
Referência SQL

AWS Clean Rooms

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Clean Rooms Referência SQL

AWS Clean Rooms: Referência SQL

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

As marcas comerciais e imagens de marcas da Amazon não podem ser usadas no contexto de
nenhum produto ou serviço que não seja da Amazon, nem de qualquer maneira que possa gerar
confusão entre os clientes ou que deprecie ou desprestigie a Amazon. Todas as outras marcas
comerciais que não pertencem à Amazon pertencem a seus respectivos proprietários, que podem ou
não ser afiliados, patrocinados pela Amazon ou ter conexão com ela.

AWS Clean Rooms Referência SQL

Table of Contents
Visão geral do .. 1

Convenções ... 1
Regras de nomenclatura ... 2

Nomes e colunas de associação de tabelas configurados .. 2
Palavras reservadas ... 4

Suporte de tipo de dados pelo mecanismo SQL .. 6
Tipos de dados numéricos ... 6
Tipos de dados booleanos ... 9
Tipos de dados de data e hora .. 9
Tipos de dados de caracteres .. 11
Tipos de dados estruturados .. 12

AWS Clean Rooms SQL do Spark .. 15
Literais .. 15

Operador + (Concatenação) ... 16
Tipos de dados .. 17

Caracteres multibyte ... 19
Tipos numéricos .. 20
Tipos de caracteres .. 27
Tipos de datetime ... 29
Tipo booliano .. 47
Tipo binário ... 50
Tipo aninhados ... 51
Compatibilidade e conversão dos tipos ... 53

Comandos SQL ... 58
TABELA DE CACHE .. 58
Dicas ... 61
SELECT .. 68

Funções SQL ... 116
Funções agregadas .. 117
Funções de array .. 140
Expressões condicionais .. 150
Funções do construtor .. 163
Funções de formatação de tipo de dados ... 167
Perfis de data e hora .. 196

iii

AWS Clean Rooms Referência SQL

Funções de criptografia e descriptografia .. 225
Funções de hash .. 229
Funções do Hyperloglog ... 233
Funções JSON .. 241
Funções matemáticas ... 245
Funções escalares .. 276
Funções de string ... 278
Funções relacionadas à privacidade .. 324
Funções de janela .. 330

Condições do SQL .. 363
Operadores de comparação ... 364
Condições lógicas ... 370
Condições de correspondência de padrões ... 374
Condição de intervalo BETWEEN .. 379
Condição null .. 381
Condição EXISTS ... 382
Condição IN .. 383

Consultar dados aninhados ... 386
Navegação ... 386
Desaninhar consultas .. 387
Semântica lax .. 389
Tipos de introspecção ... 390

Histórico do documento ... 392
... cccxcv

iv

AWS Clean Rooms Referência SQL

Visão geral do SQL em AWS Clean Rooms
Bem-vindo à Referência SQL do AWS Clean Rooms.

AWS Clean Roomsé construído com base na Linguagem de Consulta Estruturada (SQL) padrão do
setor, uma linguagem de consulta que consiste em comandos e funções que você usa para trabalhar
com bancos de dados e objetos de banco de dados. SQL também impõe regras relativas ao uso de
tipos de dados, expressões e literais.

Os tópicos a seguir fornecem informações gerais sobre as convenções e regras de nomenclatura
usadas nesta Referência SQL.

Tópicos

• Convenções de referência do SQL

• Regras de nomeação de SQL

• Suporte de tipo de dados pelo mecanismo SQL

As seções a seguir fornecem informações sobre literais, tipos de dados, comandos SQL, tipos de
funções SQL e condições SQL nas quais você pode usar. AWS Clean Rooms

• AWS Clean Rooms SQL do Spark

Para obter mais informações sobreAWS Clean Rooms, consulte o Guia AWS Clean Rooms do
usuário e a Referência AWS Clean Rooms da API.

Convenções de referência do SQL
Esta seção explica as convenções usadas para escrever a sintaxe das expressões, comandos e
funções SQL.

Caractere Descrição

CAPS Palavras em letras maiúsculas são palavras chave.

[] Parênteses denotam argumentos opcionais. Vários
argumentos em parênteses indicam que você pode
escolher qualquer número de argumentos. Além disso,

Convenções 1

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Referência SQL

Caractere Descrição

os argumentos entre colchetes em linhas separadas
indicam que o analisador do espera que os argumento
s estejam na ordem em que estão listados na sintaxe.

{ } As chaves indicam que será necessário escolher um
dos argumentos nelas.

| Barras verticais indicam que você pode escolher entre
os argumentos.

itálico As palavras em itálico indicam os espaços reservado
s. Você deve inserir o valor apropriado no lugar da
palavra em itálico.

... Uma elipse indica que você pode repetir o elemento
anterior.

' Palavras entre aspas simples indicam que você deve
digitar as aspas.

Regras de nomeação de SQL

As seções a seguir explicam as regras de nomeação de SQL no AWS Clean Rooms.

Tópicos

• Nomes e colunas de associação de tabelas configurados

• Palavras reservadas

Nomes e colunas de associação de tabelas configurados

Os membros que podem consultar usam nomes de associação de tabela configurados como nomes
de tabela nas consultas. Os nomes de associações de tabelas configurados e as colunas de tabelas
configuradas podem ter aliases em consultas.

As regras de nomenclatura a seguir se aplicam a nomes de associação de tabela configurados,
nomes de colunas de tabela configurados e aliases:

Regras de nomenclatura 2

AWS Clean Rooms Referência SQL

• Eles devem usar somente caracteres alfanuméricos, sublinhado (_) ou hífen (-), mas não podem
começar ou terminar com um hífen.

• (Somente regra de análise personalizada) Eles podem usar o cifrão ($), mas não podem usar
um padrão que siga uma constante de string cotada em dólares.

Uma constante de string cotada em dólares consiste em:

• um cifrão

• uma “tag” opcional de zero ou mais caracteres

• outro cifrão

• sequência arbitrária de caracteres que compõe o conteúdo da string

• um cifrão

• a mesma etiqueta que iniciou a cotação do dólar

• um cifrão

Por exemplo: $$invalid$$

• Eles não podem conter caracteres consecutivos de hífen (-).

• Eles não podem começar com nenhum dos seguintes prefixos:

padb_, pg_, stcs_, stl_, stll_, stv_, svcs_, svl_, svv_, sys_, systable_

• Eles não podem conter caracteres de barra invertida (\), aspas (') ou espaços que não estejam
entre aspas duplas.

• Se começarem com um caractere não alfabético, devem estar entre aspas duplas (" ").

• Se contiverem um caractere de hífen (-), devem estar entre aspas duplas (" ").

• Eles devem ter entre 1 e 127 caracteres.

• Palavras reservadas devem estar entre aspas duplas (" ").

• Os seguintes nomes de colunas são reservados e não podem ser usados em AWS Clean Rooms
(mesmo com aspas):

• oid

• tableoid

• xmin

• cmin

• xmax

• cmax
Nomes e colunas de associação de tabelas configurados 3

AWS Clean Rooms Referência SQL

• ctid

Palavras reservadas

A seguir está uma lista de palavras reservadas em AWS Clean Rooms.

AES128 DELTA32KDESC LEADING PRIMARY

AES256ALL DISTINCT LEFTLIKE RAW

ALLOWOVER
WRITEANALYSE

DO LIMIT READRATIO

ANALYZE DISABLE LOCALTIME RECOVERRE
FERENCES

AND ELSE LOCALTIMESTAMP REJECTLOG

ANY EMPTYASNU
LLENABLE

LUN RESORT

ARRAY ENCODE LUNS RESPECT

AS ENCRYPT LZO RESTORE

ASC ENCRYPTIONEND LZOP RIGHTSELECT

AUTHORIZATION EXCEPT MINUS SESSION_USER

AZ64 EXPLICITFALSE MOSTLY16 SIMILAR

BACKUPBETWEEN FOR MOSTLY32 SNAPSHOT

BINARY FOREIGN MOSTLY8NATURAL SOME

BLANKSASN
ULLBOTH

FREEZE NEW SYSDATESYSTEM

BYTEDICT FROM NOT TABLE

Palavras reservadas 4

AWS Clean Rooms Referência SQL

BZIP2CASE FULL NOTNULL TAG

CAST GLOBALDICT256 NULL TDES

CHECK GLOBALDIC
T64KGRANT

NULLSOFF TEXT255

COLLATE GROUP OFFLINEOFFSET TEXT32KTHEN

COLUMN GZIPHAVING OID TIMESTAMP

CONSTRAINT IDENTITY OLD TO

CREATE IGNOREILIKE ON TOPTRAILING

CREDENTIA
LSCROSS

IN ONLY TRUE

CURRENT_DATE INITIALLY OPEN TRUNCATEC
OLUMNSUNION

CURRENT_TIME INNER OR UNIQUE

CURRENT_T
IMESTAMP

INTERSECT ORDER UNNEST

CURRENT_USER INTERVAL OUTER USING

CURRENT_U
SER_IDDEFAULT

INTO OVERLAPS VERBOSE

DEFERRABLE IS PARALLELP
ARTITION

WALLETWHEN

DEFLATE ISNULL PERCENT WHERE

DEFRAG JOIN PERMISSIONS WITH

DELTA LANGUAGE PIVOTPLACING WITHOUT

Palavras reservadas 5

AWS Clean Rooms Referência SQL

Suporte de tipo de dados pelo mecanismo SQL
AWS Clean Rooms oferece suporte a vários mecanismos e dialetos SQL. Compreender os sistemas
de tipos de dados nessas implementações é crucial para uma colaboração e análise de dados bem-
sucedidas. As tabelas a seguir mostram os tipos de dados equivalentes em AWS Clean Rooms SQL,
Snowflake SQL e Spark SQL.

Tipos de dados numéricos

Os tipos numéricos representam vários tipos de números, desde números inteiros precisos até
valores aproximados de ponto flutuante. A escolha do tipo numérico afeta tanto os requisitos
de armazenamento quanto a precisão computacional. Os tipos inteiros variam de acordo com o
tamanho do byte, enquanto os tipos decimal e de ponto flutuante oferecem diferentes opções de
precisão e escala.

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Inteiro de 8 bytes BIGINT Não compatíve
l

GRANDE,
LONGO

Números
inteiros
assinados
de -9.223.37
2.036.854
.775.808 a
9.223.372
.036.854.
775.807.

Inteiro de 4 bytes INT Não compatíve
l

INT, INTEGER Números
inteiros
assinados de
-2.147.483.648
a 2.147.483
.647

Inteiro de 2 bytes SMALLINT Não compatíve
l

PEQUENO,
CURTO

Números
inteiros
assinados

Suporte de tipo de dados pelo mecanismo SQL 6

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

de -32.768 a
32.767

Inteiro de 1 byte Não compatível Sem compatibi
lidade

TINYINT,
BYTE

Números
inteiros
assinados de
-128 a 127

Flutuador de dupla
precisão

DUPLA, DUPLA
PRECISÃO

FLUTUA,
FLOAT4,
FLOAT8,
DUPLA,
DUPLA
PRECISÃO,
REAL

DOUBLE Números de
ponto flutuante
de precisão
dupla de 8
bytes

Flutuador de
precisão única

REAL, FLUTUAR Não compatíve
l

FLOAT Números de
ponto flutuante
de precisão
única de 4
bytes

Tipos de dados numéricos 7

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Decimal (precisão
fixa)

DECIMAL DECIMAL,
NUMÉRICO,
NÚMERO

Note

O
Snowflake
atribui
automatic
amente
o alias
de
tipos
numéricos
exatos
de
menor
largura
(INT,
BIGINT,
SMALLINT
etc.)
para
NUMBER.

DECIMAL,
NUMÉRICO,

Números
decimais
assinados
com precisão
arbitrária

Decimal (com
precisão)

DECIMAL (p) DECIMAL (p),
NÚMERO (p)

DECIMAL (p) Números
decimais de
precisão fixa

Tipos de dados numéricos 8

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Decimal (com
escala)

DECIMAL (p,s) DECIMAL (p,
s), NÚMERO
(p, s)

DECIMAL (p,s) Números
decimais de
precisão fixa
com escala

Tipos de dados booleanos

Os tipos booleanos representam valores true/false lógicos simples. Esses tipos são consistentes em
todos os mecanismos SQL e são comumente usados para sinalizadores, condições e operações
lógicas.

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Booleano BOOLEAN BOOLEAN BOOLEAN Represent
a true/false
valores

Tipos de dados de data e hora

Os tipos de data e hora lidam com dados temporais, com níveis variados de precisão e
reconhecimento de fuso horário. Esses tipos oferecem suporte a formatos diferentes para armazenar
datas, horas e carimbos de data/hora, com opções para incluir ou excluir informações de fuso
horário.

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Data DATE DATE DATE Valores de
data (ano,
mês, dia) sem
fuso horário

Tipos de dados booleanos 9

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Tempo TIME Não compatíve
l

Sem compatibi
lidade

Hora do dia em
UTC, sem fuso
horário

Tempo com TZ TIMETZ Não compatíve
l

Sem compatibi
lidade

Hora do dia em
UTC, com fuso
horário

Timestamp TIMESTAMP TIMESTAMP
, TIMESTAMP
_NTZ

TIMESTAMP
_NTZ

Time stamp
sem fuso
horário

Note

NTZ
indica
“Sem
fuso
horário”

Timestamp com TZ TIMESTAMPTZ TIMESTAMP
_LTZ

TIMESTAMP
, TIMESTAMP
_LTZ

Carimbo de
data/hora com
fuso horário
local

Note

LTZ
indica
“fuso
horário
local”

Tipos de dados de data e hora 10

AWS Clean Rooms Referência SQL

Tipos de dados de caracteres

Os tipos de caracteres armazenam dados textuais, oferecendo opções de tamanho fixo e tamanho
variável. Esses tipos lidam com cadeias de texto e dados binários, com especificações de
comprimento opcionais para controlar a alocação de armazenamento.

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Caractere de
tamanho fixo

CHAR CHAR,
CHARACTER

CHAR,
CHARACTER

String de
caracteres com
comprimento
fixo

Caractere de
comprimento fixo
com comprimento

CHAR(n) CHAR(n),
CHARACTER
(n)

CHAR(n),
CHARACTER
(n)

Cadeia de
caracteres de
comprimen
to fixo com
comprimento
especificado

Caractere de
comprimento
variável

VARCHAR VARCHAR,
STRING,
TEXTO

VARCHAR,
CORDA

String de
caracteres de
comprimento
variável

Caractere de
comprimento
variável com
comprimento

VARCHAR(n) VARCHAR (n),
CADEIA DE
CARACTERES
(n), TEXTO (n)

VARCHAR(n) Cadeia de
caracteres de
comprimen
to variável
com limite de
comprimento

Binário VARBYTE BINARY,
VARBINARY

BINARY Sequência
binária de
bytes

Tipos de dados de caracteres 11

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Binário com
comprimento

VARBYTE(n) Não compatíve
l

Sem compatibi
lidade

Sequência
binária de
bytes com
limite de
comprimento

Tipos de dados estruturados

Os tipos estruturados permitem uma organização complexa de dados combinando vários valores em
campos únicos. Isso inclui matrizes para coleções ordenadas, mapas para pares de valores-chave e
estruturas para criar estruturas de dados personalizadas com campos nomeados.

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Array MATRIZ <type> MATRIZ (tipo) MATRIZ
<type>

Sequência
ordenada de
elementos do
mesmo tipo

Note

Os
tipos
de
matriz
devem
conter
elementos
do
mesmo
tipo

Tipos de dados estruturados 12

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Mapa MAPA<key, value> MAP (chave,
valor)

MAPA<key,
value>

Coleção de
pares de
valores-chave

Note

Os
tipos
de
mapa
devem
conter
elementos
do
mesmo
tipo

Tipos de dados estruturados 13

AWS Clean Rooms Referência SQL

Tipo de dados AWS Clean Rooms
SQL

SQL do
Snowflake

Spark SQL Description

Struct ESTRUTURA<
field1: type1, field2:
type2>

OBJETO
(campo1 tipo1,
campo2 tipo2)

ESTRUTURA
< field1: type1,
field2: type2 >

Estrutura
com campos
nomeados de
tipos especific
ados

Note

A
sintaxe
do tipo
estrutura
do
pode
variar
um
pouco
entre
as
implement
ações

Super SUPER Não compatíve
l

Sem compatibi
lidade

Tipo flexível
que suporta
todos os tipos
de dados,
incluindo tipos
complexos

Tipos de dados estruturados 14

AWS Clean Rooms Referência SQL

AWS Clean Rooms SQL do Spark
AWS Clean Rooms O Spark SQL impõe regras relacionadas ao uso de tipos de dados, expressões e
literais.

Para obter mais informações sobre o AWS Clean Rooms Spark SQL, consulte o Guia AWS Clean
Rooms do usuário e a Referência da AWS Clean Rooms API.

Os tópicos a seguir fornecem informações sobre literais, tipos de dados, comandos, funções e
condições compatíveis com o AWS Clean Rooms Spark SQL.

Tópicos

• Literais

• Tipos de dados

• AWS Clean Rooms Comandos do Spark SQL

• AWS Clean Rooms Funções do Spark SQL

• AWS Clean Rooms Condições do Spark SQL

Literais

Um literal ou constante é um valor fixo de dados, composto de uma sequência de caracteres ou uma
constante numérica.

AWS Clean Rooms O Spark SQL oferece suporte a vários tipos de literais, incluindo:

• Literais numéricos para números inteiros, decimais e números de ponto flutuante.

• Literais de caracteres, também chamados de cadeias de caracteres, cadeias de caracteres ou
constantes de caracteres, usados para especificar um valor de cadeia de caracteres.

• Literais de data, de hora e de carimbo de data/hora, usados com tipos de dados de data e hora.
Para obter mais informações, consulte Literais de data, hora e timestamp.

• Literais de intervalo. Para obter mais informações, consulte Literais de intervalo.

• Literais booleanos. Para obter mais informações, consulte Literais booleanos.

• Literais nulos, usados para especificar um valor nulo.

• Somente TAB, CARRIAGE RETURN (CR) e LINE FEED (LF) Caracteres de controle Unicode da
categoria geral Unicode (Cc) são suportados.

Literais 15

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Referência SQL

AWS Clean Rooms O Spark SQL não suporta referências diretas a literais de string na cláusula
SELECT, mas elas podem ser usadas em funções como CAST.

Operador + (Concatenação)

Concatena literais numéricos, literais de sequência de caracteres e/ou literais de data e hora e
intervalo. Eles estão em ambos os lados do símbolo + e retornam tipos diferentes com base nas
entradas em cada lado do símbolo +.

Sintaxe

numeric + string

date + time

date + timetz

A ordem dos argumentos pode ser invertida.

Argumentos

numeric literals

Literais ou constantes que representam números podem ser números inteiros ou de ponto
flutuante.

string literals

Cadeias de caracteres, cadeias de caracteres ou constantes de caracteres

date

A DATE coluna ou uma expressão que se converte implicitamente em um DATE.

time

A TIME coluna ou uma expressão que se converte implicitamente em um TIME.

timetz

A TIMETZ coluna ou uma expressão que se converte implicitamente em um TIMETZ.

Operador + (Concatenação) 16

AWS Clean Rooms Referência SQL

Exemplo

A tabela de exemplo a seguir TIME_TEST tem uma coluna TIME_VAL (tipo TIME) com três valores
inseridos.

select date '2000-01-02' + time_val as ts from time_test;

Tipos de dados

Cada valor que o AWS Clean Rooms Spark SQL armazena ou recupera tem um tipo de dados com
um conjunto fixo de propriedades associadas. Os tipos de dados são declarados quando as tabelas
são criadas. Um tipo de dado restringe um conjunto de valores que uma coluna ou argumento pode
conter.

A tabela a seguir lista os tipos de dados que você pode usar no AWS Clean Rooms Spark SQL.

Nome do tipo de
dados

Tipo de dados Aliases Description

ARRAY the section called
“Tipo aninhados”

Não aplicável Tipo de dados de
matriz aninhados

BIGINT the section called
“Tipos numéricos”

Não aplicável Número inteiro de oito
bytes assinado

BINARY the section called
“Tipo binário”

Não aplicável Valores de sequência
de bytes

BOOLEAN the section called
“Tipo booliano”

BOOL Booleanos lógicos
(verdadeiro/falso)

BYTE the section called
“Tipos numéricos”

Não aplicável Números inteiros
assinados de 1 byte,
de -128 a 127

CHAR the section called
“Tipos de caracteres”

CHARACTER String de caracteres
com comprimento fixo

Tipos de dados 17

AWS Clean Rooms Referência SQL

Nome do tipo de
dados

Tipo de dados Aliases Description

DATE the section called
“Tipos de datetime”

Não aplicável Data de calendário
(ano, mês, dia)

DECIMAL the section called
“Tipos numéricos”

NUMERIC Numérico exato com
precisão selecionável

FLOAT the section called
“Tipos numéricos”

FLOAT8, PRECISÃO
DUPLA

Número de ponto
flutuante de precisão
dupla

INTEGER the section called
“Tipos numéricos”

INT Número inteiro de
quatro bytes assinado

INTERVAL the section called
“Tipos de datetime”

Não aplicável Duração do tempo
em ordem diária ou
ordem de ano a mês

LONG the section called
“Tipos numéricos”

Não aplicável Números inteiros
assinados de 8 bytes

MAP the section called
“Tipo aninhados”

Não aplicável Tipo de dados de
mapa aninhados

REAL the section called
“Tipos numéricos”

FLOAT4 Número de ponto
flutuante de precisão
simples

SHORT the section called
“Tipos numéricos”

Não aplicável Números inteiros
assinados de 2 bytes.

SMALLINT the section called
“Tipos numéricos”

Não aplicável Número inteiro de
dois bytes assinado

STRUCT the section called
“Tipo aninhados”

Não aplicável Tipo de dados de
estrutura aninhados

Tipos de dados 18

AWS Clean Rooms Referência SQL

Nome do tipo de
dados

Tipo de dados Aliases Description

TIMESTAMP_LTZ the section called
“Tipos de datetime”

Não aplicável Hora do dia com fuso
horário local

TIMESTAMP_NTZ the section called
“Tipos de datetime”

Não aplicável Hora do dia sem fuso
horário

TINYINT the section called
“Tipos numéricos”

Não aplicável Números inteiros
assinados de 1 byte,
de -128 a 127

VARCHAR the section called
“Tipos de caracteres”

CARACTERE
VARIÁVEL

String de caractere
s de comprimento
variável com limite
definido pelo usuário

Note

Atualmente, os tipos de dados aninhados ARRAY, STRUCT e MAP só estão habilitados para
a regra de análise personalizada. Para obter mais informações, consulte Tipo aninhados.

Caracteres multibyte

O tipo de dados VARCHAR é compatível com caracteres UTF-8 multibyte até um máximo de quatro
bytes. Caracteres de cinco ou mais bytes são incompatíveis. Para calcular o tamanho de uma coluna
VARCHAR que contenha caracteres multibyte, multiplique o número de caracteres pelo número de
bytes por caractere. Por exemplo, se uma string contém quatro caracteres chineses e cada caractere
possui três bytes de comprimento, você precisará de uma coluna VARCHAR(12) para armazenar a
string.

O VARCHAR não é compatível com os seguintes pontos de código de caracteres UTF-8 inválidos:

0xD800 – 0xDFFF (Sequências de byte: ED A0 80 – ED BF BF)

O tipo de dados CHAR não é compatível com caracteres multibyte.

Caracteres multibyte 19

AWS Clean Rooms Referência SQL

Tipos numéricos

Os tipos de dados numéricos incluem números inteiros, decimais e números de ponto flutuante.

Tópicos

• Tipos de inteiros

• Tipo DECIMAL ou NUMERIC

• Tipos de ponto flutuante

• Computações com valores numéricos

Tipos de inteiros

Use os seguintes tipos de dados para armazenar números inteiros de vários intervalos. Não é
possível armazenar valores fora do intervalo permitido para cada tipo.

Nome Armazenamento Intervalo

SMALLINT 2 bytes -32768 a +32767

SHORT 2 bytes -32768 a +32767

INTEGER ou INT 4 bytes -2147483648 a
+2147483647

BIGINT 8 bytes -92233720368547758
08 a 922337203
6854775807

LONG 8 bytes -92233720368547758
08 a 922337203
6854775807

Tipo DECIMAL ou NUMERIC

Use o tipo de dados DECIMAL ou NUMERIC para armazenar valores com uma precisão definida
pelo usuário. As palavras-chave DECIMAL e NUMERIC são intercambiáveis. Neste documento,

Tipos numéricos 20

AWS Clean Rooms Referência SQL

decimal é o termo preferido para esse tipo de dados. O termo numeric é usado genericamente para
se referir aos tipos de dados de número inteiro, decimal e de ponto flutuante.

Armazenamento Intervalo

Variável, até 128 bits para tipos DECIMAL não
compactados.

Números inteiros assinados de 128 bits com
até 38 dígitos de precisão.

Defina uma coluna DECIMAL em uma tabela especificando um precision e: scale

decimal(precision, scale)

precision

O número total de dígitos significativos no valor inteiro: o número de dígitos em ambos os lados
do ponto decimal. Por exemplo, o número 48.2891 tem precisão de 6 e uma escala de 4. A
precisão padrão, quando não especificada, é 18. A precisão máxima é 38.

Se o número de dígitos à esquerda da vírgula decimal em um valor de entrada exceder a
precisão da coluna menos sua escala, o valor não poderá ser copiado na coluna (ou inserido
ou atualizado). Esta regra aplica-se a qualquer valor que caia fora do intervalo de definição
da coluna. Por exemplo, o intervalo permitido de valores para uma coluna numeric(5,2) é
-999.99 a 999.99.

scale

O número de dígitos decimais na parte fracionada do valor, à direita do ponto decimal. Números
inteiros têm uma escala de zero. Em uma especificação de coluna, o valor de escala deve ser
menor ou igual ao valor de precisão. A escala padrão, quando não especificada, é 0. A escala
máxima é 37.

Se a escala de um valor de entrada carregado em uma tabela for maior do que a escala da
coluna, o valor será arredondado para a escala especificada. Por exemplo, a coluna PRICEPAID
na tabela SALES é uma coluna DECIMAL(8,2). Se um valor DECIMAL(8,4) é inserido na coluna
PRICEPAID, o valor é arredondado para uma escala de 2.

insert into sales
values (0, 8, 1, 1, 2000, 14, 5, 4323.8951, 11.00, null);

Tipos numéricos 21

AWS Clean Rooms Referência SQL

select pricepaid, salesid from sales where salesid=0;

pricepaid | salesid
-----------+---------
4323.90 | 0
(1 row)

Contudo, os resultados de conversões explícitas dos valores selecionados a partir de tabelas não
são arredondados.

Note

O valor positivo máximo que você pode inserir na coluna DECIMAL(19,0) é
9223372036854775807 (263 -1). O valor negativo máximo é -9223372036854775807.
Por exemplo, uma tentativa de inserir o valor 9999999999999999999 (19 noves) causará
um erro de transbordamento. Independentemente do posicionamento do ponto decimal,
a maior string que o AWS Clean Rooms pode representar como um número DECIMAL é
9223372036854775807. Por exemplo, o maior valor que você pode carregar em uma
coluna DECIMAL(19,18) é 9.223372036854775807.
Essas regras ocorrem por causa do seguinte:

• Valores DECIMAL com 19 ou menos dígitos significativos de precisão são armazenados
internamente como valores inteiros de 8 bytes.

• Valores DECIMAL com 20 a 38 dígitos significativos de precisão são armazenados como
valores inteiros de 16 bytes.

Observações sobre o uso de colunas do tipo DECIMAL ou NUMERIC de 128 bits

Não designe arbitrariamente a precisão máxima às colunas do tipo DECIMAL, a não ser que você
esteja certo de que sua aplicação requer essa precisão. Valores de 128 bits usam duas vezes mais
espaço em disco do que valores de 64 bits e podem retardar o tempo de execução da consulta.

Tipos de ponto flutuante

Use os tipos de dados REAL e DOUBLE PRECISION para armazenar valores numéricos com
precisão variável. Esses tipos são inexatos, o que significa que alguns valores são armazenados
como aproximações, de tal forma que o armazenamento e retorno de um valor específico pode

Tipos numéricos 22

AWS Clean Rooms Referência SQL

resultar em ligeiras discrepâncias. Se você precisar de armazenamento e cálculos precisos (como
para quantidades monetárias), use o tipo de dados DECIMAL.

REAL representa o formato de ponto flutuante de precisão simples, de acordo com o padrão IEEE
754 para aritmética de ponto flutuante. Tem uma precisão de cerca de 6 dígitos e um intervalo de
cerca de 1E-37 a 1E+37. Você também pode especificar esse tipo de dados como FLOAT4.

DOUBLE PRECISION representa o formato de ponto flutuante de precisão dupla, de acordo com o
padrão 754 do IEEE para aritmética de ponto flutuante binário. Tem uma precisão de cerca de 15
dígitos e um intervalo de cerca de 1E-307 a 1E+308. Você também pode especificar esse tipo de
dados como FLOAT ou FLOAT8.

Computações com valores numéricos

EmAWS Clean Rooms, computação se refere a operações matemáticas binárias: adição, subtração,
multiplicação e divisão. Esta seção descreve os tipos de retorno previstos para essas operações,
assim como a fórmula específica que é aplicada para determinar a precisão e escala quando dados
do tipo DECIMAL estão envolvidos.

Quando os valores numéricos são computados durante o processamento da consulta, você pode
encontrar casos onde o cálculo é impossível e a consulta retorna um erro de transbordamento
numérico. Você também pode encontrar casos em que a escala de valores computados varia ou é
inesperada. Para algumas operações, você pode usar a conversão explícita (promoção do tipo) ou
parâmetros de configuração do AWS Clean Rooms para contornar esses problemas.

Para obter informações sobre os resultados de computações semelhantes com funções SQL,
consulte AWS Clean Rooms Funções do Spark SQL.

Tipos de retorno para computações

Dado o conjunto de tipos de dados numéricos suportados emAWS Clean Rooms, a tabela a seguir
mostra os tipos de retorno esperados para operações de adição, subtração, multiplicação e divisão.
A primeira coluna do lado esquerdo da tabela representa o primeiro operando no cálculo e a linha
superior representa o segundo operando.

Operando 1 Operando 2 Tipo de retorno

SMALLINT ou SHORT SMALLINT ou SHORT SMALLINT ou SHORT

SMALLINT ou SHORT INTEGER INTEGER

Tipos numéricos 23

AWS Clean Rooms Referência SQL

Operando 1 Operando 2 Tipo de retorno

SMALLINT ou SHORT BIGINT BIGINT

SMALLINT ou SHORT DECIMAL DECIMAL

SMALLINT ou SHORT FLOAT4 FLOAT8

SMALLINT ou SHORT FLOAT8 FLOAT8

INTEGER INTEGER INTEGER

INTEGER BIGINT ou LONG BIGINT ou LONG

INTEGER DECIMAL DECIMAL

INTEGER FLOAT4 FLOAT8

INTEGER FLOAT8 FLOAT8

BIGINT ou LONG BIGINT ou LONG BIGINT ou LONG

BIGINT ou LONG DECIMAL DECIMAL

BIGINT ou LONG FLOAT4 FLOAT8

BIGINT ou LONG FLOAT8 FLOAT8

DECIMAL DECIMAL DECIMAL

DECIMAL FLOAT4 FLOAT8

DECIMAL FLOAT8 FLOAT8

FLOAT4 FLOAT8 FLOAT8

FLOAT8 FLOAT8 FLOAT8

Tipos numéricos 24

AWS Clean Rooms Referência SQL

Precisão e escala de resultados de DECIMAL computados

A tabela a seguir resume as regras para precisão e escala resultantes de computação quando
operações matemáticas retornam resultados DECIMAIS. Nesta tabela, p1 e s1 represente a
precisão e a escala do primeiro operando em um cálculo. p2e s2 representam a precisão e a escala
do segundo operando. (Independentemente desses cálculos, a precisão máxima de resultado é 38 e
a escala máxima de resultado é 38.)

Operation Precisão e escala de resultados

+ ou - Dimensionar = max(s1,s2)

Precisão = max(p1-s1,p2-s2)+1+scale

* Dimensionar = s1+s2

Precisão = p1+p2+1

/ Dimensionar = max(4,s1+p2-s2+1)

Precisão = p1-s1+ s2+scale

Por exemplo, as colunas PRICEPAID e COMMISSION na tabela SALES são ambas colunas do
tipo DECIMAL(8,2). Se você dividir PRICEPAID pela COMMISSION (ou vice-versa), a fórmula será
aplicada da seguinte forma:

Precision = 8-2 + 2 + max(4,2+8-2+1)
= 6 + 2 + 9 = 17

Scale = max(4,2+8-2+1) = 9

Result = DECIMAL(17,9)

O seguinte cálculo é a regra geral para computação da precisão e escala resultantes para operações
executadas em valores DECIMAIS com operadores de conjunto tais como UNION, INTERSECT e
EXCEPT ou funções como COALESCE e DECODE:

Scale = max(s1,s2)
Precision = min(max(p1-s1,p2-s2)+scale,19)

Tipos numéricos 25

AWS Clean Rooms Referência SQL

Por exemplo, uma DEC1 tabela com uma coluna DECIMAL (7,2) é unida a uma DEC2 tabela com
uma coluna DECIMAL (15,3) para criar uma tabela. DEC3 O esquema de DEC3 mostra que a coluna
se torna uma coluna NUMÉRICA (15,3).

select * from dec1 union select * from dec2;

No exemplo acima, a fórmula é aplicada da seguinte forma:

Precision = min(max(7-2,15-3) + max(2,3), 19)
= 12 + 3 = 15

Scale = max(2,3) = 3

Result = DECIMAL(15,3)

Observações sobre operações de divisão

Para operações de divisão, divide-by-zero as condições retornam erros.

O limite de escala de 100 é aplicado após o cálculo da precisão e escala. Se a escala de resultados
calculada for maior que 100, os resultados da divisão serão escalados da seguinte forma:

• Precisão = precision - (scale - max_scale)

• Dimensionar = max_scale

Se a precisão calculada for maior do que a precisão máxima (38), a precisão será reduzida para 38 e
a escala será o resultado de: max(38 + scale - precision), min(4, 100))

Condições de transbordamento

O transbordamento é verificado para todas as computações numéricas. Dados DECIMAIS com
uma precisão de 19 ou o menos são armazenados como números inteiros de 64 bits. Dados
DECIMAIS com uma precisão maior que 19 são armazenados como números inteiros de 128
bits. A precisão máxima para todos os valores DECIMAIS é 38 e a escala máxima é 37. Erros de
transbordamento ocorrem quando um valor excede esses limites, que se aplicam a conjuntos de
resultados intermediário e final:

• A conversão explícita resulta em erros de estouro de tempo de execução quando valores de dados
específicos não se ajustam à precisão ou escala solicitada especificada pela função de conversão.

Tipos numéricos 26

AWS Clean Rooms Referência SQL

Por exemplo, você não pode converter todos os valores da coluna PRICEPAID na tabela SALES
(uma coluna DECIMAL(8,2)) e retornar um resultado DECIMAL(7,3):

select pricepaid::decimal(7,3) from sales;
ERROR: Numeric data overflow (result precision)

Este erro ocorre porque alguns dos valores maiores na coluna PRICEPAID não podem ser
convertidos.

• As operações de multiplicação produzem resultados em que a escala de resultados é a soma de
escala de cada operando. Se ambos os operandos têm uma escala de 4, por exemplo, a escala
de resultados é 8, deixando apenas 10 dígitos para o lado esquerdo do ponto decimal. Portanto,
é relativamente fácil se deparar com condições de transbordamento ao multiplicar dois números
grandes que possuem uma escala significativa.

Cálculos numéricos com os tipos INTEGER e DECIMAL

Quando um dos operandos em um cálculo tem um tipo de dados INTEGER e o outro operando é
DECIMAL, o operando INTEGER é convertido implicitamente como DECIMAL.

• SMALLINT ou SHORT é convertido como DECIMAL (5,0)

• INTEGER é convertido como DECIMAL(10,0)

• BIGINT ou LONG é convertido como DECIMAL (19,0)

Por exemplo, se você multiplicar SALES.COMMISSION, uma coluna DECIMAL(8,2), e
SALES.QTYSOLD, uma coluna SMALLINT, este cálculo será convertido como:

DECIMAL(8,2) * DECIMAL(5,0)

Tipos de caracteres

Os tipos de dados de caracteres incluem CHAR (caractere) e VARCHAR (caractere variável).

Tópicos

• CHAR ou CHARACTER

• VARCHAR ou CHARACTER VARYING

• Significância de espaços em branco

Tipos de caracteres 27

AWS Clean Rooms Referência SQL

CHAR ou CHARACTER

Use uma coluna CHAR OU CHARACTER para armazenar strings de comprimento fixo. Essas
strings são protegidas com espaços, portanto uma coluna CHAR(10) sempre ocupa 10 bytes de
armazenamento.

char(10)

Uma coluna CHAR sem a especificação de comprimento resulta em uma coluna CHAR(1).

Os tipos de dados CHAR e VARCHAR são definidos em termos de bytes, não caracteres. Uma
coluna CHAR pode ter somente caracteres de byte único, portanto a coluna CHAR(10) pode conter
uma string com um comprimento máximo de 10 bytes.

Nome Armazenamento Intervalo (largura da coluna)

CHAR ou CHARACTER Comprimento da
string, incluindo
espaços em
branco (se
houver)

4.096 bytes

VARCHAR ou CHARACTER VARYING

Use uma coluna VARCHAR ou CHARACTER VARYING para armazenar strings de tamanho
variável com um limite fixo. Essas strings não são protegidas com espaços, portanto uma coluna
VARCHAR(120) consistem em um máximo de 120 caracteres de único byte, 60 caracteres de dois
bytes, 40 caracteres de três bytes ou 30 caracteres de quatro bytes.

varchar(120)

Os tipos de dados VARCHAR são definidos em termos de bytes, não de caracteres. Uma coluna
VARCHAR pode conter caracteres de multibyte, até o máximo de quatro bytes por caractere. Por
exemplo, uma coluna VARCHAR(12) pode conter 12 caracteres de único byte, 6 caracteres de dois
bytes, 4 caracteres de três bytes ou 3 caracteres de quatro bytes.

Tipos de caracteres 28

AWS Clean Rooms Referência SQL

Nome Armazenamento Intervalo (largura da coluna)

VARCHAR ou CHARACTER
VARYING

4 bytes + total
de bytes dos
caracteres, onde
cada caractere
pode ser de 1 a
4 bytes.

65.535 bytes (64K -1)

Significância de espaços em branco

Tanto os tipos de dados CHAR quanto VARCHAR armazenam strings de até n bytes de
comprimento. Uma tentativa de armazenar uma string mais longa em uma coluna desses tipos
resulta em um erro. No entanto, se os caracteres extras forem todos espaços (espaços em branco),
a string será truncada até o tamanho máximo. Se a string é mais curta do que o comprimento
máximo, os valores CHAR são protegidos por espaços, mas valores CHAR armazenam a string sem
os espaços.

Espaços em branco em valores CHAR são sempre semanticamente insignificantes. Eles
são ignorados quando você compara dois valores CHAR, não são incluídos em cálculos de
COMPRIMENTO e são removidos quando você converte um valor CHAR para outro tipo de string.

Os espaços em branco em valores VARCHAR e de CHAR são tratados como semanticamente
insignificantes quando os valores são comparados.

Os cálculos de comprimento retornam o comprimento de strings de caracteres VARCHAR com
espaços em branco incluídos no comprimento. Os espaços em branco não são contados no
comprimento para strings de caracteres de comprimento fixo.

Tipos de datetime

Os tipos de dados de data e hora incluem DATE, TIME, TIMESTAMP_LTZ e TIMESTAMP_NTZ.

Tópicos

• DATE

• TIMESTAMP_LTZ

• TIMESTAMP_NTZ

Tipos de datetime 29

AWS Clean Rooms Referência SQL

• Exemplos com tipos de datetime

• Literais de data, hora e timestamp

• Literais de intervalo

• Tipos de dados e literais de intervalo

DATE

Use o tipo de dados DATE para armazenar datas de calendário simples sem timestamps.

Nome Armazenam
ento

Intervalo Resolução

DATE 4 bytes 4713 AC a 294276 DC 1 dia

TIMESTAMP_LTZ

Use o tipo de dados TIMESTAMP_LTZ para armazenar valores completos de timestamp que incluem
a data, a hora do dia e o fuso horário local.

TIMESTAMP representa valores que compreendem valores de camposyear,,,month,day, e hour
minutesecond, com o fuso horário local da sessão. O timestamp valor representa um ponto
absoluto no tempo.

TIMESTAMP no Spark é um alias especificado pelo usuário associado a uma das variações
TIMESTAMP_LTZ e TIMESTAMP_NTZ. Você pode definir o tipo de timestamp padrão
como TIMESTAMP_LTZ (valor padrão) ou TIMESTAMP_NTZ por meio da configuração.
spark.sql.timestampType

TIMESTAMP_NTZ

Use o tipo de dados TIMESTAMP_NTZ para armazenar valores completos de timestamp que
incluem a data, a hora do dia, sem o fuso horário local.

TIMESTAMP representa valores que compreendem valores de camposyear,month,, dayhour, e.
minute second Todas as operações são realizadas sem levar em conta nenhum fuso horário.

TIMESTAMP no Spark é um alias especificado pelo usuário associado a uma das variações
TIMESTAMP_LTZ e TIMESTAMP_NTZ. Você pode definir o tipo de timestamp padrão

Tipos de datetime 30

AWS Clean Rooms Referência SQL

como TIMESTAMP_LTZ (valor padrão) ou TIMESTAMP_NTZ por meio da configuração.
spark.sql.timestampType

Exemplos com tipos de datetime

Os exemplos a seguir mostram como utilizar tipos de data e hora que são suportados pelo AWS
Clean Rooms.

Exemplos de data

Os exemplos a seguir inserem datas que possuem formatos diferentes e exibem a saída.

select * from datetable order by 1;

start_date | end_date

2008-06-01 | 2008-12-31
2008-06-01 | 2008-12-31

Se você inserir um valor de timestamp em uma coluna DATE, a parte da hora será ignorada e
apenas a data será carregada.

Exemplos de tempo

Os exemplos a seguir inserem os valores TIME e TIMETZ com formatos diferentes e exibem a saída.

select * from timetable order by 1;
start_time | end_time

 19:11:19 | 20:41:19+00
 19:11:19 | 20:41:19+00

Literais de data, hora e timestamp

A seguir estão as regras para trabalhar com literais de data, hora e timestamp compatíveis com o
Spark SQL. AWS Clean Rooms

Datas

A tabela a seguir mostra datas de entrada que são exemplos válidos de valores de datas literais
que você pode carregar em AWS Clean Rooms tabelas. O modo MDY DateStyle é considerado

Tipos de datetime 31

AWS Clean Rooms Referência SQL

em vigor. Este modo significa que o valor do mês precede o valor do dia em strings tais como
1999-01-08 e 01/02/00.

Note

Um literal de data ou timestamp deve ser colocado entre aspas ao carregá-lo em uma tabela.

Data de entrada Data completa

8 de janeiro de 1999 8 de janeiro de 1999

1999-01-08 8 de janeiro de 1999

1/8/1999 8 de janeiro de 1999

01/02/00 2 de janeiro de 2000

2000-Jan-31 31 de janeiro de 2000

Jan-31-2000 31 de janeiro de 2000

31-Jan-2000 31 de janeiro de 2000

20080215 15 de fevereiro de 2008

080215 15 de fevereiro de 2008

2008.366 31 de dezembro de 2008 (a parte de três
dígitos da data deve estar entre 001 e 366)

Times

A tabela a seguir mostra os tempos de entrada que são exemplos válidos de valores de tempo
literais que você pode carregar nas AWS Clean Rooms tabelas.

Tempos de entrada Descrição (da parte da hora)

04:05:06.789 4:05 e 6,789 segundos

Tipos de datetime 32

AWS Clean Rooms Referência SQL

Tempos de entrada Descrição (da parte da hora)

04:05:06 4:05 e 6 segundos

04:05 Exatamente 4:05

040506 4:05 e 6 segundos

04:05 Exatamente 4:05; AM é opcional

04:05 Exatamente 4:05; o valor de hora deve ser
menor do que 12.

16:05 Exatamente 16:05

Valores especiais de datetime

A tabela a seguir mostra valores especiais que podem ser usados como literais de data e hora e
como argumentos para funções de data. Eles exigem aspas simples e são convertidos em valores de
timestamp regulares durante o processamento da consulta.

Valor especial Description

now Avalia para a hora de início da transação
e retorna um timestamp com precisão de
microssegundo.

today Avalia para a data apropriada e retorna um
timestamp com zeros para as partes do tempo.

tomorrow Avalia para a data apropriada e retorna um
timestamp com zeros para as partes do tempo.

yesterday Avalia para a data apropriada e retorna um
timestamp com zeros para as partes do tempo.

Os exemplos a seguir mostram como now e today funcionam com a função DATE_ADD.

Tipos de datetime 33

AWS Clean Rooms Referência SQL

select date_add('today', 1);

date_add

2009-11-17 00:00:00
(1 row)

select date_add('now', 1);

date_add

2009-11-17 10:45:32.021394
(1 row)

Literais de intervalo

A seguir estão as regras para trabalhar com literais de intervalo compatíveis com o AWS Clean
Rooms Spark SQL.

Use um literal de intervalo para identificar períodos de tempo específicos, tais como 12 hours
ou 6 weeks. Você pode usar esses literais de intervalo em condições e cálculos que envolvem
expressões de data e hora.

Note

Você não pode usar o tipo de dados INTERVAL para colunas em AWS Clean Rooms
tabelas.

Um intervalo é expressado como uma combinação da palavra-chave de INTERVAL com uma
quantidade numérica e uma parte da data compatível; por exemplo INTERVAL '7 days' ou
INTERVAL '59 minutes'. Você pode conectar várias quantidades e unidades para formar
um intervalo mais preciso, por exemplo: INTERVAL '7 days, 3 hours, 59 minutes'. As
abreviaturas e os plurais de cada unidade também são compatíveis; por exemplo: 5 s, 5 second e
5 seconds são intervalos equivalentes.

Se você não especificar uma parte da data, o valor do intervalo representará os segundos. Você
pode especificar o valor de quantidade como uma fração (por exemplo: 0.5 days).

Tipos de datetime 34

AWS Clean Rooms Referência SQL

Exemplos

Os exemplos a seguir mostram uma série de cálculos com diferentes valores de intervalo.

O exemplo a seguir adiciona 1 segundo à data especificada.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

O exemplo a seguir adiciona 1 minuto à data especificada.

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

O exemplo a seguir adiciona 3 horas e 35 minutos à data especificada.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

O exemplo a seguir adiciona 52 semanas à data especificada

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00
(1 row)

O exemplo a seguir adiciona 1 semana, 1 hora, 1 minuto e 1 segundo à data especificada.

Tipos de datetime 35

AWS Clean Rooms Referência SQL

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-01-07 01:01:01
(1 row)

O exemplo a seguir adiciona 12 horas (meio dia) à data especificada.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 12:00:00
(1 row)

O exemplo a seguir subtrai 4 meses de 31 de março de 2023 e o resultado é 30 de novembro de
2022. O cálculo considera o número de dias em um mês.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Tipos de dados e literais de intervalo

Você pode usar um tipo de dados de intervalo para armazenar espaços de tempo em unidades como
seconds, minutes, hours, days, months e years. Tipos de dados e literais de intervalo podem
ser usados em cálculos de data e hora, como adicionar intervalos a datas e carimbos de data e
hora, somar intervalos e subtrair um intervalo de uma data ou carimbo de data e hora. Os literais de
intervalo podem ser usados como valores de entrada para colunas de tipo de dados de intervalo em
uma tabela.

Sintaxe do tipo de dados de intervalo

Para especificar um tipo de dados de intervalo para armazenar um espaço de tempo em anos e
meses:

Tipos de datetime 36

AWS Clean Rooms Referência SQL

INTERVAL year_to_month_qualifier

Para especificar um tipo de dados de intervalo para armazenar uma duração em dias, horas, minutos
e segundos:

INTERVAL day_to_second_qualifier [(fractional_precision)]

Sintaxe de literal de intervalo

Para especificar um literal de intervalo para definir um espaço de tempo em anos e meses:

INTERVAL quoted-string year_to_month_qualifier

Para especificar um literal de intervalo para definir uma duração em dias, horas, minutos e segundos:

INTERVAL quoted-string day_to_second_qualifier [(fractional_precision)]

Argumentos

quoted-string

Determina um valor numérico positivo ou negativo especificando uma quantidade e a unidade
de data e hora como uma string de entrada. Se a string entre aspas contiver somente um
número, AWS Clean Rooms determinará as unidades do qualificador year_to_month_qualifier
ou day_to_second_qualifier. Por exemplo, '23' MONTH representa 1 year 11 months, '-2'
DAY representa -2 days 0 hours 0 minutes 0.0 seconds, '1-2' MONTH representa 1
year 2 months e '13 day 1 hour 1 minute 1.123 seconds' SECOND representa 13
days 1 hour 1 minute 1.123 seconds. Para obter mais informações sobre formatos de
saída de um intervalo, consulte Estilos de intervalo.

year_to_month_qualifier

Especifica a faixa do intervalo. Se você usar um qualificador e criar um intervalo com unidades de
tempo menores que o qualificador, AWS Clean Rooms truncará e descartará as partes menores
do intervalo. Os valores válidos para year_to_month_qualifier são:

• YEAR

• MONTH

Tipos de datetime 37

AWS Clean Rooms Referência SQL

• YEAR TO MONTH

day_to_second_qualifier

Especifica a faixa do intervalo. Se você usar um qualificador e criar um intervalo com unidades de
tempo menores que o qualificador, AWS Clean Rooms truncará e descartará as partes menores
do intervalo. Os valores válidos para year_to_month_qualifier são:

• DAY

• HOUR

• MINUTE

• SECOND

• DAY TO HOUR

• DAY TO MINUTE

• DAY TO SECOND

• HOUR TO MINUTE

• HOUR TO SECOND

• MINUTE TO SECOND

A saída do literal INTERVAL é truncada no menor componente INTERVAL especificado. Por
exemplo, ao usar um qualificador MINUTE, AWS Clean Rooms descarta as unidades de tempo
menores que MINUTE.

select INTERVAL '1 day 1 hour 1 minute 1.123 seconds' MINUTE

O valor resultante é truncado para '1 day 01:01:00'.

fractional_precision

Parâmetro opcional que especifica o número de dígitos fracionários permitidos no intervalo. O
argumento fractional_precision só deverá ser especificado se seu intervalo contiver SECOND. Por
exemplo, SECOND(3) cria um intervalo que permite somente três dígitos fracionários, como 1.234
segundos. O número máximo de dígitos fracionários é seis.

A configuração da sessão interval_forbid_composite_literals determina se um erro
é retornado quando um intervalo é especificado com as partes YEAR TO MONTH e DAY TO
SECOND.

Tipos de datetime 38

AWS Clean Rooms Referência SQL

Operações aritméticas de intervalo

É possível usar valores de intervalo com outros valores de data e hora para realizar operações
aritméticas. As tabelas a seguir descrevem as operações disponíveis e qual tipo de dados resulta de
cada operação.

Note

As operações que podem produzir resultados date e timestamp o fazem com base
na menor unidade de tempo incluída na equação. Por exemplo, quando você adiciona
interval a date, o resultado é date, se for um intervalo de YEAR TO MONTH, e um
carimbo de data e hora, se for um intervalo de DAY TO SECOND.

As operações em que o primeiro operando é um interval produzem os seguintes resultados para
o segundo operando fornecido:

Operador Data Marca de data e
hora

Intervalo Numérico

- N/D N/D Intervalo N/D

+ Data Data/carimbo de
data e hora

Intervalo N/D

* N/D N/D N/D Intervalo

/ N/D N/D N/D Intervalo

As operações em que o primeiro operando é um date produzem os seguintes resultados para o
segundo operando fornecido:

Operador Data Marca de data e
hora

Intervalo Numérico

- Numérico Intervalo Data/carimbo de
data e hora

Data

Tipos de datetime 39

AWS Clean Rooms Referência SQL

Operador Data Marca de data e
hora

Intervalo Numérico

+ N/D N/D N/D N/D

As operações em que o primeiro operando é um timestamp produzem os seguintes resultados para
o segundo operando fornecido:

Operador Data Marca de data e
hora

Intervalo Numérico

- Numérico Intervalo Registro de data
e hora

Registro de data
e hora

+ N/D N/D N/D N/D

Estilos de intervalo

• postgres: segue o estilo do PostgreSQL. Esse é o padrão.

• postgres_verbose: segue o estilo detalhado do PostgreSQL.

• sql_standard: segue o estilo de literais de intervalo padrão do SQL.

O comando a seguir define o estilo de intervalo como sql_standard.

SET IntervalStyle to 'sql_standard';

formato de saída postgres

Veja abaixo o formato de saída para o estilo de intervalo postgres. Cada valor numérico pode ser
negativo.

'<numeric> <unit> [, <numeric> <unit> ...]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

Tipos de datetime 40

AWS Clean Rooms Referência SQL

1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 day 02:03:04.5678

formato de saída postgres_verbose

A sintaxe postgres_verbose é semelhante à do postgres, mas as saídas do postgres_verbose
também contêm a unidade de tempo.

'[@] <numeric> <unit> [, <numeric> <unit> ...] [direction]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

@ 1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

@ 1 day 2 hours 3 mins 4.56 secs

formato de saída sql_standard

Os valores do intervalo de ano para mês são formatados da maneira a seguir. Especificar um sinal
negativo antes do intervalo indica que o intervalo é um valor negativo e se aplica a todo o intervalo.

'[-]yy-mm'

Os valores do intervalo de dia para segundo são formatados da maneira a seguir.

'[-]dd hh:mm:ss.ffffff'

Tipos de datetime 41

AWS Clean Rooms Referência SQL

SELECT INTERVAL '1-2' YEAR TO MONTH::text

varchar

1-2

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 2:03:04.5678

Exemplos do tipo de dados de intervalo

Os exemplos a seguir demonstram como usar tipos de dados INTERVAL com tabelas.

create table sample_intervals (y2m interval month, h2m interval hour to minute);
insert into sample_intervals values (interval '20' month, interval '2 days
 1:1:1.123456' day to second);
select y2m::text, h2m::text from sample_intervals;

 y2m | h2m
---------------+-----------------
 1 year 8 mons | 2 days 01:01:00

update sample_intervals set y2m = interval '2' year where y2m = interval '1-8' year to
 month;
select * from sample_intervals;

 y2m | h2m
---------+-----------------
 2 years | 2 days 01:01:00

delete from sample_intervals where h2m = interval '2 1:1:0' day to second;
select * from sample_intervals;

 y2m | h2m
-----+-----

Tipos de datetime 42

AWS Clean Rooms Referência SQL

Exemplos de literais de intervalo

Os exemplos a seguir são executados com o estilo de intervalo definido como postgres.

O exemplo a seguir demonstra como criar um literal INTERVAL de um ano.

select INTERVAL '1' YEAR

intervaly2m

1 years 0 mons

Se você especificar um quoted-string que exceda o qualificador, as unidades de tempo restantes
serão truncadas do intervalo. No exemplo a seguir, um intervalo de 13 meses se torna um ano e um
mês, mas o mês restante é omitido devido ao qualificador YEAR.

select INTERVAL '13 months' YEAR

intervaly2m

1 years 0 mons

Se você usar um qualificador inferior à string de intervalo, as unidades restantes serão incluídas.

select INTERVAL '13 months' MONTH

intervaly2m

1 years 1 mons

Especificar uma precisão no intervalo trunca o número de dígitos fracionários até a precisão
especificada.

select INTERVAL '1.234567' SECOND (3)

intervald2s

0 days 0 hours 0 mins 1.235 secs

Se você não especificar uma precisão, AWS Clean Rooms usa a precisão máxima de 6.

Tipos de datetime 43

AWS Clean Rooms Referência SQL

select INTERVAL '1.23456789' SECOND

intervald2s

0 days 0 hours 0 mins 1.234567 secs

O exemplo a seguir demonstra como criar um intervalo em faixas.

select INTERVAL '2:2' MINUTE TO SECOND

intervald2s

0 days 0 hours 2 mins 2.0 secs

Os qualificadores ditam as unidades que você está especificando. Por exemplo, embora o exemplo
a seguir use a mesma string entre aspas de '2:2' do exemplo anterior, AWS Clean Rooms reconhece
que ele usa unidades de tempo diferentes por causa do qualificador.

select INTERVAL '2:2' HOUR TO MINUTE

intervald2s

0 days 2 hours 2 mins 0.0 secs

Abreviações e plurais de cada unidade também são aceitos. Por exemplo, 5s, 5 second e 5
seconds são intervalos equivalentes. As unidades aceitas são anos, meses, horas, minutos e
segundos.

select INTERVAL '5s' SECOND

intervald2s

0 days 0 hours 0 mins 5.0 secs

select INTERVAL '5 HOURS' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

Tipos de datetime 44

AWS Clean Rooms Referência SQL

select INTERVAL '5 h' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

Exemplos de literais de intervalo sem sintaxe de qualificador

Note

Os exemplos a seguir demonstram o uso de um literal de intervalo sem um qualificador
YEAR TO MONTH ou DAY TO SECOND. Para obter informações sobre como usar o literal de
intervalo recomendado com um qualificador, consulte Tipos de dados e literais de intervalo.

Use um literal de intervalo para identificar períodos de tempo específicos, tais como 12 hours
ou 6 months. Você pode usar esses literais de intervalo em condições e cálculos que envolvem
expressões de data e hora.

Um literal de intervalo é expresso como uma combinação da palavra-chave de INTERVAL com
uma quantidade numérica e uma parte da data compatível; por exemplo INTERVAL '7 days'
ou INTERVAL '59 minutes'. Você pode conectar várias quantidades e unidades para formar
um intervalo mais preciso, por exemplo: INTERVAL '7 days, 3 hours, 59 minutes'. As
abreviaturas e os plurais de cada unidade também são compatíveis; por exemplo: 5 s, 5 second e
5 seconds são intervalos equivalentes.

Se você não especificar uma parte da data, o valor do intervalo representará os segundos. Você
pode especificar o valor de quantidade como uma fração (por exemplo: 0.5 days).

Os exemplos a seguir mostram uma série de cálculos com diferentes valores de intervalo.

O exemplo a seguir adiciona 1 segundo à data especificada.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

Tipos de datetime 45

AWS Clean Rooms Referência SQL

O exemplo a seguir adiciona 1 minuto à data especificada.

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

O exemplo a seguir adiciona 3 horas e 35 minutos à data especificada.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

O exemplo a seguir adiciona 52 semanas à data especificada.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00
(1 row)

O seguinte adiciona 1 semana, 1 hora, 1 minuto e 1 segundo à data especificada.

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-01-07 01:01:01
(1 row)

O exemplo a seguir adiciona 12 horas (meio dia) à data especificada.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

Tipos de datetime 46

AWS Clean Rooms Referência SQL

2008-12-31 12:00:00
(1 row)

O exemplo a seguir subtrai quatro meses de 15 de fevereiro de 2023 e o resultado é 15 de outubro
de 2022.

select date '2023-02-15' - interval '4 months';

?column?

2022-10-15 00:00:00

O exemplo a seguir subtrai quatro meses de 31 de março de 2023 e o resultado é 30 de novembro
de 2022. O cálculo considera o número de dias em um mês.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Tipo booliano

Use o tipo de dados BOOLEAN para armazenar valores verdadeiros e falsos em uma coluna de
único byte. A tabela a seguir descreve os três estados possíveis para um valor booleano e os valores
de literal que resultam naquele estado. Independente da string de entrada, a coluna booleana
armazena e fornece "t" para verdadeiro e "f" para falso.

Estado Valores válidos
de literal

Armazenamento

Verdadeiro TRUE 't'
'true' 'y'
'yes' '1'

1 byte

Falso FALSE 'f'
'false' 'n'
'no' '0'

1 byte

Tipo booliano 47

AWS Clean Rooms Referência SQL

Estado Valores válidos
de literal

Armazenamento

Desconhecido NULL 1 byte

É possível usar uma comparação IS para verificar um valor booleano somente como um predicado
na cláusula WHERE. Não é possível usar a comparação IS com um valor booleano na lista SELECT.

Exemplos

Você pode usar uma coluna BOOLEAN para armazenar um estado "Ativo/Inativo" para cada cliente
em uma tabela CUSTOMER.

select * from customer;
custid | active_flag
-------+--------------
 100 | t

Neste exemplo, a consulta a seguir seleciona usuários da tabela USERS que gostam de esportes,
mas não gostam de teatro:

select firstname, lastname, likesports, liketheatre
from users
where likesports is true and liketheatre is false
order by userid limit 10;

firstname | lastname | likesports | liketheatre
----------+------------+------------+-------------
Alejandro | Rosalez | t | f
Akua | Mansa | t | f
Arnav | Desai | t | f
Carlos | Salazar | t | f
Diego | Ramirez | t | f
Efua | Owusu | t | f
John | Stiles | t | f
Jorge | Souza | t | f
Kwaku | Mensah | t | f
Kwesi | Manu | t | f
(10 rows)

Tipo booliano 48

AWS Clean Rooms Referência SQL

O exemplo a seguir seleciona usuários da tabela USERS para os quais não se sabe se eles gostam
de rock:

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez |
John | Stiles |
Kwaku | Mensah |
Martha | Rivera |
Mateo | Jackson |
Paulo | Santos |
Richard | Roe |
Saanvi | Sarkar |
(10 rows)

O exemplo a seguir retorna um erro porque ele usa uma comparação IS na lista SELECT.

select firstname, lastname, likerock is true as "check"
from users
order by userid limit 10;

[Amazon](500310) Invalid operation: Not implemented

O exemplo a seguir é bem-sucedido porque usa uma comparação igual (=) na lista SELECT em vez
da comparação IS.

select firstname, lastname, likerock = true as "check"
from users
order by userid limit 10;

firstname | lastname | check
----------+-----------+------
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez | true

Tipo booliano 49

AWS Clean Rooms Referência SQL

John | Stiles |
Kwaku | Mensah | true
Martha | Rivera | true
Mateo | Jackson |
Paulo | Santos | false
Richard | Roe |
Saanvi | Sarkar |

Literais booleanos

As regras a seguir são para trabalhar com literais booleanos compatíveis com o AWS Clean Rooms
Spark SQL.

Use um literal booleano para especificar um valor booleano, como ou. TRUE FALSE

Sintaxe

TRUE | FALSE

Exemplo

O exemplo a seguir mostra uma coluna com um valor especificado deTRUE.

SELECT TRUE AS col;
+----+
| col|
+----+
|true|
+----+

Tipo binário

Use o tipo de dados BINARY para armazenar e gerenciar dados binários de tamanho fixo e não
interpretados, fornecendo recursos eficientes de armazenamento e comparação para casos de uso
específicos.

O tipo de dados BINARY armazena um número fixo de bytes, independentemente do tamanho real
dos dados que estão sendo armazenados. O tamanho máximo geralmente é de 255 bytes.

BINARY é usado para armazenar dados binários brutos e não interpretados, como imagens,
documentos ou outros tipos de arquivos. Os dados são armazenados exatamente como
são fornecidos, sem qualquer codificação ou interpretação de caracteres. Os dados binários

Tipo binário 50

AWS Clean Rooms Referência SQL

armazenados em colunas BINARY são comparados e classificados byte-by-byte com base nos
valores binários reais, em vez de qualquer codificação de caracteres ou regras de agrupamento.

O exemplo de consulta a seguir mostra a representação binária da string"abc". Cada caractere na
string é representado por seu código ASCII em formato hexadecimal: “a” é 0x61, “b” é 0x62 e “c” é
0x63. Quando combinados, esses valores hexadecimais formam a representação binária. "616263"

SELECT 'abc'::binary;
binary

 616263

Tipo aninhados

AWS Clean Roomssuporta consultas envolvendo dados com tipos de dados aninhados,
especificamente os tipos de coluna AWS Glue STRUCT, ARRAY e MAP. Somente a regra de análise
personalizada oferece suporte a tipos de dados aninhados.

Notavelmente, tipos de dados aninhados não estão em conformidade com a estrutura rígida e tabular
do modelo de dados relacional de bancos de dados SQL.

Os tipos de dados aninhados contêm tags que fazem referência a entidades distintas nos dados.
Eles podem conter valores complexos, como matrizes, estruturas aninhadas e outras estruturas
complexas associadas a formatos de serialização, como JSON. Os tipos de dados aninhados são
compatíveis com até 1 MB de dados aninhados em um campo ou objeto aninhados.

Tópicos

• Tipo de MATRIZ

• Tipo de MAP

• Tipo STRUCT

• Exemplos de tipos de dados aninhados

Tipo de MATRIZ

Use o tipo ARRAY para representar valores que compreendem uma sequência de elementos com o
tipo deelementType.

array(elementType, containsNull)

Tipo aninhados 51

AWS Clean Rooms Referência SQL

Use containsNull para indicar se os elementos em um tipo ARRAY podem ter null valores.

Tipo de MAP

Use o tipo MAP para representar valores que compreendem um conjunto de pares de valores-chave.

map(keyType, valueType, valueContainsNull)

keyType: o tipo de dados das chaves

valueType: o tipo de dados dos valores

Não é permitido que as chaves tenham null valores. Use valueContainsNull para indicar se os
valores de um valor do tipo MAP podem ter null valores.

Tipo STRUCT

Use o tipo STRUCT para representar valores com a estrutura descrita por uma sequência de
StructFields (campos).

struct(name, dataType, nullable)

StructField(nome, tipo de dados, anulável): representa um campo em a. StructType

dataType: os dados digitam um campo

name: o nome de um campo

Use nullable para indicar se os valores desses campos podem ter null valores.

Exemplos de tipos de dados aninhados

Para o tipo struct<given:varchar, family:varchar>, há dois nomes de atributos: given e
family, cada um correspondendo a um valor varchar.

Para o tipo array<varchar>, a matriz é especificada como uma lista de varchar.

O tipo array<struct<shipdate:timestamp, price:double>> se refere a uma lista de
elementos com tipo struct<shipdate:timestamp, price:double>.

O tipo de dados map se comporta como um array de structs, em que o nome do atributo de cada
elemento na matriz é indicado por key e mapeado para um value.

Tipo aninhados 52

AWS Clean Rooms Referência SQL

Example

Por exemplo, o tipo map<varchar(20), varchar(20)> é tratado como
array<struct<key:varchar(20), value:varchar(20)>>, onde key e value se referem
aos atributos do mapa nos dados subjacentes.

Para obter informações sobre como AWS Clean Rooms habilitar a navegação em matrizes e
estruturas, consulteNavegação.

Para obter informações sobre como AWS Clean Rooms habilitar a iteração em matrizes navegando
na matriz usando a cláusula FROM de uma consulta, consulte. Desaninhar consultas

Compatibilidade e conversão dos tipos

Os tópicos a seguir descrevem como as regras de conversão de tipos e a compatibilidade de tipos de
dados funcionam no AWS Clean Rooms Spark SQL.

Tópicos

• Compatibilidade

• Regras gerais de compatibilidade e conversão

• Tipos de conversão implícita

Compatibilidade

A correspondência de tipo de dados e de valores e constantes literais com tipos de dados ocorre
durante diversas operações do banco de dados, incluindo o seguinte:

• Operações de linguagem de manipulação de dados (DML) em tabelas

• Consultas de UNION, INTERSECT e EXCEPT

• Expressões de CASOS

• Avaliação de predicados, tais como LIKE e IN

• Avaliação de funções SQL que fazem comparações ou extrações de dados

• Comparações com operadores matemáticos

Os resultados dessas operações dependem das regras de conversão de tipo e da compatibilidade
dos tipos de dados. A compatibilidade implica que a one-to-one correspondência de um determinado
valor e um determinado tipo de dados nem sempre é necessária. Como alguns tipos de dados são

Compatibilidade e conversão dos tipos 53

AWS Clean Rooms Referência SQL

compatíveis, uma conversão implícita, ou coerção, é possível. Para obter mais informações, consulte
Tipos de conversão implícita. Quando os tipos de dados são incompatíveis, você pode às vezes
converter um valor de um tipo de dados para outro usando uma função de conversão explícita.

Regras gerais de compatibilidade e conversão

Observe as seguintes regras de compatibilidade e conversão:

• Em geral, tipos de dados que se enquadram no mesmo tipo de categoria (como diferentes tipos de
dados numéricos) são compatíveis e podem ser implicitamente convertidos.

Por exemplo, com a conversão implícita você pode inserir um valor decimal em uma coluna de
número inteiro. O decimal é arredondado para produzir um número inteiro. Ou você pode extrair
um valor numérico, tal como 2008, a partir de uma data e inserir este valor uma coluna de inteiro.

• Os tipos de dados numéricos impõem condições de estouro que ocorrem quando você tenta inserir
valores. out-of-range Por exemplo, um valor decimal com uma precisão de 5 não se enquadra
em uma coluna decimal que foi definida com uma precisão de 4. Um número inteiro ou a parte
inteira de um decimal nunca é truncada. No entanto, a parte fracionária de um decimal pode
ser arredondada para cima ou para baixo, conforme apropriado. Contudo, os resultados de
conversões explícitas dos valores selecionados a partir de tabelas não são arredondados.

• Diferentes tipos de cadeias de caracteres são compatíveis. As sequências de colunas
VARCHAR contendo dados de byte único e as sequências de colunas CHAR são comparáveis
e implicitamente conversíveis. Strings VARCHAR que contêm dados de multibyte não são
comparáveis. Além disso, você pode converter uma sequência de caracteres em uma data, hora,
carimbo de data/hora ou valor numérico se a sequência for um valor literal apropriado. Todos os
espaços à esquerda ou à direita são ignorados. Por outro lado, você pode converter uma data,
hora, timestamp ou valor numérico em uma sequência de caracteres de comprimento fixo ou
variável.

Note

Uma string de caracteres que você queira converter em um tipo numérico deve conter
uma representação de caractere de um número. Por exemplo, você pode converter as
strings '1.0' ou '5.9' em valores decimais, mas não pode converter a string 'ABC' em
nenhum tipo numérico.

• Se você comparar valores DECIMAIS com cadeias de caracteres, AWS Clean Rooms tentará
converter a cadeia de caracteres em um valor DECIMAL. Ao comparar todos os outros valores

Compatibilidade e conversão dos tipos 54

AWS Clean Rooms Referência SQL

numéricos com strings de caracteres, os valores numéricos são convertidos em strings de
caracteres. Para impor a conversão oposta (por exemplo, converter strings de caracteres em
números inteiros ou converter valores do tipo DECIMAL em strings de caracteres), use uma função
explícita, como Função CAST.

• Para converter valores do tipo DECIMAL ou NUMERIC de 64 bits em uma precisão mais alta, você
deve usar uma função de conversão explícita tal como CAST ou CONVERT.

Tipos de conversão implícita

Há dois tipos de conversão implícita:

• Conversões implícitas em atribuições, como definir valores em comandos INSERT ou UPDATE

• Conversões implícitas em expressões, como realizar comparações na cláusula WHERE

A tabela a seguir lista os tipos de dados que podem ser convertidos implicitamente em atribuições
ou expressões. Você também pode usar uma função de conversão explícita para realizar essas
conversões.

Do tipo Para o tipo

BOOLEAN

CHAR

DECIMAL (NUMERIC)

PRECISÃO DUPLA (FLOAT8)

INTEGER

REAL (FLOAT4)

SMALLINT ou SHORT

BIGINT

VARCHAR

CHAR VARCHAR

DATE CHAR

Compatibilidade e conversão dos tipos 55

AWS Clean Rooms Referência SQL

Do tipo Para o tipo

VARCHAR

TIMESTAMP

TIMESTAMPTZ

BIGINT ou LONG

CHAR

PRECISÃO DUPLA (FLOAT8)

INTEGER INT)

REAL (FLOAT4)

SMALLINT ou SHORT

DECIMAL (NUMERIC)

VARCHAR

BIGINT ou LONG

CHAR

DECIMAL (NUMERIC)

INTEGER (INT)

REAL (FLOAT4)

SMALLINT ou SHORT

PRECISÃO DUPLA (FLOAT8)

VARCHAR

BIGINT ou LONG

BOOLEAN

INTEGER (INT)

CHAR

Compatibilidade e conversão dos tipos 56

AWS Clean Rooms Referência SQL

Do tipo Para o tipo

DECIMAL (NUMERIC)

PRECISÃO DUPLA (FLOAT8)

REAL (FLOAT4)

SMALLINT ou SHORT

VARCHAR

BIGINT ou LONG

CHAR

DECIMAL (NUMERIC)

INTEGER (INT)

SMALLINT ou SHORT

REAL (FLOAT4)

VARCHAR

BIGINT ou LONG

BOOLEAN

CHAR

DECIMAL (NUMERIC)

PRECISÃO DUPLA (FLOAT8)

INTEGER (INT)

REAL (FLOAT4)

SMALLINT

VARCHAR

TIME VARCHAR

Compatibilidade e conversão dos tipos 57

AWS Clean Rooms Referência SQL

Do tipo Para o tipo

TIMETZ

Note

As conversões implícitas entre DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ ou
cadeias de caracteres usam o fuso horário da sessão atual.
O tipo de dados VARBYTE não pode ser convertido explicitamente em outro tipo de dados.
Para obter mais informações, consulte Função CAST.

AWS Clean Rooms Comandos do Spark SQL

Os seguintes comandos SQL são compatíveis com o AWS Clean Rooms Spark SQL:

Tópicos

• TABELA DE CACHE

• Dicas

• SELECT

TABELA DE CACHE

O comando CACHE TABLE armazena em cache os dados de uma tabela existente ou cria e
armazena em cache uma nova tabela contendo os resultados da consulta.

Note

Os dados em cache persistem durante toda a consulta.

A sintaxe, os argumentos e alguns exemplos vêm da Referência SQL do Apache Spark.

Sintaxe

O comando CACHE TABLE suporta três padrões de sintaxe:

Comandos SQL 58

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Referência SQL

Com AS (sem parênteses): cria e armazena em cache uma nova tabela com base nos resultados da
consulta.

CACHE TABLE cache_table_identifier AS query;

Com AS e parênteses: funciona de forma semelhante à primeira sintaxe, mas usa parênteses para
agrupar explicitamente a consulta.

CACHE TABLE cache_table_identifier AS (query);

Sem AS: armazena em cache uma tabela existente, usando a instrução SELECT para filtrar quais
linhas devem ser armazenadas em cache.

CACHE TABLE cache_table_identifier query;

Em que:

• Todas as declarações devem terminar com ponto e vírgula (;)

• querynormalmente é uma instrução SELECT

• Os parênteses ao redor da consulta são opcionais com AS

• A palavra-chave AS é opcional

Parâmetros

identificador_tabela_cache

O nome da tabela em cache. Pode incluir um qualificador de nome de banco de dados opcional.

AS

Uma palavra-chave usada ao criar e armazenar em cache uma nova tabela a partir dos
resultados da consulta.

query

Uma instrução SELECT ou outra consulta que define os dados a serem armazenados em cache.

TABELA DE CACHE 59

AWS Clean Rooms Referência SQL

Exemplos

Nos exemplos a seguir, a tabela em cache persiste durante toda a consulta. Após o armazenamento
em cache, as consultas subsequentes que fazem referência cache_table_identifier serão
lidas da versão em cache em vez de serem recalculadas ou lidas. sourceTable Isso pode melhorar
o desempenho da consulta para dados acessados com frequência.

Crie e armazene em cache uma tabela filtrada a partir dos resultados da consulta

O primeiro exemplo demonstra como criar e armazenar em cache uma nova tabela a partir
dos resultados da consulta. Esse comando usa a AS palavra-chave sem parênteses ao redor
da declaração. SELECT Ele cria uma nova tabela chamada 'cache_table_identifier'
contendo somente as linhas de 'sourceTable' onde o status é 'active'. Ele executa a consulta,
armazena os resultados na nova tabela e armazena em cache o conteúdo da nova tabela. O
'sourceTable' original permanece inalterado e as consultas subsequentes devem fazer referência a
'cache_table_identifier' para usar os dados em cache.

CACHE TABLE cache_table_identifier AS
 SELECT * FROM sourceTable
 WHERE status = 'active';

Resultados da consulta em cache com instruções SELECT entre parênteses

O segundo exemplo demonstra como armazenar em cache os resultados de uma consulta
como uma nova tabela com um nome especificado (cache_table_identifier), usando
parênteses ao redor da instrução. SELECT Esse comando cria uma nova tabela chamada
'cache_table_identifier' contendo somente as linhas de 'sourceTable' em que o status
é 'active'. Ele executa a consulta, armazena os resultados na nova tabela e armazena em
cache o conteúdo da nova tabela. O 'sourceTable' original permanece inalterado. As consultas
subsequentes devem fazer referência a 'cache_table_identifier' para usar os dados em
cache.

CACHE TABLE cache_table_identifier AS (
 SELECT * FROM sourceTable
 WHERE status = 'active'
);

TABELA DE CACHE 60

AWS Clean Rooms Referência SQL

Armazene em cache uma tabela existente com condições de filtro

O terceiro exemplo demonstra como armazenar em cache uma tabela existente usando uma sintaxe
diferente. Essa sintaxe, que omite a palavra-chave 'AS' e os parênteses, normalmente armazena em
cache as linhas especificadas de uma tabela existente chamada 'cache_table_identifier' em
vez de criar uma nova tabela. A SELECT instrução atua como um filtro para determinar quais linhas
devem ser armazenadas em cache.

Note

O comportamento exato dessa sintaxe varia entre os sistemas de banco de dados. Sempre
verifique a sintaxe correta para seu AWS serviço específico.

CACHE TABLE cache_table_identifier
SELECT * FROM sourceTable
WHERE status = 'active';

Dicas

As dicas para análises de SQL fornecem diretivas de otimização que orientam as estratégias de
execução de consultas AWS Clean Rooms, permitindo que você melhore o desempenho da consulta
e reduza os custos de computação. As dicas sugerem como o mecanismo de análise do Spark deve
gerar seu plano de execução.

Sintaxe

SELECT /*+ hint_name(parameters), hint_name(parameters) */ column_list
FROM table_name;

As dicas são incorporadas às consultas SQL usando a sintaxe de estilo de comentário e devem ser
colocadas diretamente após a palavra-chave SELECT.

Tipos de dicas compatíveis

AWS Clean Rooms suporta duas categorias de dicas: dicas de junção e dicas de particionamento.

Tópicos

• Junte dicas

Dicas 61

AWS Clean Rooms Referência SQL

• Dicas de particionamento

Junte dicas

As dicas de junção sugerem estratégias de junção para execução de consultas. A sintaxe,
os argumentos e alguns exemplos vêm da Referência SQL do Apache Spark para obter mais
informações

TRANSMISSÃO

Sugere que AWS Clean Rooms use broadcast join. O lado de junção com a dica será transmitido
independentemente do autoBroadcastJoin limite. Se os dois lados da junção tiverem as dicas de
transmissão, aquele com o tamanho menor (com base nas estatísticas) será transmitido.

Pseudônimos: BROADCASTJOIN, MAPJOIN

Parâmetros: identificadores de tabela (opcional)

Exemplos:

-- Broadcast a specific table
SELECT /*+ BROADCAST(students) */ e.name, s.course
FROM employees e JOIN students s ON e.id = s.id;

-- Broadcast multiple tables
SELECT /*+ BROADCASTJOIN(s, d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

MERGE

Sugere que AWS Clean Rooms use shuffle sort merge join.

Pseudônimos: SHUFFLE_MERGE, MERGEJOIN

Parâmetros: identificadores de tabela (opcional)

Exemplos:

-- Use merge join for a specific table
SELECT /*+ MERGE(employees) */ *
FROM employees e JOIN students s ON e.id = s.id;

Dicas 62

https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-hints.html#join-hints

AWS Clean Rooms Referência SQL

-- Use merge join for multiple tables
SELECT /*+ MERGEJOIN(e, s, d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

SHUFFLE_HASH

Sugere que AWS Clean Rooms use shuffle hash join. Se os dois lados tiverem dicas de hash
aleatórias, o otimizador de consultas escolherá o lado menor (com base nas estatísticas) como o
lado da construção.

Parâmetros: identificadores de tabela (opcional)

Exemplos:

-- Use shuffle hash join
SELECT /*+ SHUFFLE_HASH(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

SHUFFLE_REPLICATE_NL

Sugere o AWS Clean Rooms uso de junção de loop shuffle-and-replicate aninhado.

Parâmetros: identificadores de tabela (opcional)

Exemplos:

-- Use shuffle-replicate nested loop join
SELECT /*+ SHUFFLE_REPLICATE_NL(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

Dicas de solução de problemas no Spark SQL

A tabela a seguir mostra cenários comuns em que as dicas não são aplicadas no SparkSQL. Para
obter informações adicionais, consulte the section called “Considerações e limitações”.

Caso de uso Exemplo de consulta

Referência de tabela não
encontrada

SELECT /*+ BROADCAST(fake_table) */ *

Dicas 63

AWS Clean Rooms Referência SQL

Caso de uso Exemplo de consulta

FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Mesa que não participa da
operação de junção

SELECT /*+ BROADCAST(s) */ *
FROM students s
WHERE s.age > 25;

Referência de tabela na
subconsulta aninhada

SELECT /*+ BROADCAST(s) */ *
FROM employees e
INNER JOIN (SELECT * FROM students s WHERE s.age > 20)
 sub
ON e.eid = sub.sid;

Nome da coluna em vez da
referência da tabela

SELECT /*+ BROADCAST(e.eid) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Dica sem parâmetros
obrigatórios

SELECT /*+ BROADCAST */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Nome da tabela base em vez
do alias da tabela

SELECT /*+ BROADCAST(employees) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Dicas de particionamento

As dicas de particionamento controlam a distribuição de dados entre os nós do executor. Quando
várias dicas de particionamento são especificadas, vários nós são inseridos no plano lógico, mas a
dica mais à esquerda é selecionada pelo otimizador.

AGLUTINAR

Reduz o número de partições para o número especificado de partições.

Parâmetros: valor numérico (obrigatório) - deve ser um número inteiro positivo entre 1 e 2147483647

Dicas 64

AWS Clean Rooms Referência SQL

Exemplos:

-- Reduce to 5 partitions
SELECT /*+ COALESCE(5) */ employee_id, salary
FROM employees;

DISTRIBUIÇÃO

Reparticiona os dados para o número especificado de partições usando as expressões de
particionamento especificadas. Usa distribuição round-robin.

Parâmetros:

• Valor numérico (opcional) - número de partições; deve ser um número inteiro positivo entre 1 e
2147483647

• Identificadores de coluna (opcional) - colunas pelas quais particionar; Essas colunas devem existir
no esquema de entrada.

• Se ambos forem especificados, o valor numérico deverá vir primeiro

Exemplos:

-- Repartition to 10 partitions
SELECT /*+ REPARTITION(10) */ *
FROM employees;

-- Repartition by column
SELECT /*+ REPARTITION(department) */ *
FROM employees;

-- Repartition to 8 partitions by department
SELECT /*+ REPARTITION(8, department) */ *
FROM employees;

-- Repartition by multiple columns
SELECT /*+ REPARTITION(8, department, location) */ *
FROM employees;

REPARTIÇÃO_POR_INTERVALO

Reparticiona os dados para o número especificado de partições usando o particionamento de
intervalo nas colunas especificadas.

Dicas 65

AWS Clean Rooms Referência SQL

Parâmetros:

• Valor numérico (opcional) - número de partições; deve ser um número inteiro positivo entre 1 e
2147483647

• Identificadores de coluna (opcional) - colunas pelas quais particionar; Essas colunas devem existir
no esquema de entrada.

• Se ambos forem especificados, o valor numérico deverá vir primeiro

Exemplos:

SELECT /*+ REPARTITION_BY_RANGE(10) */ *
FROM employees;

-- Repartition by range on age column
SELECT /*+ REPARTITION_BY_RANGE(age) */ *
FROM employees;

-- Repartition to 5 partitions by range on age
SELECT /*+ REPARTITION_BY_RANGE(5, age) */ *
FROM employees;

-- Repartition by range on multiple columns
SELECT /*+ REPARTITION_BY_RANGE(5, age, salary) */ *
FROM employees;

REEQUILIBRAR

Reequilibra as partições de saída do resultado da consulta para que cada partição tenha um
tamanho razoável (nem muito pequena nem muito grande). Esta é uma operação de melhor esforço:
se houver inclinações, AWS Clean Rooms dividirá as partições inclinadas para que não sejam muito
grandes. Essa dica é útil quando você precisa gravar o resultado de uma consulta em uma tabela
para evitar arquivos muito pequenos ou muito grandes.

Parâmetros:

• Valor numérico (opcional) - número de partições; deve ser um número inteiro positivo entre 1 e
2147483647

• Identificadores de coluna (opcional) - as colunas devem aparecer na lista de saída SELECT

• Se ambos forem especificados, o valor numérico deverá vir primeiro

Dicas 66

AWS Clean Rooms Referência SQL

Exemplos:

-- Rebalance to 10 partitions
SELECT /*+ REBALANCE(10) */ employee_id, name
FROM employees;

-- Rebalance by specific columns in output
SELECT /*+ REBALANCE(employee_id, name) */ employee_id, name
FROM employees;

-- Rebalance to 8 partitions by specific columns
SELECT /*+ REBALANCE(8, employee_id, name) */ employee_id, name, department
FROM employees;

Combinando várias dicas

Você pode especificar várias dicas em uma única consulta separando-as com vírgulas:

-- Combine join and partitioning hints
SELECT /*+ BROADCAST(d), REPARTITION(8) */ e.name, d.dept_name
FROM employees e JOIN departments d ON e.dept_id = d.id;

-- Multiple join hints
SELECT /*+ BROADCAST(s), MERGE(d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

-- Hints within separate hint blocks within the same query
SELECT /*+ REPARTITION(100) */ /*+ COALESCE(500) */ /*+ REPARTITION_BY_RANGE(3, c) */ *
 FROM t;

Considerações e limitações

• As dicas são sugestões de otimização, não comandos. O otimizador de consultas pode ignorar
dicas com base nas restrições de recursos ou nas condições de execução.

• As dicas são incorporadas diretamente nas cadeias de caracteres de consulta SQL para e.
CreateAnalysisTemplate StartProtectedQuery APIs

• As dicas devem ser colocadas diretamente após a palavra-chave SELECT.

• Os parâmetros nomeados não são compatíveis com dicas e gerarão uma exceção.

Dicas 67

AWS Clean Rooms Referência SQL

• Os nomes das colunas nas dicas REPARTITION e REPARTITION_BY_RANGE devem existir no
esquema de entrada.

• Os nomes das colunas nas dicas de REBALANCE devem aparecer na lista de saída SELECT.

• Os parâmetros numéricos devem ser números inteiros positivos entre 1 e 2147483647. Não há
suporte para notações científicas como 1e1

• As dicas não são suportadas em consultas SQL de privacidade diferencial.

• As dicas para consultas SQL não são suportadas em PySpark trabalhos. Para fornecer diretrizes
para planos de execução em um PySpark trabalho, use a API de data frame. Consulte a
documentação da DataFrame API Apache Spark para obter mais informações.

SELECT

O comando SELECT retorna linhas de tabelas e funções definidas pelo usuário.

Os seguintes comandos, cláusulas e operadores de conjunto do SELECT SQL são compatíveis com
o AWS Clean Rooms Spark SQL:

Tópicos

• SELECT list

• Cláusula WITH

• Cláusula FROM

• Cláusula JOIN

• Cláusula WHERE

• Cláusula VALUES

• Cláusula GROUP BY

• Cláusula HAVING

• Configurar operadores

• Cláusula ORDER BY

• Exemplos de subconsulta

• Subconsultas correlacionadas

A sintaxe, os argumentos e alguns exemplos vêm da Referência SQL do Apache Spark.

SELECT 68

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.hint.html
https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Referência SQL

SELECT list

Os nomes SELECT list das colunas, funções e expressões que você deseja que a consulta retorne.
A lista representa o resultado da consulta.

Sintaxe

SELECT
[DISTINCT] | expression [AS column_alias] [, ...]

Parâmetros

DISTINCT

Opção que elimina linhas duplicadas do conjunto de resultados, com base em valores
correspondentes em uma ou mais colunas.

expression

Expressão formada por uma ou mais colunas que existem em tabelas referidas pela consulta.
Uma expressão pode conter funções SQL. Por exemplo:

coalesce(dimension, 'stringifnull') AS column_alias

AS column_alias

Nome temporário da coluna que é usada no conjunto de resultados finais. A palavra-chave AS é
opcional. Por exemplo:

coalesce(dimension, 'stringifnull') AS dimensioncomplete

Se você não especificar um alias para uma expressão que não for um nome de coluna simples, o
resultado definido aplicará um nome padrão à coluna.

Note

O alias é reconhecido logo após ser definido na lista de destino. Você não pode usar um
alias em outras expressões definidas depois dele na mesma lista de destinos.

SELECT 69

AWS Clean Rooms Referência SQL

Cláusula WITH

Uma cláusula WITH é uma cláusula opcional que precede a lista SELECT em uma consulta. A
cláusula WITH define um ou mais common_table_expressions. Cada expressão de tabela comum
(CTE) define uma tabela temporária, que é semelhante à definição de visualização. Você pode fazer
referência a essas tabelas temporárias na cláusula FROM. Eles são usados apenas enquanto a
consulta a que pertencem é executada. Cada CTE na cláusula WITH especifica um nome de tabela,
uma lista opcional de nomes de coluna e uma expressão de consulta que é avaliada como uma
tabela (uma instrução SELECT).

Subconsultas da cláusula WITH são uma forma eficiente de definir tabelas que podem ser usadas
ao longo da execução de uma consulta. Em todos os casos, os mesmos resultados podem ser
obtidos usando subconsultas no corpo principal da instrução SELECT, mas pode ser mais simples
fazer leituras ou gravações de subconsultas da cláusula WITH. Sempre que possível, subconsultas
da cláusula WITH por várias vezes referidas são aperfeiçoadas como subexpressões comuns, ou
seja, é possível avaliar uma subconsulta WITH uma vez e reutilizar seus resultados. (Observe que
subexpressões comuns não estão limitadas àquelas definidas na cláusula WITH.)

Sintaxe

[WITH common_table_expression [, common_table_expression , ...]]

onde common_table_expression pode ser não recursivo. Segue-se a forma não recursiva:

CTE_table_name AS (query)

Parâmetros

common_table_expression

Define uma tabela temporária que você pode fazer referência no Cláusula FROM e é usado
somente durante a execução da consulta a qual pertence.

CTE_table_name

Um nome exclusivo para uma tabela temporária que define os resultados da subconsulta de
cláusula WITH. Você não pode usar nomes duplicados em uma única cláusula WITH. Cada
subconsulta deve ter um nome de tabela que pode mencionado em Cláusula FROM.

query

Qualquer consulta SELECT que AWS Clean Rooms ofereça suporte. Consulte SELECT.

SELECT 70

AWS Clean Rooms Referência SQL

Observações de uso

Você pode usar uma cláusula WITH na seguinte instrução SQL:

• SELECIONAR, COM, UNIR, UNIR TUDO, INTERSETAR, INTERSETAR TUDO, EXCETO OU
EXCETO TUDO

Se a cláusula FROM de uma consulta que contém a cláusula WITH não fizer referência a qualquer
das tabelas definidas pela cláusula WITH, a cláusula WITH será ignorada e a consulta será
executada como normal.

Uma tabela definida por uma subconsulta de cláusula WITH somente pode ser referida no escopo
da consulta SELECT iniciada pela cláusula WITH. Por exemplo, você pode fazer referência a essa
tabela na cláusula FROM da subconsulta na lista SELECT, na cláusula WHERE ou na cláusula
HAVING. Você não pode usar a cláusula WITH em uma subconsulta e fazer referência à sua tabela
na cláusula FROM da consulta principal ou de outra subconsulta. Este padrão de consulta resulta em
uma mensagem de erro do formulário relation table_name doesn't exist para a tabela da
cláusula WITH.

Você não pode especificar outra cláusula WITH em uma subconsulta de cláusula WITH.

Você não pode fazer referência antecipada a tabelas definidas por subconsultas da cláusula WITH.
Por exemplo, a consulta a seguir retorna um erro devido à referência antecipada para a tabela W2 na
definição da tabela W1:

with w1 as (select * from w2), w2 as (select * from w1)
select * from sales;
ERROR: relation "w2" does not exist

Exemplos

O exemplo a seguir mostra o caso mais simples possível de uma consulta que contém uma cláusula
WITH. A consulta WITH com o nome VENUECOPY seleciona todas as linhas da tabela VENUE.
Por sua vez, a consulta principal seleciona todas as linhas de VENUECOPY. A tabela VENUECOPY
existe somente durante a consulta.

with venuecopy as (select * from venue)
select * from venuecopy order by 1 limit 10;

SELECT 71

AWS Clean Rooms Referência SQL

 venueid | venuename | venuecity | venuestate | venueseats
---------+----------------------------+-----------------+------------+------------
1 | Toyota Park | Bridgeview | IL | 0
2 | Columbus Crew Stadium | Columbus | OH | 0
3 | RFK Stadium | Washington | DC | 0
4 | CommunityAmerica Ballpark | Kansas City | KS | 0
5 | Gillette Stadium | Foxborough | MA | 68756
6 | New York Giants Stadium | East Rutherford | NJ | 80242
7 | BMO Field | Toronto | ON | 0
8 | The Home Depot Center | Carson | CA | 0
9 | Dick's Sporting Goods Park | Commerce City | CO | 0
v 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

O exemplo a seguir mostra uma cláusula WITH que produz duas tabelas, chamadas VENUE_SALES
e TOP_VENUES. A segunda tabela de consulta WITH seleciona a partir da primeira. Por sua vez,
a cláusula WHERE do bloco principal de consulta contém um subconsulta que restringe a tabela
TOP_VENUES.

with venue_sales as
(select venuename, venuecity, sum(pricepaid) as venuename_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
group by venuename, venuecity),

top_venues as
(select venuename
from venue_sales
where venuename_sales > 800000)

select venuename, venuecity, venuestate,
sum(qtysold) as venue_qty,
sum(pricepaid) as venue_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
and venuename in(select venuename from top_venues)
group by venuename, venuecity, venuestate
order by venuename;

 venuename | venuecity | venuestate | venue_qty | venue_sales
------------------------+---------------+------------+-----------+-------------
August Wilson Theatre | New York City | NY | 3187 | 1032156.00

SELECT 72

AWS Clean Rooms Referência SQL

Biltmore Theatre | New York City | NY | 2629 | 828981.00
Charles Playhouse | Boston | MA | 2502 | 857031.00
Ethel Barrymore Theatre | New York City | NY | 2828 | 891172.00
Eugene O'Neill Theatre | New York City | NY | 2488 | 828950.00
Greek Theatre | Los Angeles | CA | 2445 | 838918.00
Helen Hayes Theatre | New York City | NY | 2948 | 978765.00
Hilton Theatre | New York City | NY | 2999 | 885686.00
Imperial Theatre | New York City | NY | 2702 | 877993.00
Lunt-Fontanne Theatre | New York City | NY | 3326 | 1115182.00
Majestic Theatre | New York City | NY | 2549 | 894275.00
Nederlander Theatre | New York City | NY | 2934 | 936312.00
Pasadena Playhouse | Pasadena | CA | 2739 | 820435.00
Winter Garden Theatre | New York City | NY | 2838 | 939257.00
(14 rows)

Os dois exemplos a seguir demonstram as regras para o escopo de referências de tabela com
base subconsultas da cláusula WITH. A primeira consulta é executada, mas a segunda falha com
um erro esperado. A primeira consulta tem a subconsulta de cláusula WITH na lista SELECT da
consulta principal. A tabela definida pela cláusula WITH (HOLIDAYS) é referida na cláusula FROM
da subconsulta na lista SELECT:

select caldate, sum(pricepaid) as daysales,
(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join date on sales.dateid=date.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

caldate | daysales | dec25sales
-----------+----------+------------
2008-12-25 | 70402.00 | 70402.00
2008-12-31 | 12678.00 | 70402.00
(2 rows)

A segunda consulta falha porque tenta fazer referência à tabela HOLIDAYS na consulta principal,
assim como na subconsulta da lista SELECT. As referências principais da consulta estão fora do
escopo.

select caldate, sum(pricepaid) as daysales,

SELECT 73

AWS Clean Rooms Referência SQL

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join holidays on sales.dateid=holidays.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

ERROR: relation "holidays" does not exist

Cláusula FROM

A cláusula FROM em uma consulta lista as referências de tabela (tabelas, exibições e subconsultas)
de onde os dados são selecionados. Se as referências de várias tabelas estiverem listadas, as
tabelas devem ser juntadas, usando a sintaxe apropriada na cláusula FROM ou WHERE. Se nenhum
critério de junção for especificado, o sistema processará a consulta como uma junção cruzada
(produto cartesiano).

Tópicos

• Sintaxe

• Parâmetros

• Observações de uso

Sintaxe

FROM table_reference [, ...]

onde referência_tabela é uma das seguintes:

with_subquery_table_name | table_name | (subquery) [[AS] alias]
table_reference [NATURAL] join_type table_reference [USING (join_column [, ...])]
table_reference [INNER] join_type table_reference ON expr

Parâmetros

com_subconsulta_nome_tabela

Tabela definida por uma subconsulta em Cláusula WITH.

SELECT 74

AWS Clean Rooms Referência SQL

table_name

Nome de uma tabela ou exibição.

alias

Nome alternativo temporário para uma tabela ou exibição. Um alias deve ser fornecido para uma
tabela derivada de uma subconsulta. Em outras referências de tabela, os alias são opcionais. A
palavra-chave AS é sempre opcional. Os alias de tabela oferecem um atalho conveniente para
tabelas de identificação em outras partes de uma consulta, como a cláusula WHERE.

Por exemplo:

select * from sales s, listing l
where s.listid=l.listid

Se você definir um alias de tabela definido, o alias deverá ser usado para referenciar essa tabela
na consulta.

Por exemplo, se a consulta for SELECT "tbl"."col" FROM "tbl" AS "t", a consulta
falhará porque o nome da tabela está basicamente substituído agora. Uma consulta válida nesse
caso seria SELECT "t"."col" FROM "tbl" AS "t".

alias_coluna

Nome alternativo temporário para uma coluna em uma tabela ou exibição.

subconsulta

Uma expressão de consulta que avalia para uma tabela. A tabela existe somente pela duração
da consulta e geralmente recebe um nome ou alias. No entanto, um alias não é necessário. Você
também pode definir nomes de colunas para tabelas que derivam de subconsultas. Nomear
aliases de coluna é importante quando você deseja participar dos resultados de subconsultas
a outras tabelas e quando você deseja selecionar ou restringir essas colunas em outro lugar da
consulta.

Uma subconsulta pode conter uma cláusula ORDER BY, mas essa cláusula poderá não ter
qualquer efeito se uma cláusula LIMIT ou OFFSET também não estiver especificada.

NATURAL

Define um junção que usa automaticamente todos os pares de colunas com nomes idênticos em
duas tabelas como colunas de junção. Nenhuma condição explícita de junção é necessária. Por

SELECT 75

AWS Clean Rooms Referência SQL

exemplo, se as tabelas CATEGORY e EVENT apresentam colunas com nome CATID, um junção
natural dessas tabelas é um junção pelas colunas CATID.

Note

Se uma junção NATURAL for especificada mas não existirem pares de colunas com o
mesmo nome nas tabelas a serem juntadas, a junção padrão da consulta usada será a
junção cruzada.

join_type

Especifique um dos seguintes tipos de junção:

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

As junções cruzadas são junções não qualificadas; elas retornam o produto cartesiano das duas
tabelas.

As junções internas e externas são junções qualificadas. Elas podem ser qualificadas
implicitamente (em junções naturais); com a sintaxe ON ou USING na cláusula FROM; ou com a
condição de cláusula WHERE.

Uma junção interna retorna somente linhas correspondentes, com base na condição de junção ou
na lista de colunas de junção. Uma junção externa retorna todas as linhas que a junção interna
equivalente deve retornar e linhas não correspondentes da tabela "esquerda", da tabela "direita"
ou de ambas. A tabela esquerda é a primeira tabela listada, e a tabela direita é a segunda tabela
listada. As linhas não correspondentes contêm valores NULL para preencher lacunas entre as
colunas resultantes.

ON condição_junção

Tipo de especificação de junção em que as colunas a serem juntadas são exibidas como uma
condição que acompanha a palavra-chave ON. Por exemplo:

sales join listing

SELECT 76

AWS Clean Rooms Referência SQL

on sales.listid=listing.listid and sales.eventid=listing.eventid

USING (coluna_junção [, ...])

Tipo de especificação de junção em que as colunas a serem juntadas estão listadas entre
parênteses. Se várias colunas a serem juntadas forem especificadas, elas serão separadas por
vírgulas. A palavra-chave USING deve preceder a lista. Por exemplo:

sales join listing
using (listid,eventid)

Observações de uso

Colunas de junção devem ter tipos de dados comparáveis.

Uma junção NATURAL ou USING retém somente um de cada par de colunas de junção no conjunto
de resultados intermediário.

Uma junção com a sintaxe ON retém ambas as colunas de junção em seu conjunto de resultados
intermediário.

Consulte também Cláusula WITH.

Cláusula JOIN

Uma cláusula SQL JOIN é usada para combinar os dados de duas ou mais tabelas com base
em campos comuns. Os resultados podem ou não mudar dependendo do método de junção
especificado. Junções externas esquerdas e direitas retêm valores de uma das tabelas de junção
quando nenhuma correspondência é encontrada na outra tabela.

A combinação do tipo JOIN e da condição de junção determina quais linhas são incluídas no
conjunto de resultados final. As cláusulas SELECT e WHERE então controlam quais colunas são
retornadas e como as linhas são filtradas. Compreender os diferentes tipos de JOIN e como usá-los
de forma eficaz é uma habilidade crucial em SQL, pois permite combinar dados de várias tabelas de
forma flexível e poderosa.

Sintaxe

SELECT column1, column2, ..., columnn
FROM table1
join_type table2

SELECT 77

AWS Clean Rooms Referência SQL

ON table1.column = table2.column;

Parâmetros

SELECIONE coluna1, coluna2,..., coluna N

As colunas que você deseja incluir no conjunto de resultados. Você pode selecionar colunas de
uma ou de ambas as tabelas envolvidas no JOIN.

DA tabela 1

A primeira tabela (esquerda) na operação JOIN.

[JUNÇÃO | JUNÇÃO INTERNA | JUNÇÃO ESQUERDA [EXTERNA] | JUNÇÃO DIREITA
[EXTERNA] | JUNÇÃO COMPLETA [EXTERNA]] tabela 2:

O tipo de JOIN a ser executado. JOIN ou INNER JOIN retorna somente as linhas com valores
correspondentes em ambas as tabelas.

LEFT [OUTER] JOIN retorna todas as linhas da tabela à esquerda, com as linhas
correspondentes da tabela à direita.

RIGHT [OUTER] JOIN retorna todas as linhas da tabela à direita, com as linhas correspondentes
da tabela esquerda.

FULL [OUTER] JOIN retorna todas as linhas das duas tabelas, independentemente de haver uma
correspondência ou não.

CROSS JOIN cria um produto cartesiano das linhas das duas tabelas.

NA tabela1.coluna = tabela2.coluna

A condição de junção, que especifica como as linhas nas duas tabelas são correspondidas. A
condição de junção pode ser baseada em uma ou mais colunas.

Condição WHERE:

Uma cláusula opcional que pode ser usada para filtrar ainda mais o conjunto de resultados, com
base em uma condição especificada.

Exemplo

O exemplo a seguir é uma junção entre duas tabelas com a cláusula USING. Nesse caso, as colunas
listid e eventid são usadas como colunas de junção. Os resultados são limitados a cinco linhas.

SELECT 78

AWS Clean Rooms Referência SQL

select listid, listing.sellerid, eventid, listing.dateid, numtickets
from listing join sales
using (listid, eventid)
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+----------+---------+--------+-----------
1 | 36861 | 7872 | 1850 | 10
4 | 8117 | 4337 | 1970 | 8
5 | 1616 | 8647 | 1963 | 4
5 | 1616 | 8647 | 1963 | 4
6 | 47402 | 8240 | 2053 | 18

Tipos de união

INNER

Esse é o tipo de junção padrão. Retorna as linhas que têm valores correspondentes nas duas
referências da tabela.

O INNER JOIN é o tipo mais comum de junção usado em SQL. É uma forma poderosa de combinar
dados de várias tabelas com base em uma coluna comum ou conjunto de colunas.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
INNER JOIN table2
ON table1.column = table2.column;

A consulta a seguir retornará todas as linhas em que há um valor de customer_id correspondente
entre as tabelas de clientes e pedidos. O conjunto de resultados conterá as colunas customer_id,
name, order_id e order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
INNER JOIN orders
ON customers.customer_id = orders.customer_id;

A consulta a seguir é uma junção interna (sem a palavra-chave JOIN) entre a tabela LISTING e a
tabela SALES, onde o LISTID da tabela LISTING está entre 1 e 5. Essa consulta corresponde aos

SELECT 79

AWS Clean Rooms Referência SQL

valores da coluna LISTID na tabela LISTING (a tabela à esquerda) e na tabela SALES (tabela à
direita). Os resultados mostram que LISTID 1, 4 e 5 correspondem aos critérios.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing, sales
where listing.listid = sales.listid
and listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

O exemplo a seguir é uma junção interna com a cláusula ON. Nesse caso, as linhas NULL não são
retornadas.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

A consulta a seguir é uma junção interna de duas subconsultas na cláusula FROM. A consulta
encontra o número de ingressos vendidos e não vendidos para categorias diferentes de eventos
(shows e apresentações). As subconsultas da cláusula FROM são subconsultas da tabela. Elas
podem retornar várias colunas e linhas.

select catgroup1, sold, unsold
from
(select catgroup, sum(qtysold) as sold
from category c, event e, sales s

SELECT 80

AWS Clean Rooms Referência SQL

where c.catid = e.catid and e.eventid = s.eventid
group by catgroup) as a(catgroup1, sold)
join
(select catgroup, sum(numtickets)-sum(qtysold) as unsold
from category c, event e, sales s, listing l
where c.catid = e.catid and e.eventid = s.eventid
and s.listid = l.listid
group by catgroup) as b(catgroup2, unsold)

on a.catgroup1 = b.catgroup2
order by 1;

catgroup1 | sold | unsold
----------+--------+--------
Concerts | 195444 |1067199
Shows | 149905 | 817736

ESQUERDA [EXTERNA]

Retorna todos os valores da referência da tabela à esquerda e os valores correspondentes da
referência da tabela à direita ou acrescenta NULL se não houver correspondência. Também é
conhecida como junção externa esquerda.

Ele retorna todas as linhas da tabela esquerda (primeira) e as linhas correspondentes da tabela
direita (segunda). Se não houver correspondência na tabela à direita, o conjunto de resultados
conterá valores NULL para as colunas da tabela à direita. A palavra-chave OUTER pode ser omitida
e a junção pode ser escrita simplesmente como LEFT JOIN. O oposto de um LEFT OUTER JOIN é
um RIGHT OUTER JOIN, que retorna todas as linhas da tabela direita e as linhas correspondentes
da tabela esquerda.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
LEFT [OUTER] JOIN table2
ON table1.column = table2.column;

A consulta a seguir retornará todas as linhas da tabela de clientes, junto com as linhas
correspondentes da tabela de pedidos. Se um cliente não tiver pedidos, o conjunto de resultados
ainda incluirá as informações desse cliente, com valores NULL para as colunas order_id e
order_date.

SELECT 81

AWS Clean Rooms Referência SQL

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
LEFT OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

A consulta a seguir é uma junção externa à esquerda. Junções externas esquerdas e direitas retêm
valores de uma das tabelas de junção quando nenhuma correspondência é encontrada na outra
tabela. As tabelas esquerdas e direitas são a primeiras e a segunda listadas na sintaxe. Os valores
NULL são usados para preencher "lacunas" no conjunto de resultados. Essa consulta corresponde
aos valores da coluna LISTID na tabela LISTING (a tabela à esquerda) e na tabela SALES (tabela à
direita). Os resultados mostram que LISTIDs 2 e 3 não resultaram em nenhuma venda.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing left outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

DIREITO [EXTERNO]

Retorna todos os valores da referência da tabela à direita e os valores correspondentes da referência
da tabela à esquerda ou acrescenta NULL se não houver correspondência. Também é conhecida
como junção externa direita.

Ele retorna todas as linhas da tabela direita (segunda) e as linhas correspondentes da tabela
esquerda (primeira). Se não houver correspondência na tabela à esquerda, o conjunto de resultados
conterá valores NULL para as colunas da tabela à esquerda. A palavra-chave OUTER pode ser
omitida e a junção pode ser escrita simplesmente como RIGHT JOIN. O oposto de um RIGHT
OUTER JOIN é um LEFT OUTER JOIN, que retorna todas as linhas da tabela esquerda e as linhas
correspondentes da tabela direita.

Sintaxe:

SELECT 82

AWS Clean Rooms Referência SQL

SELECT column1, column2, ..., columnn
FROM table1
RIGHT [OUTER] JOIN table2
ON table1.column = table2.column;

A consulta a seguir retornará todas as linhas da tabela de clientes, junto com as linhas
correspondentes da tabela de pedidos. Se um cliente não tiver pedidos, o conjunto de resultados
ainda incluirá as informações desse cliente, com valores NULL para as colunas order_id e
order_date.

SELECT orders.order_id, orders.order_date, customers.customer_id, customers.name
FROM orders
RIGHT OUTER JOIN customers
ON orders.customer_id = customers.customer_id;

A consulta a seguir é uma junção externa à direita. Essa consulta corresponde aos valores da coluna
LISTID na tabela LISTING (a tabela à esquerda) e na tabela SALES (tabela à direita). Os resultados
mostram que LISTIDs 1, 4 e 5 correspondem aos critérios.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing right outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

COMPLETO [EXTERNO]

Retorna todos os valores de ambas as relações, anexando valores NULL no lado que não tem
correspondência. Também é conhecida como junção externa completa.

Ele retorna todas as linhas das tabelas esquerda e direita, independentemente de haver uma
correspondência ou não. Se não houver correspondência, o conjunto de resultados conterá valores
NULL para as colunas da tabela que não têm uma linha correspondente. A palavra-chave OUTER
pode ser omitida e a junção pode ser escrita simplesmente como FULL JOIN. O FULL OUTER JOIN

SELECT 83

AWS Clean Rooms Referência SQL

é menos comumente usado do que o LEFT OUTER JOIN ou o RIGHT OUTER JOIN, mas pode ser
útil em determinados cenários em que você precisa ver todos os dados das duas tabelas, mesmo
que não haja correspondências.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
FULL [OUTER] JOIN table2
ON table1.column = table2.column;

A consulta a seguir retornará todas as linhas das tabelas de clientes e pedidos. Se um cliente não
tiver pedidos, o conjunto de resultados ainda incluirá as informações desse cliente, com valores
NULL para as colunas order_id e order_date. Se um pedido não tiver nenhum cliente associado, o
conjunto de resultados incluirá esse pedido, com valores NULL para as colunas customer_id e name.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
FULL OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

A consulta a seguir é uma junção completa. As junções completas retêm valores das tabelas unidas
quando nenhuma correspondência é encontrada na outra tabela. As tabelas esquerdas e direitas são
a primeiras e a segunda listadas na sintaxe. Os valores NULL são usados para preencher "lacunas"
no conjunto de resultados. Essa consulta corresponde aos valores da coluna LISTID na tabela
LISTING (a tabela à esquerda) e na tabela SALES (tabela à direita). Os resultados mostram que
LISTIDs 2 e 3 não resultaram em nenhuma venda.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40

SELECT 84

AWS Clean Rooms Referência SQL

 5 | 525.00 | 78.75

A consulta a seguir é uma junção completa. Essa consulta corresponde aos valores da coluna
LISTID na tabela LISTING (a tabela à esquerda) e na tabela SALES (tabela à direita). Somente as
linhas que não resultam em nenhuma venda (LISTIDs 2 e 3) estão nos resultados.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
and (listing.listid IS NULL or sales.listid IS NULL)
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 2 | NULL | NULL
 3 | NULL | NULL

[ESQUERDA] SEMI

Retorna valores do lado esquerdo da referência da tabela que coincidem com o direito. Também é
conhecida como junção semi esquerda.

Ele retorna somente as linhas da tabela esquerda (primeira) que têm uma linha correspondente na
tabela direita (segunda). Ele não retorna nenhuma coluna da tabela à direita - somente as colunas
da tabela à esquerda. O LEFT SEMI JOIN é útil quando você deseja encontrar as linhas em uma
tabela que coincidem em outra tabela, sem precisar retornar nenhum dado da segunda tabela. O
LEFT SEMI JOIN é uma alternativa mais eficiente ao uso de uma subconsulta com uma cláusula IN
ou EXISTS.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
LEFT SEMI JOIN table2
ON table1.column = table2.column;

A consulta a seguir retornará somente as colunas customer_id e name da tabela de clientes, para os
clientes que têm pelo menos um pedido na tabela de pedidos. O conjunto de resultados não incluirá
nenhuma coluna da tabela de pedidos.

SELECT 85

AWS Clean Rooms Referência SQL

SELECT customers.customer_id, customers.name
FROM customers
LEFT SEMI JOIN orders
ON customers.customer_id = orders.customer_id;

CROSS JOIN

Retorna o produto cartesiano de duas relações. Isso significa que o conjunto de resultados conterá
todas as combinações possíveis de linhas das duas tabelas, sem nenhuma condição ou filtro
aplicado.

O CROSS JOIN é útil quando você precisa gerar todas as combinações possíveis de dados de duas
tabelas, como no caso da criação de um relatório que exibe todas as combinações possíveis de
informações do cliente e do produto. O CROSS JOIN é diferente de outros tipos de junção (INNER
JOIN, LEFT JOIN etc.) porque não tem uma condição de junção na cláusula ON. A condição de
junção não é necessária para um CROSS JOIN.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
CROSS JOIN table2;

A consulta a seguir retornará um conjunto de resultados que contém todas as combinações possíveis
de customer_id, customer_name, product_id e product_name das tabelas de clientes e produtos. Se
a tabela de clientes tiver 10 linhas e a tabela de produtos tiver 20 linhas, o conjunto de resultados do
CROSS JOIN conterá 10 x 20 = 200 linhas.

SELECT customers.customer_id, customers.name, products.product_id,
 products.product_name
FROM customers
CROSS JOIN products;

A consulta a seguir é uma junção cruzada ou junção cartesiana da tabela LISTING e da tabela
SALES com um predicado para limitar os resultados. Essa consulta corresponde aos valores da
coluna LISTID na tabela SALES e na tabela LISTING para LISTIDs 1, 2, 3, 4 e 5 em ambas as
tabelas. Os resultados mostram que 20 linhas correspondem aos critérios.

select sales.listid as sales_listid, listing.listid as listing_listid

SELECT 86

AWS Clean Rooms Referência SQL

from sales cross join listing
where sales.listid between 1 and 5
and listing.listid between 1 and 5
order by 1,2;

sales_listid | listing_listid
-------------+---------------
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
4 | 1
4 | 2
4 | 3
4 | 4
4 | 5
5 | 1
5 | 1
5 | 2
5 | 2
5 | 3
5 | 3
5 | 4
5 | 4
5 | 5
5 | 5

ANTI-JUNÇÃO

Retorna os valores da referência da tabela à esquerda que não têm correspondência com a
referência da tabela à direita. Também é conhecido como anti-junção esquerda.

O ANTI JOIN é uma operação útil quando você deseja encontrar as linhas em uma tabela que não
coincidem em outra tabela.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
LEFT ANTI JOIN table2
ON table1.column = table2.column;

SELECT 87

AWS Clean Rooms Referência SQL

A consulta a seguir retornará todos os clientes que não fizeram nenhum pedido.

SELECT customers.customer_id, customers.name
FROM customers
LEFT ANTI JOIN orders
ON customers.customer_id = orders.customer_id
WHERE orders.order_id IS NULL;

NATURAL

Especifica que as linhas das duas relações serão correspondidas implicitamente em igualdade para
todas as colunas com nomes correspondentes.

Ele combina automaticamente colunas com o mesmo nome e tipo de dados entre as duas tabelas.
Não é necessário especificar explicitamente a condição de junção na cláusula ON. Ele combina
todas as colunas correspondentes entre as duas tabelas no conjunto de resultados.

O NATURAL JOIN é uma abreviatura conveniente quando as tabelas que você está unindo têm
colunas com os mesmos nomes e tipos de dados. No entanto, geralmente é recomendável usar o
INNER JOIN mais explícito... Sintaxe ON para tornar as condições de junção mais explícitas e fáceis
de entender.

Sintaxe:

SELECT column1, column2, ..., columnn
FROM table1
NATURAL JOIN table2;

O exemplo a seguir é uma junção natural entre duas tabelas employees edepartments, com as
seguintes colunas:

• employeestabela:employee_id,first_name,last_name, department_id

• departmentstabela:department_id, department_name

A consulta a seguir retornará um conjunto de resultados que inclui o nome, o sobrenome e o
nome do departamento de todas as linhas correspondentes entre as duas tabelas, com base na
department_id coluna.

SELECT e.first_name, e.last_name, d.department_name

SELECT 88

AWS Clean Rooms Referência SQL

FROM employees e
NATURAL JOIN departments d;

O exemplo a seguir é uma junção natural entre duas tabelas. Nesse caso, as colunas listid, sellerid,
eventid e dateid têm nomes e tipos de dados idênticos em ambas as tabelas e, portanto, são usadas
como colunas de junção. Os resultados são limitados a cinco linhas.

select listid, sellerid, eventid, dateid, numtickets
from listing natural join sales
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+-----------+---------+--------+-----------
113 | 29704 | 4699 | 2075 | 22
115 | 39115 | 3513 | 2062 | 14
116 | 43314 | 8675 | 1910 | 28
118 | 6079 | 1611 | 1862 | 9
163 | 24880 | 8253 | 1888 | 14

Cláusula WHERE

A cláusula WHERE contém as condições que juntam as tabelas ou aplicam predicados às colunas
nas tabelas. Tabelas internas que foram juntadas usando a sintaxe apropriada, seja com a cláusula
WHERE ou com a cláusula FROM. Os critérios de junção externa devem ser especificados na
cláusula FROM.

Sintaxe

[WHERE condition]

condição

Qualquer condição de pesquisa com um resultado booleano, como uma condição de junção ou um
predicado em uma coluna de tabela. Os exemplos a seguir são condições de junção válidas:

sales.listid=listing.listid
sales.listid<>listing.listid

Os exemplos a seguir são condições válidas nas colunas em tabelas:

SELECT 89

AWS Clean Rooms Referência SQL

catgroup like 'S%'
venueseats between 20000 and 50000
eventname in('Jersey Boys','Spamalot')
year=2008
length(catdesc)>25
date_part(month, caldate)=6

As condições podem ser simples ou complexas; para condições complexas, você pode usar
parênteses para isolar unidades lógicas. No exemplo a seguir, a condição de junção está entre
parênteses.

where (category.catid=event.catid) and category.catid in(6,7,8)

Observações de uso

É possível usar aliases na cláusula WHERE para fazer referência a expressões da lista de seleção.

Não é possível restringir os resultados de funções agregadas na cláusula WHERE; use a cláusula
HAVING para essa finalidade.

Colunas restringidas na cláusula WHERE devem ser derivadas de referências da tabela na cláusula
FROM.

Exemplo

A consulta a seguir usa uma combinação de diferentes restrições da cláusula WHERE, incluindo uma
condição de junção para as tabelas SALES e EVENT, um predicado na coluna EVENTNAME e dois
predicados na coluna STARTTIME.

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event
where sales.eventid = event.eventid
and eventname='Hannah Montana'
and date_part(quarter, starttime) in(1,2)
and date_part(year, starttime) = 2008
order by 3 desc, 4, 2, 1 limit 10;

eventname | starttime | costperticket | qtysold
----------------+---------------------+-------------------+---------
Hannah Montana | 2008-06-07 14:00:00 | 1706.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 1658.00000000 | 2

SELECT 90

AWS Clean Rooms Referência SQL

Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 3
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 4
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 1
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 4
(10 rows)

Cláusula VALUES

A cláusula VALUES é usada para fornecer um conjunto de valores de linha diretamente na consulta,
sem a necessidade de referenciar uma tabela.

A cláusula VALUES pode ser usada nos seguintes cenários:

• Você pode usar a cláusula VALUES em uma instrução INSERT INTO para especificar os valores
das novas linhas que estão sendo inseridas em uma tabela.

• Você pode usar a cláusula VALUES sozinha para criar um conjunto de resultados temporário ou
uma tabela embutida, sem a necessidade de referenciar uma tabela.

• Você pode combinar a cláusula VALUES com outras cláusulas SQL, como WHERE, ORDER BY
ou LIMIT, para filtrar, classificar ou limitar as linhas no conjunto de resultados.

Essa cláusula é particularmente útil quando você precisa inserir, consultar ou manipular um pequeno
conjunto de dados diretamente na instrução SQL, sem a necessidade de criar ou referenciar uma
tabela permanente. Ele permite que você defina os nomes das colunas e os valores correspondentes
para cada linha, oferecendo a flexibilidade de criar conjuntos de resultados temporários ou inserir
dados dinamicamente, sem a sobrecarga de gerenciar uma tabela separada.

Sintaxe

VALUES (expression [, ...]) [table_alias]

Parâmetros

expressão

Uma expressão que especifica uma combinação de um ou mais valores, operadores e funções
SQL que resulta em um valor.

SELECT 91

AWS Clean Rooms Referência SQL

apelido de tabela

Um alias que especifica um nome temporário com uma lista opcional de nomes de colunas.

Exemplo

O exemplo a seguir cria uma tabela embutida, um conjunto de resultados temporário semelhante
a uma tabela com duas colunas e. col1 col2 A única linha no conjunto de resultados contém
os valores "one" e1, respectivamente. A SELECT * FROM parte da consulta simplesmente
recupera todas as colunas e linhas desse conjunto de resultados temporário. Os nomes das colunas
(col1ecol2) são gerados automaticamente pelo sistema de banco de dados, porque a cláusula
VALUES não especifica explicitamente os nomes das colunas.

SELECT * FROM VALUES ("one", 1);
+----+----+
|col1|col2|
+----+----+
| one| 1|
+----+----+

Se quiser definir nomes de colunas personalizados, você pode fazer isso usando uma cláusula AS
após a cláusula VALUES, assim:

SELECT * FROM (VALUES ("one", 1)) AS my_table (name, id);
+------+----+
| name | id |
+------+----+
| one | 1 |
+------+----+

Isso criaria um conjunto de resultados temporário com os nomes das colunas name eid, em vez do
padrão col1 col2 e.

Cláusula GROUP BY

A cláusula GROUP BY identifica as colunas de agrupamento para a consulta. As colunas de
agrupamento devem ser declaradas quando a consulta computa agregadas com funções padrão
como SUM, AVG e COUNT. Se uma função agregada estiver presente na expressão SELECT,
qualquer coluna na expressão SELECT que não esteja em uma função agregada deverá estar na
cláusula GROUP BY.

SELECT 92

AWS Clean Rooms Referência SQL

Para obter mais informações, consulte AWS Clean Rooms Funções do Spark SQL.

Sintaxe

GROUP BY group_by_clause [, ...]

group_by_clause := {
 expr |
 ROLLUP (expr [, ...]) |
 }

Parâmetros

expr

A lista de colunas ou de expressões deve corresponder à lista de expressões não agregadas na
lista de seleção da consulta. Por exemplo, considere a seguinte consulta simples.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by listid, eventid
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

Nesta consulta, a lista de seleção consiste em duas expressões agregadas. A primeira usa a
função SUM e a segunda usa a função COUNT. As duas colunas restantes, LISTID e EVENTID,
devem ser declaradas como colunas de agrupamento.

As expressões na cláusula GROUP BY também podem fazer referência à lista de seleção usando
números ordinais. O exemplo anterior poderia ser abreviado da seguinte forma.

select listid, eventid, sum(pricepaid) as revenue,

SELECT 93

AWS Clean Rooms Referência SQL

count(qtysold) as numtix
from sales
group by 1,2
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

ROLLUP

Você pode usar a extensão de agregação ROLLUP para executar o trabalho de múltiplas
operações GROUP BY em uma única instrução. Para obter mais informações sobre extensões de
agregação e funções relacionadas, consulte Extensões de agregação.

Extensões de agregação

AWS Clean Roomssuporta extensões de agregação para realizar o trabalho de várias operações
GROUP BY em uma única instrução.

GROUPING SETS

Calcula um ou mais conjuntos de agrupamento em uma única instrução. Um conjunto de
agrupamento é o conjunto de uma única cláusula GROUP BY, um conjunto de 0 ou mais colunas
pelo qual você pode agrupar o conjunto de resultados de uma consulta. GROUP BY GROUPING
SETS é equivalente a executar uma consulta UNION ALL em um conjunto de resultados agrupado
por colunas diferentes. Por exemplo, GROUP BY GROUPING SETS((a), (b)) é equivalente a
GROUP BY a UNION ALL GROUP BY b.

O exemplo a seguir retorna o custo dos produtos da tabela de pedidos agrupados de acordo com as
categorias de produtos e o tipo de produto vendido.

SELECT category, product, sum(cost) as total
FROM orders

SELECT 94

AWS Clean Rooms Referência SQL

GROUP BY GROUPING SETS(category, product);

 category | product | total
----------------------+----------------------+-------
 computers | | 2100
 cellphones | | 1610
 | laptop | 2050
 | smartphone | 1610
 | mouse | 50

(5 rows)

ROLLUP

Assume uma hierarquia em que as colunas anteriores são consideradas pais das colunas
subsequentes. ROLLUP agrupa os dados pelas colunas fornecidas, retornando linhas de subtotal
extras representando os totais em todos os níveis de colunas de agrupamento, além das linhas
agrupadas. Por exemplo, você pode usar GROUP BY ROLLUP((a), (b)) para retornar um conjunto de
resultados agrupado primeiro por a, depois por b, assumindo que b é uma subseção de a. ROLLUP
também retorna uma linha com todo o conjunto de resultados sem colunas de agrupamento.

GROUP BY ROLLUP((a), (b)) é equivalente a GROUP BY GROUPING SETS((a,b), (a), ()).

O exemplo a seguir retorna o custo dos produtos da tabela de pedidos agrupados primeiro por
categoria, depois por produto, com o produto como uma subdivisão da categoria.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY ROLLUP(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | | 3710
(6 rows)

SELECT 95

AWS Clean Rooms Referência SQL

CUBE

Agrupa os dados pelas colunas fornecidas, retornando linhas de subtotal extras representando os
totais em todos os níveis de colunas de agrupamento, além das linhas agrupadas. CUBE retorna as
mesmas linhas que ROLLUP, enquanto inclui linhas de subtotal adicionais para cada combinação
de coluna de agrupamento não contemplada por ROLLUP. Por exemplo, você pode usar GROUP
BY CUBE((a), (b)) para retornar um conjunto de resultados agrupado primeiro por a, depois por b,
assumindo que b é uma subseção de a, depois apenas por b. CUBE também retorna uma linha com
todo o conjunto de resultados sem colunas de agrupamento.

GROUP BY CUBE((a), (b)) é equivalente a GROUP BY GROUPING SETS((a,b), (a), (b), ()).

O exemplo a seguir retorna o custo dos produtos da tabela de pedidos agrupados primeiro por
categoria, depois por produto, com o produto como uma subdivisão da categoria. Ao contrário do
exemplo anterior para ROLLUP, a instrução retorna resultados para cada combinação de coluna de
agrupamento.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | laptop | 2050
 | mouse | 50
 | smartphone | 1610
 | | 3710
(9 rows)

Cláusula HAVING

A cláusula HAVING aplica uma condição a um conjunto de resultados agrupados intermediários
retornados por uma consulta.

SELECT 96

AWS Clean Rooms Referência SQL

Sintaxe

[HAVING condition]

Por exemplo, você pode restringir os resultados de uma função SUM:

having sum(pricepaid) >10000

A condição HAVING é aplicada depois que todas as condições da cláusula WHERE forem aplicadas
e as operações GROUP BY concluídas.

A própria condição leva a mesma forma que qualquer condição da cláusula WHERE.

Observações de uso

• Qualquer coluna referida na condição da cláusula HAVING deve ser uma coluna de agrupamento
ou uma coluna que faz referência ao resultado de uma função agregada.

• Em uma cláusula HAVING, você não pode especificar:

• Número ordinal que se refere a um item na lista de seleção. Somente as cláusulas GROUP BY e
ORDER BY aceitam números ordinais.

Exemplos

A consulta a seguir calcula as vendas de ingressos globais para todos os eventos por nome e depois
elimina eventos em que as vendas globais tenham sido menos de $ 800.000. A condição HAVING é
aplicada aos resultados da função agregada na lista de seleção: sum(pricepaid).

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(pricepaid) > 800000
order by 2 desc, 1;

eventname | sum
------------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00

SELECT 97

AWS Clean Rooms Referência SQL

Legally Blonde | 804583.00
(6 rows)

A consulta a seguir calcula um conjunto de resultados semelhante. Nesse caso, no entanto,
a condição HAVING é aplicada a um valor agregado não especificado na lista de seleção:
sum(qtysold). Os eventos que não tenham vendido mais de 2.000 ingressos são eliminados dos
resultados finais.

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(qtysold) >2000
order by 2 desc, 1;

eventname | sum
------------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
Chicago | 790993.00
Spamalot | 714307.00
(8 rows)

Configurar operadores

Os operadores de conjunto são usados para comparar e mesclar os resultados de duas expressões
de consulta separadas.

AWS Clean RoomsO Spark SQL é compatível com os seguintes operadores de conjunto listados na
tabela a seguir.

Definir operador

INTERSECT

CRUZAR TUDO

EXCEPT

SELECT 98

AWS Clean Rooms Referência SQL

Definir operador

EXCETO TODOS

UNION

UNION ALL

Por exemplo, se você quiser saber quais usuários de um site compram e vendem, mas os nomes
de usuários estiverem armazenados em colunas ou tabelas separadas, você pode encontrar a
interseção desses dois tipos de usuários. Se você quiser saber quais usuários do site compram, mas
não vendem, você pode usar o operador EXCEPT para encontrar a diferença entre as duas listas
de usuários. Se quiser criar uma lista com todos os usuários, independentemente da função, use o
operador UNION.

Note

As cláusulas ORDER BY, LIMIT, SELECT TOP e OFFSET não podem ser usadas nas
expressões de consulta mescladas pelos operadores de conjunto UNION, UNION ALL,
INTERSECT e EXCEPT.

Tópicos

• Sintaxe

• Parâmetros

• Ordem de avaliação para operadores de conjunto

• Observações de uso

• Exemplos de consultas UNION

• Exemplos de consultas UNION ALL

• Exemplos de consultas INTERSECT

• Exemplos de consultas EXCEPT

Sintaxe

subquery1

SELECT 99

AWS Clean Rooms Referência SQL

{ { UNION [ALL | DISTINCT] |
 INTERSECT [ALL | DISTINCT] |
 EXCEPT [ALL | DISTINCT] } subquery2 } [...] }

Parâmetros

subconsulta1, subconsulta2

Uma expressão de consulta que corresponde, no formato de sua lista de seleção, a uma segunda
expressão de consulta que segue o operador UNION, UNION ALL, INTERSECT, INTERSECT
ALL, EXCEPT ou EXCEPT ALL. As duas expressões devem conter o mesmo número de colunas
de saída com tipos de dados compatíveis. Caso contrário, os dois conjuntos de resultados não
poderão ser comparados e mesclados. As operações de conjunto não permitem a conversão
implícita entre diferentes categorias de tipos de dados. Para obter mais informações, consulte
Compatibilidade e conversão dos tipos.

Você pode criar consultas contendo um número ilimitado de expressões de consulta e conectá-
las aos operadores UNION, INTERSECT e EXCEPT em qualquer combinação. Por exemplo,
a estrutura de consulta a seguir é válida, pressupondo que as tabelas T1, T2 e T3 contenham
conjuntos compatíveis de colunas:

select * from t1
union
select * from t2
except
select * from t3

UNIÃO [TUDO | DISTINTO]

Operação de conjunto que retorna linhas de duas expressões de consulta, independentemente
das linhas se derivarem de uma ou ambas as expressões.

CRUZAR [TUDO | DISTINTO]

Operação de conjunto que retorna linhas derivadas de duas expressões de consulta. As linhas
que não forem retornadas por ambas as expressões serão descartadas.

EXCETO [TUDO | DISTINTO]

Operação de conjunto que retorna linhas derivadas de uma das duas expressões de consulta.
Para se qualificar para o resultado, as linhas precisam existir na primeira tabela de resultados,
mas não na segunda.

SELECT 100

AWS Clean Rooms Referência SQL

EXCEPT ALL não remove duplicatas das linhas de resultados.

MINUS e EXCEPT são sinônimos.

Ordem de avaliação para operadores de conjunto

Os operadores de conjunto UNION e EXCEPT se associam à esquerda. Se não houver parênteses
especificados para influenciar a ordem de precedência, uma combinação desses operadores de
conjunto será avaliada da esquerda para a direita. Por exemplo, na consulta a seguir, o operador
UNION de T1 e T2 é avaliado primeiro, seguido pela operação EXCEPT, que é executada no
resultado de UNION:

select * from t1
union
select * from t2
except
select * from t3

O operador INTERSECT tem precedência sobre os operadores UNION e EXCEPT quando uma
combinação de operadores for usada na mesma consulta. Por exemplo, a consulta a seguir avalia a
interseção de T2 e T3, e depois une o resultado com T1:

select * from t1
union
select * from t2
intersect
select * from t3

Adicionando parênteses, você pode aplicar uma ordem diferente de avaliação. No caso a seguir, o
resultado da união de T1 e T2 é cruzado com T3, e a consulta provavelmente produzirá um resultado
diferente.

(select * from t1
union
select * from t2)
intersect
(select * from t3)

SELECT 101

AWS Clean Rooms Referência SQL

Observações de uso

• Os nomes de colunas obtidos no resultado de uma consulta de operação de conjunto são os
nomes de colunas (ou aliases) das tabelas na primeira expressão de consulta. Como esses nomes
de coluna podem induzir a erros, os valores na coluna derivam de tabelas em ambos os lados
do operador de conjunto, você pode querer fornecer aliases significativos para o conjunto de
resultados.

• Quando as consultas do operador de conjunto retornam resultados decimais, as colunas
de resultados correspondentes são promovidas para retornar a mesma precisão e escala.
Por exemplo, na consulta a seguir, em que T1.REVENUE é uma coluna DECIMAL(10,2)
e T2.REVENUE é uma coluna DECIMAL(8,4), o resultado decimal é atualizado para
DECIMAL(12,4):

select t1.revenue union select t2.revenue;

A escala é 4 porque é a escala máxima das duas colunas. A precisão é 12 porque T1.REVENUE
requer 8 dígitos à esquerda do ponto decimal (12 - 4 = 8). Essa promoção de tipo garante que
todos os valores de ambos os lados de UNION se encaixem no resultado. Para valores de 64 bits,
a precisão máxima de resultado é 19 e a escala máxima de resultado é 18. Para valores de 128-
bits, a precisão máxima de resultado é 38 e a escala máxima de resultado é 37.

Se o tipo de dados resultante exceder os limites AWS Clean Rooms de precisão e escala, a
consulta retornará um erro.

• Para operações de conjunto, duas linhas são tratadas como idênticas se, para cada par de
colunas correspondente, os dois valores de dados forem iguais ou ambos NULL. Por exemplo, se
as tabelas T1 e T2 contiverem uma coluna e uma linha, e a linha for NULL em ambas as tabelas,
uma operação INTERSECT sobre essas tabelas retornará essa linha.

Exemplos de consultas UNION

Na consulta UNION a seguir, as linhas na tabela SALES são mescladas com as linhas na tabela
LISTING. Três colunas compatíveis de cada tabela são selecionadas. Nesse caso, as colunas
correspondentes têm os mesmos nomes e tipos de dados.

select listid, sellerid, eventid from listing
union select listid, sellerid, eventid from sales

SELECT 102

AWS Clean Rooms Referência SQL

listid | sellerid | eventid
--------+----------+---------
1 | 36861 | 7872
2 | 16002 | 4806
3 | 21461 | 4256
4 | 8117 | 4337
5 | 1616 | 8647

O exemplo a seguir mostra como você pode adicionar um valor literal de saída de uma consulta
UNION para ver qual expressão de consulta produziu cada linha no conjunto de resultados. A
consulta identifica linhas da primeira expressão de consulta como “B” (para compradores) e linhas da
segunda expressão de consulta como “S” (para vendedores).

A consulta identifica compradores e vendedores para as transações de ingressos que custem
$10.000 ou mais. A única diferença entre as duas expressões de consulta em ambos os lados do
operador UNION é a coluna de junção para a tabela SALES.

select listid, lastname, firstname, username,
pricepaid as price, 'S' as buyorsell
from sales, users
where sales.sellerid=users.userid
and pricepaid >=10000
union
select listid, lastname, firstname, username, pricepaid,
'B' as buyorsell
from sales, users
where sales.buyerid=users.userid
and pricepaid >=10000

listid | lastname | firstname | username | price | buyorsell
--------+----------+-----------+----------+-----------+-----------
209658 | Lamb | Colette | VOR15LYI | 10000.00 | B
209658 | West | Kato | ELU81XAA | 10000.00 | S
212395 | Greer | Harlan | GXO71KOC | 12624.00 | S
212395 | Perry | Cora | YWR73YNZ | 12624.00 | B
215156 | Banks | Patrick | ZNQ69CLT | 10000.00 | S
215156 | Hayden | Malachi | BBG56AKU | 10000.00 | B

O exemplo a seguir usa um operador UNION ALL porque se forem encontradas linhas duplicadas,
elas devem ser mantidas no resultado. Para uma série específica de eventos IDs, a consulta retorna
0 ou mais linhas para cada venda associada a cada evento e 0 ou 1 linha para cada anúncio desse

SELECT 103

AWS Clean Rooms Referência SQL

evento. IDs Os eventos são exclusivos para cada linha nas tabelas LISTING e EVENT, mas pode
haver várias vendas para a mesma combinação de evento e anúncio IDs na tabela SALES.

A terceira coluna no conjunto de resultados identifica a origem da linha. Se vier da tabela SALES,
“Yes” é marcado na coluna SALESROW. (SALESROW é um alias para SALES.LISTID.) Se a linha
vier da tabela LISTING, “No” é marcado na coluna SALESROW.

Nesse caso, o conjunto de resultados consiste em três linhas de vendas para a lista 500, evento
7787. Em outras palavras, três transações diferentes ocorreram para essa combinação de lista e
evento. As outras duas listagens, 501 e 502, não produziram nenhuma venda, então a única linha
que a consulta produz para essas listas IDs vem da tabela LISTING (SALESROW = 'Não').

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Se você executar a mesma consulta sem a palavra-chave ALL, o resultado manterá somente uma
das transações de vendas.

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------

SELECT 104

AWS Clean Rooms Referência SQL

7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Exemplos de consultas UNION ALL

O exemplo a seguir usa um operador UNION ALL porque se forem encontradas linhas duplicadas,
elas devem ser mantidas no resultado. Para uma série específica de eventos IDs, a consulta retorna
0 ou mais linhas para cada venda associada a cada evento e 0 ou 1 linha para cada anúncio desse
evento. IDs Os eventos são exclusivos para cada linha nas tabelas LISTING e EVENT, mas pode
haver várias vendas para a mesma combinação de evento e anúncio IDs na tabela SALES.

A terceira coluna no conjunto de resultados identifica a origem da linha. Se vier da tabela SALES,
“Yes” é marcado na coluna SALESROW. (SALESROW é um alias para SALES.LISTID.) Se a linha
vier da tabela LISTING, “No” é marcado na coluna SALESROW.

Nesse caso, o conjunto de resultados consiste em três linhas de vendas para a lista 500, evento
7787. Em outras palavras, três transações diferentes ocorreram para essa combinação de lista e
evento. As outras duas listagens, 501 e 502, não produziram nenhuma venda, então a única linha
que a consulta produz para essas listas IDs vem da tabela LISTING (SALESROW = 'Não').

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Se você executar a mesma consulta sem a palavra-chave ALL, o resultado manterá somente uma
das transações de vendas.

SELECT 105

AWS Clean Rooms Referência SQL

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Exemplos de consultas INTERSECT

Compare o exemplo a seguir com o primeiro exemplo de UNION. A única diferença entre os dois
exemplos é o operador de conjunto usado, mas os resultados são muito diferentes. Somente uma
das linhas é a mesma:

235494 | 23875 | 8771

Essa é a única linha no resultado limitado de 5 linhas encontrada em ambas as tabelas.

select listid, sellerid, eventid from listing
intersect
select listid, sellerid, eventid from sales

listid | sellerid | eventid
--------+----------+---------
235494 | 23875 | 8771
235482 | 1067 | 2667
235479 | 1589 | 7303
235476 | 15550 | 793
235475 | 22306 | 7848

A consulta a seguir encontra eventos (em que foram vendidos ingressos) que ocorreram em locais
em Nova York e Los Angeles em março. A diferença entre as duas expressões de consulta é a
restrição na coluna VENUECITY.

select distinct eventname from event, sales, venue

SELECT 106

AWS Clean Rooms Referência SQL

where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='Los Angeles'
intersect
select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='New York City';

eventname

A Streetcar Named Desire
Dirty Dancing
Electra
Running with Annalise
Hairspray
Mary Poppins
November
Oliver!
Return To Forever
Rhinoceros
South Pacific
The 39 Steps
The Bacchae
The Caucasian Chalk Circle
The Country Girl
Wicked
Woyzeck

Exemplos de consultas EXCEPT

A tabela CATEGORY no banco de dados contém as seguintes 11 linhas:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts

SELECT 107

AWS Clean Rooms Referência SQL

(11 rows)

Pressuponha que uma tabela CATEGORY_STAGE (tabela de preparação) contém uma linha
adicional:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
 12 | Concerts | Comedy | All stand up comedy performances
(12 rows)

Retorne a diferença entre as duas tabelas. Em outras palavras, retorne as linhas que estão na tabela
CATEGORY_STAGE, mas não na tabela CATEGORY:

select * from category_stage
except
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
 12 | Concerts | Comedy | All stand up comedy performances
(1 row)

A consulta equivalente a seguir usa o sinônimo MINUS.

select * from category_stage
minus
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------

SELECT 108

AWS Clean Rooms Referência SQL

 12 | Concerts | Comedy | All stand up comedy performances
(1 row)

Se você reverter a ordem das expressões SELECT, a consulta não retornará qualquer linha.

Cláusula ORDER BY

A cláusula ORDER BY classifica o conjunto de resultados de uma consulta.

Note

A expressão ORDER BY mais externa deve ter somente colunas que estejam na lista de
seleção.

Tópicos

• Sintaxe

• Parâmetros

• Observações de uso

• Exemplos com ORDER BY

Sintaxe

[ORDER BY expression [ASC | DESC]]
[NULLS FIRST | NULLS LAST]
[LIMIT { count | ALL }]
[OFFSET start]

Parâmetros

expressão

Expressão que define a ordem de classificação do resultado da consulta. Ela consiste em uma ou
mais colunas da lista de seleção. Os resultados são obtidos com base na ordem binária UTF-8.
Também é possível especificar o seguinte:

• Números ordinais que representam a posição de entradas da lista de seleção (ou a posição
das colunas na tabela se não houver lista de seleção)

SELECT 109

AWS Clean Rooms Referência SQL

• Aliases que definem entradas da lista de seleção

Quando a cláusula ORDER BY tiver várias expressões, o conjunto de resultados será classificado
de acordo com a primeira expressão, e a segunda expressão será aplicada a linhas que tenham
valores correspondentes com os da primeira expressão, e assim por diante.

ASC | DESC

Opção que define a ordem de classificação para a expressão, da seguinte forma:

• ASC: ascendente (por exemplo, de valores numéricos menores para maiores e de "A" a "Z"
para strings de caracteres). Se nenhuma opção é especificada, os dados são classificados na
ordem ascendente por padrão.

• DESC: descendente (de valores numéricos maiores para menores; de "Z" a "A" para strings).

NULLS FIRST | NULLS LAST

Opção que especifica se valores NULL devem ser classificados primeiro, antes de valores não
nulos, ou por último, depois de valores não nulos. Por padrão, os valores NULL são ordenados e
classificados por último na ordem ASC e são ordenados e classificados primeiro na ordem DESC.

LIMIT number | ALL

Opção que controla o número de linhas classificadas que a consulta retorna. O número LIMIT
deve ser um inteiro positivo. O valor máximo é 2147483647.

LIMIT 0 não retorna linhas. Você pode usar essa sintaxe para fins de teste: para garantir que uma
consulta seja executada (sem exibir qualquer linha) ou obter uma lista de colunas de uma tabela.
Uma cláusula ORDER BY é redundante se você estiver usando LIMIT 0 para obter uma lista de
colunas. O valor padrão é LIMIT ALL.

OFFSET start

Opção que especifica para ignorar o número de linhas antes de start antes de começar a retornar
linhas. O número OFFSET deve ser um inteiro positivo. O valor máximo é 2147483647. Quando
usadas com a opção de LIMIT, as linhas OFFSET são ignoradas antes de iniciar a contagem
de linhas LIMIT que são retornadas. Se a opção LIMIT não for usada, o número de linhas no
conjunto de resultados será reduzido para o número de linhas ignoradas. As linhas ignoradas por
uma cláusula OFFSET ainda precisam passar por varredura, e pode não ser eficiente usar um
valor OFFSET grande.

SELECT 110

AWS Clean Rooms Referência SQL

Observações de uso

Observe o seguinte comportamento esperado com cláusulas ORDER BY:

• Os valores NULL são considerados "mais altos" que todos os demais valores. Com a ordem de
classificação crescente padrão, os valores NULL são classificados no final. Para alterar esse
comportamento, use a opção NULLS FIRST.

• Quando uma consulta não tiver uma cláusula ORDER BY, o sistema retornará conjuntos de
resultados sem uma classificação previsível das linhas. A mesma consulta executada duas vezes
pode retornar o conjunto de resultados em uma ordem diferente.

• As opções LIMIT e OFFSET podem ser usadas sem uma cláusula ORDER BY. No entanto, para
obter um conjunto consistente de linhas, use essas opções em conjunto com ORDER BY.

• Em qualquer sistema paralelo, por exemploAWS Clean Rooms, quando ORDER BY não produz
uma ordenação exclusiva, a ordem das linhas não é determinística. Ou seja, se a expressão
ORDER BY produzir valores duplicados, a ordem de retorno dessas linhas poderá variar de outros
sistemas ou de uma execução AWS Clean Rooms para a próxima.

• AWS Clean Roomsnão suporta literais de string nas cláusulas ORDER BY.

Exemplos com ORDER BY

Retorne todas as 11 linhas da tabela CATEGORY, classificada pela segunda coluna, CATGROUP.
Para os resultados que têm o mesmo valor de CATGROUP, classifique os valores da coluna
CATDESC pelo tamanho da string. Depois, organize pelas colunas CATID e CATNAME.

select * from category order by 2, 1, 3;

catid | catgroup | catname | catdesc
-------+----------+-----------+--
10 | Concerts | Jazz | All jazz singers and bands
9 | Concerts | Pop | All rock and pop music concerts
11 | Concerts | Classical | All symphony, concerto, and choir conce
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | All non-musical theatre
8 | Shows | Opera | All opera and light opera
5 | Sports | MLS | Major League Soccer
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association

SELECT 111

AWS Clean Rooms Referência SQL

(11 rows)

Retorne colunas selecionadas da tabela SALES, classificada pelos valores mais altos de QTYSOLD.
Limite o resultado às 10 primeiras linhas:

select salesid, qtysold, pricepaid, commission, saletime from sales
order by qtysold, pricepaid, commission, salesid, saletime desc

salesid | qtysold | pricepaid | commission | saletime
---------+---------+-----------+------------+---------------------
15401 | 8 | 272.00 | 40.80 | 2008-03-18 06:54:56
61683 | 8 | 296.00 | 44.40 | 2008-11-26 04:00:23
90528 | 8 | 328.00 | 49.20 | 2008-06-11 02:38:09
74549 | 8 | 336.00 | 50.40 | 2008-01-19 12:01:21
130232 | 8 | 352.00 | 52.80 | 2008-05-02 05:52:31
55243 | 8 | 384.00 | 57.60 | 2008-07-12 02:19:53
16004 | 8 | 440.00 | 66.00 | 2008-11-04 07:22:31
489 | 8 | 496.00 | 74.40 | 2008-08-03 05:48:55
4197 | 8 | 512.00 | 76.80 | 2008-03-23 11:35:33
16929 | 8 | 568.00 | 85.20 | 2008-12-19 02:59:33

Retorne uma lista de colunas e nenhuma linha usando a sintaxe LIMIT 0:

select * from venue limit 0;
venueid | venuename | venuecity | venuestate | venueseats
---------+-----------+-----------+------------+------------
(0 rows)

Exemplos de subconsulta

Os exemplos a seguir mostram diferentes maneiras em que subconsultas se encaixam em consultas
SELECT. Consulte Exemplo para obter outros exemplos de uso de subconsultas.

Subconsulta da lista SELECT

O exemplo a seguir contém um subconsulta na lista SELECT. Esta subconsulta é escalar: retorna
somente uma coluna e um valor, que é repetido nos resultados para cada linha retornada da
consulta exterior. A consulta compara o valor Q1SALES que a subconsulta computa com valores de
vendas de outros dois trimestres (2 e 3) em 2008, como definido pela consulta externa.

select qtr, sum(pricepaid) as qtrsales,

SELECT 112

AWS Clean Rooms Referência SQL

(select sum(pricepaid)
from sales join date on sales.dateid=date.dateid
where qtr='1' and year=2008) as q1sales
from sales join date on sales.dateid=date.dateid
where qtr in('2','3') and year=2008
group by qtr
order by qtr;

qtr | qtrsales | q1sales
-------+-------------+-------------
2 | 30560050.00 | 24742065.00
3 | 31170237.00 | 24742065.00
(2 rows)

Subconsulta da cláusula WHERE

O exemplo a seguir contém um subconsulta de tabela na cláusula WHERE. Essa subconsulta produz
várias linhas. Nesse caso, as linhas contêm apenas uma coluna, mas as subconsultas da tabela
podem conter várias colunas e linhas, assim como qualquer outra tabela.

A consulta encontra os 10 principais vendedores em termos quantidade máxima de ingressos
vendidos. A lista dos 10 principais é restringida pela subconsulta, que remove usuários que vivem
em cidades onde há locais de venda de ingressos. Essa consulta pode ser gravada de diferentes
maneiras. Por exemplo, a subconsulta pode ser regravada como uma junção na consulta principal.

select firstname, lastname, city, max(qtysold) as maxsold
from users join sales on users.userid=sales.sellerid
where users.city not in(select venuecity from venue)
group by firstname, lastname, city
order by maxsold desc, city desc
limit 10;

firstname | lastname | city | maxsold
-----------+-----------+----------------+---------
Noah | Guerrero | Worcester | 8
Isadora | Moss | Winooski | 8
Kieran | Harrison | Westminster | 8
Heidi | Davis | Warwick | 8
Sara | Anthony | Waco | 8
Bree | Buck | Valdez | 8
Evangeline | Sampson | Trenton | 8
Kendall | Keith | Stillwater | 8
Bertha | Bishop | Stevens Point | 8

SELECT 113

AWS Clean Rooms Referência SQL

Patricia | Anderson | South Portland | 8
(10 rows)

Subconsultas da cláusula WITH

Consulte Cláusula WITH.

Subconsultas correlacionadas

O exemplo a seguir contém uma subconsulta correlacionada na cláusula WHERE. Esse tipo de
subconsulta contém uma ou mais correlações entre as colunas e as colunas produzidas pela
consulta externa. Nesse caso, a correlação é where s.listid=l.listid. Para cada linha que a
consulta externa produz, a subconsulta é executada para qualificar ou desqualificar a linha.

select salesid, listid, sum(pricepaid) from sales s
where qtysold=
(select max(numtickets) from listing l
where s.listid=l.listid)
group by 1,2
order by 1,2
limit 5;

salesid | listid | sum
--------+--------+----------
 27 | 28 | 111.00
 81 | 103 | 181.00
 142 | 149 | 240.00
 146 | 152 | 231.00
 194 | 210 | 144.00
(5 rows)

Padrões de subconsultas correlacionadas não compatíveis

O planejador de consultas usa um método de regravação de consulta chamado decorrelação de
subconsultas para otimizar vários padrões de subconsultas correlacionadas para execução em um
ambiente de processamento paralelo massivo (MPP). Alguns tipos de subconsultas correlacionadas
seguem padrões que não AWS Clean Rooms podem ser correlacionados e não são compatíveis.
Consultas que contenham erros de retorno das seguintes referências de correlação:

• Referências de correlação que ignoram um bloco de consultas, também conhecidas como
"referências de correlação para ignorar consultas". Por exemplo, na consulta a seguir, o bloco

SELECT 114

AWS Clean Rooms Referência SQL

contendo a referência de correlação e o bloco ignorado estão conectados por um predicado NOT
EXISTS:

select event.eventname from event
where not exists
(select * from listing
where not exists
(select * from sales where event.eventid=sales.eventid));

O bloco ignorado nesse caso é a subconsulta na tabela LISTING. A referência de correlação
correlaciona as tabelas EVENT e SALES.

• Referências de correlação de uma subconsulta que é parte de uma cláusula ON em uma consulta
externa:

select * from category
left join event
on category.catid=event.catid and eventid =
(select max(eventid) from sales where sales.eventid=event.eventid);

A cláusula ON contém uma referência de correlação de SALES na subconsulta de EVENT na
consulta externa.

• Referências de correlação sensíveis a nulos a uma tabela do sistema. AWS Clean Rooms Por
exemplo:

select attrelid
from my_locks sl, my_attribute
where sl.table_id=my_attribute.attrelid and 1 not in
(select 1 from my_opclass where sl.lock_owner = opcowner);

• Referências de correlação de dentro de uma subconsulta que contém uma função de janela.

select listid, qtysold
from sales s
where qtysold not in
(select sum(numtickets) over() from listing l where s.listid=l.listid);

• Referências em uma coluna GROUP BY para os resultados de um subconsulta correlacionada.
Por exemplo:

SELECT 115

AWS Clean Rooms Referência SQL

select listing.listid,
(select count (sales.listid) from sales where sales.listid=listing.listid) as list
from listing
group by list, listing.listid;

• Referências de correlação de uma subconsulta com uma função agregada e uma cláusula GROUP
BY, conectada à consulta externa por um predicado IN. (Essa restrição não se aplica a funções
agregadas MIN e MAX.) Por exemplo:

select * from listing where listid in
(select sum(qtysold)
from sales
where numtickets>4
group by salesid);

AWS Clean Rooms Funções do Spark SQL

AWS Clean Rooms O Spark SQL é compatível com as seguintes funções SQL:

Tópicos

• Funções agregadas

• Funções de array

• Expressões condicionais

• Funções do construtor

• Funções de formatação de tipo de dados

• Perfis de data e hora

• Funções de criptografia e descriptografia

• Funções de hash

• Funções do Hyperloglog

• Funções JSON

• Funções matemáticas

• Funções escalares

• Funções de string

Funções SQL 116

AWS Clean Rooms Referência SQL

• Funções relacionadas à privacidade

• Funções de janela

Funções agregadas

As funções agregadas no AWS Clean Rooms Spark SQL são usadas para realizar cálculos ou
operações em um grupo de linhas e retornar um único valor. Eles são essenciais para tarefas de
análise e resumo de dados.

AWS Clean Rooms O Spark SQL é compatível com as seguintes funções agregadas:

Tópicos

• Função ANY_VALUE

• Função APPROX COUNT_DISTINCT

• Função PERCENTILE APROXIMADA

• Função do AVG

• Função BOOL_AND

• Função BOOL_OR

• Função CARDINALITY

• função COLLECT_LIST

• função COLLECT_SET

• Funções COUNT e COUNT DISTINCT

• Função COUNT

• Função MAX

• Função MEDIAN

• Função MIN

• Função PERCENTILE

• Função SKEWNESS

• Funções STDDEV_SAMP e STDDEV_POP

• Funções SUM e SUM DISTINCT

• Funções VAR_SAMP e VAR_POP

Funções agregadas 117

AWS Clean Rooms Referência SQL

Função ANY_VALUE

A função ANY_VALUE retorna qualquer valor dos valores de expressão de entrada não
deterministicamente. Esta função pode retornar NULL se a expressão de entrada não resultar no
retorno de nenhuma linha.

Sintaxe

ANY_VALUE (expression[, isIgnoreNull])

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera. A expressão é um destes tipos de
dados:

isIgnoreNull

Um booleano que determina se a função deve retornar somente valores não nulos.

Retornos

Retorna o mesmo tipo de dados da expressão.

Observações de uso

Se uma instrução que especifica a função ANY_VALUE para uma coluna também incluir uma
segunda referência de coluna, a segunda coluna deve aparecer em uma cláusula GROUP BY ou ser
incluída em uma função agregada.

Exemplos

O exemplo a seguir exibe uma instância de qualquer dateid em que o eventname seja Eagles.

select any_value(dateid) as dateid, eventname from event where eventname ='Eagles'
 group by eventname;

A seguir estão os resultados.

Funções agregadas 118

AWS Clean Rooms Referência SQL

dateid | eventname
-------+---------------
 1878 | Eagles

O exemplo a seguir exibe uma instância de qualquer dateid em que o eventname seja Eagles ou
Cold War Kids.

select any_value(dateid) as dateid, eventname from event where eventname in('Eagles',
 'Cold War Kids') group by eventname;

A seguir estão os resultados.

dateid | eventname
-------+---------------
 1922 | Cold War Kids
 1878 | Eagles

Função APPROX COUNT_DISTINCT

APPROX COUNT_DISTINCT fornece uma maneira eficiente de estimar o número de valores
exclusivos em uma coluna ou conjunto de dados.

Sintaxe

approx_count_distinct(expr[, relativeSD])

Argumentos

expr

A expressão ou coluna para a qual você deseja estimar o número de valores exclusivos.

Pode ser uma única coluna, uma expressão complexa ou uma combinação de colunas.

SD relativo

Um parâmetro opcional que especifica o desvio padrão relativo desejado da estimativa.

É um valor entre 0 e 1, representando o erro relativo máximo aceitável da estimativa. Um valor
menor de RelativeSD resultará em uma estimativa mais precisa, porém mais lenta.

Funções agregadas 119

AWS Clean Rooms Referência SQL

Se esse parâmetro não for fornecido, um valor padrão (geralmente em torno de 0,05 ou 5%) será
usado.

Retornos

Retorna a cardinalidade estimada em HyperLogLog ++. RelativeSD define o desvio padrão relativo
máximo permitido.

Exemplo

A consulta a seguir estima o número de valores exclusivos na col1 coluna, com um desvio padrão
relativo de 1% (0,01).

SELECT approx_count_distinct(col1, 0.01)

A consulta a seguir estima que há 3 valores exclusivos na col1 coluna (os valores 1, 2 e 3).

SELECT approx_count_distinct(col1) FROM VALUES (1), (1), (2), (2), (3) tab(col1)

Função PERCENTILE APROXIMADA

O PERCENTILE APROXIMADO é usado para estimar o valor percentual de uma determinada
expressão ou coluna sem precisar classificar todo o conjunto de dados. Essa função é útil em
cenários em que você precisa entender rapidamente a distribuição de um grande conjunto de dados
ou rastrear métricas baseadas em percentis, sem a sobrecarga computacional de realizar um cálculo
de percentil exato. No entanto, é importante entender as vantagens e desvantagens entre velocidade
e precisão e escolher a tolerância de erro apropriada com base nos requisitos específicos do seu
caso de uso.

Sintaxe

APPROX_PERCENTILE(expr, percentile [, accuracy])

Argumentos

expr

A expressão ou coluna para a qual você deseja estimar o valor do percentil.

Pode ser uma única coluna, uma expressão complexa ou uma combinação de colunas.

Funções agregadas 120

AWS Clean Rooms Referência SQL

percentil

O valor do percentil que você deseja estimar, expresso como um valor entre 0 e 1.

Por exemplo, 0,5 corresponderia ao 50º percentil (mediana).

precisão

Um parâmetro opcional que especifica a precisão desejada da estimativa do percentil. É um valor
entre 0 e 1, representando o erro relativo máximo aceitável da estimativa. Um accuracy valor
menor resultará em uma estimativa mais precisa, porém mais lenta. Se esse parâmetro não for
fornecido, um valor padrão (geralmente em torno de 0,05 ou 5%) será usado.

Retornos

Retorna o percentil aproximado da coluna de intervalo numérico ou ANSI col, que é o menor valor
nos valores de col ordenados (classificados do menor para o maior), de forma que não mais do que a
porcentagem dos valores de col seja menor que o valor ou igual a esse valor.

O valor da porcentagem deve estar entre 0,0 e 1,0. O parâmetro de precisão (padrão: 10000) é um
literal numérico positivo que controla a precisão da aproximação ao custo da memória.

Um valor mais alto de precisão gera melhor precisão, 1.0/accuracy é o erro relativo da
aproximação.

Quando a porcentagem é uma matriz, cada valor da matriz de porcentagem deve estar entre 0,0 e
1,0. Nesse caso, retorna a matriz de percentis aproximada da coluna col na matriz de porcentagem
fornecida.

Exemplos

A consulta a seguir estima o 95º percentil da response_time coluna, com um erro relativo máximo
de 1% (0,01).

SELECT APPROX_PERCENTILE(response_time, 0.95, 0.01) AS p95_response_time
FROM my_table;

A consulta a seguir estima os valores dos percentis 50, 40 e 10 da coluna na col tabela. tab

SELECT approx_percentile(col, array(0.5, 0.4, 0.1), 100) FROM VALUES (0), (1), (2),
 (10) AS tab(col)

Funções agregadas 121

AWS Clean Rooms Referência SQL

A consulta a seguir estima o 50º percentil (mediana) dos valores na coluna col.

SELECT approx_percentile(col, 0.5, 100) FROM VALUES (0), (6), (7), (9), (10) AS
 tab(col)

Função do AVG

A função AVG retorna a média (média aritmética) dos valores da expressão de entrada. A função
AVG trabalha com valores numéricos e ignora valores NULL.

Sintaxe

AVG (column)

Argumentos

column

A coluna de destino na qual a função opera. A coluna é um dos seguintes tipos de dados:

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL

• DOUBLE

• FLOAT

Tipos de dados

Os tipos de argumentos suportados pela função AVG são SMALLINT, INTEGER, BIGINT, DECIMAL
e DOUBLE.

Os tipos de retorno suportados pela função AVG são:

• BIGINT para qualquer argumento de tipo inteiro

• DOUBLE para um argumento de ponto flutuante

• Retorna o mesmo tipo de dados que a expressão para qualquer outro tipo de argumento

Funções agregadas 122

AWS Clean Rooms Referência SQL

A precisão padrão para um resultado de função AVG com um argumento DECIMAL é 38. A escala
do resultado é a mesma que a escala do argumento. Por exemplo, um AVG de uma coluna DEC(5,2)
de a retorna um tipo de dados DEC(38,2).

Exemplo

Encontre a quantidade média vendida por transação na tabela SALES.

select avg(qtysold) from sales;

Função BOOL_AND

A função BOOL_AND opera em uma única coluna ou expressão de boolianos ou inteiros. Essa
função aplica lógica semelhante às funções BIT_AND e BIT_OR. Para essa função, o tipo de retorno
é um valor booliano (true ou false).

Se todos os valores em um conjunto forem verdadeiros, a função BOOL_AND retorna true (t). Se
qualquer valor for falso, a função retorna false (f).

Sintaxe

BOOL_AND ([DISTINCT | ALL] expression)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera. Essa expressão deve ter um tipo de
dados BOOLEAN ou de inteiros. O tipo de retorno da função é BOOLEAN.

DISTINCT | ALL

Com o argumento DISTINCT, a função elimina todos os valores duplicados para a expressão
especificada antes de calcular o resultado. Com o argumento ALL, a função retém todos os
valores duplicados. ALL é o padrão.

Exemplos

Você pode usar as funções booleanas com expressões booleanas ou expressões de inteiro.

Por exemplo, o seguinte retorno de consulta resultada da tabela USERS padrão no banco de dados
TICKIT, que tem várias colunas booleanas.

Funções agregadas 123

AWS Clean Rooms Referência SQL

A função BOOL_AND retorna false para todas as cinco linhas. Nem todos os usuários em cada um
dos estados gostam de esportes.

select state, bool_and(likesports) from users
group by state order by state limit 5;

state | bool_and
------+---------
AB | f
AK | f
AL | f
AZ | f
BC | f
(5 rows)

Função BOOL_OR

A função BOOL_OR opera em uma única coluna ou expressão de boolianos ou inteiros. Essa função
aplica lógica semelhante às funções BIT_AND e BIT_OR. Para essa função, o tipo de retorno é um
valor booliano (true, false ou NULL).

Se um valor de um conjunto for true, a função BOOL_OR retornará true (t). Se um valor de
um conjunto for false, a função retornará false (f). NULL poderá ser retornado se o valor for
desconhecido.

Sintaxe

BOOL_OR ([DISTINCT | ALL] expression)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera. Essa expressão deve ter um tipo de
dados BOOLEAN ou de inteiros. O tipo de retorno da função é BOOLEAN.

DISTINCT | ALL

Com o argumento DISTINCT, a função elimina todos os valores duplicados para a expressão
especificada antes de calcular o resultado. Com o argumento ALL, a função retém todos os
valores duplicados. ALL é o padrão.

Funções agregadas 124

AWS Clean Rooms Referência SQL

Exemplos

Você pode usar as funções booleanas com expressões booleanas ou expressões de inteiro. Por
exemplo, o seguinte retorno de consulta resultada da tabela USERS padrão no banco de dados
TICKIT, que tem várias colunas booleanas.

A função BOOL_OR retorna true para todas as cinco linhas. Pelo menos um usuário em cada um
dos estados gosta de esportes.

select state, bool_or(likesports) from users
group by state order by state limit 5;

state | bool_or
------+--------
AB | t
AK | t
AL | t
AZ | t
BC | t
(5 rows)

O exemplo a seguir retorna NULL.

SELECT BOOL_OR(NULL = '123')
 bool_or

NULL

Função CARDINALITY

A função CARDINALITY retorna o tamanho de uma expressão ARRAY ou MAP (expr).

Essa função é útil para encontrar o tamanho ou o comprimento de uma matriz.

Sintaxe

cardinality(expr)

Funções agregadas 125

AWS Clean Rooms Referência SQL

Argumentos

expr

Uma expressão ARRAY ou MAP.

Retornos

Retorna o tamanho de uma matriz ou mapa (INTEGER).

A função retorna NULL para entrada nula se sizeOfNull estiver definida como false ou enabled
definida como. true

Caso contrário, a função retornará -1 para entrada nula. Com as configurações padrão, a função
retorna -1 para entrada nula.

Exemplo

A consulta a seguir calcula a cardinalidade, ou o número de elementos, na matriz fornecida. O array
('b', 'd', 'c', 'a') tem 4 elementos, então a saída dessa consulta seria4.

SELECT cardinality(array('b', 'd', 'c', 'a'));
 4

função COLLECT_LIST

A função COLLECT_LIST coleta e retorna uma lista de elementos não exclusivos.

Esse tipo de função é útil quando você deseja coletar vários valores de um conjunto de linhas em
uma única matriz ou estrutura de dados de lista.

Note

A função não é determinística porque a ordem dos resultados coletados depende da ordem
das linhas, que pode não ser determinística após a execução de uma operação aleatória.

Sintaxe

collect_list(expr)

Funções agregadas 126

AWS Clean Rooms Referência SQL

Argumentos

expr

Uma expressão de qualquer tipo.

Retornos

Retorna um ARRAY do tipo de argumento. A ordem dos elementos na matriz não é determinística.

Valores NULL são excluídos.

Se DISTINCT for especificado, a função coletará somente valores exclusivos e será sinônimo de
função collect_set agregada.

Exemplo

A consulta a seguir coleta todos os valores da coluna col em uma lista. A VALUES cláusula é usada
para criar uma tabela embutida com três linhas, em que cada linha tem uma única coluna com os
valores 1, 2 e 1, respectivamente. A collect_list() função é então usada para agregar todos
os valores da coluna col em uma única matriz. A saída dessa instrução SQL seria a matriz[1,2,1],
que contém todos os valores da coluna col na ordem em que eles aparecem nos dados de entrada.

SELECT collect_list(col) FROM VALUES (1), (2), (1) AS tab(col);
 [1,2,1]

função COLLECT_SET

A função COLLECT_SET coleta e retorna um conjunto de elementos exclusivos.

Essa função é útil quando você deseja coletar todos os valores distintos de um conjunto de linhas em
uma única estrutura de dados, sem incluir duplicatas.

Note

A função não é determinística porque a ordem dos resultados coletados depende da ordem
das linhas, que pode não ser determinística após a execução de uma operação aleatória.

Funções agregadas 127

AWS Clean Rooms Referência SQL

Sintaxe

collect_set(expr)

Argumentos

expr

Uma expressão de qualquer tipo, exceto MAP.

Retornos

Retorna um ARRAY do tipo de argumento. A ordem dos elementos na matriz não é determinística.

Valores NULL são excluídos.

Exemplo

A consulta a seguir coleta todos os valores exclusivos da coluna col em um conjunto. A VALUES
cláusula é usada para criar uma tabela embutida com três linhas, em que cada linha tem uma única
coluna com os valores 1, 2 e 1, respectivamente. A collect_set() função é então usada para
agregar todos os valores exclusivos da coluna col em um único conjunto. A saída dessa instrução
SQL seria o conjunto[1,2], que contém os valores exclusivos da coluna col. O valor duplicado de 1
só é incluído uma vez no resultado.

SELECT collect_set(col) FROM VALUES (1), (2), (1) AS tab(col);
 [1,2]

Funções COUNT e COUNT DISTINCT

A função COUNT conta as linhas definidas pela expressão. A função COUNT DISTINCT calcula
o número de valores distintos não NULL em uma coluna ou uma expressão. Ela elimina todos os
valores duplicados da expressão especificada antes de realizar a contagem.

Sintaxe

COUNT (DISTINCT column)

Funções agregadas 128

AWS Clean Rooms Referência SQL

Argumentos

column

A coluna de destino na qual a função opera.

Tipos de dados

As funções COUNT e COUNT DISTINCT comportam todos os tipos de dados de argumento.

A função COUNT DISTINCT exibe BIGINT.

Exemplos

Conte todos os usuários do Estado da Flórida.

select count (identifier) from users where state='FL';

Conte todo o local exclusivo IDs da EVENT mesa.

select count (distinct venueid) as venues from event;

Função COUNT

A função COUNT conta as linhas definidas pela expressão.

A função COUNT tem as variações a seguir.

• COUNT (*) conta todas as linhas na tabela de destino independente se elas contêm nulls ou não.

• COUNT (expressão) computa o número de linhas com valores não NULL em uma coluna ou
expressão específica.

• COUNT (expressão DISTINCT) computa o número de valores distintos não NULL em uma coluna
ou expressão.

Sintaxe

COUNT(* | expression)

COUNT ([DISTINCT | ALL] expression)

Funções agregadas 129

AWS Clean Rooms Referência SQL

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera. A função COUNT é compatível com
todos os tipos de dados de argumento.

DISTINCT | ALL

Com o argumento DISTINCT, a função elimina todos os valores duplicados da expressão
especificada antes realizar a contagem. Com o argumento ALL, a função retém todos os valores
duplicados da expressão para contagem. ALL é o padrão.

Tipo de retorno

A função COUNT retorna BIGINT.

Exemplos

Conte todos os usuários do estado da Flórida:

select count(*) from users where state='FL';

count

510

Conte todos os nomes de eventos da tabela EVENT:

select count(eventname) from event;

count

8798

Conte todos os nomes de eventos da tabela EVENT:

select count(all eventname) from event;

count

Funções agregadas 130

AWS Clean Rooms Referência SQL

8798

Conte todos os locais exclusivos IDs da tabela do EVENTO:

select count(distinct venueid) as venues from event;

venues

204

Conte o número de vezes que cada vendedor listou lotes de um ou mais ingressos para venda.
Agrupe os resultados por ID de vendedor:

select count(*), sellerid from listing
where numtickets > 4
group by sellerid
order by 1 desc, 2;

count | sellerid
------+----------
12 | 6386
11 | 17304
11 | 20123
11 | 25428
...

Função MAX

A função MAX retorna o valor máximo em um conjunto de linhas. DISTINCT ou ALL podem ser
usadas, mas não afetam os resultados.

Sintaxe

MAX ([DISTINCT | ALL] expression)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera. A expressão é qualquer tipo de dado
numérico.

Funções agregadas 131

AWS Clean Rooms Referência SQL

DISTINCT | ALL

Com o argumento DISTINCT, a função elimina todos os valores duplicados da expressão
especificada antes de calcular o máximo. Com o argumento ALL, a função retém todos os valores
duplicados da expressão para calcular o máximo. ALL é o padrão.

Tipos de dados

Retorna o mesmo tipo de dados da expressão.

Exemplos

Encontre o preço mais alto pago de todas as vendas:

select max(pricepaid) from sales;

max

12624.00
(1 row)

Encontre o preço mais alto pago por ingresso em todas as vendas:

select max(pricepaid/qtysold) as max_ticket_price
from sales;

max_ticket_price

2500.00000000
(1 row)

Função MEDIAN

Sintaxe

MEDIAN (median_expression)

Argumentos

median_expression

A coluna ou expressão de destino na qual a função opera.

Funções agregadas 132

AWS Clean Rooms Referência SQL

Função MIN

A função MIN retorna o valor mínimo em um conjunto de linhas. DISTINCT ou ALL podem ser
usadas, mas não afetam os resultados.

Sintaxe

MIN ([DISTINCT | ALL] expression)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera. A expressão é qualquer tipo de dado
numérico.

DISTINCT | ALL

Com o argumento DISTINCT, a função elimina todos os valores duplicados da expressão
especificada antes de calcular o mínimo. Com o argumento ALL, a função retém todos os valores
duplicados da expressão para calcular o mínimo. ALL é o padrão.

Tipos de dados

Retorna o mesmo tipo de dados da expressão.

Exemplos

Encontre o preço mais baixo pago de todas as vendas:

select min(pricepaid) from sales;

min

20.00
(1 row)

Encontre o preço mais baixo pago por ingresso em todas as vendas:

select min(pricepaid/qtysold)as min_ticket_price

Funções agregadas 133

AWS Clean Rooms Referência SQL

from sales;

min_ticket_price

20.00000000
(1 row)

Função PERCENTILE

A função PERCENTILE é usada para calcular o valor exato do percentil, primeiro classificando os
valores na col coluna e, em seguida, localizando o valor no especificado. percentage

A função PERCENTILE é útil quando você precisa calcular o valor exato do percentil e o custo
computacional é aceitável para seu caso de uso. Ela fornece resultados mais precisos do que a
função APPROX_PERCENTILE, mas pode ser mais lenta, especialmente para grandes conjuntos de
dados.

Por outro lado, a função APPROX_PERCENTILE é uma alternativa mais eficiente que pode fornecer
uma estimativa do valor do percentil com uma tolerância de erro especificada, tornando-a mais
adequada para cenários em que a velocidade é uma prioridade maior do que a precisão absoluta.

Sintaxe

percentile(col, percentage [, frequency])

Argumentos

resfriado

A expressão ou coluna para a qual você deseja calcular o valor do percentil.

porcentagem

O valor do percentil que você deseja calcular, expresso como um valor entre 0 e 1.

Por exemplo, 0,5 corresponderia ao 50º percentil (mediana).

frequência

Um parâmetro opcional que especifica a frequência ou o peso de cada valor na col coluna. Se
fornecida, a função calculará o percentil com base na frequência de cada valor.

Funções agregadas 134

AWS Clean Rooms Referência SQL

Retornos

Retorna o valor percentual exato da coluna numérica ou de intervalo ANSI col na porcentagem
fornecida.

O valor da porcentagem deve estar entre 0,0 e 1,0.

O valor da frequência deve ser integral positiva

Exemplo

A consulta a seguir encontra o valor maior ou igual a 30% dos valores na col coluna. Como os
valores são 0 e 10, o 30º percentil é 3,0, porque é o valor maior ou igual a 30% dos dados.

SELECT percentile(col, 0.3) FROM VALUES (0), (10) AS tab(col);
 3.0

Função SKEWNESS

A função SKEWNESS retorna o valor de assimetria calculado a partir dos valores de um grupo.

A assimetria é uma medida estatística que descreve a assimetria ou a falta de simetria em um
conjunto de dados. Ele fornece informações sobre a forma da distribuição de dados.

Essa função pode ser útil para entender as propriedades estatísticas de um conjunto de dados e
informar análises adicionais ou tomadas de decisão.

Sintaxe

skewness(expr)

Argumentos

expr

Uma expressão que é avaliada como numérica.

Retornos

Retorna em DOBRO.

Se DISTINCT for especificado, a função operará somente em um conjunto exclusivo de valores expr.

Funções agregadas 135

AWS Clean Rooms Referência SQL

Exemplos

A consulta a seguir calcula a assimetria dos valores na coluna. col Neste exemplo, a VALUES
cláusula é usada para criar uma tabela embutida com quatro linhas, em que cada linha tem uma
única coluna col com os valores -10, -20, 100 e 1000. A skewness() função é então usada para
calcular a assimetria dos valores na col coluna. O resultado, 1.1135657469022011, representa
o grau e a direção da distorção nos dados. Um valor de assimetria positivo indica que os dados
estão inclinados para a direita, com a maior parte dos valores concentrados no lado esquerdo da
distribuição. Um valor de distorção negativo indica que os dados estão inclinados para a esquerda,
com a maior parte dos valores concentrados no lado direito da distribuição.

SELECT skewness(col) FROM VALUES (-10), (-20), (100), (1000) AS tab(col);
 1.1135657469022011

A consulta a seguir calcula a assimetria dos valores na coluna col. Semelhante ao exemplo anterior,
a VALUES cláusula é usada para criar uma tabela embutida com quatro linhas, em que cada linha
tem uma única coluna col com os valores -1000, -100, 10 e 20. A skewness() função é então
usada para calcular a assimetria dos valores na col coluna. O resultado, -1.1135657469022011,
representa o grau e a direção da distorção nos dados. Nesse caso, o valor de assimetria negativa
indica que os dados estão inclinados para a esquerda, com a maior parte dos valores concentrados
no lado direito da distribuição.

SELECT skewness(col) FROM VALUES (-1000), (-100), (10), (20) AS tab(col);
 -1.1135657469022011

Funções STDDEV_SAMP e STDDEV_POP

As funções STDDEV_SAMP e STDDEV_POP retornam o desvio padrão da amostra e da população
de um conjunto de valores numéricos (número inteiro, decimal ou ponto flutuante). O resultado da
função STDDEV_SAMP é equivalente à raiz quadrada da variação de amostra do mesmo conjunto
de valores.

STDDEV_SAMP e STDDEV são sinônimos para a mesma função.

Sintaxe

STDDEV_SAMP | STDDEV ([DISTINCT | ALL] expression) STDDEV_POP ([DISTINCT |
 ALL] expression)

Funções agregadas 136

AWS Clean Rooms Referência SQL

A expressão deve ter um tipo de dados numérico. Independente do tipo de dados da expressão, o
tipo de retorno desta função é um número de precisão dupla.

Note

O desvio padrão é calculado utilizando a aritmética de ponto flutuante, que pode resultar em
uma ligeira imprecisão.

Observações de uso

Quando o desvio padrão de amostra (STDDEV ou STDDEV_SAMP) é calculado para uma expressão
que consiste em um único valor, o resultado da função é NULL ou 0.

Exemplos

A seguinte consulta retorna a média dos valores na coluna VENUESEATS da tabela VENUE,
seguida pelo desvio padrão de amostra e desvio padrão de população do mesmo conjunto de
valores. VENUESEATS é uma coluna INTEGER. A escala do resultado é reduzida a 2 dígitos.

select avg(venueseats),
cast(stddev_samp(venueseats) as dec(14,2)) stddevsamp,
cast(stddev_pop(venueseats) as dec(14,2)) stddevpop
from venue;

avg | stddevsamp | stddevpop
-------+------------+-----------
17503 | 27847.76 | 27773.20
(1 row)

A seguinte consulta retorna o desvio padrão de amostra para a coluna COMMISSION na tabela
SALES. COMMISSION é uma coluna DECIMAL. A escala do resultado é reduzida a 10 dígitos.

select cast(stddev(commission) as dec(18,10))
from sales;

stddev

130.3912659086
(1 row)

Funções agregadas 137

AWS Clean Rooms Referência SQL

A seguinte consulta converte o desvio padrão de amostra para a coluna COMMISSION para um
inteiro.

select cast(stddev(commission) as integer)
from sales;

stddev

130
(1 row)

A seguinte consulta retorna o desvio padrão da amostra e a raiz quadrada da variação da amostra
para a coluna COMMISSION. Os resultados desses cálculos são os mesmos.

select
cast(stddev_samp(commission) as dec(18,10)) stddevsamp,
cast(sqrt(var_samp(commission)) as dec(18,10)) sqrtvarsamp
from sales;

stddevsamp | sqrtvarsamp
----------------+----------------
130.3912659086 | 130.3912659086
(1 row)

Funções SUM e SUM DISTINCT

A função SUM retorna a soma da coluna de entrada ou dos valores da expressão. A função SUM
trabalha com valores numéricos e ignora valores NULL.

A função SUM DISTINCT elimina todos os valores duplicados da expressão especificada antes de
calcular a soma.

Sintaxe

SUM (DISTINCT column)

Argumentos

column

A coluna de destino na qual a função opera. A coluna é qualquer tipo de dado numérico.

Funções agregadas 138

AWS Clean Rooms Referência SQL

Exemplos

Encontre a soma de todas as comissões pagas na tabela SALES.

select sum(commission) from sales

Encontre a soma de todas as comissões distintas pagas na tabela SALES.

select sum (distinct (commission)) from sales

Funções VAR_SAMP e VAR_POP

As funções VAR_SAMP e VAR_POP retornam a variação da amostra e da população de um
conjunto de valores numéricos (número inteiro, decimal ou ponto flutuante). O resultado da função
VAR_SAMP é equivalente à raiz quadrada do desvio padrão da amostra do mesmo conjunto de
valores.

VAR_SAMP e VARIANCE são sinônimos para a mesma função.

Sintaxe

VAR_SAMP | VARIANCE ([DISTINCT | ALL] expression)
VAR_POP ([DISTINCT | ALL] expression)

A expressão deve ter um tipo de dados de número inteiro, decimal ou ponto flutuante. Independente
do tipo de dados da expressão, o tipo de retorno desta função é um número de precisão dupla.

Note

Os resultados dessas funções podem variar entre os clusters de data warehouse
dependendo da configuração do cluster em cada caso.

Observações de uso

Quando a variação da amostra (VARIANCE ou VAR_SAMP) é calculada para uma expressão que
consiste em um único valor, o resultado da função é NULL ou 0.

Funções agregadas 139

AWS Clean Rooms Referência SQL

Exemplos

A seguinte consulta retorna a variação arredondada da amostra e da população para a coluna
NUMTICKETS da tabela LISTING.

select avg(numtickets),
round(var_samp(numtickets)) varsamp,
round(var_pop(numtickets)) varpop
from listing;

avg | varsamp | varpop
-----+---------+--------
10 | 54 | 54
(1 row)

A seguinte consulta executa os mesmos cálculos, mas converte os resultados para valores decimais.

select avg(numtickets),
cast(var_samp(numtickets) as dec(10,4)) varsamp,
cast(var_pop(numtickets) as dec(10,4)) varpop
from listing;

avg | varsamp | varpop
-----+---------+---------
10 | 53.6291 | 53.6288
(1 row)

Funções de array

Esta seção descreve as funções de matriz para SQL suportadas no AWS Clean Rooms.

Tópicos

• Função ARRAY

• função ARRAY_CONTAINS

• função ARRAY_DISTINCT

• função ARRAY_EXCEPT

• função ARRAY_INTERSECT

• função ARRAY_JOIN

• função ARRAY_REMOVE

Funções de array 140

AWS Clean Rooms Referência SQL

• função ARRAY_UNION

• Função EXPLODE

• Função FLATTEN

Função ARRAY

Cria uma matriz com os elementos fornecidos.

Sintaxe

ARRAY([expr1] [, expr2 [, ...]])

Argumento

expr1, expr2

Expressões de qualquer tipo de dados, exceto tipos de data e hora. Os argumentos não precisam
ser do mesmo tipo de dado.

Tipo de retorno

A função de matriz retorna uma MATRIZ com os elementos na expressão.

Exemplo

O exemplo a seguir mostra uma matriz de valores numéricos e uma matriz de diferentes tipos de
dados.

--an array of numeric values
select array(1,50,null,100);
 array

 [1,50,null,100]
(1 row)

--an array of different data types
select array(1,'abc',true,3.14);
 array

 [1,"abc",true,3.14]

Funções de array 141

AWS Clean Rooms Referência SQL

(1 row)

função ARRAY_CONTAINS

A função ARRAY_CONTAINS pode ser usada para realizar verificações básicas de associação em
estruturas de dados de matriz. A função ARRAY_CONTAINS é útil quando você precisa verificar se
um valor específico está presente em uma matriz.

Sintaxe

array_contains(array, value)

Argumentos

array

Uma MATRIZ a ser pesquisada.

value

Uma expressão com um tipo que compartilha um tipo menos comum com os elementos da
matriz.

Tipo de retorno

A função ARRAY_CONTAINS retorna um BOOLEAN.

Se o valor for NULL, o resultado será NULL.

Se algum elemento na matriz for NULL, o resultado será NULL se o valor não corresponder a
nenhum outro elemento.

Exemplos

O exemplo a seguir verifica se a matriz [1, 2, 3] contém o valor4. Como a matriz[1, 2, 3] não
contém o valor4, a função array_contains retorna. false

SELECT array_contains(array(1, 2, 3), 4)
false

O exemplo a seguir verifica se a matriz [1, 2, 3] contém o valor2. Como a matriz [1, 2, 3]
contém o valor2, a função array_contains retorna. true

Funções de array 142

AWS Clean Rooms Referência SQL

SELECT array_contains(array(1, 2, 3), 2);
 true

função ARRAY_DISTINCT

A função ARRAY_DISTINCT pode ser usada para remover valores duplicados de uma matriz. A
função ARRAY_DISTINCT é útil quando você precisa remover duplicatas de uma matriz e trabalhar
somente com os elementos exclusivos. Isso pode ser útil em cenários em que você deseja realizar
operações ou análises em um conjunto de dados sem a interferência de valores repetidos.

Sintaxe

array_distinct(array)

Argumentos

array

Uma expressão ARRAY.

Tipo de retorno

A função ARRAY_DISTINCT retorna uma MATRIZ que contém somente os elementos exclusivos da
matriz de entrada.

Exemplos

Neste exemplo, a matriz de entrada [1, 2, 3, null, 3] contém um valor duplicado de3.
A array_distinct função remove esse valor duplicado 3 e retorna uma nova matriz com os
elementos exclusivos:[1, 2, 3, null].

SELECT array_distinct(array(1, 2, 3, null, 3));
 [1,2,3,null]

Neste exemplo, a matriz de entrada [1, 2, 2, 3, 3, 3] contém valores duplicados de 2 e. 3 A
array_distinct função remove essas duplicatas e retorna uma nova matriz com os elementos
exclusivos:[1, 2, 3].

SELECT array_distinct(array(1, 2, 2, 3, 3, 3))
 [1,2,3]

Funções de array 143

AWS Clean Rooms Referência SQL

função ARRAY_EXCEPT

A função ARRAY_EXCEPT usa duas matrizes como argumentos e retorna uma nova matriz que
contém somente os elementos presentes na primeira matriz, mas não na segunda matriz.

O ARRAY_EXCEPT é útil quando você precisa encontrar os elementos que são exclusivos de uma
matriz em comparação com outra. Isso pode ser útil em cenários em que você precisa realizar
operações semelhantes a conjuntos em matrizes, como encontrar a diferença entre dois conjuntos
de dados.

Sintaxe

array_except(array1, array2)

Argumentos

matriz1

Uma MATRIZ de qualquer tipo com elementos comparáveis.

matriz2

Uma MATRIZ de elementos que compartilham um tipo menos comum com os elementos de
array1.

Tipo de retorno

A função ARRAY_EXCEPT retorna um ARRAY do tipo correspondente ao array1 sem duplicatas.

Exemplos

Neste exemplo, a primeira matriz [1, 2, 3] contém os elementos 1, 2 e 3. A segunda matriz
[2, 3, 4] contém os elementos 2, 3 e 4. A array_except função remove os elementos 2 e 3
da primeira matriz, pois eles também estão presentes na segunda matriz. A saída resultante é a
matriz[1].

SELECT array_except(array(1, 2, 3), array(2, 3, 4))
 [1]

Neste exemplo, a primeira matriz [1, 2, 3] contém os elementos 1, 2 e 3. A segunda matriz
[1, 3, 5] contém os elementos 1, 3 e 5. A array_except função remove os elementos 1 e 3

Funções de array 144

AWS Clean Rooms Referência SQL

da primeira matriz, pois eles também estão presentes na segunda matriz. A saída resultante é a
matriz[2].

SELECT array_except(array(1, 2, 3), array(1, 3, 5));
 [2]

função ARRAY_INTERSECT

A função ARRAY_INTERSECT usa duas matrizes como argumentos e retorna uma nova matriz
que contém os elementos presentes nas duas matrizes de entrada. Essa função é útil quando você
precisa encontrar os elementos comuns entre duas matrizes. Isso pode ser útil em cenários em que
você precisa realizar operações semelhantes a conjuntos em matrizes, como encontrar a interseção
entre dois conjuntos de dados.

Sintaxe

array_intersect(array1, array2)

Argumentos

matriz1

Uma MATRIZ de qualquer tipo com elementos comparáveis.

matriz2

Uma MATRIZ de elementos que compartilham um tipo menos comum com os elementos de
array1.

Tipo de retorno

A função ARRAY_INTERSECT retorna uma MATRIZ do tipo correspondente à matriz1 sem
duplicatas e elementos contidos na matriz1 e na matriz2.

Exemplos

Neste exemplo, a primeira matriz [1, 2, 3] contém os elementos 1, 2 e 3. A segunda matriz [1,
3, 5] contém os elementos 1, 3 e 5. A função ARRAY_INTERSECT identifica os elementos comuns
entre as duas matrizes, que são 1 e 3. A matriz de saída resultante é[1, 3].

SELECT array_intersect(array(1, 2, 3), array(1, 3, 5));

Funções de array 145

AWS Clean Rooms Referência SQL

 [1,3]

função ARRAY_JOIN

A função ARRAY_JOIN usa dois argumentos: o primeiro argumento é a matriz de entrada que será
unida. O segundo argumento é a string separadora que será usada para concatenar os elementos
da matriz. Essa função é útil quando você precisa converter uma matriz de strings (ou qualquer
outro tipo de dados) em uma única string concatenada. Isso pode ser útil em cenários em que você
deseja apresentar uma matriz de valores como uma única string formatada, por exemplo, para fins
de exibição ou para uso em processamento posterior.

Sintaxe

array_join(array, delimiter[, nullReplacement])

Argumentos

array

Qualquer tipo de ARRAY, mas seus elementos são interpretados como strings.

delimitador

Uma STRING usada para separar os elementos concatenados da matriz.

Substituição nula

Uma STRING usada para expressar um valor NULL no resultado.

Tipo de retorno

A função ARRAY_JOIN retorna uma STRING em que os elementos da matriz são separados por
delimitador e os elementos nulos são substituídos. nullReplacement Se nullReplacement for
omitido, os null elementos serão filtrados. Se houver algum argumentoNULL, o resultado éNULL.

Exemplos

Neste exemplo, a função ARRAY_JOIN pega a matriz ['hello', 'world'] e une os elementos
usando o separador ' ' (um caractere de espaço). A saída resultante é a string'hello world'.

SELECT array_join(array('hello', 'world'), ' ');
 hello world

Funções de array 146

AWS Clean Rooms Referência SQL

Neste exemplo, a função ARRAY_JOIN pega a matriz ['hello', null, 'world'] e une os
elementos usando o separador ' ' (um caractere de espaço). O null valor é substituído pela string
de substituição fornecida ',' (uma vírgula). A saída resultante é a string'hello , world'.

SELECT array_join(array('hello', null ,'world'), ' ', ',');
 hello , world

função ARRAY_REMOVE

A função ARRAY_REMOVE usa dois argumentos: o primeiro argumento é a matriz de entrada da
qual os elementos serão removidos. O segundo argumento é o valor que será removido da matriz.
Essa função é útil quando você precisa remover elementos específicos de uma matriz. Isso pode ser
útil em cenários em que você precisa realizar a limpeza ou o pré-processamento de dados em uma
matriz de valores.

Sintaxe

array_remove(array, element)

Argumentos

array

Um ARRAY.

Elemento

Uma expressão de um tipo que compartilha um tipo menos comum com os elementos da matriz.

Tipo de retorno

A função ARRAY_REMOVE retorna o tipo de resultado correspondente ao tipo da matriz. Se o
elemento a ser removido forNULL, o resultado seráNULL.

Exemplos

Neste exemplo, a função ARRAY_REMOVE pega a matriz [1, 2, 3, null, 3] e remove todas
as ocorrências do valor 3. A saída resultante é a matriz[1, 2, null].

SELECT array_remove(array(1, 2, 3, null, 3), 3);

Funções de array 147

AWS Clean Rooms Referência SQL

 [1,2,null]

função ARRAY_UNION

A função ARRAY_UNION usa duas matrizes como argumentos e retorna uma nova matriz que
contém os elementos exclusivos de ambas as matrizes de entrada. Essa função é útil quando você
precisa combinar duas matrizes e eliminar quaisquer elementos duplicados. Isso pode ser útil em
cenários em que você precisa realizar operações semelhantes a conjuntos em matrizes, como
encontrar a união entre dois conjuntos de dados.

Sintaxe

array_union(array1, array2)

Argumentos

matriz1

Um ARRAY.

matriz2

Um ARRAY do mesmo tipo que array1.

Tipo de retorno

A função ARRAY_UNION retorna uma MATRIZ do mesmo tipo da matriz.

Exemplo

Neste exemplo, a primeira matriz [1, 2, 3] contém os elementos 1, 2 e 3. A segunda matriz [1,
3, 5] contém os elementos 1, 3 e 5. A função ARRAY_UNION combina os elementos exclusivos de
ambas as matrizes, resultando na matriz de saída. [1, 2, 3, 5] T

SELECT array_union(array(1, 2, 3), array(1, 3, 5));
 [1,2,3,5]

Função EXPLODE

A função EXPLODE é usada para transformar uma única linha com uma matriz ou coluna de mapa
em várias linhas, onde cada linha corresponde a um único elemento da matriz ou do mapa.

Funções de array 148

AWS Clean Rooms Referência SQL

Sintaxe

explode(expr)

Argumentos

expr

Uma expressão de matriz ou uma expressão de mapa.

Tipo de retorno

A função EXPLODE retorna um conjunto de linhas, em que cada linha representa um único elemento
da matriz ou mapa de entrada.

O tipo de dados das linhas de saída depende do tipo de dados dos elementos na matriz de entrada
ou no mapa.

Exemplos

O exemplo a seguir pega a matriz de linha única [10, 20] e a transforma em duas linhas separadas,
cada uma contendo um dos elementos da matriz (10 e 20).

SELECT explode(array(10, 20));

No primeiro exemplo, a matriz de entrada foi passada diretamente como argumento
paraexplode(). Neste exemplo, a matriz de entrada é especificada usando a => sintaxe, em que o
nome da coluna (collection) é fornecido explicitamente.

SELECT explode(array(10, 20));

Ambas as abordagens são válidas e alcançam o mesmo resultado, mas a segunda sintaxe pode
ser mais útil quando você precisa explodir uma coluna de um conjunto de dados maior, em vez de
apenas uma simples matriz literal.

Função FLATTEN

A função FLATTEN é usada para “nivelar” uma estrutura de matriz aninhada em uma única matriz
plana.

Funções de array 149

AWS Clean Rooms Referência SQL

Sintaxe

flatten(arrayOfArrays)

Argumentos

arrayOfArrays

Uma matriz de matrizes.

Tipo de retorno

A função FLATTEN retorna uma matriz.

Exemplo

Neste exemplo, a entrada é uma matriz aninhada com duas matrizes internas e a saída é uma única
matriz plana contendo todos os elementos das matrizes internas. A função FLATTEN pega a matriz
aninhada [[1, 2], [3, 4]] e combina todos os elementos em uma única matriz. [1, 2, 3,
4]

SELECT flatten(array(array(1, 2), array(3, 4)));
 [1,2,3,4]

Expressões condicionais

No SQL, expressões condicionais são usadas para tomar decisões com base em determinadas
condições. Eles permitem que você controle o fluxo de suas instruções SQL e retorne valores
diferentes ou execute ações diferentes com base na avaliação de uma ou mais condições.

AWS Clean Rooms suporta as seguintes expressões condicionais:

Tópicos

• Expressão condicional CASE

• expressão COALESCE

• MAIOR e MENOR expressão

• Expressão IF

Expressões condicionais 150

AWS Clean Rooms Referência SQL

• expressão IS_NULL

• expressão IS_NOT_NULL

• Funções NVL e COALESCE

• NVL2 função

• Função NULLIF

Expressão condicional CASE

A expressão CASE é uma expressão condicional, semelhante às if/then/else declarações
encontradas em outras linguagens. CASE é usada para especificar um resultado onde há várias
condições. Use CASE onde uma expressão SQL é válida, como em um comando SELECT.

Há dois tipos de expressões CASE: simples e pesquisada.

• Em expressões CASE simples, uma expressão é comparada a um valor. Quando uma
correspondência é encontrada, a ação especificada na cláusula THEN é aplicada. Se nenhuma
correspondência é encontrada, a ação especificada na cláusula ELSE é aplicada.

• Em expressões CASE pesquisadas, cada CASE é avaliado com base em uma expressão
booleana e a instrução CASE retorna o primeiro CASE correspondente. Se nenhuma
correspondência for encontrada entre as cláusulas WHEN, a ação na cláusula ELSE será
retornada.

Sintaxe

Instrução CASE simples usada para correspondência de condições:

CASE expression
 WHEN value THEN result
 [WHEN...]
 [ELSE result]
END

Instrução CASE pesquisada usada para avaliação de cada condição:

CASE
 WHEN condition THEN result
 [WHEN ...]
 [ELSE result]

Expressões condicionais 151

AWS Clean Rooms Referência SQL

END

Argumentos

expressão

Um nome de coluna ou qualquer expressão válida.

value

Valor ao qual a expressão é comparada, tal como uma constante numérica ou string de
caracteres.

resultado

O valor ou uma expressão de destino retornado quando uma expressão ou condição booleana é
avaliada. Os tipos de dados de todas as expressões de resultados devem poder ser convertidos
em um único tipo de saída.

condição

Uma expressão booliana que avalia como verdadeiro ou falso. Se a condição for verdadeira,
o valor da expressão CASE será o resultado que segue a condição e o restante da expressão
CASE não será processado. Se a condição for falsa, todas as cláusulas WHEN subsequentes
serão avaliadas. Se nenhum resultado da condição WHEN for verdadeiro, o valor da expressão
CASE será o resultado da cláusula ELSE. Se a cláusula ELSE for omitida e não nenhuma
condição for verdadeira, o resultado será nulo.

Exemplos

Use uma expressão CASE simples para substituir New York City por Big Apple em uma
consulta da tabela VENUE. Substitua todos os outros nomes de cidade por other.

select venuecity,
 case venuecity
 when 'New York City'
 then 'Big Apple' else 'other'
 end
from venue
order by venueid desc;

venuecity | case

Expressões condicionais 152

AWS Clean Rooms Referência SQL

-----------------+-----------
Los Angeles | other
New York City | Big Apple
San Francisco | other
Baltimore | other
...

Use uma expressão CASE pesquisada para atribuir números de grupo com base no valor
PRICEPAID para vendas individuais de ingresso:

select pricepaid,
 case when pricepaid <10000 then 'group 1'
 when pricepaid >10000 then 'group 2'
 else 'group 3'
 end
from sales
order by 1 desc;

pricepaid | case
----------+---------
12624 | group 2
10000 | group 3
10000 | group 3
9996 | group 1
9988 | group 1
...

expressão COALESCE

Uma expressão COALESCE retorna o valor da primeira expressão da lista que não é nula. Se todas
as expressões forem nulas, o resultado será nulo. Quando um valor não nulo é localizado, as demais
expressões na lista não são avaliadas.

Este tipo de expressão é útil quando você deseja retornar um valor de backup para algo quando o
valor preferido está ausente ou é nulo. Por exemplo, uma consulta pode retornar um de três números
de telefone (celular, residência ou comercial, nessa ordem), o que for localizado primeiro na tabela
(não nulo).

Sintaxe

COALESCE (expression, expression, ...)

Expressões condicionais 153

AWS Clean Rooms Referência SQL

Exemplos

Aplique a expressão COALESCE em duas colunas.

select coalesce(start_date, end_date)
from datetable
order by 1;

O nome da coluna padrão para uma expressão NVL é COALESCE. A consulta a seguir retorna os
mesmos resultados.

select coalesce(start_date, end_date) from datetable order by 1;

MAIOR e MENOR expressão

Retorna o maior ou menor valor de uma lista com qualquer número de expressões.

Sintaxe

GREATEST (value [, ...])
LEAST (value [, ...])

Parâmetros

expression_list

Uma lista de expressões, tais como nomes de coluna, separadas por vírgula. As expressões
devem ser conversíveis para um tipo de dados comum. Valores NULL na lista são ignorados. Se
todas as expressões avaliarem para NULL, o resultado será NULL.

Retornos

Retorna o maior (para GREATEST) ou menor (para LEAST) valor da lista de expressões fornecida.

Exemplo

O seguinte exemplo retorna o valor mais alto alfabeticamente para firstname ou lastname.

select firstname, lastname, greatest(firstname,lastname) from users

Expressões condicionais 154

AWS Clean Rooms Referência SQL

where userid < 10
order by 3;

 firstname | lastname | greatest
-----------+-----------+-----------
 Alejandro | Rosalez | Ratliff
 Carlos | Salazar | Carlos
 Jane | Doe | Doe
 John | Doe | Doe
 John | Stiles | John
 Shirley | Rodriguez | Rodriguez
 Terry | Whitlock | Terry
 Richard | Roe | Richard
 Xiulan | Wang | Wang
(9 rows)

Expressão IF

A função condicional IF retorna um dos dois valores com base em uma condição.

Essa função é uma instrução de fluxo de controle comum usada em SQL para tomar decisões e
retornar valores diferentes com base na avaliação de uma condição. É útil para implementar uma
lógica if-else simples em uma consulta.

Sintaxe

if(expr1, expr2, expr3)

Argumentos

expr 1

A condição ou expressão que é avaliada. Se fortrue, a função retornará o valor de expr2. Se
expr1 forfalse, a função retornará o valor de expr3.

expr 2

A expressão que é avaliada e retornada se expr1 for. true

expr 3

A expressão que é avaliada e retornada se expr1 for. false

Expressões condicionais 155

AWS Clean Rooms Referência SQL

Retornos

Se for expr1 avaliado comotrue, então retornaexpr2; caso contrário, retornaexpr3.

Exemplo

O exemplo a seguir usa a if() função para retornar um dos dois valores com base em uma
condição. A condição que está sendo avaliada é1 < 2, ou sejatrue, o primeiro valor 'a' é
retornado.

SELECT if(1 < 2, 'a', 'b');
 a]

expressão IS_NULL

A expressão IS_NULL condicional é usada para verificar se um valor é nulo.

Essa expressão é sinônimo deIS NULL.

Sintaxe

is_null(expr)

Argumentos

expr

Uma expressão de qualquer tipo.

Retornos

A expressão IS_NULL condicional retorna um booleano. Se expr1 for NULL, retorna, caso
contráriotrue, retornafalse.

Exemplos

O exemplo a seguir verifica se o valor 1 é nulo e retorna o resultado booleano true porque 1 é um
valor válido e não nulo.

SELECT is not null(1);

Expressões condicionais 156

AWS Clean Rooms Referência SQL

 true

O exemplo a seguir seleciona a id coluna da squirrels tabela, mas somente para as linhas em
que a coluna de idade estánull.

SELECT id FROM squirrels WHERE is_null(age)

expressão IS_NOT_NULL

A expressão IS_NOT_NULL condicional é usada para verificar se um valor não é nulo.

Essa expressão é sinônimo deIS NOT NULL.

Sintaxe

is_not_null(expr)

Argumentos

expr

Uma expressão de qualquer tipo.

Retornos

A expressão IS_NOT_NULL condicional retorna um booleano. Se não expr1 for NULL, retorna, caso
contráriotrue, retornafalse.

Exemplos

O exemplo a seguir verifica se o valor não 1 é nulo e retorna o resultado booleano true porque 1 é
um valor válido e não nulo.

SELECT is not null(1);
 true

O exemplo a seguir seleciona a id coluna da squirrels tabela, mas somente para as linhas em
que a coluna de idade não null está.

SELECT id FROM squirrels WHERE is_not_null(age)

Expressões condicionais 157

AWS Clean Rooms Referência SQL

Funções NVL e COALESCE

Retorna o valor da primeira expressão não nula em uma série de expressões. Quando um valor não
nulo é encontrado, as demais expressões na lista não são avaliadas.

NVL é idêntica a COALESCE. São funções sinônimas. Este tópico explica a sintaxe e apresenta
exemplos de ambas.

Sintaxe

NVL(expression, expression, ...)

A sintaxe de COALESCE é a mesma:

COALESCE(expression, expression, ...)

Se todas as expressões forem nulas, o resultado será nulo.

Essas funções são úteis para retornar um valor secundário quando um valor primário está ausente
ou é nulo. Por exemplo, uma consulta pode retornar o primeiro dos três números de telefone
disponíveis: celular, residencial ou profissional. A ordem das expressões na função determina a
ordem de avaliação.

Argumentos

expressão

Uma expressão, tal como um nome de coluna, a ser avaliada quanto ao status nulo.

Tipo de retorno

AWS Clean Rooms determina o tipo de dados do valor retornado com base nas expressões de
entrada. Se os tipos de dados das expressões de entrada não tiverem um tipo comum, um erro será
retornado.

Exemplos

Se a lista contiver expressões do tipo inteiro, a função retornará um inteiro.

SELECT COALESCE(NULL, 12, NULL);

Expressões condicionais 158

AWS Clean Rooms Referência SQL

coalesce

12

Esse exemplo, que é igual ao exemplo anterior, exceto pelo fato de usar NVL, retorna o mesmo
resultado.

SELECT NVL(NULL, 12, NULL);

coalesce

12

O exemplo a seguir retorna um tipo string.

SELECT COALESCE(NULL, 'AWS Clean Rooms', NULL);

coalesce

AWS Clean Rooms

O exemplo a seguir resulta em um erro porque os tipos de dados variam na lista de expressões.
Nesse caso, há uma string e um número na lista.

SELECT COALESCE(NULL, 'AWS Clean Rooms', 12);
ERROR: invalid input syntax for integer: "AWS Clean Rooms"

NVL2 função

Retorna um de dois valores, dependendo se uma expressão especificada avalia para NULL ou NOT
NULL.

Sintaxe

NVL2 (expression, not_null_return_value, null_return_value)

Argumentos

expressão

Uma expressão, tal como um nome de coluna, a ser avaliada quanto ao status nulo.

Expressões condicionais 159

AWS Clean Rooms Referência SQL

not_null_return_value

O valor retornado se a expressão avaliar para NOT NULL. O valor not_null_return_value deve
ter o mesmo tipo de dados que a expressão ou ser implicitamente conversível para esse tipo de
dados.

null_return_value

O valor retornado se a expressão avaliar para NULL. O valor null_return_value deve ter o mesmo
tipo de dados que a expressão ou ser implicitamente conversível para esse tipo de dados.

Tipo de retorno

O tipo de NVL2 retorno é determinado da seguinte forma:

• Se not_null_return_value ou null_return_value for nulo, o tipo de dados da expressão não nula será
retornado.

Se not_null_return_value e null_return_value não forem nulos:

• Se not_null_return_value e null_return_value tiverem o mesmo tipo de dados, esse tipo de dados
será retornado.

• Se not_null_return_value e null_return_value tiverem diferentes tipos de dados numéricos, o menor
tipo de dados numérico compatível será retornado.

• Se not_null_return_value e null_return_value tiverem diferentes tipos de dados datetime, um tipo de
dados de timestamp será retornado.

• Se not_null_return_value e null_return_value tiverem diferentes tipos de dados de caracteres, o tipo
de dados de not_null_return_value será retornado.

• Se not_null_return_value e null_return_value tiverem tipos de dados numéricos e não numéricos
variados, o tipo de dados de not_null_return_value será retornado.

Important

Nos últimos dois casos onde o tipo de dados de not_null_return_value é retornado, o
null_return_value é convertido implicitamente para esse tipo de dados. Se os tipos de dados
forem incompatíveis, a função falhará.

Expressões condicionais 160

AWS Clean Rooms Referência SQL

Observações de uso

Pois NVL2, o retorno terá o valor do parâmetro not_null_return_value ou null_return_value, o que for
selecionado pela função, mas terá o tipo de dados not_null_return_value.

Por exemplo, supondo que column1 seja NULL, as consultas seguintes retornarão o mesmo valor.
No entanto, o tipo de dados do valor de retorno DECODE será INTEGER e o tipo de dados do valor
de NVL2 retorno será VARCHAR.

select decode(column1, null, 1234, '2345');
select nvl2(column1, '2345', 1234);

Exemplo

O seguinte exemplo altera alguns dados de amostra e, então, avalia dois campos para fornecer as
informações de contato apropriadas para usuários:

update users set email = null where firstname = 'Aphrodite' and lastname = 'Acevedo';

select (firstname + ' ' + lastname) as name,
nvl2(email, email, phone) AS contact_info
from users
where state = 'WA'
and lastname like 'A%'
order by lastname, firstname;

name contact_info
--------------------+---
Aphrodite Acevedo (555) 555-0100
Caldwell Acevedo Nunc.sollicitudin@example.ca
Quinn Adams vel@example.com
Kamal Aguilar quis@example.com
Samson Alexander hendrerit.neque@example.com
Hall Alford ac.mattis@example.com
Lane Allen et.netus@example.com
Xander Allison ac.facilisis.facilisis@example.com
Amaya Alvarado dui.nec.tempus@example.com
Vera Alvarez at.arcu.Vestibulum@example.com
Yetta Anthony enim.sit@example.com
Violet Arnold ad.litora@example.comm
August Ashley consectetuer.euismod@example.com
Karyn Austin ipsum.primis.in@example.com

Expressões condicionais 161

AWS Clean Rooms Referência SQL

Lucas Ayers at@example.com

Função NULLIF

Compara dois argumentos e retorna nulo se os argumentos forem iguais. Se eles não forem iguais, o
primeiro argumento será retornado.

Sintaxe

A expressão NULLIF compara dois argumentos e retorna nulo se os argumentos forem iguais.
Se eles não forem iguais, o primeiro argumento será retornado. Essa expressão é o inverso da
expressão NVL ou COALESCE.

NULLIF (expression1, expression2)

Argumentos

expression1, expression2

As colunas ou expressões de destino que são comparadas. O tipo de retorno é igual ao tipo da
primeira expressão.

Exemplos

No exemplo a seguir, a consulta retorna a string first porque os argumentos não são iguais.

SELECT NULLIF('first', 'second');

case

first

No exemplo a seguir, a consulta retorna NULL porque os argumentos literais da string são iguais.

SELECT NULLIF('first', 'first');

case

NULL

No exemplo a seguir, a consulta retorna 1 porque os argumentos inteiros não são iguais.

Expressões condicionais 162

AWS Clean Rooms Referência SQL

SELECT NULLIF(1, 2);

case

1

No exemplo a seguir, a consulta retorna NULL porque os argumentos inteiros são iguais.

SELECT NULLIF(1, 1);

case

NULL

No exemplo a seguir, a consulta retorna nulo quando há correspondência dos valores LISTID e
SALESID:

select nullif(listid,salesid), salesid
from sales where salesid<10 order by 1, 2 desc;

listid | salesid
--------+---------
 4 | 2
 5 | 4
 5 | 3
 6 | 5
 10 | 9
 10 | 8
 10 | 7
 10 | 6
 | 1
(9 rows)

Funções do construtor

Uma função construtora SQL é uma função usada para criar novas estruturas de dados, como
matrizes ou mapas.

Eles pegam alguns valores de entrada e retornam um novo objeto de estrutura de dados. As funções
do construtor geralmente são nomeadas de acordo com o tipo de dados que elas criam, como
ARRAY ou MAP.

Funções do construtor 163

AWS Clean Rooms Referência SQL

As funções construtoras são diferentes das funções escalares ou agregadas, que operam com
dados existentes e retornam um único valor. As funções do construtor são usadas para criar novas
estruturas de dados que podem ser usadas em processamento ou análise de dados adicionais.

AWS Clean Rooms suporta as seguintes funções de construtor:

Tópicos

• Função construtora MAP

• Função construtora NAMED_STRUCT

• Função construtora STRUCT

Função construtora MAP

A função construtora MAP cria um mapa com os pares chave/valor fornecidos.

Funções de construtor, como MAP, são úteis quando você precisa criar novas estruturas de dados
programaticamente em suas consultas SQL. Eles permitem que você crie estruturas de dados
complexas que podem ser usadas em processamento ou análise de dados adicionais.

Sintaxe

map(key0, value0, key1, value1, ...)

Argumentos

chave 0

Uma expressão de qualquer tipo comparável. Todas as key0 devem compartilhar um tipo menos
comum.

valor0

Uma expressão de qualquer tipo. Todos os ValueN devem compartilhar um tipo menos comum.

Retornos

A função MAP retorna um MAP com chaves digitadas como o tipo menos comum de chave0 e
valores digitados como o tipo menos comum de valor0.

Funções do construtor 164

AWS Clean Rooms Referência SQL

Exemplos

O exemplo a seguir cria um novo mapa com dois pares de valores-chave: A chave 1.0 está
associada ao valor. '2' A chave 3.0 está associada ao valor'4'. O mapa resultante é então
retornado como a saída da instrução SQL.

SELECT map(1.0, '2', 3.0, '4');
 {1.0:"2",3.0:"4"}

Função construtora NAMED_STRUCT

A função do construtor NAMED_STRUCT cria uma estrutura com os nomes e valores de campo
fornecidos.

Funções de construtor como NAMED_STRUCT são úteis quando você precisa criar novas estruturas
de dados programaticamente em suas consultas SQL. Eles permitem que você crie estruturas de
dados complexas, como estruturas ou registros, que podem ser usadas em processamento ou
análise de dados adicionais.

Sintaxe

named_struct(name1, val1, name2, val2, ...)

Argumentos

nome1

Um campo de nomenclatura literal STRING 1.

val1

Uma expressão de qualquer tipo especificando o valor do campo 1.

Retornos

A função NAMED_STRUCT retorna uma estrutura com o campo 1 correspondente ao tipo de val1.

Exemplos

O exemplo a seguir cria uma nova estrutura com três campos nomeados: O valor "a" 1 é atribuído
ao campo. O campo "b" recebe o valor 2. O campo "c" recebe o valor3. A estrutura resultante é
então retornada como saída da instrução SQL.

Funções do construtor 165

AWS Clean Rooms Referência SQL

SELECT named_struct("a", 1, "b", 2, "c", 3);
 {"a":1,"b":2,"c":3}

Função construtora STRUCT

A função construtora STRUCT cria uma estrutura com os valores de campo fornecidos.

Funções de construtor como STRUCT são úteis quando você precisa criar novas estruturas de
dados programaticamente em suas consultas SQL. Eles permitem que você crie estruturas de dados
complexas, como estruturas ou registros, que podem ser usadas em processamento ou análise de
dados adicionais.

Sintaxe

struct(col1, col2, col3, ...)

Argumentos

col1

Um nome de coluna ou qualquer expressão válida.

Retornos

A função STRUCT retorna uma estrutura com field1 correspondente ao tipo de expr1.

Se os argumentos forem referências nomeadas, os nomes serão usados para nomear o campo.
Caso contrário, os campos são denominados colN, onde N é a posição do campo na estrutura.

Exemplos

O exemplo a seguir cria uma nova estrutura com três campos: O primeiro campo recebe o valor
1. O segundo campo recebe o valor 2. O terceiro campo recebe o valor 3. Por padrão, os campos
na estrutura resultante são nomeadoscol1,, e col2col3, com base em sua posição na lista de
argumentos. A estrutura resultante é então retornada como saída da instrução SQL.

SELECT struct(1, 2, 3);
 {"col1":1,"col2":2,"col3":3}

Funções do construtor 166

AWS Clean Rooms Referência SQL

Funções de formatação de tipo de dados

Usando uma função de formatação de tipo de dados, você pode converter valores de um tipo de
dados para outro. Para cada uma dessas funções, o primeiro argumento é sempre o valor a ser
formatado e o segundo argumento contém o modelo para o novo formato.

AWS Clean Rooms O Spark SQL oferece suporte a várias funções de formatação de tipos de dados.

Tópicos

• BASE64 função

• Função CAST

• Função DECODE

• Função ENCODE

• Função HEX

• função STR_TO_MAP

• TO_CHAR

• Função TO_DATE

• TO_NUMBER

• UNBASE64 função

• Função UNHEX

• Strings de formato datetime

• Strings de formato numérico

BASE64 função

A BASE64 função converte uma expressão em uma string de base 64 usando a codificação de
transferência RFC2 045 Base64 para MIME.

Sintaxe

base64(expr)

Funções de formatação de tipo de dados 167

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

AWS Clean Rooms Referência SQL

Argumentos

expr

Uma expressão BINÁRIA ou uma STRING que a função interpretará como BINÁRIA.

Tipo de retorno

STRING

Exemplo

Para converter a entrada de string fornecida em sua representação codificada em Base64. use o
exemplo a seguir. O resultado é a representação codificada em Base64 da string de entrada 'Spark
SQL', que é 'u3bhcmsgu1fm'.

SELECT base64('Spark SQL');
 U3BhcmsgU1FM

Função CAST

A função CAST converte um tipo de dados em outro compatível. Por exemplo, é possível converter
uma string em uma data ou um tipo numérico em uma string. CAST executa uma conversão em
tempo de execução, o que significa que a conversão não altera o tipo de dados de um valor em uma
tabela de origem. Isso é alterado somente no contexto da consulta.

Alguns tipos de dados exigem uma conversão explícita para outros tipos de dados usando a função
CAST. Outros tipos de dados podem ser convertidos implicitamente, como parte de outro comando,
sem usar CAST. Consulte Compatibilidade e conversão dos tipos.

Sintaxe

Use uma dessas duas formas equivalentes de sintaxe para transmitir expressões de um tipo de
dados para outro.

CAST (expression AS type)

Funções de formatação de tipo de dados 168

AWS Clean Rooms Referência SQL

Argumentos

expressão

Uma expressão que avalia para um ou mais valores, tal como um nome de coluna ou um literal.
A conversão de valores nulos retorna nulos. A expressão não pode conter strings em branco ou
vazias.

tipo

Um dos suportadosTipos de dados, exceto para os tipos de dados BINARY e BINARY VARYING.

Tipo de retorno

CAST retorna o tipo de dados especificado pelo argumento type.

Note

AWS Clean Rooms retorna um erro se você tentar realizar uma conversão problemática,
como uma conversão DECIMAL que perde a precisão, como a seguir:

select 123.456::decimal(2,1);

ou uma conversão INTEGER que causa um transbordamento:

select 12345678::smallint;

Exemplos

As seguintes duas consultas são equivalentes. Ambas convertem um valor decimal em um número
inteiro:

select cast(pricepaid as integer)
from sales where salesid=100;

pricepaid

162
(1 row)

Funções de formatação de tipo de dados 169

AWS Clean Rooms Referência SQL

select pricepaid::integer
from sales where salesid=100;

pricepaid

162
(1 row)

O seguinte produz um resultado semelhante. Ele não exige dados de exemplo para ser executado:

select cast(162.00 as integer) as pricepaid;

pricepaid

162
(1 row)

Neste exemplo, os valores em uma coluna de carimbo de data/hora são transmitidos como datas, o
que resulta na remoção do horário de cada resultado:

select cast(saletime as date), salesid
from sales order by salesid limit 10;

 saletime | salesid
-----------+---------
2008-02-18 | 1
2008-06-06 | 2
2008-06-06 | 3
2008-06-09 | 4
2008-08-31 | 5
2008-07-16 | 6
2008-06-26 | 7
2008-07-10 | 8
2008-07-22 | 9
2008-08-06 | 10

(10 rows)

Se você não usasse CAST conforme ilustrado no exemplo anterior, os resultados incluiriam o
horário: 2008-02-18 02:36:48.

Funções de formatação de tipo de dados 170

AWS Clean Rooms Referência SQL

A consulta a seguir converte dados de caracteres variáveis em uma data. Ele não exige dados de
exemplo para ser executado.

select cast('2008-02-18 02:36:48' as date) as mysaletime;

mysaletime

2008-02-18
(1 row)

Neste exemplo, os valores em uma coluna de data são convertidos como timestamps:

select cast(caldate as timestamp), dateid
from date order by dateid limit 10;

 caldate | dateid
--------------------+--------
2008-01-01 00:00:00 | 1827
2008-01-02 00:00:00 | 1828
2008-01-03 00:00:00 | 1829
2008-01-04 00:00:00 | 1830
2008-01-05 00:00:00 | 1831
2008-01-06 00:00:00 | 1832
2008-01-07 00:00:00 | 1833
2008-01-08 00:00:00 | 1834
2008-01-09 00:00:00 | 1835
2008-01-10 00:00:00 | 1836

(10 rows)

Em um caso como no exemplo anterior, é possível ter controle adicional sobre a formatação de saída
usando TO_CHAR.

Neste exemplo, um número inteiro é convertido como uma string de caracteres:

select cast(2008 as char(4));

bpchar

2008

Neste exemplo, um valor DECIMAL(6,3) é convertido como um valor DECIMAL(4,1):

Funções de formatação de tipo de dados 171

AWS Clean Rooms Referência SQL

select cast(109.652 as decimal(4,1));

numeric

109.7

Este exemplo mostra uma expressão mais complexa. A coluna PRICEPAID (uma coluna
DECIMAL(8,2)) na tabela SALES é convertida em uma coluna DECIMAL(38,2) e os valores são
multiplicados por 100.000.000.000.000.000.000.

select salesid, pricepaid::decimal(38,2)*100000000000000000000
as value from sales where salesid<10 order by salesid;

 salesid | value
---------+----------------------------
 1 | 72800000000000000000000.00
 2 | 7600000000000000000000.00
 3 | 35000000000000000000000.00
 4 | 17500000000000000000000.00
 5 | 15400000000000000000000.00
 6 | 39400000000000000000000.00
 7 | 78800000000000000000000.00
 8 | 19700000000000000000000.00
 9 | 59100000000000000000000.00

(9 rows)

Função DECODE

A função DECODE é a contrapartida da função ENCODE, que é usada para converter uma string
em um formato binário usando uma codificação de caracteres específica. A função DECODE pega
os dados binários e os converte novamente em um formato de string legível usando a codificação de
caracteres especificada.

Essa função é útil quando você precisa trabalhar com dados binários armazenados em um banco de
dados e apresentá-los em um formato legível por humanos ou quando precisa converter dados entre
diferentes codificações de caracteres.

Funções de formatação de tipo de dados 172

AWS Clean Rooms Referência SQL

Sintaxe

decode(expr, charset)

Argumentos

expr

Uma expressão BINÁRIA codificada em charset.

conjunto de caracteres

Uma expressão STRING.

Codificações de conjuntos de caracteres compatíveis (sem distinção entre maiúsculas e
minúsculas):'US-ASCII',,'ISO-8859-1','UTF-8', e. 'UTF-16BE' 'UTF-16LE' 'UTF-16'

Tipo de retorno

A função DECODE retorna uma STRING.

Exemplo

O exemplo a seguir tem uma tabela chamada messages com uma coluna chamada message_text
que armazena dados de mensagens em formato binário usando a codificação de caracteres UTF-8.
A função DECODE converte os dados binários de volta em um formato de string legível. A saída
dessa consulta é o texto legível da mensagem armazenada na tabela de mensagens, com o ID123,
convertido do formato binário em uma string usando a 'utf-8' codificação.

SELECT decode(message_text, 'utf-8') AS message
FROM messages
WHERE message_id = 123;

Função ENCODE

A função ENCODE é usada para converter uma string em sua representação binária usando uma
codificação de caracteres especificada.

Essa função é útil quando você precisa trabalhar com dados binários ou quando precisa converter
entre diferentes codificações de caracteres. Por exemplo, você pode usar a função ENCODE ao
armazenar dados em um banco de dados que requer armazenamento binário ou quando precisar
transferir dados entre sistemas que usam codificações de caracteres diferentes.

Funções de formatação de tipo de dados 173

AWS Clean Rooms Referência SQL

Sintaxe

encode(str, charset)

Argumentos

str

Uma expressão STRING a ser codificada.

conjunto de caracteres

Uma expressão STRING especificando a codificação.

Codificações de conjuntos de caracteres compatíveis (sem distinção entre maiúsculas e
minúsculas):'US-ASCII',,'ISO-8859-1','UTF-8', e. 'UTF-16BE' 'UTF-16LE' 'UTF-16'

Tipo de retorno

A função ENCODE retorna um BINÁRIO.

Exemplo

O exemplo a seguir converte 'abc' a string em sua representação binária usando a 'utf-8'
codificação, o que, nesse caso, resulta no retorno da string original. Isso ocorre porque a 'utf-8'
codificação é uma codificação de caracteres de largura variável que pode representar todo o
conjunto de caracteres ASCII (que inclui as letras 'a''b', e'c') usando um único byte por
caractere. Portanto, a representação binária do 'abc' uso 'utf-8' é a mesma da string original.

SELECT encode('abc', 'utf-8');
 abc

Função HEX

A função HEX converte um valor numérico (um número inteiro ou um número de ponto flutuante) em
sua representação de string hexadecimal correspondente.

O hexadecimal é um sistema numérico que usa 16 símbolos distintos (0-9 e A-F) para representar
valores numéricos. É comumente usado em ciência da computação e programação para representar
dados binários em um formato mais compacto e legível por humanos.

Funções de formatação de tipo de dados 174

AWS Clean Rooms Referência SQL

Sintaxe

hex(expr)

Argumentos

expr

Uma expressão BIGINT, BINARY ou STRING.

Tipo de retorno

HEX retorna uma STRING. A função retorna a representação hexadecimal do argumento.

Exemplo

O exemplo a seguir usa o valor inteiro 17 como entrada e aplica a função HEX () a ele. A saída é11,
que é a representação hexadecimal do valor de entrada. 17

SELECT hex(17);
 11

O exemplo a seguir converte a string em sua 'Spark_SQL' representação hexadecimal. A saída
é537061726B2053514C, que é a representação hexadecimal da string de entrada. 'Spark_SQL'

SELECT hex('Spark_SQL');
 537061726B2053514C

Neste exemplo, a string 'Spark_SQL' é convertida da seguinte forma:

• 'S' -> 53

• 'p' -> 70

• 'a' -> 61

• 'r' -> 72 '

• k' -> 6B

• '_' -> 20

• 'S' -> 53

• 'Q' -> 51

Funções de formatação de tipo de dados 175

AWS Clean Rooms Referência SQL

• 'L' -> 4C

A concatenação desses valores hexadecimais resulta na saída final ". 537061726B2053514C"

função STR_TO_MAP

A função STR_TO_MAP é uma função de conversão. string-to-map Ele converte uma representação
em cadeia de caracteres de um mapa (ou dicionário) em uma estrutura de dados real do mapa.

Essa função é útil quando você precisa trabalhar com estruturas de dados de mapas em SQL, mas
os dados são inicialmente armazenados como uma string. Ao converter a representação da string em
um mapa real, você pode então realizar operações e manipulações nos dados do mapa.

Sintaxe

str_to_map(text[, pairDelim[, keyValueDelim]])

Argumentos

texto

Uma expressão STRING que representa o mapa.

Par de LIM

Um literal STRING opcional que especifica como separar as entradas. O padrão é uma vírgula ().
','

keyValueDelim

Um literal STRING opcional que especifica como separar cada par de valores-chave. O padrão é
dois pontos (). ':'

Tipo de retorno

A função STR_TO_MAP retorna um MAP de STRING para chaves e valores. Tanto o PairDelim
quanto o PairDelim keyValueDelimsão tratados como expressões regulares.

Exemplo

O exemplo a seguir usa a string de entrada e os dois argumentos delimitadores e converte a
representação da string em uma estrutura de dados de mapa real. Neste exemplo específico, a

Funções de formatação de tipo de dados 176

AWS Clean Rooms Referência SQL

string de entrada 'a:1,b:2,c:3' representa um mapa com os seguintes pares de valores-chave:
'a' é a chave e '1' é o valor. 'b'é a chave e '2' é o valor. 'c'é a chave e '3' é o valor. O
',' delimitador é usado para separar os pares de valores-chave e o ':' delimitador é usado para
separar a chave e o valor em cada par. A saída dessa consulta é:{"a":"1","b":"2","c":"3"}.
Essa é a estrutura de dados do mapa resultante, onde as chaves são 'a''b','c', e, e os valores
correspondentes são '1''2', '3' e.

SELECT str_to_map('a:1,b:2,c:3', ',', ':');
 {"a":"1","b":"2","c":"3"}

O exemplo a seguir demonstra que a função STR_TO_MAP espera que a string de entrada esteja
em um formato específico, com os pares de valores-chave delimitados corretamente. Se a string
de entrada não corresponder ao formato esperado, a função ainda tentará criar um mapa, mas os
valores resultantes podem não ser os esperados.

SELECT str_to_map('a');
 {"a":null}

TO_CHAR

TO_CHAR Converte uma expressão de timestamp ou numérica para o formato de dados de string de
caracteres.

Sintaxe

TO_CHAR (timestamp_expression | numeric_expression , 'format')

Argumentos

timestamp_expression

Uma expressão que resulta em um valor do tipo TIMESTAMP ou TIMESTAMPTZ ou um valor
que pode ser implicitamente forçado para um timestamp.

numeric_expression

Uma expressão que resulta em um valor de tipo de dados numérico ou em um valor que pode
implicitamente ser convertido para tipo numérico. Para obter mais informações, consulte Tipos
numéricos. TO_CHAR insere um espaço à esquerda da string numérica.

Funções de formatação de tipo de dados 177

AWS Clean Rooms Referência SQL

Note

TO_CHAR não permite valores do tipo DECIMAL de 128 bits.

format

O formato para o novo valor. Para obter os formatos válidos, consulte Strings de formato datetime
e Strings de formato numérico.

Tipo de retorno

VARCHAR

Exemplos

O exemplo a seguir converte um carimbo de data/hora em um valor com a data e a hora em um
formato com o nome do mês preenchido com nove caracteres, o nome do dia da semana e o número
do dia do mês.

select to_char(timestamp '2009-12-31 23:15:59', 'MONTH-DY-DD-YYYY HH12:MIPM');
to_char

DECEMBER -THU-31-2009 11:15PM

O exemplo a seguir converte um carimbo de data/hora em um valor com o número do dia do ano.

select to_char(timestamp '2009-12-31 23:15:59', 'DDD');

to_char

365

O exemplo a seguir converte um carimbo de data/hora em um número do dia da semana da norma
ISO.

select to_char(timestamp '2022-05-16 23:15:59', 'ID');

to_char

Funções de formatação de tipo de dados 178

AWS Clean Rooms Referência SQL

1

O exemplo a seguir extrai o nome do mês de uma data.

select to_char(date '2009-12-31', 'MONTH');

to_char

DECEMBER

O seguinte exemplo converte cada valor de STARTTIME na tabela EVENT em uma string que
consiste em horas, minutos e segundos.

select to_char(starttime, 'HH12:MI:SS')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00
08:00:00
02:30:00
02:30:00
07:00:00
(5 rows)

O exemplo a seguir converte um valor de timestamp inteiro em um formato diferente.

select starttime, to_char(starttime, 'MON-DD-YYYY HH12:MIPM')
from event where eventid=1;

 starttime | to_char
---------------------+---------------------
 2008-01-25 14:30:00 | JAN-25-2008 02:30PM
(1 row)

O exemplo a seguir converte um literal de timestamp em uma string de caracteres.

select to_char(timestamp '2009-12-31 23:15:59','HH24:MI:SS');
to_char

Funções de formatação de tipo de dados 179

AWS Clean Rooms Referência SQL

23:15:59
(1 row)

O exemplo a seguir converte um número em uma string de caracteres com o sinal menos no final.

select to_char(-125.8, '999D99S');
to_char

125.80-
(1 row)

O exemplo a seguir converte um número em uma string de caracteres com o símbolo de moeda.

select to_char(-125.88, '$S999D99');
to_char

$-125.88
(1 row)

O exemplo a seguir converte um número em uma string de caracteres usando colchetes angulares
para números negativos.

select to_char(-125.88, '$999D99PR');
to_char

$<125.88>
(1 row)

O exemplo a seguir converte um número em uma string de numerais romanos.

select to_char(125, 'RN');
to_char

CXXV
(1 row)

O exemplo a seguir exibe o dia da semana.

SELECT to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS');
 to_char

Funções de formatação de tipo de dados 180

AWS Clean Rooms Referência SQL

Wednesday, 31 09:34:26

O exemplo a seguir exibe o sufixo de número ordinal de um número.

SELECT to_char(482, '999th');
 to_char

 482nd

O exemplo a seguir subtrai a comissão do preço pago na tabela de vendas. A diferença é então
arredondada para cima e convertida em um numeral romano, exibido na coluna to_char:

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'rn') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

 salesid | pricepaid | commission | difference | to_char
---------+-----------+------------+------------+-----------------
 1 | 728.00 | 109.20 | 618.80 | dcxix
 2 | 76.00 | 11.40 | 64.60 | lxv
 3 | 350.00 | 52.50 | 297.50 | ccxcviii
 4 | 175.00 | 26.25 | 148.75 | cxlix
 5 | 154.00 | 23.10 | 130.90 | cxxxi
 6 | 394.00 | 59.10 | 334.90 | cccxxxv
 7 | 788.00 | 118.20 | 669.80 | dclxx
 8 | 197.00 | 29.55 | 167.45 | clxvii
 9 | 591.00 | 88.65 | 502.35 | dii
 10 | 65.00 | 9.75 | 55.25 | lv
(10 rows)

O seguinte exemplo adiciona o cifrão aos valores da diferença exibidos na coluna to_char:

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'l99999D99') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

salesid | pricepaid | commission | difference | to_char
--------+-----------+------------+------------+------------
 1 | 728.00 | 109.20 | 618.80 | $ 618.80

Funções de formatação de tipo de dados 181

AWS Clean Rooms Referência SQL

 2 | 76.00 | 11.40 | 64.60 | $ 64.60
 3 | 350.00 | 52.50 | 297.50 | $ 297.50
 4 | 175.00 | 26.25 | 148.75 | $ 148.75
 5 | 154.00 | 23.10 | 130.90 | $ 130.90
 6 | 394.00 | 59.10 | 334.90 | $ 334.90
 7 | 788.00 | 118.20 | 669.80 | $ 669.80
 8 | 197.00 | 29.55 | 167.45 | $ 167.45
 9 | 591.00 | 88.65 | 502.35 | $ 502.35
 10 | 65.00 | 9.75 | 55.25 | $ 55.25
(10 rows)

O seguinte exemplo lista o século em que cada venda foi efetuada.

select salesid, saletime, to_char(saletime, 'cc') from sales
order by salesid limit 10;

 salesid | saletime | to_char
---------+---------------------+---------
 1 | 2008-02-18 02:36:48 | 21
 2 | 2008-06-06 05:00:16 | 21
 3 | 2008-06-06 08:26:17 | 21
 4 | 2008-06-09 08:38:52 | 21
 5 | 2008-08-31 09:17:02 | 21
 6 | 2008-07-16 11:59:24 | 21
 7 | 2008-06-26 12:56:06 | 21
 8 | 2008-07-10 02:12:36 | 21
 9 | 2008-07-22 02:23:17 | 21
 10 | 2008-08-06 02:51:55 | 21
(10 rows)

O seguinte exemplo converte cada valor de STARTTIME na tabela EVENT em uma string que
consiste em horas, minutos, segundos e fuso horário:

select to_char(starttime, 'HH12:MI:SS TZ')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00 UTC
08:00:00 UTC
02:30:00 UTC
02:30:00 UTC

Funções de formatação de tipo de dados 182

AWS Clean Rooms Referência SQL

07:00:00 UTC
(5 rows)

(10 rows)

O seguinte exemplo exibe a formatação para segundos, milissegundos e microssegundos.

select sysdate,
to_char(sysdate, 'HH24:MI:SS') as seconds,
to_char(sysdate, 'HH24:MI:SS.MS') as milliseconds,
to_char(sysdate, 'HH24:MI:SS:US') as microseconds;

timestamp | seconds | milliseconds | microseconds
--------------------+----------+--------------+----------------
2015-04-10 18:45:09 | 18:45:09 | 18:45:09.325 | 18:45:09:325143

Função TO_DATE

TO_DATE converte uma data representada em uma string de caracteres para um tipo de dados
DATE.

Sintaxe

TO_DATE (date_str)

TO_DATE (date_str, format)

Argumentos

data_str

Uma string de data ou um tipo de dados que pode ser convertido em uma string de data.

format

Uma string literal que corresponde aos padrões de data e hora do Spark. Para padrões de data e
hora válidos, consulte Padrões de data e hora para formatação e análise.

Tipo de retorno

TO_DATE retorna uma DATE, dependendo do valor do format.

Funções de formatação de tipo de dados 183

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Referência SQL

Se ocorrer falha na conversão no formato, um erro será gerado.

Exemplos

A instrução SQL a seguir converte a data 02 Oct 2001 em um tipo de dados de data.

select to_date('02 Oct 2001', 'dd MMM yyyy');

to_date

2001-10-02
(1 row)

A instrução SQL a seguir converte a string 20010631 em uma data.

select to_date('20010631', 'yyyyMMdd');

A seguinte instrução SQL converte a string 20010631 em uma data:

to_date('20010631', 'YYYYMMDD', TRUE);

O resultado é um valor nulo porque há apenas 30 dias em junho.

to_date

NULL

TO_NUMBER

TO_NUMBER converte uma string em um valor numérico (decimal).

Sintaxe

to_number(string, format)

Argumentos

string

String a ser convertida. O formato deve ser um valor literal.

Funções de formatação de tipo de dados 184

AWS Clean Rooms Referência SQL

format

O segundo argumento é uma string de formato que indica como a string de caracteres deve ser
analisada para criar o valor numérico. Por exemplo, o formato '99D999' especifica que a string
a ser convertida consiste em cinco dígitos com o ponto decimal na terceira posição. Por exemplo,
to_number('12.345','99D999') retorna 12.345 como um valor numérico. Para obter uma
lista dos formatos válidos, consulte Strings de formato numérico.

Tipo de retorno

TO_NUMBER retorna um número DECIMAL.

Se ocorrer falha na conversão no formato, um erro será gerado.

Exemplos

O exemplo a seguir converte a string 12,454.8- em um número:

select to_number('12,454.8-', '99G999D9S');

to_number

-12454.8

O exemplo a seguir converte a string $ 12,454.88 em um número:

select to_number('$ 12,454.88', 'L 99G999D99');

to_number

12454.88

O exemplo a seguir converte a string $ 2,012,454.88 em um número:

select to_number('$ 2,012,454.88', 'L 9,999,999.99');

to_number

2012454.88

Funções de formatação de tipo de dados 185

AWS Clean Rooms Referência SQL

UNBASE64 função

A UNBASE64 função converte um argumento de uma string de base 64 em um binário.

A codificação Base64 é comumente usada para representar dados binários (como imagens, arquivos
ou informações criptografadas) em um formato textual seguro para transmissão por vários canais de
comunicação (como e-mail, parâmetros de URL ou armazenamento de banco de dados).

A UNBASE64 função permite reverter esse processo e recuperar os dados binários originais.
Esse tipo de funcionalidade pode ser útil em cenários em que você precisa trabalhar com dados
codificados no formato Base64, como na integração com sistemas externos ou APIs que usam o
Base64 como mecanismo de transferência de dados.

Sintaxe

unbase64(expr)

Argumentos

expr

Uma expressão STRING no formato base64.

Tipo de retorno

BINARY

Exemplo

No exemplo a seguir, a string codificada em Base64 'U3BhcmsgU1FM' é convertida novamente na
string original. 'Spark SQL'

SELECT unbase64('U3BhcmsgU1FM');
 Spark SQL

Função UNHEX

A função UNHEX converte uma string hexadecimal de volta à sua representação de string original.

Funções de formatação de tipo de dados 186

AWS Clean Rooms Referência SQL

Essa função pode ser útil em cenários em que você precisa trabalhar com dados que foram
armazenados ou transmitidos em formato hexadecimal e restaurar a representação da string original
para processamento ou exibição adicionais.

A função UNHEX é a contrapartida da função HEX.

Sintaxe

unhex(expr)

Argumentos

expr

Uma expressão STRING de caracteres hexadecimais.

Tipo de retorno

UNHEX retorna um BINÁRIO.

Se o comprimento de expr for ímpar, o primeiro caractere será descartado e o resultado será
preenchido com um byte nulo. Se expr contiver caracteres não hexadecimais, o resultado será NULL.

Exemplo

O exemplo a seguir converte uma string hexadecimal de volta à sua representação de string original
usando as funções UNHEX () e DECODE () juntas. A primeira parte da consulta usa a função
UNHEX () para converter a string hexadecimal '537061726B2053514C' em sua representação
binária. A segunda parte da consulta usa a função DECODE () para converter os dados binários
obtidos da função UNHEX () em uma string, usando a codificação de caracteres 'UTF-8'. A saída da
consulta é a string original 'Spark_SQL' que foi convertida em hexadecimal e depois novamente em
uma string.

SELECT decode(unhex('537061726B2053514C'), 'UTF-8');
 Spark SQL

Strings de formato datetime

Você pode usar padrões de data e hora nos seguintes cenários comuns:

Funções de formatação de tipo de dados 187

AWS Clean Rooms Referência SQL

• Ao trabalhar com fontes de dados CSV e JSON para analisar e formatar conteúdo de data e hora

• Ao converter entre tipos de string e tipos de data ou timestamp usando funções como:

• unix_timestamp

• date_format

• carimbo de data/hora to_unix_

• from_unixtime

• to_date

• to_timestamp

• from_utc_timestamp

• to_utc_timestamp

Use as letras padrão na tabela a seguir para análise e formatação de data e hora.

Datepart ou timepart Significado Exemplos

a AM ou PM do dia, apresenta
do como am-pm

PM

D Dia do ano, apresentado como
um número de 3 dígitos

189

d Dia do mês, apresentado
como um número de 2 dígitos

28

E Dia da semana, apresentado
como texto

Ter

Terça-feira

F Dia da semana alinhado no
mês, apresentado como um
número de 1 dígito

3

G Indicador de era, apresentado
como texto

AD

Anno Domini

Funções de formatação de tipo de dados 188

AWS Clean Rooms Referência SQL

Datepart ou timepart Significado Exemplos

h Horário da manhã ou da tarde,
apresentado como um número
de 2 dígitos

12

H Hora do dia, apresentada
como um número de 2 dígitos
de 0 a 23

0

k Hora do dia, apresentada
como um número de 2 dígitos
de 1 a 24

1

K Hora da manhã ou da tarde,
apresentada como um número
de 2 dígitos de 0 a 11

0

m Minuto de hora, apresentado
como um número de 2 dígitos

30

M/L Mês do ano, apresentado
como um mês

7

07

jul

Julho

O Deslocamento de zona
localizado em relação ao UTC

GMT +8

GMT+ 8:00

UTC- 08:00

Funções de formatação de tipo de dados 189

AWS Clean Rooms Referência SQL

Datepart ou timepart Significado Exemplos

Q/q Trimestre do ano, apresentado
como um número (1 a 4) ou
texto

3

03

Q3

3º trimestre

s Segundo do minuto, apresenta
do como um número de 2
dígitos

55

S Fração de segundo, apresenta
da como uma fração

978

V Identificador de fuso horário,
apresentado como uma
identificação de zona

America/Los_Angeles

Z

08:30

x Deslocamento de zona em
relação ao UTC (offset-X)

+0000

-08

-0830

- 08:30

-083015

- 08:30:15

Funções de formatação de tipo de dados 190

AWS Clean Rooms Referência SQL

Datepart ou timepart Significado Exemplos

X Deslocamento de zona em
relação ao UTC; onde Z é
zero

Z

-08

-0830

- 08:30

-083015

- 08:30:15

y Ano, apresentado como um
ano

2020

20

z Nome do fuso horário,
apresentado como texto

Hora Oficial do Pacífico

PST

Z Deslocamento de zona em
relação ao UTC (offset-Z)

+0000

-0800

- 08:00

' Escape para texto, apresenta
do como um delimitador

N/D

'' Citação única, apresentada
como literal

'

[Início da seção opcional N/D

] Fim de seção opcional N/D

O número de letras padrão determina o tipo de formato:

Formato de texto

Funções de formatação de tipo de dados 191

AWS Clean Rooms Referência SQL

• Use de 1 a 3 letras para a forma abreviada (por exemplo, “Mon” para segunda-feira)

• Use exatamente 4 letras para o formulário completo (por exemplo, “segunda-feira”)

• Não use 5 ou mais letras - isso causará um erro

Formato numérico (n)

• O valor n representa o número máximo de letras permitido

• Para padrões de letra única:

• A saída usa dígitos mínimos sem preenchimento

• Para vários padrões de letras:

• A saída é preenchida com zeros para corresponder à largura da contagem de letras

• Ao analisar, a entrada deve conter o número exato de dígitos

Formato de número/texto

• Para 3 ou mais letras, siga as regras de formato de texto

• Para menos letras, siga as regras de formato numérico

Formato de fração

• Use de 1 a 9 caracteres 'S' (por exemplo, SSSSSS)

• Para análise:

• Aceite frações entre 1 e o número de caracteres S

• Para formatação:

• Almofada com zeros para corresponder ao número de caracteres S

• Suporta até 6 dígitos para precisão de microssegundos

• Pode analisar nanossegundos, mas trunca dígitos extras

Formato do ano

• A contagem de letras define a largura mínima do campo para preenchimento

• Para duas letras:

• Imprime os dois últimos dígitos

Funções de formatação de tipo de dados 192

AWS Clean Rooms Referência SQL

• Analisa anos entre 2000 e 2099

• Por menos de quatro letras (exceto duas):

• Mostra o sinal apenas para anos negativos

• Não use 7 ou mais letras - isso causará um erro

Formato do mês

• Use 'M' para o formulário padrão ou 'L' para o formulário autônomo

• Único 'M' ou 'L':

• Mostra os números dos meses de 1 a 12 sem preenchimento

• 'MM' ou 'LL':

• Mostra os números dos meses de 01 a 12 com preenchimento

• 'MMM':

• Mostra o nome abreviado do mês no formato padrão

• Deve fazer parte de um padrão de data completo

• 'LLL':

• Mostra o nome abreviado do mês em formato autônomo

• Use para formatação somente por mês

• 'MMMM':

• Mostra o nome completo do mês no formato padrão

• Use para datas e carimbos de data e hora

• 'LLLL':

• Mostra o nome completo do mês em formato independente

• Use para formatação somente por mês

Formatos de fuso horário

• am-pm: use apenas 1 letra

• ID de zona (V): use apenas 2 letras

• Nomes de zonas (z):

• 1-3 letras: mostra o nome curto
Funções de formatação de tipo de dados 193

AWS Clean Rooms Referência SQL

• 4 letras: mostra o nome completo

• Não use 5 ou mais letras

Formatos de offset

• X e x:

• 1 letra: Mostra a hora (+01) ou hora-minuto (+0130)

• 2 letras: Mostra hora-minuto sem dois pontos (+0130)

• 3 letras: mostra hora-minuto com dois pontos (+ 01:30)

• 4 letras: mostra hour-minute-second sem dois pontos (+013015)

• 5 letras: mostra hour-minute-second com dois pontos (+ 01:30:15)

• X usa 'Z' para compensação zero

• x usa '+00', '+0000' ou '+ 00:00 'para compensação zero

• U:

• 1 letra: mostra a forma abreviada (GMT+8)

• 4 letras: Mostra o formulário completo (GMT+ 08:00)

• Z:

• 1-3 letras: Mostra hora-minuto sem dois pontos (+0130)

• 4 letras: Mostra a forma localizada completa

• 5 letras: mostra hour-minute-second com dois pontos

Seções opcionais

• Use colchetes [] para marcar conteúdo opcional

• Você pode aninhar seções opcionais

• Todos os dados válidos aparecem na saída

• A entrada pode omitir seções opcionais inteiras

Note

Os símbolos 'E', 'F', 'q' e 'Q' funcionam somente para formatação de data e hora (como
date_format). Não os use para análise de data e hora (como to_timestamp).

Funções de formatação de tipo de dados 194

AWS Clean Rooms Referência SQL

Strings de formato numérico

As sequências de formato numérico a seguir se aplicam a funções como TO_NUMBER e TO_CHAR.

• Para obter exemplos de strings de formatação como números, consulte TO_NUMBER.

• Para obter exemplos de números de formatação como strings, consulte TO_CHAR.

Formato Description

9 Valor numérico com o número especificado de
dígitos.

0 Valor numérico com zeros iniciais.

. (ponto final), D Ponto decimal.

, (vírgula) Separador de milhares.

CC Código de século. Por exemplo, o século 21
começou em 2001-01-01 (compatível somente
com TO_CHAR).

FM Modo de preenchimento. Excluir espaços em
branco e zeros.

PR Valor negativo entre colchetes angulares.

S Sinal ancorado a um número.

L Símbolo de cifrão na posição especificada.

G Separador de grupo.

MI Sinal de menos na posição especificada para
números menores que 0.

PL Sinal de mais na posição especificada para
números maiores que 0.

Funções de formatação de tipo de dados 195

AWS Clean Rooms Referência SQL

Formato Description

SG Sinal de mais ou menos na posição especific
ada.

RN Numeral romano entre 1 e 3.999 (compatível
somente com TO_CHAR).

TH ou th Sufixo de número ordinal. Não converte
números ou valores fracionários menores que
zero.

Perfis de data e hora

As funções de data e hora permitem que você execute uma ampla variedade de operações em
dados de data e hora, como extrair partes de uma data, realizar cálculos de data, formatar datas
e horas e trabalhar com a data e a hora atuais. Essas funções são essenciais para tarefas como
análise de dados, relatórios e manipulação de dados envolvendo dados temporais.

AWS Clean Rooms suporta as seguintes funções de data e hora:

Tópicos

• Função ADD_MONTHS

• Função CONVERT_TIMEZONE

• Função CURRENT_DATE

• função CURRENT_TIMESTAMP

• função DATE_ADD

• função DATE_DIFF

• Função DATE_PART

• Função DATE_TRUNC

• Função DAY

• função DAYOFMONTH

• Função DAYOFWEEK

• Função DAYOFYEAR

Perfis de data e hora 196

AWS Clean Rooms Referência SQL

• Função EXTRACT

• função FROM_UTC_TIMESTAMP

• Função HOUR

• Função MINUTE

• Função MÊS

• SEGUNDA função

• Função TIMESTAMP

• Função TO_TIMESTAMP

• Função YEAR

• Partes da data para funções de data ou de timestamp

Função ADD_MONTHS

ADD_MONTHS adiciona o número especificado de meses a um valor ou expressão de data ou
timestamp. A função DATE_ADD oferece funcionalidade semelhante.

Sintaxe

ADD_MONTHS({date | timestamp}, integer)

Argumentos

date | timestamp

Uma coluna de data ou timestamp ou uma expressão que converta implicitamente em uma data
ou timestamp. Se a data for o último dia do mês ou se o mês resultante for mais curto, a função
retorna o último dia do mês nos resultados. Para outras datas, o resultado contém o mesmo
número de dia que a expressão de data.

inteiro

Um número inteiro positivo ou negativo. Use um número negativo para subtrair meses de datas.

Tipo de retorno

TIMESTAMP

Perfis de data e hora 197

AWS Clean Rooms Referência SQL

Exemplo

A seguinte consulta usa a função de ADD_MONTHS dentro de uma função TRUNC. A função
TRUNC remove o horário do dia dos resultados de ADD_MONTHS. A função ADD_MONTHS
adiciona 12 meses a cada valor da coluna CALDATE.

select distinct trunc(add_months(caldate, 12)) as calplus12,
trunc(caldate) as cal
from date
order by 1 asc;

 calplus12 | cal
------------+------------
 2009-01-01 | 2008-01-01
 2009-01-02 | 2008-01-02
 2009-01-03 | 2008-01-03
...
(365 rows)

Os seguintes exemplos demonstram o comportamento quando a função ADD_MONTHS opera em
datas com meses que têm diferentes número de dias.

select add_months('2008-03-31',1);

add_months

2008-04-30 00:00:00
(1 row)

select add_months('2008-04-30',1);

add_months

2008-05-31 00:00:00
(1 row)

Função CONVERT_TIMEZONE

CONVERT_TIMEZONE converte um timestamp de um fuso horário para outro. A função se ajusta
automaticamente para o horário de verão.

Perfis de data e hora 198

AWS Clean Rooms Referência SQL

Sintaxe

CONVERT_TIMEZONE (['source_timezone',] 'target_timezone', 'timestamp')

Argumentos

source_timezone

(Opcional) O fuso horário do timestamp atual. O padrão é UTC.

target_timezone

O fuso horário do novo timestamp.

timestamp

Uma coluna de timestamp ou uma expressão que converta implicitamente para um timestamp.

Tipo de retorno

TIMESTAMP

Exemplos

O exemplo a seguir converte o valor de carimbo de data/hora do fuso horário UTC padrão em PST.

select convert_timezone('PST', '2008-08-21 07:23:54');

 convert_timezone

2008-08-20 23:23:54

O exemplo a seguir converte o valor do timestamp na coluna LISTTIME do fuso horário UTC padrão
para PST. Embora o timestamp esteja no período de horário de verão, ele é convertido para o
horário padrão, pois o fuso horário de destino é especificado como uma abreviação (PST).

select listtime, convert_timezone('PST', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+-------------------

Perfis de data e hora 199

AWS Clean Rooms Referência SQL

2008-08-24 09:36:12 2008-08-24 01:36:12

O exemplo a seguir converte uma coluna LISTTIME de carimbo de data/hora do fuso horário UTC
padrão em fuso horário. US/Pacific A fuso horário de destino usa um nome de fuso horário e o
timestamp está no horário de verão, portanto a função retorna o horário de verão.

select listtime, convert_timezone('US/Pacific', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+---------------------
2008-08-24 09:36:12 | 2008-08-24 02:36:12

O exemplo a seguir converte uma string de timestamp de EST para PST:

select convert_timezone('EST', 'PST', '20080305 12:25:29');

 convert_timezone

2008-03-05 09:25:29

O exemplo a seguir converte um timestamp para o horário padrão do Leste dos EUA, pois o fuso
horário de destino usa um nome de fuso horário (America/New_York) e o timestamp está dentro do
período de horário padrão.

select convert_timezone('America/New_York', '2013-02-01 08:00:00');

 convert_timezone

2013-02-01 03:00:00
(1 row)

O seguinte exemplo converte o timestamp para o horário de verão do Leste dos EUA, pois o fuso
horário de destino usa um nome de fuso horário (America/New_York) e o timestamp está dentro do
período do horário de verão.

select convert_timezone('America/New_York', '2013-06-01 08:00:00');

 convert_timezone

Perfis de data e hora 200

AWS Clean Rooms Referência SQL

2013-06-01 04:00:00
(1 row)

O seguinte exemplo demonstra o uso de deslocamentos.

SELECT CONVERT_TIMEZONE('GMT','NEWZONE +2','2014-05-17 12:00:00') as newzone_plus_2,
CONVERT_TIMEZONE('GMT','NEWZONE-2:15','2014-05-17 12:00:00') as newzone_minus_2_15,
CONVERT_TIMEZONE('GMT','America/Los_Angeles+2','2014-05-17 12:00:00') as la_plus_2,
CONVERT_TIMEZONE('GMT','GMT+2','2014-05-17 12:00:00') as gmt_plus_2;

 newzone_plus_2 | newzone_minus_2_15 | la_plus_2 | gmt_plus_2
---------------------+---------------------+---------------------+---------------------
2014-05-17 10:00:00 | 2014-05-17 14:15:00 | 2014-05-17 10:00:00 | 2014-05-17 10:00:00
(1 row)

Função CURRENT_DATE

CURRENT_DATE retorna uma data no fuso horário da sessão atual (UTC por padrão) no formato
padrão:. YYYY-MM-DD

Note

CURRENT_DATE retorna a data de início para a transação atual, não para o início da
instrução atual. Considere o cenário em que você inicia uma transação contendo várias
declarações em 10/01/08 23:59, e a declaração contendo CURRENT_DATE é executada em
10/02/08 00:00. CURRENT_DATE retorna 10/01/08, não 10/02/08.

Sintaxe

CURRENT_DATE

Tipo de retorno

DATE

Exemplo

O exemplo a seguir retorna a data atual (no local em Região da AWS que a função é executada).

select current_date;

Perfis de data e hora 201

AWS Clean Rooms Referência SQL

 date

2008-10-01

função CURRENT_TIMESTAMP

CURRENT_TIMESTAMP retorna a data e a hora atuais, incluindo a data, a hora e (opcionalmente)
os milissegundos ou microssegundos.

Essa função é útil quando você precisa obter a data e a hora atuais, por exemplo, para registrar a
data e hora de um evento, realizar cálculos com base no tempo ou preencher colunas. date/time

Sintaxe

current_timestamp()

Tipo de retorno

A função CURRENT_TIMESTAMP retorna uma DATA.

Exemplo

O exemplo a seguir retorna a data e a hora atuais no momento em que a consulta é executada, que
é 25 de abril de 2020, às 15:49:11.914 (15:49:11.914 PM).

SELECT current_timestamp();
 2020-04-25 15:49:11.914

O exemplo a seguir recupera a data e a hora atuais de cada linha na squirrels tabela.

SELECT current_timestamp() FROM squirrels

função DATE_ADD

Retorna a data que é num_days após start_date.

Sintaxe

date_add(start_date, num_days)

Perfis de data e hora 202

AWS Clean Rooms Referência SQL

Argumentos

data_inicial

O valor da data inicial.

num_dias

O número de dias a serem adicionados (inteiro). Um número positivo soma dias, um número
negativo subtrai dias.

Tipo de retorno

DATE

Exemplos

O exemplo a seguir adiciona um dia a uma data:

SELECT date_add('2016-07-30', 1);

Result:
2016-07-31

O exemplo a seguir adiciona vários dias.

SELECT date_add('2016-07-30', 5);

Result:
2016-08-04

Observações de uso

Esta documentação é para a função DATE_ADD do Spark SQL, que fornece uma interface mais
simples para adicionar dias às datas em comparação com algumas outras variantes do SQL. Para
adicionar outros intervalos, como meses ou anos, funções diferentes podem ser necessárias.

função DATE_DIFF

DATE_DIFF retorna a diferença entre as partes de data de duas expressões de data ou hora.

Perfis de data e hora 203

AWS Clean Rooms Referência SQL

Sintaxe

date_diff(endDate, startDate)

Argumentos

endDate

Uma expressão DATE.

startDate

Uma expressão DATE.

Tipo de retorno

BIGINT

Exemplos com uma coluna DATE

O exemplo a seguir encontra a diferença, em número de semanas, entre dois valores de data literais.

select date_diff(week,'2009-01-01','2009-12-31') as numweeks;

numweeks

52
(1 row)

O exemplo a seguir encontra a diferença, em horas, entre dois valores de data literais. Quando você
não fornece o valor de hora para uma data, o padrão é 00:00:00.

select date_diff(hour, '2023-01-01', '2023-01-03 05:04:03');

date_diff

53
(1 row)

O exemplo a seguir encontra a diferença, em dias, entre dois valores literais de TIMESTAMETZ.

Select date_diff(days, 'Jun 1,2008 09:59:59 EST', 'Jul 4,2008 09:59:59 EST')

Perfis de data e hora 204

AWS Clean Rooms Referência SQL

date_diff

33

O exemplo a seguir encontra a diferença, em dias, entre duas datas na mesma linha de uma tabela.

select * from date_table;

start_date | end_date
-----------+-----------
2009-01-01 | 2009-03-23
2023-01-04 | 2024-05-04
(2 rows)

select date_diff(day, start_date, end_date) as duration from date_table;

duration

 81
 486
(2 rows)

O exemplo a seguir encontra a diferença, em número de trimestres, entre um valor literal no passado
e a data de hoje. Este exemplo presume que a data atual seja 5 de junho de 2008. Você pode
nomear as partes da data por completo ou abreviá-las. O nome da coluna padrão para a função
DATE_DIFF é DATE_DIFF.

select date_diff(qtr, '1998-07-01', current_date);

date_diff

40
(1 row)

O exemplo a seguir une as tabelas SALES e LISTING para calcular quantos dias os ingressos foram
vendidos para as listagens 1000 a 1005 depois de serem listados. A espera mais longa para vendas
dessas ofertas foi de 15 dias e a espera mais curta foi de menos de um dia (0 dias).

select priceperticket,
date_diff(day, listtime, saletime) as wait
from sales, listing where sales.listid = listing.listid

Perfis de data e hora 205

AWS Clean Rooms Referência SQL

and sales.listid between 1000 and 1005
order by wait desc, priceperticket desc;

priceperticket | wait
---------------+------
 96.00 | 15
 123.00 | 11
 131.00 | 9
 123.00 | 6
 129.00 | 4
 96.00 | 4
 96.00 | 0
(7 rows)

Este exemplo calcula o número médio de horas que os vendedores esperaram para todas as vendas
de ingressos.

select avg(date_diff(hours, listtime, saletime)) as avgwait
from sales, listing
where sales.listid = listing.listid;

avgwait

465
(1 row)

Exemplos com uma coluna TIME

O TIME_TEST da tabela a seguir tem uma coluna TIME_VAL (tipo TIME) com três valores inseridos.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

O exemplo a seguir localiza a diferença no número de horas entre a coluna TIME_VAL e um literal de
tempo.

select date_diff(hour, time_val, time '15:24:45') from time_test;

Perfis de data e hora 206

AWS Clean Rooms Referência SQL

 date_diff

 -5
 15
 15

O exemplo a seguir localiza a diferença no número de minutos entre dois valores de tempo literal.

select date_diff(minute, time '20:00:00', time '21:00:00') as nummins;

nummins

60

Exemplos com uma coluna TIMETZ

O TIMETZ_TEST da tabela de exemplo a seguir tem uma coluna TIMETZ_VAL (tipo TIMETZ) com
três valores inseridos.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

O exemplo a seguir localiza as diferenças no número de horas, entre um literal TIMETZ e timetz_val.

select date_diff(hours, timetz '20:00:00 PST', timetz_val) as numhours from
 timetz_test;

numhours

0
-4
1

O exemplo a seguir localiza a diferença no número de horas, entre dois valores TIMETZ literal.

select date_diff(hours, timetz '20:00:00 PST', timetz '00:58:00 EST') as numhours;

Perfis de data e hora 207

AWS Clean Rooms Referência SQL

numhours

1

Função DATE_PART

DATE_PART extrai os valores de parte da data de uma expressão. DATE_PART é sinônimo da
função PGDATE_PART.

Sintaxe

datepart(field, source)

Argumentos

Campo

Qual parte da fonte deve ser extraída e os valores de string suportados são os mesmos dos
campos da função equivalente EXTRACT.

source

Uma coluna DATE ou INTERVAL de onde o campo deve ser extraído.

Tipo de retorno

Se o campo for 'SEGUNDO', um DECIMAL (8, 6). Em todos os outros casos, um INTEGER.

Exemplo

O exemplo a seguir extrai o dia do ano (DOY) de um valor de data. A saída mostra que o dia do ano
para a data “2019-08-12" é. 224 Isso significa que 12 de agosto de 2019 é o 224º dia do ano de
2019.

SELECT datepart('doy', DATE'2019-08-12');
 224

Função DATE_TRUNC

A função DATE_TRUNC trunca uma expressão de timestamp ou literal com base na parte da data
especificada, tal como hora, dia ou mês.

Perfis de data e hora 208

AWS Clean Rooms Referência SQL

Sintaxe

date_trunc(format, datetime)

Argumentos

format

O formato que representa a unidade a ser truncada. Os formatos válidos são:

• “YEAR”, “YYYY”, “YY” - trunque até a primeira data do ano em que o ts cai, a parte do tempo
será zero

• “TRIMESTRE” - trunque para a primeira data do trimestre em que o ts cai, a parte do tempo
será zero

• “MÊS”, “MM”, “SEGUNDA-FEIRA” - trunque para a primeira data do mês em que o ts cai, a
parte do tempo será zero

• “SEMANA” - trunque até a segunda-feira da semana em que o ts cai, a parte do tempo será
zero

• “DAY”, “DD” - zerar a parte do tempo

• “HORA” - zerar o minuto e o segundo com parte fracionária

• “MINUTO” - zerar o segundo com parte fracionária

• “SEGUNDO” - zerar a segunda parte da fração

• “MILISECOND” - zerar os microssegundos

• “MICROSECOND” - tudo permanece

ts

Um valor de data e hora

Tipo de retorno

Retorna o timestamp ts truncado para a unidade especificada pelo modelo de formato

Exemplos

O exemplo a seguir trunca um valor de data para o início do ano. A saída mostra que a data
“2015-03-05" foi truncada para “2015-01-01", que é o início do ano de 2015.

SELECT date_trunc('YEAR', '2015-03-05');

Perfis de data e hora 209

AWS Clean Rooms Referência SQL

 date_trunc

2015-01-01

Função DAY

A função DAY retorna o dia do mês do carimbo de data/hora.

As funções de extração de data são úteis quando você precisa trabalhar com componentes
específicos de uma data ou carimbo de data/hora, como ao realizar cálculos baseados em datas,
filtrar dados ou formatar valores de data.

Sintaxe

day(date)

Argumentos

data

Uma expressão DATE ou TIMESTAMP.

Retornos

A função DAY retorna um INTEIRO.

Exemplos

O exemplo a seguir extrai o dia do mês (30) da data '2009-07-30' de entrada.

SELECT day('2009-07-30');
 30

O exemplo a seguir extrai o dia do mês da birthday coluna da squirrels tabela e retorna os
resultados como saída da instrução SELECT. O resultado dessa consulta será uma lista de valores
de dias, um para cada linha na squirrels tabela, representando o dia do mês do aniversário de
cada esquilo.

SELECT day(birthday) FROM squirrels

Perfis de data e hora 210

AWS Clean Rooms Referência SQL

função DAYOFMONTH

A função DAYOFMONTH retorna o dia do mês do date/timestamp (um valor entre 1 e 31,
dependendo do mês e do ano).

A função DAYOFMONTH é semelhante à função DAY, mas elas têm nomes e comportamentos
ligeiramente diferentes. A função DAY é mais comumente usada, mas a função DAYOFMONTH
pode ser usada como alternativa. Esse tipo de consulta pode ser útil quando você precisa realizar
uma análise ou filtragem com base em datas em uma tabela que contém dados de data ou data
e hora, como extrair componentes específicos de uma data para processamento ou geração de
relatórios adicionais.

Sintaxe

dayofmonth(date)

Argumentos

data

Uma expressão DATE ou TIMESTAMP.

Retornos

A função DAYOFMONTH retorna um INTEIRO.

Exemplo

O exemplo a seguir extrai o dia do mês (30) da data '2009-07-30' de entrada.

SELECT dayofmonth('2009-07-30');
 30

O exemplo a seguir aplica a função DAYOFMONTH à birthday coluna da squirrels tabela. Para
cada linha na squirrels tabela, o dia do mês da birthday coluna será extraído e retornado como
saída da instrução SELECT. O resultado dessa consulta será uma lista de valores de dias, um para
cada linha na squirrels tabela, representando o dia do mês do aniversário de cada esquilo.

SELECT dayofmonth(birthday) FROM squirrels

Perfis de data e hora 211

AWS Clean Rooms Referência SQL

Função DAYOFWEEK

A função DAYOFWEEK usa uma data ou timestamp como entrada e retorna o dia da semana como
um número (1 para domingo, 2 para segunda-feira,..., 7 para sábado).

Essa função de extração de data é útil quando você precisa trabalhar com componentes específicos
de uma data ou carimbo de data/hora, como ao realizar cálculos baseados em datas, filtrar dados ou
formatar valores de data.

Sintaxe

dayofweek(date)

Argumentos

data

Uma expressão DATE ou TIMESTAMP.

Retornos

A função DAYOFWEEK retorna um INTEGER onde

1 = domingo

2 = segunda-feira

3 = terça-feira

4 = quarta-feira

5 = quinta-feira

6 = sexta-feira

7 = sábado

Exemplos

O exemplo a seguir extrai o dia da semana dessa data, que é 5 (representando quinta-feira).

SELECT dayofweek('2009-07-30');

Perfis de data e hora 212

AWS Clean Rooms Referência SQL

 5

O exemplo a seguir extrai o dia da semana da birthday coluna da squirrels tabela e retorna os
resultados como saída da instrução SELECT. O resultado dessa consulta será uma lista dos valores
do dia da semana, um para cada linha na squirrels tabela, representando o dia da semana do
aniversário de cada esquilo.

SELECT dayofweek(birthday) FROM squirrels

Função DAYOFYEAR

A função DAYOFYEAR é uma função de extração de data que usa uma data ou carimbo de data/
hora como entrada e retorna o dia do ano (um valor entre 1 e 366, dependendo do ano e se é um
ano bissexto).

Essa função é útil quando você precisa trabalhar com componentes específicos de uma data ou
carimbo de data/hora, como ao realizar cálculos baseados em datas, filtrar dados ou formatar valores
de data.

Sintaxe

dayofyear(date)

Argumentos

data

Uma expressão DATE ou TIMESTAMP.

Retornos

A função DAYOFYEAR retorna um INTEIRO (entre 1 e 366, dependendo do ano e se é um ano
bissexto).

Exemplos

O exemplo a seguir extrai o dia do ano (100) da data '2016-04-09' de entrada.

SELECT dayofyear('2016-04-09');
 100

Perfis de data e hora 213

AWS Clean Rooms Referência SQL

O exemplo a seguir extrai o dia do ano da birthday coluna da squirrels tabela e retorna os
resultados como saída da instrução SELECT.

SELECT dayofyear(birthday) FROM squirrels

Função EXTRACT

A função EXTRACT retorna a parte da data ou hora de um valor de TIMESTAMP, TIMESTAMPTZ,
TIME ou TIMETZ. Os exemplos incluem um dia, mês, ano, hora, minuto, segundo, milissegundo ou
microssegundo de um timestamp.

Sintaxe

EXTRACT(datepart FROM source)

Argumentos

datepart

O subcampo de uma data ou hora que será extraído, como dia, mês, ano, hora, minuto, segundo,
milissegundo ou microssegundo. Para os possíveis valores, consulte Partes da data para funções
de data ou de timestamp.

source

Uma coluna ou expressão que é avaliada como um tipo de dado TIMESTAMP, TIMESTAMPTZ,
TIME ou TIMETZ.

Tipo de retorno

INTEGER se o valor de source for avaliado como TIMESTAMP, TIME ou TIMETZ.

DOUBLE PRECISION se o valor de source for avaliado como TIMESTAMPTZ.

Exemplos com TIME

O TIME_TEST da tabela a seguir tem uma coluna TIME_VAL (tipo TIME) com três valores inseridos.

select time_val from time_test;

time_val

Perfis de data e hora 214

AWS Clean Rooms Referência SQL

20:00:00
00:00:00.5550
00:58:00

O exemplo a seguir extrai os minutos de cada time_val.

select extract(minute from time_val) as minutes from time_test;

minutes

 0
 0
 58

O exemplo a seguir extrai as horas de cada time_val.

select extract(hour from time_val) as hours from time_test;

hours

 20
 0
 0

função FROM_UTC_TIMESTAMP

A função FROM_UTC_TIMESTAMP converte a data de entrada de UTC (Tempo Universal
Coordenado) para o fuso horário especificado.

Essa função é útil quando você precisa converter valores de data e hora do UTC para um fuso
horário específico. Isso pode ser importante ao trabalhar com dados originários de diferentes partes
do mundo e que precisam ser apresentados no horário local apropriado.

Sintaxe

from_utc_timestamp(timestamp, timezone

Argumentos

timestamp

Uma expressão TIMESTAMP com um timestamp UTC.

Perfis de data e hora 215

AWS Clean Rooms Referência SQL

timezone

Uma expressão STRING que é um fuso horário válido no qual a data ou o timestamp de entrada
devem ser convertidos.

Retornos

A função FROM_UTC_TIMESTAMP retorna um TIMESTAMP.

Exemplo

O exemplo a seguir converte a data de entrada de UTC para o fuso horário especificado ('Asia/
Seoul'), que nesse caso é 9 horas antes do UTC. A saída resultante é a data e a hora no fuso
horário de Seul, qual é2016-08-31 09:00:00.

SELECT from_utc_timestamp('2016-08-31', 'Asia/Seoul');
 2016-08-31 09:00:00

Função HOUR

A função HOUR é uma função de extração de tempo que usa uma hora ou um carimbo de data/hora
como entrada e retorna o componente de hora (um valor entre 0 e 23).

Essa função de extração de hora é útil quando você precisa trabalhar com componentes específicos
de uma hora ou carimbo de data/hora, como ao realizar cálculos baseados em tempo, filtrar dados
ou formatar valores de hora.

Sintaxe

hour(timestamp)

Argumentos

timestamp

Uma expressão TIMESTAMP.

Retornos

A função HOUR retorna um INTEIRO.

Perfis de data e hora 216

AWS Clean Rooms Referência SQL

Exemplo

O exemplo a seguir extrai o componente hora (12) do '2009-07-30 12:58:59' timestamp de
entrada.

SELECT hour('2009-07-30 12:58:59');
 12

Função MINUTE

A função MINUTE é uma função de extração de tempo que usa uma hora ou um carimbo de data/
hora como entrada e retorna o componente minuto (um valor entre 0 e 60).

Sintaxe

minute(timestamp)

Argumentos

timestamp

Uma expressão TIMESTAMP ou uma STRING de um formato de timestamp válido.

Retornos

A função MINUTE retorna um INTEIRO.

Exemplo

O exemplo a seguir extrai o componente minute (58) do '2009-07-30 12:58:59' timestamp de
entrada.

SELECT minute('2009-07-30 12:58:59');
 58

Função MÊS

A função MONTH é uma função de extração de hora que usa uma hora ou um carimbo de data/hora
como entrada e retorna o componente do mês (um valor entre 0 e 12).

Perfis de data e hora 217

AWS Clean Rooms Referência SQL

Sintaxe

month(date)

Argumentos

data

Uma expressão TIMESTAMP ou uma STRING de um formato de timestamp válido.

Retornos

A função MONTH retorna um INTEIRO.

Exemplo

O exemplo a seguir extrai o componente month (7) do '2016-07-30' timestamp de entrada.

SELECT month('2016-07-30');
 7

SEGUNDA função

A função SECOND é uma função de extração de tempo que usa uma hora ou um timestamp como
entrada e retorna o segundo componente (um valor entre 0 e 60).

Sintaxe

second(timestamp)

Argumentos

timestamp

Uma expressão TIMESTAMP.

Retornos

A função SECOND retorna um INTEIRO.

Perfis de data e hora 218

AWS Clean Rooms Referência SQL

Exemplo

O exemplo a seguir extrai o segundo componente (59) do '2009-07-30 12:58:59' timestamp de
entrada.

SELECT second('2009-07-30 12:58:59');
 59

Função TIMESTAMP

A função TIMESTAMP pega um valor (normalmente um número) e o converte em um tipo de dados
de carimbo de data/hora.

Essa função é útil quando você precisa converter um valor numérico representando uma hora ou
data em um tipo de dados de carimbo de data/hora. Isso pode ser útil quando você está trabalhando
com dados armazenados em um formato numérico, como carimbos de data/hora do Unix ou horário
de época.

Sintaxe

timestamp(expr)

Argumentos

expr

Qualquer expressão que possa ser convertida em TIMESTAMP.

Retornos

A função TIMESTAMP retorna um TIMESTAMP.

Exemplo

O exemplo a seguir converte um timestamp numérico Unix (1632416400) em seu tipo de dados de
timestamp correspondente: 22 de setembro de 2021 às 12:00:00 UTC.

SELECT timestamp(1632416400);
 2021-09-22 12:00:00 UTC

Perfis de data e hora 219

AWS Clean Rooms Referência SQL

Função TO_TIMESTAMP

TO_TIMESTAMP converte uma string de TIMESTAMP em TIMESTAMPTZ.

Sintaxe

to_timestamp (timestamp)

to_timestamp (timestamp, format)

Argumentos

timestamp

Uma string de carimbo de data/hora ou um tipo de dados que pode ser convertido em uma string
de carimbo de data/hora.

format

Uma string literal que corresponde aos padrões de data e hora do Spark. Para padrões de data e
hora válidos, consulte Padrões de data e hora para formatação e análise.

Tipo de retorno

TIMESTAMP

Exemplos

O exemplo a seguir demonstra o uso da função TO_TIMESTAMP para converter uma string
TIMESTAMP em TIMESTAMP.

select current_timestamp() as timestamp, to_timestamp(current_timestamp(), 'YYYY-MM-DD
 HH24:MI:SS') as second;

timestamp | second
-------------------------- ----------------------
2021-04-05 19:27:53.281812 | 2021-04-05 19:27:53+00

É possível enviar parte de uma data com TO_TIMESTAMP. As partes restantes da data são
definidas como valores padrão. A hora é incluída na saída:

Perfis de data e hora 220

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Referência SQL

SELECT TO_TIMESTAMP('2017','YYYY');

to_timestamp

2017-01-01 00:00:00+00

A instrução SQL a seguir converte a string '2011-12-18 24:38:15 'em um TIMESTAMP. O resultado é
um TIMESTAMP que cai no dia seguinte porque o número de horas é superior a 24 horas:

select to_timestamp('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS');

to_timestamp

2011-12-19 00:38:15+00

Função YEAR

A função YEAR é uma função de extração de data que usa uma data ou timestamp como entrada e
retorna o componente do ano (um número de quatro dígitos).

Sintaxe

year(date)

Argumentos

data

Uma expressão DATE ou TIMESTAMP.

Retornos

A função YEAR retorna um INTEIRO.

Exemplo

O exemplo a seguir extrai o componente ano (2016) da data '2016-07-30' de entrada.

SELECT year('2016-07-30');

Perfis de data e hora 221

AWS Clean Rooms Referência SQL

 2016

O exemplo a seguir extrai o componente ano da birthday coluna da squirrels tabela e retorna
os resultados como saída da instrução SELECT. O resultado dessa consulta será uma lista dos
valores do ano, um para cada linha na squirrels tabela, representando o ano do aniversário de
cada esquilo.

SELECT year(birthday) FROM squirrels

Partes da data para funções de data ou de timestamp

A tabela a seguir identifica os nomes e abreviações da parte da data e da hora que são aceitos como
argumentos para as seguintes funções:

• DATE_ADD

• DATE_DIFF

• DATE_PART

• EXTRACT

Parte da data ou parte da
hora

Abreviações

milênio, milênios mil, mils

século, séculos c, cent, cents

década, décadas dec, decs

epoch epoch (compatível com EXTRACT)

ano, anos y, yr, yrs

trimestre, trimestres qtr, qtrs

mês, meses mon, mons

semana, semanas w

Perfis de data e hora 222

AWS Clean Rooms Referência SQL

Parte da data ou parte da
hora

Abreviações

dia da semana dayofweek, dow, dw, weekday (compatível com DATE_PART e
Função EXTRACT)

Retorna um número inteiro de 0 a 6, começando com domingo.

Note

A parte da data DOW se comporta de maneira diferente
da parte da data do dia da semana (D) usada para strings
de formato de data e hora. D se baseia no números
inteiros 1 a 7, onde domingo é 1. Para obter mais
informações, consulte Strings de formato datetime.

dia do ano dayofyear, doy, dy, yearday (compatível com EXTRACT)

dia, dias d

hora, horas h, hr, hrs

minuto, minutos m, min, mins

segundo, segundos s, sec, secs

milissegundo, milissegundos ms, msec, msecs, msecond, mseconds, millisec, millisecs,
millisecon

microssegundo, microsseg
undos

microsec, microsecs, microsecond, usecond, useconds, us, usec,
usecs

timezone, timezone_hour,
timezone_minute

Compatível com EXTRACT para timestamp somente com fuso
horário (TIMESTAMPTZ).

Variações nos resultados com segundos, milissegundos e microssegundos

Pequenas diferenças nos resultados de consultas ocorrem quando diferentes funções de data
especificam segundos, milissegundos ou microssegundos como partes da data:

Perfis de data e hora 223

AWS Clean Rooms Referência SQL

• A função EXTRACT retorna números inteiros somente para a parte da data especificada,
ignorando partes de data de níveis superiores e inferiores. Se a parte da data especificada é
segundos, os milissegundos e os microssegundos não são incluídos no resultados. Se a parte da
data especificada é milissegundos, segundos e microssegundos não são incluídos. Se a parte da
data especificada é microssegundos, segundos e milissegundos não são incluídos.

• A função DATE_PART retorna a parte completa de segundos do timestamp, independente
da parte de data especificada, retornando um valor decimal ou um número inteiro conforme
necessário.

Observações de CENTURY, EPOCH, DECADE e MIL

CENTURY ou CENTURIES

AWS Clean Rooms interpreta um SÉCULO como começando com o ano ## #1 e terminando com
o ano: ###0

select extract (century from timestamp '2000-12-16 12:21:13');
date_part

20
(1 row)

select extract (century from timestamp '2001-12-16 12:21:13');
date_part

21
(1 row)

EPOCH

A AWS Clean Rooms implementação do EPOCH é relativa a 1970-01-01 00:00:00.000 000,
independente do fuso horário em que o cluster reside. Você pode precisar deslocar os resultados
pela diferença em horas dependendo do fuso horário onde o cluster está localizado.

DECADE ou DECADES

AWS Clean Rooms interpreta o DECADE ou DECADES DATEPART com base no calendário
comum. Por exemplo, como o calendário comum começa a partir do ano 1, a primeira década
(década 1) é 0001-01-01 a 0009-12-31 e a segunda década (década 2) é 0010-01-01 a
0019-12-31. Por exemplo, a década 201 vai de 2000-01-01 a 2009-12-31:

Perfis de data e hora 224

AWS Clean Rooms Referência SQL

select extract(decade from timestamp '1999-02-16 20:38:40');
date_part

200
(1 row)

select extract(decade from timestamp '2000-02-16 20:38:40');
date_part

201
(1 row)

select extract(decade from timestamp '2010-02-16 20:38:40');
date_part

202
(1 row)

MIL ou MILS

AWS Clean Rooms interpreta uma MIL para começar com o primeiro dia do ano #001 e terminar
com o último dia do ano#000:

select extract (mil from timestamp '2000-12-16 12:21:13');
date_part

2
(1 row)

select extract (mil from timestamp '2001-12-16 12:21:13');
date_part

3
(1 row)

Funções de criptografia e descriptografia

As funções de criptografia e descriptografia ajudam os desenvolvedores de SQL a proteger dados
confidenciais contra acesso não autorizado ou uso indevido, convertendo-os entre um formulário de
texto simples legível e um formulário de texto cifrado ilegível.

Funções de criptografia e descriptografia 225

AWS Clean Rooms Referência SQL

AWS Clean Rooms O Spark SQL é compatível com as seguintes funções de criptografia e
decodificação:

Tópicos

• função AES_ENCRYPT

• função AES_DECRYPT

função AES_ENCRYPT

A função AES_ENCRYPT é usada para criptografar dados usando o algoritmo Advanced Encryption
Standard (AES).

Sintaxe

aes_encrypt(expr, key[, mode[, padding[, iv[, aad]]]])

Argumentos

expr

O valor binário a ser criptografado.

chave

A senha a ser usada para criptografar os dados.

Comprimentos de chave de 16, 24 e 32 bits são suportados.

modo

Especifica qual modo de criptografia de bloco deve ser usado para criptografar mensagens.

Modos válidos: ECB (eletrônico CodeBook), GCM (modo Galois/Counter), CBC (Cipher-Block
Chaining).

acolchoamento

Especifica como preencher mensagens cujo tamanho não seja múltiplo do tamanho do bloco.

Valores válidos: PKCS, NONE, DEFAULT.

O preenchimento DEFAULT significa PKCS (Padrões de Criptografia de Chave Pública) para
ECB, NONE para GCM e PKCS para CBC.

Funções de criptografia e descriptografia 226

AWS Clean Rooms Referência SQL

As combinações suportadas de (modo, preenchimento) são ('ECB', 'PKCS'), ('GCM', 'NONE') e
('CBC', 'PKCS').

iv

Vetor de inicialização opcional (IV). Compatível apenas com os modos CBC e GCM.

Valores válidos: 12 bytes para GCM e 16 bytes para CBC.

anúncio

Dados autenticados adicionais (AAD) opcionais. Compatível apenas com o modo GCM. Isso pode
ser qualquer entrada de formato livre e deve ser fornecido tanto para criptografia quanto para
decodificação.

Tipo de retorno

A função AES_ENCRYPT retorna um valor criptografado de expr usando AES em determinado modo
com o preenchimento especificado.

Exemplos

O exemplo a seguir demonstra como usar a função AES_ENCRYPT do Spark SQL para criptografar
com segurança uma sequência de dados (nesse caso, a palavra “Spark”) usando uma chave de
criptografia especificada. O texto cifrado resultante é então codificado em Base64 para facilitar o
armazenamento ou a transmissão.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
 4A5jOAh9FNGwoMeuJukfllrLdHEZxA2DyuSQAWz77dfn

O exemplo a seguir demonstra como usar a função AES_ENCRYPT do Spark SQL para criptografar
com segurança uma sequência de dados (nesse caso, a palavra “Spark”) usando uma chave de
criptografia especificada. O texto cifrado resultante é então representado em formato hexadecimal, o
que pode ser útil para tarefas como armazenamento, transmissão ou depuração de dados.

SELECT hex(aes_encrypt('Spark', '0000111122223333'));
 83F16B2AA704794132802D248E6BFD4E380078182D1544813898AC97E709B28A94

O exemplo a seguir demonstra como usar a função AES_ENCRYPT do Spark SQL para criptografar
com segurança uma sequência de dados (nesse caso, “Spark SQL”) usando uma chave de

Funções de criptografia e descriptografia 227

AWS Clean Rooms Referência SQL

criptografia, um modo de criptografia e um modo de preenchimento especificados. O texto cifrado
resultante é então codificado em Base64 para facilitar o armazenamento ou a transmissão.

SELECT base64(aes_encrypt('Spark SQL', '1234567890abcdef', 'ECB', 'PKCS'));
 3lmwu+Mw0H3fi5NDvcu9lg==

função AES_DECRYPT

A função AES_DECRYPT é usada para descriptografar dados usando o algoritmo Advanced
Encryption Standard (AES).

Sintaxe

aes_decrypt(expr, key[, mode[, padding[, aad]]])

Argumentos

expr

O valor binário a ser decifrado.

chave

A frase secreta a ser usada para descriptografar os dados.

A frase secreta deve corresponder à chave originalmente usada para produzir o valor
criptografado e ter 16, 24 ou 32 bytes.

modo

Especifica qual modo de criptografia de bloco deve ser usado para descriptografar mensagens.

Modos válidos: ECB, GCM, CBC.

acolchoamento

Especifica como preencher mensagens cujo tamanho não seja múltiplo do tamanho do bloco.

Valores válidos: PKCS, NONE, DEFAULT.

O preenchimento DEFAULT significa PKCS para ECB, NONE para GCM e PKCS para CBC.

Funções de criptografia e descriptografia 228

AWS Clean Rooms Referência SQL

anúncio

Dados autenticados adicionais (AAD) opcionais. Compatível apenas com o modo GCM. Isso pode
ser qualquer entrada de formato livre e deve ser fornecido tanto para criptografia quanto para
decodificação.

Tipo de retorno

Retorna um valor descriptografado de expr usando AES no modo com preenchimento.

Exemplos

O exemplo a seguir demonstra como usar a função AES_ENCRYPT do Spark SQL para criptografar
com segurança uma sequência de dados (nesse caso, a palavra “Spark”) usando uma chave de
criptografia especificada. O texto cifrado resultante é então codificado em Base64 para facilitar o
armazenamento ou a transmissão.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
 4A5jOAh9FNGwoMeuJukfllrLdHEZxA2DyuSQAWz77dfn

O exemplo a seguir demonstra como usar a função AES_DECRYPT do Spark SQL para
descriptografar dados que foram previamente criptografados e codificados em Base64. O processo
de decodificação requer a chave e os parâmetros de criptografia corretos (modo de criptografia e
modo de preenchimento) para recuperar com êxito os dados de texto sem formatação originais.

SELECT aes_decrypt(unbase64('3lmwu+Mw0H3fi5NDvcu9lg=='), '1234567890abcdef', 'ECB',
 'PKCS');
 Spark SQL

Funções de hash

Uma função de hash é uma função matemática que converte um valor de entrada numérico em outro
valor.

AWS Clean Rooms O Spark SQL é compatível com as seguintes funções de hash:

Tópicos

• MD5 função

• Função SHA

Funções de hash 229

AWS Clean Rooms Referência SQL

• SHA1 função

• SHA2 função

• HASH64 função xx

MD5 função

Usa a função hash MD5 criptográfica para converter uma string de comprimento variável em uma
string de 32 caracteres que é uma representação em texto do valor hexadecimal de uma soma de
verificação de 128 bits.

Sintaxe

MD5(string)

Argumentos

string

Uma string de comprimento variável.

Tipo de retorno

A MD5 função retorna uma cadeia de caracteres de 32 caracteres que é uma representação em
texto do valor hexadecimal de uma soma de verificação de 128 bits.

Exemplos

O seguinte exemplo mostra o valor de 128 bits para a string "AWS Clean Rooms":

select md5('AWS Clean Rooms');
md5

f7415e33f972c03abd4f3fed36748f7a
(1 row)

Função SHA

Sinônimo de SHA1 função.

Funções de hash 230

AWS Clean Rooms Referência SQL

Consulte SHA1 função.

SHA1 função

A SHA1 função usa a função hash SHA1 criptográfica para converter uma string de comprimento
variável em uma string de 40 caracteres que é uma representação em texto do valor hexadecimal de
uma soma de verificação de 160 bits.

Sintaxe

SHA1 é sinônimo de. Função SHA

SHA1(string)

Argumentos

string

Uma string de comprimento variável.

Tipo de retorno

A SHA1 função retorna uma string de 40 caracteres que é uma representação em texto do valor
hexadecimal de uma soma de verificação de 160 bits.

Exemplo

O seguinte exemplo retorna o valor de 160 bits para a palavra "AWS Clean Rooms":

select sha1('AWS Clean Rooms');

SHA2 função

A SHA2 função usa a função hash SHA2 criptográfica para converter uma cadeia de caracteres de
comprimento variável em uma cadeia de caracteres. A string de caracteres é uma representação de
texto do valor hexadecimal da soma de verificação com o número especificado de bits.

Sintaxe

SHA2(string, bits)

Funções de hash 231

AWS Clean Rooms Referência SQL

Argumentos

string

Uma string de comprimento variável.

inteiro

O número de bits nas funções de hash. Os valores válidos são 0 (igual a 256), 224, 256, 384 e
512.

Tipo de retorno

A SHA2 função retorna uma cadeia de caracteres que é uma representação em texto do valor
hexadecimal da soma de verificação ou uma cadeia vazia se o número de bits for inválido.

Exemplo

O exemplo a seguir retorna o valor de 256 bits para a palavra “AWS Clean Rooms”:

select sha2('AWS Clean Rooms', 256);

HASH64 função xx

A função xxhash64 retorna um valor de hash de 64 bits dos argumentos.

A função xxhash64 () é uma função hash não criptográfica projetada para ser rápida e eficiente. É
frequentemente usado em aplicativos de processamento e armazenamento de dados, em que é
necessário um identificador exclusivo para uma parte dos dados, mas o conteúdo exato dos dados
não precisa ser mantido em segredo.

No contexto de uma consulta SQL, a função xxhash64 () pode ser usada para várias finalidades,
como:

• Gerando um identificador exclusivo para uma linha em uma tabela

• Particionamento de dados com base em um valor de hash

• Implementando estratégias personalizadas de indexação ou distribuição de dados

O caso de uso específico dependeria dos requisitos do aplicativo e dos dados que estão sendo
processados.

Funções de hash 232

AWS Clean Rooms Referência SQL

Sintaxe

xxhash64(expr1, expr2, ...)

Argumentos

expr 1

Uma expressão de qualquer tipo.

expr 2

Uma expressão de qualquer tipo.

Retornos

Retorna um valor de hash de 64 bits dos argumentos (BIGINT). A semente de haxixe é 42.

Exemplo

O exemplo a seguir gera um valor de hash de 64 bits (5602566077635097486) com base na entrada
fornecida. O primeiro argumento é um valor de string, nesse caso, a palavra “Spark”. O segundo
argumento é uma matriz contendo o valor inteiro único 123. O terceiro argumento é um valor inteiro
que representa a semente da função hash.

SELECT xxhash64('Spark', array(123), 2);
 5602566077635097486

Funções do Hyperloglog

As funções HyperLogLog (HLL) no SQL fornecem uma maneira de estimar com eficiência o número
de elementos exclusivos (cardinalidade) em um grande conjunto de dados, mesmo quando o
conjunto real de elementos exclusivos não está armazenado.

Os principais benefícios do uso das funções HLL são:

• Eficiência de memória: os esboços HLL exigem muito menos memória do que armazenar o
conjunto completo de elementos exclusivos, tornando-os adequados para grandes conjuntos de
dados.

• Computação distribuída: os esboços do HLL podem ser combinados em várias fontes de dados ou
nós de processamento, permitindo uma estimativa de contagem exclusiva distribuída e eficiente.

Funções do Hyperloglog 233

AWS Clean Rooms Referência SQL

• Resultados aproximados: o HLL fornece uma estimativa de contagem única aproximada, com uma
compensação ajustável entre precisão e uso de memória (por meio do parâmetro de precisão).

Essas funções são particularmente úteis em cenários em que você precisa estimar o número de itens
exclusivos, como em aplicativos de análise, armazenamento de dados e processamento de fluxo em
tempo real.

AWS Clean Rooms suporta as seguintes funções de HLL.

Tópicos

• função HLL_SKETCH_AGG

• função HLL_SKETCH_ESTIMATE

• função HLL_UNION

• função HLL_UNION_AGG

função HLL_SKETCH_AGG

A função agregada HLL_SKETCH_AGG cria um esboço HLL a partir dos valores na coluna
especificada. Ele retorna um tipo de dados HLLSKETCH que encapsula os valores da expressão de
entrada.

A função agregada HLL_SKETCH_AGG funciona com qualquer tipo de dados e ignora valores NULL.

Quando não há linhas em uma tabela ou todas as linhas são NULL, o esboço resultante não
tem pares de valor de índice, como {"version":1,"logm":15,"sparse":{"indices":
[],"values":[]}}.

Sintaxe

HLL_SKETCH_AGG (aggregate_expression[, lgConfigK])

Argumento

aggregate_expression

Qualquer expressão do tipo INT, BIGINT, STRING ou BINARY em relação à qual ocorrerá uma
contagem exclusiva. Todos NULL os valores são ignorados.

Funções do Hyperloglog 234

AWS Clean Rooms Referência SQL

LG ConfigK

Uma constante INT opcional entre 4 e 21, inclusive com o padrão 12. A base logarítmica 2 de K,
onde K é o número de compartimentos ou slots para o esboço.

Tipo de retorno

A função HLL_SKETCH_AGG retorna um buffer BINÁRIO não NULL contendo o HyperLogLog
esboço calculado devido ao consumo e agregação de todos os valores de entrada no grupo de
agregação.

Exemplos

Os exemplos a seguir usam o algoritmo HyperLogLog (HLL) para estimar a contagem distinta de
valores na col coluna. A hll_sketch_agg(col, 12) função agrega os valores na coluna col,
criando um esboço HLL usando uma precisão de 12. A hll_sketch_estimate() função é então
usada para estimar a contagem distinta de valores com base no esboço HLL gerado. O resultado
final da consulta é 3, que representa a contagem distinta estimada de valores na col coluna. Nesse
caso, os valores distintos são 1, 2 e 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
 FROM VALUES (1), (1), (2), (2), (3) tab(col);
 3

O exemplo a seguir também usa o algoritmo HLL para estimar a contagem distinta de valores na
col coluna, mas não especifica um valor de precisão para o esboço do HLL. Nesse caso, ele usa
a precisão padrão de 14. A hll_sketch_agg(col) função pega os valores na col coluna e cria
um esboço HyperLogLog (HLL), que é uma estrutura de dados compacta que pode ser usada para
estimar a contagem distinta de elementos. A hll_sketch_estimate(hll_sketch_agg(col))
função pega o esboço HLL criado na etapa anterior e calcula uma estimativa da contagem distinta
de valores na coluna. col O resultado final da consulta é 3, que representa a contagem distinta
estimada de valores na col coluna. Nesse caso, os valores distintos são 1, 2 e 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Funções do Hyperloglog 235

AWS Clean Rooms Referência SQL

função HLL_SKETCH_ESTIMATE

A função HLL_SKETCH_ESTIMATE usa um esboço HLL e estima o número de elementos exclusivos
representados pelo esboço. Ele usa o algoritmo HyperLogLog (HLL) para contar uma aproximação
probabilística do número de valores exclusivos em uma determinada coluna, consumindo uma
representação binária conhecida como buffer de esboço gerada anteriormente pela função
HLL_SKETCH_AGG e retornando o resultado como um número inteiro grande.

O algoritmo de esboço HLL fornece uma maneira eficiente de estimar o número de elementos
exclusivos, mesmo para grandes conjuntos de dados, sem precisar armazenar o conjunto completo
de valores exclusivos.

As hll_union_agg funções hll_union e também podem combinar esboços consumindo e
mesclando esses buffers como entradas.

Sintaxe

HLL_SKETCH_ESTIMATE (hllsketch_expression)

Argumento

hllsketch_expression

Uma BINARY expressão contendo um esboço gerado por HLL_SKETCH_AGG

Tipo de retorno

A função HLL_SKETCH_ESTIMATE retorna um valor BIGINT que é a contagem distinta aproximada
representada pelo esboço de entrada.

Exemplos

Os exemplos a seguir usam o algoritmo de esboço HyperLogLog (HLL) para estimar a cardinalidade
(contagem exclusiva) dos valores na coluna. col A hll_sketch_agg(col, 12) função
pega a col coluna e cria um esboço HLL usando uma precisão de 12 bits. O esboço do HLL é
uma estrutura de dados aproximada que pode estimar com eficiência o número de elementos
exclusivos em um conjunto. A hll_sketch_estimate() função pega o esboço HLL criado por
hll_sketch_agg e estima a cardinalidade (contagem única) dos valores representados pelo
esboço. O FROM VALUES (1), (1), (2), (2), (3) tab(col); gera um conjunto de dados

Funções do Hyperloglog 236

AWS Clean Rooms Referência SQL

de teste com 5 linhas, em que a col coluna contém os valores 1, 1, 2, 2 e 3. O resultado dessa
consulta é a contagem exclusiva estimada dos valores na col coluna, que é 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
 FROM VALUES (1), (1), (2), (2), (3) tab(col);
 3

A diferença entre o exemplo a seguir e o anterior é que o parâmetro de precisão (12 bits) não está
especificado na chamada da hll_sketch_agg função. Nesse caso, a precisão padrão de 14 bits é
usada, o que pode fornecer uma estimativa mais precisa para a contagem exclusiva em comparação
com o exemplo anterior que usou 12 bits de precisão.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

função HLL_UNION

A função HLL_UNION combina dois esboços HLL em um único esboço unificado. Ele usa o algoritmo
HyperLogLog (HLL) para combinar dois esboços em um único esboço. As consultas podem usar os
buffers resultantes para calcular contagens exclusivas aproximadas como números inteiros longos
com a função. hll_sketch_estimate

Sintaxe

HLL_UNION ((expr1, expr2 [, allowDifferentLgConfigK]))

Argumento

Exprn

Uma BINARY expressão contendo um esboço gerado por HLL_SKETCH_AGG.

allowDifferentLgConfigK

Uma expressão BOOLEAN opcional que controla se é permitido mesclar dois esboços com
valores LGConfigK diferentes. O valor padrão é false.

Funções do Hyperloglog 237

AWS Clean Rooms Referência SQL

Tipo de retorno

A função HLL_UNION retorna um buffer BINARY contendo o HyperLogLog esboço calculado como
resultado da combinação das expressões de entrada. Quando o allowDifferentLgConfigK
parâmetro étrue, o esboço resultante usa o menor dos dois lgConfigK valores fornecidos.

Exemplos

Os exemplos a seguir usam o algoritmo de esboço HyperLogLog (HLL) para estimar a contagem
exclusiva de valores em duas colunas col1 e em um col2 conjunto de dados.

A hll_sketch_agg(col1) função cria um esboço HLL para os valores exclusivos na col1 coluna.

A hll_sketch_agg(col2) função cria um esboço HLL para os valores exclusivos na coluna col2.

A hll_union(...) função combina os dois esboços de HLL criados nas etapas 1 e 2 em um único
esboço de HLL unificado.

A hll_sketch_estimate(...) função pega o esboço combinado do HLL e estima a contagem
exclusiva de valores em ambos e. col1 col2

A FROM VALUES cláusula gera um conjunto de dados de teste com 5 linhas, onde col1 contém os
valores 1, 1, 2, 2 e 3 e col2 contém os valores 4, 4, 5, 5 e 6.

O resultado dessa consulta é a contagem exclusiva estimada de valores em ambos col1 ecol2,
que é 6. O algoritmo de esboço HLL fornece uma maneira eficiente de estimar o número de
elementos exclusivos, mesmo para grandes conjuntos de dados, sem precisar armazenar o conjunto
completo de valores exclusivos. Neste exemplo, a hll_union função é usada para combinar os
esboços do HLL das duas colunas, o que permite que a contagem exclusiva seja estimada em todo o
conjunto de dados, em vez de apenas para cada coluna individualmente.

SELECT hll_sketch_estimate(
 hll_union(
 hll_sketch_agg(col1),
 hll_sketch_agg(col2)))
 FROM VALUES
 (1, 4),
 (1, 4),
 (2, 5),
 (2, 5),
 (3, 6) AS tab(col1, col2);

Funções do Hyperloglog 238

AWS Clean Rooms Referência SQL

 6

A diferença entre o exemplo a seguir e o anterior é que o parâmetro de precisão (12 bits) não está
especificado na chamada da hll_sketch_agg função. Nesse caso, a precisão padrão de 14 bits é
usada, o que pode fornecer uma estimativa mais precisa para a contagem exclusiva em comparação
com o exemplo anterior que usou 12 bits de precisão.

SELECT hll_sketch_estimate(
 hll_union(
 hll_sketch_agg(col1, 14),
 hll_sketch_agg(col2, 14)))
 FROM VALUES
 (1, 4),
 (1, 4),
 (2, 5),
 (2, 5),
 (3, 6) AS tab(col1, col2);

função HLL_UNION_AGG

A função HLL_UNION_AGG combina vários esboços HLL em um único esboço unificado. Ele usa
o algoritmo HyperLogLog (HLL) para combinar um grupo de esboços em um único. As consultas
podem usar os buffers resultantes para calcular contagens exclusivas aproximadas com a função.
hll_sketch_estimate

Sintaxe

HLL_UNION_AGG (expr [, allowDifferentLgConfigK])

Argumento

expr

Uma BINARY expressão contendo um esboço gerado por HLL_SKETCH_AGG.

allowDifferentLgConfigK

Uma expressão BOOLEAN opcional que controla se é permitido mesclar dois esboços com
valores LGConfigK diferentes. O valor padrão é false.

Funções do Hyperloglog 239

AWS Clean Rooms Referência SQL

Tipo de retorno

A função HLL_UNION_AGG retorna um buffer BINARY contendo o HyperLogLog esboço
calculado como resultado da combinação das expressões de entrada do mesmo grupo. Quando
o allowDifferentLgConfigK parâmetro étrue, o esboço resultante usa o menor dos dois
lgConfigK valores fornecidos.

Exemplos

Os exemplos a seguir usam o algoritmo de esboço HyperLogLog (HLL) para estimar a contagem
exclusiva de valores em vários esboços de HLL.

O primeiro exemplo estima a contagem exclusiva de valores em um conjunto de dados.

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
 FROM (SELECT hll_sketch_agg(col) as sketch
 FROM VALUES (1) AS tab(col)
 UNION ALL
 SELECT hll_sketch_agg(col, 20) as sketch
 FROM VALUES (1) AS tab(col));
 1

A consulta interna cria dois esboços de HLL:

• A primeira instrução SELECT cria um esboço a partir de um único valor de 1.

• A segunda instrução SELECT cria um esboço a partir de outro valor único de 1, mas com uma
precisão de 20.

A consulta externa usa a função HLL_UNION_AGG para combinar os dois esboços em um único
esboço. Em seguida, ele aplica a função HLL_SKETCH_ESTIMATE a esse esboço combinado para
estimar a contagem exclusiva de valores.

O resultado dessa consulta é a contagem exclusiva estimada dos valores na col coluna, que é1.
Isso significa que os dois valores de entrada de 1 são considerados exclusivos, mesmo que tenham
o mesmo valor.

O segundo exemplo inclui um parâmetro de precisão diferente para a função HLL_UNION_AGG.
Nesse caso, os dois esboços do HLL são criados com uma precisão de 14 bits, o que permite que
sejam combinados com sucesso usando o hll_union_agg true parâmetro.

Funções do Hyperloglog 240

AWS Clean Rooms Referência SQL

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
 FROM (SELECT hll_sketch_agg(col, 14) as sketch
 FROM VALUES (1) AS tab(col)
 UNION ALL
 SELECT hll_sketch_agg(col, 14) as sketch
 FROM VALUES (1) AS tab(col));
 1

O resultado final da consulta é a contagem exclusiva estimada, que nesse caso também é1. Isso
significa que os dois valores de entrada de 1 são considerados exclusivos, mesmo que tenham o
mesmo valor.

Funções JSON

Quando você precisa armazenar um conjunto relativamente pequeno de pares de valores de
chave, você pode economizar espaço armazenando os dados em formato JSON. Como strings
JSON podem ser armazenados em uma única coluna, o uso de JSON pode ser mais eficiente que
armazenar seus dados em formato tabular.

Example

Por exemplo, suponha que você tenha uma tabela esparsa, onde você precisa ter muitas colunas
para representar totalmente todos os atributos possíveis. No entanto, a maioria dos valores da
coluna é NULL para qualquer linha ou coluna. Ao usar JSON para armazenamento, você poderá
armazenar os dados de uma linha em pares de valores-chave em uma única string JSON e eliminar
as colunas da tabela pouco preenchidas.

Além disso, você pode facilmente modificar strings JSON para armazenar pares de valor:chave sem
a necessidade de adicionar colunas à uma tabela.

Recomendamos usar JSON frugalmente. JSON não é uma boa opção para armazenar conjuntos
de dados maiores porque, ao armazenar dados díspares em uma única coluna, o JSON não usa a
arquitetura de armazenamento de colunas do AWS Clean Rooms .

JSON usa strings de texto codificadas por UTF-8, portanto strings JSON podem ser armazenadas
como tipos de dados CHAR ou VARCHAR. Use VARCHAR se as strings incluírem caracteres
multibyte.

As strings JSON devem ser adequadamente formatadas como JSON de acordo com as seguintes
regras:

Funções JSON 241

AWS Clean Rooms Referência SQL

• O nível JSON raiz pode ser um objeto JSON ou uma matriz JSON. Um objeto JSON é um conjunto
desordenado de pares de valor:chave separados por vírgula cercado por chaves.

Por exemplo, {"one":1, "two":2} .

• Uma matriz JSON é um conjunto ordenado de valores separados por vírgula cercado por
parênteses.

Um exemplo é o seguinte: ["first", {"one":1}, "second", 3, null]

• Matrizes JSON usam um índice baseado em zero; o primeiro elemento em uma matriz fica na
posição 0. Em um par de valores-chave JSON, a chave é uma string entre aspas duplas.

• Um valor JSON pode ser qualquer um dos seguintes:

• Objeto JSON

• matriz JSON

• String entre aspas duplas

• Número (inteiro e flutuante)

• Booleano

• Null

• Objetos vazios e matrizes vazias são valores JSON válidos.

• Os campos JSON diferenciam maiúsculas e minúsculas.

• O espaço em branco entre elementos estruturais JSON (tal como { }, []) é ignorado.

Tópicos

• função GET_JSON_OBJECT

• função TO_JSON

função GET_JSON_OBJECT

A função GET_JSON_OBJECT extrai um objeto json de. path

Sintaxe

get_json_object(json_txt, path)

Funções JSON 242

AWS Clean Rooms Referência SQL

Argumentos

json_txt

Uma expressão STRING contendo JSON bem formado.

path

Um literal STRING com uma expressão de caminho JSON bem formada.

Retornos

Retorna uma STRING.

Um NULL é retornado se o objeto não puder ser encontrado.

Exemplo

O exemplo a seguir extrai um valor de um objeto JSON. O primeiro argumento é uma string JSON
que representa um objeto simples com um único par de valores-chave. O segundo argumento é uma
expressão de caminho JSON. O $ símbolo representa a raiz do objeto JSON e a .a parte especifica
que queremos extrair o valor associado à chave a "”. A saída da função é 'b', que é o valor associado
à chave "a" no objeto JSON de entrada.

SELECT get_json_object('{"a":"b"}', '$.a');
 b

função TO_JSON

A função TO_JSON converte uma expressão de entrada em uma representação de string JSON. A
função manipula a conversão de diferentes tipos de dados (como números, cadeias de caracteres e
booleanos) em suas representações JSON correspondentes.

A função TO_JSON é útil quando você precisa converter dados estruturados (como linhas de banco
de dados ou objetos JSON) em um formato mais portátil e autodescritivo, como JSON. Isso pode
ser particularmente útil quando você precisa interagir com outros sistemas ou serviços que esperam
dados formatados em JSON.

Sintaxe

to_json(expr[, options])

Funções JSON 243

AWS Clean Rooms Referência SQL

Argumentos

expr

A expressão de entrada que você deseja converter em uma string JSON. Pode ser um valor, uma
coluna ou qualquer outra expressão SQL válida.

options

Um conjunto opcional de opções de configuração que pode ser usado para personalizar o
processo de conversão de JSON. Essas opções podem incluir coisas como o tratamento de
valores nulos, a representação de valores numéricos e o tratamento de caracteres especiais.

Retornos

Retorna uma string JSON com um determinado valor de estrutura

Exemplos

O exemplo a seguir converte uma estrutura nomeada (um tipo de dados estruturados) em uma string
JSON. O primeiro argumento (named_struct('a', 1, 'b', 2) () é a expressão de entrada
que é passada para a to_json() função. Ele cria uma estrutura nomeada com dois campos: “a”
com um valor de 1 e “b” com um valor de 2. A função to_json () usa a estrutura nomeada como
argumento e a converte em uma representação de string JSON. A saída é{"a":1,"b":2}, que é
uma string JSON válida que representa a estrutura nomeada.

SELECT to_json(named_struct('a', 1, 'b', 2));
 {"a":1,"b":2}

O exemplo a seguir converte uma estrutura nomeada que contém um valor de timestamp
em uma string JSON, com um formato de timestamp personalizado. O primeiro argumento
(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd'))) cria uma
estrutura nomeada com um único campo 'time' que contém o valor do timestamp. O segundo
argumento (map('timestampFormat', 'dd/MM/yyyy')) cria um mapa (dicionário de valores-
chave) com um único par de valores-chave, em que a chave é 'timestampFormat' e o valor é
''. dd/MM/yyyy'. This map is used to specify the desired format for the timestamp value when
converting it to JSON. The to_json() function converts the named struct into a JSON string. The
second argument, the map, is used to customize the timestamp format to 'dd/MM/yyyy A saída
é{"time":"26/08/2015"}, que é uma string JSON com um único campo 'time' que contém o
valor do timestamp no formato '' desejado. dd/MM/yyyy

Funções JSON 244

AWS Clean Rooms Referência SQL

SELECT to_json(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd')),
 map('timestampFormat', 'dd/MM/yyyy'));
 {"time":"26/08/2015"}

Funções matemáticas

Esta seção descreve os operadores e funções matemáticas compatíveis com o AWS Clean Rooms
Spark SQL.

Tópicos

• Símbolos de operadores matemáticos

• Função ABS

• Função ACOS

• Função ASIN

• Função ATAN

• ATAN2 função

• Função CBRT

• Função CEILING (ou CEIL)

• Função COS

• Função COT

• Função DEGREES

• Função DIV

• Função EXP

• Função FLOOR

• Função LN

• Função LOG

• Função MOD

• Função PI

• Função POWER

• Função RADIANS

• Função RAND

• Função RANDOM

Funções matemáticas 245

AWS Clean Rooms Referência SQL

• Função ROUND

• Função SIGN

• Função SIN

• Função SQRT

• Função TRUNC

Símbolos de operadores matemáticos

A tabela a seguir lista os operadores matemáticos compatíveis.

Operadores compatíveis

Operador Descrição Exemplo Resultado

+ adição 2 + 3 5

- subtração 2 - 3 -1

* multiplic
ação

2 x 3 6

/ divisão 4 / 2 2

% módulo 5 % 4 1

^ exponenci
ação

2,0 ^ 3,0 8

Exemplos

Calcule a comissão paga mais uma taxa de manuseio de US$ 2,00 para uma determinada
transação:

select commission, (commission + 2.00) as comm
from sales where salesid=10000;

commission | comm
-----------+-------

Funções matemáticas 246

AWS Clean Rooms Referência SQL

28.05 | 30.05
(1 row)

Calcule 20 por cento do preço de venda para determinada transação:

select pricepaid, (pricepaid * .20) as twentypct
from sales where salesid=10000;

pricepaid | twentypct
----------+-----------
187.00 | 37.400
(1 row)

Faça a previsão das vendas de ingressos com base em um padrão de crescimento contínuo.
Neste exemplo, a subconsulta retorna o número de ingressos vendidos em 2008. Esse resultado é
multiplicado exponencialmente por uma taxa de crescimento contínuo de 5% ao longo de 10 anos.

select (select sum(qtysold) from sales, date
where sales.dateid=date.dateid and year=2008)
^ ((5::float/100)*10) as qty10years;

qty10years

587.664019657491
(1 row)

Encontre o preço total pago e a comissão pelas vendas com ID de data maior ou igual a 2.000.
Então, subtraia a comissão total do preço total pago.

select sum (pricepaid) as sum_price, dateid,
sum (commission) as sum_comm, (sum (pricepaid) - sum (commission)) as value
from sales where dateid >= 2000
group by dateid order by dateid limit 10;

 sum_price | dateid | sum_comm | value
-----------+--------+----------+-----------
 364445.00 | 2044 | 54666.75 | 309778.25
 349344.00 | 2112 | 52401.60 | 296942.40
 343756.00 | 2124 | 51563.40 | 292192.60
 378595.00 | 2116 | 56789.25 | 321805.75
 328725.00 | 2080 | 49308.75 | 279416.25
 349554.00 | 2028 | 52433.10 | 297120.90

Funções matemáticas 247

AWS Clean Rooms Referência SQL

 249207.00 | 2164 | 37381.05 | 211825.95
 285202.00 | 2064 | 42780.30 | 242421.70
 320945.00 | 2012 | 48141.75 | 272803.25
 321096.00 | 2016 | 48164.40 | 272931.60
(10 rows)

Função ABS

ABS calcula o valor absoluto de um número, que pode ser um literal ou uma expressão que avalie
para um número.

Sintaxe

ABS (number)

Arguments (Argumentos)

número

Número ou expressão que avalia para um número. Pode ser do tipo SMALLINT, INTEGER,
BIGINT, DECIMAL ou. FLOAT4 FLOAT8

Tipo de retorno

ABS retorna o mesmo tipo de dados que seu argumento.

Exemplos

Calcule o valor absoluto de -38:

select abs (-38);
abs

38
(1 row)

Calcule o valor absoluto de (14-76):

select abs (14-76);
abs

62

Funções matemáticas 248

AWS Clean Rooms Referência SQL

(1 row)

Função ACOS

ACOS é uma função trigonométrica que retorna o arco cosseno de um número. O valor de retorno é
em radianos, entre 0 e PI.

Sintaxe

ACOS(number)

Arguments (Argumentos)

número

O parâmetro de entrada é um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Exemplos

Para retornar o arco cosseno de -1, use o exemplo a seguir.

SELECT ACOS(-1);

+-------------------+
| acos |
+-------------------+
| 3.141592653589793 |
+-------------------+

Função ASIN

ASIN é uma função trigonométrica que retorna o arco seno de um número. O valor de retorno é em
radianos, entre PI/2 e -PI/2.

Sintaxe

ASIN(number)

Funções matemáticas 249

AWS Clean Rooms Referência SQL

Arguments (Argumentos)

número

O parâmetro de entrada é um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Exemplos

Para retornar o arco seno de 1, use o exemplo a seguir.

SELECT ASIN(1) AS halfpi;

+--------------------+
| halfpi |
+--------------------+
| 1.5707963267948966 |
+--------------------+

Função ATAN

ATAN é uma função trigonométrica que retorna a arco tangente de um número. O valor de retorno é
em radianos, entre -PI e PI.

Sintaxe

ATAN(number)

Arguments (Argumentos)

número

O parâmetro de entrada é um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Funções matemáticas 250

AWS Clean Rooms Referência SQL

Exemplos

Para retornar a arco tangente de 1 e a multiplica por 4, use o exemplo a seguir.

SELECT ATAN(1) * 4 AS pi;

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

ATAN2 função

ATAN2 é uma função trigonométrica que retorna o arco tangente de um número dividido por outro
número. O valor de retorno é em radianos, entre PI/2 e -PI/2.

Sintaxe

ATAN2(number1, number2)

Arguments (Argumentos)

number1

Um número DOUBLE PRECISION.

number2

Um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Exemplos

Para retornar a arco tangente de 2/2 e a multiplica por 4, use o exemplo a seguir.

SELECT ATAN2(2,2) * 4 AS PI;

Funções matemáticas 251

AWS Clean Rooms Referência SQL

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Função CBRT

A função CBRT é uma função matemática que calcula a raiz cúbica de um número.

Sintaxe

CBRT (number)

Argumento

CBRT assume um número de DOUBLE PRECISION como um argumento.

Tipo de retorno

CBRT retorna um número de DOUBLE PRECISION.

Exemplos

Calcule a raiz cúbica da comissão paga para determinada transação:

select cbrt(commission) from sales where salesid=10000;

cbrt

3.03839539048843
(1 row)

Função CEILING (ou CEIL)

A função CEILING ou CEIL é usada para arredondar um número para o número inteiro seguinte. (A
função Função FLOOR arredonda um número para o número inteiro anterior.)

Sintaxe

CEIL | CEILING(number)

Funções matemáticas 252

AWS Clean Rooms Referência SQL

Arguments (Argumentos)

número

O número ou expressão avaliada como um número. Pode ser do tipo SMALLINT, INTEGER,
BIGINT, DECIMAL ou. FLOAT4 FLOAT8

Tipo de retorno

CEILING e CEIL retornam o mesmo tipo de dados que seu argumento.

Exemplo

Calcule o teto da comissão paga para determinada transação de vendas:

select ceiling(commission) from sales
where salesid=10000;

ceiling

29
(1 row)

Função COS

COS é uma função trigonométrica que retorna o cosseno de um número. O valor de retorno é em
radianos, entre -1 e 1, incluindo ambos.

Sintaxe

COS(double_precision)

Argumento

número

O parâmetro de entrada é um número de precisão dupla.

Tipo de retorno

A função COS retorna um número de precisão dupla.

Funções matemáticas 253

AWS Clean Rooms Referência SQL

Exemplos

O seguinte exemplo retorna o cosseno de 0:

select cos(0);
cos

1
(1 row)

O seguinte exemplo retorna o cosseno de PI:

select cos(pi());
cos

-1
(1 row)

Função COT

COT é uma função trigonométrica que retorna a cotangente de um número. O parâmetro de entrada
deve ser diferente de zero.

Sintaxe

COT(number)

Argumento

número

O parâmetro de entrada é um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Exemplos

Para retornar a cotangente de 1, use o exemplo a seguir.

SELECT COT(1);

Funções matemáticas 254

AWS Clean Rooms Referência SQL

+--------------------+
| cot |
+--------------------+
| 0.6420926159343306 |
+--------------------+

Função DEGREES

Converte um ângulo em radianos para seu equivalente em graus.

Sintaxe

DEGREES(number)

Argumento

número

O parâmetro de entrada é um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Exemplo

Para retornar o grau equivalente de 0,5 radiano, use o exemplo a seguir.

SELECT DEGREES(.5);

+-------------------+
| degrees |
+-------------------+
| 28.64788975654116 |
+-------------------+

Para converter PI radianos em graus, use o exemplo a seguir.

SELECT DEGREES(pi());

+---------+

Funções matemáticas 255

AWS Clean Rooms Referência SQL

| degrees |
+---------+
| 180 |
+---------+

Função DIV

O operador DIV retorna a parte integral da divisão do dividendo por divisor.

Sintaxe

dividend div divisor

Arguments (Argumentos)

dividendo

Uma expressão que é avaliada como numérica ou intervalo.

divisor

Um tipo de intervalo correspondente se dividend for um intervalo, caso contrário, um numérico.

Tipo de retorno

BIGINT

Exemplos

O exemplo a seguir seleciona duas colunas da tabela de esquilos: a id coluna, que contém o
identificador exclusivo para cada esquilo, e uma calculated coluna,age div 2, que representa a
divisão inteira da coluna de idade por 2. O age div 2 cálculo realiza a divisão de números inteiros
na age coluna, arredondando efetivamente a idade para o número inteiro par mais próximo. Por
exemplo, se a age coluna contiver valores como 3, 5, 7 e 10, a age div 2 coluna conterá os
valores 1, 2, 3 e 5, respectivamente.

SELECT id, age div 2 FROM squirrels

Essa consulta pode ser útil em cenários em que você precisa agrupar ou analisar dados com base
em faixas etárias e deseja simplificar os valores de idade arredondando-os para o número inteiro par
mais próximo. O resultado resultante forneceria a idade id e a divisão por 2 para cada esquilo na
squirrels tabela.

Funções matemáticas 256

AWS Clean Rooms Referência SQL

Função EXP

A função EXP implementa a função exponencial de uma expressão numérica, ou a base de um
logaritmo natural, e, elevada à potência da expressão. A função EXP é o inverso de Função LN.

Sintaxe

EXP (expression)

Argumento

expressão

A expressão deve ser um tipo de dados INTEGER, DECIMAL ou DOUBLE PRECISION.

Tipo de retorno

EXP retorna um número de DOUBLE PRECISION.

Exemplo

Use a função EXP para prever as vendas de ingressos com base em um padrão de crescimento
contínuo. Neste exemplo, a subconsulta retorna o número de ingressos vendidos em 2008. Esse
resultado é multiplicado pelo resultado da função EXP, que especifica uma taxa de crescimento
contínuo de 7% por 10 anos.

select (select sum(qtysold) from sales, date
where sales.dateid=date.dateid
and year=2008) * exp((7::float/100)*10) qty2018;

qty2018

695447.483772222
(1 row)

Função FLOOR

A função FLOOR arredonda um número para o número inteiro anterior.

Funções matemáticas 257

AWS Clean Rooms Referência SQL

Sintaxe

FLOOR (number)

Argumento

número

O número ou expressão avaliada como um número. Pode ser do tipo SMALLINT, INTEGER,
BIGINT, DECIMAL ou. FLOAT4 FLOAT8

Tipo de retorno

FLOOR retorna o mesmo tipo de dados que seu argumento.

Exemplo

O exemplo mostra o valor da comissão paga por determinada transação de vendas antes e depois
de usar a função FLOOR.

select commission from sales
where salesid=10000;

floor

28.05
(1 row)

select floor(commission) from sales
where salesid=10000;

floor

28
(1 row)

Função LN

A função LN retorna o logaritmo natural do parâmetro de entrada.

Funções matemáticas 258

AWS Clean Rooms Referência SQL

Sintaxe

LN(expression)

Argumento

expressão

A coluna ou expressão de destino na qual a função opera.

Note

Essa função retornará um erro para alguns tipos de dados se a expressão fizer referência
a uma tabela AWS Clean Rooms criada pelo usuário ou a uma tabela do AWS Clean
Rooms sistema STL ou STV.

As expressões com os seguintes tipos de dados produzem um erro se fizerem referência a uma
tabela criada por usuário ou uma tabela de sistema.

• BOOLEAN

• CHAR

• DATE

• DECIMAL ou NUMERIC

• TIMESTAMP

• VARCHAR

Expressões com os seguintes tipos de dados executam com êxito em tabelas criadas por usuário
ou tabelas de sistema STL ou STV:

• BIGINT

• DOUBLE PRECISION

• INTEGER

• REAL

• SMALLINT

Tipo de retorno

A função LN retorna o mesmo tipo que a expressão.

Funções matemáticas 259

AWS Clean Rooms Referência SQL

Exemplo

O seguinte exemplo retorna o logaritmo natural, ou logaritmo de base e, do número 2,718281828:

select ln(2.718281828);
ln

0.9999999998311267
(1 row)

Observe que a resposta é quase igual a 1.

Este exemplo retorna o logaritmo natural dos valores na coluna USERID da tabela USERS:

select username, ln(userid) from users order by userid limit 10;

 username | ln
----------+-------------------
 JSG99FHE | 0
 PGL08LJI | 0.693147180559945
 IFT66TXU | 1.09861228866811
 XDZ38RDD | 1.38629436111989
 AEB55QTM | 1.6094379124341
 NDQ15VBM | 1.79175946922805
 OWY35QYB | 1.94591014905531
 AZG78YIP | 2.07944154167984
 MSD36KVR | 2.19722457733622
 WKW41AIW | 2.30258509299405
(10 rows)

Função LOG

Retorna o logaritmo de expr com. base

Sintaxe

LOG(base, expr)

Argumento

expr

A expressão deve ter um tipo de dados de número inteiro, decimal ou ponto flutuante.

Funções matemáticas 260

AWS Clean Rooms Referência SQL

base

A base para o cálculo do logaritmo. Deve ser um número positivo (não igual a 1) do tipo de dados
de precisão dupla.

Tipo de retorno

A função LOG retorna um número de precisão dupla.

Exemplo

O seguinte exemplo retorna o logaritmo de base 10 do número 100:

select log(10, 100);

2
(1 row)

Função MOD

Retorna o resto de dois números, também chamado de operação modulo. Para calcular o resultado,
o primeiro parâmetro é dividido pelo segundo.

Sintaxe

MOD(number1, number2)

Arguments (Argumentos)

number1

O primeiro parâmetro de entrada é um número INTEGER, SMALLINT, BIGINT ou DECIMAL.
Se um dos parâmetros for um tipo DECIMAL, os outros parâmetro também devem ser um tipo
DECIMAL. Se um dos parâmetros for um INTEGER, os outros parâmetro podem ser INTEGER,
SMALLINT ou BIGINT. Ambos os parâmetros também podem ser SMALLINT ou BIGINT, mas um
parâmetro não pode ser SMALLINT se o outro for BIGINT.

number2

O segundo parâmetro é um número INTEGER, SMALLINT, BIGINT ou DECIMAL. As mesmas
regras de tipo de dados são válidas para number2 e number1.

Funções matemáticas 261

AWS Clean Rooms Referência SQL

Tipo de retorno

Os tipos de retorno válidos são DECIMAL, INT, SMALLINT e BIGINT. O tipo de retorno da função
MOD é o mesmo tipo numérico que os parâmetros de entrada se ambos os parâmetros de entrada
forem do mesmo tipo. Se um dos parâmetro de entrada for INTEGER, porém, o tipo de retorno
também será INTEGER.

Observações de uso

Você pode usar % como um operador de modulo.

Exemplos

O exemplo a seguir retorna o resto da divisão de um número por outro:

SELECT MOD(10, 4);

 mod

 2

O exemplo a seguir retorna um resultado decimal:

SELECT MOD(10.5, 4);

 mod

 2.5

Você pode converter valores de parâmetros:

SELECT MOD(CAST(16.4 as integer), 5);

 mod

 1

Verifique se o primeiro parâmetro é par dividindo-o por 2:

SELECT mod(5,2) = 0 as is_even;

 is_even

Funções matemáticas 262

AWS Clean Rooms Referência SQL

 false

Você pode usar % como um operador de modulo:

SELECT 11 % 4 as remainder;

 remainder

 3

O seguinte exemplo retorna informações para as categorias com números ímpares da tabela
CATEGORY:

select catid, catname
from category
where mod(catid,2)=1
order by 1,2;

 catid | catname
-------+-----------
 1 | MLB
 3 | NFL
 5 | MLS
 7 | Plays
 9 | Pop
 11 | Classical

(6 rows)

Função PI

A função PI retorna o valor de pi para 14 casas decimais.

Sintaxe

PI()

Tipo de retorno

DOUBLE PRECISION

Funções matemáticas 263

AWS Clean Rooms Referência SQL

Exemplos

Para retornar o valor de pi, use o exemplo a seguir.

SELECT PI();

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Função POWER

A função POWER é uma função exponencial que eleva uma expressão numérica para a potência
de uma segunda expressão numérica. Por exemplo, 2 elevado à terceira potência é calculado como
POWER(2,3), com um resultado de 8.

Sintaxe

{POWER(expression1, expression2)

Arguments (Argumentos)

expression1

Expressão numérica a ser elevada. Deve ser um tipo de dados INTEGER, DECIMAL ou FLOAT.

expression2

Potência a elevar a expression1. Deve ser um tipo de dados INTEGER, DECIMAL ou FLOAT.

Tipo de retorno

DOUBLE PRECISION

Exemplo

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100),10) qty2010;

Funções matemáticas 264

AWS Clean Rooms Referência SQL

+-------------------+
| qty2010 |
+-------------------+
| 679353.7540885945 |
+-------------------+

Função RADIANS

A função RADIANS converte um ângulo em graus em seu equivalente em radianos.

Sintaxe

RADIANS(number)

Argumento

número

O parâmetro de entrada é um número DOUBLE PRECISION.

Tipo de retorno

DOUBLE PRECISION

Exemplo

Para retornar o radiano equivalente de 180 graus, use o exemplo a seguir.

SELECT RADIANS(180);

+-------------------+
| radians |
+-------------------+
| 3.141592653589793 |
+-------------------+

Função RAND

A função RAND gera um número aleatório de ponto flutuante entre 0 e 1. A função RAND gera um
novo número aleatório cada vez que é chamada.

Funções matemáticas 265

AWS Clean Rooms Referência SQL

Sintaxe

RAND()

Tipo de retorno

RANDOM retorna um DOUBLE.

Exemplo

O exemplo a seguir gera uma coluna de números aleatórios de ponto flutuante entre 0 e 1 para cada
linha na tabela. squirrels A saída resultante seria uma única coluna contendo uma lista de valores
decimais aleatórios, com um valor para cada linha na tabela de esquilos.

SELECT rand() FROM squirrels

Esse tipo de consulta é útil quando você precisa gerar números aleatórios, por exemplo, para
simular eventos aleatórios ou para introduzir aleatoriedade em sua análise de dados. No contexto da
squirrels tabela, ela pode ser usada para atribuir valores aleatórios a cada esquilo, que podem
então ser usados para processamento ou análise posterior.

Função RANDOM

A função RANDOM gera um valor aleatório entre 0,0 (inclusive) e 1,0 (exclusivo).

Sintaxe

RANDOM()

Tipo de retorno

RANDOM retorna um número de DOUBLE PRECISION.

Exemplos

1. Compute um valor aleatório entre 0 e 99. Se o número aleatório é de 0 a 1, essa consulta produz
um número aleatório de 0 a 100:

select cast (random() * 100 as int);

INTEGER

Funções matemáticas 266

AWS Clean Rooms Referência SQL

24
(1 row)

2. Recupere uma amostra aleatória uniforme de 10 itens:

select *
from sales
order by random()
limit 10;

Agora recupere uma amostra aleatória de 10 itens, mas escolha os itens em proporção aos
preços. Por exemplo, um item cujo preço é o dobro de outro tem duas vezes mais probabilidade
de aparecer nos resultados de consulta:

select *
from sales
order by log(1 - random()) / pricepaid
limit 10;

3. Este exemplo usa o comando SET para definir um valor SEED para que RANDOM gere uma
sequência previsível de números.

Primeiro, retorne três inteiros RANDOM sem definir o valor de SEED primeiro:

select cast (random() * 100 as int);
INTEGER

6
(1 row)

select cast (random() * 100 as int);
INTEGER

68
(1 row)

select cast (random() * 100 as int);
INTEGER

56
(1 row)

Funções matemáticas 267

AWS Clean Rooms Referência SQL

Agora, defina o valor de SEED como .25 e retorne mais três números RANDOM:

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

12
(1 row)

Por fim, redefina o valor de SEED como .25 e verifique se RANDOM retorna os mesmos
resultados que as três chamadas anteriores:

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

12

Funções matemáticas 268

AWS Clean Rooms Referência SQL

(1 row)

Função ROUND

A função ROUND arredonda números para o inteiro ou decimal mais próximo.

A função ROUND pode incluir opcionalmente um segundo argumento como um inteiro para indicar
o número de casas decimais para arredondamento, em qualquer direção. Quando você não fornece
o segundo argumento, a função arredonda para o número inteiro mais próximo. Quando o segundo
argumento >n for especificado, a função arredonda para o número mais próximo com n casas
decimais de precisão.

Sintaxe

ROUND (number [, integer])

Argumento

número

Um número ou expressão avaliada como um número. Pode ser o DECIMAL ou o FLOAT8 tipo.
AWS Clean Rooms pode converter outros tipos de dados de acordo com as regras de conversão
implícitas.

inteiro (opcional)

Um número inteiro que indica o número de casas decimais para arredondamento em ambas as
direções.

Tipo de retorno

ROUND retorna o mesmo tipo de dados numéricos que o(s) argumento(s) de entrada.

Exemplos

Arredonde a comissão paga para determinada transação para o número inteiro mais próximo.

select commission, round(commission)
from sales where salesid=10000;

Funções matemáticas 269

AWS Clean Rooms Referência SQL

commission | round
-----------+-------
 28.05 | 28
(1 row)

Arredonde a comissão paga para determinada transação para a primeira casa decimal.

select commission, round(commission, 1)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 28.1
(1 row)

Para a mesma consulta, estenda a precisão no sentido oposto.

select commission, round(commission, -1)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 30
(1 row)

Função SIGN

A função SIGN retorna o sinal (positivo ou negativo) de um número. O resultado da função SIGN é 1,
-1 ou 0 indicando o sinal do argumento.

Sintaxe

SIGN (number)

Argumento

número

Número ou expressão que avalia para um número. Pode ser do DECIMALor FLOAT8 tipo. AWS
Clean Rooms pode converter outros tipos de dados de acordo com as regras de conversão
implícitas.

Funções matemáticas 270

AWS Clean Rooms Referência SQL

Tipo de retorno

SIGN retorna o mesmo tipo de dados numéricos que os argumentos de entrada. Se a entrada for
DECIMAL, a saída será DECIMAL(1,0).

Exemplos

Para determinar o sinal da comissão paga por determinada transação na tabela SALES, use o
exemplo a seguir.

SELECT commission, SIGN(commission)
FROM sales WHERE salesid=10000;

+------------+------+
| commission | sign |
+------------+------+
| 28.05 | 1 |
+------------+------+

Função SIN

SIN é uma função trigonométrica que retorna o seno de um número. O valor de retorno está entre -1
e 1.

Sintaxe

SIN(number)

Argumento

número

Um número DOUBLE PRECISION em radianos.

Tipo de retorno

DOUBLE PRECISION

Exemplo

Para retornar o seno de -PI, use o exemplo a seguir.

Funções matemáticas 271

AWS Clean Rooms Referência SQL

SELECT SIN(-PI());

+-------------------------+
| sin |
+-------------------------+
| -0.00000000000000012246 |
+-------------------------+

Função SQRT

A função SQRT retorna a raiz quadrada de um valor numérico. A raiz quadrada é um número
multiplicado por si mesmo para obter o valor fornecido.

Sintaxe

SQRT (expression)

Argumento

expressão

A expressão deve ter um tipo de dados de número inteiro, decimal ou ponto flutuante. A
expressão pode incluir funções. O sistema pode realizar conversões de tipo implícitas.

Tipo de retorno

SQRT retorna um número de DOUBLE PRECISION.

Exemplos

O exemplo a seguir retorna a raiz quadrada de um número.

select sqrt(16);

sqrt

4

O exemplo a seguir realiza uma conversão de tipo implícita.

select sqrt('16');

Funções matemáticas 272

AWS Clean Rooms Referência SQL

sqrt

4

O exemplo a seguir aninha funções para realizar uma tarefa mais complexa.

select sqrt(round(16.4));

sqrt

4

O exemplo a seguir resulta no comprimento do raio quando dada a área de um círculo. Ele calcula o
raio em polegadas, por exemplo, quando dada a área em polegadas quadradas. A área na amostra é
20.

select sqrt(20/pi());

Isso retorna o valor 5.046265044040321.

O seguinte exemplo retorna a raiz quadrada para valores de COMMISSION da tabela SALES. A
coluna COMMISSION é uma coluna DECIMAL. Este exemplo mostra como você pode usar a função
em uma consulta com uma lógica condicional mais complexa.

select sqrt(commission)
from sales where salesid < 10 order by salesid;

sqrt

10.4498803820905
3.37638860322683
7.24568837309472
5.1234753829798
...

A seguinte consulta retorna raiz quadrada arredondada para o mesmo conjunto de valores de
COMMISSION.

select salesid, commission, round(sqrt(commission))

Funções matemáticas 273

AWS Clean Rooms Referência SQL

from sales where salesid < 10 order by salesid;

salesid | commission | round
--------+------------+-------
 1 | 109.20 | 10
 2 | 11.40 | 3
 3 | 52.50 | 7
 4 | 26.25 | 5
...

Para obter mais informações sobre dados de amostra em AWS Clean Rooms, consulte Banco de
dados de amostra.

Função TRUNC

A função TRUNC trunca números para o inteiro ou decimal anterior.

A função TRUNC pode incluir opcionalmente um segundo argumento como um inteiro para indicar
o número de casas decimais para arredondamento, em qualquer direção. Quando você não fornece
o segundo argumento, a função arredonda para o número inteiro mais próximo. Quando o segundo
argumento >n for especificado, a função arredonda para o número mais próximo com >n casas
decimais de precisão. Esta função também trunca um timestamp e retorna uma data.

Sintaxe

TRUNC (number [, integer] |
timestamp)

Arguments (Argumentos)

número

Um número ou expressão avaliada como um número. Pode ser o DECIMAL ou o FLOAT8 tipo.
AWS Clean Rooms pode converter outros tipos de dados de acordo com as regras de conversão
implícitas.

inteiro (opcional)

Um inteiro que indica o número de casas decimais de precisão, em um dos sentidos. Se
nenhum inteiro for fornecido, o número será truncado como um número inteiro; se um inteiro for
especificado, o número será truncado para a casa decimal especificada.

Funções matemáticas 274

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

AWS Clean Rooms Referência SQL

timestamp

A função também pode retornar a data de um timestamp. (Para retornar um valor de timestamp
com 00:00:00 como a hora, converta o resultado da função para um timestamp.)

Tipo de retorno

TRUNC retorna o mesmo tipo de dados que o primeiro argumento de entrada. Para timestamps,
TRUNC retorna uma data.

Exemplos

Trunque a comissão paga para determinada transação de vendas.

select commission, trunc(commission)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 111

(1 row)

Trunque o mesmo valor de comissão para a primeira casa decimal.

select commission, trunc(commission,1)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 111.1

(1 row)

Trunque a comissão com um valor negativo para o segundo argumento; 111.15 é arredondado para
110.

select commission, trunc(commission,-1)
from sales where salesid=784;

commission | trunc

Funções matemáticas 275

AWS Clean Rooms Referência SQL

-----------+-------
 111.15 | 110
(1 row)

Retorna a porção de data do resultado da função SYSDATE (que retorna um timestamp):

select sysdate;

timestamp

2011-07-21 10:32:38.248109
(1 row)

select trunc(sysdate);

trunc

2011-07-21
(1 row)

Aplique a função TRUNC à uma coluna TIMESTAMP. O tipo de retorno é uma data.

select trunc(starttime) from event
order by eventid limit 1;

trunc

2008-01-25
(1 row)

Funções escalares

Esta seção descreve as funções escalares suportadas no AWS Clean Rooms Spark SQL. Uma
função escalar é uma função que usa um ou mais valores como entrada e retorna um único valor
como saída. As funções escalares operam em linhas ou elementos individuais e produzem um único
resultado para cada entrada.

As funções escalares, como SIZE, são diferentes de outros tipos de funções SQL, como funções
agregadas (contagem, soma, média) e funções geradoras de tabela (explodir, nivelar). Esses outros
tipos de função operam em várias linhas ou geram várias linhas, enquanto as funções escalares
funcionam em linhas ou elementos individuais.

Funções escalares 276

AWS Clean Rooms Referência SQL

Tópicos

• Função SIZE

Função SIZE

A função SIZE usa uma matriz, mapa ou string existente como argumento e retorna um único valor
representando o tamanho ou o comprimento dessa estrutura de dados. Isso não cria uma nova
estrutura de dados. Ele é usado para consultar e analisar as propriedades das estruturas de dados
existentes, em vez de criar novas.

Essa função é útil para determinar o número de elementos em uma matriz ou o comprimento de uma
string. Isso pode ser particularmente útil ao trabalhar com matrizes e outras estruturas de dados em
SQL, pois permite obter informações sobre o tamanho ou a cardinalidade dos dados.

Sintaxe

size(expr)

Argumentos

expr

Uma expressão ARRAY, MAP ou STRING.

Tipo de retorno

A função SIZE retorna um INTEIRO.

Exemplo

Neste exemplo, a função SIZE é aplicada à matriz ['b', 'd', 'c', 'a'] e retorna o valor4, que
é o número de elementos na matriz.

SELECT size(array('b', 'd', 'c', 'a'));
 4

Neste exemplo, a função SIZE é aplicada ao mapa {'a': 1, 'b': 2} e retorna o valor2, que é o
número de pares de valores-chave no mapa.

SELECT size(map('a', 1, 'b', 2));

Funções escalares 277

AWS Clean Rooms Referência SQL

 2

Neste exemplo, a função SIZE é aplicada à string 'hello world' e retorna o valor11, que é o
número de caracteres na string.

SELECT size('hello world');
11

Funções de string

Funções de string processam e manipulam strings de caracteres ou expressões que avaliam para
strings de caracteres. Quando o argumento string nessas funções é um valor literal, ele deve ser
envolvido por aspas simples. Os tipos de dados compatíveis incluem CHAR e VARCHAR.

A próxima seção fornece os nomes de função, sintaxe e descrições para as funções compatíveis.
Todos os deslocamentos em strings são baseados em um.

Tópicos

• Operador || (Concatenação)

• Função BTRIM

• Função CONCAT

• função FORMAT_STRING

• Funções LEFT e RIGHT

• Função LENGTH

• Função LOWER

• Funções LPAD e RPAD

• Função LTRIM

• Função POSITION

• Função REGEXP_COUNT

• Função REGEXP_INSTR

• Função REGEXP_REPLACE

• Função REGEXP_SUBSTR

• Função REPEAT

• Função REPLACE

Funções de string 278

AWS Clean Rooms Referência SQL

• Função REVERSE

• Função RTRIM

• Função SPLIT

• Função SPLIT_PART

• Função SUBSTRING

• Função TRANSLATE

• Função TRIM

• Função UPPER

• Função UUID

Operador || (Concatenação)

Concatena duas expressões em ambos os lados do símbolo || e retorna a expressão concatenada.

O operador de concatenação é semelhante a Função CONCAT.

Note

Tanto para a função CONCAT como para o operador de concatenação, se uma ou ambas as
expressões forem nulas, o resultado da concatenação será null.

Sintaxe

expression1 || expression2

Argumentos

expression1, expression2

Ambos os argumentos podem ser strings de caracteres ou expressões de comprimento fixo ou
variável.

Tipo de retorno

O operador || retorna uma string. O tipo de string é igual ao tipo dos argumentos de entrada.

Funções de string 279

AWS Clean Rooms Referência SQL

Exemplo

O seguinte exemplo concatena os campos FIRSTNAME e LASTNAME da tabela USERS:

select firstname || ' ' || lastname
from users
order by 1
limit 10;

concat

Aaron Banks
Aaron Booth
Aaron Browning
Aaron Burnett
Aaron Casey
Aaron Cash
Aaron Castro
Aaron Dickerson
Aaron Dixon
Aaron Dotson
(10 rows)

Para concatenar colunas que possam conter nulos, use a expressão Funções NVL e COALESCE. O
seguinte exemplo usa NVL para retornar um 0 sempre que NULL for encontrado.

select venuename || ' seats ' || nvl(venueseats, 0)
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1
limit 10;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0
Hilton Hotel seats 0
Luxor Hotel seats 0
Mandalay Bay Hotel seats 0
Mirage Hotel seats 0
New York New York seats 0

Funções de string 280

AWS Clean Rooms Referência SQL

Função BTRIM

A função BTRIM apara uma string removendo os espaços em branco iniciais e finais ou removendo
caracteres iniciais ou finais que correspondem a uma string opcional especificada.

Sintaxe

BTRIM(string [, trim_chars])

Argumentos

string

A string VARCHAR de entrada a ser cortada.

trim_chars

A string VARCHAR que contém os caracteres a serem correspondidos.

Tipo de retorno

A função BTRIM retorna uma string VARCHAR.

Exemplos

O seguinte exemplo apara espaços em branco inicias e finais da string ' abc ':

select ' abc ' as untrim, btrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

O exemplo a seguir remove a string 'xyz' inicial e final da string 'xyzaxyzbxyzcxyz'. As
ocorrências inicial e final de 'xyz' são removidas, mas as ocorrências internas da string não são
removidas.

select 'xyzaxyzbxyzcxyz' as untrim,
btrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

Funções de string 281

AWS Clean Rooms Referência SQL

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | axyzbxyzc

O exemplo a seguir remove as partes iniciais e finais da string 'setuphistorycassettes' que
correspondem a qualquer um dos caracteres na lista trim_chars 'tes'. Qualquer t, e ou s que
ocorra antes que outro caractere que não esteja na lista trim_chars no início ou no final da string de
entrada seja removido.

SELECT btrim('setuphistorycassettes', 'tes');

 btrim

 uphistoryca

Função CONCAT

A função CONCAT concatena duas expressões e retorna a expressão resultante. Para concatenar
mais de duas strings, use funções CONCAT aninhadas. O operador de concatenação (||) entre
duas expressões produz os mesmos resultados que a função CONCAT.

Note

Tanto para a função CONCAT como para o operador de concatenação, se uma ou ambas as
expressões forem nulas, o resultado da concatenação será null.

Sintaxe

CONCAT (expression1, expression2)

Argumentos

expression1, expression2

Os dois argumentos podem ser uma cadeia de caracteres de comprimento fixo, uma cadeia de
caracteres de comprimento variável, uma expressão binária ou uma expressão que é avaliada
para uma dessas entradas.

Funções de string 282

AWS Clean Rooms Referência SQL

Tipo de retorno

CONCAT retorna uma expressão. O tipo de dados da expressão é o mesmo tipo dos argumentos de
entrada.

Se as expressões de entrada forem de tipos diferentes, AWS Clean Rooms tentará digitar
implicitamente uma das expressões. Se os valores não puderem ser convertidos, será retornado um
erro.

Exemplos

O seguinte exemplo concatena dois literais de caracteres:

select concat('December 25, ', '2008');

concat

December 25, 2008
(1 row)

A seguinte consulta, usando o operador || em vez de CONCAT, produz o mesmo resultado:

select 'December 25, '||'2008';

concat

December 25, 2008
(1 row)

O seguinte exemplo usa duas funções CONCAT para concatenar três strings de caracteres:

select concat('Thursday, ', concat('December 25, ', '2008'));

concat

Thursday, December 25, 2008
(1 row)

Para concatenar colunas que possam conter nulos, use a Funções NVL e COALESCE. O seguinte
exemplo usa NVL para retornar um 0 sempre que NULL for encontrado.

Funções de string 283

AWS Clean Rooms Referência SQL

select concat(venuename, concat(' seats ', nvl(venueseats, 0))) as seating
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1
limit 5;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0
(5 rows)

A seguinte consulta concatena os valores CITY e STATE da tabela VENUE:

select concat(venuecity, venuestate)
from venue
where venueseats > 75000
order by venueseats;

concat

DenverCO
Kansas CityMO
East RutherfordNJ
LandoverMD
(4 rows)

A seguinte consulta usa funções CONCAT aninhadas. A consulta concatena os valores CITY e
STATE da tabela VENUE, mas delimita a string resultante com uma vírgula e um espaço:

select concat(concat(venuecity,', '),venuestate)
from venue
where venueseats > 75000
order by venueseats;

concat

Denver, CO
Kansas City, MO
East Rutherford, NJ

Funções de string 284

AWS Clean Rooms Referência SQL

Landover, MD
(4 rows)

função FORMAT_STRING

A função FORMAT_STRING cria uma string formatada substituindo os espaços reservados em
uma string de modelo pelos argumentos fornecidos. Ele retorna uma string formatada de strings de
formato no estilo printf.

A função FORMAT_STRING funciona substituindo os espaços reservados na string do modelo pelos
valores correspondentes passados como argumentos. Esse tipo de formatação de string pode ser
útil quando você precisa construir dinamicamente cadeias de caracteres que incluam uma mistura de
texto estático e dados dinâmicos, como ao gerar mensagens de saída, relatórios ou outros tipos de
texto informativo. A função FORMAT_STRING fornece uma maneira concisa e legível de criar esses
tipos de strings formatadas, facilitando a manutenção e a atualização do código que gera a saída.

Sintaxe

format_string(strfmt, obj, ...)

Argumentos

strfmt

Uma expressão STRING.

obj

Uma STRING ou expressão numérica.

Tipo de retorno

FORMAT_STRING retorna uma STRING.

Exemplo

O exemplo a seguir contém uma string de modelo que contém dois espaços reservados: %d para
um valor decimal (inteiro) e %s para um valor de string. O %d espaço reservado é substituído
pelo valor decimal (inteiro) () e o espaço reservado %s é substituído pelo valor da string (100).
"days" A saída é uma string de modelo com os espaços reservados substituídos pelos argumentos
fornecidos:"Hello World 100 days".

Funções de string 285

AWS Clean Rooms Referência SQL

SELECT format_string("Hello World %d %s", 100, "days");
 Hello World 100 days

Funções LEFT e RIGHT

Essas funções retornam o número especificado de caracteres mais à esquerda ou mais à direita de
uma string de caracteres.

O número é baseado no número de caracteres, e não bytes, de forma que caracteres multibyte são
contados como caracteres simples.

Sintaxe

LEFT (string, integer)

RIGHT (string, integer)

Argumentos

string

Qualquer string de caracteres ou qualquer expressão que avalie para uma string de caracteres.

inteiro

Um inteiro positivo.

Tipo de retorno

LEFT e RIGHT retornam uma string VARCHAR.

Exemplo

O exemplo a seguir retorna os 5 caracteres mais à esquerda e os 5 caracteres mais à direita de
nomes de eventos que têm IDs entre 1000 e 1005:

select eventid, eventname,
left(eventname,5) as left_5,
right(eventname,5) as right_5
from event
where eventid between 1000 and 1005
order by 1;

Funções de string 286

AWS Clean Rooms Referência SQL

eventid | eventname | left_5 | right_5
--------+----------------+--------+---------
 1000 | Gypsy | Gypsy | Gypsy
 1001 | Chicago | Chica | icago
 1002 | The King and I | The K | and I
 1003 | Pal Joey | Pal J | Joey
 1004 | Grease | Greas | rease
 1005 | Chicago | Chica | icago
(6 rows)

Função LENGTH

Função LOWER

Converte uma string em letras minúsculas. LOWER é compatível com caracteres UTF-8 multibyte,
até o máximo de quatro bytes por caractere.

Sintaxe

LOWER(string)

Argumento

string

O parâmetro de entrada é uma string VARCHAR (ou qualquer outro tipo de dados, como CHAR,
que pode ser convertido implicitamente para VARCHAR).

Tipo de retorno

A função LOWER retorna uma string de caractere no mesmo tipo de dados que a string de entrada.

Exemplos

O exemplo a seguir converte o campo CATNAME em minúsculas:

select catname, lower(catname) from category order by 1,2;

 catname | lower
----------+-----------
Classical | classical

Funções de string 287

AWS Clean Rooms Referência SQL

Jazz | jazz
MLB | mlb
MLS | mls
Musicals | musicals
NBA | nba
NFL | nfl
NHL | nhl
Opera | opera
Plays | plays
Pop | pop
(11 rows)

Funções LPAD e RPAD

Essas funções inserem caracteres no início ou final de uma string com base em um comprimento
especificado.

Sintaxe

LPAD (string1, length, [string2])

RPAD (string1, length, [string2])

Argumentos

string1

Uma string de caracteres ou uma expressão que avalie para uma string de caracteres, tal como o
nome de uma coluna de caracteres.

length

Um inteiro que define o comprimento dos resultados da função. O comprimento de uma string é
baseado no número de caracteres, e não bytes, de forma que caracteres multibyte são contados
como caracteres simples. Se string1 for mais longa que o comprimento especificado, ela será
truncada (à direita). Se length for um número negativo, o resultado da função será uma string
vazia.

string2

Um ou mais caracteres inseridos no início ou no fim da string1. Este argumento é opcional; se ele
não é especificado, espaços são usados.

Funções de string 288

AWS Clean Rooms Referência SQL

Tipo de retorno

Essas funções retornam um tipo de dados VARCHAR.

Exemplos

Trunque um conjunto específico de nomes de eventos para 20 caracteres e insira espaços no início
dos nomes mais curtos:

select lpad(eventname,20) from event
where eventid between 1 and 5 order by 1;

 lpad

 Salome
 Il Trovatore
 Boris Godunov
 Gotterdammerung
La Cenerentola (Cind
(5 rows)

Trunque o mesmo conjunto de nomes de eventos para 20 caracteres, mas insira no início dos nomes
mais curtos 0123456789.

select rpad(eventname,20,'0123456789') from event
where eventid between 1 and 5 order by 1;

 rpad

Boris Godunov0123456
Gotterdammerung01234
Il Trovatore01234567
La Cenerentola (Cind
Salome01234567890123
(5 rows)

Função LTRIM

Corta caracteres do início de uma string. Remove a string mais longa que contém somente
caracteres que estão na lista de caracteres de corte. O corte é concluído quando um caractere de
corte não aparece na string de entrada.

Funções de string 289

AWS Clean Rooms Referência SQL

Sintaxe

LTRIM(string [, trim_chars])

Argumentos

string

Uma coluna, expressão ou literal de string a ser cortado.

trim_chars

Uma coluna, expressão ou literal de string que representa os caracteres a serem cortados do
começo da string. Se não for especificado, um espaço será usado como caractere de corte.

Tipo de retorno

A função LTRIM retorna uma string no mesmo tipo de dado que a string de entrada (CHAR ou
VARCHAR).

Exemplos

O exemplo a seguir corta o ano da coluna listime. Os caracteres de corte no literal de string
'2008-' indicam os caracteres a serem cortados da esquerda. Se você usar os caracteres de corte
'028-', obterá o mesmo resultado.

select listid, listtime, ltrim(listtime, '2008-')
from listing
order by 1, 2, 3
limit 10;

listid | listtime | ltrim
-------+---------------------+----------------
 1 | 2008-01-24 06:43:29 | 1-24 06:43:29
 2 | 2008-03-05 12:25:29 | 3-05 12:25:29
 3 | 2008-11-01 07:35:33 | 11-01 07:35:33
 4 | 2008-05-24 01:18:37 | 5-24 01:18:37
 5 | 2008-05-17 02:29:11 | 5-17 02:29:11
 6 | 2008-08-15 02:08:13 | 15 02:08:13
 7 | 2008-11-15 09:38:15 | 11-15 09:38:15
 8 | 2008-11-09 05:07:30 | 11-09 05:07:30

Funções de string 290

AWS Clean Rooms Referência SQL

 9 | 2008-09-09 08:03:36 | 9-09 08:03:36
 10 | 2008-06-17 09:44:54 | 6-17 09:44:54

LTRIM remove qualquer um dos caracteres em trim_chars quando eles aparecem no início da
string. O seguinte exemplo apara os caracteres “C”, “D” e “G” quando eles aparecem no início de
VENUENAME, que é uma coluna VARCHAR.

select venueid, venuename, ltrim(venuename, 'CDG')
from venue
where venuename like '%Park'
order by 2
limit 7;

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park
 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

O exemplo a seguir usa o caractere de corte 2 que é recuperado da coluna venueid.

select ltrim('2008-01-24 06:43:29', venueid)
from venue where venueid=2;

ltrim

008-01-24 06:43:29

O exemplo a seguir não corta nenhum caractere porque 2 é encontrado antes do caractere de corte
'0'.

select ltrim('2008-01-24 06:43:29', '0');

ltrim

2008-01-24 06:43:29

Funções de string 291

AWS Clean Rooms Referência SQL

O exemplo a seguir usa o caractere de corte de espaço padrão e corta os dois espaços do início da
string.

select ltrim(' 2008-01-24 06:43:29');

ltrim

2008-01-24 06:43:29

Função POSITION

Retorna a localização da substring especificada dentro de uma string.

Sintaxe

POSITION(substring IN string)

Argumentos

substring

A substring a procurar dentro da string.

string

A string ou coluna a ser procurada.

Tipo de retorno

A função POSITION retorna um inteiro correspondente à posição da substring (baseada em 1,
não baseada em zero). A posição é baseada no número de caracteres, e não bytes, de forma que
caracteres multibyte são contados como caracteres simples.

Observações de uso

POSITION retornará 0 se a substring não for localizada dentro da string:

select position('dog' in 'fish');

position

Funções de string 292

AWS Clean Rooms Referência SQL

 0
(1 row)

Exemplos

O seguinte exemplo mostra a posição da string fish na palavra dogfish:

select position('fish' in 'dogfish');

position

 4
(1 row)

O seguinte exemplo retorna o número de transações de vendas com uma COMMISSION acima de
999,00 da tabela SALES:

select distinct position('.' in commission), count (position('.' in commission))
from sales where position('.' in commission) > 4 group by position('.' in commission)
order by 1,2;

position | count
---------+-------
 5 | 629
(1 row)

Função REGEXP_COUNT

Pesquisa uma string quanto a um padrão de expressão regular e retorna um inteiro que indica o
número de vezes que o padrão ocorre na string. Se nenhuma correspondência for encontrada, a
função retornará 0.

Sintaxe

REGEXP_COUNT (source_string, pattern [, position [, parameters]])

Argumentos

source_string

Uma expressão de string, tal como um nome de coluna, a ser procurada.

Funções de string 293

AWS Clean Rooms Referência SQL

pattern

Um literal de string que representa um padrão de expressão regular.

position

Um inteiro positivo que indica a posição em source_string para começar a pesquisar. A posição é
baseada no número de caracteres, e não bytes, de forma que caracteres multibyte são contados
como caracteres simples. O padrão é um. Se a posição for menor que 1, a pesquisa começará
no primeiro caractere da source_string. Se position for maior que o número de caracteres na
source_string, o resultado será 0.

parameters

Uma ou mais literais de sequências que indicam como a função corresponde o padrão. Os
valores possíveis são os seguintes:

• c – Executa a correspondência diferenciando maiúsculas e minúsculas. O padrão é usar a
correspondência diferenciando maiúsculas e minúsculas.

• i – Executa a correspondência sem diferenciar maiúsculas de minúsculas.

• p — Interpreta o padrão com o dialeto de expressão regular compatível com Perl (PCRE - Perl
Compatible Regular Expression).

Tipo de retorno

Inteiro

Exemplo

O seguinte exemplo conta o número de vezes que uma sequência de três letra ocorre.

SELECT regexp_count('abcdefghijklmnopqrstuvwxyz', '[a-z]{3}');

 regexp_count

 8

O seguinte exemplo conta o número de vezes que nome de domínio de nível superior é org ou edu.

SELECT email, regexp_count(email,'@[^.]*\\.(org|edu)')FROM users
ORDER BY userid LIMIT 4;

Funções de string 294

AWS Clean Rooms Referência SQL

 email | regexp_count
---+--------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | 1
 Suspendisse.tristique@nonnisiAenean.edu | 1
 amet.faucibus.ut@condimentumegetvolutpat.ca | 0
 sed@lacusUtnec.ca | 0

O exemplo a seguir conta as ocorrências da string FOX usando a correspondência sem diferenciar
maiúsculas de minúsculas.

SELECT regexp_count('the fox', 'FOX', 1, 'i');

 regexp_count

 1

O exemplo a seguir usa um padrão escrito no dialeto PCRE para localizar palavras contendo
pelo menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação
específica look-ahead em PCRE. Este exemplo conta o número de ocorrências de tais palavras, com
correspondência diferenciando maiúsculas de minúsculas.

SELECT regexp_count('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'p');

 regexp_count

 2

O exemplo a seguir usa um padrão escrito no dialeto PCRE para localizar palavras contendo pelo
menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação específica
em PCRE. Este exemplo conta o número de ocorrências de tais palavras, mas difere do exemplo
anterior na medida em que usa correspondência sem diferenciar maiúsculas dee minúsculas.

SELECT regexp_count('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'ip');

 regexp_count

 3

Funções de string 295

AWS Clean Rooms Referência SQL

Função REGEXP_INSTR

Pesquisa um padrão de expressão regular em uma sequência e retorna um inteiro que indica
a posição inicial ou final da subsequência correspondente. Se nenhuma correspondência for
encontrada, a função retornará 0. REGEXP_INSTR é semelhante à função POSITION, mas permite
que você pesquise um padrão de expressão regular em uma sequência.

Sintaxe

REGEXP_INSTR (source_string, pattern [, position [, occurrence] [, option
 [, parameters]]]])

Argumentos

source_string

Uma expressão de string, tal como um nome de coluna, a ser procurada.

pattern

Um literal de string que representa um padrão de expressão regular.

position

Um inteiro positivo que indica a posição em source_string para começar a pesquisar. A posição é
baseada no número de caracteres, e não bytes, de forma que caracteres multibyte são contados
como caracteres simples. O padrão é um. Se a posição for menor que 1, a pesquisa começará
no primeiro caractere da source_string. Se position for maior que o número de caracteres na
source_string, o resultado será 0.

occurrence

Um inteiro positivo que indica qual ocorrência do padrão usar. REGEXP_INSTR ignora as
primeiras correspondências de occurrence -1. O padrão é um. Se ocurrence for menor que 1 ou
maior que o número de caracteres em source_string, a pesquisa será ignorada e o resultado será
0.

option

Um valor que indica se retornar a posição do primeiro caractere da correspondência (0) ou a
posição do primeiro caractere seguinte ao final da correspondência (1). Um valor diferente de
zero é o mesmo que 1. O valor padrão é 0.

Funções de string 296

AWS Clean Rooms Referência SQL

parameters

Uma ou mais literais de sequências que indicam como a função corresponde o padrão. Os
valores possíveis são os seguintes:

• c – Executa a correspondência diferenciando maiúsculas e minúsculas. O padrão é usar a
correspondência diferenciando maiúsculas e minúsculas.

• i – Executa a correspondência sem diferenciar maiúsculas de minúsculas.

• e – Extrai uma subsequência usando uma subexpressão.

Se o padrão incluir uma subexpressão, REGEXP_INSTR corresponderá uma subsequência
usando a primeira subexpressão em padrão. REGEXP_INSTR considera apenas a primeira
subexpressão. As subexpressões adicionais são ignoradas. Se o padrão não tiver uma
subexpressão, REGEXP_INSTR ignorará o parâmetro 'e'.

• p — Interpreta o padrão com o dialeto de expressão regular compatível com Perl (PCRE - Perl
Compatible Regular Expression).

Tipo de retorno

Inteiro

Exemplo

O seguinte exemplo procura pelo caractere @ que inicia o nome de um domínio e retorna a posição
inicial da primeira correspondência.

SELECT email, regexp_instr(email, '@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_instr
---+--------------
 Etiam.laoreet.libero@example.com | 21
 Suspendisse.tristique@nonnisiAenean.edu | 22
 amet.faucibus.ut@condimentumegetvolutpat.ca | 17
 sed@lacusUtnec.ca | 4

O seguinte exemplo procura por variações da palavra Center e retorna a posição inicial da primeira
correspondência.

Funções de string 297

AWS Clean Rooms Referência SQL

SELECT venuename, regexp_instr(venuename,'[cC]ent(er|re)$')
FROM venue
WHERE regexp_instr(venuename,'[cC]ent(er|re)$') > 0
ORDER BY venueid LIMIT 4;

 venuename | regexp_instr
-----------------------+--------------
 The Home Depot Center | 16
 Izod Center | 6
 Wachovia Center | 10
 Air Canada Centre | 12

O exemplo a seguir encontra a posição inicial da primeira ocorrência da string FOX usando lógica de
correspondência sem diferenciar maiúsculas de minúsculas.

SELECT regexp_instr('the fox', 'FOX', 1, 1, 0, 'i');

 regexp_instr

 5

O exemplo a seguir usa um padrão escrito em dialeto PCRE para localizar palavras contendo pelo
menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação específica
look-ahead em PCRE. Este exemplo encontra a posição inicial da segunda palavra.

SELECT regexp_instr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'p');

 regexp_instr

 21

O exemplo a seguir usa um padrão escrito em dialeto PCRE para localizar palavras contendo pelo
menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação específica
look-ahead em PCRE. Este exemplo localiza a posição inicial da segunda palavra, mas difere do
exemplo anterior na medida em que usa correspondência sem diferenciar maiúsculas de minúsculas.

SELECT regexp_instr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'ip');

Funções de string 298

AWS Clean Rooms Referência SQL

 regexp_instr

 15

Função REGEXP_REPLACE

Pesquisa uma string quanto a um padrão de expressão regular e substitui cada ocorrência do padrão
pela string especificada. REGEXP_REPLACE é semelhante a Função REPLACE, mas permite que
você pesquise uma string quanto a um padrão de expressão regular.

REGEXP_REPLACE é semelhante a Função TRANSLATE e Função REPLACE, exceto que
TRANSLATE faz várias substituições de caractere único e REPLACE substitui uma string inteira
por outra string, enquanto REGEXP_REPLACE permite que você pesquise uma string quanto a um
padrão de expressão regular.

Sintaxe

REGEXP_REPLACE (source_string, pattern [, replace_string [, position [, parameters
]]])

Argumentos

source_string

Uma expressão de string, tal como um nome de coluna, a ser procurada.

pattern

Um literal de string que representa um padrão de expressão regular.

replace_string

Uma expressão de string, tal como um nome de coluna, que substituirá cada ocorrência do
padrão. O padrão é uma string vazia ("").

position

Um inteiro positivo que indica a posição em source_string para começar a pesquisar. A posição é
baseada no número de caracteres, e não bytes, de forma que caracteres multibyte são contados
como caracteres simples. O padrão é um. Se a posição for menor que 1, a pesquisa começará
no primeiro caractere da source_string. Se position for maior que o número de caracteres na
source_string, o resultado será source_string.

Funções de string 299

AWS Clean Rooms Referência SQL

parameters

Uma ou mais literais de sequências que indicam como a função corresponde o padrão. Os
valores possíveis são os seguintes:

• c – Executa a correspondência diferenciando maiúsculas e minúsculas. O padrão é usar a
correspondência diferenciando maiúsculas e minúsculas.

• i – Executa a correspondência sem diferenciar maiúsculas de minúsculas.

• p — Interpreta o padrão com o dialeto de expressão regular compatível com Perl (PCRE - Perl
Compatible Regular Expression).

Tipo de retorno

VARCHAR

Se pattern ou replace_string for NULL, o retorno será NULL.

Exemplo

O seguinte exemplo exclui o @ e o nome de domínio dos endereços de e-mail.

SELECT email, regexp_replace(email, '@.*\\.(org|gov|com|edu|ca)$')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_replace
---+----------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | Etiam.laoreet.libero
 Suspendisse.tristique@nonnisiAenean.edu | Suspendisse.tristique
 amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut
 sed@lacusUtnec.ca | sed

O seguinte exemplo substitui os nomes de domínio de endereços de e-mail por esse valor:
internal.company.com.

SELECT email, regexp_replace(email, '@.*\\.[[:alpha:]]{2,3}',
'@internal.company.com') FROM users
ORDER BY userid LIMIT 4;

 email | regexp_replace

Funções de string 300

AWS Clean Rooms Referência SQL

+--
 Etiam.laoreet.libero@sodalesMaurisblandit.edu |
 Etiam.laoreet.libero@internal.company.com
 Suspendisse.tristique@nonnisiAenean.edu |
 Suspendisse.tristique@internal.company.com
 amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut@internal.company.com
 sed@lacusUtnec.ca | sed@internal.company.com

O exemplo a seguir conta as ocorrências da string FOX no valor quick brown fox usando a
correspondência sem diferenciar maiúsculas de minúsculas.

SELECT regexp_replace('the fox', 'FOX', 'quick brown fox', 1, 'i');

 regexp_replace

 the quick brown fox

O exemplo a seguir usa um padrão escrito no dialeto PCRE para localizar palavras contendo pelo
menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação específica
look-ahead em PCRE. Este exemplo substitui cada ocorrência de tal palavra pelo valor [hidden].

SELECT regexp_replace('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'p');

 regexp_replace

 [hidden] plain A1234 [hidden]

O exemplo a seguir usa um padrão escrito no dialeto PCRE para localizar palavras contendo pelo
menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação específica
look-ahead em PCRE. Este exemplo substitui cada ocorrência de tal palavra pelo valor[hidden],
mas difere do exemplo anterior na medida em que ele usa correspondência sem diferenciar
maiúsculas de minúsculas.

SELECT regexp_replace('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'ip');

 regexp_replace

Funções de string 301

AWS Clean Rooms Referência SQL

 [hidden] plain [hidden] [hidden]

Função REGEXP_SUBSTR

Retorna os caracteres de uma string ao procurar por um padrão de expressão regular.
REGEXP_SUBSTR é semelhante a função Função SUBSTRING, mas permite que você pesquise
uma string quanto a um padrão de expressão regular. Se a função não conseguir corresponder a
expressão regular com nenhum caractere na string, ela retornará uma string vazia.

Sintaxe

REGEXP_SUBSTR (source_string, pattern [, position [, occurrence [, parameters]]])

Argumentos

source_string

Uma expressão de string a ser pesquisada.

pattern

Um literal de string que representa um padrão de expressão regular.

position

Um inteiro positivo que indica a posição em source_string para começar a pesquisar. A posição é
baseada no número de caracteres, e não bytes, de forma que caracteres multibyte são contados
como caracteres simples. O padrão é um. Se a posição for menor que 1, a pesquisa começará
no primeiro caractere da source_string. Se position for maior que o número de caracteres na
source_string, o resultado será uma string vazia ("").

occurrence

Um inteiro positivo que indica qual ocorrência do padrão usar. REGEXP_SUBSTR ignora as
primeiras correspondências de occurrence -1. O padrão é um. Se a ocorrência for menor que 1
ou maior que o número de caracteres em source_string, a pesquisa será ignorada e o resultado
será NULL.

parameters

Uma ou mais literais de sequências que indicam como a função corresponde o padrão. Os
valores possíveis são os seguintes:

Funções de string 302

AWS Clean Rooms Referência SQL

• c – Executa a correspondência diferenciando maiúsculas e minúsculas. O padrão é usar a
correspondência diferenciando maiúsculas e minúsculas.

• i – Executa a correspondência sem diferenciar maiúsculas de minúsculas.

• e – Extrai uma subsequência usando uma subexpressão.

Se o padrão incluir uma subexpressão, REGEXP_SUBSTR corresponderá uma subsequência
usando a primeira subexpressão em padrão. Uma subexpressão é uma expressão dentro do
padrão que está entre parênteses. Por exemplo, para o padrão 'This is a (\\w+)' faz
correspondência com a primeira expressão com a string 'This is a ' seguida por uma
palavra. Em vez de retornar o padrão, REGEXP_SUBSTR com o parâmetro e retorna somente
a string dentro da subexpressão.

REGEXP_SUBSTR considera apenas a primeira subexpressão. As subexpressões adicionais
são ignoradas. Se o padrão não tiver uma subexpressão, REGEXP_SUBSTR ignorará o
parâmetro 'e'.

• p — Interpreta o padrão com o dialeto de expressão regular compatível com Perl (PCRE - Perl
Compatible Regular Expression).

Tipo de retorno

VARCHAR

Exemplo

O seguinte exemplo retorna a porção de um endereço de e-mail entre o caractere @ e a extensão de
domínio.

SELECT email, regexp_substr(email,'@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_substr
---+--------------------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | @sodalesMaurisblandit
 Suspendisse.tristique@nonnisiAenean.edu | @nonnisiAenean
 amet.faucibus.ut@condimentumegetvolutpat.ca | @condimentumegetvolutpat
 sed@lacusUtnec.ca | @lacusUtnec

Funções de string 303

AWS Clean Rooms Referência SQL

O exemplo a seguir retorna a porção da entrada correspondente à primeira ocorrência da string FOX
com a correspondência sem diferenciar maiúsculas de minúsculas.

SELECT regexp_substr('the fox', 'FOX', 1, 1, 'i');

 regexp_substr

 fox

O exemplo a seguir retorna a primeira parte da entrada que começa com letras minúsculas. Isso é
funcionalmente idêntico à mesma instrução SELECT sem o parâmetro c.

SELECT regexp_substr('THE SECRET CODE IS THE LOWERCASE PART OF 1931abc0EZ.', '[a-z]+',
 1, 1, 'c');

 regexp_substr

 abc

O exemplo a seguir usa um padrão escrito no dialeto PCRE para localizar palavras contendo pelo
menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação específica
look-ahead em PCRE. Este exemplo retorna a parte da entrada correspondente à segunda palavra.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'p');

 regexp_substr

 a1234

O exemplo a seguir usa um padrão escrito no dialeto PCRE para localizar palavras contendo
pelo menos um número e uma letra minúscula. Ele usa o operador ?=, que tem uma conotação
específica look-ahead em PCRE. Este exemplo retorna a parte da entrada correspondente à
segunda palavra, mas difere do exemplo anterior na medida em que usa a correspondência sem
diferenciar maiúsculas de minúsculas.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'ip');

 regexp_substr

Funções de string 304

AWS Clean Rooms Referência SQL

 A1234

O exemplo a seguir usa uma subexpressão para encontrar a segunda string correspondente ao
padrão 'this is a (\\w+)' usando a correspondência que não diferencia letras maiúsculas de
minúsculas. Ele retorna a subexpressão dentro dos parênteses.

select regexp_substr(
 'This is a cat, this is a dog. This is a mouse.',
 'this is a (\\w+)', 1, 2, 'ie');

 regexp_substr

 dog

Função REPEAT

Repete uma string pelo número especificado de vezes. Se o parâmetro de entrada for numérico,
REPEAT o tratará como uma string.

Sintaxe

REPEAT(string, integer)

Argumentos

string

O primeiro parâmetro de entrada é a string a ser repetida.

inteiro

O segundo parâmetro é um inteiro indicando o número de vezes a repetir a string.

Tipo de retorno

A função REPEAT retorna uma string.

Exemplos

O seguinte exemplo repete o valor da coluna CATID na tabela CATEGORY três vezes:

select catid, repeat(catid,3)
from category

Funções de string 305

AWS Clean Rooms Referência SQL

order by 1,2;

 catid | repeat
-------+--------
 1 | 111
 2 | 222
 3 | 333
 4 | 444
 5 | 555
 6 | 666
 7 | 777
 8 | 888
 9 | 999
 10 | 101010
 11 | 111111
(11 rows)

Função REPLACE

Substitui todas as ocorrências de um conjunto de caracteres em uma string existente por outros
caracteres especificados.

REPLACE é semelhante a Função TRANSLATE e Função REGEXP_REPLACE, exceto que
TRANSLATE faz várias substituições de caractere único e REGEXP_REPLACE permite que você
pesquise uma string quanto a um padrão de expressão regular, enquanto REPLACE substitui uma
string inteira por outra string.

Sintaxe

REPLACE(string1, old_chars, new_chars)

Argumentos

string

String CHAR ou VARCHAR a ser procurada.

old_chars

String CHAR ou VARCHAR a substituir.

new_chars

Nova string CHAR ou VARCHAR que substitui old_string.

Funções de string 306

AWS Clean Rooms Referência SQL

Tipo de retorno

VARCHAR

Se old_chars ou new_chars for NULL, o retorno será NULL.

Exemplos

O seguinte exemplo converte a string Shows em Theatre no campo CATGROUP:

select catid, catgroup,
replace(catgroup, 'Shows', 'Theatre')
from category
order by 1,2,3;

 catid | catgroup | replace
-------+----------+----------
 1 | Sports | Sports
 2 | Sports | Sports
 3 | Sports | Sports
 4 | Sports | Sports
 5 | Sports | Sports
 6 | Shows | Theatre
 7 | Shows | Theatre
 8 | Shows | Theatre
 9 | Concerts | Concerts
 10 | Concerts | Concerts
 11 | Concerts | Concerts
(11 rows)

Função REVERSE

A função REVERSE opera em uma string e retorna os caracteres na ordem reversa. Por exemplo,
reverse('abcde') retorna edcba. Essa função funciona em tipos de dados numéricos e de data,
assim como nos tipos de dados de caracteres; no entanto, na maioria dos casos ela possui um valor
prático para strings de caracteres.

Sintaxe

REVERSE (expression)

Funções de string 307

AWS Clean Rooms Referência SQL

Argumento

expressão

Uma expressão com um tipo de dados de caractere, data, timestamp ou numérico que representa
o destino da reversão de caracteres. Todas as expressões são convertidas implicitamente em
strings de comprimento variável. Os espaços em branco finais em strings de caracteres de
largura fixa são ignorados.

Tipo de retorno

REVERSE retorna um VARCHAR.

Exemplos

Selecione cinco nomes de cidade distintos e seus nomes invertidos correspondentes da tabela
USERS:

select distinct city as cityname, reverse(cityname)
from users order by city limit 5;

cityname | reverse
---------+----------
Aberdeen | needrebA
Abilene | enelibA
Ada | adA
Agat | tagA
Agawam | mawagA
(5 rows)

Selecione cinco vendas IDs e seu IDs elenco invertido correspondente como sequências de
caracteres:

select salesid, reverse(salesid)::varchar
from sales order by salesid desc limit 5;

salesid | reverse
--------+---------
 172456 | 654271
 172455 | 554271
 172454 | 454271

Funções de string 308

AWS Clean Rooms Referência SQL

 172453 | 354271
 172452 | 254271
(5 rows)

Função RTRIM

A função RTRIM apara um conjunto específico de caracteres do final de uma string. Remove a string
mais longa que contém somente caracteres que estão na lista de caracteres de corte. O corte é
concluído quando um caractere de corte não aparece na string de entrada.

Sintaxe

RTRIM(string, trim_chars)

Argumentos

string

Uma coluna, expressão ou literal de string a ser cortado.

trim_chars

Uma coluna, expressão ou literal de string que representa os caracteres a serem cortados do final
da string. Se não for especificado, um espaço será usado como caractere de corte.

Tipo de retorno

Uma string no mesmo tipo de dados que o argumento da string.

Exemplo

O seguinte exemplo apara espaços em branco inicias e finais da string ' abc ':

select ' abc ' as untrim, rtrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

O exemplo a seguir remove a string 'xyz' final da string 'xyzaxyzbxyzcxyz'. As ocorrências
iniciais de 'xyz' são removidas, mas as ocorrências internas da string não são removidas.

Funções de string 309

AWS Clean Rooms Referência SQL

select 'xyzaxyzbxyzcxyz' as untrim,
rtrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | xyzaxyzbxyzc

O exemplo a seguir remove as partes finais da string 'setuphistorycassettes' que
correspondem a qualquer um dos caracteres na lista trim_chars 'tes'. Qualquer t, e ou s que
ocorra antes que outro caractere que não esteja na lista trim_chars no final da string de entrada é
removido.

SELECT rtrim('setuphistorycassettes', 'tes');

 rtrim

 setuphistoryca

O seguinte exemplo apara os caracteres "Park" do final de VENUENAME, onde presente:

select venueid, venuename, rtrim(venuename, 'Park')
from venue
order by 1, 2, 3
limit 10;

venueid | venuename | rtrim
--------+----------------------------+-------------------------
 1 | Toyota Park | Toyota
 2 | Columbus Crew Stadium | Columbus Crew Stadium
 3 | RFK Stadium | RFK Stadium
 4 | CommunityAmerica Ballpark | CommunityAmerica Ballp
 5 | Gillette Stadium | Gillette Stadium
 6 | New York Giants Stadium | New York Giants Stadium
 7 | BMO Field | BMO Field
 8 | The Home Depot Center | The Home Depot Cente
 9 | Dick's Sporting Goods Park | Dick's Sporting Goods
 10 | Pizza Hut Park | Pizza Hut

Observe que RTRIM remove qualquer um dos caracteres P, a, r ou k que aparecem no final de um
VENUENAME.

Funções de string 310

AWS Clean Rooms Referência SQL

Função SPLIT

A função SPLIT permite extrair substrings de uma string maior e trabalhar com elas como uma
matriz. A função SPLIT é útil quando você precisa dividir uma string em componentes individuais
com base em um delimitador ou padrão específico.

Sintaxe

split(str, regex, limit)

Argumentos

str

Uma expressão de string para dividir.

regex

Uma string representando uma expressão regular. A string regex deve ser uma expressão regular
Java.

limit

Uma expressão inteira que controla o número de vezes que o regex é aplicado.

• limite > 0: o comprimento da matriz resultante não será maior que o limite, e a última entrada
da matriz resultante conterá todas as entradas além da última regex correspondente.

• limit <= 0: o regex será aplicado quantas vezes for possível, e a matriz resultante pode ser de
qualquer tamanho.

Tipo de retorno

A função SPLIT retorna um ARRAY<STRING>.

Selimit > 0: O comprimento da matriz resultante não será maior que o limite, e a última entrada
da matriz resultante conterá todas as entradas além da última regex correspondente.

Iflimit <= 0: regex será aplicado quantas vezes for possível e a matriz resultante poderá ser de
qualquer tamanho.

Funções de string 311

AWS Clean Rooms Referência SQL

Exemplo

Neste exemplo, a função SPLIT divide a string de entrada 'oneAtwoBthreeC' sempre que
encontra os caracteres 'A''B', ou 'C' (conforme especificado pelo padrão de expressão regular).
'[ABC]' A saída resultante é uma matriz de quatro elementos:"one", "two""three", e uma
string vazia"".

SELECT split('oneAtwoBthreeC', '[ABC]');
 ["one","two","three",""]

Função SPLIT_PART

Divide uma string no delimitador especificado e retorna a parte na posição especificada.

Sintaxe

SPLIT_PART(string, delimiter, position)

Argumentos

string

Uma coluna, expressão ou literal de string a ser dividido. A string pode ser CHAR ou VARCHAR.

delimitador

A string delimitadora que indica seções da string de entrada.

Se o delimitador for um literal, coloque-o entre aspas simples.

position

Posição da porção da string a retornar (contando de 1). Deve ser um número inteiro maior que
0. Se position for maior que o número de porções de string, SPLIT_PART retornará uma string
vazia. Se delimiter não for encontrado em string, o valor retornado conterá o conteúdo da parte
especificada, que poderá ser toda a string ou um valor vazio.

Tipo de retorno

Uma string CHAR ou VARCHAR, o mesmo que o parâmetro da string.

Funções de string 312

AWS Clean Rooms Referência SQL

Exemplos

O exemplo a seguir divide uma string literal em partes usando o delimitador $ e retorna a segunda
parte.

select split_part('abcdefghi','$',2)

split_part

def

O exemplo a seguir divide uma string literal em partes usando o delimitador $. Ele retorna uma string
vazia porque a parte 4 não foi encontrada.

select split_part('abcdefghi','$',4)

split_part

O exemplo a seguir divide uma string literal em partes usando o delimitador #. Ele retorna a string
inteira, que é a primeira parte, porque o delimitador não foi encontrado.

select split_part('abcdefghi','#',1)

split_part

abcdefghi

O exemplo a seguir divide o campo de timestamp LISTTIME em componentes de ano, mês e dia.

select listtime, split_part(listtime,'-',1) as year,
split_part(listtime,'-',2) as month,
split_part(split_part(listtime,'-',3),' ',1) as day
from listing limit 5;

 listtime | year | month | day
---------------------+------+-------+------
 2008-03-05 12:25:29 | 2008 | 03 | 05
 2008-09-09 08:03:36 | 2008 | 09 | 09
 2008-09-26 05:43:12 | 2008 | 09 | 26
 2008-10-04 02:00:30 | 2008 | 10 | 04

Funções de string 313

AWS Clean Rooms Referência SQL

 2008-01-06 08:33:11 | 2008 | 01 | 06

O seguinte exemplo seleciona o campo de timestamp LISTTIME e o divide no caractere '-' para
obter o mês (a segunda parte da string LISTTIME) e, então, conta o número de entradas para cada
mês:

select split_part(listtime,'-',2) as month, count(*)
from listing
group by split_part(listtime,'-',2)
order by 1, 2;

 month | count
-------+-------
 01 | 18543
 02 | 16620
 03 | 17594
 04 | 16822
 05 | 17618
 06 | 17158
 07 | 17626
 08 | 17881
 09 | 17378
 10 | 17756
 11 | 12912
 12 | 4589

Função SUBSTRING

Retorna o subconjunto de uma string com base na posição inicial especificada da string.

Se a entrada for uma cadeia de caracteres, a posição inicial e o número de caracteres extraídos
são baseados nos caracteres, e não bytes, de forma que caracteres multibyte são contados como
caracteres simples. Se a entrada for uma expressão binária, a posição inicial e a substring extraída
são baseadas em bytes. Você não pode especificar um comprimento negativo, mas pode especificar
uma posição inicial negativa.

Sintaxe

SUBSTRING(charactestring FROM start_position [FOR numbecharacters])

SUBSTRING(charactestring, start_position, numbecharacters)

Funções de string 314

AWS Clean Rooms Referência SQL

SUBSTRING(binary_expression, start_byte, numbebytes)

SUBSTRING(binary_expression, start_byte)

Argumentos

cadeia de caracteres

A string a ser pesquisada. Tipos de dados não caracteres são tratados como uma string.

start_position

A posição dentro da sequência para começar a extração, começando em 1. A start_position é
baseada no número de caracteres, e não bytes, de forma que caracteres multibyte são contados
como caracteres simples. Esse número pode ser negativo.

caracteres numéricos

O número de caracteres a extrair (o comprimento da substring). Os caracteres numéricos são
baseados no número de caracteres, não em bytes, de modo que os caracteres de vários bytes
sejam contados como caracteres únicos. Esse número não pode ser negativo.

start_byte

A posição dentro da expressão binária para começar a extração, começando por 1. Esse número
pode ser negativo.

número de bytes

O número de bytes a serem extraídos, ou seja, o comprimento da substring. Esse número não
pode ser negativo.

Tipo de retorno

VARCHAR

Notas de uso para cadeias de caracteres

O seguinte exemplo retorna uma string de quatro caracteres começando com o sexto caractere.

select substring('caterpillar',6,4);
substring

Funções de string 315

AWS Clean Rooms Referência SQL

pill
(1 row)

Se os caracteres start_position + numbecharacters excederem o comprimento da string,
SUBSTRING retornará uma substring começando da start_position até o final da string. Por exemplo:

select substring('caterpillar',6,8);
substring

pillar
(1 row)

Se start_position for negativa ou 0, a função SUBSTRING retornará uma substring começando
no primeiro caractere da string com um comprimento de start_position + numbecharacters
-1. Por exemplo:

select substring('caterpillar',-2,6);
substring

cat
(1 row)

Se start_position + numbecharacters -1 for menor ou igual a zero, a SUBSTRING retornará
uma string vazia. Por exemplo:

select substring('caterpillar',-5,4);
substring

(1 row)

Exemplos

O seguinte exemplo retorna o mês da string LISTTIME na tabela LISTING:

select listid, listtime,
substring(listtime, 6, 2) as month
from listing
order by 1, 2, 3
limit 10;

Funções de string 316

AWS Clean Rooms Referência SQL

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

O seguinte exemplo é o mesmo que o exemplo acima, mas usa a opção FROM...FOR:

select listid, listtime,
substring(listtime from 6 for 2) as month
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

Não é possível usar a SUBSTRING para extrair previsivelmente o prefixo de uma string que possa
conter caracteres multibyte, pois é necessário especificar o comprimento de uma string multibyte
com base no número de bytes, e não no número de caracteres. Para extrair o segmento inicial de
uma sequência com base no comprimento em bytes, você pode CAST a string como VARCHAR
(byte_length) para truncar a string, onde byte_length é o tamanho exigido. O seguinte exemplo extrai
os primeiros cinco bytes da string 'Fourscore and seven'.

Funções de string 317

AWS Clean Rooms Referência SQL

select cast('Fourscore and seven' as varchar(5));

varchar

Fours

O exemplo a seguir retorna o nome Ana que aparece após o último espaço na string de
entrada Silva, Ana.

select reverse(substring(reverse('Silva, Ana'), 1, position(' ' IN reverse('Silva,
 Ana'))))

 reverse

 Ana

Função TRANSLATE

Para dada expressão, substitui todas as ocorrências dos caracteres especificados pelos substitutos
especificados. Os caracteres existentes são mapeados aos caracteres de substituição pelas
suas posições nos argumentos characters_to_replace e characters_to_substitute. Se mais
caracteres estiverem especificados no argumento characters_to_replace que no argumento
characters_to_substitute, os caracteres adicionais do argumento characters_to_replace serão
omitidos do valor de retorno.

TRANSLATE é semelhante a Função REPLACE e Função REGEXP_REPLACE, exceto que
REPLACE substitui uma string inteira por outra string e REGEXP_REPLACE permite que você
pesquise uma string quanto a um padrão de expressão regular, enquanto TRANSLATE faz várias
substituições de caracteres simples.

Se qualquer um dos argumentos for nulo, o retorno será NULL.

Sintaxe

TRANSLATE (expression, characters_to_replace, characters_to_substitute)

Argumentos

expressão

A expressão a ser traduzida.

Funções de string 318

AWS Clean Rooms Referência SQL

characters_to_replace

Uma string contendo os caracteres a serem substituídos.

characters_to_substitute

Uma string contendo os caracteres a substituir.

Tipo de retorno

VARCHAR

Exemplos

O seguinte exemplo substitui vários caracteres em uma string:

select translate('mint tea', 'inea', 'osin');

translate

most tin

O seguinte exemplo substitui o sinal (@) por um ponto final para todos os valores em uma coluna:

select email, translate(email, '@', '.') as obfuscated_email
from users limit 10;

email obfuscated_email

Etiam.laoreet.libero@sodalesMaurisblandit.edu
 Etiam.laoreet.libero.sodalesMaurisblandit.edu
amet.faucibus.ut@condimentumegetvolutpat.ca
 amet.faucibus.ut.condimentumegetvolutpat.ca
turpis@accumsanlaoreet.org turpis.accumsanlaoreet.org
ullamcorper.nisl@Cras.edu ullamcorper.nisl.Cras.edu
arcu.Curabitur@senectusetnetus.com arcu.Curabitur.senectusetnetus.com
ac@velit.ca ac.velit.ca
Aliquam.vulputate.ullamcorper@amalesuada.org
 Aliquam.vulputate.ullamcorper.amalesuada.org
vel.est@velitegestas.edu vel.est.velitegestas.edu
dolor.nonummy@ipsumdolorsit.ca dolor.nonummy.ipsumdolorsit.ca
et@Nunclaoreet.ca et.Nunclaoreet.ca

Funções de string 319

AWS Clean Rooms Referência SQL

O seguinte exemplo substitui espaços por sublinhados e remove pontos finais de todos os valores
em uma coluna:

select city, translate(city, ' .', '_') from users
where city like 'Sain%' or city like 'St%'
group by city
order by city;

city translate
--------------+------------------
Saint Albans Saint_Albans
Saint Cloud Saint_Cloud
Saint Joseph Saint_Joseph
Saint Louis Saint_Louis
Saint Paul Saint_Paul
St. George St_George
St. Marys St_Marys
St. Petersburg St_Petersburg
Stafford Stafford
Stamford Stamford
Stanton Stanton
Starkville Starkville
Statesboro Statesboro
Staunton Staunton
Steubenville Steubenville
Stevens Point Stevens_Point
Stillwater Stillwater
Stockton Stockton
Sturgis Sturgis

Função TRIM

Apara uma string removendo os espaços em branco iniciais e finais ou removendo caracteres iniciais
ou finais que correspondem a uma string opcional especificada.

Sintaxe

TRIM([BOTH] [trim_chars FROM] string

Funções de string 320

AWS Clean Rooms Referência SQL

Argumentos

trim_chars

(Opcional) Os caracteres a serem aparados da string. Se este parâmetro for omitido, espaços em
branco serão aparados.

string

A string a ser aparada.

Tipo de retorno

A função TRIM retorna uma string VARCHAR ou CHAR. Se você usar a função TRIM com um
comando SQL, converte AWS Clean Rooms implicitamente os resultados em VARCHAR. Se
você usar a função TRIM na lista SELECT para uma função SQL, AWS Clean Rooms isso não
converte implicitamente os resultados e talvez seja necessário realizar uma conversão explícita para
evitar um erro de incompatibilidade de tipos de dados. Consulte a Função CAST função para obter
informações sobre conversões explícitas.

Exemplo

O seguinte exemplo apara espaços em branco inicias e finais da string ' abc ':

select ' abc ' as untrim, trim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

O seguinte exemplo remove as aspas duplas que cercam a string "dog":

select trim('"' FROM '"dog"');

btrim

dog

TRIM remove qualquer um dos caracteres em trim_chars quando eles aparecem no início da
string. O seguinte exemplo apara os caracteres “C”, “D” e “G” quando eles aparecem no início de
VENUENAME, que é uma coluna VARCHAR.

Funções de string 321

AWS Clean Rooms Referência SQL

select venueid, venuename, trim(venuename, 'CDG')
from venue
where venuename like '%Park'
order by 2
limit 7;

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park
 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

Função UPPER

Converte uma string em letras maiúsculas. UPPER é compatível com caracteres UTF-8 multibyte,
até o máximo de quatro bytes por caractere.

Sintaxe

UPPER(string)

Argumentos

string

O parâmetro de entrada é uma string VARCHAR (ou qualquer outro tipo de dados, como CHAR,
que pode ser convertido implicitamente para VARCHAR).

Tipo de retorno

A função UPPER retorna uma string de caracteres que é o mesmo tipo de dados da string de
entrada.

Exemplos

O seguinte exemplo converte o campo CATNAME para maiúsculas:

Funções de string 322

AWS Clean Rooms Referência SQL

select catname, upper(catname) from category order by 1,2;

 catname | upper
----------+-----------
Classical | CLASSICAL
Jazz | JAZZ
MLB | MLB
MLS | MLS
Musicals | MUSICALS
NBA | NBA
NFL | NFL
NHL | NHL
Opera | OPERA
Plays | PLAYS
Pop | POP
(11 rows)

Função UUID

A função UUID gera um Identificador Único Universal (UUID).

UUIDs são identificadores globais exclusivos que são comumente usados para fornecer
identificadores exclusivos para várias finalidades, como:

• Identificação de registros de banco de dados ou outras entidades de dados.

• Gerando nomes ou chaves exclusivos para arquivos, diretórios ou outros recursos.

• Rastreamento e correlação de dados em sistemas distribuídos.

• Fornecendo identificadores exclusivos para pacotes de rede, componentes de software ou outros
ativos digitais.

A função UUID gera um valor de UUID que é exclusivo com uma probabilidade muito alta, mesmo
em sistemas distribuídos e por longos períodos de tempo. UUIDs normalmente são gerados usando
uma combinação do timestamp atual, do endereço de rede do computador e outros dados aleatórios
ou pseudo-aleatórios, garantindo que é altamente improvável que cada UUID gerado entre em
conflito com qualquer outro UUID.

No contexto de uma consulta SQL, a função UUID pode ser usada para gerar identificadores
exclusivos para novos registros inseridos em um banco de dados ou para fornecer chaves exclusivas

Funções de string 323

AWS Clean Rooms Referência SQL

para particionamento de dados, indexação ou outras finalidades em que um identificador exclusivo
seja necessário.

Note

A função UUID não é determinística.

Sintaxe

uuid()

Argumentos

A função UUID não aceita argumentos.

Tipo de retorno

O UUID retorna uma string de identificador exclusivo universal (UUID). O valor é retornado como
uma string canônica de 36 caracteres do UUID.

Exemplo

O exemplo a seguir gera um Identificador Único Universal (UUID). A saída é uma string de 36
caracteres representando um identificador universal exclusivo.

SELECT uuid();
 46707d92-02f4-4817-8116-a4c3b23e6266

Funções relacionadas à privacidade

AWS Clean Rooms fornece funções para ajudá-lo a cumprir a conformidade relacionada à
privacidade com as seguintes especificações.

• Global Privacy Platform (GPP) — Uma especificação do Interactive Advertising Bureau (IAB) que
estabelece uma estrutura global e padronizada para privacidade on-line e uso de dados. Para
obter mais informações sobre as especificações técnicas do GPP, consulte a documentação da
Global Privacy Platform em GitHub.

Funções relacionadas à privacidade 324

https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform

AWS Clean Rooms Referência SQL

• Estrutura de Transparência e Consentimento (TCF) — Um componente essencial do GPP, lançado
em 2020, que fornece uma estrutura técnica padronizada para ajudar as empresas a cumprir
os regulamentos de privacidade, como o Regulamento Geral de Proteção de Dados (GDPR)
da UE. O TCF permite que os clientes concedam ou neguem o consentimento para a coleta e
processamento de dados. Para obter mais informações sobre as especificações técnicas do TCF,
consulte a documentação do TCF em. GitHub

Tópicos

• função consent_gpp_v1_decode

• função consent_tcf_v2_decode

função consent_gpp_v1_decode

A consent_gpp_v1_decode função é usada para decodificar os dados de consentimento da
Global Privacy Platform (GPP) v1. Ele usa a string de consentimento codificada como entrada e
retorna os dados de consentimento decodificados, que incluem informações sobre as preferências
de privacidade e as opções de consentimento do usuário. Essa função é útil ao trabalhar com dados
que incluem informações de consentimento do GPP v1, pois permite acessar e analisar os dados de
consentimento em um formato estruturado.

Sintaxe

consent_gpp_v1_decode(gpp_string)

Argumentos

cadeia de caracteres gpp

A string de consentimento codificada do GPP v1.

Retornos

O dicionário retornado inclui os seguintes pares de valores-chave:

• version: A versão da especificação GPP usada (atualmente 1).

• cmpId: o ID da Plataforma de Gerenciamento de Consentimento (CMP) que codificou a sequência
de caracteres de consentimento.

Funções relacionadas à privacidade 325

https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2

AWS Clean Rooms Referência SQL

• cmpVersion: a versão do CMP que codificou a sequência de caracteres de consentimento.

• consentScreen: o ID da tela na interface do usuário do CMP em que o usuário forneceu
consentimento.

• consentLanguage: O código do idioma das informações de consentimento.

• vendorListVersion: a versão da lista de fornecedores usada.

• publisherCountryCode: O código do país da editora.

• purposeConsent: uma lista de números inteiros representando as finalidades com as quais o
usuário consentiu.

• purposeLegitimateInterest: Uma lista de propósitos IDs para os quais o interesse legítimo
do usuário foi comunicado de forma transparente.

• specialFeatureOptIns: uma lista de números inteiros representando os recursos especiais
pelos quais o usuário optou.

• vendorConsent: uma lista de fornecedores com os IDs quais o usuário consentiu.

• vendorLegitimateInterest: uma lista de fornecedores IDs para os quais o interesse legítimo
do usuário foi comunicado de forma transparente.

Exemplo

O exemplo a seguir usa um único argumento, que é a string de consentimento codificada. Ele retorna
um dicionário contendo os dados de consentimento decodificados, incluindo informações sobre as
preferências de privacidade do usuário, as opções de consentimento e outros metadados.

SELECT * FROM consent_gpp_v1_decode('ABCDEFGHIJK');

A estrutura básica dos dados de consentimento retornados inclui informações sobre a versão da
cadeia de consentimento, os detalhes da CMP (Plataforma de Gerenciamento de Consentimento),
o consentimento do usuário e as escolhas de interesse legítimo para diferentes finalidades e
fornecedores e outros metadados.

{
 "version": 1,
 "cmpId": 12,
 "cmpVersion": 34,
 "consentScreen": 5,
 "consentLanguage": "en",

Funções relacionadas à privacidade 326

AWS Clean Rooms Referência SQL

 "vendorListVersion": 89,
 "publisherCountryCode": "US",
 "purposeConsent": [1],
 "purposeLegitimateInterests": [1],
 "specialFeatureOptins": [1],
 "vendorConsent": [1],
 "vendorLegitimateInterests": [1]}
}

função consent_tcf_v2_decode

A consent_tcf_v2_decode função é usada para decodificar os dados de consentimento do
Transparency and Consent Framework (TCF) v2. Ele usa a string de consentimento codificada
como entrada e retorna os dados de consentimento decodificados, que incluem informações sobre
as preferências de privacidade e as opções de consentimento do usuário. Essa função é útil ao
trabalhar com dados que incluem informações de consentimento do TCF v2, pois permite acessar e
analisar os dados de consentimento em um formato estruturado.

Sintaxe

consent_tcf_v2_decode(tcf_string)

Argumentos

string tcf

A string de consentimento codificada do TCF v2.

Retornos

A consent_tcf_v2_decode função retorna um dicionário contendo os dados de consentimento
decodificados de uma string de consentimento do Transparency and Consent Framework (TCF) v2.

O dicionário retornado inclui os seguintes pares de valores-chave:

Segmento principal

• version: A versão da especificação TCF usada (atualmente 2).

• created: a data e a hora em que a sequência de consentimento foi criada.

Funções relacionadas à privacidade 327

AWS Clean Rooms Referência SQL

• lastUpdated: a data e a hora em que a sequência de consentimento foi atualizada pela última
vez.

• cmpId: o ID da Plataforma de Gerenciamento de Consentimento (CMP) que codificou a sequência
de caracteres de consentimento.

• cmpVersion: a versão do CMP que codificou a sequência de caracteres de consentimento.

• consentScreen: o ID da tela na interface do usuário do CMP em que o usuário forneceu
consentimento.

• consentLanguage: O código do idioma das informações de consentimento.

• vendorListVersion: a versão da lista de fornecedores usada.

• tcfPolicyVersion: a versão da política do TCF na qual a string de consentimento se baseia.

• isServiceSpecific: um valor booleano que indica se o consentimento é específico para um
determinado serviço ou se aplica a todos os serviços.

• useNonStandardStacks: um valor booleano que indica se pilhas não padrão são usadas.

• specialFeatureOptIns: uma lista de números inteiros representando os recursos especiais
pelos quais o usuário optou.

• purposeConsent: uma lista de números inteiros representando as finalidades com as quais o
usuário consentiu.

• purposesLITransparency: uma lista de números inteiros representando as finalidades para as
quais o usuário deu transparência aos interesses legítimos.

• purposeOneTreatment: um valor booleano que indica se o usuário solicitou o “tratamento de
propósito único” (ou seja, todos os propósitos são tratados igualmente).

• publisherCountryCode: O código do país da editora.

• vendorConsent: uma lista de fornecedores com os IDs quais o usuário consentiu.

• vendorLegitimateInterest: uma lista de fornecedores IDs para os quais o interesse legítimo
do usuário foi comunicado de forma transparente.

• pubRestrictionEntry: Uma lista de restrições do editor. Esse campo contém a ID da
finalidade, o tipo de restrição e a lista de fornecedores IDs sob essa restrição de finalidade.

Segmento de fornecedores divulgado

• disclosedVendors: uma lista de números inteiros representando os fornecedores que foram
divulgados ao usuário.

Funções relacionadas à privacidade 328

AWS Clean Rooms Referência SQL

Segmento de propósitos do editor

• pubPurposesConsent: uma lista de números inteiros representando as finalidades específicas
do editor para as quais o usuário deu consentimento.

• pubPurposesLITransparency: uma lista de números inteiros representando as finalidades
específicas do editor para as quais o usuário deu transparência aos interesses legítimos.

• customPurposesConsent: uma lista de números inteiros representando as finalidades
personalizadas para as quais o usuário deu consentimento.

• customPurposesLITransparency: uma lista de números inteiros representando as finalidades
personalizadas para as quais o usuário deu transparência aos interesses legítimos.

Esses dados de consentimento detalhados podem ser usados para entender e respeitar as
preferências de privacidade do usuário ao trabalhar com dados pessoais.

Exemplo

O exemplo a seguir usa um único argumento, que é a string de consentimento codificada. Ele retorna
um dicionário contendo os dados de consentimento decodificados, incluindo informações sobre as
preferências de privacidade do usuário, as opções de consentimento e outros metadados.

from aws_clean_rooms.functions import consent_tcf_v2_decode

consent_string = "CO1234567890abcdef"
consent_data = consent_tcf_v2_decode(consent_string)

print(consent_data)

A estrutura básica dos dados de consentimento retornados inclui informações sobre a versão da
cadeia de consentimento, os detalhes da CMP (Plataforma de Gerenciamento de Consentimento),
o consentimento do usuário e as escolhas de interesse legítimo para diferentes finalidades e
fornecedores e outros metadados.

 /** core segment **/
 version: 2,
 created: "2023-10-01T12:00:00Z",
 lastUpdated: "2023-10-01T12:00:00Z",
 cmpId: 1234,
 cmpVersion: 5,

Funções relacionadas à privacidade 329

AWS Clean Rooms Referência SQL

 consentScreen: 1,
 consentLanguage: "en",
 vendorListVersion: 2,
 tcfPolicyVersion: 2,
 isServiceSpecific: false,
 useNonStandardStacks: false,
 specialFeatureOptIns: [1, 2, 3],
 purposeConsent: [1, 2, 3],
 purposesLITransparency: [1, 2, 3],
 purposeOneTreatment: true,
 publisherCountryCode: "US",
 vendorConsent: [1, 2, 3],
 vendorLegitimateInterest: [1, 2, 3],
 pubRestrictionEntry: [
 { purpose: 1, restrictionType: 2, restrictionDescription: "Example
 restriction" },
],

 /** disclosed vendor segment **/
 disclosedVendors: [1, 2, 3],

 /** publisher purposes segment **/
 pubPurposesConsent: [1, 2, 3],
 pubPurposesLITransparency: [1, 2, 3],
 customPurposesConsent: [1, 2, 3],
 customPurposesLITransparency: [1, 2, 3],
};

Funções de janela

Usando funções da janela, é possível criar consultas analíticas empresariais de forma mais eficiente.
Funções de janela operam em uma partição ou “janela” de um conjunto de resultados e retornam um
valor para cada linha naquela janela. Por outro lado, funções sem janela executam seus cálculos em
relação a cada linha no conjunto de resultados. Diferente de funções de grupo que agregam linhas
de resultado, as funções de janela retêm todas as linhas na expressão da tabela.

Os valores retornados são calculados usando valores dos conjuntos de linhas dessa janela. Para
cada linha da tabela, a janela define um conjunto de linhas que é usado para computar atributos
adicionais. Um janela é definida usando uma especificação de janela (a cláusula OVER) se baseia
em três conceitos principais:

• Particionamento da janela, que forma grupos de linhas (cláusula PARTITION)

Funções de janela 330

AWS Clean Rooms Referência SQL

• Ordenação da janela, que define uma ordem ou sequência de linhas dentro de cada partição
(cláusula ORDER BY)

• Quadros da janela, que são definidos em relação a cada linha para restringir ainda mais o conjunto
de linhas (especificação de ROWS)

As funções da janela são o último conjunto de operações executadas em uma consulta, exceto pela
cláusula ORDER BY final. Todas as junções e todas as cláusulas WHERE, GROUP BY e HAVING
são concluídas antes do processamento das funções da janela. Portanto, as funções da janela
podem aparecer somente na lista de seleção ou na cláusula ORDER BY. Você pode usar várias
funções da janela em uma única consulta com diferentes cláusulas de quadro. Você também pode
usar funções da janela em outras expressões escalares, tal como CASE.

Resumo da sintaxe de funções da janela

As funções de janela seguem uma sintaxe padrão, mostrada a seguir.

function (expression) OVER (
[PARTITION BY expr_list]
[ORDER BY order_list [frame_clause]])

Aqui, function é uma das funções descritas nesta seção.

A expr_list é como indicado a seguir.

expression | column_name [, expr_list]

A order_list é como a seguir.

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order_list]

O frame_clause é como a seguir.

ROWS
{ UNBOUNDED PRECEDING | unsigned_value PRECEDING | CURRENT ROW } |

{ BETWEEN
{ UNBOUNDED PRECEDING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW}

Funções de janela 331

AWS Clean Rooms Referência SQL

AND
{ UNBOUNDED FOLLOWING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW }}

Argumentos

função

A função de janela. Para obter detalhes, consulte as descrições individuais da função.

OVER

A cláusula que define a especificação da janela. A cláusula OVER é obrigatória para funções da
janela e diferencia funções da janela de outras funções SQL.

PARTITION BY expr_list

(Opcional) A cláusula PARTITION BY subdivide o conjunto de resultados em partições, bem
como a cláusula GROUP BY. Se uma cláusula de partição estiver presente, a função será
calculada para as linhas em cada partição. Se nenhuma cláusula de partição estiver especificada,
uma única partição contém a tabela inteira e a função é computada para esta tabela completa.

As funções de classificação DENSE_RANK, NTILE, RANK e ROW_NUMBER exigem uma
comparação global de todas as linhas no conjunto de resultados. Quando uma cláusula
PARTITION BY é utilizada, o otimizador de consulta pode executar cada agregação em paralelo,
distribuindo a workload em várias fatias de acordo com as partições. Se a cláusula PARTITION
BY não estiver presente, a etapa de agregação deverá ser executada em série em uma única
fatia, o que poderá ter um impacto negativo considerável na performance, sobretudo para
grandes clusters.

AWS Clean Roomsnão oferece suporte a literais de string nas cláusulas PARTITION BY.

ORDER BY order_list

(Opcional) A função da janela é aplicada às linhas dentro de cada partição classificada de
acordo com a especificação do pedido em ORDER BY. Esta cláusula ORDER BY é diferente e
totalmente não relacionada a uma cláusula ORDER BY na frame_clause. A cláusula ORDER BY
pode ser usada sem a cláusula PARTITION BY.

Para as funções de classificação, a cláusula ORDER BY identifica as medidas para os valores de
classificação. Para funções de agregação, as linhas particionadas devem ser ordenadas antes
que a função agregada seja computada para cada quadro. Para obter mais informações sobre os
tipos de função da janela, consulte Funções de janela.

Funções de janela 332

AWS Clean Rooms Referência SQL

Os identificadores de coluna ou expressões que avaliam os identificadores de coluna são
obrigatórios na lista de ordenação. Nem constantes ou expressões constantes podem ser usadas
como substitutos para nomes de coluna.

Valores NULL são tratados como seu próprio grupo, ordenados e classificados de acordo
com a opção NULLS FIRST ou NULLS LAST. Por padrão, os valores NULL são ordenados e
classificados por último na ordem ASC e são ordenados e classificados primeiro na ordem DESC.

AWS Clean Roomsnão oferece suporte a literais de string nas cláusulas ORDER BY.

Se a cláusula ORDER BY for omitida, a ordem das linhas não será determinística.

Note

Em qualquer sistema paraleloAWS Clean Rooms, como quando uma cláusula ORDER
BY não produz uma ordenação exclusiva e total dos dados, a ordem das linhas não é
determinística. Ou seja, se a expressão ORDER BY produzir valores duplicados (uma
ordenação parcial), a ordem de retorno dessas linhas poderá variar de uma sequência
AWS Clean Rooms para outra. Por sua vez, funções da janela podem retornar resultados
inesperados ou inconsistentes. Para obter mais informações, consulte Ordenação
exclusiva de dados para funções da janela.

column_name

Nome de uma coluna a ser particionada por ou ordenada por.

ASC | DESC

Opção que define a ordem de classificação para a expressão, da seguinte forma:

• ASC: ascendente (por exemplo, de valores numéricos menores para maiores e de "A" a "Z"
para strings de caracteres). Se nenhuma opção é especificada, os dados são classificados na
ordem ascendente por padrão.

• DESC: descendente (de valores numéricos maiores para menores; de "Z" a "A" para strings).

NULLS FIRST | NULLS LAST

Opção que especifica se NULLS devem ser ordenados primeiro, antes de valores não nulos, ou
por último, após valores não nulos. Por padrão, NULLs são ordenados e classificados por último
na ordem ASC e ordenados e classificados primeiro na ordem DESC.

Funções de janela 333

AWS Clean Rooms Referência SQL

frame_clause

Para funções agregadas, a cláusula do quadro refina ainda mais o conjunto de linhas na
janela de uma função ao usar ORDER BY. Ele permite que você inclua ou exclua conjuntos de
linhas no resultado ordenado. A cláusula de quadro consiste na palavra-chave ROWS e nos
especificadores associados.

A cláusula frame não se aplica a funções de classificação. Além disso, a cláusula frame não é
necessária quando nenhuma cláusula ORDER BY é usada na cláusula OVER para uma função
agregada. Se uma cláusula ORDER BY é usada para uma função agregada, uma cláusula de
quadro explícita é necessária.

Quando nenhuma cláusula ORDER BY é especificada, o quadro implícito é ilimitado, equivalente
a ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ROWS

Especificando um deslocamento físico da linha atual especificando um deslocamento físico da
linha atual.

Essa cláusula especifica as linhas na janela ou particionamento atual ao qual o valor da linha
atual dever ser combinado. Ela usa os argumentos que especificam a posição da linha, que
pode ser antes ou depois da linha atual. O ponto de referência para todos os quadros de janela
é a linha atual. Cada linha se torna a linha atual, por sua vez, à medida que o quadro de janela
avança pela partição.

O quadro pode ser um conjunto simples de linhas até e incluindo a linha atual.

{UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW}

Ou pode ser um conjunto de linhas entre dois limites.

BETWEEN
{ UNBOUNDED PRECEDING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }
AND
{ UNBOUNDED FOLLOWING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }

UNBOUNDED PRECEDING indica que a janela começa na primeira linha da partição;
deslocamento PRECEDING indica que a janela começa um número de linhas equivalentes ao
valor do deslocamento antes da linha atual. UNBOUNDED PRECEDING é o padrão.

Funções de janela 334

AWS Clean Rooms Referência SQL

CURRENT ROW indica que a janela começa ou termina na linha atual.

UNBOUNDED FOLLOWING indica que a janela termina na última linha da partição;
deslocamento FOLLOWING indica que a janela termina um número de linhas equivalentes ao
valor do deslocamento depois da linha atual.

O offset identifica um número físico de linhas antes ou depois da linha atual. Nesse caso, o
deslocamento deve ser uma constante que retorna um valor numérico positivo. Por exemplo, 5
FOLLOWING termina o quadro 5 linhas após a linha atual.

Onde BETWEEN não é especificado, o quadro é limitado implicitamente pela linha atual. Por
exemplo, ROWS 5 PRECEDING é igual a ROWS BETWEEN 5 PRECEDING AND CURRENT ROW.
Além disso, ROWS UNBOUNDED FOLLOWING é igual a ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

Note

Você não pode especificar um quadro em que o limite inicial seja maior do que o limite
final. Por exemplo, você não pode especificar nenhum dos quadros a seguir.

between 5 following and 5 preceding
between current row and 2 preceding
between 3 following and current row

Ordenação exclusiva de dados para funções da janela

Se uma cláusula ORDER BY para uma função da janela não produz uma ordem única e total dos
dados, a ordem das linhas não é determinística. Se a expressão ORDER BY produzir valores
duplicados (uma ordenação parcial), a ordem de retorno dessas linhas pode variar em várias
execuções. Nesse caso, as funções da janela também podem retornar resultados inesperados ou
inconsistentes.

Por exemplo, a consulta a seguir retorna resultados diferentes ao longo de várias execuções. Esses
resultados diferentes ocorrem porque order by dateid não produz uma ordenação exclusiva dos
dados para a função da janela SUM.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid

Funções de janela 335

AWS Clean Rooms Referência SQL

from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 1730.00 | 1730.00
1827 | 708.00 | 2438.00
1827 | 234.00 | 2672.00
...

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 234.00 | 234.00
1827 | 472.00 | 706.00
1827 | 347.00 | 1053.00
...

Nesse caso, adicionar uma segunda coluna ORDER BY à função da janela pode resolver o
problema.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid, pricepaid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+---------
1827 | 234.00 | 234.00
1827 | 337.00 | 571.00
1827 | 347.00 | 918.00
...

Funções compatíveis

AWS Clean RoomsO Spark SQL suporta dois tipos de funções de janela: agregação e classificação.

Veja a seguir as funções agregadas compatíveis:

Funções de janela 336

AWS Clean Rooms Referência SQL

• Função de janela CUME_DIST

• Função de janela DENSE_RANK

• Função FIRST window

• Função de janela FIRST_VALUE

• Função de janela LAG

• Função LAST window

• Função de janela LAST_VALUE

• Função de janela LEAD

Veja a seguir as funções de classificação compatíveis:

• Função de janela DENSE_RANK

• Função de janela PERCENT_RANK

• Função de janela RANK

• Função de janela ROW_NUMBER

Amostra de tabela para exemplos de funções de janela

É possível encontrar exemplos de função de janela específicos com cada descrição de função.
Alguns dos exemplos usam uma tabela chamada WINSALES, que contém 11 linhas, conforme
mostrado na tabela a seguir.

SALESID DATEID SELLERID BUYERID QTY QTY_SHIPP
ED

30001 8/2/2003 3 B 10 10

10001 12/24/2003 1 C 10 10

10005 12/24/2003 1 A 30

40001 1/9/2004 4 A 40

10006 1/18/2004 1 C 10

Funções de janela 337

AWS Clean Rooms Referência SQL

SALESID DATEID SELLERID BUYERID QTY QTY_SHIPP
ED

20001 2/12/2004 2 B 20 20

40005 2/12/2004 4 A 10 10

20002 2/16/2004 2 C 20 20

30003 4/18/2004 3 B 15

30004 4/18/2004 3 B 20

30007 9/7/2004 3 C 30

Função de janela CUME_DIST

Calcula a distribuição cumulativa de um valor em uma janela ou partição. Assumindo uma ordem
ascendente, a distribuição cumulativa é determinada usando esta fórmula:

count of rows with values <= x / count of rows in the window or partition

onde x é igual ao valor na linha atual da coluna especificada na cláusula ORDER BY. O seguinte
conjunto de dados ilustra O uso desta fórmula:

Row# Value Calculation CUME_DIST
1 2500 (1)/(5) 0.2
2 2600 (2)/(5) 0.4
3 2800 (3)/(5) 0.6
4 2900 (4)/(5) 0.8
5 3100 (5)/(5) 1.0

O intervalo de valor de retorno é >0 a 1, inclusive.

Sintaxe

CUME_DIST ()
OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]

Funções de janela 338

AWS Clean Rooms Referência SQL

)

Argumentos

OVER

Uma cláusula que especifica o particionamento da janela. A cláusula OVER não pode conter uma
especificação de quadro da janela.

PARTITION BY partition_expression

Opcional. Uma expressão que define o intervalo de registros para cada grupo na cláusula OVER.

ORDER BY order_list

A expressão na qual calcular a distribuição cumulativa. A expressão deve ter um tipo de dados
numérico ou ser implicitamente conversível para um. Se ORDER BY for omitida, o valor de
retorno será 1 para todas as linhas.

Se ORDER BY não produzir uma ordem única, a ordem das linhas não é determinística. Para
obter mais informações, consulte Ordenação exclusiva de dados para funções da janela.

Tipo de retorno

FLOAT8

Exemplos

O seguinte exemplo calcula a distribuição cumulativa da quantidade para cada vendedor:

select sellerid, qty, cume_dist()
over (partition by sellerid order by qty)
from winsales;

sellerid qty cume_dist
--
1 10.00 0.33
1 10.64 0.67
1 30.37 1
3 10.04 0.25
3 15.15 0.5
3 20.75 0.75
3 30.55 1

Funções de janela 339

AWS Clean Rooms Referência SQL

2 20.09 0.5
2 20.12 1
4 10.12 0.5
4 40.23 1

Para uma descrição da tabela WINSALES, consulte Amostra de tabela para exemplos de funções de
janela.

Função de janela DENSE_RANK

A função de janela DENSE_RANK determina a classificação de um valor em um grupo de valores
com base na expressão ORDER BY da cláusula OVER. Se a cláusula opcional PARTITION BY
estiver presente, as classificações são redefinidas para cada grupo de linhas. Linhas com valores
iguais para os critérios de classificação recebem a mesma classificação. A função DENSE_RANK
difere de RANK em um aspecto: se duas ou mais linhas empatarem, não há uma lacuna na
sequência de valores classificados. Por exemplo, se duas linhas são classificadas como 1, a
classificação seguinte é 2.

Você pode ter funções de classificação com diferentes cláusulas PARTITION BY e ORDER BY na
mesma consulta.

Sintaxe

DENSE_RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Argumentos

()

A função não aceita argumentos, mas os parênteses vazios são necessários.

OVER

As cláusulas de janela para a função DENSE_RANK.

PARTITION BY expr_list

Opcional. Uma ou várias expressões que definem a janela.

Funções de janela 340

AWS Clean Rooms Referência SQL

ORDER BY order_list

Opcional. A expressão na qual os valores de classificação se baseiam. Se nenhuma PARTITION
BY for especificada, ORDER BY usa a tabela completa. Se ORDER BY for omitida, o valor de
retorno será 1 para todas as linhas.

Se ORDER BY não produzir uma ordem única, a ordem das linhas não é determinística. Para
obter mais informações, consulte Ordenação exclusiva de dados para funções da janela.

Tipo de retorno

INTEGER

Exemplos

O exemplo a seguir ordena a mesa pela quantidade vendida (em ordem decrescente) e atribui uma
classificação densa e uma classificação regular a cada linha. Os resultados são classificados após a
aplicação dos resultados da função de janela.

select salesid, qty,
dense_rank() over(order by qty desc) as d_rnk,
rank() over(order by qty desc) as rnk
from winsales
order by 2,1;

salesid | qty | d_rnk | rnk
---------+-----+-------+-----
10001 | 10 | 5 | 8
10006 | 10 | 5 | 8
30001 | 10 | 5 | 8
40005 | 10 | 5 | 8
30003 | 15 | 4 | 7
20001 | 20 | 3 | 4
20002 | 20 | 3 | 4
30004 | 20 | 3 | 4
10005 | 30 | 2 | 2
30007 | 30 | 2 | 2
40001 | 40 | 1 | 1
(11 rows)

Funções de janela 341

AWS Clean Rooms Referência SQL

Observe a diferença nas classificações atribuídas ao mesmo conjunto de linhas quando as funções
DENSE_RANK e RANK são usadas lado a lado na mesma consulta. Para uma descrição da tabela
WINSALES, consulte Amostra de tabela para exemplos de funções de janela.

O exemplo a seguir particiona a tabela por SELLERID e ordena cada partição pela quantidade (em
ordem decrescente) e atribui uma classificação densa a cada linha. Os resultados são classificados
após a aplicação dos resultados da função de janela.

select salesid, sellerid, qty,
dense_rank() over(partition by sellerid order by qty desc) as d_rnk
from winsales
order by 2,3,1;

salesid | sellerid | qty | d_rnk
---------+----------+-----+-------
10001 | 1 | 10 | 2
10006 | 1 | 10 | 2
10005 | 1 | 30 | 1
20001 | 2 | 20 | 1
20002 | 2 | 20 | 1
30001 | 3 | 10 | 4
30003 | 3 | 15 | 3
30004 | 3 | 20 | 2
30007 | 3 | 30 | 1
40005 | 4 | 10 | 2
40001 | 4 | 40 | 1
(11 rows)

Para uma descrição da tabela WINSALES, consulte Amostra de tabela para exemplos de funções de
janela.

Função FIRST window

Dado um conjunto ordenado de linhas, FIRST retorna o valor da expressão especificada em relação
à primeira linha na moldura da janela.

Para obter informações sobre como selecionar a última linha no quadro, consulte Função LAST
window.

Sintaxe

FIRST(expression)[IGNORE NULLS | RESPECT NULLS]

Funções de janela 342

AWS Clean Rooms Referência SQL

OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera.

IGNORE NULLS

Quando essa opção é usada com FIRST, a função retorna o primeiro valor no quadro que não é
NULL (ou NULL se todos os valores forem NULL).

RESPECT NULLS

Indica que AWS Clean Rooms deve incluir valores nulos na determinação de qual linha usar.
RESPECT NULLS é compatível por padrão se você não especificar IGNORE NULLS.

OVER

Introduz as cláusulas de janela para a função.

PARTITION BY expr_list

Define a janela para a função em termos de uma ou mais expressões.

ORDER BY order_list

Classifica as linhas dentro de cada partição. Se nenhuma cláusula PARTITION BY for
especificada, ORDER BY classifica a tabela inteira. Se você especificar uma cláusula ORDER
BY, você também deve especificar uma frame_clause.

Os resultados da função FIRST dependem da ordem dos dados. Os resultados são não
determinísticos nos seguintes casos:

• Quando uma cláusula ORDER BY é especificada e uma partição contém dois valores
diferentes para uma expressão

• Quando uma expressão avalia para valores diferentes que correspondem ao mesmo valor na
lista ORDER BY.

frame_clause

Se uma cláusula ORDER BY é usada para uma função agregada, uma cláusula de quadro
explícita é necessária. A cláusula de quadro refina o conjunto de linhas na janela de uma função,

Funções de janela 343

AWS Clean Rooms Referência SQL

incluindo ou excluindo conjuntos de linhas no resultado ordenado. A cláusula de quadro consiste
na palavra-chave ROWS e nos especificadores associados. Consulte Resumo da sintaxe de
funções da janela.

Tipo de retorno

Essas funções oferecem suporte a expressões que usam tipos de AWS Clean Rooms dados
primitivos. O tipo de retorno é igual ao tipo de dados da expressão.

Exemplos

O seguinte exemplo retorna a capacidade de acomodação para cada local de evento da tabela
VENUE com os resultados ordenados por capacidade (alta a baixa). A função FIRST é usada para
selecionar o nome do local que corresponde à primeira fila no quadro: nesse caso, a fila com o
maior número de assentos. Os resultados são particionados por estado, portanto quando o valor
VENUESTATE muda, um novo primeiro valor é selecionado. O quadro da janela não é vinculado,
portanto o mesmo primeiro valor é selecionado para cada linha em cada partição.

Para a Califórnia, Qualcomm Stadium tem mais alto número de assentos (70561), portanto esse
nome é o primeiro valor para todas as linhas da partição CA.

select venuestate, venueseats, venuename,
first(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field

Funções de janela 344

AWS Clean Rooms Referência SQL

DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Função de janela FIRST_VALUE

Considerando um conjunto de linhas ordenado, FIRST_VALUE retorna o valor da expressão
especificada em relação à primeira linha no quadro de janela.

Para obter informações sobre como selecionar a última linha no quadro, consulte Função de janela
LAST_VALUE.

Sintaxe

FIRST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera.

IGNORE NULLS

Quando essa opção é usada com FIRST_VALUE, a função retorna o primeiro valor no quadro
que não seja NULL (ou NULL se todos os valores forem NULL).

RESPECT NULLS

Indica que AWS Clean Rooms deve incluir valores nulos na determinação de qual linha usar.
RESPECT NULLS é compatível por padrão se você não especificar IGNORE NULLS.

OVER

Introduz as cláusulas de janela para a função.

PARTITION BY expr_list

Define a janela para a função em termos de uma ou mais expressões.

Funções de janela 345

AWS Clean Rooms Referência SQL

ORDER BY order_list

Classifica as linhas dentro de cada partição. Se nenhuma cláusula PARTITION BY for
especificada, ORDER BY classifica a tabela inteira. Se você especificar uma cláusula ORDER
BY, você também deve especificar uma frame_clause.

Os resultados da função FIRST_VALUE dependem da ordem dos dados. Os resultados são não
determinísticos nos seguintes casos:

• Quando uma cláusula ORDER BY é especificada e uma partição contém dois valores
diferentes para uma expressão

• Quando uma expressão avalia para valores diferentes que correspondem ao mesmo valor na
lista ORDER BY.

frame_clause

Se uma cláusula ORDER BY é usada para uma função agregada, uma cláusula de quadro
explícita é necessária. A cláusula de quadro refina o conjunto de linhas na janela de uma função,
incluindo ou excluindo conjuntos de linhas no resultado ordenado. A cláusula de quadro consiste
na palavra-chave ROWS e nos especificadores associados. Consulte Resumo da sintaxe de
funções da janela.

Tipo de retorno

Essas funções oferecem suporte a expressões que usam tipos de AWS Clean Rooms dados
primitivos. O tipo de retorno é igual ao tipo de dados da expressão.

Exemplos

O seguinte exemplo retorna a capacidade de acomodação para cada local de evento da tabela
VENUE com os resultados ordenados por capacidade (alta a baixa). A função FIRST_VALUE é
usada para selecionar o local de evento que corresponde à primeira linha no quadro: nesse caso,
a linha com o mais alto número de assentos. Os resultados são particionados por estado, portanto
quando o valor VENUESTATE muda, um novo primeiro valor é selecionado. O quadro da janela não
é vinculado, portanto o mesmo primeiro valor é selecionado para cada linha em cada partição.

Para a Califórnia, Qualcomm Stadium tem mais alto número de assentos (70561), portanto esse
nome é o primeiro valor para todas as linhas da partição CA.

select venuestate, venueseats, venuename,

Funções de janela 346

AWS Clean Rooms Referência SQL

first_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Função de janela LAG

A função de janela LAG retorna os valores para uma linha em determinado deslocamento acima
(antes) da linha atual na partição.

Sintaxe

LAG (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Argumentos

value_expr

A coluna ou expressão de destino na qual a função opera.

Funções de janela 347

AWS Clean Rooms Referência SQL

deslocamento

Um parâmetro opcional que especifica o número de linhas antes da linha atual para as quais
retornar valores. Este deslocamento pode ser um inteiro constante ou uma expressão que avalia
para um inteiro. Se você não especificar um deslocamento, AWS Clean Rooms usa 1 como valor
padrão. Um deslocamento de 0 indica a linha atual.

IGNORE NULLS

Uma especificação opcional que indica que os valores nulos AWS Clean Rooms devem ser
ignorados na determinação de qual linha usar. Valores nulos são incluídos se IGNORE NULLS
não for listada.

Note

Você pode usar uma expressão NVL ou COALESCE para substituir os valores nulos por
outro valor.

RESPECT NULLS

Indica que AWS Clean Rooms deve incluir valores nulos na determinação de qual linha usar.
RESPECT NULLS é compatível por padrão se você não especificar IGNORE NULLS.

OVER

Especifica o particionamento e ordem da janela. A cláusula OVER não pode conter uma
especificação de quadro da janela.

PARTITION BY window_partition

Um argumento ideal que define o intervalo de registros para cada grupo na cláusula OVER.

ORDER BY window_ordering

Classifica as linhas dentro de cada partição.

A função de janela LAG suporta expressões que usam qualquer um dos tipos de AWS Clean Rooms
dados. O tipo de retorno é igual ao tipo de value_expr.

Exemplos

O seguinte exemplo mostra a quantidade de ingressos vendidos para o comprador com ID de
comprador 3 e a hora que o comprador 3 adquiriu os ingressos. Para comparar cada venda com

Funções de janela 348

AWS Clean Rooms Referência SQL

venda anterior para o comprador 3, a consulta retorna a quantidade anterior vendida em cada venda.
Já que não há compras antes de 1/16/2008, o primeiro valor de quantidade vendida anteriormente é
nulo:

select buyerid, saletime, qtysold,
lag(qtysold,1) over (order by buyerid, saletime) as prev_qtysold
from sales where buyerid = 3 order by buyerid, saletime;

buyerid | saletime | qtysold | prev_qtysold
---------+---------------------+---------+--------------
3 | 2008-01-16 01:06:09 | 1 |
3 | 2008-01-28 02:10:01 | 1 | 1
3 | 2008-03-12 10:39:53 | 1 | 1
3 | 2008-03-13 02:56:07 | 1 | 1
3 | 2008-03-29 08:21:39 | 2 | 1
3 | 2008-04-27 02:39:01 | 1 | 2
3 | 2008-08-16 07:04:37 | 2 | 1
3 | 2008-08-22 11:45:26 | 2 | 2
3 | 2008-09-12 09:11:25 | 1 | 2
3 | 2008-10-01 06:22:37 | 1 | 1
3 | 2008-10-20 01:55:51 | 2 | 1
3 | 2008-10-28 01:30:40 | 1 | 2
(12 rows)

Função LAST window

Dado um conjunto ordenado de linhas, a função LAST retorna o valor da expressão em relação à
última linha no quadro.

Para obter informações sobre como selecionar a primeira linha no quadro, consulte Função FIRST
window.

Sintaxe

LAST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Funções de janela 349

AWS Clean Rooms Referência SQL

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera.

IGNORE NULLS

A função retorna o último valor no quadro que não seja NULL (ou NULL se todos os valores forem
NULL).

RESPECT NULLS

Indica que AWS Clean Rooms deve incluir valores nulos na determinação de qual linha usar.
RESPECT NULLS é compatível por padrão se você não especificar IGNORE NULLS.

OVER

Introduz as cláusulas de janela para a função.

PARTITION BY expr_list

Define a janela para a função em termos de uma ou mais expressões.

ORDER BY order_list

Classifica as linhas dentro de cada partição. Se nenhuma cláusula PARTITION BY for
especificada, ORDER BY classifica a tabela inteira. Se você especificar uma cláusula ORDER
BY, você também deve especificar uma frame_clause.

Os resultados dependem da ordem dos dados. Os resultados são não determinísticos nos
seguintes casos:

• Quando uma cláusula ORDER BY é especificada e uma partição contém dois valores
diferentes para uma expressão

• Quando uma expressão avalia para valores diferentes que correspondem ao mesmo valor na
lista ORDER BY.

frame_clause

Se uma cláusula ORDER BY é usada para uma função agregada, uma cláusula de quadro
explícita é necessária. A cláusula de quadro refina o conjunto de linhas na janela de uma função,
incluindo ou excluindo conjuntos de linhas no resultado ordenado. A cláusula de quadro consiste
na palavra-chave ROWS e nos especificadores associados. Consulte Resumo da sintaxe de
funções da janela.

Funções de janela 350

AWS Clean Rooms Referência SQL

Tipo de retorno

Essas funções oferecem suporte a expressões que usam tipos de AWS Clean Rooms dados
primitivos. O tipo de retorno é igual ao tipo de dados da expressão.

Exemplos

O seguinte exemplo retorna a capacidade de acomodação para cada local de evento da tabela
VENUE com os resultados ordenados por capacidade (alta a baixa). A função LAST é usada para
selecionar o nome do local que corresponde à última linha no quadro: nesse caso, a linha com o
menor número de assentos. Os resultados são particionados por estado, portanto quando o valor
VENUESTATE muda, um novo último valor é selecionado. O quadro da janela não é vinculado,
portanto o mesmo último valor é selecionado para cada linha em cada partição.

Para a Califórnia, Shoreline Amphitheatre será retornado para cada linha na partição, pois tem
o menor número de assentos (22000).

select venuestate, venueseats, venuename,
last(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | last
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field
CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field

Funções de janela 351

AWS Clean Rooms Referência SQL

FL | 36048 | Tropicana Field | Tropicana Field
...

Função de janela LAST_VALUE

Considerando um conjunto de linhas ordenadas, a função LAST_VALUE retorna o valor da
expressão em relação à última linha no quadro.

Para obter informações sobre como selecionar a primeira linha no quadro, consulte Função de janela
FIRST_VALUE.

Sintaxe

LAST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Argumentos

expressão

A coluna ou expressão de destino na qual a função opera.

IGNORE NULLS

A função retorna o último valor no quadro que não seja NULL (ou NULL se todos os valores forem
NULL).

RESPECT NULLS

Indica que AWS Clean Rooms deve incluir valores nulos na determinação de qual linha usar.
RESPECT NULLS é compatível por padrão se você não especificar IGNORE NULLS.

OVER

Introduz as cláusulas de janela para a função.

PARTITION BY expr_list

Define a janela para a função em termos de uma ou mais expressões.

Funções de janela 352

AWS Clean Rooms Referência SQL

ORDER BY order_list

Classifica as linhas dentro de cada partição. Se nenhuma cláusula PARTITION BY for
especificada, ORDER BY classifica a tabela inteira. Se você especificar uma cláusula ORDER
BY, você também deve especificar uma frame_clause.

Os resultados dependem da ordem dos dados. Os resultados são não determinísticos nos
seguintes casos:

• Quando uma cláusula ORDER BY é especificada e uma partição contém dois valores
diferentes para uma expressão

• Quando uma expressão avalia para valores diferentes que correspondem ao mesmo valor na
lista ORDER BY.

frame_clause

Se uma cláusula ORDER BY é usada para uma função agregada, uma cláusula de quadro
explícita é necessária. A cláusula de quadro refina o conjunto de linhas na janela de uma função,
incluindo ou excluindo conjuntos de linhas no resultado ordenado. A cláusula de quadro consiste
na palavra-chave ROWS e nos especificadores associados. Consulte Resumo da sintaxe de
funções da janela.

Tipo de retorno

Essas funções oferecem suporte a expressões que usam tipos de AWS Clean Rooms dados
primitivos. O tipo de retorno é igual ao tipo de dados da expressão.

Exemplos

O seguinte exemplo retorna a capacidade de acomodação para cada local de evento da tabela
VENUE com os resultados ordenados por capacidade (alta a baixa). A função LAST_VALUE é usada
para selecionar o local de evento que corresponde à última linha no quadro: nesse caso, a linha com
o mais baixo número de assentos. Os resultados são particionados por estado, portanto quando o
valor VENUESTATE muda, um novo último valor é selecionado. O quadro da janela não é vinculado,
portanto o mesmo último valor é selecionado para cada linha em cada partição.

Para a Califórnia, Shoreline Amphitheatre será retornado para cada linha na partição, pois tem
o menor número de assentos (22000).

select venuestate, venueseats, venuename,

Funções de janela 353

AWS Clean Rooms Referência SQL

last_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | last_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field
CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field
FL | 36048 | Tropicana Field | Tropicana Field
...

Função de janela LEAD

A função de janela LEAD retorna os valores para uma linha em determinado deslocamento abaixo
(depois) da linha atual na partição.

Sintaxe

LEAD (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Argumentos

value_expr

A coluna ou expressão de destino na qual a função opera.

Funções de janela 354

AWS Clean Rooms Referência SQL

deslocamento

Um parâmetro opcional que especifica o número de linhas abaixo da linha atual para as quais
retornar valores. Este deslocamento pode ser um inteiro constante ou uma expressão que avalia
para um inteiro. Se você não especificar um deslocamento, AWS Clean Rooms usa 1 como valor
padrão. Um deslocamento de 0 indica a linha atual.

IGNORE NULLS

Uma especificação opcional que indica que os valores nulos AWS Clean Rooms devem ser
ignorados na determinação de qual linha usar. Valores nulos são incluídos se IGNORE NULLS
não for listada.

Note

Você pode usar uma expressão NVL ou COALESCE para substituir os valores nulos por
outro valor.

RESPECT NULLS

Indica que AWS Clean Rooms deve incluir valores nulos na determinação de qual linha usar.
RESPECT NULLS é compatível por padrão se você não especificar IGNORE NULLS.

OVER

Especifica o particionamento e ordem da janela. A cláusula OVER não pode conter uma
especificação de quadro da janela.

PARTITION BY window_partition

Um argumento ideal que define o intervalo de registros para cada grupo na cláusula OVER.

ORDER BY window_ordering

Classifica as linhas dentro de cada partição.

A função de janela LEAD oferece suporte a expressões que usam qualquer um dos tipos de AWS
Clean Rooms dados. O tipo de retorno é igual ao tipo de value_expr.

Funções de janela 355

AWS Clean Rooms Referência SQL

Exemplos

O seguinte exemplo fornece a comissão para eventos na tabela SALES para os quais ingressos
foram vendidos em 1º de janeiro de 2008 e 2 de janeiro de 2008, assim como a comissão paga por
vendas de ingressos para a venda subsequente.

select eventid, commission, saletime,
lead(commission, 1) over (order by saletime) as next_comm
from sales where saletime between '2008-01-01 00:00:00' and '2008-01-02 12:59:59'
order by saletime;

eventid | commission | saletime | next_comm
---------+------------+---------------------+-----------
6213 | 52.05 | 2008-01-01 01:00:19 | 106.20
7003 | 106.20 | 2008-01-01 02:30:52 | 103.20
8762 | 103.20 | 2008-01-01 03:50:02 | 70.80
1150 | 70.80 | 2008-01-01 06:06:57 | 50.55
1749 | 50.55 | 2008-01-01 07:05:02 | 125.40
8649 | 125.40 | 2008-01-01 07:26:20 | 35.10
2903 | 35.10 | 2008-01-01 09:41:06 | 259.50
6605 | 259.50 | 2008-01-01 12:50:55 | 628.80
6870 | 628.80 | 2008-01-01 12:59:34 | 74.10
6977 | 74.10 | 2008-01-02 01:11:16 | 13.50
4650 | 13.50 | 2008-01-02 01:40:59 | 26.55
4515 | 26.55 | 2008-01-02 01:52:35 | 22.80
5465 | 22.80 | 2008-01-02 02:28:01 | 45.60
5465 | 45.60 | 2008-01-02 02:28:02 | 53.10
7003 | 53.10 | 2008-01-02 02:31:12 | 70.35
4124 | 70.35 | 2008-01-02 03:12:50 | 36.15
1673 | 36.15 | 2008-01-02 03:15:00 | 1300.80
...
(39 rows)

Função de janela PERCENT_RANK

Calcula a classificação percentual de dada linha. A classificação percentual é determinada usando
esta fórmula:

(x - 1) / (the number of rows in the window or partition - 1)

onde x é a classificação da linha atual. O seguinte conjunto de dados ilustra O uso desta fórmula:

Row# Value Rank Calculation PERCENT_RANK

Funções de janela 356

AWS Clean Rooms Referência SQL

1 15 1 (1-1)/(7-1) 0.0000
2 20 2 (2-1)/(7-1) 0.1666
3 20 2 (2-1)/(7-1) 0.1666
4 20 2 (2-1)/(7-1) 0.1666
5 30 5 (5-1)/(7-1) 0.6666
6 30 5 (5-1)/(7-1) 0.6666
7 40 7 (7-1)/(7-1) 1.0000

O intervalo de valor de retorno é 0 a 1, inclusive. A primeira linha em qualquer conjunto tem um
PERCENT_RANK de 0.

Sintaxe

PERCENT_RANK ()
OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Argumentos

()

A função não aceita argumentos, mas os parênteses vazios são necessários.

OVER

Uma cláusula que especifica o particionamento da janela. A cláusula OVER não pode conter uma
especificação de quadro da janela.

PARTITION BY partition_expression

Opcional. Uma expressão que define o intervalo de registros para cada grupo na cláusula OVER.

ORDER BY order_list

Opcional. A expressão na qual calcular a classificação percentual. A expressão deve ter um tipo
de dados numérico ou ser implicitamente conversível para um. Se ORDER BY for omitida, o valor
de retorno será 0 para todas as linhas.

Se ORDER BY não produzir uma ordenação exclusiva, a ordem das linhas será não
determinística. Para obter mais informações, consulte Ordenação exclusiva de dados para
funções da janela.

Funções de janela 357

AWS Clean Rooms Referência SQL

Tipo de retorno

FLOAT8

Exemplos

O seguinte exemplo calcula a classificação percentual das quantidades de vendas para cada
vendedor:

select sellerid, qty, percent_rank()
over (partition by sellerid order by qty)
from winsales;

sellerid qty percent_rank
--
1 10.00 0.0
1 10.64 0.5
1 30.37 1.0
3 10.04 0.0
3 15.15 0.33
3 20.75 0.67
3 30.55 1.0
2 20.09 0.0
2 20.12 1.0
4 10.12 0.0
4 40.23 1.0

Para uma descrição da tabela WINSALES, consulte Amostra de tabela para exemplos de funções de
janela.

Função de janela RANK

A função de janela RANK determina a classificação de um valor em um grupo de valores com
base na expressão ORDER BY da cláusula OVER. Se a cláusula opcional PARTITION BY estiver
presente, as classificações são redefinidas para cada grupo de linhas. As linhas com valores iguais
para os critérios de classificação recebem a mesma classificação. AWS Clean Roomsadiciona o
número de linhas empatadas à classificação empatada para calcular a próxima classificação e,
portanto, as classificações podem não ser números consecutivos. Por exemplo, se duas linhas são
classificadas como 1, a classificação seguinte é 3.

Funções de janela 358

AWS Clean Rooms Referência SQL

RANK difere de Função de janela DENSE_RANK em um aspecto: para DENSE_RANK, se duas ou
mais linhas empatarem, não há uma lacuna na sequência de valores classificados. Por exemplo, se
duas linhas são classificadas como 1, a classificação seguinte é 2.

Você pode ter funções de classificação com diferentes cláusulas PARTITION BY e ORDER BY na
mesma consulta.

Sintaxe

RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Argumentos

()

A função não aceita argumentos, mas os parênteses vazios são necessários.

OVER

As cláusulas de janela para a função RANK.

PARTITION BY expr_list

Opcional. Uma ou várias expressões que definem a janela.

ORDER BY order_list

Opcional. Define as colunas nas quais os valores de classificação se baseiam. Se nenhuma
PARTITION BY for especificada, ORDER BY usa a tabela completa. Se ORDER BY for omitida, o
valor de retorno será 1 para todas as linhas.

Se ORDER BY não produzir uma ordenação exclusiva, a ordem das linhas será não
determinística. Para obter mais informações, consulte Ordenação exclusiva de dados para
funções da janela.

Tipo de retorno

INTEGER

Funções de janela 359

AWS Clean Rooms Referência SQL

Exemplos

O exemplo a seguir ordena a tabela pela quantidade vendida (padrão crescente) e atribui uma
classificação a cada linha. O valor de classificação de 1 é o valor de classificação mais alto. Os
resultados são classificados após a aplicação dos resultados da função de janela:

select salesid, qty,
rank() over (order by qty) as rnk
from winsales
order by 2,1;

salesid | qty | rnk
--------+-----+-----
10001 | 10 | 1
10006 | 10 | 1
30001 | 10 | 1
40005 | 10 | 1
30003 | 15 | 5
20001 | 20 | 6
20002 | 20 | 6
30004 | 20 | 6
10005 | 30 | 9
30007 | 30 | 9
40001 | 40 | 11
(11 rows)

Observe que a cláusula ORDER BY externa neste exemplo inclui as colunas 2 e 1 para garantir que
AWS Clean Rooms retorne resultados classificados de forma consistente sempre que essa consulta
for executada. Por exemplo, linhas com vendas IDs 10001 e 10006 têm valores idênticos de QTY
e RNK. Ordenar o conjunto de resultados final pela coluna 1 garante que a linha 10.001 sempre
caia antes de 10.006. Para uma descrição da tabela WINSALES, consulte Amostra de tabela para
exemplos de funções de janela.

No exemplo a seguir, a ordenação é revertida para a função da janela (order by qty desc).
Agora, o valor de classificação mais alto se aplica ao valor de QTY mais alto.

select salesid, qty,
rank() over (order by qty desc) as rank
from winsales
order by 2,1;

Funções de janela 360

AWS Clean Rooms Referência SQL

 salesid | qty | rank
---------+-----+-----
 10001 | 10 | 8
 10006 | 10 | 8
 30001 | 10 | 8
 40005 | 10 | 8
 30003 | 15 | 7
 20001 | 20 | 4
 20002 | 20 | 4
 30004 | 20 | 4
 10005 | 30 | 2
 30007 | 30 | 2
 40001 | 40 | 1
(11 rows)

Para uma descrição da tabela WINSALES, consulte Amostra de tabela para exemplos de funções de
janela.

O exemplo a seguir particiona a tabela por SELLERID e ordena cada partição pela quantidade (em
ordem decrescente) e atribui uma classificação a cada linha. Os resultados são classificados após a
aplicação dos resultados da função de janela.

select salesid, sellerid, qty, rank() over
(partition by sellerid
order by qty desc) as rank
from winsales
order by 2,3,1;

salesid | sellerid | qty | rank
--------+----------+-----+-----
 10001 | 1 | 10 | 2
 10006 | 1 | 10 | 2
 10005 | 1 | 30 | 1
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 1
 30001 | 3 | 10 | 4
 30003 | 3 | 15 | 3
 30004 | 3 | 20 | 2
 30007 | 3 | 30 | 1
 40005 | 4 | 10 | 2
 40001 | 4 | 40 | 1
(11 rows)

Funções de janela 361

AWS Clean Rooms Referência SQL

Função de janela ROW_NUMBER

Determina o número ordinal da linha atual em um grupo de linhas, começando com 1, com base na
expressão ORDER BY da cláusula OVER. Se a cláusula opcional PARTITION BY estiver presente,
os números ordinais são redefinidos para cada grupo de linhas. As linhas com valores iguais para as
expressões ORDER BY recebem os diferentes números de linha de forma não determinística.

Sintaxe

ROW_NUMBER () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Argumentos

()

A função não aceita argumentos, mas os parênteses vazios são necessários.

OVER

As cláusulas de janela para a função ROW_NUMBER.

PARTITION BY expr_list

Opcional. Uma ou mais expressões que definem a função ROW_NUMBER.

ORDER BY order_list

Opcional. A expressão que define as colunas nas quais os números de linha se baseiam. Se
nenhuma PARTITION BY for especificada, ORDER BY usa a tabela completa.

Se ORDER BY não produzir uma ordenação exclusiva ou for omitido, a ordem das linhas será
não determinística. Para obter mais informações, consulte Ordenação exclusiva de dados para
funções da janela.

Tipo de retorno

BIGINT

Funções de janela 362

AWS Clean Rooms Referência SQL

Exemplos

O seguinte exemplo particiona a tabela por SELLERID e ordena cada partição por QTY (na ordem
ascendente) e, então, atribui um número de linha para cada linha. Os resultados são classificados
após a aplicação dos resultados da função de janela.

select salesid, sellerid, qty,
row_number() over
(partition by sellerid
 order by qty asc) as row
from winsales
order by 2,4;

 salesid | sellerid | qty | row
---------+----------+-----+-----
 10006 | 1 | 10 | 1
 10001 | 1 | 10 | 2
 10005 | 1 | 30 | 3
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 2
 30001 | 3 | 10 | 1
 30003 | 3 | 15 | 2
 30004 | 3 | 20 | 3
 30007 | 3 | 30 | 4
 40005 | 4 | 10 | 1
 40001 | 4 | 40 | 2
(11 rows)

Para uma descrição da tabela WINSALES, consulte Amostra de tabela para exemplos de funções de
janela.

AWS Clean Rooms Condições do Spark SQL
Condições são declarações de uma ou mais expressões e operadores lógicos avaliados como
verdadeiros, falsos ou desconhecidos. As condições também são ocasionalmente chamadas de
predicados.

Sintaxe

comparison_condition
| logical_condition
| range_condition

Condições do SQL 363

AWS Clean Rooms Referência SQL

| pattern_matching_condition
| null_condition
| EXISTS_condition
| IN_condition

Note

Todas as comparações de strings e correspondências de padrão LIKE diferenciam entre
letras maiúsculas e minúsculas. Por exemplo, “A” e “a” não são correspondentes. No
entanto, você pode fazer uma correspondência de padrão que não diferencia maiúsculas e
minúsculas usando o predicado ILIKE.

As seguintes condições SQL são compatíveis com o AWS Clean Rooms Spark SQL.

Tópicos

• Operadores de comparação

• Condições lógicas

• Condições de correspondência de padrões

• Condição de intervalo BETWEEN

• Condição null

• Condição EXISTS

• Condição IN

Operadores de comparação

A comparação de condições indica as relações lógicas entre dois valores. Todas as condições de
comparação são operadores binários com um tipo de retorno booleano.

AWS Clean Rooms O Spark SQL é compatível com os operadores de comparação descritos na
tabela a seguir.

Operador Sintaxe Descrição

! !expression O NOT operador lógico. Usado
para negar uma expressão

Operadores de comparação 364

AWS Clean Rooms Referência SQL

Operador Sintaxe Descrição

booleana, o que significa que
ela retorna o oposto do valor
da expressão.

O! O operador também
pode ser combinado com
outros operadores lógicos,
como AND e OR, para criar
expressões booleanas mais
complexas.

< a < b O menos do que um operador
de comparação. Usado
para comparar dois valores
e determinar se o valor à
esquerda é menor que o valor
à direita.

> a > b O operador maior que o
de comparação. Usado
para comparar dois valores
e determinar se o valor à
esquerda é maior que o valor
à direita.

<= a <= b O operador de comparaçã
o menor ou igual. Usado
para comparar dois valores
e retorna true se o valor à
esquerda for menor ou igual
ao valor à direita e de false
outra forma.

Operadores de comparação 365

AWS Clean Rooms Referência SQL

Operador Sintaxe Descrição

>= a >= b O operador de comparaçã
o maior ou igual. Usado
para comparar dois valores
e determinar se o valor à
esquerda é maior ou igual ao
valor à direita.

= a = b O operador de comparação de
igualdade, que compara dois
valores e retorna true se eles
são iguais ou false não.

<> ou != a <> b ou a != b O operador de comparação
false diferente, que compara
dois valores e retorna true se
eles não forem iguais, etc.

Operadores de comparação 366

AWS Clean Rooms Referência SQL

Operador Sintaxe Descrição

== a == b O operador de comparaçã
o de igualdade padrão, que
compara dois valores e
retorna true se eles são
iguais ou false não.

Note

O operador ==
diferencia maiúscula
s de minúscula
s ao comparar
valores de string.
Se precisar realizar
uma comparaçã
o sem distinção
entre maiúsculas e
minúsculas, você
pode usar funções
como UPPER ()
ou LOWER () para
converter os valores
no mesmo caso antes
da comparação.

Exemplos

Veja alguns exemplos simples de condições de comparação:

a = 5
a < b
min(x) >= 5
qtysold = any (select qtysold from sales where dateid = 1882

Operadores de comparação 367

AWS Clean Rooms Referência SQL

A consulta a seguir retorna os valores de identificação de todos os esquilos que não estão se
alimentando no momento.

SELECT id FROM squirrels
WHERE !is_foraging

A consulta a seguir retorna locais com mais de 10.000 lugares da tabela VENUE:

select venueid, venuename, venueseats from venue
where venueseats > 10000
order by venueseats desc;

venueid | venuename | venueseats
---------+--------------------------------+------------
83 | FedExField | 91704
 6 | New York Giants Stadium | 80242
79 | Arrowhead Stadium | 79451
78 | INVESCO Field | 76125
69 | Dolphin Stadium | 74916
67 | Ralph Wilson Stadium | 73967
76 | Jacksonville Municipal Stadium | 73800
89 | Bank of America Stadium | 73298
72 | Cleveland Browns Stadium | 73200
86 | Lambeau Field | 72922
...
(57 rows)

Este exemplo seleciona os usuários (USERID) da tabela USERS que gostam de rock:

select userid from users where likerock = 't' order by 1 limit 5;

userid

3
5
6
13
16
(5 rows)

Este exemplo seleciona os usuários (USERID) da tabela USERS onde não se sabe se eles gostam
de rock:

Operadores de comparação 368

AWS Clean Rooms Referência SQL

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Rafael | Taylor |
Vladimir | Humphrey |
Barry | Roy |
Tamekah | Juarez |
Mufutau | Watkins |
Naida | Calderon |
Anika | Huff |
Bruce | Beck |
Mallory | Farrell |
Scarlett | Mayer |
(10 rows

Exemplos com uma coluna TIME

A tabela de exemplo a seguir TIME_TEST tem uma coluna TIME_VAL (tipo TIME) com três valores
inseridos.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

O exemplo a seguir extrai as horas de cada timetz_val.

select time_val from time_test where time_val < '3:00';
 time_val

 00:00:00.5550
 00:58:00

O exemplo a seguir compara dois literais de tempo.

Operadores de comparação 369

AWS Clean Rooms Referência SQL

select time '18:25:33.123456' = time '18:25:33.123456';
 ?column?

 t

Exemplos com uma coluna TIMETZ

A tabela de exemplo a seguir TIMETZ_TEST tem uma coluna TIMETZ_VAL (tipo TIMETZ) com três
valores inseridos.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

O exemplo a seguir seleciona apenas os valores TIMETZ menores que 3:00:00 UTC. A
comparação é feita depois de converter o valor para UTC.

select timetz_val from timetz_test where timetz_val < '3:00:00 UTC';

 timetz_val

 00:00:00.5550+00

O seguinte exemplo compara dois literais TIMETZ. O fuso horário é ignorado para a comparação.

select time '18:25:33.123456 PST' < time '19:25:33.123456 EST';

 ?column?

 t

Condições lógicas

As condições lógicas combinam o resultado de duas condições para produzir um único resultado.
Todas as condições lógicas são operadores binários com um tipo de retorno booleano.

Condições lógicas 370

AWS Clean Rooms Referência SQL

Sintaxe

expression
{ AND | OR }
expression
NOT expression

As condições lógicas usam uma lógica booleana de três valores onde o valor nulo representa uma
relação desconhecida. A tabela a seguir descreve os resultados para condições lógicas, onde E1 e
E2 representam expressões:

E1 E2 E1 E E2 E1 OU E2 NÃO E2

VERDADEIRO VERDADEIRO VERDADEIRO VERDADEIRO FALSE

VERDADEIRO FALSE FALSE VERDADEIRO VERDADEIRO

VERDADEIRO UNKNOWN UNKNOWN VERDADEIRO UNKNOWN

FALSE VERDADEIRO FALSE VERDADEIRO

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN VERDADEIRO UNKNOWN VERDADEIRO

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

O operador NOT é avaliado antes de AND e o operador AND é avaliado antes do operador OR. O
uso de qualquer parênteses pode cancelar esta ordem de avaliação padrão.

Exemplos

O seguinte exemplo retorna o USERID e USERNAME da tabela USERS onde o usuário gosta de Las
Vegas e de esportes:

select userid, username from users

Condições lógicas 371

AWS Clean Rooms Referência SQL

where likevegas = 1 and likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
67 | TWU10MZT
87 | DUF19VXU
92 | HYP36WEQ
109 | FPL38HZK
120 | DMJ24GUZ
123 | QZR22XGQ
130 | ZQC82ALK
133 | LBN45WCH
144 | UCX04JKN
165 | TEY68OEB
169 | AYQ83HGO
184 | TVX65AZX
...
(2128 rows)

O próximo exemplo retorna o USERID e USERNAME da tabela USERS onde o usuário gosta de Las
Vegas, de esportes ou de ambos. Essa consulta retorna todas as saídas do exemplo anterior, mais
os usuários que gostam somente de Las Vegas ou de esportes.

select userid, username from users
where likevegas = 1 or likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
2 | PGL08LJI
3 | IFT66TXU
5 | AEB55QTM
6 | NDQ15VBM
9 | MSD36KVR
10 | WKW41AIW
13 | QTF33MCG
15 | OWU78MTR
16 | ZMG93CDD
22 | RHT62AGI
27 | KOY02CVE

Condições lógicas 372

AWS Clean Rooms Referência SQL

29 | HUH27PKK
...
(18968 rows)

A seguinte consulta usa parênteses em torno da condição OR para encontrar locais em Nova Iorque
ou na Califórnia onde Macbeth foi apresentada:

select distinct venuename, venuecity
from venue join event on venue.venueid=event.venueid
where (venuestate = 'NY' or venuestate = 'CA') and eventname='Macbeth'
order by 2,1;

venuename | venuecity
--+---------------
Geffen Playhouse | Los Angeles
Greek Theatre | Los Angeles
Royce Hall | Los Angeles
American Airlines Theatre | New York City
August Wilson Theatre | New York City
Belasco Theatre | New York City
Bernard B. Jacobs Theatre | New York City
...

A remoção dos parênteses neste exemplo altera a lógica e os resultados da consulta.

O seguinte exemplo usa o operador NOT:

select * from category
where not catid=1
order by 1;

catid | catgroup | catname | catdesc
-------+----------+-----------+--
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
...

O seguinte exemplo usa uma condição NOT seguida de uma condição AND:

select * from category

Condições lógicas 373

AWS Clean Rooms Referência SQL

where (not catid=1) and catgroup='Sports'
order by catid;

catid | catgroup | catname | catdesc
-------+----------+---------+---------------------------------
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
(4 rows)

Condições de correspondência de padrões

Um operador de correspondência de padrões pesquisa em uma string por um padrão especificado
na expressão condicional e retorna verdadeiro ou falso, dependendo de encontrar uma
correspondência. AWS Clean Rooms O Spark SQL usa os seguintes métodos para correspondência
de padrões:

• Expressões LIKE

O operador LIKE compara uma expressão de string, tal como um nome de coluna, a um padrão
que usa os caracteres curinga % (por cento) e _ (sublinhado). A correspondência de padrão
LIKE sempre abrange toda a string. O LIKE realiza uma correspondência com distinção entre
maiúsculas e minúsculas.

Tópicos

• LIKE

• RLIKE

LIKE

O operador LIKE compara uma expressão de string, tal como um nome de coluna, a um padrão que
usa os caracteres curinga % (por cento) e _ (sublinhado). A correspondência de padrão LIKE sempre
abrange toda a string. Para corresponder uma sequência em qualquer lugar de uma string, o padrão
deve começar e terminar com um sinal de por cento.

LIKE diferencia maiúsculas de minúsculas.

Condições de correspondência de padrões 374

AWS Clean Rooms Referência SQL

Sintaxe

expression [NOT] LIKE | pattern [ESCAPE 'escape_char']

Argumentos

expressão

Uma expressão de caractere UTF-8 válida, tal como um nome de coluna.

LIKE

LIKE executa uma correspondência de padrão com diferenciação entre maiúsculas e minúsculas.
Para realizar uma correspondência de padrões sem distinção entre maiúsculas e minúsculas para
caracteres de vários bytes, use a função LOWER em expressão e padrão com uma condição
LIKE.

Em contraste com os predicados de comparação, como = e <>, os predicados LIKE não ignoram
implicitamente os espaços à direita. Para ignorar espaços à direita, use RTRIM ou converta
explicitamente uma coluna CHAR em VARCHAR.

O ~~ operador é equivalente a LIKE. Além disso, o !~~ operador é equivalente a NOT LIKE.

pattern

Uma expressão de caractere UTF-8 válida com o padrão a ser correspondido.

escape_char

Uma expressão de caractere que irá escapar caracteres de metacaracteres no padrão. O padrão
é duas barras invertidas ('\\').

Se o padrão não contém metacaracteres, o padrão representa somente a própria string; nesse caso,
LIKE age da mesma forma que o operador de igualdade.

Qualquer uma das expressões de caracteres pode ser de tipos de dados CHAR ou VARCHAR. Se
eles forem diferentes, o AWS Clean Rooms converterá o padrão no tipo de dados da expressão.

LIKE é compatível com os seguintes metacaracteres de correspondência de padrão:

Operador Descrição

% Corresponde a qualquer sequência de zero ou mais caracteres.

Condições de correspondência de padrões 375

AWS Clean Rooms Referência SQL

Operador Descrição

_ Corresponde a qualquer caractere único.

Exemplos

A seguinte tabela mostra exemplos de correspondência de padrão usando LIKE:

Expressão Retornos

'abc' LIKE 'abc' Verdadeiro

'abc' LIKE 'a%' Verdadeiro

'abc' LIKE '_B_' Falso

'abc' LIKE 'c%' Falso

O seguinte exemplo localiza todas as cidades cujos nomes começam com “E”:

select distinct city from users
where city like 'E%' order by city;
city

East Hartford
East Lansing
East Rutherford
East St. Louis
Easthampton
Easton
Eatontown
Eau Claire
...

O seguinte exemplo localiza usuários cujos sobrenomes contêm “ten”:

select distinct lastname from users
where lastname like '%ten%' order by lastname;
lastname

Condições de correspondência de padrões 376

AWS Clean Rooms Referência SQL

Christensen
Wooten
...

O exemplo a seguir encontra cidades cujos terceiro e quarto caracteres são “ea”. . :

select distinct city from users where city like '__EA%' order by city;
city

Brea
Clearwater
Great Falls
Ocean City
Olean
Wheaton
(6 rows)

O seguinte exemplo usa a string de escape padrão (\\) para pesquisar strings que incluem “start_” (o
texto start seguido por um sublinhado _):

select tablename, "column" from my_table_def

where "column" like '%start_%'
limit 5;

 tablename | column
-------------------+---------------
 my_s3client | start_time
 my_tr_conflict | xact_start_ts
 my_undone | undo_start_ts
 my_unload_log | start_time
 my_vacuum_detail | start_row
(5 rows)

O seguinte exemplo especifica “^” como caractere de escape e o utiliza para pesquisar strings que
incluem “start_” (o texto start seguido por um sublinhado _):

select tablename, "column" from my_table_def

where "column" like '%start^_%' escape '^'

Condições de correspondência de padrões 377

AWS Clean Rooms Referência SQL

limit 5;

 tablename | column
-------------------+---------------
 my_s3client | start_time
 my_tr_conflict | xact_start_ts
 my_undone | undo_start_ts
 my_unload_log | start_time
 my_vacuum_detail | start_row
(5 rows)

RLIKE

O operador RLIKE permite verificar se uma string corresponde a um padrão de expressão regular
especificado.

Retorna true se str corresponder regexp false ou não.

Sintaxe

rlike(str, regexp)

Argumentos

str

Uma expressão de string

regexp

Uma expressão em cadeia de caracteres. A string regex deve ser uma expressão regular Java.

Literais de string (incluindo padrões de regex) não escapam em nosso analisador SQL. Por
exemplo, para corresponder a “\ abc”, uma expressão regular para regexp pode ser “^\ abc$”.

Exemplos

O exemplo a seguir define o valor do parâmetro de
spark.sql.parser.escapedStringLiterals configuração comotrue. Esse parâmetro é
específico para o mecanismo Spark SQL. O spark.sql.parser.escapedStringLiterals
parâmetro no Spark SQL controla como o analisador SQL manipula literais de string escapados.
Quando definido comotrue, o analisador interpretará caracteres de barra invertida (\) em literais

Condições de correspondência de padrões 378

AWS Clean Rooms Referência SQL

de string como caracteres de escape, permitindo que você inclua caracteres especiais como novas
linhas, tabulações e aspas nos valores da string.

SET spark.sql.parser.escapedStringLiterals=true;
spark.sql.parser.escapedStringLiterals true

Por exemplo, comspark.sql.parser.escapedStringLiterals=true, você pode usar a
seguinte string literal em sua consulta SQL:

SELECT 'Hello, world!\n'

O caractere de nova linha \n seria interpretado como um caractere literal de nova linha na saída.

O exemplo a seguir executa uma correspondência de padrão de expressão regular. O primeiro
argumento é passado para o operador RLIKE. É uma string que representa um caminho de arquivo,
em que o nome de usuário real é substituído pelo padrão '****'. O segundo argumento é o padrão
de expressão regular usado para a correspondência. A saída (true) indica que a primeira string
('%SystemDrive%\Users****') corresponde ao padrão de expressão regular ('%SystemDrive
%\\Users.*').

SELECT rlike('%SystemDrive%\Users\John', '%SystemDrive%\Users.*');
true

Condição de intervalo BETWEEN

Uma condição BETWEEN testa expressões para a inclusão em um intervalo de valores, usando as
palavras chave BETWEEN e AND.

Sintaxe

expression [NOT] BETWEEN expression AND expression

As expressões podem ser numéricas, caracteres ou tipos de dados de data e hora, mas elas devem
ser compatíveis. O intervalo é inclusivo.

Exemplos

O primeiro exemplo conta quantas transações registraram vendas de 2, 3 ou 4 ingressos:

Condição de intervalo BETWEEN 379

AWS Clean Rooms Referência SQL

select count(*) from sales
where qtysold between 2 and 4;

count

104021
(1 row)

A condição de intervalo inclui os valores de começo e de término.

select min(dateid), max(dateid) from sales
where dateid between 1900 and 1910;

min | max
-----+-----
1900 | 1910

A primeira expressão em uma condição de intervalo deve ser o menor valor e a segunda expressão
o maior valor. O seguinte exemplo retornará sempre zero linhas devido aos valores das expressões:

select count(*) from sales
where qtysold between 4 and 2;

count

0
(1 row)

Contudo, a aplicação do modificador NOT inverterá a lógica e produzirá uma contagem de todas as
linhas:

select count(*) from sales
where qtysold not between 4 and 2;

count

172456
(1 row)

A seguinte consulta retorna uma lista de locais com 20.000 a 50.000 assentos:

Condição de intervalo BETWEEN 380

AWS Clean Rooms Referência SQL

select venueid, venuename, venueseats from venue
where venueseats between 20000 and 50000
order by venueseats desc;

venueid | venuename | venueseats
---------+-------------------------------+------------
116 | Busch Stadium | 49660
106 | Rangers BallPark in Arlington | 49115
96 | Oriole Park at Camden Yards | 48876
...
(22 rows)

O exemplo a seguir demonstra o uso de BETWEEN para valores de data:

select salesid, qtysold, pricepaid, commission, saletime
from sales
where eventid between 1000 and 2000
 and saletime between '2008-01-01' and '2008-01-03'
order by saletime asc;

salesid | qtysold | pricepaid | commission | saletime
--------+---------+-----------+------------+---------------
 65082 | 4 | 472 | 70.8 | 1/1/2008 06:06
 110917 | 1 | 337 | 50.55 | 1/1/2008 07:05
 112103 | 1 | 241 | 36.15 | 1/2/2008 03:15
 137882 | 3 | 1473 | 220.95 | 1/2/2008 05:18
 40331 | 2 | 58 | 8.7 | 1/2/2008 05:57
 110918 | 3 | 1011 | 151.65 | 1/2/2008 07:17
 96274 | 1 | 104 | 15.6 | 1/2/2008 07:18
 150499 | 3 | 135 | 20.25 | 1/2/2008 07:20
 68413 | 2 | 158 | 23.7 | 1/2/2008 08:12

Observe que, embora o intervalo de BETWEEN seja inclusivo, as datas têm como padrão um valor
de hora de 00:00:00. A única linha válida de 3 de janeiro para a consulta de amostra seria uma linha
com hora de venda de 1/3/2008 00:00:00.

Condição null

A ferramenta NULL testes de condição para valores nulos, quando um valor está ausente ou é
desconhecido.

Condição null 381

AWS Clean Rooms Referência SQL

Sintaxe

expression IS [NOT] NULL

Argumentos

expressão

Qualquer expressão, tal como uma coluna.

IS NULL

É verdadeiro quando o valor de expressão é nulo e falso quando ele tem um valor.

IS NOT NULL

É falso quando o valor de expressão é nulo e verdadeiro quando ele tem um valor.

Exemplo

Este exemplo indica quantas vezes a tabela SALES contém null no campo QTYSOLD:

select count(*) from sales
where qtysold is null;
count

0
(1 row)

Condição EXISTS

As condições EXISTS testam a existência de linhas em uma subconsulta e retornam verdadeiro se
uma subconsulta retornar pelo menos uma linha. Se NOT estiver especificado, a condição retorna
verdadeiro se uma subconsulta não retornar qualquer linha.

Sintaxe

[NOT] EXISTS (table_subquery)

Condição EXISTS 382

AWS Clean Rooms Referência SQL

Argumentos

EXISTS

É verdadeiro quando table_subquery retorna pelo menos uma linha.

NOT EXISTS

É verdadeiro quando table_subquery não retorna qualquer linha.

table_subquery

Uma subconsulta que avalia em uma tabela com uma ou mais colunas e uma ou mais linhas.

Exemplo

Este exemplo retorna todos os identificadores de data, um de cada vez, para cada data teve uma
venda de qualquer tipo:

select dateid from date
where exists (
select 1 from sales
where date.dateid = sales.dateid
)
order by dateid;

dateid

1827
1828
1829
...

Condição IN

Uma IN condição testa um valor para associação em um conjunto de valores ou em uma
subconsulta.

Sintaxe

expression [NOT] IN (expr_list | table_subquery)

Condição IN 383

AWS Clean Rooms Referência SQL

Argumentos

expressão

Uma expressão numérica, de caractere ou de data e hora que é avaliada em relação a expr_list
ou table_subquery e deve ser compatível com o tipo de dados daquela lista ou subconsulta.

expr_list

Uma ou várias expressões delimitadas por vírgula ou um ou mais conjuntos de expressões
delimitadas por vírgula entre parênteses.

table_subquery

Uma subconsulta que avalia em uma tabela com uma ou mais linhas, mas é limitada a somente
uma coluna em sua lista de seleção.

IN | NOT IN

IN retorna verdadeiro se a expressão é um membro da lista de expressão ou consulta. NOT IN
retorna verdadeiro se a expressão não é um membro. IN e NOT IN retornam null e nenhuma linha
é retornada nos seguintes casos: Se a expressão resulta em nulo; ou se não há valores expr_list
ou table_subquery correspondentes e pelo menos uma dessas linhas de comparação resulta em
null.

Exemplos

As seguintes condições são verdadeiras somente para os valores listados:

qtysold in (2, 4, 5)
date.day in ('Mon', 'Tues')
date.month not in ('Oct', 'Nov', 'Dec')

Otimização para grandes listas IN

Para otimizar a performance da consulta, uma lista IN que inclua mais do que 10 valores é
internamente avaliada como uma matriz escalar. Listas IN com menos do que 10 valores são
avaliadas como uma série de predicados OR. Essa otimização é compatível com os tipos de dados
SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR,
DATE, TIMESTAMP e TIMESTAMPTZ.

Observe a saída EXPLAIN para a consulta para visualizar o efeito desta otimização. Por exemplo:

Condição IN 384

AWS Clean Rooms Referência SQL

explain select * from sales
QUERY PLAN
--
XN Seq Scan on sales (cost=0.00..6035.96 rows=86228 width=53)
Filter: (salesid = ANY ('{1,2,3,4,5,6,7,8,9,10,11}'::integer[]))
(2 rows)

Condição IN 385

AWS Clean Rooms Referência SQL

Consultar dados aninhados
AWS Clean Rooms oferece acesso compatível com SQL a dados relacionais e aninhados.

AWS Clean Rooms usa notação pontilhada e matriz subscrita para navegação de caminhos ao
acessar dados aninhados. Também permite o FROM itens de cláusula para iterar em matrizes e usar
para operações não aninhadas. Os tópicos a seguir fornecem descrições dos diferentes padrões de
consulta que combinam o uso do tipo de array/struct/map dados com navegação por caminhos e
matrizes, desaninhamento e uniões.

Tópicos

• Navegação

• Desaninhar consultas

• Semântica lax

• Tipos de introspecção

Navegação

AWS Clean Rooms permite a navegação em matrizes e estruturas usando a notação de [...]
colchetes e pontos, respectivamente. Além disso, você pode misturar navegação em estruturas
usando a notação de pontos e matrizes usando a notação de colchetes.

Example

Por exemplo, o exemplo de consulta a seguir pressupõe que a coluna de dados da matriz c_orders
é uma matriz com uma estrutura e um atributo denominado o_orderkey.

SELECT cust.c_orders[0].o_orderkey FROM customer_orders_lineitem AS cust;

Você pode usar as notações de ponto e colchetes em todos os tipos de consultas, como filtragem,
junção e agregação. Você pode usar essas notações em uma consulta na qual normalmente há
referências de coluna.

Example

O exemplo a seguir usa uma instrução SELECT que filtra resultados.

Navegação 386

AWS Clean Rooms Referência SQL

SELECT count(*) FROM customer_orders_lineitem WHERE c_orders[0].o_orderkey IS NOT NULL;

Example

O exemplo a seguir usa a navegação entre colchetes e pontos nas cláusulas GROUP BY e ORDER
BY.

SELECT c_orders[0].o_orderdate,
 c_orders[0].o_orderstatus,
 count(*)
FROM customer_orders_lineitem
WHERE c_orders[0].o_orderkey IS NOT NULL
GROUP BY c_orders[0].o_orderstatus,
 c_orders[0].o_orderdate
ORDER BY c_orders[0].o_orderdate;

Desaninhar consultas

Para desaninhar consultas, AWS Clean Rooms habilita a iteração em matrizes. Ele faz isso
navegando pela matriz usando a cláusula FROM de uma consulta.

Example

Com o exemplo anterior, o exemplo a seguir itera sobre os valores do atributo para c_orders.

SELECT o FROM customer_orders_lineitem c, c.c_orders o;

A sintaxe de desaninhamento é uma extensão da cláusula FROM. No SQL padrão, a cláusula FROM
x (AS) y significa que y itera sobre cada tupla em relação a x. Nesse caso, x refere-se a uma
relação, e y refere-se a um alias para a relação x. Da mesma forma, a sintaxe de desaninhamento
usando o item da cláusula FROM x (AS) y significa que y itera sobre cada valor na expressão da
matriz x. Nesse caso, x é uma expressão de matriz e y é um alias para x.

O operando esquerdo também pode usar a notação de pontos e colchetes para navegação regular.

Example

No exemplo anterior:

Desaninhar consultas 387

AWS Clean Rooms Referência SQL

• customer_orders_lineitem c é a iteração sobre a tabela base
customer_order_lineitem

• c.c_orders o é a iteração sobre o c.c_orders array

Para iterar sobre atributo o_lineitems, que é uma matriz dentro de uma matriz, é necessário
adicionar várias cláusulas.

SELECT o, l FROM customer_orders_lineitem c, c.c_orders o, o.o_lineitems l;

AWS Clean Rooms também suporta um índice de matriz ao iterar sobre a matriz usando o AT
palavra-chave. A cláusula x AS y AT z itera sobre a matriz x e gera o campo z, que é o índice de
matriz.

Example

O exemplo a seguir mostra como o índice da matriz funciona.

SELECT c_name,
 orders.o_orderkey AS orderkey,
 index AS orderkey_index
FROM customer_orders_lineitem c, c.c_orders AS orders AT index
ORDER BY orderkey_index;
c_name | orderkey | orderkey_index
-------------------+----------+----------------
Customer#000008251 | 3020007 | 0
Customer#000009452 | 4043971 | 0 (2 rows)

Example

O exemplo a seguir itera sobre uma matriz escalar.

CREATE TABLE bar AS SELECT json_parse('{"scalar_array": [1, 2.3, 45000000]}') AS data;

SELECT index, element FROM bar AS b, b.data.scalar_array AS element AT index;

 index | element
-------+----------
 0 | 1
1 | 2.3
2 | 45000000

Desaninhar consultas 388

AWS Clean Rooms Referência SQL

(3 rows)

Example

O exemplo a seguir itera sobre uma matriz de vários níveis. O exemplo usa várias cláusulas
unnest para iterar nas matrizes mais internas. A f.multi_level_array AS a matriz
repete. multi_level_array A matriz AS elemento é a iteração sobre as matrizes internas.
multi_level_array

CREATE TABLE foo AS SELECT json_parse('[[1.1, 1.2], [2.1, 2.2], [3.1, 3.2]]') AS
 multi_level_array;

SELECT array, element FROM foo AS f, f.multi_level_array AS array, array AS element;

 array | element
-----------+---------
 [1.1,1.2] | 1.1
 [1.1,1.2] | 1.2
 [2.1,2.2] | 2.1
 [2.1,2.2] | 2.2
 [3.1,3.2] | 3.1
 [3.1,3.2] | 3.2
(6 rows)

Semântica lax

Por padrão, as operações de navegação em valores de dados aninhados retornam nulo em vez de
retornar um erro quando a navegação é inválida. A navegação de objetos será inválida se o valor
dos dados aninhados não for um objeto ou se o valor dos dados aninhados for um objeto, mas não
contiver o nome do atributo usado na consulta.

Example

Por exemplo, a consulta a seguir acessa um nome de atributo inválido na coluna de dados
aninhados c_orders:

SELECT c.c_orders.something FROM customer_orders_lineitem c;

A navegação da matriz retornará nulo se o valor dos dados aninhados não for uma matriz ou se o
índice da matriz estiver fora dos limites.

Semântica lax 389

AWS Clean Rooms Referência SQL

Example

A consulta a seguir retorna nulo porque c_orders[1][1] está fora dos limites.

SELECT c.c_orders[1][1] FROM customer_orders_lineitem c;

Tipos de introspecção

Colunas de tipo de dados aninhadas suportam funções de inspeção que retornam o tipo e outras
informações de tipo sobre o valor. O AWS Clean Rooms oferece suporte às seguintes funções
booleanas para colunas de dados aninhados:

• DECIMAL_PRECISION

• DECIMAL_SCALE

• IS_ARRAY

• IS_BIGINT

• IS_CHAR

• IS_DECIMAL

• IS_FLOAT

• IS_INTEGER

• IS_OBJECT

• IS_SCALAR

• IS_SMALLINT

• IS_VARCHAR

• JSON_TYPEOF

Todas essas funções retornam false se o valor de entrada for nulo. IS_SCALAR, IS_OBJECT e
IS_ARRAY são mutuamente exclusivos e cobrem todos os valores possíveis, exceto nulo. Para
inferir os tipos correspondentes aos dados, AWS Clean Rooms usa a função JSON_TYPEOF que
retorna o tipo (o nível superior) do valor dos dados aninhados, conforme mostrado no exemplo a
seguir:

SELECT JSON_TYPEOF(r_nations) FROM region_nations;
 json_typeof

Tipos de introspecção 390

AWS Clean Rooms Referência SQL

array
(1 row)

SELECT JSON_TYPEOF(r_nations[0].n_nationkey) FROM region_nations;
 json_typeof

 number

Tipos de introspecção 391

AWS Clean Rooms Referência SQL

Histórico do documento para a Referência AWS Clean
Rooms SQL
A tabela a seguir descreve as versões da documentação da Referência AWS Clean Rooms SQL.

Para receber notificações sobre atualizações dessa documentação, você pode se inscrever em o
feed RSS. Para assinar as atualizações de RSS, você deve ter um plug-in de RSS habilitado para o
navegador que está usando.

Alteração Descrição Data

O Spark SQL é compatível
com dicas

AWS Clean Rooms O Spark
SQL oferece suporte a dicas
de consulta para otimizar o
desempenho da consulta
e reduzir os custos de
computação.

20 de janeiro de 2026

O Spark SQL é compatível
com CACHE TABLE

AWS Clean Rooms O Spark
SQL é compatível com o
comando CACHE TABLE,
que permite que os clientes
armazenem tabelas existente
s em cache ou criem e
armazenem novas tabelas
a partir dos resultados da
consulta para melhorar o
desempenho da consulta.

22 de outubro de 2025

O Spark SQL suporta as
funções FIRST e LAST
Window

AWS Clean Rooms O Spark
SQL é compatível com as
seguintes funções de janela:
PRIMEIRA e ÚLTIMA.

12 de junho de 2025

Atualizações da documenta
ção da função Spark SQL

Atualização somente com
documentação para refletir
com precisão as funções

20 de maio de 2025

392

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms Referência SQL

compatíveis do Spark SQL. A
documentação de 25 funções
não suportadas foi removida,
incluindo <=> operator,
SIMILAR TO, LISTAGG e
ARRAY_INSERT. Nomes
de função corrigidos de
DATEADD a DATE_ADD,
DATEDIFF a DATE_DIFF
, ISNULL a IS_NULL e
ISNOTNULL a IS_NOT_NULL.
Corrigido um erro de digitação
nos exemplos de DATE_PART
.

AWS Clean Rooms Spark
SQL

Agora, os clientes podem
executar consultas usando
algumas condições, funções,
comandos e convenções SQL
compatíveis com o mecanismo
de análise Spark SQL.

29 de outubro de 2024

Comandos SQL e funções
SQL — atualização

Foram adicionados exemplos
para a cláusula JOIN,
o operador de conjunto
EXCEPT, a expressão
condicional CASE e
as seguintes funções:
ANY_VALUE, NVL e
COALESCE, NULLIF, CAST,
CONVERT, CONVERT_T
IMEZONE, EXTRACT, MOD,
SIGN, CONCAT, FIRST_VAL
UE e LAST_VALUE.

28 de fevereiro de 2024

393

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms Referência SQL

Funções SQL - atualização AWS Clean Rooms agora
oferece suporte às seguintes
funções SQL: Array, SUPER
e VARBYTE. As seguintes
funções matemáticas agora
são suportadas: ACOS,
ASIN, ATAN, COT ATAN2,
DEXP, PI, POW, RADIANS
e SIN. As seguintes funções
JSON agora são suportada
s: CAN_JSON_PARSE,
JSON_PARSE e JSON_SERI
ALIZE.

6 de outubro de 2023

Suporte a tipos de dados
aninhados

AWS Clean Rooms agora
oferece suporte a tipos de
dados aninhados.

30 de agosto de 2023

Regras de nomenclatura SQL
- atualização

Alteração somente na
documentação para esclarece
r os nomes das colunas
reservadas.

16 de agosto de 2023

Disponibilidade geral A Referência AWS Clean
Rooms SQL agora está
disponível ao público em
geral.

31 de julho de 2023

394

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-functions-topic.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html

AWS Clean Rooms Referência SQL

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da
tradução e da versão original em inglês, a versão em inglês prevalecerá.

cccxcv

	AWS Clean Rooms
	Table of Contents
	Visão geral do SQL em AWS Clean Rooms
	Convenções de referência do SQL
	Regras de nomeação de SQL
	Nomes e colunas de associação de tabelas configurados
	Palavras reservadas

	Suporte de tipo de dados pelo mecanismo SQL
	Tipos de dados numéricos
	Tipos de dados booleanos
	Tipos de dados de data e hora
	Tipos de dados de caracteres
	Tipos de dados estruturados

	AWS Clean Rooms SQL do Spark
	Literais
	Operador + (Concatenação)
	Sintaxe
	Argumentos
	Exemplo

	Tipos de dados
	Caracteres multibyte
	Tipos numéricos
	Tipos de inteiros
	Tipo DECIMAL ou NUMERIC
	Observações sobre o uso de colunas do tipo DECIMAL ou NUMERIC de 128 bits

	Tipos de ponto flutuante
	Computações com valores numéricos
	Tipos de retorno para computações
	Precisão e escala de resultados de DECIMAL computados
	Observações sobre operações de divisão
	Condições de transbordamento
	Cálculos numéricos com os tipos INTEGER e DECIMAL

	Tipos de caracteres
	CHAR ou CHARACTER
	VARCHAR ou CHARACTER VARYING
	Significância de espaços em branco

	Tipos de datetime
	DATE
	TIMESTAMP_LTZ
	TIMESTAMP_NTZ
	Exemplos com tipos de datetime
	Exemplos de data
	Exemplos de tempo

	Literais de data, hora e timestamp
	Datas
	Times
	Valores especiais de datetime

	Literais de intervalo
	Exemplos

	Tipos de dados e literais de intervalo
	Sintaxe do tipo de dados de intervalo
	Sintaxe de literal de intervalo
	Argumentos
	Operações aritméticas de intervalo
	Estilos de intervalo
	Exemplos do tipo de dados de intervalo
	Exemplos de literais de intervalo
	Exemplos de literais de intervalo sem sintaxe de qualificador

	Tipo booliano
	Exemplos
	Literais booleanos
	Sintaxe
	Exemplo

	Tipo binário
	Tipo aninhados
	Tipo de MATRIZ
	Tipo de MAP
	Tipo STRUCT
	Exemplos de tipos de dados aninhados

	Compatibilidade e conversão dos tipos
	Compatibilidade
	Regras gerais de compatibilidade e conversão
	Tipos de conversão implícita

	AWS Clean Rooms Comandos do Spark SQL
	TABELA DE CACHE
	Sintaxe
	Parâmetros
	Exemplos
	Crie e armazene em cache uma tabela filtrada a partir dos resultados da consulta
	Resultados da consulta em cache com instruções SELECT entre parênteses
	Armazene em cache uma tabela existente com condições de filtro

	Dicas
	Sintaxe
	Tipos de dicas compatíveis
	Junte dicas
	TRANSMISSÃO
	MERGE
	SHUFFLE_HASH
	SHUFFLE_REPLICATE_NL
	Dicas de solução de problemas no Spark SQL

	Dicas de particionamento
	AGLUTINAR
	DISTRIBUIÇÃO
	REPARTIÇÃO_POR_INTERVALO
	REEQUILIBRAR

	Combinando várias dicas
	Considerações e limitações

	SELECT
	SELECT list
	Sintaxe
	Parâmetros

	Cláusula WITH
	Sintaxe
	Parâmetros
	Observações de uso
	Exemplos

	Cláusula FROM
	Sintaxe
	Parâmetros
	Observações de uso

	Cláusula JOIN
	Sintaxe
	Parâmetros
	Exemplo
	Tipos de união
	INNER
	ESQUERDA [EXTERNA]
	DIREITO [EXTERNO]
	COMPLETO [EXTERNO]
	[ESQUERDA] SEMI
	CROSS JOIN
	ANTI-JUNÇÃO
	NATURAL

	Cláusula WHERE
	Sintaxe
	condição
	Observações de uso
	Exemplo

	Cláusula VALUES
	Sintaxe
	Parâmetros
	Exemplo

	Cláusula GROUP BY
	Sintaxe
	Parâmetros
	Extensões de agregação
	GROUPING SETS
	ROLLUP
	CUBE

	Cláusula HAVING
	Sintaxe
	Observações de uso
	Exemplos

	Configurar operadores
	Sintaxe
	Parâmetros
	Ordem de avaliação para operadores de conjunto
	Observações de uso
	Exemplos de consultas UNION
	Exemplos de consultas UNION ALL
	Exemplos de consultas INTERSECT
	Exemplos de consultas EXCEPT

	Cláusula ORDER BY
	Sintaxe
	Parâmetros
	Observações de uso
	Exemplos com ORDER BY

	Exemplos de subconsulta
	Subconsulta da lista SELECT
	Subconsulta da cláusula WHERE
	Subconsultas da cláusula WITH

	Subconsultas correlacionadas
	Padrões de subconsultas correlacionadas não compatíveis

	AWS Clean Rooms Funções do Spark SQL
	Funções agregadas
	Função ANY_VALUE
	Sintaxe
	Argumentos
	Retornos
	Observações de uso
	Exemplos

	Função APPROX COUNT_DISTINCT
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função PERCENTILE APROXIMADA
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Função do AVG
	Sintaxe
	Argumentos
	Tipos de dados
	Exemplo

	Função BOOL_AND
	Sintaxe
	Argumentos
	Exemplos

	Função BOOL_OR
	Sintaxe
	Argumentos
	Exemplos

	Função CARDINALITY
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	função COLLECT_LIST
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	função COLLECT_SET
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Funções COUNT e COUNT DISTINCT
	Sintaxe
	Argumentos
	Tipos de dados
	Exemplos

	Função COUNT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função MAX
	Sintaxe
	Argumentos
	Tipos de dados
	Exemplos

	Função MEDIAN
	Sintaxe
	Argumentos

	Função MIN
	Sintaxe
	Argumentos
	Tipos de dados
	Exemplos

	Função PERCENTILE
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função SKEWNESS
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Funções STDDEV_SAMP e STDDEV_POP
	Sintaxe
	Observações de uso
	Exemplos

	Funções SUM e SUM DISTINCT
	Sintaxe
	Argumentos
	Exemplos

	Funções VAR_SAMP e VAR_POP
	Sintaxe
	Observações de uso
	Exemplos

	Funções de array
	Função ARRAY
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	função ARRAY_CONTAINS
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função ARRAY_DISTINCT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função ARRAY_EXCEPT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função ARRAY_INTERSECT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função ARRAY_JOIN
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função ARRAY_REMOVE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função ARRAY_UNION
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função EXPLODE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função FLATTEN
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Expressões condicionais
	Expressão condicional CASE
	Sintaxe
	Argumentos
	Exemplos

	expressão COALESCE
	Sintaxe
	Exemplos

	MAIOR e MENOR expressão
	Sintaxe
	Parâmetros
	Retornos
	Exemplo

	Expressão IF
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	expressão IS_NULL
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	expressão IS_NOT_NULL
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Funções NVL e COALESCE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	NVL2 função
	Sintaxe
	Argumentos
	Tipo de retorno
	Observações de uso
	Exemplo

	Função NULLIF
	Sintaxe
	Argumentos
	Exemplos

	Funções do construtor
	Função construtora MAP
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Função construtora NAMED_STRUCT
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Função construtora STRUCT
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Funções de formatação de tipo de dados
	BASE64 função
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função CAST
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função DECODE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função ENCODE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função HEX
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	função STR_TO_MAP
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	TO_CHAR
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função TO_DATE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	TO_NUMBER
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	UNBASE64 função
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função UNHEX
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Strings de formato datetime
	Strings de formato numérico

	Perfis de data e hora
	Função ADD_MONTHS
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função CONVERT_TIMEZONE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função CURRENT_DATE
	Sintaxe
	Tipo de retorno
	Exemplo

	função CURRENT_TIMESTAMP
	Sintaxe
	Tipo de retorno
	Exemplo

	função DATE_ADD
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos
	Observações de uso

	função DATE_DIFF
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos com uma coluna DATE
	Exemplos com uma coluna TIME
	Exemplos com uma coluna TIMETZ

	Função DATE_PART
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função DATE_TRUNC
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função DAY
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	função DAYOFMONTH
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função DAYOFWEEK
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Função DAYOFYEAR
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Função EXTRACT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos com TIME

	função FROM_UTC_TIMESTAMP
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função HOUR
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função MINUTE
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função MÊS
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	SEGUNDA função
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função TIMESTAMP
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Função TO_TIMESTAMP
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função YEAR
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Partes da data para funções de data ou de timestamp
	Variações nos resultados com segundos, milissegundos e microssegundos
	Observações de CENTURY, EPOCH, DECADE e MIL

	Funções de criptografia e descriptografia
	função AES_ENCRYPT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função AES_DECRYPT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Funções de hash
	MD5 função
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função SHA
	SHA1 função
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	SHA2 função
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	HASH64 função xx
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Funções do Hyperloglog
	função HLL_SKETCH_AGG
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	função HLL_SKETCH_ESTIMATE
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	função HLL_UNION
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	função HLL_UNION_AGG
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Funções JSON
	função GET_JSON_OBJECT
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	função TO_JSON
	Sintaxe
	Argumentos
	Retornos
	Exemplos

	Funções matemáticas
	Símbolos de operadores matemáticos
	Operadores compatíveis
	Exemplos

	Função ABS
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	Função ACOS
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	Função ASIN
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	Função ATAN
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	ATAN2 função
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	Função CBRT
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função CEILING (ou CEIL)
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplo

	Função COS
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função COT
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função DEGREES
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função DIV
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	Função EXP
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função FLOOR
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função LN
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função LOG
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função MOD
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Observações de uso
	Exemplos

	Função PI
	Sintaxe
	Tipo de retorno
	Exemplos

	Função POWER
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplo

	Função RADIANS
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função RAND
	Sintaxe
	Tipo de retorno
	Exemplo

	Função RANDOM
	Sintaxe
	Tipo de retorno
	Exemplos

	Função ROUND
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função SIGN
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função SIN
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplo

	Função SQRT
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função TRUNC
	Sintaxe
	Arguments (Argumentos)
	Tipo de retorno
	Exemplos

	Funções escalares
	Função SIZE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Funções de string
	Operador || (Concatenação)
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função BTRIM
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função CONCAT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	função FORMAT_STRING
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Funções LEFT e RIGHT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função LENGTH
	Função LOWER
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Funções LPAD e RPAD
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função LTRIM
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função POSITION
	Sintaxe
	Argumentos
	Tipo de retorno
	Observações de uso
	Exemplos

	Função REGEXP_COUNT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função REGEXP_INSTR
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função REGEXP_REPLACE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função REGEXP_SUBSTR
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função REPEAT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função REPLACE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função REVERSE
	Sintaxe
	Argumento
	Tipo de retorno
	Exemplos

	Função RTRIM
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função SPLIT
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função SPLIT_PART
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função SUBSTRING
	Sintaxe
	Argumentos
	Tipo de retorno
	Notas de uso para cadeias de caracteres
	Exemplos

	Função TRANSLATE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função TRIM
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Função UPPER
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função UUID
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplo

	Funções relacionadas à privacidade
	função consent_gpp_v1_decode
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	função consent_tcf_v2_decode
	Sintaxe
	Argumentos
	Retornos
	Exemplo

	Funções de janela
	Resumo da sintaxe de funções da janela
	Argumentos

	Ordenação exclusiva de dados para funções da janela
	Funções compatíveis
	Amostra de tabela para exemplos de funções de janela
	Função de janela CUME_DIST
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela DENSE_RANK
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função FIRST window
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela FIRST_VALUE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela LAG
	Sintaxe
	Argumentos
	Exemplos

	Função LAST window
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela LAST_VALUE
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela LEAD
	Sintaxe
	Argumentos
	Exemplos

	Função de janela PERCENT_RANK
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela RANK
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	Função de janela ROW_NUMBER
	Sintaxe
	Argumentos
	Tipo de retorno
	Exemplos

	AWS Clean Rooms Condições do Spark SQL
	Operadores de comparação
	Exemplos
	Exemplos com uma coluna TIME
	Exemplos com uma coluna TIMETZ

	Condições lógicas
	Sintaxe
	Exemplos

	Condições de correspondência de padrões
	LIKE
	Sintaxe
	Argumentos
	Exemplos

	RLIKE
	Sintaxe
	Argumentos
	Exemplos

	Condição de intervalo BETWEEN
	Sintaxe
	Exemplos

	Condição null
	Sintaxe
	Argumentos
	Exemplo

	Condição EXISTS
	Sintaxe
	Argumentos
	Exemplo

	Condição IN
	Sintaxe
	Argumentos
	Exemplos
	Otimização para grandes listas IN

	Consultar dados aninhados
	Navegação
	Desaninhar consultas
	Semântica lax
	Tipos de introspecção

	Histórico do documento para a Referência AWS Clean Rooms SQL
	

