!')

Write record to DynamoDB
batch.put_item(Item=item)

Exemplo de armazenamento em cache de chave de dados: modelo
CloudFormation

Esse CloudFormation modelo configura todos os AWS recursos necessarios para reproduzir o
exemplo de armazenamento em cache da chave de dados.

JSON

"Parameters": {
"SourceCodeBucket": {
"Type": "String",
"Description": "S3 bucket containing Lambda source code zip files"
.
"PythonLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
.
"PythonLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"
},
"JavalLambdaS3Key": {
"Type": "String",
"Description": "S3 key containing Python Lambda source code zip file"
},
"JavalLambdaObjectVersionId": {
"Type": "String",
"Description": "S3 version id for S3 key containing Python Lambda source
code zip file"

}I

CloudFormation modelo 415

AWS Encryption SDK

Guia do Desenvolvedor

"KeyAliasSuffix": {
"Type": "String",

"Description": "Suffix to use for KMS key Alias (ie:

KeyAliasSuffix)"
},
"StreamName": {
"Type": "String",
"Description'": "Name to use for Kinesis Stream"

iy

"Resources": {
"InputStream": {
"Type": "AWS::Kinesis::Stream",
"Properties": {
"Name": {
"Ref": "StreamName"
},
"ShardCount": 2

I
"PythonLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

iy

"PythonLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {

alias/

CloudFormation modelo

416

AWS Encryption SDK

Guia do Desenvolvedor

"AssumeRolePolicyDocument": {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
I
"Action": "sts:AssumeRole"
}

},
"ManagedPolicyArns": [

"arn:aws:iam::aws:policy/service-role/

AWSLambdaBasicExecutionRole"

1,
"Policies": [
{
"PolicyName": "PythonLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}"
}
},
{
"Effect": "Allow",
"Action": [
"dynamodb:PutItem"
1,
"Resource": {
"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${PythonLambdaOutputTable}*"
}
},
{
CloudFormation modelo 417

AWS Encryption SDK Guia do Desenvolvedor

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

iF
"Resource": {
"Fn::Sub": "arn:aws:kinesis:${AWS
${AWS: :AccountId}:stream/${InputStream}"
}

iy
"PythonLambdaFunction": {

"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Python consumer",
"Runtime": "python2.7",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"PythonLambdaRole",

"Arn"
]
},
"Handler":
"aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
},
"S3Key": {
"Ref": "PythonLambdaS3Key"
I
"S30bjectVersion": {
"Ref": "PythonLambdaObjectVersionId"
}
I

: :Region}:

CloudFormation modelo

418

AWS Encryption SDK

Guia do Desenvolvedor

"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "PythonLambdaOutputTable"

},
"PythonLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"
I
"FunctionName": {
"Ref": "PythonLambdaFunction"
},
"StartingPosition": "TRIM_HORIZON"

I
"JavalLambdaOutputTable": {
"Type": "AWS::DynamoDB: :Table",
"Properties": {
"AttributeDefinitions": [

{
"AttributeName": "id",
"AttributeType": "S"
}
1,
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}
1,

"ProvisionedThroughput": {
"ReadCapacityUnits": 1,
"WriteCapacityUnits": 1

CloudFormation modelo

419

AWS Encryption SDK

Guia do Desenvolvedor

},
"JavaLambdaRole": {
"Type": "AWS::IAM::Role",
"Properties": {
"AssumeRolePolicyDocument": {

"lambda.amazonaws.com"

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service":
I
"Action": "sts:AssumeRole"
}
]

},
"ManagedPolicyArns": [

"arn:aws:iam::aws:policy/service-role/

AWSLambdaBasicExecutionRole"

1,
"Policies": [
{
"PolicyName": "JavalLambdaAccess",
"PolicyDocument": {
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"dynamodb:DescribeTable",
"dynamodb:BatchWriteItem"

1,

"Resource": {

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${JavaLambdaOutputTable}"

}

},
{

"Effect": "Allow",

"Action": [
"dynamodb:PutItem"

1,

"Resource": {

CloudFormation modelo

420

AWS Encryption SDK Guia do Desenvolvedor

"Fn::Sub": "arn:aws:dynamodb:${AWS: :Region}:
${AWS: :AccountId}:table/${JavaLambdaOutputTable}*"
}
I

{

"Effect": "Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": {

"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

}

},
"JavaLambdaFunction": {
"Type": "AWS::Lambda::Function",
"Properties": {
"Description": "Java consumer",
"Runtime": "java8",
"MemorySize": 512,
"Timeout": 90,
"Role": {
"Fn::GetAtt": [
"JavalLambdaRole",

"Azn"
]
I
"Handler":
""com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite: :handleRequest",
"Code": {
"S3Bucket": {
"Ref": "SourceCodeBucket"
I
"S3Key": {

"Ref": "JavalLambdaS3Key"

CloudFormation modelo 421

AWS Encryption SDK Guia do Desenvolvedor

3,
"S30bjectVersion": {
"Ref": "JavalLambdaObjectVersionId"

},
"Environment": {
"Variables": {
"TABLE_NAME": {
"Ref": "JavalLambdaOutputTable"

I
"CMK_ARN": {
"Fn::GetAtt": [
"RegionKinesisCMK",
"Azn"
]
}

I
"JavalLambdaSourceMapping": {
"Type": "AWS::Lambda::EventSourceMapping",
"Properties": {
"BatchSize": 1,
"Enabled": true,
"EventSourceArn": {
"Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}"

I
"FunctionName": {

"Ref": "JavalLambdaFunction"
1,

"StartingPosition": "TRIM_HORIZON"

3,
"RegionKinesisCMK": {
"Type'": "AWS: :KMS: :Key",
"Properties": {
"Description": "Used to encrypt data passing through Kinesis Stream
in this region",
"Enabled": true,
"KeyPolicy": {
"Version": "2012-10-17",
"Statement": [

CloudFormation modelo 422

AWS Encryption SDK

Guia do Desenvolvedor

"Effect": "Allow",
"Principal": {
"AWS": {

"Fn::Sub": "arn:aws:iam::${AWS: :AccountId}:root"

},

"Action": [
"kms:Encrypt",
"kms:GenerateDataKey",
"kms:CreateAlias",
"kms:DeleteAlias",
"kms:DescribeKey",
"kms:DisableKey",
"kms:EnableKey",
"kms:PutKeyPolicy",
"kms:ScheduleKeyDeletion",
"kms:UpdateAlias",
"kms :UpdateKeyDescription"

1,

"Resource": "*"

"Effect": "Allow",
"Principal": {
"AWS": [
{
"Fn::GetAtt": [
"PythonLambdaRole",

"Arn"
]
I
{
"Fn::GetAtt": [
"JavalLambdaRole",
"Arn"
]
}
]
I
"Action": "kms:Decrypt",
"Resource": "*"

CloudFormation modelo

423

AWS Encryption SDK Guia do Desenvolvedor

},
"RegionKinesisCMKAlias": {
"Type": "AWS::KMS::Alias",
"Properties": {
"AliasName": {
"Fn::Sub": "alias/${KeyAliasSuffix}"
},
"TargetKeyId": {
"Ref": "RegionKinesisCMK"

YAML

Parameters:
SourceCodeBucket:
Type: String
Description: S3 bucket containing Lambda source code zip files
PythonLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
PythonLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
JavaLambdaS3Key:
Type: String
Description: S3 key containing Python Lambda source code zip file
JavalLambdaObjectVersionId:
Type: String
Description: S3 version id for S3 key containing Python Lambda source code
zip file
KeyAliasSuffix:
Type: String
Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
StreamName:
Type: String
Description: Name to use for Kinesis Stream

CloudFormation modelo 424

AWS Encryption SDK

Guia do Desenvolvedor

Resources:
InputStream:
Type: AWS::Kinesis::Stream
Properties:
Name: !Ref StreamName
ShardCount: 2
PythonLambdaOutputTable:
Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1
PythonLambdaRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service:

ManagedPolicyAzrns:

lambda.amazonaws.com
Action: sts:AssumeRole

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:

PolicyName: PythonLambdaAccess

PolicyDocument:

Version: 2012-10-17

Statement:

Effect: Allow

Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem

CloudFormation modelo

425

AWS Encryption SDK

Guia do Desenvolvedor

Resource:
${AWS: :

Effect: Allow
Action:

1Sub arn:aws:dynamodb:${AWS: :Region}:
AccountId}:table/${PythonLambdaOutputTable}

- dynamodb:PutItem

Resource:
${AWS: :

Effect: Allow

Action:
- kinesis
- kinesis
- kinesis
- kinesis
Resource:
${AWS: :AccountId}:stream/${InputStream}
PythonLambdaFunction:
Type: AWS::Lambda::Function

Properties:
Description: Python consumer
Runtime: python2.7
MemorySize: 512
Timeout: 90
Role:
Handler:

1Sub arn:aws:dynamodb:${AWS: :Region}:
AccountId}:table/${PythonLambdaOutputTable}*

:GetRecords
:GetShardIterator
:DescribeStream
:ListStreams

ISub arn:aws:kinesis:${AWS::Region}:

!GetAtt PythonLambdaRole.Azrn

aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler

Code:
S3Bucket:
S3Key: !Ref PythonLambdaS3Key
S30bjectVersion:
Environment:
Variables:
TABLE_NAME :
PythonLambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping

IRef SourceCodeBucket

!Ref PythonLambdaObjectVersionId

!Ref PythonLambdaOutputTable

Properties:
BatchSize: 1
Enabled: true
EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS: :AccountId}:stream/${InputStream}
FunctionName: !Ref PythonLambdaFunction

StartingPosition: TRIM_HORIZON
JavalLambdaOutputTable:

CloudFormation modelo

426

AWS Encryption SDK

Guia do Desenvolvedor

Type: AWS::DynamoDB::Table
Properties:
AttributeDefinitions:
AttributeName: id
AttributeType: S
KeySchema:
AttributeName: id
KeyType: HASH
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

JavalambdaRole:

${AWS: :

Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Principal:
Service: lambda.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:

- arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole

Policies:
PolicyName: JavalLambdaAccess
PolicyDocument:
Version: 2012-10-17
Statement:
Effect: Allow
Action:
- dynamodb:DescribeTable
- dynamodb:BatchWriteItem
Resource: !Sub arn:aws:dynamodb:${AWS
AccountId}:table/${JavaLambdaOutputTable}
Effect: Allow
Action:
- dynamodb:PutItem

: :Region}:

CloudFormation modelo

427

AWS Encryption SDK

Guia do Desenvolvedor

Resource:

1Sub arn:aws:dynamodb:${AWS: :Region}:

${AWS: :AccountId}:table/${JavalLambdaOutputTable}*

Effect: Allow

Action:
- kinesis
- kinesis
- kinesis
- kinesis
Resource:
${AWS: :AccountId}:stream/${InputStream}
JavalLambdaFunction:
Type: AWS::Lambda::Function
Properties:

Description: Java consumer
Runtime: java8

MemorySize: 512

Timeout: 90

Role: !GetAtt JavalLambdaRole.Arn
Handler:

com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndwWrite: :handleRequest

Code:
S3Bucket:
S3Key: !Ref JavalambdaS3Key
S30bjectVersion:
Environment:
Variables:
TABLE_NAME :
CMK_ARN:
JavalambdaSourceMapping:
Type: AWS::Lambda::EventSourceMapping
Properties:
BatchSize: 1
Enabled: true
EventSourceArn:
${AWS: :AccountId}:stream/${InputStream}

:GetRecords
:GetShardIterator
:DescribeStream
:ListStreams

ISub arn:aws:kinesis:${AWS::Region}:

IRef SourceCodeBucket

!Ref JavalLambdaObjectVersionId

!Ref JavalLambdaOutputTable
!GetAtt RegionKinesisCMK.Azrn

1Sub arn:aws:kinesis:${AWS::Region}:

FunctionName: !Ref JavalLambdaFunction
StartingPosition: TRIM_HORIZON
RegionKinesisCMK:
Type: AWS::KMS: :Key
Properties:

Description: Used to encrypt data
region
Enabled: true

passing through Kinesis Stream in this

CloudFormation modelo

428

AWS Encryption SDK

Guia do Desenvolvedor

KeyPolicy:
Version: 2012-10-17
Statement:

Effect: Allow
Principal:

AWS: !Sub arn:aws:iam::${AWS::AccountId}:root

Action:

Data plane actions

- kms:Encrypt

- kms:GenerateDataKey

Control plane actions

- kms:CreateAlias

- kms:DeleteAlias

- kms:DescribeKey

- kms:DisableKey

- kms:EnableKey

- kms:PutKeyPolicy

- kms:ScheduleKeyDeletion

- kms:UpdateAlias

- kms:UpdateKeyDescription
Resource: '*'

Effect: Allow
Principal:
AWS:
- !GetAtt PythonLambdaRole.Arn
- lGetAtt JavalLambdaRole.Arn
Action: kms:Decrypt
Resource: '*'
RegionKinesisCMKAlias:
Type: AWS::KMS::Alias
Properties:
AliasName: !Sub alias/${KeyAliasSuffix}
TargetKeyId: !Ref RegionKinesisCMK

CloudFormation modelo

429

AWS Encryption SDK Guia do Desenvolvedor

Versoes do AWS Encryption SDK

As implementagdes da AWS Encryption SDK linguagem usam versionamento semantico para facilitar

a identificacdo da magnitude das mudangas em cada versdo. Uma alteragdo no numero da versao
principal, como de 1.x. x para 2.x.x, indica uma alteragao significativa que provavelmente exigira
alteragdes no codigo e uma implantagao planejada. Alteragdes significativas em uma nova versao
podem néo afetar todos os casos de uso. Consulte as notas de langamento para ver se vocé foi
afetado. Uma alteracdo em uma versao secundaria, como de x.1.x para x.2.x, € sempre compativel
com versoes anteriores, mas pode incluir elementos descontinuados.

Sempre que possivel, use a versao mais recente do AWS Encryption SDK na linguagem de
programacao escolhida. A politica de manutencao e suporte para cada versao € diferente para cada

implementagao de linguagem de programacao. Para obter detalhes sobre as versdes suportadas
em sua linguagem de programacao preferida, consulte o SUPPORT_POLICY.xrst arquivo em seu
GitHubrepositorio.

Quando as atualizagdes incluem novos atributos que exigem configuragcédo especial para evitar erros
de criptografia ou descriptografia, fornecemos uma versao intermediaria e instru¢cdes detalhadas para
usa-la. Por exemplo, as versdes 1.7.x e 1.8.x foram projetadas para serem versdes transitorias que
ajudam vocé a atualizar de versdes anteriores a 1.7.x para as versdes 2.0.x e posteriores. Para obter
detalhes, consulte Migrando seu AWS Encryption SDK.

(® Note

O x em um numero de versao representa qualquer patch da versao principal e secundaria.
Por exemplo, a versao 1.7.x representa todas as versdes que comecam com 1.7, incluindo
1.71e1.7.9.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

As tabelas a seguir fornecem uma viséo geral das principais diferengas entre as versdes suportadas
do AWS Encryption SDK para cada linguagem de programagao.

430

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

C

Para obter uma descricdo detalhada de todas as alteracées, consulte o CHANGELOG.md no
repositorio em. aws-encryption-sdk-c GitHub

Versao principal Detalhes Fase do ciclo de vida
da versao principal do
SDK
1.x 1,0 Versao inicial. End-of-Support fase
1,7 Atualizacées do AWS

Encryption SDK que
ajudam os usuarios
de versdes anteriore
s a atualizarem para
as versoes 2.0. x e
depois. Para obter
mais informacoes,
consulte a versao 1.7.
X.

2.X 2,0 Atualizacbées do AWS Disponibilidade geral
Encryption SDK. Para (GA)
obter mais informacd

es, consulte a versao
2.0. x.

2.2 Melhorias no
processo de decodific
acao de mensagens.

2.3 Adiciona suporte para
chaves AWS KMS
multirregionais.

C 431

https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Guia do Desenvolvedor

C# /.NET

Para obter uma descricdo detalhada de todas as alteracées, consulte o CHANGELOG.md no

repositorio em. aws-encryption-sdk-net GitHub

Versao principal Detalhes
3.x 3.1.0
4.x 4,0

Versao inicial.

Adiciona suporte ao
AWS KMS chaveiro
hierarquico, ao
contexto de criptogra
fia necessario (CMM)
e aos chaveiros RSA
assimétricos. AWS
KMS

Interface de linha de comando (CLI)

Fase do ciclo de vida
da versao principal do
SDK

Fim do suporte

A versao 3.x do AWS
Encryption SDK

para.NET entrou
em End of Support;

atualize para 4.x.

Disponibilidade geral
(GA)

Para obter uma descricdo detalhada de todas as alteragdes, consulte Versoes da CLI AWS de
criptografia e o Changelog.rst no repositério em. aws-encryption-sdk-cli GitHub

Versao principal Detalhes

1.x 1,0

Versao inicial.

Fase do ciclo de vida
da versao principal do
SDK

End-of-Support fase

C#/.NET

432

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

1,7 Atualizagdes do AWS
Encryption SDK que
ajudam os usuarios
de versdes anteriore
s a atualizarem para
as versoes 2.0. x e
depois. Para obter
mais informacgdes,
consulte a versao 1.7.
X.

2.X 2,0 Atualizagdes do AWS End-of-Support fase
Encryption SDK. Para

obter mais informagd
es, consulte a versao
2.0. x.

2.1 Remove o - -
discovery
parametro e o
substitui pelo
discovery atributo
do --wrapping-
keys parametro.

A versdo 2.1.0 da

CLI de AWS criptogra
fia € equivalente
aversado 2.0 em
outras linguagens de
programacao.

2.2 Melhorias no
processo de decodific
acao de mensagens.

Interface de linha de comando (CLI) 433

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Guia do Desenvolvedor

3.xX 3.0
4.x 4,0
4.1
4.2

Adiciona suporte para End-of-Support fase
chaves AWS KMS
multirregionais.

A CLI de AWS Disponibilidade geral
criptografia nao é (GA)

mais compativel com

Python 2 ou Python

3.4. A partir da versao

principal 4. x da CLI

de AWS criptografia,

somente o Python

3.5 ou posterior é

suportado.

A CLI AWS de
criptografia nao
oferece mais suporte
ao Python 3.5. A partir
da versao 4.1. x da
CLI de AWS criptogra
fia, somente o Python
3.6 ou posterior é
suportado.

A CLI AWS de
criptografia nao
oferece mais suporte
ao Python 3.6. A partir
da versao 4.2. x da
CLI de AWS criptogra
fia, somente o Python
3.7 ou posterior é
suportado.

Interface de linha de comando (CLI)

434

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Guia do Desenvolvedor

Java

Para obter uma descricdo detalhada de todas as alteracdes, consulte o Changelog.rst no repositorio

em. aws-encryption-sdk-java GitHub

Versao principal Detalhes
1.x 1,0

1.3

1.6.1

1,7

Fase do ciclo de vida
da versao principal do
SDK

Versao inicial. End-of-Support fase

Adiciona suporte

ao gerenciador de
materiais criptogra
ficos e ao armazenam
ento em cache de
chaves de dados.
Transferido para a
geragao IV determini
stica.

Deprecia AwsCrypto
.encryptS
tring() e
AwsCrypto
.decryptS
tring() e

os substitui por

e. AwsCrypto
.encryptD

ata() AwsCrypto
.decryptData()

Atualizacbes do AWS
Encryption SDK que
ajudam os usuarios
de versdes anteriore
s a atualizarem para

Java

435

https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-java/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Guia do Desenvolvedor

2.X

2,0

2.2

2.3

24

as versoes 2.0. x e
depois. Para obter
mais informacdes,

consulte a versao 1.7.

X.

Atualizagdes do AWS
Encryption SDK. Para
obter mais informagd

es, consulte a versao
2.0. x.

Melhorias no
processo de decodific
acao de mensagens.

Adiciona suporte para
chaves AWS KMS
multirregionais.

Adiciona suporte para
AWS SDK for Java
2.X.

Disponibilidade geral
(GA)

A versao 2.x do AWS
Encryption SDK for
Java entrara no modo
de manutencao em
2024.

Java

436

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

3.X 3.0 Integra-se AWS Disponibilidade geral
Encryption SDK for (GA)
Java com a Material
Providers Library
(MPL).

Adiciona suporte

para chaveiros RSA
simétricos e assimétri
cos, chaveiros AWS
KMS ECDH, AWS
KMS chaveiros AWS
KMS hierarquicos,
chaveiros AES brutos,
chaveiros RSA brutos,
chaveiros ECDH
brutos, chaveiros
multiplos e o contexto
de criptografia
necessario CMM.

Go

Para obter uma descricdo detalhada de todas as alteracées, consulte o CHANGELOG.md no
diretério Go do repositorio em. aws-encryption-sdk GitHub

Versao principal Detalhes Fase do ciclo de vida
da versao principal do
SDK

0,1. x 0.1.0 Versao inicial. Disponibilidade geral
(GA)

Go 437

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

JavaScript

Para obter uma descricdo detalhada de todas as alteracées, consulte o CHANGELOG.md no
repositorio em. aws-encryption-sdk-javascript GitHub

Versao principal Detalhes Fase do ciclo de vida

da versao principal do
SDK

1.x 1,0 Versao inicial. End-of-Support fase

1,7 Atualizacées do AWS
Encryption SDK que
ajudam os usuarios
de versdes anteriore
s a atualizarem para
as versdes 2.0. x e
depois. Para obter
mais informacoes,
consulte a versao 1.7.
X.

2.X 2,0 Atualizacbées do AWS End-of-Support fase
Encryption SDK. Para
obter mais informacd

es, consulte a versao
2.0. x.

2.2 Melhorias no
processo de decodific
acao de mensagens.

2.3 Adiciona suporte para
chaves AWS KMS
multirregionais.

3.x 3.0 Remove a cobertura Manutencéo
de Cl do Node

JavaScript 438

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Guia do Desenvolvedor

4.x 4,0

Python

10. Atualiza as
dependéncias para
gue nao sejam mais
compativeis com o
Node 8 e o Node 10.

Requer a versao 3
AWS Encryption SDK
para JavaScript do s
kms-client para
usar o AWS KMS
chaveiro.

O suporte para a
versao 3.x do AWS
Encryption SDK para
JavaScript terminara
em 17 de janeiro de
2024.

Disponibilidade geral
(GA)

Para obter uma descrigéo detalhada de todas as alteragdes, consulte o Changelog.rst no repositério

em. aws-encryption-sdk-python GitHub

Versao principal Detalhes
1.x 1,0

1.3

1,7

Versao inicial.

Adiciona suporte
ao gerenciador de
materiais criptogra

ficos e a0 armazenam

ento em cache de
chaves de dados.
Transferido para a
geracgao IV determini
stica.

Atualizacdes do AWS
Encryption SDK que

Fase do ciclo de vida
da versao principal do
SDK

End-of-Support fase

Python

439

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-python/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK

Guia do Desenvolvedor

2.X

3.

2,0

2.2

2.3

3.0

ajudam os usuarios
de versoes anteriore
s a atualizarem para
as versdes 2.0. x e
depois. Para obter
mais informacdes,

consulte a versao 1.7.

X.

Atualizagdes do AWS
Encryption SDK. Para
obter mais informagd

es, consulte a versao
2.0. x.

Melhorias no
processo de decodific
acao de mensagens.

Adiciona suporte para
chaves AWS KMS
multirregionais.

O AWS Encryption
SDK for Python nao
oferece mais suporte
ao Python 2 ou ao
Python 3.4. A partir
da versao principal 3.
x do AWS Encryptio
n SDK for Python,
somente o Python
3.5 ou posterior é
suportado.

End-of-Support fase

Disponibilidade geral

(GA)

Python

440

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

4.x 4,0 Integra-se AWS Disponibilidade geral
Encryption SDK for (GA)
Python com a Material
Providers Library
(MPL).

Rust

Para uma descricao detalhada de todas as alteracgoes, consulte 0o CHANGELOG.md no diretério Rust
do repositorio em. aws-encryption-sdk GitHub

Versao principal Detalhes Fase do ciclo de vida
da versao principal do
SDK

1.x 1,0 Versao inicial. Disponibilidade geral
(GA)

Detalhes da versao

A lista a seguir descreve as principais diferencas entre as versdes suportadas do AWS Encryption
SDK.

Topicos

* Versoes anteriores a 1.7.x

* Versao 1.7 .x

Versao 2.0x

Versao 2.2x

Versao 2.3x

Rust 441

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Versoes anteriores a 1.7.x

® Note

Todos os 1. x. As versdes x do AWS Encryption SDK estdo em end-of-supportfase. Atualize
para a versao mais recente disponivel do AWS Encryption SDK para sua linguagem de
programacao assim que possivel. Para atualizar de uma AWS Encryption SDK versao
anterior a 1.7. x, vocé deve primeiro atualizar para 1.7. x. Para obter detalhes, consulte
Migrando seu AWS Encryption SDK.

Versdes AWS Encryption SDK anteriores a 1.7. x fornecem recursos de seguranga importantes,
incluindo criptografia com o algoritmo Advanced Encryption Standard in Galois/Counter Mode
(AES-GCM), uma fungao de derivacao de extract-and-expand chave (HKDF) baseada em HMAC,
assinatura e uma chave de criptografia de 256 bits. No entanto, elas ndo sdo compativeis com as
praticas recomendadas por nés, incluindo confirmacao de chave.

Versao 1.7.x

® Note

Todos os 1. x. As versdes x do AWS Encryption SDK estdo em end-of-supportfase.

Versao 1.7. x foi projetado para ajudar os usuarios de versdes anteriores do a atualizar AWS
Encryption SDK para as versdes 2.0. x e depois. Se vocé é novo no AWS Encryption SDK,
pode pular essa versao e comegar com a versao mais recente disponivel em sua linguagem de
programacao.

A versao 1.7.x é totalmente compativel com versdes anteriores; ela ndo introduz nenhuma alteragao
significativa nem altera o comportamento do AWS Encryption SDK. Também € compativel com
versdes posteriores. Permite que vocé atualize seu codigo para que ele seja compativel com a
versao 2.0.x.. Ela inclui novos atributos, mas n&ao os habilita completamente. E requer valores de
configuracado que evitem que vocé adote imediatamente todos os novos atributos até que esteja
pronto para fazer isso.

A versao 1.7.x inclui as seguintes alteragdes:

Versoes anteriores a 1.7.x 442

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS atualizagdes do provedor de chave mestra (obrigatério)

Versao 1.7. x introduz novos construtores no AWS Encryption SDK for Java e AWS Encryption
SDK for Python que criam explicitamente provedores de chaves AWS KMS mestras no modo
estrito ou no modo de descoberta. Esta versao adiciona alteracdes semelhantes a interface
de AWS Encryption SDK linha de comando (CLI). Para obter detalhes, consulte Atualizando
provedores de chaves AWS KMS mestras.

* No modo estrito, os provedores de chaves mestras do AWS KMS exigem uma lista de
chaves de encapsulamento e criptografam e descriptografam somente com as chaves de
encapsulamento que vocé especificar. Essa € uma pratica recomendada do AWS Encryption
SDK que garante que vocé use as chaves de encapsulamento que pretende usar.

* No modo de descoberta, os provedores de chaves mestras do AWS KMS nao aceitam
nenhuma chave de encapsulamento. Vocé nao pode usa-los para criptografar. Ao
descriptografar, eles podem usar qualquer chave de encapsulamento para descriptografar uma
chave de dados criptografada. No entanto, vocé pode limitar as chaves de encapsulamento
usadas para descriptografia aquelas presentes em Contas da AWS especificas. Esse filtro de
descoberta € opcional, mas é uma pratica recomendada que incentivamos.

Os construtores que criam versdes anteriores dos provedores de chaves AWS KMS mestras
estdo obsoletos na versao 1.7. x e removido na versao 2.0. x. Esses construtores instanciam
provedores de chave mestra que criptografam usando as chaves de encapsulamento que vocé
especificar. No entanto, eles descriptografam chaves de dados criptografadas usando a chave
de encapsulamento que as criptografou, independentemente das chaves de encapsulamento
especificadas. Os usuarios podem decifrar mensagens sem querer com chaves de agrupamento
qgue nao pretendem usar, inclusive em outras regides. AWS KMS keys Contas da AWS

Nao ha alteracdes nos construtores das chaves AWS KMS mestras. Ao criptografar e
descriptografar, as chaves AWS KMS mestras usam somente o AWS KMS key que vocé
especifica.

AWS KMS atualizagdes de chaveiros (opcional)

Versao 1.7. x adiciona um novo filtro as AWS Encryption SDK para JavaScript implementagcdes
AWS Encryption SDK for C e que limita os chaveiros de AWS KMS descoberta a determinados.
Contas da AWS Esse novo filtro de conta é opcional, mas € uma pratica recomendada que
apoiamos. Para obter detalhes, consulte Atualizando AWS KMS chaveiros.

Versao 1.7.x 443

AWS Encryption SDK Guia do Desenvolvedor

Nao ha alteracdes nos construtores dos AWS KMS chaveiros. AWS KMS Os chaveiros padrao se
comportam como fornecedores de chaves mestras no modo estrito. AWS KMS os chaveiros de
descoberta sao criados explicitamente no modo de descoberta.

Passando um ID de chave para AWS KMS Decrypt

A partir da versao 1.7. x, ao descriptografar chaves de dados criptografadas, o AWS Encryption
SDK sempre especifica an AWS KMS key em suas chamadas para a operacao Decrypt.

AWS KMS O AWS Encryption SDK obtém o valor do ID da chave a AWS KMS key partir dos
metadados em cada chave de dados criptografada. Esse atributo ndo requer alteragdes no
codigo.

Nao AWS KMS key é necessario especificar o ID da chave do para descriptografar o texto
cifrado que foi criptografado com uma chave KMS de criptografia simétrica, mas € uma pratica
recomendada.AWS KMS Assim como especificar chaves de agrupamento em seu provedor
de chaves, essa pratica garante que AWS KMS apenas descriptografe usando a chave de
agrupamento que vocé pretende usar.

Decriptografar texto cifrado com confirmacéao de chave

A versao 1.7x pode descriptografar texto cifrado criptografado com ou sem confirmacao de

chave. No entanto, ela ndo pode criptografar texto cifrado com confirmag&o de chave. Essa
propriedade permite que vocé implante totalmente aplicagdes que podem descriptografar texto
cifrado criptografado com confirmagéo de chave antes mesmo de encontrem esse tipo de texto
cifrado. Como essa versao descriptografa mensagens que sao criptografadas sem confirmagao
de chave, vocé nao precisa recriptografar nenhum texto cifrado.

Para implementar esse comportamento, versao 1.7. x inclui uma nova configuragao de

politica de compromisso que determina se eles AWS Encryption SDK podem criptografar ou
descriptografar com compromisso de chave. Na versao 1.7. x, o Unico valor valido para a
politica de compromisso, ForbidEncryptAllowDecrypt, € usado em todas as operagoes de
criptografia e descriptografia. Esse valor impede que o AWS Encryption SDK criptografe com
qualquer um dos novos pacotes de algoritmos que incluem confirmagao de chave. Ele permite
AWS Encryption SDK decifrar texto cifrado com e sem compromisso de chave.

Embora haja apenas um valor de politica de compromisso valido na versao 1.7. x, exigimos que
vocé defina esse valor explicitamente ao usar o novo APlIs introduzido nesta versao. Definir o
valor explicitamente impede que sua politica de compromisso seja alterada automaticamente para
require-encrypt-require-decrypt quando vocé atualizar para a versao 2.1.x. Em vez
disso, vocé pode migrar sua politica de compromisso em etapas.

Versao 1.7.x 444

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK Guia do Desenvolvedor

Pacotes de algoritmos com confirmacao de chave fundamental

Versao 1.7. x inclui dois novos pacotes de algoritmos compativeis com o confirmacgao de chaves.
Um inclui assinatura; o outro, ndo. Como os pacotes de algoritmos suportados anteriormente,
esses dois novos pacotes de algoritmos incluem criptografia com AES-GCM, uma chave de
criptografia de 256 bits e uma funcéo de derivagao de chave baseada em HMAC (extract-and-
expandHKDF).

No entanto, o conjunto de algoritmos padrao usado para criptografia ndo muda. Esses pacotes de
algoritmos foram adicionados a versao 1.7.x para preparar a aplicagao para usa-los nas versées
2.0.x e posteriores.

Alteracdes na implementagcao do CMM

A versao 1.7.x introduz mudancgas na interface Default do gerenciador de materiais criptograficos
(CMM) para dar suporte ao o comprometimento chave. Essa alteragao Ihe afeta somente se vocé
tiver escrito um CMM personalizado. Para obter detalhes, consulte a documentacao da APl ou o
GitHub repositério da sua linguagem de programacao.

Versao 2.0x

Versao 2.0. x oferece suporte aos novos recursos de segurancga oferecidos no AWS Encryption SDK,
incluindo chaves de empacotamento especificadas e comprometimento de chaves. A versao 2.0.x
inclui alteracdes significativas em relagao a todas as versdes anteriores do AWS Encryption SDK.
Vocé pode se preparar para essas mudancas implantando a verséo 1.7.x.. A versao 2.0.x inclui todos
0s novos atributos introduzidos na versao 1.7.x com as seguintes adi¢oes e alteragdes.

® Note

Versao 2. x. x do AWS Encryption SDK for Python, AWS Encryption SDK para JavaScript, e
a CLI de AWS criptografia estdo em fase. end-of-support

Para obter informagdes sobre suporte e manutencao dessa AWS Encryption SDK versdo em
sua linguagem de programacéo preferida, consulte o SUPPORT_POLICY.xrst arquivo em
seu GitHubrepositorio.

Versao 2.0x 445

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS fornecedores de chaves mestras

Os construtores originais do provedor de chave AWS KMS mestra que foram descontinuados
na versao 1.7. x sao removidos na versao 2.0. x. Vocé deve criar explicitamente provedores de
chaves mestras do AWS KMS no modo estrito ou no modo de descoberta.

Criptografe e descriptografe texto cifrado com confirmacgao de chave

A versao 2.0.x pode descriptografar texto cifrado criptografado com ou sem confirmacao de
chave. Seu comportamento € determinado pela definicdo da politica de compromisso. Por
padrao, ela sempre criptografa com confirmagao de chave e s6 descriptografa texto cifrado
criptografado com confirmagao de chave. A menos que vocé altere a politica de compromisso,
o AWS Encryption SDK nao descriptografa textos cifrados criptografados por nenhuma versao
anterior do AWS Encryption SDK, incluindo a versao 1.7 .x..

/A Important

Por padréao, a verséo 2.0.x ndo descriptografa nenhum texto cifrado que tenha sido
criptografado sem a confirmagao de chave. Se a aplicagao encontrar um texto cifrado
criptografado sem confirmagao de chave, defina um valor de politica de compromisso
como AllowDecrypt.

Na versao 2.0.x, a configuracao da politica de compromisso tem trés valores validos:

* ForbidEncryptAllowDecrypt: o AWS Encryption SDK nao pode criptografar com
confirmacéao de chave. Ele pode descriptografar textos cifrados criptografados com ou sem
confirmacao de chave.

* RequireEncryptAllowDecrypt: o AWS Encryption SDK deve criptografar com confirmagéao
de chave. Ele pode descriptografar textos cifrados criptografados com ou sem confirmacao de
chave.

« RequireEncryptRequireDecrypt(padrao) — AWS Encryption SDK E necessario
criptografar com comprometimento de chave. Ele sé descriptografa textos cifrados com
confirmacéao de chave.

Se vocé estiver migrando de uma versao anterior do AWS Encryption SDK para a versao 2.0. x,
defina a politica de compromisso com um valor que garanta que vocé possa descriptografar todos
os textos cifrados existentes que seu aplicativo possa encontrar. E provavel que vocé ajuste essa
configuragdo com o tempo.

Versao 2.0x 446

AWS Encryption SDK Guia do Desenvolvedor

Versao 2.2x

Adiciona suporte para assinaturas digitais e limita as chaves de dados criptografadas.

@ Note

Versao 2. x. x do AWS Encryption SDK for Python, AWS Encryption SDK para JavaScript, €
a CLI de AWS criptografia estdo em fase. end-of-support

Para obter informacdes sobre suporte e manutencao dessa AWS Encryption SDK versdo em
sua linguagem de programacéo preferida, consulte o SUPPORT_POLICY.xst arquivo em

seu GitHubrepositorio.

Assinaturas digitais

Para melhorar o0 manuseio de assinaturas digitais durante a decodificagéo, isso AWS Encryption
SDK inclui os seguintes recursos:

* Modo sem streaming: retorna texto simples somente apds o processamento de todas as
entradas, incluindo a verificagdo da assinatura digital, se houver uma. Esse atributo impede que
vocé use texto simples antes de verificar a assinatura digital. Use-o sempre que descriptografar
dados criptografados com assinaturas digitais (o pacote de algoritmos padrao). Por exemplo,
como a CLI de AWS criptografia sempre processa dados no modo de streaming, use 0 - -
buffer parametro ao descriptografar texto cifrado com assinaturas digitais.

* Modo de descriptografia somente ndo assinada: esse atributo sé descriptografa texto cifrado
nao assinado. Se a descriptografia encontrar uma assinatura digital no texto cifrado, a
operacao falhara. Use esse atributo para evitar o processamento nao intencional de texto
simples de mensagens assinadas antes de verificar a assinatura.

Limitar as chaves de dados criptografadas

Vocé pode limitar o numero de chaves de dados criptografadas em uma mensagem
criptografada. Esse atributo pode ajudar vocé a detectar um provedor de chave mestra ou um
token de autenticagao mal configurado ao criptografar ou a identificar um texto cifrado malicioso
ao descriptografar.

Vocé deve limitar as chaves de dados criptografadas ao descriptografar mensagens de uma fonte
nao confiavel. Isso evita chamadas desnecessarias, caras e potencialmente exaustivas para sua
infraestrutura principal.

Versao 2.2x 447

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Versao 2.3x

Adiciona suporte para chaves AWS KMS multirregionais. Para obter detalhes, consulte Usando
varias regioes AWS KMS keys.

® Note

A CLI AWS de criptografia oferece suporte a chaves multirregionais a partir da versao 3.0. x.
Versao 2. x. x do AWS Encryption SDK for Python, AWS Encryption SDK para JavaScript, €
a CLI de AWS criptografia estdo em fase. end-of-support

Para obter informagdes sobre suporte e manutencao dessa AWS Encryption SDK versdo em
sua linguagem de programacao preferida, consulte o SUPPORT_POLICY.zrst arquivo em
seu GitHubrepositorio.

Versao 2.3x 448

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Migrando seu AWS Encryption SDK

O AWS Encryption SDK suporta varias implementacdes de linguagem de programacao
interoperaveis, cada uma delas desenvolvida em um repositorio de codigo aberto no. GitHub Como
pratica recomendada, recomendamos que vocé use a versao mais recente do AWS Encryption SDK
para cada idioma.

Vocé pode atualizar com segurancga a partir da versao 2.0. x ou posterior AWS Encryption SDK

para a versdo mais recente. No entanto, o0 2.0. A versao x do AWS Encryption SDK introduz novos
recursos de seguranga significativos, alguns dos quais sdo mudancas significativas. Para atualizar de
versoes anteriores a 1.7.x para a versao 2.0.x e posteriores, primeiro sera necessario atualizar para
a versao 1.x mais recente. Os topicos desta se¢ao foram elaborados para ajudar vocé a entender as
alteragdes, selecionar a versao correta para a aplicagado e migrar com seguranga e sucesso para as
versdes mais recentes do AWS Encryption SDK.

Para obter informacdes sobre versdes significativas do AWS Encryption SDK, consulteVersdes do
AWS Encryption SDK.

/A Important

Nao atualize diretamente de uma versao anterior a 1.7x para a versao 2.0.x ou posterior
sem primeiro atualizar para a mais recente versado 1x.. Se vocé atualizar diretamente para a
versao 2.0. x ou posterior e habilite todos os novos recursos imediatamente, eles ndo AWS
Encryption SDK conseguirdo descriptografar texto cifrado criptografado em versées mais
antigas do. AWS Encryption SDK

(® Note

A versao mais antiga do AWS Encryption SDK para.NET é a versao 3.0. x. Todas as versdes
do AWS Encryption SDK para.NET oferecem suporte as melhores praticas de seguranga
introduzidas na versao 2.0. x do AWS Encryption SDK. E possivel atualizar com seguranca
para a versao mais recente sem fazer alteragdes no codigo ou nos dados.

AWS CLI de criptografia: ao ler este guia de migragao, use a versao 1.7. x instrugoes

de migragao para o AWS Encryption CLI 1.8. x e use 0 2.0. x instrugdes de migragao

para o AWS Encryption CLI 2.1. x. Para obter detalhes, consulte Versoes da CLI AWS de

criptografia.

449

AWS Encryption SDK Guia do Desenvolvedor

Novos recursos de seguranca foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versdao AWS 1.8 do Encryption CLI. x substitui a
versao 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranca relevante no aws-encryption-sdk-clirepositério em GitHub.

Novos usuarios

Se vocé é novo no AWS Encryption SDK, instale a versdo mais recente do AWS Encryption
SDK para sua linguagem de programacgao. Os valores padrao habilitam todos os recursos de
seguranga do AWS Encryption SDK, incluindo criptografia com assinatura, derivagéo de chave e
comprometimento de chave. AWS Encryption SDK

Usuarios atuais

Recomendamos atualizar da versao atual para a versao mais recente disponivel assim que
possivel. Todos os 1. As versdes x do AWS Encryption SDK estdao em end-of-support fase, assim
como as versoes posteriores em algumas linguagens de programacao. Para obter detalhes sobre
o status de suporte e manutengao do AWS Encryption SDK em sua linguagem de programagao,
consulte Suporte e manutencao.

AWS Encryption SDK versodes 2.0. x e versdes posteriores fornecem novos recursos de
segurancga para ajudar a proteger seus dados. No entanto, AWS Encryption SDK a versao 2.0.

x inclui alteragdes significativas que ndo sao compativeis com versdes anteriores. Para garantir
uma transi¢cdo segura, comece migrando da sua versao atual para a mais recente 1.x na sua
linguagem de programacé&o. Quando a verséo 1.x estiver totalmente implantada e operando com
sucesso, vocé podera migrar com seguranga para as versoes 2.0.x e posteriores. Esse processo
de duas etapas € essencial, especialmente para aplicacdes distribuidas.

Para obter mais informagdes sobre os recursos AWS Encryption SDK de seguranga subjacentes a
essas mudancas, consulte Criptografia aprimorada do lado do cliente: compromisso explicito Keylds
e fundamental no Blog de Seguran¢ca.AWS

Procurando ajuda para usar o AWS Encryption SDK for Java com o AWS SDK for Java 2.x?
Consulte Pré-requisitos.

Topicos

« Como migrar e implantar o AWS Encryption SDK

450

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Guia do Desenvolvedor

 Atualizando provedores de chaves AWS KMS mestras

» Atualizando AWS KMS chaveiros

» Como definir sua politica de compromisso

» Solucado de problemas de migracao para as versées mais recentes

Como migrar e implantar o AWS Encryption SDK

Ao migrar de uma AWS Encryption SDK versao anterior a 1.7. x até a versao 2.0. x ou mais tarde,
vocé deve fazer a transigéo segura para a criptografia com comprometimento de chave. Caso
contrario, a aplicacao encontrara textos cifrados que nao podera descriptografar. Se vocé estiver
usando provedores de chave AWS KMS mestra, devera atualizar para novos construtores que criam
provedores de chave mestra no modo estrito ou no modo de descoberta.

(® Note

Este tépico foi desenvolvido para usuarios que estdo migrando de versdes anteriores do
AWS Encryption SDK para a versao 2.0. x posterior. Se vocé é novo no AWS Encryption
SDK, pode comecar a usar a versao mais recente disponivel imediatamente com as
configuragdes padrao.

Para evitar uma situagao critica na qual vocé nao possa descriptografar o texto cifrado que precisa
ler, recomendamos que vocé migre e implante em varias etapas distintas. Verifique se cada etapa
esta completa e totalmente implantada antes de iniciar a proxima etapa. Isso € particularmente
importante para aplicagdes distribuidas com varios hosts.

Etapa 1: atualize a aplicagao para a versao 1.x mais recente

Atualize para a versao 1.x mais recente para sua linguagem de programacgao. Teste com cuidado,
implante suas alteragdes e confirme se a atualizagao foi propagada para todos os hosts de destino
antes de iniciar a etapa 2.

/A Important

Verifique se a sua versao 1.x mais recente € a versao 1.7.x ou versao posterior do AWS
Encryption SDK.

Como migrar e implantar 451

AWS Encryption SDK Guia do Desenvolvedor

O mais recente 1. As versdes x do AWS Encryption SDK sao compativeis com versdes anteriores
do AWS Encryption SDK e versdes anteriores com as versdes 2.0. x e mais tarde. Elas incluem
0s novos atributos presentes na versao 2.0.x, mas inclui padroes seguros projetados para essa
migracao. Eles permitem que vocé atualize seus provedores de chave AWS KMS mestra, se
necessario, e implante totalmente pacotes de algoritmos que podem decifrar texto cifrado com
comprometimento de chave.

» Substitua elementos descontinuados, incluindo construtores para provedores de chaves metras
do AWS KMS herdados. Em Python,ative os avisos de descontinuidade. Elementos de codigo
que foram descontinuados na mais recente versao 1.x foram removidos das versdes 2.0. x e
posteriores.

+ Defina explicitamente sua politica de compromisso como ForbidEncryptAllowDecrypt.
Embora esse seja o unico valor valido no ultimo 1. Nas versdes x, essa configuragao € necessaria
quando vocé usa a APIs introduzida nesta versao. Isso impede que a aplicagao rejeite texto
cifrado criptografado sem confirmagao de chave quando vocé migra para a verséo 2.0.x e
versoes posteriores. Para obter detalhes, consulte the section called “Como definir sua politica de

CoOMpromisso’.

» Se vocé usa provedores de chave AWS KMS mestra, deve atualizar seus provedores de chave
mestra legados para provedores de chave mestra que oferecam suporte ao modo estrito e ao
modo de descoberta. Essa atualizacao é necessaria para o AWS Encryption SDK for Java AWS
Encryption SDK for Python, e para a CLI AWS de criptografia. Se vocé usa provedores de chave
mestra no modo de descoberta, recomendamos que implemente o filtro de descoberta que limita
as chaves de encapsulamento usadas aquelas presentes em Contas da AWS. Essa atualizacao
€ opcional, mas é uma pratica recomendada que incentivamos. Para obter detalhes, consulte
Atualizando provedores de chaves AWS KMS mestras.

» Se vocé usa token de autenticacao de descoberta do AWS KMS, recomendamos que inclua um
filtro de descoberta que limite as chaves de encapsulamento usadas na descriptografia a aquelas
em particular. Contas da AWS Essa atualizacao € opcional, mas é uma pratica recomendada que
incentivamos. Para obter detalhes, consulte Atualizando AWS KMS chaveiros.

Etapa 2: atualize a aplicagao para a versao mais recente

Depois que a implantacdo da mais recente versao 1.x for bem-sucedida em todos os hosts, vocé
pode atualizar para as versodes 2.0. x e posteriores. Versao 2.0. x inclui alteragdes significativas em
todas as versodes anteriores do AWS Encryption SDK. No entanto, se vocé fizer as alteragdes de
cbdigo recomendadas na etapa 1, podera evitar erros ao migrar para a versao mais recente.

Etapa 2: atualize a aplicagao para a versao mais recente 452

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK Guia do Desenvolvedor

Antes de atualizar para a versdo mais recente, verifique se sua politica de compromisso

esta consistentemente definida como ForbidEncryptAllowDecrypt. Em seguida,
dependendo da configuragcédo de dados, vocé pode migrar no seu proprio ritmo

para RequireEncryptAllowDecrypt e depois para a configuragdo padrao,
RequireEncryptRequireDecrypt. Recomendamos uma série de etapas de transigdo, como o
padrao a seguir.

1. Comece com sua politica de compromisso definida como ForbidEncryptAllowDecrypt. O
AWS Encryption SDK pode descriptografar mensagens com confirmagao de chave, mas ainda
nao descriptografa com confirmagao de chave.

2. Quando estiver pronto, atualize a politica de compromisso para
RequireEncryptAllowDecrypt. AWS Encryption SDK Comecga a criptografar seus dados com
um compromisso fundamental. Ele podera descriptografar textos cifrados criptografados com ou
sem confirmacgao de chave.

Antes de atualizar sua politica de compromisso para RequireEncryptAllowDecrypt,
verifique se sua versdo 1x mais recente foi implantada em todos os hosts, incluindo os hosts de
qualquer aplicagdo que decodifique o texto cifrado que vocé produz. Versées AWS Encryption
SDK anteriores a versao 1.7. x ndo pode descriptografar mensagens criptografadas com
comprometimento de chave.

Esse também é um bom momento para adicionar métricas a sua aplicagao para medir se

vocé ainda esta processando texto cifrado sem confirmagéo de chave. Isso ajudara vocé

a determinar quando é seguro atualizar sua configuragao de politica de compromisso para
RequireEncryptRequireDecrypt. Para algumas aplicagdes, como aquelas que criptografam
mensagens em uma fila do Amazon SQS, isso pode significar esperar tempo suficiente para que
todo o texto cifrado criptografado nas versdes antigas seja recriptografado ou excluido. Para
outras aplicacdes, como objetos criptografados do S3, talvez seja necessario baixar, recriptografar
e recarregar todos os objetos.

3. Quando tiver certeza de que nao tem nenhuma mensagem criptografada sem
confirmacao de chave, vocé pode atualizar sua politica de compromisso para
RequireEncryptRequireDecrypt. Esse valor garante que seus dados sejam sempre
criptografados e descriptografados com o confirmagao de chave. Essa configuragao € a padrao,
entdo vocé nao precisa defini-la explicitamente, mas recomendamos que faga isso. Uma
configuragao explicita ajudara na depuracdo e em quaisquer possiveis reversdes que possam ser

necessarias se a aplicagao encontrar texto cifrado criptografado sem confirmacao de chave.

Etapa 2: atualize a aplicagao para a versao mais recente 453

AWS Encryption SDK Guia do Desenvolvedor

Atualizando provedores de chaves AWS KMS mestras

Para migrar para o mais recente 1. versao x do e AWS Encryption SDK, em seguida, para a versao
2.0. x ou posterior, vocé deve substituir os provedores de chave AWS KMS mestra legados por
provedores de chave mestra criados explicitamente no modo estrito ou no modo de descoberta. Os
provedores de chave mestra herdados foram descontinuados na versao 1.7.x e foram removidos na
versao 2.0. x. Essa alteragéo € necessaria para aplicagdes e scripts que usam o AWS Encryption
SDK for Java, o AWS Encryption SDK for Python e a CLI de criptografia da AWS. Os exemplos nesta
secao mostrardo como atualizar seu cédigo.

(® Note

Em Python, ative os avisos de obsolescéncia. Isso ajudara vocé a identificar as partes do
cbdigo que precisa atualizar.

Se vocé estiver usando uma chave AWS KMS mestra (n&o um provedor de chave mestra), vocé
pode pular esta etapa. AWS KMS as chaves mestras ndo estao obsoletas nem foram removidas.
Elas criptografam e descriptografam somente com as chaves de encapsulamento que vocé
especificar.

Os exemplos nesta secao se concentram nos elementos do seu codigo precisam ser alterados. Para
obter um exemplo completo do codigo atualizado, consulte a secdo Exemplos do GitHub repositério
da sua linguagem de programacao. Além disso, esses exemplos normalmente usam ARNs a chave

para representar AWS KMS keys. Ao criar um provedor de chave mestra para criptografia, vocé pode
usar qualquer identificador de AWS KMS chave valido para representar um AWS KMS key . Ao criar
um provedor de chave mestra para descriptografia, vocé deve usar um ARN de chave.

Saiba mais sobre migracao

Para todos os AWS Encryption SDK usuarios, saiba como definir sua politica de compromisso emthe
section called “Como definir sua politica de compromisso”.

Para AWS Encryption SDK para JavaScript usuarios AWS Encryption SDK for C e usuarios, saiba
mais sobre uma atualizacédo opcional dos chaveiros emAtualizando AWS KMS chaveiros.

Topicos

» Migracao para o modo estrito

Atualizando provedores de chaves AWS KMS mestras 454

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

» Migrar para o modo de descoberta

Migragao para o modo estrito

Depois de atualizar para o mais recente 1. versao x do AWS Encryption SDK, substitua seus
provedores de chave mestra legados por provedores de chave mestra no modo estrito. No modo
estrito, vocé deve especificar as chaves de encapsulamento a serem usadas ao criptografar e
descriptografar. O AWS Encryption SDK usa somente as chaves de empacotamento que vocé
especificar. Provedores de chaves mestras obsoletas podem descriptografar dados usando qualquer
um AWS KMS key que criptografe uma chave de dados, inclusive em diferentes regides. AWS KMS
keys Contas da AWS

Os provedores de chaves mestras no modo estrito sdo introduzidos na AWS Encryption SDK versao
1.7. x. Eles substituem os provedores de chaves mestras herdados, que foram suspensos na versao
1.7.x e removidos na vers&o 2.0.x.. Usar provedores de chave mestra no modo estrito € uma pratica
AWS Encryption SDK recomendada.

O codigo a seguir cria um provedor de chave mestra no modo estrito que vocé pode usar para
criptografar e descriptografar.

Java

Este exemplo representa o cdédigo em uma aplicagdo que usa a versao 1.6.2 ou anterior do AWS
Encryption SDK for Java.

Esse codigo usa o KmsMasterKeyProvider.builder () método para instanciar um provedor
de chave AWS KMS mestra que usa um AWS KMS key como chave de encapsulamento.

// Create a master key provider

// Replace the example key ARN with a valid one

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.withKeysForEncryption(awsKmsKey)
.build();

Este exemplo representa o cdédigo em uma aplicagdo que usa a versao 1.7.x ou versdes
posteriores do AWS Encryption SDK for Java . Para ver um exemplo completo, consulte
BasicEncryptionExample.java.

Migragao para o modo estrito 455

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK Guia do Desenvolvedor

Os métodos Builder.build() e Builder.withKeysForEncryption() usados no exemplo
anterior foram suspensos na versao 1.7.x e removidos da versao 2.0.x..

Para atualizar para um provedor de chave mestra de modo estrito, esse cédigo

substitui as chamadas para métodos suspensos por uma chamada para o novo método
Builder.buildStrict(). Este exemplo especifica uma AWS KMS key como chave de
empacotamento, mas o Builder.buildStrict() método pode usar uma lista de varias. AWS
KMS keys

// Create a master key provider in strict mode

// Replace the example key ARN with a valid one from your Conta da AWS.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

Python

Este exemplo representa o cdédigo em uma aplicagdo que usa a versao 1.4.1 do AWS Encryption
SDK for Python. Esse codigo usa KMSMasterKeyProvider, que foi suspenso na versao 1.7.

x e removido da versao 2.0.x.. Ao descriptografar, ele usa qualquer uma AWS KMS key que
criptografe uma chave de dados sem levar em conta o AWS KMS keys que vocé especificar.

Observe que KMSMasterKey nao foi suspenso nem removido. Ao criptografar e descriptografar,
ele usa somente o que vocé especifica. AWS KMS key

Create a master key provider

Replace the example key ARN with a valid one

key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvidex(
key_ids=[key_1, key_2]

Este exemplo representa o cdédigo em uma aplicagdo que usa a versao 1.7.x do AWS Encryption
SDK for Python. Para ver um exemplo completo, consulte basic_encryption.py.

Migragao para o modo estrito 456

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK Guia do Desenvolvedor

Para atualizar para um provedor de chave mestra de modo estrito, esse cédigo
substitui a chamada para KMSMasterKeyProvider () com uma chamada para
StrictAwsKmsMasterKeyProvider ().

Create a master key provider in strict mode

Replace the example key ARNs with valid values from your Conta da AWS
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

AWS Encryption CLI

Este exemplo mostra como criptografar e descriptografar usando a versao 1.1.7 ou anterior do
Encryption AWS CLI.

Na versao 1.1.7 e anteriores, ao criptografar, vocé especifica uma ou mais chaves mestras (ou
chaves de encapsulamento), como uma AWS KMS key. Ao descriptografar, vocé nao pode
especificar nenhuma chave de encapsulamento, a menos que esteja usando um provedor

de chave mestra personalizado. A CLI de AWS criptografia pode usar qualquer chave de
empacotamento que criptografe uma chave de dados.

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--master-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--encryption-context purpose=test \
--metadata-output ~/metadata \

Migragao para o modo estrito 457

AWS Encryption SDK Guia do Desenvolvedor

--output .

Este exemplo mostra como criptografar e descriptografar usando a versédo 1.7 do Encryption
AWS CLI. x ou mais tarde. Para obter exemplos completos, consulte Exemplos da CLI AWS de

criptografia.

O parametro --master-keys foi suspenso na versao 1.7.x e removido na versao 2.0.x.. Ele
foi substituido pelo parametro - -wrapping-keys, que é exigido nos comandos de encrypt e
decrypt. Esse parametro € compativel com o modo estrito e 0 modo de descoberta. O modo
estrito € uma pratica AWS Encryption SDK recomendada que garante que vocé use a chave de
encapsulamento desejada.

Para atualizar para o modo estrito, use o atributo key do parametro - -wrapping-keys para
especificar uma chave de encapsulamento ao criptografar e descriptografar.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Migrar para o modo de descoberta

A partir da versao 1.7. x, € uma pratica AWS Encryption SDK recomendada usar o modo estrito

para provedores de chaves AWS KMS mestras, ou seja, especificar chaves de agrupamento
ao criptografar e descriptografar. Vocé deve sempre especificar as chaves de encapsulamento
ao criptografar. Mas ha situagdes em que especificar a chave ARNs AWS KMS keys para

Migrar para o modo de descoberta 458

AWS Encryption SDK Guia do Desenvolvedor

descriptografar € impraticavel. Por exemplo, se vocé estiver usando aliases para identificar AWS
KMS keys ao criptografar, perdera o beneficio dos aliases se precisar listar a chave ARNs ao
descriptografar. Além disso, como os provedores de chave mestra no modo de descoberta se
comportam como os provedores de chave mestra originais, vocé pode usa-los temporariamente
como parte de sua estratégia de migracao e, posteriormente, atualizar para provedores de chave
mestra no modo estrito.

Em casos como esse, vocé pode usar provedores de chaves mestras no modo de descoberta. Esses
provedores de chaves mestras nao permitem que vocé especifique chaves de encapsulamento,
portanto, vocé nao pode usa-los para criptografar. Ao descriptografar, eles podem usar qualquer
chave de encapsulamento que criptografe uma chave de dados. Mas, diferentemente dos
provedores de chaves mestras herdados, que se comportam da mesma maneira, vocé cria esses
provedores explicitamente no modo de descoberta. Ao usar provedores de chave mestra no modo
de descoberta, vocé pode limitar as chaves de encapsulamento que podem ser usadas para aquelas
que estao presentes em Contas da AWS especificas. Esse filtro de descoberta € opcional, mas é
uma pratica recomendada que incentivamos. Para obter informagdes sobre particbes e contas da
AWS , consulte Nomes do atributo da Amazon no Referéncia geral da AWS.

Os exemplos a seguir criam um provedor de chave AWS KMS mestra no modo estrito para
criptografia e um provedor de chave AWS KMS mestra no modo de descoberta para descriptografia.
O provedor da chave mestra no modo de descoberta usa um filtro de descoberta para limitar as
chaves de encapsulamento usadas para descriptografar a particdo aws e ao exemplo especifico

de Contas da AWS. Embora o filtro de conta ndo seja necessario neste exemplo bastante simples,
€ uma pratica recomendada muito benéfica quando uma aplicagao criptografa os dados e outra
diferente os descriptografa.

Java

Este exemplo representa o cdédigo em uma aplicacdo que usa a versao 1.7.x ou versdes
posteriores do AWS Encryption SDK for Java. Para ver um exemplo completo, consulte
DiscoveryDecryptionExample.java.

Para instanciar um provedor de chave mestra no modo estrito para criptografar, este exemplo
usa o método Builder.buildStrict(). Para instanciar um provedor de chave mestra no
modo de descoberta para descriptografar ele usa o método Builder.buildDiscovery().
O Builder.buildDiscovery() método usa um DiscoveryFilter que limita o AWS
Encryption SDK to AWS KMS keys na AWS particao e nas contas especificadas.

// Create a master key provider in strict mode for encrypting

Migrar para o modo de descoberta 459

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/

AWS Encryption SDK Guia do Desenvolvedor

// Replace the example alias ARN with a valid one from your Conta da AWS.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting

// Replace the example account IDs with valid values.

DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.aslList("111122223333",
"'444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
.buildDiscovery(accounts);

Python

Este exemplo representa o cédigo em uma aplicacdo que usa a versao 1.7.x ou versdes
posteriores do AWS Encryption SDK for Python . Para obter um exemplo completo, consulte:
discovery_kms_provider.py.

Para criar um provedor de chave mestra no modo estrito para criptografar, este exemplo usa

o método StrictAwsKmsMasterKeyProvider. Para criar um provedor de chave mestra no
modo de descoberta para descriptografia, ele usa DiscoveryAwsKmsMasterKeyProvider um
DiscoveryFilter que limita o AWS Encryption SDK to AWS KMS keys na AWS partigao e nas
contas especificadas.

Create a master key provider in strict mode

Replace the example key ARN and alias ARNs with valid values from your Conta da
AWS.

key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"

key_2 = "arn:aws:kms:us-

west-2:444455556666: key/la2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMastexrKeyProvider(
key_ids=[key_1, key_2]

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(

partition="aws",

account_ids=["111122223333", "444455556666"]

Migrar para o modo de descoberta 460

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

)

aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
discovery_filter=accounts

AWS Encryption CLI

Este exemplo mostra como criptografar e descriptografar usando a versao 1.7 do Encryption AWS
CLI. x ou mais tarde. A partir da versao 1.7.x, o parametro --wrapping-keys passou a ser
necessario ao criptografar e descriptografar. O parametro --wrapping-keys é compativel com
o0 modo estrito e 0 modo de descoberta. Para obter exemplos completos, consulte the section
called “Exemplos”.

Ao criptografar, este exemplo especifica uma chave de encapsulamento, que € obrigatéria. Ao
descriptografar, ele escolhe explicitamente o modo de descoberta usando o atributo discovery
do parametro - -wrapping-keys com um valor definido como true.

Para limitar as chaves de encapsulamento que AWS Encryption SDK podem ser usadas no
modo de descoberta aquelas em particular Contas da AWS, este exemplo usa os discovery-
account atributos discovery-partition e do --wrapping-keys parametro. Esses
atributos opcionais sao validos somente quando o atributo discovery for definido como true.
Vocé deve usar os atributos discovery-partition e discovery-account juntos. Nenhum
deles é valido sozinho.

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyAlias \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys discovery=true \
discovery-partition=aws \

Migrar para o modo de descoberta 461

AWS Encryption SDK Guia do Desenvolvedor

discovery-account=111122223333 \
discovery-account=444455556666 \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Atualizando AWS KMS chaveiros

Os AWS KMS chaveiros do AWS Encryption SDK for C, do AWS Encryption SDK para 0.NET e do
AWS Encryption SDK para JavaScriptoferecem suporte as melhores praticas, permitindo que vocé
especifique chaves de agrupamento ao criptografar e descriptografar. Se vocé criar um token de

autenticacao de descoberta do AWS KMS, vocé o fara de maneira explicita.

@ Note

A versao mais antiga do AWS Encryption SDK para.NET ¢é a versao 3.0. x. Todas as versoes
do AWS Encryption SDK para.NET oferecem suporte as melhores praticas de seguranga
introduzidas na vers&o 2.0. x do AWS Encryption SDK. E possivel atualizar com seguranca
para a versao mais recente sem fazer alteragdes no codigo ou nos dados.

Quando vocé atualiza para o mais recente 1. Na versdo x do AWS Encryption SDK, vocé pode

usar um filtro de descoberta para limitar as chaves de agrupamento que um chaveiro de AWS KMS
descoberta ou um chaveiro de descoberta AWS KMS regional usa ao descriptografar para aquelas
em particular. Contas da AWS Filtrar um chaveiro de descoberta € uma pratica AWS Encryption SDK
recomendada.

Os exemplos nesta secao mostram como adicionar o filiro de descoberta a um token de autenticacao
de descoberta regional do AWS KMS .

Saiba mais sobre migracao

Para todos os AWS Encryption SDK usuarios, saiba como definir sua politica de compromisso emthe
section called “Como definir sua politica de compromisso”.

Para usuarios da CLI de AWS criptografia e AWS Encryption SDK for Java AWS Encryption SDK for
Python, saiba mais sobre uma atualizagdo necessaria para os provedores de chaves mestras em.
the section called “Atualizando provedores de chaves AWS KMS mestras”

Atualizando AWS KMS chaveiros 462

AWS Encryption SDK Guia do Desenvolvedor

Vocé pode ter um coédigo como o seguinte na aplicagéo. Este exemplo cria um token de autenticagao
de descoberta regional do AWS KMS que s6 pode usar chaves de encapsulamento na regidao Oeste

dos EUA (Oregon) (us-west-2). Este exemplo representa o codigo em AWS Encryption SDK versdes

anteriores a 1.7. x. No entanto, ele ainda € valido nas versdes 1.7x e posteriores.

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder()
.WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

A partir da versao 1.7. x, vocé pode adicionar um filtro de descoberta a qualquer chaveiro de AWS
KMS descoberta. Esse filtro de descoberta limita o AWS KMS keys que eles AWS Encryption SDK
podem usar para decodificagado aqueles na particao e nas contas especificadas. Antes de usar esse
codigo, altere a particado, se necessario, e substitua a conta IDs de exemplo por outras validas.

C

Para obter um exemplo completo, consulte: kms_discovery.cpp.

std: :shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
KmsKeyring::DiscoveryFilter::Builder("aws")
.AddAccount("111122223333")

Atualizando AWS KMS chaveiros 463

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Guia do Desenvolvedor

.AddAccount("444455556666")
.Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder()

.WithKmsClient(create_kms_client(Aws: :Region::US_WEST_2)).BuildDiscovery(discovery_filter))

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
aws' }

)

JavaScript Node.js

Para obter um exemplo completo, consulte: kms_filtered_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
clientProvider,
discovery,
discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
aws' }

1)

Como definir sua politica de compromisso

O confirmacao de chave assegura que seus dados criptografados sempre sejam descriptografados
para o mesmo texto simples. Para fornecer essa propriedade de seguranga, comegando na

versao 1.7. x, o AWS Encryption SDK usa novos conjuntos de algoritmos com comprometimento
fundamental. Para determinar se seus dados sao criptografados e descriptografados com
confirmacéo de chave, use a definicdo de configuragéo da politica de compromisso. Criptografar e

Como definir sua politica de compromisso 464

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

descriptografar dados com confirmacao de chave € uma pratica recomendada do AWS Encryption
SDK.

Definir uma politica de compromisso € uma parte importante da segunda etapa do processo

de migragcao — migrar da ultima 1. versdes x das AWS Encryption SDK duas versdes 2.0. x e

mais tarde. Apos definir e alterar sua politica de compromisso, certifique-se de testar a aplicacao
minuciosamente antes de implanta-la em produgao. Para obter orientagao sobre migragao, consulte
Como migrar e implantar o AWS Encryption SDK.

A configuragao da politica de compromisso tem trés valores validos nas versoes 2.0. x posteriores.
Nas versodes 1.x mais recentes (a partir da versao 1.7.x), somente ForbidEncryptAllowDecrypt
é valido.

* ForbidEncryptAllowDecrypt— Eles AWS Encryption SDK ndo podem criptografar com
comprometimento chave. Ele pode descriptografar textos cifrados criptografados com ou sem
confirmacéao de chave.

Na mais recente versao 1.x, esse € o unico valor valido. Isso garante que vocé néo criptografe com
confirmacéo de chave até que esteja totalmente preparado para descriptografar com confirmagéao
de chave. Definir o valor explicitamente impede que sua politica de compromisso seja alterada
automaticamente para require-encrypt-require-decrypt quando vocé atualizar para as
versdes 2.0.x ou posteriores. Em vez disso, vocé pode migrar sua politica de compromisso em
etapas.

* RequireEncryptAllowDecrypt— AWS Encryption SDK Sempre criptografa com
comprometimento fundamental. Ele pode descriptografar textos cifrados criptografados com ou
sem confirmacao de chave. Esse valor foi adicionado na versao 2.0.x..

* RequireEncryptRequireDecrypt— AWS Encryption SDK Sempre criptografa e descriptografa
com comprometimento fundamental. Esse valor foi adicionado na vers&o 2.0.x.. E o valor padrao
em versoes 2.0.x. e posteriores.

Na versao 1.x mais recente, o Unico valor de politica de compromisso valido &
ForbidEncryptAllowDecrypt. Depois de migrar para a versao 2.0. x ou posterior, vocé pode
alterar sua politica de compromisso em etapas conforme estiver pronto. Nao atualize sua politica

de compromisso RequireEncryptRequireDecrypt até ter certeza de que ndo tem nenhuma
mensagem criptografada sem o confirmagao de chave.

Esses exemplos mostram como definir sua politica de compromisso na ultima versao 1.x e nas
versdes 2.0.x posteriores. A técnica depende da sua linguagem de programacao.

Como definir sua politica de compromisso 465

AWS Encryption SDK Guia do Desenvolvedor

Saiba mais sobre migracao

Para AWS Encryption SDK for Java, AWS Encryption SDK for Python, e a CLI de AWS criptografia,
saiba mais sobre as mudancas necessarias nos provedores de chaves mestras em. the section
called “Atualizando provedores de chaves AWS KMS mestras”

Para AWS Encryption SDK for C e AWS Encryption SDK para JavaScript, saiba mais sobre uma
atualizagao opcional dos chaveiros emAtualizando AWS KMS chaveiros.

Como definir sua politica de compromisso

A técnica que vocé usa para definir sua politica de compromisso difere um pouco em cada
implementacgao de linguagem. Esses exemplos .mostram a vocé como fazer isso. Antes de alterar
sua politica de compromisso, revise a abordagem de varios estagios em Como migrar e implantar.

C

A partir da versao 1.7. x do AWS Encryption SDK for C, vocé usa a
aws_cryptosdk_session_set_commitment_policy funcao para definir a politica de
compromisso em suas sessdes de criptografia e descriptografia. A politica de compromisso que
vocé define se aplica a todas as operagdes de criptografia e descriptografia chamadas na sua
sessao.

As funcgées aws_cryptosdk_session_new_from_keyringe
aws_cryptosdk_session_new_from_cmm foram descontinuadas na versao
1.7.x e foram removidas na versao 2.0.x.. Essas fungoes foram substituidas
pelas fungdes aws_cryptosdk_session_new_from_keyring_2e
aws_cryptosdk_session_new_from_cmm_2 que retornam uma sessao.

Ao usar aws_cryptosdk_session_new_from_keyring_2e
aws_cryptosdk_session_new_from_cmm_2 na versado 1.x mais recentes, vocé deve
chamar a fungdo aws_cryptosdk_session_set_commitment_policy com o valor
da politica de compromisso COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT.
Nas versoes 2.0.x e posteriores, chamar essa funcio € opcional, e ela aceita todos os
valores validos. A politica de compromisso padrio para as versoes 2.0. x e posteriores é
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Para obter um exemplo completo, consulte string.cpp.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Como definir sua politica de compromisso 466

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Guia do Desenvolvedor

/* Create an AWS KMS keyring */

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;
struct aws_cryptosdk_keyring *kms_keyring =

Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Encrypt your data */

size_t plaintext_consumed_output;

aws_cryptosdk_session_process(encrypt_session,
ciphertext_output,
ciphertext_buf_sz_output,
ciphertext_len_output,
plaintext_input,
plaintext_len_input,
&plaintext_consumed_output)

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
Aws: :Cryptosdk: :KmsKeyring: :Builder().Build(key_azrn);
struct aws_cryptosdk_session *decrypt_session =
*aws_cryptosdk_session_new_from_keyring_2(
alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */

size_t ciphertext_consumed_output;

aws_cryptosdk_session_process(decxrypt_session,
plaintext_output,

Como definir sua politica de compromisso 467

AWS Encryption SDK Guia do Desenvolvedor

plaintext_buf_sz_output,
plaintext_len_output,
ciphertext_input,
ciphertext_len_input,
&ciphertext_consumed_output)

C#/ .NET

O require-encrypt-require-decrypt valor é a politica de compromisso padrdao em
todas as versoes do AWS Encryption SDK para.NET. Vocé pode definir isso explicitamente
como uma pratica recomendadas, mas isso nao € necessario. No entanto, se vocé

estiver usando o for.NET AWS Encryption SDK para descriptografar texto cifrado que

foi criptografado por outra implementacgao de linguagem do AWS Encryption SDK sem
compromisso de chave, vocé precisara alterar o valor da politica de compromisso para ou.
REQUIRE_ENCRYPT_ALLOW_DECRYPT FORBID_ENCRYPT_ALLOW_DECRYPT Caso contrario,
ocorrera uma falha na tentativa de descriptografar o texto cifrado.

No AWS Encryption SDK para.NET, vocé define a politica de compromisso em uma instancia
do AWS Encryption SDK. Instancie um AwsEncryptionSdkConfig objeto com um
CommitmentPolicy pardmetro e use o objeto de configuragao para criar a AWS Encryption
SDK instancia. Em seguida, chame os Decrypt () métodos Encrypt() e da AWS Encryption
SDK instancia configurada.

Este exemplo define a politica de compromisso como require-encrypt-allow-decrypt.

// Instantiate the material providers
var materialProviders =

AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig

{
CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

var encryptionContext = new Dictionary<string, string>()

{

Como definir sua politica de compromisso 468

AWS Encryption SDK Guia do Desenvolvedor

{"purpose", "test"}encryptionSdk

};

var createKeyringInput = new CreateAwsKmsKeyringInput

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsKeyId = keyArn

};

var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput

{

Plaintext = plaintext,

Keyring = keyring,

EncryptionContext = encryptionContext
};

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput
{
Ciphertext = ciphertext,
Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Para definir uma politica de compromisso na CLI de AWS criptografia, use o --commitment-
policy parametro. Esse parametro foi apresentado na versao 1.8.x..

No versao 1.x mais recente, quando vocé usa o parametro --wrapping-keys em um comando

--encryptou --decrypt, é necessario um parametro - -commitment-policy com o valor
forbid-encrypt-allow-decrypt. Caso contrario, o parametro - -commitment-policy
sera invalido.

Nas versdes 2.1.x e posteriores, o parametro --commitment-policy é opcional e usa
como padrao o valor require-encrypt-require-decrypt, que nao criptografara nem
descriptografara nenhum texto cifrado criptografado sem confirmagao de chave. No entanto,
recomendamos definir a politica de compromisso de forma explicita em todas as chamadas de
criptografia e descriptografia, para ajudar na manutencgao e na solugao de problemas.

Como definir sua politica de compromisso

469

AWS Encryption SDK Guia do Desenvolvedor

Este exemplo define a politica de compromisso como . Ele também usa o parametro - -
wrapping-keys, que substituiu o parémetro - -master-keys a partir da versdo 1.8.x.. Para
obter detalhes, consulte the section called “Atualizando provedores de chaves AWS KMS
mestras”. Para obter exemplos completos, consulte Exemplos da CLI AWS de criptografia.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used

$ aws-encryption-cli --encrypt \
--input hello.txt \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--metadata-output ~/metadata \
--encryption-context purpose=test \
--output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later

$ aws-encryption-cli --decrypt \
--input hello.txt.encrypted \
--wrapping-keys key=$keyArn \
--commitment-policy forbid-encrypt-allow-decrypt \
--encryption-context purpose=test \
--metadata-output ~/metadata \
--output .

Java

A partir da versao 1.7. x do AWS Encryption SDK for Java, vocé define a politica de compromisso
em sua instancia do AwsCrypto objeto que representa o AWS Encryption SDK cliente. Essa
definigdo politica de compromisso se aplica a todas as operag¢des de criptografia e descriptografia
chamadas nesse cliente.

O AwsCrypto() construtor esta obsoleto na ultima versao 1. As versdes x do AWS Encryption
SDK for Java e sdo removidas na versao 2.0. x. Ele foi substituido por uma nova classe
Builder, um método Builder.withCommitmentPolicy() e pelo tipo enumerado
CommitmentPolicy.

Nas versdes 1.x mais recentes, a classe Builder requer o método
Builder.withCommitmentPolicy() eo
argumentoCommitmentPolicy.ForbidEncryptAllowDecrypt. A partir da versao

Como definir sua politica de compromisso 470

AWS Encryption SDK Guia do Desenvolvedor

2.0.x, o método Builder.withCommitmentPolicy() é opcional. O valor padrao é
CommitmentPolicy.RequireEncryptRequireDecrypt.

Para ver um exemplo completo, consulte SetCommitmentPolicyExample.java.

// Instantiate the client

final AwsCrypto crypto = AwsCrypto.builder()
.withCommitmentPolicy(CommitmentPolicy.ForbidEncxryptAllowDecrypt)
.build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ;

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
.buildStrict(awsKmsKey);

// Encrypt your plaintext data

CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
masterKeyProvider,
sourcePlaintext,
encryptionContext);

byte[] ciphertext = encryptResult.getResult();

// Decrypt your ciphertext

CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
masterKeyProvider,
ciphertext);

byte[] decrypted = decryptResult.getResult();

JavaScript

A partir da versao 1.7. x do AWS Encryption SDK para JavaScript, vocé pode definir a politica de
compromisso ao chamar a nova buildClient fungdo que instancia um AWS Encryption SDK
cliente. A fungcédo buildClient assume um valor enumerado que representa sua politica de
compromisso. Ela retorna as fungbes encrypt e decrypt atualizadas, que reforgam sua politica
de compromisso quando vocé criptografa e descriptografa.

Nas versdes 1.x mais recentes, a fungdo buildClient requer o argumento
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT. A partir da versao
2.0.x, o argumento da politica de compromisso € opcional, e o valor padréo é
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Como definir sua politica de compromisso 471

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK Guia do Desenvolvedor

O codigo para Node.js e o navegador sao idénticos para essa finalidade, exceto que o navegador
precisa de uma instrucao para definir as credenciais.

O exemplo a seguir criptografa os dados com um AWS KMS chaveiro. A nova fungéo
buildClient define a politica de compromisso comoFORBID_ENCRYPT_ALLOW_DECRYPT,
o valor padrao nas versdes 1.x. mais recentes. A fungbes encrypt e decrypt atualizadas
retornadas por buildClient reforgam a politica de compromisso que vocé definiu.

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

A partir da versao 1.7. x do AWS Encryption SDK for Python, vocé define a politica de
compromisso em sua instancia deEncryptionSDKClient, um novo objeto que representa o
AWS Encryption SDK cliente. A politica de compromisso que vocé define se aplica a todas as
chamadas encrypt e decrypt que usam essa instancia do cliente.

Nas versdes 1.x mais recentes, o construtor EncryptionSDKClient requer o valor
enumerado CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT. A partir da
versao 2.0.x, o argumento da politica de compromisso € opcional, e o valor padréo é
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Este exemplo usa o novo construtorEncryptionSDKClient e define a politica de compromisso
como o valor padréo de 1.7.x. O construtor instancia um cliente que representa o AWS Encryption
SDK. Quando vocé chama os métodos encrypt,decrypt ou stream desse cliente, eles
aplicam a politica de compromisso que vocé definiu. Esse exemplo também usa o novo construtor

Como definir sua politica de compromisso 472

AWS Encryption SDK Guia do Desenvolvedor

da StrictAwsKmsMasterKeyProvider classe, que especifica AWS KMS keys quando
criptografar e descriptografar.

Para obter um exemplo completo, consulte set_commitment.py.

Instantiate the client
client =
aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_AL

// Create a master key provider in strict mode

aws_kms_key = "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
key_ids=[aws_kms_key]

Encrypt your plaintext data

ciphertext, encrypt_header = client.encrypt(
source=source_plaintext,
encryption_context=encryption_context,
master_key_provider=aws_kms_strict_master_key_provider

Decrypt your ciphertext

decrypted, decrypt_header = client.decxrypt(
source=ciphertext,
master_key_provider=aws_kms_strict_master_key_provider

Rust

O require-encrypt-require-decrypt valor é a politica de compromisso padrdao em
todas as versdes do AWS Encryption SDK for Rust. Vocé pode definir isso explicitamente
como uma pratica recomendadas, mas isso nao € necessario. No entanto, se vocé

estiver usando o for Rust AWS Encryption SDK para descriptografar texto cifrado que

foi criptografado por outra implementagao de linguagem do AWS Encryption SDK sem
compromisso de chave, vocé precisara alterar o valor da politica de compromisso para ou.
REQUIRE_ENCRYPT_ALLOW_DECRYPT FORBID_ENCRYPT_ALLOW_DECRYPT Caso contrario,
ocorrera uma falha na tentativa de descriptografar o texto cifrado.

No AWS Encryption SDK for Rust, vocé define a politica de compromisso em uma instancia
do AWS Encryption SDK. Instancie um AwsEncryptionSdkConfig objeto com um

Como definir sua politica de compromisso 473

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK Guia do Desenvolvedor

comitment_policy parametro e use o objeto de configuragao para criar a AWS Encryption
SDK instancia. Em seguida, chame os Decrypt () métodos Encrypt() e da AWS Encryption
SDK instancia configurada.

Este exemplo define a politica de compromisso como forbid-encrypt-allow-decrypt.

// Configure the commitment policy on the AWS Encryption SDK instance

let esdk_config = AwsEncryptionSdkConfig::builder()
.commitment_policy(ForbidEncryptAllowDecrypt)
.build()?;

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client

let sdk_config =
aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

let kms_client = aws_sdk_kms::Client: :new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
("encryption".to_string(), "context".to_string()),
("is not".to_string(), "secret".to_string()),
("but adds".to_string(), "useful metadata".to_string()),
("that can help you".to_string(), "be confident that".to_string()),
("the data you are handling".to_string(), "is what you think it
is".to_string()),

1);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
.create_aws_kms_keyring()
.kms_key_id(kms_key_id)
.kms_client(kms_client)
.send()
.await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()

Como definir sua politica de compromisso 474

AWS Encryption SDK Guia do Desenvolvedor

.plaintext(plaintext)
.keyring(kms_keyring.clone())
.encryption_context(encryption_context.clone())
.send()

.await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
.ciphertext(ciphertext)
.keyring(kms_keyring)
// Provide the encryption context that was supplied to the encrypt method
.encryption_context(encryption_context)
.send()
.await?;

Go

import (
"context"

mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygenerated"

mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/

awscryptographymaterialproviderssmithygeneratedtypes"”

client "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygenerated"

esdktypes "github.com/aws/aws-encryption-sdk/

awscryptographyencryptionsdksmithygeneratedtypes"
"github.com/aws/aws-sdk-go-v2/config"
"github.com/aws/aws-sdk-go-v2/service/kms"

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
&commitPolicyForbidEncryptAllowDecrypt})
if err !'= nil {
panic(err)

// Create an AWS KMS client

Como definir sua politica de compromisso 475

AWS Encryption SDK Guia do Desenvolvedor

cfg, err := config.LoadDefaultConfig(context.TODO())

if err != nil {
panic(err)

}

kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
o.Region = KmsKeyRegion

b
// Optional: Create an encryption context
encryptionContext := map[string]lstring{

"encryption": "context",

"is not": "secret",

"but adds": "useful metadata",

"that can help you": "be confident that",

"the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {

panic(err)

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
KmsClient: kmsClient,
KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
awsKmsKeyringInput)
if err !'= nil {
panic(err)

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
esdktypes.EncryptInput{

Plaintext: [1byte(exampleText),
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

1))

if err != nil {
panic(err)

}

Como definir sua politica de compromisso 476

AWS Encryption SDK Guia do Desenvolvedor

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
esdktypes.DecryptInput{

Ciphertext: res.Ciphertext,
EncryptionContext: encryptionContext,
Keyring: awsKmsKeyring,

b

if err !'= nil {
panic(err)

}

Solucao de problemas de migracao para as versdoes mais recentes

Antes de atualizar seu aplicativo para a versao 2.0. x ou posterior do AWS Encryption SDK, atualize
para a ultima 1. versdao x do AWS Encryption SDK e implante-a completamente. Isso ajudara vocé a
evitar a maioria dos erros que pode encontrar ao atualizar para as versoes 2.0.x e posteriores. Para
obter orientagdes detalhadas, incluindo exemplos, consulte Migrando seu AWS Encryption SDK.

/A Important

Verifique se a sua versao 1.x mais recente € a versao 1.7.x ou versao posterior do AWS
Encryption SDK.

(@ Note

AWS CLI de criptografia: referéncias neste guia a versao 1.7. x do AWS Encryption SDK se
aplica a versao 1.8. x da CLI AWS de criptografia. Referéncias neste guia para a versao 2.0.
x do AWS Encryption SDK se aplica a 2.1. x da CLI AWS de criptografia.

Novos recursos de seguranga foram langados originalmente nas versdes 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versao AWS 1.8 do Encryption CLI. x substitui a
versado 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de seguranga relevante no aws-encryption-sdk-clirepositério em GitHub.

Solugéo de problemas de migragao para as versdes mais recentes 477

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Este tdpico foi criado para ajudar vocé a reconhecer e solucionar os erros mais comuns que pode
encontrar.

Topicos

» Objetos descontinuados ou removidos

» Conflito de configuracao: politica de compromisso e pacote de algoritmos

» Conflito de configuracdo: politica de compromisso e texto cifrado

» Falha na validagao do confirmacao de chave

» Qutras falhas de criptografia

« Qutras falhas de decriptografia

» Consideracoes sobre reversao

Objetos descontinuados ou removidos

A versao 2.0.x inclui varias alteragdes importantes, incluindo a remog¢ao de construtores, métodos,
funcdes e classes herdados que foram descontinuados na versao 1.7.x.. Para evitar erros do
compilador, erros de importacdo, erros de sintaxe e erros de simbolo ndo encontrado (dependendo
da sua linguagem de programacao), atualize primeiro para a mais recente 1. versdo x do AWS
Encryption SDK para sua linguagem de programacgao. (Deve ser a versao 1.7.x ou posterior) Ao usar
a versao 1.x mais recente, vocé pode comecar a usar os elementos de substituicao antes que os
simbolos originais sejam removidos.

Se precisar atualizar para a versao 2.0. x ou posterior imediatamente, consulte o changelog da sua

linguagem de programacao e substitua os simbolos herdados pelos simbolos recomendados pelo
changelog.

Conflito de configuracao: politica de compromisso e pacote de algoritmos

Se vocé especificar um pacote de algoritmos que entre em conflito com sua politica de compromisso,

a chamada para criptografar falhara com um erro de conflito de configuragao.

Para evitar esse tipo de erro, ndo especifique um pacote de algoritmos. Por padréo, o AWS
Encryption SDK escolhe o algoritmo mais seguro que seja compativel com sua politica de
compromisso. No entanto, se vocé precisar especificar um pacote de algoritmos, como um sem
assinatura, certifique-se de escolher um pacote de algoritmos que seja compativel com sua politica
de compromisso.

Objetos descontinuados ou removidos 478

AWS Encryption SDK Guia do Desenvolvedor

Politica de compromisso Pacotes de algoritmos compativeis

ForbidEncryptAllowDecrypt Qualquer pacote de algoritmos sem confirmag
ao de chave, como:
AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (03 78) (com
assinatura)

AES_256_GCM_IV12_TAG1l6_HKDF
_SHA256 (01 78) (sem assinatura)

RequireEncryptAllowDecrypt Qualquer pacote de algoritmos com confirmag
_ . ao de chave, como:
NG EnE R TEDES o AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (05 78) (com
assinatura)

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (04 78) (sem assinatura)

Se vocé encontrar esse erro sem ter especificado um pacote de algoritmos, o pacote de algoritmos
conflitante pode ter sido escolhido pelo seu gerenciador de materiais criptograficos (CMM). O CMM
padrao nao selecionara um pacote de algoritmos conflitantes, mas um CMM personalizado pode
fazer isso. Para obter ajuda, consulte a documentagao do seu CMM personalizado.

Conflito de configuracao: politica de compromisso e texto cifrado

A politica de compromisso RequireEncryptRequireDecrypt ndo permite que o AWS Encryption

SDK descriptografe uma mensagem que foi criptografada sem confirmacao de chave. Se vocé pedir

AWS Encryption SDK para decifrar uma mensagem sem o compromisso da chave, ele retornara um
erro de conflito de configuragéo.

Para evitar esse erro, antes de definir a politica de compromisso
RequireEncryptRequireDecrypt, certifique-se de que todos os textos cifrados criptografados
sem confirmacgao de chave sejam descriptografados e recriptografados com confirmacgao de chave
ou sejam manipulados por uma aplicacao diferente. Se vocé encontrar esse erro, podera retornar

Conflito de configuragao: politica de compromisso e texto cifrado 479

AWS Encryption SDK Guia do Desenvolvedor

um erro para o texto cifrado conflitante ou alterar temporariamente sua politica de compromisso para
RequireEncryptAllowDecrypt.

Se estiver encontrando esse erro porque vocé atualizou para a versao 2.0.x ou posterior a partir uma
versao anterior a 1.7.x sem ter atualizado primeiro para a versao 1x mais recente (verséo 1.7. x ou
posterior), considere reverter para a versdo 1.x mais recente e implantar essa versdo em todos os
hosts antes de atualizar para a versao 2.0.x ou posterior. Para obter ajuda, consulte Como migrar e

implantar o AWS Encryption SDK.

Falha na validacao do confirmacgao de chave

Ao descriptografar mensagens criptografadas com confirmag¢ao de chave, vocé pode receber uma
mensagem de erro de Falha na validagao da confirmagao de chave. Isso indica que a chamada de
descriptografia falhou porque a chave de dados em uma mensagem criptografada n&o é idéntica a

chave de dados exclusiva da mensagem. Ao validar a chave de dados durante a descriptografia, a
confirmacao de chave protege vocé de descriptografar uma mensagem que pode resultar em mais

de um texto simples.

Esse erro indica que a mensagem criptografada que vocé estava tentando descriptografar nao foi
retornada pelo AWS Encryption SDK. Pode ser uma mensagem criada manualmente ou o resultado
de dados corrompidos. Se vocé encontrar esse erro, a aplicagao podera rejeitar a mensagem e
prosseguir ou interromper o processamento de novas mensagens.

Outras falhas de criptografia

A criptografia pode falhar por varios motivos. Vocé nao pode usar um token de autenticacao de

descoberta do AWS KMS ou um provedor de chave mestra em modo de descoberta para criptografar

uma mensagem.

Certifique-se de especificar um provedor de token de autenticagdo ou de chave mestra com chaves
de encapsulamento que deem permissao para usar para criptografia. Para obter ajuda com as

permissbes AWS KMS keys, consulte Visualizar uma politica de chaves e Determinar o acesso a
uma AWS KMS key no Guia do AWS Key Management Service desenvolvedor.

Outras falhas de decriptografia

Se sua tentativa de descriptografar uma mensagem criptografada falhar, isso significa que o
AWS Encryption SDK n&o conseguiu (ou ndo pbéde) descriptografar alguma das chaves de dados
criptografadas na mensagem.

Falha na validagéo do confirmagéo de chave 480

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK Guia do Desenvolvedor

Se vocé usou um provedor de chaveiro ou chave mestra que especifica chaves de encapsulamento,
ele AWS Encryption SDK usa somente as chaves de encapsulamento que vocé especificar. Verifique
se esta usando as chaves de encapsulamento pretendidas e se tem permissdo kms :Decrypt em
pelo menos uma das chaves de encapsulamento. Se vocé estiver usando AWS KMS keys, como
alternativa, tente descriptografar a mensagem com um chaveiro de AWS KMS descoberta ou um

provedor de chave mestra no modo de descoberta. Se a operacao for bem-sucedida, antes de

retornar o texto simples, verifique se a chave usada para descriptografar a mensagem é confiavel.

Consideracoes sobre reversao

Se a aplicagdo nao conseguir criptografar ou descriptografar dados, geralmente, é possivel resolver
o problema atualizando os simbolos de codigo, os tokens de autenticagéo, os provedores de chaves
mestras ou a politica de compromisso. No entanto, em alguns casos, vocé pode decidir que é melhor
reverter a aplicagdo para uma versao anterior do AWS Encryption SDK.

Se vocé precisar reverter, faga isso com cuidado. Versées AWS Encryption SDK anteriores a 1.7. x
nao pode decifrar texto cifrado criptografado com comprometimento de chave.

» Geralmente, é seguro reverter da versdo 1.x mais recente para uma versao anterior do AWS
Encryption SDK . Talvez seja necessario desfazer as alteragdes feitas no codigo para usar
simbolos e objetos que ndo sdo compativeis com as versdes anteriores.

» Depois de comecar a criptografar com confirmagao de chave (definindo sua politica de
compromisso como RequireEncryptAllowDecrypt) na versdo 2.0.x ou posterior, vocé podera
reverter para a versao 1.7.x, mas nao para alguma versao anterior a ela. Versdoes AWS Encryption
SDK anteriores a 1.7. x ndo pode decifrar texto cifrado criptografado com comprometimento de
chave.

Se vocé acidentalmente ativar a criptografia com confirmagao de chave antes de que todos os
hosts possam descriptografar com confirmagao de chave, talvez seja melhor continuar com a
implantagdo em vez de reverté-la. Se as mensagens forem transitorias ou puderem ser descartadas
com seguranca, considere fazer uma reversao com perda de mensagens. Se for necessaria uma
reversao, considere criar uma ferramenta que descriptografe e recriptografe todas as mensagens.

Consideragoes sobre reversao 481

AWS Encryption SDK Guia do Desenvolvedor

Perguntas frequentes

Perguntas frequentes

* Como o € AWS Encryption SDK diferente do AWS SDKs?

* Como ele é AWS Encryption SDK diferente do cliente de criptografia Amazon S3?

* Quais algoritmos criptograficos sdo suportados pelo AWS Encryption SDK e qual € o padrao?

» Como o vetor de inicializa¢ao (1V) € gerado e onde € armazenado?

+ Como cada chave de dados € gerada, criptografada e descriptografada?

» Como facgo para controlar as chaves de dados que foram usadas para criptografar meus dados?

* Como eles AWS Encryption SDK armazenam chaves de dados criptografadas com seus dados
criptografados?

* Quanta sobrecarga o formato da AWS Encryption SDK mensagem adiciona aos meus dados
criptografados?

» Posso usar meu proéprio provedor de chaves mestras?

» Posso criptografar dados com mais de uma chave de encapsulamento?

* Com quais tipos de dados posso criptografar? AWS Encryption SDK

* Como os fluxos AWS Encryption SDK criptografam e descriptografam input/output (E/S)?

Como o é AWS Encryption SDK diferente do AWS SDKs?

Eles AWS SDKsfornecem bibliotecas para interagir com a Amazon Web Services (AWS), incluindo
AWS Key Management Service (AWS KMS). Algumas das implementacgdes de linguagem do
AWS Encryption SDK, como a AWS Encryption SDK para 0.NET, sempre exigem o AWS SDK na
mesma linguagem de programacéao. Outras implementag¢des de linguagem exigem o AWS SDK

correspondente somente quando vocé usa AWS KMS chaves em seus chaveiros ou provedores de
chaves mestras. Para obter detalhes, consulte o tépico sobre sua linguagem de programacgao em
AWS Encryption SDK linguagens de programacao.

Vocé pode usar o AWS SDKs para interagir AWS KMS, incluindo criptografar e descriptografar
pequenas quantidades de dados (até 4.096 bytes com uma chave de criptografia simétrica) e gerar
chaves de dados para criptografia do lado do cliente. No entanto, ao gerar uma chave de dados,
vocé deve gerenciar todo o processo de criptografia e descriptografia, incluindo criptografar seus
dados com a chave de dados externa, descartar com seguranga a chave de dados em texto simples

Como o é AWS Encryption SDK diferente do AWS SDKs? 482

https://aws.amazon.com/tools/

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS, armazenar a chave de dados criptografada e, em seguida, descriptografar a chave de
dados e descriptografar seus dados. O AWS Encryption SDK gerencia esse processo para voceé.

O AWS Encryption SDK fornece uma biblioteca que criptografa e descriptografa dados usando os
padrées e as melhores praticas do setor. Ele gera a chave de dados, criptografa-a com as chaves
de encapsulamento especificadas e retorna uma mensagem criptografada, um objeto de dados
portatil que inclui os dados criptografados e as chaves de dados criptografadas necessarias para
descriptografa-los. Na hora de descriptografar, vocé passa a mensagem criptografada e pelo menos
uma das chaves de encapsulamento (opcional) e AWS Encryption SDK retorna seus dados em texto
sem formatacao.

Vocé pode usar AWS KMS keys como chaves de empacotamento no AWS Encryption SDK, mas
isso n&o é obrigatorio. Vocé pode usar as chaves de criptografia geradas por vocé e as do seu
gerenciador de chaves ou mdédulo de seguranca de hardware on-premises. Vocé pode usar o AWS
Encryption SDK mesmo se n&o tiver uma AWS conta.

Como ele € AWS Encryption SDK diferente do cliente de
criptografia Amazon S3?

O cliente de criptografia Amazon S3 no AWS SDKs fornece criptografia e descriptografia para dados

que vocé armazena no Amazon Simple Storage Service (Amazon S3). Esses clientes sao totalmente
acoplados ao Amazon S3 e sao destinados para uso apenas com os dados armazenados ali.

AWS Encryption SDK Ele fornece criptografia e decodificagdo para dados que vocé pode armazenar
em qualquer lugar. O AWS Encryption SDK e o cliente de criptografia Amazon S3 ndo séo
compativeis porque produzem textos cifrados com formatos de dados diferentes.

Quais algoritmos criptograficos sao suportados pelo AWS
Encryption SDK e qual é o padrao?

O AWS Encryption SDK usa o algoritmo simétrico Advanced Encryption Standard (AES) no Galois/
Counter Modo (GCM), conhecido como AES-GCM, para criptografar seus dados. Ele permite que
vocé escolha entre varios algoritmos simétricos e assimétricos para criptografar as chaves de dados
que criptografam seus dados.

Para o AES-GCM, o conjunto de algoritmos padrao € o AES-GCM com uma chave de 256 bits,
derivacao de chave (HKDF), assinaturas digitais e compromisso de chave. AWS Encryption SDK

Como ele € AWS Encryption SDK diferente do cliente de criptografia Amazon S3? 483

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK Guia do Desenvolvedor

também oferece suporte a chaves de criptografia de 192 e 128 bits e algoritmos de criptografia sem
assinaturas digitais e comprometimento de chaves.

Em todos os casos, o tamanho do vetor de inicializacao (IV) é de 12 bytes, e o tamanho da tag de
autenticacao € de 16 bytes. Por padrao, o SDK usa a chave de dados como entrada para a fungao
de derivacao de chave baseada em HMAC (HKDF) para derivar a extract-and-expand chave de
criptografia AES-GCM e também adiciona uma assinatura do Algoritmo de Assinatura Digital de
Curva Eliptica (ECDSA).

Para obter informacdes sobre como escolher o algoritmo a ser usado, consulte Pacotes de
algoritmos compativeis.

Para obter detalhes sobre a implementacao de algoritmos compativeis, consulte Referéncia de
algoritmos.

Como o vetor de inicializacao (IV) € gerado e onde € armazenado?

O AWS Encryption SDK usa um método deterministico para construir um valor IV diferente para
cada quadro. Esse procedimento garante que nunca IVs sejam repetidos em uma mensagem. (Antes
da versao 1.3.0 do AWS Encryption SDK for Java e do AWS Encryption SDK for Python, o AWS
Encryption SDK gerava aleatoriamente um valor IV exclusivo para cada quadro.)

O IV é armazenado na mensagem criptografada que ele AWS Encryption SDK retorna. Para obter
mais informagdes, consulte o AWS Encryption SDK referéncia de formato de mensagem.

Como cada chave de dados é gerada, criptografada e
descriptografada?

O método depende do token de autenticagao ou do provedor de chave mestra que vocé usa.

Os AWS KMS chaveiros e os provedores de chaves mestras AWS Encryption SDK usam a operagao
da AWS KMS GenerateDataKeyAPI para gerar cada chave de dados e criptografa-la sob sua chave

de encapsulamento. Para criptografar copias da chave de dados em chaves KMS adicionais, eles
usam a operacao AWS KMS Criptografar. Para descriptografar as chaves de dados, eles usam a
operacao Decrypt. AWS KMS Para obter detalhes, consulte AWS KMS chaveiro na AWS Encryption
SDK Especificagao em GitHub.

Outros tokens de autenticagao geram a chave de dados, criptografam e descriptografam usando os
meétodos das praticas recomendadas para cada linguagem de programagao. Para obter detalhes,

Como o vetor de inicializagéo (V) é gerado e onde é armazenado? 484

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md

AWS Encryption SDK Guia do Desenvolvedor

consulte a especificagao do fornecedor do chaveiro ou da chave mestra na secao Estrutura da AWS
Encryption SDK Especificagao em GitHub.

Como fago para controlar as chaves de dados que foram usadas
para criptografar meus dados?

Ele AWS Encryption SDK faz isso por vocé. Ao criptografar dados, o SDK criptografa a chave

de dados e armazena a chave criptografada junto com os dados criptografados na mensagem
criptografada que retorna. Ao descriptografar dados, o AWS Encryption SDK extrai a chave de dados
criptografada da mensagem criptografada, descriptografa-a usa-a para descriptografar os dados.

Como eles AWS Encryption SDK armazenam chaves de dados
criptografadas com seus dados criptografados?

As operagoes de criptografia AWS Encryption SDK retornam uma mensagem criptografada,

uma estrutura de dados unica que contém os dados criptografados e suas chaves de dados
criptografadas. O formato da mensagem consiste em pelo menos duas partes: um cabegalho e um
corpo. O cabecgalho da mensagem contém as chaves de dados criptografadas e informagdes sobre
como o corpo da mensagem € formado. O corpo da mensagem contém os dados criptografados.

Se o pacote de algoritmos incluir uma assinatura digital, o formato da mensagem incluira um rodapé
que contém a assinatura. Para obter mais informagdes, consulte AWS Encryption SDK referéncia de
formato de mensagem.

Quanta sobrecarga o formato da AWS Encryption SDK mensagem
adiciona aos meus dados criptografados?

A quantidade de sobrecarga adicionada pelo AWS Encryption SDK depende de varios fatores,
incluindo os seguintes:

« O tamanho dos dados de texto descriptografado

* Qual dos algoritmos compativeis € usado

» Se dados autenticados adicionais (AAD) sao fornecidos e o tamanho desse AAD
* O numero e o tipo de chave de encapsulamento ou chave mestra

« O tamanho da moldura (quando dados com moldura sdo usados)

Como fago para controlar as chaves de dados que foram usadas para criptografar meus dados? 485

https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK Guia do Desenvolvedor

Quando vocé usa o AWS Encryption SDK com sua configuragédo padrao (uma AWS KMS key como
chave de empacotamento (ou chave mestra), sem AAD, dados ndo emoldurados e um algoritmo

de criptografia com assinatura), a sobrecarga é de aproximadamente 600 bytes. Em geral, vocé
pode pressupor de forma razoavel que o AWS Encryption SDK adiciona uma sobrecarga de 1 KB ou
menos, sem incluir o AAD fornecido. Para obter mais informacgdes, consulte AWS Encryption SDK
referéncia de formato de mensagem.

Posso usar meu proprio provedor de chaves mestras?

Sim. Os detalhes da implementagao variam dependendo de qual das linguagens de programacao
suportadas vocé usa. No entanto, todas as linguagens suportadas permitem que vocé defina
gerenciadores de materiais criptograficos personalizados (CMMs) Ms), fornecedores de chaves
mestras, chaveiros, chaves mestras e chaves de empacotamento.

Posso criptografar dados com mais de uma chave de
encapsulamento?

Sim. Vocé pode criptografar a chave de dados com chaves de encapsulamento (ou chaves mestras)
adicionais para adicionar redundancia, no caso de uma estar em uma regiao diferente ou nao estar
disponivel para a descriptografia.

Para criptografar dados com varias chaves de encapsulamento, crie um provedor de tokens de
chave ou de chaves mestras com varias chaves de encapsulamento. Ao trabalhar com tokens de
autenticacao, vocé pode criar um unico token de autenticacdo com varias chaves de empacotamento
ou um multitoken de autenticacao.

Quando vocé criptografa dados com varias chaves de encapsulamento, o AWS Encryption SDK
usa uma chave de encapsulamento para gerar uma chave de dados em texto simples. A chave

de dados € exclusiva e matematicamente nao esta relacionada a chave de encapsulamento. A
operacao retorna a chave de dados em texto simples e uma copia da chave de dados criptografada
pela chave de encapsulamento. Em seguida, o método de criptografia criptografa a chave de dados
com as outras chaves de encapsulamento. A mensagem criptografada resultante inclui os dados

criptografados e uma chave de dados criptografada para cada chave de encapsulamento.

A mensagem criptografada pode ser descriptografada usando qualquer uma das chaves de
encapsulamento usadas na operagao de criptografia. O AWS Encryption SDK usa uma chave de
empacotamento para descriptografar uma chave de dados criptografada. Em seguida, usa a chave
de dados de texto simples para descriptografar os dados.

Posso usar meu proprio provedor de chaves mestras? 486

AWS Encryption SDK Guia do Desenvolvedor

Com quais tipos de dados posso criptografar? AWS Encryption
SDK

A maioria das implementagdes de linguagem de programacao do AWS Encryption SDK pode
criptografar bytes brutos (matrizes de bytes), I/O fluxos (fluxos de bytes) e cadeias de caracteres.
O AWS Encryption SDK for.NET nao oferece suporte a I/0O streams. Fornecemos um codigo de
exemplo para cada uma das linguagens de programacao compativeis.

Como os fluxos AWS Encryption SDK criptografam e
descriptografam input/output (E/S)?

O AWS Encryption SDK cria um fluxo de criptografia ou descriptografia que envolve um fluxo
subjacente. 1/0 O fluxo de criptografia ou descriptografia executa uma operagao de criptografia em
uma chamada de leitura ou de gravagao. Por exemplo, ele pode ler dados de texto nao criptografado
no fluxo subjacente e criptografa-los antes de retornar o resultado. Ou pode ler texto cifrado de

um fluxo subjacente e descriptografa-lo antes de retornar o resultado. Fornecemos um cédigo de
exemplo para criptografar e descriptografar fluxos para cada uma das linguagens de programacao
compativeis que oferecem suporte a streaming.

O AWS Encryption SDK for.NET nao oferece suporte a I/O streams.

Com quais tipos de dados posso criptografar? AWS Encryption SDK 487

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK referéncia

As informacgdes nesta pagina sao uma referéncia para criar sua propria biblioteca de criptografia
compativel com o AWS Encryption SDK. Se vocé nao estiver criando sua propria biblioteca de
criptografia compativel, provavelmente nao precisara dessas informagdes.

Para usar o AWS Encryption SDK em uma das linguagens de programacgao suportadas,
consulteLinguagens de programacao.

Para a especificagao que define os elementos de uma AWS Encryption SDK implementagao
adequada, consulte a AWS Encryption SDK Especificacao em GitHub.

O AWS Encryption SDK usa os algoritmos compativeis para retornar uma unica estrutura de

dados ou mensagem que contém dados criptografados e as chaves de dados criptografadas
correspondentes. Os tépicos a seguir explicam os algoritmos e a estrutura de dados. Use essas
informacgdes para criar bibliotecas que podem ler e gravar textos cifrados compativeis com este SDK.

Topicos

« AWS Encryption SDK referéncia de formato de mensagem

* AWS Encryption SDK exemplos de formato de mensagem

» Referéncia de corpo de dados autenticados adicionais (AAD) para o AWS Encryption SDK

* AWS Encryption SDK referéncia de algoritmos

« AWS Encryption SDK referéncia vetorial de inicializagao

* AWS KMS Detalhes técnicos do chaveiro hierarquico

AWS Encryption SDK referéncia de formato de mensagem

As informagdes nesta pagina sao uma referéncia para criar sua propria biblioteca de criptografia
compativel com o AWS Encryption SDK. Se vocé nao estiver criando sua propria biblioteca de
criptografia compativel, provavelmente n&o precisara dessas informagdes.

Para usar o AWS Encryption SDK em uma das linguagens de programacgao suportadas,
consulteLinguagens de programacao.

Referéncia do formato de mensagens 488

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Guia do Desenvolvedor

Para a especificagao que define os elementos de uma AWS Encryption SDK implementagao
adequada, consulte a AWS Encryption SDK Especificacao em GitHub.

As operacoes de criptografia AWS Encryption SDK retornam uma unica estrutura de dados ou
mensagem criptografada que contém os dados criptografados (texto cifrado) e todas as chaves de

dados criptografadas. Para compreender essa estrutura de dados ou para criar bibliotecas que a
leem ou gravam nela, vocé precisa compreender o formato da mensagem.

O formato da mensagem consiste em pelo menos duas partes: um cabegalho e um corpo. Em alguns
casos, o formato da mensagem consiste em uma terceira parte, um rodapé. O formato da mensagem
define uma sequéncia ordenada de bytes em ordem de bytes de rede, também chamado de formato
big-endian. O formato da mensagem comega com o cabecgalho, seguido pelo corpo, seguido pelo
rodapé (se houver).

Os pacotes de algoritmos suportados pelo AWS Encryption SDK usam uma das duas versdes

de formato de mensagem. Os pacotes de algoritmos sem confirmacao de chave usam formato

de mensagem versao 1. Os pacotes de algoritmos com confirmagéo de chave usam formato de
mensagem versao 2.

Topicos

« Estrutura do cabecalho

» Estrutura do corpo

» Estrutura do rodapé

Estrutura do cabecalho

O cabecgalho da mensagem contém a chave de dados criptografada e informag¢des sobre como o
corpo da mensagem é formado. A tabela a seguir descreve os campos que formam o cabecgalho nas
versdes 1 e 2 do formato de mensagem. Os bytes sdo anexados na ordem mostrada.

O valor Nao presente indica que o campo nao existe nessa versao do formato de mensagem. O texto
em negrito indica valores que sao diferentes em cada versao.

(® Note

Talvez seja necessario rolar horizontalmente ou verticalmente para ver todos os dados nessa
tabela.

Estrutura do cabegalho 489

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

Guia do Desenvolvedor

Estrutura do cabegalho

Campo

Version
Type
Algorithm ID
Message |ID

AAD Length

Encrypted Data Key Count

Encrypted Data Key(s)

Content Type

Reserved

Formato da mensagem versao
1

Tamanho (bytes)

1

16
2

Quando o contexto de
criptografia esta vazio, o valor
do tamanho do AAD de 2
bytes é 0.

Variavel. O tamanho desse
campo aparece nos 2 bytes
anteriores (campo Tamanho
do AAD).

Quando o contexto de
criptografia esta vazio, ndo ha
um campo AAD no cabecalho.

2

Variavel. Determinado pelo
numero de chaves de dados
criptografadas e pelo tamanho
de cada uma delas.

1

4

Formato da mensagem versao
2

Tamanho (bytes)
1

Nao esta presente
2

32

2

Quando o contexto de
criptografia esta vazio, o valor
do tamanho do AAD de 2
bytes é 0.

Variavel. O tamanho desse
campo aparece nos 2 bytes
anteriores (campo Tamanho
do AAD).

Quando o contexto de
criptografia esta vazio, ndo ha
um campo AAD no cabecalho.

2

Variavel. Determinado pelo
numero de chaves de dados
criptografadas e pelo tamanho
de cada uma delas.

1

Nao esta presente

Estrutura do cabegalho

490

AWS Encryption SDK

Guia do Desenvolvedor

Campo

IV Length

Frame Length

Algorithm Suite Data

Header Authentication

Versao

Formato da mensagem versao
1

Tamanho (bytes)
1
4

Nao esta presente

Variavel. Determinado

pelo algoritmo que gerou a
mensagem.

Formato da mensagem versao
2

Tamanho (bytes)
N&ao esta presente
4

Variavel. Determinado

pelo algoritmo que gerou a
mensagem.

Variavel. Determinado

pelo algoritmo que gerou a
mensagem.

A versao do formato desta mensagem. A versdo € 1 ou 2 codificado como o byte 01 ou 02 em

notacao hexadecimal

Tipo

O tipo deste formato de mensagem. O tipo indica o tipo da estrutura. O unico tipo suportado &
descrito como dados criptografados e autenticados pelo cliente. Seu valor de tipo € 128 bytes,
codificado como byte 8@ em notacdo hexadecimal.

Esse campo nao esta presente na versao 2 do formato de mensagem.

ID do algoritmo

Um identificador para o algoritmo usado. E um valor de 2 bytes interpretado como um inteiro ndo
assinado de 16 bits. Para obter mais informagdes sobre os algoritmos, consulte AWS Encryption
SDK referéncia de algoritmos.

ID da mensagem

Um valor gerado aleatoriamente que identifica a mensagem. O ID da mensagem:
« lIdentifica exclusivamente a mensagem criptografada.

» Associa levemente o cabegalho da mensagem ao corpo da mensagem.

Estrutura do cabegalho 491

AWS Encryption SDK Guia do Desenvolvedor

» Fornece um mecanismo para reutilizar uma chave de dados com seguranca com varias
mensagens criptografadas.

* Protege contra a reutilizagao acidental de uma chave de dados ou contra o desgaste de chaves
no AWS Encryption SDK.

Esse valor é de 128 bits no formato de mensagem versao 1 e 256 bits na versao 2.

Comprimento do AAD

O tamanho dos dados autenticados adicionais (AAD). E um valor de 2 bytes interpretado como
um numero inteiro ndo assinado de 16 bits que especifica 0 numero de bytes que contém o AAD.

Quando o contexto de criptografia esta vazio, o valor do campo de tamanho do AAD ¢ 0.
AAD

Os dados autenticados adicionais. O AAD ¢é uma codificagao do contexto de criptografia, uma
matriz de pares de chave-valor onde cada chave e o valor € uma string de caracteres codificados
em UTF-8. O contexto de criptografia € convertido em uma sequéncia de bytes e usado para

o valor do AAD. Quando o contexto de criptografia esta vazio, ndo ha um campo AAD no
cabecalho.

Quando os algoritmos com assinatura sao usados, o contexto de criptografia deve conter o par
de chave-valor {'aws-crypto-public-key', Qtxt}. Qtxtrepresenta o ponto Q compactado
da curva eliptica de acordo com o SEC 1 versao 2.0 e, em seguida, codificado em base64. O
contexto de criptografia pode conter valores adicionais, mas o tamanho maximo do construido
AAD é 276 - 1 bytes.

A tabela a seguir descreve os campos que formam o AAD. Os pares de chave-valor s&o
classificados, por chave, em ordem crescente de acordo com o codigo de caracteres UTF-8. Os
bytes s&do anexados na ordem mostrada.

Estrutura do AAD

Campo Tamanho (bytes)

Key-Value Pair Count 2

Key Length 2

Key Variavel. Igual ao valor especificado nos 2

bytes anteriores (tamanho da chave).

Estrutura do cabegalho 492

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK Guia do Desenvolvedor

Campo Tamanho (bytes)
Value Length 2
Value Variavel. Igual ao valor especificado nos 2

bytes anteriores (tamanho do valor).

Contagem de pares de valores-chave

O numero de pares chave-valor no AAD. E um valor de 2 bytes interpretado como um ndmero
inteiro n&o assinado de 16 bits que especifica 0 numero de pares de chave-valor no AAD. O
numero maximo de pares chave-valor no AAD é 2716 - 1.

Quando nao houver um contexto de criptografia ou o contexto de criptografia estiver vazio,
esse campo nao estara presente na estrutura do AAD.

Comprimento da chave
O tamanho da chave do par de chave-valor. E um valor de 2 bytes interpretado como um
numero inteiro nao assinado de 16 bits que especifica 0 numero de bytes que contém a chave.

Chave

A chave do par de chave-valor. E uma sequéncia de bytes codificados em UTF-8.
Comprimento do valor

O tamanho do valor do par de chave-valor. E um valor de 2 bytes interpretado como um

numero inteiro nao assinado de 16 bits que especifica 0 numero de bytes que contém o valor.

Valor

O valor do par de chave-valor. E uma sequéncia de bytes codificados em UTF-8.

Contagem de chaves de dados criptografados

O numero de chaves de dados criptografadas. E um valor de 2 bytes interpretado como

um numero inteiro ndo assinado de 16 bits que especifica o numero de chaves de dados
criptografadas. O numero maximo de chaves de dados criptografadas em cada registro € 65.535
(2M6 - 1).

Estrutura do cabegalho 493

AWS Encryption SDK Guia do Desenvolvedor

Chave (s) de dados criptografada

Uma sequéncia de chaves de dados criptografadas. O tamanho da sequéncia € determinado
pelo numero de chaves de dados criptografadas e pelo tamanho de cada uma delas. A sequéncia
contém pelo menos uma chave de dados criptografada.

A tabela a seguir descreve os campos que formam cada chave de dados criptografada. Os bytes
sdo anexados na ordem mostrada.

Estrutura da chave de dados criptografada

Campo Tamanho (bytes)

Key Provider ID Length 2

Key Provider ID Variavel. Igual ao valor especificado nos 2
bytes anteriores (tamanho do ID do provedor
de chave).

Key Provider Information Length 2

Key Provider Information Variavel. Igual ao valor especificado nos 2

bytes anteriores (tamanho das informacoes
do provedor de chave).

Encrypted Data Key Length 2

Encrypted Data Key Variavel. Igual ao valor especificado nos 2
bytes anteriores (tamanho da chave de dados
criptografada).

Tamanho do ID do provedor de chaves

O tamanho do identificador do provedor de chave. E um valor de 2 bytes interpretado como
um numero inteiro ndo assinado de 16 bits que especifica 0 numero de bytes que contém o ID
do provedor de chave.

ID do provedor de chave

O identificador do provedor de chave. E usado para indicar o provedor da chave de dados
criptografada e deve ser extensivel.

Estrutura do cabegalho 494

AWS Encryption SDK Guia do Desenvolvedor

Tamanho das informagdes do principal provedor

O tamanho das informagdes do provedor de chave. E um valor de 2 bytes interpretado como
um numero inteiro ndo assinado de 16 bits que especifica o numero de bytes que contém as
informagdes do provedor de chave.

Informacdes sobre os principais fornecedores
As informagdes do provedor de chave. Sdo determinadas pelo provedor de chaves.

Quando AWS KMS é o provedor da chave mestra ou vocé esta usando um AWS KMS
chaveiro, esse valor contém o Amazon Resource Name (ARN) do. AWS KMS key

Comprimento da chave de dados criptografados

O tamanho da chave de dados criptografada. E um valor de 2 bytes interpretado como um
numero inteiro ndo assinado de 16 bits que especifica 0 numero de bytes que contém a chave
de dados criptografada.

Chave de dados criptografada

A chave de dados criptografada. E a chave de criptografia dos dados criptografada pelo
provedor de chaves.

Tipo de conteudo

O tipo de conteudo criptografado, com moldura ou sem moldura.

(@ Note

Sempre que possivel, use dados com moldura. O AWS Encryption SDK suporta dados
nao emoldurados somente para uso antigo. Algumas implementacdes de linguagem
do ainda AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as
implementagdes de linguagem compativeis podem descriptografar texto cifrado e néo
emoldurado.

Os dados com moldura s&o divididos em partes de tamanho igual; cada parte é criptografada
separadamente. O conteudo com moldura € do tipo 2, codificado como o byte @2 em notagao
hexadecimal.

Os dados nao emoldurados nao sao divididos; sao um unico blob criptografado. O conteudo sem
moldura € do tipo 1, codificado como o byte @1 em notagao hexadecimal.

Estrutura do cabegalho 495

AWS Encryption SDK Guia do Desenvolvedor

Reservado

Uma sequéncia reservada de 4 bytes. Esse valor deve ser 0. Ele € codificado como os bytes 00
00 00 00 em notacao hexadecimal (ou seja, uma sequéncia de 4 bytes de um valor inteiro de
32 bits igual a 0).

Esse campo nao esta presente na versao 2 do formato de mensagem.

Comprimento IV

O tamanho do 1V (initialization vector - vetor de inicializag&o). E um valor de 1 byte interpretado
como um numero inteiro nao assinado de 8 bits que especifica 0 numero de bytes que contém o
IV. Esse valor é determinado pelo valor de bytes do IV do algoritmo que gerou a mensagem.

Este campo nao esta presente no formato de mensagem versao 2, que somente é compativel
com pacotes de algoritmos que usam valores |V deterministicos no cabecalho da mensagem.

Comprimento do quadro

O tamanho de cada moldura do dado com moldura. E um valor de 4 bytes interpretado como
um numero inteiro nao assinado de 32 bits que especifica o numero de bytes que forma cada
estrutura. Quando o dado nao for com moldura, isto €, quando o valor do campo do Content
Type campo for 1, esse valor deve ser 0.

(@ Note

Sempre que possivel, use dados com moldura. O AWS Encryption SDK suporta dados
nao emoldurados somente para uso antigo. Algumas implementacdes de linguagem
do ainda AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as
implementagdes de linguagem compativeis podem descriptografar texto cifrado e néo
emoldurado.

Dados do pacote de algoritmos

Dados suplementares necessarios pelo algoritmo que gerou a mensagem. O tamanho e o
conteudo séo determinados pelo algoritmo. Seu tamanho pode ser 0.

Este campo n&o esta presente na versédo 1 do formato de mensagem.

Estrutura do cabegalho 496

AWS Encryption SDK

Guia do Desenvolvedor

Autenticacao de

A autenticagdo do cabegalho é determinada pelo algoritmo que gerou a mensagem. A
autenticagao do cabecalho é calculada sobre o cabecalho inteiro. Consiste em um IV e uma tag
de autenticagcao. Os bytes sdo anexados na ordem mostrada.

Estrutura da autenticagao do cabecgalho

Campo

Authentication Tag

Tamanho na versao 1.0
(bytes)

Variavel. Determinada
pelo valor de bytes do IV

do algoritmo que gerou a
mensagem.

Variavel. Determinada pelo
valor dos bytes da tag de
autenticacao do algoritmo
que gerou a mensagem.

Tamanho na versao 2.0
(bytes)

N/D

Variavel. Determinada pelo
valor dos bytes da tag de
autenticacao do algoritmo
que gerou a mensagem.

O vetor de inicializagao (V) usado para calcular a tag de autenticagao do cabegalho.

Este campo n&o esta presente na verséo 2 do formato de mensagem. Este campo nao esta

presente na versao 2 do formato de mensagem, que somente é compativel com pacotes de

algoritmos que usam valores |V deterministicos no cabec¢alho da mensagem.

Tag de autenticacao

O valor da autenticacdo do cabecalho. E usado para autenticar todo o contetido do cabecalho.

Estrutura do corpo

O corpo da mensagem contém os dados criptografados, chamados de texto cifrado. A estrutura do
corpo depende do tipo de conteudo (sem moldura ou com moldura). As se¢des a seguir descrevem o
formato do corpo da mensagem para cada tipo de conteudo. A estrutura do corpo da mensagem € a
mesma nas versdes 1 e 2 do formato de mensagem.

Estrutura do corpo

497

AWS Encryption SDK Guia do Desenvolvedor

Topicos

 Dados sem moldura

 Dados com moldura

Dados sem moldura

Os dados sem moldura sao criptografados em um unico blob com um IV exclusivo e AAD do corpo.

(® Note

Sempre que possivel, use dados com moldura. O AWS Encryption SDK suporta dados néo
emoldurados somente para uso antigo. Algumas implementagoes de linguagem do ainda
AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as implementac¢des de
linguagem compativeis podem descriptografar texto cifrado e ndo emoldurado.

A tabela a seguir descreve os campos que formam os dados sem moldura. Os bytes sdo anexados
na ordem mostrada.

Estrutura de corpo sem moldura
Campo Tamanho, em bytes

\Y% Variavel. Igual ao valor especificado no byte do
IV Length do cabegalho.

Encrypted Content Length 8

Encrypted Content Variavel. Igual ao valor especificado nos
8 bytes anteriores (tamanho do conteudo
criptografado).

Authentication Tag Variavel. Determinado pela implementacao do

algoritmo usado.

O vetor de inicializagao (IV) para uso com o algoritmo de criptografia.

Estrutura do corpo 498

AWS Encryption SDK Guia do Desenvolvedor

Tamanho do conteudo criptografado

O tamanho do contetdo criptografado ou do texto cifrado. E um valor de 8 bytes interpretado
como um numero inteiro nao assinado de 64 bits que especifica 0 numero de bytes que contém o
conteudo criptografado.

Tecnicamente, o valor maximo permitido é 2263 - 1 ou 8 exbibytes (8 EiB). No entanto, na
pratica, o valor maximo é 236 - 32 ou 64 gibibytes (64 GiB), devido as restricbes impostas pelos
algoritmos implementados.

® Note

A implementacao Java deste SDK restringe ainda mais esse valor para 231 - 1 ou 2
gibibytes (2 GiB), devido as restricdes da linguagem.

Conteudo criptografado

O conteudo criptografado (texto cifrado) como retornado pelo algoritmo de criptografia.

Tag de autenticacao

O valor da autenticac&o do corpo. E usado para autenticar o corpo da mensagem.

Dados com moldura

Em dados com moldura, os dados de texto simples s&o divididos em partes iguais chamadas
molduras. O AWS Encryption SDK criptografa cada quadro separadamente com um IV e um corpo
AAD exclusivos.

(® Note

Sempre que possivel, use dados com moldura. O AWS Encryption SDK suporta dados néo
emoldurados somente para uso antigo. Algumas implementag¢des de linguagem do ainda
AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as implementacdes de
linguagem compativeis podem descriptografar texto cifrado e ndo emoldurado.

Estrutura do corpo 499

AWS Encryption SDK Guia do Desenvolvedor

O tamanho da moldura, que € o tamanho do conteudo criptografado na moldura, pode ser diferente

para cada mensagem. O numero maximo de bytes em uma moldura € 2732 - 1. O numero maximo
de molduras em uma mensagem ¢é 232 - 1.

Ha dois tipos de moldura: normal e final. Cada mensagem deve consistir ou incluir uma moldura final.

Todas as molduras normais em uma mensagem tém o mesmo tamanho de moldura. A moldura final
pode ter um tamanho de moldura diferente.

A composic¢ao das molduras em dados com molduras varia de acordo com o tamanho do conteudo
criptografado.

* Igual ao tamanho do quadro: quando o tamanho do conteudo criptografado € igual ao tamanho do
quadro das molduras regulares, a mensagem pode consistir em um quadro normal que contém os
dados, seguido por um quadro final de tamanho zero (0). Ou, a mensagem pode consistir apenas
em um a moldura que contém os dados. Nesse caso, a moldura final tem o mesmo tamanho de
moldura que as molduras normais.

» Multiplo do tamanho do quadro: quando o tamanho do conteudo criptografado € um multiplo exato
do tamanho do quadro das molduras regulares, a mensagem pode terminar em um quadro regular
que contém os dados, seguido por um quadro final de tamanho zero (0). Ou, a mensagem pode
terminar em uma moldura final que contém os dados. Nesse caso, a moldura final tem o mesmo
tamanho de moldura que as molduras normais.

* Nao é multiplo do tamanho do quadro: quando o tamanho do conteudo criptografado nao € um
multiplo exato do comprimento do quadro das molduras regulares, o quadro final contém os dados
restantes. O tamanho da moldura final € menor que o tamanho das molduras normais.

* Menor que o tamanho do quadro: quando o tamanho do conteudo criptografado € menor que
o tamanho do quadro das molduras regulares, a mensagem consiste em um quadro final que
contém todos os dados. O tamanho da moldura final € menor que o tamanho das molduras
normais.

As tabelas a seguir descrevem os campos que formam as molduras. Os bytes sdo anexados na
ordem mostrada.
Estrutura de corpo com moldura, moldura normal

Campo Tamanho, em bytes

Sequence Number 4

Estrutura do corpo 500

AWS Encryption SDK Guia do Desenvolvedor

Campo Tamanho, em bytes

\Y% Variavel. Igual ao valor especificado no byte do
IV Length do cabegalho.

Encrypted Content Variavel. Igual ao valor especificado no Frame
Length do cabecalho.

Authentication Tag Variavel. Determinada pelo algoritmo usado,
conforme especificado no Algorithm ID do
cabecalho.

Numero de sequéncia

O numero sequencial da moldura. E um nimero do contador incremental da moldura. E um valor
de 4 bytes interpretado como um inteiro nao assinado de 32 bits.

Os dados com moldura devem comecgar no numero sequencial 1. As molduras subsequentes
devem estar em ordem e devem conter um incremento de 1 da moldura anterior. Caso contrario,
o processo de descriptografia sera interrompido e relatara um erro.

O vetor de inicializagao (IV) da moldura. O SDK usa um método deterministico para construir
um 1V diferente para cada moldura na mensagem. O tamanho € especificado pelo pacote de

algoritmos usado.
Conteudo criptografado

O conteudo criptografado (texto cifrado) da moldura, conforme retornado pelo algoritmo de

criptografia.
Tag de autenticacao

O valor da autenticacdo da moldura. E usado para autenticar a moldura inteira.

Estrutura de corpo com moldura, moldura final
Campo Tamanho, em bytes

Sequence Number End 4

Estrutura do corpo 501

AWS Encryption SDK

Guia do Desenvolvedor

Campo

Sequence Number

vV

Encrypted Content Length

Encrypted Content

Authentication Tag

Fim do numero de sequéncia

Tamanho, em bytes
4

Variavel. Igual ao valor especificado no byte do
IV Length do cabegalho.

4

Variavel. Igual ao valor especificado nos
4 bytes anteriores (tamanho do conteudo
criptografado).

Variavel. Determinada pelo algoritmo usado,
conforme especificado no Algorithm ID do
cabecalho.

Um indicador para a moldura final. O valor é codificado como 4 bytes FF FF FF FF em notacao

hexadecimal.

Numero de sequéncia

O numero sequencial da moldura. E um nimero do contador incremental da moldura. E um valor
de 4 bytes interpretado como um inteiro nao assinado de 32 bits.

Os dados com moldura devem comecgar no numero sequencial 1. As molduras subsequentes

devem estar em ordem e devem conter um incremento de 1 da moldura anterior. Caso contrario,

o processo de descriptografia sera interrompido e relatara um erro.

O vetor de inicializagao (IV) da moldura. O SDK usa um método deterministico para construir um

IV diferente para cada moldura na mensagem. O tamanho do IV é especificado pelo pacote de

algoritmos.

Tamanho do conteudo criptografado

O tamanho do contetdo criptografado. E um valor de 4 bytes interpretado como um nimero

inteiro ndo assinado de 32 bits que especifica 0 numero de bytes que contém o conteudo

criptografado da moldura.

Estrutura do corpo

502

AWS Encryption SDK Guia do Desenvolvedor

Conteudo criptografado

O conteudo criptografado (texto cifrado) da moldura, conforme retornado pelo algoritmo de

criptografia.
Tag de autenticacao

O valor da autenticacdo da moldura. E usado para autenticar a moldura inteira.

Estrutura do rodapé

Quando os algoritmos com assinatura sdo usados, o formato da mensagem contém um rodapé.

O rodapé da mensagem contém uma assinatura digital calculada sobre o cabecgalho e o corpo da
mensagem. A tabela a seguir descreve os campos que formam o rodapé. Os bytes sdo anexados na
ordem mostrada. A estrutura do rodapé da mensagem € a mesma nas versdes 1 e 2 do formato de
mensagem.

Estrutura do rodapé

Campo Tamanho, em bytes
Signature Length 2
Signature Variavel. Igual ao valor especificado nos 2

bytes anteriores (tamanho da assinatura).

Comprimento da assinatura

O tamanho da assinatura. E um valor de 2 bytes interpretado como um nimero inteiro no
assinado de 16 bits que especifica o numero de bytes que contém a assinatura.

Assinatura

A assinatura.

AWS Encryption SDK exemplos de formato de mensagem

As informagdes nesta pagina sdo uma referéncia para criar sua propria biblioteca de criptografia
compativel com o AWS Encryption SDK. Se vocé nao estiver criando sua propria biblioteca de
criptografia compativel, provavelmente n&o precisara dessas informagdes.

Estrutura do rodapé 503

AWS Encryption SDK

Guia do Desenvolvedor

Para usar o AWS Encryption SDK em uma das linguagens de programacgao suportadas,

consulteLinguagens de programacao.

Para a especificagao que define os elementos de uma AWS Encryption SDK implementagao
adequada, consulte a AWS Encryption SDK Especificacao em GitHub.

Os topicos a seguir mostram exemplos do formato da AWS Encryption SDK mensagem. Cada
exemplo mostra os bytes brutos, em notacdo hexadecimal, seguidos por uma descrigao do que o0s

bytes representam.

Topicos

» Dados emoldurados (formato de mensagem versao 1)

* Dados emoldurados (formato de mensagem versao 2)

* Dados ndo emoldurados (formato de mensagem verséao 1)

Dados emoldurados (formato de mensagem verséao 1)

O exemplo a seguir mostra o formato da mensagem para dados com moldura na vesao 1 do formato

de mansagem.

L +
| Header |
L +
01

80

data)
0378

6E7COFBD 4DF4A999 717C22A2 DDFE1A27
008E

0004

0005

30746869 73

0002

6973

0003

31616E

000A

656E6372 79774690 6F6E
0008

Version (1.0)
Type (128, customer authenticated encrypted

Algorithm ID (see Referéncia de algoritmos)
Message ID (random
Length (142)

AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair
Pair

128-bit value)

Count (4)
1, Key Length (5)

1, Key ("@This")

1, Value Length (2)

1, Value ("is")

2, Key Length (3)

2, Key ("1an")

2, Value Length (10)

2, Value ("encryption")
3, Key Length (8)

Dados emoldurados (formato de mensagem versao 1)

504

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

Guia do Desenvolvedor

32636F6E 74657874
0007

6578616D 706C65
0015

6177732D 63727970 746F2D70 75626C69

public-key")
632D6B65 79
0044

416A4173 7569326F 7430364C 4B77715A

("AjAsui2ot@6LKwqzXDInU/Aqc2vD+00kp0Z1cc8Tg2qd7rs5aLTg71vFUEW/86+/5w==")
58444LAGE 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F

35773D3D
0002
0007
(7)
6177732D 6B6D73
kms™")
004B

Information Length (75)

61726E3A 6177733A

Information ("arn:aws:kms:

6B6D733A

a755-138a6d9alle6")

6573742D 323A3131
33333A6B 65792F37
35383235 2D343234
33386136 64396131
Q0A7

Length (167)
01010200 7857A1C1
956C4702 23DCE8D7
02A4EF29 7F000000
86F70D01 0706A06F
092A8648 86F70D01
48016503 04012E30
7A12EB19 8BF2D802
A5474FBC 392360B5
A6BD7332 6BF86DAB
47@7E356 ADA3735A
9F224BF9 E67E87
0007

(7)

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C3F
0110803B
CB9997E0
60D8CCB8
7C52D778

75732D77

32323333
3831382D
35352D31

4LECA7C83
973E3CED
092A8648
00306806
06096086
F02C897B
24003D1F
6A17DE4C
8295DBES
B3135A47

AAD
AAD
AAD
AAD
AAD

AAD
AAD

EncryptedDataKeyCount

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Key-Value
Key-Value

Pair
Pair
Pair
Pair
Pair

Pair

~

N AP W W

4,

Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)

Key ("aws-crypto-

Value Length (68)

Pair 4, Value

Encrypted Data Key 1,

Encrypted Data Key 1,

Encrypted Data Key 1,

Encrypted Data Key 1,
us-west-2:111122223333:key/715c0818-5825-4245-

(2)
Key Provider ID Length

Key Provider ID ("aws-

Key Provider

Key Provider

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 2, Key Provider ID Length

Dados emoldurados (formato de mensagem versao 1)

505

AWS Encryption SDK

Guia do Desenvolvedor

6177732D 6B6D73
kms™)
004E

Information Length (78)

61726E3A 6177733A

Information ("arn:aws:kms:

be3435b423ff")

656E7472 616C2D31
32333333 333A6B65
34622D61 6663632D
372D6265 33343335

00OA7

Length (167)

01010200
OE57BD87
AF787150
86F70D01
092A8648
48016503
D218B674
E470AA27
57DCC69B
72EBAAFD
556FBD58
02

00000000
ocC

00000100
4ECBD5CO
0B896144

00000001
6BD3FESC
1F6471E0
F5AFA33C
FBDSAQC3
BDEE43A8
A90DB923
201E3AD9S
DEB7F372
CB80A167
A7DSD2CC

78FAFFFB
3F60F4E6
69000000
0706A06F
86F70D01
04012E30
5BBC6102
DEAB660B
AAB1294F
E24E3EDS8
9E621C

9899CA65
0CA27950

ADBCB213
A51AF310
7D2E8C6C
C6E3FB59
OF0OOF49E
699A1495
1EA6DA14
375ECB28
9C361C4B
5150D414

6B6D733A

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040C36
01108038
3EQCES8EQ
21202C01
7168EQFA

923D2347
CA571201

5B89E8F1
10FASEF6
9C5D5175
C125DBF2
ACBBD8B2
C3B31B50
7F6496DB
9BF84B6D
5EC0Q7438
AF75F509

63612D63

ca-central-1:111122223333:

31323232
31336361
2D616134
6666

Encrypted Data Key 2, Key Provider ID ("aws-

Encrypted Data Key 2, Key Provider

Encrypted Data Key 2, Key Provider
key/9bl3casb-afcc-46a8-aas47-

Encrypted

AC72F79B
5A002C94
092A8648
00306806
06096086
CD985E12
0320E3CD
8B1A89E4
9A50D323
DB40508F

Encrypted

Data Key 2, Encrypted Data Key

Data Key 2, Encrypted Data Key

Content Type (2, framed data)

Reserved
IV Length

(12)

Frame Length (256)

IV
4DA58029

Authentication Tag

Frame 1, Sequence Number (1)

Frame 1,
FOC76EDF
A212AF8E
89AC7939
1C785089
OA48A830
6BC1l04A4L
2863889F
7A4822B4
FCE118BD

IV
Frame 1, Encrypted Content

Dados emoldurados (formato de mensagem versao 1)

506

AWS Encryption SDK Guia do Desenvolvedor

6D1E798B AEBA4CDB ADQOSESF 1A571B77

Q041BC78 3E5F2F41 8AF157FD 461E959A

BB732F27 D83DC36D CCO9EBCO5 00D87803

57F2BB80@ 066971C2 DEEA@62F 4F36255D

E866CQ42 E1382369 12E9926B BA4QE2FC

A820055F FB47E428 41876F14 3B6261D9

5262DB34 59F5D37E 76E46522 E8213640

Q4EE3CC5 379732B5 F56751FA 8ES5F26AD Frame
00000002 Frame
F1140984 FF25F943 959BES14 Frame
216C7C6A 2234F395 F@OD2D9BY9 304670BF Frame
A1042608 8A8BCB3F B58CF384 D72ECQ0Q4

A41455B4 9A78BACY9 36E54E68 2709B7BD

A884C1E1 705FF696 ES540D297 446A8285

23DFEE28 E74B225A 732F2CQC 27C6BDA2

7597C901 65EF3502 546575D4 6D5SEBF22

1FF787AB 2E38FD77 125D129C 43D44B96

778D7CEE 3C36625F FF3A985C 76F7D320

ED70B1F3 79729B47 E7D9B5FC Q2FCESF5

C8760D55 7779520A 81D54F9B EC45219D

95941F7E 5CBAEAC8 CEC13B62 1464757D

AC65B6EF 08262D74 44670624 A3657F7F

2A57F1FD E7060503 AC37E197 2F297A84

DF1172C2 FA63CF54 EGE2B9B6 A86F582B

3B16F868 1BBC5E4D ©0B6919B3 @O8D5ABCF

FECDC4A4 8577F08B 99D766A1 ES5545670

A61FQA3B A3E45A84 4D151493 63ECA38F Frame 2, Authentication Tag

FFFFFFFF Final Frame, Sequence Number End

00000003 Final Frame, Sequence Number (3)

35F74F11 25410F01 DD9EQ4BF Final Frame, IV

0000008E Final Frame, Encrypted Content Length (142)
F7A53D37 2F467237 6FBDOB57 D1DFE830 Final Frame, Encrypted Content

B965AD1F A91QAASF S5EFFFFF4 BC7D431C

BAOFA7C4 B25AF82E 64AQ4E3A A@915526

88859500 7096FABB 3ACAD32A 75CFEDOC

4LALES2A3 8E41484D 270B7AQF ED61810C

3A043180 DF25E5C5 3676E449 0986557F

CO51AD55 A437F6BC 139E9ES55 6199FD60

6ADC0O17D BA41CDA4 CO9F17A83 3823F9EC

B66B6A5SA 80FDB433 8A48D6A4 21CB

811234FD 8D589683 51F6F39A 040B3E3B Final Frame, Authentication Tag

, Authentication Tag
, Sequence Number (2)
IV

, Encrypted Content

N NN P

Dados emoldurados (formato de mensagem versao 1) 507

AWS Encryption SDK

Guia do Desenvolvedor

0066

30640230
639AED00O
758B309F
5208B133
3C6A7D5E
7E06808D
A13762FF

085C1D3C
F7624854
5EFD9D5D
02301DF7
4F8B894E
OFE79002
844D

63424E15
F8CF2203
2EQ7ADOB
2DFC877A
83D98E7C
E24422B9

B2244448
D7198A28
467B8317
66838028
E350F424
98A0D130

Signature Length (102)

Signature

Dados emoldurados (formato de mensagem versao 2)

O exemplo a seguir mostra o formato da mensagem para dados com moldura na versao 2 do formato
de mensagem.

L +

| Header |

L +

02 Version (2.0)

0578 Algorithm ID (see Algorithms reference)
122747eb 21dfe39b 38631c61l 7fad7340

cc621a30 32allcc3 216d0204 fd148459 Message ID (random 256-bit value)

008e AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30546869 73 AAD Key-Value Pair 1, Key ("@This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)
31616e AAD Key-Value Pair 2, Key ("lan")

000a AAD Key-Value Pair 2, Value Length (10)
656e6372 79707469 6f6e AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636f6e 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616d 706c65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732d 63727970 746f2d70 75626c69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")

632d6b65 79

0044 AAD Key-Value Pair 4, Value Length (68)

41746733 72703845 41345161 36706669

("QXRnM3JwOEVBNFFhNnBmaTk3MULTNTk3NHpOMn1ZWE5vSmtwRHFPc@dIYkVaVDRGMES0M1FKRStmbTFVY@1WAThnPT0=

39373149 53353937 347a4e32 7959584e

AAD

Key-Value Pair 4,

Value

Dados emoldurados (formato de mensagem versao 2)

508

AWS Encryption SDK

Guia do Desenvolvedor

6f4abb70 4471473 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675

38673d3d
0001
0007

(7)
6177732d
kms™)
004b

6b6d73

Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77 Encrypted Data Key 1, Key

Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537ef1-
d8dc-4780-9f5a-55776cbb2f7f")

6573742d
33333a6b
64386463
35373736
00a7

323a3635
65792162
2d343738
63626232

Length (167)

01010100
29515057
bcodofb4
86f70d01
09228648
48016503
06063803
413196d2
e00ee216
ba62e9e4
cc9ee5cH
02

00001000
05cd@35b
634f7b2c
76cb339f

ffffffff
00000001
00000000
00000009
fabe39c6
f683a564

7840f38c
1964ada3
14000000
0706a06f
86f70d01
04012e30
8460802
903bf1d7
74ecl1349
f2ac8df6
7203bb

29d5499d
c3df2aa9
2536741f

00000000

02927399
405d68db

38393536
33353337
302d3966
663766

275e3109
eflc21e9
7e307c06
306d0201
0701301e
11040c39
0110803b
3ed98fc8
12777577
bcb1758f

4587570b
88210105
59al1c202

00000001

3e
eeb@656¢

Encrypted Data Key Count (1)
Encrypted Data Key 1, Key Provider ID Length

Encrypted Data Key 1, Key Provider ID ("aws-

Encrypted Data Key 1, Key Provider

36303038
6566312d
35612d35
Encrypted Data Key 1, Encrypted Data Key
7416c107 Encrypted Data Key 1, Encrypted Data Key
4c8baldbd
09228648
00306806
06096086
32d75294
2a46bc23
a94ac6ed
7fa@52a5
2ce@fb21
Content Type (2, framed data)
Frame Length (4096)
87502afe Algorithm Suite Data (key commitment)
4a2c7687
4f2594ab Authentication Tag
Final Frame, Sequence Number End
Final Frame, Sequence Number (1)
Final Frame, IV
Final Frame, Encrypted Content Length (9)
Final Frame, Encrypted Content
d57c9eb0 Final Frame, Authentication Tag

Dados emoldurados (formato de mensagem versao 2) 509

AWS Encryption SDK Guia do Desenvolvedor

Fem——_———— +

| Footer |

Fem——_———— +

0067 Signature Length (103)
30650230 2al647ad 98867925 cl712e8f Signature

ade70b3f 2a2bc3b8 50eb9lef 56cfddl8
967d91d8 42d92baf 357bba48 f636c7a0
869cade2 023100aa ael2do8f B8abafe85
e5054803 110c9ed8 11b2e@8a c4a®52a9
074217ea 3b01b660 534ac921 bf091di2
3657e2b® 9368bd

Dados nao emoldurados (formato de mensagem versao 1)

O exemplo a seguir mostra o formato da mensagem para dados sem moldura.

® Note

Sempre que possivel, use dados com moldura. O AWS Encryption SDK suporta dados nao
emoldurados somente para uso antigo. Algumas implementagdes de linguagem do ainda
AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as implementacdes de
linguagem compativeis podem descriptografar texto cifrado e ndo emoldurado.

L +

| Header |

L +

01 Version (1.0)

80 Type (128, customer authenticated encrypted
data)

0378 Algorithm ID (see Referéncia de algoritmos)
B8929B01 753D4A45 C@217F39 4Q4F7QFF Message ID (random 128-bit value)

0O8E AAD Length (142)

0004 AAD Key-Value Pair Count (4)

0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("@This")

0002 AAD Key-Value Pair 1, Value Length (2)

6973 AAD Key-Value Pair 1, Value ("is")

0003 AAD Key-Value Pair 2, Key Length (3)

31616E AAD Key-Value Pair 2, Key ("lan")

000A AAD Key-Value Pair 2, Value Length (10)

Dados ndao emoldurados (formato de mensagem versao 1) 510

AWS Encryption SDK

Guia do Desenvolvedor

656E6372 79774690 6F6E

0008
32636F6E
0007
6578616D
0015

74657874

706C65

6177732D 63727970 746F2D70 75626C69
public-key")

632D6B65
0044

79

41734738 67473949 6E4C5075 3136594B

("AsG89gGOINLPul6YK1qXTOD+nykG8YqHAhgecj8aXfD2e5B4gtVE73dZkyC1A+TAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D

4F513D3D
0002
0007

(7)
6177732D
kms™")
004B

6B6D73

Information Length (75)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

a755-138a6d9alle6")

6573742D
33333A6B
35383235
33386136
00A7

323A3131
65792F37
2D343234
64396131

Length (167)

01010200
956C4702
02A4EF29
86F70D01
092A8648
48016503
0OF2A0383
3A33605C
ESA33EBE
418E1151
3E2DEBDS5

7857A1C1
23DCE8D7
7F000000
0706A06F
86F70D01
04012E30
659EF802
48840656
33F46461
21311A75
CBOO5D

31313232
31356330
352D6137
316536

F7370545
16C59679
7E307C06
306D0201
0701301E
11040C28
0110803B
C38BCB1F
0591FECA
E575ECCS

75732D77

32323333
3831382D
35352D31

4LECA7C83
973E3CED
092A8648
00306806
06096086
4116449A
B23A8133
9CCE7369
947262F3
61A286E0

AAD
AAD
AAD
AAD
AAD
AAD
AAD

AAD
AAD

Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value
Key-Value

Key-Value
Key-Value

Encrypted Data
Encrypted Data

Encrypted Data

Encrypted Data

Encrypted Data
us-west-2:111122223333:key/715c0818-5825-4245-

Pair
Pair
Pair
Pair
Pair
Pair
Pair

Pair
Pair

Value ("encryption")
Key Length (8)

Key ("2context")
Value Length (7)
Value ("example")
Key Length (21)

Key ("aws-crypto-

Value Length (68)
Value

Key Count (2)

Key

Key

Key

Key

1,

1,

1,

1,

Key Provider ID Length

Key Provider ID ("aws-

Key Provider

Key Provider

Encrypted Data Key 1, Encrypted Data Key

Encrypted Data Key 1, Encrypted Data Key

Dados ndao emoldurados (formato de mensagem versao 1)

511

AWS Encryption SDK

Guia do Desenvolvedor

0007

(7)
6177732D
kms™)
Q04E

6B6D73

Information Length (78)
61726E3A 6177733A 6B6D733A

Information ("arn:aws:kms:

be3435b423ff")

656E7472
32333333
34622D61
372D6265
00OA7

616C2D31
333A6B65
6663632D
33343335

Length (167)

01010200
OE57BD87
AF787150
86F70D01
092A8648
48016503
76616EF2
FDD@1BD9S
3CC686D7
71F18A46
2A363C2A
01

00000000
ocC

00000000
734C1BBE
2C82BB23

D39DD3E5
00000000
E8B6F955
5871BA4C
59455BD8
E4159DFE
6766ECD5
55FCDAS5B
C7D75BCC

78FAFFFB
3F60F4E6
69000000
0706A06F
86F70D01
04012E30
A6B30D02
B0979082
F3CF7C7A
80QE2C43F
E11397

032F7025
4CBF4AAB

915E0201
0000028E
B5F22FE4
93F78436
D76479DF
C8A944B6
E3F54653
9F5318BC
10FQ5EAS

3A313131
792F3962
34366138
62343233

DEDE@6AF
FD196144
7E307C06
306D0201
0701301E
11040CB2
01108038
099FDBFC
CCC52639
A34CQES8

84CDASDO
8F5C6002

77A4AB11

FD890224
1085E4F8
C28D2E0B
685643FC
DF205D30
F4265B06
OE2F2F40

63612D63

Encrypted Data Key 2, Key Provider ID Length

Encrypted Data Key 2, Key Provider ID ("aws-

Encrypted Data Key 2, Key Provider

Encrypted Data Key 2, Key Provider

ca-central-1:111122223333:key/9bl3casb-afcc-46a8-aa47-

31323232
31336361
2D616134
6666

AC72F79B
5A002C94
092A8648
00306806
06096086
A820D0CC
8073D0OF1
F7B13548
122A1495
11D05114

622E886C

4E1D5155
D61ECE28
BDB3D5D3
EA24122B
0081D2D8
2FE7C741
47A60344

Encrypted Data Key 2, Encrypted Data Key

Encrypted Data Key 2, Encrypted Data Key

Content Type (1, nonframed data)
Reserved

IV Length (12)

Frame Length (@, nonframed data)
IV

Authentication Tag

IV
Encrypted Content Length (654)
Encrypted Content

Dados ndao emoldurados (formato de mensagem versao 1)

512

AWS Encryption SDK

Guia do Desenvolvedor

ECE10AA7
95FE9(C58
31E4F48A
B48A2068
CO9B21A10
9D86E334
54C0C231
B8178484
12B0000OC
A5BA8Q4F
A15D0551
5E2034DB
46B2C979
€2394012
C6FFB914
1BABBAE4
F3CB6B86
B731839B
E3862DF6
6920AA76
D4ESDF5C
6932E67C
63490741
978A019C
66DFF333
2C15100C
9247EF61
76EQ8ESB
E24FDE26
C4A46ALE
2EAFDOCB
1E3305D9
6276C5F1
50715406
65B2E942

0067

30650230
CBE194F1
BE84B355
1BEB8281
15599638

559AF633
€65329D1
9B1CCO47
8060DF60
371E6179
701E1442
AD43571A
7EB73A4F
8429F504
7F190927
DAEBA4AF
4D19E7CD
AB84EE12
AF20A97E
FEFD4DES
BE55325E
71666C06
CF711F6A
338E02B5
OBF8ES03
491EE86B
C64B3A26
3AB79D60
FE49EEQA
OE10226F
6A2AA3F1
3E7B7EQD
9ADCDF8C
3044C856
B5AB72FE
BOEB8B83
0COE2294
A3B7ES51E
822D1682

24BEEAGE
+

+

7229DDF5
1CCOF8CF
3CED1721
023100B2
889F72C3

9DE2C21B
377C4CD7
EE5A0719
B492A737
78FAFB0OB
EA5DA288
B9071925
AAE46B26
936B2492
5D2DF651
2060D0OD5
EEA6CF7E
202FD6DF
369BCBDA
88F5AFE1
4FB7E602
6BF74E1B
84CA95F5
C345CFF8
552C5A04
20C33FE1
B8988B25
D8AEFBES
OE96BF@D
0A1B219C
88251874
29F3AD89
C886D4FD
BFO8F051
096041F1
AEQ5885A
ESAD7E3B
422D365D
80BOF2E5
A513F918

B86A5B64
D27B7F8B
A@BE2A1B
0OCB323EF
B15D1700

12AC8087
EA103EC1
704211E5
21B0DB21
BAAEC3F4
64485077
609A4ES9
F5B374B8
AAF47E94
B59D4C2F
CB1DA4E6
549C86AC
E7E3CO9F
62459D3E
98488557
C1CO4BEE
OF881F31
958D3B44
A31D54F3
917CCD11
5D21FQAD
CFA33E2B
2F48E25A
D6074DDB
BES54E4C2
FDCO94F6B
FA14A29C
A69F6CB4
1ADAD329
F3F3571B
8F2D2793
8E4DECS96
E4C0259C
5C94

CCEC1DE3

54E4D627
F50658C0
8E3F449E
58A4ACE3
5FB26E61

Authentication Tag

Signature Length (103)
Signature

Dados ndao emoldurados (formato de mensagem versao 1)

513

AWS Encryption SDK Guia do Desenvolvedor

331F3614 BC40@7CEE B86A66FA CBF74D9E
34CB7E4B 363A38

Referéncia de corpo de dados autenticados adicionais (AAD) para
o AWS Encryption SDK

As informagdes nesta pagina sao uma referéncia para criar sua propria biblioteca de criptografia
compativel com o AWS Encryption SDK. Se vocé nao estiver criando sua propria biblioteca de
criptografia compativel, provavelmente n&o precisara dessas informagdes.

Para usar o AWS Encryption SDK em uma das linguagens de programacgao suportadas,
consulteLinguagens de programacao.

Para a especificagao que define os elementos de uma AWS Encryption SDK implementagao
adequada, consulte a AWS Encryption SDK Especificacao em GitHub.

Vocé deve fornecer dados autenticados adicionais (AAD) para o algoritmo AES-GCM para cada
operagao de criptografia. Isso é verdadeiro para dados de corpo com e sem moldura. Para obter
mais informagdes sobre o AAD e como ele é usado no Galois/Counter Modo (GCM), consulte
Recomendacdes para modos de operacao com cifra de bloco: Galois/Counter Modo (GCM) e GMAC.

A tabela a seguir descreve os campos que formam o AAD do corpo. Os bytes sdo anexados na
ordem mostrada.

Estrutura do AAD do corpo

Campo Tamanho, em bytes
Message |ID 16
Body AAD Content Variavel. Consulte Conteudo do AAD do copo

na lista a seqguir.

Sequence Number 4

Content Length 8

Referéncia de AAD de corpo 514

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK Guia do Desenvolvedor

ID da mensagem

O mesmo valor de Message |D definido no cabegalho da mensagem.

Conteudo corporal do AAD
Um valor codificado em UTF-8 determinado pelo tipo de dados de corpo usado.

Para dados sem moldura, use o valor AWNSKMSEncryptionClient Single Block.

Para molduras normais em dados com moldura, use o valor AWSKMSEncryptionClient
Frame.

Para a moldura final nos dados com moldura, use o valor AWSKMSEncryptionClient Final
Frame.

Numero de sequéncia
Um valor de 4 bytes interpretado como um inteiro nao assinado de 32 bits.

Para dados com moldura, esse € o numero sequencial da moldura.

Para dados sem moldura, use o valor 1, codificado como os 4 bytes 00 00 00 01 em notacao
hexadecimal.

Comprimento do conteudo

O tamanho, em bytes, do texto ndo criptografado fornecido ao algoritmo para criptografia. E um
valor de 8 bytes interpretado como um inteiro ndo assinado de 64 bits.

AWS Encryption SDK referéncia de algoritmos

As informagdes nesta pagina sao uma referéncia para criar sua propria biblioteca de criptografia
compativel com o AWS Encryption SDK. Se vocé nao estiver criando sua propria biblioteca de
criptografia compativel, provavelmente n&o precisara dessas informagdes.

Para usar o AWS Encryption SDK em uma das linguagens de programacgao suportadas,
consulteLinguagens de programacao.

Para a especificagao que define os elementos de uma AWS Encryption SDK implementagao
adequada, consulte a AWS Encryption SDK Especificacao em GitHub.

Referéncia de algoritmos 515

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK

Guia do Desenvolvedor

Se vocé estiver criando sua propria biblioteca que pode ler e escrever textos cifrados compativeis
com o. AWS Encryption SDK, vocé precisara entender como ela AWS Encryption SDK implementa
os conjuntos de algoritmos compativeis para criptografar dados brutos.

O AWS Encryption SDK suporta os seguintes conjuntos de algoritmos. Todos os pacotes de

algoritmos AES-GCM tém um vetor de inicializacao de 12 bytes e uma tag de autenticagao AES-
GCM de 16 bytes. O conjunto de algoritmos padrao varia de acordo com a AWS Encryption SDK
versao e a politica de comprometimento de chave selecionada. Para obter detalhes, consulte Politica
de compromisso e pacote de algoritmos.

AWS Encryption SDK Suites de algoritmos

ID do Versao Algoritmo Tamanho Algoritmo Algoritmo Algoritmo Tamanho
algoritmo do de dachave de de de dos
formato criptogra de dados derivagdo assinatur confirma¢ dados do
de fia (bits) de chave a ao de pacote
mensagem chave de
algoritmo
s (bytes)
05 78 0x02 AES- 256 HKDF ECDSA HKDF 32
GCM com com com (confirma
SHA-512 P-384 e SHA-512 c¢ao de
SHA-384 chave)
04 78 0x02 AES- 256 HKDF Nenhum HKDF 32
GCM com com (confirma
SHA-512 SHA-512 caode
chave)
03 78 0x01 AES- 256 HKDF ECDSA Nenhum N/D
GCM com com
SHA-384 P-384 ¢
SHA-384
03 46 0x01 AES- 192 HKDF ECDSA Nenhum N/D
GCM com com
SHA-384 P-384 ¢
SHA-384
Referéncia de algoritmos 516

AWS Encryption SDK

Guia do Desenvolvedor

ID do
algoritmo

02 14

01 78

01 46

01 14

00 78

00 46

00 14

Versao

do

formato

de
mensagem

0x01

0x01

0x01

0x01

0x01

0x01

0x01

ID do algoritmo

Algoritmo
de
criptogra
fia

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

AES-
GCM

Tamanho
da chave
de dados
(bits)

128

256

192

128

256

192

128

Algoritmo
de

derivagao
de chave

HKDF
com
SHA-256

HKDF
com
SHA-256

HKDF
com
SHA-256

HKDF
com
SHA-256

Nenhum

Nenhum

Nenhum

Algoritmo
de
assinatur
a

ECDSA
com
P-256 e
SHA-256

Nenhum

Nenhum

Nenhum

Nenhum

Nenhum

Nenhum

Algoritmo
de
confirmag
ao de
chave

Nenhum

Nenhum

Nenhum

Nenhum

Nenhum

Nenhum

Nenhum

Tamanho
dos
dados do
pacote
de
algoritmo
s (bytes)

N/D

N/D

N/D

N/D

N/D

N/D

N/D

Um valor de 2 bytes hexadecimal que identifica exclusivamente a implementagéo de um

algoritmo. Esse valor € armazenado no cabecalho da mensagem do texto cifrado.

Referéncia de algoritmos

517

AWS Encryption SDK Guia do Desenvolvedor

Versao do formato de mensagem

A versao do formato desta mensagem. Os pacotes de algoritmos com confirmagao de chave
usam formato de mensagem versao 2 (0x02). Os pacotes de algoritmos sem confirmacao de
chave usam formato de mensagem versao 1 (0x01).

Tamanho dos dados do pacote de algoritmos

O tamanho em bytes dos dados especificos do pacote de algoritmos. Esse campo é suportado
somente no formato de mensagem versao 2 (0x02). No formato de mensagem versao 2 (0x02),
esses dados aparecem no campo Algorithm suite data do cabegalho da mensagem. Os
conjuntos de algoritmos que compativeis com o confirmagao de chave usam 32 bytes para a

cadeia de caracteres de confirmagao de chave. Para obter mais informagdes, consulte Algoritmo
de confirmacgao de chaves nesta lista.

Tamanho da chave de dados

O tamanho da chave de dados em bits. O AWS Encryption SDK é compativel com chaves de

256, 192 e 128 bits. A chave de dados € gerada por um token de autenticacdo ou chave mestra.

Em algumas implementagdes, essa chave de dados é usada como entrada para uma fungao de
derivacao de extract-and-expand chave baseada em HMAC (HKDF). A saida da HKDF é usada
como a chave de criptografia de dados no algoritmo de criptografia. Para obter mais informacgdes,
consulte Algoritmo de derivagao de chaves nessa lista.

Algoritmo de criptografia

O nome e o modo do algoritmo de criptografia utilizado. Os pacotes de algoritmos AWS
Encryption SDK usam o algoritmo de criptografia Advanced Encryption Standard (AES) com
Galois/Counter Modo (GCM).

Algoritmo de confirmacao de chave
O algoritmo usado para calcular a string de confirmagao de chave. A saida € armazenada no

campo Algorithm suite data do cabegalho da mensagem e é usada para validar a chave de
dados para o confirmacgao de chave.

Para obter uma explicacao técnica sobre como adicionar comprometimento de chave a um
conjunto de algoritmos, consulte Key Committing AEADs in Cryptology ePrint Archive.

Referéncia de algoritmos 518

https://eprint.iacr.org/2020/1153

AWS Encryption SDK Guia do Desenvolvedor

Algoritmo de derivagao de chave

A fungao de derivagao de extract-and-expand chave baseada em HMAC (HKDF) usada para
derivar a chave de criptografia de dados. O AWS Encryption SDK usa o HKDF definido na RFC
5869.

Pacotes de algoritmos sem confirmacgao de chave (ID do algoritmo @1xx — 03xx)
» A funcao de hash usada é SHA-384 ou SHA-256, dependendo do pacote de algoritmos.
» Para a etapa de extragao:

* Nenhum sal é usado. De acordo com a RFC, o sal é definido como uma string de zeros.
O tamanho da string € igual ao tamanho da saida da funcao de hash, que é 48 bytes para
SHA-384 e 32 bytes para SHA-256.

» O material de chaveamento de entrada é a chave de dados recebida do provedor de tokens
de autenticagdo ou de chaves mestras.

» Para a etapa de expansao:
» A chave pseudoaleatdria de entrada é a saida da etapa de extracao.

» As informacdes da entrada sdo uma concatenagao do ID do algoritmo seguido pelo ID da
mensagem (nessa ordem).

* O comprimento do material de chaveamento de saida é o Tamanho da chave de dados. Essa
saida é usada como a chave de criptografia de dados no algoritmo de criptografia.

Pacotes de algoritmos com confirmagao de chave (ID do algoritmo @4xx e @5xx)
» A funcao hash usada é SHA-512.
* Para a etapa de extragao:

» O sal é um valor aleatério criptografico de 256 bits. No formato de mensagem versao 2

(0x02), esse valor é armazenado no campo MessagelD.

» O material de chaveamento inicial € a chave de dados recebida do provedor de tokens de
autenticacao ou de chaves mestras.

» Para a etapa de expansao:
» A chave pseudoaleatéria de entrada € a saida da etapa de extracao.

+ O rétulo da chave s&o os bytes codificados em UTF-8 da string DERIVEKEY na ordem de
bytes big endian.

» As informacgdes da entrada sdo uma concatenacgao do ID do algoritmo seguido pelo rétulo de
chave (nessa ordem).

Referéncia de algoritmos 519

https://tools.ietf.org/html/rfc5869

AWS Encryption SDK Guia do Desenvolvedor

* O comprimento do material de chaveamento de saida € o Tamanho da chave de dados. Essa
saida é usada como a chave de criptografia de dados no algoritmo de criptografia.

Versao do formato de mensagem

A versao do formato de mensagem usado com o conjunto de algoritmos. Para obter detalhes,
consulte Referéncia do formato de mensagens.

Algoritmo de assinatura

O algoritmo de assinatura usado para gerar umaassinatura digital sobre o cabecalho e o corpo
do texto cifrado. O AWS Encryption SDK usa o Algoritmo de Assinatura Digital de Curva Eliptica
(ECDSA) com as seguintes especificagoes:

» A curva eliptica usada € a curva P-384 ou P-256, conforme especificado pelo ID do algoritmo.
Essas curvas sdo definidas no Digital Signature Standard (DSS) (FIPS PUB 186-4).

» A fungéo de hash usada é SHA-384 (com a curva P-384) ou SHA-256 (com a curva P-256).

AWS Encryption SDK referéncia vetorial de inicializagao

As informacgdes nesta pagina sdo uma referéncia para criar sua prépria biblioteca de criptografia
compativel com o AWS Encryption SDK. Se vocé nao estiver criando sua propria biblioteca de
criptografia compativel, provavelmente néo precisara dessas informagdes.

Para usar o AWS Encryption SDK em uma das linguagens de programacgao suportadas,
consulteLinguagens de programacao.

Para a especificagao que define os elementos de uma AWS Encryption SDK implementagao
adequada, consulte a AWS Encryption SDK Especificacao em GitHub.

O AWS Encryption SDK fornece os vetores de inicializacao (IVs) que sado exigidos por todos os
conjuntos de algoritmos compativeis. O SDK usa numeros sequenciais de molduras para construir
um IV, de forma que duas molduras na mesma mensagem nao podem ter o mesmo V.

Cada IV de 96 bits (12 bytes) € construido a partir de duas matrizes de bytes big-endian
concatenadas na seguinte ordem:

* 64 bits: 0 (reservado para uso futuro)

Referéncia do vetor de inicializagao 520

http://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK Guia do Desenvolvedor

» 32 bits: o numero sequencial da moldura. Para a tag de autenticagao de cabecalho, esse valor é
todo de zeros.

Antes da introdugcdo do armazenamento em cache de chaves de dados, AWS Encryption SDK
sempre usavam uma nova chave de dados para criptografar cada mensagem e ela gerava tudo IVs

aleatoriamente. Gerados aleatoriamente IVs eram criptograficamente seguros porque as chaves de
dados nunca eram reutilizadas. Quando o SDK introduziu o armazenamento em cache de chaves de
dados, que reutiliza intencionalmente as chaves de dados, mudamos a forma como o SDK é gerado.
Vs

Usar deterministica IVs que ndo pode ser repetida em uma mensagem aumenta significativamente
0 numero de invocagdes que podem ser executadas com seguranga em uma unica chave de dados.
Além disso, as chaves de dados que sao armazenadas em cache sempre usam um pacote de
algoritmos com uma funcgao de derivacado de chaves. Usar um IV deterministico com uma fungao de

derivacao de chave pseudo-aleatéria para derivar chaves de criptografia de uma chave de dados
permite AWS Encryption SDK criptografar 2232 mensagens sem exceder os limites criptograficos.

AWS KMS Detalhes técnicos do chaveiro hierarquico

O AWS KMS chaveiro hierarquico usa uma chave de dados exclusiva para criptografar cada
mensagem e criptografa cada chave de dados com uma chave de empacotamento exclusiva
derivada de uma chave de ramificagao ativa. Ele usa uma derivagéo de chave no modo contador
com uma funcéo pseudoaleatéria com HMAC SHA-256 para derivar a chave de empacotamento de
32 bytes com as seguintes entradas.

« Um sal aleatério de 16 bytes
» A chave de ramificacao ativa

» O valor codificado em UTF-8 para o identificador do provedor de chaves "’ aws-kms-hierarchy

O token de autenticagao hierarquico usa a chave de empacotamento derivada para criptografar uma
copia da chave de dados em texto simples usando o AES-GCM-256 com uma tag de autenticacéo de
16 bytes e as seguintes entradas.

» A chave de empacotamento derivada € usada como a chave de cifra AES-GCM
* A chave de dados € usada como mensagem AES-GCM

« Um vetor de inicializagao aleatéria (IV) de 12 bytes é usado como o AES-GCM IV

AWS KMS Detalhes técnicos do chaveiro hierarquico 521

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK Guia do Desenvolvedor

» Dados autenticados adicionais (AAD) contendo os seguintes valores serializados.

Valor Tamanho em bytes Interpretada como
"aws-kms-hierarchy" 17 Codificada em UTF-8

O identificador de chave de Variavel Codificada em UTF-8
ramificacao

A versao da chave de 16 Codificada em UTF-8
ramificacao

Contexto de criptografia Variavel Pares de valores-chave com

codificacdo UTF-8

AWS KMS Detalhes técnicos do chaveiro hierarquico 522

AWS Encryption SDK Guia do Desenvolvedor

Historico de documentos do Guia do AWS Encryption SDK
desenvolvedor

Este topico descreve atualizagdes importantes no Guia do desenvolvedor do AWS Encryption SDK .

Topicos

» Atualizacoes recentes

» Atualizacbes anteriores

AtualizacOes recentes

A tabela a seguir descreve alteragdes significativas nesta documentagao desde novembro de 2017.
Além das principais alteracdes listadas aqui, também atualizamos a documentacdo com frequéncia
para melhorar as descricoes e os exemplos e abordar os comentarios que vocé nos envia. Para ser
notificado sobre alteragdes significativas, inscreva-se no feed RSS.

Alteracao Descrigao Data

Disponibilidade geral Foi adicionada documentagdo 17 de junho de 2024
para o AWS KMS chaveiro
ECDH e o chaveiro ECDH

bruto.
AWS Encryption SDK for Java Integra-o AWS Encryption 6 de dezembro de 2023
versao 3.X SDK for Java com a bibliotec

a do fornecedor de materiais

. Adiciona suporte para
chaveiros e o contexto de
criptografia necessario (CMM).

AWS Encryption SDK para Adiciona suporte ao AWS 12 de outubro de 2023
0.NET versao 4.x KMS chaveiro hierarquico,
ao contexto de criptografia

necessario (CMM) e aos

Atualizagdes recentes 523

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html

AWS Encryption SDK

Guia do Desenvolvedor

Disponibilidade geral

Alteracao na documentacao

Disponibilidade geral

Disponibilidade geral

Disponibilidade geral

chaveiros RSA assimétricos.
AWS KMS

Apresentando o suporte AWS
Encryption SDK para o.NET.

Substitua o AWS Key
Management Service termo
chave mestra do cliente (CMK)
por uma AWS KMS keychave
KMS.

Suporte adicionado para AWS
Key Management Service.
(AWS KMS) Chaves multirreg
ionais. As chaves multirreg
ionais sao AWS KMS chave

s diferentes Regides da AWS
que podem ser usadas de
forma intercambiavel porque
tém o mesmo ID de chave e
material de chave.

Adicionada e atualizada

a documentacgao sobre o
processo de decodificagao de
mensagens aprimorado.

Documentacgao adicionada

e atualizada para a versao
de disponibilidade geral do
AWS Encryption CLI versao
1.8. x para substituir a versao
1.7 do AWS Encryption CLI.
x e CLI AWS de criptografia
2.1. x para substituir o AWS
Encryption CLI 2.0. x.

17 de maio de 2022

30 de agosto de 2021

8 de junho de 2021

11 de maio de 2021

27 de outubro de 2020

Atualizagdes recentes

524

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html

AWS Encryption SDK

Guia do Desenvolvedor

Disponibilidade geral

Disponibilidade geral

Versao de visualizacao

Disponibilidade geral

Versao de visualizacao

Adicionada e atualizada a
documentacao da versao

de disponibilidade geral das
versoes 1.7.x e 2.0.x do AWS
Encryption SDK, incluindo um
guia de melhores praticas, um
guia de migragao, conceitos
atualizados, topicos de
linguagem de programacao
atualizados, uma atualiza¢

ao de referéncia de pacotes

de algoritmos, uma atualizag
ao de referéncia de formato

de mensagem e um novo
exemplo de formato de

mensagem.

Adicionada e atualizada a
documentagao para a versao
de disponibilidade geral do
AWS Encryption SDK para

JavaScript.

Adicionada e atualizada a
documentacgao da versao beta
publica do AWS Encryption
SDK para JavaScript.

Adicionada e atualizada a
documentagao para a versao
de disponibilidade geral do
AWS Encryption SDK for C.

Documentacao adicionada da
versao de pré-visualizagao do
AWS Encryption SDK for C.

24 de setembro de 2020

1 de outubro de 2019

21 de junho de 2019

16 de maio de 2019

5 de fevereiro de 2019

Atualizagbes recentes

525

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html

AWS Encryption SDK

Guia do Desenvolvedor

Nova versao

AtualizacOes anteriores

A tabela a seguir descreve as alteragdes significativas feitas no Guia do desenvolvedor do AWS

Documentacao adicionada da 20 de novembro de 2017

interface de linha de comando
para o AWS Encryption SDK.

Encryption SDK antes de novembro de 2017.

Alteracao

Nova versao

Atualizar

Descricao Data

Adicionado o capitulo 31 de julho de 2017
Armazenamento em cache de

chaves de dados para o0 novo

recurso.

Foi adicionado o the section
called “Referéncia do vetor
de inicializagao” tdpico que
explica que o SDK mudou da

geragao aleatoria IVs para a
construcao deterministica. IVs

Adicionado o topico the
section called “Conceito

s” para explicar conceitos,
incluindo o novo gerenciador
de materiais criptograficos.

Expandida a documentacao 21 de marco de 2017
de Referéncia do formato de

mensagens para uma nova

secao AWS Encryption SDK

referéncia.

Foi adicionada uma secao
sobre AWS Encryption

Atualizagbes anteriores

526

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK Guia do Desenvolvedor

Alteracao Descricao Data

SDK Pacotes de algoritmos
compativeis o.

Nova versao O AWS Encryption SDK 21 de marco de 2017
agora suporta a linguagem de
Python programagéo, além
deJava.

Versao inicial Versao inicial do AWS 22 de marcgo de 2016
Encryption SDK e desta
documentagéo.

Atualizagdes anteriores 527

AWS Encryption SDK Guia do Desenvolvedor

As traducgdes sao geradas por traducédo automatica. Em caso de conflito entre o conteudo da
traducao e da versao original em inglés, a versdo em inglés prevalecera.

dxxviii

	AWS Encryption SDK
	Table of Contents
	O que é o AWS Encryption SDK?
	Desenvolvido em repositórios de código aberto
	Compatibilidade com bibliotecas e serviços de criptografia
	Suporte e manutenção
	Saiba mais
	Enviar comentários
	Conceitos no AWS Encryption SDK
	criptografia envelopada
	Chave de dados
	Chave de encapsulamento
	Tokens de autenticação e provedores de chaves mestras
	Contexto de criptografia
	Mensagem criptografada
	Pacote de algoritmos
	Gerenciador de material de criptografia
	Criptografia simétrica e assimétrica
	Confirmação de chave
	Política de compromisso
	Assinaturas digitais

	Como AWS Encryption SDK funciona
	Como o AWS Encryption SDK criptografa os dados
	Como o AWS Encryption SDK decifra uma mensagem criptografada

	Suítes de algoritmos compatíveis no AWS Encryption SDK
	Recomendado: AES-GCM com derivação de chave, assinatura e confirmação de chave
	Outros pacotes de algoritmos compatíveis

	Usando o AWS Encryption SDK com AWS KMS
	Melhores práticas para o AWS Encryption SDK
	Configurando o AWS Encryption SDK
	Seleção de uma linguagem de programação
	Seleção de chaves de encapsulamento
	Usando várias regiões AWS KMS keys
	Escolher um pacote de algoritmo
	Limitar as chaves de dados criptografadas
	Criação de um filtro de descoberta
	Configurando o contexto de criptografia necessário (CMM)
	Como definir uma política de compromisso
	Trabalhar com streaming de dados
	Armazenamento em cache de chaves de dados

	Lojas principais no AWS Encryption SDK
	Principais conceitos e terminologia da loja
	Implementação de permissões de privilégio mínimo
	Crie um armazenamento de chaves
	Configurar as principais ações do armazenamento
	Configure suas principais ações de armazenamento
	Configuração estática
	Configuração de descoberta

	Crie uma chave de ramificação ativa
	Alternar a chave de ramificação ativa

	Tokens de autenticação
	Como os tokens de autenticação funcionam
	Compatibilidade dos tokens de autenticação
	Requisitos variados para tokens de autenticação de criptografia
	Tokens de autenticação e provedores de chaves mestras compatíveis

	AWS KMS chaveiros
	Permissões necessárias para tokens de autenticação do AWS KMS
	Identificação AWS KMS keys em um AWS KMS chaveiro
	Criando um AWS KMS chaveiro
	Usando um chaveiro AWS KMS Discovery
	Usando um chaveiro de descoberta AWS KMS regional

	AWS KMS Chaveiros hierárquicos
	Como funciona
	Pré-requisitos
	Permissões obrigatórias
	Escolha um cache
	Cache padrão
	MultiThreaded cache
	StormTracking cache
	Cache compartilhado

	Criar um token de autenticação hierárquico
	Crie um chaveiro hierárquico com uma ID de chave de ramificação estática
	Crie um chaveiro hierárquico com um fornecedor de ID de chave de filial

	AWS KMS chaveiros ECDH
	Permissões necessárias para AWS KMS chaveiros ECDH
	Criando um AWS KMS chaveiro ECDH
	Criando um AWS KMS chaveiro de descoberta ECDH

	Tokens de autenticação AES Raw
	Tokens de autenticação brutos do RSA
	Chaveiros ECDH brutos
	Criando um chaveiro ECDH bruto
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multitokens de autenticação

	AWS Encryption SDK linguagens de programação
	AWS Encryption SDK for C
	Instalando o AWS Encryption SDK for C
	Usando o AWS Encryption SDK for C
	Padrões para criptografar e descriptografar dados
	Contagem de referências

	AWS Encryption SDK for C exemplos
	Criptografar e descriptografar strings
	Criptografar uma string
	Descriptografar uma string

	AWS Encryption SDK para o.NET
	Instalando o AWS Encryption SDK para o.NET
	Depurando o para o.NET AWS Encryption SDK
	AWS Encryption SDK para exemplos do.NET
	Criptografia de dados no AWS Encryption SDK para .NET
	Descriptografia em modo estrito no AWS Encryption SDK para .NET
	Descriptografando com um chaveiro de descoberta no for.NET AWS Encryption SDK

	AWS Encryption SDK para Go
	Pré-requisitos
	Instalação

	AWS Encryption SDK for Java
	Pré-requisitos
	Instalação
	AWS Encryption SDK for Java exemplos
	Criptografar e descriptografar strings
	Criptografar e descriptografar streams de bytes
	Criptografando e descriptografando fluxos de bytes com um chaveiro múltiplo

	AWS Encryption SDK para JavaScript
	Compatibilidade do AWS Encryption SDK para JavaScript
	AWS Encryption SDK para JavaScript compatibilidade
	Compatibilidade do navegador

	Instalando o AWS Encryption SDK para JavaScript
	Módulos no AWS Encryption SDK para JavaScript
	Módulos para JavaScript Node.js
	Módulos para JavaScript navegador
	Módulos para todas as implementações

	AWS Encryption SDK para JavaScript exemplos
	Criptografando dados com um chaveiro AWS KMS
	Descriptografando dados com um chaveiro AWS KMS

	AWS Encryption SDK for Python
	Pré-requisitos
	Instalação
	AWS Encryption SDK for Python código de exemplo
	Criptografar e descriptografar strings
	Criptografar e descriptografar streams de bytes

	AWS Encryption SDK para Rust
	Pré-requisitos
	Instalação
	AWS Encryption SDK para código de exemplo de Rust
	Criptografando e descriptografando dados no for Rust AWS Encryption SDK

	AWS Encryption SDK interface de linha de comando
	Instalando a interface de linha de AWS Encryption SDK comando
	Instalar os pré-requisitos
	Instalando e atualizando a CLI AWS de criptografia

	Como usar a CLI AWS de criptografia
	Como criptografar e descriptografar dados
	Como especificar chaves de encapsulamento
	Encapsulando os atributos dos parâmetros de chave
	Como especificar várias chaves mestras

	Como fornecer entrada
	Como especificar o local de saída
	Como usar um contexto de criptografia
	Como especificar uma política de compromisso
	Como armazenar parâmetros em um arquivo de configuração

	Exemplos da CLI AWS de criptografia
	Criptografar um arquivo
	Descriptografar um arquivo
	Criptografar todos os arquivos em um diretório
	Descriptografar todos os arquivos em um diretório
	Criptografar e descriptografar na linha de comando
	Uso de várias chaves mestras
	Criptografar e descriptografar em scripts
	Usar o armazenamento em cache de chaves de dados

	AWS Encryption SDK Referência de sintaxe e parâmetros da CLI
	AWS Sintaxe da CLI de criptografia
	AWS Parâmetros de linha de comando da CLI de criptografia
	Parâmetros avançados

	Versões da CLI AWS de criptografia
	Versão 1.8. x mudanças na CLI AWS de criptografia
	Versão 2.1. x mudanças na CLI AWS de criptografia
	Alterações das versões 1.9x e 2.2.x na CLI de criptografia da AWS
	Versão 3.0. x mudanças na CLI AWS de criptografia

	Armazenamento em cache de chaves de dados
	Como usar o armazenamento em cache de chaves de dados
	Usando o cache de chaves de dados: Step-by-step
	Armazenamento em cache de chaves de dados de exemplo: criptografar uma string

	Definir limites de segurança do cache
	Detalhes do armazenamento em cache de chaves de dados
	Como o armazenamento em cache de chaves de dados funciona
	Criptografar dados sem armazenamento em cache
	Criptografar dados com armazenamento em cache

	Criar um cache de material de criptografia
	Criar um gerenciador de material de criptografia de armazenamento em cache
	O que é uma entrada de chave de dados em cache?
	Contexto de criptografia: como selecionar entradas do cache
	Meu aplicativo está usando chaves de dados armazenadas em cache?

	Exemplo de armazenamento em cache de chaves de dados
	Resultados do cache local
	Exemplo de código de armazenamento em cache de chaves de dados
	Produtor
	Consumidor

	Exemplo de armazenamento em cache de chave de dados: modelo CloudFormation

	Versões do AWS Encryption SDK
	C
	C# /.NET
	Interface de linha de comando (CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	Detalhes da versão
	Versões anteriores à 1.7.x
	Versão 1.7.x
	Versão 2.0x
	Versão 2.2x
	Versão 2.3x

	Migrando seu AWS Encryption SDK
	Como migrar e implantar o AWS Encryption SDK
	Etapa 1: atualize a aplicação para a versão 1.x mais recente
	Etapa 2: atualize a aplicação para a versão mais recente

	Atualizando provedores de chaves AWS KMS mestras
	Migração para o modo estrito
	Migrar para o modo de descoberta

	Atualizando AWS KMS chaveiros
	Como definir sua política de compromisso
	Como definir sua política de compromisso

	Solução de problemas de migração para as versões mais recentes
	Objetos descontinuados ou removidos
	Conflito de configuração: política de compromisso e pacote de algoritmos
	Conflito de configuração: política de compromisso e texto cifrado
	Falha na validação do confirmação de chave
	Outras falhas de criptografia
	Outras falhas de decriptografia
	Considerações sobre reversão

	Perguntas frequentes
	Como o é AWS Encryption SDK diferente do AWS SDKs?
	Como ele é AWS Encryption SDK diferente do cliente de criptografia Amazon S3?
	Quais algoritmos criptográficos são suportados pelo AWS Encryption SDK e qual é o padrão?
	Como o vetor de inicialização (IV) é gerado e onde é armazenado?
	Como cada chave de dados é gerada, criptografada e descriptografada?
	Como faço para controlar as chaves de dados que foram usadas para criptografar meus dados?
	Como eles AWS Encryption SDK armazenam chaves de dados criptografadas com seus dados criptografados?
	Quanta sobrecarga o formato da AWS Encryption SDK mensagem adiciona aos meus dados criptografados?
	Posso usar meu próprio provedor de chaves mestras?
	Posso criptografar dados com mais de uma chave de encapsulamento?
	Com quais tipos de dados posso criptografar? AWS Encryption SDK
	Como os fluxos AWS Encryption SDK criptografam e descriptografam input/output (E/S)?

	AWS Encryption SDK referência
	AWS Encryption SDK referência de formato de mensagem
	Estrutura do cabeçalho
	Estrutura do corpo
	Dados sem moldura
	Dados com moldura

	Estrutura do rodapé

	AWS Encryption SDK exemplos de formato de mensagem
	Dados emoldurados (formato de mensagem versão 1)
	Dados emoldurados (formato de mensagem versão 2)
	Dados não emoldurados (formato de mensagem versão 1)

	Referência de corpo de dados autenticados adicionais (AAD) para o AWS Encryption SDK
	AWS Encryption SDK referência de algoritmos
	AWS Encryption SDK referência vetorial de inicialização
	AWS KMS Detalhes técnicos do chaveiro hierárquico

	Histórico de documentos do Guia do AWS Encryption SDK desenvolvedor
	Atualizações recentes
	Atualizações anteriores

	

