
Guia do Desenvolvedor

AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK: Guia do Desenvolvedor

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

As marcas comerciais e imagens de marcas da Amazon não podem ser usadas no contexto de
nenhum produto ou serviço que não seja da Amazon, nem de qualquer maneira que possa gerar
confusão entre os clientes ou que deprecie ou desprestigie a Amazon. Todas as outras marcas
comerciais que não pertencem à Amazon pertencem a seus respectivos proprietários, que podem ou
não ser afiliados, patrocinados pela Amazon ou ter conexão com ela.

AWS Encryption SDK Guia do Desenvolvedor

Table of Contents
O que é o AWS Encryption SDK? ... 1

Desenvolvido em repositórios de código aberto ... 2
Compatibilidade com bibliotecas e serviços de criptografia ... 3
Suporte e manutenção .. 4
Saiba mais ... 4
Enviar comentários .. 5
Conceitos ... 6

criptografia envelopada ... 7
Chave de dados ... 9
Chave de encapsulamento ... 9
Tokens de autenticação e provedores de chaves mestras .. 10
Contexto de criptografia ... 12
Mensagem criptografada .. 13
Pacote de algoritmos .. 14
Gerenciador de material de criptografia ... 14
Criptografia simétrica e assimétrica ... 15
Confirmação de chave .. 16
Política de compromisso .. 17
Assinaturas digitais ... 19

Saiba como o SDK funciona ... 20
Como o AWS Encryption SDK criptografa os dados ... 20
Como o AWS Encryption SDK decifra uma mensagem criptografada 21

Pacotes de algoritmos compatíveis .. 22
Recomendado: AES-GCM com derivação de chave, assinatura e confirmação de chave 22
Outros pacotes de algoritmos compatíveis .. 23

Interagindo com AWS KMS ... 25
Práticas recomendadas .. 27
Como configurar o SDK ... 32

Seleção de uma linguagem de programação ... 32
Seleção de chaves de encapsulamento ... 33
Usando várias regiões AWS KMS keys .. 34
Escolher um pacote de algoritmo ... 56
Limitar as chaves de dados criptografadas .. 68
Criação de um filtro de descoberta ... 74

iii

AWS Encryption SDK Guia do Desenvolvedor

Exigindo contextos de criptografia .. 77
Como definir uma política de compromisso .. 85
Trabalhar com streaming de dados .. 85
Armazenamento em cache de chaves de dados ... 86

Repositórios de chaves .. 87
Principais conceitos e terminologia da loja ... 87
Implementação de permissões de privilégio mínimo .. 88
Crie um armazenamento de chaves ... 89
Configurar as principais ações do armazenamento .. 90

Configure suas principais ações de armazenamento .. 91
Crie chaves de ramificação ... 96
Alternar a chave de ramificação ativa .. 100

Tokens de autenticação ... 103
Como os tokens de autenticação funcionam .. 103
Compatibilidade dos tokens de autenticação ... 105

Requisitos variados para tokens de autenticação de criptografia .. 106
Tokens de autenticação e provedores de chaves mestras compatíveis 106

AWS KMS chaveiros ... 108
Permissões necessárias para tokens de autenticação do AWS KMS 110
Identificação AWS KMS keys em um AWS KMS chaveiro .. 111
Criando um AWS KMS chaveiro .. 111
Usando um chaveiro AWS KMS Discovery ... 126
Usando um chaveiro de descoberta AWS KMS regional .. 134

AWS KMS Chaveiros hierárquicos ... 142
Como funciona .. 144
Pré-requisitos .. 146
Permissões obrigatórias ... 147
Escolha um cache .. 147
Criar um token de autenticação hierárquico .. 161

AWS KMS chaveiros ECDH .. 169
Permissões necessárias para AWS KMS chaveiros ECDH .. 170
Criando um AWS KMS chaveiro ECDH ... 171
Criando um AWS KMS chaveiro de descoberta ECDH ... 178

Tokens de autenticação AES Raw ... 184
Tokens de autenticação brutos do RSA ... 191
Chaveiros ECDH brutos .. 201

iv

AWS Encryption SDK Guia do Desenvolvedor

Criando um chaveiro ECDH bruto .. 202
Multitokens de autenticação .. 220

Linguagens de programação ... 230
C ... 230

Instalar ... 231
Uso do C SDK .. 232
Exemplos ... 237

.NET ... 245
Instalar e compilar .. 246
Depuração ... 247
Exemplos ... 247

Go ... 256
Pré-requisitos .. 257
Instalação .. 257

Java .. 258
Pré-requisitos .. 258
Instalação .. 260
Exemplos ... 261

JavaScript .. 274
Compatibilidade ... 275
Instalação .. 277
Módulos ... 278
Exemplos ... 281

Python .. 289
Pré-requisitos .. 290
Instalação .. 290
Exemplos ... 292

Rust .. 299
Pré-requisitos .. 300
Instalação .. 300
Exemplos ... 301

Interface de linha de comando ... 303
Instalar a CLI do ... 305
Como usar a CLI .. 308
Exemplos ... 322
Referência da sintaxe e de parâmetros ... 347

v

AWS Encryption SDK Guia do Desenvolvedor

Versões ... 362
Armazenamento em cache de chaves de dados .. 365

Como usar o armazenamento em cache de chaves de dados .. 366
Usando o cache de chaves de dados: Step-by-step ... 367
Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 375

Definir limites de segurança do cache .. 391
Detalhes do armazenamento em cache de chaves de dados .. 393

Como o armazenamento em cache de chaves de dados funciona 393
Criar um cache de material de criptografia .. 397
Criar um gerenciador de material de criptografia de armazenamento em cache 398
O que é uma entrada de chave de dados em cache? .. 399
Contexto de criptografia: como selecionar entradas do cache .. 400
Meu aplicativo está usando chaves de dados armazenadas em cache? 400

Exemplo de armazenamento em cache de chaves de dados .. 401
Resultados do cache local ... 402
Código de exemplo ... 403
CloudFormation modelo .. 415

Versões do AWS Encryption SDK ... 430
C ... 431
C# /.NET .. 432
Interface de linha de comando (CLI) .. 432
Java .. 435
Go ... 437
JavaScript .. 438
Python .. 439
Rust .. 441
Detalhes da versão ... 441

Versões anteriores à 1.7.x ... 442
Versão 1.7.x .. 442
Versão 2.0x ... 445
Versão 2.2x ... 447
Versão 2.3x ... 448

Migrando seu AWS Encryption SDK ... 449
Como migrar e implantar ... 451

Etapa 1: atualize a aplicação para a versão 1.x mais recente .. 451
Etapa 2: atualize a aplicação para a versão mais recente .. 452

vi

AWS Encryption SDK Guia do Desenvolvedor

Atualizando provedores de chaves AWS KMS mestras ... 454
Migração para o modo estrito .. 455
Migrar para o modo de descoberta .. 458

Atualizando AWS KMS chaveiros ... 462
Como definir sua política de compromisso ... 464

Como definir sua política de compromisso .. 466
Solução de problemas de migração para as versões mais recentes ... 477

Objetos descontinuados ou removidos .. 478
Conflito de configuração: política de compromisso e pacote de algoritmos 478
Conflito de configuração: política de compromisso e texto cifrado .. 479
Falha na validação do confirmação de chave ... 480
Outras falhas de criptografia .. 480
Outras falhas de decriptografia .. 480
Considerações sobre reversão ... 481

Perguntas frequentes ... 482
Como o é AWS Encryption SDK diferente do AWS SDKs? ... 482
Como ele é AWS Encryption SDK diferente do cliente de criptografia Amazon S3? 483
Quais algoritmos criptográficos são suportados pelo AWS Encryption SDK e qual é o
padrão? .. 483
Como o vetor de inicialização (IV) é gerado e onde é armazenado? ... 484
Como cada chave de dados é gerada, criptografada e descriptografada? 484
Como faço para controlar as chaves de dados que foram usadas para criptografar meus
dados? ... 485
Como eles AWS Encryption SDK armazenam chaves de dados criptografadas com seus dados
criptografados? .. 485
Quanta sobrecarga o formato da AWS Encryption SDK mensagem adiciona aos meus dados
criptografados? .. 485
Posso usar meu próprio provedor de chaves mestras? ... 486
Posso criptografar dados com mais de uma chave de encapsulamento? 486
Com quais tipos de dados posso criptografar? AWS Encryption SDK 487
Como os fluxos AWS Encryption SDK criptografam e descriptografam input/output (E/S)? 487

Referência ... 488
Referência do formato de mensagens .. 488

Estrutura do cabeçalho ... 489
Estrutura do corpo .. 497
Estrutura do rodapé .. 503

vii

AWS Encryption SDK Guia do Desenvolvedor

Exemplos de formatos de mensagens .. 503
Dados emoldurados (formato de mensagem versão 1) ... 504
Dados emoldurados (formato de mensagem versão 2) ... 508
Dados não emoldurados (formato de mensagem versão 1) .. 510

Referência de AAD de corpo .. 514
Referência de algoritmos .. 515
Referência do vetor de inicialização ... 520
AWS KMS Detalhes técnicos do chaveiro hierárquico ... 521

Histórico do documento ... 523
Atualizações recentes .. 523
Atualizações anteriores ... 526

.. dxxviii

viii

AWS Encryption SDK Guia do Desenvolvedor

O que é o AWS Encryption SDK?

AWS Encryption SDK É uma biblioteca de criptografia do lado do cliente projetada para facilitar que
todos criptografem e descriptografem dados usando os padrões e as melhores práticas do setor.
Ele permite que você se concentre na funcionalidade principal do aplicativo, em vez de sobre como
melhor criptografar e descriptografar os dados. AWS Encryption SDK É fornecido gratuitamente sob
a licença Apache 2.0.

As AWS Encryption SDK respostas a perguntas como as seguintes para você:

• Qual algoritmo de criptografia devo usar?

• Como, ou em qual modo, devo usar esse algoritmo?

• Como faço para gerar a chave de criptografia?

• Como faço para proteger a chave de criptografia e onde devo armazená-la?

• Como posso tornar meus dados criptografados portáteis?

• Como faço para garantir que o destinatário pretendido possa ler meus dados criptografados?

• Como posso garantir que meus dados criptografados não sejam modificados entre o momento em
que são gravados e o momento em que são lidos?

• Como faço para usar as chaves de dados que AWS KMS retornam?

Com o AWS Encryption SDK, você define um provedor de chave mestra ou um chaveiro que
determina quais chaves de agrupamento você usa para proteger seus dados. Em seguida, você
criptografa e descriptografa seus dados usando métodos simples fornecidos pelo. AWS Encryption
SDK O AWS Encryption SDK faz o resto.

Sem isso AWS Encryption SDK, você pode se esforçar mais na criação de uma solução de
criptografia do que na funcionalidade principal do seu aplicativo. Ele AWS Encryption SDK responde
a essas perguntas fornecendo as seguintes coisas.

Uma implementação padrão que segue as melhores práticas de criptografia

Por padrão, o AWS Encryption SDK gera uma chave de dados exclusiva para cada objeto de
dados que ele criptografa. Isso segue a melhor prática de criptografia de usar chaves de dados
exclusivas para cada operação de criptografia.

1

AWS Encryption SDK Guia do Desenvolvedor

Ele AWS Encryption SDK criptografa seus dados usando um algoritmo de chave simétrica,
autenticado e seguro. Para obter mais informações, consulte the section called “Pacotes de
algoritmos compatíveis”.

Uma estrutura para proteção de chaves de dados com chaves de encapsulamento

O AWS Encryption SDK protege as chaves de dados que criptografam seus dados,
criptografando-as sob uma ou mais chaves de encapsulamento. Ao fornecer uma estrutura para
criptografar chaves de dados com mais de uma chave de empacotamento, isso AWS Encryption
SDK ajuda a tornar seus dados criptografados portáteis.

Por exemplo, criptografe dados com uma entrada AWS KMS key AWS KMS e uma chave
do seu HSM local. É possível usar qualquer uma das duas chaves de encapsulamento para
descriptografar os dados, caso alguma não esteja disponível ou o chamador não tenha permissão
para usar as duas chaves.

Uma mensagem formatada que armazena chaves de dados criptografadas com os dados
criptografados

Ele AWS Encryption SDK armazena os dados criptografados e a chave de dados criptografados
juntos em uma mensagem criptografada que usa um formato de dados definido. Isso significa
que você não precisa acompanhar ou proteger as chaves de dados que criptografam seus dados,
pois elas AWS Encryption SDK fazem isso por você.

Algumas implementações de linguagem do AWS Encryption SDK exigem um AWS SDK, mas AWS
Encryption SDK não exigem um Conta da AWS e não dependem de nenhum AWS serviço. Você
Conta da AWS só precisa de um se optar por usar AWS KMS keyspara proteger seus dados.

Desenvolvido em repositórios de código aberto
O AWS Encryption SDK é desenvolvido em repositórios de código aberto em. GitHub É possível
usar esses repositórios para visualizar o código, ler e enviar problemas e encontrar informações
específicas para sua implementação de linguagem.

• AWS Encryption SDK for C — aws-encryption-sdk-c

• AWS Encryption SDK para o.NET — diretório.NET do aws-encryption-sdk repositório.

• AWS CLI de criptografia — aws-encryption-sdk-cli

• AWS Encryption SDK for Java — aws-encryption-sdk-java

• AWS Encryption SDK para JavaScript — aws-encryption-sdk-javascript

Desenvolvido em repositórios de código aberto 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/

AWS Encryption SDK Guia do Desenvolvedor

• AWS Encryption SDK for Python — aws-encryption-sdk-python

• AWS Encryption SDK para Rust — diretório Rust do repositório. aws-encryption-sdk

• AWS Encryption SDK para Go — diretório Go do aws-encryption-sdk repositório

Compatibilidade com bibliotecas e serviços de criptografia

O AWS Encryption SDK é suportado em várias linguagens de programação. As implementações
de linguagem são interoperáveis É possível criptografar com uma implementação de linguagem e
descriptografar com outra. A interoperabilidade pode estar sujeita às restrições de linguagem. Em
caso afirmativo, essas restrições estarão descritas no tópico sobre a implementação de linguagem.
Além disso, ao criptografar e descriptografar, é necessário usar tokens de autenticação compatíveis
ou chaves mestras e provedores de chaves mestras. Para obter detalhes, consulte the section called
“Compatibilidade dos tokens de autenticação”.

No entanto, eles AWS Encryption SDK não podem interoperar com outras bibliotecas. Como cada
biblioteca retorna dados criptografados em um formato diferente, você não pode criptografar com
uma biblioteca e descriptografar com outra.

DynamoDB Encryption Client e criptografia do lado do cliente do Amazon S3

AWS Encryption SDK Não é possível descriptografar dados criptografados pelo DynamoDB
Encryption Client ou pela criptografia do lado do cliente do Amazon S3. Essas bibliotecas não
conseguem decifrar a mensagem criptografada que retornam. AWS Encryption SDK

AWS Key Management Service (AWS KMS)

Eles AWS Encryption SDK podem usar chaves AWS KMS keysde dados para proteger seus
dados, incluindo chaves KMS multirregionais. Por exemplo, você pode configurar o AWS
Encryption SDK para criptografar seus dados em um ou mais AWS KMS keys em seu Conta da
AWS. No entanto, você deve usar o AWS Encryption SDK para descriptografar esses dados.

AWS Encryption SDK Não é possível descriptografar o texto cifrado que as operações Encrypt
ou retornam. AWS KMSReEncrypt Da mesma forma, a operação AWS KMSDecrypt não pode
descriptografar a mensagem criptografada que ela retorna. AWS Encryption SDK

O AWS Encryption SDK suporta somente chaves KMS de criptografia simétrica. Não é possível
usar uma chave assimétrica do KMS para criptografia ou assinatura no AWS Encryption SDK.
O AWS Encryption SDK gera suas próprias chaves de assinatura ECDSA para pacotes de
algoritmos que assinam mensagens.

Compatibilidade com bibliotecas e serviços de criptografia 3

https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks

AWS Encryption SDK Guia do Desenvolvedor

Suporte e manutenção

O AWS Encryption SDK usa a mesma política de manutenção que o AWS SDK e as ferramentas
usam, incluindo suas fases de controle de versão e ciclo de vida. Como prática recomendada,
recomendamos que você use a versão mais recente disponível do AWS Encryption SDK para
sua linguagem de programação e atualize à medida que novas versões forem lançadas. Quando
uma versão exige alterações significativas, como a atualização de AWS Encryption SDK versões
anteriores à 1.7. x para as versões 2.0. x e posteriormente, fornecemos instruções detalhadas para
ajudá-lo.

Cada implementação de linguagem de programação do AWS Encryption SDK é desenvolvida em um
GitHub repositório de código aberto separado. É provável que o ciclo de vida e a fase do suporte de
cada versão variem entre os repositórios. Por exemplo, uma determinada versão do AWS Encryption
SDK pode estar na fase de disponibilidade geral (suporte total) em uma linguagem de programação,
mas a end-of-support fase em uma linguagem de programação diferente. Recomendamos que
você use uma versão totalmente compatível sempre que possível e evite versões que já não sejam
compatíveis.

Para encontrar a fase do ciclo de vida das AWS Encryption SDK versões da sua linguagem de
programação, consulte o SUPPORT_POLICY.rst arquivo em cada AWS Encryption SDK repositório.

• AWS Encryption SDK for C — Support_policy.rst

• AWS Encryption SDK para o.NET — Support_policy.rst

• AWS CLI de criptografia — Support_policy.rst

• AWS Encryption SDK for Java — Support_policy.rst

• AWS Encryption SDK para JavaScript — Support_policy.rst

• AWS Encryption SDK for Python — Support_policy.rst

Para obter mais informações, consulte Versões do AWS Encryption SDK e AWS SDKs e a política de
manutenção de ferramentas no Guia de referência de ferramentas AWS SDKs e ferramentas.

Saiba mais

Para obter mais informações sobre a AWS Encryption SDK criptografia do lado do cliente,
experimente essas fontes.

Suporte e manutenção 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Encryption SDK Guia do Desenvolvedor

• Para obter ajuda com os termos e conceitos usados neste SDK, consulte Conceitos no AWS
Encryption SDK.

• Para obter as diretrizes de práticas recomendadas, consulte Melhores práticas para o AWS
Encryption SDK.

• Para obter informações sobre como o SDK funciona, consulte Saiba como o SDK funciona.

• Para obter exemplos que mostram como configurar opções no AWS Encryption SDK,
consulteConfigurando o AWS Encryption SDK.

• Para obter informações técnicas, consulte a Referência.

• Para obter as especificações técnicas do AWS Encryption SDK, consulte a AWS Encryption SDK
Especificação em GitHub.

• Para obter respostas às suas perguntas sobre o uso do AWS Encryption SDK, leia e publique no
Fórum de discussão sobre ferramentas AWS criptográficas.

Para obter informações sobre implementações do AWS Encryption SDK em diferentes linguagens de
programação.

• C: Veja AWS Encryption SDK for C a documentação em AWS Encryption SDK C e o aws-
encryption-sdk-crepositório ativado GitHub.

• C#/.NET: Consulte AWS Encryption SDK para o.NET e ative o aws-encryption-sdk-netdiretório do
aws-encryption-sdk repositório. GitHub

• Interface de linha de comando: consulteAWS Encryption SDK interface de linha de comando, leia
os documentos da CLI de AWS criptografia e aws-encryption-sdk-clido repositório em. GitHub

• Java: vejaAWS Encryption SDK for Java, o AWS Encryption SDK Javadoc e o aws-encryption-sdk-
javarepositório ativado. GitHub

JavaScript: Veja the section called “JavaScript” e ative o aws-encryption-sdk-javascriptrepositório.
GitHub

• Python: veja AWS Encryption SDK for Python a documentação do AWS Encryption SDK Python e
o repositório em. aws-encryption-sdk-python GitHub

Enviar comentários

Os seus comentários são bem-vindos. Se você tiver uma pergunta ou comentário, ou um problema a
relatar, use os seguintes recursos.

Enviar comentários 5

https://github.com/awslabs/aws-encryption-sdk-specification/
https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK Guia do Desenvolvedor

• Se você descobrir uma possível vulnerabilidade de segurança no AWS Encryption SDK, notifique a
AWS segurança. Não crie um GitHub problema público.

• Para fornecer feedback sobre o AWS Encryption SDK, registre um problema no GitHub repositório
da linguagem de programação que você está usando.

• Para fornecer comentários sobre esta documentação, use os links Feedback nesta página. Você
também pode registrar um problema ou contribuir para aws-encryption-sdk-docso repositório de
código aberto desta documentação em. GitHub

Conceitos no AWS Encryption SDK

Esta seção apresenta os conceitos usados no AWS Encryption SDK e fornece um glossário e uma
referência. Ele foi projetado para ajudar você a entender como AWS Encryption SDK funciona e os
termos que usamos para descrevê-lo.

Precisa de ajuda?

• Saiba como ele AWS Encryption SDK usa criptografia de envelope para proteger seus dados.

• Saiba mais sobre os elementos da criptografia envelopada: as chaves de dados que protegem
seus registros e as chaves de encapsulamento que protegem suas chaves de dados.

• Saiba mais sobre os tokens de autenticação e osprovedores de chaves mestras que determinam
quais chaves de encapsulamento você usa.

• Saiba mais sobre o contexto de criptografia que adiciona integridade ao seu processo de
criptografia. É opcional, mas é uma prática recomendada que incentivamos.

• Saiba mais sobre a mensagem criptografada que os métodos de criptografia retornam.

• Então você está pronto para usar o AWS Encryption SDK em sua linguagem de programação
preferida.

Tópicos

• criptografia envelopada

• Chave de dados

• Chave de encapsulamento

• Tokens de autenticação e provedores de chaves mestras

• Contexto de criptografia

Conceitos 6

https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/
https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK Guia do Desenvolvedor

• Mensagem criptografada

• Pacote de algoritmos

• Gerenciador de material de criptografia

• Criptografia simétrica e assimétrica

• Confirmação de chave

• Política de compromisso

• Assinaturas digitais

criptografia envelopada

A segurança dos dados criptografados depende em parte da proteção da chave de dados que pode
descriptografá-los. Uma prática recomendada aceita para proteger a chave de dados é criptografá-la.
Para fazer isso, você precisa de outra chave de criptografia, conhecida como chave de criptografia
de chave ou chave de encapsulamento. Essa prática de uso de uma chave do KMS para criptografar
chaves de dados é conhecida como criptografia envelopada.

Proteção de chaves de dados

O AWS Encryption SDK criptografa cada mensagem com uma chave de dados exclusiva. Em
seguida, ele criptografa cada chave de dados sob a chave de encapsulamento especificada. Ele
armazena as chaves de dados criptografadas junto com os dados criptografados na mensagem
criptografada que as operações de criptografia retornam.

Para especificar sua chave de encapsulamento, use um token de autenticação ou umprovedor de
chave mestra.

criptografia envelopada 7

AWS Encryption SDK Guia do Desenvolvedor

Criptografar os mesmos dados com várias chaves de encapsulamento

É possível criptografar a chave de dados sob várias chaves de encapsulamento. Talvez você
queira fornecer chaves de encapsulamento distintas para usuários diferentes ou chaves
de encapsulamento de tipos variados ou em locais diferentes. Cada uma das chaves de
encapsulamento criptografa a mesma chave de dados. Ele AWS Encryption SDK armazena todas
as chaves de dados criptografadas com os dados criptografados na mensagem criptografada.

Para descriptografar os dados, você precisa fornecer pelo menos uma chave de encapsulamento
que possa descriptografar uma das chaves de dados criptografadas.

Combinação de pontos fortes de vários algoritmos

Para criptografar seus dados, por padrão, o AWS Encryption SDK usa um sofisticado conjunto
de algoritmos com criptografia simétrica AES-GCM, uma função de derivação de chave (HKDF)
e assinatura. Para criptografar a chave de dados, você pode especificar um algoritmo de
criptografia simétrico ou assimétrico apropriado à sua chave de encapsulamento.

Em geral, os algoritmos de criptografia de chaves simétricas são mais rápidos e produzem textos
cifrados menores que a criptografia de chave pública ou assimétrica. No entanto, os algoritmos
de chave pública fornecem separação inerente de funções e gerenciamento de chaves mais fácil.
Para combinar as forças de cada um, você pode criptografar dados brutos com criptografia de
chave simétrica e, em seguida, criptografar a chave de dados com criptografia de chave pública.

criptografia envelopada 8

AWS Encryption SDK Guia do Desenvolvedor

Chave de dados

A chave de ados é uma chave de criptografia que o AWS Encryption SDK usa para criptografar
os dados. Cada chave de dados é uma matriz de bytes que cumpre os requisitos para chaves
criptográficas. A menos que você esteja usando o cache de chaves de dados, ele AWS Encryption
SDK usa uma chave de dados exclusiva para criptografar cada mensagem.

Você não precisa especificar, gerar, implementar, estender, proteger ou usar chaves de dados. O
AWS Encryption SDK faz esse trabalho para você quando você chama as operações de criptografia
e descriptografia.

Para proteger suas chaves de dados, eles as AWS Encryption SDK criptografam sob uma ou mais
chaves de criptografia de chave conhecidas como chaves de empacotamento ou chaves mestras.
Depois de AWS Encryption SDK usar suas chaves de dados em texto simples para criptografar seus
dados, ele os remove da memória o mais rápido possível. Depois, ele armazena as chaves de dados
criptografadas junto com os dados criptografados na mensagem criptografada que as operações de
criptografia retornam. Para obter detalhes, consulte the section called “Saiba como o SDK funciona”.

Tip

No AWS Encryption SDK, distinguimos as chaves de dados das chaves de criptografia de
dados. Vários dos pacotes de algoritmos, incluindo o pacote padrão, usam uma função de
derivação de chaves que impede que a chave de dados atinja seus limites de criptografia.
A função de derivação de chaves usa a chave de dados como entrada e retorna uma chave
de criptografia de dados que é realmente usada para criptografar os dados. Por esse motivo,
sempre dizemos que os dados são criptografados "sob" uma chave de dados em vez de
"pela" chave de dados.

Cada chave de dados criptografada inclui metadados, incluindo o identificador da chave de
encapsulamento que a criptografou. Esses metadados facilitam a identificação de chaves de
empacotamento válidas durante a descriptografia. AWS Encryption SDK

Chave de encapsulamento

Uma chave de encapsulamento é uma chave de criptografia que o AWS Encryption SDK usa
para criptografar a chave de dados que criptografa seus registros. Cada chave de dados em texto
simples pode ser criptografada sob uma ou mais chaves mestras. Você determina quais chaves de

Chave de dados 9

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Guia do Desenvolvedor

encapsulamento serão usadas para proteger seus dados ao configurar um token de autenticação ou
um provedor de chave mestra.

Note

A chave de encapsulamento refere-se às chaves em um token de autenticação ou provedor
de chave mestra. A chave mestra geralmente está associada à classe MasterKey que você
instancia ao usar um provedor de chave mestra.

O AWS Encryption SDK suporta várias chaves de agrupamento comumente usadas, como AWS Key
Management Service (AWS KMS) simétricas AWS KMS keys(incluindo chaves KMS multirregionais),
chaves brutas AES-GCM (Advanced Encryption Standard/Galois Counter Mode) e chaves RSA
brutas. Você também pode estender ou implementar suas próprias chaves de encapsulamento.

Quando você usa a criptografia envelopada, precisa proteger suas chaves de encapsulamento
contra acesso não autorizado. É possível fazer isso de uma das seguintes maneiras:

• Use um serviço web projetado para essa finalidade, como o AWS Key Management Service (AWS
KMS).

• Use um hardware security module (HSM - módulo de segurança de hardware), como os oferecidos
pelo AWS CloudHSM.

• Use outras ferramentas e serviços de gerenciamento de chaves.

Se você não tem um sistema de gerenciamento de chaves, recomendamos AWS KMS. Ele
AWS Encryption SDK se integra AWS KMS para ajudar você a proteger e usar suas chaves de
embalagem. No entanto, AWS Encryption SDK não requer AWS nenhum AWS serviço.

Tokens de autenticação e provedores de chaves mestras

Para especificar as chaves de agrupamento que você usa para criptografia e decodificação, use um
chaveiro ou um provedor de chave mestra. Você pode usar os chaveiros e os provedores de chaves
mestras que eles AWS Encryption SDK fornecem ou criar suas próprias implementações. O AWS
Encryption SDK fornece tokens de autenticação e provedores de chaves mestras compatíveis entre
si, sujeitos a restrições de linguagem. Para obter detalhes, consulte Compatibilidade dos tokens de
autenticação.

Tokens de autenticação e provedores de chaves mestras 10

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK Guia do Desenvolvedor

Um token de autenticação gera, criptografa e descriptografa chaves de dados. Ao definir um token
de autenticação, você pode especificar as chaves de encapsulamento que criptografam suas
chaves de dados. A maioria dos tokens de autenticação especificam pelo menos uma chave de
encapsulamento ou um serviço que fornece e protege chaves de encapsulamento. Você também
pode definir um token de autenticação sem chaves de encapsulamento ou um token de autenticação
mais complexo com opções de configuração adicionais. Para obter ajuda para escolher e usar os
chaveiros que AWS Encryption SDK definem, consulteTokens de autenticação.

Os chaveiros são compatíveis com as seguintes linguagens de programação:

• AWS Encryption SDK for C

• AWS Encryption SDK para JavaScript

• AWS Encryption SDK para o.NET

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência opcional da
Biblioteca de Provedores de Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Um provedor de chave mestra é uma alternativa a um token de autenticação. O provedor de chave
mestra retorna as chaves de encapsulamento (ou chaves mestras) que você especificar. Cada
chave mestra é associada a um provedor de chaves mestras, mas um provedor de chaves mestras
normalmente fornece várias chaves mestras. Os provedores de chaves mestras são compatíveis
com Java, Python e a AWS CLI de criptografia.

Você deve especificar um token de autenticação (ou provedor de chave mestra) para criptografia.
Você pode especificar o mesmo token de autenticação (ou provedor de chave mestra), ou um
diferente, para descriptografia. Ao criptografar, ele AWS Encryption SDK usa todas as chaves
de empacotamento que você especificar para criptografar a chave de dados. Ao descriptografar,
o AWS Encryption SDK usa somente as chaves de encapsulamento que você especificar para
descriptografar uma chave de dados criptografada. Especificar chaves de encapsulamento para
decodificação é opcional, mas é uma prática recomendada. AWS Encryption SDK

Para obter detalhes sobre como especificar chaves de encapsulamento, consulte. Seleção de
chaves de encapsulamento

Tokens de autenticação e provedores de chaves mestras 11

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

Contexto de criptografia

Para melhorar a segurança de suas operações de criptografia, inclua um contexto de criptografia em
todas as solicitações para criptografar dados. O uso de um contexto de criptografia é opcional, mas é
uma melhor prática de criptografia que recomendamos.

Um contexto de criptografia é um conjunto de pares de chave-valor que contêm dados autenticados
adicionais arbitrários e não secretos. O contexto de criptografia pode conter todos os dados que você
escolher, mas geralmente consiste em dados que são úteis para registro em log e rastreamento,
como dados sobre o tipo de arquivo, a finalidade ou a propriedade. Quando você criptografa dados,
o contexto de criptografia é associado de maneira criptográfica aos dados criptografados de forma
que o mesmo contexto de criptografia seja necessário para descriptografar os dados. O AWS
Encryption SDK inclui o contexto de criptografia em texto simples no cabeçalho da mensagem
criptografada retornada por ele.

O contexto de criptografia AWS Encryption SDK usado consiste no contexto de criptografia que você
especifica e em um par de chaves públicas que o gerenciador de materiais criptográficos (CMM)
adiciona. Especificamente, sempre que você usar um algoritmo de criptografia com assinatura,
o CMM adicionará um par de nome/valor ao contexto de criptografia consistindo em um nome
reservado, aws-crypto-public-key, e um valor representando a chave de verificação pública.
O aws-crypto-public-key nome no contexto de criptografia é reservado pelo AWS Encryption
SDK e não pode ser usado como nome em nenhum outro par no contexto de criptografia. Para obter
detalhes, consulte AAD na Referência do formato de mensagens.

O exemplo de contexto de criptografia a seguir consiste nos dois pares de contexto de criptografia
especificados na solicitação e no par de chaves públicas adicionado pelo CMM.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

Para descriptografar os dados, você passa a mensagem criptografada. Como o AWS Encryption
SDK pode extrair o contexto de criptografia do cabeçalho da mensagem criptografada, você não
precisa fornecer o contexto de criptografia separadamente. No entanto, o contexto de criptografia
pode ajudar a confirmar se você está descriptografando a mensagem criptografada correta.

• Na interface de linha de comando do AWS Encryption SDK (CLI), se você fornecer um contexto de
criptografia em um comando de descriptografia, a CLI verificará se os valores estão presentes no
contexto da mensagem criptografada antes de retornar os dados em texto simples.

Contexto de criptografia 12

AWS Encryption SDK Guia do Desenvolvedor

• Em outras implementações de linguagens de programação, a resposta de descriptografia inclui
o contexto de criptografia e os dados em texto simples. A função de descriptografia em seu
aplicativo sempre deve verificar se o contexto de criptografia na resposta de descriptografia inclui
o contexto de criptografia na solicitação de criptografia (ou um subconjunto) antes de retornar os
dados em texto simples.

Note

As versões a seguir oferecem suporte ao contexto de criptografia necessário CMM, que você
pode usar para exigir um contexto de criptografia em todas as solicitações de criptografia.

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência
opcional da Biblioteca de Provedores de Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Ao escolher um contexto de criptografia, lembre-se de que ele não é um segredo. O contexto de
criptografia é exibido em texto não criptografado no cabeçalho da mensagem criptografada retornada
pelo AWS Encryption SDK . Se você estiver usando AWS Key Management Service, o contexto de
criptografia também poderá aparecer em texto simples em registros e registros de auditoria, como.
AWS CloudTrail

Para obter exemplos de envio e verificação de um contexto de criptografia no seu código, consulte os
exemplos da linguagem de programação de sua preferência.

Mensagem criptografada

Quando você criptografa dados com o AWS Encryption SDK, ele retorna uma mensagem
criptografada.

Uma mensagem criptografada é uma estrutura de dados formatados portátil que inclui os dados
criptografados junto com as cópias criptografadas das chaves de dados, o ID do algoritmo e,
opcionalmente, um contexto de criptografia e uma assinatura digital. As operações de criptografia

Mensagem criptografada 13

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

no AWS Encryption SDK retornam uma mensagem criptografada, e as operações de descriptografia
usam uma mensagem criptografada como entrada.

A combinação de dados criptografados e de suas chaves de dados criptografadas simplifica a
operação e elimina a necessidade de armazenar e gerenciar chaves de dados criptografadas
independentemente dos dados que elas criptografam.

Para obter informações técnicas sobre a mensagem criptografada, consulte Formato da mensagem
criptografada.

Pacote de algoritmos

O AWS Encryption SDK usa um conjunto de algoritmos para criptografar e assinar os dados na
mensagem criptografada que as operações de criptografia e descriptografia retornam. O AWS
Encryption SDK é compatível com vários pacotes de algoritmos. Todos os conjuntos compatíveis
usam o Advanced Encryption Standard (AES) como o algoritmo principal e o combinam com outros
algoritmos e valores.

O AWS Encryption SDK estabelece um conjunto de algoritmos recomendado como padrão para
todas as operações de criptografia. O padrão pode ser alterado conforme os padrões e as práticas
recomendadas são aprimoradas. Você pode especificar um pacote de algoritmos alternativo em
solicitações de criptografia de dados ou ao criar um gerenciador de materiais criptográficos (CMM),
mas, a menos que um alternativo seja necessário para sua situação, é melhor usar o padrão. O
padrão atual é AES-GCM com uma função de derivação de extract-and-expand chave (HKDF)
baseada em HMAC, compromisso de chave, uma assinatura de algoritmo de assinatura digital de
curva elíptica (ECDSA) e uma chave de criptografia de 256 bits.

Se sua aplicação exigir alta performance e os usuários que criptografam dados e aqueles que os
descriptografam forem igualmente confiáveis, considere especificar um pacote de algoritmos sem
uma assinatura digital. No entanto, recomendamos fortemente um pacote de algoritmos que inclua
confirmação de chave e uma função de derivação de chave. Os pacotes de algoritmos que não têm
esses atributos são compatíveis apenas para compatibilidade com versões anteriores.

Gerenciador de material de criptografia

O gerenciador de material de criptografia (CMM) monta o material criptográfico usado para
criptografar e descriptografar dados. O material criptográfico inclui texto não criptografado e chaves
de dados criptografadas e uma chave de assinatura de mensagem opcional. Você nunca interage
diretamente com o CMM. Os métodos de criptografia e descriptografia o processam para você.

Pacote de algoritmos 14

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Guia do Desenvolvedor

Você pode usar o CMM padrão ou o CMM de cache que ele AWS Encryption SDK fornece, ou
escrever um CMM personalizado. E é possível especificar explicitamente um CMM, mas isso não
é obrigatório. Quando você especifica um provedor de chaveiro ou chave mestra, AWS Encryption
SDK ele cria um CMM padrão para você. O CMM padrão obtém o material de criptografia ou de
descriptografia do token de autenticação ou do provedor de chave mestra que você especificar. Isso
pode envolver uma chamada a um serviço criptográfico, como o AWS Key Management Service
(AWS KMS).

Como o CMM atua como uma ligação entre o AWS Encryption SDK e um chaveiro (ou provedor
de chave mestra), é um ponto ideal para personalização e extensão, como suporte para aplicação
de políticas e armazenamento em cache. O AWS Encryption SDK fornece um CMM de cache para
suportar o cache de chaves de dados.

Criptografia simétrica e assimétrica

A criptografia simétrica usa a mesma chave para criptografar e descriptografar dados.

A criptografia assimétrica usa um par de chaves de dados matematicamente relacionado. Uma chave
no par criptografa os dados; somente a outra chave no par pode descriptografar os dados.

O AWS Encryption SDK usa criptografia de envelope. Ele criptografa os dados com uma chave
de dados simétrica. Ele criptografa a chave de dados simétrica com uma ou mais chaves de
encapsulamento simétricas ou assimétricas. Ele retorna uma mensagem criptografada que inclui os
dados criptografados e pelo menos uma cópia criptografada da chave de dados.

Criptografar dados (criptografia simétrica)

Para criptografar seus dados, o AWS Encryption SDK usa uma chave de dados simétrica e um
conjunto de algoritmos que inclui um algoritmo de criptografia simétrica. Para descriptografar os
dados, o AWS Encryption SDK usa a mesma chave de dados e o mesmo conjunto de algoritmos.

Criptografar chave de dados (criptografia simétrica ou assimétrica)

O token de autenticação ou o provedor de chave mestra que você fornece para uma operação
de criptografia e descriptografia determina como a chave de dados simétrica será criptografada
e descriptografada. Você pode escolher um provedor de chaveiro ou chave mestra que use
criptografia simétrica, como um AWS KMS chaveiro, ou um que use criptografia assimétrica,
como um chaveiro RSA bruto ou. JceMasterKey

Criptografia simétrica e assimétrica 15

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Guia do Desenvolvedor

Confirmação de chave

O AWS Encryption SDK suporta o comprometimento da chave (às vezes conhecido como robustez),
uma propriedade de segurança que garante que cada texto cifrado possa ser descriptografado
somente em um único texto simples. Para fazer isso, a confirmação de chave garante que somente
a chave de dados que criptografou sua mensagem seja usada para descriptografá-la. Criptografar e
descriptografar com o confirmação de chave é uma prática recomendada do AWS Encryption SDK.

A maioria das cifras simétricas modernas (incluindo AES) criptografa um texto simples com uma
única chave secreta, como a chave de dados exclusiva que o AWS Encryption SDK usa para
criptografar cada mensagem de texto simples. Descriptografar esses dados com a mesma chave
de dados retorna um texto sem formatação idêntico ao original. A decodificação com uma chave
diferente geralmente falhará. No entanto, é possível decifrar um texto cifrado com duas chaves
diferentes. Em casos raros, é possível encontrar uma chave que possa descriptografar alguns bytes
do o texto cifrado em um texto simples diferente, mas ainda inteligível.

AWS Encryption SDK Sempre criptografa cada mensagem de texto simples em uma chave de dados
exclusiva. Ele pode criptografar essa chave de dados em várias chaves de encapsulamento, mas
as chaves de encapsulamento (ou chaves mestras) sempre criptografam a mesma chave de dados.
No entanto, uma mensagem criptografada sofisticada e criada manualmente pode, na verdade,
conter chaves de dados diferentes, cada uma criptografada por uma chave de encapsulamento
diferente. Por exemplo, se um usuário descriptografar a mensagem criptografada, ela retornará 0x0
(falso), enquanto outro usuário descriptografando a mesma mensagem criptografada obterá 0x1
(verdadeiro).

Para evitar esse cenário, o AWS Encryption SDK suporta o comprometimento da chave ao
criptografar e descriptografar. Quando AWS Encryption SDK criptografa uma mensagem com
comprometimento de chave, ele vincula criptograficamente a chave de dados exclusiva que produziu
o texto cifrado à cadeia de caracteres de confirmação da chave, um identificador de chave de
dados não secreto. Em seguida, ele armazena o string de compromisso chave nos metadados
da mensagem criptografada. Ao decifrar uma mensagem com comprometimento de chave, AWS
Encryption SDK verifica se a chave de dados é a única chave para essa mensagem criptografada.
Se a verificação da chave de dados falhar, a operação de descriptografia falhará.

O suporte para confirmação de chaves foi apresentado na versão 1.7. x, que pode descriptografar
mensagens com confirmação de chave, mas não pode criptografar com confirmação de chave.
Você pode usar essa versão para implantar totalmente a capacidade de descriptografar texto cifrado
com confirmação de chave. A versão 2.0.x inclui suporte total para os compromissos de chave.

Confirmação de chave 16

AWS Encryption SDK Guia do Desenvolvedor

Por padrão, ela criptografa e descriptografa somente com confirmação de chave. Essa é uma
configuração ideal para aplicativos que não precisam decifrar texto cifrado criptografado por versões
anteriores do. AWS Encryption SDK

Embora criptografar e descriptografar com confirmação de chave seja uma prática recomendada,
deixamos que você decida quando ela será usada e ajustamos o ritmo em que você a adota. A
partir da versão 1.7. x, AWS Encryption SDK suporta uma política de compromisso que define o
conjunto de algoritmos padrão e limita os conjuntos de algoritmos que podem ser usados. Essa
política determina se seus dados são criptografados e descriptografados com confirmação de chave.

A confirmação de chave resulta em uma mensagem criptografada um pouco maior (+ 30 bytes) e
que leva mais tempo para ser processada. Se sua aplicação for muito sensível ao tamanho ou à
performance, você poderá optar por não aceitar a confirmação de chave. Mas faça isso somente se
for necessário.

Para obter mais informações sobre a migração para as versões 1.7.x e 2.0.x, incluindo seus atributos
de confirmação de chave, consulte Migrando seu AWS Encryption SDK. Para obter informações
técnicas sobre confirmação de chave, consulte the section called “Referência de algoritmos” ethe
section called “Referência do formato de mensagens”.

Política de compromisso

Uma política de compromisso é uma definição de configuração que determina se a aplicação
criptografa e descriptografa com confirmação de chave. Criptografar e descriptografar com o
confirmação de chave é uma prática recomendada do AWS Encryption SDK.

A política de compromisso tem três valores.

Note

Talvez seja necessário rolar horizontalmente ou verticalmente para ver a tabela inteira.

Política de compromisso 17

AWS Encryption SDK Guia do Desenvolvedor

Valores da política de compromisso

Valor Criptografa com
confirmação de
chave

Criptografa sem
confirmação de
chave

Descriptografa
com confirmação
de chave

Descriptografa
sem confirmação
de chave

ForbidEnc
ryptAllowDecrypt

RequireEn
cryptAllo
wDecrypt

RequireEn
cryptRequ
ireDecrypt

A configuração da política de compromisso foi introduzida na AWS Encryption SDK versão 1.7. x. Ela
é válida em todas as linguagens de programação suportadas.

• O ForbidEncryptAllowDecrypt descriptografa com ou sem confirmação de chave, mas não
criptografa com confirmação de chave. Esse valor, introduzido na versão 1.7. x, foi projetado
para preparar todos os hosts que executam seu aplicativo para decifrar com comprometimento
de chave antes mesmo de encontrarem um texto cifrado criptografado com comprometimento de
chave.

• O RequireEncryptAllowDecrypt sempre criptografa com confirmação de chave. Ele pode
descriptografar textos cifrados criptografados com ou sem confirmação de chave. Este valor,
introduzido na versão 2.0.x, permite que você comece a criptografar com confirmação de chave,
mas ainda descriptografe textos cifrados herdados sem confirmação de chave.

• RequireEncryptRequireDecrypt: criptografa e descriptografa somente com confirmação de
chave. Esse valor é o padrão para a versão 2.0x. Use-o valor quando tiver certeza de que todos os
seus textos cifrados estão criptografados com a confirmação de chave.

A configuração da política de compromisso determina quais pacotes de algoritmos você pode
usar. A partir da versão 1.7. x, o pacote de algoritmos de AWS Encryption SDK suporte para

Política de compromisso 18

AWS Encryption SDK Guia do Desenvolvedor

comprometimento de chaves; com e sem assinatura. Se você especificar um pacote de algoritmos
que entre em conflito com sua política de compromisso, o AWS Encryption SDK retornará um erro.

Para obter ajuda para definir sua política de compromisso, consulte Como definir sua política de
compromisso.

Assinaturas digitais

Ele AWS Encryption SDK criptografa seus dados usando um algoritmo de criptografia autenticado, o
AES-GCM, e o processo de decodificação verifica a integridade e a autenticidade de uma mensagem
criptografada sem usar uma assinatura digital. Mas como o AES-GCM usa chaves simétricas,
qualquer pessoa que possa descriptografar a chave de dados usada para descriptografar o texto
cifrado também pode criar manualmente um novo texto cifrado, causando uma possível preocupação
de segurança. Por exemplo, se você usar um AWS KMS key como chave de encapsulamento,
um usuário com kms:Decrypt permissões poderá criar textos cifrados criptografados sem ligar.
kms:Encrypt

Para evitar esse problema, o AWS Encryption SDK suporta a adição de uma assinatura do Algoritmo
de Assinatura Digital de Curva Elíptica (ECDSA) ao final das mensagens criptografadas. Quando
um conjunto de algoritmos de assinatura é usado, AWS Encryption SDK ele gera uma chave privada
temporária e um par de chaves públicas para cada mensagem criptografada. O AWS Encryption
SDK armazena a chave pública no contexto de criptografia da chave de dados e descarta a chave
privada. Isso garante que ninguém possa criar outra assinatura que seja verificada com a chave
pública. O algoritmo vincula a chave pública à chave de dados criptografada como dados adicionais
autenticados no cabeçalho da mensagem, impedindo que usuários que só podem descriptografar
mensagens alterem a chave pública ou afetem a verificação da assinatura.

A verificação de assinatura adiciona um custo significativo de performance à descriptografia. Se os
usuários que criptografam dados e os usuários que decifram os dados forem igualmente confiáveis,
considere usar um pacote de algoritmos que não inclua assinatura.

Note

Se o chaveiro ou o acesso ao material criptográfico da embalagem não delimitarem entre
criptografadores e decodificadores, as assinaturas digitais não fornecerão valor criptográfico.

Assinaturas digitais 19

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS os chaveiros, incluindo o AWS KMS chaveiro RSA assimétrico, podem delinear entre
criptografadores e decodificadores com base nas políticas de chaves e nas políticas do IAM. AWS
KMS

Devido à sua natureza criptográfica, os seguintes chaveiros não podem delimitar entre
criptografadores e decodificadores:

• AWS KMS Chaveiro hierárquico

• AWS KMS Chaveiro ECDH

• Token de autenticação bruto do AES

• Token de autenticação bruto do RSA

• Chaveiro ECDH bruto

Como AWS Encryption SDK funciona

Os fluxos de trabalho desta seção explicam como AWS Encryption SDK criptografa dados e
descriptografa mensagens criptografadas. Esses fluxos de trabalho descrevem o processo
básico usando os atributos padrão. Para obter detalhes sobre como definir e usar componentes
personalizados, consulte o GitHub repositório de cada implementação de linguagem compatível.

O AWS Encryption SDK usa criptografia de envelope para proteger seus dados. Cada mensagem
é criptografada em uma chave de dados exclusiva. Em seguida, a chave de dados é criptografada
pelas chaves de encapsulamento que você especificar. Para descriptografar a mensagem
criptografada, ele AWS Encryption SDK usa as chaves de encapsulamento que você especifica para
descriptografar pelo menos uma chave de dados criptografada. Em seguida, ele pode descriptografar
o texto cifrado e retornar uma mensagem de texto simples.

Precisa de ajuda com a terminologia que usamos no AWS Encryption SDK? Consulte the section
called “Conceitos”.

Como o AWS Encryption SDK criptografa os dados

AWS Encryption SDK Ele fornece métodos que criptografam cadeias de caracteres, matrizes de
bytes e fluxos de bytes. Para obter exemplos de código, consulte o tópico Exemplos em cada seção
de Linguagens de programação.

1. Crie um token de autenticação (ou um provedor de chave mestra) que especifique as chaves de
agrupamento que protegem seus dados.

Saiba como o SDK funciona 20

AWS Encryption SDK Guia do Desenvolvedor

2. Transmita o chaveiro e os dados do texto simples para um método de criptografia.
Recomendamos transmitir um contexto de criptografia opcional, não secreto.

3. O método de criptografia solicita materiais de criptografia ao token de autenticação. O chaveiro
retorna chaves de criptografia de dados exclusivas para a mensagem: uma chave de dados em
texto simples e uma cópia dessa chave de dados criptografada por cada uma das chaves de
encapsulamento especificadas.

4. O método de criptografia usa a chave de dados de texto não criptografado para criptografar os
dados e, em seguida, descarta a chave de dados de texto não criptografado. Se você fornecer
um contexto de criptografia (uma prática recomendada do AWS Encryption SDK), o método
de criptografia também vinculará de forma criptográfica o contexto de criptografia aos dados
criptografados.

5. O método de criptografia retorna uma mensagem criptografada que contém os dados
criptografados, as chaves de dados criptografadas e outros metadados, incluindo o contexto de
criptografia, se você o usou.

Como o AWS Encryption SDK decifra uma mensagem criptografada

AWS Encryption SDK Fornece métodos que decifram a mensagem criptografada e retornam texto
sem formatação. Para obter exemplos de código, consulte o tópico Exemplos em cada seção de
Linguagens de programação.

O token de autenticação (ou o provedor de chave mestra) que descriptografará a mensagem
criptografada deve ser compatível com aquele usado para criptografar a mensagem. Uma das
chaves de encapsulamento dele deve ser capaz descriptografar uma chave de dados criptografada
na mensagem criptografada. Para obter informações sobre compatibilidade com tokens de
autenticação e provedores de chaves mestra, consulte the section called “Compatibilidade dos
tokens de autenticação”.

1. Crie um token de autenticação ou provedor de chave mestra com chaves de encapsulamento que
possam descriptografar seus dados. É possível usar o mesmo token de autenticação fornecido
para o método de criptografia ou um token diferente.

2. Transmita a mensagem criptografada e o token de autenticação para um método de
descriptografia.

3. O método de descriptografia solicita que o token de autenticação ou o provedor de chave mestra
descriptografe uma das chaves de dados criptografadas na mensagem criptografada. Ele passa
informações da mensagem criptografada, incluindo as chaves de dados criptografadas.

Como o AWS Encryption SDK decifra uma mensagem criptografada 21

AWS Encryption SDK Guia do Desenvolvedor

4. O token de autenticação usa suas chaves de empacotamento para descriptografar uma das
chaves de dados criptografadas. A resposta incluirá a chave de dados em texto simples, se
for bem-sucedida. Caso nenhuma das chaves de encapsulamento especificadas pelo token
de autenticação ou provedor da chave mestra possa descriptografar uma chave de dados
criptografada, a chamada de descriptografia falhará.

5. O método de descriptografia usa a chave de dados de texto simples para descriptografar os
dados, descarta a chave de dados de texto simples e retorna os dados de texto simples.

Suítes de algoritmos compatíveis no AWS Encryption SDK

Um pacote de algoritmos é uma coleção de algoritmos criptográficos e de valores relacionados.
Os sistemas de criptografia usam a implementação do algoritmo para gerar a mensagem de texto
cifrado.

O conjunto de algoritmos usa o AWS Encryption SDK algoritmo Advanced Encryption Standard
(AES) em Galois/Counter Modo (GCM), conhecido como AES-GCM, para criptografar dados brutos.
O AWS Encryption SDK suporta chaves de criptografia de 256 bits, 192 bits e 128 bits. O tamanho
do vetor de inicialização (IV) é sempre 12 bytes. O tamanho da tag de autenticação é sempre 16
bytes.

Por padrão, o AWS Encryption SDK usa um conjunto de algoritmos com AES-GCM com uma
função de derivação de extract-and-expand chave (HKDF) baseada em HMAC, assinatura e uma
chave de criptografia de 256 bits. Se a política de compromisso exigir comprometimento de chave,
ela AWS Encryption SDK seleciona um conjunto de algoritmos que também oferece suporte ao
comprometimento de chave; caso contrário, seleciona um conjunto de algoritmos com derivação e
assinatura de chaves, mas não com compromisso de chave.

Recomendado: AES-GCM com derivação de chave, assinatura e
confirmação de chave

Ele AWS Encryption SDK recomenda um conjunto de algoritmos que deriva uma chave de
criptografia AES-GCM fornecendo uma chave de criptografia de dados de 256 bits para a função
de derivação de chave (HKDF) baseada em HMAC. extract-and-expand AWS Encryption SDK
Isso adiciona uma assinatura do Algoritmo de Assinatura Digital de Curva Elíptica (ECDSA). Para
oferecer suporte ao comprometimento da chave, esse pacote de algoritmos também deriva uma
sequência de caracteres de comprometimento da chave, um identificador de chave de dados
não secreto, que é armazenado nos metadados da mensagem criptografada. Essa sequência

Pacotes de algoritmos compatíveis 22

https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Guia do Desenvolvedor

de comprometimento da chave também é derivada por meio do HKDF usando um procedimento
semelhante à derivação da chave de criptografia de dados.

AWS Encryption SDK Suíte de algoritmos

Algoritmo de
criptografia

Tamanho
da chave de
criptografia de
dados (em bits)

Algoritmo de
derivação de
chave

Algoritmo de
assinatura

Confirmação de
chave

AES-GCM 256 HKDF com
SHA-384

ECDSA com
P-384 e
SHA-384

HKDF com
SHA-512

A HKDF ajuda a evitar a reutilização acidental de uma chave de criptografia de dados e reduz o risco
de sobreuso de chaves de dados.

Para assinatura, esse pacote de algoritmos usa ECDSA com um algoritmo de função hash
criptográfica (SHA-384). O ECDSA é usado por padrão, mesmo quando ele não é especificado
pela política da chave mestra subjacente. A assinatura da mensagem verifica se o remetente foi
autorizado a criptografar mensagens e fornece o não repúdio. Isso é especialmente útil quando a
política de autorização de uma chave mestra permite que um conjunto de usuários criptografe dados
e outro conjunto de usuários descriptografe os dados.

Conuuntos de algoritmos com confirmação de chave garantem que cada texto cifrado seja
descriptografado em apenas um texto simples. Eles fazem isso validando a chave de dados usada
como entrada para o algoritmo de criptografia. Ao criptografar, esses conjuntos de algoritmos
derivam um HMAC de comprometimento fundamental. Antes de descriptografar, eles validam que a
chave de dados corresponde à sequência de conformação da chave. Caso contrário, a chamada de
descriptografia falhará.

Outros pacotes de algoritmos compatíveis

O AWS Encryption SDK suporta os seguintes conjuntos de algoritmos alternativos para
compatibilidade com versões anteriores. Em geral, não recomendamos esses pacotes de algoritmos.
No entanto, reconhecemos que a assinatura pode prejudicar significativamente a performance, por
isso oferecemos um pacote de confirmação de chaves com derivação de chaves para esses casos.

Outros pacotes de algoritmos compatíveis 23

AWS Encryption SDK Guia do Desenvolvedor

Para aplicações que precisam fazer concessões de performance mais significativas, continuamos
oferecendo pacotes que não possuem assinatura, confirmação de chaves e derivação de chaves.

AES-GCM sem confirmação de chave

Os conjuntos de algoritmos sem confirmação de chave não validam a chave de dados antes
da descriptografia. Como resultado, esses conjuntos de algoritmos podem descriptografar um
único texto cifrado em diferentes mensagens de texto simples. No entanto, como os pacotes de
algoritmos com confirmação de chave produzem uma mensagem criptografada um pouco maior
(+30 bytes) e demoram mais para serem processados, eles podem não ser a melhor opção para
cada aplicação.

O AWS Encryption SDK suporta um conjunto de algoritmos com derivação de chave,
compromisso de chave, assinatura e outro com derivação de chave e compromisso de chave,
mas não assinatura. Não recomendamos usar um pacote de algoritmos sem confirmação de
chave. Se necessário, recomendamos um pacote de algoritmos com derivação e confirmação de
chaves, mas sem assinatura. No entanto, se o perfil de performance da aplicação for compatível
com o uso de um pacote de algoritmos, usar um pacote de algoritmos com confirmação de
chaves, derivação de chaves e assinatura é uma prática recomendada.

AES-GCM sem assinatura

Os conjuntos de algoritmos sem assinatura carecem da assinatura ECDSA, que fornece
autenticidade e não repúdio. Use esse conjunto apenas quando os usuários que criptografam
dados e os que os descriptografam são igualmente confiáveis.

Ao usar um pacote de algoritmos sem assinatura, recomendamos escolher um com derivação e
confirmação de chave.

AES-GCM sem derivação de chaves

Pacotes de algoritmos sem derivação usam a criptografia de dados como a chave de criptografia
do AES-GCM, em vez de usar uma função de derivação de chaves para derivar uma chave
exclusiva. Nós desencorajamos o uso dessa suíte para gerar texto cifrado, mas ela é AWS
Encryption SDK compatível por motivos de compatibilidade.

Para obter mais informações sobre como esses pacotes são representados e usados na biblioteca,
consulte the section called “Referência de algoritmos”.

Outros pacotes de algoritmos compatíveis 24

AWS Encryption SDK Guia do Desenvolvedor

Usando o AWS Encryption SDK com AWS KMS

Para usar o AWS Encryption SDK, você precisa configurar chaveiros ou provedores de
chaves mestras com chaves de agrupamento. Se você não tiver uma infraestrutura de chaves,
recomendamos usar o AWS Key Management Service (AWS KMS). Muitos dos exemplos de código
no AWS Encryption SDK exigem um AWS KMS key.

Para interagir AWS KMS, é AWS Encryption SDK necessário o AWS SDK da linguagem de
programação de sua preferência. A biblioteca AWS Encryption SDK cliente trabalha com o AWS
SDKs para oferecer suporte às chaves mestras armazenadas em AWS KMS.

Para se preparar para usar o AWS Encryption SDK com AWS KMS

1. Crie um Conta da AWS. Para saber como, consulte Como eu crio e ativo uma nova conta da
Amazon Web Services? no Centro de AWS Conhecimento.

2. Crie uma criptografia AWS KMS key simétrica. Para obter ajuda, consulte Criação de chaves no
Guia do desenvolvedor AWS Key Management Service .

Tip

Para usar o AWS KMS key programaticamente, você precisará do ID da chave ou do
Amazon Resource Name (ARN) do. AWS KMS key Para ajudar a descorbri o ID ou o
ARN de uma AWS KMS key, consulte Descobrir o ID de chave e o ARN no Guia do
desenvolvedor do AWS Key Management Service .

3. Gere um ID de chave de acesso e uma chave de acesso de segurança. Você pode usar o ID
da chave de acesso e a chave de acesso secreta para um usuário do IAM ou AWS Security
Token Service para criar uma nova sessão com credenciais de segurança temporárias que
incluem um ID de chave de acesso, chave de acesso secreta e token de sessão. Como prática
recomendada de segurança, recomendamos que você use credenciais temporárias em vez das
credenciais de longo prazo associadas às suas contas de usuário do IAM ou AWS (raiz).

Para criar um usuário do IAM com uma chave de acesso, consulte Criação de usuários do IAM
no Guia do usuário do IAM.

Para gerar mais informações sobre credenciais de segurança temporárias, consulte Solicitação
de credenciais de segurança temporárias no Guia do usuário do IAM.

25

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Encryption SDK Guia do Desenvolvedor

4. Defina suas AWS credenciais usando as instruções em AWS SDK for JavaAWS SDK for
JavaScript, AWS SDK para Python (Boto)ou AWS SDK para C++(para C) e o ID da chave de
acesso e a chave de acesso secreta que você gerou na etapa 3. Se você gerou credenciais
temporárias, também precisará especificar o token de sessão.

Este procedimento AWS SDKs permite assinar solicitações AWS para você. As amostras
de código AWS Encryption SDK que interagem com AWS KMS pressupõem que você tenha
concluído essa etapa.

5. Baixe e instale AWS Encryption SDK o. Para saber como, consulte as instruções de instalação
da linguagem de programação que você deseja usar.

26

https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK Guia do Desenvolvedor

Melhores práticas para o AWS Encryption SDK
O foi AWS Encryption SDK projetado para facilitar a proteção de seus dados usando os padrões e as
melhores práticas do setor. Embora muitas práticas recomendadas tenham sido selecionadas para
você nos valores padrão, algumas delas são opcionais, mas recomendadas sempre que seja prático.

Use a versão mais recente

Ao começar a usar o AWS Encryption SDK, use a versão mais recente oferecida na linguagem
de programação de sua preferência. Se você estiver usando o AWS Encryption SDK, atualize
para cada versão mais recente assim que possível. Isso assegura que você esteja usando a
configuração recomendada e aproveitando as novas propriedades de segurança para proteger
seus dados. Para obter detalhes sobre as versões compatíveis, incluindo orientações para
migração e implantação, consulte Suporte e manutenção e Versões do AWS Encryption SDK.

Se uma nova versão descontinuar elementos em seu código, substitua-os assim que possível.
Os avisos de descontinuação e os comentários de código geralmente recomendam uma boa
alternativa.

Para tornar as atualizações significativas mais fáceis e menos propensas a erros, ocasionalmente
fornecemos uma versão temporária ou transitória. Use essas versões e a documentação que
as acompanha para garantir que você possa atualizar a aplicação sem interromper seu fluxo de
trabalho de produção.

Use os valores padrão

O AWS Encryption SDK projeta as melhores práticas em seus valores padrão. Sempre
que possível, use-os. Para casos em que aplicar o padrão seja pouco prático, fornecemos
alternativas, como pacotes de algoritmos sem assinatura. Também oferecemos oportunidades
de personalização para usuários avançados, como chaveiros personalizados, fornecedores
de chaves mestras e gerenciadores de material criptográfico (). CMMs Use essas alternativas
avançadas com cuidado e faça com que um engenheiro de segurança verifique suas escolhas
sempre que possível.

Usar um contexto de criptografia

Para melhorar a segurança de suas operações de criptografia, inclua um contexto de criptografia
com um valor significativo em todas as solicitações para criptografar dados. O uso de um
contexto de criptografia é opcional, mas é uma melhor prática de criptografia que recomendamos.
Ele oferece dados autenticados adicionais (AAD) para criptografia autenticada no AWS

27

AWS Encryption SDK Guia do Desenvolvedor

Encryption SDK. Embora não seja secreto, o contexto de criptografia pode ajudar você a proteger
a integridade e a autenticidade de seus dados criptografados.

No AWS Encryption SDK, você especifica um contexto de criptografia somente ao criptografar.
Ao descriptografar, o AWS Encryption SDK usa o contexto de criptografia no cabeçalho da
mensagem criptografada que ele retorna. AWS Encryption SDK Antes da aplicação retornar
os dados de texto simples, verifique se o contexto de criptografia usado para criptografar a
mensagem está incluído no contexto de criptografia usado ao descriptografar a mensagem. Para
obter detalhes, consulte os exemplos na sua linguagem de programação.

Quando você usa a interface de linha de comando, ele AWS Encryption SDK verifica o contexto
de criptografia para você.

Proteja suas chaves de encapsulamento

Isso AWS Encryption SDK gera uma chave de dados exclusiva para criptografar cada
mensagem de texto simples. Em seguida, ele criptografa a chave de dados com as chaves
de encapsulamento fornecidas por você. Se suas chaves de encapsulamento forem perdidas
ou excluídas, seus dados criptografados serão irrecuperáveis. Se suas chaves não estiverem
protegidas, seus dados podem ficar vulneráveis.

Use chaves de encapsulamento protegidas por uma infraestrutura de chave segura, como o AWS
Key Management Service (AWS KMS). Ao usar chaves AES ou RSA brutas, utilize uma fonte de
randomização e armazenamento durável que atenda aos seus requisitos de segurança. Gerar e
armazenar chaves de empacotamento em um módulo de segurança de hardware (HSM) ou em
um serviço que fornece HSMs, como AWS CloudHSM, é uma prática recomendada.

Use os mecanismos de autorização da sua infraestrutura de chaves para limitar o acesso às
chaves de encapsulamento somente aos usuários que exigem elas. Implemente princípios de
práticas recomendadas, como privilégio mínimo. Ao usar AWS KMS keys, use as principais
políticas e as políticas do IAM que implementam os princípios das melhores práticas.

Especifique suas chaves de encapsulamento

A especificação das chaves de encapsulamento de forma explícita ao descriptografar e
criptografar é sempre um prática recomendada. Ao fazer isso, o AWS Encryption SDK usa
somente as chaves que você especificar. Essa prática garante que você use somente as chaves
de criptografia que pretende utilizar. Para AWS KMS agrupar chaves, ele também melhora o
desempenho ao impedir que você use chaves inadvertidamente em uma região Conta da AWS
ou região diferente ou tente descriptografar com chaves que você não tem permissão para usar.

28

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK Guia do Desenvolvedor

Ao criptografar, os chaveiros e os fornecedores de chaves mestras que os AWS Encryption SDK
suprimentos exigem que você especifique as chaves de empacotamento. Eles utilizam somente
as chaves de encapsulamento que você especificar, nenhuma outra. Você também precisa
especificar chaves de agrupamento ao criptografar e descriptografar com chaveiros AES brutos,
chaveiros RSA brutos e chaves. JCEMaster

No entanto, ao descriptografar com AWS KMS chaveiros e provedores de chaves mestras, você
não precisa especificar chaves de empacotamento. Eles AWS Encryption SDK podem obter o
identificador da chave a partir dos metadados da chave de dados criptografada. No entanto,
recomendamos que você especifique as chaves de encapsulamento, já que esta é uma prática
recomendada.

Para apoiar essa prática recomendada ao trabalhar com chaves de AWS KMS empacotamento,
recomendamos o seguinte:

• Use AWS KMS chaveiros que especifiquem as chaves de embrulho. Ao criptografar e
descriptografar, esses tokens de autenticação usam somente as chaves de encapsulamento
especificadas por você.

• Ao usar chaves AWS KMS mestras e provedores de chaves mestras, use os construtores de
modo estrito introduzidos na versão 1.7. x do AWS Encryption SDK. Eles criam provedores
que criptografam e descriptografam somente com as chaves de encapsulamento que você
especificar. Os construtores de provedores de chave mestra que sempre descriptografam com
qualquer chave de encapsulamento foram descontinuados na versão 1.7.x e excluídos na
versão 2.0.x.

Quando especificar chaves de AWS KMS encapsulamento para descriptografia é impraticável,
você pode usar provedores de descoberta. O AWS Encryption SDK em C e JavaScript suporta
chaveiros AWS KMS Discovery. Os provedores de chaves mestras com um modo de descoberta
estão disponíveis para Java e Python nas versões 1.7.x e posteriores. Esses provedores
de descoberta, que são usados somente para descriptografar com chaves de AWS KMS
agrupamento, orientam explicitamente o uso de qualquer chave de empacotamento AWS
Encryption SDK que criptografe uma chave de dados.

Se você precisar usar um provedor de descoberta, use os atributos de filtro de descoberta para
limitar as chaves de encapsulamento que eles usam. Por exemplo, o token de autenticação
de descoberta regional do AWS KMS usa somente as chaves de encapsulamento em uma
determinada Região da AWS. Você também pode configurar AWS KMS chaveiros e provedores
de chaves AWS KMS mestras para usar somente as chaves de encapsulamento em particular.

29

AWS Encryption SDK Guia do Desenvolvedor

Contas da AWS Além disso, como sempre, use políticas de chaves e políticas do IAM para
controlar o acesso às suas chaves de AWS KMS empacotamento.

Use assinaturas digitais

É uma prática recomendada usar um pacote de algoritmos com assinatura. Assinaturas digitais
confirmam que o remetente da mensagem foi autorizado a enviá-la e protegem a integridade
da mensagem. Todas as versões do AWS Encryption SDK usam pacotes de algoritmos com
assinatura por padrão.

Se seus requisitos de segurança não incluírem assinaturas digitais, você pode selecionar um
pacote de algoritmos sem assinaturas digitais. No entanto, recomendamos o uso de assinaturas
digitais, especialmente quando um grupo de usuários criptografa dados e um grupo diferente de
usuários descriptografa esses dados.

Use o confirmação de chave

É uma prática recomendada usar o atributo de segurança de confirmação de chave. Ao verificar
a identidade da chave de dados exclusiva que criptografou seus dados, a confirmação de chave
impede que você descriptografe qualquer texto cifrado que possa resultar em mais de uma
mensagem de texto simples.

O AWS Encryption SDK fornece suporte completo para criptografia e descriptografia com
comprometimento de chave a partir da versão 2.0. x. Por padrão, todas as suas mensagens são
criptografadas e decriptografadas com confirmação de chave. Versão 1.7. x dos AWS Encryption
SDK podem decifrar textos cifrados com comprometimento fundamental. Ela foi projetada para
ajudar os usuários de versões anteriores a implantar a versão 2.0.x com sucesso.

O suporte para confirmação de chaves inclui novos pacotes de algoritmos e um novo formato
de mensagem que produz um texto cifrado apenas 30 bytes maior do que um texto cifrado sem
confirmação de chave. O design minimiza seu impacto na performance para que a maioria dos
usuários possa aproveitar os benefícios da confirmação de chave. Se seu aplicativo for muito
sensível ao tamanho e ao desempenho, você pode decidir usar a configuração da política de
compromisso para desabilitar o comprometimento da AWS Encryption SDK chave ou permitir que
eles descriptografem mensagens sem compromisso, mas faça isso somente se necessário.

Limite o número de chaves de dados criptografadas

É uma prática recomendada limitar o número de chaves de dados criptografadas nas mensagens
que você descriptografa, especialmente mensagens de fontes não confiáveis. Descriptografar
uma mensagem com várias chaves de dados criptografadas que você não pode descriptografar

30

AWS Encryption SDK Guia do Desenvolvedor

pode gerar atrasos prolongados, aumentar despesas, limitar a capacidade da aplicação e de
outros que compartilham sua conta e potencialmente esgotar sua infraestrutura de chaves. Uma
mensagem criptografada pode conter até 65.535 (2^16 - 1) chaves de dados criptografadas. Para
obter detalhes, consulte Limitar as chaves de dados criptografadas.

Para obter mais informações sobre os recursos AWS Encryption SDK de segurança subjacentes a
essas melhores práticas, consulte Criptografia aprimorada do lado do cliente: compromisso explícito
KeyIds e fundamental no Blog de segurança.AWS

31

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Guia do Desenvolvedor

Configurando o AWS Encryption SDK

O foi AWS Encryption SDK projetado para ser fácil de usar. Embora o AWS Encryption SDK tenha
várias opções de configuração, os valores padrão são cuidadosamente escolhidos para serem
práticos e seguros para a maioria dos aplicativos. No entanto, talvez seja necessário ajustar sua
configuração para melhorar a performance ou incluir um atributo personalizado em seu design.

Ao configurar sua implementação, analise as AWS Encryption SDK melhores práticas e implemente
o máximo possível.

Tópicos

• Seleção de uma linguagem de programação

• Seleção de chaves de encapsulamento

• Usando várias regiões AWS KMS keys

• Escolher um pacote de algoritmo

• Limitar as chaves de dados criptografadas

• Criação de um filtro de descoberta

• Configurando o contexto de criptografia necessário (CMM)

• Como definir uma política de compromisso

• Trabalhar com streaming de dados

• Armazenamento em cache de chaves de dados

Seleção de uma linguagem de programação

O AWS Encryption SDK está disponível em várias linguagens de programação. As implementações
de linguagem são projetadas para serem totalmente interoperáveis e oferecer os mesmos atributos,
embora possam ser implementadas de maneiras diferentes. Normalmente, você usa a biblioteca
compatível com sua aplicação. No entanto, pode selecionar uma linguagem de programação para
uma implementação específica. Por exemplo, se você preferir trabalhar com chaveiros, você pode
escolher o AWS Encryption SDK for C ou o. AWS Encryption SDK para JavaScript

Seleção de uma linguagem de programação 32

AWS Encryption SDK Guia do Desenvolvedor

Seleção de chaves de encapsulamento
Isso AWS Encryption SDK gera uma chave de dados simétrica exclusiva para criptografar cada
mensagem. A menos que você esteja usando o armazenamento em cache de chaves de dados,
você não precisa configurar, gerenciar ou usar as chaves de dados. Ele AWS Encryption SDK faz
isso por você.

No entanto, você deve selecionar uma ou mais chaves de encapsulamento para criptografar cada
chave de dados. O AWS Encryption SDK é compatível com chaves simétricas AES e chaves
assimétricas RSA em tamanhos diferentes. Ele também é compatível com a criptografia simétrica
AWS KMS keys do AWS Key Management Service(AWS KMS). Você é responsável pela segurança
e durabilidade de suas chaves de empacotamento, por isso recomendamos que você use uma chave
de criptografia em um módulo de segurança de hardware ou em um serviço de infraestrutura de
chaves, como AWS KMS.

Para especificar suas chaves de agrupamento para criptografia e descriptografia, você usa um
chaveiro (C, Java, JavaScript .NET e Python) ou um provedor de chave mestra (Java, Python,
CLI de criptografia). AWS É possível especificar uma chave de encapsulamento ou várias
chaves de encapsulamento do mesmo tipo ou de tipos diferentes. Se você usar várias chaves de
encapsulamento para empacotar uma chave de dados, cada chave de encapsulamento criptografará
uma cópia da mesma chave de dados. As chaves de dados criptografadas (uma por chave de
empacotamento) são armazenadas com os dados criptografados na mensagem criptografada
que elas AWS Encryption SDK retornam. Para descriptografar os dados, primeiro use uma de
suas chaves de empacotamento para AWS Encryption SDK descriptografar uma chave de dados
criptografada.

Para especificar um AWS KMS key em um chaveiro ou provedor de chave mestra, use um
identificador de AWS KMS chave compatível. Para obter detalhes sobre os identificadores de chave
de uma AWS KMS chave, consulte Identificadores de chave no Guia do AWS Key Management
Service desenvolvedor.

• Ao criptografar com o AWS Encryption SDK for Java,, AWS Encryption SDK para JavaScript
AWS Encryption SDK for Python, ou com a CLI de AWS criptografia, você pode usar qualquer
identificador de chave válido (ID da chave, ARN da chave, nome do alias ou ARN do alias) para
uma chave KMS. Ao criptografar com o AWS Encryption SDK for C, você só pode usar um ID de
chave ou ARN de chave.

Se você especificar um nome de alias ou ARN de alias para uma chave KMS ao criptografar, o
AWS Encryption SDK salvará o ARN da chave atualmente associado a esse alias; ele não salvará

Seleção de chaves de encapsulamento 33

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

o alias. As alterações no alias não afetam a chave do KMS usada para descriptografar suas
chaves de dados.

• Ao descriptografar no modo estrito (onde você especifica chaves de encapsulamento específicas),
você deve usar um ARN de chave para identificar as AWS KMS keys. Esse requisito aplica-se a
todas as implementações de linguagem do AWS Encryption SDK.

Quando você criptografa com um AWS KMS chaveiro, ele AWS Encryption SDK armazena o ARN
da chave AWS KMS key nos metadados da chave de dados criptografada. Ao descriptografar no
modo estrito, AWS Encryption SDK verifica se o mesmo ARN da chave aparece no chaveiro (ou no
provedor da chave mestra) antes de tentar usar a chave de empacotamento para descriptografar
a chave de dados criptografada. Se você usar um identificador de chave diferente, eles não AWS
Encryption SDK reconhecerão nem usarão o AWS KMS key, mesmo que os identificadores se
refiram à mesma chave.

Para especificar uma chave AES bruta ou um par de chaves RSA brutas como chave de
agrupamento em um token de autenticação, você deve especificar um namespace e um nome.
Em um provedor de chave mestra, o Provider ID é o equivalente do namespace e o Key ID
é o equivalente do nome. Ao descriptografar, você deve usar exatamente o mesmo namespace e
nome para cada chave de encapsulamento bruta que você usou ao criptografar. Se você usar um
namespace ou nome diferente, eles não AWS Encryption SDK reconhecerão nem usarão a chave de
encapsulamento, mesmo que o material da chave seja o mesmo.

Usando várias regiões AWS KMS keys

Você pode usar chaves multirregionais AWS Key Management Service (AWS KMS) como chaves
de encapsulamento no. AWS Encryption SDK Se você criptografar com uma chave multirregional
em uma Região da AWS, poderá descriptografar usando uma chave multirregional relacionada em
outra. Região da AWS O suporte para chaves multirregionais foi introduzido na versão 2.3. x do AWS
Encryption SDK e versão 3.0. x da CLI AWS de criptografia.

AWS KMS As chaves multirregionais são um conjunto de AWS KMS keys chaves diferentes
Regiões da AWS que têm o mesmo material de chave e ID de chave. É possível usar essas chaves
relacionadas como se fossem a mesma chave em regiões diferentes. As chaves multirregionais
oferecem suporte a cenários comuns de recuperação de desastres e backup que exigem criptografia
em uma região e descriptografia em uma região diferente sem fazer uma chamada entre regiões
para. AWS KMS Para obter mais informações sobre chaves multirregionais, consulte Usar chaves
multirregionais no Guia do Desenvolvedor do AWS Key Management Service .

Usando várias regiões AWS KMS keys 34

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Guia do Desenvolvedor

Para oferecer suporte a chaves multirregionais, AWS Encryption SDK inclui chaveiros com AWS
KMS reconhecimento de várias regiões e fornecedores de chaves mestras. O novo multi-Region-
aware símbolo em cada linguagem de programação oferece suporte às chaves de região única e
multirregião.

• Para chaves de região única, o multi-Region-aware símbolo se comporta exatamente como o AWS
KMS chaveiro de região única e o provedor da chave mestra. Ele tenta descriptografar o texto
cifrado somente com a chave de região única que criptografou os dados.

• Para chaves multirregionais, o multi-Region-aware símbolo tenta descriptografar o texto cifrado
com a mesma chave multirregional que criptografou os dados ou com a chave de réplica
multirregional relacionada na região especificada.

Nos provedores de multi-Region-aware chaveiros e chaves mestras que usam mais de uma chave
KMS, você pode especificar várias chaves de região única e multirregião. No entanto, você pode
especificar somente uma chave de cada conjunto de chaves de réplica multirregional relacionadas.
Se você especificar mais de um identificador de chave com o mesmo ID de chave, a chamada do
construtor falhará.

Você também pode usar uma chave multirregional com os fornecedores padrão de AWS KMS
chaveiros de região única e chave mestra. No entanto, deve usar a mesma chave multirregional na
mesma região para criptografar e descriptografar. Os tokens de autenticação de região única e os
provedores de chaves mestras tentam descriptografar o texto cifrado somente com as chaves que
criptografaram os dados.

Os exemplos a seguir mostram como criptografar e descriptografar dados usando chaves
multirregionais e os novos fornecedores de multi-Region-aware chaveiros e chaves mestras. Esses
exemplos criptografam dados na us-east-1 região e descriptografam os dados na região usando
chaves de réplica us-west-2 multirregionais relacionadas em cada região. Antes de executar esses
exemplos, substitua o exemplo de ARN de chave multirregional por um valor válido da sua Conta da
AWS.

C

Para criptografar com uma chave multirregional, use o método
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() para instanciar o token
de autenticação. Especifique uma chave multirregional.

Usando várias regiões AWS KMS keys 35

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key

AWS Encryption SDK Guia do Desenvolvedor

Esse exemplo simples não inclui um contexto de criptografia. Para obter um exemplo que usa um
contexto de criptografia em C, consulte Criptografar e descriptografar strings.

Para ver um exemplo completo, consulte kms_multi_region_keys.cpp no AWS Encryption SDK for
C repositório em GitHub.

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
 plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Para criptografar com uma chave multirregional na região Leste dos EUA (Norte da Virgínia) (us-
east-1), instancie um CreateAwsKmsMrkKeyringInput objeto com um identificador de chave
para a chave multirregional e um cliente para a região especificada. AWS KMS Em seguida, use
o método CreateAwsKmsMrkKeyring() para criar o token de autenticação.

Usando várias regiões AWS KMS keys 36

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Guia do Desenvolvedor

O método CreateAwsKmsMrkKeyring() cria um token de autenticação com exatamente uma
chave multirregional. Para criptografar com várias chaves de encapsulamento, incluindo uma
chave multirregional, use o método CreateAwsKmsMrkMultiKeyring().

Para obter um exemplo completo, consulte AwsKmsMrkKeyringExample.cs no AWS Encryption
SDK repositório.NET em. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
string mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Create the keyring
// You can specify the Region or get the Region from the key ARN
var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEast1),
 KmsKeyId = mrkUSEast1
};
var mrkEncryptKeyring =
 materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}
};

// Encrypt your plaintext data.
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = mrkEncryptKeyring,
 EncryptionContext = encryptionContext

Usando várias regiões AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

Este exemplo criptografa o arquivo hello.txt com uma chave multirregional na região us-
east-1. Como o exemplo especifica um ARN de chave que tem um elemento de região, esse
exemplo não usa oatributo region do parâmetro --wrapping-keys.

Quando o ID da chave de encapsulamento não especifica uma região, você pode usar o atributo
region de --wrapping-keys para especificar a região, como --wrapping-keys key=
$keyID region=us-east-1.

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEast1=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$mrkUSEast1 \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

Java

Para criptografar com uma chave multirregional, instancie uma chave
AwsKmsMrkAwareMasterKeyProvider e especifique uma chave multirregional.

Para ver um exemplo completo, consulte BasicMultiRegionKeyEncryptionExample.javano AWS
Encryption SDK for Java repositório em. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1

Usando várias regiões AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK Guia do Desenvolvedor

final String mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
 AwsKmsMrkAwareMasterKeyProvider
 .builder()
 .buildStrict(mrkUSEast1);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
 "Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
 crypto.encryptData(
 kmsMrkProvider,
 encryptionContext,
 sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

Para criptografar com uma chave mulirregional, use o método
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() para criar o token de autenticação
e especificar uma chave multirregional.

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositório em. AWS
Encryption SDK para JavaScript GitHub

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
 buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(

Usando várias regiões AWS KMS keys 39

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate an AWS KMS client
 * The AWS Encryption SDK para JavaScript gets the Region from the key ARN
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
 'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
 generatorKeyId: multiRegionUsEastKey,
 clientProvider,
 })

/* Set the encryption context */
const context = {
 purpose: 'test',
 }

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
 encryptionContext: context,
 })

Usando várias regiões AWS KMS keys 40

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

Para criptografar com uma chave mulirregional, use o método
buildAwsKmsMrkAwareStrictMultiKeyringNode() para criar o token de autenticação e
especificar uma chave multirregional.

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositório em. AWS
Encryption SDK para JavaScript GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
 * Specify a multi-Region key in us-east-1
 */
const multiRegionUsEastKey =
 'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
 generatorKeyId: multiRegionUsEastKey,
 })

/* Specify an encryption context */
const context = {
 purpose: 'test',
 }

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
 encryptionContext: context,
 })

Usando várias regiões AWS KMS keys 41

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

Python

Para criptografar com uma chave AWS KMS multirregional, use o
MRKAwareStrictAwsKmsMasterKeyProvider() método e especifique uma chave
multirregional.

Para ver um exemplo completo, consulte mrk_aware_kms_provider.py no AWS Encryption SDK
for Python repositório em GitHub.

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider
in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
 key_ids=[mrk_us_east_1]
)

Set the encryption context
encryption_context = {
 "purpose": "test"
 }

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
 source=source_plaintext,
 encryption_context=encryption_context,
 key_provider=strict_mrk_key_provider
)

Em seguida, mova seu texto cifrado para a região us-west-2. Não é necessário recriptografar o
texto cifrado.

Para descriptografar o texto cifrado no modo estrito na us-west-2 região, instancie o símbolo
multi-Region-aware com o ARN da chave multirregional relacionada na região. us-west-2 Se

Usando várias regiões AWS KMS keys 42

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

você especificar o ARN da chave de uma chave multirregional relacionada em uma região diferente
(incluindo us-east-1 onde ela foi criptografada), o multi-Region-aware símbolo fará uma chamada
entre regiões para isso. AWS KMS key

Ao descriptografar no modo estrito, o multi-Region-aware símbolo requer uma chave ARN. Ele aceita
somente um ARN de chave de cada conjunto de chaves de várias regiões relacionadas.

Antes de executar esses exemplos, substitua o exemplo de chave multirregional ARN por um valor
válido de seu. Conta da AWS

C

Para descriptografar no modo estrito com uma chave multirregional, use o método
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() para instanciar o token
de autenticação. Especifique a chave multirregional relacionada na região local (us-west-2).

Para ver um exemplo completo, consulte kms_multi_region_keys.cpp no AWS Encryption SDK for
C repositório em GitHub.

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
 COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
 * aws_cryptosdk_session_process_full is designed for non-streaming data

Usando várias regiões AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Guia do Desenvolvedor

 */
aws_cryptosdk_session_process_full(
 session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Para descriptografar no modo estrito com uma única chave multirregional, use os mesmos
construtores e métodos usados para montar a entrada e criar o token de autenticação para
criptografia. Instancie um CreateAwsKmsMrkKeyringInput objeto com o ARN da chave de
uma chave multirregional relacionada e um AWS KMS cliente para a região Oeste dos EUA
(Oregon) (us-west-2). Em seguida, use o método CreateAwsKmsMrkKeyring() para criar um
token de autenticação multirregional com uma chave do KMS multirregional.

Para obter um exemplo completo, consulte AwsKmsMrkKeyringExample.cs no AWS Encryption
SDK repositório.NET em. GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Instantiate the keyring input
// You can specify the Region or get the Region from the key ARN
var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 KmsKeyId = mrkUSWest2
};

// Create the multi-Region keyring
var mrkDecryptKeyring =
 materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

Usando várias regiões AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = mrkDecryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Para descriptografar com a chave multirregional relacionada na região us-west-2, use o atributo
key do parâmetro --wrapping-keys para especificar o ARN da chave.

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$mrkUSWest2 \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Java

Para descriptografar no modo estrito, instancie uma AwsKmsMrkAwareMasterKeyProvider e
especifique a chave multirregional na região local (us-west-2).

Para ver um exemplo completo, consulte BasicMultiRegionKeyEncryptionExample.java no AWS
Encryption SDK for Java repositório em. GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()

Usando várias regiões AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK Guia do Desenvolvedor

 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
 the Region field.
String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
 AwsKmsMrkAwareMasterKeyProvider.builder()
 .buildStrict(mrkUSWest2);

// Decrypt your ciphertext
CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
 kmsMrkProvider,
 ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript Browser

Para descriptografar em modo estrito, use o método
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() para criar o token de autenticação
e especifique a chave multirregional na região local (us-west-2).

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositório em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
 buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Usando várias regiões AWS KMS keys 46

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate an AWS KMS client
 * The AWS Encryption SDK para JavaScript gets the Region from the key ARN
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
 'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
 generatorKeyId: multiRegionUsWestKey,
 clientProvider,
 })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

Para descriptografar em modo estrito, use o método
buildAwsKmsMrkAwareStrictMultiKeyringNode() para criar o token de autenticação e
especifique a chave multirregional na região local (us-west-2).

Para ver um exemplo completo, consulte kms_multi_region_simple.ts no repositório em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client
const { decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Usando várias regiões AWS KMS keys 47

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
 * Specify a multi-Region key in us-west-2
 */
const multiRegionUsWestKey =
 'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
 generatorKeyId: multiRegionUsWestKey,
 })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

Para descriptografar no modo estrito, use o método
MRKAwareStrictAwsKmsMasterKeyProvider() para criar o provedor de chave mestra.
Especifique a chave multirregional relacionada na região local (us-west-2).

Para ver um exemplo completo, consulte mrk_aware_kms_provider.py no AWS Encryption SDK
for Python repositório em GitHub.

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
 Region field
mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider
in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
 key_ids=[mrk_us_west_2]
)

Decrypt your ciphertext

Usando várias regiões AWS KMS keys 48

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

plaintext, _ = client.decrypt(
 source=ciphertext,
 key_provider=strict_mrk_key_provider
)

Você também pode descriptografar no modo de descoberta com chaves AWS KMS multirregionais.
Ao descriptografar no modo de descoberta, você não especifica nenhuma AWS KMS keys. (Para
obter informações sobre chaveiros de AWS KMS descoberta de uma única região, consulteUsando
um chaveiro AWS KMS Discovery.)

Se você criptografou com uma chave multirregional, o multi-Region-aware símbolo no modo de
descoberta tentará descriptografar usando uma chave multirregional relacionada na região local. Se
não existir nenhuma, a chamada falhará. No modo de descoberta, eles não AWS Encryption SDK
tentarão fazer uma chamada entre regiões para a chave multirregional usada para criptografia.

Note

Se você usar um multi-Region-aware símbolo no modo de descoberta para criptografar
dados, a operação de criptografia falhará.

O exemplo a seguir mostra como descriptografar com o multi-Region-aware símbolo no modo de
descoberta. Como você não especifica um AWS KMS key, eles AWS Encryption SDK devem obter
a região de uma fonte diferente. Quando possível, especifique explicitamente a região local. Caso
contrário, AWS Encryption SDK obtém a região local da região configurada no AWS SDK para sua
linguagem de programação.

Antes de executar esses exemplos, substitua o exemplo de ID da conta e ARN da chave
multirregional por valores válidos do seu. Conta da AWS

C

Para descriptografar no modo de descoberta com uma chave multirregional, use o método
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder()para criar o token de
autenticação e o método
Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder() para criar o filtro de
descoberta. Para especificar a região local, defina uma ClientConfiguration e especifique-a
no AWS KMS cliente.

Usando várias regiões AWS KMS keys 49

AWS Encryption SDK Guia do Desenvolvedor

Para ver um exemplo completo, consulte kms_multi_region_keys.cpp no AWS Encryption SDK for
C repositório em GitHub.

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct a discovery filter for the account and partition. The
 * filter is optional, but it's a best practice that we recommend.
 */
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
 =

 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
 Aws::MakeShared<Aws::KMS::KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder()
 .WithKmsClient(kms_client)
 .BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(

Usando várias regiões AWS KMS keys 50

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Guia do Desenvolvedor

 session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Para criar um chaveiro de multi-Region-aware descoberta no AWS Encryption SDK para.NET,
instancie um CreateAwsKmsMrkDiscoveryKeyringInput objeto que leve um AWS KMS
cliente para um determinado Região da AWS cliente e um filtro de descoberta opcional que
limita as chaves KMS a uma partição e conta específicas AWS . Em seguida, chame o método
CreateAwsKmsMrkDiscoveryKeyring() do objeto . Para obter um exemplo completo,
consulte AwsKmsMrkDiscoveryKeyringExample.cs no AWS Encryption SDK repositório.NET em.
GitHub

Para criar um chaveiro de multi-Region-aware descoberta para mais de um Região da AWS, use
o CreateAwsKmsMrkDiscoveryMultiKeyring() método para criar um chaveiro múltiplo ou
use CreateAwsKmsMrkDiscoveryKeyring() para criar vários chaveiros de multi-Region-
aware descoberta e, em seguida, use o CreateMultiKeyring() método para combiná-los em
um chaveiro múltiplo.

Para ver um exemplo, consulte AwsKmsMrkDiscoveryMultiKeyringExample.cs.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

List<string> account = new List<string> { "111122223333" };

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{
 AccountIds = account,
 Partition = "aws"
}

Usando várias regiões AWS KMS keys 51

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

// Create the keyring
var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 DiscoveryFilter = mrkDiscoveryFilter
};
var mrkDiscoveryKeyring =
 materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = mrkDiscoveryKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Para descriptografar no modo de descoberta, use o atributo discovery do parâmetro. --
wrapping-keys Os atributos discovery-account e discovery-partition criam um filtro de
descoberta que é opcional, mas recomendado.

Para especificar a região, esse comando inclui o atributo region do parâmetro --wrapping-
keys.

Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-account=111122223333 \
 discovery-partition=aws \
 region=us-west-2 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Usando várias regiões AWS KMS keys 52

AWS Encryption SDK Guia do Desenvolvedor

Java

Para especificar a região local, use o parâmetro builder().withDiscoveryMrkRegion.
Caso contrário, o AWS Encryption SDK obtém a região local da região configurada no AWS SDK
for Java.

Para ver um exemplo completo, consulte DiscoveryMultiRegionDecryptionExample.java no AWS
Encryption SDK for Java repositório em. GitHub

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
 AwsKmsMrkAwareMasterKeyProvider
 .builder()
 .withDiscoveryMrkRegion(Region.US_WEST_2)
 .buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
 .decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

Para descriptografar no modo de descoberta com uma chave multirregional simétrica, use o
método AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser().

Para ver um exemplo completo, consulte kms_multi_region_discovery.ts no repositório em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
 AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,

Usando várias regiões AWS KMS keys 53

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
 client,
 discoveryFilter,
 })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

Para descriptografar no modo de descoberta com uma chave multirregional simétrica, use o
método AwsKmsMrkAwareSymmetricDiscoveryKeyringNode().

Para ver um exemplo completo, consulte kms_multi_region_discovery.ts no repositório em. AWS
Encryption SDK para JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
 AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
 buildClient,

Usando várias regiões AWS KMS keys 54

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
 client,
 discoveryFilter,
 })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

Para descriptografar no modo de descoberta com uma chave multirregional, use o método
MRKAwareDiscoveryAwsKmsMasterKeyProvider().

Para ver um exemplo completo, consulte mrk_aware_kms_provider.py no AWS Encryption SDK
for Python repositório em GitHub.

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
 discovery_filter=DiscoveryFilter(account_ids="111122223333",
 partition="aws"),
 discovery_region="us-west-2",
)

Use the multi-Region method to create the master key provider

Usando várias regiões AWS KMS keys 55

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

in discovery mode
mrk_discovery_key_provider =
 MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext
plaintext, _ = client.decrypt(
 source=ciphertext,
 key_provider=mrk_discovery_key_provider
)

Escolher um pacote de algoritmo

O AWS Encryption SDK suporta vários algoritmos de criptografia simétrica e assimétrica para
criptografar suas chaves de dados sob as chaves de encapsulamento que você especificar. No
entanto, quando ele usa essas chaves de dados para criptografar seus dados, o AWS Encryption
SDK padrão é um conjunto de algoritmos recomendado que usa o algoritmo AES-GCM com
derivação de chaves, assinaturas digitais e comprometimento de chaves. Embora o pacote de
algoritmos padrão seja adequado para a maioria das aplicações, você pode escolher um conjunto
alternativo de algoritmos. Por exemplo, alguns modelos de confiança seriam satisfeitos com
um pacote de algoritmos sem assinaturas digitais. Para obter informações sobre os pacotes de
algoritmos compatíveis com o AWS Encryption SDK , consulte Suítes de algoritmos compatíveis no
AWS Encryption SDK.

Os exemplos a seguir mostram como selecionar um pacote de algoritmos alternativo ao criptografar.
Esses exemplos selecionam um pacote de algoritmos recomendado AES-GCM com derivação e
confirmação de chaves, mas sem assinaturas digitais. Ao criptografar com um pacote de algoritmos
que não inclui assinaturas digitais, use o modo de descriptografia somente sem assinatura ao
descriptografar. Esse modo, que falha se encontrar um texto cifrado assinado, é mais útil ao
transmitir a decodificação.

C

Para especificar um conjunto alternativo de algoritmos no AWS Encryption
SDK for C, você deve criar um CMM explicitamente. Em seguida, use o
aws_cryptosdk_default_cmm_set_alg_id com o CMM e o pacote de algoritmos
selecionado.

/* Specify an algorithm suite without signing */

Escolher um pacote de algoritmo 56

AWS Encryption SDK Guia do Desenvolvedor

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* To set an alternate algorithm suite, create an cryptographic
 materials manager (CMM) explicitly
 */
struct aws_cryptosdk_cmm *cmm =
 aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
 then release the CMM reference
 */
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
 AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
 Use aws_cryptosdk_session_process_full with non-streaming data
 */
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
 session,
 ciphertext,
 ciphertext_buf_sz,
 &ciphertext_len,
 plaintext,
 plaintext_len)) {
 aws_cryptosdk_session_destroy(session);
 return AWS_OP_ERR;
}

Ao descriptografar dados que foram criptografados sem assinaturas digitais, use.
AWS_CRYPTOSDK_DECRYPT_UNSIGNED Isso faz com que a descriptografia falhe se encontrar um
texto cifrado assinado.

/* Decrypt unsigned streaming data */

Escolher um pacote de algoritmo 57

AWS Encryption SDK Guia do Desenvolvedor

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create a session for decrypting with the AWS KMS keyring
 Then release the keyring reference
 */
struct aws_cryptosdk_session *session =

 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {
 return AWS_OP_ERR;
}

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
 Use aws_cryptosdk_session_process_full with non-streaming data
 */
 if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
 session,
 plaintext,
 plaintext_buf_sz,
 &plaintext_len,
 ciphertext,
 ciphertext_len)) {
 aws_cryptosdk_session_destroy(session);
 return AWS_OP_ERR;
}

C# / .NET

Para especificar um conjunto alternativo de algoritmos no AWS Encryption SDK para.NET,
especifique a AlgorithmSuiteId propriedade de um EncryptInputobjeto. O AWS Encryption

Escolher um pacote de algoritmo 58

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs

AWS Encryption SDK Guia do Desenvolvedor

SDK for.NET inclui constantes que você pode usar para identificar seu conjunto de algoritmos
preferido.

O AWS Encryption SDK for.NET não tem um método para detectar texto cifrado assinado durante
a decodificação de streaming porque essa biblioteca não oferece suporte a dados de streaming.

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Create the keyring
var keyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 AlgorithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

Ao criptografar o arquivo hello.txt, este exemplo usa o parâmetro --algorithm para
especificar um pacote de algoritmos sem assinaturas digitais.

Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \

Escolher um pacote de algoritmo 59

https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK Guia do Desenvolvedor

 --wrapping-keys key=$keyArn \
 --algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt \
 --output hello.txt.encrypted \
 --decode

Ao descriptografar, este exemplo usa o parâmetro --decrypt-unsigned. Esse parâmetro
é recomendado para garantir que você esteja descriptografando texto cifrado não assinado,
especialmente com a CLI, que está sempre transmitindo entrada e saída.

Decrypt unsigned streaming data

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --max-encrypted-data-keys 1 \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

Para especificar um pacote ade algoritmos alternativo, use o método
AwsCrypto.builder().withEncryptionAlgorithm(). Este exemplo usa um pacote de
algoritmos alternativo sem assinaturas digitais.

// Specify an algorithm suite without signing

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
 .build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

Escolher um pacote de algoritmo 60

AWS Encryption SDK Guia do Desenvolvedor

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
 Map<String, String> encryptionContext = Collections.singletonMap("Example",
 "FileStreaming");

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
 masterKeyProvider,
 sourcePlaintext,
 encryptionContext);
byte[] ciphertext = encryptResult.getResult();

Ao transmitir dados para descriptografia, use o método
createUnsignedMessageDecryptingStream() para garantir que todo texto cifrado que
você está descriptografando não esteja assinado.

// Decrypt unsigned streaming data

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .withMaxEncryptedDataKeys(1)
 .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Decrypt the encrypted message
FileInputStream in = new FileInputStream(srcFile + ".encrypted");
CryptoInputStream<KmsMasterKey> decryptingStream =
 crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in);

// Return the plaintext data
// Write the plaintext data to disk
FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IOUtils.copy(decryptingStream, out);

Escolher um pacote de algoritmo 61

AWS Encryption SDK Guia do Desenvolvedor

decryptingStream.close();

JavaScript Browser

Para especificar um pacote de algoritmos alternativo, use o parâmetro suiteId com um valor
enum AlgorithmSuiteIdentifier.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data
const { result } = await encrypt(keyring, cleartext, { suiteId:
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
 encryptionContext: context, })

Ao descriptografar, use o método padrão decrypt. O AWS Encryption SDK para JavaScript no
navegador não tem um modo decrypt-unsignedporque o navegador não é compatível com
streaming.

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

Escolher um pacote de algoritmo 62

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

Para especificar um pacote de algoritmos alternativo, use o parâmetro suiteId com um valor
enum AlgorithmSuiteIdentifier.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data
const { result } = await encrypt(keyring, cleartext, { suiteId:
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
 encryptionContext: context, })

Ao descriptografar dados que foram criptografados sem assinaturas digitais, use o Stream.
decryptUnsignedMessage Esse método falhará se encontrar texto cifrado assinado.

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
 buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
 createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Escolher um pacote de algoritmo 63

AWS Encryption SDK Guia do Desenvolvedor

Python

Para especificar um algoritmo de criptografia alternativo, use o parâmetro algorithm com um
valor enum Algorithm.

Specify an algorithm suite without signing

Instantiate a client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,
 max_encrypted_data_keys=1)

Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(
 algorithm=Algorithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
 key_provider=kms_key_provider
)

Ao descriptografar mensagens que foram criptografadas sem assinaturas digitais, use o modo de
decrypt-unsigned streaming, especialmente ao descriptografar durante o streaming.

Decrypt unsigned streaming data

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,
 max_encrypted_data_keys=1)

Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Decrypt with decrypt-unsigned

Escolher um pacote de algoritmo 64

AWS Encryption SDK Guia do Desenvolvedor

with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
 "wb") as plaintext:
 with client.stream(mode="decrypt-unsigned",
 source=ciphertext,
 key_provider=master_key_provider) as decryptor:
 for chunk in decryptor:
 plaintext.write(chunk)

Verify that the encryption context
assert all(
 pair in decryptor.header.encryption_context.items() for pair in
 encryptor.header.encryption_context.items()
)
return ciphertext_filename, cycled_plaintext_filename

Rust

Para especificar um conjunto alternativo de algoritmos no AWS Encryption SDK for Rust,
especifique a algorithm_suite_id propriedade em sua solicitação de criptografia.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring

Escolher um pacote de algoritmo 65

AWS Encryption SDK Guia do Desenvolvedor

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(raw_aes_keyring.clone())
 .encryption_context(encryption_context.clone())
 .algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

Escolher um pacote de algoritmo 66

AWS Encryption SDK Guia do Desenvolvedor

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: key,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
if err != nil {
 panic(err)
}

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{
 Plaintext: []byte(exampleText),
 EncryptionContext: encryptionContext,
 Keyring: aesKeyring,
 AlgorithmSuiteId: &algorithmSuiteId,
})
if err != nil {
 panic(err)
}

Escolher um pacote de algoritmo 67

AWS Encryption SDK Guia do Desenvolvedor

Limitar as chaves de dados criptografadas

Você pode limitar o número de chaves de dados criptografadas em uma mensagem criptografada.
Esse atributo de práticas recomendadas pode ajudar você a detectar um token de autenticação
mal configurado ao criptografar ou um texto cifrado malicioso ao descriptografar. Isso também evita
chamadas desnecessárias, caras e potencialmente exaustivas para sua infraestrutura principal.
Limitar as chaves de dados criptografadas tem mais valor quando você está descriptografando
mensagens de uma fonte não confiável.

Embora a maioria das mensagens criptografadas tenha uma chave de dados criptografada para
cada chave de encapsulamento usada na criptografia, uma mensagem criptografada pode conter
até 65.535 chaves de dados criptografadas. Um agente mal-intencionado pode criar uma mensagem
criptografada com milhares de chaves de dados criptografadas, nenhuma delas capaz de ser
descriptografada. Como resultado, eles AWS Encryption SDK tentariam descriptografar cada chave
de dados criptografada até esgotar as chaves de dados criptografadas na mensagem.

Para limitar as chaves de dados criptografadas, use o parâmetro MaxEncryptedDataKeys.
Esse parâmetro está disponível para todas as linguagens de programação compatíveis a partir
das versões 1.9.x e 2.2.x do AWS Encryption SDK. Ele é opcional e válido ao criptografar e
descriptografar. Os exemplos a seguir descriptografam dados que foram criptografados sob três
chaves de encapsulamento diferentes. O valor de MaxEncryptedDataKeys foi definido como 3.

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn1, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

Limitar as chaves de dados criptografadas 68

AWS Encryption SDK Guia do Desenvolvedor

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
 plaintext_output,
 plaintext_buf_sz_output,
 &plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input,
 &ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C# / .NET

Para limitar as chaves de dados criptografadas no AWS Encryption SDK para.NET, instancie
um cliente AWS Encryption SDK para o.NET e defina seu MaxEncryptedDataKeys parâmetro
opcional com o valor desejado. Em seguida, chame o métodoDecrypt() na instância do AWS
Encryption SDK configurada.

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
 MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

Limitar as chaves de dados criptografadas 69

AWS Encryption SDK Guia do Desenvolvedor

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$key_arn1 key=$key_arn2 key=$key_arn3 \
 --buffer \
 --max-encrypted-data-keys 3 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()
 .withMaxEncryptedDataKeys(3)
 .build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(keyArn1, keyArn2, keyArn3);

// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult =
 crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {

Limitar as chaves de dados criptografadas 70

AWS Encryption SDK Guia do Desenvolvedor

 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}
const clientProvider = getClient(KMS, {
 credentials: { accessKeyId, secretAccessKey, sessionToken }
})

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
 clientProvider,
 keyIds: [keyArn1, keyArn2, keyArn3],
})

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
 keyIds: [keyArn1, keyArn2, keyArn3],
})

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(
 key_ids=[key_arn1, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
 key_provider=master_key_provider)

Limitar as chaves de dados criptografadas 71

AWS Encryption SDK Guia do Desenvolvedor

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
let esdk_config = AwsEncryptionSdkConfig::builder()
 .max_encrypted_data_keys(max_encrypted_data_keys)
 .build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate `max_encrypted_data_keys` raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > 0, "max_encrypted_data_keys MUST be greater than
 0");

let mut i = 0;
while i < max_encrypted_data_keys {
 let aes_key_bytes = generate_aes_key_bytes();

 let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

 raw_aes_keyrings.push(raw_aes_keyring);
 i += 1;
}

// Create a Multi Keyring with `max_encrypted_data_keys` AES Keyrings
let generator_keyring = raw_aes_keyrings.remove(0);

let multi_keyring = mpl
 .create_multi_keyring()

Limitar as chaves de dados criptografadas 72

AWS Encryption SDK Guia do Desenvolvedor

 .generator(generator_keyring)
 .child_keyrings(raw_aes_keyrings)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
 MaxEncryptedDataKeys: &maxEncryptedDataKeys,
})
if err != nil {
 panic(err)
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Generate `maxEncryptedDataKeys` raw AES keyrings to use with your keyring
rawAESKeyrings := make([]mpltypes.IKeyring, 0, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
 key, err := generate256KeyBytesAES()

Limitar as chaves de dados criptografadas 73

AWS Encryption SDK Guia do Desenvolvedor

 if err != nil {
 panic(err)
 }
 aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: key,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
 }
 aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
 if err != nil {
 panic(err)
 }
 rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
 i++
}

// Create a Multi Keyring with `max_encrypted_data_keys` AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
 Generator: rawAESKeyrings[0],
 ChildKeyrings: rawAESKeyrings[1:],
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
 createMultiKeyringInput)
if err != nil {
 panic(err)
}

Criação de um filtro de descoberta

Ao descriptografar dados criptografados com chaves do KMS, é uma prática recomendada
descriptografar no modo estrito, ou seja, limitar as chaves de empacotamento usadas somente às
que você especificar. No entanto, se necessário, você também poderá descriptografar no modo
de descoberta, onde você não especifica nenhuma chave de empacotamento. Nesse modo, AWS
KMS pode descriptografar a chave de dados criptografada usando a chave KMS que a criptografou,
independentemente de quem possui ou tem acesso a essa chave KMS.

Se você precisar descriptografar no modo de descoberta, recomendamos que você sempre use
um filtro de descoberta, que limita as chaves KMS que podem ser usadas às de uma partição
especificada. Conta da AWS O filtro de descoberta é opcional, mas é uma prática recomendada.

Criação de um filtro de descoberta 74

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Encryption SDK Guia do Desenvolvedor

Use a tabela a seguir para determinar o valor da partição do seu filtro de descoberta.

Região Partition

Regiões da AWS aws

Regiões da China aws-cn

AWS GovCloud (US) Regions aws-us-gov

Os exemplos nesta seção mostram como criar um filtro de descoberta. Antes de usar o código,
substitua os valores de exemplo por valores válidos para a partição Conta da AWS e.

C

Para obter um exemplo completo, consulte: kms_discovery.cpp no AWS Encryption SDK for C.

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
 =

 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

C# / .NET

Para obter um exemplo completo, consulte DiscoveryFilterExample.cs no AWS Encryption SDK
for.NET.

// Create a discovery filter for an AWS account and partition

List<string> account = new List<string> { "111122223333" };

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{
 AccountIds = account,
 Partition = "aws"
}

Criação de um filtro de descoberta 75

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-account=111122223333 \
 discovery-partition=aws \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Java

Para obter um exemplo completo, consulte DiscoveryDecryptionExample.java no AWS Encryption
SDK for Java.

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

JavaScript (Node and Browser)

Para obter exemplos completos, consulte kms_filtered_discovery.ts (Node.js) e
kms_multi_region_discovery.ts (Navegador) no. AWS Encryption SDK para JavaScript.

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {
 accountIDs: ['111122223333'],
 partition: 'aws',
}

Python

Para obter um exemplo completo, consulte discovery_kms_provider.py no AWS Encryption SDK
for Python.

Create the discovery filter and specify the region

Criação de um filtro de descoberta 76

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

decrypt_kwargs = dict(
 discovery_filter=DiscoveryFilter(account_ids="111122223333",
 partition="aws"),
 discovery_region="us-west-2",
)

Rust

let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![111122223333.to_string()])
 .partition("aws".to_string())
 .build()?;

Go

import (
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
)

discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{111122223333},
 Partition: "aws",
}

Configurando o contexto de criptografia necessário (CMM)

Você pode usar o contexto de criptografia necessário CMM para exigir contextos de criptografia
em suas operações criptográficas. Um contexto de criptografia é um conjunto de pares de chave/
valor não secretos. O contexto de criptografia é associado de maneira criptográfica aos dados
criptografados de forma que o mesmo contexto de criptografia é necessário para descriptografar o
campo. Ao usar o CMM de contexto de criptografia necessário, é possível especificar uma ou mais
chaves de contexto de criptografia necessárias (chaves obrigatórias) que devem ser incluídas em
todas as chamadas de criptografia e descriptografia.

Note

O contexto de criptografia necessário (CMM) só é suportado pelas seguintes versões:

Exigindo contextos de criptografia 77

AWS Encryption SDK Guia do Desenvolvedor

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência
opcional da Biblioteca de Provedores de Material Criptográfico (MPL).

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Se você criptografar dados usando o contexto de criptografia necessário CMM, só poderá
descriptografá-los com uma dessas versões suportadas.

Ao criptografar, AWS Encryption SDK verifica se todas as chaves de contexto de criptografia
necessárias estão incluídas no contexto de criptografia que você especificou. Os AWS Encryption
SDK sinais dos contextos de criptografia que você especificou. Somente os pares de chave/valor
que não são chaves obrigatórias são serializados e armazenados em texto simples no cabeçalho da
mensagem criptografada retornada pela operação de criptografia.

Ao descriptografar, você deve fornecer um contexto de criptografia que contenha todos os pares de
chave/valor que representam as chaves necessárias. O AWS Encryption SDK usa esse contexto de
criptografia e os pares de valores-chave armazenados no cabeçalho da mensagem criptografada
para reconstruir o contexto de criptografia original que você especificou na operação de criptografia.
Se o AWS Encryption SDK não puder reconstruir o contexto de criptografia original, a operação de
descriptografia falhará. Se você fornecer um par de chave/valor que contenha a chave necessária
com um valor incorreto, a mensagem criptografada não poderá ser descriptografada. Você deve
fornecer o mesmo par de chave/valor especificado na criptografia.

Important

Considere cuidadosamente quais valores você escolhe para as chaves necessárias
no contexto de criptografia. Você deverá fornecer as mesmas chaves e os valores
correspondentes novamente na descriptografia. Se você não conseguir reproduzir as chaves
necessárias, a mensagem criptografada não poderá ser descriptografada.

Os exemplos a seguir inicializam um AWS KMS chaveiro com o contexto de criptografia necessário
CMM.

Exigindo contextos de criptografia 78

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

C# / .NET

var encryptionContext = new Dictionary<string, string>()
{
 {"encryption", "context"},
 {"is not", "secret"},
 {"but adds", "useful metadata"},
 {"that can help you", "be confident that"},
 {"the data you are handling", "is what you think it is"}
};

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = kmsKey
};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
 UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
 CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
 // If you pass in a keyring but no underlying cmm, it will result in a failure
 because only cmm is supported.
 RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)
};

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

Java

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

Exigindo contextos de criptografia 79

AWS Encryption SDK Guia do Desenvolvedor

// Create your encryption context
final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");
encryptionContext.put("is not", "secret");
encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.asList("encryption",
 "context");

// Create the keyring
final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
 .kmsKeyId(keyArn)
 .kmsClient(KmsClient.create())
 .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
 materialProviders.CreateDefaultCryptographicMaterialsManager(
 CreateDefaultCryptographicMaterialsManagerInput.builder()
 .keyring(kmsKeyring)
 .build()
);
ICryptographicMaterialsManager requiredCMM =
 materialProviders.CreateRequiredEncryptionContextCMM(
 CreateRequiredEncryptionContextCMMInput.builder()
 .requiredEncryptionContextKeys(requiredEncryptionContextKeys)
 .underlyingCMM(cmm)
 .build()
);

Python

Para usar o CMM AWS Encryption SDK for Python com o contexto de criptografia necessário,
você também deve usar a biblioteca de fornecedores de materiais (MPL).

Exigindo contextos de criptografia 80

AWS Encryption SDK Guia do Desenvolvedor

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create your encryption context
encryption_context: Dict[str, str] = {
 "key1": "value1",
 "key2": "value2",
 "requiredKey1": "requiredValue1",
 "requiredKey2": "requiredValue2"
}

Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKey1", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
 keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 kms_key_id=kms_key_id,
 kms_client=boto3.client('kms', region_name="us-west-2")
)
kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
 mpl.create_default_cryptographic_materials_manager(
 CreateDefaultCryptographicMaterialsManagerInput(
 keyring=kms_keyring
)
)

required_ec_cmm: ICryptographicMaterialsManager = \
 mpl.create_required_encryption_context_cmm(
 CreateRequiredEncryptionContextCMMInput(
 required_encryption_context_keys=required_encryption_context_keys,
 underlying_cmm=underlying_cmm,
)
)

Exigindo contextos de criptografia 81

AWS Encryption SDK Guia do Desenvolvedor

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
 ("key1".to_string(), "value1".to_string()),
 ("key2".to_string(), "value2".to_string()),
 ("requiredKey1".to_string(), "requiredValue1".to_string()),
 ("requiredKey2".to_string(), "requiredValue2".to_string()),
]);

// Create a list of required encryption context keys
let required_encryption_context_keys: Vec<String> = vec![
 "requiredKey1".to_string(),
 "requiredKey2".to_string(),
];

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

// Create the required encryption context CMM
let underlying_cmm = mpl
 .create_default_cryptographic_materials_manager()

Exigindo contextos de criptografia 82

AWS Encryption SDK Guia do Desenvolvedor

 .keyring(kms_keyring)
 .send()
 .await?;

let required_ec_cmm = mpl
 .create_required_encryption_context_cmm()
 .underlying_cmm(underlying_cmm.clone())
 .required_encryption_context_keys(required_encryption_context_keys)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = defaultKmsKeyRegion
})

Exigindo contextos de criptografia 83

AWS Encryption SDK Guia do Desenvolvedor

// Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create a list of required encryption context keys
requiredEncryptionContextKeys := []string{}
requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
 "requiredKey1", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Create the required encryption context CMM
underlyingCMM, err :=
 matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
 mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err != nil {
 panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
 UnderlyingCMM: underlyingCMM,
 RequiredEncryptionContextKeys: requiredEncryptionContextKeys,
}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
 requiredEncryptionContextInput)

Exigindo contextos de criptografia 84

AWS Encryption SDK Guia do Desenvolvedor

if err != nil {
 panic(err)
}

Como definir uma política de compromisso

Uma política de compromisso é uma definição de configuração que determina se sua aplicação
criptografa e descriptografa com confirmação de chave. Criptografar e descriptografar com o
confirmação de chave é uma prática recomendada do AWS Encryption SDK.

Definir e ajustar sua política de compromisso é uma etapa fundamental na migração das versões
1.7.x e anteriores do AWS Encryption SDK àz versões 2.0x posteriores. Essa progressão é explicada
em detalhes no tópico de migração.

O valor padrão da política de compromisso nas versões mais recentes do AWS Encryption SDK
(a partir da versão 2.0.x), RequireEncryptRequireDecrypt, é ideal para a maioria das
situações. No entanto, se você precisar descriptografar um texto cifrado que foi criptografado
sem confirmação de chave, talvez seja necessário alterar sua política de compromisso para
RequireEncryptAllowDecrypt. Para obter exemplos de como definir uma política de
compromisso em cada linguagem de programação, consulte Como definir sua política de
compromisso.

Trabalhar com streaming de dados

Ao transmitir dados para decodificação, lembre-se de que eles AWS Encryption SDK retornam texto
simples descriptografado após a conclusão das verificações de integridade, mas antes da verificação
da assinatura digital. Para garantir que você não retorne ou use texto simples até que a assinatura
seja verificada, recomendamos que você armazene o texto simples transmitido até que todo o
processo de descriptografia seja concluído.

Esse problema surge somente quando você está transmitindo texto cifrado para decodificação e
somente quando você está usando um pacote de algoritmos, como opacote de algoritmos padrão,
que inclui assinaturas digitais.

Para facilitar o armazenamento em buffer, algumas implementações de AWS Encryption SDK
linguagem, como AWS Encryption SDK para JavaScript no Node.js, incluem um recurso de buffer
como parte do método decrypt. A CLI de criptografia da AWS , que sempre transmite entrada e

Como definir uma política de compromisso 85

AWS Encryption SDK Guia do Desenvolvedor

saída, introduziu um parâmetro --buffer nas versões 1.9.x e 2.2.x.. Em outras implementações de
linguagem, você pode usar os atributos de buffer existentes. (O AWS Encryption SDK for.NET não
oferece suporte a streaming.)

Se você estiver usando um pacote de algoritmos sem assinaturas digitais, certifique-se de usar o
atributo decrypt-unsigned em cada implementação de linguagem. Esse atributo descriptografa
o texto cifrado, mas falhará se encontrar um texto cifrado assinado. Para obter detalhes, consulte
Escolher um pacote de algoritmo.

Armazenamento em cache de chaves de dados

Em geral, a reutilização de chaves de dados é desencorajada, mas AWS Encryption SDK oferece
uma opção de armazenamento em cache de chaves de dados que fornece reutilização limitada de
chaves de dados. O armazenamento em cache de chaves de dados pode melhorar a performance
de algumas aplicações e reduzir as chamadas para sua infraestrutura de chaves. Antes de usar o
armazenamento em cache de chaves de dados em produção, ajuste os limites de segurança e teste,
para garantir que os benefícios superem as desvantagens da reutilização de chaves de dados.

Armazenamento em cache de chaves de dados 86

AWS Encryption SDK Guia do Desenvolvedor

Lojas principais no AWS Encryption SDK

No AWS Encryption SDK, um armazenamento de chaves é uma tabela do Amazon DynamoDB
que persiste os dados hierárquicos usados pelo chaveiro hierárquico.AWS KMS O armazenamento
de chaves ajuda a reduzir o número de chamadas que você precisa fazer AWS KMS para realizar
operações criptográficas com o chaveiro hierárquico.

O armazenamento de chaves persiste e gerencia as chaves de ramificação que o chaveiro
hierárquico usa para realizar a criptografia de envelope e proteger as chaves de criptografia de
dados. O armazenamento de chaves armazena a chave de ramificação ativa e todas as versões
anteriores da chave de ramificação. A chave de ramificação ativa é a versão mais recente da chave
de ramificação. O chaveiro hierárquico usa uma chave de criptografia de dados exclusiva para
cada solicitação de criptografia e criptografa cada chave de criptografia de dados com uma chave
de empacotamento exclusiva derivada da chave de ramificação ativa. O token de autenticação
hierárquico depende da hierarquia estabelecida entre as chaves de ramificação ativas e suas chaves
de agrupamento derivadas.

Principais conceitos e terminologia da loja

Armazenamento de chaves

A tabela do DynamoDB que persiste dados hierárquicos, como chaves de ramificação e chaves
de beacon.

Chave raiz

Uma chave KMS de criptografia simétrica que gera e protege as chaves de ramificação e as
chaves de beacon em seu armazenamento de chaves.

Chave de ramificação

Uma chave de dados que é reutilizada para derivar uma chave de empacotamento exclusiva para
criptografia de envelopes. Você pode criar várias chaves de ramificação em um repositório de
chaves, mas cada chave de ramificação só pode ter uma versão de chave de ramificação ativa
por vez. A chave de ramificação ativa é a versão mais recente da chave de ramificação.

As chaves de ramificação são derivadas do AWS KMS keys uso da
GenerateDataKeyWithoutPlaintext operação kms:.

Principais conceitos e terminologia da loja 87

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Guia do Desenvolvedor

Chave de encapsulamento

Uma chave de dados exclusiva usada para criptografar a chave de criptografia de dados usada
nas operações de criptografia.

As chaves de empacotamento são derivadas das chaves de ramificação. Para obter mais
informações sobre o processo de derivação de chaves, consulte Detalhes técnicos do AWS KMS
chaveiro hierárquico.

Chave de criptografia de dados

Uma chave de dados usada em operações de criptografia. O chaveiro hierárquico usa uma chave
de criptografia de dados exclusiva para cada solicitação de criptografia.

Implementação de permissões de privilégio mínimo
Ao usar um armazenamento de chaves e AWS KMS chaveiros hierárquicos, recomendamos que
você siga o princípio do menor privilégio definindo as seguintes funções:

Administrador do armazenamento de chaves

Os administradores do armazenamento de chaves são responsáveis por criar e gerenciar
o armazenamento de chaves e as chaves de ramificação que ele persiste e protege. Os
administradores do armazenamento de chaves devem ser os únicos usuários com permissões
de gravação na tabela do Amazon DynamoDB que serve como seu armazenamento de chaves.
Eles devem ser os únicos usuários com acesso a operações privilegiadas de administrador, como
CreateKeye. VersionKey Você só pode realizar essas operações ao configurar estaticamente
suas ações de armazenamento de chaves.

CreateKeyé uma operação privilegiada que pode adicionar um novo ARN de chave KMS à sua
lista de permissões de armazenamento de chaves. Essa chave KMS pode criar novas chaves de
ramificação ativas. Recomendamos limitar o acesso a essa operação porque, depois que uma
chave KMS é adicionada ao armazenamento de chaves da filial, ela não pode ser excluída.

Usuário da loja de chaves

Na maioria dos casos de uso, o usuário do armazenamento de chaves só interage com
o armazenamento de chaves por meio do chaveiro hierárquico enquanto criptografa,
descriptografa, assina e verifica dados. Como resultado, eles só precisam de permissões de
leitura para a tabela do Amazon DynamoDB que serve como seu armazenamento de chaves.
Os usuários do armazenamento de chaves só devem precisar acessar as operações de uso que

Implementação de permissões de privilégio mínimo 88

AWS Encryption SDK Guia do Desenvolvedor

possibilitam as operações criptográficasGetActiveBranchKey, comoGetBranchKeyVersion,
e. GetBeaconKey Eles não precisam de permissões para criar ou gerenciar as chaves de
ramificação que usam.

Você pode realizar operações de uso quando suas ações de armazenamento de chaves são
configuradas estaticamente ou quando estão configuradas para descoberta. Você não pode
realizar operações de administrador (CreateKeyeVersionKey) quando suas ações de
armazenamento de chaves estão configuradas para descoberta.

Se o administrador do armazenamento de chaves da filial tiver permitido várias chaves KMS
no armazenamento de chaves da filial, recomendamos que os usuários do armazenamento
de chaves configurem suas ações de armazenamento de chaves para descoberta, para que o
chaveiro hierárquico possa usar várias chaves KMS.

Crie um armazenamento de chaves

Antes de criar chaves de ramificação ou usar um AWS KMS chaveiro hierárquico, você deve criar
seu armazenamento de chaves, uma tabela do Amazon DynamoDB que gerencia e protege suas
chaves de ramificação.

Important

Não exclua a tabela do DynamoDB que persiste suas chaves de ramificação. Se você excluir
essa tabela, não conseguirá descriptografar nenhum dado criptografado usando o chaveiro
hierárquico.

Siga os procedimentos de criar uma tabela no Amazon DynamoDB Developer Guide, usando os
seguintes valores de string obrigatórios para a chave de partição e a chave de classificação.

Chave de partição Chave de classificação

Tabela base branch-key-id type

Nome do armazenamento de chaves lógicas

Crie um armazenamento de chaves 89

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS Encryption SDK Guia do Desenvolvedor

Ao nomear a tabela do DynamoDB que serve como seu armazenamento de chaves, é importante
considerar cuidadosamente o nome lógico do armazenamento de chaves que você especificará ao
configurar suas ações de armazenamento de chaves. O nome do armazenamento lógico de chaves
atua como um identificador para seu armazenamento de chaves e não pode ser alterado depois de
ser definido inicialmente pelo primeiro usuário. Você deve sempre especificar o mesmo nome lógico
de armazenamento de chaves em suas ações de armazenamento de chaves.

Deve haver um one-to-one mapeamento entre o nome da tabela do DynamoDB e o nome do
armazenamento de chaves lógicas. O nome do armazenamento lógico de chaves é vinculado
criptograficamente a todos os dados armazenados na tabela para simplificar as operações de
restauração do DynamoDB. Embora o nome do armazenamento de chaves lógicas possa ser
diferente do nome da tabela do DynamoDB, é altamente recomendável especificar o nome da tabela
do DynamoDB como o nome do armazenamento de chaves lógicas. Caso o nome da tabela mude
após a restauração da tabela do DynamoDB a partir de um backup, o nome do armazenamento
lógico de chaves pode ser mapeado para o novo nome da tabela do DynamoDB para garantir que o
chaveiro hierárquico ainda possa acessar seu armazenamento de chaves.

Não inclua informações confidenciais ou sigilosas em seu nome lógico de armazenamento de
chaves. O nome do armazenamento de chaves lógicas é exibido em texto simples em AWS KMS
CloudTrail eventos como o. tablename

Próximas etapas

1. the section called “Configurar as principais ações do armazenamento”

2. the section called “Crie chaves de ramificação”

3. Crie um AWS KMS chaveiro hierárquico

Configurar as principais ações do armazenamento

As ações do armazenamento de chaves determinam quais operações seus usuários podem realizar
e como seu AWS KMS chaveiro hierárquico usa as chaves KMS listadas como permitidas em seu
armazenamento de chaves. O AWS Encryption SDK suporta as seguintes configurações de ações de
armazenamento principais.

Estático

Quando você configura estaticamente seu armazenamento de chaves, o armazenamento
de chaves só pode usar a chave KMS associada ao ARN da chave KMS que você fornece

Configurar as principais ações do armazenamento 90

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK Guia do Desenvolvedor

kmsConfiguration ao configurar suas ações de armazenamento de chaves. Uma exceção
é lançada se um ARN de chave KMS diferente for encontrado ao criar, versionar ou obter uma
chave de ramificação.

Você pode especificar uma chave KMS multirregional na suakmsConfiguration, mas todo o
ARN da chave, incluindo a região, persiste nas chaves de ramificação derivadas da chave KMS.
Você não pode especificar uma chave em uma região diferente. Você deve fornecer exatamente
a mesma chave multirregional para que os valores correspondam.

Ao configurar estaticamente suas ações de armazenamento de chaves, você pode realizar
operações de uso (GetActiveBranchKey,GetBranchKeyVersion,GetBeaconKey) e
operações administrativas (CreateKeyeVersionKey). CreateKeyé uma operação privilegiada
que pode adicionar um novo ARN de chave KMS à sua lista de permissões de armazenamento
de chaves. Essa chave KMS pode criar novas chaves de ramificação ativas. Recomendamos
limitar o acesso a essa operação porque, depois que uma chave KMS é adicionada ao
armazenamento de chaves, ela não pode ser excluída.

Descoberta

Quando você configura suas ações de armazenamento de chaves para descoberta, o
armazenamento de chaves pode usar qualquer AWS KMS key ARN que esteja na lista de
permissões em seu armazenamento de chaves. No entanto, uma exceção é lançada quando uma
chave KMS multirregional é encontrada e a região no ARN da chave não corresponde à região do
AWS KMS cliente que está sendo usada.

Ao configurar seu armazenamento de chaves para descoberta, você não pode realizar operações
administrativas, como CreateKey VersionKey e. Você só pode realizar as operações de uso
que permitem operações de criptografia, descriptografia, assinatura e verificação. Para obter mais
informações, consulte the section called “Implementação de permissões de privilégio mínimo”.

Configure suas principais ações de armazenamento

Antes de configurar suas ações de armazenamento de chaves, verifique se os pré-requisitos a seguir
foram atendidos.

• Determine quais operações você precisa realizar. Para obter mais informações, consulte the
section called “Implementação de permissões de privilégio mínimo”.

• Escolha um nome de armazenamento de chaves lógicas

Configure suas principais ações de armazenamento 91

AWS Encryption SDK Guia do Desenvolvedor

Deve haver um one-to-one mapeamento entre o nome da tabela do DynamoDB e o nome do
armazenamento de chaves lógicas. O nome do armazenamento lógico de chaves é vinculado
criptograficamente a todos os dados armazenados na tabela para simplificar as operações de
restauração do DynamoDB. Ele não pode ser alterado depois de definido inicialmente pelo
primeiro usuário. Você deve sempre especificar o mesmo nome lógico de armazenamento de
chaves em suas ações de armazenamento de chaves. Para obter mais informações, consulte
logical key store name.

Configuração estática

O exemplo a seguir configura estaticamente as principais ações do armazenamento. Você deve
especificar o nome da tabela do DynamoDB que serve como seu armazenamento de chaves, um
nome lógico para o armazenamento de chaves e o ARN da chave KMS que identifica uma chave
KMS de criptografia simétrica.

Note

Considere cuidadosamente o ARN da chave KMS que você especifica ao configurar
estaticamente seu serviço de armazenamento de chaves. A CreateKey operação adiciona o
ARN da chave KMS à sua lista de permissões do armazenamento de chaves da filial. Depois
que uma chave KMS é adicionada ao armazenamento de chaves da filial, ela não pode ser
excluída.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

Configure suas principais ações de armazenamento 92

AWS Encryption SDK Guia do Desenvolvedor

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
 config=KeyStoreConfig(
 ddb_client=ddb_client,
 ddb_table_name=key_store_name,
 logical_key_store_name=logical_key_store_name,
 kms_client=kms_client,
 kms_configuration=KMSConfigurationKmsKeyArn(
 value=kms_key_id
),
)
)

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Configure suas principais ações de armazenamento 93

AWS Encryption SDK Guia do Desenvolvedor

Go

import (
 keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"
 keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
 Value: kmsKeyArn,
}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
 DdbTableName: keyStoreTableName,
 KmsConfiguration: &kmsConfig,
 LogicalKeyStoreName: logicalKeyStoreName,
 DdbClient: ddbClient,
 KmsClient: kmsClient,
})
if err != nil {
 panic(err)
}

Configuração de descoberta

O exemplo a seguir configura as principais ações de armazenamento para descoberta. Você deve
especificar o nome da tabela do DynamoDB que serve como seu armazenamento de chaves e um
nome lógico de armazenamento de chaves.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

Configure suas principais ações de armazenamento 94

AWS Encryption SDK Guia do Desenvolvedor

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Python

keystore: KeyStore = KeyStore(
 config=KeyStoreConfig(
 ddb_client=ddb_client,
 ddb_table_name=key_store_name,
 logical_key_store_name=logical_key_store_name,
 kms_client=kms_client,
 kms_configuration=KMSConfigurationDiscovery(
 value=Discovery()
),
)
)

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

Go

import (
 keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"

Configure suas principais ações de armazenamento 95

AWS Encryption SDK Guia do Desenvolvedor

 keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
 DdbTableName: keyStoreName,
 KmsConfiguration: &kmsConfig,
 LogicalKeyStoreName: logicalKeyStoreName,
 DdbClient: ddbClient,
 KmsClient: kmsClient,
})
if err != nil {
 panic(err)
}

Crie uma chave de ramificação ativa

Uma chave de ramificação é uma chave de dados derivada de uma AWS KMS key que o AWS
KMS chaveiro hierárquico usa para reduzir o número de chamadas feitas. AWS KMS A chave de
ramificação ativa é a versão mais recente da chave de ramificação. O chaveiro hierárquico gera uma
chave de dados exclusiva para cada solicitação de criptografia e criptografa cada chave de dados
com uma chave de empacotamento exclusiva derivada da chave de ramificação ativa.

Para criar uma nova chave de ramificação ativa, você deve configurar estaticamente suas ações
de armazenamento de chaves. CreateKeyé uma operação privilegiada que adiciona o ARN da
chave KMS especificado na configuração das ações do armazenamento de chaves à sua lista de
permissões do armazenamento de chaves. Em seguida, a chave KMS é usada para gerar a nova
chave de ramificação ativa. Recomendamos limitar o acesso a essa operação porque, depois que
uma chave KMS é adicionada ao armazenamento de chaves, ela não pode ser excluída.

Você pode colocar uma chave KMS na lista de permissões em seu armazenamento de chaves
ou pode incluir várias chaves KMS na lista de permissões atualizando o ARN da chave KMS
que você especificou na configuração de ações do armazenamento de chaves e chamando
novamente. CreateKey Se você colocar várias chaves do KMS na lista de permissões, os usuários
do armazenamento de chaves devem configurar suas ações de armazenamento de chaves para
descoberta, de forma que possam usar qualquer uma das chaves da lista de permissões ao qual
tenham acesso. Para obter mais informações, consulte the section called “Configurar as principais
ações do armazenamento”.

Crie chaves de ramificação 96

AWS Encryption SDK Guia do Desenvolvedor

Permissões obrigatórias

Para criar chaves de ramificação, você precisa das ReEncrypt permissões kms:
GenerateDataKeyWithoutPlaintext e kms: na chave KMS especificada nas ações do seu
armazenamento de chaves.

Crie uma chave de ramificação

A operação a seguir cria uma nova chave de ramificação ativa usando a chave KMS que você
especificou na configuração de ações do armazenamento de chaves e adiciona a chave de
ramificação ativa à tabela do DynamoDB que serve como seu armazenamento de chaves.

Ao chamar CreateKey, você pode optar por especificar os valores opcionais a seguir.

• branchKeyIdentifier: define um branch-key-id personalizado.

Para criar um branch-key-id personalizado, você também deve incluir um contexto de
criptografia adicional com o parâmetro encryptionContext.

• encryptionContext: define um conjunto opcional de pares chave-valor não secretos que
fornecem dados autenticados adicionais (AAD) no contexto de criptografia incluído na chamada
kms:. GenerateDataKeyWithoutPlaintext

Esse contexto de criptografia adicional é exibido com o prefixo aws-crypto-ec:.

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();

Crie chaves de ramificação 97

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Guia do Desenvolvedor

 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
 key id"}

branch_key_id: str = keystore.create_key(
 CreateKeyInput(
 branch_key_identifier = "custom-branch-key-id", # OPTIONAL
 encryption_context = additional_encryption_context, # OPTIONAL
)
)

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

Go

encryptionContext := map[string]string{
 "Additional Encryption Context for": "custom branch key id",
}

Crie chaves de ramificação 98

AWS Encryption SDK Guia do Desenvolvedor

branchKey, err := keyStore.CreateKey(context.Background(),
 keystoretypes.CreateKeyInput{
 BranchKeyIdentifier: &customBranchKeyId,
 EncryptionContext: additional_encryption_context,
})
if err != nil {
 return "", err
}

Primeiro, a operação CreateKey gera os valores a seguir.

• Um Identificador Único Universal (UUID) versão 4 para o branch-key-id (a menos que você
tenha especificado um branch-key-id personalizado).

• Um UUID da versão 4 para a versão da chave de ramificação

• Um timestamp no formato de data e hora ISO 8601 e em UTC (Tempo Universal Coordenado).

Em seguida, a CreateKey operação chama kms: GenerateDataKeyWithoutPlaintext usando a
seguinte solicitação.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"
 }

Em seguida, a CreateKey operação chama kms: ReEncrypt para criar um registro ativo para a
chave de ramificação atualizando o contexto de criptografia.

Por último, a CreateKey operação chama ddb: TransactWriteItems para escrever um novo item que
persistirá com a chave de ramificação na tabela que você criou na Etapa 2. O item tem os seguintes
atributos:

Crie chaves de ramificação 99

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Encryption SDK Guia do Desenvolvedor

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Alternar a chave de ramificação ativa
Só pode haver uma versão ativa para cada chave de ramificação por vez. Normalmente, cada versão
de chave de ramificação ativa é usada para atender a várias solicitações. Porém, você controla até
que ponto as chaves de ramificação ativas são reutilizadas e determina com que frequência a chave
de ramificação ativa é alternada.

As chaves de ramificação não são usadas para criptografar chaves de dados em texto simples.
Eles são usados para derivar as chaves de empacotamento exclusivas que criptografam chaves de
dados de texto simples. O processo de derivação da chave de empacotamento produz uma chave de
empacotamento exclusiva de 32 bytes com 28 bytes de randomização. Isso significa que uma chave
de ramificação pode derivar mais de 79 octilhões, ou 296, chaves de empacotamento exclusivas
antes que ocorra o desgaste criptográfico. Apesar desse risco de exaustão muito baixo, talvez seja
necessário alternar suas chaves de ramificações ativas devido a regras comerciais ou contratuais ou
regulamentações governamentais.

A versão ativa da chave de ramificação permanece ativa até que você a alterne. As versões
anteriores da chave de ramificação ativa não serão usadas para realizar operações de criptografia
e não podem ser usadas para derivar novas chaves de agrupamento, mas ainda podem ser
consultadas e fornecer chaves de agrupamento para descriptografar as chaves de dados que
criptografaram enquanto estavam ativas.

Permissões obrigatórias

Para girar as chaves de ramificação, você precisa das ReEncrypt permissões kms:
GenerateDataKeyWithoutPlaintext e kms: na chave KMS especificada nas ações do seu
armazenamento de chaves.

Gire uma chave de ramificação ativa

Alternar a chave de ramificação ativa 100

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Guia do Desenvolvedor

Use a VersionKey operação para girar sua chave de ramificação ativa. Quando você alterna
a chave de ramificação ativa, uma nova chave de ramificação é criada para substituir a versão
anterior. O branch-key-id não muda quando você alterna a chave de ramificação ativa. Você
deve especificar o branch-key-id que identificará a chave de ramificação ativa atual quando você
chamar VersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Python

keystore.version_key(
 VersionKeyInput(
 branch_key_identifier=branch_key_id
)
)

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
 BranchKeyIdentifier: branchKeyId,
})
if err != nil {
 return err

Alternar a chave de ramificação ativa 101

AWS Encryption SDK Guia do Desenvolvedor

}

Alternar a chave de ramificação ativa 102

AWS Encryption SDK Guia do Desenvolvedor

Tokens de autenticação
As implementações de linguagem de programação suportadas usam chaveiros para realizar a
criptografia de envelopes. Tokens de autenticação geram, criptografam e descriptografam chaves
de dados. Os tokens de autenticação determinam a origem das chaves de dados exclusivas que
protegem cada mensagem, bem como as chaves de encapsulamento que criptografam essa chave
de dados. Você especifica um token de autenticação ao criptografar e especifica o mesmo ou outro
token de autenticação ao descriptografar. Você pode usar os tokens de autenticação fornecidos pelo
SDK ou elaborar seus próprios tokens de autenticação personalizados compatíveis.

É possível usar cada token individualmente ou combiná-los em um multitoken de autenticação.
Embora a maioria dos tokens de autenticação possa gerar, criptografar e descriptografar chaves
de dados, você pode criar um que execute apenas uma operação, por exemplo, um token que gere
apenas chaves de dados, e usá-lo em combinação com outros.

Recomendamos que você use um chaveiro que proteja suas chaves de agrupamento e execute
operações criptográficas dentro de um limite seguro, como o AWS KMS chaveiro, que usa AWS KMS
keys that never leave () sem criptografia. AWS Key Management ServiceAWS KMS Você também
pode escrever um chaveiro que use chaves de agrupamento armazenadas em seus módulos de
segurança de hardware (HSMs) ou protegidas por outros serviços de chave mestra. Para obter
detalhes, consulte o tópico Interface do token de autenticação na Especificação do AWS Encryption
SDK .

Os chaveiros desempenham o papel de chaves mestras e provedores de chaves mestras usados
em outras implementações de linguagens de programação. Se você usar diferentes implementações
de linguagem do AWS Encryption SDK para criptografar e descriptografar seus dados, certifique-se
de usar tokens de autenticação e provedores de chaves mestras compatíveis. Para obter detalhes,
consulte Compatibilidade dos tokens de autenticação.

Este tópico explica como usar o recurso de chaveiro do AWS Encryption SDK e como escolher um
chaveiro.

Como os tokens de autenticação funcionam

Quando você criptografa dados, AWS Encryption SDK ele solicita materiais de criptografia ao
chaveiro. O token de autenticação retorna uma chave dados de texto simples e uma cópia da
chave de dados que é criptografada por cada uma das chaves de encapsulamento no token de

Como os tokens de autenticação funcionam 103

https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK Guia do Desenvolvedor

autenticação. O AWS Encryption SDK usa a chave de texto simples para criptografar os dados e,
em seguida, destrói a chave de dados de texto sem formatação. Em seguida, AWS Encryption SDK
retorna uma mensagem criptografada que inclui as chaves de dados criptografadas e os dados
criptografados.

Ao descriptografar dados, você pode usar o mesmo token de autenticação usado para criptografar
os dados ou um token diferente. Para descriptografar os dados, um token de autenticação de
descriptografia deve incluir (ou ter acesso a) pelo menos uma chave de encapsulamento no token de
autenticação de criptografia.

Ele AWS Encryption SDK passa as chaves de dados criptografadas da mensagem criptografada
para o chaveiro e solicita que o chaveiro decifre qualquer uma delas. O token de autenticação usa
suas chaves de empacotamento para descriptografar uma das chaves de dados criptografadas
e retorna uma chave de dados de texto simples. O AWS Encryption SDK usa a chave de dados
de texto simples para descriptografar os dados. Se nenhuma das chaves de empacotamento no
token de autenticação puder descriptografar qualquer uma das chaves de dados criptografadas, a
operação de descriptografia falhará.

Como os tokens de autenticação funcionam 104

AWS Encryption SDK Guia do Desenvolvedor

Você pode usar um único token de autenticação ou também combinar tokens de autenticação
do mesmo ou outro tipo em um multitoken de autenticação. Quando você criptografa dados, o
multitoken de autenticação retorna uma cópia da chave de dados criptografada por todas as
chaves de empacotamento em todos os tokens de autenticação que compreendem o multitoken de
autenticação. É possível descriptografar os dados usando um token de autenticação com qualquer
uma das chaves de encapsulamento no multitoken de autenticação.

Compatibilidade dos tokens de autenticação

Embora as diferentes implementações de linguagem do AWS Encryption SDK tenham algumas
diferenças arquitetônicas, elas são totalmente compatíveis, sujeitas às restrições de linguagem. Você
pode criptografar seus dados usando uma implementação de linguagem e descriptografá-los em
qualquer outra implementação de linguagem. No entanto, é necessário usar as mesmas chaves de
encapsulamento, ou correspondentes, para criptografar e descriptografar suas chaves de dados.
Para obter informações sobre restrições de linguagem, consulte o tópico sobre a implementação de
cada linguagem, como the section called “Compatibilidade” no AWS Encryption SDK para JavaScript
tópico.

Compatibilidade dos tokens de autenticação 105

AWS Encryption SDK Guia do Desenvolvedor

Os chaveiros são compatíveis com as seguintes linguagens de programação:

• AWS Encryption SDK for C

• AWS Encryption SDK para JavaScript

• AWS Encryption SDK para o.NET

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência opcional da
Biblioteca de Provedores de Material Criptográfico (MPL).

• AWS Encryption SDK para Rust

• AWS Encryption SDK para Go

Requisitos variados para tokens de autenticação de criptografia

Em implementações de AWS Encryption SDK linguagem diferentes da AWS Encryption SDK for
C, todas as chaves agrupadas em um chaveiro de criptografia (ou vários chaveiros) ou provedor
de chave mestra devem ser capazes de criptografar a chave de dados. Se alguma chave de
encapsulamento falhar na criptografia, o método de criptografia falhará. Como resultado, o chamador
deve ter as permissões necessárias para todas as chaves no token de autenticação. Se você usar
um token de autenticação para criptografar dados, sozinho ou em um token de autenticação múltiplo,
a operação de criptografia falhará.

A exceção é a AWS Encryption SDK for C, em que a operação de criptografia ignora um chaveiro
de descoberta padrão, mas falha se você especificar um chaveiro de descoberta de várias regiões,
sozinho ou em um chaveiro com várias chaves.

Tokens de autenticação e provedores de chaves mestras compatíveis

A tabela a seguir mostra quais chaves mestras e fornecedores de chaves mestras são
compatíveis com os chaveiros fornecidos pela empresa AWS Encryption SDK . Qualquer pequena
incompatibilidade devido às restrições de linguagem é explicada no tópico sobre a implementação de
linguagem.

Token de autenticação: Provedor de chaves mestras:

AWS KMS chaveiro KMSMasterChave (Java)

KMSMasterKeyProvider (Java)

Requisitos variados para tokens de autenticação de criptografia 106

https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html

AWS Encryption SDK Guia do Desenvolvedor

Token de autenticação: Provedor de chaves mestras:

KMSMasterChave (Python)

KMSMasterKeyProvider (Python)

Note

O AWS Encryption SDK for Python e AWS Encryption SDK
for Java não inclui uma chave mestra ou um provedor de
chave mestra que seja equivalente ao chaveiro AWS KMS
regional Discovery.

AWS KMS Chaveiro
hierárquico

Compatível com as seguintes linguagens e versões de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado
com a dependência opcional da Biblioteca de Provedores de
Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

AWS KMS Chaveiro
ECDH

Compatível com as seguintes linguagens e versões de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado
com a dependência opcional da Biblioteca de Provedores de
Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Token de autenticação
bruto do AES

Quando são usados com chaves de criptografia simétrica:
JceMasterKey(Java)

RawMasterKey(Python)

Tokens de autenticação e provedores de chaves mestras compatíveis 107

https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Guia do Desenvolvedor

Token de autenticação: Provedor de chaves mestras:

Token de autenticação
bruto do RSA

Quando são usados com chaves de criptografia assimétrica:
JceMasterKey(Java)

RawMasterKey(Python)

Note

O token de autenticação RSA bruto não oferece suporte a
chaves do KMS assimétricas. Se você quiser usar chaves
RSA KMS assimétricas, versão 4. x do AWS Encryption SDK
for.NET suporta AWS KMS chaveiros que usam criptogra
fia simétrica (SYMMETRIC_DEFAULT) ou RSA assimétrica.
AWS KMS keys

Chaveiro ECDH bruto Compatível com as seguintes linguagens e versões de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado
com a dependência opcional da Biblioteca de Provedores de
Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

AWS KMS chaveiros

Um AWS KMS chaveiro é usado AWS KMS keyspara gerar, criptografar e descriptografar chaves de
dados. AWS Key Management Service (AWS KMS) protege suas chaves KMS e executa operações
criptográficas dentro do limite do FIPS. É recomendável usar um token de autenticação do AWS
KMS ou um token de autenticação com propriedades de segurança semelhantes sempre que
possível.

Todas as implementações de linguagem de programação que oferecem suporte a chaveiros
oferecem suporte a AWS KMS chaveiros que usam chaves KMS de criptografia simétrica. As

AWS KMS chaveiros 108

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Encryption SDK Guia do Desenvolvedor

implementações de linguagem de programação a seguir também oferecem suporte a AWS KMS
chaveiros que usam chaves RSA KMS assimétricas:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência opcional da
Biblioteca de Provedores de Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Se você tentar incluir uma chave do KMS assimétrica em um token de autenticação de criptografia
que esteja em outra implementação de linguagem, a chamada de criptografia falhará. Se você incluí-
la em um token de autenticação de descriptografia, ele será ignorado.

Você pode usar uma chave AWS KMS multirregional em um AWS KMS chaveiro ou provedor de
chave mestra a partir da versão 2.3. x do AWS Encryption SDK e versão 3.0. x da CLI AWS de
criptografia. Para obter detalhes e exemplos de uso do multi-Region-aware símbolo, consulteUsando
várias regiões AWS KMS keys. Para obter mais informações sobre chaves multirregionais, consulte
Usar chaves multirregionais no Guia do Desenvolvedor do AWS Key Management Service .

Note

Todas as menções aos chaveiros KMS AWS Encryption SDK se referem aos chaveiros.
AWS KMS

AWS KMS os chaveiros podem incluir dois tipos de chaves de embrulho:

• Chave geradora: gera uma chave de dados em texto simples e a criptografa. Um token de
autenticação que criptografa dados deve ter uma chave geradora.

• Chaves adicionais: criptografa a chave de dados em texto simples gerada pela chave do gerador.
AWS KMS os chaveiros podem ter zero ou mais chaves adicionais.

Você deve ter uma chave geradora para criptografar mensagens. Quando um AWS KMS chaveiro
tem apenas uma chave KMS, essa chave é usada para gerar e criptografar a chave de dados.
Ao descriptografar, a chave geradora é opcional e a distinção entre chaves geradoras e chaves
adicionais é ignorada.

AWS KMS chaveiros 109

https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Guia do Desenvolvedor

Como todos os chaveiros, os AWS KMS chaveiros podem ser usados de forma independente ou em
um chaveiro múltiplo com outros chaveiros do mesmo tipo ou de um tipo diferente.

Tópicos

• Permissões necessárias para tokens de autenticação do AWS KMS

• Identificação AWS KMS keys em um AWS KMS chaveiro

• Criando um AWS KMS chaveiro

• Usando um chaveiro AWS KMS Discovery

• Usando um chaveiro de descoberta AWS KMS regional

Permissões necessárias para tokens de autenticação do AWS KMS

O AWS Encryption SDK não requer um Conta da AWS e não depende de nenhum AWS service
(Serviço da AWS). No entanto, para usar um AWS KMS chaveiro, você precisa de uma Conta da
AWS e das seguintes permissões mínimas AWS KMS keys no seu chaveiro.

• Para criptografar com um AWS KMS chaveiro, você precisa da GenerateDataKey permissão kms:
na chave do gerador. Você precisa da permissão KMS:Encrypt em todas as chaves adicionais no
chaveiro. AWS KMS

• Para descriptografar com um AWS KMS chaveiro, você precisa da permissão kms:Decrypt em
pelo menos uma chave no chaveiro. AWS KMS

• Para criptografar com um chaveiro múltiplo composto por AWS KMS chaveiros, você precisa da
GenerateDataKey permissão kms: na chave do gerador no chaveiro do gerador. Você precisa da
permissão KMS:Encrypt em todas as outras chaves em todos os outros chaveiros. AWS KMS

• Para criptografar com um AWS KMS chaveiro RSA assimétrico, você não precisa de kms:
GenerateDataKey ou kms:Encrypt porque você deve especificar o material de chave pública
que deseja usar para criptografia ao criar o chaveiro. Nenhuma AWS KMS chamada é feita ao
criptografar com este chaveiro. Para descriptografar com um AWS KMS chaveiro RSA assimétrico,
você precisa da permissão KMS:Decrypt.

Para obter informações detalhadas sobre permissões para AWS KMS keys, consulte Acesso e
permissões à chave KMS no Guia do AWS Key Management Service desenvolvedor.

Permissões necessárias para tokens de autenticação do AWS KMS 110

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Guia do Desenvolvedor

Identificação AWS KMS keys em um AWS KMS chaveiro

Um AWS KMS chaveiro pode incluir um ou mais AWS KMS keys. Para especificar um AWS KMS key
em um AWS KMS chaveiro, use um identificador de AWS KMS chave compatível. Os identificadores
de chave que você pode usar para identificar um AWS KMS key em um chaveiro variam de acordo
com a operação e a implementação da linguagem. Para obter detalhes sobre os identificadores de
chave de uma AWS KMS key, consulteIdentificadores de chave no Guia do Desenvolvedor do AWS
Key Management Service .

Como prática recomendada, use o identificador de chave mais específico que seja prático para sua
tarefa.

• Em um chaveiro de criptografia para o AWS Encryption SDK for C, você pode usar um ARN de
chave ou um alias ARN para identificar chaves KMS. Em todas as outras implementações de
linguagem, você pode usar um ID de chave, ARN de chave, nome de alias ou ARN de alias para
criptografar dados.

• Em um token de autenticação de descriptografia, você deve usar um ARN de chave para identificar
AWS KMS keys. Esse requisito aplica-se a todas as implementações de linguagem do AWS
Encryption SDK. Para obter detalhes, consulte Seleção de chaves de encapsulamento.

• Em um token de autenticação usado para criptografia e descriptografia, você deve usar um ARN
de chave para identificar AWS KMS keys. Esse requisito aplica-se a todas as implementações de
linguagem do AWS Encryption SDK.

Se você especificar um nome de alias ou um ARN de alias para uma chave do KMS em um token
de autenticação de criptografia, a operação de criptografia salvará o ARN de chave atualmente
associado ao alias nos metadados da chave de dados criptografada. Isso não salva o alias. As
alterações no alias não afetam a chave do KMS usada para descriptografar suas chaves de dados
criptografadas.

Criando um AWS KMS chaveiro

Você pode configurar cada AWS KMS chaveiro com um único AWS KMS key ou vários AWS
KMS keys no mesmo ou em um diferente Contas da AWS e. Regiões da AWS AWS KMS keys
Deve ser uma chave KMS de criptografia simétrica (SYMMETRIC_DEFAULT) ou uma chave KMS
RSA assimétrica. Também é possível usar uma chave KMS multirregional criptografia simétrica. É
possível usar um ou mais tokens de autenticação do AWS KMS em um multitoken de autenticação.

Identificação AWS KMS keys em um AWS KMS chaveiro 111

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Encryption SDK Guia do Desenvolvedor

Você pode criar um AWS KMS chaveiro que criptografe e descriptografe dados, ou você pode criar
AWS KMS chaveiros especificamente para criptografar ou descriptografar. Ao criar um AWS KMS
chaveiro para criptografar dados, você deve especificar uma chave geradora, AWS KMS key que é
usada para gerar uma chave de dados em texto simples e criptografá-la. A chave de dados não tem
relação matemática com a chave KMS. Em seguida, se quiser, você pode especificar outras AWS
KMS keys que criptografem a mesma chave de dados de texto sem formatação. Para descriptografar
um campo criptografado protegido por esse chaveiro, o chaveiro de decodificação que você usa
deve incluir pelo menos um dos definidos no chaveiro, ou não. AWS KMS keys AWS KMS keys(Um
AWS KMS chaveiro sem AWS KMS keys é conhecido como chaveiro AWS KMS Discovery.)

Em implementações de AWS Encryption SDK linguagem diferentes da AWS Encryption SDK for
C, todas as chaves agrupadas em um chaveiro de criptografia ou em vários chaveiros devem
ser capazes de criptografar a chave de dados. Se alguma chave de encapsulamento falhar na
criptografia, o método de criptografia falhará. Como resultado, o chamador deve ter as permissões
necessárias para todas as chaves no token de autenticação. Se você usar um token de autenticação
para criptografar dados, sozinho ou em um token de autenticação múltiplo, a operação de criptografia
falhará. A exceção é a AWS Encryption SDK for C, em que a operação de criptografia ignora um
chaveiro de descoberta padrão, mas falha se você especificar um chaveiro de descoberta de várias
regiões, sozinho ou em um chaveiro com várias chaves.

Os exemplos a seguir criam um AWS KMS chaveiro com uma chave geradora e uma chave
adicional. Tanto a chave geradora quanto a chave adicional são chaves KMS de criptografia
simétrica. Esses exemplos usam ARNs a chave para identificar as chaves KMS. Essa é uma prática
recomendada para AWS KMS chaveiros usados para criptografia e um requisito para AWS KMS
chaveiros usados para decodificação. Para obter detalhes, consulte Identificação AWS KMS keys em
um AWS KMS chaveiro.

C

Para identificar um AWS KMS key em um chaveiro de criptografia no AWS Encryption SDK for C,
especifique o ARN da chave ou o ARN do alias. Em um token de autenticação de descriptografia,
é necessário usar um ARN de chave. Para obter detalhes, consulte Identificação AWS KMS keys
em um AWS KMS chaveiro.

Para obter um exemplo completo, consulte string.cpp.

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Criando um AWS KMS chaveiro 112

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Guia do Desenvolvedor

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(generator_key,{additional_key});

C# / .NET

Para criar um chaveiro com uma ou mais chaves KMS no AWS Encryption SDK para.NET, use o
CreateAwsKmsMultiKeyring() método. Este exemplo usa duas chaves do AWS KMS . Para
especificar uma chave do KMS, use o parâmetro Generator. O parâmetro KmsKeyIds, que
especifica chaves KMS adicionais, é opcional.

A entrada para este chaveiro não requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrão para cada região representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do Generator parâmetro estiver
na região Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criará um AWS KMS
cliente padrão para a us-west-2 região. Se você precisar personalizar o cliente do AWS KMS ,
use o método CreateAwsKmsKeyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK
para.NET, você pode usar qualquer identificador de chave válido: um ID de chave, ARN de
chave, nome de alias ou ARN de alias. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir usa a versão 4. x do AWS Encryption SDK para o.NET e o
CreateAwsKmsKeyring() método para personalizar o AWS KMS cliente.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{
 Generator = generatorKey,

Criando um AWS KMS chaveiro 113

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

 KmsKeyIds = additionalKeys
};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK para
JavaScript, você pode usar qualquer identificador de chave válido: um ID de chave, ARN da
chave, nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte kms_simple.ts no repositório em. AWS Encryption SDK
para JavaScript GitHub

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })
const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds: [additionalKey]
})

Criando um AWS KMS chaveiro 114

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK para
JavaScript, você pode usar qualquer identificador de chave válido: um ID de chave, ARN da
chave, nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte kms_simple.ts no repositório em. AWS Encryption SDK
para JavaScript GitHub

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
 generatorKeyId,
 keyIds: [additionalKey]
})

Java

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
CreateAwsKmsMultiKeyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parâmetro generator. O parâmetro kmsKeyIds, que
especifica chaves KMS adicionais, é opcional.

Criando um AWS KMS chaveiro 115

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

A entrada para este chaveiro não requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrão para cada região representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do Generator parâmetro estiver
na região Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criará um AWS KMS
cliente padrão para a us-west-2 região. Se você precisar personalizar o cliente do AWS KMS ,
use o método CreateAwsKmsKeyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Java, você pode usar qualquer identificador de chave válido: um ID de chave, ARN da chave,
nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS
KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

Para ver um exemplo completo, consulte BasicEncryptionKeyringExample.java no AWS
Encryption SDK for Java repositório em. GitHub

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(generatorKey)
 .kmsKeyIds(additionalKey)
 .build();
final IKeyring kmsKeyring =
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
create_aws_kms_multi_keyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parâmetro generator. O parâmetro kms_key_ids, que
especifica chaves KMS adicionais, é opcional.

Criando um AWS KMS chaveiro 116

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java

AWS Encryption SDK Guia do Desenvolvedor

A entrada para este chaveiro não requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrão para cada região representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do generator parâmetro estiver
na região Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criará um AWS KMS
cliente padrão para a us-west-2 região. Se você precisar personalizar o cliente do AWS KMS ,
use o método create_aws_kms_keyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Python, você pode usar qualquer identificador de chave válido: um ID de chave, ARN da chave,
nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS
KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir instancia o AWS Encryption SDK cliente com a política de compromisso
padrão,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para ver um exemplo completo, consulte
aws_kms_multi_keyring_example.py no AWS Encryption SDK for Python repositório em GitHub.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
 CreateAwsKmsMultiKeyringInput(
 generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

Criando um AWS KMS chaveiro 117

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK Guia do Desenvolvedor

)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

Rust

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
create_aws_kms_multi_keyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parâmetro generator. O parâmetro kms_key_ids, que
especifica chaves KMS adicionais, é opcional.

A entrada para este chaveiro não requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrão para cada região representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do generator parâmetro estiver
na região Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criará um AWS KMS
cliente padrão para a us-west-2 região. Se você precisar personalizar o cliente do AWS KMS ,
use o método create_aws_kms_keyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Rust, você pode usar qualquer identificador de chave válido: um ID de chave, ARN da chave,
nome do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS
KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

O exemplo a seguir instancia o AWS Encryption SDK cliente com a política de compromisso
padrão,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para obter um exemplo completo, consulte
aws_kms_keyring_example.rs no diretório Rust do repositório em. aws-encryption-sdk GitHub

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),

Criando um AWS KMS chaveiro 118

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK Guia do Desenvolvedor

 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

Go

Para criar um chaveiro com uma ou mais AWS KMS chaves, use o
create_aws_kms_multi_keyring() método. Este exemplo usa duas chaves KMS. Para
especificar uma chave do KMS, use o parâmetro generator. O parâmetro kms_key_ids, que
especifica chaves KMS adicionais, é opcional.

A entrada para este chaveiro não requer um AWS KMS cliente. Em vez disso, AWS Encryption
SDK ele usa o AWS KMS cliente padrão para cada região representada por uma chave KMS no
chaveiro. Por exemplo, se a chave KMS identificada pelo valor do generator parâmetro estiver
na região Oeste dos EUA (Oregon) (us-west-2), ela AWS Encryption SDK criará um AWS KMS
cliente padrão para a us-west-2 região. Se você precisar personalizar o cliente do AWS KMS ,
use o método create_aws_kms_keyring().

Ao especificar um AWS KMS key para um chaveiro de criptografia no AWS Encryption SDK for
Go, você pode usar qualquer identificador de chave válido: um ID de chave, ARN da chave, nome
do alias ou ARN do alias. Para obter ajuda para identificar o AWS KMS keys em um AWS KMS
chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

Criando um AWS KMS chaveiro 119

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

O exemplo a seguir instancia o AWS Encryption SDK cliente com a política de compromisso
padrão,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{
 Generator: "&arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 KmsKeyIds: []string{"arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},

Criando um AWS KMS chaveiro 120

AWS Encryption SDK Guia do Desenvolvedor

}
awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
 awsKmsMultiKeyringInput)

AWS Encryption SDK Também suporta AWS KMS chaveiros que usam chaves RSA KMS
assimétricas. Os AWS KMS chaveiros RSA assimétricos só podem conter um par de chaves.

Para criptografar com um AWS KMS chaveiro RSA assimétrico, você não precisa de kms:
GenerateDataKey ou kms:Encrypt porque você deve especificar o material de chave pública que
deseja usar para criptografia ao criar o chaveiro. Nenhuma chamada do AWS KMS é feita ao
criptografar com este token de autenticação. Para descriptografar com um AWS KMS chaveiro RSA
assimétrico, você precisa da permissão KMS:Decrypt.

Note

Para criar um AWS KMS chaveiro que use chaves RSA KMS assimétricas, você deve usar
uma das seguintes implementações de linguagem de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência
opcional da Biblioteca de Provedores de Material Criptográfico (MPL).

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Os exemplos a seguir usam o CreateAwsKmsRsaKeyring método para criar um AWS KMS
chaveiro com uma chave RSA KMS assimétrica. Para criar um AWS KMS chaveiro RSA assimétrico,
forneça os seguintes valores.

• kmsClient: criar um novo AWS KMS cliente

• kmsKeyID: o ARN da chave que identifica sua chave RSA KMS assimétrica

• publicKey: a ByteBuffer de um arquivo PEM codificado em UTF-8 que representa a chave
pública da chave para a qual você passou kmsKeyID

• encryptionAlgorithm: o algoritmo de criptografia deve ser RSAES_OAEP_SHA_256 ou
RSAES_OAEP_SHA_1

Criando um AWS KMS chaveiro 121

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

C# / .NET

Para criar um AWS KMS chaveiro RSA assimétrico, você deve fornecer o ARN da chave pública
e da chave privada da sua chave RSA KMS assimétrica. A chave pública deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = AWS KMS RSA private key ARN,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

Para criar um AWS KMS chaveiro RSA assimétrico, você deve fornecer o ARN da chave pública
e da chave privada da sua chave RSA KMS assimétrica. A chave pública deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()
 // Specify algorithmSuite without asymmetric signing here
 //
 // ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),
 // ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),
 // ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),
 // ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),
 // ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),
 // ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256)
 .build();

Criando um AWS KMS chaveiro 122

AWS Encryption SDK Guia do Desenvolvedor

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a KMS RSA keyring.
// This keyring takes in:
// - kmsClient
// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key
// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId
// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

Para criar um AWS KMS chaveiro RSA assimétrico, você deve fornecer o ARN da chave pública
e da chave privada da sua chave RSA KMS assimétrica. A chave pública deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers library

Criando um AWS KMS chaveiro 123

AWS Encryption SDK Guia do Desenvolvedor

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
 public_key="public_key",
 kms_key_id="kms_key_id",
 encryption_algorithm="RSAES_OAEP_SHA_256",
 kms_client=kms_client
)

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
 input=keyring_input
)

Rust

Para criar um AWS KMS chaveiro RSA assimétrico, você deve fornecer o ARN da chave pública
e da chave privada da sua chave RSA KMS assimétrica. A chave pública deve ser codificada em
PEM. O exemplo a seguir cria um AWS KMS chaveiro com um par de chaves RSA assimétrico.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;

Criando um AWS KMS chaveiro 124

AWS Encryption SDK Guia do Desenvolvedor

let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()
 .kms_key_id(kms_key_id)
 .public_key(aws_smithy_types::Blob::new(public_key))

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(kms_client)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion

Criando um AWS KMS chaveiro 125

AWS Encryption SDK Guia do Desenvolvedor

})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyID,
 PublicKey: kmsPublicKey,
 EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
 awsKmsRSAKeyringInput)
if err != nil {
 panic(err)
}

Usando um chaveiro AWS KMS Discovery

Ao descriptografar, é uma prática recomendada especificar as chaves de encapsulamento que
podem ser usadas. AWS Encryption SDK Para seguir essa prática recomendada, use um chaveiro
de AWS KMS decodificação que limite as chaves de AWS KMS encapsulamento às que você
especificar. No entanto, você também pode criar um chaveiro de AWS KMS descoberta, ou seja, um
AWS KMS chaveiro que não especifique nenhuma chave de agrupamento.

AWS Encryption SDK Fornece um chaveiro de AWS KMS descoberta padrão e um chaveiro de
descoberta para chaves AWS KMS multirregionais. Para obter informações sobre como usar chaves
de várias regiões com o AWS Encryption SDK, consulte Usando várias regiões AWS KMS keys.

Usando um chaveiro AWS KMS Discovery 126

AWS Encryption SDK Guia do Desenvolvedor

Como não especifica nenhuma chave de encapsulamento, um token de autenticação de descoberta
não pode criptografar dados. Se você usar um token de autenticação para criptografar dados,
sozinho ou em um token de autenticação múltiplo, a operação de criptografia falhará. A exceção é
a AWS Encryption SDK for C, em que a operação de criptografia ignora um chaveiro de descoberta
padrão, mas falha se você especificar um chaveiro de descoberta de várias regiões, sozinho ou em
um chaveiro com várias chaves.

Ao descriptografar, um chaveiro de descoberta permite que você solicite AWS Encryption SDK AWS
KMS a decodificação de qualquer chave de dados criptografada usando AWS KMS key aquela que a
criptografou, independentemente de quem a possui ou tem acesso a ela. AWS KMS key A chamada
será bem-sucedida somente quando o chamador tiver a permissão kms:Decrypt na AWS KMS
key.

Important

Se você incluir um chaveiro de AWS KMS descoberta em um chaveiro de decodificação
múltipla, o chaveiro de descoberta substituirá todas as restrições de chave KMS
especificadas por outros chaveiros no chaveiro múltiplo. O token de autenticação múltiplo
se comporta como o token de autenticação menos restritivo. Um token de autenticação de
descoberta do AWS KMS não tem efeito na criptografia quando usado sozinho ou em um
multitoken de autenticação.

AWS Encryption SDK Ele fornece um chaveiro AWS KMS Discovery para sua conveniência. No
entanto, recomendamos que você use um token de autenticação mais limitado sempre que possível
pelas razões a seguir.

• Autenticidade — Um chaveiro de AWS KMS descoberta pode usar qualquer chave usada para
criptografar uma chave de dados na mensagem criptografada, apenas para AWS KMS key que
o chamador tenha permissão para usá-la para descriptografar. AWS KMS key Isso pode não
ser o AWS KMS key que o chamador pretende usar. Por exemplo, uma das chaves de dados
criptografadas pode ter sido criptografada de forma menos segura AWS KMS key que qualquer
pessoa possa usar.

• Latência e desempenho — Um chaveiro de AWS KMS descoberta pode ser visivelmente mais
lento do que outros chaveiros porque AWS Encryption SDK tenta descriptografar todas as
chaves de dados criptografadas, incluindo aquelas criptografadas AWS KMS keys em outras
regiões, Contas da AWS e AWS KMS keys que o chamador não tem permissão para usar para
descriptografia.

Usando um chaveiro AWS KMS Discovery 127

AWS Encryption SDK Guia do Desenvolvedor

Se você usa um chaveiro de descoberta, recomendamos que você use um filtro de descoberta para
limitar as chaves KMS que podem ser usadas para aquelas em partições Contas da AWS e partições
especificadas. Os filtros de descoberta são compatíveis com as versões 1.7.x e posteriores do AWS
Encryption SDK. Para obter ajuda para encontrar o ID e a partição da sua conta, consulte Seus
Conta da AWS identificadores e formato ARN no. Referência geral da AWS

O código a seguir instancia um chaveiro de AWS KMS descoberta com um filtro de descoberta que
limita as chaves KMS que AWS Encryption SDK podem ser usadas às da aws partição e da conta de
exemplo 111122223333.

Antes de usar esse código, substitua os valores de exemplo Conta da AWS e de partição por valores
válidos para sua partição Conta da AWS e. Se as chaves do KMS estiverem em regiões da China,
use o valor de partição aws-cn. Se as chaves do KMS estiverem em AWS GovCloud (US) Regions,
use o valor de partição aws-us-gov. Para todas as outras Regiões da AWS, use o valor de partição
aws.

C

Para obter um exemplo completo, consulte: kms_discovery.cpp.

std::shared_ptr<KmsKeyring::> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()
 .BuildDiscovery(discovery_filter));

C# / .NET

O exemplo a seguir usa a versão 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key

Usando um chaveiro AWS KMS Discovery 128

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Guia do Desenvolvedor

var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = account,
 Partition = "aws"
 }
};

var kmsDiscoveryKeyring =
 mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

JavaScript Browser

Em JavaScript, você deve especificar explicitamente a propriedade de descoberta.

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 KmsKeyringBrowser,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

JavaScript Node.js

Em JavaScript, você deve especificar explicitamente a propriedade de descoberta.

Usando um chaveiro AWS KMS Discovery 129

AWS Encryption SDK Guia do Desenvolvedor

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true

const keyring = new KmsKeyringNode({
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Usando um chaveiro AWS KMS Discovery 130

AWS Encryption SDK Guia do Desenvolvedor

)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
 CreateAwsKmsDiscoveryKeyringInput(
 kms_client=kms_client,
 discovery_filter=DiscoveryFilter(
 account_ids=[aws_account_id],
 partition="aws"
)
)

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
 input=discovery_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;

Usando um chaveiro AWS KMS Discovery 131

AWS Encryption SDK Guia do Desenvolvedor

let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![aws_account_id.to_string()])
 .partition("aws".to_string())
 .build()?;

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
 .create_aws_kms_discovery_keyring()
 .kms_client(kms_client.clone())
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

Usando um chaveiro AWS KMS Discovery 132

AWS Encryption SDK Guia do Desenvolvedor

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{kmsKeyAccountID},
 Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
 KmsClient: kmsClient,
 DiscoveryFilter: &discoveryFilter,
}
awsKmsDiscoveryKeyring, err :=
 matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
 awsKmsDiscoveryKeyringInput)
if err != nil {
 panic(err)
}

Usando um chaveiro AWS KMS Discovery 133

AWS Encryption SDK Guia do Desenvolvedor

Usando um chaveiro de descoberta AWS KMS regional

Um chaveiro de descoberta AWS KMS regional é um chaveiro que não especifica as chaves ARNs
KMS. Em vez disso, ele permite que AWS Encryption SDK o decodifique usando somente as chaves
KMS em particular. Regiões da AWS

Ao descriptografar com um chaveiro de descoberta AWS KMS regional, ele AWS Encryption SDK
descriptografa qualquer chave de dados criptografada que tenha sido criptografada sob um no
especificado. AWS KMS key Região da AWS Para ter sucesso, o chamador deve ter kms:Decrypt
permissão em pelo menos um dos AWS KMS keys itens especificados Região da AWS que
criptografou uma chave de dados.

Como outros token de autenticação de descoberta, o token de autenticação de descoberta regional
não afeta a criptografia. Ele funciona somente ao descriptografar mensagens criptografadas. Se você
usar um token de autenticação de descoberta regional em um multitoken de autenticação usado para
criptografar e descriptografar, ele só será efetivo durante a descriptografia. Se você usar um token
de autenticação de descoberta multirregional para criptografar dados, sozinho ou em um token de
autenticação com vários tokens de autenticação, a operação de criptografia falhará.

Important

Se você incluir um chaveiro de descoberta AWS KMS regional em um chaveiro de
descriptografia múltiplo, o chaveiro de descoberta regional substituirá todas as restrições
de chave KMS especificadas por outros chaveiros no chaveiro múltiplo. O token de
autenticação múltiplo se comporta como o token de autenticação menos restritivo. Um token
de autenticação de descoberta do AWS KMS não tem efeito na criptografia quando usado
sozinho ou em um multitoken de autenticação.

O chaveiro de descoberta regional nas AWS Encryption SDK for C tentativas de descriptografar
somente com chaves KMS na região especificada. Ao usar um chaveiro de descoberta no AWS
Encryption SDK para JavaScript e AWS Encryption SDK para.NET, você configura a região no
AWS KMS cliente. Essas AWS Encryption SDK implementações não filtram as chaves KMS por
região, mas AWS KMS falharão em uma solicitação de descriptografia de chaves KMS fora da região
especificada.

Se você usa um chaveiro de descoberta, recomendamos que você use um filtro de descoberta para
limitar as chaves KMS usadas na descriptografia àquelas em partições e partições especificadas.

Usando um chaveiro de descoberta AWS KMS regional 134

AWS Encryption SDK Guia do Desenvolvedor

Contas da AWS Os filtros de descoberta são compatíveis com as versões 1.7.x e posteriores do
AWS Encryption SDK.

Por exemplo, o código a seguir cria um chaveiro de descoberta AWS KMS regional com um filtro de
descoberta. Esse chaveiro limita as duas AWS Encryption SDK chaves KMS na conta 111122223333
na região Oeste dos EUA (Oregon) (us-west-2).

C

Para exibir esse token de autenticação e o método create_kms_client em um exemplo
funcional, consulte kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()

 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

C# / .NET

O AWS Encryption SDK for.NET não tem um chaveiro de descoberta regional dedicado. Porém,
você pode usar várias técnicas para limitar as chaves KMS usadas ao descriptografar para uma
região específica.

A maneira mais eficiente de limitar as regiões em um chaveiro de descoberta é usar um chaveiro
de multi-Region-aware descoberta, mesmo que você tenha criptografado os dados usando
somente chaves de região única. Quando encontra chaves de região única, o multi-Region-aware
chaveiro não usa nenhum recurso multirregional.

O token de autenticação retornado pelo método CreateAwsKmsMrkDiscoveryKeyring()
filtra as chaves do por região antes de chamar o AWS KMS. Ele envia uma solicitação
de descriptografia AWS KMS somente quando a chave de dados criptografada foi
criptografada por uma chave KMS na região especificada pelo Region parâmetro no objeto.
CreateAwsKmsMrkDiscoveryKeyringInput

Os exemplos a seguir usam a versão 4.x do AWS Encryption SDK para .NET.

Usando um chaveiro de descoberta AWS KMS regional 135

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Guia do Desenvolvedor

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{
 AccountIds = account,
 Partition = "aws"
};

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 Region = RegionEndpoint.USWest2,
 DiscoveryFilter = filter
};

var kmsRegionalDiscoveryKeyring =
 mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

Você também pode limitar as chaves KMS a uma determinada Região da AWS especificando
uma região na sua instância do AWS KMS cliente () AmazonKeyManagementServiceClient.
No entanto, essa configuração é menos eficiente e potencialmente mais cara do que usar um
chaveiro de multi-Region-aware descoberta. Em vez de filtrar as chaves KMS por região antes da
chamada AWS KMS, o AWS Encryption SDK for.NET chama AWS KMS cada chave de dados
criptografada (até decifrar uma) e se baseia em limitar as chaves KMS que usa AWS KMS à
região especificada.

O exemplo a seguir usa a versão 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput

Usando um chaveiro de descoberta AWS KMS regional 136

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK Guia do Desenvolvedor

{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = account,
 Partition = "aws"
 }
};

var kmsRegionalDiscoveryKeyring =
 mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

JavaScript Node.js

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para

Usando um chaveiro de descoberta AWS KMS regional 137

AWS Encryption SDK Guia do Desenvolvedor

limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver esse chaveiro e a limitRegions função em um exemplo prático, consulte
kms_regional_discovery.ts.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK

Usando um chaveiro de descoberta AWS KMS regional 138

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
 CreateAwsKmsMrkDiscoveryKeyringInput(
 kms_client=kms_client,
 region=mrk_replica_decrypt_region,
 discovery_filter=DiscoveryFilter(
 account_ids=[111122223333],
 partition="aws"
)
)

 regional_discovery_keyring: IKeyring =
 mat_prov.create_aws_kms_mrk_discovery_keyring(
 input=regional_discovery_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;

Usando um chaveiro de descoberta AWS KMS regional 139

AWS Encryption SDK Guia do Desenvolvedor

let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client
let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
 .region(Region::new(mrk_replica_decrypt_region.clone()))
 .build();
let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![aws_account_id.to_string()])
 .partition("aws".to_string())
 .build()?;

// Create the regional discovery keyring
let discovery_keyring = mpl
 .create_aws_kms_mrk_discovery_keyring()
 .kms_client(decrypt_kms_client)
 .region(mrk_replica_decrypt_region)
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Go

import (
 "context"

Usando um chaveiro de descoberta AWS KMS regional 140

AWS Encryption SDK Guia do Desenvolvedor

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{awsAccountID},
 Partition: "aws",
}

// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{

Usando um chaveiro de descoberta AWS KMS regional 141

AWS Encryption SDK Guia do Desenvolvedor

 KmsClient: kmsClient,
 Region: alternateRegionMrkKeyRegion,
 DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
 matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
 awsKmsMrkDiscoveryInput)
if err != nil {
 panic(err)
}

Ele AWS Encryption SDK para JavaScript também exporta uma excludeRegions função para
o Node.js e o navegador. Essa função cria um chaveiro de descoberta AWS KMS regional que é
omitido AWS KMS keys em regiões específicas. O exemplo a seguir cria um chaveiro de descoberta
AWS KMS regional que pode ser usado AWS KMS keys na conta 111122223333 em todos, Região
da AWS exceto no Leste dos EUA (Norte da Virgínia) (us-east-1).

O AWS Encryption SDK for C não tem um método análogo, mas você pode implementá-lo criando
um personalizado ClientSupplier.

Este exemplo mostra o código para Node.js.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

AWS KMS Chaveiros hierárquicos

Com o AWS KMS chaveiro hierárquico, você pode proteger seus materiais criptográficos com uma
chave KMS de criptografia simétrica sem ligar AWS KMS toda vez que criptografar ou descriptografar
dados. É uma boa opção para aplicativos que precisam minimizar as chamadas e aplicativos que
podem reutilizar alguns materiais criptográficos sem violar seus requisitos de segurança. AWS KMS

O chaveiro hierárquico é uma solução de armazenamento em cache de materiais criptográficos
que reduz o número de AWS KMS chamadas usando chaves de ramificação AWS KMS protegidas

AWS KMS Chaveiros hierárquicos 142

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK Guia do Desenvolvedor

persistentes em uma tabela do Amazon DynamoDB e, em seguida, armazenando localmente em
cache materiais de chave de ramificação usados em operações de criptografia e descriptografia. A
tabela do DynamoDB serve como o armazenamento de chaves que gerencia e protege as chaves
de ramificação. Ele armazena a chave de ramificação ativa e todas as versões anteriores da chave
de ramificação. A chave de ramificação ativa é a versão mais recente da chave de ramificação.
O chaveiro hierárquico usa uma chave de dados exclusiva para criptografar cada mensagem e
criptografa cada chave de criptografia de dados para cada solicitação de criptografia e criptografa
cada chave de criptografia de dados com uma chave de empacotamento exclusiva derivada da
chave de ramificação ativa. O token de autenticação hierárquico depende da hierarquia estabelecida
entre as chaves de ramificação ativas e suas chaves de agrupamento derivadas.

O token de autenticação hierárquico normalmente usa cada versão da chave de ramificação para
atender a várias solicitações. Porém, você controla até que ponto as chaves de ramificação ativas
são reutilizadas e determina com que frequência a chave de ramificação ativa é alternada. A versão
ativa da chave de ramificação permanece ativa até que você a alterne. As versões anteriores da
chave de ramificação ativa não serão usadas para realizar operações de criptografia, mas ainda
podem ser consultadas e usadas em operações de descriptografia.

Quando você instancia o token de autenticação hierárquico, ele cria um cache local. Você especifica
um limite de cache que define o tempo máximo em que os materiais da chave de ramificação
são armazenados no cache local antes de expirarem e serem despejados do cache. O chaveiro
hierárquico faz uma AWS KMS chamada para descriptografar a chave de ramificação e montar os
materiais da chave de ramificação na primeira vez em que a é especificado em uma branch-key-
id operação. Em seguida, os materiais da chave de ramificação são armazenados no cache local
e reutilizados para todas as operações de criptografia e descriptografia que especificam branch-
key-id até que o limite do cache expire. Armazenar materiais de chave de filial no cache local reduz
AWS KMS as chamadas. Por exemplo, considere um limite de cache de 15 minutos. Se você realizar
10.000 operações de criptografia dentro desse limite de cache, o AWS KMS chaveiro tradicional
precisaria fazer 10.000 AWS KMS chamadas para satisfazer 10.000 operações de criptografia.
Se você tiver um ativobranch-key-id, o chaveiro hierárquico só precisará fazer uma AWS KMS
chamada para satisfazer 10.000 operações de criptografia.

O cache local separa os materiais de criptografia dos materiais de decodificação. Os materiais de
criptografia são reunidos a partir da chave de ramificação ativa e reutilizados em todas as operações
de criptografia até que o limite de cache expire. Os materiais de descriptografia são reunidos a partir
do ID e da versão da chave de ramificação identificados nos metadados do campo criptografado
e são reutilizados para todas as operações de descriptografia relacionadas ao ID e à versão da
chave de ramificação até que o limite de cache expire. O cache local pode armazenar várias versões

AWS KMS Chaveiros hierárquicos 143

AWS Encryption SDK Guia do Desenvolvedor

da mesma chave de ramificação ao mesmo tempo. Quando o cache local é configurado para usar
umbranch key ID supplier, ele também pode armazenar materiais de chave de ramificação de várias
chaves de ramificação ativas ao mesmo tempo.

Note

Todas as menções ao chaveiro hierárquico no AWS Encryption SDK referem-se ao chaveiro
hierárquico. AWS KMS

Compatibilidade com linguagens de programação

O chaveiro hierárquico é suportado pelas seguintes linguagens e versões de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência opcional do
MPL.

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Tópicos

• Como funciona

• Pré-requisitos

• Permissões obrigatórias

• Escolha um cache

• Criar um token de autenticação hierárquico

Como funciona

As instruções a seguir descrevem como o token de autenticação hierárquico reúne materiais de
criptografia e descriptografia e as diferentes chamadas que o token de autenticação faz para
operações de criptografia e descriptografia. Para obter detalhes técnicos sobre a derivação da chave
de empacotamento e os processos de criptografia da chave de dados em texto simples, consulte
Detalhes técnicos do token de autenticação hierárquico do AWS KMS.

Como funciona 144

AWS Encryption SDK Guia do Desenvolvedor

Criptografar e assinar

O passo a passo a seguir descreve como o token de autenticação hierárquico reúne materiais de
criptografia e obtém uma chave de empacotamento exclusiva.

1. O método de criptografia solicita materiais de criptografia ao token de autenticação hierárquico.
O token de autenticação gera uma chave de dados em texto simples e, em seguida, verifica se
há materiais de ramificação válidos no cache local para gerar a chave de empacotamento. Se
houver materiais de chave de filial válidos, o chaveiro prossegue para a Etapa 4.

2. Se não houver materiais de chave de ramificação válidos, o chaveiro hierárquico consulta o
armazenamento de chaves em busca da chave de ramificação ativa.

a. O armazenamento de chaves faz chamadas AWS KMS para descriptografar a chave de
ramificação ativa e retorna a chave de ramificação ativa em texto simples. Os dados que
identificam a chave de ramificação ativa são serializados para fornecer dados autenticados
adicionais (AAD) na chamada de descriptografia para o AWS KMS.

b. O armazenamento de chaves retorna a chave de ramificação em texto simples e os dados
que a identificam, como a versão da chave de ramificação.

3. O token de autenticação hierárquico reúne materiais de chave de ramificação (a chave de
ramificação em texto simples e a versão da chave de ramificação) e armazena uma cópia deles
no cache local.

4. O token de autenticação hierárquico deriva uma chave de empacotamento exclusiva da
chave de ramificação de texto simples e um sal aleatório de 16 bytes. Ele usa a chave de
encapsulamento derivada para criptografar uma cópia da chave de dados em texto simples.

O método de criptografia usa os materiais de criptografia para criptografar os dados. Para obter mais
informações, consulte Como o AWS Encryption SDK criptografa dados.

Descriptografar e verificar

O passo a passo a seguir descreve como o token de autenticação hierárquico reúne materiais de
descriptografia e descriptografa a chave de dados criptografada.

1. O método de descriptografia identifica a chave de dados criptografada da mensagem
criptografada e a transmite para o token de autenticação hierárquico.

2. O token de autenticação hierárquico desserializa os dados que identificam a chave de
dados criptografada, incluindo a versão da chave de ramificação, o sal de 16 bytes e outras
informações que descrevem como a chave de dados foi criptografada.

Como funciona 145

AWS Encryption SDK Guia do Desenvolvedor

Para obter mais informações, consulte AWS KMS Detalhes técnicos do chaveiro hierárquico.

3. O token de autenticação hierárquico verifica se há materiais de chave de ramificação válidos no
cache local que correspondam à versão da chave de ramificação identificada na Etapa 2. Se
houver materiais de chave de ramificação válidos, o token de autenticação prosseguirá para a
Etapa 6 .

4. Se não houver materiais de chave de ramificação válidos, o chaveiro hierárquico consulta o
armazenamento de chaves em busca da chave de ramificação que corresponde à versão da
chave de ramificação identificada na Etapa 2.

a. O armazenamento de chaves faz chamadas AWS KMS para descriptografar a chave
de ramificação e retorna a chave de ramificação ativa em texto simples. Os dados que
identificam a chave de ramificação ativa são serializados para fornecer dados autenticados
adicionais (AAD) na chamada de descriptografia para o AWS KMS.

b. O armazenamento de chaves retorna a chave de ramificação em texto simples e os dados
que a identificam, como a versão da chave de ramificação.

5. O token de autenticação hierárquico reúne materiais de chave de ramificação (a chave de
ramificação em texto simples e a versão da chave de ramificação) e armazena uma cópia deles
no cache local.

6. O token de autenticação hierárquico usa os materiais de chave de ramificação montados e o sal
de 16 bytes identificado na Etapa 2 para reproduzir a chave de empacotamento exclusiva que
criptografou a chave de dados.

7. O token de autenticação hierárquico usa a chave de encapsulamento reproduzida para
descriptografar a chave de dados e retorna a chave de dados em texto simples.

O método de decodificação usa os materiais de decodificação e a chave de dados de texto simples
para descriptografar a mensagem criptografada. Para obter mais informações, consulte Como o
AWS Encryption SDK decodifica uma mensagem criptografada.

Pré-requisitos

Antes de criar e usar um chaveiro hierárquico, verifique se os seguintes pré-requisitos foram
atendidos.

• Você, ou o administrador do armazenamento de chaves, criou um armazenamento de chaves e
criou pelo menos uma chave de ramificação ativa.

Pré-requisitos 146

AWS Encryption SDK Guia do Desenvolvedor

• Você configurou suas principais ações de armazenamento.

Note

A forma como você configura suas ações de armazenamento de chaves determina quais
operações você pode realizar e quais chaves KMS o chaveiro hierárquico pode usar. Para
obter mais informações, consulte Principais ações do armazenamento.

• Você tem as AWS KMS permissões necessárias para acessar e usar as chaves de
armazenamento e ramificação de chaves. Para obter mais informações, consulte the section called
“Permissões obrigatórias”.

• Você analisou os tipos de cache compatíveis e configurou o tipo de cache que melhor atende às
suas necessidades. Para obter mais informações, consulte the section called “Escolha um cache”.

Permissões obrigatórias

O AWS Encryption SDK não requer um Conta da AWS e não depende de nenhum AWS service
(Serviço da AWS). No entanto, para usar um chaveiro hierárquico, você precisa de uma Conta da
AWS e das seguintes permissões mínimas sobre a (s) criptografia AWS KMS key(ões) simétrica (s)
em seu armazenamento de chaves.

• Para criptografar e descriptografar dados com o chaveiro hierárquico, você precisa do
KMS:Decrypt.

• Para criar e girar chaves de ramificação, você precisa de kms: GenerateDataKeyWithoutPlaintext e
kms:. ReEncrypt

Para obter mais informações sobre como controlar o acesso às chaves da filial e ao armazenamento
de chaves, consultethe section called “Implementação de permissões de privilégio mínimo”.

Escolha um cache

O chaveiro hierárquico reduz o número de chamadas feitas ao AWS KMS armazenar em cache
localmente os materiais de chave de ramificação usados nas operações de criptografia e
descriptografia. Antes de criar seu chaveiro hierárquico, você precisa decidir que tipo de cache
deseja usar. Você pode usar o cache padrão ou personalizar o cache para melhor atender às suas
necessidades.

Permissões obrigatórias 147

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Guia do Desenvolvedor

O chaveiro hierárquico suporta os seguintes tipos de cache:

• the section called “Cache padrão”

• the section called “MultiThreaded cache”

• the section called “StormTracking cache”

• the section called “Cache compartilhado”

Important

Todos os tipos de cache compatíveis foram projetados para suportar ambientes de vários
processos.
No entanto, quando usado com o AWS Encryption SDK for Python, o chaveiro hierárquico
não oferece suporte a ambientes multiencadeados. Para obter mais informações, consulte o
arquivo Python README.rst no repositório -library em. aws-cryptographic-material-providers
GitHub

Cache padrão

Para a maioria dos usuários, o cache Default atende aos requisitos de segmentação. O cache
Default foi projetado para oferecer suporte a ambientes com muitos threads. Quando uma entrada
de materiais de chave de ramificação expira, o cache padrão impede que vários segmentos
sejam chamados, AWS KMS notificando um segmento de que a entrada de materiais de chave de
ramificação expirará com 10 segundos de antecedência. Isso garante que somente um thread envie
uma solicitação AWS KMS para atualizar o cache.

O padrão e StormTracking os caches oferecem suporte ao mesmo modelo de segmentação,
mas você só precisa especificar a capacidade de entrada para usar o cache padrão. Para
personalizações de cache mais granulares, use o. the section called “StormTracking cache”

A menos que você queira personalizar o número de entradas de materiais de chave de ramificação
que podem ser armazenadas no cache local, você não precisa especificar um tipo de cache ao criar
o chaveiro hierárquico. Se você não especificar um tipo de cache, o chaveiro hierárquico usa o tipo
de cache padrão e define a capacidade de entrada como 1000.

Para personalizar o cache padrão, especifique os seguintes valores:

Escolha um cache 148

https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main

AWS Encryption SDK Guia do Desenvolvedor

• Capacidade de entrada: limita o número de entradas de materiais de chave da ramificação que
podem ser armazenadas no cache local.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Python

default_cache = CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100
)
)

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

Go

cache := mpltypes.CacheTypeMemberDefault{
 Value: mpltypes.DefaultCache{
 EntryCapacity: 100,
 },
 }

Escolha um cache 149

AWS Encryption SDK Guia do Desenvolvedor

MultiThreaded cache

O MultiThreaded cache é seguro para uso em ambientes com vários processos, mas não fornece
nenhuma funcionalidade para minimizar as chamadas do Amazon AWS KMS DynamoDB. Como
resultado, quando uma entrada de materiais de chave de ramificação expirar, todos os tópicos serão
notificados ao mesmo tempo. Isso pode resultar em várias AWS KMS chamadas para atualizar o
cache.

Para usar o MultiThreaded cache, especifique os seguintes valores:

• Capacidade de entrada: limita o número de entradas de materiais de chave da ramificação que
podem ser armazenadas no cache local.

• Tamanho de entrada de limpeza de tail: define o número de entradas a serem limpas se a
capacidade de entrada for atingida.

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }
};

Python

multithreaded_cache = CacheTypeMultiThreaded(
 value=MultiThreadedCache(
 entry_capacity=100,
 entry_pruning_tail_size=1

Escolha um cache 150

AWS Encryption SDK Guia do Desenvolvedor

)
)

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

Go

var entryPruningTailSize int32 = 1
 cache := mpltypes.CacheTypeMemberMultiThreaded{
 Value: mpltypes.MultiThreadedCache{
 EntryCapacity: 100,
 EntryPruningTailSize: &entryPruningTailSize,
 },
 }

StormTracking cache

O StormTracking cache foi projetado para suportar ambientes altamente multisegmentados. Quando
uma entrada de materiais de chave de ramificação expira, o StormTracking cache impede que vários
segmentos sejam chamados AWS KMS notificando um segmento de que a entrada de materiais de
chave de ramificação expirará com antecedência. Isso garante que somente um thread envie uma
solicitação AWS KMS para atualizar o cache.

Para usar o StormTracking cache, especifique os seguintes valores:

• Capacidade de entrada: limita o número de entradas de materiais de chave da ramificação que
podem ser armazenadas no cache local.

Valor padrão: 1000 entradas

• Tamanho de entrada de limpeza de tail: define o número de entradas de materiais de chave da
ramificação a serem limpas por vez.

Valor padrão: 1 entrada

Escolha um cache 151

AWS Encryption SDK Guia do Desenvolvedor

• Período de carência: define o número de segundos antes da expiração em que é feita uma
tentativa de atualizar os materiais de chave da ramificação.

Valor padrão: 10 segundos

• Intervalo de carência: define o número de segundos entre as tentativas de atualizar os materiais de
chave da ramificação.

Valor padrão: 1 segundo

• Fan out: define o número de tentativas simultâneas que podem ser feitas para atualizar os
materiais de chave da ramificação.

Valor padrão: 20 tentativas

• Tempo de ativação (TTL) em trânsito: define o número de segundos até que uma tentativa de
atualizar os materiais de chave de ramificação atinja o tempo limite. Sempre que o cache retorna
NoSuchEntry em resposta a GetCacheEntry, essa chave de ramificação é considerada em
trânsito até que a mesma chave seja gravada com uma entrada PutCache.

Valor padrão: 10 segundos

• Suspensão: define o número de milissegundos em que um thread deve dormir se fanOut for
excedido.

Valor padrão: 20 milissegundos

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType

Escolha um cache 152

AWS Encryption SDK Guia do Desenvolvedor

{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Python

storm_tracking_cache = CacheTypeStormTracking(
 value=StormTrackingCache(
 entry_capacity=100,
 entry_pruning_tail_size=1,
 fan_out=20,
 grace_interval=1,
 grace_period=10,
 in_flight_ttl=10,
 sleep_milli=20
)
)

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Go

var entryPruningTailSize int32 = 1

Escolha um cache 153

AWS Encryption SDK Guia do Desenvolvedor

 cache := mpltypes.CacheTypeMemberStormTracking{
 Value: mpltypes.StormTrackingCache{
 EntryCapacity: 100,
 EntryPruningTailSize: &entryPruningTailSize,
 GraceInterval: 1,
 GracePeriod: 10,
 FanOut: 20,
 InFlightTTL: 10,
 SleepMilli: 20,
 },
 }

Cache compartilhado

Por padrão, o chaveiro hierárquico cria um novo cache local toda vez que você instancia o chaveiro.
No entanto, o cache compartilhado pode ajudar a conservar memória, permitindo que você
compartilhe um cache em vários chaveiros hierárquicos. Em vez de criar um novo cache de materiais
criptográficos para cada chaveiro hierárquico que você instancia, o cache compartilhado armazena
somente um cache na memória, que pode ser usado por todos os chaveiros hierárquicos que fazem
referência a ele. O cache compartilhado ajuda a otimizar o uso da memória, evitando a duplicação
de materiais criptográficos nos chaveiros. Em vez disso, os chaveiros hierárquicos podem acessar o
mesmo cache subjacente, reduzindo o consumo geral de memória.

Ao criar seu cache compartilhado, você ainda define o tipo de cache. Você pode especificar um
the section called “Cache padrão”the section called “MultiThreaded cache”, ou the section called
“StormTracking cache” como o tipo de cache ou substituir qualquer cache personalizado compatível.

Partições

Vários chaveiros hierárquicos podem usar um único cache compartilhado. Ao criar um chaveiro
hierárquico com um cache compartilhado, você pode definir uma ID de partição opcional. O ID
da partição distingue qual chaveiro hierárquico está sendo gravado no cache. Se dois chaveiros
hierárquicos fizerem referência ao mesmo ID de partição e ID de chave de ramificaçãological key
store name, os dois chaveiros compartilharão as mesmas entradas de cache no cache. Se você criar
dois chaveiros hierárquicos com o mesmo cache compartilhado, mas com uma partição diferente
IDs, cada chaveiro acessará somente as entradas do cache de sua própria partição designada no
cache compartilhado. As partições atuam como divisões lógicas dentro do cache compartilhado,

Escolha um cache 154

AWS Encryption SDK Guia do Desenvolvedor

permitindo que cada chaveiro hierárquico opere de forma independente em sua própria partição
designada, sem interferir nos dados armazenados na outra partição.

Se você pretende reutilizar ou compartilhar as entradas de cache em uma partição, você deve definir
seu próprio ID de partição. Quando você passa a ID da partição para seu chaveiro hierárquico, o
chaveiro pode reutilizar as entradas de cache que já estão presentes no cache compartilhado, em
vez de precisar recuperar e reautorizar os materiais da chave de ramificação novamente. Se você
não especificar uma ID de partição, uma ID de partição exclusiva será automaticamente atribuída ao
chaveiro toda vez que você instanciar o chaveiro hierárquico.

Os procedimentos a seguir demonstram como criar um cache compartilhado com o tipo de cache
padrão e passá-lo para um chaveiro hierárquico.

1. Crie um CryptographicMaterialsCache (CMC) usando a Material Providers Library (MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())
 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

Escolha um cache 155

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100,
)
)

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
 cache=cache,
)

shared_cryptographic_materials_cache =
 mat_prov.create_cryptographic_materials_cache(
 cryptographic_materials_cache_input
)

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(

Escolha um cache 156

AWS Encryption SDK Guia do Desenvolvedor

 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
 Value: mpltypes.DefaultCache{
 EntryCapacity: 100,
 },
}

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
 Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
 matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCacheInput)
if err != nil {

Escolha um cache 157

AWS Encryption SDK Guia do Desenvolvedor

 panic(err)
}

2. Crie um CacheType objeto para o cache compartilhado.

Passe o sharedCryptographicMaterialsCache que você criou na Etapa 1 para o novo
CacheType objeto.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
 value=shared_cryptographic_materials_cache
)

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache :=
 mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

Escolha um cache 158

AWS Encryption SDK Guia do Desenvolvedor

3. Passe o sharedCache objeto da Etapa 2 para seu chaveiro hierárquico.

Ao criar um chaveiro hierárquico com um cache compartilhado, você pode, opcionalmente,
definir um partitionID para compartilhar entradas de cache em vários chaveiros hierárquicos.
Se você não especificar uma ID de partição, o chaveiro hierárquico atribuirá automaticamente ao
chaveiro uma ID de partição exclusiva.

Note

Seus chaveiros hierárquicos compartilharão as mesmas entradas de cache em um
cache compartilhado se você criar dois ou mais chaveiros que façam referência ao
mesmo ID de partição e ID de chave de logical key store name ramificação. Se você não
quiser que vários chaveiros compartilhem as mesmas entradas de cache, use uma ID de
partição exclusiva para cada chaveiro hierárquico.

O exemplo a seguir cria um chaveiro hierárquico com um branch key ID supplier limite
de cache de 600 segundos. Para obter mais informações sobre os valores definidos na
seguinte configuração de chaveiro hierárquico, consulte. the section called “Criar um token de
autenticação hierárquico”

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

Escolha um cache 159

AWS Encryption SDK Guia do Desenvolvedor

 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring
keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id_supplier=branch_key_id_supplier,
 ttl_seconds=600,
 cache=shared_cache,
 partition_id=partition_id
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

Escolha um cache 160

AWS Encryption SDK Guia do Desenvolvedor

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore1,
 BranchKeyId: &branchKeyId,
 TtlSeconds: 600,
 Cache: &shared_cache,
 PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

Criar um token de autenticação hierárquico

Para criar um chaveiro hierárquico, você deve fornecer os seguintes valores:

• Um nome de armazenamento de chaves

O nome da tabela do DynamoDB que você, ou o administrador do armazenamento de chaves,
criou para servir como seu armazenamento de chaves.

•

Um tempo de vida do cache (TTL)

A quantidade de tempo, em segundos, em que uma entrada de materiais de chave de ramificação
no cache local pode ser usada antes de expirar. O limite de cache TTL determina a frequência com
que o cliente liga AWS KMS para autorizar o uso das chaves de ramificação. Este valor deve ser
maior que zero. Depois que o limite de cache TTL expirar, a entrada nunca será atendida e será
removida do cache local.

• Um identificador de chave de ramificação

Você pode configurar estaticamente o branch-key-id que identifica uma única chave de
ramificação ativa em seu armazenamento de chaves ou fornecer um fornecedor de ID de chave de
filial.

Criar um token de autenticação hierárquico 161

AWS Encryption SDK Guia do Desenvolvedor

O fornecedor da ID da chave de filial usa os campos armazenados no contexto de criptografia para
determinar qual chave de filial é necessária para descriptografar um registro.

É altamente recomendável usar um fornecedor de ID de chave de filial para bancos de dados
de vários locatários em que cada inquilino tenha sua própria chave de filial. Você pode usar o
fornecedor da ID da chave da filial para criar um nome amigável para a chave da filial, IDs a fim
de facilitar o reconhecimento da ID correta da chave da filial para um inquilino específico. Por
exemplo, o nome amigável permite que você se refira a uma chave de ramificação como tenant1
em vez de b3f61619-4d35-48ad-a275-050f87e15122.

Para operações de descriptografia, você pode configurar estaticamente um único token de
autenticação hierárquico para restringir a descriptografia a um único locatário ou usar o fornecedor
da ID da chave da ramificação para identificar qual locatário é responsável por descriptografar um
registro.

• (Opcional) Um cache

Se você quiser personalizar o tipo de cache ou o número de entradas de materiais de chave
de ramificação que podem ser armazenadas no cache local, especifique o tipo de cache e a
capacidade de entrada ao inicializar o token de autenticação.

O chaveiro hierárquico suporta os seguintes tipos de cache: Padrão, MultiThreaded
StormTracking, e Compartilhado. Para obter mais informações e exemplos que demonstram como
definir cada tipo de cache, consultethe section called “Escolha um cache”.

Se você não especificar um cache, o token de autenticação hierárquico usará automaticamente o
tipo de cache Default e definirá a capacidade de entrada como 1000.

• (Opcional) Uma ID de partição

Se você especificar othe section called “Cache compartilhado”, você pode, opcionalmente, definir
uma ID de partição. O ID da partição distingue qual chaveiro hierárquico está sendo gravado
no cache. Se você pretende reutilizar ou compartilhar as entradas de cache em uma partição,
você deve definir seu próprio ID de partição. Você pode especificar qualquer string para o ID
da partição. Se você não especificar uma ID de partição, uma ID de partição exclusiva será
automaticamente atribuída ao chaveiro na criação.

Para obter mais informações, consulte Partitions.

Criar um token de autenticação hierárquico 162

AWS Encryption SDK Guia do Desenvolvedor

Note

Seus chaveiros hierárquicos compartilharão as mesmas entradas de cache em um cache
compartilhado se você criar dois ou mais chaveiros que façam referência ao mesmo ID
de partição e ID de chave de logical key store name ramificação. Se você não quiser que
vários chaveiros compartilhem as mesmas entradas de cache, use uma ID de partição
exclusiva para cada chaveiro hierárquico.

• (Opcional) Uma lista de Tokens de Concessão

Se você controlar o acesso à chave do KMS no token de autenticação hierárquico com
concessões, deverá fornecer todos os tokens de concessão necessários ao inicializar o token de
autenticação.

Crie um chaveiro hierárquico com uma ID de chave de ramificação estática

Os exemplos a seguir demonstram como criar um chaveiro hierárquico com um ID de chave de
ramificação estáticothe section called “Cache padrão”, o e um TTL de limite de cache de 600
segundos.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

Criar um token de autenticação hierárquico 163

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Guia do Desenvolvedor

 KeyStore = keystore,
 BranchKeyId = branch-key-id,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id=branch_key_id,
 ttl_seconds=600
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store.clone())
 .branch_key_id(branch_key_id)
 .ttl_seconds(600)
 .send()
 .await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{

Criar um token de autenticação hierárquico 164

AWS Encryption SDK Guia do Desenvolvedor

 KeyStore: keyStore,
 BranchKeyId: &branchKeyID,
 TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

Crie um chaveiro hierárquico com um fornecedor de ID de chave de filial

Os procedimentos a seguir demonstram como criar um chaveiro hierárquico com um fornecedor de
ID de chave de filial.

1. Crie um fornecedor de ID de chave de filial

O exemplo a seguir cria nomes amigáveis para duas chaves de ramificação e faz chamadas
CreateDynamoDbEncryptionBranchKeyIdSupplier para criar um fornecedor de ID de
chave de filial.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))

Criar um token de autenticação hierárquico 165

AWS Encryption SDK Guia do Desenvolvedor

 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
 tenant_1_id=branch_key_id_a,
 tenant_2_id=branch_key_id_b,
)

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier::new(
 &branch_key_id_a,
 &branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name

Criar um token de autenticação hierárquico 166

AWS Encryption SDK Guia do Desenvolvedor

keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

2. Criar um token de autenticação hierárquico

Os exemplos a seguir inicializam um chaveiro hierárquico com o fornecedor de ID de chave
de filial criado na Etapa 1, um limite de cache TLL de 600 segundos e um tamanho máximo de
cache de 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Criar um token de autenticação hierárquico 167

AWS Encryption SDK Guia do Desenvolvedor

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id_supplier=branch_key_id_supplier,
 ttl_seconds=600,
 cache=CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100
)
),
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store.clone())
 .branch_key_id_supplier(branch_key_id_supplier)
 .ttl_seconds(600)
 .send()
 .await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore,
 BranchKeyIdSupplier: &keySupplier,
 TtlSeconds: 600,
}

Criar um token de autenticação hierárquico 168

AWS Encryption SDK Guia do Desenvolvedor

hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

AWS KMS chaveiros ECDH

Um chaveiro AWS KMS ECDH usa um acordo de chave assimétrica AWS KMS keyspara derivar
uma chave de embalagem simétrica compartilhada entre duas partes. Primeiro, o chaveiro usa
o algoritmo de acordo de chaves Elliptic Curve Diffie-Hellman (ECDH) para derivar um segredo
compartilhado da chave privada no par de chaves KMS do remetente e da chave pública do
destinatário. Em seguida, o chaveiro usa o segredo compartilhado para derivar a chave de
empacotamento compartilhada que protege suas chaves de criptografia de dados. A função de
derivação de chave que o AWS Encryption SDK usa (KDF_CTR_HMAC_SHA384) para derivar a chave
de empacotamento compartilhada está em conformidade com as recomendações do NIST para
derivação de chaves.

A função de derivação de chave retorna 64 bytes de material de chaveamento. Para garantir que
ambas as partes usem o material de codificação correto, AWS Encryption SDK usam os primeiros
32 bytes como chave de compromisso e os últimos 32 bytes como chave de empacotamento
compartilhada. Na descriptografia, se o chaveiro não puder reproduzir a mesma chave de
compromisso e chave de encapsulamento compartilhada armazenadas no texto cifrado do cabeçalho
da mensagem, a operação falhará. Por exemplo, se você criptografar dados com um chaveiro
configurado com a chave privada de Alice e a chave pública de Bob, um chaveiro configurado com
a chave privada de Bob e a chave pública de Alice reproduzirá a mesma chave de compromisso
e chave de empacotamento compartilhada e poderá descriptografar os dados. Se a chave pública
de Bob não for de um par de chaves KMS, Bob poderá criar um chaveiro ECDH bruto para
descriptografar os dados.

O chaveiro AWS KMS ECDH criptografa os dados com uma chave simétrica usando o AES-GCM. A
chave de dados é então criptografada em envelope com a chave de empacotamento compartilhada
derivada usando o AES-GCM. Cada chaveiro AWS KMS ECDH pode ter apenas uma chave de
embrulho compartilhada, mas você pode incluir vários chaveiros AWS KMS ECDH, sozinhos ou com
outros chaveiros, em um chaveiro múltiplo.

Compatibilidade com linguagens de programação

AWS KMS chaveiros ECDH 169

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Guia do Desenvolvedor

O chaveiro AWS KMS ECDH foi introduzido na versão 1.5.0 da Biblioteca de Provedores de Material
Criptográfico (MPL) e é suportado pelas seguintes linguagens e versões de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência opcional do
MPL.

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Tópicos

• Permissões necessárias para AWS KMS chaveiros ECDH

• Criando um AWS KMS chaveiro ECDH

• Criando um AWS KMS chaveiro de descoberta ECDH

Permissões necessárias para AWS KMS chaveiros ECDH

AWS Encryption SDK Não requer uma AWS conta e não depende de nenhum AWS serviço. No
entanto, para usar um chaveiro AWS KMS ECDH, você precisa de uma AWS conta e das seguintes
permissões mínimas AWS KMS keys no seu chaveiro. As permissões variam de acordo com o
esquema de contrato de chaves que você usa.

• Para criptografar e descriptografar dados usando o esquema de contrato de
KmsPrivateKeyToStaticPublicKey chave, você precisa de kms: GetPublicKey e kms:
DeriveSharedSecret no par de chaves KMS assimétrico do remetente. Se você fornecer
diretamente a chave pública codificada em DER do remetente ao instanciar seu chaveiro,
precisará apenas da DeriveSharedSecret permissão kms: no par de chaves KMS assimétrico do
remetente.

• Para descriptografar dados usando o esquema de contrato de KmsPublicKeyDiscovery
chaves, você precisa das GetPublicKey permissões kms: DeriveSharedSecret e kms: no par de
chaves assimétrico KMS especificado.

Permissões necessárias para AWS KMS chaveiros ECDH 170

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Guia do Desenvolvedor

Criando um AWS KMS chaveiro ECDH

Para criar um chaveiro AWS KMS ECDH que criptografe e descriptografe dados, você deve usar o
esquema de contrato de chave. KmsPrivateKeyToStaticPublicKey Para inicializar um chaveiro
AWS KMS ECDH com o esquema de contrato de KmsPrivateKeyToStaticPublicKey chaves,
forneça os seguintes valores:

• ID do remetente AWS KMS key

Deve identificar um par de chaves KMS de curva elíptica (ECC) assimétrica recomendado pelo
NIST com um valor de. KeyUsage KEY_AGREEMENT A chave privada do remetente é usada para
derivar o segredo compartilhado.

• (Opcional) Chave pública do remetente

Deve ser uma chave pública X.509 codificada por DER, também conhecida como
SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

A AWS KMS GetPublicKeyoperação retorna a chave pública de um par de chaves KMS
assimétrico no formato codificado em DER exigido.

Para reduzir o número de AWS KMS chamadas que seu chaveiro faz, você pode fornecer
diretamente a chave pública do remetente. Se nenhum valor for fornecido para a chave pública do
remetente, o chaveiro liga AWS KMS para recuperar a chave pública do remetente.

• Chave pública do destinatário

Você deve fornecer a chave pública X.509 codificada em DER do destinatário, também conhecida
como SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

A AWS KMS GetPublicKeyoperação retorna a chave pública de um par de chaves KMS
assimétrico no formato codificado em DER exigido.

• Especificação da curva

Identifica a especificação da curva elíptica nos pares de chaves especificados. Os pares de chaves
do remetente e do destinatário devem ter a mesma especificação de curva.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Opcional) Uma lista de Tokens de Concessão

Criando um AWS KMS chaveiro ECDH 171

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Guia do Desenvolvedor

Se você controlar o acesso à chave KMS em seu chaveiro AWS KMS ECDH com concessões,
deverá fornecer todos os tokens de concessão necessários ao inicializar o chaveiro.

C# / .NET

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente, a chave
pública do remetente e a chave pública do destinatário. Este exemplo usa o SenderPublicKey
parâmetro opcional para fornecer a chave pública do remetente. Se você não fornecer a chave
pública do remetente, o chaveiro liga AWS KMS para recuperar a chave pública do remetente. Os
pares de chaves do remetente e do destinatário estão na ECC_NIST_P256 curva.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Criando um AWS KMS chaveiro ECDH 172

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Guia do Desenvolvedor

Java

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente, a chave
pública do remetente e a chave pública do destinatário. Este exemplo usa o senderPublicKey
parâmetro opcional para fornecer a chave pública do remetente. Se você não fornecer a chave
pública do remetente, o chaveiro liga AWS KMS para recuperar a chave pública do remetente. Os
pares de chaves do remetente e do destinatário estão na ECC_NIST_P256 curva.

// Retrieve public keys
// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Python

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente, a chave
pública do remetente e a chave pública do destinatário. Este exemplo usa o senderPublicKey
parâmetro opcional para fornecer a chave pública do remetente. Se você não fornecer a chave
pública do remetente, o chaveiro liga AWS KMS para recuperar a chave pública do remetente. Os
pares de chaves do remetente e do destinatário estão na ECC_NIST_P256 curva.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateAwsKmsEcdhKeyringInput,

Criando um AWS KMS chaveiro ECDH 173

AWS Encryption SDK Guia do Desenvolvedor

 KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
 KmsPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Retrieve public keys
Must be DER-encoded X.509 public keys
bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring
sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
 kms_client = boto3.client('kms', region_name="us-west-2"),
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput(
 sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 sender_public_key = bob_public_key,
 recipient_public_key = alice_public_key,

)
)
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust

O exemplo a seguir cria um chaveiro AWS KMS ECDH com a chave KMS do remetente,
a chave pública do remetente e a chave pública do destinatário. Este exemplo usa o
sender_public_key parâmetro opcional para fornecer a chave pública do remetente. Se você
não fornecer a chave pública do remetente, o chaveiro liga AWS KMS para recuperar a chave
pública do remetente.

Criando um AWS KMS chaveiro ECDH 174

AWS Encryption SDK Guia do Desenvolvedor

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

Criando um AWS KMS chaveiro ECDH 175

AWS Encryption SDK Guia do Desenvolvedor

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {

Criando um AWS KMS chaveiro ECDH 176

AWS Encryption SDK Guia do Desenvolvedor

 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)
if err != nil {
 panic(err)
}
publicKeyRecipient, err :=
 utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
 RecipientPublicKey: publicKeyRecipient,
 SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
 SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
 &mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
 Value: kmsEcdhStaticConfigurationInput,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

Criando um AWS KMS chaveiro ECDH 177

AWS Encryption SDK Guia do Desenvolvedor

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: kmsEcdhStaticConfiguration,
 KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
 awsKmsEcdhKeyringInput)
if err != nil {
 panic(err)
}

Criando um AWS KMS chaveiro de descoberta ECDH

Ao descriptografar, é uma prática recomendada especificar as chaves que eles podem usar. AWS
Encryption SDK Para seguir essa prática recomendada, use um chaveiro AWS KMS ECDH com
o esquema de contrato de KmsPrivateKeyToStaticPublicKey chaves. No entanto, você
também pode criar um chaveiro de descoberta AWS KMS ECDH, ou seja, um chaveiro AWS KMS
ECDH que pode descriptografar qualquer mensagem em que a chave pública do par de chaves
KMS especificado corresponda à chave pública do destinatário armazenada no texto cifrado da
mensagem.

Important

Ao descriptografar mensagens usando o esquema de contrato de
KmsPublicKeyDiscovery chave, você aceita todas as chaves públicas,
independentemente de quem as possua.

Para inicializar um chaveiro AWS KMS ECDH com o esquema de contrato de
KmsPublicKeyDiscovery chaves, forneça os seguintes valores:

• AWS KMS key ID do destinatário

Deve identificar um par de chaves KMS de curva elíptica (ECC) assimétrica recomendado pelo
NIST com um valor de. KeyUsage KEY_AGREEMENT

• Especificação da curva

Criando um AWS KMS chaveiro de descoberta ECDH 178

AWS Encryption SDK Guia do Desenvolvedor

Identifica a especificação da curva elíptica no par de chaves KMS do destinatário.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Opcional) Uma lista de Tokens de Concessão

Se você controlar o acesso à chave KMS em seu chaveiro AWS KMS ECDH com concessões,
deverá fornecer todos os tokens de concessão necessários ao inicializar o chaveiro.

C# / .NET

O exemplo a seguir cria um chaveiro de descoberta AWS KMS ECDH com um par de chaves
KMS na curva. ECC_NIST_P256 Você deve ter as DeriveSharedSecret permissões kms:
GetPublicKey e kms: no par de chaves KMS especificado. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave pública do par de chaves KMS especificado corresponda à
chave pública do destinatário armazenada no texto cifrado da mensagem.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Criando um AWS KMS chaveiro de descoberta ECDH 179

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Guia do Desenvolvedor

Java

O exemplo a seguir cria um chaveiro de descoberta AWS KMS ECDH com um par de chaves
KMS na curva. ECC_NIST_P256 Você deve ter as DeriveSharedSecret permissões kms:
GetPublicKey e kms: no par de chaves KMS especificado. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave pública do par de chaves KMS especificado corresponda à
chave pública do destinatário armazenada no texto cifrado da mensagem.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Python

O exemplo a seguir cria um chaveiro de descoberta AWS KMS ECDH com um par de chaves
KMS na curva. ECC_NIST_P256 Você deve ter as DeriveSharedSecret permissões kms:
GetPublicKey e kms: no par de chaves KMS especificado. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave pública do par de chaves KMS especificado corresponda à
chave pública do destinatário armazenada no texto cifrado da mensagem.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateAwsKmsEcdhKeyringInput,
 KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
 KmsPublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()

Criando um AWS KMS chaveiro de descoberta ECDH 180

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Guia do Desenvolvedor

)

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(
 kms_client = boto3.client('kms', region_name="us-west-2"),
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput(
 recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)
)
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

Criando um AWS KMS chaveiro de descoberta ECDH 181

AWS Encryption SDK Guia do Desenvolvedor

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)

Criando um AWS KMS chaveiro de descoberta ECDH 182

AWS Encryption SDK Guia do Desenvolvedor

}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
 RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
 &mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
 Value: kmsEcdhDiscoveryStaticConfigurationInput,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
 KmsClient: kmsClient,
}
awsKmsEcdhDiscoveryKeyring, err :=
 matProv.CreateAwsKmsEcdhKeyring(context.Background(),
 awsKmsEcdhDiscoveryKeyringInput)
if err != nil {
 panic(err)
}

Criando um AWS KMS chaveiro de descoberta ECDH 183

AWS Encryption SDK Guia do Desenvolvedor

Tokens de autenticação AES Raw

O AWS Encryption SDK permite que você use uma chave simétrica AES que você fornece como
uma chave de empacotamento que protege sua chave de dados. Você precisa gerar, armazenar
e proteger o material de chaves, de preferência em um módulo de segurança de hardware (HSM)
ou em um sistema de gerenciamento de chaves. Use um token de autenticação AES bruto quando
precisar fornecer a chave de empacotamento e criptografar as chaves de dados local ou offline.

O token de autenticação bruto do AES usa o algoritmo AES-GCM e uma chave de empacotamento
que você especifica como uma matriz de bytes para criptografar chaves de dados. É possível
especificar somente uma chave de encapsulamento em cada token de autenticação bruto do AES,
mas você pode incluir vários tokens de autenticação brutos do AES, sozinhos ou com outros tokens
de autenticação, em um multitoken de autenticação.

O chaveiro AES bruto é equivalente e interopera com a JceMasterKeyclasse no AWS Encryption
SDK for Java e com a RawMasterKeyclasse no AWS Encryption SDK for Python quando são
usados com chaves de criptografia AES. Você pode criptografar dados com uma implementação e
descriptografá-los com qualquer outra implementação usando a mesma chave de encapsulamento.
Para obter detalhes, consulte Compatibilidade dos tokens de autenticação.

Nomes e namespaces de chaves

Para identificar a chave AES em um token de autenticação, o token de autenticação bruto do AES
usa um namespace de chave e um nome de chave fornecidos por você. Esses valores não são
secretos. Eles aparecem em texto simples no cabeçalho da mensagem criptografada que a operação
de criptografia retorna. Recomendamos usar um namespace de chave em seu HSM ou sistema de
gerenciamento de chaves e um nome de chave que identifique a chave AES nesse sistema.

Note

O namespace da chave e o nome da chave são equivalentes aos campos ID do provedor (ou
provedor) e ID da chave no JceMasterKey e no RawMasterKey.
O AWS Encryption SDK for C e AWS Encryption SDK para.NET reserva o valor do
namespace aws-kms chave para as chaves KMS. Não use esse valor de namespace em
um token de autenticação AES bruto ou um token de autenticação RSA bruto com essas
bibliotecas.

Tokens de autenticação AES Raw 184

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Guia do Desenvolvedor

Se você cria tokens de autenticação diferentes para criptografar e descriptografar determinada
mensagem, o namespace e os valores do nome são cruciais. Se o namespace e o nome da chave
no token de autenticação de decodificação não corresponderem exatamente e com distinção
entre maiúsculas e minúsculas ao namespace e ao nome da chave no token de autenticação de
criptografia, o token de autenticação de decodificação não será usado, mesmo que os bytes do
material da chave sejam idênticos.

Por exemplo, é possível definir um token de autenticação AES bruto com namespace HSM_01 e
nome de chave AES_256_012. Em seguida, você usa esse token de autenticação para criptografar
alguns dados. Para descriptografar esses dados, construa um token de autenticação bruto do AES
bruto com o mesmo namespace de chave, nome de chave e material de chave.

O exemplo a seguir mostra como criar um token de autenticação bruto do AES. A variável
AESWrappingKey representa o material principal que você fornece.

C

Para instanciar um chaveiro AES bruto no AWS Encryption SDK for C, use.
aws_cryptosdk_raw_aes_keyring_new() Para obter um exemplo completo, consulte
raw_aes_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");

struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
 alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
 wrapping_key_len);

C# / .NET

Para criar um chaveiro AES bruto AWS Encryption SDK para o.NET, use o
materialProviders.CreateRawAesKeyring() método. Para ver um exemplo completo,
consulte Raw AESKeyring Example.cs.

O exemplo a seguir usa a versão 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Tokens de autenticação AES Raw 185

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs

AWS Encryption SDK Guia do Desenvolvedor

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = aesWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

O AWS Encryption SDK para JavaScript no navegador obtém suas primitivas
criptográficas da WebCryptoAPI. Antes de construir o chaveiro, você deve usá-lo
RawAesKeyringWebCrypto.importCryptoKey() para importar o material bruto da chave
para o WebCrypto backend. Isso garante que o chaveiro esteja completo, mesmo que todas as
chamadas sejam WebCrypto assíncronas.

Em seguida, para instanciar um token de autenticação AES bruto, use o método
RawAesKeyringWebCrypto(). Você deve especificar o algoritmo de encapsulamento AES
(“pacote de encapsulamento”) com base no tamanho do seu material de chave. Para obter um
exemplo completo, consulte aes_simple.ts (Browser). JavaScript

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 RawAesWrappingSuiteIdentifier,
 RawAesKeyringWebCrypto,

Tokens de autenticação AES Raw 186

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

 synchronousRandomValues,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
 RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
 rawAesKey,
 wrappingSuite
)

const rawAesKeyring = new RawAesKeyringWebCrypto({
 keyName,
 keyNamespace,
 wrappingSuite,
 aesWrappingKey
})

JavaScript Node.js

Para instanciar um chaveiro AES bruto no AWS Encryption SDK para JavaScript for Node.js,
crie uma instância da classe. RawAesKeyringNode Você deve especificar o algoritmo de
encapsulamento AES (“pacote de encapsulamento”) com base no tamanho do seu material de
chave. Para obter um exemplo completo, consulte aes_simple.ts (Node.js). JavaScript

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 RawAesKeyringNode,

Tokens de autenticação AES Raw 187

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

 buildClient,
 CommitmentPolicy,
 RawAesWrappingSuiteIdentifier,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
 RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
 keyName,
 keyNamespace,
 aesWrappingKey,
 wrappingSuite,
})

Java

Para instanciar um chaveiro AES bruto no AWS Encryption SDK for Java, use.
matProv.CreateRawAesKeyring()

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

O exemplo a seguir instancia o AWS Encryption SDK cliente com a política de compromisso
padrão,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para ver um exemplo completo, consulte
raw_aes_keyring_example.py no AWS Encryption SDK for Python repositório em GitHub.

Tokens de autenticação AES Raw 188

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK Guia do Desenvolvedor

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_012"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create Raw AES keyring
keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=AESWrappingKey,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";

Tokens de autenticação AES Raw 189

AWS Encryption SDK Guia do Desenvolvedor

let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Go

import (
 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)

Tokens de autenticação AES Raw 190

AWS Encryption SDK Guia do Desenvolvedor

}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"
var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}
// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: aesWrappingKey,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
if err != nil {
 panic(err)
}

Tokens de autenticação brutos do RSA

O token de autenticação bruto do RSA realiza a criptografia e a descriptografia assimétricas das
chaves de dados na memória local com chaves de encapsulamento pública e privada fornecidas.
Você precisa gerar, armazenar e proteger a chave privada, de preferência em um módulo de
segurança de hardware (HSM) ou com o sistema de gerenciamento de chaves. A função de
criptografia criptografa a chave de dados com chave pública do RSA. A função de descriptografia
descriptografa a chave de dados usando a chave privada. Você pode selecionar entre os vários
modos de padding do RSA.

Tokens de autenticação brutos do RSA 191

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h

AWS Encryption SDK Guia do Desenvolvedor

Um token de autenticação bruto do RSA que criptografa e descriptografa deve incluir uma chave
pública e um par de chaves privadas assimétricas. No entanto, é possível criptografar dados com um
token de autenticação bruto do RSA que tenha apenas uma chave pública e descriptografar dados
com um token de autenticação bruto do RSA que tenha apenas uma chave privada. É possível incluir
qualquer token de autenticação bruto do RSA em um multitoken de autenticação. Se você configurar
um token de autenticação bruto do RSA com uma chave pública e privada, certifique-se de que
eles façam parte do mesmo par de chaves. Algumas implementações de linguagem do não AWS
Encryption SDK construirão um chaveiro RSA bruto com chaves de pares diferentes. Outras pessoas
confiam em você para verificar se suas chaves são do mesmo par de chaves.

O chaveiro RSA bruto é equivalente e interopera com o JceMasterKeyin the AWS Encryption
SDK for Java e o RawMasterKeyin the AWS Encryption SDK for Python quando são usados com
chaves de criptografia assimétrica RSA. Você pode criptografar dados com uma implementação e
descriptografá-los com qualquer outra implementação usando a mesma chave de encapsulamento.
Para obter detalhes, consulte Compatibilidade dos tokens de autenticação.

Note

O token de autenticação bruto do RSA não oferece suporte a chaves assimétricas do
KMS. Se você quiser usar chaves RSA KMS assimétricas, as seguintes linguagens de
programação oferecem suporte a AWS KMS chaveiros que usam RSA assimétrico: AWS
KMS keys

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência
opcional da Biblioteca de Provedores de Material Criptográfico (MPL).

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Se você criptografar dados com um chaveiro RSA bruto que inclua a chave pública de uma
chave RSA KMS, nem o AWS Encryption SDK nem poderá descriptografá-lo. AWS KMS
Você não pode exportar a chave privada de uma chave KMS AWS KMS assimétrica para um
chaveiro RSA bruto. A operação de AWS KMS descriptografia não pode descriptografar a
mensagem criptografada retornada. AWS Encryption SDK

Tokens de autenticação brutos do RSA 192

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

Ao criar um chaveiro RSA bruto no AWS Encryption SDK for C, certifique-se de fornecer o conteúdo
do arquivo PEM que inclui cada chave como uma string C terminada em nulo, não como um caminho
ou nome de arquivo. Ao criar um token de autenticação bruto do RSA no JavaScript, lembre-se da
potencial incompatibilidade com outras implementações de linguagem.

Namespaces e nomes

Para identificar a chave RSA em um token de autenticação, o token de autenticação bruto do RSA
usa um namespace de chave e um nome de chave fornecidos por você. Esses valores não são
secretos. Eles aparecem em texto simples no cabeçalho da mensagem criptografada que a operação
de criptografia retorna. Recomendamos usar um namespace de chave e um nome de chave que
identifique o par de chaves RSA (ou a sua chave privada) no HSM ou no sistema de gerenciamento
de chaves.

Note

O namespace da chave e o nome da chave são equivalentes aos campos ID do provedor (ou
provedor) e ID da chave no JceMasterKey e no RawMasterKey.
O AWS Encryption SDK for C reserva o valor do namespace da aws-kms chave para as
chaves KMS. Não o use em um token de autenticação bruto do AES ou em um token de
autenticação bruto do RSA com o AWS Encryption SDK for C.

Se você cria tokens de autenticação diferentes para criptografar e descriptografar determinada
mensagem, o namespace e os valores do nome são cruciais. Se o namespace e o nome da chave
no token de autenticação de descriptografia não corresponderem exatamente e com distinção
entre maiúsculas e minúsculas ao namespace e ao nome da chave no token de autenticação de
criptografia, o token de autenticação de descriptografia não será usado, mesmo que as chaves sejam
do mesmo par de chaves.

O namespace da chave e o nome da chave do material da chave nos tokens de autenticação de
criptografia e decodificação devem ser os mesmos, independentemente de o token de autenticação
conter a chave pública RSA, a chave privada RSA ou ambas as chaves no par de chaves. Por
exemplo, suponha que você criptografe dados com um token de autenticação RSA bruto para uma
chave pública RSA com o namespace de chave HSM_01 e nome de chave RSA_2048_06. Para
descriptografar esses dados, construa um token de autenticação RSA bruto com a chave privada (ou
par de chaves) e o mesmo namespace e nome de chave.

Modo de preenchimento

Tokens de autenticação brutos do RSA 193

AWS Encryption SDK Guia do Desenvolvedor

Você deve especificar um modo de preenchimento para tokens de autenticação RSA brutos usados
para criptografia e descriptografia, ou usar atributos de sua implementação de linguagem que o
especifiquem para você.

O AWS Encryption SDK suporta os seguintes modos de preenchimento, sujeitos às restrições de
cada idioma. Recomendamos um modo de preenchimento OAEP, particularmente OAEP com
SHA-256 e com preenchimento SHA-256. MGF1 O modo PKCS1de preenchimento é suportado
somente para compatibilidade com versões anteriores.

• OAEP com SHA-1 e com preenchimento SHA-1 MGF1

• OAEP com SHA-256 e com preenchimento SHA-256 MGF1

• OAEP com SHA-384 e com preenchimento SHA-384 MGF1

• OAEP com SHA-512 e com preenchimento SHA-512 MGF1

• PKCS1 Preenchimento v1.5

Os exemplos a seguir mostram como criar um chaveiro RSA bruto com a chave pública e privada de
um par de chaves RSA e o OAEP com SHA-256 e com o modo de preenchimento SHA-256. MGF1
As variáveis RSAPublicKey e RSAPrivateKey representam o material principal fornecido por
você.

C

Para criar um chaveiro RSA bruto no AWS Encryption SDK for C, use.
aws_cryptosdk_raw_rsa_keyring_new

Ao criar um chaveiro RSA bruto no AWS Encryption SDK for C, certifique-se de fornecer
o conteúdo do arquivo PEM que inclui cada chave como uma string C terminada em nulo,
não como um caminho ou nome de arquivo. Para obter um exemplo completo, consulte
raw_rsa_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
 alloc,
 key_namespace,

Tokens de autenticação brutos do RSA 194

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c

AWS Encryption SDK Guia do Desenvolvedor

 key_name,
 private_key_from_pem,
 public_key_from_pem,
 AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C# / .NET

Para instanciar um chaveiro RSA bruto no para.NET, AWS Encryption SDK use o método.
materialProviders.CreateRawRsaKeyring() Para ver um exemplo completo, consulte
Raw RSAKeyring Example.cs.

O exemplo a seguir usa a versão 4.x do AWS Encryption SDK para .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

JavaScript Browser

O AWS Encryption SDK para JavaScript no navegador obtém suas primitivas criptográficas da
WebCryptobiblioteca. Antes de construir o chaveiro, você deve usá-lo importPublicKey()

Tokens de autenticação brutos do RSA 195

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

AWS Encryption SDK Guia do Desenvolvedor

and/or importPrivateKey() para importar o material bruto da chave para o WebCrypto
backend. Isso garante que o chaveiro esteja completo, mesmo que todas as chamadas sejam
WebCrypto assíncronas. O objeto usado pelos métodos de importação inclui o algoritmo de
encapsulamento e seu modo de preenchimento.

Depois de importar o material da chave, use o método RawRsaKeyringWebCrypto() para
instanciar o token de autenticação. Ao criar um chaveiro RSA bruto JavaScript, esteja ciente da
possível incompatibilidade com outras implementações de linguagem.

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte rsa_simple.ts (Browser). JavaScript

import {
 RsaImportableKey,
 RawRsaKeyringWebCrypto,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
 privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey(
 publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringWebCrypto({
 keyName,
 keyNamespace,
 publicKey,

Tokens de autenticação brutos do RSA 196

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

 privateKey,
})

JavaScript Node.js

Para instanciar um chaveiro RSA bruto no AWS Encryption SDK para JavaScript Node.js, crie
uma nova instância da classe. RawRsaKeyringNode O parâmetro wrapKey contém a chave
pública. O parâmetro unwrapKey contém a chave privada. O construtor RawRsaKeyringNode
calcula um modo de preenchimento padrão, embora você possa especificar um modo de
preenchimento preferencial.

Ao criar um chaveiro RSA bruto JavaScript, esteja ciente da possível incompatibilidade com
outras implementações de linguagem.

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

Para ver um exemplo completo, consulte rsa_simple.ts (Node.js). JavaScript

import {
 RawRsaKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
 rsaPrivateKey})

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")

Tokens de autenticação brutos do RSA 197

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

O exemplo a seguir instancia o AWS Encryption SDK cliente com a política de compromisso
padrão,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para ver um exemplo completo, consulte
raw_rsa_keyring_example.py no AWS Encryption SDK for Python repositório em GitHub.

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_06"

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create Raw RSA keyring
keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
 public_key=RSAPublicKey,
 private_key=RSAPrivateKey
)

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
 input=keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Tokens de autenticação brutos do RSA 198

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK Guia do Desenvolvedor

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring
let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(aws_smithy_types::Blob::new(RSAPublicKey))
 .private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
 .send()
 .await?;

Go

// Instantiate the material providers library
matProv, err :=
 awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderssmithygeneratedtypes.MaterialProvidersConfig{})

// Create Raw RSA keyring
rsaKeyRingInput :=
 awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
 KeyName: "rsa",
 KeyNamespace: "rsa-keyring",
 PaddingScheme:
 awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcs1,

Tokens de autenticação brutos do RSA 199

AWS Encryption SDK Guia do Desenvolvedor

 PublicKey: pem.EncodeToMemory(publicKeyBlock),
 PrivateKey: pem.EncodeToMemory(privateKeyBlock),
}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
 rsaKeyRingInput)

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})

Tokens de autenticação brutos do RSA 200

AWS Encryption SDK Guia do Desenvolvedor

if err != nil {
 panic(err)
}

// Create Raw RSA keyring
rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgf1,
 PublicKey: (RSAPublicKey),
 PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
 rsaKeyRingInput)
if err != nil {
 panic(err)
}

Chaveiros ECDH brutos

O chaveiro ECDH bruto usa os pares de chaves públicas-privadas de curva elíptica que você
fornece para derivar uma chave de empacotamento compartilhada entre duas partes. Primeiro,
o chaveiro obtém um segredo compartilhado usando a chave privada do remetente, a chave
pública do destinatário e o algoritmo de acordo de chave Elliptic Curve Diffie-Hellman (ECDH).
Em seguida, o chaveiro usa o segredo compartilhado para derivar a chave de empacotamento
compartilhada que protege suas chaves de criptografia de dados. A função de derivação de chave
que o AWS Encryption SDK usa (KDF_CTR_HMAC_SHA384) para derivar a chave de empacotamento
compartilhada está em conformidade com as recomendações do NIST para derivação de chaves.

A função de derivação de chave retorna 64 bytes de material de chave. Para garantir que ambas
as partes usem o material de chave correto, AWS Encryption SDK usam os primeiros 32 bytes
como chave de compromisso e os últimos 32 bytes como chave de empacotamento compartilhada.
Na descriptografia, se o chaveiro não puder reproduzir a mesma chave de compromisso e chave
de encapsulamento compartilhada armazenadas no texto cifrado do cabeçalho da mensagem, a
operação falhará. Por exemplo, se você criptografar dados com um chaveiro configurado com a
chave privada de Alice e a chave pública de Bob, um chaveiro configurado com a chave privada
de Bob e a chave pública de Alice reproduzirá a mesma chave de compromisso e chave de
empacotamento compartilhada e poderá descriptografar os dados. Se a chave pública de Bob for

Chaveiros ECDH brutos 201

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Guia do Desenvolvedor

de um AWS KMS key par, Bob poderá criar um chaveiro AWS KMS ECDH para descriptografar os
dados.

O chaveiro ECDH bruto criptografa os dados com uma chave simétrica usando o AES-GCM. A
chave de dados é então criptografada em envelope com a chave de empacotamento compartilhada
derivada usando o AES-GCM. Cada chaveiro Raw ECDH pode ter apenas uma chave de embrulho
compartilhada, mas você pode incluir vários chaveiros Raw ECDH, sozinhos ou com outros
chaveiros, em um chaveiro múltiplo.

Você é responsável por gerar, armazenar e proteger suas chaves privadas, preferencialmente em
um módulo de segurança de hardware (HSM) ou sistema de gerenciamento de chaves. Os pares
de chaves do remetente e do destinatário devem estar na mesma curva elíptica. O AWS Encryption
SDK suporta as seguintes especificações de curva elíptica:

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Compatibilidade com linguagens de programação

O chaveiro ECDH bruto foi introduzido na versão 1.5.0 da Biblioteca de Provedores de Material
Criptográfico (MPL) e é suportado pelas seguintes linguagens e versões de programação:

• Versão 3. x do AWS Encryption SDK for Java

• Versão 4. x do AWS Encryption SDK para o.NET

• Versão 4. x do AWS Encryption SDK for Python, quando usado com a dependência opcional do
MPL.

• Versão 1. x do AWS Encryption SDK para Rust

• Versão 0.1. x ou posterior do AWS Encryption SDK for Go

Criando um chaveiro ECDH bruto

O chaveiro Raw ECDH suporta três esquemas de contrato
principais:RawPrivateKeyToStaticPublicKey, e.
EphemeralPrivateKeyToStaticPublicKey PublicKeyDiscovery O esquema de contrato de
chave selecionado determina quais operações criptográficas você pode realizar e como os materiais
de chaveamento são montados.

Criando um chaveiro ECDH bruto 202

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

Tópicos

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Use o esquema de contrato de RawPrivateKeyToStaticPublicKey chave para configurar
estaticamente a chave privada do remetente e a chave pública do destinatário no chaveiro. Esse
esquema de contrato chave pode criptografar e descriptografar dados.

Para inicializar um chaveiro ECDH bruto com o esquema de contrato de
RawPrivateKeyToStaticPublicKey chave, forneça os seguintes valores:

• Chave privada do remetente

Você deve fornecer a chave privada codificada por PEM do remetente (PrivateKeyInfo estruturas
PKCS #8), conforme definido na RFC 5958.

• Chave pública do destinatário

Você deve fornecer a chave pública X.509 codificada em DER do destinatário, também conhecida
como SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

Você pode especificar a chave pública de um contrato de chave assimétrica (par de chaves KMS)
ou a chave pública de um par de chaves gerado fora do. AWS

• Especificação da curva

Identifica a especificação da curva elíptica nos pares de chaves especificados. Os pares de chaves
do remetente e do destinatário devem ter a mesma especificação de curva.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

Criando um chaveiro ECDH bruto 203

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Guia do Desenvolvedor

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

O exemplo Java a seguir usa o esquema de contrato de RawPrivateKeyToStaticPublicKey
chave para configurar estaticamente a chave privada do remetente e a chave pública do
destinatário. Ambos os pares de chaves estão na ECC_NIST_P256 curva.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()

Criando um chaveiro ECDH bruto 204

AWS Encryption SDK Guia do Desenvolvedor

 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Python

O exemplo de Python a seguir usa o esquema de contrato de
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey chave para
configurar estaticamente a chave privada do remetente e a chave pública do destinatário. Ambos
os pares de chaves estão na ECC_NIST_P256 curva.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
 RawPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Must be a PEM-encoded private key
bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(

Criando um chaveiro ECDH bruto 205

AWS Encryption SDK Guia do Desenvolvedor

 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput(
 sender_static_private_key = bob_private_key,
 recipient_public_key = alice_public_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

O exemplo de Python a seguir usa o esquema de contrato de
raw_ecdh_static_configuration chave para configurar estaticamente a chave privada do
remetente e a chave pública do destinatário. Ambos os pares de chaves devem estar na mesma
curva.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

Criando um chaveiro ECDH bruto 206

AWS Encryption SDK Guia do Desenvolvedor

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",

Criando um chaveiro ECDH bruto 207

AWS Encryption SDK Guia do Desenvolvedor

}

// Create keyring input
rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
 SenderStaticPrivateKey: privateKeySender,
 RecipientPublicKey: publicKeyRecipient,
}
rawECDHStaticConfiguration :=
 &mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
 Value: rawEcdhStaticConfigurationInput,
}
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: rawECDHStaticConfiguration,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 rawEcdhKeyRingInput)
if err != nil {
 panic(err)
}

EphemeralPrivateKeyToStaticPublicKey

Os chaveiros configurados com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chaves criam um novo par de chaves localmente e
derivam uma chave de empacotamento compartilhada exclusiva para cada chamada criptografada.

Esse esquema de contrato de chave só pode criptografar mensagens. Para
descriptografar mensagens criptografadas com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chave, você deve usar um esquema de
contrato de chave de descoberta configurado com a mesma chave pública do destinatário. Para
descriptografar, você pode usar um chaveiro ECDH bruto com o algoritmo de acordo de chave ou,
se a PublicKeyDiscoverychave pública do destinatário for de um par de chaves KMS de acordo

Criando um chaveiro ECDH bruto 208

AWS Encryption SDK Guia do Desenvolvedor

de chave assimétrico, você pode AWS KMS usar um chaveiro ECDH com o esquema de contrato de
chave. KmsPublicKeyDiscovery

Para inicializar um chaveiro ECDH bruto com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chave, forneça os seguintes valores:

• Chave pública do destinatário

Você deve fornecer a chave pública X.509 codificada em DER do destinatário, também conhecida
como SubjectPublicKeyInfo (SPKI), conforme definido na RFC 5280.

Você pode especificar a chave pública de um contrato de chave assimétrica (par de chaves KMS)
ou a chave pública de um par de chaves gerado fora do. AWS

• Especificação da curva

Identifica a especificação da curva elíptica na chave pública especificada.

Ao criptografar, o chaveiro cria um novo par de chaves na curva especificada e usa a nova chave
privada e a chave pública especificada para derivar uma chave de empacotamento compartilhada.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chaves. Ao criptografar, o chaveiro criará um
novo par de chaves localmente na curva especificadaECC_NIST_P256.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

Criando um chaveiro ECDH bruto 209

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Guia do Desenvolvedor

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
EphemeralPrivateKeyToStaticPublicKey chaves. Ao criptografar, o chaveiro criará um
novo par de chaves localmente na curva especificadaECC_NIST_P256.

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Criando um chaveiro ECDH bruto 210

AWS Encryption SDK Guia do Desenvolvedor

Python

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey
chaves. Ao criptografar, o chaveiro criará um novo par de chaves localmente na curva
especificadaECC_NIST_P256.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
 EphemeralPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput(
 recipient_public_key = recipient_public_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
ephemeral_raw_ecdh_static_configuration chaves. Ao criptografar, o chaveiro criará
um novo par de chaves localmente na curva especificada.

Criando um chaveiro ECDH bruto 211

AWS Encryption SDK Guia do Desenvolvedor

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =
 std::fs::read_to_string(Path::new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

Criando um chaveiro ECDH bruto 212

AWS Encryption SDK Guia do Desenvolvedor

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
 mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
 RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
 mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
 Value: ephemeralRawEcdhStaticConfigurationInput,

Criando um chaveiro ECDH bruto 213

AWS Encryption SDK Guia do Desenvolvedor

 }

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,
}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 rawEcdhKeyRingInput)
if err != nil {
 panic(err)
}

PublicKeyDiscovery

Ao descriptografar, é uma prática recomendada especificar as chaves de encapsulamento que
podem ser usadas. AWS Encryption SDK Para seguir essa prática recomendada, use um chaveiro
ECDH que especifique a chave privada do remetente e a chave pública do destinatário. No entanto,
você também pode criar um chaveiro de descoberta de ECDH bruto, ou seja, um chaveiro ECDH
bruto que pode descriptografar qualquer mensagem em que a chave pública da chave especificada
corresponda à chave pública do destinatário armazenada no texto cifrado da mensagem. Esse
esquema de contrato de chave só pode descriptografar mensagens.

Important

Ao descriptografar mensagens usando o esquema de contrato de PublicKeyDiscovery
chave, você aceita todas as chaves públicas, independentemente de quem as possua.

Para inicializar um chaveiro ECDH bruto com o esquema de contrato de PublicKeyDiscovery
chave, forneça os seguintes valores:

• Chave privada estática do destinatário

Criando um chaveiro ECDH bruto 214

AWS Encryption SDK Guia do Desenvolvedor

Você deve fornecer a chave privada codificada por PEM do destinatário (PrivateKeyInfo estruturas
PKCS #8), conforme definido na RFC 5958.

• Especificação da curva

Identifica a especificação da curva elíptica na chave privada especificada. Os pares de chaves do
remetente e do destinatário devem ter a mesma especificação de curva.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
PublicKeyDiscovery chaves. Esse chaveiro pode descriptografar qualquer mensagem em
que a chave pública da chave privada especificada corresponda à chave pública do destinatário
armazenada no texto cifrado da mensagem.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Criando um chaveiro ECDH bruto 215

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK Guia do Desenvolvedor

Java

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
PublicKeyDiscovery chaves. Esse chaveiro pode descriptografar qualquer mensagem em
que a chave pública da chave privada especificada corresponda à chave pública do destinatário
armazenada no texto cifrado da mensagem.

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Python

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
RawEcdhStaticConfigurationsPublicKeyDiscovery chaves. Esse chaveiro pode
descriptografar qualquer mensagem em que a chave pública da chave privada especificada
corresponda à chave pública do destinatário armazenada no texto cifrado da mensagem.

Criando um chaveiro ECDH bruto 216

AWS Encryption SDK Guia do Desenvolvedor

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsPublicKeyDiscovery,
 PublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
 PublicKeyDiscoveryInput(
 recipient_static_private_key = recipient_private_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

O exemplo a seguir cria um chaveiro ECDH bruto com o esquema de contrato de
discovery_raw_ecdh_static_configuration chaves. Esse chaveiro pode descriptografar
qualquer mensagem em que a chave pública da chave privada especificada corresponda à chave
pública do destinatário armazenada no texto cifrado da mensagem.

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Criando um chaveiro ECDH bruto 217

AWS Encryption SDK Guia do Desenvolvedor

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Load keys from UTF-8 encoded PEM files.
let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();
file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Criando um chaveiro ECDH bruto 218

AWS Encryption SDK Guia do Desenvolvedor

 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
 RecipientStaticPrivateKey: privateKeyRecipient,
}

discoveryRawEcdhStaticConfiguration :=
 &mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
 Value: discoveryRawEcdhStaticConfigurationInput,
}

Criando um chaveiro ECDH bruto 219

AWS Encryption SDK Guia do Desenvolvedor

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,
}

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 discoveryRawEcdhKeyringInput)
if err != nil {
 panic(err)
}

Multitokens de autenticação

É possível combinar tokens de autenticação em um multitoken de autenticação. Um multitoken de
autenticação é um token que consiste em um ou mais tokens de autenticação individuais do mesmo
ou de outro tipo. O efeito é como se estivesse usando vários tokens de autenticação em uma série.
Quando você usa um multitoken de autenticação para criptografar dados, qualquer uma das chaves
de empacotamento em qualquer um de seus tokens de autenticação pode descriptografar esses
dados.

Ao criar um multitoken de autenticação para criptografar dados, é possível designar um dos tokens
de autenticação como o token de autenticação gerador. Todos os outros tokens de autenticação são
conhecidos como tokens de autenticação filho. O token de autenticação gerador cria e criptografa a
chave de dados em texto simples. Depois, todas as chaves de empacotamento em todos os tokens
filho criptografam a mesma chave de dados em texto simples. O multitoken de autenticação retorna
a chave em texto simples e uma chave de dados criptografada para cada chave de empacotamento
do multitoken de autenticação. Se o token de autenticação gerador for um token de autenticação
do KMS, a chave geradora no token de autenticação do AWS KMS gerará e criptografará a chave
de texto simples. Em seguida, todas as chaves adicionais AWS KMS keys no AWS KMS chaveiro e
todas as chaves de embrulho em todos os chaveiros secundários do chaveiro múltiplo criptografam a
mesma chave de texto sem formatação.

Se você criar um chaveiro múltiplo sem gerador de chaves, poderá usá-lo sozinho para
descriptografar dados, mas não para criptografar. Ou, para usar um chaveiro múltiplo sem chaveiro
gerador em operações de criptografia, você pode especificá-lo como um chaveiro secundário em

Multitokens de autenticação 220

AWS Encryption SDK Guia do Desenvolvedor

outro chaveiro múltiplo. Um chaveiro múltiplo sem chaveiro gerador não pode ser designado como
chaveiro gerador em outro chaveiro múltiplo.

Ao descriptografar, ele AWS Encryption SDK usa os chaveiros para tentar descriptografar uma das
chaves de dados criptografadas. Os tokens de autenticação são chamados na ordem em que são
especificados no multitoken de autenticação. O processamento para assim que qualquer chave em
qualquer token de autenticação pode descriptografar uma chave de dados criptografada.

A partir da versão 1.7. x, quando uma chave de dados criptografada é criptografada em um chaveiro
AWS Key Management Service (AWS KMS) (ou provedor de chave mestra), AWS Encryption SDK
sempre passa o ARN da chave para AWS KMS keyKeyId o parâmetro da AWS KMS operação
Decrypt. Essa é uma prática AWS KMS recomendada que garante que você decodifique a chave de
dados criptografada com a chave de empacotamento que você pretende usar.

Para ver um exemplo prático de um multitoken de autenticação, consulte:

• C: multi_keyring.cpp

• C# /.NET: .cs MultiKeyringExample

• JavaScript Node.js: multi_keyring.ts

• JavaScript Navegador: multi_keyring.ts

• Java: MultiKeyringExample.java

• Python: multi_keyring_example.py

Para criar um multitoken de autenticação, primeiro instancie os tokens de autenticação filho. Neste
exemplo, usamos um AWS KMS chaveiro e um chaveiro AES bruto, mas você pode combinar
qualquer chaveiro compatível em um chaveiro múltiplo.

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
 alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,
 AWS_CRYPTOSDK_AES256);

Multitokens de autenticação 221

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c

AWS Encryption SDK Guia do Desenvolvedor

C# / .NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

JavaScript Browser

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 RawAesKeyringWebCrypto,
 RawAesWrappingSuiteIdentifier,
 MultiKeyringWebCrypto,
 buildClient,
 CommitmentPolicy,
 synchronousRandomValues,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
 wrappingSuite, masterKey })

Multitokens de autenticação 222

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

O exemplo a seguir usa a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

import {
 MultiKeyringNode,
 KmsKeyringNode,
 RawAesKeyringNode,
 RawAesWrappingSuiteIdentifier,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
 unencryptedMasterKey })

Java

// Define the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.

Multitokens de autenticação 223

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK Guia do Desenvolvedor

final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Python

O exemplo a seguir instancia o AWS Encryption SDK cliente com a política de compromisso
padrão,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

kms_keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 generator=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
 kms_client=kms_client
)

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
 input=kms_keyring_input
)

Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_012"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=AESWrappingKey,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=raw_aes_keyring_input
)

Multitokens de autenticação 224

AWS Encryption SDK Guia do Desenvolvedor

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Multitokens de autenticação 225

AWS Encryption SDK Guia do Desenvolvedor

 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"

Multitokens de autenticação 226

AWS Encryption SDK Guia do Desenvolvedor

var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: AESWrappingKey,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)

Em seguida, crie o multitoken de autenticação e especifique seu token gerador, se houver. Neste
exemplo, criamos um chaveiro múltiplo no qual o chaveiro é o AWS KMS chaveiro do gerador e o
chaveiro AES é o chaveiro infantil.

C

No construtor de multitoken de autenticação no C, você especifica apenas seu token de
autenticação gerador.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
 kms_keyring);

Para adicionar um token de autenticação filho ao multitoken de autenticação, use o método
aws_cryptosdk_multi_keyring_add_child. Você precisa chamar o método uma vez para
cada token de autenticação filho que adicionar.

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C# / .NET

O construtor.NET CreateMultiKeyringInput permite definir um token de autenticação
gerador e tokens de autenticação secundários. O objeto CreateMultiKeyringInput
resultante é imutável.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = kmsKeyring,

Multitokens de autenticação 227

AWS Encryption SDK Guia do Desenvolvedor

 ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

JavaScript Browser

JavaScript vários chaveiros são imutáveis. O construtor JavaScript de vários chaveiros permite
que você especifique o chaveiro do gerador e vários chaveiros infantis.

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
 [aesKeyring]);

JavaScript Node.js

JavaScript vários chaveiros são imutáveis. O construtor JavaScript de vários chaveiros permite
que você especifique o chaveiro do gerador e vários chaveiros infantis.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
 [aesKeyring]);

Java

O CreateMultiKeyringInput construtor Java permite definir um gerador de chaveiros e um
chaveiro secundário. O objeto createMultiKeyringInput resultante é imutável.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
 generator=kms_keyring,
 child_keyrings=[raw_aes_keyring]
)

Multitokens de autenticação 228

AWS Encryption SDK Guia do Desenvolvedor

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
 input=multi_keyring_input
)

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(kms_keyring.clone())
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
 Generator: awsKmsKeyring,
 ChildKeyrings: []mpltypes.IKeyring{rawAESKeyring},
 }
 multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
 createMultiKeyringInput)
 if err != nil {
 panic(err)
 }

Agora, é possível usar o multitoken de autenticação para criptografar e descriptografar dados.

Multitokens de autenticação 229

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK linguagens de programação
O AWS Encryption SDK está disponível para as seguintes linguagens de programação. As
implementações de linguagem são interoperáveis É possível criptografar com uma implementação
de linguagem e descriptografar com outra. A interoperabilidade pode estar sujeita às restrições de
linguagem. Em caso afirmativo, essas restrições estarão descritas no tópico sobre a implementação
de linguagem. Além disso, ao criptografar e descriptografar, é necessário usar tokens de
autenticação compatíveis ou chaves mestras e provedores de chaves mestras. Para obter mais
detalhes, consulte the section called “Compatibilidade dos tokens de autenticação”.

Tópicos

• AWS Encryption SDK for C

• AWS Encryption SDK para o.NET

• AWS Encryption SDK para Go

• AWS Encryption SDK for Java

• AWS Encryption SDK para JavaScript

• AWS Encryption SDK for Python

• AWS Encryption SDK para Rust

• AWS Encryption SDK interface de linha de comando

AWS Encryption SDK for C

O AWS Encryption SDK for C fornece uma biblioteca de criptografia do lado do cliente para
desenvolvedores que estão escrevendo aplicativos em C. Ela também serve como base para
implementações de linguagens de programação de nível superior. AWS Encryption SDK

Como todas as implementações do AWS Encryption SDK, o AWS Encryption SDK for C oferece
recursos avançados de proteção de dados. Os recursos incluem criptografia de envelope, AAD
(additional authenticated data - dados autenticados adicionais) e pacotes de algoritmos de chave
simétrica segura e autenticada, como o AES-GCM de 256 bits com derivação de chave e assinatura.

Todas as implementações específicas de linguagem do AWS Encryption SDK são totalmente
interoperáveis. Por exemplo, você pode criptografar dados com o AWS Encryption SDK for C e
descriptografá-los com qualquer implementação de linguagem compatível, incluindo a CLI de
criptografia.AWS

C 230

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK for C Isso requer que AWS SDK para C++ o interaja com AWS Key
Management Service (AWS KMS). Você precisa usá-lo somente se estiver usando o AWS KMS
token de autenticação opcional. No entanto, AWS Encryption SDK não requer AWS KMS nenhum
outro AWS serviço.

Saiba mais

• Para obter detalhes sobre a programação com o AWS Encryption SDK for C, consulte os exemplos
em C, os exemplos no aws-encryption-sdk-c repositório em GitHub e a documentação da AWS
Encryption SDK for C API.

• Para uma discussão sobre como usar o para criptografar dados AWS Encryption SDK for C para
que você possa descriptografá-los em vários Regiões da AWS, consulte Como descriptografar
textos cifrados em várias regiões com o em C no Blog de Segurança. AWS Encryption SDK AWS

Tópicos

• Instalando o AWS Encryption SDK for C

• Usando o AWS Encryption SDK for C

• AWS Encryption SDK for C exemplos

Instalando o AWS Encryption SDK for C

Instale a versão mais recente do AWS Encryption SDK for C.

Note

Todas as versões AWS Encryption SDK for C anteriores à 2.0.0 estão em end-of-
supportfase.
Você pode atualizar com segurança a partir da versão 2.0.x e posteriores até a versão mais
recente do AWS Encryption SDK for C sem realizar alterações no código ou nos dados. No
entanto, os novos atributos de segurança introduzidos na versão 2.0.x não são compatíveis
com versões anteriores. Para atualizar a partir de versões anteriores à 1.7.x até a versão 2.0.
x e posteriores, primeiro será necessário atualizar para a versão 1.x mais recente do AWS
Encryption SDK for C. Para obter detalhes, consulte Migrando seu AWS Encryption SDK.

Instalar 231

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Você pode encontrar instruções detalhadas para instalar e criar o AWS Encryption SDK for C no
arquivo README do aws-encryption-sdk-crepositório. Ele inclui instruções para criar nas plataformas
Amazon Linux, Ubuntu, macOS e Windows.

Antes de começar, decida se deseja usar tokens de autenticação do AWS KMS no AWS Encryption
SDK. Se você usa um AWS KMS chaveiro, você precisa instalar o. AWS SDK para C++ O AWS SDK
é necessário para interagir com AWS Key Management Service(AWS KMS). Quando você AWS
Encryption SDK usa AWS KMS chaveiros, eles usam AWS KMS para gerar e proteger as chaves de
criptografia que protegem seus dados.

Você não precisa instalar o AWS SDK para C++ se estiver usando outro tipo de chaveiro, como um
chaveiro AES bruto, um chaveiro RSA bruto ou um chaveiro múltiplo que não inclua um chaveiro.
AWS KMS No entanto, ao usar um tipo de token de autenticação bruto, você precisa gerar e proteger
suas próprias chaves de encapsulamento brutas.

Se você estiver com problemas com a instalação, registre um problema no repositório do aws-
encryption-sdk-c ou use os links de feedback desta página.

Usando o AWS Encryption SDK for C

Este tópico explica alguns dos recursos do AWS Encryption SDK for C que não são suportados em
outras implementações de linguagem de programação.

Esses exemplos mostram como usar a versão 2.0.x e versões posteriores do AWS Encryption SDK
for C. Para exemplos que usam versões anteriores, encontre sua versão na lista de lançamentos do
aws-encryption-sdk-c repositório em. GitHub

Para obter detalhes sobre a programação com o AWS Encryption SDK for C, consulte os exemplos
em C, os exemplos no aws-encryption-sdk-c repositório em GitHub e a documentação da AWS
Encryption SDK for C API.

Consulte também: Tokens de autenticação

Tópicos

• Padrões para criptografar e descriptografar dados

• Contagem de referências

Uso do C SDK 232

https://github.com/aws/aws-encryption-sdk-c/#readme
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK Guia do Desenvolvedor

Padrões para criptografar e descriptografar dados

Ao usar o AWS Encryption SDK for C, você segue um padrão semelhante a este: cria um chaveiro,
cria um CMM que usa o chaveiro, cria uma sessão que usa o CMM (e o chaveiro) e, em seguida,
processa a sessão.

1. Carregar sequências de erro.

Chame o método aws_cryptosdk_load_error_strings() no código C++ ou C++. Ele
carrega informações de erro que são muito úteis para depuração.

Você só precisa chamá-lo uma vez, como no método main.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Crie um token de autenticação.

Configure o token de autenticação com as chaves de empacotamento que você deseja usar para
criptografar suas chaves de dados. Este exemplo usa um AWS KMS chaveiro com um AWS KMS
key, mas você pode usar qualquer tipo de chaveiro em seu lugar.

Para identificar um AWS KMS key em um chaveiro de criptografia no AWS Encryption SDK for C,
especifique o ARN da chave ou o ARN do alias. Em um token de autenticação de descriptografia,
é necessário usar um ARN de chave. Para obter detalhes, consulte Identificação AWS KMS keys
em um AWS KMS chaveiro.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(KEY_ARN);

3. Crie uma sessão.

No AWS Encryption SDK for C, você usa uma sessão para criptografar uma única mensagem de
texto simples ou descriptografar uma única mensagem de texto cifrado, independentemente do
tamanho. A sessão mantém o estado da mensagem durante todo o processamento.

Configure a sessão com um alocador, um token de autenticação e um modo:
AWS_CRYPTOSDK_ENCRYPT ou AWS_CRYPTOSDK_DECRYPT. Se você precisar alterar o modo da
sessão, use o método aws_cryptosdk_session_reset.

Uso do C SDK 233

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

Quando você cria uma sessão com um chaveiro, ele cria AWS Encryption SDK for C
automaticamente um gerenciador de materiais criptográficos (CMM) padrão para você. Você não
precisa criar, manter ou destruir esse objeto.

Por exemplo, a sessão a seguir usa o alocador e o token de autenticação definido na etapa 1. Ao
criptografar dados, o modo é o AWS_CRYPTOSDK_ENCRYPT.

struct aws_cryptosdk_session * session =
 aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 kms_keyring);

4. Criptografe ou descriptografe os dados.

Para processar os dados na sessão, use o método aws_cryptosdk_session_process.
Se o buffer de entrada for grande o suficiente para conter todo o texto simples, e o buffer
de saída for grande o suficiente para conter todo o texto cifrado, você pode chamar
aws_cryptosdk_session_process_full. No entanto, se precisar lidar com dados de
streaming, você poderá chamar aws_cryptosdk_session_process em um loop. Para obter
um exemplo, consulte o file_streaming.cpp . O aws_cryptosdk_session_process_full é
introduzido nas AWS Encryption SDK versões 1.9. x e 2.2. x.

Quando a sessão é configurada para criptografar dados, os campos em texto simples descrevem
a entrada e os campos de texto cifrado descrevem a saída. O campo plaintext contém
a mensagem que você deseja criptografar, e o campo ciphertext obtém a mensagem
criptografada retornada pelo método de criptografia.

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
 ciphertext,
 ciphertext_buffer_size,
 &ciphertext_length,
 plaintext,
 plaintext_length)

Quando a sessão é configurada para descriptografar dados, os campos em texto cifrado
descrevem a entrada e os campos em texto cifrado descrevem a saída. O campo ciphertext
contém a mensagem criptografada retornada pelo método de criptografia, e o campo plaintext
obtém a mensagem em texto simples retornada pelo método de descriptografia.

Uso do C SDK 234

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK Guia do Desenvolvedor

Para descriptografar os dados, chame o método aws_cryptosdk_session_process_full.

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
 plaintext,
 plaintext_buffer_size,
 &plaintext_length,
 ciphertext,
 ciphertext_length)

Contagem de referências

Para evitar vazamentos de memória, libere as referências a todos os objetos que você criou ao
concluir. Caso contrário, ocorrerão vazamentos de memória. O SDK fornece métodos para facilitar
essa tarefa.

Sempre que você criar um objeto pai com um dos seguintes objetos filho, o objeto pai obtém e
mantém uma referência ao objeto filho, da seguinte forma:

• Um token de autenticação, como criar uma sessão com um token de autenticação

• Um gerenciador de materiais criptográficos (CMM) padrão, como criar uma sessão ou um CMM
personalizado com um CMM padrão

• Um cache de chaves de dados, como criar um CMM de armazenamento em cache com um token
de autenticação e um cache

A menos que precise de uma referência independente ao objeto filho, você pode liberar a referência
ao objeto filho assim que criar o objeto pai. A referência restante ao objeto filho é liberada quando o
objeto pai é destruído. Esse padrão garante que você mantenha a referência a cada objeto somente
pelo tempo necessário e não ocorra vazamento de memória causado por referências não liberadas.

Você só é responsável por liberar referências aos objetos filho que cria explicitamente. Você não
é responsável por gerenciar referências a objetos criados pelo SDK para você. Se o SDK criar um
objeto, como o CMM padrão que o método aws_cryptosdk_caching_cmm_new_from_keyring
adiciona a uma sessão, o SDK gerenciará a criação e a destruição do objeto e suas referências.

No exemplo a seguir, ao criar uma sessão com um token de autenticação, a sessão obtém uma
referência ao token de autenticação e mantém essa referência até que a sessão seja destruída.

Uso do C SDK 235

AWS Encryption SDK Guia do Desenvolvedor

Se você não precisar manter uma referência adicional ao token de autenticação, poderá usar o
método aws_cryptosdk_keyring_release para liberar o objeto do token de autenticação
assim que a sessão for criada. Esse método diminui a contagem de referências para o token de
autenticação. A referência da sessão ao token de autenticação é liberada quando você chama
aws_cryptosdk_session_destroy para destruir a sessão.

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
 object.
aws_cryptosdk_keyring_release(keyring);

Para tarefas mais complexas, como reutilizar um token de autenticação para várias sessões ou
especificar um pacote de algoritmos em um CMM, talvez seja necessário manter uma referência
independente ao objeto. Se assim for, não chame os métodos de liberação imediatamente. Em vez
disso, libere as referências quando você não estiver mais usando os objetos, além de destruir a
sessão.

Essa técnica de contagem de referência também funciona quando você está usando alternativas
CMMs, como o CMM de cache para armazenamento em cache de chaves de dados. Ao criar
um CMM de armazenamento em cache de um cache e de um token de autenticação, o CMM de
armazenamento em cache obtém uma referência aos dois objetos. A menos que precise delas para
outra tarefa, você pode liberar suas referências independentes para cache e o token de autenticação
assim que o CMM de armazenamento em cache for criado. Depois, ao criar uma sessão com o CMM
de armazenamento em cache, você pode liberar sua referência para o CMM de armazenamento em
cache.

Observe que você só é responsável por liberar referências a objetos que cria explicitamente. Os
objetos criados pelos métodos para você, como o CMM padrão que é subjacente ao CMM de
armazenamento em cache, são gerenciados pelo método.

/ Create the caching CMM from a cache and a keyring.
struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
 AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);

Uso do C SDK 236

AWS Encryption SDK Guia do Desenvolvedor

aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,
 AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

// ...

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for C exemplos

Os exemplos a seguir mostram como usar o para AWS Encryption SDK for C criptografar e
descriptografar dados.

Esses exemplos mostram como usar as versões 2.0.x e posteriores do AWS Encryption SDK for C.
Para exemplos que usam versões anteriores, encontre sua versão na lista de lançamentos do aws-
encryption-sdk-c repositório em. GitHub

Quando você instala e constrói o AWS Encryption SDK for C, o código-fonte desses e de outros
exemplos é incluído no examples subdiretório e eles são compilados e incorporados ao build
diretório. Você também pode encontrá-los no subdiretório de exemplos do aws-encryption-sdk-
crepositório em. GitHub

Tópicos

• Criptografar e descriptografar strings

Criptografar e descriptografar strings

O exemplo a seguir mostra como usar o para AWS Encryption SDK for C criptografar e
descriptografar uma string.

Este exemplo apresenta o AWS KMS chaveiro, um tipo de chaveiro que usa um AWS KMS key in
AWS Key Management Service (AWS KMS) para gerar e criptografar chaves de dados. O exemplo
inclui código escrito em C++. AWS Encryption SDK for C Isso exige que AWS SDK para C++ você
ligue AWS KMS ao usar AWS KMS chaveiros. Se você estiver usando um chaveiro que não interage

Exemplos 237

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Guia do Desenvolvedor

com AWS KMS, como um chaveiro AES bruto, um chaveiro RSA bruto ou um chaveiro múltiplo que
não inclui um AWS KMS chaveiro, isso não é necessário. AWS SDK para C++

Para obter ajuda na criação de um AWS KMS key, consulte Criação de chaves no Guia do AWS
Key Management Service desenvolvedor. Para obter ajuda para identificar o AWS KMS keys em um
AWS KMS chaveiro, consulteIdentificação AWS KMS keys em um AWS KMS chaveiro.

Consulte o exemplo de código completo: string.cpp

Tópicos

• Criptografar uma string

• Descriptografar uma string

Criptografar uma string

A primeira parte deste exemplo usa um AWS KMS chaveiro com um AWS KMS key para criptografar
uma string de texto sem formatação.

Etapa 1. Carregar sequências de erro.

Chame o método aws_cryptosdk_load_error_strings() no código C++ ou C++. Ele
carrega informações de erro que são muito úteis para depuração.

Você só precisa chamá-lo uma vez, como no método main.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Etapa 2: estruturar o token de autenticação.

Crie um AWS KMS chaveiro para criptografia. O chaveiro neste exemplo é configurado com um
AWS KMS key, mas você pode configurar um AWS KMS chaveiro com vários AWS KMS keys,
inclusive AWS KMS keys em contas diferentes Regiões da AWS e diferentes.

Para identificar um AWS KMS key em um chaveiro de criptografia no AWS Encryption SDK for C,
especifique o ARN da chave ou o ARN do alias. Em um token de autenticação de descriptografia,
é necessário usar um ARN de chave. Para obter detalhes, consulte Identificação AWS KMS keys
em um AWS KMS chaveiro.

Identificação AWS KMS keys em um AWS KMS chaveiro

Exemplos 238

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

Ao criar um chaveiro com vários AWS KMS keys, você especifica o AWS KMS key usado para
gerar e criptografar a chave de dados de texto simples e uma matriz opcional de outros AWS
KMS keys que criptografam a mesma chave de dados de texto sem formatação. Nesse caso,
você especifica somente o gerador AWS KMS key.

Antes de executar esse código, substitua o ARN da chave de exemplo por um válido.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Etapa 3: Criar uma sessão.

Crie uma sessão usando o alocador, um enumerador de modo e o token de autenticação.

Cada sessão requer um modo: AWS_CRYPTOSDK_ENCRYPT para criptografar ou
AWS_CRYPTOSDK_DECRYPT para descriptografar. Para alterar o modo de uma sessão existente,
use o método aws_cryptosdk_session_reset.

Depois de criar um sessão com o token de autenticação, você poderá liberar sua referência ao
token de autenticação usando o método fornecido pelo SDK. A sessão retém uma referência
ao objeto token de autenticação durante sua vida útil. Referências ao token de autenticação e
aos objetos de sessão são liberadas quando você destrói a sessão. Essa técnica de contagem
de referência ajuda a evitar vazamentos de memória e a evitar que os objetos sejam liberados
enquanto estão em uso.

struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Etapa 4: Definir o contexto de criptografia.

Um contexto de criptografia são dados autenticados adicionais arbitrários e que não são secretos.
Quando você fornece um contexto de criptografia na criptografia, ele vincula AWS Encryption
SDK criptograficamente o contexto de criptografia ao texto cifrado, de forma que o mesmo

Exemplos 239

AWS Encryption SDK Guia do Desenvolvedor

contexto de criptografia seja necessário para descriptografar os dados. O uso de um contexto de
criptografia é opcional, mas o recomendamos como uma melhor prática.

Primeiro, crie uma tabela de hash que inclua as strings de contexto de criptografia.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key1, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value1, "String");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_key1, (void *)enc_ctx_value1, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

Obtenha um ponteiro mutável para o contexto de criptografia na sessão. Depois, use a função
aws_cryptosdk_enc_ctx_clone para copiar o contexto de criptografia na sessão. Mantemos
a cópia em my_enc_ctx para que possamos validar o valor depois de descriptografar os dados.

O contexto de criptografia faz parte da sessão, não é um parâmetro transmitido para a função de
processo da sessão. Isso garante que o mesmo contexto de criptografia seja usado para todos os
segmentos de uma mensagem, mesmo se a função de processo de sessão for chamada várias
vezes para criptografar a mensagem inteira.

struct aws_hash_table *session_enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

Etapa 5: Criptografar a string.

Para criptografar a string em texto simples, use o método
aws_cryptosdk_session_process_full com a sessão no modo de criptografia. Esse
método, introduzido nas AWS Encryption SDK versões 1.9. x e 2.2. x, foi projetado para
criptografia e decodificação sem streaming. Para lidar com dados de streaming, chame o
aws_cryptosdk_session_process continuamente.

Exemplos 240

AWS Encryption SDK Guia do Desenvolvedor

Na criptografia, os campos em texto simples são campos de entrada; os campos em texto cifrado
são campos de saída. Concluído o processamento, o campo ciphertext_output conterá a
mensagem criptografada, incluindo o texto cifrado real, as chaves de dados criptografadas e o
contexto de criptografia. Você pode descriptografar essa mensagem criptografada usando o AWS
Encryption SDK para qualquer linguagem de programação compatível.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
 ciphertext_output,
 ciphertext_buf_sz_output,
 &ciphertext_len_output,
 plaintext_input,
 plaintext_len_input)) {
 aws_cryptosdk_session_destroy(session);
 return 8;
}

Passo 6: Limpar a sessão.

A etapa final destroi a sessão, inclusive as referências ao CMM e ao token de autenticação.

Se você preferir, em vez de destruir a sessão, reutilize-a com o mesmo token de autenticação
e CMM para descriptografar a string, ou para criptografar ou descriptografar outras mensagens.
Para usar a sessão para descriptografia, use o método aws_cryptosdk_session_reset para
alterar o modo para AWS_CRYPTOSDK_DECRYPT.

Descriptografar uma string

A segunda parte deste exemplo descriptografa uma mensagem criptografada que contém o texto
cifrado da string original.

Etapa 1: carregar sequências de erro.

Chame o método aws_cryptosdk_load_error_strings() no código C++ ou C++. Ele
carrega informações de erro que são muito úteis para depuração.

Você só precisa chamá-lo uma vez, como no método main.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Exemplos 241

AWS Encryption SDK Guia do Desenvolvedor

Etapa 2: estruturar o token de autenticação.

Ao descriptografar dados AWS KMS, você passa a mensagem criptografada que a API de
criptografia retornou. A API Decrypt não aceita uma AWS KMS key entrada. Em vez disso, AWS
KMS usa o mesmo AWS KMS key para descriptografar o texto cifrado usado para criptografá-
lo. No entanto, AWS Encryption SDK permite que você especifique um AWS KMS chaveiro sem
AWS KMS keys criptografar e descriptografar.

Ao descriptografar, você pode configurar um chaveiro apenas com o AWS KMS keys que
deseja usar para descriptografar a mensagem criptografada. Por exemplo, talvez você queira
criar um chaveiro apenas com o AWS KMS key que é usado por uma função específica em
sua organização. Eles nunca AWS Encryption SDK usarão um, AWS KMS key a menos que
apareça no chaveiro de decodificação. Se o SDK não conseguir descriptografar as chaves de
dados criptografadas usando o AWS KMS keys chaveiro fornecido por você, seja porque nada
do chaveiro foi usado para criptografar nenhuma das AWS KMS keys chaves de dados ou
porque o chamador não tem permissão para usar o chaveiro para descriptografar, a chamada de
descriptografia falhará. AWS KMS keys

Ao especificar um AWS KMS key para um chaveiro de decodificação, você deve usar o ARN da
chave. Os alias ARNs são permitidos somente em chaveiros de criptografia. Para obter ajuda
para identificar o AWS KMS keys em um AWS KMS chaveiro, consulteIdentificação AWS KMS
keys em um AWS KMS chaveiro.

Neste exemplo, especificamos um chaveiro configurado com o mesmo AWS KMS key usado para
criptografar a string. Antes de executar esse código, substitua o ARN da chave de exemplo por
um válido.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Etapa 3: Criar uma sessão.

Crie uma sessão usando o alocador e o token de autenticação. Para configurar a sessão para
descriptografia, configure a sessão com o modo AWS_CRYPTOSDK_DECRYPT.

Depois de criar uma sessão com um token de autenticação, você poderá liberar sua referência ao
token de autenticação usando o método fornecido pelo SDK. A sessão mantém uma referência

Exemplos 242

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Guia do Desenvolvedor

ao objeto token de autenticação durante sua vida útil, e a sessão e o token de autenticação são
liberados quando você destrói a sessão. Essa técnica de contagem de referência ajuda a evitar
vazamentos de memória e a evitar que os objetos sejam liberados enquanto estão em uso.

struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Etapa 4: Descriptografar a string.

Para descriptografar a string, use o método aws_cryptosdk_session_process_full com
a sessão configurada para descriptografia. Esse método, introduzido nas versões 1.9.x e 2.2.x
do AWS Encryption SDK , foi projetado para criptografia e descriptografia que não sejam de
streaming. Para lidar com dados de streaming, chame o aws_cryptosdk_session_process
continuamente.

Na descriptografia, os campos em texto cifrado são campos de entrada, e os campos em
texto simples são campos de saída. O campo ciphertext_input contém a mensagem
criptografada retornada pelo método de criptografia. Quando o processamento for concluído, o
campo plaintext_output conterá a string em texto simples (descriptografada).

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
 plaintext_output,
 plaintext_buf_sz_output,
 &plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input)) {
 aws_cryptosdk_session_destroy(session);
 return 13;
}

Etapa 5: Verificar o contexto de criptografia.

Verifique se o contexto de criptografia real, o que foi usado para descriptografar a mensagem,
contém o contexto de criptografia fornecido ao criptografar a mensagem. O contexto de

Exemplos 243

AWS Encryption SDK Guia do Desenvolvedor

criptografia real pode incluir pares extras porque o gerenciador de materiais criptográficos (CMM)
pode adicionar pares ao contexto de criptografia fornecido antes de criptografar a mensagem.

No AWS Encryption SDK for C, você não precisa fornecer um contexto de criptografia ao
descriptografar porque o contexto de criptografia está incluído na mensagem criptografada que o
SDK retorna. No entanto, antes que a mensagem em texto simples seja retornada, sua função de
descriptografia deve verificar se todos os pares no contexto de criptografia fornecido aparecem no
contexto que foi usado para descriptografar a mensagem.

Primeiro, obtenha um ponteiro somente leitura para a tabela de hash na sessão. Essa tabela de
hash contém o contexto de criptografia que foi usado para descriptografar a mensagem.

const struct aws_hash_table *session_enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr(session);

Depois, percorra o contexto na tabela de hash my_enc_ctx que você copiou ao efetuar a
criptografia. Verifique se cada par na tabela de hash my_enc_ctx que foi usada para efetuar
a criptografia aparece na tabela de hash session_enc_ctx que foi usada para efetuar a
descriptografia. Se alguma chave estiver ausente ou se essa chave tiver um valor diferente,
interrompa o processamento e escreva uma mensagem de erro.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);
 aws_hash_iter_next(&iter)) {
 struct aws_hash_element *session_enc_ctx_kv_pair;
 aws_hash_table_find(session_enc_ctx, iter.element.key,
 &session_enc_ctx_kv_pair)

 if (!session_enc_ctx_kv_pair ||
 !aws_string_eq(
 (struct aws_string *)iter.element.value, (struct aws_string
 *)session_enc_ctx_kv_pair->value)) {
 fprintf(stderr, "Wrong encryption context!\n");
 abort();
 }
}

Passo 6: Limpar a sessão.

Depois de verificar o contexto de criptografia, destrua a sessão ou a reutilize. Se precisar
reconfigurá-la, use o método aws_cryptosdk_session_reset.

Exemplos 244

AWS Encryption SDK Guia do Desenvolvedor

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK para o.NET
O AWS Encryption SDK for .NET é uma biblioteca de criptografia do lado do cliente para
desenvolvedores que estão escrevendo aplicativos em C# e em outras linguagens de
programação.NET. É compatível com Windows, macOS e Linux.

Note

A versão 4.0.0 do AWS Encryption SDK para.NET se desvia da Especificação da AWS
Encryption SDK Mensagem. Como resultado, as mensagens criptografadas pela versão
4.0.0 só podem ser descriptografadas pela versão 4.0.0 ou posterior do para.NET. AWS
Encryption SDK Eles não podem ser descriptografados por nenhuma outra implementação
de linguagem de programação.
A versão 4.0.1 do AWS Encryption SDK para.NET grava mensagens de acordo com
a Especificação da AWS Encryption SDK Mensagem e é interoperável com outras
implementações de linguagem de programação. Por padrão, a versão 4.0.1 pode ler
mensagens criptografadas pela versão 4.0.0. No entanto, se você não quiser descriptografar
mensagens criptografadas pela versão 4.0.0, você pode especificar a propriedade
NetV4_0_0_RetryPolicy para impedir que o cliente leia essas mensagens. Para obter
mais informações, consulte as notas de versão v4.0.1 no aws-encryption-sdk repositório em.
GitHub

O AWS Encryption SDK for .NET difere de algumas das outras implementações de linguagem de
programação do AWS Encryption SDK das seguintes maneiras:

• Não há suporte para armazenamento em cache de chaves de dados

Note

Versão 4. O x of the AWS Encryption SDK for.NET suporta o AWS KMS chaveiro
hierárquico, uma solução alternativa de cache de materiais criptográficos.

• Não há suporte para streaming de dados

• Não há registros ou rastreamentos de pilha do AWS Encryption SDK para .NET

.NET 245

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1

AWS Encryption SDK Guia do Desenvolvedor

• Requer o AWS SDK for .NET

O AWS Encryption SDK para o.NET inclui todos os recursos de segurança introduzidos nas versões
2.0. x e posteriores de outras implementações de linguagem do AWS Encryption SDK. No entanto,
se você estiver usando o for.NET AWS Encryption SDK para descriptografar dados que foram
criptografados por uma versão pré-2.0. versão x outra implementação de linguagem do AWS
Encryption SDK, talvez seja necessário ajustar sua política de compromisso. Para obter detalhes,
consulte Como definir sua política de compromisso.

O AWS Encryption SDK for .NET é um produto do AWS Encryption SDK in Dafny, uma linguagem de
verificação formal na qual você escreve especificações, o código para implementá-las e as provas
para testá-las. O resultado é uma biblioteca que implementa os atributos do AWS Encryption SDK
em uma estrutura que garante a correção funcional.

Saiba mais

• Para ver exemplos que mostram como configurar opções no AWS Encryption SDK, como
especificar um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar
chaves AWS KMS multirregionais, consulte. Configurando o AWS Encryption SDK

• Para obter detalhes sobre a programação com o AWS Encryption SDK para.NET, consulte o aws-
encryption-sdk-netdiretório do aws-encryption-sdk repositório em GitHub.

Tópicos

• Instalando o AWS Encryption SDK para o.NET

• Depurando o para o.NET AWS Encryption SDK

• AWS Encryption SDK para exemplos do.NET

Instalando o AWS Encryption SDK para o.NET

O AWS Encryption SDK para o.NET está disponível como
AWS.Cryptography.EncryptionSDKpacote em NuGet. Para obter detalhes sobre como instalar
e criar o AWS Encryption SDK para.NET, consulte o arquivo README.md no repositório. aws-
encryption-sdk-net

Instalar e compilar 246

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme

AWS Encryption SDK Guia do Desenvolvedor

Versão 3.x

Versão 3. x do AWS Encryption SDK para o.NET oferece suporte a o.NET Framework 4.5.2
— 4.8 somente no Windows. É compatível com o .NET Core 3.0+ e o .NET 5.0 e versões
posteriores em todos os sistemas operacionais compatíveis.

Versão 4.x

Versão 4. x do AWS Encryption SDK para o.NET oferece suporte a o.NET 6.0 e o.NET
Framework net48 e versões posteriores. Versão 4. x requer o AWS SDK para .NET v3.

O AWS Encryption SDK for .NET exige o SDK for .NET mesmo se você não estiver usando as
chaves AWS Key Management Service (AWS KMS). Ele é instalado com o NuGet pacote. No
entanto, a menos que você esteja usando AWS KMS chaves, AWS Encryption SDK o.NET não exige
AWS credenciais ou interação com nenhum AWS serviço. Conta da AWS Para obter ajuda para
configurar uma AWS conta, se necessário, consulteUsando o AWS Encryption SDK com AWS KMS.

Depurando o para o.NET AWS Encryption SDK

O AWS Encryption SDK for.NET não gera nenhum registro. As exceções no AWS Encryption SDK
for.NET geram uma mensagem de exceção, mas nenhum rastreamento de pilha.

Para ajudar na depuração, certifique-se de habilitar o login no SDK for .NET. Os registros e
mensagens de erro do SDK for .NET podem ajudá-lo a distinguir os erros decorrentes do e os SDK
for .NET do para.NET. AWS Encryption SDK Para obter ajuda com o SDK for .NET registro, consulte
AWSLoggingo Guia do AWS SDK for .NET desenvolvedor. (Para ver o tópico, expanda a seção Abrir
para ver o conteúdo do .NET Framework.)

AWS Encryption SDK para exemplos do.NET

Os exemplos a seguir mostram os padrões básicos de codificação que você usa ao programar com o
AWS Encryption SDK para o.NET. Especificamente, você instancia a biblioteca AWS Encryption SDK
e os fornecedores de materiais. Em seguida, antes de chamar cada método, você deve instanciar um
objeto que define a entrada para o método. Isso é muito parecido com o padrão de codificação usado
no SDK for .NET.

Para ver exemplos que mostram como configurar opções no AWS Encryption SDK, como especificar
um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar chaves AWS
KMS multirregionais, consulte. Configurando o AWS Encryption SDK

Depuração 247

https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS Encryption SDK Guia do Desenvolvedor

Para obter mais exemplos de programação com o AWS Encryption SDK para.NET, consulte os
exemplos no aws-encryption-sdk-net diretório do aws-encryption-sdk repositório em
GitHub.

Criptografia de dados no AWS Encryption SDK para .NET

Este exemplo mostra o padrão básico para criptografar dados. Ele criptografa um pequeno arquivo
com chaves de dados protegidas por uma chave de AWS KMS empacotamento.

Etapa 1: Instanciar a biblioteca AWS Encryption SDK e a biblioteca dos fornecedores de materiais.

Comece instanciando a biblioteca AWS Encryption SDK e a biblioteca dos fornecedores de
materiais. Você usará os métodos do AWS Encryption SDK para criptografar e descriptografar
dados. Você usará os métodos na biblioteca de fornecedores de materiais para criar os tokens de
autenticação que especificam quais chaves protegem seus dados.

A forma como você instancia a biblioteca AWS Encryption SDK e a biblioteca de fornecedores
de materiais difere entre as versões 3. x e 4. x do AWS Encryption SDK para o.NET. Todas as
etapas a seguir são as mesmas para ambas as versões 3. x e 4. x do AWS Encryption SDK para
o.NET.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Etapa 2: crie um objeto de entrada para o token de autenticação.

Cada método que cria um token de autenticação tem uma classe de objeto de
entrada correspondente. Por exemplo, para criar o objeto de entrada para o método
CreateAwsKmsKeyring(), crie uma instância da classe CreateAwsKmsKeyringInput.

Exemplos 248

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK Guia do Desenvolvedor

Embora a entrada desse token de autenticação não especifique uma chave geradora, a única
chave do KMS especificada pelo parâmetro KmsKeyId é a chave geradora. Ela gera e criptografa
a chave de dados que criptografa os dados.

Esse objeto de entrada requer um AWS KMS cliente para Região da AWS a chave KMS. Para
criar um AWS KMS cliente, instancie a AmazonKeyManagementServiceClient classe
no. SDK for .NET Chamar o construtor AmazonKeyManagementServiceClient() sem
parâmetros cria um cliente com os valores padrão.

Em um AWS KMS chaveiro usado para criptografar com o.NET, você pode identificar as
chaves KMS usando o ID da chave, o ARN da chave, o nome do alias ou o ARN do alias. AWS
Encryption SDK Em um AWS KMS chaveiro usado para descriptografia, você deve usar um ARN
de chave para identificar cada chave KMS. Se você planeja reutilizar seu token de autenticação
de criptografia para descriptografar, use um identificador ARN de chave para todas as chaves
KMS.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};

Etapa 3: criar o token de autenticação.

Para criar o token de autenticação, chame o método do token de autenticação com o objeto de
entrada do token de autenticação. Este exemplo usa o método CreateAwsKmsKeyring(), que
usa apenas uma chave do KMS.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Etapa 4: defina um contexto de criptografia.

Um contexto de criptografia é um elemento opcional, mas altamente recomendado, de operações
criptográficas no AWS Encryption SDK. Você pode definir um ou mais pares de chave-valor não
secretos.

Exemplos 249

AWS Encryption SDK Guia do Desenvolvedor

Note

Com a versão 4. No AWS Encryption SDK caso do.NET, você pode exigir um contexto
de criptografia em todas as solicitações de criptografia com o contexto de criptografia
necessário CMM.

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}
};

Etapa 5: crie o objeto de entrada para a criptografia.

Antes de chamar o método Encrypt(), crie uma instância da classe EncryptInput.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 EncryptionContext = encryptionContext
};

Etapa 6: criptografe o texto sem formatação.

Use o Encrypt() método do AWS Encryption SDK para criptografar o texto sem formatação
usando o chaveiro que você definiu.

O EncryptOutput que o método Encrypt() retorna tem métodos para obter a mensagem
criptografada (Ciphertext), o contexto de criptografia e o pacote de algoritmos.

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Etapa 7: obtenha a mensagem criptografada.

O Decrypt() método em AWS Encryption SDK for.NET usa o Ciphertext membro da
EncryptOutput instância.

Exemplos 250

AWS Encryption SDK Guia do Desenvolvedor

O membro Ciphertext do objeto EncryptOutput é a mensagem criptografada, um objeto
portátil que inclui dados criptografados, chaves de dados criptografadas e metadados, incluindo o
contexto de criptografia. É possível armazenar com segurança a mensagem criptografada por um
período prolongado ou enviá-la ao método Decrypt() para recuperar o texto sem formatação.

var encryptedMessage = encryptOutput.Ciphertext;

Descriptografia em modo estrito no AWS Encryption SDK para .NET

As práticas recomendadas indicam que você especifique as chaves usadas para descriptografar
dados, uma opção conhecida como modo estrito. O AWS Encryption SDK usa somente as chaves
KMS que você especifica em seu chaveiro para descriptografar o texto cifrado. As chaves no token
de autenticação de descriptografia devem incluir pelo menos uma das chaves que criptografaram os
dados.

Este exemplo mostra o padrão básico de descriptografia no modo estrito com o AWS Encryption
SDK para .NET.

Etapa 1: Instanciar a biblioteca AWS Encryption SDK e os fornecedores de materiais.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Etapa 2: criar o objeto de entrada para seu token de autenticação.

Para especificar os parâmetros do método do token de autenticação, crie um objeto de
entrada. Cada método de chaveiro no AWS Encryption SDK for.NET tem um objeto de entrada
correspondente. Como esse exemplo usa o método CreateAwsKmsKeyring() para criar o
token de autenticação, ele instancia a classe CreateAwsKmsKeyringInput para a entrada.

Em um token de autenticação de descriptografia, você deve usar um ARN de chave para
identificar chaves do KMS.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object

Exemplos 251

AWS Encryption SDK Guia do Desenvolvedor

var kmsKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};

Etapa 3: criar o token de autenticação.

Para criar o token de autenticação da descriptografia, este exemplo usa o método
CreateAwsKmsKeyring() e o objeto de entrada do token de autenticação.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Etapa 4: crie o objeto de entrada para descriptografar.

Para criar o objeto de entrada para o método Decrypt(), instancie a classe DecryptInput.

O parâmetro Ciphertext do construtor DecryptInput() usa o membro Ciphertext do
objeto EncryptOutput que o método Encrypt() retornou. A propriedade Ciphertext
representa a mensagem criptografada, que inclui os dados criptografados, as chaves de dados
criptografadas e os metadados que o AWS Encryption SDK necessita para descriptografar a
mensagem.

Com a versão 4. No AWS Encryption SDK caso do.NET, você pode usar o
EncryptionContext parâmetro opcional para especificar seu contexto de criptografia no
Decrypt() método.

Use o parâmetro EncryptionContext para verificar se o contexto de criptografia usado na
criptografia está incluído no contexto de criptografia usado para descriptografar o texto cifrado.
AWS Encryption SDK Isso adiciona pares ao contexto de criptografia, incluindo a assinatura
digital, se você estiver usando um conjunto de algoritmos com assinatura, como o conjunto de
algoritmos padrão.

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{
 Ciphertext = encryptedMessage,
 Keyring = keyring,
 EncryptionContext = encryptionContext // OPTIONAL

Exemplos 252

AWS Encryption SDK Guia do Desenvolvedor

};

Etapa 5: descriptografe o texto cifrado.

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Etapa 6: verifique o contexto de criptografia – versão 3.x

O Decrypt() método da versão 3. x do AWS Encryption SDK for.NET não usa um contexto
de criptografia. Ele obtém os valores do contexto de criptografia dos metadados na mensagem
criptografada. No entanto, antes de retornar ou usar o texto simples, é recomendável verificar
se o contexto de criptografia usado para descriptografar o texto cifrado inclui o contexto de
criptografia que você forneceu ao criptografar.

Verifique se o contexto de criptografia usado na criptografia está incluído no contexto de
criptografia usado para descriptografar o texto cifrado. AWS Encryption SDK Isso adiciona pares
ao contexto de criptografia, incluindo a assinatura digital, se você estiver usando um conjunto de
algoritmos com assinatura, como o conjunto de algoritmos padrão.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
 decryptContextValue)
 || !decryptContextValue.Equals(contextValue))
{
 throw new Exception("Encryption context does not match expected values");
}

Descriptografando com um chaveiro de descoberta no for.NET AWS Encryption SDK

Em vez de especificar as chaves KMS para a descriptografia, você pode fornecer um token de
autenticação de descoberta do AWS KMS , que é um token de autenticação que não especifica
nenhuma chave KMS. Um chaveiro de descoberta permite AWS Encryption SDK descriptografar
os dados usando qualquer chave KMS criptografada, desde que o chamador tenha permissão de
descriptografia na chave. Para obter as melhores práticas, adicione um filtro de descoberta que limita
as chaves KMS que podem ser usadas para aquelas específicas Contas da AWS de uma partição
especificada.

Exemplos 253

AWS Encryption SDK Guia do Desenvolvedor

O AWS Encryption SDK for.NET fornece um chaveiro de descoberta básico que requer um AWS
KMS cliente e um chaveiro de descoberta múltiplo que exige que você especifique um ou mais.
Regiões da AWS Tanto o cliente quanto as regiões limitam as chaves do KMS que podem ser
usadas para descriptografar a mensagem criptografada. Os objetos de entrada dos dois tokens de
autenticação usam o filtro de descoberta recomendado.

O exemplo a seguir mostra o padrão para descriptografar dados com um token de autenticação de
descoberta do AWS KMS e um filtro de descoberta.

Etapa 1: Instanciar a biblioteca AWS Encryption SDK e a biblioteca dos fornecedores de materiais.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Etapa 2: criar o objeto de entrada para o token de autenticação.

Para especificar os parâmetros do método do token de autenticação, crie um
objeto de entrada. Cada método de chaveiro no AWS Encryption SDK for.NET
tem um objeto de entrada correspondente. Como esse exemplo usa o método
CreateAwsKmsDiscoveryKeyring() para criar o token de autenticação, ele instancia a classe
CreateAwsKmsDiscoveryKeyringInput para a entrada.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = accounts,
 Partition = "aws"
 }
};

Etapa 3: criar o token de autenticação.

Para criar o token de autenticação da descriptografia, este exemplo usa o método
CreateAwsKmsDiscoveryKeyring() e o objeto de entrada do token de autenticação.

Exemplos 254

AWS Encryption SDK Guia do Desenvolvedor

var discoveryKeyring =
 materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

Etapa 4: crie o objeto de entrada para descriptografar.

Para criar o objeto de entrada para o método Decrypt(), instancie a classe DecryptInput.
O valor do parâmetro Ciphertext é o membro Ciphertext do objeto EncryptOutput que o
método Encrypt() retorna.

Com a versão 4. No AWS Encryption SDK caso do.NET, você pode usar o
EncryptionContext parâmetro opcional para especificar seu contexto de criptografia no
Decrypt() método.

Use o parâmetro EncryptionContext para verificar se o contexto de criptografia usado na
criptografia está incluído no contexto de criptografia usado para descriptografar o texto cifrado.
AWS Encryption SDK Isso adiciona pares ao contexto de criptografia, incluindo a assinatura
digital, se você estiver usando um conjunto de algoritmos com assinatura, como o conjunto de
algoritmos padrão.

var ciphertext = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = discoveryKeyring,
 EncryptionContext = encryptionContext // OPTIONAL

};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Etapa 5: verificar o contexto de criptografia - versão 3.x

O Decrypt() método da versão 3. x do AWS Encryption SDK for.NET não usa um contexto
de criptografiaDecrypt(). Ele obtém os valores do contexto de criptografia dos metadados na
mensagem criptografada. No entanto, antes de retornar ou usar o texto simples, é recomendável
verificar se o contexto de criptografia usado para descriptografar o texto cifrado inclui o contexto
de criptografia que você forneceu ao criptografar.

Verifique se o contexto de criptografia usado na criptografia foi incluído no contexto de criptografia
usado para descriptografar o texto cifrado. AWS Encryption SDK Isso adiciona pares ao contexto

Exemplos 255

AWS Encryption SDK Guia do Desenvolvedor

de criptografia, incluindo a assinatura digital, se você estiver usando um conjunto de algoritmos
com assinatura, como o conjunto de algoritmos padrão.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
 decryptContextValue)
 || !decryptContextValue.Equals(contextValue))
{
 throw new Exception("Encryption context does not match expected values");
}

AWS Encryption SDK para Go

Este tópico explica como instalar e usar o AWS Encryption SDK for Go. Para obter detalhes sobre
a programação com o AWS Encryption SDK for Go, consulte o diretório go do aws-encryption-sdk
repositório on GitHub.

O AWS Encryption SDK for Go difere de algumas das outras implementações de linguagem de
programação do AWS Encryption SDK das seguintes maneiras:

• Não há suporte para armazenamento em cache de chaves de dados. No entanto, o AWS
Encryption SDK for Go suporta o AWS KMS chaveiro hierárquico, uma solução alternativa de
cache de materiais criptográficos.

• Não há suporte para streaming de dados

O AWS Encryption SDK for Go inclui todos os recursos de segurança introduzidos nas versões 2.0. x
e posteriores de outras implementações de linguagem do AWS Encryption SDK. No entanto, se você
estiver usando o for Go AWS Encryption SDK para descriptografar dados que foram criptografados
por uma versão pré-2.0. versão x outra implementação de linguagem do AWS Encryption SDK,
talvez seja necessário ajustar sua política de compromisso. Para obter detalhes, consulte Como
definir sua política de compromisso.

O AWS Encryption SDK for Go é um produto do AWS Encryption SDK in Dafny, uma linguagem de
verificação formal na qual você escreve especificações, o código para implementá-las e as provas

Go 256

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK Guia do Desenvolvedor

para testá-las. O resultado é uma biblioteca que implementa os atributos do AWS Encryption SDK
em uma estrutura que garante a correção funcional.

Saiba mais

• Para ver exemplos que mostram como configurar opções no AWS Encryption SDK, como
especificar um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar
chaves AWS KMS multirregionais, consulte. Configurando o AWS Encryption SDK

• Para ver exemplos de como configurar e usar o AWS Encryption SDK for Go, consulte os
exemplos de Go no aws-encryption-sdk repositório em GitHub.

Tópicos

• Pré-requisitos

• Instalação

Pré-requisitos

Antes de instalar o AWS Encryption SDK for Go, verifique se você tem os seguintes pré-requisitos.

Uma versão compatível do Go

O Go 1.23 ou posterior é exigido pelo AWS Encryption SDK for Go.

Para obter mais informações sobre como baixar e instalar o Go, consulte Instalação do Go.

Instalação

Instale a versão mais recente do AWS Encryption SDK for Go. Para obter detalhes sobre como
instalar e criar o AWS Encryption SDK for Go, consulte o README.md no diretório go do repositório
em. aws-encryption-sdk GitHub

Para instalar a versão mais recente

• Instale o AWS Encryption SDK for Go

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

• Instale a Biblioteca de Provedores de Material Criptográfico (MPL)

Pré-requisitos 257

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples
https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Guia do Desenvolvedor

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS Encryption SDK for Java

Este tópico explica como instalar e usar o AWS Encryption SDK for Java. Para obter detalhes sobre
a programação com o AWS Encryption SDK for Java, consulte o aws-encryption-sdk-javarepositório
em GitHub. Para obter a documentação da API, consulte o Javadoc para AWS Encryption SDK for
Java.

Tópicos

• Pré-requisitos

• Instalação

• AWS Encryption SDK for Java exemplos

Pré-requisitos

Antes de instalar o AWS Encryption SDK for Java, verifique se você tem os seguintes pré-requisitos.

Um ambiente de desenvolvimento Java

Você precisará do Java 8 ou posterior. No site da Oracle, acesse Java SE Downloads e faça
download e instale o Java SE Development Kit (JDK).

Se você usa o Oracle JDK, também precisara fazer download e instalar os arquivos de política de
jurisdição de força ilimitada JCE (Java Cryptography Extension).

Bouncy Castle

AWS Encryption SDK for Java Isso requer o Bouncy Castle.

• AWS Encryption SDK for Java as versões 1.6.1 e posteriores usam o Bouncy Castle para
serializar e desserializar objetos criptográficos. Você pode usar o Bouncy Castle ou o Bouncy
Castle FIPS para atender a esse requisito. Para obter ajuda na instalação e configuração
do Bouncy Castle FIPS, consulte a documentação do BC FIPS, especialmente os Guias do
Usuário e a Política de Segurança. PDFs

• As versões anteriores do AWS Encryption SDK for Java usam a API de criptografia do Bouncy
Castle para Java. Este requisito só é atendido por não FIPS Bouncy Castle.

Java 258

https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/

AWS Encryption SDK Guia do Desenvolvedor

Se você não tiver o Bouncy Castle, acesse Baixar Bouncy Castle for Java para baixar o arquivo
do provedor que corresponde ao seu JDK. Você também pode usar o Apache Maven para obter
o artefato para o provedor padrão do Bouncy Castle (bcprov-ext-jdk15on) ou o artefato para o
Bouncy Castle FIPS (bc-fips).

AWS SDK for Java

Versão 3. x of the AWS Encryption SDK for Java requer o AWS SDK for Java 2.x, mesmo se você
não usar AWS KMS chaveiros.

Versão 2. x ou anterior do AWS Encryption SDK for Java não requer AWS SDK for Java o.
No entanto, AWS SDK for Java é necessário usar AWS Key Management Service(AWS KMS)
como provedor de chave mestra. A partir da AWS Encryption SDK for Java versão 2.4.0, o AWS
Encryption SDK for Java suporta as versões 1.x e 2.x do. AWS SDK for Java AWS Encryption
SDK os códigos para AWS SDK for Java 1.x e 2.x são interoperáveis. Por exemplo, você pode
criptografar dados com AWS Encryption SDK código compatível com AWS SDK for Java 1.x e
descriptografá-los usando código compatível AWS SDK for Java 2.x (ou vice-versa). As versões
AWS Encryption SDK for Java anteriores à 2.4.0 suportam apenas AWS SDK for Java 1.x. Para
obter informações sobre como atualizar sua versão do AWS Encryption SDK, consulteMigrando
seu AWS Encryption SDK.

Ao atualizar seu AWS Encryption SDK for Java código de AWS SDK for Java 1.x para AWS
SDK for Java 2.x, substitua as referências à AWSKMSinterface em AWS SDK for Java 1.x por
referências à KmsClientinterface em. AWS SDK for Java 2.x O AWS Encryption SDK for Java
não suporta a KmsAsyncClientinterface. Além disso, atualize seu código para usar os objetos
relacionados ao AWS KMS no namespace kmssdkv2, em vez do namespace kms.

Para instalar o AWS SDK for Java, use o Apache Maven.

• Para importar todo o AWS SDK for Java como uma dependência, declare-o no arquivo
pom.xml.

• Para criar uma dependência somente para o AWS KMS módulo na AWS SDK for Java versão
1.x, siga as instruções para especificar módulos específicos e defina o. artifactId aws-
java-sdk-kms

• Para criar uma dependência somente para o AWS KMS módulo na AWS SDK for Java
versão 2.x, siga as instruções para especificar módulos específicos. Defina o groupId como
software.amazon.awssdk e artifactId como kms.

Para ver mais mudanças, consulte O que há de diferente entre a AWS SDK for Java versão 1.x e
a 2.x no Guia do AWS SDK for Java 2.x desenvolvedor.

Pré-requisitos 259

https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html

AWS Encryption SDK Guia do Desenvolvedor

Os exemplos de Java no Guia do AWS Encryption SDK Desenvolvedor usam AWS SDK for Java
2.x o.

Instalação

Instalar a versão mais recente do AWS Encryption SDK for Java.

Note

Todas as versões AWS Encryption SDK for Java anteriores à 2.0.0 estão em end-of-
supportfase.
Você pode atualizar com segurança a partir da versão 2.0.x e posteriores até a versão
mais recente do AWS Encryption SDK for Java sem realizar alterações no código ou nos
dados. No entanto, os novos atributos de segurança introduzidos na versão 2.0.x não são
compatíveis com versões anteriores. Para atualizar a partir de versões anteriores à 1.7.x
até a versão 2.0. x e posteriores, primeiro será necessário atualizar para a versão 1.x
mais recente do AWS Encryption SDK. Para obter detalhes, consulte Migrando seu AWS
Encryption SDK.

Você pode instalar o AWS Encryption SDK for Java das seguintes maneiras.

Manualmente

Para instalar o AWS Encryption SDK for Java, clone ou baixe o aws-encryption-sdk-java
GitHubrepositório.

Uso do Apache Maven

O AWS Encryption SDK for Java está disponível por meio do Apache Maven com a seguinte
definição de dependência.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-encryption-sdk-java</artifactId>
 <version>3.0.0</version>
</dependency>

Instalação 260

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/

AWS Encryption SDK Guia do Desenvolvedor

Depois de instalar o SDK, comece examinando o exemplo de código Java neste guia e o Javadoc
ativado. GitHub

AWS Encryption SDK for Java exemplos

Os exemplos a seguir mostram como usar o para AWS Encryption SDK for Java criptografar e
descriptografar dados. Esses exemplos mostram como usar a versão 3. x e posterior do AWS
Encryption SDK for Java. Versão 3. x do AWS Encryption SDK for Java requer AWS SDK for Java
2.x o. Versão 3. x do AWS Encryption SDK for Java substitui os fornecedores de chaves mestras
por chaveiros. Para exemplos que usam versões anteriores, encontre sua versão na lista de
lançamentos do aws-encryption-sdk-javarepositório em GitHub.

Tópicos

• Criptografar e descriptografar strings

• Criptografar e descriptografar streams de bytes

• Criptografando e descriptografando fluxos de bytes com um chaveiro múltiplo

Criptografar e descriptografar strings

O exemplo a seguir mostra como usar a versão 3. x do AWS Encryption SDK for Java para
criptografar e descriptografar strings. Antes de usar a string, converta-a em uma matriz de bytes.

Este exemplo usa um AWS KMS chaveiro. Ao criptografar com um AWS KMS chaveiro, você pode
usar um ID de chave, ARN de chave, nome de alias ou ARN de alias para identificar as chaves KMS.
Ao descriptografar, você deve usar um ARN de chave para identificar as chaves KMS.

Quando você chama o método encryptData(), ele retorna uma mensagem criptografada
(CryptoResult) que inclui o texto cifrado, as chaves de dados criptografadas e o contexto de
criptografia. Quando você chama getResult no objeto CryptoResult, ele retorna uma versão
de cadeia codificada em base 64 da mensagem criptografada que você pode passar para o método
decryptData().

Da mesma forma, quando você chamadecryptData(), o CryptoResult objeto que ele retorna
contém a mensagem de texto sem formatação e um AWS KMS key ID. Antes que seu aplicativo
retorne o texto sem formatação, verifique se o AWS KMS key ID e o contexto de criptografia na
mensagem criptografada são os que você espera.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

Exemplos 261

https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases
https://github.com/aws/aws-encryption-sdk-java/

AWS Encryption SDK Guia do Desenvolvedor

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;

/**
 * Encrypts and then decrypts data using an AWS KMS Keyring.
 *
 * <p>Arguments:
 *
 *
 * Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
 customer master
 * key (CMK), see 'Viewing Keys' at
 * http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
 *
 */
public class BasicEncryptionKeyringExample {

 private static final byte[] EXAMPLE_DATA = "Hello
 World".getBytes(StandardCharsets.UTF_8);

 public static void main(final String[] args) {
 final String keyArn = args[0];

 encryptAndDecryptWithKeyring(keyArn);
 }

 public static void encryptAndDecryptWithKeyring(final String keyArn) {
 // 1. Instantiate the SDK
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,

Exemplos 262

AWS Encryption SDK Guia do Desenvolvedor

 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with a
 committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto =
 AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
 final IKeyring kmsKeyring =
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create an encryption context
 // We recommend using an encryption context whenever possible
 // to protect integrity. This sample uses placeholder values.
 // For more information see:
 // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management
 final Map<String, String> encryptionContext =
 Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

 // 4. Encrypt the data
 final CryptoResult<byte[], ?> encryptResult =
 crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);
 final byte[] ciphertext = encryptResult.getResult();

 // 5. Decrypt the data
 final CryptoResult<byte[], ?> decryptResult =
 crypto.decryptData(
 kmsKeyring,
 ciphertext,

Exemplos 263

AWS Encryption SDK Guia do Desenvolvedor

 // Verify that the encryption context in the result contains the
 // encryption context supplied to the encryptData method
 encryptionContext);

 // 6. Verify that the decrypted plaintext matches the original plaintext
 assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);
 }
}

Criptografar e descriptografar streams de bytes

O exemplo a seguir mostra como usar o para AWS Encryption SDK criptografar e descriptografar
fluxos de bytes.

Este exemplo usa um chaveiro AES bruto.

Ao criptografar, o método AwsCrypto.builder() .withEncryptionAlgorithm()
é usado para especificar um conjunto de algoritmos sem assinaturas digitais.
Ao descriptografar, para garantir que o texto cifrado não esteja assinado, este
exemplo usa o método createUnsignedMessageDecryptingStream(). O
createUnsignedMessageDecryptingStream() método falhará se encontrar um texto cifrado
com uma assinatura digital.

Se você estiver criptografando com o conjunto de algoritmos padrão, que inclui assinaturas digitais,
use o método createDecryptingStream() em seu lugar, conforme mostrado no próximo
exemplo.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;
import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;

Exemplos 264

AWS Encryption SDK Guia do Desenvolvedor

import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.security.SecureRandom;
import java.util.Collections;
import java.util.Map;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

/**
 * <p>
 * Encrypts and then decrypts a file under a random key.
 *
 * <p>
 * Arguments:
 *
 * Name of file containing plaintext data to encrypt
 *
 *
 * <p>
 * This program demonstrates using a standard Java {@link SecretKey} object as a {@link
 IKeyring} to
 * encrypt and decrypt streaming data.
 */
public class FileStreamingKeyringExample {
 private static String srcFile;

 public static void main(String[] args) throws IOException {
 srcFile = args[0];

 // In this example, we generate a random key. In practice,
 // you would get a key from an existing store
 SecretKey cryptoKey = retrieveEncryptionKey();

 // Create a Raw Aes Keyring using the random key and an AES-GCM encryption
 algorithm
 final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

Exemplos 265

AWS Encryption SDK Guia do Desenvolvedor

 final CreateRawAesKeyringInput keyringInput =
 CreateRawAesKeyringInput.builder()
 .wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
 .keyNamespace("Example")
 .keyName("RandomKey")
 .wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAG16)
 .build();
 IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

 // Instantiate the SDK.
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 // This example encrypts with an algorithm suite that doesn't include signing
 for faster decryption,
 // since this use case assumes that the contexts that encrypt and decrypt are
 equally trusted.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
 .build();

 // Create an encryption context to identify the ciphertext
 Map<String, String> context = Collections.singletonMap("Example",
 "FileStreaming");

 // Because the file might be too large to load into memory, we stream the data,
 instead of
 //loading it all at once.
 FileInputStream in = new FileInputStream(srcFile);
 CryptoInputStream<JceMasterKey> encryptingStream =
 crypto.createEncryptingStream(keyring, in, context);

 FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
 IOUtils.copy(encryptingStream, out);
 encryptingStream.close();

Exemplos 266

AWS Encryption SDK Guia do Desenvolvedor

 out.close();

 // Decrypt the file. Verify the encryption context before returning the
 plaintext.
 // Since the data was encrypted using an unsigned algorithm suite, use the
 recommended
 // createUnsignedMessageDecryptingStream method, which only accepts unsigned
 messages.
 in = new FileInputStream(srcFile + ".encrypted");
 CryptoInputStream<JceMasterKey> decryptingStream =
 crypto.createUnsignedMessageDecryptingStream(keyring, in);
 // Does it contain the expected encryption context?
 if
 (!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Example")))
 {
 throw new IllegalStateException("Bad encryption context");
 }

 // Write the plaintext data to disk.
 out = new FileOutputStream(srcFile + ".decrypted");
 IOUtils.copy(decryptingStream, out);
 decryptingStream.close();
 out.close();
 }

 /**
 * In practice, this key would be saved in a secure location.
 * For this demo, we generate a new random key for each operation.
 */
 private static SecretKey retrieveEncryptionKey() {
 SecureRandom rnd = new SecureRandom();
 byte[] rawKey = new byte[16]; // 128 bits
 rnd.nextBytes(rawKey);
 return new SecretKeySpec(rawKey, "AES");
 }
}

Criptografando e descriptografando fluxos de bytes com um chaveiro múltiplo

O exemplo a seguir mostra como usar o AWS Encryption SDK com um chaveiro múltiplo. Quando
você usa um multitoken de autenticação para criptografar dados, qualquer uma das chaves de
empacotamento em qualquer um de seus tokens de autenticação pode descriptografar esses dados.
Este exemplo usa um AWS KMS chaveiro e um chaveiro RSA bruto como chaveiros secundários.

Exemplos 267

AWS Encryption SDK Guia do Desenvolvedor

Este exemplo criptografa com o pacote de algoritmos padrão, que inclui uma assinatura digital.
Durante o streaming, ele AWS Encryption SDK libera texto sem formatação após as verificações de
integridade, mas antes de verificar a assinatura digital. Para evitar o uso do texto simples até que
a assinatura seja verificada, este exemplo armazena o texto simples em buffer e o grava no disco
somente após a conclusão da descriptografia e da verificação.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoOutputStream;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;
import software.amazon.cryptography.materialproviders.model.PaddingScheme;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.util.Collections;

/**
 * <p>
 * Encrypts a file using both AWS KMS Key and an asymmetric key pair.
 *
 * <p>
 * Arguments:
 *
 * Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,

Exemplos 268

AWS Encryption SDK Guia do Desenvolvedor

 * see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html
 *
 * Name of file containing plaintext data to encrypt
 *
 * <p>
 * You might use AWS Key Management Service (AWS KMS) for most encryption and
 decryption operations, but
 * still want the option of decrypting your data offline independently of AWS KMS. This
 sample
 * demonstrates one way to do this.
 * <p>
 * The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair
 * so that either key alone can decrypt it. You might commonly use the AWS KMS key for
 decryption. However,
 * at any time, you can use the private RSA key to decrypt the ciphertext independent
 of AWS KMS.
 * <p>
 * This sample uses the RawRsaKeyring to generate a RSA public-private key pair
 * and saves the key pair in memory. In practice, you would store the private key in a
 secure offline
 * location, such as an offline HSM, and distribute the public key to your development
 team.
 */
public class EscrowedEncryptKeyringExample {
 private static ByteBuffer publicEscrowKey;
 private static ByteBuffer privateEscrowKey;

 public static void main(final String[] args) throws Exception {
 // This sample generates a new random key for each operation.
 // In practice, you would distribute the public key and save the private key in
 secure
 // storage.
 generateEscrowKeyPair();

 final String kmsArn = args[0];
 final String fileName = args[1];

 standardEncrypt(kmsArn, fileName);
 standardDecrypt(kmsArn, fileName);

 escrowDecrypt(fileName);
 }

Exemplos 269

AWS Encryption SDK Guia do Desenvolvedor

 private static void standardEncrypt(final String kmsArn, final String fileName)
 throws Exception {
 // Encrypt with the KMS key and the escrowed public key
 // 1. Instantiate the SDK
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(kmsArn)
 .build();
 IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create the Raw Rsa Keyring with Public Key.
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .build();
 IKeyring rsaPublicKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 4. Create the multi-keyring.
 final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()

Exemplos 270

AWS Encryption SDK Guia do Desenvolvedor

 .generator(kmsKeyring)
 .childKeyrings(Collections.singletonList(rsaPublicKeyring))
 .build();
 IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

 // 5. Encrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName);
 final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");
 final CryptoOutputStream<?> encryptingStream =
 crypto.createEncryptingStream(multiKeyring, out);

 IOUtils.copy(in, encryptingStream);
 in.close();
 encryptingStream.close();
 }

 private static void standardDecrypt(final String kmsArn, final String fileName)
 throws Exception {
 // Decrypt with the AWS KMS key and the escrow public key.

 // 1. Instantiate the SDK.
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

Exemplos 271

AWS Encryption SDK Guia do Desenvolvedor

 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(kmsArn)
 .build();
 IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create the Raw Rsa Keyring with Public Key.
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .build();
 IKeyring rsaPublicKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 4. Create the multi-keyring.
 final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(kmsKeyring)
 .childKeyrings(Collections.singletonList(rsaPublicKeyring))
 .build();
 IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

 // 5. Decrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");
 // Since we are using a signing algorithm suite, we avoid streaming decryption
 directly to the output file,
 // to ensure that the trailing signature is verified before writing any
 untrusted plaintext to disk.
 final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(multiKeyring, plaintextBuffer);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();
 final ByteArrayInputStream plaintextReader = new
 ByteArrayInputStream(plaintextBuffer.toByteArray());
 IOUtils.copy(plaintextReader, out);

Exemplos 272

AWS Encryption SDK Guia do Desenvolvedor

 out.close();
 }

 private static void escrowDecrypt(final String fileName) throws Exception {
 // You can decrypt the stream using only the private key.
 // This method does not call AWS KMS.

 // 1. Instantiate the SDK
 final AwsCrypto crypto = AwsCrypto.standard();

 // 2. Create the Raw Rsa Keyring with Private Key.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .privateKey(privateEscrowKey)
 .build();
 IKeyring escrowPrivateKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 3. Decrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(escrowPrivateKeyring, out);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();

 }

 private static void generateEscrowKeyPair() throws GeneralSecurityException {
 final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
 kg.initialize(4096); // Escrow keys should be very strong
 final KeyPair keyPair = kg.generateKeyPair();

Exemplos 273

AWS Encryption SDK Guia do Desenvolvedor

 publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
 privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

 }
}

AWS Encryption SDK para JavaScript

O foi AWS Encryption SDK para JavaScript projetado para fornecer uma biblioteca de criptografia
do lado do cliente para desenvolvedores que estão escrevendo aplicativos de navegador da Web
JavaScript ou aplicativos de servidor Web em Node.js.

Como todas as implementações do AWS Encryption SDK, o AWS Encryption SDK para JavaScript
oferece recursos avançados de proteção de dados. Os recursos incluem criptografia de envelope,
AAD (additional authenticated data - dados autenticados adicionais) e pacotes de algoritmos de
chave simétrica segura e autenticada, como o AES-GCM de 256 bits com derivação de chave e
assinatura.

Todas as implementações específicas do AWS Encryption SDK idioma foram projetadas para serem
interoperáveis, sujeitas às restrições da linguagem. Para obter detalhes sobre as restrições de
linguagem para JavaScript, consulte. the section called “Compatibilidade”

Saiba mais

• Para obter detalhes sobre a programação com o AWS Encryption SDK para JavaScript, consulte o
aws-encryption-sdk-javascriptrepositório em GitHub.

• Para exemplos de programação, consulte os the section called “Exemplos” módulos example-
browser e example-node no repositório. aws-encryption-sdk-javascript

• Para ver um exemplo real do uso do AWS Encryption SDK para JavaScript para criptografar dados
em um aplicativo da Web, consulte Como habilitar a criptografia em um navegador com o AWS
Encryption SDK para JavaScript e o Node.js no blog de segurança. AWS

Tópicos

• Compatibilidade do AWS Encryption SDK para JavaScript

• Instalando o AWS Encryption SDK para JavaScript

• Módulos no AWS Encryption SDK para JavaScript

JavaScript 274

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK Guia do Desenvolvedor

• AWS Encryption SDK para JavaScript exemplos

Compatibilidade do AWS Encryption SDK para JavaScript

O foi AWS Encryption SDK para JavaScript projetado para ser interoperável com outras
implementações de linguagem do. AWS Encryption SDKNa maioria dos casos, você pode
criptografar dados com o AWS Encryption SDK para JavaScript e descriptografá-los com qualquer
outra implementação de linguagem, incluindo a AWS Encryption SDK interface de linha de comando.
E você pode usar o AWS Encryption SDK para JavaScript para descriptografar mensagens
criptografadas produzidas por outras implementações de linguagem do. AWS Encryption SDK

No entanto, ao usar o AWS Encryption SDK para JavaScript, você precisa estar ciente de alguns
problemas de compatibilidade na implementação da JavaScript linguagem e nos navegadores da
Web.

Além disso, ao usar implementações de linguagem diferentes, configure provedores de chaves
mestras, chaves mestras e tokens de autenticação compatíveis. Para obter detalhes, consulte
Compatibilidade dos tokens de autenticação.

AWS Encryption SDK para JavaScript compatibilidade

A JavaScript implementação do AWS Encryption SDK difere das implementações de outras
linguagens das seguintes maneiras:

• A operação de criptografia do AWS Encryption SDK para JavaScript não retorna texto cifrado sem
moldura. No entanto, o AWS Encryption SDK para JavaScript decifrará o texto cifrado emoldurado
e não emoldurado retornado por outras implementações de linguagem do. AWS Encryption SDK

• Começando com o Node.js versão 12.9.0, o Node.js é compatível com as seguintes opções de
empacotamento de chave RSA:

• OAEP com SHA1, SHA256, ou SHA384 SHA512

• OAEP com e com SHA1 MGF1 SHA1

• PKCS1v15

• Antes da versão 12.9.0, o Node.js era compatível apenas com as seguintes opções de
empacotamento de chave RSA:

• OAEP com e com SHA1 MGF1 SHA1

• PKCS1v15

Compatibilidade 275

AWS Encryption SDK Guia do Desenvolvedor

Compatibilidade do navegador

Alguns navegadores da Web não são compatíveis com operações de criptografia básicas exigidas
pelo AWS Encryption SDK para JavaScript . Você pode compensar algumas das operações
ausentes configurando um substituto para a WebCrypto API que o navegador implementa.

Limitações de navegador da Web

As seguintes limitações são comuns a todos os navegadores da Web:

• A WebCrypto API não oferece suporte ao encapsulamento de PKCS1v15 chaves.

• Os navegadores não são compatíveis com chaves de 192 bits.

Operações de criptografia necessárias

AWS Encryption SDK para JavaScript Isso requer as seguintes operações em navegadores da
web. Se um navegador não for compatível com estas operações, ele será incompatível com o AWS
Encryption SDK para JavaScript.

• O navegador deve incluir crypto.getRandomValues(), que é um método para gerar
valores de criptografia aleatórios. Para obter informações sobre as versões do navegador
da Web compatíveiscrypto.getRandomValues(), consulte Posso usar criptografia.
getRandomValues()? .

Fallback necessário

O AWS Encryption SDK para JavaScript requer as seguintes bibliotecas e operações em
navegadores da web. Se você oferecer suporte a um navegador da Web que não atenda a esses
requisitos, deverá configurar um fallback. Caso contrário, as tentativas de usar o AWS Encryption
SDK para JavaScript com o navegador falharão.

• A WebCrypto API, que executa operações criptográficas básicas em aplicativos da web, não está
disponível para todos os navegadores. Para obter informações sobre as versões do navegador da
Web compatíveis com a criptografia da Web, consulte Posso usar criptografia da Web?.

• As versões modernas do navegador Safari não oferecem suporte à criptografia AES-GCM de
zero bytes, o que é necessário. AWS Encryption SDK Se o navegador implementa a WebCrypto
API, mas não consegue usar o AES-GCM para criptografar zero bytes, ele AWS Encryption SDK
para JavaScript usa a biblioteca de fallback somente para criptografia de zero bytes. Ele usa a
WebCrypto API para todas as outras operações.

Compatibilidade 276

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=cryptography

AWS Encryption SDK Guia do Desenvolvedor

Para configurar um fallback para qualquer limitação, adicione as seguintes instruções ao seu
código. Na função configureFallback especifique uma biblioteca que seja compatível com os
recursos ausentes. O exemplo a seguir usa a Microsoft Research JavaScript Cryptography Library
(msrcrypto), mas você pode substituí-la por uma biblioteca compatível. Para obter um exemplo
completo, consulte fallback.ts.

import { configureFallback } from '@aws-crypto/client-browser'
configureFallback(msrCrypto)

Instalando o AWS Encryption SDK para JavaScript

O AWS Encryption SDK para JavaScript consiste em uma coleção de módulos interdependentes.
Vários dos módulos são apenas coleções de módulos projetados para funcionar em conjunto. Alguns
módulos são projetados para funcionar de forma independente. Alguns módulos são necessários
para todas as implementações; alguns outros são necessários apenas para casos especiais. Para
obter informações sobre os módulos no AWS Encryption SDK formulário JavaScript, consulte
Módulos no AWS Encryption SDK para JavaScript e o README.md arquivo em cada um dos módulos
no aws-encryption-sdk-javascriptrepositório em GitHub.

Note

Todas as versões AWS Encryption SDK para JavaScript anteriores à 2.0.0 estão em end-of-
supportfase.
Você pode atualizar com segurança a partir da versão 2.0.x e posteriores até a versão mais
recente do AWS Encryption SDK para JavaScript sem realizar alterações no código ou nos
dados. No entanto, os novos atributos de segurança introduzidos na versão 2.0.x não são
compatíveis com versões anteriores. Para atualizar a partir de versões anteriores à 1.7.x
até a versão 2.0. x e posteriores, primeiro será necessário atualizar para a versão 1.x mais
recente do AWS Encryption SDK para JavaScript. Para obter detalhes, consulte Migrando
seu AWS Encryption SDK.

Para instalar os módulos, use o gerenciador de pacotes npm.

Por exemplo, para instalar o client-node módulo, que inclui todos os módulos que você precisa
programar com o AWS Encryption SDK para JavaScript no Node.js, use o comando a seguir.

npm install @aws-crypto/client-node

Instalação 277

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.npmjs.com/get-npm

AWS Encryption SDK Guia do Desenvolvedor

Para instalar o client-browser módulo, que inclui todos os módulos que você precisa programar
com o AWS Encryption SDK para JavaScript no navegador, use o comando a seguir.

npm install @aws-crypto/client-browser

Para exemplos práticos de como usar o AWS Encryption SDK para JavaScript, consulte os exemplos
nos example-browser módulos example-node e no aws-encryption-sdk-javascriptrepositório em
GitHub.

Módulos no AWS Encryption SDK para JavaScript

Os módulos do AWS Encryption SDK para JavaScript facilitam a instalação do código necessário
para seus projetos.

Módulos para JavaScript Node.js

nó do cliente

Inclui todos os módulos que você precisa programar com o AWS Encryption SDK para JavaScript
em Node.js.

caching-materials-manager-node

Exporta funções que oferecem suporte ao recurso de cache de chaves de dados AWS Encryption
SDK para JavaScript no Node.js.

decrypt-node

Exporta funções que descriptografam e verificam mensagens criptografadas que representam
dados e streams de dados. Incluído no módulo client-node.

encrypt-node

Exporta funções que criptografam e assinam diferentes tipos de dados. Incluído no módulo
client-node.

example-node

Exporta exemplos funcionais de programação com o AWS Encryption SDK para JavaScript em
Node.js. Inclui exemplos de diferentes tipos de tokens de autenticação e diferentes tipos de
dados.

Módulos 278

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node

AWS Encryption SDK Guia do Desenvolvedor

hkdf-node

Exporta uma função de derivação de chave (HKDF) baseada em HMAC que o Node.js usa AWS
Encryption SDK para JavaScript em conjuntos de algoritmos específicos. O AWS Encryption SDK
para JavaScript no navegador usa a função HKDF nativa na WebCrypto API.

integration-node

Define testes que verificam se o AWS Encryption SDK para JavaScript em Node.js é compatível
com outras implementações de linguagem do AWS Encryption SDK.

kms-keyring-node

Exporta funções que oferecem suporte a AWS KMS chaveiros no Node.js.

raw-aes-keyring-node

Exporta funções que são compatíveis com tokens de autenticação brutos do AES no Node.js.

raw-rsa-keyring-node

Exporta funções compatíveis com tokens de autenticação brutos do RSA em Node.js.

Módulos para JavaScript navegador

client-browser

Inclui todos os módulos que você precisa programar com o AWS Encryption SDK para JavaScript
no navegador.

caching-materials-manager-browser

Exporta funções que oferecem suporte ao recurso de cache de chave de dados para JavaScript o
navegador.

decrypt-browser

Exporta funções que descriptografam e verificam mensagens criptografadas que representam
dados e streams de dados.

encrypt-browser

Exporta funções que criptografam e assinam diferentes tipos de dados.

Módulos 279

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser

AWS Encryption SDK Guia do Desenvolvedor

example-browser

Exemplos práticos de programação com o AWS Encryption SDK para JavaScript no navegador.
Inclui exemplos de diferentes tipos de tokens de autenticação e diferentes tipos de dados.

integration-browser

Define testes que verificam se o AWS Encryption SDK for Java script no navegador é compatível
com outras implementações de linguagem do AWS Encryption SDK.

kms-keyring-browser

Exporta funções compatíveis com tokens de autenticação do AWS KMS no navegador.

raw-aes-keyring-browser

Exporta funções compatíveis com tokens de autenticação brutos do AES no navegador.

raw-rsa-keyring-browser

Exporta funções compatíveis com tokens de autenticação brutos do RSA no navegador.

Módulos para todas as implementações

cache-material

É compatível com o recurso de armazenamento em cache de chaves de dados. Fornece código
para montar o material de criptografia que é armazenado em cache com cada chave de dados.

kms-keyring

Exporta funções compatíveis com tokens de autenticação do KMS.

material-management

Implementa o gerenciador de material de criptografia (CMM).

raw-keyring

Exporta funções necessárias para tokens de autenticação brutos do AES e do RSA.

serialize

Exporta funções que o SDK usa para serializar sua saída.

web-crypto-backend

Exporta funções que usam a WebCrypto API AWS Encryption SDK para JavaScript no
navegador.

Módulos 280

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK para JavaScript exemplos

Os exemplos a seguir mostram como usar o AWS Encryption SDK para JavaScript para criptografar
e descriptografar dados.

Você pode encontrar mais exemplos de uso do AWS Encryption SDK para JavaScript nos módulos
example-node e example-browser no repositório em. aws-encryption-sdk-javascript GitHub Esses
módulos de exemplo não são instalados quando você instala os módulos client-browser ou
client-node.

Consulte os exemplos de código completos: nó: kms_simple.ts, navegador: kms_simple.ts

Tópicos

• Criptografando dados com um chaveiro AWS KMS

• Descriptografando dados com um chaveiro AWS KMS

Criptografando dados com um chaveiro AWS KMS

O exemplo a seguir mostra como usar o para AWS Encryption SDK para JavaScript criptografar e
descriptografar uma string curta ou uma matriz de bytes.

Este exemplo apresenta um AWS KMS chaveiro, um tipo de chaveiro que usa um AWS KMS key
para gerar e criptografar chaves de dados. Para obter ajuda na criação de um AWS KMS key,
consulte Criação de chaves no Guia do AWS Key Management Service desenvolvedor. Para obter
ajuda para identificar o AWS KMS keys em um AWS KMS chaveiro, consulte Identificação AWS KMS
keys em um AWS KMS chaveiro

Etapa 1: defina a política de compromisso.

A partir da versão 1.7. x do AWS Encryption SDK para JavaScript, você pode definir a política de
compromisso ao chamar a nova buildClient função que instancia um AWS Encryption SDK
cliente. A função buildClient assume um valor enumerado que representa sua política de
compromisso. Ela retorna as funções encrypt e decrypt atualizadas, que reforçam sua política
de compromisso quando você criptografa e descriptografa.

Os exemplos a seguir usam a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

Exemplos 281

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Browser

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Etapa 2: estruturar o token de autenticação.

Crie um AWS KMS chaveiro para criptografia.

Ao criptografar com um AWS KMS chaveiro, você deve especificar uma chave geradora, ou seja,
uma AWS KMS key que seja usada para gerar a chave de dados em texto simples e criptografá-
la. Você também pode especificar zero ou mais chaves adicionais que criptografam a mesma
chave de dados de texto simples. O chaveiro retorna a chave de dados em texto simples e uma
cópia criptografada dessa chave de dados para cada um AWS KMS key no chaveiro, incluindo a
chave do gerador. Para descriptografar os dados, você precisa descriptografar qualquer uma das
chaves de dados criptografadas.

Para especificar o AWS KMS keys para um chaveiro de criptografia no AWS Encryption SDK para
JavaScript, você pode usar qualquer identificador de AWS KMS chave compatível. Este exemplo
usa uma chave geradora, que é identificada por seu ARN de alias, e uma chave adicional, que é
identificada por um ARN de chave.

Exemplos 282

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

Note

Se você planeja reutilizar seu AWS KMS chaveiro para descriptografar, você deve usar a
chave para identificar o que está no ARNs chaveiro. AWS KMS keys

Antes de executar esse código, substitua os identificadores de exemplo por AWS KMS key
identificadores válidos. Você deve ter as permissões necessárias para usar as AWS KMS keys no
token de autenticação.

JavaScript Browser

Comece fornecendo suas credenciais para o navegador. Os AWS Encryption SDK para
JavaScript exemplos usam o webpack. DefinePlugin, que substitui as constantes de
credenciais por suas credenciais reais. Mas você pode usar qualquer método para fornecer
suas credenciais. Em seguida, use as credenciais para criar um AWS KMS cliente.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
 sessionToken:string }

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
})

Em seguida, especifique AWS KMS keys a chave do gerador e a chave adicional. Em
seguida, crie um AWS KMS chaveiro usando o AWS KMS cliente e o. AWS KMS keys

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })

JavaScript Node.js

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'

Exemplos 283

https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Guia do Desenvolvedor

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Etapa 3: defina o contexto de criptografia.

Um contexto de criptografia são dados autenticados adicionais arbitrários e que não são secretos.
Quando você fornece um contexto de criptografia na criptografia, ele vincula AWS Encryption
SDK criptograficamente o contexto de criptografia ao texto cifrado, de forma que o mesmo
contexto de criptografia seja necessário para descriptografar os dados. O uso de um contexto de
criptografia é opcional, mas o recomendamos como uma melhor prática.

Crie um objeto simples que inclua os pares de contexto de criptografia. A chave e o valor em
cada par devem ser uma string.

JavaScript Browser

const context = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2'
}

JavaScript Node.js

const context = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2'
}

Etapa 4: criptografar os dados.

Para criptografar os dados de texto simples, chame a função encrypt. Passe o AWS KMS
chaveiro, os dados em texto simples e o contexto de criptografia.

A função encrypt retorna uma mensagem criptografada (result) que contém os dados
criptografados, as chaves de dados criptografadas e metadados importantes, incluindo o contexto
de criptografia e a assinatura.

Exemplos 284

AWS Encryption SDK Guia do Desenvolvedor

Você pode descriptografar essa mensagem criptografada usando o AWS Encryption SDK para
qualquer linguagem de programação compatível.

JavaScript Browser

const plaintext = new Uint8Array([1, 2, 3, 4, 5])

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

JavaScript Node.js

const plaintext = 'asdf'

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

Descriptografando dados com um chaveiro AWS KMS

Você pode usar o AWS Encryption SDK para JavaScript para descriptografar a mensagem
criptografada e recuperar os dados originais.

Neste exemplo, descriptografamos os dados que criptografamos no exemplo the section called
“Criptografando dados com um chaveiro AWS KMS”.

Etapa 1: defina a política de compromisso.

A partir da versão 1.7. x do AWS Encryption SDK para JavaScript, você pode definir a política de
compromisso ao chamar a nova buildClient função que instancia um AWS Encryption SDK
cliente. A função buildClient assume um valor enumerado que representa sua política de
compromisso. Ela retorna as funções encrypt e decrypt atualizadas, que reforçam sua política
de compromisso quando você criptografa e descriptografa.

Os exemplos a seguir usam a buildClient função para especificar a política de compromisso
padrão,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Você também pode usar o buildClient para
limitar o número de chaves de dados criptografadas em uma mensagem criptografada. Para obter
mais informações, consulte the section called “Limitar as chaves de dados criptografadas”.

JavaScript Browser

import {

Exemplos 285

AWS Encryption SDK Guia do Desenvolvedor

 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Etapa 2: estruturar o token de autenticação.

Para descriptografar os dados, passe a mensagem criptografada (result) que a função
encrypt retornou. A mensagem criptografada inclui os dados criptografados, as chaves
de dados criptografadas e metadados importantes, incluindo o contexto de criptografia e a
assinatura.

Você também deve especificar um token de autenticação do AWS KMS ao descriptografar.
Você pode usar o mesmo token de autenticação usado para criptografar os dados ou um token
de autenticação diferente. Para ter sucesso, pelo menos um AWS KMS key no chaveiro de
decodificação deve ser capaz de descriptografar uma das chaves de dados criptografadas na
mensagem criptografada. Como nenhuma chave de dados é gerada, você não precisa especificar
uma chave geradora em um token de autenticação de descriptografia. Se você fizer isso, a chave
geradora e as chaves adicionais serão tratadas da mesma maneira.

Para especificar um AWS KMS key para um chaveiro de decodificação no AWS Encryption
SDK para JavaScript, você deve usar a chave ARN. Caso contrário, AWS KMS key o não será

Exemplos 286

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

reconhecido. Para obter ajuda para identificar o AWS KMS keys em um AWS KMS chaveiro,
consulte Identificação AWS KMS keys em um AWS KMS chaveiro

Note

Se você usar o mesmo chaveiro para criptografar e descriptografar, use a chave ARNs
para identificar o que está no chaveiro. AWS KMS keys

Neste exemplo, criamos um chaveiro que inclui apenas um dos do AWS KMS keys chaveiro de
criptografia. Antes de executar esse código, substitua o ARN da chave de exemplo por um válido.
Você deve ter a permissão kms:Decrypt na AWS KMS key.

JavaScript Browser

Comece fornecendo suas credenciais para o navegador. Os AWS Encryption SDK para
JavaScript exemplos usam o webpack. DefinePlugin, que substitui as constantes de
credenciais por suas credenciais reais. Mas você pode usar qualquer método para fornecer
suas credenciais. Em seguida, use as credenciais para criar um AWS KMS cliente.

declare const credentials: {accessKeyId: string, secretAccessKey:string,
 sessionToken:string }

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
})

Em seguida, crie um AWS KMS chaveiro usando o AWS KMS cliente. Este exemplo usa
apenas um dos AWS KMS keys do chaveiro de criptografia.

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

Exemplos 287

https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ keyIds })

Etapa 3: decifrar os dados.

Chame a função decrypt. Passe o token de autenticação de descriptografia que você acabou
de criar (keyring) e a mensagem criptografada que a função encrypt retornou (result).
O AWS Encryption SDK usa o chaveiro para descriptografar uma das chaves de dados
criptografadas. Ele usa a chave de dados de texto simples para descriptografar os dados.

Se a chamada for bem-sucedida, o campo plaintext conterá os dados de texto simples
(descriptografados). O campo messageHeader contém metadados sobre o processo de
descriptografia, incluindo o contexto de criptografia usado para descriptografar os dados.

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

Etapa 4: Verifique o contexto de criptografia.

O contexto de criptografia que foi usado para descriptografar os dados é incluído no cabeçalho
da mensagem (messageHeader) que a função decrypt retorna. Antes do aplicativo retornar
os dados de texto simples, verifique se o contexto de criptografia fornecido durante a criptografia
está incluído no contexto de criptografia usado ao descriptografar. Uma incompatibilidade pode
indicar que os dados foram adulterados ou que você não descriptografou o texto cifrado correto.

Ao verificar o contexto de criptografia, não exija uma correspondência exata. Ao usar um
algoritmo de criptografia com a assinatura, o gerenciador de material de criptografia (CMM)
adiciona a chave de assinatura pública ao contexto de criptografia antes de criptografar a
mensagem. Mas todos os pares de contexto de criptografia que você enviou devem ser incluídos
no contexto de criptografia que foi retornado.

Exemplos 288

AWS Encryption SDK Guia do Desenvolvedor

Primeiro, obtenha o contexto de criptografia do cabeçalho da mensagem. Depois, verifique se
cada par de chave-valor no contexto de criptografia original (context) corresponde a um par de
chave-valor no contexto de criptografia retornado (encryptionContext).

JavaScript Browser

const { encryptionContext } = messageHeader

Object
 .entries(context)
 .forEach(([key, value]) => {
 if (encryptionContext[key] !== value) throw new Error('Encryption Context
 does not match expected values')
})

JavaScript Node.js

const { encryptionContext } = messageHeader

Object
 .entries(context)
 .forEach(([key, value]) => {
 if (encryptionContext[key] !== value) throw new Error('Encryption Context
 does not match expected values')
})

Se a verificação de contexto de criptografia for bem-sucedida, você poderá retornar os dados de
texto simples.

AWS Encryption SDK for Python

Este tópico explica como instalar e usar o AWS Encryption SDK for Python. Para obter detalhes
sobre a programação com o AWS Encryption SDK for Python, consulte o aws-encryption-sdk-
pythonrepositório em GitHub. Para obter a documentação da API, consulte Ler os documentos.

Tópicos

• Pré-requisitos

• Instalação

• AWS Encryption SDK for Python código de exemplo

Python 289

https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

Pré-requisitos

Antes de instalar o AWS Encryption SDK for Python, verifique se você tem os seguintes pré-
requisitos.

Uma versão compatível do Python

O Python 3.8 ou posterior é exigido pelas AWS Encryption SDK for Python versões 3.2.0 e
posteriores.

Note

A Biblioteca de Provedores de Material AWS Criptográfico (MPL) é uma dependência
opcional para a AWS Encryption SDK for Python introduzida na versão 4. x. Se você
pretende instalar o MPL, você deve usar o Python 3.11 ou posterior.

As versões anteriores do AWS Encryption SDK oferecem suporte ao Python 2.7 e ao Python 3.4
e posteriores, mas recomendamos que você use a versão mais recente do. AWS Encryption SDK

Para fazer download do Python, consulte Downloads do Python.

A ferramenta de instalação do pip para Python

O Python 3.6 e versões posteriores incluem pip, embora você possa querer atualizá-lo. Para
obter mais informações sobre a atualização ou a instalação do pip consulte Instalação na
documentação do pip.

Instalação

Instalar a versão mais recente do AWS Encryption SDK for Python.

Note

Todas as versões AWS Encryption SDK for Python anteriores à 3.0.0 estão em end-of-
supportfase.
Você pode atualizar com segurança a partir da versão 2.0.x e posteriores até a versão
mais recente do AWS Encryption SDK sem realizar alterações no código ou nos dados. No
entanto, os novos atributos de segurança introduzidos na versão 2.0.x não são compatíveis

Pré-requisitos 290

https://github.com/aws/aws-cryptographic-material-providers-library
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

com versões anteriores. Para atualizar a partir de versões anteriores à 1.7.x até a versão 2.0.
x e posteriores, primeiro será necessário atualizar para a versão 1.x mais recente do AWS
Encryption SDK. Para obter detalhes, consulte Migrando seu AWS Encryption SDK.

Use pip para instalar o AWS Encryption SDK for Python, conforme mostrado nos exemplos a seguir.

Para instalar a versão mais recente

pip install "aws-encryption-sdk[MPL]"

O [MPL] sufixo instala a Biblioteca de Provedores de Material AWS Criptográfico (MPL). O MPL
contém construções para criptografar e descriptografar seus dados. O MPL é uma dependência
opcional para o AWS Encryption SDK for Python introduzido na versão 4. x. É altamente
recomendável instalar o MPL. No entanto, se você não pretende usar o MPL, pode omitir o
[MPL] sufixo.

Para obter mais detalhes sobre o uso do pip para instalar e atualizar pacotes, consulte Instalação de
pacotes.

AWS Encryption SDK for Python Isso requer a biblioteca de criptografia (pyca/cryptography) em
todas as plataformas. Todas as versões do pip instalam e criam automaticamente a biblioteca
cryptography no Windows. O pip 8.1 e versões posteriores instala e compila cryptography
automaticamente no Linux. Se você usar uma versão anterior do pip e seu ambiente Linux não tiver
as ferramentas necessárias para criar a biblioteca cryptography, será necessário instalá-las. Para
obter mais informações, consulte Building Cryptography on Linux.

As versões 1.10.0 e 2.5.0 do AWS Encryption SDK for Python fixam a dependência criptográfica
entre 2.5.0 e 3.3.2. Outras versões do AWS Encryption SDK for Python instalam a versão mais
recente da criptografia. Se você precisar de uma versão do cryptography posterior à 3.3.2,
recomendamos que use a versão principal mais recente do AWS Encryption SDK for Python.

Para obter a versão de desenvolvimento mais recente do AWS Encryption SDK for Python, acesse o
aws-encryption-sdk-pythonrepositório em GitHub.

Depois de instalar o AWS Encryption SDK for Python, comece examinando o código de exemplo do
Python neste guia.

Instalação 291

https://github.com/aws/aws-cryptographic-material-providers-library
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK for Python código de exemplo

Os exemplos a seguir mostram como usar o para AWS Encryption SDK for Python criptografar e
descriptografar dados.

Os exemplos nesta seção mostram como usar a versão 4. x do AWS Encryption SDK for Python
com a dependência opcional da Biblioteca de Provedores de Material Criptográfico ()aws-
cryptographic-material-providers. Para ver exemplos que usam versões anteriores ou
instalações sem a biblioteca de fornecedores de materiais (MPL), encontre sua versão na lista de
lançamentos do aws-encryption-sdk-pythonrepositório em. GitHub

Quando você usa a versão 4. x do AWS Encryption SDK for Python com o MPL, ele usa chaveiros
para realizar a criptografia de envelopes. AWS Encryption SDK Fornece chaveiros compatíveis
com os fornecedores de chaves mestras que você usou nas versões anteriores. Para obter mais
informações, consulte the section called “Compatibilidade dos tokens de autenticação”. Para
exemplos de migração de provedores de chaves mestras para chaveiros, consulte Exemplos de
migração no aws-encryption-sdk-python repositório em; GitHub

Tópicos

• Criptografar e descriptografar strings

• Criptografar e descriptografar streams de bytes

Criptografar e descriptografar strings

O exemplo a seguir mostra como usar o para criptografar e AWS Encryption SDK descriptografar
cadeias de caracteres. Este exemplo usa um AWS KMS chaveiro com uma chave KMS de
criptografia simétrica.

Este exemplo instancia o AWS Encryption SDK cliente com a política de compromisso padrão,.
REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para obter mais informações, consulte the section called
“Como definir sua política de compromisso”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and

Exemplos 292

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK Guia do Desenvolvedor

decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
 EXAMPLE_DATA
with an encryption context. This example also includes some sanity checks for
 demonstration:
1. Ciphertext and plaintext data are not the same
2. Encryption context is correct in the decrypted message header
3. Decrypted plaintext value matches EXAMPLE_DATA
These sanity checks are for demonstration in the example only. You do not need these in
 your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

"""

import boto3
from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring
from typing import Dict # noqa pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
 kms_key_id: str
):
 """Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

 Usage: encrypt_and_decrypt_with_keyring(kms_key_id)
 :param kms_key_id: KMS Key identifier for the KMS key you want to use for
 encryption and
 decryption of your data keys.
 :type kms_key_id: string

 """
 # 1. Instantiate the encryption SDK client.
 # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,

Exemplos 293

AWS Encryption SDK Guia do Desenvolvedor

 # which enforces that this client only encrypts using committing algorithm suites
 and enforces
 # that this client will only decrypt encrypted messages that were created with a
 committing
 # algorithm suite.
 # This is the default commitment policy if you were to build the client as
 # `client = aws_encryption_sdk.EncryptionSDKClient()`.
 client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

 # 2. Create a boto3 client for KMS.
 kms_client = boto3.client('kms', region_name="us-west-2")

 # 3. Optional: create encryption context.
 # Remember that your encryption context is NOT SECRET.
 encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
 }

 # 4. Create your keyring
 mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

 keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 kms_key_id=kms_key_id,
 kms_client=kms_client
)

 kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
 input=keyring_input
)

 # 5. Encrypt the data with the encryptionContext.
 ciphertext, _ = client.encrypt(
 source=EXAMPLE_DATA,
 keyring=kms_keyring,
 encryption_context=encryption_context
)

Exemplos 294

AWS Encryption SDK Guia do Desenvolvedor

 # 6. Demonstrate that the ciphertext and plaintext are different.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert ciphertext != EXAMPLE_DATA, \
 "Ciphertext and plaintext data are the same. Invalid encryption"

 # 7. Decrypt your encrypted data using the same keyring you used on encrypt.
 plaintext_bytes, _ = client.decrypt(
 source=ciphertext,
 keyring=kms_keyring,
 # Provide the encryption context that was supplied to the encrypt method
 encryption_context=encryption_context,
)

 # 8. Demonstrate that the decrypted plaintext is identical to the original
 plaintext.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert plaintext_bytes == EXAMPLE_DATA, \
 "Decrypted plaintext should be identical to the original plaintext. Invalid
 decryption"

Criptografar e descriptografar streams de bytes

O exemplo a seguir mostra como usar o para AWS Encryption SDK criptografar e descriptografar
fluxos de bytes. Este exemplo usa um chaveiro AES bruto.

Este exemplo instancia o AWS Encryption SDK cliente com a política de compromisso padrão,.
REQUIRE_ENCRYPT_REQUIRE_DECRYPT Para obter mais informações, consulte the section called
“Como definir sua política de compromisso”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
 load into
memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
 loading it
all at once in memory. In this example, we demonstrate file streaming for encryption
 and decryption

Exemplos 295

AWS Encryption SDK Guia do Desenvolvedor

using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
`plaintext_filename` with an encryption context to an output (encrypted) file
 `ciphertext_filename`.
It then decrypts the ciphertext from `ciphertext_filename` to a new file
 `decrypted_filename`.
This example also includes some sanity checks for demonstration:
1. Ciphertext and plaintext data are not the same
2. Encryption context is correct in the decrypted message header
3. Decrypted plaintext value matches EXAMPLE_DATA
These sanity checks are for demonstration in the example only. You do not need these in
 your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
 example
in the AWS Encryption SDK for Python.
"""
import filecmp
import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
 CreateRawAesKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring
from typing import Dict # noqa pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
 plaintext_filename: str,
 ciphertext_filename: str,
 decrypted_filename: str
):
 """Demonstrate a streaming encrypt/decrypt cycle.

 Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
 ciphertext_filename
 decrypted_filename)
 :param plaintext_filename: filename of the plaintext data
 :type plaintext_filename: string

Exemplos 296

AWS Encryption SDK Guia do Desenvolvedor

 :param ciphertext_filename: filename of the ciphertext data
 :type ciphertext_filename: string
 :param decrypted_filename: filename of the decrypted data
 :type decrypted_filename: string
 """
 # 1. Instantiate the encryption SDK client.
 # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 # which enforces that this client only encrypts using committing algorithm suites
 and enforces
 # that this client will only decrypt encrypted messages that were created with a
 committing
 # algorithm suite.
 # This is the default commitment policy if you were to build the client as
 # `client = aws_encryption_sdk.EncryptionSDKClient()`.
 client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

 # 2. The key namespace and key name are defined by you.
 # and are used by the Raw AES keyring to determine
 # whether it should attempt to decrypt an encrypted data key.
 key_name_space = "Some managed raw keys"
 key_name = "My 256-bit AES wrapping key"

 # 3. Optional: create encryption context.
 # Remember that your encryption context is NOT SECRET.
 encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
 }

 # 4. Generate a 256-bit AES key to use with your keyring.
 # In practice, you should get this key from a secure key management system such as
 an HSM.

 # Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
 static_key = secrets.token_bytes(32)

 # 5. Create a Raw AES keyring
 # We choose to use a raw AES keyring, but any keyring can be used with streaming.

Exemplos 297

AWS Encryption SDK Guia do Desenvolvedor

 mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

 keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=static_key,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

 raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=keyring_input
)

 # 6. Encrypt the data stream with the encryptionContext
 with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
 ct_file:
 with client.stream(
 mode='e',
 source=pt_file,
 keyring=raw_aes_keyring,
 encryption_context=encryption_context
) as encryptor:
 for chunk in encryptor:
 ct_file.write(chunk)

 # 7. Demonstrate that the ciphertext and plaintext are different.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
 "Ciphertext and plaintext data are the same. Invalid encryption"

 # 8. Decrypt your encrypted data stream using the same keyring you used on
 encrypt.
 with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
 pt_file:
 with client.stream(
 mode='d',
 source=ct_file,
 keyring=raw_aes_keyring,
 encryption_context=encryption_context
) as decryptor:
 for chunk in decryptor:

Exemplos 298

AWS Encryption SDK Guia do Desenvolvedor

 pt_file.write(chunk)

 # 10. Demonstrate that the decrypted plaintext is identical to the original
 plaintext.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert filecmp.cmp(plaintext_filename, decrypted_filename), \
 "Decrypted plaintext should be identical to the original plaintext. Invalid
 decryption"

AWS Encryption SDK para Rust

Este tópico explica como instalar e usar o AWS Encryption SDK for Rust. Para obter detalhes sobre a
programação com o AWS Encryption SDK for Rust, consulte o diretório Rust do aws-encryption-sdk
repositório em. GitHub

O AWS Encryption SDK for Rust difere de algumas das outras implementações de linguagem de
programação do das seguintes AWS Encryption SDK maneiras:

• Não há suporte para armazenamento em cache de chaves de dados. No entanto, o AWS
Encryption SDK for Rust suporta o AWS KMS chaveiro hierárquico, uma solução alternativa de
cache de materiais criptográficos.

• Não há suporte para streaming de dados

O AWS Encryption SDK for Rust inclui todos os recursos de segurança introduzidos nas versões
2.0. x e posteriores de outras implementações de linguagem do AWS Encryption SDK. No entanto,
se você estiver usando o for Rust AWS Encryption SDK para descriptografar dados que foram
criptografados por um pré-2.0. versão x outra implementação de linguagem do AWS Encryption SDK,
talvez seja necessário ajustar sua política de compromisso. Para obter detalhes, consulte Como
definir sua política de compromisso.

O AWS Encryption SDK for Rust é um produto do AWS Encryption SDK in Dafny, uma linguagem de
verificação formal na qual você escreve especificações, o código para implementá-las e as provas
para testá-las. O resultado é uma biblioteca que implementa os atributos do AWS Encryption SDK
em uma estrutura que garante a correção funcional.

Saiba mais

Rust 299

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/dafny-lang/dafny/blob/master/README.md

AWS Encryption SDK Guia do Desenvolvedor

• Para ver exemplos que mostram como configurar opções no AWS Encryption SDK, como
especificar um conjunto alternativo de algoritmos, limitar chaves de dados criptografadas e usar
chaves AWS KMS multirregionais, consulte. Configurando o AWS Encryption SDK

• Para exemplos que mostram como configurar e usar o AWS Encryption SDK for Rust, consulte os
exemplos do Rust no aws-encryption-sdk repositório em. GitHub

Tópicos

• Pré-requisitos

• Instalação

• AWS Encryption SDK para código de exemplo de Rust

Pré-requisitos

Antes de instalar o AWS Encryption SDK for Rust, verifique se você tem os seguintes pré-requisitos.

Instale Rust and Cargo

Instale a versão estável atual do Rust usando o rustup.

Para obter mais informações sobre como baixar e instalar o rustup, consulte os procedimentos de
instalação no The Cargo Book.

Instalação

O AWS Encryption SDK for Rust está disponível como caixa em aws-esdkCrates.io. Para obter
detalhes sobre como instalar e construir o AWS Encryption SDK para Rust, consulte o README.md
no repositório em. aws-encryption-sdk GitHub

Você pode instalar o AWS Encryption SDK for Rust das seguintes maneiras.

Manualmente

Para instalar o AWS Encryption SDK for Rust, clone ou baixe o aws-encryption-sdk GitHub
repositório.

Usando Crates.io

Execute o seguinte comando Cargo no diretório do seu projeto:

Pré-requisitos 300

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples
https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk/tree/mainline

AWS Encryption SDK Guia do Desenvolvedor

cargo add aws-esdk

Ou adicione a seguinte linha ao seu Cargo.toml:

aws-esdk = "<version>"

AWS Encryption SDK para código de exemplo de Rust

Os exemplos a seguir mostram os padrões básicos de codificação que você usa ao programar com
o AWS Encryption SDK for Rust. Especificamente, você instancia a biblioteca AWS Encryption SDK
e os fornecedores de materiais. Em seguida, antes de chamar cada método, você instancia o objeto
que define a entrada para o método.

Para exemplos que mostram como configurar opções no AWS Encryption SDK, como especificar um
conjunto alternativo de algoritmos e limitar chaves de dados criptografadas, consulte os exemplos de
Rust no aws-encryption-sdk repositório em. GitHub

Criptografando e descriptografando dados no for Rust AWS Encryption SDK

Este exemplo mostra o padrão básico para criptografar e descriptografar dados. Ele criptografa um
pequeno arquivo com chaves de dados protegidas por uma chave de AWS KMS empacotamento.

Etapa 1: Instancie o. AWS Encryption SDK

Você usará os métodos do AWS Encryption SDK para criptografar e descriptografar dados.

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Etapa 2: Crie um AWS KMS cliente.

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

Opcional: crie seu contexto de criptografia.

let encryption_context = HashMap::from([

Exemplos 301

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK Guia do Desenvolvedor

 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

Etapa 3: Instanciar a biblioteca de fornecedores de materiais.

Você usará os métodos na biblioteca de fornecedores de materiais para criar os tokens de
autenticação que especificam quais chaves protegem seus dados.

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Etapa 4: Crie um AWS KMS chaveiro.

Para criar o token de autenticação, chame o método do token de autenticação com o objeto de
entrada do token de autenticação. Este exemplo usa o create_aws_kms_keyring() método e
especifica uma chave KMS.

let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

Etapa 5: criptografar o texto sem formatação.

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(kms_keyring.clone())
 .encryption_context(encryption_context.clone())
 .send()
 .await?;

let ciphertext = encryption_response
 .ciphertext

Exemplos 302

AWS Encryption SDK Guia do Desenvolvedor

 .expect("Unable to unwrap ciphertext from encryption response");

Etapa 6: descriptografe seus dados criptografados usando o mesmo chaveiro que você usou na
criptografia.

let decryption_response = esdk_client.decrypt()
 .ciphertext(ciphertext)
 .keyring(kms_keyring)
 // Provide the encryption context that was supplied to the encrypt method
 .encryption_context(encryption_context)
 .send()
 .await?;

let decrypted_plaintext = decryption_response
 .plaintext
 .expect("Unable to unwrap plaintext from decryption
 response");

AWS Encryption SDK interface de linha de comando

A interface de linha de AWS Encryption SDK comando (CLI de AWS criptografia) permite que você
use o para AWS Encryption SDK criptografar e descriptografar dados interativamente na linha de
comando e em scripts. Você não precisa ter competência em criptografia ou em programação.

Note

Versões da CLI de AWS criptografia anteriores à 4.0.0 estão em fase. end-of-support
Você pode atualizar com segurança a partir da versão 2.1.x e posteriores até a versão mais
recente da CLI de criptografia da AWS sem realizar alterações no código ou nos dados. No
entanto, os novos atributos de segurança introduzidos na versão 2.1.x não são compatíveis
com versões anteriores. Para atualizar a partir da versão 1.7. x ou anterior, você deve
primeiro atualizar para a última 1. versão x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Interface de linha de comando 303

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Como todas as implementações do AWS Encryption SDK, o AWS Encryption CLI oferece recursos
avançados de proteção de dados. Os atributos incluem criptografia envelopada, dados autenticados
adicionais (AAD) e pacotes de algoritmos de chave simétrica segura e autenticada, como o AES-
GCM de 256 bits com derivação de chave, confirmação de chave e assinatura.

A CLI de AWS criptografia é baseada no AWS Encryption SDK for Pythone é compatível com Linux,
macOS e Windows. Você pode executar comandos e scripts para criptografar e descriptografar
seus dados no shell de sua preferência no Linux ou macOS, em uma janela do prompt de comando
(cmd.exe) no Windows e em um console em qualquer sistema. PowerShell

Todas as implementações específicas de linguagem do AWS Encryption SDK, incluindo a AWS
CLI de criptografia, são interoperáveis. Por exemplo, você pode criptografar dados com o AWS
Encryption SDK for Javae descriptografá-los com a CLI de criptografia. AWS

Este tópico apresenta a CLI de AWS criptografia, explica como instalá-la e usá-la e fornece vários
exemplos para ajudar você a começar. Para começar rapidamente, consulte Como criptografar e
descriptografar seus dados com a AWS CLI de criptografia no blog de segurança. AWS Para obter
informações mais detalhadas, consulte Leia os documentos e junte-se a nós no desenvolvimento da
CLI de AWS criptografia aws-encryption-sdk-clino repositório em. GitHub

desempenho

A CLI de AWS criptografia é baseada no. AWS Encryption SDK for Python Cada vez que executa
a CLI, você inicia uma nova instância do runtime do Python. Para melhorar o desempenho, sempre
que possível, use um único comando em vez de uma série de comandos independentes. Por
exemplo, execute um comando que processe os arquivos em um diretório de forma recursiva, em
vez de executar comandos separados para cada arquivo.

Tópicos

• Instalando a interface de linha de AWS Encryption SDK comando

• Como usar a CLI AWS de criptografia

• Exemplos da CLI AWS de criptografia

• AWS Encryption SDK Referência de sintaxe e parâmetros da CLI

• Versões da CLI AWS de criptografia

Interface de linha de comando 304

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Instalando a interface de linha de AWS Encryption SDK comando

Este tópico explica como instalar a CLI AWS de criptografia. Para obter informações detalhadas,
consulte o aws-encryption-sdk-clirepositório GitHub e leia os documentos.

Tópicos

• Instalar os pré-requisitos

• Instalando e atualizando a CLI AWS de criptografia

Instalar os pré-requisitos

A CLI de AWS criptografia é baseada no. AWS Encryption SDK for Python Para instalar a CLI do
AWS Encryption, você precisa do Python e da ferramenta de gerenciamento de pacotes pip do
Python. O Python e o pip estão disponíveis em todas as plataformas compatíveis.

Instale os seguintes pré-requisitos antes de instalar a CLI de criptografia AWS ,

Python

O Python 3.8 ou posterior é exigido pelas versões 4.2.0 e posteriores do Encryption AWS CLI.

As versões anteriores da CLI de AWS criptografia oferecem suporte ao Python 2.7 e 3.4 e
versões posteriores, mas recomendamos que você use a versão mais recente da CLI de
criptografia. AWS

O Python está incluído na maioria das instalações do Linux e do macOS, mas é necessário
atualizar para o Python 3.6 ou versões posteriores. É recomendável usar a versão mais recente
do Python. No Windows, você precisa instalar o Python: ele não é instalado por padrão. Para
fazer download do Python, consulte Downloads do Python.

Para determinar se o Python está instalado, na linha de comando, digite:

python

Para verificar a versão do Python, use o parâmetro -V (V maiúsculo).

python -V

No Windows, depois de instalar o Python, adicione o caminho para o arquivo Python.exe ao
valor da variável de ambiente Path.

Instalar a CLI do 305

https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://www.python.org/downloads/

AWS Encryption SDK Guia do Desenvolvedor

Por padrão, o Python é instalado em todos os diretórios de usuário ou em um diretório de perfil
de usuário ($home ou %userprofile%) no subdiretório AppData\Local\Programs\Python.
Para encontrar o local do arquivo Python.exe no sistema, verifique uma das seguintes chaves
de registro. Você pode usar PowerShell para pesquisar o registro.

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip

pip é o gerenciador de pacotes do Python. Para instalar a CLI de AWS criptografia e suas
dependências, você precisa da pip versão 8.1 ou posterior. Para obter ajuda para instalar ou
atualizar o pip, consulte Instalação na documentação do pip.

Nas instalações do Linux, as versões pip anteriores à 8.1 não podem criar a biblioteca de
criptografia exigida pela CLI de AWS criptografia. Se você optar por não atualizar sua versão do
pip, poderá instalar as ferramentas de compilação separadamente. Para obter mais informações,
consulte Criação de criptografia no Linux.

AWS Command Line Interface

O AWS Command Line Interface (AWS CLI) é necessário somente se você estiver usando AWS
KMS keys in AWS Key Management Service (AWS KMS) com a CLI de AWS criptografia. Se
você estiver usando um provedor de chave mestra diferente, AWS CLI isso não é obrigatório.

Para usar AWS KMS keys com a CLI de AWS criptografia, você precisa instalar e configurar o.
AWS CLI A configuração disponibiliza as credenciais que você usa para autenticar para a AWS
KMS AWS CLI de criptografia.

Instalando e atualizando a CLI AWS de criptografia

Instale a versão mais recente da CLI AWS de criptografia. Quando você usa pip para instalar a CLI
de AWS criptografia, ela instala automaticamente as bibliotecas de que a CLI precisa, incluindo a
biblioteca de criptografia Python e a. AWS Encryption SDK for PythonAWS SDK para Python (Boto3)

Note

Versões da CLI de AWS criptografia anteriores à 4.0.0 estão em fase. end-of-support

Instalar a CLI do 306

https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://cryptography.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Você pode atualizar com segurança a partir da versão 2.1.x e posteriores até a versão mais
recente da CLI de criptografia da AWS sem realizar alterações no código ou nos dados. No
entanto, os novos atributos de segurança introduzidos na versão 2.1.x não são compatíveis
com versões anteriores. Para atualizar a partir da versão 1.7. x ou anterior, você deve
primeiro atualizar para a última 1. versão x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Para instalar a versão mais recente da CLI AWS de criptografia

pip install aws-encryption-sdk-cli

Para atualizar para a versão mais recente da CLI de AWS criptografia

pip install --upgrade aws-encryption-sdk-cli

Para encontrar os números de versão da sua CLI de AWS criptografia e AWS Encryption SDK

aws-encryption-cli --version

A saída lista os números de versão de ambas as bibliotecas.

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0

Para atualizar para a versão mais recente da CLI de AWS criptografia

pip install --upgrade aws-encryption-sdk-cli

A instalação da CLI de AWS criptografia também instala a versão mais recente do AWS SDK para
Python (Boto3), se ainda não estiver instalada. Se o Boto3 estiver instalado, o instalador verifica a
versão do Boto3 e a atualiza, se necessário.

Instalar a CLI do 307

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Para encontrar sua versão instalada do Boto3

pip show boto3

Para atualizar para a versão mais recente do Boto3

pip install --upgrade boto3

Para instalar a versão da CLI de AWS criptografia atualmente em desenvolvimento, consulte o aws-
encryption-sdk-clirepositório em. GitHub

Para obter mais detalhes sobre o uso do pip para instalar e atualizar pacotes do Python, consulte a
documentação do pip.

Como usar a CLI AWS de criptografia

Este tópico explica como usar os parâmetros na CLI AWS de criptografia. Para obter exemplos,
consulte Exemplos da CLI AWS de criptografia. Para obter a documentação completa, consulte Leia
os documentos. A sintaxe mostrada nesses exemplos é para a versão 2.1 do AWS Encryption CLI. x
e mais tarde.

Note

Versões da CLI de AWS criptografia anteriores à 4.0.0 estão em fase. end-of-support
Você pode atualizar com segurança a partir da versão 2.1.x e posteriores até a versão mais
recente da CLI de criptografia da AWS sem realizar alterações no código ou nos dados. No
entanto, os novos atributos de segurança introduzidos na versão 2.1.x não são compatíveis
com versões anteriores. Para atualizar a partir da versão 1.7. x ou anterior, você deve
primeiro atualizar para a última 1. versão x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Para obter um exemplo de como usar o atributo de segurança que limita as chaves de dados
criptografadas, consulte Limitar as chaves de dados criptografadas.

Como usar a CLI 308

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Para ver um exemplo de como usar chaves AWS KMS multirregionais, consulteUsando várias
regiões AWS KMS keys.

Tópicos

• Como criptografar e descriptografar dados

• Como especificar chaves de encapsulamento

• Como fornecer entrada

• Como especificar o local de saída

• Como usar um contexto de criptografia

• Como especificar uma política de compromisso

• Como armazenar parâmetros em um arquivo de configuração

Como criptografar e descriptografar dados

A CLI de AWS criptografia usa os recursos do AWS Encryption SDK para facilitar a criptografia e a
descriptografia de dados com segurança.

Note

O parâmetro --master-keys foi descontinuado na versão 1.8. x da CLI de criptografia
da AWS e removido na versão 2.1.x.. Em vez disso, use o parâmetro --wrapping-keys.
A partir da versão 2.1.x, o parâmetro --wrapping-keys passou a ser necessário ao
criptografar e descriptografar. Para obter detalhes, consulte AWS Encryption SDK Referência
de sintaxe e parâmetros da CLI.

• Ao criptografar dados na CLI de AWS criptografia, você especifica seus dados de texto sem
formatação e uma chave de encapsulamento (ou chave mestra), como in (). AWS KMS key
AWS Key Management Service AWS KMS Se estiver usando um provedor de chaves mestras
personalizado, você também precisará especificar o provedor. Você também especifica locais de
saída para a mensagem criptografada e para os metadados sobre a operação de criptografia. Um
contexto de criptografia é opcional, mas recomendado.

Na versão 1.8.x, o parâmetro --commitment-policy é obrigatório quando você usar o
parâmetro --wrapping-keys; caso contrário ele não será válido. A partir da versão 2.1x, o
parâmetro --commitment-policy passou a ser opcional, mas é recomendado.

Como usar a CLI 309

AWS Encryption SDK Guia do Desenvolvedor

aws-encryption-cli --encrypt --input myPlaintextData \
 --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
 --output myEncryptedMessage \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt

A CLI de AWS criptografia criptografa seus dados com uma chave de dados exclusiva. Em
seguida, ele criptografa cada chave de dados sob a chave de encapsulamento especificada.
Ela retorna uma mensagem criptografada e os metadados sobre a operação. A mensagem
criptografada contém os dados criptografados (texto cifrado) e uma cópia criptografada da chave
de dados. Você não precisa se preocupar com o armazenamento, o gerenciamento ou a perda da
chave de dados.

• Ao descriptografar os dados, você passa sua mensagem criptografada, o contexto de criptografia
opcional e o local para a saída do texto não criptografado e os metadados. Você também
especifica as chaves de encapsulamento que a CLI de AWS criptografia pode usar para
descriptografar a mensagem ou informa à CLI de AWS criptografia que ela pode usar qualquer
chave de encapsulamento que criptografe a mensagem.

A partir da versão 1.8.x, o parâmetro --wrapping-keys passou a ser opcional, mas é
recomendado. A partir da versão 2.1.x, o parâmetro --wrapping-keys passou a ser necessário
ao criptografar e descriptografar.

Ao descriptografar, você pode usar o atributo key do parâmetro --wrapping-keys para
especificar as chaves de encapsulamento que descriptografam seus dados. Especificar uma chave
de AWS KMS encapsulamento ao descriptografar é opcional, mas é uma prática recomendada que
impede que você use uma chave que você não pretendia usar. Se estiver usando um provedor de
chaves mestras personalizado, você deverá especificar o provedor.

Se você não usar o atributo de chave, deverá definir o atributo de descoberta do --wrapping-
keys parâmetro comotrue, o que permite que a CLI de AWS criptografia seja descriptografada
usando qualquer chave de encapsulamento que criptografou a mensagem.

É uma prática recomendada usar o parâmetro --max-encrypted-data-keys, para evitar a
descriptografia de uma mensagem malformada com um número excessivo de chaves de dados
criptografadas. Especifique o número esperado de chaves de dados criptografadas (um para cada

Como usar a CLI 310

AWS Encryption SDK Guia do Desenvolvedor

chave de encapsulamento usada na criptografia) ou uma quantidade máxima razoável (como 5).
Para obter detalhes, consulte Limitar as chaves de dados criptografadas.

O parâmetro --buffer retorna texto simples somente após o processamento de todas as
entradas, incluindo a verificação da assinatura digital, se houver uma.

O parâmetro --decrypt-unsigned descriptografa o texto cifrado e garante que as mensagens
não sejam assinadas antes de serem descriptografadas. Use esse parâmetro se você usou o
parâmetro --algorithm e selecionou um pacote de algoritmos sem assinatura digital para
criptografar dados. Se o texto cifrado for assinado, a descriptografia falhará.

Você pode usar --decrypt ou --decrypt-unsigned para fazer a descriptografia, mas não
ambos.

aws-encryption-cli --decrypt --input myEncryptedMessage \
 --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
 --output myPlaintextData \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt

A CLI de AWS criptografia usa a chave de empacotamento para descriptografar a chave de dados
na mensagem criptografada. Em seguida, ela usa a chave de dados para descriptografar os
dados. Ela retorna os dados em texto não criptografado e os metadados sobre a operação.

Como especificar chaves de encapsulamento

Ao criptografar dados na CLI de AWS criptografia, você precisa especificar pelo menos uma chave
de encapsulamento (ou chave mestra). Você pode usar AWS KMS keys in AWS Key Management
Service (AWS KMS), agrupar chaves de um provedor de chave mestra personalizado ou ambos.
O provedor de chaves mestras personalizado pode ser qualquer provedor de chaves mestras
compatível com o Python.

Para especificar as chaves de encapsulamento nas versões 1.8.x e posteriores, use o parâmetro
--wrapping-keys (-w). O valor deste parâmetro é uma coleção de atributos com o formato
attribute=value. Os atributos que você usa dependem do provedor de chaves mestras e do
comando.

Como usar a CLI 311

AWS Encryption SDK Guia do Desenvolvedor

• AWS KMS. Em comandos encrypt, você deve especificar um parâmetro --wrapping-keys com
um atributo key. A partir da versão 2.1.x, o parâmetro --wrapping-keys também passou a ser
necessário em comandos de descriptografia. Ao descriptografar, o parâmetro --wrapping-keys
deve ter um atributo key ou um atributo discovery (mas não os dois) com o valor de true. Todos
os outros atributos são opcionais.

• Provedor de chaves mestres personalizado. Você deve especificar um parâmetro --wrapping-
keys em cada comando. O valor do parâmetro deve ter os atributos key e provider.

Você pode incluir vários parâmetros --wrapping-keys e vários atributos key no mesmo comando.

Encapsulando os atributos dos parâmetros de chave

O valor do parâmetro --wrapping-keys consiste nos seguintes atributos e seus valores. Um
parâmetro --wrapping-keys (ou parâmetro --master-keys) é necessário em todos os
comandos de criptografia. A partir da versão 2.1.x, o parâmetro --wrapping-keys também passou
a ser necessário em comandos de descriptografia.

Se um nome ou valor de atributo incluir espaços ou caracteres especiais, coloque o nome e o valor
entre aspas. Por exemplo, .--wrapping-keys key=12345 "provider=my cool provider"

Chave: especifique uma chave de encapsulamento

Use o atributo key para identificar uma chave de encapsulamento. Ao criptografar, o valor pode
ser qualquer identificador de chave que o provedor de chaves mestras reconhece.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

Em um comando encrypt, cada valor do parâmetro você deve incluir pelo menos um atributo key
e um valor. Para criptografar sua chave de dados em várias chaves de encapsulamento, use
vários atributos key.

aws-encryption-cli --encrypt --wrapping-keys
 key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

Nos comandos de criptografia usados AWS KMS keys, o valor da chave pode ser o ID da chave,
o ARN da chave, um nome de alias ou o ARN do alias. Por exemplo, este comando encrypt usa
um ARN do alias no valor do atributo key. Para obter detalhes sobre os identificadores de chave
de um AWS KMS key, consulte Identificadores de chave no Guia do AWS Key Management
Service desenvolvedor.

Como usar a CLI 312

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

Em comandos decrypt que usam um provedor de chaves mestres personalizado, os atributos key
e provider são necessários.

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101'

Nos comandos de descriptografia usados AWS KMS, você pode usar o atributo chave para
especificar o a ser usado AWS KMS keys para descriptografia ou o atributo de descoberta com
um valor de, true que permite que a AWS CLI de criptografia use qualquer AWS KMS key um
que tenha sido usado para criptografar a mensagem. Se você especificar um AWS KMS key, ele
deverá ser uma das chaves de encapsulamento usadas para criptografar a mensagem.

A especificação da chave de encapsulamento é uma AWS Encryption SDK prática recomendada.
Isso garante que você use o AWS KMS key que pretende usar.

Em um comando decrypt, o valor do atributo key deve ser um ARN de chave.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Descoberta: use qualquer um AWS KMS key ao descriptografar

Se você não precisar limitar o uso AWS KMS keys ao descriptografar, você pode usar o
atributo de descoberta com um valor de. true Um valor de true permite que a CLI de AWS
criptografia decodifique usando qualquer AWS KMS key uma que criptografe a mensagem. Se
você não especificar um atributo discovery, a descoberta será false (padrão). O atributo de
descoberta é válido somente em comandos de descriptografia e somente quando a mensagem
foi criptografada com. AWS KMS keys

O atributo discovery com o valor definido como true é uma alternativa ao uso do atributo key
para especificar uma AWS KMS keys. Ao descriptografar uma mensagem criptografada com
AWS KMS keys, cada --wrapping-keys parâmetro deve ter um atributo-chave ou um atributo
de descoberta com um valor detrue, mas não ambos.

Quando a descoberta é verdadeira, é uma prática recomendada usar os atributos discovery-
partition e discovery-account para limitar o AWS KMS keys uso aos atributos especificados por

Como usar a CLI 313

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

você. Contas da AWS No exemplo a seguir, os atributos de descoberta permitem que a CLI de
AWS criptografia use qualquer um dos atributos AWS KMS key especificados. Contas da AWS

aws-encryption-cli --decrypt --wrapping-keys \
 discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666

Provider: especifique o provedor de chaves mestras

O atributo provider identifica o provedor de chaves mestres. O valor padrão é aws-kms que
representa o AWS KMS. Se estiver usando outro provedor de chaves mestres, o atributo provider
será necessário.

--wrapping-keys key=12345 provider=my_custom_provider

Para obter mais informações sobre o uso de provedores de chaves mestras personalizadas
(que não sejam AWS KMS), consulte o tópico Configuração avançada no arquivo README do
repositório da CLI e criptografia da AWS.

Região: Especifique uma Região da AWS

Use o atributo de região para especificar o Região da AWS de um AWS KMS key. Esse atributo é
válido apenas em comandos encrypt e somente quando o provedor de chaves mestras é o AWS
KMS.

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS Os comandos CLI de criptografia usam o Região da AWS que é especificado no valor do
atributo chave se incluir uma região, como um ARN. Se o valor da chave especificar um Região
da AWS, o atributo região será ignorado.

O atributo region tem precedência sobre outras especificações de região. Se você não usar
um atributo de região, os comandos da CLI de AWS criptografia usarão o Região da AWS
especificado em seu perfil AWS CLI nomeado, se houver, ou em seu perfil padrão.

Como usar a CLI 314

https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Guia do Desenvolvedor

Profile: especifique um perfil nomeado

Use o atributo profile para especificar um AWS CLI perfil nomeado da . Os perfis nomeados
podem incluir credenciais e uma Região da AWS. Esse atributo é válido somente quando o
provedor de chaves mestras é o AWS KMS.

--wrapping-keys key=alias/primary-key profile=admin-1

Você pode usar o atributo profile para especificar credenciais alternativas em comandos encrypt
e decrypt. Em um comando encrypt, a CLI de AWS criptografia usa Região da AWS o no perfil
nomeado somente quando o valor da chave não inclui uma região e não há nenhum atributo de
região. Em um comando decrypt, o perfil Região da AWS in the name é ignorado.

Como especificar várias chaves mestras

Você pode especificar várias chaves de encapsulamento (ou chaves mestras) em cada comando.

Se você especificar mais de uma chave de encapsulamento, a primeira chave de encapsulamento
gerará (e criptografará) a chave de dados usada para criptografar seus dados. As outras chaves
de encapsulamento criptografam a mesma chave de dados. A mensagem criptografada resultante
contém os dados criptografados ("texto cifrado") e uma coleção de chaves de dados criptografadas,
criptografadas por cada chave de encapsulamento. Qualquer uma das chaves de encapsulamento
podem descriptografar uma chave de dados e descriptografar os dados.

Há duas maneiras de especificar várias chaves de encapsulamento:

• Incluir vários atributos key no valor do parâmetro --wrapping-keys.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

• Incluir vários parâmetros --wrapping-keys no mesmo comando. Use essa sintaxe quando os
valores dos atributos que você especificar não se aplicarem a todas as chaves de encapsulamento
no comando.

--wrapping-keys region=us-east-2 key=alias/test_key \

Como usar a CLI 315

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Guia do Desenvolvedor

--wrapping-keys region=us-west-1 key=alias/test_key

O atributo de descoberta com um valor de true permite que a CLI de AWS criptografia use qualquer
um AWS KMS key que criptografe a mensagem. Se você usar vários parâmetros --wrapping-
keys no mesmo comando, o uso de discovery=true em qualquer parâmetro --wrapping-keys
substituirá efetivamente os limites do atributo key em outros parâmetros --wrapping-keys.

Por exemplo, no comando a seguir, o atributo chave no primeiro --wrapping-keys parâmetro
limita a CLI de AWS criptografia ao especificado. AWS KMS key No entanto, o atributo de descoberta
no segundo --wrapping-keys parâmetro permite que a CLI de AWS criptografia use qualquer
AWS KMS key uma das contas especificadas para descriptografar a mensagem.

aws-encryption-cli --decrypt \
 --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --wrapping-keys discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666

Como fornecer entrada

A operação de AWS criptografia na CLI de criptografia usa dados de texto simples como entrada
e retorna uma mensagem criptografada. A operação de descriptografia usa uma mensagem
criptografada como entrada e retorna dados de texto não criptografado.

O --input parâmetro (-i), que informa à CLI de AWS criptografia onde encontrar a entrada, é
obrigatório em todos os comandos da AWS CLI de criptografia.

Você pode fornecer entrada de qualquer uma das seguintes formas:

• Usar um arquivo.

--input myData.txt

• Usar um padrão de nome de arquivo.

--input testdir/*.xml

Como usar a CLI 316

AWS Encryption SDK Guia do Desenvolvedor

• Use um diretório ou um padrão de nome de diretório. Quando a entrada é um diretório, o
parâmetro --recursive (-r, -R) é necessário.

--input testdir --recursive

• Redirecionar a entrada para o comando (stdin). Use um valor de - para o parâmetro --input. (O
parâmetro --input sempre é necessário.)

echo 'Hello World' | aws-encryption-cli --encrypt --input -

Como especificar o local de saída

O --output parâmetro informa à CLI de AWS criptografia onde gravar os resultados da operação
de criptografia ou descriptografia. É necessário em todos os comandos da CLI de AWS criptografia.
A CLI de criptografia da AWS cria um novo arquivo de saída para cada arquivo de entrada na
operação.

Se um arquivo de saída já existir, por padrão, a CLI de AWS criptografia imprime um aviso e, em
seguida, sobrescreve o arquivo. Para evitar a substituição, use o parâmetro --interactive, que
solicita sua confirmação antes de substituir, ou --no-overwrite, que ignora a entrada se a saída
puder provocar uma substituição. Para suprimir o aviso de substituição, use --quiet. Para capturar
erros e avisos da CLI de AWS criptografia, use 2>&1 o operador de redirecionamento para gravá-los
no fluxo de saída.

Note

Os comandos que substituem arquivos de saída começam excluindo o arquivo de saída. Se
o comando falhar, o arquivo de saída talvez já tenha sido excluído.

Você pode definir o local da saída de várias maneiras.

• Especificar um nome de arquivo. Se você especificar um caminho para o arquivo, todos os
diretórios no caminho devem existir antes do comando ser executado.

--output myEncryptedData.txt

• Especificar um diretório. O diretório de saída deve existir antes do comando ser executado.

Como usar a CLI 317

AWS Encryption SDK Guia do Desenvolvedor

Se a entrada contiver subdiretórios, o comando reproduzirá os subdiretórios no diretório
especificado.

--output Test

Quando o local de saída é um diretório (sem nomes de arquivo), a CLI de AWS criptografia cria
nomes de arquivos de saída com base nos nomes dos arquivos de entrada mais um sufixo.
As operações de criptografia acrescentam .encrypted ao nome do arquivo de entrada e as
operações de descriptografia acrescentam .decrypted. Para alterar o sufixo, use o parâmetro --
suffix.

Por exemplo, se você criptografar file.txt, o comando encrypt criará file.txt.encrypted.
Se você descriptografar file.txt.encrypted, o comando decrypt criará
file.txt.encrypted.decrypted.

• Gravar na linha de comando (stdout). Insira um valor de - para o parâmetro --output. Você
pode usar --output - para redirecionar a saída em outro comando ou programa.

--output -

Como usar um contexto de criptografia

A CLI de AWS criptografia permite que você forneça um contexto de criptografia nos comandos
de criptografia e descriptografia. Ele não é necessário, mas é uma melhor prática criptográfica que
recomendamos.

Um contexto de criptografia é um tipo de dados autenticados adicionais arbitrários e que não são
segredos. Na CLI de criptografia da AWS , o contexto de criptografia consiste em uma coleção de
pares name=value. Você pode usar qualquer conteúdo nos pares, incluindo informações sobre os
arquivos; dados que o ajudam a encontrar a operação de criptografia em logs; ou dados que suas
concessões ou políticas exigem.

Em um comando encrypt

O contexto de criptografia que você especifica em um comando encrypt, junto com qualquer par que
o CMM adicionar, é associado de maneira criptográfica aos dados criptografados. Ele também é

Como usar a CLI 318

AWS Encryption SDK Guia do Desenvolvedor

incluído (em não criptografado) na mensagem criptografada que o comando retorna. Se você estiver
usando um AWS KMS key, o contexto de criptografia também poderá aparecer em texto simples em
registros e registros de auditoria, como. AWS CloudTrail

O exemplo a seguir mostra um contexto de criptografia com três pares name=value.

--encryption-context purpose=test dept=IT class=confidential

Em um comando decrypt

Em um comando decrypt, o contexto de criptografia ajuda a confirmar se você está
descriptografando a mensagem criptografada correta.

Não é necessário fornecer um contexto de criptografia em um comando decrypt, mesmo que
um contexto de criptografia tenha sido usado na criptografia. No entanto, se você fizer isso, a
CLI de AWS criptografia verificará se cada elemento no contexto de criptografia do comando
decrypt corresponde a um elemento no contexto de criptografia da mensagem criptografada. Se um
elemento não corresponder, o comando decrypt falhará.

Por exemplo, o comando a seguir descriptografa a mensagem criptografada somente se o contexto
de criptografia incluir dept=IT.

aws-encryption-cli --decrypt --encryption-context dept=IT ...

Um contexto de criptografia é uma parte importante de sua estratégia de segurança. No entanto, ao
escolher um contexto de criptografia, lembre-se de que seus valores não são secretos. Não inclua
dados confidenciais no contexto de criptografia.

Como especificar um contexto de criptografia

• Em um comando encrypt, use o parâmetro --encryption-context com um ou mais pares
name=value. Use um espaço para separar cada par.

--encryption-context name=value [name=value] ...

• Em um comando decrypt, o valor do parâmetro --encryption-context pode incluir pares
name=value, elementos name (sem valores) ou uma combinação de ambos.

--encryption-context name[=value] [name] [name=value] ...

Como usar a CLI 319

AWS Encryption SDK Guia do Desenvolvedor

Se o name ou o value em um par de name=value incluir espaços ou caracteres especiais, coloque
o par inteiro entre aspas.

--encryption-context "department=software engineering" "Região da AWS=us-west-2"

Por exemplo, este comando encrypt inclui um contexto de criptografia com dois pares,
purpose=test e dept=23.

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

Esse comando decrypt tem êxito. O contexto de criptografia em cada comando é um subconjunto do
contexto de criptografia original.

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

No entanto, esses comandos decrypt falharão. O contexto de criptografia na mensagem
criptografada não contém os elementos específicos.

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

Como especificar uma política de compromisso

Para definir a política de compromisso para o comando, use o parâmetro --commitment-policy.
Esse parâmetro foi apresentado na versão 1.8.x.. Ele 'é válido em comandos de criptografia e
descriptografia. A política de compromisso que você definir será válida somente para o comando no
qual ela aparece. Se você não definir uma política de compromisso para um comando, a CLI de AWS
criptografia usará o valor padrão.

Por exemplo, o valor do parâmetro a seguir define a política de compromisso como require-
encrypt-allow-decrypt, que sempre criptografa com o confirmação de chave, mas
descriptografa um texto cifrado criptografado com ou sem confirmação de chave.

Como usar a CLI 320

AWS Encryption SDK Guia do Desenvolvedor

--commitment-policy require-encrypt-allow-decrypt

Como armazenar parâmetros em um arquivo de configuração

Você pode economizar tempo e evitar erros de digitação salvando os parâmetros e valores da CLI de
AWS criptografia usados com frequência nos arquivos de configuração.

Um arquivo de configuração é um arquivo de texto que contém parâmetros e valores para um
comando CLI de AWS criptografia. Ao fazer referência a um arquivo de configuração em um
comando da CLI de criptografia da AWS , a referência é substituída pelos parâmetros e valores
no arquivo de configuração. O efeito será o mesmo como se você tivesse digitado o conteúdo do
arquivo na linha de comando. Um arquivo de configuração pode ter qualquer nome e pode ser
localizado em qualquer diretório que o usuário atual pode acessar.

O arquivo de configuração de exemplo a seguir, key.conf, especifica duas AWS KMS keys em
diferentes regiões.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

Para usar o arquivo de configuração em um comando, prefixe o nome do arquivo com uma arroba
(@). Em um PowerShell console, use um caractere de crase para escapar do sinal arroba (`@).

Este comando de exemplo usa o arquivo key.conf em um comando encrypt.

Bash

$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir

PowerShell

PS C:\> aws-encryption-cli -e `@key.conf -i .\Hello.txt -o .\TestDir

Regras do arquivo de configuração

As regras para uso de arquivos de configuração são:

Como usar a CLI 321

AWS Encryption SDK Guia do Desenvolvedor

• Você pode incluir vários parâmetros em cada arquivo de configuração e listá-los em qualquer
ordem. Liste cada parâmetro com seus valores (se houver) em uma linha separada.

• Use # para adicionar um comentário a toda ou a parte de uma linha.

• Você pode incluir referências a outros arquivos de configuração. Não use uma craqueta para
escapar da @ placa, mesmo dentro PowerShell.

• Se você usar aspas em um arquivo de configuração, o texto entre aspas não pode abranger várias
linhas.

Por exemplo, este é o conteúdo de um arquivo encrypt.conf de exemplo.

Archive Files
--encrypt
--output /archive/logs
--recursive
--interactive
--encryption-context class=unclassified dept=IT
--suffix # No suffix
--metadata-output ~/metadata
@caching.conf # Use limited caching

Você também pode incluir vários arquivos de configuração em um comando. Este comando de
exemplo usa os arquivos de configuração encrypt.conf e master-keys.conf.

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log `@encrypt.conf `@master-keys.conf

Próximo: Experimente os exemplos da CLI de criptografia da AWS

Exemplos da CLI AWS de criptografia

Use os exemplos a seguir para testar a CLI de AWS criptografia na plataforma de sua preferência.
Para obter ajuda com chaves mestras e outros parâmetros, consulte Como usar a CLI AWS de

Exemplos 322

AWS Encryption SDK Guia do Desenvolvedor

criptografia. Para obter uma referência rápida, consulte AWS Encryption SDK Referência de sintaxe
e parâmetros da CLI.

Note

Os exemplos a seguir usam a sintaxe da AWS Encryption CLI versão 2.1. x.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Para obter um exemplo de como usar o atributo de segurança que limita as chaves de dados
criptografadas, consulte Limitar as chaves de dados criptografadas.

Para ver um exemplo de como usar chaves AWS KMS multirregionais, consulteUsando várias
regiões AWS KMS keys.

Tópicos

• Criptografar um arquivo

• Descriptografar um arquivo

• Criptografar todos os arquivos em um diretório

• Descriptografar todos os arquivos em um diretório

• Criptografar e descriptografar na linha de comando

• Uso de várias chaves mestras

• Criptografar e descriptografar em scripts

• Usar o armazenamento em cache de chaves de dados

Criptografar um arquivo

Este exemplo usa a CLI de AWS criptografia para criptografar o conteúdo do hello.txt arquivo,
que contém uma string “Hello World”.

Quando você executa um comando de criptografia em um arquivo, a CLI de AWS criptografia obtém
o conteúdo do arquivo, gera uma chave de dados exclusiva, criptografa o conteúdo do arquivo sob a
chave de dados e, em seguida, grava a mensagem criptografada em um novo arquivo.

Exemplos 323

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

O primeiro comando salva a chave ARN de an AWS KMS key na $keyArn variável. Ao criptografar
com um AWS KMS key, você pode identificá-lo usando um ID de chave, ARN da chave, nome do
alias ou ARN do alias. Para obter detalhes sobre os identificadores de chave de um AWS KMS key,
consulte Identificadores de chave no Guia do AWS Key Management Service desenvolvedor.

O segundo comando criptografa o conteúdo do arquivo. O comando usa o parâmetro --encrypt
para especificar a operação, e o parâmetro --input para indicar o arquivo a ser criptografado. O
--wrapping-keysparâmetro e seu atributo de chave obrigatório fazem com que o comando use o
AWS KMS key representado pela chave ARN.

O comando usa o parâmetro --metadata-output para especificar um arquivo de texto para
os metadados sobre a operação de criptografia. Como prática recomendada, o comando usa o
parâmetro --encryption-context para especificar um contexto de criptografia.

Esse comando também usa o parâmetro --commitment-policy para definir explicitamente
a política de compromisso. Na versão 1.8. x, ele é necessário quando você usa o parâmetro --
wrapping-keys. A partir da versão 2.1x, o parâmetro --commitment-policy passou a ser
opcional, mas é recomendado.

O valor do parâmetro --output, um ponto (.), informa o comando para gravar o arquivo de saída no
diretório atual.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt \
 --output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Exemplos 324

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

PS C:\> aws-encryption-cli --encrypt `
 --input Hello.txt `
 --wrapping-keys key=$keyArn `
 --metadata-output $home\Metadata.txt `
 --commitment-policy require-encrypt-require-decrypt `
 --encryption-context purpose=test `
 --output .

Quando o comando encrypt é bem-sucedido, ele não retorna nenhuma saída. Para determinar se
o comando foi bem-sucedido, verifique o valor booliano na variável $?. Quando o comando é bem-
sucedido, o valor de $? é 0 (Bash) ou True (PowerShell). Quando o comando falha, o valor de $? é
diferente de zero (Bash) ou False (PowerShell).

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

Você também pode usar um comando de listagem de diretório para ver se o comando encrypt criou
um novo arquivo, hello.txt.encrypted. Como o comando encrypt não especificou um nome de
arquivo para a saída, a CLI de AWS criptografia gravou a saída em um arquivo com o mesmo nome
do arquivo de entrada mais .encrypted um sufixo. Para usar outro sufixo ou suprimir o sufixo, use
o parâmetro --suffix.

O arquivo hello.txt.encrypted contém uma mensagem criptografada que inclui o texto cifrado
do arquivo hello.txt, uma cópia criptografada da chave de dados e metadados adicionais
incluindo o contexto de criptografia.

Bash

$ ls
hello.txt hello.txt.encrypted

Exemplos 325

AWS Encryption SDK Guia do Desenvolvedor

PowerShell

PS C:\> dir

 Directory: C:\TestCLI

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Descriptografar um arquivo

Este exemplo usa a CLI de AWS criptografia para descriptografar o conteúdo do
Hello.txt.encrypted arquivo que foi criptografado no exemplo anterior.

O comando decrypt usa o parâmetro --decrypt para indicar a operação, e o parâmetro --input
para identificar o arquivo a ser descriptografado. O valor do parâmetro --output é um ponto que
representa o diretório atual.

O parâmetro --wrapping-keys com um atributo key especifica a chave de encapsulamento
usada para descriptografar a mensagem criptografada. Em comandos de descriptografia com AWS
KMS keys, o valor do atributo chave deve ser um ARN de chave. O parâmetro --wrapping-keys
é obrigatório em comandos encrypt. Se você usar AWS KMS keys, poderá usar o atributo key
prara especificar AWS KMS keys para descritografar ou o atributo discovery com um valor definido
comotrue (mas não ambos). Se estiver usando outro provedor de chaves mestras, os atributos key
e provider serão necessários.

A partir da versão 2.1x, o parâmetro --commitment-policy passou a ser opcional, mas é
recomendado. Usá-lo explicitamente deixa clara sua intenção, mesmo se você especificar o valor
padrão, require-encrypt-require-decrypt.

O parâmetro --encryption-context é opcional no comando decrypt, mesmo quando um
contexto de criptografia é fornecido no comando encrypt. Nesse caso, o comando decrypt usa o
mesmo contexto de criptografia que foi fornecido no comando encrypt. Antes de descriptografar, a
AWS CLI de criptografia verifica se o contexto de criptografia na mensagem criptografada inclui um
par. purpose=test Caso contrário, o comando decrypt falhará.

Exemplos 326

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

O parâmetro --metadata-output especifica um arquivo de metadados sobre a operação de
descriptografia. O valor do parâmetro --output, um ponto (.), grava o arquivo de saída no diretório
atual.

É uma prática recomendada usar o parâmetro --max-encrypted-data-keys, para evitar a
descriptografia de uma mensagem malformada com um número excessivo de chaves de dados
criptografadas. Especifique o número esperado de chaves de dados criptografadas (um para cada
chave de encapsulamento usada na criptografia) ou uma quantidade máxima razoável (como 5).
Para obter detalhes, consulte Limitar as chaves de dados criptografadas.

Ele --buffer retorna texto sem formatação somente após o processamento de todas as entradas,
incluindo a verificação da assinatura digital, se houver uma.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt `
 --input Hello.txt.encrypted `
 --wrapping-keys key=$keyArn `
 --commitment-policy require-encrypt-require-decrypt `
 --encryption-context purpose=test `
 --metadata-output $home\Metadata.txt `
 --max-encrypted-data-keys 1 `
 --buffer `

Exemplos 327

AWS Encryption SDK Guia do Desenvolvedor

 --output .

Quando um comando decrypt é bem-sucedido, ele não retorna nenhuma saída. Para determinar se
o comando foi bem-sucedido, obtenha o valor da variável $?. Você também pode usar um comando
de listagem de diretório para ver se o comando criou um novo arquivo com um sufixo .decrypted.
Para ver o conteúdo de texto não criptografado, use um comando para obter o conteúdo do arquivo,
como cat ou Get-Content.

Bash

$ ls
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

PowerShell

PS C:\> dir

 Directory: C:\TestCLI

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 1:01 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted
-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

Criptografar todos os arquivos em um diretório

Este exemplo usa a CLI de AWS criptografia para criptografar o conteúdo de todos os arquivos em
um diretório.

Quando um comando afeta vários arquivos, a CLI de AWS criptografia processa cada arquivo
individualmente. Ela obtém o conteúdo do arquivo, obtém uma chave de dados exclusiva para

Exemplos 328

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK Guia do Desenvolvedor

o arquivo da chave mestre, criptografa o conteúdo do arquivo sob a chave de dados e grava os
resultados em um novo arquivo no diretório de saída. Como resultado, você pode descriptografar os
arquivos de saída de maneira independente.

Essa listagem do diretório TestDir mostra os arquivos de texto não criptografado que desejamos
criptografar.

Bash

$ ls testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

 Directory: C:\TestDir

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:44 PM 46 Employees.csv

O primeiro comando salva o Amazon Resource Name (ARN) de an AWS KMS key na $keyArn
variável.

O segundo comando criptografa o conteúdo dos arquivos no diretório TestDir e grava os arquivos
de conteúdo criptografado no TestEnc. Se o diretório TestEnc não existir, o comando falhará.
Como o local de entrada é um diretório, o parâmetro --recursive é obrigatório.

O parâmetro --wrapping-keys e seu atributo-chave obrigatório especificam a chave de
encapsulamento a ser usada. O comando encrypt inclui um contexto de criptografia, dept=IT.
Quando você especifica um contexto de criptografia em um comando que criptografa vários arquivos,
o mesmo contexto de criptografia é usado para todos os arquivos.

O comando também tem um --metadata-output parâmetro para informar à CLI de AWS
criptografia onde gravar os metadados sobre as operações de criptografia. A CLI de AWS criptografia
grava um registro de metadados para cada arquivo criptografado.

Exemplos 329

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK Guia do Desenvolvedor

A partir da versão 2.1.x, o --commitment-policy parameter passou a ser opcional, mas é
recomendado. Se o comando ou script falhar porque não consegue decifrar um texto cifrado, a
configuração explícita da política de compromisso pode ajudar a detectar o problema rapidamente.

Quando o comando é concluído, a CLI de AWS criptografia grava os arquivos criptografados
TestEnc no diretório, mas não retorna nenhuma saída.

O último comando lista os arquivos no diretório TestEnc. Há um arquivo de saída de conteúdo
criptografado para cada arquivo de entrada de conteúdo de texto não criptografado. Como o
comando não especificou um sufixo alternativo, o comando encrypt acrescentou .encrypted a
cada um dos nomes de arquivos de entrada.

Bash

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input testdir --recursive\
 --wrapping-keys key=$keyArn \
 --encryption-context dept=IT \
 --commitment-policy require-encrypt-require-decrypt \
 --metadata-output ~/metadata \
 --output testenc

$ ls testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt `
 --input .\TestDir --recursive `
 --wrapping-keys key=$keyArn `
 --encryption-context dept=IT `
 --commitment-policy require-encrypt-require-decrypt `

Exemplos 330

AWS Encryption SDK Guia do Desenvolvedor

 --metadata-output .\Metadata\Metadata.txt `
 --output .\TestEnc

PS C:\> dir .\TestEnc

 Directory: C:\TestEnc

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted
-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Descriptografar todos os arquivos em um diretório

Este exemplo descriptografa todos os arquivos em um diretório. Ele começa com os arquivos no
diretório TestEnc que foram criptografados no exemplo anterior.

Bash

$ ls testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

PowerShell

PS C:\> dir C:\TestEnc

 Directory: C:\TestEnc

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted
-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Esse comando decrypt descriptografa todos os arquivos no TestEnc diretório e grava os arquivos
de texto simples no diretório. TestDec O --wrapping-keys parâmetro com um atributo de chave
e um valor de ARN de chave informa à AWS CLI de criptografia qual usar AWS KMS keys para
descriptografar os arquivos. O comando usa o --interactive parâmetro para fazer com que a CLI
de AWS criptografia avise você antes de sobrescrever um arquivo com o mesmo nome.

Exemplos 331

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

Esse comando também usa o contexto de criptografia que foi fornecido quando os arquivos foram
criptografados. Ao descriptografar vários arquivos, a AWS CLI de criptografia verifica o contexto de
criptografia de cada arquivo. Se a verificação do contexto de criptografia em qualquer arquivo falhar,
a CLI de AWS criptografia rejeitará o arquivo, gravará um aviso, registrará a falha nos metadados e
continuará verificando os arquivos restantes. Se a CLI de AWS criptografia falhar ao descriptografar
um arquivo por qualquer outro motivo, todo o comando decrypt falhará imediatamente.

Neste exemplo, as mensagens criptografadas em todos os arquivos de entrada contêm o
elemento do contexto de criptografia de dept=IT. No entanto, se você estiver descriptografando
mensagens com diferentes contextos de criptografia, você ainda poderá verificar parte do contexto
de criptografia. Por exemplo, se algumas mensagens tiverem um contexto de criptografia de
dept=finance e outras tiverem dept=IT, você poderá verificar se o contexto de criptografia
sempre contém um nome dept sem especificar o valor. Se desejar ser mais específico, você poderá
descriptografar os arquivos em comandos separados.

O comando decrypt não retorna nenhuma saída, mas você pode usar um comando de listagem de
diretórios para ver se ele criou novos arquivos com o sufixo .decrypted. Para ver o conteúdo de
texto não criptografado, use um comando para obter o conteúdo do arquivo.

Bash

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
 --input testenc --recursive \
 --wrapping-keys key=$keyArn \
 --encryption-context dept=IT \
 --commitment-policy require-encrypt-require-decrypt \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output testdec --interactive

$ ls testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
 employees.csv.encrypted.decrypted

Exemplos 332

AWS Encryption SDK Guia do Desenvolvedor

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt `
 --input C:\TestEnc --recursive `
 --wrapping-keys key=$keyArn `
 --encryption-context dept=IT `
 --commitment-policy require-encrypt-require-decrypt `
 --metadata-output $home\Metadata.txt `
 --max-encrypted-data-keys 1 `
 --buffer `
 --output C:\TestDec --interactive

PS C:\> dir .\TestDec

 Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Criptografar e descriptografar na linha de comando

Estes exemplos mostram como redirecionar a entrada para comandos (stdin) e gravar a saída na
linha de comando (stdout). Eles explicam como representar stdin e stdout em um comando e como
usar ferramentas de codificação Base64 internas para impedir que o shell interprete caracteres não
ASCII incorretamente.

Este exemplo redireciona uma string de texto não criptografado para um comando encrypt e salva a
mensagem criptografada em uma variável. Em seguida, ele redireciona a mensagem criptografada
na variável para um comando decrypt, que grava sua saída no pipeline (stdout).

O exemplo consiste em três comandos:

• O primeiro comando salva a chave ARN de an AWS KMS key na $keyArn variável.

Exemplos 333

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

• O segundo comando redireciona a string Hello World para o comando encrypt e salva o
resultado na variável $encrypted.

Os parâmetros --input e --output são obrigatórios em todos os comandos da CLI de
criptografia da AWS . Para indicar que a entrada está sendo redirecionada para o comando
(stdin), use um hífen (-) para o valor do parâmetro --input. Para enviar a saída para a linha de
comando (stdout), use um hífen para o valor do parâmetro --output.

O parâmetro --encode codifica a saída em Base64 antes de retorná-la. Isso evita que o shell
interprete incorretamente os caracteres não ASCII na mensagem criptografada.

Como esse comando é apenas uma prova de conceito, omitimos o contexto de criptografia e
suprimimos os metadados (-S).

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \
 --input - --output - --
encode \
 --wrapping-keys key=
$keyArn)

PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S `
 --input - --output - --
encode `

Exemplos 334

AWS Encryption SDK Guia do Desenvolvedor

 --wrapping-keys key=
$keyArn

• O terceiro comando redireciona a mensagem criptografada na variável $encrypted para
descriptografar o comando.

Esse comando decrypt usa --input - para indicar que a entrada é proveniente do pipeline
(stdin) e do --output - para enviar a saída para o pipeline (stdout). (O parâmetro de entrada
usa o local da entrada, não os bytes reais da entrada. Portanto, você não pode usar a variável
$encrypted como o valor do parâmetro --input.)

Este exemplo usa o atributo de descoberta do --wrapping-keys parâmetro para permitir que
a CLI de AWS criptografia use qualquer um para AWS KMS key descriptografar os dados. Ele
não especifica uma política de compromisso, portanto, usa o valor padrão para a versão 2.1.x e
posteriores, require-encrypt-require-decrypt.

Como a saída foi criptografada e, em seguida, codificada, o comando decrypt usa o parâmetro
--decode para decodificar a entrada codificada em Base64 antes de descriptografá-la. Você
também pode usar o parâmetro --decode para decodificar a entrada codificada em Base64 antes
de criptografá-la.

Novamente, o comando omite o contexto de criptografia e suprime os metadados (-S).

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
 --input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
 --input - --output - --decode --buffer -S
Hello World

Você também pode executar operações de criptografia e descriptografia em um único comando sem
a variável de intervenção.

Exemplos 335

AWS Encryption SDK Guia do Desenvolvedor

Como no exemplo anterior, os parâmetros --input e --output têm um valor - e o comando usa o
parâmetro --encode para codificar a saída, e o parâmetro --decode para decodificar a entrada.

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |
 aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
 aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |
 aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
 aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
 - --output - --decode -S
Hello World

Uso de várias chaves mestras

Este exemplo mostra como usar várias chaves mestras ao criptografar e descriptografar dados na
CLI de criptografia. AWS

Quando você usa várias chaves mestras para criptografar dados, qualquer uma das chaves
mestras pode ser usada para descriptografar os dados. Essa estratégia garante que você possa
descriptografar os dados mesmo que uma das chaves mestras esteja indisponível. Se você estiver
armazenando os dados criptografados em vários Regiões da AWS, essa estratégia permite usar uma
chave mestra na mesma região para descriptografar os dados.

Quando você criptografa com várias chaves mestras, a primeira chave mestra desempenha
uma função especial. Ela gera a chave de dados que é usada para criptografar os dados. As
demais chaves mestras criptografam a chave de dados de texto não criptografado. A mensagem

Exemplos 336

AWS Encryption SDK Guia do Desenvolvedor

criptografada resultante inclui os dados criptografados e uma coleção de chaves de dados
criptografadas, uma para cada chave mestre. Embora a primeira chave mestra tenha gerado a chave
de dados, qualquer uma das chaves mestras poderá descriptografar uma das chaves de dados, que
pode ser usada para descriptografar os dados.

Criptografia com três chaves mestres

Este comando de exemplo usa três chaves de encapsulamento para criptografar o arquivo
Finance.log, uma em cada uma das três Regiões da AWS.

Ele grava a mensagem criptografada no diretório Archive. O comando usa o parâmetro --suffix
sem nenhum valor para suprimir o sufixo. Portanto, os nomes dos arquivos de entrada e saída serão
o mesmos.

O comando usa o parâmetro --wrapping-keys com três atributos key. Você também pode usar
vários parâmetros --wrapping-keys no mesmo comando.

Para criptografar o arquivo de log, a CLI de AWS criptografia solicita que a primeira chave de
encapsulamento na lista$key1,, gere a chave de dados que ela usa para criptografar os dados. Em
seguida, ela usa cada uma das outras chaves de encapsulamento para criptografar uma cópia de
texto não criptografado da mesma chave de dados. A mensagem criptografada no arquivo de saída
inclui todas as três chaves de dados criptografadas.

Bash

$ key1=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

$ aws-encryption-cli --encrypt --input /logs/finance.log \
 --output /archive --suffix \
 --encryption-context class=log \
 --metadata-output ~/metadata \
 --wrapping-keys key=$key1 key=$key2 key=$key3

PowerShell

PS C:\> $key1 = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef'

Exemplos 337

AWS Encryption SDK Guia do Desenvolvedor

PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d'

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log `
 --output D:\Archive --suffix `
 --encryption-context class=log `
 --metadata-output $home\Metadata.txt `
 --wrapping-keys key=$key1 key=$key2 key=$key3

Este comando descriptografa a cópia criptografada do arquivo Finance.log e grava-o em um
arquivo Finance.log.clear no diretório Finance. Para descriptografar dados criptografados
abaixo de três AWS KMS keys, você pode especificar os mesmos três AWS KMS keys ou qualquer
subconjunto deles. Este exemplo especifica somente um dos AWS KMS keys.

Para informar à CLI de AWS criptografia qual usar AWS KMS keys para descriptografar seus dados,
use o atributo chave do parâmetro. --wrapping-keys Ao descriptografar com AWS KMS keys, o
valor do atributo chave deve ser um ARN da chave.

Você deve ter permissão para chamar a API Decrypt no que você especificar. AWS KMS keys Para
obter mais informações, consulte Autenticação e controle de acesso do AWS KMS.

Como prática recomendada, estes exemplos usam o parâmetro --max-encrypted-data-
keys para evitar a descriptografia de uma mensagem malformada com um número excessivo de
chaves de dados criptografadas. Embora o exemplo use somente uma chave de encapsulamento
para decodificação, a mensagem criptografada tem três (3) chaves de dados criptografadas; uma
para cada uma das três chaves de encapsulamento usadas na criptografia. Especifique o número
esperado de chaves de dados criptografadas ou um valor máximo razoável, como 5. Se especificar
um valor máximo menor que 3, o comando falhará. Para obter detalhes, consulte Limitar as chaves
de dados criptografadas.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
 --wrapping-keys key=$key1 \
 --output /finance --suffix '.clear' \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 3 \
 --buffer \
 --encryption-context class=log

Exemplos 338

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Guia do Desenvolvedor

PowerShell

PS C:\> aws-encryption-cli --decrypt `
 --input D:\Archive\Finance.log `
 --wrapping-keys key=$key1 `
 --output D:\Finance --suffix '.clear' `
 --metadata-output .\Metadata\Metadata.txt `
 --max-encrypted-data-keys 3 `
 --buffer `
 --encryption-context class=log

Criptografar e descriptografar em scripts

Este exemplo mostra como usar a CLI AWS de criptografia em scripts. Você pode escrever scripts
que apenas criptografam e descriptografam dados ou scripts que criptografam ou descriptografam
como parte de um processo de gerenciamento de dados.

Neste exemplo, o script obtém uma coleção de arquivos de log, compacta-os, criptografa-os e,
em seguida, copia os arquivos criptografados em um bucket do Amazon S3. Esse script processa
cada arquivo separadamente, para que você possa descriptografá-los e expandi-los de maneira
independente.

Ao compactar e criptografar arquivos, certifique-se de compactar antes de criptografar. Dados
criptografados corretamente não podem ser compactados.

Warning

Tenha cuidado ao compactar dados que incluam segredos e dados que possam ser
controlados por um ator mal-intencionado. O tamanho final dos dados compactados pode
revelar inadvertidamente informações confidenciais sobre seu conteúdo.

Bash

Continue running even if an operation fails.
set +e

dir=$1
encryptionContext=$2
s3bucket=$3

Exemplos 339

AWS Encryption SDK Guia do Desenvolvedor

s3folder=$4
masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){
 gzip -qf $1
}

encrypt(){
 # -e encrypt
 # -i input
 # -o output
 # --metadata-output unique file for metadata
 # -m masterKey read from environment variable
 # -c encryption context read from the second argument.
 # -v be verbose
 aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
 ${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
 "${encryptionContext}" -v
}

s3put (){
 # copy file argument 1 to s3 location passed into the script.
 aws s3 cp ${1} ${s3bucket}/${s3folder}
}

Validate all required arguments are present.
if ["${dir}"] && ["${encryptionContext}"] && ["${s3bucket}"] &&
 ["${s3folder}"] && ["${masterKey}"]; then

Is $dir a valid directory?
test -d "${dir}"
if [$? -ne 0]; then
 echo "Input is not a directory; exiting"
 exit 1
fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
 a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
 do
 echo "Working on $f"
 compress ${f}

Exemplos 340

AWS Encryption SDK Guia do Desenvolvedor

 encrypt ${f}.gz
 rm -f ${f}.gz
 s3put ${f}.gz.encrypted
done;
else
 echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"
 echo " and ENV var \$masterKey must be set"
 exit 255
fi

PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive
Param
(
 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String[]]
 $FilePath,

 [Parameter()]
 [Switch]
 $Recurse,

 [Parameter(Mandatory=$true)]
 [String]
 $wrappingKeyID,

 [Parameter()]
 [String]
 $masterKeyProvider = 'aws-kms',

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $ZipDirectory,

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $EncryptDirectory,

 [Parameter()]

Exemplos 341

AWS Encryption SDK Guia do Desenvolvedor

 [String]
 $EncryptionContext,

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $MetadataDirectory,

 [Parameter(Mandatory)]
 [ValidateScript({Test-S3Bucket -BucketName $_})]
 [String]
 $S3Bucket,

 [Parameter()]
 [String]
 $S3BucketFolder
)

BEGIN {}
PROCESS {
 if ($files = dir $FilePath -Recurse:$Recurse)
 {

 # Step 1: Compress
 foreach ($file in $files)
 {
 $fileName = $file.Name
 try
 {
 Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip
 }
 catch
 {
 Write-Error "Zip failed on $file.FullName"
 }

 # Step 2: Encrypt
 if (-not (Test-Path "$ZipDirectory\$filename.zip"))
 {
 Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"
 }
 else
 {

Exemplos 342

AWS Encryption SDK Guia do Desenvolvedor

 # 2>&1 captures command output
 $err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip" `
 -o $EncryptDirectory `
 -m key=$wrappingKeyID provider=
$masterKeyProvider `
 -c $EncryptionContext `
 --metadata-output $MetadataDirectory `
 -v) 2>&1

 # Check error status
 if ($? -eq $false)
 {
 # Write the error
 $err
 }
 elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
 {
 # Step 3: Write to S3 bucket
 if ($S3BucketFolder)
 {
 Write-S3Object -BucketName $S3Bucket -File
 "$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

 }
 else
 {
 Write-S3Object -BucketName $S3Bucket -File
 "$EncryptDirectory\$fileName.zip.encrypted"
 }
 }
 }
 }
 }
}

Usar o armazenamento em cache de chaves de dados

Este exemplo usa o armazenamento em cache de chaves de dados em um comando que criptografa
um grande número de arquivos.

Exemplos 343

AWS Encryption SDK Guia do Desenvolvedor

Por padrão, a CLI de AWS criptografia (e outras versões da AWS Encryption SDK) gera uma
chave de dados exclusiva para cada arquivo criptografado. Embora o uso de uma chave de
dados exclusiva para cada operação seja uma prática recomendada de criptografia, a reutilização
limitada de chaves de dados é aceitável em algumas situações. Se você estiver considerando
o armazenamento em cache de chaves de dados, consulte um engenheiro de segurança para
compreender os requisitos de segurança do seu aplicativo e determinar os limites de segurança
apropriados para você.

Neste exemplo, o armazenamento em cache de chaves de dados acelera a operação de criptografia
reduzindo a frequência de solicitações ao provedor de chaves mestras.

O comando neste exemplo criptografa um diretório grande com vários subdiretórios que contêm
um total de aproximadamente 800 pequenos arquivos de log. O primeiro comando salva o ARN da
AWS KMS key em uma variável keyARN. O segundo comando criptografa todos os arquivos no
diretório de entrada (recursivamente) e os grava em um diretório de arquivo morto. O comando usa o
parâmetro --suffix para especificar o sufixo .archive.

O parâmetro --caching permite o armazenamento em cache da chave de dados. O atributo
capacity, que limita o número de chaves de dados no cache, está definido como 1, porque o
processamento de arquivos seriais nunca usa mais de uma chave de dados de cada vez. O atributo
max_age, que determina por quanto tempo a chave de dados armazenada em cache pode ser
usada, está definido como 10 segundos.

O atributo opcional max_messages_encrypted está definido como 10 mensagens, portanto, uma
única chave de dados nunca é usada para criptografar mais de 10 arquivos. A limitação do número
de arquivos criptografados por cada chave de dados reduz o número de arquivos que devem ser
afetados no caso improvável de uma chave de dados estar comprometida.

Para executar esse comando em arquivos de log gerados pelo sistema operacional, você pode
precisar de permissões de administrador (sudo no Linux; Run as Administrator (Executar como
administrador) no Windows).

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input /var/log/httpd --recursive \
 --output ~/archive --suffix .archive \

Exemplos 344

AWS Encryption SDK Guia do Desenvolvedor

 --wrapping-keys key=$keyArn \
 --encryption-context class=log \
 --suppress-metadata \
 --caching capacity=1 max_age=10 max_messages_encrypted=10

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive' `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10
 max_messages_encrypted=10

Para testar o efeito do armazenamento em cache da chave de dados, este exemplo usa o cmdlet
Measure-Command em. PowerShell Ao executar esse exemplo sem o armazenamento em cache
da chave de dados, ele demora cerca de 25 segundos para ser concluído. Esse processo gera uma
nova chave de dados para cada arquivo no diretório.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata }

Days : 0
Hours : 0
Minutes : 0
Seconds : 25
Milliseconds : 453
Ticks : 254531202
TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667

Exemplos 345

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK Guia do Desenvolvedor

TotalMinutes : 0.42421867
TotalSeconds : 25.4531202
TotalMilliseconds : 25453.1202

O armazenamento em cache da chave de dados acelera o processo, mesmo quando você limita
cada chave de dados para um máximo de 10 arquivos. O comando agora demora menos de 12
segundos para ser concluído e reduz o número de chamadas ao provedor de chaves mestras para
1/10 do valor original.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10
 max_messages_encrypted=10}

Days : 0
Hours : 0
Minutes : 0
Seconds : 11
Milliseconds : 813
Ticks : 118132640
TotalDays : 0.000136727592592593
TotalHours : 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264
TotalMilliseconds : 11813.264

Se você eliminar a restrição max_messages_encrypted, todos os arquivos serão criptografados
com a mesma chave de dados. Essa alteração aumenta o risco de reutilização de chaves de dados
sem tornar o processo muito mais rápido. No entanto, ela reduz o número de chamadas ao provedor
de chaves mestras para 1.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `

Exemplos 346

AWS Encryption SDK Guia do Desenvolvedor

 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10}

Days : 0
Hours : 0
Minutes : 0
Seconds : 10
Milliseconds : 252
Ticks : 102523367
TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367
TotalMilliseconds : 10252.3367

AWS Encryption SDK Referência de sintaxe e parâmetros da CLI

Este tópico fornece diagramas da sintaxe e breves descrições dos parâmetros para ajudá-lo a usar
a interface da linha de comando (CLI) do AWS Encryption SDK . Para obter ajuda com chaves
mestras e outros parâmetros, consulte Como usar a CLI AWS de criptografia. Para obter exemplos,
consulte Exemplos da CLI AWS de criptografia. Para obter a documentação completa, consulte Leia
os documentos.

Tópicos

• AWS Sintaxe da CLI de criptografia

• AWS Parâmetros de linha de comando da CLI de criptografia

• Parâmetros avançados

AWS Sintaxe da CLI de criptografia

Esses diagramas de sintaxe da CLI de AWS criptografia mostram a sintaxe de cada tarefa que você
executa com a CLI de criptografia. AWS Eles representam a sintaxe recomendada na versão 2.1 do
AWS Encryption CLI. x e mais tarde.

Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS Encryption
CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a versão 1.7. x e CLI

Referência da sintaxe e de parâmetros 347

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a consultoria de segurança
relevante no aws-encryption-sdk-clirepositório em GitHub.

Note

A menos que indicado na descrição do parâmetro, cada parâmetro ou atributo pode ser
usado apenas uma vez em cada comando.
Se você usar um atributo que um parâmetro não suporta, a CLI de AWS criptografia ignora
esse atributo não suportado sem um aviso ou erro.

Obter ajuda

Para obter a sintaxe completa da CLI de AWS criptografia com descrições de parâmetros, use ou.
--help -h

aws-encryption-cli (--help | -h)

Obter a versão

Para obter o número da versão da sua instalação do AWS Encryption CLI, use. --version
Certifique-se de incluir a versão ao fazer perguntas, relatar problemas ou compartilhar dicas
sobre como usar a CLI de AWS criptografia.

aws-encryption-cli --version

Criptografar dados

O diagrama da sintaxe a seguir mostra os parâmetros usados por um comando encrypt.

aws-encryption-cli --encrypt
 --input <input> [--recursive] [--decode]
 --output <output> [--interactive] [--no-overwrite] [--suffix
 [<suffix>]] [--encode]
 --wrapping-keys [--wrapping-keys] ...
 key=<keyID> [key=<keyID>] ...
 [provider=<provider-name>] [region=<aws-region>]
 [profile=<aws-profile>]
 --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
 [--commitment-policy <commitment-policy>]

Referência da sintaxe e de parâmetros 348

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

 [--encryption-context <encryption_context> [<encryption_context>
 ...]]
 [--max-encrypted-data-keys <integer>]
 [--algorithm <algorithm_suite>]
 [--caching <attributes>]
 [--frame-length <length>]
 [-v | -vv | -vvv | -vvvv]
 [--quiet]

Descriptografar dados

O diagrama da sintaxe a seguir mostra os parâmetros usados por um comando decrypt.

Na versão 1.8.x, o parâmetro --wrapping-keys é opcional ao descriptografar, mas é
recomendado. A partir da versão 2.1.x, o parâmetro --wrapping-keys passou a ser necessário
ao criptografar e descriptografar. Para AWS KMS keys, você pode usar o atributo key para
especificar chaves de encapsulamento (prática recomendada) ou definir o atributo discovery
comotrue, o que não limita as chaves de encapsulamento que podem ser usadas pela CLI de
criptografia da AWS .

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
 --input <input> [--recursive] [--decode]
 --output <output> [--interactive] [--no-overwrite] [--suffix
 [<suffix>]] [--encode]
 --wrapping-keys [--wrapping-keys] ...
 [key=<keyID>] [key=<keyID>] ...
 [discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
 [provider=<provider-name>] [region=<aws-region>]
 [profile=<aws-profile>]
 --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
 [--commitment-policy <commitment-policy>]
 [--encryption-context <encryption_context> [<encryption_context>
 ...]]
 [--buffer]
 [--max-encrypted-data-keys <integer>]
 [--caching <attributes>]
 [--max-length <length>]
 [-v | -vv | -vvv | -vvvv]
 [--quiet]

Referência da sintaxe e de parâmetros 349

AWS Encryption SDK Guia do Desenvolvedor

Usar arquivos de configuração

Você pode fazer referência a arquivos de configuração que contêm parâmetros e seus valores.
Isso é equivalente a digitar os parâmetros e os valores no comando. Para ver um exemplo,
consulte Como armazenar parâmetros em um arquivo de configuração.

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli `@<configuration_file>

AWS Parâmetros de linha de comando da CLI de criptografia

Essa lista fornece uma descrição básica dos parâmetros do comando AWS Encryption CLI. Para
obter uma descrição completa, consulte a aws-encryption-sdk-clidocumentação.

--encrypt (-e)

Criptografa os dados de entrada. Cada comando deve ter um parâmetro --encrypt, --
decrypt ou --decrypt-unsigned.

--decrypt (-d)

Descriptografa os dados de entrada. Cada comando deve ter um parâmetro --encrypt, --
decrypt ou --decrypt-unsigned.

--decrypt-unsigned [Introduzido nas versões 1.9.x e 2.2.x]

O parâmetro --decrypt-unsigned descriptografa o texto cifrado e garante que as mensagens
não sejam assinadas antes de serem descriptografadas. Use esse parâmetro se você usou o
parâmetro --algorithm e selecionou um pacote de algoritmos sem assinatura digital para
criptografar dados. Se o texto cifrado for assinado, a descriptografia falhará.

Você pode usar --decrypt ou --decrypt-unsigned para fazer a descriptografia, mas não
ambos.

--wrapping-keys (-w) [Introduzido na versão 1.8.x]

Especifica as chaves de encapsulamento (ou chaves mestras) usadas em operações de
criptografia e descriptografia. Você pode usar vários parâmetros de --wrapping-keys em cada
comando.

Referência da sintaxe e de parâmetros 350

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

A partir da versão 2.1.x, o parâmetro --wrapping-keys passou a ser necessário ao criptografar
e descriptografar comandos. Na versão 1.8. x, os comandos encrypt requerem um parâmetro --
wrapping-keys ou --master-keys. Nos comandos decrypt fs versão 1.8. x um parâmetro --
wrapping-keys é opcional, mas recomendado.

Ao usar usam um provedor de chaves mestres personalizado, os comandos encrypt e decrypt
exigem os atributos key e provider. Ao usar AWS KMS keys, os comandos de criptografia exigem
um atributo chave. Os comandos decrypt exigem que um atributokey ou um atributo discovery
sejam definidos com um valor de true (mas não ambos). Usar o atributo key ao descriptografar
é uma prática recomendada do AWS Encryption SDK. Ela particularmente importante se você
estiver descriptografando lotes de mensagens desconhecidas, como aquelas em um bucket do
Amazon S3 ou em uma fila do Amazon SQS.

Para ver um exemplo de como usar chaves AWS KMS multirregionais como chaves de
agrupamento, consulte. Usando várias regiões AWS KMS keys

Attributes: o valor do parâmetro --wrapping-keys consiste nos seguintes atributos. O formato
é attribute_name=value.

key

Identifica a chave de encapsulamento usada na operação. O formato é um par de key=ID.
Você pode especificar vários atributos key em cada valor do parâmetro --wrapping-keys.

• Comandos encrypt: todos os comandos encrypt exigem o atributo key. Quando você usa um
comando AWS KMS key in a encrypt, o valor do atributo chave pode ser um ID de chave,
ARN de chave, nome de alias ou ARN de alias. Para obter descrições dos identificadores
de AWS KMS chave, consulte Identificadores de chave no Guia do AWS Key Management
Service desenvolvedor.

• Comandos decrypt: ao descriptografar com as AWS KMS keys, o parâmetro --wrapping-
keys exige que o valor de um atributokey seja definido como um ARN de chave ou que o
valor de um atributo discovery seja definido como true (mas não ambos). Usar o atributo
key é uma prática recomendada do AWS Encryption SDK. Ao descriptografar com um
provedor de chave mestra personalizado, o atributo key é obrigatório.

Note

Para especificar uma chave de AWS KMS encapsulamento em um comando de
descriptografia, o valor do atributo chave deve ser um ARN de chave. Se você usar

Referência da sintaxe e de parâmetros 351

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Guia do Desenvolvedor

um ID de chave, nome de alias ou ARN de alias, a AWS CLI de criptografia não
reconhecerá a chave de empacotamento.

Você pode especificar vários atributos key em cada valor do parâmetro --wrapping-keys.
No entanto, qualquer atributo provider, region e profile em um parâmetro --wrapping-keys
será aplicável a todas chaves de encapsulamento no valor desse parâmetro. Para especificar
chaves de encapsulamento com diferentes valores de atributos, use vários parâmetros --
wrapping-keys no comando.

discovery

Permite que a CLI de AWS criptografia use qualquer uma para AWS KMS key descriptografar
a mensagem. O valor de discovery pode ser true oufalse. O valor padrão é false. O
atributo discovery é válido apenas em comandos decrypt e somente quando o provedor de
chaves mestras for do AWS KMS.

Ao descriptografar com AWS KMS keys, o --wrapping-keys parâmetro requer um atributo-
chave ou um atributo de descoberta com um valor de true (mas não ambos). Se você usar
o atributo key, poderá usar um atributo de discovery com um valor definido como false para
rejeitar explicitamente a descoberta.

• False(padrão) — Quando o atributo de descoberta não é especificado ou seu valor
éfalse, a CLI de AWS criptografia descriptografa a mensagem usando somente o AWS
KMS keys especificado pelo atributo-chave do parâmetro. --wrapping-keys Se você não
especificar um atributo key quando discovery for false, o comando decrypt falhará. Esse
valor oferece suporte a uma prática AWS recomendada de CLI de criptografia.

• True— Quando o valor do atributo de descoberta étrue, a CLI de AWS criptografia obtém
os metadados AWS KMS keys da mensagem criptografada e os usa AWS KMS keys para
descriptografar a mensagem. O atributo de descoberta com um valor de true se comporta
como as versões da AWS CLI de criptografia antes da versão 1.8. x que não permitia que
você especificasse uma chave de empacotamento ao descriptografar. No entanto, sua
intenção de usar qualquer um AWS KMS key é explícita. Se você especificar um atributo
key quando discovery for true, o comando decrypt falhará.

O true valor pode fazer com que a CLI de AWS criptografia seja usada AWS KMS keys
em diferentes Contas da AWS regiões ou tente usar algo AWS KMS keys que o usuário não
esteja autorizado a usar.

Referência da sintaxe e de parâmetros 352

AWS Encryption SDK Guia do Desenvolvedor

Quando a descoberta étrue, é uma prática recomendada usar os atributos discovery-partition
e discovery-account para limitar o AWS KMS keys uso aos atributos especificados por você.
Contas da AWS

discovery-account

Limita o AWS KMS keys usado para descriptografia aos especificados. Conta da AWS O
único valor válido para esse atributo é um ID de Conta da AWS.

Esse atributo é opcional e válido somente em comandos de descriptografia com os AWS KMS
keys quais o atributo de descoberta está definido true e o atributo de partição de descoberta
é especificado.

Cada atributo da conta descoberta usa apenas uma Conta da AWS ID, mas você pode
especificar vários atributos da conta descoberta no mesmo parâmetro. --wrapping-keys
Todas as contas especificadas em um determinado parâmetro --wrapping-keys devem
estar na partição da AWS especificada.

discovery-partition

Especifica a AWS partição das contas no atributo discovery-account. Seu valor deve ser uma
AWS partiçãoaws, comoaws-cn, ouaws-gov-cloud. Para obter mais informações, consulte
Nomes de atributo da Amazon no Referência geral da AWS.

Esse atributo é obrigatório quando você usa o atributo discovery-account. Você pode
especificar somente um atributo discovery-partition em cada parâmetro --wrapping keys.
Para especificar Contas da AWS em várias partições, use um --wrapping-keys parâmetro
adicional.

provider

Identifica o provedor de chaves mestres. O formato é um par de provider=ID. O valor padrão,
aws-kms, representa. AWS KMS Esse atributo é necessário somente quando o provedor da
chave mestra não é AWS KMS.

region

Identifica o Região da AWS de um AWS KMS key. Esse atributo é válido somente para AWS
KMS keys. É usado apenas quando o identificador da chave não especifica uma região; caso
contrário, é ignorado. Quando usado, ele substitui a região padrão no perfil chamado AWS
CLI.

Referência da sintaxe e de parâmetros 353

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK Guia do Desenvolvedor

perfil

Identifica um perfil AWS CLI nomeado. Esse atributo é válido somente para AWS KMS keys. A
região no perfil é usada apenas quando o identificador da chave não especifica uma região e
não há nenhum atributo region no comando.

--input (-i)

Especifica o local dos dados a serem criptografados ou descriptografados. Esse parâmetro é
obrigatório. O valor pode ser um caminho para um arquivo ou diretório ou um nome de arquivo
padrão. Se você estiver redirecionando a entrada para o comando (stdin), use -.

Se a entrada não existir, o comando é concluído com êxito sem erro ou aviso.

--recursive (-r, -R)

Executa a operação nos arquivos no diretório de entrada e em seus subdiretórios. Esse
parâmetro é necessário quando o valor de --input é um diretório.

--decode

Decodifica entrada codificada em Base64.

Se estiver descriptografando uma mensagem que foi criptografada e, em seguida, codificado,
você deverá decodificar a mensagem antes de descriptografá-la. Esse parâmetro faz isso para
você.

Por exemplo, se você tiver usado o parâmetro --encode em um comando encrypt, use o
parâmetro --decode no comando decrypt correspondente. Você também pode usar esse
parâmetro para decodificar a entrada codificada em Base64 antes de criptografá-la.

--output (-o)

Especifica um destino para a saída. Esse parâmetro é obrigatório. O valor pode ser um nome de
arquivo, um diretório existente ou -, que grava a saída na linha de comando (stdout).

Se o diretório de saída especificado não existir, o comando falhará. Se a entrada contiver
subdiretórios, a AWS CLI de criptografia reproduzirá os subdiretórios no diretório de saída que
você especificar.

Por padrão, a CLI AWS de criptografia sobrescreve arquivos com o mesmo nome. Para alterar
esse comportamento, use os parâmetros --interactive ou --no-overwrite. Para suprimir
o aviso de substituição, use o parâmetro --quiet.

Referência da sintaxe e de parâmetros 354

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Guia do Desenvolvedor

Note

Se um comando que deve substituir um arquivo de saída falhar, o arquivo de saída será
excluído.

--interactive

Solicita antes de substituir o arquivo.

--no-overwrite

Não substitui arquivos. Em vez disso, se o arquivo de saída existir, a CLI de AWS criptografia
ignora a entrada correspondente.

--sufixo

Especifica um sufixo de nome de arquivo personalizado para arquivos criados pela AWS CLI
de criptografia. Para indicar nenhum sufixo, use o parâmetro sem um valor (--suffix).

Por padrão, quando o parâmetro --output não especifica um nome de arquivo, o nome
do arquivo de saída tem o mesmo nome que o nome do arquivo de entrada mais o sufixo.
O sufixo para comandos encrypt é .encrypted. O sufixo para comandos decrypt é
.decrypted.

--encode

Aplica codificação de Base64 (de binário para texto) à saída. A codificação impede que o
programa shell do host interprete incorretamente caracteres não ASCII no texto de saída.

Use esse parâmetro ao gravar uma saída criptografada em stdout (--output -),
especialmente em um PowerShell console, mesmo quando estiver canalizando a saída para
outro comando ou salvando-a em uma variável.

--metadata-output

Especifica um local para metadados sobre as operações de criptografia. Insira um caminho e um
nome de arquivo. Se o diretório não existir, o comando falhará. Para gravar os metadados na
linha de comando (stdout), use -.

Você não pode gravar a saída do comando (--output) e a saída dos metadados (--
metadata-output) em stdout no mesmo comando. Além disso, quando o valor de --input

Referência da sintaxe e de parâmetros 355

AWS Encryption SDK Guia do Desenvolvedor

ou --output for um diretório (sem nomes de arquivos), você não poderá gravar a saída de
metadados no mesmo diretório ou em qualquer subdiretório desse diretório.

Se você especificar um arquivo existente, por padrão, a CLI de AWS criptografia anexará novos
registros de metadados a qualquer conteúdo do arquivo. Esse recurso permite que você crie
um único arquivo que contém os metadados de todas as suas operações de criptografia. Para
substituir o conteúdo em um arquivo existente, use o parâmetro --overwrite-metadata.

A CLI de AWS criptografia retorna um registro de metadados formatado em JSON para cada
operação de criptografia ou descriptografia que o comando executa. Cada registro de metadados
inclui os caminhos completos para os arquivos de entrada e de saída, o contexto de criptografia,
o pacote de algoritmos e outras informações valiosas que você pode usar para rever a operação
e verificar se ela atende a seus padrões de segurança.

--overwrite-metadata

Substitui o conteúdo no arquivo de saída de metadados. Por padrão, o parâmetro --
metadata-output acrescenta metadados a qualquer conteúdo existente no arquivo.

--suppress-metadata (-S)

Suprime os metadados sobre a operação de criptografia ou de descriptografia.

--commitment-policy

Especifica a política de compromisso para comandos encrypt e decrypt. A política de
compromisso determina se sua mensagem será criptografada e descriptografada com o atributo
de segurança confirmação de chave.

O parâmetro --commitment-policy foi introduzido na versão 1.8.x.. Ele 'é válido em
comandos de criptografia e descriptografia.

Na versão 1.8. x, a CLI de AWS criptografia usa a política de forbid-encrypt-allow-
decrypt compromisso para todas as operações de criptografia e descriptografia. Quando você
usa o parâmetro --wrapping-keys em um comando encrypt ou decrypt, é obrigatório que
um parâmetro --commitment-policy seja definido com o valor forbid-encrypt-allow-
decrypt. Se você não usar o parâmetro--wrapping-keys, o parâmetro --commitment-
policy será inválido. Definir uma política de compromisso explicitamente impede que sua
política de compromisso seja alterada automaticamente para require-encrypt-require-
decrypt quando você atualizar para a versão 2.1.x

Referência da sintaxe e de parâmetros 356

AWS Encryption SDK Guia do Desenvolvedor

A partir da versão 2.1.x, todos os valores da política de compromisso são compatíveis. O
parâmetro --commitment-policy é opcional e o valor padrão é require-encrypt-
require-decrypt.

Esse parâmetro tem os valores a seguir:

• forbid-encrypt-allow-decrypt: não é possível criptografar com confirmação de chave.
Ele pode descriptografar textos cifrados criptografados com ou sem confirmação de chave.

Na versão 1.8.x, esse é o único valor válido. A CLI de AWS criptografia usa a política de
forbid-encrypt-allow-decrypt compromisso para todas as operações de criptografia e
descriptografia.

• require-encrypt-allow-decrypt: criptografa somente com confirmação de chave.
Descriptografa com e sem compromisso chave. Esse valor foi introduzido na versão 2.1.x..

• require-encrypt-require-decrypt (padrão): criptografa e descriptografa somente com
confirmação de chave. Esse valor foi introduzido na versão 2.1.x.. É o valor padrão em versões
2.1.x. e posteriores. Com esse valor, a CLI de AWS criptografia não descriptografará nenhum
texto cifrado que tenha sido criptografado com versões anteriores do. AWS Encryption SDK

Para obter informações detalhadas sobre como definir sua política de compromisso, consulte
Migrando seu AWS Encryption SDK.

--encryption-context (-c)

Especifica um contexto de criptografia para a operação. Esse parâmetro não é obrigatório, mas é
recomendado.

• Em um comando --encrypt, insira um ou mais pares de name=value. Use espaços para
separar os pares.

• Em um comando --decrypt, insira pares de name=value, elementos name sem valores ou
ambos.

Se o name ou o value em um par de name=value incluir espaços ou caracteres
especiais, coloque o par inteiro entre aspas. Por exemplo, .--encryption-context
"department=software development"

--buffer (-b) [Introduzido nas versões 1.9.x e 2.2.x]

Retorna texto simples somente após o processamento de todas as entradas, incluindo a
verificação da assinatura digital, se houver uma.

Referência da sintaxe e de parâmetros 357

AWS Encryption SDK Guia do Desenvolvedor

-- max-encrypted-data-keys [Introduzido nas versões 1.9. x e 2.2. x]

Especifica o número máximo de chaves de dados criptografadas em uma mensagem
criptografada. Esse parâmetro é opcional.

Os valores válidos são 1–65.535. Se você omitir esse parâmetro, a CLI de AWS criptografia não
impõe nenhum máximo. Uma mensagem criptografada pode conter até 65.535 (2^16 - 1) chaves
de dados criptografadas.

Você pode usar esse parâmetro em comandos encrypt para evitar a malformação de uma
mensagem. Você pode usá-lo em comandos decrypt para detectar mensagens maliciosas e
evitar descriptografar mensagens com várias chaves de dados criptografadas que você não
pode descriptografar. Para obter detalhes e um exemplo, consulte Limitar as chaves de dados
criptografadas.

--help (-h)

Imprime o uso e a sintaxe na linha de comando.

--version

Obtém a versão da CLI AWS de criptografia.

-v | -vv | -vvv | -vvvv

Exibe informações, avisos e mensagens de depuração detalhados. Os detalhes na saída
aumentam com o número de vs no parâmetro. A configuração mais detalhada (-vvvv) retorna
dados em nível de depuração da AWS CLI de criptografia e de todos os componentes que ela
usa.

--quiet (-q)

Suprime mensagens de aviso, como a mensagem que aparece quando você substitui um arquivo
de saída.

--master-keys (-m) [Descontinuado]

Note

O parâmetro --master-keys foi descontinuado na versão 1.8.x foi removido na versão
2.1.x. Em vez dele, use o parâmetro --wrapping-keys.

Referência da sintaxe e de parâmetros 358

AWS Encryption SDK Guia do Desenvolvedor

Especifica as chaves mestres usadas em operações de criptografia e descriptografia. Você pode
usar vários parâmetros de chaves mestras em cada comando.

O parâmetro --master-keys é necessário em comandos encrypt. Ele é necessário em
comandos decrypt somente quando você estiver usando um provedor de chaves mestras
personalizado (que não seja do AWS KMS).

Attributes: o valor do parâmetro --master-keys consiste nos seguintes atributos. O formato é
attribute_name=value.

key

Identifica a chave de encapsulamento usada na operação. O formato é um par de key=ID. O
atributo key é obrigatório em todos os comandos encrypt.

Quando você usa um comando AWS KMS key in a encrypt, o valor do atributo chave pode ser
um ID de chave, ARN de chave, nome de alias ou ARN de alias. Para obter detalhes sobre
identificadores de AWS KMS chave, consulte Identificadores de chave no Guia do AWS Key
Management Service desenvolvedor.

O atributo key é necessário em comandos decrypt quando o provedor de chaves mestras não
for o AWS KMS. O atributo key não é permitido em comandos que descriptografam dados que
foram criptografados com uma AWS KMS key.

Você pode especificar vários atributos key em cada valor do parâmetro --master-keys. No
entanto, qualquer atributo provider, region e profile aplica-se a todas as chaves mestres no
valor do parâmetro. Para especificar chaves mestras com diferentes valores de atributos, use
vários parâmetros --master-keys no comando.

provider

Identifica o provedor de chaves mestres. O formato é um par de provider=ID. O valor padrão,
aws-kms, representa. AWS KMS Esse atributo é necessário somente quando o provedor da
chave mestra não é AWS KMS.

region

Identifica o Região da AWS de um AWS KMS key. Esse atributo é válido somente para AWS
KMS keys. É usado apenas quando o identificador da chave não especifica uma região; caso
contrário, é ignorado. Quando usado, ele substitui a região padrão no perfil chamado AWS
CLI.

Referência da sintaxe e de parâmetros 359

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

perfil

Identifica um perfil AWS CLI nomeado. Esse atributo é válido somente para AWS KMS keys. A
região no perfil é usada apenas quando o identificador da chave não especifica uma região e
não há nenhum atributo region no comando.

Parâmetros avançados

--algorithm

Especifica um pacote de algoritmos alternativo. Esse parâmetro é opcional e válido apenas em
comandos encrypt.

Se você omitir esse parâmetro, a CLI de AWS criptografia usará um dos conjuntos de algoritmos
padrão para AWS Encryption SDK o apresentado na versão 1.8. x. Ambos os algoritmos padrão
usam o AES-GCM com um HKDF, uma assinatura ECDSA e uma chave de criptografia de 256
bits. Um usa confirmação de chave; o outro não. A escolha do pacote de algoritmos padrão é
determinada pela política de compromisso do comando.

Os pacotes de algoritmo padrão são recomendados para a maioria das operações de criptografia.
Para obter uma lista de valores válidos, consulte os valores do parâmetro algorithm em Leia os
documentos.

--frame-length

Cria uma saída com o tamanho da moldura especificado. Esse parâmetro é opcional e válido
apenas em comandos encrypt.

Digite um valor em bytes. Os valores válidos são 0 e 1–2^31-1. Um valor igual a 0 indica dados
sem moldura. O padrão é 4.096 (bytes).

Note

Sempre que possível, use dados com moldura. O AWS Encryption SDK suporta dados
não emoldurados somente para uso antigo. Algumas implementações de linguagem
do ainda AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as
implementações de linguagem compatíveis podem descriptografar texto cifrado e não
emoldurado.

Referência da sintaxe e de parâmetros 360

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html
https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK Guia do Desenvolvedor

--max-length

Indica o tamanho máximo da moldura (ou o tamanho máximo do conteúdo de mensagens sem
moldura) a ser lido em mensagens criptografadas. Esse parâmetro é opcional e válido apenas em
comandos decrypt. Ele foi projetado para proteção contra a descriptografia de texto cifrado mal-
intencionado extremamente grande.

Digite um valor em bytes. Se você omitir esse parâmetro, o AWS Encryption SDK não limitará o
tamanho do quadro ao descriptografar.

--caching

Habilita o recurso de armazenamento em cache de chaves de dados, que reutiliza chaves de
dados, em vez de gerar uma nova chave de dados para cada arquivo de entrada. Esse parâmetro
é compatível com um cenário avançado. Não deixe de ler a documentação Armazenamento em
cache de chaves de dados antes de usar esse recurso.

O parâmetro --caching tem os seguintes atributos.

capacity (obrigatório)

Determina o número máximo de entradas no cache.

O valor mínimo é 1. Não há um valor máximo.

max_age (obrigatório)

Determina o tempo em que as entradas do cache são usadas, em segundos, a partir do
momento em que são adicionadas ao cache.

Digite um valor maior que 0. Não há um valor máximo.

max_messages_encrypted (opcional)

Determina o número máximo de mensagens que uma entrada armazenada em cache pode
criptografar.

Os valores válidos são 1–2^32. O valor padrão é 2^32 (mensagens).

max_bytes_encrypted (opcional)

Determina o número máximo de bytes que uma entrada armazenada em cache pode
criptografar.

Referência da sintaxe e de parâmetros 361

AWS Encryption SDK Guia do Desenvolvedor

Os valores válidos são 0 e 1–2^63 - 1. O valor padrão é 2^63 - 1 (mensagens). Um valor de
0 permite usar armazenamento em cache de chaves de dados somente quando você está
criptografando strings de mensagem vazias.

Versões da CLI AWS de criptografia

Recomendamos que você use a versão mais recente da CLI de AWS criptografia.

Note

Versões da CLI de AWS criptografia anteriores à 4.0.0 estão em fase. end-of-support
Você pode atualizar com segurança a partir da versão 2.1.x e posteriores até a versão mais
recente da CLI de criptografia da AWS sem realizar alterações no código ou nos dados. No
entanto, os novos atributos de segurança introduzidos na versão 2.1.x não são compatíveis
com versões anteriores. Para atualizar a partir da versão 1.7. x ou anterior, você deve
primeiro atualizar para a última 1. versão x da CLI AWS de criptografia. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Para obter informações sobre versões significativas do AWS Encryption SDK, consulteVersões do
AWS Encryption SDK.

Qual versão devo usar?

Se você é novo na CLI AWS de criptografia, use a versão mais recente.

Para descriptografar dados criptografados por uma versão AWS Encryption SDK anterior à 1.7. x,
migre primeiro para a versão mais recente da CLI de AWS criptografia. Faça todas as alterações
recomendadas antes de atualizar para a versão 2.1.x ou versões posteriores. Para obter detalhes,
consulte Migrando seu AWS Encryption SDK.

Saiba mais

• Para obter informações detalhadas sobre as alterações e orientações para migrar para essas
novas versões, consulte Migrando seu AWS Encryption SDK.

Versões 362

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

• Para obter descrições dos novos parâmetros e atributos da CLI de AWS criptografia, consulte.
AWS Encryption SDK Referência de sintaxe e parâmetros da CLI

As listas a seguir descrevem a alteração na CLI de AWS criptografia nas versões 1.8. x e 2.1. x.

Versão 1.8. x mudanças na CLI AWS de criptografia

• Descontinua o parâmetro --master-keys. Em vez disso, use o parâmetro --wrapping-keys.

• Adiciona o parâmetro --wrapping-keys (-w). Compatível com todos os atributos do parâmetro
--master-keys. Também adiciona os seguintes atributos opcionais, que são válidos somente ao
descriptografar com AWS KMS keys.

• discovery

• discovery-partition

• discovery-account

Para provedores de chaves mestras personalizadas, os comandos --encrypt e--decrypt
exigem um parâmetro --wrapping-keys ou um parâmetro --master-keys (mas não ambos).
Além disso, um --encrypt comando com AWS KMS keys requer um --wrapping-keys
parâmetro ou um --master-keys parâmetro (mas não ambos).

Em um --decrypt comando com AWS KMS keys, o --wrapping-keys parâmetro é opcional,
mas recomendado, pois é obrigatório na versão 2.1. x. Se você usá-lo, deverá especificar o key ou
o atributo discovery com um valor definido como true (mas não ambos).

• Adiciona o parâmetro --commitment-policy. O único valor válido é forbid-encrypt-
allow-decrypt. A política de compromisso forbid-encrypt-allow-decrypt é usada em
todos os comandos encrypt e decrypt.

Na versão 1.8.x, quando você usa o parâmetro --wrapping-keys, é necessário definir um
parâmetro --commitment-policy com o valor forbid-encrypt-allow-decrypt. Definir o
valor explicitamente impede que sua política de compromisso seja alterada automaticamente para
require-encrypt-require-decrypt quando você atualizar para a versão 2.1.x.

Versão 2.1. x mudanças na CLI AWS de criptografia

• Remove o parâmetro --master-keys. Em vez disso, use o parâmetro --wrapping-keys.

Versões 363

AWS Encryption SDK Guia do Desenvolvedor

• O parâmetro --wrapping-keys é obrigatório em comandos encrypt. Você deve especificar o
atributo key ou o atributo discovery com um valor definido como true (mas não ambos).

• O parâmetro --commitment-policy oferece suporte aos seguintes valores: Para obter
detalhes, consulte Como definir sua política de compromisso.

• forbid-encrypt-allow-decrypt

• require-encrypt-allow-decrypt

• require-encrypt-require decrypt (padrão)

• O parâmetro --commitment-policy é opcional na versão 2.1.x.. O valor padrão é require-
encrypt-require-decrypt.

Alterações das versões 1.9x e 2.2.x na CLI de criptografia da AWS

• Adiciona o parâmetro --decrypt-unsigned. Para obter detalhes, consulte Versão 2.2x.

• Adiciona o parâmetro --buffer. Para obter detalhes, consulte Versão 2.2x.

• Adiciona o parâmetro --max-encrypted-data-keys. Para obter detalhes, consulte Limitar as
chaves de dados criptografadas.

Versão 3.0. x mudanças na CLI AWS de criptografia

• Adiciona suporte para chaves AWS KMS multirregionais. Para obter mais detalhes, consulte
Usando várias regiões AWS KMS keys.

Versões 364

AWS Encryption SDK Guia do Desenvolvedor

Armazenamento em cache de chaves de dados

O armazenamento em cache de chaves de dados armazena chaves de dados e o material
criptográfico relacionado em um cache. Quando você criptografa ou descriptografa dados, ele
AWS Encryption SDK procura uma chave de dados correspondente no cache. Se encontrar uma
correspondência, ele usará a chave de dados armazenada em cache em vez de gerar uma nova. O
armazenamento em cache de chaves de dados pode melhorar o desempenho, reduzir os custos e
ajudar você a manter os limites do serviço à medida que seu aplicativo é escalado.

O aplicativo poderá se beneficiar do armazenamento em cache de chaves de dados se:

• Puder reutilizar chaves de dados.

• Gerar várias chaves de dados.

• As operações de criptografia estiverem inaceitavelmente lentas, caras, limitadas ou usarem
recursos de forma intensiva.

O armazenamento em cache pode reduzir o uso de serviços criptográficos, como AWS Key
Management Service ()AWS KMS. Se você está atingindo seu AWS KMS requests-per-secondlimite,
o armazenamento em cache pode ajudar. Seu aplicativo pode usar chaves em cache para atender a
algumas de suas solicitações de chave de dados em vez de chamar AWS KMS. (Você também pode
criar um caso no AWS Support Center para aumentar o limite da conta.)

AWS Encryption SDK Isso ajuda você a criar e gerenciar seu cache de chaves de dados. Ele fornece
um cache local e um gerenciador de armazenamento em cache de materiais criptográficos (CMM
de armazenamento em cache) que interage com o cache e impõe limites de segurança definidos
por você. Juntos, esses componentes ajudam você a se beneficiar da eficiência de reutilização de
chaves de dados mantendo a segurança do sistema.

O armazenamento em cache da chave de dados é um recurso opcional do AWS Encryption SDK que
você deve usar com cautela. Por padrão, AWS Encryption SDK gera uma nova chave de dados para
cada operação de criptografia. Essa técnica é compatível com as melhores práticas criptográficas,
que desencorajam a reutilização excessiva de chaves de dados. Em geral, use o armazenamento
em cache de chaves de dados somente quando ele for necessário para atender às suas metas de
desempenho. Em seguida, use os limites de segurança do armazenamento em cache de chaves de
dados para garantir que você use a quantidade mínima de armazenamento em cache necessário
para atender a suas metas de desempenho e custo.

365

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/

AWS Encryption SDK Guia do Desenvolvedor

Versão 3. x of the suporta AWS Encryption SDK for Java apenas o CMM de armazenamento em
cache com a interface antiga de provedores de chaves mestras, não a interface de chaveiro. No
entanto, versão 4. x do AWS Encryption SDK para o.NET, versão 3. x do AWS Encryption SDK for
Java, versão 4. x do AWS Encryption SDK for Python, versão 1. x do AWS Encryption SDK para
Rust e versão 0.1. x ou versões posteriores do AWS Encryption SDK for Go suportam o AWS KMS
chaveiro hierárquico, uma solução alternativa de cache de materiais criptográficos. O conteúdo
criptografado com o AWS KMS chaveiro hierárquico só pode ser descriptografado com o chaveiro
hierárquico. AWS KMS

Para ver uma discussão detalhada dessas vantagens e desvantagens de segurança, consulte AWS
Encryption SDK: Como decidir se o armazenamento em cache de chaves de dados é ideal para sua
aplicação no Blog de segurança da AWS .

Tópicos

• Como usar o armazenamento em cache de chaves de dados

• Definir limites de segurança do cache

• Detalhes do armazenamento em cache de chaves de dados

• Exemplo de armazenamento em cache de chaves de dados

Como usar o armazenamento em cache de chaves de dados

Este tópico mostra como usar o armazenamento em cache de chaves de dados em seu aplicativo.
Ele fornece uma demonstração passo a passo do processo. Em seguida, ele combina as etapas em
um exemplo simples que usa o armazenamento em cache da chave de dados em uma operação
para criptografar uma string.

Esses exemplos mostram como usar a versão 2.0.x e versões posteriores do AWS Encryption SDK.
Para exemplos que usam versões anteriores, encontre sua versão na lista de lançamentos do GitHub
repositório da sua linguagem de programação.

Para obter exemplos completos e testados do uso do armazenamento em cache de chaves de dados
no AWS Encryption SDK, consulte:

• C/C++: caching_cmm.cpp

• Java: SimpleDataKeyCachingExample.java

• JavaScript Navegador: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

Como usar o armazenamento em cache de chaves de dados 366

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts

AWS Encryption SDK Guia do Desenvolvedor

• Python: data_key_caching_basic.py

O AWS Encryption SDK para .NET não oferece é compatível com o cache de chaves de dados.

Tópicos

• Usando o cache de chaves de dados: Step-by-step

• Armazenamento em cache de chaves de dados de exemplo: criptografar uma string

Usando o cache de chaves de dados: Step-by-step

Essas step-by-step instruções mostram como criar os componentes necessários para implementar o
armazenamento em cache de chaves de dados.

• Crie um cache de chave de dados. Nesses exemplos, usamos o cache local que o AWS
Encryption SDK fornece. Limitamos o cache a 10 chaves de dados.

C

// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();

struct aws_cryptosdk_materials_cache *cache =
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versão 3. x, você também pode usar o AWS KMS chaveiro hierárquico, uma solução
alternativa de cache de materiais criptográficos.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

Usando o cache de chaves de dados: Step-by-step 367

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK Guia do Desenvolvedor

JavaScript Browser

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

JavaScript Node.js

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

• Crie um provedor de chave mestra (Java e Python) ou um chaveiro (C e). JavaScript Esses
exemplos usam um provedor de chave mestra AWS Key Management Service (AWS KMS) ou um
AWS KMS chaveiro compatível.

C

// Create an AWS KMS keyring
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.

Usando o cache de chaves de dados: Step-by-step 368

AWS Encryption SDK Guia do Desenvolvedor

Com a versão 3. x, você também pode usar o AWS KMS chaveiro hierárquico, uma solução
alternativa de cache de materiais criptográficos.

// Create an AWS KMS master key provider
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
MasterKeyProvider<KmsMasterKey> keyProvider =
 KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn);

JavaScript Browser

No navegador, você deve injetar suas credenciais com segurança. Este exemplo define
credenciais em um webpack (kms.webpack.config) que resolve credenciais no runtime. Ele cria
uma instância AWS KMS cliente-provedor a partir de um AWS KMS cliente e das credenciais.
Então, ao criar o chaveiro, ele passa o provedor do cliente para o construtor junto com o AWS
KMS key (. generatorKeyId)

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
 })

/* Create an AWS KMS keyring
 * You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
 */ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds,
 })

JavaScript Node.js

/* Create an AWS KMS keyring
 * The input is the Amazon Resource Name (ARN)

Usando o cache de chaves de dados: Step-by-step 369

AWS Encryption SDK Guia do Desenvolvedor

*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider
The input is the Amazon Resource Name (ARN)
of an AWS KMS key
key_provider =
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

• Crie um gerenciador de armazenamento em cache de materiais criptográficos (CMM de
armazenamento em cache).

Associe o CMM de armazenamento em cache ao seu cache e seu provedor de chaves mestras.
Em seguida, defina os limites de segurança do cache no CMM de armazenamento em cache.

C

No AWS Encryption SDK for C, você pode criar um CMM de cache a partir de um CMM
subjacente, como o CMM padrão, ou de um chaveiro. Este exemplo cria o CMM de
armazenamento em cache de um token de autenticação.

Depois de criar o CMM de armazenamento em cache, você pode liberar suas referências para
o token de autenticação e o cache. Para obter detalhes, consulte the section called “Contagem
de referências”.

// Create the caching CMM
// Set the partition ID to NULL.
// Set the required maximum age value to 60 seconds.
struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
 60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.

Usando o cache de chaves de dados: Step-by-step 370

AWS Encryption SDK Guia do Desenvolvedor

aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x of the
AWS Encryption SDK for Java não oferece suporte ao cache de chaves de dados, mas suporta
o AWS KMS chaveiro hierárquico, uma solução alternativa de cache de materiais criptográficos.

/*
 * Security thresholds
 * Max entry age is required.
 * Max messages (and max bytes) per entry are optional
 */
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
 .withCache(cache)
 .withMaxAge(MAX_ENTRY_AGE_SECONDS,
 TimeUnit.SECONDS)
 .withMessageUseLimit(MAX_ENTRY_MSGS)
 .build();

JavaScript Browser

/*
 * Security thresholds
 * Max age (in milliseconds) is required.
 * Max messages (and max bytes) per entry are optional.
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManager({
 backingMaterials: keyring,

Usando o cache de chaves de dados: Step-by-step 371

AWS Encryption SDK Guia do Desenvolvedor

 cache,
 maxAge,
 maxMessagesEncrypted
})

JavaScript Node.js

/*
 * Security thresholds
 * Max age (in milliseconds) is required.
 * Max messages (and max bytes) per entry are optional.
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 maxAge,
 maxMessagesEncrypted
})

Python

Security thresholds
Max entry age is required.
Max messages (and max bytes) per entry are optional
#
MAX_ENTRY_AGE_SECONDS = 60.0
MAX_ENTRY_MESSAGES = 10

Create a caching CMM
caching_cmm = CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=MAX_ENTRY_AGE_SECONDS,
 max_messages_encrypted=MAX_ENTRY_MESSAGES
)

Usando o cache de chaves de dados: Step-by-step 372

AWS Encryption SDK Guia do Desenvolvedor

Isso é tudo o que você precisa fazer. Em seguida, deixe que AWS Encryption SDK eles gerenciem o
cache para você ou adicione sua própria lógica de gerenciamento de cache.

Quando desejar usar o armazenamento em cache de chaves de dados em uma chamada para
criptografar ou descriptografar dados, especifique o CMM de armazenamento em cache em vez de
especificar um provedor de chaves mestras ou outro CMM.

Note

Se estiver criptografando streamings de dados ou quaisquer dados de tamanho
desconhecido, certifique-se de especificar o tamanho dos dados na solicitação. O AWS
Encryption SDK não usa cache de chave de dados ao criptografar dados de tamanho
desconhecido.

C

No AWS Encryption SDK for C, você cria uma sessão com o CMM de cache e, em seguida,
processa a sessão.

Por padrão, quando o tamanho da mensagem é desconhecido e ilimitado, as chaves
de dados AWS Encryption SDK não são armazenadas em cache. Para permitir o
armazenamento em cache quando não se sabe o tamanho exato dos dados, use o método
aws_cryptosdk_session_set_message_bound para definir o tamanho máximo da
mensagem. Defina o vínculo maior do que o tamanho estimado da mensagem. Se o tamanho real
da mensagem exceder o vínculo, ocorrerá uma falha na operação da criptografia.

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
 session, output_buffer, output_capacity, &output_produced,
 input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */

Usando o cache de chaves de dados: Step-by-step 373

AWS Encryption SDK Guia do Desenvolvedor

aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versão 3. x, você também pode usar o AWS KMS chaveiro hierárquico, uma solução
alternativa de cache de materiais criptográficos.

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser

const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

Quando você usa o CMM de cache no AWS Encryption SDK para JavaScript for Node.js, o
encrypt método requer o tamanho do texto simples. Se você não fornecer, a chave de dados
não será armazenada em cache. Se você fornecer um tamanho, mas os dados de texto simples
fornecidos excederem esse tamanho, a operação de criptografia falhará. Se você não souber o
tamanho exato do texto simples, como quando estiver fazendo streaming de dados, forneça o
maior valor esperado.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
 plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,
the encryption operation uses the data key cache
#
encrypted_message, header = client.encrypt(
 source=plaintext_source,

Usando o cache de chaves de dados: Step-by-step 374

AWS Encryption SDK Guia do Desenvolvedor

 materials_manager=caching_cmm
)

Armazenamento em cache de chaves de dados de exemplo: criptografar
uma string

Este código de exemplo simples usa o armazenamento em cache de chaves de dados ao
criptografar uma string. Ele combina o código do step-by-step procedimento em um código de teste
que você pode executar.

O exemplo cria um cache local e um provedor de chave mestra ou token de autenticação para
uma AWS KMS key. Em seguida, ele usa o cache local e o provedor de chaves mestras ou
o token de autenticação para criar um CMM de armazenamento em cache com os limites de
segurança adequados. Em Java e em Python, a solicitação de criptografia especifica o CMM de
armazenamento em cache, os dados de texto simples a serem criptografados e um contexto de
criptografia. Em C, o CMM de armazenamento em cache é especificado na sessão, e a sessão é
fornecida para a solicitação de criptografia.

Para executar estes exemplos, você precisa fornecer o nome do atributo da Amazon (ARN) de uma
AWS KMS key. Verifique se você tem permissão para usar a AWS KMS key para gerar uma chave
de dados.

Para obter exemplos reais mais detalhados de como criar e usar um cache de chave mestra,
consulte Exemplo de código de armazenamento em cache de chaves de dados.

C

/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 * this file except in compliance with the License. A copy of the License is
 * located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing permissions and
 * limitations under the License.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 375

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK Guia do Desenvolvedor

 */

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
 uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
 bytes already allocated)
 size_t *ciphertext_len, // length of output will go here
 size_t ciphertext_capacity,
 const char *kms_key_arn,
 int max_entry_age,
 int cache_capacity) {
 const uint64_t MAX_ENTRY_MSGS = 100;

 struct aws_allocator *allocator = aws_default_allocator();

 // Load error strings for debugging
 aws_cryptosdk_load_error_strings();

 // Create a keyring
 struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

 // Create a cache
 struct aws_cryptosdk_materials_cache *cache =
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

 // Create a caching CMM
 struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(
 allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
 if (!caching_cmm) abort();

 if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
 abort();

 // Create a session
 struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 caching_cmm);
 if (!session) abort();

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 376

AWS Encryption SDK Guia do Desenvolvedor

 // Encryption context
 struct aws_hash_table *enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);
 if (!enc_ctx) abort();
 AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");
 AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");
 if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
 abort();

 // Plaintext data to be encrypted
 const char *my_data = "My plaintext data";
 size_t my_data_len = strlen(my_data);
 if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

 // When the session uses a caching CMM, the encryption operation uses the data
 key cache
 // specified in the caching CMM.
 size_t bytes_read;
 if (aws_cryptosdk_session_process(
 session,
 ciphertext,
 ciphertext_capacity,
 ciphertext_len,
 (const uint8_t *)my_data,
 my_data_len,
 &bytes_read))
 abort();
 if (!aws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
 abort();

 aws_cryptosdk_session_destroy(session);
 aws_cryptosdk_cmm_release(caching_cmm);
 aws_cryptosdk_materials_cache_release(cache);
 aws_cryptosdk_keyring_release(kms_keyring);
}

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versão 3. x, você também pode usar o AWS KMS chaveiro hierárquico, uma solução
alternativa de cache de materiais criptográficos.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 377

AWS Encryption SDK Guia do Desenvolvedor

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoMaterialsManager;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.CryptoMaterialsCache;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import java.nio.charset.StandardCharsets;
import java.util.Collections;
import java.util.Map;
import java.util.concurrent.TimeUnit;

/**
 * <p>
 * Encrypts a string using an &KMS; key and data key caching
 *
 * <p>
 * Arguments:
 *
 * KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
 * see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/
developerguide/find-cmk-id-arn.html
 * Max entry age: Maximum time (in seconds) that a cached entry can be used
 * Cache capacity: Maximum number of entries in the cache
 *
 */
public class SimpleDataKeyCachingExample {

 /*
 * Security thresholds
 * Max entry age is required.
 * Max messages (and max bytes) per data key are optional
 */
 private static final int MAX_ENTRY_MSGS = 100;

 public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
 cacheCapacity) {

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 378

AWS Encryption SDK Guia do Desenvolvedor

 // Plaintext data to be encrypted
 byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

 // Encryption context
 // Most encrypted data should have an associated encryption context
 // to protect integrity. This sample uses placeholder values.
 // For more information see:
 // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management
 final Map<String, String> encryptionContext =
 Collections.singletonMap("purpose", "test");

 // Create a master key provider
 MasterKeyProvider<KmsMasterKey> keyProvider =
 KmsMasterKeyProvider.builder()
 .buildStrict(kmsKeyArn);

 // Create a cache
 CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

 // Create a caching CMM
 CryptoMaterialsManager cachingCmm =

 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
 .withCache(cache)
 .withMaxAge(maxEntryAge, TimeUnit.SECONDS)
 .withMessageUseLimit(MAX_ENTRY_MSGS)
 .build();

 // When the call to encryptData specifies a caching CMM,
 // the encryption operation uses the data key cache
 final AwsCrypto encryptionSdk = AwsCrypto.standard();
 return encryptionSdk.encryptData(cachingCmm, myData,
 encryptionContext).getResult();
 }
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 379

AWS Encryption SDK Guia do Desenvolvedor

 * to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.
 */

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
 WebCryptoCachingMaterialsManager,
 getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-browser'
import { toBase64 } from '@aws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 * which enforces that this client only encrypts using committing algorithm suites
 * and enforces that this client
 * will only decrypt encrypted messages
 * that were created with a committing algorithm suite.
 * This is the default commitment policy
 * if you build the client with `buildClient()`.
 */
const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* This is injected by webpack.
 * The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
 values when bundling.
 * The credential values are pulled from @aws-sdk/credential-provider-node
 * Use any method you like to get credentials into the browser.
 * See kms.webpack.config
 */
declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {
 /* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
 generates and encrypts the data key.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 380

AWS Encryption SDK Guia do Desenvolvedor

 * The caller needs kms:GenerateDataKey permission on the &KMS; key in
 generatorKeyId.
 */
 const generatorKeyId =
 'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'

 /* Adding additional KMS keys that can decrypt.
 * The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
 * You might list several keys in different AWS Regions.
 * This allows you to decrypt the data in any of the represented Regions.
 * In this example, the generator key
 * and the additional key are actually the same &KMS; key.
 * In `generatorId`, this &KMS; key is identified by its alias ARN.
 * In `keyIds`, this &KMS; key is identified by its key ARN.
 * In practice, you would specify different &KMS; keys,
 * or omit the `keyIds` parameter.
 * This is *only* to demonstrate how the &KMS; key ARNs are configured.
 */
 const keyIds = [
 'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',
]

 /* Need a client provider that will inject correct credentials.
 * The credentials here are injected by webpack from your environment bundle is
 created
 * The credential values are pulled using @aws-sdk/credential-provider-node.
 * See kms.webpack.config
 * You should inject your credential into the browser in a secure manner
 * that works with your application.
 */
 const { accessKeyId, secretAccessKey, sessionToken } = credentials

 /* getClient takes a KMS client constructor
 * and optional configuration values.
 * The credentials can be injected here,
 * because browsers do not have a standard credential discovery process the way
 Node.js does.
 */
 const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken,
 },

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 381

AWS Encryption SDK Guia do Desenvolvedor

 })

 /* You must configure the KMS keyring with your &KMS; keys */
 const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds,
 })

 /* Create a cache to hold the data keys (and related cryptographic material).
 * This example uses the local cache provided by the Encryption SDK.
 * The `capacity` value represents the maximum number of entries
 * that the cache can hold.
 * To make room for an additional entry,
 * the cache evicts the oldest cached entry.
 * Both encrypt and decrypt requests count independently towards this threshold.
 * Entries that exceed any cache threshold are actively removed from the cache.
 * By default, the SDK checks one item in the cache every 60 seconds (60,000
 milliseconds).
 * To change this frequency, pass in a `proactiveFrequency` value
 * as the second parameter. This value is in milliseconds.
 */
 const capacity = 100
 const cache = getLocalCryptographicMaterialsCache(capacity)

 /* The partition name lets multiple caching CMMs share the same local
 cryptographic cache.
 * By default, the entries for each CMM are cached separately. However, if you
 want these CMMs to share the cache,
 * use the same partition name for both caching CMMs.
 * If you don't supply a partition name, the Encryption SDK generates a random
 name for each caching CMM.
 * As a result, sharing elements in the cache MUST be an intentional operation.
 */
 const partition = 'local partition name'

 /* maxAge is the time in milliseconds that an entry will be cached.
 * Elements are actively removed from the cache.
 */
 const maxAge = 1000 * 60

 /* The maximum number of bytes that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest practical value.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 382

AWS Encryption SDK Guia do Desenvolvedor

 */
 const maxBytesEncrypted = 100

 /* The maximum number of messages that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest practical value.
 */
 const maxMessagesEncrypted = 10

 const cachingCMM = new WebCryptoCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 partition,
 maxAge,
 maxBytesEncrypted,
 maxMessagesEncrypted,
 })

 /* Encryption context is a *very* powerful tool for controlling
 * and managing access.
 * When you pass an encryption context to the encrypt function,
 * the encryption context is cryptographically bound to the ciphertext.
 * If you don't pass in the same encryption context when decrypting,
 * the decrypt function fails.
 * The encryption context is ***not*** secret!
 * Encrypted data is opaque.
 * You can use an encryption context to assert things about the encrypted data.
 * The encryption context helps you to determine
 * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
 * For example, if you are are only expecting data from 'us-west-2',
 * the appearance of a different AWS Region in the encryption context can indicate
 malicious interference.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
 *
 * Also, cached data keys are reused ***only*** when the encryption contexts
 passed into the functions are an exact case-sensitive match.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
 */
 const encryptionContext = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2',

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 383

AWS Encryption SDK Guia do Desenvolvedor

 }

 /* Find data to encrypt. */
 const plainText = new Uint8Array([1, 2, 3, 4, 5])

 /* Encrypt the data.
 * The caching CMM only reuses data keys
 * when it know the length (or an estimate) of the plaintext.
 * However, in the browser,
 * you must provide all of the plaintext to the encrypt function.
 * Therefore, the encrypt function in the browser knows the length of the
 plaintext
 * and does not accept a plaintextLength option.
 */
 const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

 /* Log the plain text
 * only for testing and to show that it works.
 */
 console.log('plainText:', plainText)
 document.write('</br>plainText:' + plainText + '</br>')

 /* Log the base64-encoded result
 * so that you can try decrypting it with another AWS Encryption SDK
 implementation.
 */
 const resultBase64 = toBase64(result)
 console.log(resultBase64)
 document.write(resultBase64)

 /* Decrypt the data.
 * NOTE: This decrypt request will not use the data key
 * that was cached during the encrypt operation.
 * Data keys for encrypt and decrypt operations are cached separately.
 */
 const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

 /* Grab the encryption context so you can verify it. */
 const { encryptionContext: decryptedContext } = messageHeader

 /* Verify the encryption context.
 * If you use an algorithm suite with signing,
 * the Encryption SDK adds a name-value pair to the encryption context that
 contains the public key.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 384

AWS Encryption SDK Guia do Desenvolvedor

 * Because the encryption context might contain additional key-value pairs,
 * do not include a test that requires that all key-value pairs match.
 * Instead, verify that the key-value pairs that you supplied to the `encrypt`
 function are included in the encryption context that the `decrypt` function
 returns.
 */
 Object.entries(encryptionContext).forEach(([key, value]) => {
 if (decryptedContext[key] !== value)
 throw new Error('Encryption Context does not match expected values')
 })

 /* Log the clear message
 * only for testing and to show that it works.
 */
 document.write('</br>Decrypted:' + plaintext)
 console.log(plaintext)

 /* Return the values to make testing easy. */
 return { plainText, plaintext }
}

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
 NodeCachingMaterialsManager,
 getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-node'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 * which enforces that this client only encrypts using committing algorithm suites
 * and enforces that this client
 * will only decrypt encrypted messages
 * that were created with a committing algorithm suite.
 * This is the default commitment policy
 * if you build the client with `buildClient()`.
 */

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 385

AWS Encryption SDK Guia do Desenvolvedor

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

export async function cachingCMMNodeSimpleTest() {
 /* An &KMS; key is required to generate the data key.
 * You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
 */
 const generatorKeyId =
 'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'

 /* Adding alternate &KMS; keys that can decrypt.
 * Access to kms:Encrypt is required for every &KMS; key in keyIds.
 * You might list several keys in different AWS Regions.
 * This allows you to decrypt the data in any of the represented Regions.
 * In this example, the generator key
 * and the additional key are actually the same &KMS; key.
 * In `generatorId`, this &KMS; key is identified by its alias ARN.
 * In `keyIds`, this &KMS; key is identified by its key ARN.
 * In practice, you would specify different &KMS; keys,
 * or omit the `keyIds` parameter.
 * This is *only* to demonstrate how the &KMS; key ARNs are configured.
 */
 const keyIds = [
 'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',
]

 /* The &KMS; keyring must be configured with the desired &KMS; keys
 * This example passes the keyring to the caching CMM
 * instead of using it directly.
 */
 const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

 /* Create a cache to hold the data keys (and related cryptographic material).
 * This example uses the local cache provided by the Encryption SDK.
 * The `capacity` value represents the maximum number of entries
 * that the cache can hold.
 * To make room for an additional entry,
 * the cache evicts the oldest cached entry.
 * Both encrypt and decrypt requests count independently towards this threshold.
 * Entries that exceed any cache threshold are actively removed from the cache.
 * By default, the SDK checks one item in the cache every 60 seconds (60,000
 milliseconds).
 * To change this frequency, pass in a `proactiveFrequency` value

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 386

AWS Encryption SDK Guia do Desenvolvedor

 * as the second parameter. This value is in milliseconds.
 */
 const capacity = 100
 const cache = getLocalCryptographicMaterialsCache(capacity)

 /* The partition name lets multiple caching CMMs share the same local
 cryptographic cache.
 * By default, the entries for each CMM are cached separately. However, if you
 want these CMMs to share the cache,
 * use the same partition name for both caching CMMs.
 * If you don't supply a partition name, the Encryption SDK generates a random
 name for each caching CMM.
 * As a result, sharing elements in the cache MUST be an intentional operation.
 */
 const partition = 'local partition name'

 /* maxAge is the time in milliseconds that an entry will be cached.
 * Elements are actively removed from the cache.
 */
 const maxAge = 1000 * 60

 /* The maximum amount of bytes that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest value possible.
 */
 const maxBytesEncrypted = 100

 /* The maximum number of messages that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest value possible.
 */
 const maxMessagesEncrypted = 10

 const cachingCMM = new NodeCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 partition,
 maxAge,
 maxBytesEncrypted,
 maxMessagesEncrypted,
 })

 /* Encryption context is a *very* powerful tool for controlling
 * and managing access.

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 387

AWS Encryption SDK Guia do Desenvolvedor

 * When you pass an encryption context to the encrypt function,
 * the encryption context is cryptographically bound to the ciphertext.
 * If you don't pass in the same encryption context when decrypting,
 * the decrypt function fails.
 * The encryption context is ***not*** secret!
 * Encrypted data is opaque.
 * You can use an encryption context to assert things about the encrypted data.
 * The encryption context helps you to determine
 * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
 * For example, if you are are only expecting data from 'us-west-2',
 * the appearance of a different AWS Region in the encryption context can indicate
 malicious interference.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
 *
 * Also, cached data keys are reused ***only*** when the encryption contexts
 passed into the functions are an exact case-sensitive match.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
 */
 const encryptionContext = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2',
 }

 /* Find data to encrypt. A simple string. */
 const cleartext = 'asdf'

 /* Encrypt the data.
 * The caching CMM only reuses data keys
 * when it know the length (or an estimate) of the plaintext.
 * If you do not know the length,
 * because the data is a stream
 * provide an estimate of the largest expected value.
 *
 * If your estimate is smaller than the actual plaintext length
 * the AWS Encryption SDK will throw an exception.
 *
 * If the plaintext is not a stream,
 * the AWS Encryption SDK uses the actual plaintext length
 * instead of any length you provide.
 */
 const { result } = await encrypt(cachingCMM, cleartext, {

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 388

AWS Encryption SDK Guia do Desenvolvedor

 encryptionContext,
 plaintextLength: 4,
 })

 /* Decrypt the data.
 * NOTE: This decrypt request will not use the data key
 * that was cached during the encrypt operation.
 * Data keys for encrypt and decrypt operations are cached separately.
 */
 const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

 /* Grab the encryption context so you can verify it. */
 const { encryptionContext: decryptedContext } = messageHeader

 /* Verify the encryption context.
 * If you use an algorithm suite with signing,
 * the Encryption SDK adds a name-value pair to the encryption context that
 contains the public key.
 * Because the encryption context might contain additional key-value pairs,
 * do not include a test that requires that all key-value pairs match.
 * Instead, verify that the key-value pairs that you supplied to the `encrypt`
 function are included in the encryption context that the `decrypt` function
 returns.
 */
 Object.entries(encryptionContext).forEach(([key, value]) => {
 if (decryptedContext[key] !== value)
 throw new Error('Encryption Context does not match expected values')
 })

 /* Return the values so the code can be tested. */
 return { plaintext, result, cleartext, messageHeader }
}

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

http://aws.amazon.com/apache2.0/

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 389

AWS Encryption SDK Guia do Desenvolvedor

or in the "license" file accompanying this file. This file is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
 """Encrypts a string using an &KMS; key and data key caching.

 :param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key
 :param float max_age_in_cache: Maximum time in seconds that a cached entry can
 be used
 :param int cache_capacity: Maximum number of entries to retain in cache at once
 """
 # Data to be encrypted
 my_data = "My plaintext data"

 # Security thresholds
 # Max messages (or max bytes per) data key are optional
 MAX_ENTRY_MESSAGES = 100

 # Create an encryption context
 encryption_context = {"purpose": "test"}

 # Set up an encryption client with an explicit commitment policy. Note that if
 you do not explicitly choose a
 # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.
 client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 # Create a master key provider for the &KMS; key
 key_provider =
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

 # Create a local cache
 cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

 # Create a caching CMM
 caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,

Armazenamento em cache de chaves de dados de exemplo: criptografar uma string 390

AWS Encryption SDK Guia do Desenvolvedor

 max_age=max_age_in_cache,
 max_messages_encrypted=MAX_ENTRY_MESSAGES,
)

 # When the call to encrypt data specifies a caching CMM,
 # the encryption operation uses the data key cache specified
 # in the caching CMM
 encrypted_message, _header = client.encrypt(
 source=my_data, materials_manager=caching_cmm,
 encryption_context=encryption_context
)

 return encrypted_message

Definir limites de segurança do cache
Quando você implementa o armazenamento em cache de chave de dados, precisa configurar os
limites de segurança impostos pelo CMM de armazenamento em cache.

Os limites de segurança ajudam a limitar duração do uso de cada chave de dados e o volume de
dados protegido em cada chave de dados. O CMM de armazenamento em cache retorna as chaves
de dados armazenadas em cache somente quando a entrada do cache estiver em conformidade
com todos os limites de segurança. Se a entrada do cache exceder o limite, ela não será usada para
a operação atual e será removida do cache assim que possível. O primeiro uso de cada chave de
dados (antes do armazenamento em cache) é isento desses limites.

Como regra, use a quantidade mínima de armazenamento em cache necessária para atender a suas
metas de custos e de desempenho.

O AWS Encryption SDK único armazena em cache as chaves de dados que são criptografadas
usando uma função de derivação de chave. Além disso, ele estabelece limites máximos para alguns
dos valores de limites. Essas restrições garantem que as chaves de dados não sejam reutilizadas
além dos limites criptográficos. No entanto, como as chaves de dados de texto sem criptografia
são armazenadas em cache (na memória, por padrão), tente minimizar o tempo em que as chaves
são salvas. Além disso, tente limitar os dados que poderão ser expostos se uma chave estiver
comprometida.

Para obter exemplos de como definir limites de segurança de cache, consulte AWS Encryption SDK:
Como decidir se o armazenamento em cache de chaves de dados é adequado para seu aplicativo no
blog de AWS segurança.

Definir limites de segurança do cache 391

https://en.wikipedia.org/wiki/Key_derivation_function
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/

AWS Encryption SDK Guia do Desenvolvedor

Note

O CMM do armazenamento em cache impõe todos os limites a seguir. Se você não
especificar um valor opcional, o CMM de armazenamento em cache usará o valor padrão.
Para desativar temporariamente o armazenamento em cache de chaves de dados, as
implementações de Java e Python do AWS Encryption SDK fornecem um cache de materiais
criptográficos nulo (cache nulo). O cache nulo retorna um erro para cada solicitação GET
e não responde a solicitações PUT. Recomendamos usar o cache nulo em vez de definir
a capacidade do cache ou os limites de segurança como 0. Para obter mais informações,
consulte o cache nulo em Java e Python.

Idade máxima (obrigatório)

Determina por quanto tempo uma entrada armazenada em cache pode ser usada, a partir do
momento em que foi adicionada. Este valor é obrigatório. Digite um valor maior que 0. AWS
Encryption SDK Isso não limita o valor máximo de idade.

Todas as implementações de linguagem do AWS Encryption SDK definem a idade máxima em
segundos, exceto a AWS Encryption SDK para JavaScript, que usa milissegundos.

Use o intervalo mais curto que ainda permita que seu aplicativo se beneficie do cache. Você
pode usar o limite máximo de idade como uma política de rotação de chaves. Use-o para limitar
a reutilização de chaves de dados, minimizar a exposição de material criptográfico e remover
chaves de dados cujas políticas podem ter sido alteradas enquanto estavam armazenadas em
cache.

Número máximo de mensagens criptografadas (opcional)

Especifica o número máximo de mensagens que uma chave de dados armazenada em cache
pode criptografar. Este valor é opcional. Digite um valor entre 1 e 2^32 mensagens. O valor
padrão é 2^32 mensagens.

Defina o número de mensagens protegidas por cada chave armazenada em cache para que seja
grande o suficiente para obter o valor da reutilização, mas pequeno o suficiente para limitar o
número de mensagens que podem ser expostas se uma chave for comprometida.

Número máximo de bytes criptografados (opcional)

Especifica o número máximo de bytes que uma chave de dados armazenada em cache pode
criptografar. Este valor é opcional. Digite um valor entre 0 e 2^63 - 1. O valor padrão é 2^63 -

Definir limites de segurança do cache 392

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK Guia do Desenvolvedor

1. Um valor de 0 permite usar armazenamento em cache de chaves de dados somente quando
você está criptografando strings de mensagem vazias.

Os bytes na solicitação atual são incluídos ao avaliar esse limite. Se os bytes processados, mais
os bytes atuais, excederem o limite, a chave de dados armazenada em cache será removida do
cache, mesmo que ela tenha sido usada em uma solicitação menor.

Detalhes do armazenamento em cache de chaves de dados

A maioria dos aplicativos pode usar a implementação padrão do armazenamento em cache de chave
de dados sem escrever código personalizado. Esta seção descreve a implementação padrão e
alguns detalhes sobre as opções.

Tópicos

• Como o armazenamento em cache de chaves de dados funciona

• Criar um cache de material de criptografia

• Criar um gerenciador de material de criptografia de armazenamento em cache

• O que é uma entrada de chave de dados em cache?

• Contexto de criptografia: como selecionar entradas do cache

• Meu aplicativo está usando chaves de dados armazenadas em cache?

Como o armazenamento em cache de chaves de dados funciona

Quando você usa o armazenamento em cache de chave de dados em uma solicitação para
criptografar ou descriptografar dados, o AWS Encryption SDK primeiro pesquisa uma chave de
dados no cache que corresponde à solicitação. Se localizar uma correspondência válida, ele usa a
chave de dados armazenada em cache para criptografar os dados. Caso contrário, ele gerará uma
nova chave de dados, da mesma forma como o faria sem o cache.

O armazenamento em cache da chave de dados não é usado para dados de tamanho desconhecido,
como streaming de dados. Isso permite que o CMM de armazenamento em cache imponha o limite
máximo de bytes corretamente. Para evitar esse comportamento, adicione o tamanho da mensagem
à solicitação de criptografia.

Além de um cache, o armazenamento em cache de chaves de dados usa um gerenciador de
armazenamento em cache de materiais criptográficos (CMM de armazenamento em cache). O CMM

Detalhes do armazenamento em cache de chaves de dados 393

AWS Encryption SDK Guia do Desenvolvedor

de armazenamento em cache é um gerenciador de materiais criptográficos (CMM) especializado
que interage com um cache e um CMM subjacente. (Quando você especifica um provedor de chaves
mestra ou um token de autenticação, o AWS Encryption SDK cria um CMM padrão para você.)
O CMM de armazenamento em cache armazena em cache as chaves de dados que seu CMM
subjacente retorna. Também impõe limites de segurança de cache definidos por você.

Para evitar que a chave de dados errada seja selecionada do cache, todo armazenamento em
cache compatível CMMs exige que as seguintes propriedades dos materiais criptográficos em cache
correspondam à solicitação de materiais.

• Pacote de algoritmos

• Contexto de criptografia (mesmo quando vazio)

• Nome da partição (uma string que identifica o CMM de armazenamento em cache)

• (Somente descriptografia) chaves de dados criptografadas

Note

O AWS Encryption SDK cache das chaves de dados somente quando o conjunto de
algoritmos usa uma função de derivação de chave.

Os seguintes fluxos de trabalho mostram como uma solicitação para criptografar dados é processada
com e sem armazenamento em cache da chave de dados. Eles mostram como o armazenamento
em cache de componentes que você cria, incluindo o cache e o CMM de armazenamento em cache,
são usados no processo.

Criptografar dados sem armazenamento em cache

Para obter materiais de criptografia sem armazenamento em cache:

1. Um aplicativo solicita que AWS Encryption SDK os dados sejam criptografados.

A solicitação especifica um provedor de chaves mestres ou um token de autenticação. O AWS
Encryption SDK cria um CMM padrão que interage com a chave mestra ou com o token de
autenticação.

2. Ele AWS Encryption SDK solicita ao CMM materiais de criptografia (obtenha materiais
criptográficos).

Como o armazenamento em cache de chaves de dados funciona 394

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Guia do Desenvolvedor

3. O CMM solicita ao seu chaveiro (C e JavaScript) ou provedor de chave mestra (Java e Python)
materiais criptográficos. Isso pode envolver uma chamada para um serviço criptográfico, como
AWS Key Management Service (AWS KMS). O CMM retorna os materiais de criptografia para o
AWS Encryption SDK.

4. O AWS Encryption SDK usa a chave de dados em texto simples para criptografar os dados. Ele
armazena os dados criptografados e as chaves de dados criptografadas em uma mensagem
criptografada, que ele retorna ao usuário.

Criptografar dados com armazenamento em cache

Para obter materiais de criptografia com armazenamento de chaves de dados em cache:

1. Um aplicativo solicita que AWS Encryption SDK os dados sejam criptografados.

A solicitação especifica um gerenciador de armazenamento em cache materiais criptográficos
(CMM de armazenamento em cache) associado a um gerenciador de materiais criptográficos
(CMM) subjacente. Quando você especifica um provedor de chaves mestras ou um token de
autenticação, o AWS Encryption SDK cria um CMM padrão para você.

2. O SDK solicita ao CMM de armazenamento em cache especificado materiais de criptografia.

Como o armazenamento em cache de chaves de dados funciona 395

AWS Encryption SDK Guia do Desenvolvedor

3. O CMM de armazenamento em cache solicita materiais de criptografia do cache.

a. Se encontrar uma correspondência, o cache atualizará a idade e usará os valores da entrada
do cache correspondente, retornando os materiais de criptografia armazenados em cache ao
CMM de armazenamento em cache.

Se a entrada do cache estiver em conformidade com os limites de segurança, o CMM de
armazenamento em cache a retorna ao SDK. Caso contrário, ele instruirá o cache a remover a
entrada e prosseguir como se não houvesse correspondência.

b. Se o cache não puder encontrar uma correspondência válida, o CMM de armazenamento em
cache solicitará que CMM subjacente gere uma nova chave de dados.

O CMM subjacente obtém os materiais criptográficos de seu chaveiro (C e JavaScript) ou
provedor de chave mestra (Java e Python). Isso pode envolver uma chamada a um serviço
criptográfico, como o AWS Key Management Service. O CMM subjacente retorna o texto
simples e cópias criptografadas da chave de dados ao CMM de armazenamento em cache.

O CMM de armazenamento em cache salva os novos materiais de criptografia no cache.

4. O CMM de armazenamento em cache retorna os materiais de criptografia para o AWS Encryption
SDK.

5. O AWS Encryption SDK usa a chave de dados em texto simples para criptografar os dados. Ele
armazena os dados criptografados e as chaves de dados criptografadas em uma mensagem
criptografada, que ele retorna ao usuário.

Como o armazenamento em cache de chaves de dados funciona 396

AWS Encryption SDK Guia do Desenvolvedor

Criar um cache de material de criptografia

AWS Encryption SDK Define os requisitos para um cache de materiais criptográficos usado no
cache de chaves de dados. Também fornece um cache local, que é um cache least recently used
(LRU - menos usado recentemente) configurável e na memória. Para criar uma instância do cache
local, use o LocalCryptoMaterialsCache construtor em Java e Python, getLocalCryptographic
MaterialsCache a função JavaScript em ou aws_cryptosdk_materials_cache_local_new o
construtor em C.

O cache local contém lógica para gerenciamento básico do cache, incluindo adição, remoção e
correspondência de entradas armazenadas em cache e manutenção do cache. Você não precisa
escrever nenhuma lógica de gerenciamento de cache personalizado. O cache local pode ser usado
como está, ser personalizado ou substituído por cache compatível.

Quando cria um cache local, você define sua capacidade, isto é, o número máximo de entradas que
o cache pode conter. Essa configuração ajuda a criar um cache eficiente com reutilização limitada de
chaves de dados.

O AWS Encryption SDK for Java e o AWS Encryption SDK for Python também fornecem um
cache de materiais criptográficos nulo ()NullCryptoMaterialsCache. O NullCryptoMaterialsCache

Criar um cache de material de criptografia 397

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29
https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK Guia do Desenvolvedor

retorna um erro para todas GET as operações e não responde às PUT operações. Você pode usar o
NullCryptoMaterialsCache em testes ou para desativar temporariamente o armazenamento em cache
em um aplicativo que inclui código de armazenamento em cache.

No AWS Encryption SDK, cada cache de materiais criptográficos é associado a um gerenciador
de materiais criptográficos em cache (CMM). O CMM de armazenamento em cache obtém chaves
de dados do cache, coloca chaves de dados no cache e impõe os limites de segurança que você
define. Ao criar umCMM de armazenamento em cache, você especifica o cache que ele usa e o
CMM subjacente ou o provedor de chaves mestras que gera as chaves de dados que ele armazena
em cache.

Criar um gerenciador de material de criptografia de armazenamento em
cache

Para habilitar o armazenamento em cache da chave de dados, você cria um cache e um gerenciador
de armazenamento em cache (CMM de armazenamento em cache). Em seguida, em suas
solicitações para criptografar ou descriptografar dados, você especifica um CMM de armazenamento
em cache em vez de um gerenciador de materiais criptográficos (CMM) pardão, um provedor de
chaves mestras ou um token de autenticação.

Existem dois tipos de CMMs. Os dois obtêm chaves de dados (e o material criptográfico
relacionado), mas de diferentes maneiras, da seguinte forma:

• Uma CMM está associada a um chaveiro (C ou JavaScript) ou a um provedor de chave mestra
(Java e Python). Quando o SDK solicita ao CMM materiais de criptografia ou descriptografia,
o CMM obtém os materiais de seu token de autenticação ou do provedor de chaves mestras.
Em Java e Python, o CMM usa as chaves mestras para gerar, criptografar ou descriptografar
as chaves de dados. Em C e JavaScript, o chaveiro gera, criptografa e retorna os materiais
criptográficos.

• Um CMM de armazenamento em cache está associado a um cache, como um cache local e a um
CMM subjacente. Quando o SDK solicita materiais criptográficos ao CMM de armazenamento em
cache, o CMM de armazenamento em cache tenta obtê-los do cache. Se não conseguir encontrar
uma correspondência, o CMM de armazenamento em cache solicitará os materiais ao seu CMM
subjacente. Depois, ele armazenará os novos materiais criptográficos antes de retorná-los ao
chamador.

Criar um gerenciador de material de criptografia de armazenamento em cache 398

AWS Encryption SDK Guia do Desenvolvedor

O CMM de armazenamento em cache também impõe limites de segurança que você define para
cada entrada do cache. Como os limites de segurança são definidos e impostos pelo CMM de
armazenamento em cache, você pode usar qualquer cache compatível, mesmo que o cache não
esteja projetado para material confidencial.

O que é uma entrada de chave de dados em cache?

O cache de chaves de dados armazena chaves de dados e o material criptográfico relacionado
em um cache. Cada entrada inclui os elementos listados a seguir. Você pode considerar essas
informações úteis ao decidir se deseja usar o atributo de armazenamento em cache de chave de
dados e ao configurar os limites de segurança em um gerenciador de armazenamento em cache de
materiais criptográficos (CMM de armazenamento em cache).

Entradas armazenadas em cache para solicitações de criptografia

As entradas adicionadas a um cache de chave de dados como resultado de uma operação de
criptografia incluem os seguintes elementos:

• Chave de dados de texto não criptografado

• Chaves de dados criptografadas (uma ou mais)

• Contexto de criptografia

• Chave de assinatura de mensagem (se uma for usada)

• Pacote de algoritmos

• Metadados, incluindo contadores de uso para impor limites de segurança

Entradas armazenadas em cache para solicitações de descriptografia

As entradas adicionadas a um cache de chave de dados como resultado de uma operação de
descriptografia incluem os seguintes elementos:

• Chave de dados de texto não criptografado

• Chave de verificação de assinatura (se uma for usada)

• Metadados, incluindo contadores de uso para impor limites de segurança

O que é uma entrada de chave de dados em cache? 399

AWS Encryption SDK Guia do Desenvolvedor

Contexto de criptografia: como selecionar entradas do cache

Você pode especificar um contexto de criptografia em qualquer solicitação para criptografar dados.
No entanto, o contexto de criptografia desempenha uma função especial no armazenamento em
cache de chaves de dados. Ele permite criar subgrupos de chaves de dados em seu cache, mesmo
quando as chaves de dados forem originárias do mesmo CMM de armazenamento em cache.

Um contexto de criptografia é um conjunto de pares de chave-valor que contêm dados arbitrários
não secretos. Durante a criptografia, o contexto de criptografia é associado de maneira criptográfica
aos dados criptografados de forma que o mesmo contexto de criptografia é necessário para
descriptografar os dados. No AWS Encryption SDK, o contexto de criptografia é armazenado na
mensagem criptografada com os dados criptografados e as chaves de dados.

Ao usar um cache de chave de dados, você também pode usar o contexto de criptografia para
selecionar chaves de dados armazenadas em cache específicas para suas operações de
criptografia. O contexto de criptografia é salvo na entrada do cache com a chave de dados (ele faz
parte do ID de entrada do cache). As chaves de dados armazenadas em cache só são reutilizadas
quando os contextos de criptografia correspondem. Se desejar reutilizar determinadas chaves de
dados para uma solicitação de criptografia, especifique o mesmo contexto de criptografia. Para evitar
essas chaves de dados, especifique outro contexto de criptografia.

O contexto de criptografia é sempre opcional, mas é recomendado. Se você não especificar um
contexto de criptografia na solicitação, um contexto de criptografia vazio será incluído no identificador
de entrada do cache e correspondido a cada solicitação.

Meu aplicativo está usando chaves de dados armazenadas em cache?

O armazenamento em cache de chaves de dados é uma estratégia de otimização muito eficaz
para determinados aplicativos e cargas de trabalho. No entanto, como isso implica algum risco,
é importante determinar o quão eficaz é provável que seja para a sua situação e decidir se os
benefícios superam os riscos.

Como o armazenamento em cache de chaves de dados reutiliza chaves de dados, o efeito
mais óbvio é a redução do número de chamadas para gerar novas chaves de dados. Quando o
armazenamento em cache da chave de dados é implementado, ele AWS Encryption SDK chama
a AWS KMS GenerateDataKey operação somente para criar a chave de dados inicial e quando
o cache falha. Mas, o armazenamento em cache melhora o desempenho de forma perceptível
somente em aplicativos que geram várias chaves de dados com as mesmas características,
incluindo o mesmo contexto de criptografia e pacote de algoritmos.

Contexto de criptografia: como selecionar entradas do cache 400

AWS Encryption SDK Guia do Desenvolvedor

Para determinar se sua implementação do AWS Encryption SDK está realmente usando chaves de
dados do cache, experimente as técnicas a seguir.

• Nos logs da infraestrutura de sua chave mestra, verifique a frequência de chamadas para criar
novas chaves de dados. Quando o armazenamento em cache de chaves de dados está efetivo,
o número de chamadas para criar novas chaves deve cair de forma perceptível. Por exemplo,
se você estiver usando um provedor de chave AWS KMS mestra ou um chaveiro, pesquise
GenerateDataKeychamadas nos CloudTrail registros.

• Compare as mensagens criptografadas que o AWS Encryption SDK retorna em resposta a
diferentes solicitações de criptografia. Por exemplo, se você estiver usando o AWS Encryption
SDK for Java, compare o ParsedCiphertextobjeto de diferentes chamadas de criptografia. No AWS
Encryption SDK para JavaScript, compare o conteúdo da encryptedDataKeys propriedade do
MessageHeader. Quando as chaves de dados são reutilizadas, as chaves de dados criptografadas
na mensagem criptografada são idênticas.

Exemplo de armazenamento em cache de chaves de dados

Este exemplo usa armazenamento em cache de chaves de dados com um cache local para acelerar
uma aplicação em que os dados gerados por vários dispositivos são criptografados e armazenados
em diferentes regiões.

Nesse cenário, vários produtores de dados geram, criptografam e gravam dados em um stream
do Kinesis em cada região. As funções do AWS Lambda (consumidoras) descriptografam os
streams e gravam dados de texto simples em uma tabela do DynamoDB na região. Os produtores
e os consumidores de dados usam o AWS Encryption SDK e um AWS KMS provedor de chaves
mestras do . Para reduzir as chamadas ao KMS, cada produtor e consumidor tem seu próprio
armazenamento em cache local.

Você pode encontrar o código-fonte desses exemplos em Java e Python. A amostra também inclui
um CloudFormation modelo que define os recursos para as amostras.

Exemplo de armazenamento em cache de chaves de dados 401

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK Guia do Desenvolvedor

Resultados do cache local

A tabela a seguir mostra que um armazenamento em cache local reduz o total de chamadas ao KMS
(por segundo por região) neste exemplo em 1% de seu valor original.

Solicitações de produtores

 Solicitações por segundo por cliente Clientes por
região

Média de
solicitações

Resultados do cache local 402

AWS Encryption SDK Guia do Desenvolvedor

Gerar chaves
de dados (us-
west-2)

Criptogra
far chave de
dados (eu-
central-1)

Total (por
região)

por segundo
por região

Sem cache 1 1 1 500 500

Cache local 1 rps/100
usos

1 rps/100
usos

1 rps/100
usos

500 5

Solicitações de consumidor

Solicitações por segundo por cliente

Descripto
grafar chave
de dados

Produtores Total

Cliente por
região

Média de
solicitações
por segundo
por região

Sem cache 1 rps por
produtor

500 500 2 1.000

Cache local 1 rps por
produtor/100
usos

500 5 2 10

Exemplo de código de armazenamento em cache de chaves de dados

Este exemplo de código cria uma implementação básica do armazenamento em cache de chaves
de dados com um cache local em Java e Python. O código cria duas instâncias de um cache local:
uma para produtores de dados que estão criptografando dados e outra para consumidores de
dados (AWS Lambda funções) que estão descriptografando dados. Para obter detalhes sobre a
implementação do armazenamento em cache de chaves de dados em cada linguagem, consulte a
documentação de Javadoc e Python para o AWS Encryption SDK.

O armazenamento em cache de chaves de dados está disponível para todas as linguagens de
programação suportadas AWS Encryption SDK .

Código de exemplo 403

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/

AWS Encryption SDK Guia do Desenvolvedor

Para obter exemplos completos e testados do uso do armazenamento em cache de chaves de dados
no AWS Encryption SDK, consulte:

• C/C++: caching_cmm.cpp

• Java: SimpleDataKeyCachingExample.java

• JavaScript Navegador: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

• Python: data_key_caching_basic.py

Produtor

O produtor obtém um mapa, o converte em JSON, usa o AWS Encryption SDK para criptografá-lo e
envia o registro de texto cifrado para um stream do Kinesis em cada um. Região da AWS

O código define um gerenciador de materiais criptográficos de armazenamento em cache (CMM de
armazenamento em cache) e o associa a um cache local e a um provedor de chave mestrado AWS
KMS subjacente. O CMM de amazenamento em cache armazena em cache as chaves de dados
(e o material criptográfico relacionado) do provedor de chaves mestras. Ele também interage com o
cache em nome do SDK e impõe os limites de segurança que você define.

Como a chamada para o método de criptografia especifica um CMM de armazenamento em cache,
em vez de um gerenciador de materiais criptográficos (CMM) ou provedor de chave mestra comum,
a criptografia usará o cache de chave de dados.

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versão 3. x, você também pode usar o AWS KMS chaveiro hierárquico, uma solução
alternativa de cache de materiais criptográficos.

/*
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 this file except
 * in compliance with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0

Código de exemplo 404

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK Guia do Desenvolvedor

 *
 * or in the "license" file accompanying this file. This file is distributed on an
 "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
 * specific language governing permissions and limitations under the License.
 */
package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.kinesis.KinesisClient;
import software.amazon.awssdk.services.kms.KmsClient;

/**
 * Pushes data to Kinesis Streams in multiple Regions.
 */
public class MultiRegionRecordPusher {

 private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
 private static final long MAX_ENTRY_USES = 100;
 private static final int MAX_CACHE_ENTRIES = 100;
 private final String streamName_;
 private final ArrayList<KinesisClient> kinesisClients_;
 private final CachingCryptoMaterialsManager cachingMaterialsManager_;
 private final AwsCrypto crypto_;

Código de exemplo 405

AWS Encryption SDK Guia do Desenvolvedor

 /**
 * Creates an instance of this object with Kinesis clients for all target
 Regions and a cached
 * key provider containing KMS master keys in all target Regions.
 */
 public MultiRegionRecordPusher(final Region[] regions, final String
 kmsAliasName,
 final String streamName) {
 streamName_ = streamName;
 crypto_ = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();
 kinesisClients_ = new ArrayList<>();

 AwsCredentialsProvider credentialsProvider =
 DefaultCredentialsProvider.builder().build();

 // Build KmsMasterKey and AmazonKinesisClient objects for each target region
 List<KmsMasterKey> masterKeys = new ArrayList<>();
 for (Region region : regions) {
 kinesisClients_.add(KinesisClient.builder()
 .credentialsProvider(credentialsProvider)
 .region(region)
 .build());

 KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
 .defaultRegion(region)
 .builderSupplier(() ->
 KmsClient.builder().credentialsProvider(credentialsProvider))
 .buildStrict(kmsAliasName)
 .getMasterKey(kmsAliasName);

 masterKeys.add(regionMasterKey);
 }

 // Collect KmsMasterKey objects into single provider and add cache
 MasterKeyProvider<?> masterKeyProvider =
 MultipleProviderFactory.buildMultiProvider(
 KmsMasterKey.class,
 masterKeys
);

 cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

Código de exemplo 406

AWS Encryption SDK Guia do Desenvolvedor

 .withMasterKeyProvider(masterKeyProvider)
 .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
 .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
 .withMessageUseLimit(MAX_ENTRY_USES)
 .build();
 }

 /**
 * JSON serializes and encrypts the received record data and pushes it to all
 target streams.
 */
 public void putRecord(final Map<Object, Object> data) {
 String partitionKey = UUID.randomUUID().toString();
 Map<String, String> encryptionContext = new HashMap<>();
 encryptionContext.put("stream", streamName_);

 // JSON serialize data
 String jsonData = Jackson.toJsonString(data);

 // Encrypt data
 CryptoResult<byte[], ?> result = crypto_.encryptData(
 cachingMaterialsManager_,
 jsonData.getBytes(),
 encryptionContext
);
 byte[] encryptedData = result.getResult();

 // Put records to Kinesis stream in all Regions
 for (KinesisClient regionalKinesisClient : kinesisClients_) {
 regionalKinesisClient.putRecord(builder ->
 builder.streamName(streamName_)
 .data(SdkBytes.fromByteArray(encryptedData))
 .partitionKey(partitionKey));
 }
 }
}

Python

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Código de exemplo 407

AWS Encryption SDK Guia do Desenvolvedor

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
 file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
specific language governing permissions and limitations under the License.
"""
import json
import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
 CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy
from aws_encryption_sdk.key_providers.kms import KMSMasterKey
import boto3

class MultiRegionRecordPusher(object):
 """Pushes data to Kinesis Streams in multiple Regions."""
 CACHE_CAPACITY = 100
 MAX_ENTRY_AGE_SECONDS = 300.0
 MAX_ENTRY_MESSAGES_ENCRYPTED = 100

 def __init__(self, regions, kms_alias_name, stream_name):
 self._kinesis_clients = []
 self._stream_name = stream_name

 # Set up EncryptionSDKClient
 _client =
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 # Set up KMSMasterKeyProvider with cache
 _key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

 # Add MasterKey and Kinesis client for each Region
 for region in regions:
 self._kinesis_clients.append(boto3.client('kinesis',
 region_name=region))
 regional_master_key = KMSMasterKey(
 client=boto3.client('kms', region_name=region),

Código de exemplo 408

AWS Encryption SDK Guia do Desenvolvedor

 key_id=kms_alias_name
)
 _key_provider.add_master_key_provider(regional_master_key)

 cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
 self._materials_manager = CachingCryptoMaterialsManager(
 master_key_provider=_key_provider,
 cache=cache,
 max_age=self.MAX_ENTRY_AGE_SECONDS,
 max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED
)

 def put_record(self, record_data):
 """JSON serializes and encrypts the received record data and pushes it to
 all target streams.

 :param dict record_data: Data to write to stream
 """
 # Kinesis partition key to randomize write load across stream shards
 partition_key = uuid.uuid4().hex

 encryption_context = {'stream': self._stream_name}

 # JSON serialize data
 json_data = json.dumps(record_data)

 # Encrypt data
 encrypted_data, _header = _client.encrypt(
 source=json_data,
 materials_manager=self._materials_manager,
 encryption_context=encryption_context
)

 # Put records to Kinesis stream in all Regions
 for client in self._kinesis_clients:
 client.put_record(
 StreamName=self._stream_name,
 Data=encrypted_data,
 PartitionKey=partition_key
)

Código de exemplo 409

AWS Encryption SDK Guia do Desenvolvedor

Consumidor

O consumidor de dados é uma função do AWS Lambda acionada por eventos do Kinesis. Ele
descriptografa e desserializa cada registro e grava o registro de texto simples em uma tabela do
Amazon DynamoDB na mesma região.

Como o código do produtor, o código do consumidor habilita o armazenamento em cache da chave
de dados usando um gerenciador de materiais criptográficos de cache (caching CMM) em chamadas
para o método de descriptografia.

O código Java cria um provedor de chave mestra no modo estrito com um especificado AWS KMS
key. O modo estrito não é necessário ao descriptografar, mas é uma prática recomendada. O código
Python usa o modo de descoberta, que permite AWS Encryption SDK usar qualquer chave de
empacotamento que criptografe uma chave de dados para descriptografá-la.

Java

O exemplo a seguir usa a versão 2. x do AWS Encryption SDK for Java. Versão 3. x do AWS
Encryption SDK for Java desaprova o CMM de armazenamento em cache da chave de dados.
Com a versão 3. x, você também pode usar o AWS KMS chaveiro hierárquico, uma solução
alternativa de cache de materiais criptográficos.

Esse código cria um provedor de chave mestra para descriptografia no modo estrito. O AWS
Encryption SDK pode usar somente o AWS KMS keys que você especificar para descriptografar
sua mensagem.

/*
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 this file except
 * in compliance with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
 * specific language governing permissions and limitations under the License.
 */
package com.amazonaws.crypto.examples.kinesisdatakeycaching;

Código de exemplo 410

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK Guia do Desenvolvedor

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
 * Decrypts all incoming Kinesis records and writes records to DynamoDB.
 */
public class LambdaDecryptAndWrite {

 private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
 private static final int MAX_CACHE_ENTRIES = 100;
 private final CachingCryptoMaterialsManager cachingMaterialsManager_;
 private final AwsCrypto crypto_;
 private final DynamoDbTable<Item> table_;

 /**
 * Because the cache is used only for decryption, the code doesn't set the max
 bytes or max
 * message security thresholds that are enforced only on on data keys used for
 encryption.
 */
 public LambdaDecryptAndWrite() {
 String kmsKeyArn = System.getenv("CMK_ARN");
 cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

 .withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
 .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
 .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
 .build();

Código de exemplo 411

AWS Encryption SDK Guia do Desenvolvedor

 crypto_ = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 String tableName = System.getenv("TABLE_NAME");
 DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
 table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));
 }

 /**
 * @param event
 * @param context
 */
 public void handleRequest(KinesisEvent event, Context context)
 throws UnsupportedEncodingException {
 for (KinesisEventRecord record : event.getRecords()) {
 ByteBuffer ciphertextBuffer = record.getKinesis().getData();
 byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

 // Decrypt and unpack record
 CryptoResult<byte[], ?> plaintextResult =
 crypto_.decryptData(cachingMaterialsManager_,
 ciphertext);

 // Verify the encryption context value
 String streamArn = record.getEventSourceARN();
 String streamName = streamArn.substring(streamArn.indexOf("/") + 1);
 if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
 throw new IllegalStateException("Wrong Encryption Context!");
 }

 // Write record to DynamoDB
 String jsonItem = new String(plaintextResult.getResult(),
 StandardCharsets.UTF_8);
 System.out.println(jsonItem);
 table_.putItem(Item.fromJSON(jsonItem));
 }
 }

 private static class Item {

 static Item fromJSON(String jsonText) {

Código de exemplo 412

AWS Encryption SDK Guia do Desenvolvedor

 // Parse JSON and create new Item
 return new Item();
 }
 }
}

Python

Esse código Python é descriptografado com um provedor de chave mestra no modo de
descoberta. Ele permite ao AWS Encryption SDK usar qualquer chave de encapsulamento
que criptografe uma chave de dados para descriptografá-la. O modo estrito, no qual você
especifica as chaves de encapsulamento que podem ser usadas para decodificação, é uma
prática recomendada.

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
 file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
specific language governing permissions and limitations under the License.
"""
import base64
import json
import logging
import os

from aws_encryption_sdk import EncryptionSDKClient,
 DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
 LocalCryptoMaterialsCache, CommitmentPolicy
import boto3

_LOGGER = logging.getLogger(__name__)
_is_setup = False
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

Código de exemplo 413

AWS Encryption SDK Guia do Desenvolvedor

def setup():
 """Sets up clients that should persist across Lambda invocations."""
 global encryption_sdk_client
 encryption_sdk_client =
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 global materials_manager
 key_provider = DiscoveryAwsKmsMasterKeyProvider()
 cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

 # Because the cache is used only for decryption, the code doesn't set
 # the max bytes or max message security thresholds that are enforced
 # only on on data keys used for encryption.
 materials_manager = CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=MAX_ENTRY_AGE_SECONDS
)
 global table
 table_name = os.environ.get('TABLE_NAME')
 table = boto3.resource('dynamodb').Table(table_name)
 global _is_setup
 _is_setup = True

def lambda_handler(event, context):
 """Decrypts all incoming Kinesis records and writes records to DynamoDB."""
 _LOGGER.debug('New event:')
 _LOGGER.debug(event)
 if not _is_setup:
 setup()
 with table.batch_writer() as batch:
 for record in event.get('Records', []):
 # Record data base64-encoded by Kinesis
 ciphertext = base64.b64decode(record['kinesis']['data'])

 # Decrypt and unpack record
 plaintext, header = encryption_sdk_client.decrypt(
 source=ciphertext,
 materials_manager=materials_manager
)
 item = json.loads(plaintext)

Código de exemplo 414

AWS Encryption SDK Guia do Desenvolvedor

 # Verify the encryption context value
 stream_name = record['eventSourceARN'].split('/', 1)[1]
 if stream_name != header.encryption_context['stream']:
 raise ValueError('Wrong Encryption Context!')

 # Write record to DynamoDB
 batch.put_item(Item=item)

Exemplo de armazenamento em cache de chave de dados: modelo
CloudFormation

Esse CloudFormation modelo configura todos os AWS recursos necessários para reproduzir o
exemplo de armazenamento em cache da chave de dados.

JSON

{
 "Parameters": {
 "SourceCodeBucket": {
 "Type": "String",
 "Description": "S3 bucket containing Lambda source code zip files"
 },
 "PythonLambdaS3Key": {
 "Type": "String",
 "Description": "S3 key containing Python Lambda source code zip file"
 },
 "PythonLambdaObjectVersionId": {
 "Type": "String",
 "Description": "S3 version id for S3 key containing Python Lambda source
 code zip file"
 },
 "JavaLambdaS3Key": {
 "Type": "String",
 "Description": "S3 key containing Python Lambda source code zip file"
 },
 "JavaLambdaObjectVersionId": {
 "Type": "String",
 "Description": "S3 version id for S3 key containing Python Lambda source
 code zip file"
 },

CloudFormation modelo 415

AWS Encryption SDK Guia do Desenvolvedor

 "KeyAliasSuffix": {
 "Type": "String",
 "Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"
 },
 "StreamName": {
 "Type": "String",
 "Description": "Name to use for Kinesis Stream"
 }
 },
 "Resources": {
 "InputStream": {
 "Type": "AWS::Kinesis::Stream",
 "Properties": {
 "Name": {
 "Ref": "StreamName"
 },
 "ShardCount": 2
 }
 },
 "PythonLambdaOutputTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "id",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 1,
 "WriteCapacityUnits": 1
 }
 }
 },
 "PythonLambdaRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {

CloudFormation modelo 416

AWS Encryption SDK Guia do Desenvolvedor

 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
],
 "Policies": [
 {
 "PolicyName": "PythonLambdaAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchWriteItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*"
 }
 },
 {

CloudFormation modelo 417

AWS Encryption SDK Guia do Desenvolvedor

 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 }
 }
]
 }
 }
]
 }
 },
 "PythonLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Python consumer",
 "Runtime": "python2.7",
 "MemorySize": 512,
 "Timeout": 90,
 "Role": {
 "Fn::GetAtt": [
 "PythonLambdaRole",
 "Arn"
]
 },
 "Handler":
 "aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
 "Code": {
 "S3Bucket": {
 "Ref": "SourceCodeBucket"
 },
 "S3Key": {
 "Ref": "PythonLambdaS3Key"
 },
 "S3ObjectVersion": {
 "Ref": "PythonLambdaObjectVersionId"
 }
 },

CloudFormation modelo 418

AWS Encryption SDK Guia do Desenvolvedor

 "Environment": {
 "Variables": {
 "TABLE_NAME": {
 "Ref": "PythonLambdaOutputTable"
 }
 }
 }
 }
 },
 "PythonLambdaSourceMapping": {
 "Type": "AWS::Lambda::EventSourceMapping",
 "Properties": {
 "BatchSize": 1,
 "Enabled": true,
 "EventSourceArn": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 },
 "FunctionName": {
 "Ref": "PythonLambdaFunction"
 },
 "StartingPosition": "TRIM_HORIZON"
 }
 },
 "JavaLambdaOutputTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "id",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 1,
 "WriteCapacityUnits": 1
 }
 }

CloudFormation modelo 419

AWS Encryption SDK Guia do Desenvolvedor

 },
 "JavaLambdaRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
],
 "Policies": [
 {
 "PolicyName": "JavaLambdaAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchWriteItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": {

CloudFormation modelo 420

AWS Encryption SDK Guia do Desenvolvedor

 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 }
 }
]
 }
 }
]
 }
 },
 "JavaLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Java consumer",
 "Runtime": "java8",
 "MemorySize": 512,
 "Timeout": 90,
 "Role": {
 "Fn::GetAtt": [
 "JavaLambdaRole",
 "Arn"
]
 },
 "Handler":
 "com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest",
 "Code": {
 "S3Bucket": {
 "Ref": "SourceCodeBucket"
 },
 "S3Key": {
 "Ref": "JavaLambdaS3Key"

CloudFormation modelo 421

AWS Encryption SDK Guia do Desenvolvedor

 },
 "S3ObjectVersion": {
 "Ref": "JavaLambdaObjectVersionId"
 }
 },
 "Environment": {
 "Variables": {
 "TABLE_NAME": {
 "Ref": "JavaLambdaOutputTable"
 },
 "CMK_ARN": {
 "Fn::GetAtt": [
 "RegionKinesisCMK",
 "Arn"
]
 }
 }
 }
 }
 },
 "JavaLambdaSourceMapping": {
 "Type": "AWS::Lambda::EventSourceMapping",
 "Properties": {
 "BatchSize": 1,
 "Enabled": true,
 "EventSourceArn": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 },
 "FunctionName": {
 "Ref": "JavaLambdaFunction"
 },
 "StartingPosition": "TRIM_HORIZON"
 }
 },
 "RegionKinesisCMK": {
 "Type": "AWS::KMS::Key",
 "Properties": {
 "Description": "Used to encrypt data passing through Kinesis Stream
 in this region",
 "Enabled": true,
 "KeyPolicy": {
 "Version": "2012-10-17",
 "Statement": [

CloudFormation modelo 422

AWS Encryption SDK Guia do Desenvolvedor

 {
 "Effect": "Allow",
 "Principal": {
 "AWS": {
 "Fn::Sub": "arn:aws:iam::${AWS::AccountId}:root"
 }
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey",
 "kms:CreateAlias",
 "kms:DeleteAlias",
 "kms:DescribeKey",
 "kms:DisableKey",
 "kms:EnableKey",
 "kms:PutKeyPolicy",
 "kms:ScheduleKeyDeletion",
 "kms:UpdateAlias",
 "kms:UpdateKeyDescription"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 {
 "Fn::GetAtt": [
 "PythonLambdaRole",
 "Arn"
]
 },
 {
 "Fn::GetAtt": [
 "JavaLambdaRole",
 "Arn"
]
 }
]
 },
 "Action": "kms:Decrypt",
 "Resource": "*"
 }
]

CloudFormation modelo 423

AWS Encryption SDK Guia do Desenvolvedor

 }
 }
 },
 "RegionKinesisCMKAlias": {
 "Type": "AWS::KMS::Alias",
 "Properties": {
 "AliasName": {
 "Fn::Sub": "alias/${KeyAliasSuffix}"
 },
 "TargetKeyId": {
 "Ref": "RegionKinesisCMK"
 }
 }
 }
 }
}

YAML

Parameters:
 SourceCodeBucket:
 Type: String
 Description: S3 bucket containing Lambda source code zip files
 PythonLambdaS3Key:
 Type: String
 Description: S3 key containing Python Lambda source code zip file
 PythonLambdaObjectVersionId:
 Type: String
 Description: S3 version id for S3 key containing Python Lambda source code
 zip file
 JavaLambdaS3Key:
 Type: String
 Description: S3 key containing Python Lambda source code zip file
 JavaLambdaObjectVersionId:
 Type: String
 Description: S3 version id for S3 key containing Python Lambda source code
 zip file
 KeyAliasSuffix:
 Type: String
 Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
 StreamName:
 Type: String
 Description: Name to use for Kinesis Stream

CloudFormation modelo 424

AWS Encryption SDK Guia do Desenvolvedor

Resources:
 InputStream:
 Type: AWS::Kinesis::Stream
 Properties:
 Name: !Ref StreamName
 ShardCount: 2
 PythonLambdaOutputTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 PythonLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 Policies:
 -
 PolicyName: PythonLambdaAccess
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:BatchWriteItem

CloudFormation modelo 425

AWS Encryption SDK Guia do Desenvolvedor

 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}
 -
 Effect: Allow
 Action:
 - dynamodb:PutItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*
 -
 Effect: Allow
 Action:
 - kinesis:GetRecords
 - kinesis:GetShardIterator
 - kinesis:DescribeStream
 - kinesis:ListStreams
 Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 PythonLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Description: Python consumer
 Runtime: python2.7
 MemorySize: 512
 Timeout: 90
 Role: !GetAtt PythonLambdaRole.Arn
 Handler:
 aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler
 Code:
 S3Bucket: !Ref SourceCodeBucket
 S3Key: !Ref PythonLambdaS3Key
 S3ObjectVersion: !Ref PythonLambdaObjectVersionId
 Environment:
 Variables:
 TABLE_NAME: !Ref PythonLambdaOutputTable
 PythonLambdaSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: true
 EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 FunctionName: !Ref PythonLambdaFunction
 StartingPosition: TRIM_HORIZON
 JavaLambdaOutputTable:

CloudFormation modelo 426

AWS Encryption SDK Guia do Desenvolvedor

 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 JavaLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 Policies:
 -
 PolicyName: JavaLambdaAccess
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:BatchWriteItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}
 -
 Effect: Allow
 Action:
 - dynamodb:PutItem

CloudFormation modelo 427

AWS Encryption SDK Guia do Desenvolvedor

 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*
 -
 Effect: Allow
 Action:
 - kinesis:GetRecords
 - kinesis:GetShardIterator
 - kinesis:DescribeStream
 - kinesis:ListStreams
 Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 JavaLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Description: Java consumer
 Runtime: java8
 MemorySize: 512
 Timeout: 90
 Role: !GetAtt JavaLambdaRole.Arn
 Handler:
 com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest
 Code:
 S3Bucket: !Ref SourceCodeBucket
 S3Key: !Ref JavaLambdaS3Key
 S3ObjectVersion: !Ref JavaLambdaObjectVersionId
 Environment:
 Variables:
 TABLE_NAME: !Ref JavaLambdaOutputTable
 CMK_ARN: !GetAtt RegionKinesisCMK.Arn
 JavaLambdaSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: true
 EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 FunctionName: !Ref JavaLambdaFunction
 StartingPosition: TRIM_HORIZON
 RegionKinesisCMK:
 Type: AWS::KMS::Key
 Properties:
 Description: Used to encrypt data passing through Kinesis Stream in this
 region
 Enabled: true

CloudFormation modelo 428

AWS Encryption SDK Guia do Desenvolvedor

 KeyPolicy:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
 Action:
 # Data plane actions
 - kms:Encrypt
 - kms:GenerateDataKey
 # Control plane actions
 - kms:CreateAlias
 - kms:DeleteAlias
 - kms:DescribeKey
 - kms:DisableKey
 - kms:EnableKey
 - kms:PutKeyPolicy
 - kms:ScheduleKeyDeletion
 - kms:UpdateAlias
 - kms:UpdateKeyDescription
 Resource: '*'
 -
 Effect: Allow
 Principal:
 AWS:
 - !GetAtt PythonLambdaRole.Arn
 - !GetAtt JavaLambdaRole.Arn
 Action: kms:Decrypt
 Resource: '*'
 RegionKinesisCMKAlias:
 Type: AWS::KMS::Alias
 Properties:
 AliasName: !Sub alias/${KeyAliasSuffix}
 TargetKeyId: !Ref RegionKinesisCMK

CloudFormation modelo 429

AWS Encryption SDK Guia do Desenvolvedor

Versões do AWS Encryption SDK

As implementações da AWS Encryption SDK linguagem usam versionamento semântico para facilitar
a identificação da magnitude das mudanças em cada versão. Uma alteração no número da versão
principal, como de 1.x. x para 2.x.x, indica uma alteração significativa que provavelmente exigirá
alterações no código e uma implantação planejada. Alterações significativas em uma nova versão
podem não afetar todos os casos de uso. Consulte as notas de lançamento para ver se você foi
afetado. Uma alteração em uma versão secundária, como de x.1.x para x.2.x, é sempre compatível
com versões anteriores, mas pode incluir elementos descontinuados.

Sempre que possível, use a versão mais recente do AWS Encryption SDK na linguagem de
programação escolhida. A política de manutenção e suporte para cada versão é diferente para cada
implementação de linguagem de programação. Para obter detalhes sobre as versões suportadas
em sua linguagem de programação preferida, consulte o SUPPORT_POLICY.rst arquivo em seu
GitHubrepositório.

Quando as atualizações incluem novos atributos que exigem configuração especial para evitar erros
de criptografia ou descriptografia, fornecemos uma versão intermediária e instruções detalhadas para
usá-la. Por exemplo, as versões 1.7.x e 1.8.x foram projetadas para serem versões transitórias que
ajudam você a atualizar de versões anteriores à 1.7.x para as versões 2.0.x e posteriores. Para obter
detalhes, consulte Migrando seu AWS Encryption SDK.

Note

O x em um número de versão representa qualquer patch da versão principal e secundária.
Por exemplo, a versão 1.7.x representa todas as versões que começam com 1.7, incluindo
1.7.1 e 1.7.9.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

As tabelas a seguir fornecem uma visão geral das principais diferenças entre as versões suportadas
do AWS Encryption SDK para cada linguagem de programação.

430

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

C

Para obter uma descrição detalhada de todas as alterações, consulte o CHANGELOG.md no
repositório em. aws-encryption-sdk-c GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

1,0 Versão inicial.1.x

1,7 Atualizações do AWS
Encryption SDK que
ajudam os usuários
de versões anteriore
s a atualizarem para
as versões 2.0. x e
depois. Para obter
mais informações,
consulte a versão 1.7.
x.

End-of-Support fase

2,0 Atualizações do AWS
Encryption SDK. Para
obter mais informaçõ
es, consulte a versão
2.0. x.

2.2 Melhorias no
processo de decodific
ação de mensagens.

2.x

2.3 Adiciona suporte para
chaves AWS KMS
multirregionais.

Disponibilidade geral
(GA)

C 431

https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

C# /.NET

Para obter uma descrição detalhada de todas as alterações, consulte o CHANGELOG.md no
repositório em. aws-encryption-sdk-net GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

3.x 3.1.0 Versão inicial. Fim do suporte

A versão 3.x do AWS
Encryption SDK
para.NET entrou
em End of Support;
atualize para 4.x.

4.x 4,0 Adiciona suporte ao
AWS KMS chaveiro
hierárquico, ao
contexto de criptogra
fia necessário (CMM)
e aos chaveiros RSA
assimétricos. AWS
KMS

Disponibilidade geral
(GA)

Interface de linha de comando (CLI)

Para obter uma descrição detalhada de todas as alterações, consulte Versões da CLI AWS de
criptografia e o Changelog.rst no repositório em. aws-encryption-sdk-cli GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

1.x 1,0 Versão inicial. End-of-Support fase

C# /.NET 432

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

1,7 Atualizações do AWS
Encryption SDK que
ajudam os usuários
de versões anteriore
s a atualizarem para
as versões 2.0. x e
depois. Para obter
mais informações,
consulte a versão 1.7.
x.

2,0 Atualizações do AWS
Encryption SDK. Para
obter mais informaçõ
es, consulte a versão
2.0. x.

2.1 Remove o --
discovery
parâmetro e o
substitui pelo
discovery atributo
do --wrapping-
keys parâmetro.

A versão 2.1.0 da
CLI de AWS criptogra
fia é equivalente
à versão 2.0 em
outras linguagens de
programação.

2.x

2.2 Melhorias no
processo de decodific
ação de mensagens.

End-of-Support fase

Interface de linha de comando (CLI) 433

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

3.x 3.0 Adiciona suporte para
chaves AWS KMS
multirregionais.

End-of-Support fase

4,0 A CLI de AWS
criptografia não é
mais compatível com
Python 2 ou Python
3.4. A partir da versão
principal 4. x da CLI
de AWS criptografia,
somente o Python
3.5 ou posterior é
suportado.

4.1 A CLI AWS de
criptografia não
oferece mais suporte
ao Python 3.5. A partir
da versão 4.1. x da
CLI de AWS criptogra
fia, somente o Python
3.6 ou posterior é
suportado.

4.x

4.2 A CLI AWS de
criptografia não
oferece mais suporte
ao Python 3.6. A partir
da versão 4.2. x da
CLI de AWS criptogra
fia, somente o Python
3.7 ou posterior é
suportado.

Disponibilidade geral
(GA)

Interface de linha de comando (CLI) 434

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Java
Para obter uma descrição detalhada de todas as alterações, consulte o Changelog.rst no repositório
em. aws-encryption-sdk-java GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

1,0 Versão inicial.

1.3 Adiciona suporte
ao gerenciador de
materiais criptográ
ficos e ao armazenam
ento em cache de
chaves de dados.
Transferido para a
geração IV determiní
stica.

1.6.1 Deprecia AwsCrypto
.encryptS
tring() e
AwsCrypto
.decryptS
tring() e
os substitui por
e. AwsCrypto
.encryptD
ata() AwsCrypto
.decryptData()

1.x

1,7 Atualizações do AWS
Encryption SDK que
ajudam os usuários
de versões anteriore
s a atualizarem para

End-of-Support fase

Java 435

https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-java/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

as versões 2.0. x e
depois. Para obter
mais informações,
consulte a versão 1.7.
x.

2,0 Atualizações do AWS
Encryption SDK. Para
obter mais informaçõ
es, consulte a versão
2.0. x.

2.2 Melhorias no
processo de decodific
ação de mensagens.

2.3 Adiciona suporte para
chaves AWS KMS
multirregionais.

2.x

2.4 Adiciona suporte para
AWS SDK for Java
2.x.

Disponibilidade geral
(GA)

A versão 2.x do AWS
Encryption SDK for
Java entrará no modo
de manutenção em
2024.

Java 436

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

3.x 3.0 Integra-se AWS
Encryption SDK for
Java com a Material
Providers Library
(MPL).

Adiciona suporte
para chaveiros RSA
simétricos e assimétri
cos, chaveiros AWS
KMS ECDH, AWS
KMS chaveiros AWS
KMS hierárquicos,
chaveiros AES brutos,
chaveiros RSA brutos,
chaveiros ECDH
brutos, chaveiros
múltiplos e o contexto
de criptografia
necessário CMM.

Disponibilidade geral
(GA)

Go

Para obter uma descrição detalhada de todas as alterações, consulte o CHANGELOG.md no
diretório Go do repositório em. aws-encryption-sdk GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

0,1. x 0.1.0 Versão inicial. Disponibilidade geral
(GA)

Go 437

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

JavaScript

Para obter uma descrição detalhada de todas as alterações, consulte o CHANGELOG.md no
repositório em. aws-encryption-sdk-javascript GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

1,0 Versão inicial.1.x

1,7 Atualizações do AWS
Encryption SDK que
ajudam os usuários
de versões anteriore
s a atualizarem para
as versões 2.0. x e
depois. Para obter
mais informações,
consulte a versão 1.7.
x.

End-of-Support fase

2,0 Atualizações do AWS
Encryption SDK. Para
obter mais informaçõ
es, consulte a versão
2.0. x.

2.2 Melhorias no
processo de decodific
ação de mensagens.

2.x

2.3 Adiciona suporte para
chaves AWS KMS
multirregionais.

End-of-Support fase

3.x 3.0 Remove a cobertura
de CI do Node

Manutenção

JavaScript 438

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

10. Atualiza as
dependências para
que não sejam mais
compatíveis com o
Node 8 e o Node 10.

O suporte para a
versão 3.x do AWS
Encryption SDK para
JavaScript terminará
em 17 de janeiro de
2024.

4.x 4,0 Requer a versão 3
AWS Encryption SDK
para JavaScript do s
kms-client para
usar o AWS KMS
chaveiro.

Disponibilidade geral
(GA)

Python

Para obter uma descrição detalhada de todas as alterações, consulte o Changelog.rst no repositório
em. aws-encryption-sdk-python GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

1,0 Versão inicial.

1.3 Adiciona suporte
ao gerenciador de
materiais criptográ
ficos e ao armazenam
ento em cache de
chaves de dados.
Transferido para a
geração IV determiní
stica.

1.x

1,7 Atualizações do AWS
Encryption SDK que

End-of-Support fase

Python 439

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-python/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

ajudam os usuários
de versões anteriore
s a atualizarem para
as versões 2.0. x e
depois. Para obter
mais informações,
consulte a versão 1.7.
x.

2,0 Atualizações do AWS
Encryption SDK. Para
obter mais informaçõ
es, consulte a versão
2.0. x.

2.2 Melhorias no
processo de decodific
ação de mensagens.

2.x

2.3 Adiciona suporte para
chaves AWS KMS
multirregionais.

End-of-Support fase

3.x 3.0 O AWS Encryption
SDK for Python não
oferece mais suporte
ao Python 2 ou ao
Python 3.4. A partir
da versão principal 3.
x do AWS Encryptio
n SDK for Python,
somente o Python
3.5 ou posterior é
suportado.

Disponibilidade geral
(GA)

Python 440

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

4.x 4,0 Integra-se AWS
Encryption SDK for
Python com a Material
Providers Library
(MPL).

Disponibilidade geral
(GA)

Rust

Para uma descrição detalhada de todas as alterações, consulte o CHANGELOG.md no diretório Rust
do repositório em. aws-encryption-sdk GitHub

Versão principal Detalhes Fase do ciclo de vida
da versão principal do
SDK

1.x 1,0 Versão inicial. Disponibilidade geral
(GA)

Detalhes da versão

A lista a seguir descreve as principais diferenças entre as versões suportadas do AWS Encryption
SDK.

Tópicos

• Versões anteriores à 1.7.x

• Versão 1.7.x

• Versão 2.0x

• Versão 2.2x

• Versão 2.3x

Rust 441

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Versões anteriores à 1.7.x

Note

Todos os 1. x. As versões x do AWS Encryption SDK estão em end-of-supportfase. Atualize
para a versão mais recente disponível do AWS Encryption SDK para sua linguagem de
programação assim que possível. Para atualizar de uma AWS Encryption SDK versão
anterior à 1.7. x, você deve primeiro atualizar para 1.7. x. Para obter detalhes, consulte
Migrando seu AWS Encryption SDK.

Versões AWS Encryption SDK anteriores à 1.7. x fornecem recursos de segurança importantes,
incluindo criptografia com o algoritmo Advanced Encryption Standard in Galois/Counter Mode
(AES-GCM), uma função de derivação de extract-and-expand chave (HKDF) baseada em HMAC,
assinatura e uma chave de criptografia de 256 bits. No entanto, elas não são compatíveis com as
práticas recomendadas por nós, incluindo confirmação de chave.

Versão 1.7.x

Note

Todos os 1. x. As versões x do AWS Encryption SDK estão em end-of-supportfase.

Versão 1.7. x foi projetado para ajudar os usuários de versões anteriores do a atualizar AWS
Encryption SDK para as versões 2.0. x e depois. Se você é novo no AWS Encryption SDK,
pode pular essa versão e começar com a versão mais recente disponível em sua linguagem de
programação.

A versão 1.7.x é totalmente compatível com versões anteriores; ela não introduz nenhuma alteração
significativa nem altera o comportamento do AWS Encryption SDK. Também é compatível com
versões posteriores. Permite que você atualize seu código para que ele seja compatível com a
versão 2.0.x.. Ela inclui novos atributos, mas não os habilita completamente. E requer valores de
configuração que evitem que você adote imediatamente todos os novos atributos até que esteja
pronto para fazer isso.

A versão 1.7.x inclui as seguintes alterações:

Versões anteriores à 1.7.x 442

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS atualizações do provedor de chave mestra (obrigatório)

Versão 1.7. x introduz novos construtores no AWS Encryption SDK for Java e AWS Encryption
SDK for Python que criam explicitamente provedores de chaves AWS KMS mestras no modo
estrito ou no modo de descoberta. Esta versão adiciona alterações semelhantes à interface
de AWS Encryption SDK linha de comando (CLI). Para obter detalhes, consulte Atualizando
provedores de chaves AWS KMS mestras.

• No modo estrito, os provedores de chaves mestras do AWS KMS exigem uma lista de
chaves de encapsulamento e criptografam e descriptografam somente com as chaves de
encapsulamento que você especificar. Essa é uma prática recomendada do AWS Encryption
SDK que garante que você use as chaves de encapsulamento que pretende usar.

• No modo de descoberta, os provedores de chaves mestras do AWS KMS não aceitam
nenhuma chave de encapsulamento. Você não pode usá-los para criptografar. Ao
descriptografar, eles podem usar qualquer chave de encapsulamento para descriptografar uma
chave de dados criptografada. No entanto, você pode limitar as chaves de encapsulamento
usadas para descriptografia àquelas presentes em Contas da AWS específicas. Esse filtro de
descoberta é opcional, mas é uma prática recomendada que incentivamos.

Os construtores que criam versões anteriores dos provedores de chaves AWS KMS mestras
estão obsoletos na versão 1.7. x e removido na versão 2.0. x. Esses construtores instanciam
provedores de chave mestra que criptografam usando as chaves de encapsulamento que você
especificar. No entanto, eles descriptografam chaves de dados criptografadas usando a chave
de encapsulamento que as criptografou, independentemente das chaves de encapsulamento
especificadas. Os usuários podem decifrar mensagens sem querer com chaves de agrupamento
que não pretendem usar, inclusive em outras regiões. AWS KMS keys Contas da AWS

Não há alterações nos construtores das chaves AWS KMS mestras. Ao criptografar e
descriptografar, as chaves AWS KMS mestras usam somente o AWS KMS key que você
especifica.

AWS KMS atualizações de chaveiros (opcional)

Versão 1.7. x adiciona um novo filtro às AWS Encryption SDK para JavaScript implementações
AWS Encryption SDK for C e que limita os chaveiros de AWS KMS descoberta a determinados.
Contas da AWS Esse novo filtro de conta é opcional, mas é uma prática recomendada que
apoiamos. Para obter detalhes, consulte Atualizando AWS KMS chaveiros.

Versão 1.7.x 443

AWS Encryption SDK Guia do Desenvolvedor

Não há alterações nos construtores dos AWS KMS chaveiros. AWS KMS Os chaveiros padrão se
comportam como fornecedores de chaves mestras no modo estrito. AWS KMS os chaveiros de
descoberta são criados explicitamente no modo de descoberta.

Passando um ID de chave para AWS KMS Decrypt

A partir da versão 1.7. x, ao descriptografar chaves de dados criptografadas, o AWS Encryption
SDK sempre especifica an AWS KMS key em suas chamadas para a operação Decrypt.
AWS KMS O AWS Encryption SDK obtém o valor do ID da chave a AWS KMS key partir dos
metadados em cada chave de dados criptografada. Esse atributo não requer alterações no
código.

Não AWS KMS key é necessário especificar o ID da chave do para descriptografar o texto
cifrado que foi criptografado com uma chave KMS de criptografia simétrica, mas é uma prática
recomendada.AWS KMS Assim como especificar chaves de agrupamento em seu provedor
de chaves, essa prática garante que AWS KMS apenas descriptografe usando a chave de
agrupamento que você pretende usar.

Decriptografar texto cifrado com confirmação de chave

A versão 1.7x pode descriptografar texto cifrado criptografado com ou sem confirmação de
chave. No entanto, ela não pode criptografar texto cifrado com confirmação de chave. Essa
propriedade permite que você implante totalmente aplicações que podem descriptografar texto
cifrado criptografado com confirmação de chave antes mesmo de encontrem esse tipo de texto
cifrado. Como essa versão descriptografa mensagens que são criptografadas sem confirmação
de chave, você não precisa recriptografar nenhum texto cifrado.

Para implementar esse comportamento, versão 1.7. x inclui uma nova configuração de
política de compromisso que determina se eles AWS Encryption SDK podem criptografar ou
descriptografar com compromisso de chave. Na versão 1.7. x, o único valor válido para a
política de compromisso, ForbidEncryptAllowDecrypt, é usado em todas as operações de
criptografia e descriptografia. Esse valor impede que o AWS Encryption SDK criptografe com
qualquer um dos novos pacotes de algoritmos que incluem confirmação de chave. Ele permite
AWS Encryption SDK decifrar texto cifrado com e sem compromisso de chave.

Embora haja apenas um valor de política de compromisso válido na versão 1.7. x, exigimos que
você defina esse valor explicitamente ao usar o novo APIs introduzido nesta versão. Definir o
valor explicitamente impede que sua política de compromisso seja alterada automaticamente para
require-encrypt-require-decrypt quando você atualizar para a versão 2.1.x. Em vez
disso, você pode migrar sua política de compromisso em etapas.

Versão 1.7.x 444

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK Guia do Desenvolvedor

Pacotes de algoritmos com confirmação de chave fundamental

Versão 1.7. x inclui dois novos pacotes de algoritmos compatíveis com o confirmação de chaves.
Um inclui assinatura; o outro, não. Como os pacotes de algoritmos suportados anteriormente,
esses dois novos pacotes de algoritmos incluem criptografia com AES-GCM, uma chave de
criptografia de 256 bits e uma função de derivação de chave baseada em HMAC (extract-and-
expandHKDF).

No entanto, o conjunto de algoritmos padrão usado para criptografia não muda. Esses pacotes de
algoritmos foram adicionados à versão 1.7.x para preparar a aplicação para usá-los nas versões
2.0.x e posteriores.

Alterações na implementação do CMM

A versão 1.7.x introduz mudanças na interface Default do gerenciador de materiais criptográficos
(CMM) para dar suporte ao o comprometimento chave. Essa alteração lhe afeta somente se você
tiver escrito um CMM personalizado. Para obter detalhes, consulte a documentação da API ou o
GitHub repositório da sua linguagem de programação.

Versão 2.0x

Versão 2.0. x oferece suporte aos novos recursos de segurança oferecidos no AWS Encryption SDK,
incluindo chaves de empacotamento especificadas e comprometimento de chaves. A versão 2.0.x
inclui alterações significativas em relação a todas as versões anteriores do AWS Encryption SDK.
Você pode se preparar para essas mudanças implantando a versão 1.7.x.. A versão 2.0.x inclui todos
os novos atributos introduzidos na versão 1.7.x com as seguintes adições e alterações.

Note

Versão 2. x. x do AWS Encryption SDK for Python, AWS Encryption SDK para JavaScript, e
a CLI de AWS criptografia estão em fase. end-of-support
Para obter informações sobre suporte e manutenção dessa AWS Encryption SDK versão em
sua linguagem de programação preferida, consulte o SUPPORT_POLICY.rst arquivo em
seu GitHubrepositório.

Versão 2.0x 445

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS fornecedores de chaves mestras

Os construtores originais do provedor de chave AWS KMS mestra que foram descontinuados
na versão 1.7. x são removidos na versão 2.0. x. Você deve criar explicitamente provedores de
chaves mestras do AWS KMS no modo estrito ou no modo de descoberta.

Criptografe e descriptografe texto cifrado com confirmação de chave

A versão 2.0.x pode descriptografar texto cifrado criptografado com ou sem confirmação de
chave. Seu comportamento é determinado pela definição da política de compromisso. Por
padrão, ela sempre criptografa com confirmação de chave e só descriptografa texto cifrado
criptografado com confirmação de chave. A menos que você altere a política de compromisso,
o AWS Encryption SDK não descriptografa textos cifrados criptografados por nenhuma versão
anterior do AWS Encryption SDK, incluindo a versão 1.7.x..

Important

Por padrão, a versão 2.0.x não descriptografa nenhum texto cifrado que tenha sido
criptografado sem a confirmação de chave. Se a aplicação encontrar um texto cifrado
criptografado sem confirmação de chave, defina um valor de política de compromisso
como AllowDecrypt.

Na versão 2.0.x, a configuração da política de compromisso tem três valores válidos:

• ForbidEncryptAllowDecrypt: o AWS Encryption SDK não pode criptografar com
confirmação de chave. Ele pode descriptografar textos cifrados criptografados com ou sem
confirmação de chave.

• RequireEncryptAllowDecrypt: o AWS Encryption SDK deve criptografar com confirmação
de chave. Ele pode descriptografar textos cifrados criptografados com ou sem confirmação de
chave.

• RequireEncryptRequireDecrypt(padrão) — AWS Encryption SDK É necessário
criptografar com comprometimento de chave. Ele só descriptografa textos cifrados com
confirmação de chave.

Se você estiver migrando de uma versão anterior do AWS Encryption SDK para a versão 2.0. x,
defina a política de compromisso com um valor que garanta que você possa descriptografar todos
os textos cifrados existentes que seu aplicativo possa encontrar. É provável que você ajuste essa
configuração com o tempo.

Versão 2.0x 446

AWS Encryption SDK Guia do Desenvolvedor

Versão 2.2x

Adiciona suporte para assinaturas digitais e limita as chaves de dados criptografadas.

Note

Versão 2. x. x do AWS Encryption SDK for Python, AWS Encryption SDK para JavaScript, e
a CLI de AWS criptografia estão em fase. end-of-support
Para obter informações sobre suporte e manutenção dessa AWS Encryption SDK versão em
sua linguagem de programação preferida, consulte o SUPPORT_POLICY.rst arquivo em
seu GitHubrepositório.

Assinaturas digitais

Para melhorar o manuseio de assinaturas digitais durante a decodificação, isso AWS Encryption
SDK inclui os seguintes recursos:

• Modo sem streaming: retorna texto simples somente após o processamento de todas as
entradas, incluindo a verificação da assinatura digital, se houver uma. Esse atributo impede que
você use texto simples antes de verificar a assinatura digital. Use-o sempre que descriptografar
dados criptografados com assinaturas digitais (o pacote de algoritmos padrão). Por exemplo,
como a CLI de AWS criptografia sempre processa dados no modo de streaming, use o - -
buffer parâmetro ao descriptografar texto cifrado com assinaturas digitais.

• Modo de descriptografia somente não assinada: esse atributo só descriptografa texto cifrado
não assinado. Se a descriptografia encontrar uma assinatura digital no texto cifrado, a
operação falhará. Use esse atributo para evitar o processamento não intencional de texto
simples de mensagens assinadas antes de verificar a assinatura.

Limitar as chaves de dados criptografadas

Você pode limitar o número de chaves de dados criptografadas em uma mensagem
criptografada. Esse atributo pode ajudar você a detectar um provedor de chave mestra ou um
token de autenticação mal configurado ao criptografar ou a identificar um texto cifrado malicioso
ao descriptografar.

Você deve limitar as chaves de dados criptografadas ao descriptografar mensagens de uma fonte
não confiável. Isso evita chamadas desnecessárias, caras e potencialmente exaustivas para sua
infraestrutura principal.

Versão 2.2x 447

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Versão 2.3x

Adiciona suporte para chaves AWS KMS multirregionais. Para obter detalhes, consulte Usando
várias regiões AWS KMS keys.

Note

A CLI AWS de criptografia oferece suporte a chaves multirregionais a partir da versão 3.0. x.
Versão 2. x. x do AWS Encryption SDK for Python, AWS Encryption SDK para JavaScript, e
a CLI de AWS criptografia estão em fase. end-of-support
Para obter informações sobre suporte e manutenção dessa AWS Encryption SDK versão em
sua linguagem de programação preferida, consulte o SUPPORT_POLICY.rst arquivo em
seu GitHubrepositório.

Versão 2.3x 448

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Guia do Desenvolvedor

Migrando seu AWS Encryption SDK
O AWS Encryption SDK suporta várias implementações de linguagem de programação
interoperáveis, cada uma delas desenvolvida em um repositório de código aberto no. GitHub Como
prática recomendada, recomendamos que você use a versão mais recente do AWS Encryption SDK
para cada idioma.

Você pode atualizar com segurança a partir da versão 2.0. x ou posterior AWS Encryption SDK
para a versão mais recente. No entanto, o 2.0. A versão x do AWS Encryption SDK introduz novos
recursos de segurança significativos, alguns dos quais são mudanças significativas. Para atualizar de
versões anteriores à 1.7.x para a versão 2.0.x e posteriores, primeiro será necessário atualizar para
a versão 1.x mais recente. Os tópicos desta seção foram elaborados para ajudar você a entender as
alterações, selecionar a versão correta para a aplicação e migrar com segurança e sucesso para as
versões mais recentes do AWS Encryption SDK.

Para obter informações sobre versões significativas do AWS Encryption SDK, consulteVersões do
AWS Encryption SDK.

Important

Não atualize diretamente de uma versão anterior à 1.7x para a versão 2.0.x ou posterior
sem primeiro atualizar para a mais recente versão 1x.. Se você atualizar diretamente para a
versão 2.0. x ou posterior e habilite todos os novos recursos imediatamente, eles não AWS
Encryption SDK conseguirão descriptografar texto cifrado criptografado em versões mais
antigas do. AWS Encryption SDK

Note

A versão mais antiga do AWS Encryption SDK para.NET é a versão 3.0. x. Todas as versões
do AWS Encryption SDK para.NET oferecem suporte às melhores práticas de segurança
introduzidas na versão 2.0. x do AWS Encryption SDK. É possível atualizar com segurança
para a versão mais recente sem fazer alterações no código ou nos dados.
AWS CLI de criptografia: ao ler este guia de migração, use a versão 1.7. x instruções
de migração para o AWS Encryption CLI 1.8. x e use o 2.0. x instruções de migração
para o AWS Encryption CLI 2.1. x. Para obter detalhes, consulte Versões da CLI AWS de
criptografia.

449

AWS Encryption SDK Guia do Desenvolvedor

Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Novos usuários

Se você é novo no AWS Encryption SDK, instale a versão mais recente do AWS Encryption
SDK para sua linguagem de programação. Os valores padrão habilitam todos os recursos de
segurança do AWS Encryption SDK, incluindo criptografia com assinatura, derivação de chave e
comprometimento de chave. AWS Encryption SDK

Usuários atuais

Recomendamos atualizar da versão atual para a versão mais recente disponível assim que
possível. Todos os 1. As versões x do AWS Encryption SDK estão em end-of-support fase, assim
como as versões posteriores em algumas linguagens de programação. Para obter detalhes sobre
o status de suporte e manutenção do AWS Encryption SDK em sua linguagem de programação,
consulte Suporte e manutenção.

AWS Encryption SDK versões 2.0. x e versões posteriores fornecem novos recursos de
segurança para ajudar a proteger seus dados. No entanto, AWS Encryption SDK a versão 2.0.
x inclui alterações significativas que não são compatíveis com versões anteriores. Para garantir
uma transição segura, comece migrando da sua versão atual para a mais recente 1.x na sua
linguagem de programação. Quando a versão 1.x estiver totalmente implantada e operando com
sucesso, você poderá migrar com segurança para as versões 2.0.x e posteriores. Esse processo
de duas etapas é essencial, especialmente para aplicações distribuídas.

Para obter mais informações sobre os recursos AWS Encryption SDK de segurança subjacentes a
essas mudanças, consulte Criptografia aprimorada do lado do cliente: compromisso explícito KeyIds
e fundamental no Blog de Segurança.AWS

Procurando ajuda para usar o AWS Encryption SDK for Java com o AWS SDK for Java 2.x?
Consulte Pré-requisitos.

Tópicos

• Como migrar e implantar o AWS Encryption SDK

450

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Guia do Desenvolvedor

• Atualizando provedores de chaves AWS KMS mestras

• Atualizando AWS KMS chaveiros

• Como definir sua política de compromisso

• Solução de problemas de migração para as versões mais recentes

Como migrar e implantar o AWS Encryption SDK

Ao migrar de uma AWS Encryption SDK versão anterior à 1.7. x até a versão 2.0. x ou mais tarde,
você deve fazer a transição segura para a criptografia com comprometimento de chave. Caso
contrário, a aplicação encontrará textos cifrados que não poderá descriptografar. Se você estiver
usando provedores de chave AWS KMS mestra, deverá atualizar para novos construtores que criam
provedores de chave mestra no modo estrito ou no modo de descoberta.

Note

Este tópico foi desenvolvido para usuários que estão migrando de versões anteriores do
AWS Encryption SDK para a versão 2.0. x posterior. Se você é novo no AWS Encryption
SDK, pode começar a usar a versão mais recente disponível imediatamente com as
configurações padrão.

Para evitar uma situação crítica na qual você não possa descriptografar o texto cifrado que precisa
ler, recomendamos que você migre e implante em várias etapas distintas. Verifique se cada etapa
está completa e totalmente implantada antes de iniciar a próxima etapa. Isso é particularmente
importante para aplicações distribuídas com vários hosts.

Etapa 1: atualize a aplicação para a versão 1.x mais recente

Atualize para a versão 1.x mais recente para sua linguagem de programação. Teste com cuidado,
implante suas alterações e confirme se a atualização foi propagada para todos os hosts de destino
antes de iniciar a etapa 2.

Important

Verifique se a sua versão 1.x mais recente é a versão 1.7.x ou versão posterior do AWS
Encryption SDK.

Como migrar e implantar 451

AWS Encryption SDK Guia do Desenvolvedor

O mais recente 1. As versões x do AWS Encryption SDK são compatíveis com versões anteriores
do AWS Encryption SDK e versões anteriores com as versões 2.0. x e mais tarde. Elas incluem
os novos atributos presentes na versão 2.0.x, mas inclui padrões seguros projetados para essa
migração. Eles permitem que você atualize seus provedores de chave AWS KMS mestra, se
necessário, e implante totalmente pacotes de algoritmos que podem decifrar texto cifrado com
comprometimento de chave.

• Substitua elementos descontinuados, incluindo construtores para provedores de chaves metras
do AWS KMS herdados. Em Python,ative os avisos de descontinuidade. Elementos de código
que foram descontinuados na mais recente versão 1.x foram removidos das versões 2.0. x e
posteriores.

• Defina explicitamente sua política de compromisso como ForbidEncryptAllowDecrypt.
Embora esse seja o único valor válido no último 1. Nas versões x, essa configuração é necessária
quando você usa a APIs introduzida nesta versão. Isso impede que a aplicação rejeite texto
cifrado criptografado sem confirmação de chave quando você migra para a versão 2.0.x e
versões posteriores. Para obter detalhes, consulte the section called “Como definir sua política de
compromisso”.

• Se você usa provedores de chave AWS KMS mestra, deve atualizar seus provedores de chave
mestra legados para provedores de chave mestra que ofereçam suporte ao modo estrito e ao
modo de descoberta. Essa atualização é necessária para o AWS Encryption SDK for Java AWS
Encryption SDK for Python, e para a CLI AWS de criptografia. Se você usa provedores de chave
mestra no modo de descoberta, recomendamos que implemente o filtro de descoberta que limita
as chaves de encapsulamento usadas àquelas presentes em Contas da AWS. Essa atualização
é opcional, mas é uma prática recomendada que incentivamos. Para obter detalhes, consulte
Atualizando provedores de chaves AWS KMS mestras.

• Se você usa token de autenticação de descoberta do AWS KMS, recomendamos que inclua um
filtro de descoberta que limite as chaves de encapsulamento usadas na descriptografia a aquelas
em particular. Contas da AWS Essa atualização é opcional, mas é uma prática recomendada que
incentivamos. Para obter detalhes, consulte Atualizando AWS KMS chaveiros.

Etapa 2: atualize a aplicação para a versão mais recente

Depois que a implantação da mais recente versão 1.x for bem-sucedida em todos os hosts, você
pode atualizar para as versões 2.0. x e posteriores. Versão 2.0. x inclui alterações significativas em
todas as versões anteriores do AWS Encryption SDK. No entanto, se você fizer as alterações de
código recomendadas na etapa 1, poderá evitar erros ao migrar para a versão mais recente.

Etapa 2: atualize a aplicação para a versão mais recente 452

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK Guia do Desenvolvedor

Antes de atualizar para a versão mais recente, verifique se sua política de compromisso
está consistentemente definida como ForbidEncryptAllowDecrypt. Em seguida,
dependendo da configuração de dados, você pode migrar no seu próprio ritmo
para RequireEncryptAllowDecrypt e depois para a configuração padrão,
RequireEncryptRequireDecrypt. Recomendamos uma série de etapas de transição, como o
padrão a seguir.

1. Comece com sua política de compromisso definida como ForbidEncryptAllowDecrypt. O
AWS Encryption SDK pode descriptografar mensagens com confirmação de chave, mas ainda
não descriptografa com confirmação de chave.

2. Quando estiver pronto, atualize a política de compromisso para
RequireEncryptAllowDecrypt. AWS Encryption SDK Começa a criptografar seus dados com
um compromisso fundamental. Ele poderá descriptografar textos cifrados criptografados com ou
sem confirmação de chave.

Antes de atualizar sua política de compromisso para RequireEncryptAllowDecrypt,
verifique se sua versão 1x mais recente foi implantada em todos os hosts, incluindo os hosts de
qualquer aplicação que decodifique o texto cifrado que você produz. Versões AWS Encryption
SDK anteriores à versão 1.7. x não pode descriptografar mensagens criptografadas com
comprometimento de chave.

Esse também é um bom momento para adicionar métricas à sua aplicação para medir se
você ainda está processando texto cifrado sem confirmação de chave. Isso ajudará você
a determinar quando é seguro atualizar sua configuração de política de compromisso para
RequireEncryptRequireDecrypt. Para algumas aplicações, como aquelas que criptografam
mensagens em uma fila do Amazon SQS, isso pode significar esperar tempo suficiente para que
todo o texto cifrado criptografado nas versões antigas seja recriptografado ou excluído. Para
outras aplicações, como objetos criptografados do S3, talvez seja necessário baixar, recriptografar
e recarregar todos os objetos.

3. Quando tiver certeza de que não tem nenhuma mensagem criptografada sem
confirmação de chave, você pode atualizar sua política de compromisso para
RequireEncryptRequireDecrypt. Esse valor garante que seus dados sejam sempre
criptografados e descriptografados com o confirmação de chave. Essa configuração é a padrão,
então você não precisa defini-la explicitamente, mas recomendamos que faça isso. Uma
configuração explícita ajudará na depuração e em quaisquer possíveis reversões que possam ser
necessárias se a aplicação encontrar texto cifrado criptografado sem confirmação de chave.

Etapa 2: atualize a aplicação para a versão mais recente 453

AWS Encryption SDK Guia do Desenvolvedor

Atualizando provedores de chaves AWS KMS mestras

Para migrar para o mais recente 1. versão x do e AWS Encryption SDK, em seguida, para a versão
2.0. x ou posterior, você deve substituir os provedores de chave AWS KMS mestra legados por
provedores de chave mestra criados explicitamente no modo estrito ou no modo de descoberta. Os
provedores de chave mestra herdados foram descontinuados na versão 1.7.x e foram removidos na
versão 2.0. x. Essa alteração é necessária para aplicações e scripts que usam o AWS Encryption
SDK for Java, o AWS Encryption SDK for Python e a CLI de criptografia da AWS. Os exemplos nesta
seção mostrarão como atualizar seu código.

Note

Em Python, ative os avisos de obsolescência. Isso ajudará você a identificar as partes do
código que precisa atualizar.

Se você estiver usando uma chave AWS KMS mestra (não um provedor de chave mestra), você
pode pular esta etapa. AWS KMS as chaves mestras não estão obsoletas nem foram removidas.
Elas criptografam e descriptografam somente com as chaves de encapsulamento que você
especificar.

Os exemplos nesta seção se concentram nos elementos do seu código precisam ser alterados. Para
obter um exemplo completo do código atualizado, consulte a seção Exemplos do GitHub repositório
da sua linguagem de programação. Além disso, esses exemplos normalmente usam ARNs a chave
para representar AWS KMS keys. Ao criar um provedor de chave mestra para criptografia, você pode
usar qualquer identificador de AWS KMS chave válido para representar um AWS KMS key . Ao criar
um provedor de chave mestra para descriptografia, você deve usar um ARN de chave.

Saiba mais sobre migração

Para todos os AWS Encryption SDK usuários, saiba como definir sua política de compromisso emthe
section called “Como definir sua política de compromisso”.

Para AWS Encryption SDK para JavaScript usuários AWS Encryption SDK for C e usuários, saiba
mais sobre uma atualização opcional dos chaveiros emAtualizando AWS KMS chaveiros.

Tópicos

• Migração para o modo estrito

Atualizando provedores de chaves AWS KMS mestras 454

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Guia do Desenvolvedor

• Migrar para o modo de descoberta

Migração para o modo estrito

Depois de atualizar para o mais recente 1. versão x do AWS Encryption SDK, substitua seus
provedores de chave mestra legados por provedores de chave mestra no modo estrito. No modo
estrito, você deve especificar as chaves de encapsulamento a serem usadas ao criptografar e
descriptografar. O AWS Encryption SDK usa somente as chaves de empacotamento que você
especificar. Provedores de chaves mestras obsoletas podem descriptografar dados usando qualquer
um AWS KMS key que criptografe uma chave de dados, inclusive em diferentes regiões. AWS KMS
keys Contas da AWS

Os provedores de chaves mestras no modo estrito são introduzidos na AWS Encryption SDK versão
1.7. x. Eles substituem os provedores de chaves mestras herdados, que foram suspensos na versão
1.7.x e removidos na versão 2.0.x.. Usar provedores de chave mestra no modo estrito é uma prática
AWS Encryption SDK recomendada.

O código a seguir cria um provedor de chave mestra no modo estrito que você pode usar para
criptografar e descriptografar.

Java

Este exemplo representa o código em uma aplicação que usa a versão 1.6.2 ou anterior do AWS
Encryption SDK for Java.

Esse código usa o KmsMasterKeyProvider.builder() método para instanciar um provedor
de chave AWS KMS mestra que usa um AWS KMS key como chave de encapsulamento.

// Create a master key provider
// Replace the example key ARN with a valid one
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .withKeysForEncryption(awsKmsKey)
 .build();

Este exemplo representa o código em uma aplicação que usa a versão 1.7.x ou versões
posteriores do AWS Encryption SDK for Java . Para ver um exemplo completo, consulte
BasicEncryptionExample.java.

Migração para o modo estrito 455

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK Guia do Desenvolvedor

Os métodos Builder.build() e Builder.withKeysForEncryption() usados no exemplo
anterior foram suspensos na versão 1.7.x e removidos da versão 2.0.x..

Para atualizar para um provedor de chave mestra de modo estrito, esse código
substitui as chamadas para métodos suspensos por uma chamada para o novo método
Builder.buildStrict(). Este exemplo especifica uma AWS KMS key como chave de
empacotamento, mas o Builder.buildStrict() método pode usar uma lista de várias. AWS
KMS keys

// Create a master key provider in strict mode
// Replace the example key ARN with a valid one from your Conta da AWS.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

Python

Este exemplo representa o código em uma aplicação que usa a versão 1.4.1 do AWS Encryption
SDK for Python. Esse código usa KMSMasterKeyProvider, que foi suspenso na versão 1.7.
x e removido da versão 2.0.x.. Ao descriptografar, ele usa qualquer uma AWS KMS key que
criptografe uma chave de dados sem levar em conta o AWS KMS keys que você especificar.

Observe que KMSMasterKey não foi suspenso nem removido. Ao criptografar e descriptografar,
ele usa somente o que você especifica. AWS KMS key

Create a master key provider
Replace the example key ARN with a valid one
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvider(
 key_ids=[key_1, key_2]
)

Este exemplo representa o código em uma aplicação que usa a versão 1.7.x do AWS Encryption
SDK for Python. Para ver um exemplo completo, consulte basic_encryption.py.

Migração para o modo estrito 456

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK Guia do Desenvolvedor

Para atualizar para um provedor de chave mestra de modo estrito, esse código
substitui a chamada para KMSMasterKeyProvider() com uma chamada para
StrictAwsKmsMasterKeyProvider().

Create a master key provider in strict mode
Replace the example key ARNs with valid values from your Conta da AWS
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[key_1, key_2]
)

AWS Encryption CLI

Este exemplo mostra como criptografar e descriptografar usando a versão 1.1.7 ou anterior do
Encryption AWS CLI.

Na versão 1.1.7 e anteriores, ao criptografar, você especifica uma ou mais chaves mestras (ou
chaves de encapsulamento), como uma AWS KMS key. Ao descriptografar, você não pode
especificar nenhuma chave de encapsulamento, a menos que esteja usando um provedor
de chave mestra personalizado. A CLI de AWS criptografia pode usar qualquer chave de
empacotamento que criptografe uma chave de dados.

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --master-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \

Migração para o modo estrito 457

AWS Encryption SDK Guia do Desenvolvedor

 --output .

Este exemplo mostra como criptografar e descriptografar usando a versão 1.7 do Encryption
AWS CLI. x ou mais tarde. Para obter exemplos completos, consulte Exemplos da CLI AWS de
criptografia.

O parâmetro --master-keys foi suspenso na versão 1.7.x e removido na versão 2.0.x.. Ele
foi substituído pelo parâmetro --wrapping-keys, que é exigido nos comandos de encrypt e
decrypt. Esse parâmetro é compatível com o modo estrito e o modo de descoberta. O modo
estrito é uma prática AWS Encryption SDK recomendada que garante que você use a chave de
encapsulamento desejada.

Para atualizar para o modo estrito, use o atributo key do parâmetro --wrapping-keys para
especificar uma chave de encapsulamento ao criptografar e descriptografar.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Migrar para o modo de descoberta

A partir da versão 1.7. x, é uma prática AWS Encryption SDK recomendada usar o modo estrito
para provedores de chaves AWS KMS mestras, ou seja, especificar chaves de agrupamento
ao criptografar e descriptografar. Você deve sempre especificar as chaves de encapsulamento
ao criptografar. Mas há situações em que especificar a chave ARNs AWS KMS keys para

Migrar para o modo de descoberta 458

AWS Encryption SDK Guia do Desenvolvedor

descriptografar é impraticável. Por exemplo, se você estiver usando aliases para identificar AWS
KMS keys ao criptografar, perderá o benefício dos aliases se precisar listar a chave ARNs ao
descriptografar. Além disso, como os provedores de chave mestra no modo de descoberta se
comportam como os provedores de chave mestra originais, você pode usá-los temporariamente
como parte de sua estratégia de migração e, posteriormente, atualizar para provedores de chave
mestra no modo estrito.

Em casos como esse, você pode usar provedores de chaves mestras no modo de descoberta. Esses
provedores de chaves mestras não permitem que você especifique chaves de encapsulamento,
portanto, você não pode usá-los para criptografar. Ao descriptografar, eles podem usar qualquer
chave de encapsulamento que criptografe uma chave de dados. Mas, diferentemente dos
provedores de chaves mestras herdados, que se comportam da mesma maneira, você cria esses
provedores explicitamente no modo de descoberta. Ao usar provedores de chave mestra no modo
de descoberta, você pode limitar as chaves de encapsulamento que podem ser usadas para aquelas
que estão presentes em Contas da AWS específicas. Esse filtro de descoberta é opcional, mas é
uma prática recomendada que incentivamos. Para obter informações sobre partições e contas da
AWS , consulte Nomes do atributo da Amazon no Referência geral da AWS.

Os exemplos a seguir criam um provedor de chave AWS KMS mestra no modo estrito para
criptografia e um provedor de chave AWS KMS mestra no modo de descoberta para descriptografia.
O provedor da chave mestra no modo de descoberta usa um filtro de descoberta para limitar as
chaves de encapsulamento usadas para descriptografar à partição aws e ao exemplo específico
de Contas da AWS. Embora o filtro de conta não seja necessário neste exemplo bastante simples,
é uma prática recomendada muito benéfica quando uma aplicação criptografa os dados e outra
diferente os descriptografa.

Java

Este exemplo representa o código em uma aplicação que usa a versão 1.7.x ou versões
posteriores do AWS Encryption SDK for Java. Para ver um exemplo completo, consulte
DiscoveryDecryptionExample.java.

Para instanciar um provedor de chave mestra no modo estrito para criptografar, este exemplo
usa o método Builder.buildStrict(). Para instanciar um provedor de chave mestra no
modo de descoberta para descriptografar ele usa o método Builder.buildDiscovery().
O Builder.buildDiscovery() método usa um DiscoveryFilter que limita o AWS
Encryption SDK to AWS KMS keys na AWS partição e nas contas especificadas.

// Create a master key provider in strict mode for encrypting

Migrar para o modo de descoberta 459

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/

AWS Encryption SDK Guia do Desenvolvedor

// Replace the example alias ARN with a valid one from your Conta da AWS.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting
// Replace the example account IDs with valid values.
DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.asList("111122223333",
 "444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
 .buildDiscovery(accounts);

Python

Este exemplo representa o código em uma aplicação que usa a versão 1.7.x ou versões
posteriores do AWS Encryption SDK for Python . Para obter um exemplo completo, consulte:
discovery_kms_provider.py.

Para criar um provedor de chave mestra no modo estrito para criptografar, este exemplo usa
o método StrictAwsKmsMasterKeyProvider. Para criar um provedor de chave mestra no
modo de descoberta para descriptografia, ele usa DiscoveryAwsKmsMasterKeyProvider um
DiscoveryFilter que limita o AWS Encryption SDK to AWS KMS keys na AWS partição e nas
contas especificadas.

Create a master key provider in strict mode
Replace the example key ARN and alias ARNs with valid values from your Conta da
 AWS.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
key_2 = "arn:aws:kms:us-
west-2:444455556666:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[key_1, key_2]
)

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
 partition="aws",
 account_ids=["111122223333", "444455556666"]

Migrar para o modo de descoberta 460

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Guia do Desenvolvedor

)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
 discovery_filter=accounts
)

AWS Encryption CLI

Este exemplo mostra como criptografar e descriptografar usando a versão 1.7 do Encryption AWS
CLI. x ou mais tarde. A partir da versão 1.7.x, o parâmetro --wrapping-keys passou a ser
necessário ao criptografar e descriptografar. O parâmetro --wrapping-keys é compatível com
o modo estrito e o modo de descoberta. Para obter exemplos completos, consulte the section
called “Exemplos”.

Ao criptografar, este exemplo especifica uma chave de encapsulamento, que é obrigatória. Ao
descriptografar, ele escolhe explicitamente o modo de descoberta usando o atributo discovery
do parâmetro --wrapping-keys com um valor definido como true.

Para limitar as chaves de encapsulamento que AWS Encryption SDK podem ser usadas no
modo de descoberta àquelas em particular Contas da AWS, este exemplo usa os discovery-
account atributos discovery-partition e do --wrapping-keys parâmetro. Esses
atributos opcionais são válidos somente quando o atributo discovery for definido como true.
Você deve usar os atributos discovery-partition e discovery-account juntos. Nenhum
deles é válido sozinho.

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyAlias \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-partition=aws \

Migrar para o modo de descoberta 461

AWS Encryption SDK Guia do Desenvolvedor

 discovery-account=111122223333 \
 discovery-account=444455556666 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Atualizando AWS KMS chaveiros

Os AWS KMS chaveiros do AWS Encryption SDK for C, do AWS Encryption SDK para o.NET e do
AWS Encryption SDK para JavaScriptoferecem suporte às melhores práticas, permitindo que você
especifique chaves de agrupamento ao criptografar e descriptografar. Se você criar um token de
autenticação de descoberta do AWS KMS, você o fará de maneira explícita.

Note

A versão mais antiga do AWS Encryption SDK para.NET é a versão 3.0. x. Todas as versões
do AWS Encryption SDK para.NET oferecem suporte às melhores práticas de segurança
introduzidas na versão 2.0. x do AWS Encryption SDK. É possível atualizar com segurança
para a versão mais recente sem fazer alterações no código ou nos dados.

Quando você atualiza para o mais recente 1. Na versão x do AWS Encryption SDK, você pode
usar um filtro de descoberta para limitar as chaves de agrupamento que um chaveiro de AWS KMS
descoberta ou um chaveiro de descoberta AWS KMS regional usa ao descriptografar para aquelas
em particular. Contas da AWS Filtrar um chaveiro de descoberta é uma prática AWS Encryption SDK
recomendada.

Os exemplos nesta seção mostram como adicionar o filtro de descoberta a um token de autenticação
de descoberta regional do AWS KMS .

Saiba mais sobre migração

Para todos os AWS Encryption SDK usuários, saiba como definir sua política de compromisso emthe
section called “Como definir sua política de compromisso”.

Para usuários da CLI de AWS criptografia e AWS Encryption SDK for Java AWS Encryption SDK for
Python, saiba mais sobre uma atualização necessária para os provedores de chaves mestras em.
the section called “Atualizando provedores de chaves AWS KMS mestras”

Atualizando AWS KMS chaveiros 462

AWS Encryption SDK Guia do Desenvolvedor

Você pode ter um código como o seguinte na aplicação. Este exemplo cria um token de autenticação
de descoberta regional do AWS KMS que só pode usar chaves de encapsulamento na região Oeste
dos EUA (Oregon) (us-west-2). Este exemplo representa o código em AWS Encryption SDK versões
anteriores à 1.7. x. No entanto, ele ainda é válido nas versões 1.7x e posteriores.

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()
 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

A partir da versão 1.7. x, você pode adicionar um filtro de descoberta a qualquer chaveiro de AWS
KMS descoberta. Esse filtro de descoberta limita o AWS KMS keys que eles AWS Encryption SDK
podem usar para decodificação àqueles na partição e nas contas especificadas. Antes de usar esse
código, altere a partição, se necessário, e substitua a conta IDs de exemplo por outras válidas.

C

Para obter um exemplo completo, consulte: kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")

Atualizando AWS KMS chaveiros 463

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Guia do Desenvolvedor

 .AddAccount("444455556666")
 .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()

 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
 'aws' }
})

JavaScript Node.js

Para obter um exemplo completo, consulte: kms_filtered_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
 'aws' }
})

Como definir sua política de compromisso

O confirmação de chave assegura que seus dados criptografados sempre sejam descriptografados
para o mesmo texto simples. Para fornecer essa propriedade de segurança, começando na
versão 1.7. x, o AWS Encryption SDK usa novos conjuntos de algoritmos com comprometimento
fundamental. Para determinar se seus dados são criptografados e descriptografados com
confirmação de chave, use a definição de configuração da política de compromisso. Criptografar e

Como definir sua política de compromisso 464

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK Guia do Desenvolvedor

descriptografar dados com confirmação de chave é uma prática recomendada do AWS Encryption
SDK .

Definir uma política de compromisso é uma parte importante da segunda etapa do processo
de migração — migrar da última 1. versões x das AWS Encryption SDK duas versões 2.0. x e
mais tarde. Após definir e alterar sua política de compromisso, certifique-se de testar a aplicação
minuciosamente antes de implantá-la em produção. Para obter orientação sobre migração, consulte
Como migrar e implantar o AWS Encryption SDK.

A configuração da política de compromisso tem três valores válidos nas versões 2.0. x posteriores.
Nas versões 1.x mais recentes (a partir da versão 1.7.x), somente ForbidEncryptAllowDecrypt
é válido.

• ForbidEncryptAllowDecrypt— Eles AWS Encryption SDK não podem criptografar com
comprometimento chave. Ele pode descriptografar textos cifrados criptografados com ou sem
confirmação de chave.

Na mais recente versão 1.x, esse é o único valor válido. Isso garante que você não criptografe com
confirmação de chave até que esteja totalmente preparado para descriptografar com confirmação
de chave. Definir o valor explicitamente impede que sua política de compromisso seja alterada
automaticamente para require-encrypt-require-decrypt quando você atualizar para as
versões 2.0.x ou posteriores. Em vez disso, você pode migrar sua política de compromisso em
etapas.

• RequireEncryptAllowDecrypt— AWS Encryption SDK Sempre criptografa com
comprometimento fundamental. Ele pode descriptografar textos cifrados criptografados com ou
sem confirmação de chave. Esse valor foi adicionado na versão 2.0.x..

• RequireEncryptRequireDecrypt— AWS Encryption SDK Sempre criptografa e descriptografa
com comprometimento fundamental. Esse valor foi adicionado na versão 2.0.x.. É o valor padrão
em versões 2.0.x. e posteriores.

Na versão 1.x mais recente, o único valor de política de compromisso válido é
ForbidEncryptAllowDecrypt. Depois de migrar para a versão 2.0. x ou posterior, você pode
alterar sua política de compromisso em etapas conforme estiver pronto. Não atualize sua política
de compromisso RequireEncryptRequireDecrypt até ter certeza de que não tem nenhuma
mensagem criptografada sem o confirmação de chave.

Esses exemplos mostram como definir sua política de compromisso na última versão 1.x e nas
versões 2.0.x posteriores. A técnica depende da sua linguagem de programação.

Como definir sua política de compromisso 465

AWS Encryption SDK Guia do Desenvolvedor

Saiba mais sobre migração

Para AWS Encryption SDK for Java, AWS Encryption SDK for Python, e a CLI de AWS criptografia,
saiba mais sobre as mudanças necessárias nos provedores de chaves mestras em. the section
called “Atualizando provedores de chaves AWS KMS mestras”

Para AWS Encryption SDK for C e AWS Encryption SDK para JavaScript, saiba mais sobre uma
atualização opcional dos chaveiros emAtualizando AWS KMS chaveiros.

Como definir sua política de compromisso

A técnica que você usa para definir sua política de compromisso difere um pouco em cada
implementação de linguagem. Esses exemplos .mostram a você como fazer isso. Antes de alterar
sua política de compromisso, revise a abordagem de vários estágios em Como migrar e implantar.

C

A partir da versão 1.7. x do AWS Encryption SDK for C, você usa a
aws_cryptosdk_session_set_commitment_policy função para definir a política de
compromisso em suas sessões de criptografia e descriptografia. A política de compromisso que
você define se aplica a todas as operações de criptografia e descriptografia chamadas na sua
sessão.

As funções aws_cryptosdk_session_new_from_keyring e
aws_cryptosdk_session_new_from_cmm foram descontinuadas na versão
1.7.x e foram removidas na versão 2.0.x.. Essas funções foram substituídas
pelas funções aws_cryptosdk_session_new_from_keyring_2 e
aws_cryptosdk_session_new_from_cmm_2 que retornam uma sessão.

Ao usar aws_cryptosdk_session_new_from_keyring_2 e
aws_cryptosdk_session_new_from_cmm_2 na versão 1.x mais recentes, você deve
chamar a função aws_cryptosdk_session_set_commitment_policy com o valor
da política de compromisso COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT.
Nas versões 2.0.x e posteriores, chamar essa função é opcional, e ela aceita todos os
valores válidos. A política de compromisso padrão para as versões 2.0. x e posteriores é
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Para obter um exemplo completo, consulte string.cpp.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Como definir sua política de compromisso 466

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Guia do Desenvolvedor

/* Create an AWS KMS keyring */
const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
 aws_cryptosdk_session_new_from_keyring_2(
 alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
 COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

...
/* Encrypt your data */

size_t plaintext_consumed_output;
aws_cryptosdk_session_process(encrypt_session,
 ciphertext_output,
 ciphertext_buf_sz_output,
 ciphertext_len_output,
 plaintext_input,
 plaintext_len_input,
 &plaintext_consumed_output)
...

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);
struct aws_cryptosdk_session *decrypt_session =
 *aws_cryptosdk_session_new_from_keyring_2(
 alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
 COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(decrypt_session,
 plaintext_output,

Como definir sua política de compromisso 467

AWS Encryption SDK Guia do Desenvolvedor

 plaintext_buf_sz_output,
 plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input,
 &ciphertext_consumed_output)

C# / .NET

O require-encrypt-require-decrypt valor é a política de compromisso padrão em
todas as versões do AWS Encryption SDK para.NET. Você pode definir isso explicitamente
como uma prática recomendadas, mas isso não é necessário. No entanto, se você
estiver usando o for.NET AWS Encryption SDK para descriptografar texto cifrado que
foi criptografado por outra implementação de linguagem do AWS Encryption SDK sem
compromisso de chave, você precisará alterar o valor da política de compromisso para ou.
REQUIRE_ENCRYPT_ALLOW_DECRYPT FORBID_ENCRYPT_ALLOW_DECRYPT Caso contrário,
ocorrerá uma falha na tentativa de descriptografar o texto cifrado.

No AWS Encryption SDK para.NET, você define a política de compromisso em uma instância
do AWS Encryption SDK. Instancie um AwsEncryptionSdkConfig objeto com um
CommitmentPolicy parâmetro e use o objeto de configuração para criar a AWS Encryption
SDK instância. Em seguida, chame os Decrypt() métodos Encrypt() e da AWS Encryption
SDK instância configurada.

Este exemplo define a política de compromisso como require-encrypt-allow-decrypt.

// Instantiate the material providers
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
 CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

var encryptionContext = new Dictionary<string, string>()
{

Como definir sua política de compromisso 468

AWS Encryption SDK Guia do Desenvolvedor

 {"purpose", "test"}encryptionSdk
};

var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Para definir uma política de compromisso na CLI de AWS criptografia, use o --commitment-
policy parâmetro. Esse parâmetro foi apresentado na versão 1.8.x..

No versão 1.x mais recente, quando você usa o parâmetro --wrapping-keys em um comando
--encryptou --decrypt, é necessário um parâmetro --commitment-policy com o valor
forbid-encrypt-allow-decrypt. Caso contrário, o parâmetro --commitment-policy
será inválido.

Nas versões 2.1.x e posteriores, o parâmetro --commitment-policy é opcional e usa
como padrão o valor require-encrypt-require-decrypt, que não criptografará nem
descriptografará nenhum texto cifrado criptografado sem confirmação de chave. No entanto,
recomendamos definir a política de compromisso de forma explícita em todas as chamadas de
criptografia e descriptografia, para ajudar na manutenção e na solução de problemas.

Como definir sua política de compromisso 469

AWS Encryption SDK Guia do Desenvolvedor

Este exemplo define a política de compromisso como . Ele também usa o parâmetro --
wrapping-keys, que substituiu o parâmetro --master-keys a partir da versão 1.8.x.. Para
obter detalhes, consulte the section called “Atualizando provedores de chaves AWS KMS
mestras”. Para obter exemplos completos, consulte Exemplos da CLI AWS de criptografia.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --commitment-policy forbid-encrypt-allow-decrypt \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --commitment-policy forbid-encrypt-allow-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

A partir da versão 1.7. x do AWS Encryption SDK for Java, você define a política de compromisso
em sua instância do AwsCrypto objeto que representa o AWS Encryption SDK cliente. Essa
definição política de compromisso se aplica a todas as operações de criptografia e descriptografia
chamadas nesse cliente.

O AwsCrypto() construtor está obsoleto na última versão 1. As versões x do AWS Encryption
SDK for Java e são removidas na versão 2.0. x. Ele foi substituído por uma nova classe
Builder, um método Builder.withCommitmentPolicy() e pelo tipo enumerado
CommitmentPolicy.

Nas versões 1.x mais recentes, a classe Builder requer o método
Builder.withCommitmentPolicy() e o
argumentoCommitmentPolicy.ForbidEncryptAllowDecrypt. A partir da versão

Como definir sua política de compromisso 470

AWS Encryption SDK Guia do Desenvolvedor

2.0.x, o método Builder.withCommitmentPolicy() é opcional. O valor padrão é
CommitmentPolicy.RequireEncryptRequireDecrypt.

Para ver um exemplo completo, consulte SetCommitmentPolicyExample.java.

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.ForbidEncryptAllowDecrypt)
 .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
 masterKeyProvider,
 sourcePlaintext,
 encryptionContext);
byte[] ciphertext = encryptResult.getResult();

// Decrypt your ciphertext
CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
 masterKeyProvider,
 ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript

A partir da versão 1.7. x do AWS Encryption SDK para JavaScript, você pode definir a política de
compromisso ao chamar a nova buildClient função que instancia um AWS Encryption SDK
cliente. A função buildClient assume um valor enumerado que representa sua política de
compromisso. Ela retorna as funções encrypt e decrypt atualizadas, que reforçam sua política
de compromisso quando você criptografa e descriptografa.

Nas versões 1.x mais recentes, a função buildClient requer o argumento
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT. A partir da versão
2.0.x, o argumento da política de compromisso é opcional, e o valor padrão é
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Como definir sua política de compromisso 471

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK Guia do Desenvolvedor

O código para Node.js e o navegador são idênticos para essa finalidade, exceto que o navegador
precisa de uma instrução para definir as credenciais.

O exemplo a seguir criptografa os dados com um AWS KMS chaveiro. A nova função
buildClient define a política de compromisso comoFORBID_ENCRYPT_ALLOW_DECRYPT,
o valor padrão nas versões 1.x. mais recentes. A funções encrypt e decrypt atualizadas
retornadas por buildClient reforçam a política de compromisso que você definiu.

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
 buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

A partir da versão 1.7. x do AWS Encryption SDK for Python, você define a política de
compromisso em sua instância deEncryptionSDKClient, um novo objeto que representa o
AWS Encryption SDK cliente. A política de compromisso que você define se aplica a todas as
chamadas encrypt e decrypt que usam essa instância do cliente.

Nas versões 1.x mais recentes, o construtor EncryptionSDKClient requer o valor
enumerado CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT. A partir da
versão 2.0.x, o argumento da política de compromisso é opcional, e o valor padrão é
CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Este exemplo usa o novo construtorEncryptionSDKClient e define a política de compromisso
como o valor padrão de 1.7.x. O construtor instancia um cliente que representa o AWS Encryption
SDK. Quando você chama os métodos encrypt,decrypt ou stream desse cliente, eles
aplicam a política de compromisso que você definiu. Esse exemplo também usa o novo construtor

Como definir sua política de compromisso 472

AWS Encryption SDK Guia do Desenvolvedor

da StrictAwsKmsMasterKeyProvider classe, que especifica AWS KMS keys quando
criptografar e descriptografar.

Para obter um exemplo completo, consulte set_commitment.py.

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
 source=source_plaintext,
 encryption_context=encryption_context,
 master_key_provider=aws_kms_strict_master_key_provider
)

Decrypt your ciphertext
decrypted, decrypt_header = client.decrypt(
 source=ciphertext,
 master_key_provider=aws_kms_strict_master_key_provider
)

Rust

O require-encrypt-require-decrypt valor é a política de compromisso padrão em
todas as versões do AWS Encryption SDK for Rust. Você pode definir isso explicitamente
como uma prática recomendadas, mas isso não é necessário. No entanto, se você
estiver usando o for Rust AWS Encryption SDK para descriptografar texto cifrado que
foi criptografado por outra implementação de linguagem do AWS Encryption SDK sem
compromisso de chave, você precisará alterar o valor da política de compromisso para ou.
REQUIRE_ENCRYPT_ALLOW_DECRYPT FORBID_ENCRYPT_ALLOW_DECRYPT Caso contrário,
ocorrerá uma falha na tentativa de descriptografar o texto cifrado.

No AWS Encryption SDK for Rust, você define a política de compromisso em uma instância
do AWS Encryption SDK. Instancie um AwsEncryptionSdkConfig objeto com um

Como definir sua política de compromisso 473

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK Guia do Desenvolvedor

comitment_policy parâmetro e use o objeto de configuração para criar a AWS Encryption
SDK instância. Em seguida, chame os Decrypt() métodos Encrypt() e da AWS Encryption
SDK instância configurada.

Este exemplo define a política de compromisso como forbid-encrypt-allow-decrypt.

// Configure the commitment policy on the AWS Encryption SDK instance
let esdk_config = AwsEncryptionSdkConfig::builder()
 .commitment_policy(ForbidEncryptAllowDecrypt)
 .build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()

Como definir sua política de compromisso 474

AWS Encryption SDK Guia do Desenvolvedor

 .plaintext(plaintext)
 .keyring(kms_keyring.clone())
 .encryption_context(encryption_context.clone())
 .send()
 .await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
 .ciphertext(ciphertext)
 .keyring(kms_keyring)
 // Provide the encryption context that was supplied to the encrypt method
 .encryption_context(encryption_context)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
 mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
 client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
 &commitPolicyForbidEncryptAllowDecrypt})
if err != nil {
 panic(err)
}

// Create an AWS KMS client

Como definir sua política de compromisso 475

AWS Encryption SDK Guia do Desenvolvedor

cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
 esdktypes.EncryptInput{
 Plaintext: []byte(exampleText),
 EncryptionContext: encryptionContext,
 Keyring: awsKmsKeyring,
})
if err != nil {
 panic(err)
}

Como definir sua política de compromisso 476

AWS Encryption SDK Guia do Desenvolvedor

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
 esdktypes.DecryptInput{
 Ciphertext: res.Ciphertext,
 EncryptionContext: encryptionContext,
 Keyring: awsKmsKeyring,
})
if err != nil {
 panic(err)
}

Solução de problemas de migração para as versões mais recentes

Antes de atualizar seu aplicativo para a versão 2.0. x ou posterior do AWS Encryption SDK, atualize
para a última 1. versão x do AWS Encryption SDK e implante-a completamente. Isso ajudará você a
evitar a maioria dos erros que pode encontrar ao atualizar para as versões 2.0.x e posteriores. Para
obter orientações detalhadas, incluindo exemplos, consulte Migrando seu AWS Encryption SDK.

Important

Verifique se a sua versão 1.x mais recente é a versão 1.7.x ou versão posterior do AWS
Encryption SDK.

Note

AWS CLI de criptografia: referências neste guia à versão 1.7. x do AWS Encryption SDK se
aplica à versão 1.8. x da CLI AWS de criptografia. Referências neste guia para a versão 2.0.
x do AWS Encryption SDK se aplica a 2.1. x da CLI AWS de criptografia.
Novos recursos de segurança foram lançados originalmente nas versões 1.7 do AWS
Encryption CLI. x e 2.0. x. No entanto, a versão AWS 1.8 do Encryption CLI. x substitui a
versão 1.7. x e CLI de AWS criptografia 2.1. x substitui 2.0. x. Para obter detalhes, consulte a
consultoria de segurança relevante no aws-encryption-sdk-clirepositório em GitHub.

Solução de problemas de migração para as versões mais recentes 477

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Guia do Desenvolvedor

Este tópico foi criado para ajudar você a reconhecer e solucionar os erros mais comuns que pode
encontrar.

Tópicos

• Objetos descontinuados ou removidos

• Conflito de configuração: política de compromisso e pacote de algoritmos

• Conflito de configuração: política de compromisso e texto cifrado

• Falha na validação do confirmação de chave

• Outras falhas de criptografia

• Outras falhas de decriptografia

• Considerações sobre reversão

Objetos descontinuados ou removidos

A versão 2.0.x inclui várias alterações importantes, incluindo a remoção de construtores, métodos,
funções e classes herdados que foram descontinuados na versão 1.7.x.. Para evitar erros do
compilador, erros de importação, erros de sintaxe e erros de símbolo não encontrado (dependendo
da sua linguagem de programação), atualize primeiro para a mais recente 1. versão x do AWS
Encryption SDK para sua linguagem de programação. (Deve ser a versão 1.7.x ou posterior) Ao usar
a versão 1.x mais recente, você pode começar a usar os elementos de substituição antes que os
símbolos originais sejam removidos.

Se precisar atualizar para a versão 2.0. x ou posterior imediatamente, consulte o changelog da sua
linguagem de programação e substitua os símbolos herdados pelos símbolos recomendados pelo
changelog.

Conflito de configuração: política de compromisso e pacote de algoritmos

Se você especificar um pacote de algoritmos que entre em conflito com sua política de compromisso,
a chamada para criptografar falhará com um erro de conflito de configuração.

Para evitar esse tipo de erro, não especifique um pacote de algoritmos. Por padrão, o AWS
Encryption SDK escolhe o algoritmo mais seguro que seja compatível com sua política de
compromisso. No entanto, se você precisar especificar um pacote de algoritmos, como um sem
assinatura, certifique-se de escolher um pacote de algoritmos que seja compatível com sua política
de compromisso.

Objetos descontinuados ou removidos 478

AWS Encryption SDK Guia do Desenvolvedor

Política de compromisso Pacotes de algoritmos compatíveis

ForbidEncryptAllowDecrypt Qualquer pacote de algoritmos sem confirmaç
ão de chave, como:
AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (03 78) (com
assinatura)

AES_256_GCM_IV12_TAG16_HKDF
_SHA256 (01 78) (sem assinatura)

RequireEncryptAllowDecrypt

RequireEncryptRequireDecrypt

Qualquer pacote de algoritmos com confirmaç
ão de chave, como:
AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (05 78) (com
assinatura)

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (04 78) (sem assinatura)

Se você encontrar esse erro sem ter especificado um pacote de algoritmos, o pacote de algoritmos
conflitante pode ter sido escolhido pelo seu gerenciador de materiais criptográficos (CMM). O CMM
padrão não selecionará um pacote de algoritmos conflitantes, mas um CMM personalizado pode
fazer isso. Para obter ajuda, consulte a documentação do seu CMM personalizado.

Conflito de configuração: política de compromisso e texto cifrado

A política de compromisso RequireEncryptRequireDecrypt não permite que o AWS Encryption
SDK descriptografe uma mensagem que foi criptografada sem confirmação de chave. Se você pedir
AWS Encryption SDK para decifrar uma mensagem sem o compromisso da chave, ele retornará um
erro de conflito de configuração.

Para evitar esse erro, antes de definir a política de compromisso
RequireEncryptRequireDecrypt, certifique-se de que todos os textos cifrados criptografados
sem confirmação de chave sejam descriptografados e recriptografados com confirmação de chave
ou sejam manipulados por uma aplicação diferente. Se você encontrar esse erro, poderá retornar

Conflito de configuração: política de compromisso e texto cifrado 479

AWS Encryption SDK Guia do Desenvolvedor

um erro para o texto cifrado conflitante ou alterar temporariamente sua política de compromisso para
RequireEncryptAllowDecrypt.

Se estiver encontrando esse erro porque você atualizou para a versão 2.0.x ou posterior a partir uma
versão anterior à 1.7.x sem ter atualizado primeiro para a versão 1x mais recente (versão 1.7. x ou
posterior), considere reverter para a versão 1.x mais recente e implantar essa versão em todos os
hosts antes de atualizar para a versão 2.0.x ou posterior. Para obter ajuda, consulte Como migrar e
implantar o AWS Encryption SDK.

Falha na validação do confirmação de chave

Ao descriptografar mensagens criptografadas com confirmação de chave, você pode receber uma
mensagem de erro de Falha na validação da confirmação de chave. Isso indica que a chamada de
descriptografia falhou porque a chave de dados em uma mensagem criptografada não é idêntica à
chave de dados exclusiva da mensagem. Ao validar a chave de dados durante a descriptografia, a
confirmação de chave protege você de descriptografar uma mensagem que pode resultar em mais
de um texto simples.

Esse erro indica que a mensagem criptografada que você estava tentando descriptografar não foi
retornada pelo AWS Encryption SDK. Pode ser uma mensagem criada manualmente ou o resultado
de dados corrompidos. Se você encontrar esse erro, a aplicação poderá rejeitar a mensagem e
prosseguir ou interromper o processamento de novas mensagens.

Outras falhas de criptografia

A criptografia pode falhar por vários motivos. Você não pode usar um token de autenticação de
descoberta do AWS KMS ou um provedor de chave mestra em modo de descoberta para criptografar
uma mensagem.

Certifique-se de especificar um provedor de token de autenticação ou de chave mestra com chaves
de encapsulamento que deem permissão para usar para criptografia. Para obter ajuda com as
permissões AWS KMS keys, consulte Visualizar uma política de chaves e Determinar o acesso a
uma AWS KMS key no Guia do AWS Key Management Service desenvolvedor.

Outras falhas de decriptografia

Se sua tentativa de descriptografar uma mensagem criptografada falhar, isso significa que o
AWS Encryption SDK não conseguiu (ou não pôde) descriptografar alguma das chaves de dados
criptografadas na mensagem.

Falha na validação do confirmação de chave 480

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK Guia do Desenvolvedor

Se você usou um provedor de chaveiro ou chave mestra que especifica chaves de encapsulamento,
ele AWS Encryption SDK usa somente as chaves de encapsulamento que você especificar. Verifique
se está usando as chaves de encapsulamento pretendidas e se tem permissão kms:Decrypt em
pelo menos uma das chaves de encapsulamento. Se você estiver usando AWS KMS keys, como
alternativa, tente descriptografar a mensagem com um chaveiro de AWS KMS descoberta ou um
provedor de chave mestra no modo de descoberta. Se a operação for bem-sucedida, antes de
retornar o texto simples, verifique se a chave usada para descriptografar a mensagem é confiável.

Considerações sobre reversão

Se a aplicação não conseguir criptografar ou descriptografar dados, geralmente, é possível resolver
o problema atualizando os símbolos de código, os tokens de autenticação, os provedores de chaves
mestras ou a política de compromisso. No entanto, em alguns casos, você pode decidir que é melhor
reverter a aplicação para uma versão anterior do AWS Encryption SDK.

Se você precisar reverter, faça isso com cuidado. Versões AWS Encryption SDK anteriores à 1.7. x
não pode decifrar texto cifrado criptografado com comprometimento de chave.

• Geralmente, é seguro reverter da versão 1.x mais recente para uma versão anterior do AWS
Encryption SDK . Talvez seja necessário desfazer as alterações feitas no código para usar
símbolos e objetos que não são compatíveis com as versões anteriores.

• Depois de começar a criptografar com confirmação de chave (definindo sua política de
compromisso como RequireEncryptAllowDecrypt) na versão 2.0.x ou posterior, você poderá
reverter para a versão 1.7.x, mas não para alguma versão anterior a ela. Versões AWS Encryption
SDK anteriores à 1.7. x não pode decifrar texto cifrado criptografado com comprometimento de
chave.

Se você acidentalmente ativar a criptografia com confirmação de chave antes de que todos os
hosts possam descriptografar com confirmação de chave, talvez seja melhor continuar com a
implantação em vez de revertê-la. Se as mensagens forem transitórias ou puderem ser descartadas
com segurança, considere fazer uma reversão com perda de mensagens. Se for necessária uma
reversão, considere criar uma ferramenta que descriptografe e recriptografe todas as mensagens.

Considerações sobre reversão 481

AWS Encryption SDK Guia do Desenvolvedor

Perguntas frequentes
Perguntas frequentes

• Como o é AWS Encryption SDK diferente do AWS SDKs?

• Como ele é AWS Encryption SDK diferente do cliente de criptografia Amazon S3?

• Quais algoritmos criptográficos são suportados pelo AWS Encryption SDK e qual é o padrão?

• Como o vetor de inicialização (IV) é gerado e onde é armazenado?

• Como cada chave de dados é gerada, criptografada e descriptografada?

• Como faço para controlar as chaves de dados que foram usadas para criptografar meus dados?

• Como eles AWS Encryption SDK armazenam chaves de dados criptografadas com seus dados
criptografados?

• Quanta sobrecarga o formato da AWS Encryption SDK mensagem adiciona aos meus dados
criptografados?

• Posso usar meu próprio provedor de chaves mestras?

• Posso criptografar dados com mais de uma chave de encapsulamento?

• Com quais tipos de dados posso criptografar? AWS Encryption SDK

• Como os fluxos AWS Encryption SDK criptografam e descriptografam input/output (E/S)?

Como o é AWS Encryption SDK diferente do AWS SDKs?

Eles AWS SDKsfornecem bibliotecas para interagir com a Amazon Web Services (AWS), incluindo
AWS Key Management Service (AWS KMS). Algumas das implementações de linguagem do
AWS Encryption SDK, como a AWS Encryption SDK para o.NET, sempre exigem o AWS SDK na
mesma linguagem de programação. Outras implementações de linguagem exigem o AWS SDK
correspondente somente quando você usa AWS KMS chaves em seus chaveiros ou provedores de
chaves mestras. Para obter detalhes, consulte o tópico sobre sua linguagem de programação em
AWS Encryption SDK linguagens de programação.

Você pode usar o AWS SDKs para interagir AWS KMS, incluindo criptografar e descriptografar
pequenas quantidades de dados (até 4.096 bytes com uma chave de criptografia simétrica) e gerar
chaves de dados para criptografia do lado do cliente. No entanto, ao gerar uma chave de dados,
você deve gerenciar todo o processo de criptografia e descriptografia, incluindo criptografar seus
dados com a chave de dados externa, descartar com segurança a chave de dados em texto simples

Como o é AWS Encryption SDK diferente do AWS SDKs? 482

https://aws.amazon.com/tools/

AWS Encryption SDK Guia do Desenvolvedor

AWS KMS, armazenar a chave de dados criptografada e, em seguida, descriptografar a chave de
dados e descriptografar seus dados. O AWS Encryption SDK gerencia esse processo para você.

O AWS Encryption SDK fornece uma biblioteca que criptografa e descriptografa dados usando os
padrões e as melhores práticas do setor. Ele gera a chave de dados, criptografa-a com as chaves
de encapsulamento especificadas e retorna uma mensagem criptografada, um objeto de dados
portátil que inclui os dados criptografados e as chaves de dados criptografadas necessárias para
descriptografá-los. Na hora de descriptografar, você passa a mensagem criptografada e pelo menos
uma das chaves de encapsulamento (opcional) e AWS Encryption SDK retorna seus dados em texto
sem formatação.

Você pode usar AWS KMS keys como chaves de empacotamento no AWS Encryption SDK, mas
isso não é obrigatório. Você pode usar as chaves de criptografia geradas por você e as do seu
gerenciador de chaves ou módulo de segurança de hardware on-premises. Você pode usar o AWS
Encryption SDK mesmo se não tiver uma AWS conta.

Como ele é AWS Encryption SDK diferente do cliente de
criptografia Amazon S3?

O cliente de criptografia Amazon S3 no AWS SDKs fornece criptografia e descriptografia para dados
que você armazena no Amazon Simple Storage Service (Amazon S3). Esses clientes são totalmente
acoplados ao Amazon S3 e são destinados para uso apenas com os dados armazenados ali.

AWS Encryption SDK Ele fornece criptografia e decodificação para dados que você pode armazenar
em qualquer lugar. O AWS Encryption SDK e o cliente de criptografia Amazon S3 não são
compatíveis porque produzem textos cifrados com formatos de dados diferentes.

Quais algoritmos criptográficos são suportados pelo AWS
Encryption SDK e qual é o padrão?

O AWS Encryption SDK usa o algoritmo simétrico Advanced Encryption Standard (AES) no Galois/
Counter Modo (GCM), conhecido como AES-GCM, para criptografar seus dados. Ele permite que
você escolha entre vários algoritmos simétricos e assimétricos para criptografar as chaves de dados
que criptografam seus dados.

Para o AES-GCM, o conjunto de algoritmos padrão é o AES-GCM com uma chave de 256 bits,
derivação de chave (HKDF), assinaturas digitais e compromisso de chave. AWS Encryption SDK

Como ele é AWS Encryption SDK diferente do cliente de criptografia Amazon S3? 483

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK Guia do Desenvolvedor

também oferece suporte a chaves de criptografia de 192 e 128 bits e algoritmos de criptografia sem
assinaturas digitais e comprometimento de chaves.

Em todos os casos, o tamanho do vetor de inicialização (IV) é de 12 bytes, e o tamanho da tag de
autenticação é de 16 bytes. Por padrão, o SDK usa a chave de dados como entrada para a função
de derivação de chave baseada em HMAC (HKDF) para derivar a extract-and-expand chave de
criptografia AES-GCM e também adiciona uma assinatura do Algoritmo de Assinatura Digital de
Curva Elíptica (ECDSA).

Para obter informações sobre como escolher o algoritmo a ser usado, consulte Pacotes de
algoritmos compatíveis.

Para obter detalhes sobre a implementação de algoritmos compatíveis, consulte Referência de
algoritmos.

Como o vetor de inicialização (IV) é gerado e onde é armazenado?
O AWS Encryption SDK usa um método determinístico para construir um valor IV diferente para
cada quadro. Esse procedimento garante que nunca IVs sejam repetidos em uma mensagem. (Antes
da versão 1.3.0 do AWS Encryption SDK for Java e do AWS Encryption SDK for Python, o AWS
Encryption SDK gerava aleatoriamente um valor IV exclusivo para cada quadro.)

O IV é armazenado na mensagem criptografada que ele AWS Encryption SDK retorna. Para obter
mais informações, consulte o AWS Encryption SDK referência de formato de mensagem.

Como cada chave de dados é gerada, criptografada e
descriptografada?
O método depende do token de autenticação ou do provedor de chave mestra que você usa.

Os AWS KMS chaveiros e os provedores de chaves mestras AWS Encryption SDK usam a operação
da AWS KMS GenerateDataKeyAPI para gerar cada chave de dados e criptografá-la sob sua chave
de encapsulamento. Para criptografar cópias da chave de dados em chaves KMS adicionais, eles
usam a operação AWS KMS Criptografar. Para descriptografar as chaves de dados, eles usam a
operação Decrypt. AWS KMS Para obter detalhes, consulte AWS KMS chaveiro na AWS Encryption
SDK Especificação em GitHub.

Outros tokens de autenticação geram a chave de dados, criptografam e descriptografam usando os
métodos das práticas recomendadas para cada linguagem de programação. Para obter detalhes,

Como o vetor de inicialização (IV) é gerado e onde é armazenado? 484

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md

AWS Encryption SDK Guia do Desenvolvedor

consulte a especificação do fornecedor do chaveiro ou da chave mestra na seção Estrutura da AWS
Encryption SDK Especificação em GitHub.

Como faço para controlar as chaves de dados que foram usadas
para criptografar meus dados?

Ele AWS Encryption SDK faz isso por você. Ao criptografar dados, o SDK criptografa a chave
de dados e armazena a chave criptografada junto com os dados criptografados na mensagem
criptografada que retorna. Ao descriptografar dados, o AWS Encryption SDK extrai a chave de dados
criptografada da mensagem criptografada, descriptografa-a usa-a para descriptografar os dados.

Como eles AWS Encryption SDK armazenam chaves de dados
criptografadas com seus dados criptografados?

As operações de criptografia AWS Encryption SDK retornam uma mensagem criptografada,
uma estrutura de dados única que contém os dados criptografados e suas chaves de dados
criptografadas. O formato da mensagem consiste em pelo menos duas partes: um cabeçalho e um
corpo. O cabeçalho da mensagem contém as chaves de dados criptografadas e informações sobre
como o corpo da mensagem é formado. O corpo da mensagem contém os dados criptografados.
Se o pacote de algoritmos incluir uma assinatura digital, o formato da mensagem incluirá um rodapé
que contém a assinatura. Para obter mais informações, consulte AWS Encryption SDK referência de
formato de mensagem.

Quanta sobrecarga o formato da AWS Encryption SDK mensagem
adiciona aos meus dados criptografados?

A quantidade de sobrecarga adicionada pelo AWS Encryption SDK depende de vários fatores,
incluindo os seguintes:

• O tamanho dos dados de texto descriptografado

• Qual dos algoritmos compatíveis é usado

• Se dados autenticados adicionais (AAD) são fornecidos e o tamanho desse AAD

• O número e o tipo de chave de encapsulamento ou chave mestra

• O tamanho da moldura (quando dados com moldura são usados)

Como faço para controlar as chaves de dados que foram usadas para criptografar meus dados? 485

https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK Guia do Desenvolvedor

Quando você usa o AWS Encryption SDK com sua configuração padrão (uma AWS KMS key como
chave de empacotamento (ou chave mestra), sem AAD, dados não emoldurados e um algoritmo
de criptografia com assinatura), a sobrecarga é de aproximadamente 600 bytes. Em geral, você
pode pressupor de forma razoável que o AWS Encryption SDK adiciona uma sobrecarga de 1 KB ou
menos, sem incluir o AAD fornecido. Para obter mais informações, consulte AWS Encryption SDK
referência de formato de mensagem.

Posso usar meu próprio provedor de chaves mestras?
Sim. Os detalhes da implementação variam dependendo de qual das linguagens de programação
suportadas você usa. No entanto, todas as linguagens suportadas permitem que você defina
gerenciadores de materiais criptográficos personalizados (CMMs) Ms), fornecedores de chaves
mestras, chaveiros, chaves mestras e chaves de empacotamento.

Posso criptografar dados com mais de uma chave de
encapsulamento?
Sim. Você pode criptografar a chave de dados com chaves de encapsulamento (ou chaves mestras)
adicionais para adicionar redundância, no caso de uma estar em uma região diferente ou não estar
disponível para a descriptografia.

Para criptografar dados com várias chaves de encapsulamento, crie um provedor de tokens de
chave ou de chaves mestras com várias chaves de encapsulamento. Ao trabalhar com tokens de
autenticação, você pode criar um único token de autenticação com várias chaves de empacotamento
ou um multitoken de autenticação.

Quando você criptografa dados com várias chaves de encapsulamento, o AWS Encryption SDK
usa uma chave de encapsulamento para gerar uma chave de dados em texto simples. A chave
de dados é exclusiva e matematicamente não está relacionada à chave de encapsulamento. A
operação retorna a chave de dados em texto simples e uma cópia da chave de dados criptografada
pela chave de encapsulamento. Em seguida, o método de criptografia criptografa a chave de dados
com as outras chaves de encapsulamento. A mensagem criptografada resultante inclui os dados
criptografados e uma chave de dados criptografada para cada chave de encapsulamento.

A mensagem criptografada pode ser descriptografada usando qualquer uma das chaves de
encapsulamento usadas na operação de criptografia. O AWS Encryption SDK usa uma chave de
empacotamento para descriptografar uma chave de dados criptografada. Em seguida, usa a chave
de dados de texto simples para descriptografar os dados.

Posso usar meu próprio provedor de chaves mestras? 486

AWS Encryption SDK Guia do Desenvolvedor

Com quais tipos de dados posso criptografar? AWS Encryption
SDK

A maioria das implementações de linguagem de programação do AWS Encryption SDK pode
criptografar bytes brutos (matrizes de bytes), I/O fluxos (fluxos de bytes) e cadeias de caracteres.
O AWS Encryption SDK for.NET não oferece suporte a I/O streams. Fornecemos um código de
exemplo para cada uma das linguagens de programação compatíveis.

Como os fluxos AWS Encryption SDK criptografam e
descriptografam input/output (E/S)?

O AWS Encryption SDK cria um fluxo de criptografia ou descriptografia que envolve um fluxo
subjacente. I/O O fluxo de criptografia ou descriptografia executa uma operação de criptografia em
uma chamada de leitura ou de gravação. Por exemplo, ele pode ler dados de texto não criptografado
no fluxo subjacente e criptografá-los antes de retornar o resultado. Ou pode ler texto cifrado de
um fluxo subjacente e descriptografá-lo antes de retornar o resultado. Fornecemos um código de
exemplo para criptografar e descriptografar fluxos para cada uma das linguagens de programação
compatíveis que oferecem suporte a streaming.

O AWS Encryption SDK for.NET não oferece suporte a I/O streams.

Com quais tipos de dados posso criptografar? AWS Encryption SDK 487

AWS Encryption SDK Guia do Desenvolvedor

AWS Encryption SDK referência

As informações nesta página são uma referência para criar sua própria biblioteca de criptografia
compatível com o AWS Encryption SDK. Se você não estiver criando sua própria biblioteca de
criptografia compatível, provavelmente não precisará dessas informações.

Para usar o AWS Encryption SDK em uma das linguagens de programação suportadas,
consulteLinguagens de programação.

Para a especificação que define os elementos de uma AWS Encryption SDK implementação
adequada, consulte a AWS Encryption SDK Especificação em GitHub.

O AWS Encryption SDK usa os algoritmos compatíveis para retornar uma única estrutura de
dados ou mensagem que contém dados criptografados e as chaves de dados criptografadas
correspondentes. Os tópicos a seguir explicam os algoritmos e a estrutura de dados. Use essas
informações para criar bibliotecas que podem ler e gravar textos cifrados compatíveis com este SDK.

Tópicos

• AWS Encryption SDK referência de formato de mensagem

• AWS Encryption SDK exemplos de formato de mensagem

• Referência de corpo de dados autenticados adicionais (AAD) para o AWS Encryption SDK

• AWS Encryption SDK referência de algoritmos

• AWS Encryption SDK referência vetorial de inicialização

• AWS KMS Detalhes técnicos do chaveiro hierárquico

AWS Encryption SDK referência de formato de mensagem

As informações nesta página são uma referência para criar sua própria biblioteca de criptografia
compatível com o AWS Encryption SDK. Se você não estiver criando sua própria biblioteca de
criptografia compatível, provavelmente não precisará dessas informações.

Para usar o AWS Encryption SDK em uma das linguagens de programação suportadas,
consulteLinguagens de programação.

Referência do formato de mensagens 488

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Guia do Desenvolvedor

Para a especificação que define os elementos de uma AWS Encryption SDK implementação
adequada, consulte a AWS Encryption SDK Especificação em GitHub.

As operações de criptografia AWS Encryption SDK retornam uma única estrutura de dados ou
mensagem criptografada que contém os dados criptografados (texto cifrado) e todas as chaves de
dados criptografadas. Para compreender essa estrutura de dados ou para criar bibliotecas que a
leem ou gravam nela, você precisa compreender o formato da mensagem.

O formato da mensagem consiste em pelo menos duas partes: um cabeçalho e um corpo. Em alguns
casos, o formato da mensagem consiste em uma terceira parte, um rodapé. O formato da mensagem
define uma sequência ordenada de bytes em ordem de bytes de rede, também chamado de formato
big-endian. O formato da mensagem começa com o cabeçalho, seguido pelo corpo, seguido pelo
rodapé (se houver).

Os pacotes de algoritmos suportados pelo AWS Encryption SDK usam uma das duas versões
de formato de mensagem. Os pacotes de algoritmos sem confirmação de chave usam formato
de mensagem versão 1. Os pacotes de algoritmos com confirmação de chave usam formato de
mensagem versão 2.

Tópicos

• Estrutura do cabeçalho

• Estrutura do corpo

• Estrutura do rodapé

Estrutura do cabeçalho

O cabeçalho da mensagem contém a chave de dados criptografada e informações sobre como o
corpo da mensagem é formado. A tabela a seguir descreve os campos que formam o cabeçalho nas
versões 1 e 2 do formato de mensagem. Os bytes são anexados na ordem mostrada.

O valor Não presente indica que o campo não existe nessa versão do formato de mensagem. O texto
em negrito indica valores que são diferentes em cada versão.

Note

Talvez seja necessário rolar horizontalmente ou verticalmente para ver todos os dados nessa
tabela.

Estrutura do cabeçalho 489

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Guia do Desenvolvedor

Estrutura do cabeçalho

Campo Formato da mensagem versão
1

Tamanho (bytes)

Formato da mensagem versão
2

Tamanho (bytes)

Version 1 1

Type 1 Não está presente

Algorithm ID 2 2

Message ID 16 32

AAD Length 2

Quando o contexto de
criptografia está vazio, o valor
do tamanho do AAD de 2
bytes é 0.

2

Quando o contexto de
criptografia está vazio, o valor
do tamanho do AAD de 2
bytes é 0.

AAD Variável. O tamanho desse
campo aparece nos 2 bytes
anteriores (campo Tamanho
do AAD).

Quando o contexto de
criptografia está vazio, não há
um campo AAD no cabeçalho.

Variável. O tamanho desse
campo aparece nos 2 bytes
anteriores (campo Tamanho
do AAD).

Quando o contexto de
criptografia está vazio, não há
um campo AAD no cabeçalho.

Encrypted Data Key Count 2 2

Encrypted Data Key(s) Variável. Determinado pelo
número de chaves de dados
criptografadas e pelo tamanho
de cada uma delas.

Variável. Determinado pelo
número de chaves de dados
criptografadas e pelo tamanho
de cada uma delas.

Content Type 1 1

Reserved 4 Não está presente

Estrutura do cabeçalho 490

AWS Encryption SDK Guia do Desenvolvedor

Campo Formato da mensagem versão
1

Tamanho (bytes)

Formato da mensagem versão
2

Tamanho (bytes)

IV Length 1 Não está presente

Frame Length 4 4

Algorithm Suite Data Não está presente Variável. Determinado
pelo algoritmo que gerou a
mensagem.

Header Authentication Variável. Determinado
pelo algoritmo que gerou a
mensagem.

Variável. Determinado
pelo algoritmo que gerou a
mensagem.

Versão

A versão do formato desta mensagem. A versão é 1 ou 2 codificado como o byte 01 ou 02 em
notação hexadecimal

Tipo

O tipo deste formato de mensagem. O tipo indica o tipo da estrutura. O único tipo suportado é
descrito como dados criptografados e autenticados pelo cliente. Seu valor de tipo é 128 bytes,
codificado como byte 80 em notação hexadecimal.

Esse campo não está presente na versão 2 do formato de mensagem.

ID do algoritmo

Um identificador para o algoritmo usado. É um valor de 2 bytes interpretado como um inteiro não
assinado de 16 bits. Para obter mais informações sobre os algoritmos, consulte AWS Encryption
SDK referência de algoritmos.

ID da mensagem

Um valor gerado aleatoriamente que identifica a mensagem. O ID da mensagem:

• Identifica exclusivamente a mensagem criptografada.

• Associa levemente o cabeçalho da mensagem ao corpo da mensagem.

Estrutura do cabeçalho 491

AWS Encryption SDK Guia do Desenvolvedor

• Fornece um mecanismo para reutilizar uma chave de dados com segurança com várias
mensagens criptografadas.

• Protege contra a reutilização acidental de uma chave de dados ou contra o desgaste de chaves
no AWS Encryption SDK.

Esse valor é de 128 bits no formato de mensagem versão 1 e 256 bits na versão 2.

Comprimento do AAD

O tamanho dos dados autenticados adicionais (AAD). É um valor de 2 bytes interpretado como
um número inteiro não assinado de 16 bits que especifica o número de bytes que contém o AAD.

Quando o contexto de criptografia está vazio, o valor do campo de tamanho do AAD é 0.

AAD

Os dados autenticados adicionais. O AAD é uma codificação do contexto de criptografia, uma
matriz de pares de chave-valor onde cada chave e o valor é uma string de caracteres codificados
em UTF-8. O contexto de criptografia é convertido em uma sequência de bytes e usado para
o valor do AAD. Quando o contexto de criptografia está vazio, não há um campo AAD no
cabeçalho.

Quando os algoritmos com assinatura são usados, o contexto de criptografia deve conter o par
de chave-valor {'aws-crypto-public-key', Qtxt}. Qtxt representa o ponto Q compactado
da curva elíptica de acordo com o SEC 1 versão 2.0 e, em seguida, codificado em base64. O
contexto de criptografia pode conter valores adicionais, mas o tamanho máximo do construído
AAD é 2^16 - 1 bytes.

A tabela a seguir descreve os campos que formam o AAD. Os pares de chave-valor são
classificados, por chave, em ordem crescente de acordo com o código de caracteres UTF-8. Os
bytes são anexados na ordem mostrada.

Estrutura do AAD

Campo Tamanho (bytes)

Key-Value Pair Count 2

Key Length 2

Key Variável. Igual ao valor especificado nos 2
bytes anteriores (tamanho da chave).

Estrutura do cabeçalho 492

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK Guia do Desenvolvedor

Campo Tamanho (bytes)

Value Length 2

Value Variável. Igual ao valor especificado nos 2
bytes anteriores (tamanho do valor).

Contagem de pares de valores-chave

O número de pares chave-valor no AAD. É um valor de 2 bytes interpretado como um número
inteiro não assinado de 16 bits que especifica o número de pares de chave-valor no AAD. O
número máximo de pares chave-valor no AAD é 2^16 - 1.

Quando não houver um contexto de criptografia ou o contexto de criptografia estiver vazio,
esse campo não estará presente na estrutura do AAD.

Comprimento da chave

O tamanho da chave do par de chave-valor. É um valor de 2 bytes interpretado como um
número inteiro não assinado de 16 bits que especifica o número de bytes que contém a chave.

Chave

A chave do par de chave-valor. É uma sequência de bytes codificados em UTF-8.

Comprimento do valor

O tamanho do valor do par de chave-valor. É um valor de 2 bytes interpretado como um
número inteiro não assinado de 16 bits que especifica o número de bytes que contém o valor.

Valor

O valor do par de chave-valor. É uma sequência de bytes codificados em UTF-8.

Contagem de chaves de dados criptografados

O número de chaves de dados criptografadas. É um valor de 2 bytes interpretado como
um número inteiro não assinado de 16 bits que especifica o número de chaves de dados
criptografadas. O número máximo de chaves de dados criptografadas em cada registro é 65.535
(2^16 - 1).

Estrutura do cabeçalho 493

AWS Encryption SDK Guia do Desenvolvedor

Chave (s) de dados criptografada

Uma sequência de chaves de dados criptografadas. O tamanho da sequência é determinado
pelo número de chaves de dados criptografadas e pelo tamanho de cada uma delas. A sequência
contém pelo menos uma chave de dados criptografada.

A tabela a seguir descreve os campos que formam cada chave de dados criptografada. Os bytes
são anexados na ordem mostrada.

Estrutura da chave de dados criptografada

Campo Tamanho (bytes)

Key Provider ID Length 2

Key Provider ID Variável. Igual ao valor especificado nos 2
bytes anteriores (tamanho do ID do provedor
de chave).

Key Provider Information Length 2

Key Provider Information Variável. Igual ao valor especificado nos 2
bytes anteriores (tamanho das informações
do provedor de chave).

Encrypted Data Key Length 2

Encrypted Data Key Variável. Igual ao valor especificado nos 2
bytes anteriores (tamanho da chave de dados
criptografada).

Tamanho do ID do provedor de chaves

O tamanho do identificador do provedor de chave. É um valor de 2 bytes interpretado como
um número inteiro não assinado de 16 bits que especifica o número de bytes que contém o ID
do provedor de chave.

ID do provedor de chave

O identificador do provedor de chave. É usado para indicar o provedor da chave de dados
criptografada e deve ser extensível.

Estrutura do cabeçalho 494

AWS Encryption SDK Guia do Desenvolvedor

Tamanho das informações do principal provedor

O tamanho das informações do provedor de chave. É um valor de 2 bytes interpretado como
um número inteiro não assinado de 16 bits que especifica o número de bytes que contém as
informações do provedor de chave.

Informações sobre os principais fornecedores

As informações do provedor de chave. São determinadas pelo provedor de chaves.

Quando AWS KMS é o provedor da chave mestra ou você está usando um AWS KMS
chaveiro, esse valor contém o Amazon Resource Name (ARN) do. AWS KMS key

Comprimento da chave de dados criptografados

O tamanho da chave de dados criptografada. É um valor de 2 bytes interpretado como um
número inteiro não assinado de 16 bits que especifica o número de bytes que contém a chave
de dados criptografada.

Chave de dados criptografada

A chave de dados criptografada. É a chave de criptografia dos dados criptografada pelo
provedor de chaves.

Tipo de conteúdo

O tipo de conteúdo criptografado, com moldura ou sem moldura.

Note

Sempre que possível, use dados com moldura. O AWS Encryption SDK suporta dados
não emoldurados somente para uso antigo. Algumas implementações de linguagem
do ainda AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as
implementações de linguagem compatíveis podem descriptografar texto cifrado e não
emoldurado.

Os dados com moldura são divididos em partes de tamanho igual; cada parte é criptografada
separadamente. O conteúdo com moldura é do tipo 2, codificado como o byte 02 em notação
hexadecimal.

Os dados não emoldurados não são divididos; são um único blob criptografado. O conteúdo sem
moldura é do tipo 1, codificado como o byte 01 em notação hexadecimal.

Estrutura do cabeçalho 495

AWS Encryption SDK Guia do Desenvolvedor

Reservado

Uma sequência reservada de 4 bytes. Esse valor deve ser 0. Ele é codificado como os bytes 00
00 00 00 em notação hexadecimal (ou seja, uma sequência de 4 bytes de um valor inteiro de
32 bits igual a 0).

Esse campo não está presente na versão 2 do formato de mensagem.

Comprimento IV

O tamanho do IV (initialization vector - vetor de inicialização). É um valor de 1 byte interpretado
como um número inteiro não assinado de 8 bits que especifica o número de bytes que contém o
IV. Esse valor é determinado pelo valor de bytes do IV do algoritmo que gerou a mensagem.

Este campo não está presente no formato de mensagem versão 2, que somente é compatível
com pacotes de algoritmos que usam valores IV determinísticos no cabeçalho da mensagem.

Comprimento do quadro

O tamanho de cada moldura do dado com moldura. É um valor de 4 bytes interpretado como
um número inteiro não assinado de 32 bits que especifica o número de bytes que forma cada
estrutura. Quando o dado não for com moldura, isto é, quando o valor do campo do Content
Type campo for 1, esse valor deve ser 0.

Note

Sempre que possível, use dados com moldura. O AWS Encryption SDK suporta dados
não emoldurados somente para uso antigo. Algumas implementações de linguagem
do ainda AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as
implementações de linguagem compatíveis podem descriptografar texto cifrado e não
emoldurado.

Dados do pacote de algoritmos

Dados suplementares necessários pelo algoritmo que gerou a mensagem. O tamanho e o
conteúdo são determinados pelo algoritmo. Seu tamanho pode ser 0.

Este campo não está presente na versão 1 do formato de mensagem.

Estrutura do cabeçalho 496

AWS Encryption SDK Guia do Desenvolvedor

Autenticação de

A autenticação do cabeçalho é determinada pelo algoritmo que gerou a mensagem. A
autenticação do cabeçalho é calculada sobre o cabeçalho inteiro. Consiste em um IV e uma tag
de autenticação. Os bytes são anexados na ordem mostrada.

Estrutura da autenticação do cabeçalho

Campo Tamanho na versão 1.0
(bytes)

Tamanho na versão 2.0
(bytes)

IV Variável. Determinada
pelo valor de bytes do IV
do algoritmo que gerou a
mensagem.

N/D

Authentication Tag Variável. Determinada pelo
valor dos bytes da tag de
autenticação do algoritmo
 que gerou a mensagem.

Variável. Determinada pelo
valor dos bytes da tag de
autenticação do algoritmo
 que gerou a mensagem.

IV

O vetor de inicialização (IV) usado para calcular a tag de autenticação do cabeçalho.

Este campo não está presente na versão 2 do formato de mensagem. Este campo não está
presente na versão 2 do formato de mensagem, que somente é compatível com pacotes de
algoritmos que usam valores IV determinísticos no cabeçalho da mensagem.

Tag de autenticação

O valor da autenticação do cabeçalho. É usado para autenticar todo o conteúdo do cabeçalho.

Estrutura do corpo

O corpo da mensagem contém os dados criptografados, chamados de texto cifrado. A estrutura do
corpo depende do tipo de conteúdo (sem moldura ou com moldura). As seções a seguir descrevem o
formato do corpo da mensagem para cada tipo de conteúdo. A estrutura do corpo da mensagem é a
mesma nas versões 1 e 2 do formato de mensagem.

Estrutura do corpo 497

AWS Encryption SDK Guia do Desenvolvedor

Tópicos

• Dados sem moldura

• Dados com moldura

Dados sem moldura

Os dados sem moldura são criptografados em um único blob com um IV exclusivo e AAD do corpo.

Note

Sempre que possível, use dados com moldura. O AWS Encryption SDK suporta dados não
emoldurados somente para uso antigo. Algumas implementações de linguagem do ainda
AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as implementações de
linguagem compatíveis podem descriptografar texto cifrado e não emoldurado.

A tabela a seguir descreve os campos que formam os dados sem moldura. Os bytes são anexados
na ordem mostrada.

Estrutura de corpo sem moldura

Campo Tamanho, em bytes

IV Variável. Igual ao valor especificado no byte do
IV Length do cabeçalho.

Encrypted Content Length 8

Encrypted Content Variável. Igual ao valor especificado nos
8 bytes anteriores (tamanho do conteúdo
criptografado).

Authentication Tag Variável. Determinado pela implementação do
algoritmo usado.

IV

O vetor de inicialização (IV) para uso com o algoritmo de criptografia.

Estrutura do corpo 498

AWS Encryption SDK Guia do Desenvolvedor

Tamanho do conteúdo criptografado

O tamanho do conteúdo criptografado ou do texto cifrado. É um valor de 8 bytes interpretado
como um número inteiro não assinado de 64 bits que especifica o número de bytes que contém o
conteúdo criptografado.

Tecnicamente, o valor máximo permitido é 2^63 - 1 ou 8 exbibytes (8 EiB). No entanto, na
prática, o valor máximo é 2^36 - 32 ou 64 gibibytes (64 GiB), devido às restrições impostas pelos
algoritmos implementados.

Note

A implementação Java deste SDK restringe ainda mais esse valor para 2^31 - 1 ou 2
gibibytes (2 GiB), devido às restrições da linguagem.

Conteúdo criptografado

O conteúdo criptografado (texto cifrado) como retornado pelo algoritmo de criptografia.

Tag de autenticação

O valor da autenticação do corpo. É usado para autenticar o corpo da mensagem.

Dados com moldura

Em dados com moldura, os dados de texto simples são divididos em partes iguais chamadas
molduras. O AWS Encryption SDK criptografa cada quadro separadamente com um IV e um corpo
AAD exclusivos.

Note

Sempre que possível, use dados com moldura. O AWS Encryption SDK suporta dados não
emoldurados somente para uso antigo. Algumas implementações de linguagem do ainda
AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as implementações de
linguagem compatíveis podem descriptografar texto cifrado e não emoldurado.

Estrutura do corpo 499

AWS Encryption SDK Guia do Desenvolvedor

O tamanho da moldura, que é o tamanho do conteúdo criptografado na moldura, pode ser diferente
para cada mensagem. O número máximo de bytes em uma moldura é 2^32 - 1. O número máximo
de molduras em uma mensagem é 2^32 - 1.

Há dois tipos de moldura: normal e final. Cada mensagem deve consistir ou incluir uma moldura final.

Todas as molduras normais em uma mensagem têm o mesmo tamanho de moldura. A moldura final
pode ter um tamanho de moldura diferente.

A composição das molduras em dados com molduras varia de acordo com o tamanho do conteúdo
criptografado.

• Igual ao tamanho do quadro: quando o tamanho do conteúdo criptografado é igual ao tamanho do
quadro das molduras regulares, a mensagem pode consistir em um quadro normal que contém os
dados, seguido por um quadro final de tamanho zero (0). Ou, a mensagem pode consistir apenas
em um a moldura que contém os dados. Nesse caso, a moldura final tem o mesmo tamanho de
moldura que as molduras normais.

• Múltiplo do tamanho do quadro: quando o tamanho do conteúdo criptografado é um múltiplo exato
do tamanho do quadro das molduras regulares, a mensagem pode terminar em um quadro regular
que contém os dados, seguido por um quadro final de tamanho zero (0). Ou, a mensagem pode
terminar em uma moldura final que contém os dados. Nesse caso, a moldura final tem o mesmo
tamanho de moldura que as molduras normais.

• Não é múltiplo do tamanho do quadro: quando o tamanho do conteúdo criptografado não é um
múltiplo exato do comprimento do quadro das molduras regulares, o quadro final contém os dados
restantes. O tamanho da moldura final é menor que o tamanho das molduras normais.

• Menor que o tamanho do quadro: quando o tamanho do conteúdo criptografado é menor que
o tamanho do quadro das molduras regulares, a mensagem consiste em um quadro final que
contém todos os dados. O tamanho da moldura final é menor que o tamanho das molduras
normais.

As tabelas a seguir descrevem os campos que formam as molduras. Os bytes são anexados na
ordem mostrada.

Estrutura de corpo com moldura, moldura normal

Campo Tamanho, em bytes

Sequence Number 4

Estrutura do corpo 500

AWS Encryption SDK Guia do Desenvolvedor

Campo Tamanho, em bytes

IV Variável. Igual ao valor especificado no byte do
IV Length do cabeçalho.

Encrypted Content Variável. Igual ao valor especificado no Frame
Length do cabeçalho.

Authentication Tag Variável. Determinada pelo algoritmo usado,
conforme especificado no Algorithm ID do
cabeçalho.

Número de sequência

O número sequencial da moldura. É um número do contador incremental da moldura. É um valor
de 4 bytes interpretado como um inteiro não assinado de 32 bits.

Os dados com moldura devem começar no número sequencial 1. As molduras subsequentes
devem estar em ordem e devem conter um incremento de 1 da moldura anterior. Caso contrário,
o processo de descriptografia será interrompido e relatará um erro.

IV

O vetor de inicialização (IV) da moldura. O SDK usa um método determinístico para construir
um IV diferente para cada moldura na mensagem. O tamanho é especificado pelo pacote de
algoritmos usado.

Conteúdo criptografado

O conteúdo criptografado (texto cifrado) da moldura, conforme retornado pelo algoritmo de
criptografia.

Tag de autenticação

O valor da autenticação da moldura. É usado para autenticar a moldura inteira.

Estrutura de corpo com moldura, moldura final

Campo Tamanho, em bytes

Sequence Number End 4

Estrutura do corpo 501

AWS Encryption SDK Guia do Desenvolvedor

Campo Tamanho, em bytes

Sequence Number 4

IV Variável. Igual ao valor especificado no byte do
IV Length do cabeçalho.

Encrypted Content Length 4

Encrypted Content Variável. Igual ao valor especificado nos
4 bytes anteriores (tamanho do conteúdo
criptografado).

Authentication Tag Variável. Determinada pelo algoritmo usado,
conforme especificado no Algorithm ID do
cabeçalho.

Fim do número de sequência

Um indicador para a moldura final. O valor é codificado como 4 bytes FF FF FF FF em notação
hexadecimal.

Número de sequência

O número sequencial da moldura. É um número do contador incremental da moldura. É um valor
de 4 bytes interpretado como um inteiro não assinado de 32 bits.

Os dados com moldura devem começar no número sequencial 1. As molduras subsequentes
devem estar em ordem e devem conter um incremento de 1 da moldura anterior. Caso contrário,
o processo de descriptografia será interrompido e relatará um erro.

IV

O vetor de inicialização (IV) da moldura. O SDK usa um método determinístico para construir um
IV diferente para cada moldura na mensagem. O tamanho do IV é especificado pelo pacote de
algoritmos.

Tamanho do conteúdo criptografado

O tamanho do conteúdo criptografado. É um valor de 4 bytes interpretado como um número
inteiro não assinado de 32 bits que especifica o número de bytes que contém o conteúdo
criptografado da moldura.

Estrutura do corpo 502

AWS Encryption SDK Guia do Desenvolvedor

Conteúdo criptografado

O conteúdo criptografado (texto cifrado) da moldura, conforme retornado pelo algoritmo de
criptografia.

Tag de autenticação

O valor da autenticação da moldura. É usado para autenticar a moldura inteira.

Estrutura do rodapé

Quando os algoritmos com assinatura são usados, o formato da mensagem contém um rodapé.
O rodapé da mensagem contém uma assinatura digital calculada sobre o cabeçalho e o corpo da
mensagem. A tabela a seguir descreve os campos que formam o rodapé. Os bytes são anexados na
ordem mostrada. A estrutura do rodapé da mensagem é a mesma nas versões 1 e 2 do formato de
mensagem.

Estrutura do rodapé

Campo Tamanho, em bytes

Signature Length 2

Signature Variável. Igual ao valor especificado nos 2
bytes anteriores (tamanho da assinatura).

Comprimento da assinatura

O tamanho da assinatura. É um valor de 2 bytes interpretado como um número inteiro não
assinado de 16 bits que especifica o número de bytes que contém a assinatura.

Assinatura

A assinatura.

AWS Encryption SDK exemplos de formato de mensagem

As informações nesta página são uma referência para criar sua própria biblioteca de criptografia
compatível com o AWS Encryption SDK. Se você não estiver criando sua própria biblioteca de
criptografia compatível, provavelmente não precisará dessas informações.

Estrutura do rodapé 503

AWS Encryption SDK Guia do Desenvolvedor

Para usar o AWS Encryption SDK em uma das linguagens de programação suportadas,
consulteLinguagens de programação.

Para a especificação que define os elementos de uma AWS Encryption SDK implementação
adequada, consulte a AWS Encryption SDK Especificação em GitHub.

Os tópicos a seguir mostram exemplos do formato da AWS Encryption SDK mensagem. Cada
exemplo mostra os bytes brutos, em notação hexadecimal, seguidos por uma descrição do que os
bytes representam.

Tópicos

• Dados emoldurados (formato de mensagem versão 1)

• Dados emoldurados (formato de mensagem versão 2)

• Dados não emoldurados (formato de mensagem versão 1)

Dados emoldurados (formato de mensagem versão 1)

O exemplo a seguir mostra o formato da mensagem para dados com moldura na vesão 1 do formato
de mansagem.

+--------+
| Header |
+--------+
01 Version (1.0)
80 Type (128, customer authenticated encrypted
 data)
0378 Algorithm ID (see Referência de algoritmos)
6E7C0FBD 4DF4A999 717C22A2 DDFE1A27 Message ID (random 128-bit value)
008E AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("1an")
000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)

Dados emoldurados (formato de mensagem versão 1) 504

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Guia do Desenvolvedor

32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044 AAD Key-Value Pair 4, Value Length (68)
416A4173 7569326F 7430364C 4B77715A AAD Key-Value Pair 4, Value
 ("AjAsui2ot06LKwqZXDJnU/Aqc2vD+0OkpOZ1cc8Tg2qd7rs5aLTg7lvfUEW/86+/5w==")
58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F
35773D3D
0002 EncryptedDataKeyCount (2)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B Encrypted Data Key 1, Key Provider
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C3F F02C897B
7A12EB19 8BF2D802 0110803B 24003D1F
A5474FBC 392360B5 CB9997E0 6A17DE4C
A6BD7332 6BF86DAB 60D8CCB8 8295DBE9
4707E356 ADA3735A 7C52D778 B3135A47
9F224BF9 E67E87
0007 Encrypted Data Key 2, Key Provider ID Length
 (7)

Dados emoldurados (formato de mensagem versão 1) 505

AWS Encryption SDK Guia do Desenvolvedor

6177732D 6B6D73 Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E Encrypted Data Key 2, Key Provider
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63 Encrypted Data Key 2, Key Provider
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7 Encrypted Data Key 2, Encrypted Data Key
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C36 CD985E12
D218B674 5BBC6102 0110803B 0320E3CD
E470AA27 DEAB660B 3E0CE8E0 8B1A89E4
57DCC69B AAB1294F 21202C01 9A50D323
72EBAAFD E24E3ED8 7168E0FA DB40508F
556FBD58 9E621C
02 Content Type (2, framed data)
00000000 Reserved
0C IV Length (12)
00000100 Frame Length (256)
4ECBD5C0 9899CA65 923D2347 IV
0B896144 0CA27950 CA571201 4DA58029 Authentication Tag
+------+
| Body |
+------+
00000001 Frame 1, Sequence Number (1)
6BD3FE9C ADBCB213 5B89E8F1 Frame 1, IV
1F6471E0 A51AF310 10FA9EF6 F0C76EDF Frame 1, Encrypted Content
F5AFA33C 7D2E8C6C 9C5D5175 A212AF8E
FBD9A0C3 C6E3FB59 C125DBF2 89AC7939
BDEE43A8 0F00F49E ACBBD8B2 1C785089
A90DB923 699A1495 C3B31B50 0A48A830
201E3AD9 1EA6DA14 7F6496DB 6BC104A4
DEB7F372 375ECB28 9BF84B6D 2863889F
CB80A167 9C361C4B 5EC07438 7A4822B4
A7D9D2CC 5150D414 AF75F509 FCE118BD

Dados emoldurados (formato de mensagem versão 1) 506

AWS Encryption SDK Guia do Desenvolvedor

6D1E798B AEBA4CDB AD009E5F 1A571B77
0041BC78 3E5F2F41 8AF157FD 461E959A
BB732F27 D83DC36D CC9EBC05 00D87803
57F2BB80 066971C2 DEEA062F 4F36255D
E866C042 E1382369 12E9926B BA40E2FC
A820055F FB47E428 41876F14 3B6261D9
5262DB34 59F5D37E 76E46522 E8213640
04EE3CC5 379732B5 F56751FA 8E5F26AD Frame 1, Authentication Tag
00000002 Frame 2, Sequence Number (2)
F1140984 FF25F943 959BE514 Frame 2, IV
216C7C6A 2234F395 F0D2D9B9 304670BF Frame 2, Encrypted Content
A1042608 8A8BCB3F B58CF384 D72EC004
A41455B4 9A78BAC9 36E54E68 2709B7BD
A884C1E1 705FF696 E540D297 446A8285
23DFEE28 E74B225A 732F2C0C 27C6BDA2
7597C901 65EF3502 546575D4 6D5EBF22
1FF787AB 2E38FD77 125D129C 43D44B96
778D7CEE 3C36625F FF3A985C 76F7D320
ED70B1F3 79729B47 E7D9B5FC 02FCE9F5
C8760D55 7779520A 81D54F9B EC45219D
95941F7E 5CBAEAC8 CEC13B62 1464757D
AC65B6EF 08262D74 44670624 A3657F7F
2A57F1FD E7060503 AC37E197 2F297A84
DF1172C2 FA63CF54 E6E2B9B6 A86F582B
3B16F868 1BBC5E4D 0B6919B3 08D5ABCF
FECDC4A4 8577F08B 99D766A1 E5545670
A61F0A3B A3E45A84 4D151493 63ECA38F Frame 2, Authentication Tag
FFFFFFFF Final Frame, Sequence Number End
00000003 Final Frame, Sequence Number (3)
35F74F11 25410F01 DD9E04BF Final Frame, IV
0000008E Final Frame, Encrypted Content Length (142)
F7A53D37 2F467237 6FBD0B57 D1DFE830 Final Frame, Encrypted Content
B965AD1F A910AA5F 5EFFFFF4 BC7D431C
BA9FA7C4 B25AF82E 64A04E3A A0915526
88859500 7096FABB 3ACAD32A 75CFED0C
4A4E52A3 8E41484D 270B7A0F ED61810C
3A043180 DF25E5C5 3676E449 0986557F
C051AD55 A437F6BC 139E9E55 6199FD60
6ADC017D BA41CDA4 C9F17A83 3823F9EC
B66B6A5A 80FDB433 8A48D6A4 21CB
811234FD 8D589683 51F6F39A 040B3E3B Final Frame, Authentication Tag
+--------+
| Footer |
+--------+

Dados emoldurados (formato de mensagem versão 1) 507

AWS Encryption SDK Guia do Desenvolvedor

0066 Signature Length (102)
30640230 085C1D3C 63424E15 B2244448 Signature
639AED00 F7624854 F8CF2203 D7198A28
758B309F 5EFD9D5D 2E07AD0B 467B8317
5208B133 02301DF7 2DFC877A 66838028
3C6A7D5E 4F8B894E 83D98E7C E350F424
7E06808D 0FE79002 E24422B9 98A0D130
A13762FF 844D

Dados emoldurados (formato de mensagem versão 2)

O exemplo a seguir mostra o formato da mensagem para dados com moldura na versão 2 do formato
de mensagem.

+--------+
| Header |
+--------+
02 Version (2.0)
0578 Algorithm ID (see Algorithms reference)
122747eb 21dfe39b 38631c61 7fad7340
cc621a30 32a11cc3 216d0204 fd148459 Message ID (random 256-bit value)
008e AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30546869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616e AAD Key-Value Pair 2, Key ("1an")
000a AAD Key-Value Pair 2, Value Length (10)
656e6372 79707469 6f6e AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636f6e 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616d 706c65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732d 63727970 746f2d70 75626c69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632d6b65 79
0044 AAD Key-Value Pair 4, Value Length (68)
41746733 72703845 41345161 36706669 AAD Key-Value Pair 4, Value
 ("QXRnM3JwOEVBNFFhNnBmaTk3MUlTNTk3NHpOMnlZWE5vSmtwRHFPc0dIYkVaVDRqME5OMlFkRStmbTFVY01WdThnPT0=")
39373149 53353937 347a4e32 7959584e

Dados emoldurados (formato de mensagem versão 2) 508

AWS Encryption SDK Guia do Desenvolvedor

6f4a6b70 44714f73 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675
38673d3d
0001 Encrypted Data Key Count (1)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732d 6b6d73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004b Encrypted Data Key 1, Key Provider
 Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77 Encrypted Data Key 1, Key
 Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537ef1-
d8dc-4780-9f5a-55776cbb2f7f")
6573742d 323a3635 38393536 36303038
33333a6b 65792f62 33353337 6566312d
64386463 2d343738 302d3966 35612d35
35373736 63626232 663766
00a7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010100 7840f38c 275e3109 7416c107 Encrypted Data Key 1, Encrypted Data Key
29515057 1964ada3 ef1c21e9 4c8ba0bd
bc9d0fb4 14000000 7e307c06 092a8648
86f70d01 0706a06f 306d0201 00306806
092a8648 86f70d01 0701301e 06096086
48016503 04012e30 11040c39 32d75294
06063803 f8460802 0110803b 2a46bc23
413196d2 903bf1d7 3ed98fc8 a94ac6ed
e00ee216 74ec1349 12777577 7fa052a5
ba62e9e4 f2ac8df6 bcb1758f 2ce0fb21
cc9ee5c9 7203bb
02 Content Type (2, framed data)
00001000 Frame Length (4096)
05cd035b 29d5499d 4587570b 87502afe Algorithm Suite Data (key commitment)
634f7b2c c3df2aa9 88a10105 4a2c7687
76cb339f 2536741f 59a1c202 4f2594ab Authentication Tag
+------+
| Body |
+------+
ffffffff Final Frame, Sequence Number End
00000001 Final Frame, Sequence Number (1)
00000000 00000000 00000001 Final Frame, IV
00000009 Final Frame, Encrypted Content Length (9)
fa6e39c6 02927399 3e Final Frame, Encrypted Content
f683a564 405d68db eeb0656c d57c9eb0 Final Frame, Authentication Tag

Dados emoldurados (formato de mensagem versão 2) 509

AWS Encryption SDK Guia do Desenvolvedor

+--------+
| Footer |
+--------+
0067 Signature Length (103)
30650230 2a1647ad 98867925 c1712e8f Signature
ade70b3f 2a2bc3b8 50eb91ef 56cfdd18
967d91d8 42d92baf 357bba48 f636c7a0
869cade2 023100aa ae12d08f 8a0afe85
e5054803 110c9ed8 11b2e08a c4a052a9
074217ea 3b01b660 534ac921 bf091d12
3657e2b0 9368bd

Dados não emoldurados (formato de mensagem versão 1)

O exemplo a seguir mostra o formato da mensagem para dados sem moldura.

Note

Sempre que possível, use dados com moldura. O AWS Encryption SDK suporta dados não
emoldurados somente para uso antigo. Algumas implementações de linguagem do ainda
AWS Encryption SDK podem gerar texto cifrado sem moldura. Todas as implementações de
linguagem compatíveis podem descriptografar texto cifrado e não emoldurado.

+--------+
| Header |
+--------+
01 Version (1.0)
80 Type (128, customer authenticated encrypted
 data)
0378 Algorithm ID (see Referência de algoritmos)
B8929B01 753D4A45 C0217F39 404F70FF Message ID (random 128-bit value)
008E AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("1an")
000A AAD Key-Value Pair 2, Value Length (10)

Dados não emoldurados (formato de mensagem versão 1) 510

AWS Encryption SDK Guia do Desenvolvedor

656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044 AAD Key-Value Pair 4, Value Length (68)
41734738 67473949 6E4C5075 3136594B AAD Key-Value Pair 4, Value
 ("AsG8gG9InLPu16YKlqXTOD+nykG8YqHAhqecj8aXfD2e5B4gtVE73dZkyClA+rAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D
4F513D3D
0002 Encrypted Data Key Count (2)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B Encrypted Data Key 1, Key Provider
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C28 4116449A
0F2A0383 659EF802 0110803B B23A8133
3A33605C 48840656 C38BCB1F 9CCE7369
E9A33EBE 33F46461 0591FECA 947262F3
418E1151 21311A75 E575ECC5 61A286E0
3E2DEBD5 CB005D

Dados não emoldurados (formato de mensagem versão 1) 511

AWS Encryption SDK Guia do Desenvolvedor

0007 Encrypted Data Key 2, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E Encrypted Data Key 2, Key Provider
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63 Encrypted Data Key 2, Key Provider
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7 Encrypted Data Key 2, Encrypted Data Key
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040CB2 A820D0CC
76616EF2 A6B30D02 0110803B 8073D0F1
FDD01BD9 B0979082 099FDBFC F7B13548
3CC686D7 F3CF7C7A CCC52639 122A1495
71F18A46 80E2C43F A34C0E58 11D05114
2A363C2A E11397
01 Content Type (1, nonframed data)
00000000 Reserved
0C IV Length (12)
00000000 Frame Length (0, nonframed data)
734C1BBE 032F7025 84CDA9D0 IV
2C82BB23 4CBF4AAB 8F5C6002 622E886C Authentication Tag
+------+
| Body |
+------+
D39DD3E5 915E0201 77A4AB11 IV
00000000 0000028E Encrypted Content Length (654)
E8B6F955 B5F22FE4 FD890224 4E1D5155 Encrypted Content
5871BA4C 93F78436 1085E4F8 D61ECE28
59455BD8 D76479DF C28D2E0B BDB3D5D3
E4159DFE C8A944B6 685643FC EA24122B
6766ECD5 E3F54653 DF205D30 0081D2D8
55FCDA5B 9F5318BC F4265B06 2FE7C741
C7D75BCC 10F05EA5 0E2F2F40 47A60344

Dados não emoldurados (formato de mensagem versão 1) 512

AWS Encryption SDK Guia do Desenvolvedor

ECE10AA7 559AF633 9DE2C21B 12AC8087
95FE9C58 C65329D1 377C4CD7 EA103EC1
31E4F48A 9B1CC047 EE5A0719 704211E5
B48A2068 8060DF60 B492A737 21B0DB21
C9B21A10 371E6179 78FAFB0B BAAEC3F4
9D86E334 701E1442 EA5DA288 64485077
54C0C231 AD43571A B9071925 609A4E59
B8178484 7EB73A4F AAE46B26 F5B374B8
12B0000C 8429F504 936B2492 AAF47E94
A5BA804F 7F190927 5D2DF651 B59D4C2F
A15D0551 DAEBA4AF 2060D0D5 CB1DA4E6
5E2034DB 4D19E7CD EEA6CF7E 549C86AC
46B2C979 AB84EE12 202FD6DF E7E3C09F
C2394012 AF20A97E 369BCBDA 62459D3E
C6FFB914 FEFD4DE5 88F5AFE1 98488557
1BABBAE4 BE55325E 4FB7E602 C1C04BEE
F3CB6B86 71666C06 6BF74E1B 0F881F31
B731839B CF711F6A 84CA95F5 958D3B44
E3862DF6 338E02B5 C345CFF8 A31D54F3
6920AA76 0BF8E903 552C5A04 917CCD11
D4E5DF5C 491EE86B 20C33FE1 5D21F0AD
6932E67C C64B3A26 B8988B25 CFA33E2B
63490741 3AB79D60 D8AEFBE9 2F48E25A
978A019C FE49EE0A 0E96BF0D D6074DDB
66DFF333 0E10226F 0A1B219C BE54E4C2
2C15100C 6A2AA3F1 88251874 FDC94F6B
9247EF61 3E7B7E0D 29F3AD89 FA14A29C
76E08E9B 9ADCDF8C C886D4FD A69F6CB4
E24FDE26 3044C856 BF08F051 1ADAD329
C4A46A1E B5AB72FE 096041F1 F3F3571B
2EAFD9CB B9EB8B83 AE05885A 8F2D2793
1E3305D9 0C9E2294 E8AD7E3B 8E4DEC96
6276C5F1 A3B7E51E 422D365D E4C0259C
50715406 822D1682 80B0F2E5 5C94
65B2E942 24BEEA6E A513F918 CCEC1DE3 Authentication Tag
+--------+
| Footer |
+--------+
0067 Signature Length (103)
30650230 7229DDF5 B86A5B64 54E4D627 Signature
CBE194F1 1CC0F8CF D27B7F8B F50658C0
BE84B355 3CED1721 A0BE2A1B 8E3F449E
1BEB8281 023100B2 0CB323EF 58A4ACE3
1559963B 889F72C3 B15D1700 5FB26E61

Dados não emoldurados (formato de mensagem versão 1) 513

AWS Encryption SDK Guia do Desenvolvedor

331F3614 BC407CEE B86A66FA CBF74D9E
34CB7E4B 363A38

Referência de corpo de dados autenticados adicionais (AAD) para
o AWS Encryption SDK

As informações nesta página são uma referência para criar sua própria biblioteca de criptografia
compatível com o AWS Encryption SDK. Se você não estiver criando sua própria biblioteca de
criptografia compatível, provavelmente não precisará dessas informações.

Para usar o AWS Encryption SDK em uma das linguagens de programação suportadas,
consulteLinguagens de programação.

Para a especificação que define os elementos de uma AWS Encryption SDK implementação
adequada, consulte a AWS Encryption SDK Especificação em GitHub.

Você deve fornecer dados autenticados adicionais (AAD) para o algoritmo AES-GCM para cada
operação de criptografia. Isso é verdadeiro para dados de corpo com e sem moldura. Para obter
mais informações sobre o AAD e como ele é usado no Galois/Counter Modo (GCM), consulte
Recomendações para modos de operação com cifra de bloco: Galois/Counter Modo (GCM) e GMAC.

A tabela a seguir descreve os campos que formam o AAD do corpo. Os bytes são anexados na
ordem mostrada.

Estrutura do AAD do corpo

Campo Tamanho, em bytes

Message ID 16

Body AAD Content Variável. Consulte Conteúdo do AAD do copo
na lista a seguir.

Sequence Number 4

Content Length 8

Referência de AAD de corpo 514

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK Guia do Desenvolvedor

ID da mensagem

O mesmo valor de Message ID definido no cabeçalho da mensagem.

Conteúdo corporal do AAD

Um valor codificado em UTF-8 determinado pelo tipo de dados de corpo usado.

Para dados sem moldura, use o valor AWSKMSEncryptionClient Single Block.

Para molduras normais em dados com moldura, use o valor AWSKMSEncryptionClient
Frame.

Para a moldura final nos dados com moldura, use o valor AWSKMSEncryptionClient Final
Frame.

Número de sequência

Um valor de 4 bytes interpretado como um inteiro não assinado de 32 bits.

Para dados com moldura, esse é o número sequencial da moldura.

Para dados sem moldura, use o valor 1, codificado como os 4 bytes 00 00 00 01 em notação
hexadecimal.

Comprimento do conteúdo

O tamanho, em bytes, do texto não criptografado fornecido ao algoritmo para criptografia. É um
valor de 8 bytes interpretado como um inteiro não assinado de 64 bits.

AWS Encryption SDK referência de algoritmos

As informações nesta página são uma referência para criar sua própria biblioteca de criptografia
compatível com o AWS Encryption SDK. Se você não estiver criando sua própria biblioteca de
criptografia compatível, provavelmente não precisará dessas informações.

Para usar o AWS Encryption SDK em uma das linguagens de programação suportadas,
consulteLinguagens de programação.

Para a especificação que define os elementos de uma AWS Encryption SDK implementação
adequada, consulte a AWS Encryption SDK Especificação em GitHub.

Referência de algoritmos 515

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Guia do Desenvolvedor

Se você estiver criando sua própria biblioteca que pode ler e escrever textos cifrados compatíveis
com o. AWS Encryption SDK, você precisará entender como ela AWS Encryption SDK implementa
os conjuntos de algoritmos compatíveis para criptografar dados brutos.

O AWS Encryption SDK suporta os seguintes conjuntos de algoritmos. Todos os pacotes de
algoritmos AES-GCM têm um vetor de inicialização de 12 bytes e uma tag de autenticação AES-
GCM de 16 bytes. O conjunto de algoritmos padrão varia de acordo com a AWS Encryption SDK
versão e a política de comprometimento de chave selecionada. Para obter detalhes, consulte Política
de compromisso e pacote de algoritmos.

AWS Encryption SDK Suítes de algoritmos

ID do
algoritmo

Versão
do
formato
de
mensagem

Algoritmo
de
criptogra
fia

Tamanho
da chave
de dados
(bits)

Algoritmo
de
derivação
de chave

Algoritmo
de
assinatur
a

Algoritmo
de
confirmaç
ão de
chave

Tamanho
dos
dados do
pacote
de
algoritmo
s (bytes)

05 78 0x02 AES-
GCM

256 HKDF
com
SHA-512

ECDSA
com
P-384 e
SHA-384

HKDF
com
SHA-512

32
(confirma
ção de
chave)

04 78 0x02 AES-
GCM

256 HKDF
com
SHA-512

Nenhum HKDF
com
SHA-512

32
(confirma
ção de
chave)

03 78 0x01 AES-
GCM

256 HKDF
com
SHA-384

ECDSA
com
P-384 e
SHA-384

Nenhum N/D

03 46 0x01 AES-
GCM

192 HKDF
com
SHA-384

ECDSA
com
P-384 e
SHA-384

Nenhum N/D

Referência de algoritmos 516

AWS Encryption SDK Guia do Desenvolvedor

ID do
algoritmo

Versão
do
formato
de
mensagem

Algoritmo
de
criptogra
fia

Tamanho
da chave
de dados
(bits)

Algoritmo
de
derivação
de chave

Algoritmo
de
assinatur
a

Algoritmo
de
confirmaç
ão de
chave

Tamanho
dos
dados do
pacote
de
algoritmo
s (bytes)

02 14 0x01 AES-
GCM

128 HKDF
com
SHA-256

ECDSA
com
P-256 e
SHA-256

Nenhum N/D

01 78 0x01 AES-
GCM

256 HKDF
com
SHA-256

Nenhum Nenhum N/D

01 46 0x01 AES-
GCM

192 HKDF
com
SHA-256

Nenhum Nenhum N/D

01 14 0x01 AES-
GCM

128 HKDF
com
SHA-256

Nenhum Nenhum N/D

00 78 0x01 AES-
GCM

256 Nenhum Nenhum Nenhum N/D

00 46 0x01 AES-
GCM

192 Nenhum Nenhum Nenhum N/D

00 14 0x01 AES-
GCM

128 Nenhum Nenhum Nenhum N/D

ID do algoritmo

Um valor de 2 bytes hexadecimal que identifica exclusivamente a implementação de um
algoritmo. Esse valor é armazenado no cabeçalho da mensagem do texto cifrado.

Referência de algoritmos 517

AWS Encryption SDK Guia do Desenvolvedor

Versão do formato de mensagem

A versão do formato desta mensagem. Os pacotes de algoritmos com confirmação de chave
usam formato de mensagem versão 2 (0x02). Os pacotes de algoritmos sem confirmação de
chave usam formato de mensagem versão 1 (0x01).

Tamanho dos dados do pacote de algoritmos

O tamanho em bytes dos dados específicos do pacote de algoritmos. Esse campo é suportado
somente no formato de mensagem versão 2 (0x02). No formato de mensagem versão 2 (0x02),
esses dados aparecem no campo Algorithm suite data do cabeçalho da mensagem. Os
conjuntos de algoritmos que compatíveis com o confirmação de chave usam 32 bytes para a
cadeia de caracteres de confirmação de chave. Para obter mais informações, consulte Algoritmo
de confirmação de chaves nesta lista.

Tamanho da chave de dados

O tamanho da chave de dados em bits. O AWS Encryption SDK é compatível com chaves de
256, 192 e 128 bits. A chave de dados é gerada por um token de autenticação ou chave mestra.

Em algumas implementações, essa chave de dados é usada como entrada para uma função de
derivação de extract-and-expand chave baseada em HMAC (HKDF). A saída da HKDF é usada
como a chave de criptografia de dados no algoritmo de criptografia. Para obter mais informações,
consulte Algoritmo de derivação de chaves nessa lista.

Algoritmo de criptografia

O nome e o modo do algoritmo de criptografia utilizado. Os pacotes de algoritmos AWS
Encryption SDK usam o algoritmo de criptografia Advanced Encryption Standard (AES) com
Galois/Counter Modo (GCM).

Algoritmo de confirmação de chave

O algoritmo usado para calcular a string de confirmação de chave. A saída é armazenada no
campo Algorithm suite data do cabeçalho da mensagem e é usada para validar a chave de
dados para o confirmação de chave.

Para obter uma explicação técnica sobre como adicionar comprometimento de chave a um
conjunto de algoritmos, consulte Key Committing AEADs in Cryptology ePrint Archive.

Referência de algoritmos 518

https://eprint.iacr.org/2020/1153

AWS Encryption SDK Guia do Desenvolvedor

Algoritmo de derivação de chave

A função de derivação de extract-and-expand chave baseada em HMAC (HKDF) usada para
derivar a chave de criptografia de dados. O AWS Encryption SDK usa o HKDF definido na RFC
5869.

Pacotes de algoritmos sem confirmação de chave (ID do algoritmo 01xx – 03xx)

• A função de hash usada é SHA-384 ou SHA-256, dependendo do pacote de algoritmos.

• Para a etapa de extração:

• Nenhum sal é usado. De acordo com a RFC, o sal é definido como uma string de zeros.
O tamanho da string é igual ao tamanho da saída da função de hash, que é 48 bytes para
SHA-384 e 32 bytes para SHA-256.

• O material de chaveamento de entrada é a chave de dados recebida do provedor de tokens
de autenticação ou de chaves mestras.

• Para a etapa de expansão:

• A chave pseudoaleatória de entrada é a saída da etapa de extração.

• As informações da entrada são uma concatenação do ID do algoritmo seguido pelo ID da
mensagem (nessa ordem).

• O comprimento do material de chaveamento de saída é o Tamanho da chave de dados. Essa
saída é usada como a chave de criptografia de dados no algoritmo de criptografia.

Pacotes de algoritmos com confirmação de chave (ID do algoritmo 04xx e 05xx)

• A função hash usada é SHA-512.

• Para a etapa de extração:

• O sal é um valor aleatório criptográfico de 256 bits. No formato de mensagem versão 2
(0x02), esse valor é armazenado no campo MessageID.

• O material de chaveamento inicial é a chave de dados recebida do provedor de tokens de
autenticação ou de chaves mestras.

• Para a etapa de expansão:

• A chave pseudoaleatória de entrada é a saída da etapa de extração.

• O rótulo da chave são os bytes codificados em UTF-8 da string DERIVEKEY na ordem de
bytes big endian.

• As informações da entrada são uma concatenação do ID do algoritmo seguido pelo rótulo de
chave (nessa ordem).

Referência de algoritmos 519

https://tools.ietf.org/html/rfc5869

AWS Encryption SDK Guia do Desenvolvedor

• O comprimento do material de chaveamento de saída é o Tamanho da chave de dados. Essa
saída é usada como a chave de criptografia de dados no algoritmo de criptografia.

Versão do formato de mensagem

A versão do formato de mensagem usado com o conjunto de algoritmos. Para obter detalhes,
consulte Referência do formato de mensagens.

Algoritmo de assinatura

O algoritmo de assinatura usado para gerar umaassinatura digital sobre o cabeçalho e o corpo
do texto cifrado. O AWS Encryption SDK usa o Algoritmo de Assinatura Digital de Curva Elíptica
(ECDSA) com as seguintes especificações:

• A curva elíptica usada é a curva P-384 ou P-256, conforme especificado pelo ID do algoritmo.
Essas curvas são definidas no Digital Signature Standard (DSS) (FIPS PUB 186-4).

• A função de hash usada é SHA-384 (com a curva P-384) ou SHA-256 (com a curva P-256).

AWS Encryption SDK referência vetorial de inicialização

As informações nesta página são uma referência para criar sua própria biblioteca de criptografia
compatível com o AWS Encryption SDK. Se você não estiver criando sua própria biblioteca de
criptografia compatível, provavelmente não precisará dessas informações.

Para usar o AWS Encryption SDK em uma das linguagens de programação suportadas,
consulteLinguagens de programação.

Para a especificação que define os elementos de uma AWS Encryption SDK implementação
adequada, consulte a AWS Encryption SDK Especificação em GitHub.

O AWS Encryption SDK fornece os vetores de inicialização (IVs) que são exigidos por todos os
conjuntos de algoritmos compatíveis. O SDK usa números sequenciais de molduras para construir
um IV, de forma que duas molduras na mesma mensagem não podem ter o mesmo IV.

Cada IV de 96 bits (12 bytes) é construído a partir de duas matrizes de bytes big-endian
concatenadas na seguinte ordem:

• 64 bits: 0 (reservado para uso futuro)

Referência do vetor de inicialização 520

http://doi.org/10.6028/NIST.FIPS.186-4
https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector

AWS Encryption SDK Guia do Desenvolvedor

• 32 bits: o número sequencial da moldura. Para a tag de autenticação de cabeçalho, esse valor é
todo de zeros.

Antes da introdução do armazenamento em cache de chaves de dados, AWS Encryption SDK
sempre usavam uma nova chave de dados para criptografar cada mensagem e ela gerava tudo IVs
aleatoriamente. Gerados aleatoriamente IVs eram criptograficamente seguros porque as chaves de
dados nunca eram reutilizadas. Quando o SDK introduziu o armazenamento em cache de chaves de
dados, que reutiliza intencionalmente as chaves de dados, mudamos a forma como o SDK é gerado.
IVs

Usar determinística IVs que não pode ser repetida em uma mensagem aumenta significativamente
o número de invocações que podem ser executadas com segurança em uma única chave de dados.
Além disso, as chaves de dados que são armazenadas em cache sempre usam um pacote de
algoritmos com uma função de derivação de chaves. Usar um IV determinístico com uma função de
derivação de chave pseudo-aleatória para derivar chaves de criptografia de uma chave de dados
permite AWS Encryption SDK criptografar 2^32 mensagens sem exceder os limites criptográficos.

AWS KMS Detalhes técnicos do chaveiro hierárquico

O AWS KMS chaveiro hierárquico usa uma chave de dados exclusiva para criptografar cada
mensagem e criptografa cada chave de dados com uma chave de empacotamento exclusiva
derivada de uma chave de ramificação ativa. Ele usa uma derivação de chave no modo contador
com uma função pseudoaleatória com HMAC SHA-256 para derivar a chave de empacotamento de
32 bytes com as seguintes entradas.

• Um sal aleatório de 16 bytes

• A chave de ramificação ativa

• O valor codificado em UTF-8 para o identificador do provedor de chaves "” aws-kms-hierarchy

O token de autenticação hierárquico usa a chave de empacotamento derivada para criptografar uma
cópia da chave de dados em texto simples usando o AES-GCM-256 com uma tag de autenticação de
16 bytes e as seguintes entradas.

• A chave de empacotamento derivada é usada como a chave de cifra AES-GCM

• A chave de dados é usada como mensagem AES-GCM

• Um vetor de inicialização aleatória (IV) de 12 bytes é usado como o AES-GCM IV

AWS KMS Detalhes técnicos do chaveiro hierárquico 521

https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK Guia do Desenvolvedor

• Dados autenticados adicionais (AAD) contendo os seguintes valores serializados.

Valor Tamanho em bytes Interpretada como

"aws-kms-hierarchy" 17 Codificada em UTF-8

O identificador de chave de
ramificação

Variável Codificada em UTF-8

A versão da chave de
ramificação

16 Codificada em UTF-8

Contexto de criptografia Variável Pares de valores-chave com
codificação UTF-8

AWS KMS Detalhes técnicos do chaveiro hierárquico 522

AWS Encryption SDK Guia do Desenvolvedor

Histórico de documentos do Guia do AWS Encryption SDK
desenvolvedor

Este tópico descreve atualizações importantes no Guia do desenvolvedor do AWS Encryption SDK .

Tópicos

• Atualizações recentes

• Atualizações anteriores

Atualizações recentes

A tabela a seguir descreve alterações significativas nesta documentação desde novembro de 2017.
Além das principais alterações listadas aqui, também atualizamos a documentação com frequência
para melhorar as descrições e os exemplos e abordar os comentários que você nos envia. Para ser
notificado sobre alterações significativas, inscreva-se no feed RSS.

Alteração Descrição Data

Disponibilidade geral Foi adicionada documentação
para o AWS KMS chaveiro
ECDH e o chaveiro ECDH
bruto.

17 de junho de 2024

AWS Encryption SDK for Java
versão 3.x

Integra-o AWS Encryption
SDK for Java com a bibliotec
a do fornecedor de materiais
. Adiciona suporte para
chaveiros e o contexto de
criptografia necessário (CMM).

6 de dezembro de 2023

AWS Encryption SDK para
o.NET versão 4.x

Adiciona suporte ao AWS
KMS chaveiro hierárquico,
ao contexto de criptografia
necessário (CMM) e aos

12 de outubro de 2023

Atualizações recentes 523

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html

AWS Encryption SDK Guia do Desenvolvedor

chaveiros RSA assimétricos.
AWS KMS

Disponibilidade geral Apresentando o suporte AWS
Encryption SDK para o.NET.

17 de maio de 2022

Alteração na documentação Substitua o AWS Key
Management Service termo
chave mestra do cliente (CMK)
por uma AWS KMS keychave
KMS.

30 de agosto de 2021

Disponibilidade geral Suporte adicionado para AWS
Key Management Service.
(AWS KMS) Chaves multirreg
ionais. As chaves multirreg
ionais são AWS KMS chave
s diferentes Regiões da AWS
que podem ser usadas de
forma intercambiável porque
têm o mesmo ID de chave e
material de chave.

8 de junho de 2021

Disponibilidade geral Adicionada e atualizada
a documentação sobre o
processo de decodificação de
mensagens aprimorado.

11 de maio de 2021

Disponibilidade geral Documentação adicionada
e atualizada para a versão
de disponibilidade geral do
AWS Encryption CLI versão
1.8. x para substituir a versão
1.7 do AWS Encryption CLI.
x e CLI AWS de criptografia
2.1. x para substituir o AWS
Encryption CLI 2.0. x.

27 de outubro de 2020

Atualizações recentes 524

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html

AWS Encryption SDK Guia do Desenvolvedor

Disponibilidade geral Adicionada e atualizada a
documentação da versão
de disponibilidade geral das
versões 1.7.x e 2.0.x do AWS
Encryption SDK , incluindo um
guia de melhores práticas, um
guia de migração, conceitos
 atualizados, tópicos de
linguagem de programação
atualizados, uma atualizaç
ão de referência de pacotes
de algoritmos, uma atualizaç
ão de referência de formato
de mensagem e um novo
exemplo de formato de
mensagem.

24 de setembro de 2020

Disponibilidade geral Adicionada e atualizada a
documentação para a versão
de disponibilidade geral do
AWS Encryption SDK para
JavaScript.

1 de outubro de 2019

Versão de visualização Adicionada e atualizada a
documentação da versão beta
pública do AWS Encryption
SDK para JavaScript.

21 de junho de 2019

Disponibilidade geral Adicionada e atualizada a
documentação para a versão
de disponibilidade geral do
AWS Encryption SDK for C.

16 de maio de 2019

Versão de visualização Documentação adicionada da
versão de pré-visualização do
AWS Encryption SDK for C.

5 de fevereiro de 2019

Atualizações recentes 525

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html

AWS Encryption SDK Guia do Desenvolvedor

Nova versão Documentação adicionada da
interface de linha de comando
para o AWS Encryption SDK.

20 de novembro de 2017

Atualizações anteriores

A tabela a seguir descreve as alterações significativas feitas no Guia do desenvolvedor do AWS
Encryption SDK antes de novembro de 2017.

Alteração Descrição Data

Nova versão Adicionado o capítulo
Armazenamento em cache de
chaves de dados para o novo
recurso.

Foi adicionado o the section
called “Referência do vetor
de inicialização” tópico que
explica que o SDK mudou da
geração aleatória IVs para a
construção determinística. IVs

Adicionado o tópico the
section called “Conceito
s” para explicar conceitos,
incluindo o novo gerenciador
de materiais criptográficos.

31 de julho de 2017

Atualizar Expandida a documentação
de Referência do formato de
mensagens para uma nova
seção AWS Encryption SDK
referência.

Foi adicionada uma seção
sobre AWS Encryption

21 de março de 2017

Atualizações anteriores 526

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK Guia do Desenvolvedor

Alteração Descrição Data

SDK Pacotes de algoritmos
compatíveis o.

Nova versão O AWS Encryption SDK
agora suporta a linguagem de
Python programação, além
deJava.

21 de março de 2017

Versão inicial Versão inicial do AWS
Encryption SDK e desta
documentação.

22 de março de 2016

Atualizações anteriores 527

AWS Encryption SDK Guia do Desenvolvedor

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da
tradução e da versão original em inglês, a versão em inglês prevalecerá.

dxxviii

	AWS Encryption SDK
	Table of Contents
	O que é o AWS Encryption SDK?
	Desenvolvido em repositórios de código aberto
	Compatibilidade com bibliotecas e serviços de criptografia
	Suporte e manutenção
	Saiba mais
	Enviar comentários
	Conceitos no AWS Encryption SDK
	criptografia envelopada
	Chave de dados
	Chave de encapsulamento
	Tokens de autenticação e provedores de chaves mestras
	Contexto de criptografia
	Mensagem criptografada
	Pacote de algoritmos
	Gerenciador de material de criptografia
	Criptografia simétrica e assimétrica
	Confirmação de chave
	Política de compromisso
	Assinaturas digitais

	Como AWS Encryption SDK funciona
	Como o AWS Encryption SDK criptografa os dados
	Como o AWS Encryption SDK decifra uma mensagem criptografada

	Suítes de algoritmos compatíveis no AWS Encryption SDK
	Recomendado: AES-GCM com derivação de chave, assinatura e confirmação de chave
	Outros pacotes de algoritmos compatíveis

	Usando o AWS Encryption SDK com AWS KMS
	Melhores práticas para o AWS Encryption SDK
	Configurando o AWS Encryption SDK
	Seleção de uma linguagem de programação
	Seleção de chaves de encapsulamento
	Usando várias regiões AWS KMS keys
	Escolher um pacote de algoritmo
	Limitar as chaves de dados criptografadas
	Criação de um filtro de descoberta
	Configurando o contexto de criptografia necessário (CMM)
	Como definir uma política de compromisso
	Trabalhar com streaming de dados
	Armazenamento em cache de chaves de dados

	Lojas principais no AWS Encryption SDK
	Principais conceitos e terminologia da loja
	Implementação de permissões de privilégio mínimo
	Crie um armazenamento de chaves
	Configurar as principais ações do armazenamento
	Configure suas principais ações de armazenamento
	Configuração estática
	Configuração de descoberta

	Crie uma chave de ramificação ativa
	Alternar a chave de ramificação ativa

	Tokens de autenticação
	Como os tokens de autenticação funcionam
	Compatibilidade dos tokens de autenticação
	Requisitos variados para tokens de autenticação de criptografia
	Tokens de autenticação e provedores de chaves mestras compatíveis

	AWS KMS chaveiros
	Permissões necessárias para tokens de autenticação do AWS KMS
	Identificação AWS KMS keys em um AWS KMS chaveiro
	Criando um AWS KMS chaveiro
	Usando um chaveiro AWS KMS Discovery
	Usando um chaveiro de descoberta AWS KMS regional

	AWS KMS Chaveiros hierárquicos
	Como funciona
	Pré-requisitos
	Permissões obrigatórias
	Escolha um cache
	Cache padrão
	MultiThreaded cache
	StormTracking cache
	Cache compartilhado

	Criar um token de autenticação hierárquico
	Crie um chaveiro hierárquico com uma ID de chave de ramificação estática
	Crie um chaveiro hierárquico com um fornecedor de ID de chave de filial

	AWS KMS chaveiros ECDH
	Permissões necessárias para AWS KMS chaveiros ECDH
	Criando um AWS KMS chaveiro ECDH
	Criando um AWS KMS chaveiro de descoberta ECDH

	Tokens de autenticação AES Raw
	Tokens de autenticação brutos do RSA
	Chaveiros ECDH brutos
	Criando um chaveiro ECDH bruto
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multitokens de autenticação

	AWS Encryption SDK linguagens de programação
	AWS Encryption SDK for C
	Instalando o AWS Encryption SDK for C
	Usando o AWS Encryption SDK for C
	Padrões para criptografar e descriptografar dados
	Contagem de referências

	AWS Encryption SDK for C exemplos
	Criptografar e descriptografar strings
	Criptografar uma string
	Descriptografar uma string

	AWS Encryption SDK para o.NET
	Instalando o AWS Encryption SDK para o.NET
	Depurando o para o.NET AWS Encryption SDK
	AWS Encryption SDK para exemplos do.NET
	Criptografia de dados no AWS Encryption SDK para .NET
	Descriptografia em modo estrito no AWS Encryption SDK para .NET
	Descriptografando com um chaveiro de descoberta no for.NET AWS Encryption SDK

	AWS Encryption SDK para Go
	Pré-requisitos
	Instalação

	AWS Encryption SDK for Java
	Pré-requisitos
	Instalação
	AWS Encryption SDK for Java exemplos
	Criptografar e descriptografar strings
	Criptografar e descriptografar streams de bytes
	Criptografando e descriptografando fluxos de bytes com um chaveiro múltiplo

	AWS Encryption SDK para JavaScript
	Compatibilidade do AWS Encryption SDK para JavaScript
	AWS Encryption SDK para JavaScript compatibilidade
	Compatibilidade do navegador

	Instalando o AWS Encryption SDK para JavaScript
	Módulos no AWS Encryption SDK para JavaScript
	Módulos para JavaScript Node.js
	Módulos para JavaScript navegador
	Módulos para todas as implementações

	AWS Encryption SDK para JavaScript exemplos
	Criptografando dados com um chaveiro AWS KMS
	Descriptografando dados com um chaveiro AWS KMS

	AWS Encryption SDK for Python
	Pré-requisitos
	Instalação
	AWS Encryption SDK for Python código de exemplo
	Criptografar e descriptografar strings
	Criptografar e descriptografar streams de bytes

	AWS Encryption SDK para Rust
	Pré-requisitos
	Instalação
	AWS Encryption SDK para código de exemplo de Rust
	Criptografando e descriptografando dados no for Rust AWS Encryption SDK

	AWS Encryption SDK interface de linha de comando
	Instalando a interface de linha de AWS Encryption SDK comando
	Instalar os pré-requisitos
	Instalando e atualizando a CLI AWS de criptografia

	Como usar a CLI AWS de criptografia
	Como criptografar e descriptografar dados
	Como especificar chaves de encapsulamento
	Encapsulando os atributos dos parâmetros de chave
	Como especificar várias chaves mestras

	Como fornecer entrada
	Como especificar o local de saída
	Como usar um contexto de criptografia
	Como especificar uma política de compromisso
	Como armazenar parâmetros em um arquivo de configuração

	Exemplos da CLI AWS de criptografia
	Criptografar um arquivo
	Descriptografar um arquivo
	Criptografar todos os arquivos em um diretório
	Descriptografar todos os arquivos em um diretório
	Criptografar e descriptografar na linha de comando
	Uso de várias chaves mestras
	Criptografar e descriptografar em scripts
	Usar o armazenamento em cache de chaves de dados

	AWS Encryption SDK Referência de sintaxe e parâmetros da CLI
	AWS Sintaxe da CLI de criptografia
	AWS Parâmetros de linha de comando da CLI de criptografia
	Parâmetros avançados

	Versões da CLI AWS de criptografia
	Versão 1.8. x mudanças na CLI AWS de criptografia
	Versão 2.1. x mudanças na CLI AWS de criptografia
	Alterações das versões 1.9x e 2.2.x na CLI de criptografia da AWS
	Versão 3.0. x mudanças na CLI AWS de criptografia

	Armazenamento em cache de chaves de dados
	Como usar o armazenamento em cache de chaves de dados
	Usando o cache de chaves de dados: Step-by-step
	Armazenamento em cache de chaves de dados de exemplo: criptografar uma string

	Definir limites de segurança do cache
	Detalhes do armazenamento em cache de chaves de dados
	Como o armazenamento em cache de chaves de dados funciona
	Criptografar dados sem armazenamento em cache
	Criptografar dados com armazenamento em cache

	Criar um cache de material de criptografia
	Criar um gerenciador de material de criptografia de armazenamento em cache
	O que é uma entrada de chave de dados em cache?
	Contexto de criptografia: como selecionar entradas do cache
	Meu aplicativo está usando chaves de dados armazenadas em cache?

	Exemplo de armazenamento em cache de chaves de dados
	Resultados do cache local
	Exemplo de código de armazenamento em cache de chaves de dados
	Produtor
	Consumidor

	Exemplo de armazenamento em cache de chave de dados: modelo CloudFormation

	Versões do AWS Encryption SDK
	C
	C# /.NET
	Interface de linha de comando (CLI)
	Java
	Go
	JavaScript
	Python
	Rust
	Detalhes da versão
	Versões anteriores à 1.7.x
	Versão 1.7.x
	Versão 2.0x
	Versão 2.2x
	Versão 2.3x

	Migrando seu AWS Encryption SDK
	Como migrar e implantar o AWS Encryption SDK
	Etapa 1: atualize a aplicação para a versão 1.x mais recente
	Etapa 2: atualize a aplicação para a versão mais recente

	Atualizando provedores de chaves AWS KMS mestras
	Migração para o modo estrito
	Migrar para o modo de descoberta

	Atualizando AWS KMS chaveiros
	Como definir sua política de compromisso
	Como definir sua política de compromisso

	Solução de problemas de migração para as versões mais recentes
	Objetos descontinuados ou removidos
	Conflito de configuração: política de compromisso e pacote de algoritmos
	Conflito de configuração: política de compromisso e texto cifrado
	Falha na validação do confirmação de chave
	Outras falhas de criptografia
	Outras falhas de decriptografia
	Considerações sobre reversão

	Perguntas frequentes
	Como o é AWS Encryption SDK diferente do AWS SDKs?
	Como ele é AWS Encryption SDK diferente do cliente de criptografia Amazon S3?
	Quais algoritmos criptográficos são suportados pelo AWS Encryption SDK e qual é o padrão?
	Como o vetor de inicialização (IV) é gerado e onde é armazenado?
	Como cada chave de dados é gerada, criptografada e descriptografada?
	Como faço para controlar as chaves de dados que foram usadas para criptografar meus dados?
	Como eles AWS Encryption SDK armazenam chaves de dados criptografadas com seus dados criptografados?
	Quanta sobrecarga o formato da AWS Encryption SDK mensagem adiciona aos meus dados criptografados?
	Posso usar meu próprio provedor de chaves mestras?
	Posso criptografar dados com mais de uma chave de encapsulamento?
	Com quais tipos de dados posso criptografar? AWS Encryption SDK
	Como os fluxos AWS Encryption SDK criptografam e descriptografam input/output (E/S)?

	AWS Encryption SDK referência
	AWS Encryption SDK referência de formato de mensagem
	Estrutura do cabeçalho
	Estrutura do corpo
	Dados sem moldura
	Dados com moldura

	Estrutura do rodapé

	AWS Encryption SDK exemplos de formato de mensagem
	Dados emoldurados (formato de mensagem versão 1)
	Dados emoldurados (formato de mensagem versão 2)
	Dados não emoldurados (formato de mensagem versão 1)

	Referência de corpo de dados autenticados adicionais (AAD) para o AWS Encryption SDK
	AWS Encryption SDK referência de algoritmos
	AWS Encryption SDK referência vetorial de inicialização
	AWS KMS Detalhes técnicos do chaveiro hierárquico

	Histórico de documentos do Guia do AWS Encryption SDK desenvolvedor
	Atualizações recentes
	Atualizações anteriores

	

