
Bots and Integrations Guide

AWS Wickr

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Wickr Bots and Integrations Guide

AWS Wickr: Bots and Integrations Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Wickr Bots and Integrations Guide

Table of Contents

What are AWS Wickr bots? ... 1
AWS Wickr bot capabilities .. 1

Setting up .. 3
Prerequisites .. 3
Host machine and requirements ... 4

Host OS specifications ... 4
Host resource specifications ... 4
Networking requirements .. 5
Persistent Data ... 5

Security Recommendations .. 5
Installation ... 6
Wickr IO Components ... 7
Version 6.48 announcement .. 8

Quick start ... 10
Prerequisites .. 3
Step 1: Create a bot user ... 10
Step 2: Configure the host .. 13
Step 3: Deploy and configure the Docker container ... 13
Deploy existing bot .. 14
AWS Wickr managed Integrations .. 17

BroadcastBot Integration .. 18
Web Interface Integration ... 53

Sample integrations ... 76
Wickr IO rekognition bot .. 76
Wickr IO translation bot .. 82
Wickr IO lex bot .. 86

Develop a custom Wickr IO integration ... 92
Integration setup .. 92
Add a custom slash command .. 94
Build .. 95
Deploy ... 96

Create a bot data directory ... 96
Start the container .. 97

Node.js Addon API ... 98

iii

AWS Wickr Bots and Integrations Guide

Startup and Shutdown APIs ... 98
Configuration API ... 101
Statistics APIs .. 101
Wickr Client APIs .. 103
Secure Room Conversation APIs ... 105
Group Conversation APIs .. 108
Receive Message APIs .. 109
Transmit Message Arguments .. 111
Transmit Message APIs .. 114
Network and Security Group Message APIs .. 116
Message Status APIs .. 118
Key-Value APIs .. 122

Node.js Bot API (Development toolkit) ... 122
Addon and Bot API Usage Examples ... 126

API Initialization .. 126
Sending message to a room .. 127
Creating a room and sending an attachment .. 127
Receive Asynchronous Messages ... 128
API Shutdown .. 130

Logging API ... 130
Getting Started with the Logger .. 131
Logger Configuration ... 131

Python Bot Development ... 132
Set up your Python app ... 132
Send 1-to-1 Message ... 132
Add Room .. 133
Send Room message ... 133
Get Statistics .. 134
Delete Statistics .. 134
Get Room ... 134
Modify Room ... 134
Add Group Convo ... 135
Get Group Convos (All) ... 135
Get Group Convo (One) ... 135
Delete Group Convo (One) ... 135
Get Message .. 136

iv

AWS Wickr Bots and Integrations Guide

Set MsgRecvCallback ... 136
Get MsgRecvCallback ... 136
Delete MsgRecvCallback ... 136
Complete Python Bot Example ... 136

Automatic Configuration .. 138
Secrets Manager Value .. 138
Using Custom Integrations ... 139

Definitions .. 141
Wickr message formats .. 141

Text message ... 143
File transfer messages ... 145
Calling messages .. 147
Location messages ... 154
Edit messages .. 155
Edit reaction messages .. 160
Wickr control messages .. 162

Text message meta data .. 169
Text message table meta data .. 169
Text message button meta data ... 172

CLI commands .. 174
General Commands ... 174
Client Management Commands ... 174
Integration Management Commands .. 176

Logging ... 177
Wickr IO client provisioning logs ... 177
Wickr IO client logs ... 178
Wickr IO integration logs ... 178

Troubleshooting ... 180
Setting up Wickr IO Docker container ... 180
Provisioning Wickr IO client .. 182
Start bot client failures .. 184
Wickr IO command line interface .. 185
Client and Integration compatibility issues .. 186
Deploying custom Integrations ... 187
Other issues .. 188
Upgrading bots ... 190

v

AWS Wickr Bots and Integrations Guide

Release Notes ... 194
Version 6.48 - Release Date: 04/14/2025 .. 194

Upgrade to Node 20 .. 194
Deprecate old integrations ... 194
WickrIO Addon to use ZeroMq .. 194
Bug Fix: Data Retention Bot failing to publish CloudWatch metrics .. 194

Version 6.36.20.02 - Hotfix ... 194
Fix Bug: The Edit message, delete message and reactions are not being captured 195

Version 6.36.13.01 ... 195
Add ability to suspend bot devices .. 195
Better logging for clientConfig.json bad JSON .. 195
Fix Bug: Sending messages to invalid users could hang bot ... 195

Version 6.34.05.01 ... 196
Support File Management feature message formats ... 196
Bug Fix: Broadcast Bot security group selection failed .. 196
Bug Fix: Bug fixes inherited from lower layer SDK .. 196

Version 6.32.04.02 ... 196
Bug Fix: Airgap version contacting NPM Registry .. 196
Bug Fix: Read receipts not working for Broadcast Bot ... 196
Bug Fix: Registration failures ... 197
Bug Fix: Read receipts never time out ... 197

Version 6.24.06.02 ... 197
Bug Fix: Conversations not restored when creating new instance of bot 197
Bug Fix: Downloading files in multi-domain environments ... 197
Bug Fix: Handle files with long file names ... 197
Feature to send events to AWS Amazon SNS Topic .. 197
Created new API to set avatar for the bot client .. 198

Version 6.18.19.02 ... 198
Continue using AWS Amazon ECR to host Docker images .. 198
Two-way data retention support .. 198
Data retention bots support additional user information ... 198

Version 6.16.19.01 ... 199
Continue using AWS Amazon ECR to host Docker images .. 199
Update image from Ubuntu 18.04 to Ubuntu 20.04 .. 199
Fix message send error issues ... 199
Support for AWS Wickr Multi-Region .. 199

vi

AWS Wickr Bots and Integrations Guide

Fix Broadcast bot not receiving messages from users .. 200
More user-friendly bot startup failure indications .. 200
Fix issue where bot startups more than 5 attempts will stop trying to start 200
Update control message to indicate rooms with saved links and files 200

Version 6.11.05.01 ... 200
Using AWS Amazon ECR to host Docker images ... 201
Move from Forever process manager to WPM2 ... 201
Performance improvement for large broadcast ... 201
Updating the Support email in all the bots ... 201
Updated JSON timestamp .. 202
Mutex Lock Enhancements ... 202

Version 5.116.19.02 ... 202
Fix for Enterprise updated password not showing .. 202

Version 5.116.18.01 ... 202
Fix for Missing Rooms ... 202
Fix for upgrades from old bot versions ... 202
Fix to address high CPU .. 203
Fix for SAAS Data Retention Network Transmit Failures .. 203

Version 5.116.13.01 ... 203
Support for Mac M1 Host ... 204
Support for Node 16 ... 204
Installation Process .. 204
FAQ .. 205

vii

AWS Wickr Bots and Integrations Guide

What are AWS Wickr bots?

AWS Wickr bots are powerful tools that enable external services and workflows to communicate
seamlessly with AWS Wickr users. These bots function as standard users within the AWS Wickr
ecosystem, allowing administrators to apply consistent security controls while enabling end-users
to interact through messaging. Bots can send and receive messages, handle file attachments,
manage rooms and groups, and add interactive UI elements for enhanced user engagement.

Implemented using either a Node.js native library or REST API, AWS Wickr bots offer versatile
integration capabilities. They can manage webhooks, interact with file repositories, leverage AWS
services like Rekognition for image analysis, bridge communications with platforms such as Slack,
Discord, or any Matrix-compatible endpoint, integrate with AI and LLMs, broadcast messages, and
even gather location data for mapping purposes. The Matrix integration capability is particularly
valuable for organizations requiring federated communication across different platforms while
maintaining security protocols.

Use cases for AWS Wickr bots are diverse, ranging from mass communication and emergency
notifications to AI-powered chatbots and cross-platform messaging solutions. For instance,
enterprises can use bots to automate compliance processes, manage file systems, or create custom
integrations with their existing tools. A prime example of AWS Wickr bots in action is showcased
in the "Operation Recovery" case study, where bots played a crucial role in coordinating life-saving
efforts during critical scenarios.

By leveraging AWS Wickr bots, organizations can extend the platform's capabilities, streamline
workflows, and create tailored solutions that meet their specific communication and integration
needs, all while maintaining the robust security framework inherent to AWS Wickr. The following
sections provide detailed information about getting started with bots and the available
integrations. Please note that setting up and configuring bots requires developer involvement and
familiarity with command-line operations.

AWS Wickr bot capabilities

AWS Wickr bots can do the following:

• Send and receive messages

• Send and receive file attachments

• Create and manage AWS Wickr rooms and groups

AWS Wickr bot capabilities 1

AWS Wickr Bots and Integrations Guide

• Add UI elements for user interaction

Important

AWS Wickr bots cannot initiate or join calls at this time.

AWS Wickr bots utilize either Node.js code via a native library or a REST API to control what the bot
can do. Examples of what bots can do are:

• Webhooks

• Manage a file repository

• Send images or video to AWS Recognition for analysis

• Send and receive messages on another platform, like Slack, Discord, or a Matrix compatible
endpoint

• Interact with Generative AI and LLMs

• Broadcast messages or file to any number of AWS Wickr users within your network

• Gather user locations to build a map view

AWS Wickr bot capabilities 2

AWS Wickr Bots and Integrations Guide

Setting up for Wickr IO

This section is intended for systems administrators and/or developers to deploy a Wickr-provided
bot within their Wickr network or to build and integrate a custom bot of their own.

The following sections will be of interest to all users:

• Quick start: Describes a quick guide from creation to running and interacting with your Wickr bot
clients.

• Available Bot Integrations: Contains descriptions of current Wickr IO integrations that you can
use.

• Wickr IO Command Line Interface (CLI): Describes all of the commands that are available from
the Wickr IO command line interface.

Developers have access to several levels of APIs when developing Wickr IO integration software.
Familiarity with all aspects of the Wickr IO system will be helpful when developing Wickr IO
integrations. The following sections give details on the available APIs and any other integration
components you will need to deal with:

• Wickr IO Node.js Addon API: The main software API you will use to access the Wickr messaging
capabilities.

• Wickr IO bot API: A higher level software API that provides additional capabilities above the main
addon APIs, basically a bot development toolkit.

• Integration setup: Information about integration software modules you will need to maintain
that will be used to integrate your Wickr IO integration into the Wickr IO Integration Gateway.

• Wickr IO Web Interface Integration: Information about how to use the REST API as a way to
integrate your software.

If you are planning on developing Wickr IO integrations, you should read this entire document.
Administrators may skip the development sections.

Prerequisites

Before you start, complete the following before continuing with this guide:

Prerequisites 3

https://docs.aws.amazon.com/wickr/latest/wickrio/available-bot-integrations.html
https://docs.aws.amazon.com/wickr/latest/wickrio/cli-commands.html
https://docs.aws.amazon.com/wickr/latest/wickrio/nodejs-addon-api.html
https://docs.aws.amazon.com/wickr/latest/wickrio/nodejs-bot-api.html
https://docs.aws.amazon.com/wickr/latest/wickrio/integration-setup.html
https://docs.aws.amazon.com/wickr/latest/wickrio/webinterface-integration.html

AWS Wickr Bots and Integrations Guide

• Sign up for AWS Wickr. For more information, see Setting up for AWS Wickr in the AWS Wickr
Administration Guide..

• Create and configure your AWS Wickr network. For more information, see Create a network in
the AWS Wickr Administration Guide.

• Provision a host machine to run the Wickr IO bot Docker container.

Host machine and requirements

You should provision a host machine capable of running Docker to deploy the Wickr IO Docker
container. Refer to the Docker website for instructions on how to install Docker on your system.
Once the docker is installed, make sure the docker service is up and running using the docker
info command.

While exact requirements may vary based on your deployment scenario, the following
recommendations should be considered as baseline specifications for provisioning the host system:

Host OS specifications

The Wickr IO Docker container can be deployed on any Docker capable machine (like Amazon EC2
instances, VMs, etc.). However, since most AWS testing an validation is performed on Ubuntu 20.04
and Amazon Linux, we recommend using either of these operating systems for compatibility and
stability.

The Wickr IO Docker image uses the Ubuntu Linux operating system.

Host resource specifications

At a minimum the Wickr IO container should have the following resources available when
deploying and running a single bot:

• 4 GB RAM

• 2 CPU

• 8GB+ disk space

Host machine and requirements 4

https://docs.aws.amazon.com/wickr/latest/adminguide/setting-up.html
https://docs.aws.amazon.com/wickr/latest/adminguide/getting-started-step1.html
https://docs.docker.com/engine/install/

AWS Wickr Bots and Integrations Guide

Note

Increase these resources to ensure availability when running multiple bots or more
intensive local workloads. Make sure to regularly monitor your host's disk space and
memory utilization to avoid disruptions in container performance.

Networking requirements

Wickr IO bot clients have the same networking requirements as traditional Wickr clients. The ports
and domains needed for basic connectivity are in the AWS Wickr administration guide. For more
information, see Ports and domains to allow list for your Wickr network.

Depending on your use case you may have to start the Docker container in a way to allow access
to specific network ports or network proxy settings as well. For example, the Wickr Web Interface
integration requires a TCP port to expose the REST API.

If you plan to use other AWS services with a Wickr bot, you must ensure the host has the
appropriate AWS Identity and Access Management (IAM) role and policy to access them. For more
information, see What is IAM?.

Persistent Data

The Wickr IO Docker container will also require access to the host file system in order to save
persistent data. This is necessary to stop or upgrade the image without losing the state of your
Wickr IO clients. You will need to specify this location to the Docker image when you run it.

Security Recommendations

We recommend following best practices and if applicable, your organization's security policies to
secure your bot deployment. This can include, but isn't restricted to, firewall rules, host system
access auditing, regular host system OS updates, and monitoring. We designed Wickr IO bots to be
both powerful and flexible for custom use cases and while they inherit many security protections
from our standard Wickr clients, it falls on you to secure the host system appropriately to protect it
(and your bot) from unauthorized access. For more information on shared responsibility, see Shared
Responsibility Model.

The Wickr IO bot container is moderately hardened to remove unnecessary services, etc., but its
threat model assumes that it is deployed on an internal network segment and configured as a

Networking requirements 5

https://docs.aws.amazon.com/wickr/latest/adminguide/allow-list-ports-domains.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Wickr Bots and Integrations Guide

client system. Don't forget to augment your security controls as you expand your use cases. The
bottom line is if you lose control of your bot host, you will likely lose control of your bot and all
the data. Log only what you need to log, encrypt what you need to encrypt, and use strong access
controls.

Bots are not isolated by default. Users outside your network can interact with bots if they guess
the bot username and your security group allows external federation. For more information, see
Security groups for AWS Wickr .

Installation

Once you have a host machine setup and Docker installed, the installation of Wickr IO software
is as simple as pulling the appropriate Wickr IO Docker container. For more information on using
Docker, see Get Started with Docker.

The Wickr IO Docker images are hosted on Public ECR. You can pull down the Wickr IO Docker
image located at the following public ECR repository:

Wickr IO bot cloud.

The docker image can be pulled down to the host machine using the following command:

docker pull public.ecr.aws/x3s2s6k3/wickrio/bot-cloud:latest

Note

Depending on your use case, you may want to pull a particular version. For more
information on available versions, see Wickr IO bot cloud.

In case, you do not have access to public ECR, the docker image can also be pulled down, from the
Dockerhub repository, to the host machine using the following command:

docker pull wickr/bot-cloud:latest

Installation 6

https://docs.aws.amazon.com/wickr/latest/adminguide/security-groups.html
https://www.docker.com/get-started/
https://gallery.ecr.aws/x3s2s6k3/wickrio/bot-cloud
https://gallery.ecr.aws/x3s2s6k3/wickrio/bot-cloud
https://hub.docker.com/r/wickr/bot-cloud

AWS Wickr Bots and Integrations Guide

Note

The Docker Hub repository will soon be deprecated and the bot images will only be
available on public ECR.

Wickr IO Components

The Wickr IO Docker container contains the Wickr IO client software and the client service and
configuration software. The Wickr IO client, as opposed to the Wickr client, provides a software
interface (API) to the Wickr capabilities, instead of through a graphical user interface (GUI). This
software interface can be leveraged either through the native Node.js add-on APIs or an optional
REST API (using the Web Interface integration) to provide the ability to send and receive messages,
as well as create secure rooms and group conversations.

The Wickr IO bot software is distributed as a Docker image. There are different Docker images
depending on the type of Wickr environment you are using. Each Wickr IO Docker container has the
following components:

• Wickr IO client: The Wickr IO client is a Wickr client that interacts with integration software
through an API. Using this software API, the integration software can access the Wickr messaging
capabilities. The Wickr IO client is associated with a Wickr user account and interacts with other
Wickr clients as a Wickr bot user.

• Wickr IO Node.js API: This software provides an API that allows native Node.js programs
(integrations) to interact with the Wickr IO client. This software is distributed via the public Node
Package Manager (NPM) registry. For more information, see Node.js Addon API.

• Wickr IO Integration Software: The Wickr IO integration software is written using Node.js and
uses the Wickr IO Node-js add-on API to implement the integration functionality. The Wickr IO
Bot Docker container includes a few Wickr IO integrations that are maintained by AWS Wickr
team, and a few sample integrations are available on the public NPM Registry. You can use the
sample integrations as examples to build your own. For more information, see Available Bot
Integrations.

• Wickr IO console: This console software provides a command line interface that is used to
maintain the operation of your Wickr IO clients. The command line interface supports adding,
modifying, deleting Wickr IO clients and the associated integration software. You will also use
the command line interface to start and stop running the Wickr IO clients. For more information,
see CLI commands.

Wickr IO Components 7

https://docs.aws.amazon.com/wickr/latest/wickrio/nodejs-addon-api.html
https://docs.aws.amazon.com/wickr/latest/wickrio/available-bot-integrations.html
https://docs.aws.amazon.com/wickr/latest/wickrio/available-bot-integrations.html
https://docs.aws.amazon.com/wickr/latest/wickrio/cli-commands.html

AWS Wickr Bots and Integrations Guide

Version 6.48 announcement

Version 6.48 of the Bots docker image contains the upgrade to Node 20. If you are using any bots,
you will need to make the following modifications to them to ensure they work with this latest bot
version. Upgrading to the new version without completing these steps will disrupt the functionality
of your custom bots:

1. If you are creating custom bots/integrations, you will need to update the integration to include
the following changes:

• Bump wickrio-bot-api version to 7.1.x. (If you have wickrio_addon as a dependency, it should
also be bumped to 7.1.x).

• Remove occurrences of Node 16 usage.

• Make changes to work with asynchronous APIs.

This is an example of changes to be made to any custom integration to accommodate
compatibility with version 6.48 (and later).

2. If you are using any of the officially supported integrations, please make sure to upgrade your
integrations to the latest version using upgrade command in Docker CLI. For more information,
see the section called “Upgrading bots”.

As of version 6.48, the Bots docker image has the following major changes:

1. Upgraded to use Node 20 (previously used Node 16).

2. Deprecated multiple integrations. This is the list of officially supported integrations:

• wickrio-broadcast-bot

• wickrio_web_interface_bot

• wickrio-compliance-bot (only available for Enterprise environments)

3. This is the list of sample integrations that can be pulled from NPM registry for testing purposes:

a. @wickr-sample-integrations/wickrio-hello-world-bot

b. @wickr-sample-integrations/wickrio-example-app

c. @wickr-sample-integrations/wickrio-lex-bot

d. @wickr-sample-integrations/wickrio-rekognition-bot

e. @wickr-sample-integrations/wickrio-translation-bot

Version 6.48 announcement 8

https://github.com/WickrInc/wickrio-hello-world-bot/pull/36/files

AWS Wickr Bots and Integrations Guide

4. The WickrIO addon has been updated to use ZeroMq to interact with WickrIO client, making the
WickrIO APIs asynchronous.

Version 6.48 announcement 9

AWS Wickr Bots and Integrations Guide

Quick start

This guide walks you through deploying your first bot in Wickr. When you complete this guide,
you'll have a bot in Wickr that can respond to pre-configured messages.

Topics

• Prerequisites

• Step 1: Create a bot user

• Step 2: Configure the host

• Step 3: Deploy and configure the Docker container

• Deploy an existing bot

• AWS Wickr managed Integrations

• Sample integrations

Prerequisites

Before you start, be sure to complete the following prerequisites if you haven't already:

• A host that meets the requirements specified in Host machine and requirements.

• An AWS Console account with access to Wickr (Commercial and Gov): Getting started with AWS
Wickr

• Create a Wickr network:

• Getting started (Commercial and Gov)

• Network provisioning (Enterprise)

Step 1: Create a bot user

You can create a bot user in the Wickr console.

Complete the following procedure to create a bot user.

1. Log in to the AWS Wickr console at https://console.aws.amazon.com/wickr/

2. In the Access Admin Console section of the page, choose Manage network.

Prerequisites 10

https://docs.aws.amazon.com/wickr/latest/wickrio/setting-up.html#host-machine-requirements
https://aws.amazon.com/wickr/getting-started/
https://aws.amazon.com/wickr/getting-started/
https://docs.aws.amazon.com/wickr/latest/adminguide/getting-started.html#getting-started-step1
https://docs.aws.amazon.com/wickr/latest/enterpriseadminguide/network-provisioning.html
https://console.aws.amazon.com/wickr/

AWS Wickr Bots and Integrations Guide

3. Select your Wickr network by finding it using its Network name or Network ID on the Manager
network page. If necessary, search for the network by its Network name.

4. In the left navigation, choose User management to access the User Management page. This
page allows you to add, remove, and set properties for all kinds of Wickr user types including
licensed users, bots, and guest users.

Step 1: Create a bot user 11

AWS Wickr Bots and Integrations Guide

5. Choose the Bot users tab and choose Create bot user.

6. Enter the following information:

• Username — The internal username of the bot.

• Display name — The bot name that will be shown to end users.

• Password — The password that you'll need to register and log in to the bot.

• Security group — Controls permissions for the bot and how it's allowed to communicate.

Step 1: Create a bot user 12

AWS Wickr Bots and Integrations Guide

Step 2: Configure the host

Complete the following procedure to configure the host.

1. Connect to your EC2 or host machine and create a directory for your Docker volume. For this
example, we'll use a directory in the current user's home, ~/WickrIO. This directory will
mount inside the container at /opt/WickrIO.

cd ~
mkdir WickrIO

2. Make sure that the ~/WickrIO directory or your chosen directory is shared with Docker. For
more information, see Sharing local files with containers.

3. Pull the public Wickr IO Docker image:

docker pull public.ecr.aws/x3s2s6k3/wickrio/bot-cloud:latest

Note

If you have a Docker image saved in in .tar format, you must load it using the following
command before starting the docker container:
docker load -i image-name.tar
Replace image-name with the actual file name of your Docker image.

Step 3: Deploy and configure the Docker container

Complete the following procedure to deploy and configure the Docker container.

1. Start the Docker image on your host:

docker run -v ~/WickrIO:/opt/WickrIO -ti public.ecr.aws/x3s2s6k3/wickrio/bot-
cloud:latest

2. Select your preference for the welcome message.

Step 2: Configure the host 13

https://docs.docker.com/get-started/docker-concepts/running-containers/sharing-local-files/

AWS Wickr Bots and Integrations Guide

Deploy an existing bot

Complete the following procedure to deploy an existing bot.

Wickr IO Hello World Bot

1. Follow Steps 1-3 in Quick start to get the bot container created and running.

2. At the Enter command: prompt, enter the command add.

3. Over the next several prompts, enter the username and password created in the previously.

4. Next you are prompted to select an integration. In the sample, we used @wickr-sample-
integrations/wickrio-hello-world-bot.

Deploy existing bot 14

AWS Wickr Bots and Integrations Guide

5. Start the bot by doing the following:

1. Use the list command to view a list of available bots.

2. Using the number of the bot that you just created (0 in the example), type the command
start #, where # is the bot number (0 in the example).

3. Enter the password for the bot.

4. Wait several seconds, and then use the list command again to verify that the bot is running.

6. Interact with the bot:

1. Using your Wickr user, choose the New Direct Message button.

Deploy existing bot 15

AWS Wickr Bots and Integrations Guide

2. In the search bar, search for your bot by display name.

3. Select your bot for a direct message, and send a message.

Deploy existing bot 16

AWS Wickr Bots and Integrations Guide

AWS Wickr managed Integrations

This section describes the production-ready bots that are built, maintained, and dispersed by
AWS Wickr. The Wickr team QAs them at a regular cadence to ensure optimal performance and
compatibility with Wickr apps.

The following is a list of available bots which are included in the Wickr IO bot image:

AWS Wickr managed Integrations 17

AWS Wickr Bots and Integrations Guide

• Broadcast bot - This integration allows a user or administrator to quickly send or broadcast
messages to any number of users. These messages can prompt recipients for acknowledgement,
prompt them to share their location with the sender, and repeat until the recipient confirms
receipt. For more information, see BroadcastBot Integration.

• Web-Interface bot - This integration is the official Wickr IO Web API tool. Provides an endpoint
to send HTTP requests to communicate with the Wickr IO API. This also makes it possible to
create Wickr integrations using any programming language. For more information, see Web
Interface Integration

BroadcastBot Integration

The Wickr IO BroadcastBot allows you to broadcast messages to all of the members of your
network or specific security groups. The messages will be sent to each individual within the
network or security group using Wickr 1on1 conversations. You can broadcast either messages,
files or voice memos. Users that receive a broadcast from the BroadcastBot can also acknowledge
receiving messages (using the /ack command).

The BroadcastBot will maintain the status for each message sent on a per user basis. You can
retrieve a detailed or summary report of the status for the broadcasts that you have sent.

You can interact with the BroadcastBot using any one of the following types of applications:

• Wickr interface - Interact with the BroadcastBot using Wickr commands.

• Web interface - Interact with the BroadcastBot using a web-based interface.

• REST API interface - Interact with the BroadcastBot using REST APIs.

The Wickr interface supports a set of commands that allow you to send broadcast messages and
retrieve status information associated with the broadcast messages you send. You will interact with
the BroadcastBot on a Wickr 1on1 conversation. Details of the supported commands are described
in the section called “BroadcastBot Wickr Interface”.

The web interface is a web-based application that allows you to interact with the BroadcastBot.
The web interface is initiated by a command you enter in the BroadcastBot's Wickr 1on1
conversation. Details of the commands and interaction with the BroadcastBot via the web interface
are described in the section called “BroadcastBot Web Interface”.

The REST API interface is provided to allow you to easily integrate the BroadcastBot features
into your own applications. The REST API provides the same commands to interact with the

BroadcastBot Integration 18

https://docs.aws.amazon.com/wickr/latest/wickrio/broadcastbot-integration.html
https://docs.aws.amazon.com/wickr/latest/wickrio/webinterface-integration.html
https://docs.aws.amazon.com/wickr/latest/wickrio/webinterface-integration.html

AWS Wickr Bots and Integrations Guide

BroadcastBot as the other methods of interacting with the BroadcastBot. Details of the REST APIs
are described in the section called “BroadcastBot REST API”.

The Wickr IO BroadcastBot is a public integration. See the section called “Broadcast Bot
Installation” or the section called “Broadcast Bot Enterprise Installation” for details on installation
and configuration of the specific Wickr Docker images.

Broadcast Bot Installation

This section describes the requirements and configuration of the BroadcastBot for Wickr networks.

Requirements

Before you can install and configure the BroadcastBot, you will need to create a Wickr Bot user via
the appropriate Wickr admin console. The the section called “Step 1: Create a bot user” section
describes how to create a Wickr IO client on the Wickr Admin console.

The following is a list of tokens that are required to start/configure a Wickr BroadcastBot
integration:

• WICKRIO_BOT_NAME - The name of the BroadcastBot Wickr client. This value should be
automatically set.

• DATABASE_ENCRYPTION_CHOICE - Identifies if you want to encrypt the BroadcastBot
information. Choices are 'yes' or 'no'.

• DATABASE_ENCRYPTION_KEY - A random sequence of bytes used to encrypt the BroadcastBot
information. This string must be at least 16 characters in length. Entering a value with less than
16 characters will not encrypt the BroadcastBot information. It is not required to be encrypted
but is highly recommended.

• ADMINISTRATORS - A comma separated list of Wickr users that can use the BroadcastBot to
send broadcast messages. These are the only users that can use the BroadcastBot. Additional
admin users can be added via the /admin command.

• WEB_INTERFACE - Identifies if you want to use the Web Interface and/or the REST API interface.
Choices are 'yes' or 'no'.

• WEB_APPLICATION - Identifies if you want to use the Web Interface. Choices are 'yes' or 'no'. This
is only valid if the WEB_INTERFACE is 'yes'.

• WEBAPP_HOST - This is the public IP address or host that users will use to get access to the Web
Interface application.

BroadcastBot Integration 19

AWS Wickr Bots and Integrations Guide

• WEBAPP_PORT - This is the public IP port that users will use to get access to the Web Interface
application.

• REST_APPLICATION - Identifies if you want to use the REST API. Choices are 'yes' or 'no'. This is
only valid if the WEB_INTERFACE is 'yes'.

• BOT_PORT - This is the docker internal port that is used to interface with the web applications.

• BOT_KEY - The API Key that is used in every endpoint call. This is the <api key=""> value that
is contained in every endpoint URL, as is shown in the table in the previous section.

• BOT_AUTH_TOKEN - The authentication string used to generate the Base64 value to be sent in
the authorization field of the HTTP Header (Recommended: 24-character alphanumeric string).
You will need to generate a Base64 value of this token and the add it to the HTTP authorization
header (i.e. Basic MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTIzNA==).

• HTTPS_CHOICE - Identifies if you will be using HTTPS to interact with the web applications of
this bot. Choices are 'yes' or 'no'.

• SSL_KEY_LOCATION - Full path name of the .key file (only required if the HTTPS_CHOICE is
'yes'). The file must be located in the shared directory that the integration software running on
the Docker image can access.

• SSL_CRT_LOCATION - Full path name of the .cert file (only required if the HTTPS_CHOICE is
'yes'). The file must be located in the shared directory that the integration software running on
the Docker image can access.

• BROADCAST_ENABLED - Enter 'yes' to enable the /broadcast command and allow broadcasts
to the whole network and security groups. Enter 'no' to only allow sending to files with the /
send command.

Configuration

You will need to have some familiarity with Docker in order to configure and start the Wickr
BroadcastBot. The the section called “Step 3: Deploy and configure the Docker container” section
has some helpful information on working with Wickr Docker images.

The following are steps you can use to create a BroadcastBot integration:

1. Start the docker image, which will download the docker image, if needed. Note: assign a unique
name to this docker image which you can use for other docker commands, also note there are 2
ports opened (4002 and 8080) with the following docker run command:

docker run -v /opt/WickrIOShare:/opt/WickrIO -p 4002:4002 -p 8080:8080 \

BroadcastBot Integration 20

AWS Wickr Bots and Integrations Guide

--d --restart=always --name="MyBCastBot" -ti \
public.ecr.aws/x3s2s6k3/wickrio/bot-cloud:latest

Note

If you are on Wickr GovCloud, please remember to modify the above command to
replace docker image link with GovCloud image i.e public.ecr.aws/x3s2s6k3/
wickrio/bot-cloud-govcloud:latest

2. Attach to the docker image, using the name from the previous step: docker attach
MyBCastBot

3. Agree to the license agreement, if you have not already done so.

4. Enter the add command at the prompt, filling in the username and password you created in step
one.

5. Enable autologin.

6. Enter the broadcast bot integration from the list, for example wickrio-broadcast-bot

7. Respond to the configuration prompts with appropriate values, see the sample output below.

8. The broadcast bot is configured now. Start the client by entering start and then y and then the
password.

If you have followed along so far you now have the broadcast bot running on your network!

The following is sample output from adding a broadcast bot:

Enter command:add
Enter the user name:bcast_bot
Enter the password:********
Creating user: "bcast_bot"

Begin registration with password.
Begin register new user context.

Begin register existing user context.

Successfully created user

Successfully logged in as new user!

BroadcastBot Integration 21

AWS Wickr Bots and Integrations Guide

Our work is done here, logging off!

Return code from provision is: 0

The autologin capability allows you to start a bot without having to enter the
password, after the initial login.
NOTE: The bot client's password is NOT saved to disk.

Do you want to use autologin? (default: yes):
Searching NPM registry
Searching NPM registry
Searching NPM registry

These integrations are local:
 - hubot

These integrations are from the NPM registry:
 - wickrio_web_interface
 - wickrio-file-bot
 - wickrio-hello-world-bot
 - wickrio-example-app
 - wickrio-broadcast-bot

Please enter one of:
 - The full integration name from the list above
 - The word "search" to search the NPM registry for an integration
 - The word "import" to import an integration
 - The word "quit" to cancel adding the bot

Enter the bot integration to use:wickrio-broadcast-bot
**
Begin setup of wickrio-broadcast-bot software for bcast_bot
Copying wickrio-broadcast-bot software

Installing wickrio-broadcast-bot software
Installing
Installing
Begin configuration of wickrio-broadcast-bot software for bcast_bot
Adding ADMINISTRATORS to the list of tokens
Adding VERIFY_USERS to the list of tokens
 Do you want to encrypt the configuration values [yes|no]: (no) :
 Do you want to setup the web interface (REST API or WEB Application) [yes/no]:
 (no) :yes
 Do you want to use the web application [yes/no]: (no) :yes

BroadcastBot Integration 22

AWS Wickr Bots and Integrations Guide

 Please enter the host name or ip address to reach the web application:
 (false) :54.1.2.3
 Please enter the host port to use to reach the web application: (false) :8080
 Do you want to use the REST application [yes/no]: (no) :yes
 Please enter your client bot's port: (false) :4002
 Please enter your client bot's API-Key: (false) :ABCDEF
 Please create an Web API Basic Authorization Token, we recommend an alphanumeric
 string with at least 24 characters: (false) :12345678901234567890ABCD
 Do you want to set up an HTTPS connection with the Web API Interface, highly
 recommended [yes/no]: (no) :
 Do you want to map users locations when you send broadcasts [yes/no]: (no) :
 Enter the list of administrators: (N/A) :auser01,auser02
 Enter the mode to verify users: (automatic) :
Finished Configuring!

Integration files written to:
/opt/WickrIO/clients/bcast_bot/integration/wickrio-broadcast-bot

End of setup of wickrio-broadcast-bot software for bcast_bot
**
Successfully added record to the database!
Enter command:start 1
Do you really want to start the client with the name bcast_bot:yes
Enter password for this client:************************
Enter command:

For assistance in starting and running the BroadcastBot Docker image please contact wickr-
support@amazon.com.

Broadcast Bot Enterprise Installation

This section describes the requirements and configuration of the BroadcastBot for Wickr Enterprise
networks.

Requirements:

Before you can install and configure the BroadcastBot, you will need to create a Wickr Bot user via
the appropriate Wickr admin console, in a specific network. The associated Wickr username and
password will be used when creating the BroadcastBot bot. the section called “Step 1: Create a bot
user” describes how to create a Wickr IO client on the Wickr Admin console.

When running a BroadcastBot in a Wickr enterprise network you will need to download the
appropriate Wickr configuration file. This file will need to be copied to the system where the

BroadcastBot Integration 23

AWS Wickr Bots and Integrations Guide

BroadcastBot docker image is running. The Configuration section below identifies the location this
configuration file is to be placed.

The following is a list of tokens that are required to start/configure a Wickr Enterprise
BroadcastBot integration:

• WICKRIO_BOT_NAME - The name of the BroadcastBot Wickr client. This value should be
automatically set.

• DATABASE_ENCRYPTION_CHOICE - Identifies if you want to encrypt the BroadcastBot
information. Choices are 'yes' or 'no'.

• DATABASE_ENCRYPTION_KEY - A random sequence of bytes used to encrypt the BroadcastBot
information. This string must be at least 16 characters in length. Entering a value with less than
16 characters will not encrypt the BroadcastBot information. It is not required to be encrypted
but is highly recommended.

• ADMINISTRATORS - A comma separated list of Wickr users that can use the BroadcastBot to send
broadcast messages. These are the only users that can use the BroadcastBot. Additional admin
users can be added via the /admin command.

• WEB_INTERFACE - Identifies if you want to use the Web Interface and/or the REST API interface.
Choices are 'yes' or 'no'.

• WEB_INTERFACE_PORT - The port number to use for the Web Interface and REST API interface.
This value is required if WEB_INTERFACE is 'yes'.

• WEB_INTERFACE_SSL - Identifies if you want to use SSL for the Web Interface and REST API
interface. Choices are 'yes' or 'no'.

• WEB_INTERFACE_SSL_KEY_LOCATION - The location of the SSL key file. This value is required if
WEB_INTERFACE_SSL is 'yes'.

• WEB_INTERFACE_SSL_CERT_LOCATION - The location of the SSL certificate file. This value is
required if WEB_INTERFACE_SSL is 'yes'.

• API_AUTH_TOKEN - A random sequence of bytes used as the API authorization token. This value
is required if WEB_INTERFACE is 'yes'.

• HTTPS_CHOICE - Identifies if you want to use HTTPS for the Web Interface. Choices are 'yes' or
'no'.

• GOOGLE_MAPS_API_KEY - Your Google Maps API key. This is required if you want to use the /
map command.

BroadcastBot Integration 24

AWS Wickr Bots and Integrations Guide

• BROADCAST_ENABLED - Enter 'yes' to enable the /broadcast command and allow broadcasts to
the whole network and security groups. Enter 'no' to only allow sending to files with the /send
command.

Configuration:

You will need to have some familiarity with Docker in order to configure and start the Wickr
BroadcastBot. the section called “Integration setup” has some helpful information on working with
Wickr Docker images.

When running in a Wickr enterprise environment you will need to get a Wickr configuration file
and place it on the system where you will be running the BroadcastBot. The location must be
visible to the software running on the WickrIO docker container, this is identified by the shared
location option (-v) assigned by the "docker run" command. This configuration file must be present
when you create the BroadcastBot. We recommend the location of where to place the Wickr
configuration file is the following location, where "WickrIOShare" is the location used with the
docker run command:

/WickrIOShare/wickr-enterprise.conf

The following are steps you can use to create a Wickr Enterprise BroadcastBot integration:

1. Start the Wickr IO Docker image.

2. Enter the add command at the prompt, filling in the username and password you created in step
one.

3. Enable autologin.

4. Enter the broadcast bot integration from the list, for example wickrio-broadcast-bot

5. Respond to the configuration prompts with appropriate values, see the sample output below.

6. The broadcast bot is configured now. Start the client by entering start and then y and then the
password.

If you have followed along so far you now have the broadcast bot running on your network!

For assistance in starting and running the BroadcastBot Docker image please contact wickr-
support@amazon.com.

BroadcastBot Integration 25

AWS Wickr Bots and Integrations Guide

BroadcastBot Wickr Interface

You can interact with the BroadcastBot using commands sent to the BroadcastBot over a 1to1
Wickr conversation. When administrators are being used only those approved Wickr users will have
access to all of the BroadcastBot commands, without that setting all users will have full access to
the functionality of the BroadcastBot. There are a small set of commands that all Wickr users can
use regardless of whether administrators are being used (like the /ack command). Approved users
are initially identified when the BroadcastBot is installed and configured, which is described in the
Configuration section below. Additional approved users can be added or removed by any approved
user on a 1on1 conversation to the BroadcastBot, using /admin commands.

To use the BroadcastBot you will interact via a 1on1 conversation with the BroadcastBot Wickr
client. The BroadcastBot will prompt you for any necessary information related to what you
are going to broadcast. The following shows a sample dialog with the BroadcastBot to send a
broadcast message:

BroadcastBot Integration 26

AWS Wickr Bots and Integrations Guide

The BroadcastBot will send the message, file or voice memo to the destination group(s) you select.
The broadcast message will be sent on 1on1 conversations between the BroadcastBot and each
member of the destination group. The broadcast message will include the identity of who the
broadcast was initiated by, for example:

BroadcastBot Integration 27

AWS Wickr Bots and Integrations Guide

If you want the user to acknowledge the receipt of the broadcast message that will be mentioned
in the broadcast message as well. If you broadcast a file or a voice memo an additional message
will be sent to include the identity of the broadcast user as well as the acknowledgement request.

Usage:

To get a list of commands available with the BroadcastBot, the /help command will present the list
of the commands and a description of what each one does. The following is a list of the commands
supported by the BroadcastBot, the commands in bold can only be used by approved Wickr users if
administrators are being used:

Command Description

/abort Stops sending any remaining broadcast messages. This command is
useful if you are sending to a large network or security group and need
to stop the broadcast. The /status and /report statistics will indicate
how many messages were aborted.

/ack Acknowledges all messages you have received from the BroadcastBot.

/admin list Returns a list of the admin users.

/admin add <users> Add one or more admin users. A message will be sent to all admin users
identifying the new admin user.

/admin remove
<users>

Remove one or more admin users. A message will be sent to all admin
users identifying the removed admin user.

/broadcast
<message>

Send the text following the command to the Wickr network associate
d with the BroadcastBot. The BroadcastBot will prompt you to identify
who to send the message to, if you want an acknowledgement, and if
you want the message to be repeated.

/cancel This command can be entered when you are in the process of setting
up a broadcast message. It will NOT cancel a message that is in process
of being sent.

/delete This command can be used to delete a file that was previously made
available for the /send command.

BroadcastBot Integration 28

AWS Wickr Bots and Integrations Guide

Command Description

/files Returns a list of saved files that are available for the /send command.
You can also select a file from the list and have a copy of that file sent
to you.

/help Returns a list of commands and information on how to interact with
the BroadcastBot

/map Displays a Google Maps link that shows a map that contains pins for
the user locations for a specific broadcast message. Users must send
their location to the broadcast bot in order for them to be included in
the map.

/panel Displays the link and token to the web user interface. This command
is available only if the web application was set up during the configura
tion process.

/report Retrieves a detailed report identifying the list of users a broadcast
was to be sent to. The report identifies the state of the message for
that user including if the user acknowledged it. Status values include:
pending, sent, failed or acknowledged. If a message failed to be sent to
a user there will be a message to indicate the failure.

/send <message> Send the text following the command to a predetermined list of users.
The list of users will come from one of the files that has been uploaded
to the bot and made available for this command during the file upload
process.

/start Start a new broadcast

/status Return summary statistics associated with a broadcast.

<file> To broadcast a file, send a file to the BroadcastBot, answer the
sequence of questions and the file will be broadcast to the designated
users.

BroadcastBot Integration 29

AWS Wickr Bots and Integrations Guide

Command Description

<voice memo> To broadcast a voice memo, send a voice memo to the BroadcastBot,
answer the sequence of questions and the file will be broadcast to the
designated users.

/version Returns the version of your Wickr integration.

When you broadcast a file or a voice memo, the BroadcastBot will then prompt you to identify the
destinations of the broadcast (security groups or network).

When you broadcast a text-based message the BroadcastBot will ask you if you want to send the
message multiple times and how many minutes between each iteration of sending the broadcast.
Currently, you are allowed to wait 5, 10 or 15 minutes between each iteration of sending the
broadcast.

Detailed reports are returned in a CSV format, which can be imported into programs such as Excel
or Pages. The following image shows a sample summary of a broadcast message, as well as the
types of status information maintained by the BroadcastBot:

Note

The current broadcast bot does not support commands via a room or group conversation.

BroadcastBot Integration 30

AWS Wickr Bots and Integrations Guide

/start Command

The start command is used to initiate a broadcast. When a broadcast is initiated the user will be
asked recipients of the broadcast. This can be configured using a User File (a .txt file of Wickr
usernames), or by stating the Security Group(s) to which this broadcast will go out.

If the user selects User File, they can choose from a list of previously uploaded user files or upload
a new one by hitting the '+' sign on the navigation bar:

If the user selects Network or All, they have the option to broadcast the message to the whole
network or to one or more security groups:

BroadcastBot Integration 31

AWS Wickr Bots and Integrations Guide

The sender can configure the broadcast to request that recipients acknowledge the message,
acknowledge with their location or acknowledge with a Response.

If there are other broadcasts in the queue before the user, they will get a message with an
estimated wait time:

Once the user's broadcast is sent, they will receive a confirmation of this send and a status message
to indicate the status of the broadcast. At any point the user can see the status of their broadcast
using the /status command or the user can generate a report by running the /report command:

BroadcastBot Integration 32

AWS Wickr Bots and Integrations Guide

/send Command

The send command is used to send a message to a predetermined list of users in your Wickr
Network. These users will recieve the message in a 1 on 1 conversation with the broadcast bot.
In order to use this command you must first upload a file of Wickr user ID's and make that file
available for the bot and the /send command.

The file format is simple. Just write the Wickr user ID of each user you wish to send a message to
on its own line in a text file (.txt). Commas or any other delimiters at the end of each line should
not be included. An example is shown below:

BroadcastBot Integration 33

AWS Wickr Bots and Integrations Guide

Once you have a text file of users, you are ready to upload it and make it available to the broadcast
bot and send command. To do this go to your direct message conversation with the broadcast bot
and click on the plus sign in the bottom right hand corner. A menu will pop up. Click on the option
that says "choose file."

You will then be asked what you want to do with the file. Respond by pressing the 'u' key and then
pressing enter. If you've been following along then you have just uploaded your file to the bot and
made it available for the send command.

BroadcastBot Integration 34

AWS Wickr Bots and Integrations Guide

Now you are ready to send a message. To begin the process type /send followed by the message
you want to send. For example if you wanted to tell people there is cake in the break room you
would type the following: "/send There is cake in the break room!" You will then be prompted
to choose which file of users you want to send to. Next you will be prompted if you want an
acknowledgement response. Once you make a selection the message will be sent to each user and
you will recieve a status message(s) detailing the progress of the message.

BroadcastBot Integration 35

AWS Wickr Bots and Integrations Guide

/map Command

This command was added in the 5.60 release of the broadcast bot.

The /map command will display Google Maps link that will display a map that contains pins for all
of the users associated with a specific broadcast message. Only the users that send their location to
the broadcast bot will be shown on the map. The following image shows the Google Maps image
where two users sent their location to the broadcast bot:

BroadcastBot Integration 36

AWS Wickr Bots and Integrations Guide

The /map command will only work if it has been configured properly with a Google Maps API key.
The following shows the prompts for the config entries associated with the /map command setup.

 Do you want to map users locations when you send broadcasts [yes/no]: (no) :yes
 Please enter your google maps api key: (false) :AIzaSyCkPH2u5f5GAOXabcdef-aJEJFjeaisl

When a user receives a broadcast message they can reply with their location. If the user received
multiple broadcast messages and wants to share their location, they can only respond to the most
recent one and that location will be used for all of the proceeding broadcasts.

Let's look at an example where a broadcast is sent out to a group of users in the morning three
days in a row. The users in this group do alot of travelling during these three days. User A is in
Washington DC the first day, on day two he is in New York City and day three is in Boston. Each day

BroadcastBot Integration 37

AWS Wickr Bots and Integrations Guide

when he receives the broadcast, he sends his location. User B is also travelling with user A to the
same locations, but he does not send his location until he reaches Boston. At the end of the three
days, when you retrieve the map associated with day one you will see User A in Washington DC and
User B in Boston. The map associated with day two will show User A in New York City and User B in
Boston. The map associated with day three will show both users in Boston.

BroadcastBot Web Interface

This section describes the web interface supported by the BroadcastBot. The web interface is
a browser-based interface to interact with the BroadcastBot. Use the /panel command on the
BroadcastBot's Wickr interface. The /panel command will return a link that you can use to bring up
the web interface. WARNING: the link you receive is only valid for a limited time. If the link expires
you will not be able to access the web interface you will have to get a new link using the /panel
command.

NOTE: The BroadcastBot's web interface is initially supported as of version 5.56.

The screenshot below shows the main landing page for the BroadcastBot's web interface. On this
page you can send a broadcast message and view the list of broadcast messages that you have
already sent.

BroadcastBot Integration 38

AWS Wickr Bots and Integrations Guide

To begin you will want to select the recipients for the broadcast message. Using the drop down box
that says "Select Security Groups" you can choose which security group will receive your broadcast
message. You also have the option to broadcast to everyone in your network by selecting the
"Whole Network" option.

BroadcastBot Integration 39

AWS Wickr Bots and Integrations Guide

Next write the content of your message in the text box. By clicking on the paperclip in the lower
right hand corner of the text box you can attach a file to your broadcast message. You also have
the option to ask each recipient for an acknowledgment of your broadcast message. To enable this
feature simply check the box next to the words "Ask for acknowledgement". Once your message
is ready, click on the "Send" button in the upper right hand corner to begin broadcasting your
message.

The list of sent broadcast messages will show information about the broadcast including at least
the following:

• Starting text from the message sent, or the name of the file sent.

• Name of the security group or "network" (if sent to the entire network) that the message was
broadcast to.

• Date and time the message was sent.

• The number of Wickr users that read the message. The Read count is only supported if read
receipts are enabled for the security group.

• The number of users that are pending to be sent to.

• The number of users that the broadcast was not sent to because of some transmit failure or user
failure. Details of the reason for the failed transmits can be seen in the message details screen.
Failures are typically associated with user accounts that are in a bad state.

• The Acked count is the number of users that acknowledged the message. Messages are
acknowledged by the /ack command or sending your location to the broadcast bot.

• The Ignored count is the number of users that were not broadcast to. If a bot is in the destination
security group or network, they will not be broadcast to and will account for the ignored value.

• The Sent count is the number of users the message was sent to without receiving a send failure.
This does not account for any receive failures that may have occurred.

If you click on the message text of any of the sent messages the detailed list of the users
associated with the broadcast will be displayed. You will see the same statistics that were shown on
the main screen as well as details of the transmission to each user in the list of users the broadcast
is associated with. You can also download a JSON report of the information displayed on this
screen.

To update the statistics on your broadcasted/broadcasting messages click on the refresh button
in the top right hand corner of the "Sent Messages" table. Messages can also be sorted by date by
clicking on the arrow next to the "Date" column header. If the arrow is pointing up messages in the

BroadcastBot Integration 40

AWS Wickr Bots and Integrations Guide

table will be sorted from earliest sent to latest sent. If the arrow is pointing down messages in the
table will be sorted from latest sent to earliest sent.

BroadcastBot REST API

This section describes the REST APIs supported by the BroadcastBot. This capability is initially
supported in version 5.56 of the BroadcastBot. The following table identifies each of the actions
the API supports, the type of HTTP request and the URL used.

API HTTP URL

Get security groups GET https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/SecGroups

Broadcast a message or
file

POST https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/Broadcast

Get list of messages sent GET https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/Messages?page=<Page>&limit=<Limit>

Get broadcast summary GET https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/Summary?messageID=<MessageID>

Get broadcast details GET https://<host>:<port>/WickrIO/V2/Apps/Broadca
st/<API Key>/Report?messageID=<MessageID>&pa
ge=<Page>&limit=<Limit>&filter=<filter>

Abort broadcast message POST https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/Abort?messageID=<MessageID>

Set Event URL Callback POST https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/EventRecvCallback?callbackurl=<url>

Get Event URL Callback GET https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/EventRecvCallback

Delete Event URL
Callback

DELETE https://<host>:<port>/WickrIO/V2/Apps/Broadcast/
<API Key>/EventRecvCallback

BroadcastBot Integration 41

AWS Wickr Bots and Integrations Guide

The <API Key> value is the value you entered during the configuration of the Wickr Web Interface
integration.

For all of the BroadcastBot REST APIs, the "Authorization" HTTP header will have a value that is
"Basic " followed by the base64 encoded value of the Authorization Token value created when
the BroadcastBot is configured. For example, the Authorization Token value of "The big red
fox" encodes to "VGhlIGJpZyByZWQgZm94" in base64, so you would send the string "Basic
VGhlIGJpZyByZWQgZm94" in the "Authorization" HTTP header.

Get Security Groups API

This API is used to get the list of security groups that can be used to broadcast to.

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/SecGroups

The get security groups REST API is an HTTP GET command.

The response will return a JSON array of security group information containing the ID and name of
the security groups that you have access to. The following is an example of a response to the get
security groups REST API:

[
 { "id": "2jOtbNpA", "name": "only bob" },
 { "id": "h-R3zBuV", "name": "Custom Security Group 5" },
 { "id": "hgQfaqbM", "name": "default" },
 { "id": "iNc4VjAx", "name": "Real Users" },
 { "id": "jBfxwk5u", "name": "Empty Security Group" }
]

Note

The ID value returned is the value that will be used in the broadcasting APIs. The name
value is for display purposes only.

Broadcast a Message or File API

This API can be used to broadcast a message or a file. The destination for this broadcast can be
either a security group, the entire network or a list of users. If you want to send to a security group,

BroadcastBot Integration 42

AWS Wickr Bots and Integrations Guide

you will include the security group ID in the "security_group" value. To send to the entire network
you will not send the "security_group" and "users" object in the request. To send to a list of users
you will send the "users" object with the list of users. Samples are below.

This is the endpoint associated with the API:

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/Broadcast

The broadcast message or file API is an HTTP POST command.

The body of the POST request is JSON and the contents of that JSON will determine the type of
broadcast message to send as well as who the broadcast message is going to be sent to. There
are several JSON fields used by this API and depending on the type of message being sent. The
following table lists all of the JSON fields that are supported by the Send Message API.

KEY Description

message String value that is the message to be broadcast. This value is required.

security_group This is the security group ID to send to. Do not include this entry if
sending to the entire network.

users This is a JSON list of users to send to. Do not include this entry if
sending to the entire network or a security group. The object for each
user can also include a "meta" object that will be associated with the
user's entry for the broadcast message. See the examples below that
show different uses of the "meta" object.

acknowledge Indicates if an acknowledgement request should be part of the
broadcast message. If this is "true" then the acknowledgement request
will be included in the broadcast message. This value is optional, if not
included an acknowledgement is not requested.

repeat_num The number of times to repeat the broadcast message. This value is
optional, if not included then the message will not be repeated.

freq_num The number of minutes to wait between repeating a broadcast
message. This value is optional but is required if the "repeat_num"
value is present.

BroadcastBot Integration 43

AWS Wickr Bots and Integrations Guide

KEY Description

bor The burn-on-read value to use when sending the message. This value is
optional, will default to the current value set for the conversation.

ttl The time-to-live value to use when sending the message (referred to
as Expiration Time in clients). This value is optional, will default to the
current value set for the conversation.

user_meta This is a boolean value (true or false) that indicates whether the meta
data associated with each user should be included in the broadcast
message status information.

Broadcasting Messages

To broadcast a message, the HTTP Header must include the Content-Type value of "application/
json". The following is a sample JSON object to send a broadcast to the "only bob" security group
from the get security group API description above. The security group ID for the "only bob" security
group is included in the "security_group" JSON object:

{
 "security_group": "2jOtbNpA",
 "message": "Welcome to Wickr! This message will self-destruct in 5 seconds."
}

The following is a sample JSON object to broadcast a message to the entire network:

{ "message" : "This is a broadcast to a group of users",
}

The following is a sample JSON object to broadcast a message to a list of users:

{ "message" : "This is a broadcast to a group of users",
 "users" : [{"name" : "user1@company.com"},
 {"name" : "biguser44@company.com"},
 {"name" : "smalluser232@company.com"},
 {"name" : "myuser@company.com"},
 {"name" : "thelastuser@company.com"}]
}

BroadcastBot Integration 44

AWS Wickr Bots and Integrations Guide

The following is a sample JSON object to broadcast a message to a list of users and include meta
data for each of the users:

{ "message" : "This is a broadcast to a group of users",
 "users" : [{"name" : "user1@company.com", "meta" : "this is data for User 1 AKA Bit
 User" },
 {"name" : "biguser44@company.com", "meta" : {"lang":"en", "id":1122324} },
 {"name" : "smalluser232@company.com", "meta" : {"lang":"en",
 "id":123243} },
 {"name" : "myuser@company.com"},
 {"name" : "thelastuser@company.com", "meta" : "Me" }],
 "user_meta" : true
}

The value of the "meta" object can be a JSON object or a string. When you perform a report
command, the value of the "meta" object will be returned for each user in the response.

The response will be a normal HTTP 200 status if successful, or an HTTP error depending on the
failure that occurred. The broadcast will go through several stages before the actual broadcast
begins, specifically setting up the tables for the broadcast message status information as well as
preparing the user information for the users to be broadcast to. Depending on the number of users
being broadcast to this pre-broadcast process may take a few minutes (typical when sending to
thousands of users).

If the broadcast is initiated successfully a JSON response will be sent containing information
associated with the broadcast, including the message sent, the messageID associated with the
message and the identity of the destination of the broadcast.

The following is a sample of the output for a broadcast to the entire network:

{
 "data": {
 "message": "This is a broadcast test",
 "message_id": "54",
 "securityGroups": []
 }
}

The following is a sample of the output for a broadcast to a list of users:

{

BroadcastBot Integration 45

AWS Wickr Bots and Integrations Guide

 "data":{
 "message":"This is a broadcast test and another test",
 "message_id":"56",
 "users":["user1@company.com"]
 }
}

You can use the "message_id" value returned for subsequent calls to get the broadcast message's
status and report.

Broadcasting Files

To broadcast a file, the Content-Type HTTP header used for this REST API is different because it has
a value of "multipart/form-data'. This is necessary so the file can be part of the request. The body
will have two parts, one for the file to broadcast, and the other part to identify who to broadcast
to and if there are other broadcast settings (similar to the Broadcast Message API).

The part that identifies the file to transmit has a key value of "attachment", and the value is the
actual file to transmit.

The part that contains the broadcast information is a JSON string that is exactly the same as that
defined above. The "message" object is used to send a message that is also broadcast with the file.

The response will be a normal HTTP 200 status if successful, or an HTTP error depending on the
failure that occurred. The broadcast will go through several stages before the actual broadcast
begins, specifically setting up the tables for the broadcast message status information as well as
preparing the user information for the users to be broadcast to. Depending on the number of users
being broadcast to this pre-broadcast process may take a few minutes (typical when sending to
thousands of users).

Get List of Messages Sent API

This API is used to get a list of the broadcast messages that were sent via the REST application
APIs.

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/Messages?
page=<Page>&limit=<Limit>

The get list of messages sent API is an HTTP GET command.

The number of broadcasts sent can grow over time so you will have to limit the size of the response
by selecting an appropriate "Page" and "Limit" values. The "Page" value starts at 0. The "Limit"

BroadcastBot Integration 46

AWS Wickr Bots and Integrations Guide

value identifies the number of message entries in each page. A page size of 1000 is likely to be
okay. If you have more than 1000 broadcast messages, then you will have to make multiple calls to
page through the messages. Each response will contain a "max_entries" value which indicates the
total number of broadcast messages associated with the Wickr user.

The response to the get list of messages sent API will look like the following example:

{
 "list": [
 {
 "message": "Hello. This is a broadcast to a list of users",
 "message_id": "3",
 "sender": "user123@wickr.com",
 "target": "USERS",
 "when_sent": "2020-06-08T21:18:15.511Z"
 },
 {
 "message": "Hello this is a sample broadcast to a security group",
 "message_id": "4",
 "sender": "user123@wickr.com",
 "target": "hgQfa8TM",
 "when_sent": "2020-06-08T22:08:59.855Z"
 },
 {
 "message": "This was a broadcast to an entire network",
 "message_id": "5",
 "sender": "user123@wickr.com",
 "target": "NETWORK",
 "when_sent": "2020-06-08T22:16:20.463Z"
 },
 {
 "message": "This was a broadcast of a file",
 "message_id": "13",
 "sender": "user123@wickr.com",
 "target": "NETWORK",
 "when_sent": "2020-06-09T22:17:48.469Z"
 }
],
 "max_entries": 5,
 "source": "user123@wickr.com"
}

BroadcastBot Integration 47

AWS Wickr Bots and Integrations Guide

The "max_entries" value identifies how many broadcast entries are associated with the "source"
user. This value can be used to help identify how many pages of messages you may have to
download.

The "target" value in each of the "list" entries identifies if the broadcast was to a specific security
group, the entire network ("NETWORK") or a list of users ("USERS").

Get Broadcast Summary API

This API is used to get the summary status of a specific broadcast message. The message is
identified by the message ID value, use the Get List of Messages Sent API to get the appropriate
message ID.

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/Summary?messageID=<MessageID>

The get broadcast summary API is an HTTP GET command.

This API will return a JSON object with the following values:

KEY Description

aborted Number of users that were not sent to because the message was
aborted. See the Abort REST API for details.

acked Number of users that acknowledged receiving this message using the /
ack command.

failed Number of users that did not get the message due to a failure to send
the message. See the detail report for details on failure types.

ignored Number of users that were not sent to because the account was a bot.
Bots will not be broadcast to.

num2send Number of users that are associated with this message.

pending Number of users that have not been sent to yet.

read Number of users that have read the message sent to them. This will
only be set if read receipts are supported by your Wickr servers.

sent Number of users that have been sent to for this broadcast.

BroadcastBot Integration 48

AWS Wickr Bots and Integrations Guide

KEY Description

status A status value that will be a value of "Preparing" if the broadcast is in
the preparation state, pending the actual broadcast of messages.

The response to this API will include all of these values. The "status" value will only be included if
the broadcast is preparing the broadcast data structures. For large broadcasts this may take some
time. When in this state the other status values will have a value of 0.

Get Broadcast Details API

This API is used to get the detailed status of a specific broadcast message. The information
returned is a list of entries, one for each user the broadcast was transmitted to. Use the Get List
of Messages Sent API to get the appropriate message ID. Since it is possible the broadcast will be
sent to thousands of users your request will have to identify the page and page size values. It is
recommended to not make the page size too large. This API supports a filter option to select one or
more status types to retrieve for the associated MessageID.

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/Report?
messageID=<MessageID>&page=<Page>&limit=<Limit>&filter=<Filter>

The get broadcast details API is an HTTP GET command.

The filter value is used to select which status entries to retrieve. The <Filter> value is a comma
separated list of the filters to retrieve. The status values that you can use to filter on are: "pending"
"sent" "failed" "acked" "ignored" "aborted" "read". This filter is optional, if you do not want to filter
then do not include the filter parameter.

The response to this request will be a list of entries with the following fields:

KEY Description

user The Wickr ID of the user associated with this entry

status This is the status of the broadcast to this specific user. This value can
be one of the values shown in the Get Broadcast Summary API section
above.

BroadcastBot Integration 49

AWS Wickr Bots and Integrations Guide

KEY Description

statusMessage This is a message associated with the status value. If the status is
"failed" this field will identify why the send failed. If the user acknowled
ges the message by sending their location, this field will have a URL
that shows their location.

sentDate This is the date and time the message was sent. The date format is the
following: 2020-06-14 17:27:27 UTC

readDate This is the date and time the message was read, if read receipts are
supported by your Wickr server. The date format is the following:
2020-06-14 17:27:27 UTC

Abort Broadcast Message API

This API is used to abort a broadcast message that is currently being transmitted. This is typically
only useful for broadcasts to large numbers of users. Broadcasts to small numbers of users will
likely complete too quickly for this API to be useful. Use the Get List of Messages Sent API to get
the appropriate message ID.

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/Abort?messageID=<MessageID>

The abort broadcast message API is an HTTP POST command.

The response will be a normal HTTP 200 status if successful, or an HTTP error depending on the
failure that occurred. The response body will contain a JSON object with a "result" string and a
"status" object that contains the summary status associated with the MessageID used to perform
the abort operation. The following is a sample output from a successful abort command:

{
 "result": "Success",
 "status": "{
 "aborted": 1900,
 "acked": 0,
 "failed": 0,
 "ignored": 0,
 "num2send": 2000,
 "pending": 0,

BroadcastBot Integration 50

AWS Wickr Bots and Integrations Guide

 "read": 0,
 "sent": 100
 }
}

Abort commands that fail will return a string identifying the type of error. Typical errors invalid
messageID values or trying to abort a messageID that is not associated with the bot user.

Event Callbacks

Event callbacks will define a URL that the bot client will connect to when a messaging event
occurs. Information about the event will be sent to the defined URL. It is assumed that there is an
application consuming, and acknowledging, events that are pushed to this URL. For example, if you
run a process on the same machine as the Wickr IO client you can use a URL like the following:

http://localhost:4100

Events that are posted to the set URL will have the following sample format:

{
 "message_id" : "9",
 "reason" : "Failed verification",
 "user" : "user555@somewher.com"
}

Set Event Callback URL API

You will need to configure the specific URL that the Wickr IO client will send events to. To set the
URL callback value, send an HTTP POST request using the following URI:

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/EventRecvCallback?
callbackurl=<url>

The client will respond back with a success or failure response. Any events that occur after this call
is performed will be sent to the defined URL.

Get Event Callback URL API

To get the currently set URL callback send an HTTP GET request using the following URI:

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/EventRecvCallback

BroadcastBot Integration 51

AWS Wickr Bots and Integrations Guide

The client will respond with either a success (200) or failure response. If there is a URL callback
defined the following is the format of the body:

{
 "callbackurl": "https://localhost:4008"
}

Delete Event Callback URL API

If a URL callback is no longer needed, then the delete URL callback API should be used. To delete a
URL callback, send an HTTP DELETE request using the following URI:

https://<host>:<port>/WickrIO/V2/Apps/Broadcast/<API Key>/EventRecvCallback

The client will respond with a success or failure response.

Broadcastbot Message Send Failures

It is possible that when broadcasting to a group of users there may be a failure with the destination
user's account. This section will describe some of the possible failures that may happen when
sending a broadcast.

KEY Description

"Failed verification" This failure message indicates the account is not valid. Could be in a
suspended state as well.

"Could not find user
record"

This failure message also indicates the account is not valid. Could be in
a suspended state as well.

"Message failed to
send, check user
account"

This failure usually indicates an issue with the user account being sent
to. Something like no active devices associated with the account.

"msgSvcSend failed" This failure is due to an internal issue. Could be the process associated
with transmitting messages was not fully initialized, this could be very
rare. Retransmitting the message to the effected user(s) should work.

"sendFile failed" This failure can happen when broadcasting a file but is very rare as
well. Retransmitting the message to the effected user(s) should work.

BroadcastBot Integration 52

AWS Wickr Bots and Integrations Guide

KEY Description

"No users on the
1to1"

This failure is an internal error and is very rare. If this type of error does
occur, retransmitting should work.

There are other failures possible and they are associated with network or system issues that may
occur. If those errors do occur retransmitting the message to the effected user(s) should work.

Web Interface Integration

The Web Interface integration allows remote software the ability to interact with the associated
Wickr IO client via a REST API. The Wickr IO Web Interface integration supports the REST API via
either an HTTP or HTTPS interface. This REST API supports the ability to create conversations, send
and receive messages to other Wickr users, and perform other Wickr tasks.

The Wickr IO Web Interface integration software is located here.

REST API Configuration

During the installation of the Wickr IO Web Interface software module, you will need to configure
several properties that are needed to access the URL endpoints. The Wickr IO command line
interface will walk you through entering these values. The following table describes the values that
you will have to enter during the configuration of the Wickr IO Web Interface:

Value Description

Port The TCP/IP port that the Wickr IO bot will listen on. NOTE: you will
have to add the port to the docker run command that starts the
Wickr IO Docker container so that port is made available to the Wickr
IO integration software.

API-Key The API Key that is used in every endpoint call. This is the <API Key>
value that is contained in every endpoint URL, as is shown in the table
in the previous section.

Basic Authorization
Token

The authentication string used to generate the Base64 value to be
sent in the authorization field of the HTTP Header (Recommended:
24-character alphanumeric string). You will need to generate a Base64

Web Interface Integration 53

https://github.com/WickrInc/wickrio_web_interface

AWS Wickr Bots and Integrations Guide

Value Description

value of this token and the add it to the HTTP authorization header (i.e.
Basic MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTIzNA==).

SSL Key Location Full path name of the .key file (only required if you are going to use
HTTPS). The file must be located in the shared directory that the
integration software running on the Docker image can access.

SSL Cert Location Full path name of the .cert file (only required if you are going to use
HTTPS). The file must be located in the shared directory that the
integration software running on the Docker image can access.

For HTTPS and SSL support, you need an OpenSSL certificate file and a key file. Both can be
created with the following command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout my.key -out my.cert

Authentication

This version of the Web Interface supports basic authentication. The authentication will use the
"Authorization" HTTP header to send the necessary authentication information to the Wickr IO
server. If the proper authentication information is not presented to the Wickr IO server then an
HTTP 401 response will be sent.

When using basic authentication, a base64 encoded string will be sent to the Wickr IO server. The
following steps should be performed for basic authentication:

1. When the associated Wickr IO bot client is configured and associated with the Web Interface
integration, the associated authentication string will be setup. You will use this string to
generate the base64 encoded string.

2. Base64 encode the string mentioned above.

3. Supply an "Authorization" header with content "Basic " followed by the encoded string. For
example, the string "The big red fox" encodes to "VGhlIGJpZyByZWQgZm94" in base 64, so you
would send the string "Basic VGhlIGJpZyByZWQgZm94" in the "Authorization" HTTP header.

Web Interface Integration 54

AWS Wickr Bots and Integrations Guide

Warning

The "Authorization" header is encoded - NOT encrypted - thus HTTP basic authentication is
only effective over secure connections. Always use the Web Interface REST API over HTTPS
when communicating over insecure networks.

Web Interface Integration Installation

This section shows the steps to add a Wickr IO Web Interface integration. The following steps
will create a Wickr IO Bot with the Web Interface integration. This integration will expose the
HTTP/HTTPS interface to facilitate access to the associated Wickr IO client. When installing the
Web Interface Integration on a host machine that has multiple network interfaces you can either
bind the docker image that the Web Interface Integration resides on to all interfaces on the host
machine OR you can bind to a specific interface by specifying the IP address.

1. Using the admin console create the associated Wickr IO bot user by entering a display name,
username, and password.

2. Make a directory for your docker volume:

• sudo mkdir /opt

• cd /opt

• sudo mkdir WickrIO

• For Docker running on Mac, if not added already, add '/opt/WickrIO' to shared paths from
Docker -> Preferences -> File Sharing. See https://docs.docker.com/docker-for-mac/osxfs/
#namespaces for more info.

3. If you are going to use HTTPS to communicate with the Wickr IO integration you will need to
generate a cert and key file. For example, you can use the following command to do so:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout my.key -out my.cert

You will need to place the key and certificate files in a location the software running on the
docker container can access, this is somewhere in the /opt/WickrIO directory (you created in the
previous step).

4. Start the docker image, which will download the docker image if needed. Note: the name you
can assign to this docker image and use for other docker commands:

Web Interface Integration 55

https://admin-prod.wickr.com/#/activeBot

AWS Wickr Bots and Integrations Guide

docker run -v /opt/WickrIO:/opt/WickrIO -p 4001:4001 -d --restart=always --
name="MyWickrIOImage" -ti public.ecr.aws/x3s2s6k3/wickrio/bot-cloud:latest

Please note the "-p 4001:4001" option which identifies which TCP port the web interface will
listen on, you will have to enter that later.

If your host machine has multiple network interfaces and you would like to specify the network
interface the Web Interface Integration will run on you can add the IP address of that network
interface to the docker run command like so:

docker run -v /opt/WickrIO:/opt/WickrIO -p xx.xx.xx.xx:4001:4001 -d --restart=always
 --name="MyWickrIOImage" -ti public.ecr.aws/x3s2s6k3/wickrio/bot-cloud:latest

Where xx.xx.xx.xx is the IP address of the network interface you would like to use.

NOTE: If you are on Wickr GovCloud, please remember to modify the above command to replace
docker image link with GovCloud image i.e public.ecr.aws/x3s2s6k3/wickrio/bot-
cloud-govcloud:latest

5. Attach to the docker image, using the name from the previous step: docker attach
MyWickrIOImage

6. Agree to the license agreement.

7. Enter the add command at the prompt, filling in the username and password you created in step
one.

8. Enable autologin.

9. Enter the web interface integration from the list, for example wickrio_web_interface

10.Enter the port number you identified previously.

11.Enter an API Key value. This is a string that will be part of every REST call you make to the web
interface bot.

12.Enter a Basic authorization token value. This is an alphanumeric value used as the basic
authorization for the REST calls. It is recommended that you enter at least 24 characters.

13.If you are using HTTPS enter the location and name of the key and certificate files. These files
will have to be located in the /opt/WickrIO directory you created earlier, so that the Wickr IO
integration software running on the Wickr IO Docker image have access to the files.

Web Interface Integration 56

AWS Wickr Bots and Integrations Guide

14.The web interface bot is configured now. Start the client by entering start and then y and then
the password.

If you have followed along so far you now have the Web Interface Bot running on your network!
The REST API is fully described in the next section. To access the REST API you can use curl or a
program like Postman to test that everything is working as expected.

The following is sample output from adding a web interface bot:

Enter command:add
Enter the user name:test_web_bot
Enter the password:********
Creating user: "test_web_bot"

Begin registration with password.
Begin register new user context.

Begin register existing user context.

Successfully created user

Successfully logged in as new user!

Our work is done here, logging off!

Return code from provision is: 0

The autologin capability allows you to start a bot without having to enter the
password, after the initial login.
NOTE: The bot client's password is NOT saved to disk.

Do you want to use autologin? (default: yes):
Searching NPM registry
Searching NPM registry
Searching NPM registry

These integrations are local:
 - hubot

These integrations are from the NPM registry:
 - wickrio_web_interface
 - wickrio-file-bot

Web Interface Integration 57

https://github.com/WickrInc/wickrio_web_interface

AWS Wickr Bots and Integrations Guide

 - wickrio-hello-world-bot
 - wickrio-example-app

Please enter one of:
 - The full integration name from the list above
 - The word "search" to search the NPM registry for an integration
 - The word "import" to import an integration
 - The word "quit" to cancel adding the bot

Enter the bot integration to use:wickrio_web_interface
**
Begin setup of wickrio_web_interface software for test_web_bot
Copying wickrio_web_interface from the NPM registry
Installing wickrio_web_interface software for test_web_bot
Installing
Begin configuration of wickrio_web_interface software for test_web_bot
going to use /tmp/WickrIOSvr.WDmxyv
 Please enter your client bot's port::4001
 Please enter your client bot's API-Key::testAPIkey1234
 Please create an Web API Basic Authorization Token(we recommend an alphanumeric string
 with at least 24 characters)::123456789012345678901234
 Do you want to set up an HTTPS connection with the Web API Interface(Recommended)(y/
n)::y
 Please enter the name and location of your SSL .key file::/opt/WickrIO/files/my.key
 Please enter the name and location of your SSL .crt file::/opt/WickrIO/files/my.cert

Integration files written to:
/opt/WickrIO/clients/test_web_bot/integration/wickrio_web_interface

End of setup of wickrio_web_interface software for test_web_bot
**
Successfully added record to the database!
Enter command

Web Interface REST API

This section describes the REST APIs that are supported by the 2.x version of the Wickr IO Web
Interface integration. The following table identifies each of the actions the API supports, the type
of HTTP request and the URL used.

Web Interface Integration 58

AWS Wickr Bots and Integrations Guide

API HTTP URL

Send Message POST https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Messages

Send File POST https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
File

Set Message URL
Callback

POST https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
MsgRecvCallback?callbackurl=<url>

Get Message URL
Callback

GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
MsgRecvCallback

Delete Message URL
Callback

DELETE https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
MsgRecvCallback

Get Received Messages GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Messages?start=<index>&count=<number>

Get Statistics GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Statistics

Clear Statistics DELETE https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Statistics

Create Secure Room POST https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Rooms

Get Room GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Rooms/<vGroupID>

Get Rooms GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Rooms

Delete Room DELETE https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Rooms/<vGroupID>

Web Interface Integration 59

AWS Wickr Bots and Integrations Guide

API HTTP URL

Leave Room DELETE https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Rooms/<vGroupID>&reason=leave

Modify Room POST https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
Rooms/<vGroupID>

Create Group Conversat
ion

POST https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
GroupConvo

Get Group Conversations GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
GroupConvo

Get Group Conversation GET https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
GroupConvo /<vGroupID>

Delete Group Conversat
ion

DELETE https://<host>:<port>/WickrIO/V1/Apps/<API Key>/
GroupConvo/<vGroupID>

The <API Key> value is the value you entered during the configuration of the Wickr Web Interface
integration.

Send Message APIs

The send message APIs are used to send a message to one or more Wickr clients. To have a specific
Wickr IO client send a message, send an HTTP POST message to the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Messages

The body of the POST request is JSON and the contents of that JSON will determine the type of
Wickr message and the destination(s) of the message. You can send a message to one or more
1-to-1 recipients, a secure room or a group conversation. To send to a secure room or a group
conversation, the room will have to been created before sending any messages. You will also need
the vGroupID associated with the secure room or group conversation.

The send message API also supports sending files.

Web Interface Integration 60

AWS Wickr Bots and Integrations Guide

There are several JSON fields used by this API and depending on the type of message or file being
sent. The following table lists all of the JSON fields that are supported by the Send Message API.

KEY Description

message String value that is the message to be sent, when sending a Wickr
message. Not used when sending a file.

users This is a list of Wickr user IDs to send a message to. Not used when
sending to a secure room or group conversation, use the vgroupid value
when sending to secure room or group conversations. A separate 1on1
message will be sent to each of the users in this list.

bor The burn-on-read value to use when sending the message. Optional,
will default to the current value set for the conversation.

ttl The time-to-live value to use when sending the message (referred to as
Expiration Time in clients). Optional, will default to the current value
set for the conversation.

vgroupid The vgroupid to use when sending to a secure room or group conversat
ion. Do NOT use this value when sending to 1on1 conversations.

runtime Used to specify when the message(s) are to be sent. The format of this
value is ISO 8601 extended format: either yyyy-MM-dd for dates or
yyyy-MM-ddTHH:mm:ss (e.g. 2017-07-24T15:46:29), or with a time-
zone suffix (Z for UTC otherwise an offset as [+

attachment This is a JSON object that identifies a file to be sent. The message value
will be disregarded if the attachment field is used.

attachments Identifies files to be sent. Currently only supports one file. Future
implementation will support sending multiple files.

When sending files, the location of the files either needs to be located on the Wickr IO system or
addressable and downloadable using a specific URL. If the file is located on the Wickr IO system, it
must be located where the Wickr IO client running on the Docker image can access it.

Web Interface Integration 61

AWS Wickr Bots and Integrations Guide

Sending a single message to multiple recipients

To send a message to one or more recipients, the HTTP POST message should contain a JSON body
with the following format:

{
 "message": "Welcome to Wickr! This message will self-destruct in 5 seconds.",
 "users": [
 { "name" : "username001" },
 { "name" : "username002" }
]
}

The "users" field may contain an array of 1 or more users to send the message to. The message will
be sent to each user on a separate 1-to-1 conversation. So, if the POST message contains 5 users
then 5 messages will be sent, using the text from the "message" field.

Sending a message with Burn-on-Read

When sending a message, you can also set the specific burn on read (BOR) value for the message.
The following format shows how to set the BOR value to 10 seconds:

{
 "message": "Welcome to Wickr! This message will self-destruct in 5 seconds.",
 "users": [{ "name": "username002" }],
 "bor": 10
}

Sending a message to a Secure Room

If you want to send a message to a secure room or a group conversation you will need to get the
vGroupID associated with the room. The vGroupID will be returned when you create the room/
conversation using the appropriate API. Also, the get rooms API will return a list of known rooms
that you can send to, the vGroupID is contained in the response. To send to a secure room or group
ID the following is an example:

{
 "message": "Welcome to Wickr! This message will self-destruct in 5 seconds.",
 "vgroupid": "S8a97892379289bca979293709822718928392837492837492834"
}

Web Interface Integration 62

AWS Wickr Bots and Integrations Guide

Send File APIs

The Wickr IO client supports three different ways to send files.

• Sending a file that is directly accessible by the Wickr IO client.

• Sending a file that is referenced by a URL that the Wickr IO client can download and then send.

• Sending a file by uploading the file to the Wickr IO client in the REST API request.

Warning

Please make sure to use the correct API endpoint, since the first two methods use a
different endpoint than the third method.

Send Files Residing on the Wickr IO Client

To send files that are directly accessible by the Wickr IO client you will send an HTTP POST
message to the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Messages

The body content of the request will be of "application/json" type, and will contain a list of users
to send the file to, the file path name where the file is located and a display name for the file. The
following is an example of sending a file to a single user, where the file is located on the Wickr IO
system:

{
 "users": [{ "name" : "username001" }],
 "attachment": {
 "filename" : "/opt/WickrIO/pictures/picturesent.jpg",
 "displayname" : "PictureSent.jpg"
 }
}

In this example, the file to be sent is already on the Wickr IO client. The filename identifies the full
path to the file. The Send Message API will respond with a 202 (Accepted) response, unless there is
an error.

Web Interface Integration 63

AWS Wickr Bots and Integrations Guide

Warning

Like any data your integration writes to disk, files sent or received by the Wickr IO client are
decrypted and remain on the host machine until removed by you or your software.

Send Files Referenced by a URL

To send files using a URL that are accessible by the Wickr IO client, you will send an HTTP POST
message to the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Messages

The Wickr IO client will download the file first and then send the message. The following is an
example of sending a file to a single user, where the file is located at an external URL example.com.

{
 "users": [{ "name" : "username001" }],
 "attachment": {
 "url" : "https://example.com/pictures/picturesent.jpg",
 "displayname" : "PictureSent.jpg"
 }
}

You can also send files to secure rooms and group conversations using the vgroupid instead of
listing the users to send to. The following is an example of sending the file to a secure room.

{
 "vgroupid" : "Sd740e3077714bcc0020806bc5b318a4ca766f9fe4737e6952a81bf0d9a75407",
 "attachment": {
 "url" : "https://example.com/pictures/picturesent.jpg",
 "displayname" : "PictureSent.jpg"
 }
}

Send Files Passed in the REST API Request

This is a new endpoint for the Web Interface integration as of the v5.60 version.

Web Interface Integration 64

AWS Wickr Bots and Integrations Guide

The send file API is used to send a file to one or more Wickr clients, or a specific room conversation.
The previously described send message APIs still work to send files as well. To have a specific Wickr
IO client send a message, send an HTTP POST message to the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/File

You can send a file to one or more 1-to-1 recipients, a secure room or a group conversation.
To send to a secure room or a group conversation, the room will have to been created before
sending any messages. You will also need the vGroupID associated with the secure room or group
conversation.

The body of this POST request will use the following Key/Value pairs:

KEY Description

attachment This is the actual file being sent.

users This is a JSON list of Wickr user IDs to send a message to. For example:
"[user1, user2, user3]". This Key is not used when sending to a secure
room or group conversation, use the vgroupid Key when sending to
secure room or group conversations. A separate 1on1 message will
be sent to each of the users in this list. If you want to send using the
"users" key make sure the "vgroupid" key is not in the body.

bor The burn-on-read value to use when sending the message. Optional,
will default to the current value set for the conversation.

ttl The time-to-live value to use when sending the message (referred to as
Expiration Time in clients). Optional, will default to the current value
set for the conversation.

vgroupid The vgroupid to use when sending to a secure room or group conversat
ion. Do NOT use this value when sending to 1on1 conversations using
the "users" key.

For those familiar with Postman, the following shows an example body set to send a file to two
users:

Web Interface Integration 65

AWS Wickr Bots and Integrations Guide

Make sure to follow the formatting shown for the "users" value.

Warning

The content-type of the body is "multipart/form-data", which includes the "attachment"
and the "users" or "vgroupid". The "ttl" and "bor" are optional.

Received Message

The Wickr IO client has the capability to receive messages and the Web Interface integration
provides several ways to get access to those messages. The messages can be forwarded to
another application or retrieved via a REST call. To have received messages forwarded to another
application a callback location will need to be set (see the URL Callbacks section). If a callback
method is not defined the messages will queue up on the Wickr IO client until they are retrieved.
The get received messages API can be used to retrieve the messages.

The format of the messages received are described in the section called “Wickr message formats”.

Note

If a callback destination is configured, the Wickr IO client will queue these messages to be
sent to that destination. These messages will remain in this queue until they have been
successfully posted to the desired destination.

Web Interface Integration 66

AWS Wickr Bots and Integrations Guide

URL Callbacks

This type of callback will define a URL that the client will connect to when a message is received,
the received message will be sent to the URL. It is assumed that there is an application consuming
messages that are pushed to this URL. For example, if you run a process on the same machine as
the Wickr IO client you can use a URL like the following:

http://localhost:4100

Wickr can supply a sample program that accepts messages on a specific port and posts to a log file.

Set URL Callback API

You will need to configure the specific URL that the Wickr IO client will send incoming messages to.
To set the URL callback value, send an HTTP POST request using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/MsgRecvCallback?callbackurl=<url>

The client will respond back with a success or failure response. Any messages received after this call
is performed will be sent to the defined URL.

Get URL Callback API

To get the currently set URL callback send an HTTP GET request using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/MsgRecvCallback

The client will respond with either a success (200) or failure response. If there is a URL callback
defined the following is the format of the body:

{
 "callbackurl": "https://localhost:4008"
}

Delete URL Callback

If a URL callback is no longer needed then the delete URL callback API should be used. To delete a
URL callback, send an HTTP DELETE request using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/MsgRecvCallback

Web Interface Integration 67

AWS Wickr Bots and Integrations Guide

The client will respond with a success or failure response.

Statistics APIs

Each Wickr IO client maintains statistics associated with the number of messages sent and received.
The statistics will also include information about send and receive errors as well as the number of
pending messages. This section describes the APIs associated with statistics.

Get Statistics API

This API will retrieve statistics that are saved on the client. These are a little different than the
statistics that can be retrieved via the main console interface. Here is the HTTP GET used to get
client statistics:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Statistics

The following is the type of output received in the response. Some of these statistics may be
missing if they have not been changed.

{
 "statistics": {
 "message_count": 5,
 "pending_messages": 0,
 "sent": 7,
 "received": 3,
 "sent_errors": 1,
 "recv_errors": 1
 }
}

The following table has a description of each of the statistics returned by this API:

Statistics Description

message_count The number of incoming messages that are currently on the Wickr IO
client.

pending_messages The number of messages that are to be sent from the specific Wickr IO
client.

Web Interface Integration 68

AWS Wickr Bots and Integrations Guide

Statistics Description

sent The number of messages that have been sent by the Wickr IO client.

received The number of messages that the Wickr IO client has received.

sent_errors The number of errors that have occurred while trying to send
messages.

recv_errors The number of errors that occurred while receiving messages.

pending_callback_m
essages

The number of messages on the callback message queue. These are
messages received by the Wickr IO client, that are waiting to be send to
a callback process.

outbox_sync The number of outbox sync messages received. These are messages
that were sent by another device for this Wickr IO client.

Example curl script to perform a get statistics:

curl -v -k -s -X GET -H "$AUTH" http://10.2.0.1:4001/WickrIO/V1/Apps/123456/Statistics

Clear Statistics API

This API will clear the current statistics that are saved on the client. Use HTTP DELETE with the
following URI to clear the statistics on the specific Wickr IO client:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Statistics

Secure Room APIs

This section describes the APIs associated with secure rooms. Using these APIs you can create,
modify, get, delete and leave secure rooms that the Wickr IO client is a part of.

Create Secure Room API

This API will create a new secure room. To create a secure room, send an HTTP POST command
using the following URI:

Web Interface Integration 69

AWS Wickr Bots and Integrations Guide

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Rooms

The body of this request will contain the information associated with the room. The following is
the format of the JSON data for the body of the request:

{
 "room": {
 "title" : "Room Title",
 "description" : "Description of the room",
 "ttl" : 3600,
 "bor" : 60,
 "members" : [
 { "name" : "username001@wickr.com" },
 { "name" : "username002@wickr.com" }
],
 "masters" : [
 { "name" : "username001@wickr.com" },
]
 }
}

The response will either be an error with a description of that error or a successful response with
the vGroupId of the newly created secure room. The following is an example of a successful
response:

{
 "vgroupid": "S0b503ae14cc896aad758ce48f63ac5fae0adccd78ef18cde82563c63b2c7761"
}

The following is a sample curl script to create a room, the data.json file contains the body of the
request. The data.json contents would be something similar to that shown above.

curl -v -k -s -X POST -H "$AUTH" -H "$CONTENT" http://10.2.0.10:4001/WickrIO/V1/
Apps/123456/Rooms -d "@data.json"

Get Rooms API

This API will return a list of rooms that are known by the Wickr IO client. The Wickr IO client will
only know about rooms that it is a member of. To get a list of rooms send an HTTP GET to the
following URI:

Web Interface Integration 70

AWS Wickr Bots and Integrations Guide

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Rooms

The Wickr IO client will respond with a JSON array of secure rooms. The format of the response will
look like the following:

{
 "rooms": [
 {
 "description": "Room description",
 "masters": [
 { "name" : "username001" }
],
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "title": "Room Title",
 "ttl": "7776000",
 "bor": "0",
 "vgroupid":
 "S00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

The following is sample curl script to retrieve the list of rooms:

curl -v -k -s -X GET -H "$AUTH" http://10.2.0.20:4001/WickrIO/V1/Apps/123456/Rooms

Get Secure Room API

This API will return details of a specific secure room. Send an HTTP GET using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Rooms/<vGroupID>

The Wickr IO client will respond with a JSON structure containing information for the specified
conversation. The format of the response will look like the following:

{
 "rooms": [
 {

Web Interface Integration 71

AWS Wickr Bots and Integrations Guide

 "description": "Room description",
 "masters": [
 { "name" : "username001" }
],
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "title": "Room Title",
 "ttl": "-1",
 "vgroupid":
 "S00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

Delete Room API

In order to delete a secure room, you will need to have the vGroupID associated with that room.
You can use the get rooms API to get the list of rooms known by the Wickr IO client, then
determine which room to delete. Also, saving the vGroupID returned from the create room API can
be used as well.

To delete a secure room, send an HTTP DELETE command using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Rooms/<vGroupID>?reason=delete

The secure room with the same vGroupID will be deleted. This API is used for both the delete room
and the leave room action, the reason argument identifies which action to perform. The default
value for the reason argument is the delete action, in which case the reason argument can be
omitted.

The following curl script is an example of how to delete a specific room:

curl -v -k -s -X DELETE -H "$AUTH" http://10.100.8.27:6379/WickrIO/V1/Apps/123456/
Rooms/S3947c067fa3edc9b0154e82e9ed1cf39904784f344e5923c4c683f27bed2faf

Leave Room API

In order to leave a secure room, you will need to have the vGroupID associated with that room. You
can use the get rooms API to get the list of rooms known by the Wickr IO client, then determine

Web Interface Integration 72

AWS Wickr Bots and Integrations Guide

which room to leave. Also, saving the vGroupID returned from the create room API can be used as
well.

To leave a secure room, send an HTTP DELETE command using the following URI, make sure to
specify the reason argument with the value of leave.

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Rooms/<vGroupID>?reason=leave

Modify Room API

This API is used to modify some of the settings associated with a secure room. The following secure
room attributes can be modified using this API:

• TTL

• BOR

• Description

• Title

• Members

• Moderators

To modify any of these values for a secure room send an HTTP POST command using the following
URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/Rooms/<vGroupID>

The body of the request will identify the values to change and the new values to assign. The
following JSON is an example of a body for the modify room API which will set the BOR and TTL
values:

{
 "ttl": 66000,
 "bor": 300
}

Group Conversation APIs

This section describes the APIs associated with group conversations. Using these APIs you can
create, get or delete group conversations that the client is a part of.

Web Interface Integration 73

AWS Wickr Bots and Integrations Guide

Note

These APIs are only available in versions 4.35 and newer of the Wickr IO client.

Create Group Conversation API

This API will create a new group conversation. To create a group conversation, send an HTTP POST
command using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/GroupConvo

The body of this request will contain the information associated with the group conversation. The
following is the format of the JSON data for the body of the request.

{
 "groupconvo": {
 "members" : [
 { "name" : "username001@wickr.com" },
 { "name" : "username002@wickr.com" }
]
 }
}

The response will either be an error with a description of that error or a successful response with
the vGroupID of the newly created group conversation. The following is an example of a successful
response:

{
 "vgroupid": "S0b503ae14cc896aad758ce48f63ac5fae0adccd78ef18cde82563c63b2c7761"
}

Get Group Conversations API

This API will return a list of group conversations that are known by the Wickr IO client. To get a list
of group conversations send an HTTP GET to the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/GroupConvo

Web Interface Integration 74

AWS Wickr Bots and Integrations Guide

The Wickr IO client will respond with a JSON array of the group conversations. The format of the
response will look like the following:

{
 "groupconvos": [
 {
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "ttl": "7776000",
 "bor": "0",
 "vgroupid":
 "S00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

Get Group Conversation API

To get the details of a specific group conversation, send a HTTP GET command using the following
URI with the vGroupID of the specific group conversation:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/GroupConvo/<vGroupID>

The Wickr IO client will respond with a JSON structure containing information for the specified
conversation. The format of the response will look like the following:

{
 "rooms": [
 {
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "vgroupid":
 "S00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

Web Interface Integration 75

AWS Wickr Bots and Integrations Guide

Delete Group Conversation API

In order to delete a group conversation, you will need to have the vGroupID associated with that
conversation. You can use the get group conversations API to get the list of conversations known
by the Wickr IO client, then determine which conversation to delete. Also, saving the vGroupID
returned from the create group conversation API can be used as well.

To delete a group conversation, send an HTTP DELETE command using the following URI:

https://<host>:<port>/WickrIO/V1/Apps/<API Key>/GroupConvo/<vGroupID>

The group conversation with the same vGroupID will be deleted.

Sample integrations

This section describes how to set up and use the following public sample bot integrations that are
available for Wickr IO:

• Wickr IO rekognition bot - Deploy a bot that allows storing, removal and retrieval of files for
users on the same network.

• Wickr IO translation bot - Deploy a bot that facilitates language translation within Wickr
conversations.

• Wickr IO Lex bot - Deploy an Amazon Lex chatbot within a web application to engage your web
site visitors.

Wickr IO rekognition bot

Prerequisites

Before you start, be sure to complete the following before continuing with this guide:

• Follow steps 1 and 2 in Quick start to get ready to start the bot container.

• Set up AWS CLI, or an AWS credentials file with valid current credentials on your host machine.
For additional information on how to get credentials, see: Authentication and access credentials
for the AWS CLI

• For this example, we will assume that the credentials on your host exist at /home/ubuntu/
credentials/rekognition/.aws. This assumes that your username is ubuntu and

Sample integrations 76

https://docs.aws.amazon.com/wickr/latest/wickrio/wickr-io-rekognition-bot.html
https://docs.aws.amazon.com/wickr/latest/wickrio/wickr-io-translation-bot.html
https://docs.aws.amazon.com/wickr/latest/wickrio/wickr-io-lex-bot.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html

AWS Wickr Bots and Integrations Guide

that you have stored your credentials in the file ~/credentials/rekognition/.aws/
credentials.

• For long term credentials be sure to follow best practices as outlined in Authentication and
access credentials for the AWS CLI.

Deploy rekognition bot

Complete the following procedure to deploy a rekognition bot.

Step 1: Deploy and configure

1. Deploy and configure wickrio-rekognition-bot container on your host. For more
information, see wickrio-rekognition-bot npm package.

2. Start the docker image on your host

docker run -v ~/WickrIO:/opt/WickrIO -v /home/ubuntu/
 credentials/rekognition/.aws:/home/wickriouser/.aws -ti public.ecr.aws/
 x3s2s6k3/wickrio/bot-cloud:latest

3. Select your preference for the welcome message.

4. At the Enter command: prompt, enter the command add.

Wickr IO rekognition bot 77

https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://www.npmjs.com/package/@wickr-sample-integrations/wickrio-rekognition-bot

AWS Wickr Bots and Integrations Guide

5. Over the next several prompts, enter the username and password created in the previous
steps.

6. You are prompted to select an integration. Type @wickr-sample-integrations/wickrio-
rekognition-bot

7. Next, you are prompted for the AWS Region, and for the name of your profile in your
credentials file that you set up earlier. If you are unsure of the AWS Region, you can use
US East (N. Virginia). AWS Wickr is available in the following regions: AWS Wickr Regional
availability.

Wickr IO rekognition bot 78

https://docs.aws.amazon.com/wickr/latest/adminguide/what-is-wickr.html#regional-availability
https://docs.aws.amazon.com/wickr/latest/adminguide/what-is-wickr.html#regional-availability

AWS Wickr Bots and Integrations Guide

Step 2: Start the bot

1. Use the list command to view a list of available bots.

2. Using the number of the bot that you just created (0 in the example), type the command start
#, where # is the bot number (0 in the example).

3. Enter the password for the bot.

4. Use the list command to verify that the bot is running.

Step 3: Interact with the bot

1. In the top right corner of the navigation panel, select the new message button.

Wickr IO rekognition bot 79

AWS Wickr Bots and Integrations Guide

2. In the pop up menu, choose New Direct Message.

3. Search for your bot by display name.

4. Select your bot for a direct message, and send a message.

Wickr IO rekognition bot 80

AWS Wickr Bots and Integrations Guide

Wickr IO rekognition bot 81

AWS Wickr Bots and Integrations Guide

Wickr IO translation bot

Prerequisites

Before you start, be sure to complete the following before continuing with this guide:

• Follow steps 1 and 2 in Quick start to get ready to start the bot container.

• Set up AWS CLI, or an AWS credentials file with valid current credentials on your host machine.
For additional information on how to get credentials, see: Authentication and access credentials
for the AWS CLI

• For this example, we will assume that the credentials on your host exist at /home/ubuntu/
credentials/translation/.aws. This assumes that your username is ubuntu and
that you have stored your credentials in the file ~/credentials/translation/.aws/
credentials.

• For long term credentials be sure to follow best practices as outlined in Authentication and
access credentials for the AWS CLI.

Deploy translation bot

Complete the following procedure to deploy a translation bot.

Step 1: Deploy and configure

1. Deploy and configure wickrio-translation-bot container on your host. For more
information, see wickrio-translation-bot .

2. Start the docker image on your host

docker run -v ~/WickrIO:/opt/WickrIO -v /home/ubuntu/
 credentials/translation/.aws:/home/wickriouser/.aws -ti public.ecr.aws/
 x3s2s6k3/wickrio/bot-cloud:latest

3. Select your preference for the welcome message.

4. At the Enter command: prompt, enter the command add.

Wickr IO translation bot 82

https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://www.npmjs.com/package/@wickr-sample-integrations/wickrio-translation-bot

AWS Wickr Bots and Integrations Guide

5. Over the next several prompts, enter the username and password created in the previous
steps.

6. You are prompted to select an integration. Type @wickr-sample-integrations/wickrio-
translation-bot

7. Next, you are prompted for the AWS Region, and for the name of your profile in your
credentials file that you set up earlier. If you are unsure of the AWS Region, you can use

Wickr IO translation bot 83

AWS Wickr Bots and Integrations Guide

US East (N. Virginia)(us-east-1). AWS Wickr is available in the following regions: AWS Wickr
Regional availability.

Step 2: Start the bot

1. Use the list command to view a list of available bots.

2. Using the number of the bot that you just created (0 in the example), type the command start
#, where # is the bot number (0 in the example).

3. Enter the password for the bot.

4. Use the list command to verify that the bot is running.

Step 3: Interact with the bot

1. In the top right corner of the navigation panel, select the new message button.

Wickr IO translation bot 84

https://docs.aws.amazon.com/wickr/latest/adminguide/what-is-wickr.html#regional-availability
https://docs.aws.amazon.com/wickr/latest/adminguide/what-is-wickr.html#regional-availability

AWS Wickr Bots and Integrations Guide

2. In the pop up menu, choose New Direct Message.

3. Search for your bot by display name.

4. Select your bot for a direct message, and send a message.

The example below illustrates how the bot translates between English to French.

Wickr IO translation bot 85

AWS Wickr Bots and Integrations Guide

Wickr IO lex bot

Prerequisites

Before you start, be sure to complete the following before continuing with this guide:

• Follow steps 1 and 2 in Quick start to get ready to start the bot container.

• Set up AWS CLI, or an AWS credentials file with valid current credentials on your host machine.
For additional information on how to get credentials, see: Authentication and access credentials
for the AWS CLI

• For this example, we will assume that the credentials on your host exist at /home/ubuntu/
credentials/lex/.aws. This assumes that your username is ubuntu and that you have
stored your credentials in the file ~/credentials/lex/.aws/credentials.

• For long term credentials be sure to follow best practices as outlined in Authentication and
access credentials for the AWS CLI.

• Make sure to collect the following pieces of information

Wickr IO lex bot 86

https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html
https://docs.aws.amazon.com/cli/v1/userguide/cli-chap-authentication.html

AWS Wickr Bots and Integrations Guide

• Bot ID

• Deployment Alias ID

Deploy lex bot

Complete the following procedure to deploy a lex bot.

Step 1: Deploy and configure

1. Deploy and configure wickrio-rekognition-bot container on your host. For more
information, see wickrio-lex-bot .

2. Start the docker image on your host

docker run -v ~/WickrIO:/opt/WickrIO -v /home/ubuntu/
 credentials/lex/.aws:/home/wickriouser/.aws -ti public.ecr.aws/
 x3s2s6k3/wickrio/bot-cloud:latest

3. Select your preference for the welcome message.

4. At the Enter command: prompt, enter the command add.

5. Over the next several prompts, enter the username and password created in the previous
steps.

Wickr IO lex bot 87

https://www.npmjs.com/package/@wickr-sample-integrations/wickrio-lex-bot

AWS Wickr Bots and Integrations Guide

6. You are prompted to select an integration. Type @wickr-sample-integrations/wickrio-
lex-bot

7. Next, you are prompted for the AWS Region, and for the name of your profile in your
credentials file that you set up earlier. If you are unsure of the AWS Region, you can use
US East (N. Virginia). AWS Wickr is available in the following regions: AWS Wickr Regional
availability.

Wickr IO lex bot 88

https://docs.aws.amazon.com/wickr/latest/adminguide/what-is-wickr.html#regional-availability
https://docs.aws.amazon.com/wickr/latest/adminguide/what-is-wickr.html#regional-availability

AWS Wickr Bots and Integrations Guide

Step 2: Start the bot

1. Use the list command to view a list of available bots.

2. Using the number of the bot that you just created (0 in the example), type the command start
#, where # is the bot number (0 in the example).

3. Enter the password for the bot.

4. Use the list command to verify that the bot is running.

Step 3: Interact with the bot

1. In the top right corner of the navigation panel, select the new message button.

Wickr IO lex bot 89

AWS Wickr Bots and Integrations Guide

2. In the pop up menu, choose New Direct Message.

3. Search for your bot by display name.

4. Select your bot for a direct message, and send a message.

Wickr IO lex bot 90

AWS Wickr Bots and Integrations Guide

Wickr IO lex bot 91

AWS Wickr Bots and Integrations Guide

Develop a custom Wickr IO integration on AWS Wickr

High Level Overview

To customize your experience with integrations in AWS Wickr, Wickr IO offers a JavaScript library
which makes it easy to develop your own bots. This document contains the process of creating a
new integration, an “emoji bot,” which responds to messages with a random emoji.

Integration setup

Complete the following procedure to setup a new custom Wickr IO integration.

1. Create a new directory and install the Wickr IO bot API with NPM.

mkdir wickrio-emoji-bot
cd wickrio-emoji-bot
npm install wickrio-bot-api

2. In the root directory of your new package, create a file named processes.json with the
following contents:

{

Integration setup 92

https://github.com/WickrInc/wickrio-bot-api

AWS Wickr Bots and Integrations Guide

 "apps": [
 {
 "name": "wickrio-emoji-bot",
 "env": {
 "tokens": {}
 }
 }
]
}

This file is used by the Wickr IO bot API library to provide custom configuration for your
integration. Values provided in the env.tokens property will be set as environment variables
in your integration.

3. In addition to the processes.json file, you need to create the following two scripts in order
for your bot to start up successfully:

1. install.sh

This file is required when creating the bot. There are no special install time requirements,
you can exit with a successful status (0).

#!/bin/sh
exit 0

2. start.sh

This script is used by the Wickr IO integration to start your bot. The code that is created
below will be in the file index.js. Configure the startup script to run this file.

#!/bin/bash
node index.js "$@"

4. Make these scripts executable by running chmod:

Integration setup 93

AWS Wickr Bots and Integrations Guide

chmod +x {install,start}.sh

5. Next, create an index.js file which serves as the main entrypoint for our bot:

// index.js
const WickrIOBotAPI = require('wickrio-bot-api')

const bot = new WickrIOBotAPI.WickrIOBot()
const WickrIOAPI = bot.apiService().WickrIOAPI

async function listen() {}

async function main() {
 const username = process.argv[2]
 if (!username) throw new Error('Missing username')

 const status = await bot.start(username)
 if (!status) throw new Error('Unable to start bot')

 bot.startListening(listen);
}

main()

Add a custom slash command

To add custom behavior, you have to make changes to index.js.

Complete the following procedure to add a custom slash command.

1. Add a getEmoji function. This will return a random emoji.

2. Modify the listen function. This will allow it to respond to the slash-command /emoji with a
random emoji from the list.

// index.js
const WickrIOBotAPI = require('wickrio-bot-api')

const bot = new WickrIOBotAPI.WickrIOBot()

Add a custom slash command 94

AWS Wickr Bots and Integrations Guide

const WickrIOAPI = bot.getWickrIOAddon()

function getEmoji() {
 const emojis = [
 "#", "#", "#", "#", "#", "#", "#", "#", "#", "#", "#",
 "#", "#", "#", "#", "#", "#", "#", "#", "#"
]

 return emojis[Math.floor(Math.random() * emojis.length)]
}

async function listen(input) {
 const msg = bot.parseMessage(input)
 if (!msg) return

 switch (msg.command) {
 case "/emoji":
 await WickrIOAPI.cmdSendRoomMessage(msg.vgroupid, getEmoji())
 break
 }
}

async function main() {
 const username = process.argv[2]
 if (!username) throw new Error('Missing username')

 const status = await bot.start(username)
 if (!status) throw new Error('Unable to start bot')

 bot.startListening(listen)
}

main()

Build

Custom integrations in Wickr IO must be made available to the Wickr IO Docker container as a
tarball named software.tar.gz. You can build that tarball from your source directory:

tar czf software.tar.gz —exclude=software.tar.gz .

Build 95

AWS Wickr Bots and Integrations Guide

Here's an example of what the output to this command will look like:

tar czf software.tar.gz —exclude=software.tar.gz .

tar: .: file changed as we read it

After you run this command, you will have the software.tar.gz file containing your source
code and dependencies for your bot. Upload it to the server where you want to deploy your bot
integration to continue on with the next deployment step.

Deploy

In this section you can deploy your custom integration using the Wickr IO Docker container. These
commands should be run on a host which has Docker installed, access to the internet, and has the
software.tar.gz archive for your custom integration on its file system.

If you haven't already created your bot user in the AWS Wickr console, do that now. You'll need the
bot username and password in order to register your bot user for your new custom integration.

Create a bot data directory

Complete the following procedure to create a bot data directory.

1. On your server, create a new directory for all of the files which will be associated with your
bot. In this directory, you will place the software.tar.gz file, a client configuration file, and
a directory to hold all of the data for the Wickr IO container.

mkdir -p emoji-bot/data
cd emoji-bot
cp ../path/to/software.tar.gz . # Update this path to the correct location

2. Create a file named clientConfig.json which contains the information needed to start
your bot. Replace BOT_USERNAME and BOT_PASSWORD with the credentials for your bot.

Deploy 96

AWS Wickr Bots and Integrations Guide

{
 "clients": [
 {
 "integration": "wickrio-emoji-bot",
 "name": "BOT_USERNAME",
 "password": "BOT_PASSWORD",
 "tokens": []
 }
]
}

Your directory should have the following structure:

.
clientConfig.json # Your bot client's configuration file
data # The data directory for the WickrIO container
software.tar.gz # Your custom integration code

Start the container

You can now start the Wickr IO container to bring your new custom integration online. The
directory which the software.tar.gz file is mounted to must match the integration named
supplied in your clientConfig.json file.

In the example, the integration is named wickrio-emoji-bot. The tarball must be mounted to /
usr/lib/wickr/integrations/software/wickrio-emoji-bot/ .

docker run -d --restart=always \
 -v ./data:/opt/WickrIO \
 -v ./clientConfig.json:/usr/local/wickr/WickrIO/clientConfig.json:ro \
 -v ./software.tar.gz:/usr/lib/wickr/integrations/software/wickrio-emoji-bot/
software.tar.gz:ro \
 public.ecr.aws/x3s2s6k3/wickrio/bot-cloud:latest

Start the container 97

AWS Wickr Bots and Integrations Guide

You can now interact with your new integration by sending it the /emoji command in your AWS
Wickr client.

Node.js Addon API

This section describes the Wickr IO Node.js addon and how to use it with several examples. The
APIs provided by the Wickr IO Node.js addon are low-level APIs, using the APIs provided by the
Wickr IO Bot API provide a higher-level approach to some of the main aspects of an Wickr IO
integration interfacing with a Wickr IO client. You will still need to use the Wickr IO Node.js
addon to perform most interactions with the Wickr IO client. The APIs supported by the Wickr IO
Node.js addon allow you to access all of the necessary functionality from the Wickr IO client to
communicate with other Wickr users within the Wickr network.

The Wickr IO Node.js addon is published to the default NPM registry. The name of the published
module is wickrio_addon. It supports a specific set of functions consistent with the Wickr IO
REST API.

When using the Wickr IO Node.js addon you will have access to one Wickr IO client at a time. It is
not currently possible for an integration to communicate with more than one Wickr IO client at the
same time via the addon. Interaction with the Node.js is as follows:

1. Initialize the Wickr IO Node.js addon interface. This is done by calling the clientInit() API, and
supplying the user name of the Wickr IO client that is going to be used. The start() API provided
by the Wickr IO Bot API uses the clientInit() API to initiate a connection to the Wickr IO client. We
recommend using that API instead.

2. Interact with the Wickr IO client by calling the appropriate APIs.

3. When your program is complete then call the closeClient() API to gracefully stop processing.
The close() API, provided by the Wickr IO Bot API, uses the closeClient() API to shut down the
connection to the Wickr IO client.

The addon APIs are described in detail in the following sections.

Startup and Shutdown APIs

This section describes the APIs used to start and stop the connection between the Wickr IO
integration and the Wickr IO client.

Node.js Addon API 98

AWS Wickr Bots and Integrations Guide

The interface between the Wickr IO integration and the Wickr IO client needs to be initialized.
Initialization includes identifying the Wickr IO client and making sure the Wickr IO client is in the
appropriate state, for example running and logged into the Wickr network. Once the interface
between the client and the integration has been initialized you can start using the other Wickr IO
Node.js addon APIs. Also, the interface should be gracefully shutdown when you are done using the
APIs.

Note

Using the Wickr IO Bot API provides a higher-level API (start()) that will call the appropriate
APIs in this addon.

clientInit(string clientName)

Before accessing any of the Wickr IO Node.js addon APIs you will need to run the
"clientInit(clientName)". The only argument is the user name associated with the Wickr IO client.

Note

If you use the Wickr IO Bot API, the call to the start() API will call the clientInit() API.

closeClient()

This API will close the currently open client object(s). This should be called when done interacting
with the client set in the "clientInit()" API.

Note

If you use the Wickr IO Bot API, the call to the close() API will call the closeClient() API.

isConnected(int seconds)

The isConnect() API checks if there is a valid connection from the calling Wickr IO integration to
the Wickr IO client. The call will wait the input number of seconds for a connection. The API returns
true if a response was received from the client within the amount of seconds input, otherwise it will
return false.

Startup and Shutdown APIs 99

AWS Wickr Bots and Integrations Guide

Warning

If true is returned it does not mean the client is prepared to handle other requests yet. Use
the getClientState() API to make sure the client is in the appropriate state. For most
APIs the client should be in the RUNNING state.

Note

The Wickr IO Bot API's start() API uses this API to make sure the connection to the client
exists.

getClientState()

This API retrieves the current state of the Wickr IO client the integration is connected with. The
value returned is one of the following possible values:

• LOGGINGIN

• NOTRUNNINNG

• RUNNING

• SHUTTINGDOWN

• STARTING

• UNINITIALIZED

It is important to make sure the Wickr IO client is in the RUNNING state before performing any
API calls that require access to the Wickr network. Doing so before then may have unpredictable
results.

Note

The Wickr IO Bot API's start() API uses this API repetitively to make sure the client is in the
RUNNING state before returning.

Startup and Shutdown APIs 100

AWS Wickr Bots and Integrations Guide

Configuration API

The configuration API is used by the integration to configure specific Wickr IO client modes of
operation. Since the Wickr IO client is a separate software module this API will provide a method
to modify how the client operates. Typically, the use of these APIs is done after the interface to the
Wickr IO client has been initialized.

cmdSetControl(string configKey, string configValue)

This API will tell the Wickr IO client to set the specific configKey to the input configValue. You will
have to make a call to cmdSetControl() for each configKey value that is being set. The following is a
list of configKey values that can be set:

Config Key Description

attachLifeMinutes This is a number that represents the number of minutes an attachmen
t (file) will remain on the Wickr IO client. After that amount of time the
attachment will be removed. A value of 0 will keep attachments on the
system indefinitely, this is the default value. It is highly recommended
that this value is set to something other than 0.

doreceive If set to 'false' the Wickr IO client will NOT forward incoming Wickr
messages to the integration software. This is useful for transmit only
integrations. The default value is 'true'.

duration This value is used to make the Wickr IO client and integration to
perform a restart after a number of seconds. A value of 0 will not
perform a restart. This value is helpful for testing, or if you wish to
perform periodic restarts. The default value is '0'.

Statistics APIs

APIs are provided to retrieve messaging statistics that are maintained by the Wickr IO client. You
can get and clear the retrieved statistics.

cmdGetStatistics()

This API will return a list of messaging and error statistics, for example.

Configuration API 101

AWS Wickr Bots and Integrations Guide

{
 "statistics": {
 "message_count": 5,
 "pending_messages": 0,
 "sent": 7,
 "received": 3,
 "sent_errors": 1,
 "recv_errors": 1
 }
}

The following table describes each of the statistics that can be returned by this API:

Statistics Description

message_count The number of received messages that are currently queued to a
conversation on the Wickr IO client. These queues feed into the main
receive queue that is used by the message callback and retrieval APIs.

outbox_sync The number of outbox sync messages received. Outbox sync messages
are messages that were sent by another device for this Wickr IO client.
This is only valid when there are multiple devices configured for a Wickr
IO client, which is not typical.

pending_callback_m
essages

The number of messages on the callback message queue. These are
messages received by the Wickr IO client, that are waiting to be sent
to a callback process. This number will be decremented for each
message that is retrieved from the Wickr IO client using the cmdGetRec
eivedMessage() API or received by the integration software successfully
via the asynchronous message handling (i.e. callback).

pending_messages The number of messages that are currently queued to be sent from the
Wickr IO client to Wickr clients on the Wickr network.

received The number of messages that the Wickr IO client has received.

recv_errors The number of errors that occurred while receiving messages.

Statistics APIs 102

AWS Wickr Bots and Integrations Guide

Statistics Description

sent The number of messages that have been sent by the Wickr IO client.

sent_errors The number of errors that have occurred while trying to send
messages.

cmdClearStatistics()

This API will clear the current statistics that are saved in the client.

Wickr Client APIs

This section describes APIs that provide information about Wickr Clients. You can use these APIs to
get information about a Wickr client that the bot can communicate with.

cmdGetUserInfo(string users[])

This API returns information about the each of the users from the input array of Wickr user IDs. The
value returned is a JSON object with two arrays, one for the Wickr users that exist and one for the
Wickr users that do not exist. The following is an example of the JSON returned:

{
 "users" : [
 { "name" : "bobsmith@company.com", "full_name" : "Bob Smith", "is_bot",
 false" },
 { "name" : "joebrown@companuy.com", "full_name" : "Joe Brown", "is_bot",
 false" }
],
 "failed" : ["failedUser1", "failedUser2"]
}

Warning

This API requires interaction with the Wickr server, so keep the number of users on the
input list small so the response does not take too long.

Wickr Client APIs 103

AWS Wickr Bots and Integrations Guide

cmdGetClientInfo()

This API will retrieve the bot client information. The values are returned in a JSON list of objects.

{
 "version" : "<bot client's version>",
 "organization" : "Wickr, Inc."
}

This API can be used to verify the version of the client.

cmdSetVerificationMode(string mode)

This API is used to set the verification mode that the bot client will operate under. The possible
values for the input mode are "automatic" or "manual", all other values will return an error.
If the verification mode is set to "automatic" then any client the bot client interacts with
becomes unverified, the bot client will automatically put that client into the verified state. If
the verification mode is set to "manual" then it is up to the bot integration to peridically get the
verification list, using the "cmdGetVerificationList" API and then calling the "cmdVerifyUsers" or
"cmdVerifyAllUsers" APIs.

cmdGetVerificationList(string mode)

This API will return a list of users that have become unverified. The mode argument is optional.
Normally, this API will return users that have a failed verification status. When you call this function
with a mode value of "all" then this API will return users that are not verified, meaning they can
have a verification status of failed, unverified or pending. The value returned will be a JSON string
with a list of users and their verification status. These verification functions are necessary when
verification is done manually but the bot integration.

The following is a sample response:

{
 "users" : [
 { "user": "wickrID1", "reason": "failed" },
 { "user": "wickrID2", "reason": "unverified" },
 { "user": "wickrID3", "reason": "pending" }
]

Wickr Client APIs 104

AWS Wickr Bots and Integrations Guide

}

cmdVerifyUsers(string users[])

This API will verify all of the users in the input users array. The verification status for each of these
users will be changed to verified. You will only need to use this API if your bot was setup to do
verification manually.

cmdVerifyAll()

This API will verify all users that are in the unverified or failed verification state. This will only be
necessary if the bot is doing verification manually.

Secure Room Conversation APIs

This section describes the APIs that perform operations on Wickr secure rooms. The operations you
can perform include adding, modifying, deleting and retrieving secure rooms. For APIs where you
are dealing with a specific secure room, you will need to have the VGroupID that is associated with
that room.

cmdAddRoom(string members[], string moderators[], string title, string desc, string ttl, string
bor)

This API creates a new secure room. The arguments of this request will contain the information
associated with the room.

The members and moderators arguments are arrays of strings, that are Wickr IDs. The members
array is the complete list of members of the secure room. The moderators array is a list of the
moderators of the secure room. The moderators must also be in the members list. There must be at
least one moderator in the room.

The ttl is the time to live value. The bor is the burn on read value. These values are strings but the
contents of the string is a number. The ttl and bor values are optional. If the bor value is included
then the ttl value must also be included.

{
 "vgroupid": "S0b503ae14cc896aad758ce48f63ac5fae0adccd78ef18cde82563c63b2c7761"
}

Secure Room Conversation APIs 105

AWS Wickr Bots and Integrations Guide

The response will either be an error with a description of that error or a successful response with
the vGroupId of the newly created room.

cmdDeleteRoom(string vgroupid)

In order to delete a secure room, you will need to have the vGroupID associated with that room.
You can use the get rooms API to get the list of rooms known by the Wickr IO client, then
determine which room to delete. Also, saving the vGroupID returned from the add room API can be
used as well.

cmdGetRoom(string vgroupid)

This API will return details of a specific secure room conversation. The Wickr IO client will respond
with a JSON structure containing information for the specified conversation.

{
 "rooms": [
 {
 "description": "Room description",
 "masters": [
 { "name" : "username001" }
],
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "title": "Room Title",
 "ttl": "-1",
 "vgroupid":
 "S00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

cmdGetRooms()

This API will return a list of secure rooms that are known by the Wickr IO client. The Wickr IO client
will respond with a JSON array of the secure rooms that the Wickr IO client is a member of. The
following is an example of what the JSON returned from this API:

Secure Room Conversation APIs 106

AWS Wickr Bots and Integrations Guide

{
 "rooms": [
 {
 "description": "Room description",
 "masters": [
 { "name" : "username001" }
],
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "title": "Room Title",
 "ttl": "7776000",
 "bor": "0",
 "vgroupid":
 "S00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

cmdLeaveRoom(string vgroupid)

This API will instruct the Wickr IO client to leave the secure room identified by the input vGroupID.
In order to leave a secure room, you will need to have the vGroupID associated with that room. You
can use the get rooms API to get the list of rooms known by the Wickr IO client, then determine
which room to leave. Also, saving the vGroupID returned from the create room API can be used as
well.

cmdModifyRoom(string vgroupid, string members[], string moderators[], string title, string
description, string ttl, string bor)

This API is used to modify some of the settings associated with a room. The following room
attributes can be modified using this API:

• TTL

• BOR

• Description

• Title

Secure Room Conversation APIs 107

AWS Wickr Bots and Integrations Guide

• Members

• Moderators

The Wickr IO client must be a moderator for the room identified by the input vGroupID, otherwise
the request will fail.

Group Conversation APIs

This section describes the APIs associated with group conversations. Using these APIs, you can
create, get or delete group conversations that the Wickr IO client is a part of.

cmdAddGroupConvo(string members[], string ttl, string bor)

This API will create a new group conversation. The members argument is required, and the ttl and
bor values are optional. The response will either be an error with a description of that error or a
successful response with the vGroupID of the newly created group conversation.

{
 "vgroupid": "G0b503ae14cc896aad758ce48f63ac5fae0adccd78ef18cde82563c63b2c7761"
}

cmdDeleteGroupConvo(string vgroupid)

This API will instruct the Wickr IO client to leave a group conversation. You can only actually delete
a group conversation if the client is the last member of the group conversation.

In order to delete a group conversation, you will need to have the vGroupID associated with that
conversation. You can use the get group conversations API to get the list of conversations known
by the Wickr IO client, then determine which conversation to delete. Also, saving the vGroupID
returned from the create group conversation API can be used as well. The group conversation with
the same vGroupID will be deleted.

cmdGetGroupConvos()

This API will return a list of group conversations that are known by the Wickr IO client. The Wickr
IO client will respond with a JSON array of the group conversations.

{

Group Conversation APIs 108

AWS Wickr Bots and Integrations Guide

 "groupconvos": [
 {
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "ttl": "7776000",
 "bor": "0",
 "vgroupid":
 "G00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

cmdGetGroupConvo(string vgroupid)

This API will return details of a specific group conversation. The Wickr IO will respond with a JSON
structure containing information for the specified conversation.

{
 "rooms": [
 {
 "members": [
 { "name" : "username001" },
 { "name" : "username002" }
],
 "vgroupid":
 "G00bf0ca3169bb9e7c3eba13b767bd10fcc8f41a3e34e5c54dab8bflkjdfde"
 }
]
}

Receive Message APIs

These messaging APIs are used to retrieve Wickr messages received by the Wickr IO client.
Messages received by the Wickr IO client can be retrieved using one of the following methods:

• Explicitly polling for the received messages

• Asynchronously receiving messages

Receive Message APIs 109

AWS Wickr Bots and Integrations Guide

• Setting a URL where received messages will be posted to.

The Wickr IO APIs will only support one receive message method at a time. When a message has
successfully been transferred from the Wickr IO client to the integration software that message
will be removed from the Wickr IO client queue. The Wickr IO client will not save messages after
completion of the transfer.

The format of the messages received is described in the message format section.

cmdGetReceivedMessage()

This API will retrieve the next message waiting to be read. Each call to this API will return just one
message if any are waiting to be read. After the message is retrieved it will be removed from the
Wickr IO client database.

cmdStartAsyncRecvMessages(function callback(string))

This API will initiate the asynchronous reception of received messages. The input callback
argument will be called when a message is received by the associated client.

Any implementation that uses this API must make sure events can be handled so that the message
callback may be called.

cmdStopAsyncRecvMessages()

This API will stop the asynchronous reception of received messages.

cmdSetMsgCallback(string url)

Use this API to set a URL that will be used by the client to send received messages to. Any
messages received after this API is performed will be sent to the defined URL. When using this
method of receiving messages be careful to make sure the software running on the Wickr IO
Docker image can access the URL.

cmdGetMsgCallback()

Use this API to get the currently set message callback URL. If there is a URL callback defined the
following is the format of the body.

{
 "callback": "https://localhost:4008"

Receive Message APIs 110

AWS Wickr Bots and Integrations Guide

}

cmdDeleteMsgCallback()

If the URL callback is no longer needed or you need to switch to receive messages asynchronously
then delete the existing message URL callback. This API will delete the current message callback.

Transmit Message Arguments

There are several arguments to the transmit APIs that need more detailed descriptions.

Message Meta Arguments

New to the 5.81 version of WickrIO, is the support for button and table GUI widgets. These GUI
widgets are only supported in text messages, file messages do not support them. The transmit APIs
have been modified to support an optional argument (messagemeta) that identifies these buttons
or tables. The messagemeta argument is a JSON string that identifies the GUI elements associated
with the message being transmitted. The following figure shows the JSON associated with two
buttons, one is a normal message button and the other is a location button:

{
 "buttons" : [
 {
 "type": "message",
 "text": "Button Text",
 "message": "/action"
 },
 {
 "type": "getlocation",
 "text": "Send Location"
 }
]
}

The "type" object identifies the type of the button, and the "text" identifies the text that will be
displayed on the button to the user. The "message" object of the message button is what the client
will send back to the bot when the button is selected. The "getlocation" type of button, when
selected the client will send the client's location to the bot.

Transmit Message Arguments 111

AWS Wickr Bots and Integrations Guide

The table GUI widget is used to display a selectable list of information on the client. The
messagemeta JSON string can contain a "table" object and a "textcut" object. The "textcut" object
is optional. The "table" object contains all the details of the table to be shown. The "textcut" object
contains a list of values that indicate which characters in the message text should be cut if the
client supports the table GUI widget. Normally, if a client does not support the table GUI widgets
it will just display the message text. If the client does support the table GUI widgets it will display
the message text, minus the text referenced by the "textcut" values, and then the list GUI. The
following is a sample.

{
 "table" : {
 "name": "Table heading",
 "firstcolname": "Column 1",
 "secondcolname": "Column 2",
 "actioncolname": "Action",
 "rows": [
 {
 "firstcolvalue": "123",
 "secondcolvalue": "Hello",
 "response": "1"
 },
 {
 "firstcolvalue": "2838",
 "secondcolvalue": "There",
 "response": "2"
 }
]
 },
 "textcut" : [
 { "startindex": 0, "endindex": 75 }
]
}

The sample above shows all of the possible objects associated with the "table" and "textcut"
objects. The "textcut" array is optional. The "secondcolname" and "secondcolvalue" objects are
optional. The table can have one or two columns.

To include buttons or lists in your text messages you will create a JSON string and that wil be the
messagemeta argument to the message sending APIs (shown below). The following is an example

Transmit Message Arguments 112

AWS Wickr Bots and Integrations Guide

of the Javascript code for creating the messagemeta string for some buttons. When the button is
selected the 'message' value will be sent to the bot.

const messagemeta = {
 buttons: [
 {
 type: 'message',
 text: 'yes',
 message: 'yes',
 },
 {
 type: 'message',
 text: 'no',
 message: 'no',
 }
],
}
const messagemetastring = JSON.stringify(messagemeta)

The following is an example Javascript for creating the message meta string for a list. The action
column contains the value that will be returned to the bot when that item is selected. In this case it
will be the number '1', '2' or '3'.

const users = ['user1@somewhere.com', 'user2@somewhere.com', 'user3@somewhere.com']

let messagemeta = {
 table: {
 name: 'List of Users',
 firstcolname: 'User',
 actioncolname: 'Select',
 rows: [],
 },
 textcut: [
 {
 startindex: 0,
 endindex: entriesString.length - 1,
 },
],
}

for (let i = 0; i < users.length; i++) {
 const response = i + 1
 const row = {

Transmit Message Arguments 113

AWS Wickr Bots and Integrations Guide

 firstcolvalue: users[i],
 response: response.toString(),
 }
 messagemeta.table.rows.push(row)
}

const messagemetastring = JSON.stringify(messagemeta)

Message ID Arguments

The messageID argument for the transmit functions is used to track the status of transmits. Bot
integrations like the broadcast bot use the messageID values to track the process of a broadcast.
The messageID can be used later to retrieve the status of the transmission of all messages
associated with that messageID value.

Flags Arguments

The flags arguments to the transmit functions is not fully defined. It will be defined in a future
document.

Transmit Message APIs

The transmit message APIs support transmitting normal messages as well as files. Messages and
files will be transmitted to specific 1-on-1, secure room, or group conversations on the Wickr
network via the Wickr IO client. For secure rooms and group conversations you will need to have
the vGroupID associated with the specific conversation.

Some of the arguments to these functions are optional. Required arguments will always be listed
first in the function definitions. The order of the arguments must follow the defined function
signature. If you are going to use an optional argument that is after one you are not going to use
then you will have to pass an appropriate value for the optional argument you are not using (i.e. ""
for string arguments, [] for array arguments).

cmdSend1to1Message(string users[], string message, string ttl, string bor, string messageID,
string flags[], string messagemeta)

This API is used to send a message to one or more Wickr clients. The "users" field may contain
an array of 1 or more users to send the message to. The message will be sent to each user on a
separate 1-to-1 conversation. So, if the API request "users" field contains 5 users then 5 messages
will be sent, using the text from the "message" field.

Transmit Message APIs 114

AWS Wickr Bots and Integrations Guide

The users array and message arguments are required, the remaining arguments are optional.

cmdSendRoomMessage(string vgroupid, string message, string ttl, string bor, string messageID,
string flags[], string messagemeta)

This API is used to send a message to a secure room or group conversation. If you want to send a
message to a secure room or a group conversation you will need to get the vGroupID associated
with that conversation. To do that the vGroupID will be returned when you create the room/
conversation using the appropriate API. Also, the get rooms API will return a list of known rooms
that you can send to, the vGroupID is contained in the response.

The vgroupid and message arguments are required, the remaining arguments are optional.

cmdSend1to1Attachment(string users[], string filename, string displayname, string ttl, string
bor, string messagemeta)

This API is used to send a file to one or more users. The file will be sent to each of the users in the
input users list, via individual 1-to-1 conversations. The filename identifies a file that is located
on the client system or a URL that identifies a remotely accessible file. If this is a local file, the file
must be located in a location on the client that is accessible by the bot's client software running on
the Wickr IO Docker image. The displayname field will be sent in the file transfer message.

The users array and filename arguments are required, the remaining arguments are optional.

cmdSendRoomAttachment(string vgroupid, string filename, string displayname, string ttl,
string bor, string messagemeta)

This API is used to send a file to a secure room or group conversation. The file will be sent to the
conversation associated with the input vgroupid. The filename identifies a file that is located on the
client system or a URL that identifies a remotely accessible file. If this is a local file, the file must
be located in a location on the client that is accessible by the bot's client software running on the
Wickr IO Docker image. The displayname field will be sent in the file transfer message.

The vgroupid and filename arguments are required, the remaining arguments are optional.

cmdSendMessageUserNameFile(string fileName, string message, string ttl, string bor, string
messageID, string flags[], string messagemeta)

This API is used to send a message to a list of Wickr clients contained in the input file. The
"fileName" contains the full pathname of a file that is readable by the Wickr IO bot. The file
contains a list of Wickr users, one per line in the file. The input message will be sent to each user

Transmit Message APIs 115

AWS Wickr Bots and Integrations Guide

on a separate 1-to-1 conversation. So, if the API request "fileName" file contains 5 users then 5
messages will be sent, using the text from the "message" field.

The fileName and message arguments are required, the remaining arguments are optional.

cmdSendAttachmentUserNameFile(string fileName, string attachment, string displayname,
string ttl, string bor, string messageID, string messagemeta)

This API is used to send a file to a list of Wickr clients contained in the input file. The "fileName"
contains the full pathname of a file that is readable by the Wickr IO bot. The file contains a list of
Wickr users, one per line in the file. The input file identified by the "attachment" will be sent to
each user on a separate 1-to-1 conversation. So, if the API request "fileName" file contains 5 users
then 5 messages will be sent, using the file from the "attachment" field.

The fileName and attachment arguments are required, the remaining arguments are optional.

Network and Security Group Message APIs

These APIs are used to send messages and files to the users in a Wickr network or security group.
Since Wickr bots can only transmit to clients in the same network, the Wickr network is the
network that the bot is in. The Wickr bot can transmit to any of the security groups that are
associated with the network it is associated with.

cmdSendNetworkMessage(string message, string ttl, string bor, string messageID, string
flags[], string messagemeta)

This API is used to send a message to all of the Wickr clients in the bot client's Wickr network. The
message will be sent to each user on a separate 1-to-1 conversation. So, if the associated network
contains 100 users then 100 messages will be sent, using the text from the "message" field.

The message argument is required, the remaining arguments are optional.

cmdSendNetworkAttachment(string filename, string displayname, string ttl, string bor, string
messageID, string message, string messagemeta)

This API is used to send a file to all of the Wickr clients in the bot client's Wickr network. The file
will be sent to each of the users in the Wickr network via individual 1-to-1 conversations. The
filename identifies a file that is located on the client system or a URL that identifies a remotely
accessible file. If this is a local file, the file must be located in a location on the client that is
accessible by the bot's client software running on the Wickr IO Docker image. The displayname
field will be sent in the file transfer message.

Network and Security Group Message APIs 116

AWS Wickr Bots and Integrations Guide

The message field is used to also transmit a message, in addition to sending the attachment.

The filename argument is required, the remaining arguments are optional.

cmdSendNetworkVoiceMemo(string filename, string displayname, string ttl, string bor, string
messageID, string message, string messagemeta)

This API is used to send a voice memo to all of the Wickr clients in the bot client's Wickr network.
The voice memo will be sent to each of the users in the Wickr network via individual 1-to-1
conversations. The filename identifies a voice memo file that is located on the client system, this
file must be located in a location on the client that is accessible by the bot's client software running
on the Wickr IO Docker image. The displayname field will be sent in the file transfer message.

The message field is used to also transmit a message, in addition to sending the attachment.

The filename argument is required, the remaining arguments are optional.

cmdGetSecurityGroups(string page, string size)

This API will return a list of information for the Security Groups that are associated with the Wickr
network the bot client is in. The page and size values are used to iterate through a large list of
security groups. The page identifies which page of security groups to retrieve, where each page
contains size number of entries. The page and size input values are optional but if specified they
both have to be specified.

The value returned is a JSON array containing the following entries:

{
 "size" : <size of security group>,
 "name" : "<security group name>",
 "id" : "<security group ID>"
}

The "size" value is the number of users that are in the security group. The "name" is the actual
name of the security group. The "id" is a unique identifier for the security group. The "id" value is
used in the following APIs to send to security groups users.

cmdSendSecurityGroupMessage(string message, string groupids[], string ttl, string bor, string
messageID, string flags[], string messagemeta)

Network and Security Group Message APIs 117

AWS Wickr Bots and Integrations Guide

This API is used to send a message to all of the Wickr clients in the security groups identified by the
groupids value. The message will be sent to each user on a separate 1-to-1 conversation. So, if the
associated security groups contain 100 users then 100 messages will be sent, using the text from
the "message" field.

The message and groupids arguments are required, the remaining arguments are optional.

cmdSendSecurityGroupAttachment(string groupids[], string fileName, string displayname,
string ttl, string bor, string messageID, string message, string messagemeta)

This API is used to send a file to all of the Wickr clients in the security groups identified by the
groupids value. The file will be sent to each of the users via individual 1-to-1 conversations. The
filename identifies a file that is located on the client system or a URL that identifies a remotely
accessible file. If this is a local file, the file must be located in a location on the client that is
accessible by the bot's client software running on the Wickr IO Docker image. The displayname
field will be sent in the file transfer message.

The message field is used to also transmit a message, in addition to sending the attachment.

The groupids and fileName arguments are required, the remaining arguments are optional.

cmdSendSecurityGroupVoiceMemo(string groupids[], string fileName, string displayname,
string ttl, string bor, string messageID, string message, string messagemeta)

This API is used to send a voice memo to all of the Wickr clients in the security groups identified
by the groupids value. The voice memo will be sent to each of the users via individual 1-to-1
conversations. The filename identifies a voice memo file that is located on the client system, this
file must be located in a location on the client that is accessible by the bot's client software running
on the Wickr IO Docker image. The displayname field will be sent in the file transfer message.

The message field is used to also transmit a message, in addition to sending the attachment.

The groupids and fileName arguments are required, the remaining arguments are optional.

Message Status APIs

These APIs are available to the bulk send APIs of the Wickr IO bot (i.e. network and security
sending, file name list sending). The APIs will provide the ability to track the number of messages
sent and remaining to be sent as well as if errors have occured during the sending of any of the
messages. Errors will be identified on a per user basis as well, which can help determine if there
was a problem sending to specific Wickr users.

Message Status APIs 118

AWS Wickr Bots and Integrations Guide

cmdAddMessageID(string messageid, string sender, string target, string datesent, string
message)

Before sending a message that you want to track you will need to call this API to add the message
ID information to the Wickr IO client. This API is used to add a message ID entry to the Wickr IO
clients database. The key part of this API is the message ID, it MUST be unique. The other values
are determined by the integration using this API.

The messageid value should uniquely identify the message being sent.

The sender is a string that should be used to identify the sender of the message. The contents
of this value is up to the integration using it. It can be used to restrict access to the message ID
information, so that users interacting with your integration cannot see message information for
other users.

The target is a string that should be used to identify who the message(s) are being sent to. The
contents of this value is up to the integration using it. The intent is to determine what type of
message was being sent.

The datesent is used to identify the date and time when the message was sent. The contents of this
value is up to the integration using it.

The message value is used to save the actual message or a string that identifies to the users the
message that was sent.

cmdDeleteMessageID(string messageid)

This API will delete all entries in the Wickr bot's client database associated with the input message
ID value.

cmdGetMessageIDEntry(string messageid)

This API will retrieve the information associated with the input message ID value. The value
returned is a JSON object with the following format:

{
 "message_id" : "<message ID value>",
 "sender" : "<sender value>",
 "target" : "<target value>",
 "when_sent" : "<when sent value>",
 "message" : "<message value>"
}

Message Status APIs 119

AWS Wickr Bots and Integrations Guide

cmdGetMessageIDTable(string page, string size)

This API is used to retrieve all of the message ID entries from the Wickr bot client's database.
Since this table can get very large over time you will need to limit the number of entries retrieved
by using the page and size values. The page is a 0 relative value used to identify which page to
retrieve, where each page contains a number of entries equal to the size value. If the table is large
enough you will need to iterate through each page until the number of entries is less than the size
value. The return value from this API is a JSON array of the message ID objects, as shown in the
cmdGetMessageIDEntry() API above.

cmdCancelMessageID(string messageID)

This API is used to cancel the transmit associated with the input messageID value. The bot client
will attempt to stop the transmission. There is no guarantee that the transmit will be fully
cancelled, but any subsequent transmits associated with the messageID should not occur.

cmdGetMessageStatus(string messageid, string type, string page, string size)

This API is used to retrieve the status of a specific message, identified by the input messageid
value. The type value identifies what type of information should be returned. There are two types
of message status values that can be returned:

• "full" for a full status for all users that the message is being sent to

• "summary" for a summary of the transmission for the associate message being sent.

The type value is optional, if not specified the default is to return a "summary" status of the
associated message transmission. If the status to be returned is a "summary" then the following
JSON object will be returned:

{
 "num2send" : <number of users to send to>,
 "pending" : <number pending to send>,
 "sent" : <number sent>,
 "failed" : <number failed to send>,
 "acked" : <number acked by receiver>
}

Message Status APIs 120

AWS Wickr Bots and Integrations Guide

The values returned are all numbers. The "acked" value is the number of users that have responded
to the bot. NOTE: a user sending a message to the bot will acknowledge all message ID entries
associated with that user. This behavior will change in future versions.

If the type value is "full" then an array of values is returned, one for each user that the message is
targeted to. The JSON array returned will contain objects with the following format:

{
 "user" : "<user ID>",
 "status" : <status of message to user>,
 "status_message" : "<error status if any>"
}

The "user" value is the user name that the message will be sent to. The "status" value is a number
value that identifies the status of the message that is being sent to the "user". The "status" can
have a value of one of the following:

• 0 means the message is pending to be sent to the associated user

• 1 means the message has been sent to the associated user

• 2 means the message failed to be sent to the associated user, see the "status_message" for
details

• 3 means the message was sent and acknowledged by the associated user

If the "status" value returned for a user is a failed (3) then the "status_message" value will also be
returned, otherwise the "status_message" value will not be returned.

The page and size input values are optional but should be used if the number of users the message
is sent to is large. The page is a 0 relative value used to identify which page to retrieve, where each
page contains a number of entries equal to the size value. If the table is large enough you will need
to iterate through each page until the number of entries is less than the size value.

cmdSetMessageStatus(string messageid, string user, string status, string statusmessage)

This API can be used to modify the status and status message associated with a specific user's
message status. The statusmessage value is optional. The messageid and user value will uniquely
identify a message ID entry in the Wickr bot client's database. If there is no entry for the associated
message ID and user then an entry will be created in the database.

Message Status APIs 121

AWS Wickr Bots and Integrations Guide

The messageid value can have an empty string value (i.e. ""), which can be used to update ALL
message ID entries for the specified user. This can be used for example to acknowledge all
messages sent to that user. If the messageid value is empty and there are NO user entries for the
user then nothing will be added to the database.

Key-Value APIs

These APIs provide the ability to save and retrieve values to/from a persistent encrypted storage
location. The values will be stored in an encrypted database, that is associated with the Wickr IO
client. Currently, only string values can be saved using these APIs.

These APIs do not have any relationship to the Wickr messaging, they are supplied for use by the
Wickr IO integrations to have a way to save persistent data.

Warning

Since these values are stored in the Wickr IO client database, the values will be lost if the
Wickr IO client database is reset. Also, the values are not accessible until the Wickr IO client
is in the logged in state.

cmdAddKeyValue(string key, string value)

This API is used to save, or update the value associated with the input key.

cmdGetKeyValue(string key)

This API will return the string value associated with the input key.

cmdDeleteKeyValue(string key)

This API will delete the key-value information associated with the input key.

cmdClearAllKeyValues()

This API will clear (delete) all key-value pairs from the persistent storage.

Node.js Bot API (Development toolkit)

This section describes the Wickr IO Node.js Bot API framework and how to use it with several
examples. This API provides tools for easier and more efficient development of Wickr IO integration
bots. It utilizes the Wickr IO Node.js addon APIs to make it easier to develop integrations.

Key-Value APIs 122

AWS Wickr Bots and Integrations Guide

The Wickr IO Node.js Bot API is published to the default NPM registry. The name of the published
module is wickrio-bot-api.

You will need to have a require() statement to include the Wickr Node.js Bot API in your integration.
Also, since the Wickr IO addon is required you will need to have a require() statement for it as well.
For example:

var addon = require('wickrio_addon');
var botapi = require('wickrio-bot-api');

start(client_username)

This API is used to start the connection with the Wickr IO client and get it ready for use. This
API uses the Wickr IO addon clientInit(), isConnected() and getClientState() APIs
to make sure the Wickr IO client connection is initialized, there is a valid connection and the
client is in the RUNNING state. This is helpful since it may take the Wickr IO bot client longer to
initialize than your integration.

If you use this API you will not need to call these addon APIs. This API will return true if
successful, else returns false.

Parameters:

• client_username(REQUIRED) - The string user name of the Wickr IO client that is going to be
used.

Example:

var result = botapi.start(process.argv[2]);
if (result === true) {
 console.log("Client started successfully");
} else {
 console.log("Client failed to start");
 process.exit();
}

startListening(callback)

This API initiates the asynchronous reception of received messages from the Wickr IO client. The
passed callback function will be called whenever a message is received from the Wickr IO client.

Parameters:

Node.js Bot API (Development toolkit) 123

AWS Wickr Bots and Integrations Guide

• callback(REQUIRED) - The callback function that will be called when a message is received.

For more information, see the section called “Receive Asynchronous Messages”.

close()

This API will close the currently open connection to the Wickr IO client. This should be called
when done interacting with the client set up by the start() API.

Example:

process.on('SIGINT', function() {
 console.log("Received SIGINT. Graceful shutdown ...");
 botapi.close();
 process.exit();
});

encryptEnv()

This API encrypts any environment variables that were input in the configuration part and were
saved in the processes.json file, specifically any variables that contain sensitive information
such as API Tokens (ex: Google App Client ID), or bot client specific variables such as a Bot Client
Server.

loadData()

This API reads the encrypted user database from 'users.txt', which is an array of users personal
information with their Wickr emails and any other information that was saved using the
saveData() API. The user database is stored in the wickrUsers variable, which is an array of users
personal information with their Wickr emails and any other information that was saved.

This API returns nothing.

saveData()

Encrypts the user database array contained in the wickrUsers variable, which is an array of users
personal information with their Wickr emails and any other information that was saved, and
saves it to the 'users.txt' file.

This API returns true if successful, else returns false.

addUser(wickrUser)

This API adds a user to the bot's user database array called wickrUsers, which is an array of users
personal information with their Wickr emails and any other information that was saved.

Node.js Bot API (Development toolkit) 124

AWS Wickr Bots and Integrations Guide

Parameters:

• wickrUser(REQUIRED) - The WickrUser object to be added to the user database.

This API returns the user object after it is added to the user database.

parseMessage(message)

This API parses and breaks down an incoming received message from the client. If successful the
parsed values will be returned in an object.

Parameters:

• message(REQUIRED) - The message object received from the Wickr IO client.

The returned object contains the following properties:

• command - The command portion of the message

• argument - The argument portion of the message

• message - The full message text

• sender - The sender of the message

• vgroupid - The group ID if sent to a group

For more information, see the section called “Receive Asynchronous Messages”.

getUser(userID)

This API searches the user database for the input user ID and returns the WickrUser object if
found.

Parameters:

• userID(REQUIRED) - The string user ID of the user to be retrieved.

This API returns the user object if successful, else returns false.

getUsers()

This API is used to retrieve the entire user database.

Returns the bot's user database array.

deleteUser(userID)

Searches the user database for the passed user, deletes the user and returns the WickrUser
object if successful, else returns false.

Node.js Bot API (Development toolkit) 125

AWS Wickr Bots and Integrations Guide

Parameters:

• userID(REQUIRED) - The string user ID of the user to be deleted.

getVersions(packageFile)

This API returns a string that contains the versions associated with all of the main components
of the WickrIO environment. This includes the WickrIO client version, the WickrIO addon
version, and the WickrIO bot API version.

Parameters:

• packageFile(REQUIRED) - The path to the package.json file for the integration.

This API returns a string containing version information for all WickrIO components.

Addon and Bot API Usage Examples

This section contains several examples of the use of the Wickr IO addon and the Wickr IO Bot API.

API Initialization

Before the Wickr IO Node.js addon API can be used you will need to initialize it in your JavaScript
code. This initialization is done by calling the "start()" API (from the Wickr IO Bot APIs) and passing
the client name associated with the Wickr IO client. For example:

const WickrIOAPI = require('wickrio_addon'); //WickrIO node.js addon which allows
 talking directly to our api
const WickrIOBotAPI = require('wickrio-bot-api'); //Development toolkit to help create
 bots/integrations
const WickrUser = WickrIOBotAPI.WickrUser;

var bot, tokens, bot_username, bot_client_port, bot_client_server;
var tokens = JSON.parse(process.env.tokens);

async function main() {
 try {
 bot_username = tokens.BOT_USERNAME.value;
 bot = new WickrIOBotAPI.WickrIOBot();
 var status = await bot.start(bot_username)
 if (!status)
 exitHandler(null, {
 exit: true,

Addon and Bot API Usage Examples 126

AWS Wickr Bots and Integrations Guide

 reason: 'Client not able to start'
 });
 } catch (err) {
 console.log(err);
 }
}

After the call to the "start()" API the client interface will be fully initialized. At this point you can
start using the other APIs to communicate with the Wickr IO client.

Sending message to a room

The following code fragment shows the use of the cmdSendRoomMessage() API to send a
message to a specific secure room. Before making the call you will need to get a valid vGroupID.

var msg = "Sorry, I'm not allowed to delete all the files in the directory.";
try {
 var sMessage = WickrIOAPI.cmdSendRoomMessage(vGroupID, msg);
 console.log(sMessage); //if successful should print "Sending message"
} catch(err){
 //Handle error here
 console.log(err);
}

Creating a room and sending an attachment

The following code shows the creation of a secure room and then sending a file to that room:

var members = [{ "name" : "username001" }, { "name" : "username002" }];
var moderators = [{ "name" : "username001" }, { "name" : "username002" }];
var bor = "600"; //OPTIONAL
var ttl = "1000"; //OPTIONAL
var title = "Example Room";
var description = "The Good Room";
var message = "Testing time!"
var attachmentURL = "https://www.alsop-louie.com/wp-content/uploads/2017/03/wickr-
logo-2-crop.png"
var displayname = "Logo.png";
try {
 var vGroupID = WickrIOAPI.cmdAddRoom(members, moderators, title, description, ttl,
 bor);
 //if successful should print a json with vgroupid of the newly created room

Sending message to a room 127

AWS Wickr Bots and Integrations Guide

 console.log(vGroupID);
 //Notice: in this example the ttl and bor arguments are omitted and command will
 still work
 var cmd = WickrIOAPI.cmdSendRoomAttachment(vGroupID, attachmentURL, displayname);
 //if successful should print "Sending message"
 console.log(cmd);
} catch(err){
 //Handle errors here
 console.log(err);
}

Receive Asynchronous Messages

There are two types of messaging APIs supported by the Wickr IO Node.js addon:

• synchronous API calls: where a request is made to the Wickr IO client and a response is received

• asynchronous messaging: where you specify a callback function which the Wickr IO addon will
call when a message is received. All synchronous APIs will wait for the response to return before
proceeding.

The following code shows you how to initiate the asynchronous messaging and shows a callback
function that will process the incoming messages.

await bot.startListening(listen); //Passes a callback function that will receive
 incoming messages into the bot client

async function listen(message) {
 try {
 var parsedMessage = bot.parseMessage(message); //Parses an incoming message and
 returns and object with command, argument, vGroupID and Sender fields
 if (!parsedMessage) {
 return;
 }
 console.log('parsedMessage:', parsedMessage);
 var wickrUser;
 var command = parsedMessage.command;
 var message = parsedMessage.message;
 var argument = parsedMessage.argument;
 var userEmail = parsedMessage.userEmail;
 var vGroupID = parsedMessage.vgroupid;
 var convoType = parsedMessage.convoType;

Receive Asynchronous Messages 128

AWS Wickr Bots and Integrations Guide

 var personal_vGroupID = "";
 if (convoType === 'personal')
 personal_vGroupID = vGroupID;
 var location = bot.findUser(userEmail); //Check if a user exists in the database
 and get his position in the database
 console.log('location:', location)
 if (location === -1) {
 wickrUser = new WickrUser(userEmail, {
 index: 0,
 personal_vGroupID: personal_vGroupID,
 command: "",
 argument: ""
 });
 var added = bot.addUser(wickrUser);
 console.log(added);
 }
 var user = bot.getUser(userEmail);
 user.token = "example_token_A1234";

 //how to determine the command a user sent and handling it
 if (command === '/help') {
 var reply = "What can I help you with?";
 var sMessage = WickrIOAPI.cmdSendRoomMessage(vGroupID, reply); //Respond back to
 the user or room with a message(using vGroupID)
 var users = [userEmail];
 var sMessage = WickrIOAPI.cmdSend1to1Message(users, reply); //Respond back to the
 user(using user wickrEmail)
 console.log(sMessage);
 }
 } catch (err) {
 console.log(err);
 }
}

The asynchronous messaging APIs will turn on or off the asynchronous reception of messages
received by the Wickr IO client. After calling the "cmdStartAsyncRecvMessages(callback)" API,
messages received will be sent to the callback function identified in that API. To turn off the
asynchronous reception of messages use the "cmdStopAsyncRecvMessages()" API.

Note

Always add try/catch blocks for errors when calling addon APIs

Receive Asynchronous Messages 129

AWS Wickr Bots and Integrations Guide

Using the asynchronous messaging does require your program handles the background events
associated with the reception of these messages. This can be tricky based on the single threaded
nature of JavaScript.

API Shutdown

When you are done using the API you will need to shut it down. This is done by calling the "close()"
Bot API. This will also stop the asynchronous message receiving for the bot.

process.stdin.resume(); //so the program will not close instantly

async function exitHandler(options, err) {
 var closed = await bot.close();
 console.log(closed);
 if (err) {
 console.log("Exit Error:", err);
 process.exit();
 }
 if (options.exit) {
 process.exit();
 } else if (options.pid) {
 process.kill(process.pid);
 }
}

//catches ctrl+c and stop.sh events
process.on('SIGINT', exitHandler.bind(null, {
 exit: true
}));

// catches "kill pid" (for example: nodemon restart)
process.on('SIGUSR1', exitHandler.bind(null, {
 pid: true
}));
process.on('SIGUSR2', exitHandler.bind(null, {
 pid: true
}));

Logging API

This section describes the logging module that can be imported from the WickrIOAPI. This logging
module allows for different log levels and log file rotations in the bot integrations. Winston logger

API Shutdown 130

AWS Wickr Bots and Integrations Guide

is used as the logging library and the default log levels are those predefined by NPM and in order
of importance are: error, warn, info, verbose, debug, and silly.

Getting Started with the Logger

To get started with the logger first import WickrLogger from the wickrio-bot-api library. Then you
can access a new logger like so:

const logger = new WickrLogger().getLogger()

If you are currently using console.log as your default logger all instances of console.log can be
piped through the logger with this block of code:

console.log = function () {
 logger.info(util.format.apply(null, arguments))
}

Similarly console.error can be piped through the logger like so:

console.error = function () {
 logger.error(util.format.apply(null, arguments))
}

Logger Configuration

The logger will look to the processes.json for the log level, max log file size, and max number of
log files. These values can be changed by updating the values of LOG_LEVEL, LOG_FILE_SIZE, and
LOG_MAX_FILES in the env section of processes.json.

Without modifying the log_tokens the log level will be set to info, the max file size will be set to
10MB and the max number of log files will be set to 5.

{
 "apps": [
 {
 "name": "WickrIO-Broadcast-Bot",
 "args": [],
 "script": "./build/index.js",

Getting Started with the Logger 131

AWS Wickr Bots and Integrations Guide

 "exec_interpreter": "node",
 "autorestart": false,
 "watch": ["package.json"],
 "ignore_watch": [".git"],
 "env": {
 "tokens": {},
 "log_tokens":
 {
 "LOG_LEVEL": "debug",
 "LOG_FILE_SIZE": "10m",
 "LOG_MAX_FILES": "5"
 }
 }
 }
]
}

Python Bot Development

To develop Wickr IO integrations in languages other than JavaScript such as Python, you will need
to set up a Web REST API Interface integration on your machine and send HTTP/HTTPS requests to
it. The following examples show how to do it in Python:

Set up your Python app

import requests
import json

URL = "http://localhost:4001/WickrIO/V1/Apps/CLIENT_API_KEY"
PARAMS = {'Accept': '*/*', 'Content-Type': 'application/json',
 'Authorization': 'Basic AUTH_KEY'}

Send 1-to-1 Message

data = {
 "message": "Welcome to AWS Wickr! This message will self-destruct eventually.",
 "users": [
 {"name": "exampleuser@wickr.com"}

Python Bot Development 132

AWS Wickr Bots and Integrations Guide

]
}
sendMessage = requests.post(URL + "/Messages",
 headers=PARAMS,
 data=json.dumps(data))
print(sendMessage.content)

Add Room

data = {
 "room": {
 "title": "Security Group room for Sports in Bot Testing Network",
 "description": "Security Group room for Sports in Bot Testing Network",
 "ttl": "25536000",
 "bor": "0",
 "members": [
 {"name": "wickruser1@wickr.com"},
 {"name": "wickruser2@wickr.com"}
],
 "masters": [
 {"name": "wickruser1@wickr.com"}
]
 }
}
AddRoom = requests.post(URL + "/Rooms",
 headers=PARAMS,
 data=json.dumps(data))
json_data = json.loads(AddRoom.text)
room = json_data['vgroupid']
print(room)

Send Room message

data = {
 "message": "Welcome to AWS Wickr! This message will self-destruct eventually.",
 "vgroupid": "examplevgroupid"
}
sendMessage = requests.post(URL + "/Messages",
 headers=PARAMS,
 data=json.dumps(data))

Add Room 133

AWS Wickr Bots and Integrations Guide

print(sendMessage.content)

Get Statistics

getStatistics = requests.get(URL + "/Statistics",
 headers=PARAMS)
print(getStatistics.json())

Delete Statistics

deleteStatistics = requests.delete(URL + "/Statistics",
 headers=PARAMS)
print(deleteStatistics.content)

Get Room

payload = {
 'vgroupid': room}
getRoom = requests.get(URL + "/Rooms/{0}".format(room),
 headers=PARAMS)
print(getRoom.json())

Modify Room

data = {
 "title": "Modified room",
 "description": "Testing ModifyRoom command",
 "ttl": "25536000",
 "bor": "0"
}
modifyRoom = requests.post(URL + "/Rooms/{0}".format(room),
 headers=PARAMS,
 data=json.dumps(data))
print(modifyRoom.content)

Get Statistics 134

AWS Wickr Bots and Integrations Guide

Add Group Convo

data = {
 "groupconvo": {
 "members": [
 {"name": "exampleuser@wickr.com"},
 {"name": "exampleuser02@wickr.com"}
]
 }
}
AddGroupConvo = requests.post(URL + "/GroupConvo",
 headers=PARAMS,
 data=json.dumps(data))
print(AddGroupConvo.content)
response = json.loads(AddGroupConvo.text)
print(response['vgroupid'])
groupConvo = response['vgroupid']
print(groupConvo)

Get Group Convos (All)

getGroupConvos = requests.get(URL + "/GroupConvo",
 headers=PARAMS)
print(getGroupConvos.json())

Get Group Convo (One)

getGroupConvo = requests.get(URL + "/GroupConvo/{0}".format(groupConvo),
 headers=PARAMS)
print(getGroupConvo.json())

Delete Group Convo (One)

deleteGroupConvo = requests.delete(URL + "/GroupConvo/{0}".format(groupConvo),
 headers=PARAMS)
print(deleteGroupConvo.content)

Add Group Convo 135

AWS Wickr Bots and Integrations Guide

Get Message

getMessage = requests.get(URL + "/Messages",
 headers=PARAMS)
print(getMessage.json())

Set MsgRecvCallback

payload = {'callbackurl': 'http://localhost:8080/apps/callback'}
setMsgRecvCallback = requests.post(URL + "/MsgRecvCallback",
 headers=PARAMS,
 params=payload)
print(setMsgRecvCallback.content)

Get MsgRecvCallback

getMsgRecvCallback = requests.get(URL + "/MsgRecvCallback",
 headers=PARAMS)
print(getMsgRecvCallback.content)

Delete MsgRecvCallback

deleteMsgRecvCallback = requests.delete(URL + "/MsgRecvCallback",
 headers=PARAMS)
print(deleteMsgRecvCallback.content)

Complete Python Bot Example

import requests
import json
import time

URL = "http://localhost:4001/WickrIO/V1/Apps/CLIENT_API_KEY"
PARAMS = {'Accept': '*/*', 'Content-Type': 'application/json',
 'Authorization': 'Basic AUTH_KEY'}

Get Message 136

AWS Wickr Bots and Integrations Guide

def get_messages():
 """Get new messages from Wickr"""
 try:
 response = requests.get(URL + "/Messages", headers=PARAMS)
 return response.json()
 except Exception as e:
 print(f"Error getting messages: {e}")
 return []

def process_message(message):
 """Process a message from Wickr"""
 try:
 # Extract message content and sender
 content = message.get('message', '')
 sender = message.get('sender', '')

 print(f"Received message from {sender}: {content}")

 # Simple echo response
 if content:
 reply = {
 "message": f"You said: {content}",
 "users": [{"name": sender}]
 }

 response = requests.post(URL + "/Messages",
 headers=PARAMS,
 data=json.dumps(reply))
 print(f"Reply sent: {response.status_code}")
 except Exception as e:
 print(f"Error processing message: {e}")

def main():
 """Main bot loop"""
 print("Starting Python Wickr bot...")

 while True:
 # Get and process new messages
 messages = get_messages()
 for message in messages:
 process_message(message)

 # Wait before checking for new messages again

Complete Python Bot Example 137

AWS Wickr Bots and Integrations Guide

 time.sleep(5)

if __name__ == "__main__":
 main()

Automatic Configuration

As of the 5.116 release you can use AWS services to define the bot credentials, token values and
other configuration information. You can use Wickr published docker images (i.e. bot-enterprise
and bot-cloud) to start the bots. If you do use this method to automatically configure your bots
you will not need to use the CLI to add the bots to your running docker image. All the credentials
for the bots configured using this method will be secure in the AWS secrets manager service.

To use this method to configure your bots you will need to use the AWS_SECRET_NAME
environment variable to identify the AWS secret that contains the configuration information.

Secrets Manager Value

The AWS_SECRET_NAME environment variable will identify an ARN that is used to access the
specific secret which contains the configuration information needed to start the bots. The
following is an example:

AWS_SECRET_NAME='arn:aws:secretsmanager:us-east-1:999999999999:secret:wickenterprise/
beta/my-test-bot-zZzZzz'

This secret contains the "wickr_config" key with the value being the configuration information
needed to configure and start the bots on the docker image. The configuration information is
stored in the secret as an escaped JSON string, for example the following is the plaintext secret
value:

{"wickr_config":"{ \"clients\":[{ \"integration\":\"wickrio-file-bot\", \"name
\":\"user-file-bot\", \"password\":\"password\", \"configS3File\": { \"key\" :
 \"configs_9-3-21/conf.wickr\", \"bucket\" : \"bots-for-enterprise\", \"region
\" : \"us-west-2\" }, \"configPassword\":\"password\", \"tokens\":[{ \"name\":
\"CLIENT_NAME\", \"value\":\"user-file-bot\" }, { \"name\":\"WICKRIO_BOT_NAME\",
 \"value\":\"user-file-bot\" }, { \"name\":\"DATABASE_ENCRYPTION_CHOICE\", \"value
\":\"no\" }] }] }"}

The following is the un-escaped value for the "wickr_config" key, in the specified secret.

Automatic Configuration 138

AWS Wickr Bots and Integrations Guide

{
 "clients":[
 {
 "name":"user-file-bot",
 "password":"password",
 "integration":"wickrio-file-bot",
 "configS3File":{
 "key":"configs_9-3-21/conf.wickr",
 "bucket":"bots-for-enterprise",
 "region":"us-west-2"
 },
 "configPassword":"password",
 "tokens":[
 {
 "name":"CLIENT_NAME",
 "value":"user-file-bot"
 },
 {
 "name":"WICKRIO_BOT_NAME",
 "value":"user-file-bot"
 },
 {
 "name":"DATABASE_ENCRYPTION_CHOICE",
 "value":"no"
 }
]
 }
]
}

This is an example of an enterprise version, it contains the "configS3File and "configPassword"
key/values which are needed to identify the conf.wickr file. The "key" value for the "configS3File"
identifies the folder and filename for the config.wickr file. The "configPassword" identifies the
password necessary to descrypt the config.wickr file. These values are not needed for bots running
on the bot-cloud Docker images.

Using Custom Integrations

You can also use AWS S3 to load your own custom integrations. You will store them in an AWS S3
bucket, which can then be used by a Wickr IO docker image. The following environment variables
will identify the S3 bucket and folder where these custom integrations will be located.

Using Custom Integrations 139

AWS Wickr Bots and Integrations Guide

AWS_S3_INTEGRATIONS_REGION='us-east-1'
AWS_S3_INTEGRATIONS_FOLDER='test'
AWS_S3_INTEGRATIONS_BUCKET='wickrio-integrations'

The contents of the AWS S3 bucket/folder will contain one or more folders, one folder for each
integration you want to be used by the Wickr IO bot. The name of the folder is used as the name of
the integration that you will use to work with your bots. For example, see the image below, there
are two folders in the bucket/folder. They are "user-app-bot" and "user-file-bot", which are the
names of those two integrations. If the "integration" value in the "client" entry (see above) has the
value "user-app-bot" or "user-file-bot" it will use the integration code from that folder.

The contents of each of the integration folders will be the software.tar.gz file that contains all of
the integration files (see the section on developing your own custom bots).

Using Custom Integrations 140

AWS Wickr Bots and Integrations Guide

Definitions

This section contains definitions of objects and message formats that are referenced by other parts
of this site.

Topics

• Wickr message formats

• Text message meta data

Wickr message formats

This section describes the format of the Wickr messages utilized by the Wickr IO addon APIs and
the Wickr IO Web Interface REST messaging APIs. It explains the various types of Wickr messages
you can encounter. Each message type includes a "msgtype" field and the following table lists the
values associated with this field.

Message Type msgtype

Text message 1000

Verification messages 3000

File transfer 6000

Calling messages 7000

Location message 8000

Edit message 9000

Edit reaction message 9100

Create room 4001

Modify room members 4002

Leave room 4003

Wickr message formats 141

AWS Wickr Bots and Integrations Guide

Message Type msgtype

Modify room parameters 4004

Delete room 4005

Delete message 4011

Message attributes message 4012

Message attributes sync request 4013

Modify private property 4014

All of the messages are represented using JSON. The following table describes the possible fields
that are contained in the message JSON.

Note

The edit messages are only seen by the compliance bot installations (Wickr Enterprise) or
by the data retention bot (AWS Wickr).

Field Description

control JSON object that defines the control message
information. Contents described below.

file JSON object that defines the details of a file
transfer message. Contents described below.

id Unique identifier for the message

message_id The text associated with a text message

msgtype Type of message, values defined in table
above.

Wickr message formats 142

AWS Wickr Bots and Integrations Guide

Field Description

msg_ts The time the message was sent, accurate to
the microsecond.

receiver Wickr ID of the receiver, for 1-to-1 messages.

sender Wickr ID of the sending client.

sender_type Indicates if this is a guest user or normal user.

time Displayable time message was sent.

time_iso The time in ISO format (YYYY-MM-DD
hh:mm:ss.xxx)

vgroupid The unique vGroupID of the conversation.

Text message

The msgtype for all text-based messages is 1000. Text-based messages can be sent either directly
to the Wickr bot or in secure Room/Group conversations.

One-to-one messages

The following shows a one-to-one text message format:

 {
 "message_id":"3960e020ca4211e799802f2894564caa",
 "message":"This is a typical 1:1 message",
 "msg_ts":"1510777143.738976",
 "msgtype":1000,
 "receiver":"user001",
 "sender_type": "normal",
 "sender":"user003",
 "time": "7/11/23 5:19 PM",
 "time_iso": "2023-07-11 17:19:58.781",
 "ttl": "7/10/24 5:19 PM",
 "vgroupid":"fb6e21630c05fde50ae39113c3626018712cf2c374b4a80eba4d28ced9419c07"
 }

Text message 143

AWS Wickr Bots and Integrations Guide

Text messages with links

If you send a text message that contains links, and the security group settings have the "Send Link
Preview" option enabled, the text message will contain a list of the URLs for those links:

 {
 "links":[
 {
 "url":"https://testdaily.com/image/test-laughing/"
 }
],
 "message":"Check out this link https://testdaily.com/image/test-laughing/",
 "message_id":"fb7d7d20b25d11eb9a2d77f565346d8b",
 "msg_ts":"1620740228.594362",
 "msgtype":1000,
 "receiver":"bnuser02@userworld.com",
 "sender":"bnuser01@userworld.com",
 "time":"5/11/21 1:37 PM",
 "ttl":"6/10/21 1:37 PM",
 "vgroupid":"2c0ae523d2b1af3e43af80b5fafec05548fd2e33fee4c021c66033c6416bb6bb"
 }

Group and Room conversation messages

The following shows a normal group or secure room conversation text message format:

 {
 "message_id":"3960e020ca4211e799802f2894564caa",
 "message":"This is a typical 1:1 message",
 "msg_ts":"1510777143.738976",
 "msgtype":1000,
 "sender_type": "normal",
 "sender":"user003",
 "time": "7/11/23 5:19 PM",
 "time_iso": "2023-07-11 17:19:58.781",
 "ttl": "7/10/24 5:19 PM",
 "vgroupid":"Sa6783e427e164d37f2e8177874ee192523e6cc9520416bf96850ca01730bf07"
 }

Text message 144

AWS Wickr Bots and Integrations Guide

Note

In some cases, the Wickr IO client does not track the list of clients associated with group
conversations, so the list of destination clients will not be included. You can use the
supplied Wickr IO APIs to retrieve the members associated with a secure room or group
conversation vGroupID.

File transfer messages

The msgtype for file transfer messages is 6000. This message type contains information about
a file transfer message. The "file" JSON object contains the details of the file being transferred,
described in this table:

Field Description

filename The display name of the file being transferred.

guid A unique identifier for the transferred file.

uploadedbyuser The user who uploaded the file

uploadedtimestamp Upload time

localfilename The full path name of the file on the Wickr IO
Gateway system.

Files received by the Wickr IO client will be decrypted and remain on the Wickr IO client until
removed by your software.

The files sent for screen shots will be identified by a isscreenshot key value pair, in the "file" object.
This is a Boolean value, where true identifies the file as a screenshot. If the isscreenshot key is not
found then the file is not a screen shot.

One-to-one messages

The following shows the format of a file transfer message in 1:1 conversations:

File transfer messages 145

AWS Wickr Bots and Integrations Guide

 {
 "file": {
 "filename": "picture.jpeg",
 "guid": "AD20D048-9B60-4F32-A691-2D4BE4152E58",
 "localfilename": "/opt/WickrIO/clients/compliancebot01/attachments/
attachment_20171116111610865_picture.jpeg",
 "uploadedbyuser": "cn0623_01@amazon.com",
 "uploadedtimestamp": "7/11/23 5:22 PM"
 },
 "message_id": "91a189c0cae911e79ec4eb19a763225b",
 "msg_ts": "1510849017.756174",
 "msgtype": 6000,
 "receiver":"user001",
 "sender": "user003",
 "sender_type": "normal",
 "time": "7/11/23 5:22 PM",
 "time_iso": "2023-07-11 17:22:02.348",
 "vgroupid": "53042f1bd04491c6f3732a871e27ab516a8d1534cc1e2d25c4e4869ce72e8541"
}

Group and Room conversation messages

The following shows the format of a file transfer message in group or room conversation
conversations:

 {
 "file": {
 "filename": "picture.jpeg",
 "guid": "AD20D048-9B60-4F32-A691-2D4BE4152E58",
 "localfilename": "/opt/WickrIO/clients/compliancebot01/attachments/
attachment_20171116111610865_picture.jpeg",
 "uploadedbyuser": "cn0623_01@amazon.com",
 "uploadedtimestamp": "7/11/23 5:22 PM"
 },
 "message_id": "91a189c0cae911e79ec4eb19a763225b",
 "msg_ts": "1510849017.756174",
 "msgtype": 6000,
 "sender": "user003",
 "sender_type": "normal",
 "time": "7/11/23 5:22 PM",
 "time_iso": "2023-07-11 17:22:02.348",
 "vgroupid": "S3042f1bd04491c6f3732a871e27ab516a8d1534cc1e2d25c4e4869ce72e8541"

File transfer messages 146

AWS Wickr Bots and Integrations Guide

}

Calling messages

The msgtype for all location type messages is 7000 Calling messages will have a call object with a
subset of the following values:

Name Description

calluri The URI associated with the call.

calluriipv6 The IPv6 URI associated with the call

duration The call duration in seconds. Sent in the end
of call message. The duration of a call in a
room starts immediately regardless if any
users answer the call. The duration of a call in
a one-on-one conversation will begin when
the called user answers the call.

invitemsgid The message ID associated with the original
call start message. This is sent when another
user is added to a call.

meetingid The unique meeting ID associated with the
call.

messagetype The type of call message this is, see table
below.

participants List of username hash values for all of the
potential participants of the call.

startmsgid The message ID associated with the call start
message.

status The current state of the call (i.e. starting,
completed)

Calling messages 147

AWS Wickr Bots and Integrations Guide

Name Description

version The call protocol version

versioncheck Boolean value to check call protool version

Call in a room

The following is an example of a message format when a call is started in a room:

 {
 call: {
 calluri: '44.211.195.26:16504',
 calluriipv6: '[2610:1f18:68b5:a01:c6e2:93fa:b7ae:b934]:16504',
 meetingid: 'ba20e10f-9476-40b9-9c6d-46c03ed54a45',
 messagetype: 0,
 participants: [
 '8bf491c9a3b14117f0553a3b48b325b7abat5438757e96e539c77810c59d1c33',
 '09fc89173d0538487f0ac2ac593a6421b6cfdec7443cedc1b115a63d3ed2ebb1',
 '122ac8391c2009305ce4369e4ad8ad4d5ed258b9870345571c114672235b482f'
],
 status: 0,
 version: 2,
 versioncheck: true,
 vgroupid: 'Sa6783e427e164d37f2e8177874ee192523e6cc9520416bf96850ca01730bf00'
 },
 message_id: '5aa8a300353711f0b014adea6236a0b1',
 msg_ts: '1747717230.896467',
 msgtype: 7000,
 receiver: 'yaybot',
 respond_api: 'http:///0/Apps//Messages',
 sender: 'guptabde@amazon.com',
 sender_type: 'normal',
 time: '5/20/25 5:00 AM',
 time_iso: '2025-05-20 05:00:30.896',
 ttl: '5/20/26 5:00 AM',
 vgroupid: 'Sa6783e427e164d37f2e8177874ee192523e6cc9520416bf96850ca01730bf00'
 }

Calling messages 148

AWS Wickr Bots and Integrations Guide

Note

The following different type of states of the call messages are only seen by the compliance
bot installations (Wickr Enterprise) or by Data Retention bot (AWS Wickr).

The status fields identifies the current state of the call, the following table identifies what the
status values are:

Call Status Status Value

Call starting 0

Call completed 1

Call missed 2

Call cancelled 3

The messagetype identifies the message type of the call message, the following table identifies
the messagetype values:

Call Message Type Value Description

Start call 0 Starting a call

End call 1 Ending a call

Missed call 2 Missed a call request

Declined call 3 Declined a call request

Silent ring 4 Sent from a device when
it answers a call. The other
devices for that client will
stop ringing.

When a user answers a call you will see the following messages:

Calling messages 149

AWS Wickr Bots and Integrations Guide

 {
 "call":{
 "status":0
 },
 "message_id":"23a4b710ed2d11eab7697d766fcb32a2",
 "msg_ts":"1599058871.990588",
 "msgtype":7000,
 "sender":"cbtestuser@wickr.com",
 "time":"9/2/20 3:01 PM",
 "vgroupid":"S49bf359b1229270fdbbc9fbca6289ce1f2171bf9f278c7b37cd3a76ab12e2e1"
 }

When the call is done you will see the following message to end the call:

 {
 "call":{
 "status":1
 },
 "message_id":"52ec4ab0ed2d11eabecd817847e86976",
 "msg_ts":"1599058950.990589",
 "msgtype":7000,
 "sender":"cbtestuserthree@wickr.com",
 "time":"9/2/20 3:02 PM",
 "vgroupid":"S49bf359b1229270fdbbc9fbca6289ce1f2171bf9f278c7b37cd3a76ab12e2e1"
 }

Adding user to a call

During a call it may be necessary to add a user to a call. The following sequence will show a
normal call started with two users, and then a third user is added to the call. Please note, the
call is started on a specific conversation identified by the "vgroupid" value (in this case the
vgroup ID is "S4666b353873113884feb66d1409875a81b40aa5c0ddbab040ec11f1b38e752c").
When the additional user is added you will see the "vgroupid" associated with
the one-on-one conversation to that new user (in this case the vgroup ID is
"4c84cfa0a7b780f76fdb8d86cb5569f61e66a7a43ef8ab1cc5b537b427e1989b").

The following is the start call message, it only includes the original two participants:

Calling messages 150

AWS Wickr Bots and Integrations Guide

 {
 "call":{
 "meetingid":"177539f4-7d60-4c52-8f1c-d98f421e847f",
 "status":0
 },
 "message_id":"3af57350ed3711eab7697d766fcb32a2",
 "msg_ts":"1599063205.990632",
 "msgtype":7000,
 "sender":"cbtestuserthree@wickr.com",
 "time":"9/2/20 4:13 PM",
 "vgroupid":"S4666b353873113884feb66d1409875a81b40aa5c0ddbab040ec11f1b38e752c"
 }

The following message is the called user accepting the call:

 {
 "call":{
 "status":0
 },
 "message_id":"4068dde0ed3711eabecd817847e86976",
 "msg_ts":"1599063214.990632",
 "msgtype":7000,
 "sender":"cbtestusertwo@wickr.com",
 "time":"9/2/20 4:13 PM",
 "vgroupid":"S4666b353873113884feb66d1409875a81b40aa5c0ddbab040ec11f1b38e752c"
 }

This message is sent when a new participant is added to the call. Notice the different "vgroupid"
value in the message. The "meetingid" is the same as the running call's "meetingid":

 {
 "call":{
 "meetingid":"177539f4-7d60-4c52-8f1c-d98f421e847f",
 "status":0
 },
 "message_id":"526beb90ed3711eab7697d766fcb32a2",
 "msg_ts":"1599063245.990632",

Calling messages 151

AWS Wickr Bots and Integrations Guide

 "msgtype":7000,
 "receiver":"cbtestuser@wickr.com",
 "sender":"cbtestuserthree@wickr.com",
 "time":"9/2/20 4:14 PM",
 "vgroupid":"4c84cfa0a7b780f76fdb8d86cb5569f61e66a7a43ef8ab1cc5b537b427e1989b"
 }

The following message is sent from the new participant when accepting the call:

 {
 "call":{
 "status":0
 },
 "message_id":"54ebdfb0ed3711eab7697d766fcb32a2",
 "msg_ts":"1599063249.990632",
 "msgtype":7000,
 "receiver":"cbtestuserthree@wickr.com",
 "sender":"cbtestuser@wickr.com",
 "time":"9/2/20 4:14 PM",
 "vgroupid":"4c84cfa0a7b780f76fdb8d86cb5569f61e66a7a43ef8ab1cc5b537b427e1989b"
 }

This message is sent to the original "vgroupid" when the call is ended:

 {
 "call":{
 "status":1
 },
 "message_id":"5bbf0150ed3711eab7697d766fcb32a2",
 "msg_ts":"1599063260.990632",
 "msgtype":7000,
 "sender":"cbtestuserthree@wickr.com",
 "time":"9/2/20 4:14 PM",
 "vgroupid":"S4666b353873113884feb66d1409875a81b40aa5c0ddbab040ec11f1b38e752c"
 }

This message is also sent to the one-on-one vgroupid for the invited user when the call is ended:

Calling messages 152

AWS Wickr Bots and Integrations Guide

 {
 "call":{
 "status":1
 },
 "message_id":"5bc59100ed3711eab7697d766fcb32a2",
 "msg_ts":"1599063260.990632",
 "msgtype":7000,
 "receiver":"cbtestuser@wickr.com",
 "sender":"cbtestuserthree@wickr.com",
 "time":"9/2/20 4:14 PM",
 "vgroupid":"4c84cfa0a7b780f76fdb8d86cb5569f61e66a7a43ef8ab1cc5b537b427e1989b"
 }

Missed call

If a call is attempted on a one-to-one conversation and the target participant does not answer the
call you will see a message with a missed call messagetype value of 2. This message is sent from
the user originating the call to the called user. There is no duration associated with this call and
should not be considered a completed call.

 {
 "call":{
 "status":2
 },
 "message_id":"fa0a5d80ed3e11eab7697d766fcb32a2",
 "msg_ts":"1599066532.990665",
 "msgtype":7000,
 "receiver":"cbtestusertwo@wickr.com",
 "sender":"cbtestuserthree@wickr.com",
 "time":"9/2/20 5:08 PM",
 "vgroupid":"ec6cfd71ccb4034c9d77263da8c28d01d19a6f91746d3b9b61b868d0663008a4"
 }

Declined calls

If a user on a one-on-one call selects to ignore the call, a declined call message will be seen. You
should not see this type of message on room conversations.

Calling messages 153

AWS Wickr Bots and Integrations Guide

 {
 "call":{
 "status":3
 },
 "message_id":"1739df60ed4011eabecd817847e86976",
 "msg_ts":"1599067011.990670",
 "msgtype":7000,
 "receiver":"cbtestuserthree@wickr.com",
 "sender":"cbtestusertwo@wickr.com",
 "time":"9/2/20 5:16 PM",
 "vgroupid":"4c84cfa0a7b780f76fdb8d86cb5569f61e66a7a43ef8ab1cc5b537b427e1989b"
 }

Location messages

The msgtype for all location type messages is 8000. This message is sent when a user sends their
location in a conversation. The location will contain the user's latitude and longitude.

One-to-one messages

The following shows the format of a location type message in 1:1 conversations:

 {
 "location":{
 "latitude":45.75017899435506,
 "longitude":-74.99449803034105
 },
 "message_id":"1f88fdc08bec11ea81b689d23fa72c7b",
 "msg_ts":"1588365684.583407",
 "msgtype":8000,
 "receiver":"user003",
 "sender":"user100",
 "sender_type": "normal",
 "time": "7/11/23 5:33 PM",
 "time_iso": "2023-07-11 17:33:24.394",
 "ttl": "7/10/24 5:33 PM",
 "vgroupid":"4ebf561eb2214c4e6f924d09e37bf80b6f9b85cb96b72badb03753d9ed26f7f4"
 }

Location messages 154

AWS Wickr Bots and Integrations Guide

Group and Room conversation messages

The following shows the format of location type message in group or room conversation
conversations:

 {
 "location":{
 "latitude":45.75017899435506,
 "longitude":-74.99449803034105
 },
 "message_id":"1f88fdc08bec11ea81b689d23fa72c7b",
 "msg_ts":"1588365684.583407",
 "msgtype":8000,
 "sender":"user100",
 "sender_type": "normal",
 "time": "7/11/23 5:33 PM",
 "time_iso": "2023-07-11 17:33:24.394",
 "ttl": "7/10/24 5:33 PM",
 "vgroupid":"Sebf561eb2214c4e6f924d09e37bf80b6f9b85cb96b72badb03753d9ed26f7f4"
 }

Edit messages

Note

The edit messages are only seen by the compliance bot installations (Wickr Enterprise) or
by data retention bot (AWS Wickr).

There are currently two types of edit messages supported, the location and the text types. The
location type of edit message is sent when a user is sharing their location with someone else.

 {
 "edit":{
 "type":"location",
 "shareexpiriation":"";
 "latitude":45.75017899435506,
 "longitude":-78.99449803034105

Edit messages 155

AWS Wickr Bots and Integrations Guide

 },
 "message_id":"1f88fdc08bec11ea81b689d23fa72c7b",
 "msg_ts":"1588365684.583407",
 "msgtype":9000,
 "receiver":"user003",
 "sender":"user100",
 "sender_type": "normal",
 "time": "7/11/23 5:30 PM",
 "time_iso": "2023-07-11 17:30:15.103",
 "ttl": "7/10/24 5:30 PM",
 "vgroupid":"4ebf561eb2214c4e6f924d09e37bf80b6f9b85cb96b72badb03753d9ed26f7f4"
 }

The text type of edit message is sent when the user sends a message that includes links in it. For
example the user sends a message with the link https://howdoyoudo.com in it, the following is
what the edit message would look like:

 {
 "edit":{
 "originalmessageid":"11457fa08da211ea881baffab0b42745",
 "text":"https://howdoyoudo.com",
 "type":"text"
 },
 "message_id":"1163e5b08da211eab775a5032a0322ca",
 "msg_ts":"1588553780.419871",
 "msgtype":9000,
 "sender":"user001@amazon.com",
 "sender_type": "normal",
 "time": "7/11/23 5:30 PM",
 "time_iso": "2023-07-11 17:30:15.103",
 "ttl": "7/10/24 5:30 PM",
 "vgroupid":"S243f2ec645d3961bdd531f51f3244205d292b8d0fbd41802827746271d31d41"
 }

If you send a text message with a link and the security group has the "Send Link Preview" option
enabled, the edit message may contain an array of links information and link image meta
information. The following shows these additional fields:

Edit messages 156

AWS Wickr Bots and Integrations Guide

 {
 "edit":{
 "linkimagemeta":{
 "domain":"userworld.com",
 "guid":"c43c71ef-4373-444e-a22d-dfce34d38a7a",

 "hash":"32bc71721bea8a456a06f364995012d3ebfc41aaaad0c2dd632b0f0bae4690f4bffcd5a4c23b4af16086fcfcd43d20058ca67ae10a7b38d74c2bffa21ea8de05",
 "key":"00a85d12214f596d4eac929d82287cccdead2a00c542f850322c1655494be2a40d"
 },
 "links":[
 {
 "faviconurl":"https://testdaily.com/favicon.ico",
 "imageurl":"https://testdaily.com/uploads/gallery/test-laughing.gif",
 "pagetitle":"Test laughing",
 "sitename":"Test Daily",
 "url":"https://testdaily.com/gallery/image/Test-laughing/"
 }
],
 "originalmessageid":"fb7d7d20b25d11eb9a2d77f565346d8b",
 "text":"https://twinsdaily.com/gallery/image/2234-burns-laughing/",
 "type":"text"
 },
 "message_id":"fe9c4950b25d11eb9a2d77f565346d8b",
 "msg_ts":"1620740233.829096",
 "msgtype":9000,
 "receiver":"bnuser02@userworld.com",
 "sender":"bnuser01@userworld.com",
 "sender_type": "normal",
 "time": "7/11/23 5:35 PM",
 "time_iso": "2023-07-11 17:35:41.411",
 "ttl": "7/10/24 5:35 PM",
 "vgroupid":"2c0ae523d2b1af3e43af80b5fafec05548fd2e33fee4c021c66033c6416bb6bb"
 }

Edit content messages

Edit content messages are sent when a user edits the contents of a previously sent message. The
Edit Content message will contain the message ID associated with the original message and the
text of the updated message. The original message text will not be included. This message type
was introduced in the 5.92 version of the WickrIO software. The Edit Content messages are used to

Edit messages 157

AWS Wickr Bots and Integrations Guide

identify when the text of a message is edited as well as when the links contained in a message are
edited.

The following is a basic example of an Edit Content message where the text is edited:

 {
 "content_edited": true,
 "edit":{
 "type":"edit_content",
 "originalmessageid":"36028e2025dd11ec9cdafd3f2bfa110f",
 "text":"This is the edited message"
 },
 "message_id":"3fcef29025dd11ec9cdafd3f2bfa110f",
 "msg_ts":"1633439273.17562",
 "msgtype":9000,
 "receiver":"user001+comp9321_01@wickr.com",
 "sender":"user001+comp9321_02@wickr.com",
 "sender_type": "normal",
 "time": "7/11/23 5:35 PM",
 "time_iso": "2023-07-11 17:35:41.411",
 "ttl": "7/10/24 5:35 PM",
 "vgroupid":"56e3b0570daad62b2e2d14db8d33632f6175514022183a042660c7b8901dec79"
 }

The type value, within the edit group, identifies this as an Edit Content message. The
originalmessageid identifies the message ID of the original message. The text field is the new
value of the message.

If the original message contains links, and the "Send Link Previews" option is set for the security
group, there will be two Edit Content messages sent. One of these messages is associated with
the text message changes and another that will contain the link image meta information. The
Edit Content message that contains the "content_edited" with a true value is associated with the
message text, as seen below:

 {
 "content_edited":true,
 "edit":{
 "type":"edit_content",
 "originalmessageid":"f4bddd80255e11ec8c960b356f9f1aad",

Edit messages 158

AWS Wickr Bots and Integrations Guide

 "text":"This is a test with https://wickr.com",
 "links":[
 { "url":"https://wickr.com" }
],
 },
 "message_id":"b17cffb0264911ec9cdafd3f2bfa110f",
 "msg_ts":"1633485849.387294",
 "msgtype":9000,
 "receiver":"user001+comp9321_01@wickr.com",
 "sender":"user001+comp9321_02@wickr.com",
 "sender_type": "normal",
 "time": "7/11/23 5:35 PM",
 "time_iso": "2023-07-11 17:35:41.411",
 "ttl": "7/10/24 5:35 PM",
 "vgroupid":"56e3b0570daad62b2e2d14db8d33632f6175514022183a042660c7b8901dec79"
 }

The following edit content message is associated with the links that are in the message:

 {
 "edit":{
 "type":"edit_content",
 "originalmessageid":"f4bddd80255e11ec8c960b356f9f1aad",
 "text":"This is a test with https://wickr.com",
 "linkimagemeta":{
 "domain":"wickr.com",
 "guid":"4747a757-32db-4748-8a59-f5fc02cf811b",

 "hash":"4848c43ba0ac0cca685cd3053076198f6d710ed02fa7adf4822ba752e48c5328b7bc947d6e0499bfca6d83c86bf805d3b2ed6a7adfa1b300d0be669a1a5e0d3c",
 "key":"0016c4902a79160966335053c07d96accd048ca5ce858f9def2364d11c36b7f345"
 },
 "links":[
 {
 "description":"Wickr provides end-to-end encrypted messaging, audio calling,
 video conferencing, file and location sharing, and more.",
 "faviconurl":"https://wickr.com/favicon.ico",
 "imageurl":"https://wickr.com/wp-content/uploads/2020/12/wickr-pro-
screens-4-1.png",
 "pagetitle":"Home",
 "sitename":"Wickr",
 "url":"https://wickr.com"

Edit messages 159

AWS Wickr Bots and Integrations Guide

 }
]
 },
 "message_id":"b270fca0264911ec9cdafd3f2bfa110f",
 "msg_ts":"1633485850.986206",
 "msgtype":9000,
 "receiver":"user001+comp9321_01@wickr.com",
 "sender":"user001+comp9321_02@wickr.com",
 "sender_type": "normal",
 "time": "7/11/23 5:35 PM",
 "time_iso": "2023-07-11 17:35:41.411",
 "ttl": "7/10/24 5:35 PM",
 "vgroupid":"56e3b0570daad62b2e2d14db8d33632f6175514022183a042660c7b8901dec79"
 }

Edit reaction messages

Note

The edit messages are only seen by the compliance bot installations (Wickr Enterprise) or
by Data Retention bot (AWS Wickr).

The edit reaction messages are used to modify the reactions associated with a message. The
message layout is similar to the Edit message layout, but the msgtype value is 9100. The edit
object contains the following fields:

Field Name Description

originalmessageid The message ID of the message that the
reaction is associated

reactAdded This is a boolean that is true if the reaction is
added and false if removed

reaction This is the reaction to enable or disable

type This is always the value reaction

Edit reaction messages 160

AWS Wickr Bots and Integrations Guide

The "sender" field will identify who is adding or removing a reaction. The client should display the
reaction and which users were associated with that reaction.

The following is a sample of adding a reaction to a message in 1:1 conversation:

{
 "edit":{
 "originalmessageid":"a1c00830ad3911ebaa04213b1ad0a9b2",
 "reactAdded":true,
 "reaction":"#",
 "type":"reaction"
 },
 "message_id":"b6d3d1b0add011ebb00f1b2dbb810704",
 "msg_ts":"1620239749.707944",
 "msgtype":9100,
 "receiver":"bn0523_bcast_bot",
 "sender":"bnuser01@userworld.com",
 "sender_type": "normal",
 "time": "7/11/23 5:35 PM",
 "time_iso": "2023-07-11 17:35:41.411",
 "ttl": "7/10/24 5:35 PM",
 "vgroupid":"4b32d7c8c6c37cc9e9506e9ed98ce37f0a96e1e45fcd4ca6f6d00c9d435d82e3"
}

The following is a sample of removing a reaction to a message:

{
 "edit":{
 "originalmessageid":"a1c00830ad3911ebaa04213b1ad0a9b2",
 "reactAdded":false,
 "reaction":"#",
 "type":"reaction"
 },
 "message_id":"68596ac0add211ebb00f1b2dbb810704",
 "msg_ts":"1620240477.36364",
 "msgtype":9100,
 "receiver":"bn0523_bcast_bot",
 "sender":"bnuser01@userworld.com",
 "sender_type": "normal",
 "time": "7/11/23 5:35 PM",

Edit reaction messages 161

AWS Wickr Bots and Integrations Guide

 "time_iso": "2023-07-11 17:35:41.411",
 "ttl": "7/10/24 5:35 PM",
 "vgroupid":"4b32d7c8c6c37cc9e9506e9ed98ce37f0a96e1e45fcd4ca6f6d00c9d435d82e3"
}

Wickr control messages

Wickr control messages are used to setup and configure the Wickr group and secure room
conversations. These control messages will also be passed on to the integration software. You
can use these control messages to construct and maintain the list of users that are part of group
and secure conversations. The control JSON object contains the specific control message fields, as
described in this table:

Field Description

bor The burn on read time in seconds.

changemask A number that is the sum of values associate
d with which fields are being changed by the
control message. Table below defines these
values.

description The description of the secure room conversat
ion.

masters Array of Wickr IDs that are moderators for the
secure room conversation. In group conversat
ions all members should be moderators.

members Array of Wickr IDs that are members of the
group or secure room conversation.

title The title of the secure room conversation

ttl The title of the secure room conversation

The changemask value is a number value that is created by adding the following flag values, based
on what fields are contained in the control object:

Wickr control messages 162

AWS Wickr Bots and Integrations Guide

Field Value

Masters field 1

Time to live 2

Time filed 4

Description 8

Meeting ID key 16

Burn on read 32

File vault info 64

The following sections contain examples of control messages, note the values of the changemask
fields.

Create room control message

The create room control message is used to create a group or secure room conversation. The
following depicts a typical create room control message:

{
 "control":{
 "bor":0,
 "changemask":47,
 "description":"",
 "masters":["user001", "user002"],
 "members":["user001", "user002", "user003"],
 "msgtype":4001,
 "title":"Creating a room",
 "ttl":2592000
 },
 "message_id":"be452b00f89711e883588d1e7a946847",
 "msg_ts":"1544019125.75323",
 "msgtype":4001,
 "sender":"user002",
 "sender_type": "normal",

Wickr control messages 163

AWS Wickr Bots and Integrations Guide

 "time": "7/11/23 5:12 PM",
 "time_iso": "2023-07-11 17:12:45.168",
 "ttl": "7/10/24 5:12 PM",
 "vgroupid":"S58a15186365d2125a9b417e71b99bcb29e3770078e157e953cfbe28443eb750"
}

In the example above you will see the changemask value 47 which is equal to the sum of the "burn
on read" (32), "masters field" (1), "time to live" (2), "title field" (4) and the "description" (8). The
changemask values are used in other control messages as well.

Modify room members control message

The modify room member control message is used to modify the list of users associated with a
group or secure room conversation. Members can be added or removed from the conversation
using this control message.

{
 "control":{
 "addedusers":[],
 "deletedusers":["testbot"],
 "msgtype":4002
 },
 "message_id":"d34058a0f89711e88760d7c8037ea946",
 "msg_ts":"1544019160.275884",
 "msgtype":4002,
 "sender":"user002",
 "sender_type": "normal",
 "time": "7/11/23 5:15 PM",
 "time_iso": "2023-07-11 17:15:49.079",
 "ttl": "7/10/24 5:15 PM",
 "vgroupid":"S58a15186365d2125a9b417e71b99bcb29e3770078e157e953cfbe28443eb750"
}

The addedusers field identifies the list of users that were added to the conversation. The
deletedusers field identifies the list of users that were removed from the conversation.

Wickr control messages 164

AWS Wickr Bots and Integrations Guide

Note

This control message has a fixed set of fields and does not require the changemask field.

Leave room control message

The leave room control message is sent when a user is leaving a secure room or group
conversation. The sender is the user leaving the conversation:

{
 "message_id":"f660fe80f89711e887d86d198d2ef374",
 "msg_ts":"1544019219.210107",
 "msgtype":4003,
 "sender":"user002",
 "sender_type": "normal",
 "time": "7/11/23 5:54 PM",
 "time_iso": "2023-07-11 17:54:31.688",
 "ttl": "7/10/24 5:54 PM",
 "vgroupid":"S58a15186365d2125a9b417e71b99bcb29e3770078e157e953cfbe28443eb750"
}

This control message is a simple control message and does not contain the "control" JSON object.
The msgtype fields identifies the leave room action.

Modify room parameters control message

The modify room parameters control message is used to modify one or more fields associated with
a group or secure room conversation.

{
 "control":{
 "bor":0,
 "changemask":47,
 "description":"change description",
 "masters":["user001", "user002"],
 "members":["user002","user002"],
 "msgtype":4004,
 "title":"Creating a room",

Wickr control messages 165

AWS Wickr Bots and Integrations Guide

 "ttl":2592000
 },
 "message_id":"db805750f89711e8a01ab328ac0b2f04",
 "msg_ts":"1544019174.117057",
 "msgtype":4004,
 "sender":"user002",
 "sender_type": "normal",
 "time": "7/11/23 5:59 PM",
 "time_iso": "2023-07-11 17:59:57.473",
 "ttl": "7/10/24 5:59 PM",
 "vgroupid":"S58a15186365d2125a9b417e71b99bcb29e3770078e157e953cfbe28443eb750"
}

This message is similar to the create room control message. The changemask field has the same
definition as well.

Delete room control message

The delete room control message is used to delete a specific group or secure room conversation.

{
 "message_id":"06364710f89811e899418b6723464a0c",
 "msg_ts":"1544019245.773676",
 "msgtype":4005,
 "sender":"user002",
 "sender_type": "normal",
 "time": "7/11/23 6:03 PM",
 "time_iso": "2023-07-11 18:03:01.100",
 "ttl": "7/12/23 6:03 PM",
 "vgroupid":"S7879eb406958d83b991a5f2acb29e5ad8565a4faa41e1c5cbd7004c5586ddd5"
}

This control message does not have a "control" JSON object. The msgtype identifies that action to
be performed.

Delete message

Here is the delete control message that will delete a message from all of the specified sender's
devices. The sender is the sender of the control message, not the original sender of the message

Wickr control messages 166

AWS Wickr Bots and Integrations Guide

being deleted. The message will not be deleted from other users devices: The message to delete is
identified by the id value in the control group.

{
 "control":
 {
 "message_id":"a59a3520ca2f11e7a14cd1c8bf2a1be8",
 "isrecall":false,
 "msgtype":4011
 },
 "message_id":"aa4a3580ca2f11e7a156a34c720bab3d",
 "msg_ts":"1510769172.735225",
 "msgtype":4011,
 "sender":"user003",
 "time":"11/15/17 1:06 PM",
 "vgroupid":"Sb0e9297f2208dc86b63b288df8c226882e1052b65022edb9edb9ecf6e77db08"
}

Here is the delete control message that will recall the message from all users the message was sent
to:

{
 "control":
 {
 "isrecall":true,
 "message_id":"c2855a10ca2f11e7afa15b0943d8c736",
 "msgtype":4011
 },
 "message_id":"c5bce5e0ca2f11e78946112c51861afa",
 "msg_ts":"1510769218.785332",
 "msgtype":4011,
 "sender":"user003",
 "time": "7/11/23 6:04 PM",
 "time_iso": "2023-07-11 18:04:03.772",
 "ttl": "7/10/24 6:04 PM",
 "vgroupid":"Sb0e9297f2208dc86b63b288df8c226882e1052b65022edb9edb9ecf6e77db08"
}

Wickr control messages 167

AWS Wickr Bots and Integrations Guide

Modify private property

This message identifies when a conversation is pinned or un-pinned. The "pinned" value will be true
when the conversation is pinned, and "false" when it is being un-pinned.

{
 "control":
 {
 "pinned":true,
 "msgtype":4014
 },
 "message_id":"c5bce5e0ca2f11e78946112c51861afa",
 "msg_ts":"1510769218.785332",
 "msgtype":4014,
 "sender":"user003",
 "sender_type": "normal",
 "time": "7/11/23 6:07 PM",
 "time_iso": "2023-07-11 18:07:21.981",
 "ttl": "7/10/24 6:07 PM",
 "vgroupid":"Sb0e9297f2208dc86b63b288df8c226882e1052b65022edb9edb9ecf6e77db08"
}

This message identifies when a message is starred:

{
 "control": {
 "attributes": [
 {
 "isstarred": true,
 "msgid": "74f16f3011d511ee9456414dec7866b3"
 }
],
 "msgtype": 4012
 },
 "message_id": "7a38aa00201511eeb723c79384d92c63",
 "msg_ts": "1689098711.200122",
 "msgtype": 4012,
 "sender": "cn0623_01@amazon.com",
 "sender_type": "normal",
 "time": "7/11/23 6:05 PM",

Wickr control messages 168

AWS Wickr Bots and Integrations Guide

 "time_iso": "2023-07-11 18:05:11.200",
 "ttl": "7/10/24 6:05 PM",
 "vgroupid": "S5d76ccc43c2bb3bc93e7273798ce8f4b89bfa8429b33888fbcd454e5d233a19"
}

Text message meta data

As of the 5.81 release of WickrIO, support was added to record the text message meta data fields.
These fields are used to define GUI widgets specific to the text message being transmitted. Specific
GUI widgets include buttons and list items. If you are interested in creating bots with buttons or
lists, refer to the transmit message arguments section of the Node.js Addon APIs.

Text message table meta data

The following text message is a broadcast bots response to a /report command. This sample
message contains two meta objects, the "tablemeta" object and the "textcutmeta" object. The
"tablemeta" object contains information used to display the list on the Wickr client. The column
name objects define the headers for the table. The "items" array contains the entries for the
table. The "textcutmeta" array contains information used to remove parts of the "message" value
when displaying the message to the user. This is done because the text of the "message" may be
redundant to the information contained in the "tablemeta" object. This will allow Wickr clients that
do not yet support the "tablemeta" protocol yet.

{
 "message":"Here are the past 5 broadcast message(s):\n(1) this is a broadcast\n(2)
 Send to one user\n(3) This is the 3rd broadcast\n(4) Hello World!\n(5) Test one\nTo
 get started, select the broadcast for which you would like to generate a report",
 "message_id":"80cff660a75a11eb986e31ce44694ab3",
 "msg_ts":"1619529271.494966",
 "msgtype":1000,
 "receiver":"bnuser01@userworld.com",
 "sender":"bn0523_bcast_bot",
 "tablemeta":{
 "actioncolumnname":"Select",
 "firstcolumnname":"Message",
 "items":[
 {
 "firstcolumnvalue":"this is a broadcast",

Text message meta data 169

AWS Wickr Bots and Integrations Guide

 "response":"1"
 },
 {
 "firstcolumnvalue":"Send to one user",
 "response":"2"
 },
 {
 "firstcolumnvalue":"This is the 3rd broadcast",
 "response":"3"
 },
 {
 "firstcolumnvalue":"Hello World!",
 "response":"4"
 },
 {
 "firstcolumnvalue":"Test one",
 "response":"5"
 }
],
 "name":"List of Sent Broadcasts"
 },
 "textcutmeta":[
 {
 "end":146,
 "start":0
 }
],
 "sender_type": "normal",
 "time": "7/11/23 6:07 PM",
 "time_iso": "2023-07-11 18:07:21.981",
 "ttl": "7/10/24 6:07 PM",
 "vgroupid":"4b32d7c8c6c37cc9e9506e9ed98ce37f0a96e1e45fcd4ca6f6d00c9d435d82e3"
}

The text message above is a sample, and does not include all of the optional fields for the meta
data you may see in a message. The "tablemeta" object can contain the following objects:

Name Description

name This object is a string that is the name of the
table.

Text message table meta data 170

AWS Wickr Bots and Integrations Guide

Name Description

firstcolumnname This object is a string that is the name of the
first column of the table.

secondcolumnname This object is a string that is the name of the
second column of the table. This is optional.

actioncolumnname This object is a string that is the name of the
action column of the table. This is optional.

items This is an array of entries for the table.

The items is an array and can contain 0 or more entries for the table. Each entry in this table will
contain the following objects:

Name Description

firstcolumnvalue This object is a string that is the value for the
first column.

secondcolumnvalue This object is a string that is the value for the
second column. This is optional.

response This object is a string that is the value to be
returned to the bot when the list is selected.
This is optional.

The "textcutmeta" is used to maintain some backwards compatability with Wickr clients that do not
support lists. The "textcutmeta" is a list that identifies text characters that will be removed from
the message text when the client supports table meta data. Typically the text that is removed is
when the list information is in the message text, see the example above. The fields of the each of
the "textcutmeta" entries identifies the starting index and ending index of what characters to cut
from the message text. These values are 0 relative for the first character in the message text.

Text message table meta data 171

AWS Wickr Bots and Integrations Guide

Text message button meta data

As of the 5.81 release of WickrIO, support was added for buttons. Wickr clients that support these
buttons will display the buttons when the message is received from the bot. There are several
types of buttons, but selecting a button will perform a specific operation, including sending a
message to the bot or sending your location to the bot. The following is an example of a text
message with button meta data:

{
 "buttonmeta":[
 {
 "msgbutton":{
 "message":"/ack",
 "text":"/Ack"
 }
 },
 {
 "locationbutton":{
 "locationtype":0,
 "text":"/Ack with Location"
 }
 }
],
 "message":"this is a broadcast\n\nBroadcast message sent by: bnuser01@userworld.com
\n\nPlease acknowledge message by replying with /ack",
 "message_id":"744dc0c0a75a11eb986e31ce44694ab3",
 "msg_ts":"1619529250.508240",
 "msgtype":1000,
 "receiver":"bnuser01@userworld.com",
 "sender":"bn0523_bcast_bot",
 "sender_type": "normal",
 "time": "7/11/23 6:07 PM",
 "time_iso": "2023-07-11 18:07:21.981",
 "ttl": "7/10/24 6:07 PM",
 "vgroupid":"4b32d7c8c6c37cc9e9506e9ed98ce37f0a96e1e45fcd4ca6f6d00c9d435d82e3"
}

The "buttonmeta" array contains all of the buttons associated with this text message. There are
three types of buttons supported:

Text message button meta data 172

AWS Wickr Bots and Integrations Guide

Name Description

msgbutton This is a normal button type that contains the
text of the button and the message to be sent
to the bot when the button is selected.

locationbutton This is a location button that will perform
a location based operation. Currently, the
"locationtype" value of 0 means the client
will send the location of the device to the bot
when the button is selected. There will be
other location type buttons supported in the
future.

The "msgbutton" object will have the following objects:

Name Description

text This is the text of the button to be displayed

message This is the message that is sent to the bot
when the button is selected.

The "locationbutton" type performs a location type of operation. The "locationbutton" object has
the following objects:

Name Description

text This is the text of the button to be displayed

type The type of location operation to perform.
Value of 0 is to have the client send the
location to the bot when the button is
selected. Other location button types will have
the option to start and stop location sharing,
not implemented yet.

Text message button meta data 173

AWS Wickr Bots and Integrations Guide

Wickr IO Command Line Interface (CLI)

The Wickr IO command line interface commands are used to perform operations on the Wickr IO
clients and the integrations you associate with them. The commands are described as follows:

Many commands require a client number parameter shown as [<#>]. To obtain the client number
for a specific Wickr IO client, use the list command, which displays all configured clients with
their corresponding numbers in the first column (e.g., 0, 1, 2). Use this number when executing
commands that require the [<#>] parameter.

Topics

• General Commands

• Client Management Commands

• Integration Management Commands

General Commands

The following are the general Wickr IO command line interface commands:

Command Description

help [command] Display the list of commands or help for the specified
command.

version Displays the current version number of the running Wickr IO
Gateway.

welcome [on|off] Displays the welcome message or changes whether the
welcome message is displayed when you enter the command
line interface.

Client Management Commands

The following are the Wickr IO command line interface client commands:

General Commands 174

AWS Wickr Bots and Integrations Guide

Command Description

add Adds a Wickr bot client to the Wickr IO Gateway. The Wickr
bot client will be associated with a Wickr user account and any
associated integration.

avatar [<#>] This command will change the avatar associated with a Wickr
IO client. The avatar file must be accessible to the software
running on the Wickr IO docker image.

config [<#>] Re-runs the configuration of the specified Wickr IO Client. Can
only be done on paused clients.

delete [<#>] Deletes an existing client from the Wickr IO Gateway. The
Wickr bot client will no longer be associated with the Wickr IO
Gateway system after the delete is completed.

events [<#>] Displays the list of events associated with the specified client.
These events are indications of when the client was started or
stopped.

list [integration] Display a list of Wickr clients that have been added to the
Wickr IO Gateway. If the integration option is used, then a list
of available integrations will be displayed. The integration
commands are described in the integration's commands below.

modify [<#>] Modify the settings of a client. You will be prompted for the
settings that can be changed. You can change the password,
the integration associated with the client, and/or change the
settings.

pause [<#>] Pause a running Wickr IO client.

restart [<#>] Performs a stop and start of the Wickr IO client.

start [<#>] Starts a Wickr IO client. If this is the first time the client has
been started, you will be prompted for the password associate
d with the Wickr user account.

Client Management Commands 175

AWS Wickr Bots and Integrations Guide

Integration Management Commands

The following are the integration commands:

Command Description

export [<#>] Export the integration software associated with the specified
Wickr IO client. This will create a tar file that can be used with
other Wickr IO clients.

import Import custom integration software. The integration software
has to adhere to specific requirements, which are described
later.

list [integration] The list command with the 'integration' option will display
a list of integrations that are available for use with Wickr IO
clients. This command may take up to a minute to complete.

rename [<#>] Rename the integration of the specified Wickr IO client. This
is useful when you want to create a new integration using an
existing integration as the base for the new integration.

upgrade [<#>] Update integration software for a Wickr IO client. This
command will check to see if there is a newer version of the
integration software available and upgrade to that version.

Integration Management Commands 176

AWS Wickr Bots and Integrations Guide

Wickr IO clients logging

The Wickr IO bots generate log and output files that can be used to determine possible issues.
These files can be accessed on your host where the Wickr IO docker container is running.

In case of any issues, these files should be sent to Wickr Support to allow them to diagnose any
issues that cannot be easily fixed.

Note

Output and log files have a maximum file size. When this size is exceeded, a new file is
created. The system keeps up to 5 output and log files on disk.

Logs are generated from three primary components: client provisioning logs, client logs, and
integration logs.

Topics

• Wickr IO client provisioning logs

• Wickr IO client logs

• Wickr IO integration logs

Wickr IO client provisioning logs

Provisioning logs are generated when a new or existing bot client is added to the running Docker
container using the docker CLI. To set up a bot client, see[Quick Start section].

Depending on how you setup the shared files, the provisioning log and output files are located in
the following location:

/opt/WickrIO/logs

Below is an example of a different shared host volume while starting the docker container.

docker run -v /opt/WickrIOOnHost:/opt/WickrIO -ti public.ecr.aws/x3s2s6k3/wickrio/bot-
cloud:latest

Wickr IO client provisioning logs 177

AWS Wickr Bots and Integrations Guide

In the example above, the host directory shared with the Docker container is /opt/
WickrIOOnHost. As a result,the logs will be located at: /opt/WickrIOOnHost/logs.

This directory contains several files:

• WickrIOProvisionLog.output - Contains detailed information useful for diagnosing issues
during Wickr IO client provisioning.

• WickrIOSvr.output - Helps identify problems that may occur when starting a Wickr IO client.

Wickr IO client logs

Once the Wickr IO Client bot is successfully provisioned, the bot client and the background services
initiate logging for all interactions with Wickr backend, along with internal system-level processes.

Depending on how you setup the shared files, the provisioning log and output files are located in
the following location:

/opt/WickrIO/clients/(client name)/logs

Below is an example of a different shared host volume while starting the docker container.

docker run -v /opt/WickrIOOnHost:/opt/WickrIO -ti public.ecr.aws/x3s2s6k3/wickrio/bot-
cloud:latest

In the above example, the host directory path shared with the docker container is /opt/
WickrIOOnHost, then the logs path will be /opt/WickrIOOnHost/clients/(client name)/
logs.

There are several files found in that directory. The file with the “.output” extension contains the
most information and is useful in diagnosing issues with the Wickr IO client.

To view logs in real time, run the following command from the /opt/WickrIO/clients/
(client name)/logs directory:

tail -f (OutputFileName).

Wickr IO integration logs

Wickr IO integrations also generate log data, which can be helpful for diagnosing issues specific to
the integration type used by the Wickr IO client.

Wickr IO client logs 178

AWS Wickr Bots and Integrations Guide

Integration logs are located in the integration-specific directory associated with the Wickr IO client.
For example, a broadcast bot named "test_bot" is running, its integration logs can be found at:

/opt/WickrIO/clients/test_bot/integration/wickrio-broadcast-bot/logs

Typical Wickr IO integrations will write output to a file named "log.output" and error output will be
written to a file named "err.output". Output in the "err.output" is an indication the integration has
crashed.

Wickr IO integration logs 179

AWS Wickr Bots and Integrations Guide

Wickr IO clients troubleshooting

Topics

• Setting up Wickr IO Docker container

• Provisioning Wickr IO client

• Start bot client failures

• Wickr IO command line interface

• Client and Integration compatibility issues

• Deploying custom Integrations

• Other issues

• Upgrading bots

These are troubleshooting suggestions associated with running the Wickr IO gateway, clients,
and integrations. You may also run into some issues when developing your own custom Wickr IO
integrations.

This section will describe some possible issues you may run into while using the Wickr IO client and
the associated services

Setting up Wickr IO Docker container

Cannot load Docker image

If you receive the following error then you may have to make sure you have permissions to access
the unix socket to communicate with the Docker engine:

docker: Got permission denied while trying to connect to the Docker daemon
socket at unix:...

Solution:

For help setting the appropriate permissions for you Docker account, see Linux post-installation
steps for Docker Engine

Wickr IO Fails startup due to directory permissions

Setting up Wickr IO Docker container 180

https://docs.docker.com/engine/install/linux-postinstall/
https://docs.docker.com/engine/install/linux-postinstall/

AWS Wickr Bots and Integrations Guide

When running the Docker container on a Mac system, you may encounter a failure when starting
the Wickr IO Docker container if you have not changed the write permissions for the /opt
directory. This issue typically arises after the ./start.sh command. You will see the following
errors:

 "QIODevice::write (QFile, "/opt/WickrIO/logs/WickrIOSvr.output"): device not open
terminate called after throwing an instance of 'zmq::error_t'
what(): No such file or directory
./start.sh: line 3: 7 Aborted WickrIOSvr"

This issue has only been seen on Mac systems. It occurs when a user creates the /opt directory as
the root, and then runs the container as a user.

Solution:

This is caused by a permission issue in the /opt directory. To resolve the issue, change the
permissions of the /opt/WickrIO directory (or the name of the directory you created for your
installation) to make it writeable. The following command will fix this problem:

chmod 777 /opt/WickrIO

Host system running out of disk space

Your system is low on storage, preventing you from downloading and running a new Docker
container. This issue may arise if you have not removed old Docker containers from your system.

Solution:

• Run docker ps to see all running containers.

• Run docker kill container_id on a container you would like to stop using.

• Run docker rm container_id to remove it from your system completely.

Note

Your integrations will not be affected and will stay on your system in your /opt/
WickrIO directory for future use.

Setting up Wickr IO Docker container 181

AWS Wickr Bots and Integrations Guide

Docker Mounts denied Error

You're getting the following error: docker: Error response from daemon: Mounts
denied: The path /opt/WickrIO is not shared from OS X and is not known to
Docker.

Solution:

Restart Docker.

Wickr IO Not working on Mac M1 hosts

The Wickr IO Docker images are not built to run on the Mac M1 hosts. During our testing of the
Mac M1 hardware, we discovered an issue related to the interaction exec() commands, which led to
failures when trying to start a bot from the command line interface (CLI).

Solution:

If you want to run the Wickr IO Docker images on Mac M1 hardware, follow these steps:

• Make sure you have a version of Docker that supports the Linux/amd64 platform. The version we
recommend for Mac is 20.10.14.

• When using the docker run command, make sure to include the —platform=linux/amd64 option

Provisioning Wickr IO client

Bot client provisioning failures

When adding a bot client to a Docker image, you may encounter issues during the provisioning
step. This can occur for both new and existing clients. Below are some common problems you
might face:

Username does not exist:

Provisioning Wickr IO client 182

AWS Wickr Bots and Integrations Guide

Solution

Make sure the bot username is correct and exists in the Wickr Admin Console.

Incorrect password:

Provisioning Wickr IO client 183

AWS Wickr Bots and Integrations Guide

Solution

Make sure the password entered is correct. It should match the one used when creating the bot
user in the Wickr Admin Console.

Note

If your issue is different from the scenarios defined above, you can also identify the
issue by looking at the provisioning logs found in the following file: /opt/WickrIO/
WickrIOProvisionLog.output
For further assistance, Wickr support is always available to assist you with any issues that
are not addressed here.

Start bot client failures

Incorrect password

When trying to start a bot client, if you enter an incorrect password, you will get a “Bus Error” and
see the Docker container has exited.

Start bot client failures 184

https://mailto:wickr-support@amazon.com

AWS Wickr Bots and Integrations Guide

Solution

• Remove the stopped container using docker rm -f (container-name).

• Set up the docker container again by sharing a different host volume.

Wickr IO client does not start

If your Wickr IO client isn't starting and the previous solutions haven't resolved the issue, try the
following steps. First, check if the client is running by using the ps command. Enter the following
command in the terminal:

ps -aef | grep wickrio_bot

This command should return an entry for each Wickr IO client that is currently running.
Additionally, the command line interface of the Wickr IO Docker container includes various
commands that can help you diagnose any client issues.

• Enter the list command to see the list of Wickr IO clients.

• If the client state is Paused then use the start command to start the client.

• If the client state is Running and there are still no associated process running, then check the
WickrIOSvr.output file for the background services to see if there is any issue starting the
client. For more information on logging details, see Wickr IO clients logging.

Wickr IO command line interface

Wickr IO client is not running.

Wickr IO command line interface 185

https://docs.aws.amazon.com/wickr/latest/wickrioguide/logging.html

AWS Wickr Bots and Integrations Guide

Once the client has started, it should remain in the Running state unless it is manually paused or
deleted. If, at any point, your client enters a Down or Not Running state unexpectedly, follow the
solution below.

Solution:

Try restarting the Wickr IO client using the restart command. If the issue continues, check the
provisioning and client logs for more information, and then contact Wickr Support.

Turn on debugging in Wickr IO CLI

If you are facing issues with performing any operation using the Wickr IO command line interface
like adding or deploying a custom bot , this procedure will help you view more detailed debugging
information on the command line interface.

Solution

To enable debugging, enter debug in the CLI.

Note

This action will output a lot of debug information with this option enabled.

Client and Integration compatibility issues

With the release of new Wickr IO Docker images containing changes to the Wickr IO Add-on APIs,
when you upgrade your container to use the new version, it is possible there will be compatibility
issues that will cause Integrations to not work.

Solution

If you are running an officially Wickr supported integration, you will see the Needs Upgrade text
on your Wickr IO client.

Client and Integration compatibility issues 186

AWS Wickr Bots and Integrations Guide

To upgrade your integration to avoid any compatibility issues, complete the following steps.

1. Pause the running client using pause (index) command.

2. Upgrade the client using upgrade (index) command.

3. Start the client again.

If you are using a custom integration, make sure to update your integration to ensure compatibility
with the updated Wickr IO container.

If you need to contact Wickr support it's helpful to have the version number of the Docker
container ready. You can find the version number by using the version command in the Wickr
IO command line interface. Additionally, new versions of the Wickr IO Docker image will display
the version numbers of the integrations when you run the list command. When addressing
integration issues, having the version numbers for the integrations will also be beneficial.

Deploying custom Integrations

Cannot import a custom integration

If the necessary files are missing from the software.tar.gz imported into the Docker container, you
will receive an "install shell file does not exist" error when starting a Wickr IO client using your
custom integration.

Solution

Make sure all the required files are present in the zipped integration software imported in the
docker container. You can use any sample integrations as reference.

Deploying custom Integrations 187

AWS Wickr Bots and Integrations Guide

Other issues

Exited Docker container

Once the Wickr IO container is set up, it is designed to run indefinitely unless stopped manually.
However, unexpected events may occur that could cause your running Docker container to exit.

Solution

• Run docker restart (container-name) to get your container back up.

• Look at Wickr IO client logs to identify the reason for crash. For more information, see Wickr IO
clients logging.

• Check your host’s disk space usage to ensure your host machine has enough disk space to
support the clients running within the Wickr IO Docker container.

Exited Docker container

Once you have a running bot client, you should be able to interact(depends on the integration
type) with it on Wickr client application. If the bot is not responding as expected see the solution
below to debug the issue.

Solution

• Ensure the Wickr IO client is in Running state on the Wickr IO docker CLI. You can list all clients
and their state using the list command.

• If the client is running, then see the integration logs for any errors. For more information, see
Wickr IO clients logging.

Too many bot devices

Bot clients do not automatically remove old devices upon start-up. If you frequently move a bot
between different machines, you may reach the limit of 50 devices. Each time you move the bot to
a new device or recreate it, a new device entry is created. Once you reach this limit of 50 devices,
the bot may stop functioning properly.

Solution

Starting from version 5.81, there are multiple ways to clear out old bot devices. To do this,
you need to modify the bot's .ini file. This is a one-time setting that the bot client will use to

Other issues 188

https://docs.aws.amazon.com/wickr/latest/wickrioguide/logging.html
https://docs.aws.amazon.com/wickr/latest/wickrioguide/logging.html
https://docs.aws.amazon.com/wickr/latest/wickrioguide/logging.html
https://docs.aws.amazon.com/wickr/latest/wickrioguide/logging.html

AWS Wickr Bots and Integrations Guide

eliminate old devices. The setting will specify the number of seconds a bot device has remained
logged in. If a device's last login exceeds this specified duration, it will be suspended. For example:

[oneshot]
suspenddeviceafterseconds=120

In the example, you can set the value to 120 seconds (or two minutes). This setting will NOT
affect the current device but will suspend all devices that have not logged in within the specified
time frame. The .ini file can be found in the client directory associated with the bot client. For
example:

/opt/WickrIO/clients/[botname]/WickrIO[botname].ini

Restart the bot after you have added this to the .ini file.

Wickr files are not received or transmitted

If the Wickr IO integration you are using requires sending or receiving files but you're experiencing
issues with either, it may be due to an inaccurate date and/or time setting on your system. Wickr's
system relies on the host date and time to transfer encrypted files successfully. If these setting are
incorrect, file transfers will fail.

Solution

For accuracy, it's recommended to install and run an NTP (Network Time Protocol) service on your
host system.

Network timeouts

If your bot is failing to interact with the backend servers and the logs indicate time errors, there
is a way to increase the timeout for network requests. While this may not resolve the underlying
problem, it can help rule out timeout as a cause of connection issues.

Solution

To adjust the network timeouts, you'll need to modify the .ini file for the bot client. The /opt/
WickrIO/clients/WickrIO.ini is the appropriate file.

Add the following below to the .ini file:

[networksetup]
requesttimeout=[some value in seconds]

Other issues 189

AWS Wickr Bots and Integrations Guide

userrequesttimeout=[some value in seconds]

The .ini file is located in the client directory associated with the bot client, for example:

/opt/WickrIO/clients/[botname]/WickrIO[botname].ini

Restart the bot after you have added this to the .ini file.

Upgrading bots

The WickrIO bots do not automatically upgrade, like a Wickr client does. You will need to
periodically and manually upgrade the bots to make sure you have the latest software.

Solution

The following are the steps you will perform to upgrade a WickrIO docker image and the
associated bots:

1. Pause the bots that are running on the WickrIO docker container. This is a safety precaution to
make sure there are no database corruption problems when you upgrade the container. You will
log into the WickrIO CLI and perform the 'pause' command for each bot you have running. After
pausing the bots, exit out of the WickrIO CLI (using the <ctrl>p <ctrl>q keyboard sequence).

2. Next, you will kill the current docker container. The following commands will kill the running
container and remove it. Notice we named our bot 'MyBotName', you may have named it
differently. If you ran the docker container with the appropriate "-v" option your bot data will be
safe. The following is an example command:

docker kill MyBotName
docker rm -f MyBotName

3. Next, you will start the docker container with the new version and use the same options you
used to start the old version. The following is an example command:

docker run -v /opt/MyBotName:/opt/WickrIO -p 4001:4001 -d --restart=always --
name="MyBotName" -ti wickr/bot-cloud:latest

4. Next, you will upgrade the bots running on this container. You will need to do that for each of
the bots on this container. Log onto the WickrIO CLI, and perform the 'list' command, which will
show you the list of bots and identify which ones need to be upgraded. Depending on how old
your version is, it is likely all of your bots will require upgrading.

Upgrading bots 190

AWS Wickr Bots and Integrations Guide

5. Next, for each bot perform the "upgrade" command. It is possible that the configuration tokens
associated with the bot integration has changed, if so you will be prompted for the new values.

6. After ensuring all the bots have been upgraded, start each bot. When done starting you can
perform the "list" command to verify each bot is running. Once verified, you can exit out of the
WickrIO CLI.

The following is sample output from upgrading an old WickrIO bot running version v4.64.9.3, with
a wickrio_web_interface bot. The version being upgraded to is the 5.116.18.01 version/tag.

Enter command:list
Current list of clients:
 client[0] old-test-bot, State=Running, Integration=wickrio_web_interface
Enter command:version
version: v4.64.9.3
Enter command:pause 0
Do you really want to pause the client with the name old-test-bot (default: yes):yes
Enter command:list
Current list of clients:
 client[0] old-test-bot, State=Paused, Integration=wickrio_web_interface
Enter command:read escape sequence
ubuntu@mybothost:~$
docker kill VeryOldBot
ubuntu@mybothost:~$
docker rm -f VeryOldBot
ubuntu@mybothost:~$
docker run -v /opt/VeryOldBot/WickrIO:/opt/WickrIO -p 4444:4444 -d --restart=always --
name="VeryOldBot" -ti wickr/bot-cloud:latest
Unable to find image 'wickr/bot-cloud:latest' locally
5.116.18.01: Pulling from wickr/bot-cloud
4bbfd2c87b75: Already exists
d2e110be24e1: Already exists
889a7173dcfe: Already exists
20ca454721b1: Already exists
02c4b05cb492: Already exists
1c731f8c023d: Already exists
fcd34fc70cfe: Already exists
b1fceb668295: Already exists
68307b81514b: Pull complete
b9f674e60307: Pull complete
e4fd99322c5a: Pull complete
3fdf8c473cd1: Pull complete
9dd71d5d554c: Pull complete

Upgrading bots 191

AWS Wickr Bots and Integrations Guide

225a5f4a7590: Pull complete
Digest: sha256:05f7d0df8a488f7e325845423d13ebda95b1967b7b00203fe2425ae35e43480f
Status: Downloaded newer image for wickr/bot-cloud:latest
71bb0c85bc4c4c92db604136ad9f64e62d9769debcfccb656794037b4dc06d44
ubuntu@mybothost:~$ docker attach VeryOldBot

Updating integration software version numbers
Updating integration software version numbers
Searching NPM registry
Searching NPM registry

Welcome to the WickrIO Console program (v5.116.18.01)

Current list of clients:
Name Status Integration Version Events Misc
==
0 old-test-bot Paused wickrio_web_interface 1.1.2 2 Needs Upgrade!
Enter command:
Enter command:upgrade 0
Upgrading from version 1.1.2 to version 5.82.2
Okay to proceed? (default: yes):yes
Copying wickrio_web_interface software

Upgrading wickrio_web_interface software
Installing wickrio_web_interface software
Installing
Installing
Begin configuration of wickrio_web_interface software for old-test-bot
Now using node v12.20.2 (npm v6.14.11)
adminsOptional=false
adminsOptional=false
Finished Configuring package!
Finished Configuring forever!
Finished Configuring!
Enter command:list
Current list of clients:
Name Status Integration Version Events Misc
==
0 old-test-bot Paused wickrio_web_interface 5.82.2 2
Enter command:start 0
Preparing to start the client with the name old-test-bot
Do you really want to start the client with the name old-test-bot:yes
Enter command:list
Current list of clients:

Upgrading bots 192

AWS Wickr Bots and Integrations Guide

Name Status Integration Version Events Misc
===
0 old-test-bot Running wickrio_web_interface 5.82.2 3
Enter command:

Upgrading bots 193

AWS Wickr Bots and Integrations Guide

Release Notes

AWS Wickr bots and integrations are regularly updated with new features, improvements, and bug
fixes. This chapter provides information about the changes in each release.

Version 6.48 - Release Date: 04/14/2025

The 6.48.04.11 release of the bot-cloud and bot-dataretention-govcloud images are focused on the
changes described below. The 6.48.04.01 bot-compliance-cloud and bot-dataretention-govcloud
images include the CloudWatch metrics bug fix described below.

Upgrade to Node 20

The bot-cloud and bot-dataretention-govcloud docker images have been upgraded from Node 16
to Node 20. Prior to installing version 6.48 (and above), complete the steps in the section called
“Version 6.48 announcement” to update your integrations and avoid disruption.

Deprecate old integrations

Some of the older and non-supported integrations have been removed from the docker images.
For more information, see the section called “Version 6.48 announcement”.

WickrIO Addon to use ZeroMq

The WickrIO Addon is changed to use ZeroMq for all interactions between integrations and WickrIO
client. This change will make the bot APIs asynchronous. For more information, see the section
called “Version 6.48 announcement”.

Bug Fix: Data Retention Bot failing to publish CloudWatch metrics

Fixed issue where the Data Retention Bot was not publishing metrics to CloudWatch due to a
missing parameter. This fix will ensure that all the required metrics are published successfully to
CloudWatch - if users have CloudWatch configured.

Version 6.36.20.02 - Hotfix

The 6.36.20.02 hotfix release of the bot-enterprise image and the 6.36.09.01 hotfix release of Data
Retention bot images are focused on the fix described below.

Version 6.48 - Release Date: 04/14/2025 194

AWS Wickr Bots and Integrations Guide

Fix Bug: The Edit message, delete message and reactions are not being
captured

The Compliance bot and Data Retention are not processing a few types of control messages:

• Edit Messages: 9000

• Edit Reaction message: 9100

• Delete message: 4011

This hotfix will allow the compliance bot and Data Retention bot to process the above mentioned
control messages and capture them in the receivedMessages files.

Version 6.36.13.01

The 6.36.13.01 release of the bot-cloud and bot-enterprise images are focused on the changes
described below.

Add ability to suspend bot devices

Currently there is no way to suspend old bot devices. These changes will by default only allot 10
devices for each bot. There are two environment variables that allow you to remove devices older
than a specific number of minutes, or change the limit on the number of devices.

Better logging for clientConfig.json bad JSON

Using the clientConfig.json file to automate the start of bots does not generate logs when there is
a failure to parse the JSON. This fix will output errors when failure to parse the JSON occurs.

Fix Bug: Sending messages to invalid users could hang bot

There have been situations where trying to send messages to invalid users will hang a bot. This has
been easily reproducible using the broadcast bot when sending to a list of users in a file. This fix
addresses this issue.

Fix Bug: The Edit message, delete message and reactions are not being captured 195

AWS Wickr Bots and Integrations Guide

Version 6.34.05.01

The 6.34.05.01 release of the bot-cloud and bot-enterprise images are focused on the changes
described below. The 6.34.02.01 bot-compliance-cloud images include the File Management and
SDK changes described below.

Support File Management feature message formats

The AWS Wickr control message formats were changed to support the AWS Wickr File Management
feature. The 6.34 versions of the WickrIO and WickrIO Compliance releases support this new
message format. The Data Retention / Compliance bots will also download files that are referred to
in these modified control messages. Details of these updated control messages will be detailed in
the appropriate WickrIO documentation.

Bug Fix: Broadcast Bot security group selection failed

Some AWS Wickr clients have added spaces padding the security group selection which broke the
broadcast bot processing of that string. Added coding in the broadcast bot to trim the padding off
of the response string.

Bug Fix: Bug fixes inherited from lower layer SDK

Several bug fixes were made to the SDK that bots use to interact with the AWS Wickr servers
for login and messaging services. Changes made to improve room membership for room
conversations. Changes made to improve the AWS Wickr client record information more reliable.
Removed some code associated with legacy message sends, which is not used any more.

Version 6.32.04.02

The 6.32.04.02 release is a bug fix release and focused on the following major changes:

Bug Fix: Airgap version contacting NPM Registry

Some code was found to still have references to the default NPM registry (registry.npmjs.org).
Changes were made so the Airgap version does not reference any NPM registry.

Bug Fix: Read receipts not working for Broadcast Bot

Software was found to not be decoding read receipt API call responses correctly. Changes were
made to fix this.

Version 6.34.05.01 196

AWS Wickr Bots and Integrations Guide

Bug Fix: Registration failures

A race condition was found which caused initial registrations to fail.

Bug Fix: Read receipts never time out

Changes were made to stop sending requests for read receipt status after one week for broadcasts.

Version 6.24.06.02

The 6.24.06.02 release is focused on the following major changes:

Bug Fix: Conversations not restored when creating new instance of bot

Found issue where AWS Wickr conversations were not being restored correctly for new instances of
a bot. This issue would present itself if you created a new instance of a bot and then tried to send
a message from the bot to a secure room or group conversation. The bot would not have restored
the connection list and would not have a record of the conversation.

Bug Fix: Downloading files in multi-domain environments

Found issue where the downloading of files from clients in different domains was not working for
bots. This change will make sure files are downloaded when a bot downloads a file from a AWS
Wickr client from another federated domain.

Bug Fix: Handle files with long file names

When a bot receives a file with a long file name, approximately 255 characters, it adds some
information to the filename which may make the file name larger than 255 characters. The bot
would end up dropping the file in this case, due to operating system limitations. This fix will
remove any characters at the end of the file name to keep the length under 255 characters.

Feature to send events to AWS Amazon SNS Topic

To improve the health capabilities of AWS Wickr bots we added the ability to send events
generated on a bot to an AWS Amazon SNS Topic. This topic can be used to send events to an
email address or any other endpoint that can subscribe to events pushed to the defined Amazon
SNS Topic. To use this feature there are environment variables (to be defined in the WickrIO
documentation) that identify the AWS Amazon SNS Topic.

Bug Fix: Registration failures 197

AWS Wickr Bots and Integrations Guide

Created new API to set avatar for the bot client

This new bot API allows bot developers to set the avatar associated with the bot client. Details of
this API will be defined in the WickrIO documentation.

Version 6.18.19.02

The 6.18.19.02 release is focused on the following major changes:

Continue using AWS Amazon ECR to host Docker images

We are starting to transition hosting our AWS Wickr bot docker images on AWS Amazon ECR. These
are the AWS Amazon ECR repositories used to host the AWS Wickr bot docker images:

public.ecr.aws/x3s2s6k3/wickrio/bot-cloud

public.ecr.aws/x3s2s6k3/wickrio/bot-enterprise

public.ecr.aws/x3s2s6k3/wickrio/bot-compliance-cloud

We will continue to host production docker images on DockerHub for the next couple of releases.

Two-way data retention support

The AWS Wickr bot clients will support running with federated networks that are running data
retention. When sending messages to clients in federated data retention active the bot client will
also send the message to the appropriate data retention bot(s).

Data retention bots support additional user information

The SAAS data retention bot (bot-compliance-cloud) will output additional information about the
users associated with a message. This new information includes the network ID as well as room
membership.

Note

Some of this information is not immediately available to the data retention bot. For
the network ID the data retention bot will need to interact with the server to get the
information. The network ID for a user may not be known by the data retention bot until
the server responds with that information. For the room membership information the data

Created new API to set avatar for the bot client 198

AWS Wickr Bots and Integrations Guide

retention bot must capture room membership control messages that contain the current
room membership. The data retention bot cannot show a valid list of room conversation
members unless it sees this information. In this case an indication of the membership
validity will be included with the message information.

Version 6.16.19.01

The 6.16.19.01 release is focused on the following major changes:

Continue using AWS Amazon ECR to host Docker images

We are starting to transition hosting our AWS Wickr bot docker images on AWS Amazon ECR. These
are the AWS Amazon ECR repositories used to host the AWS Wickr bot docker images:

public.ecr.aws/x3s2s6k3/wickrio/bot-cloud
public.ecr.aws/x3s2s6k3/wickrio/bot-enterprise

We will continue to host production docker images on DockerHub for the next couple of releases.

Update image from Ubuntu 18.04 to Ubuntu 20.04

The Ubuntu operating system version was upgraded to Ubuntu 20.04 in all AWS Wickr bot docker
images.

Fix message send error issues

If the bot attempted to send a message to a user and that message failed to send the indication to
the bot software was not indicated. The bot software would get into a frozen state and not able
to proceed. This was seen with broadcasts to groups of users where a user account may be in a
bad state where the bot would fail to send to it. The bot would be stuck and not able to function.
This fix handles the error cases appropriately, and in the case of the broadcast bot the /report
command will show the failed users.

Support for AWS Wickr Multi-Region

All AWS Wickr bot images will support bot clients created in other AWS Regions, for example ca-
central-1.

Version 6.16.19.01 199

AWS Wickr Bots and Integrations Guide

Fix Broadcast bot not receiving messages from users

If the bot sends a message to a user, before the user has sent a message to the bot, the bot
software will not process the message. The creation of the user record in the database was
not attaching to get message indications if the user record was created by the bot sending the
initial message for that user. This can happen, for example, when setting up a broadcast bot
with administrators. The broadcast bot would start by sending a welcome message to all of the
administrators. The user record was not created to receive the incoming message indications, so
the broadcast bot would not respond. In those cases restarting the broadcast bot would fix the
indication for those users. There may be other situations where this happens.

More user-friendly bot startup failure indications

If a bot fails to startup the logs indicate this using an error code. To help indicate the actual reason
for the failure a failure string will also be output to the logs.

Fix issue where bot startups more than 5 attempts will stop trying to
start

If a bot fails to start more than 5 times, normally the bot will not attempt to start again without
some user intervention. In some cases, the bot service will keep trying to start the bot which could
lead to the bot client being suspended or the bot docker image CPU usage elevating too high. The
change will keep the bot service from retrying to start the bot. The bot CLI will also indicate that
there was an error in the Misc column. The CLI will also prompt the user to make sure they want to
start the bot, if it was stopped due to it not starting more than 5 times.

Update control message to indicate rooms with saved links and files

Certain control messages did not indicate the filevault information associated with saved links and
files, specifically when new users were added to rooms.

Version 6.11.05.01

This version is an update for all bots with the move from the forever process manager to the WPM2
process manager as well as more specific updates to the broadcast bot, compliance bot, bot client,
and wickrio-docs. The 6.11.05.01 release is focused on the following major changes:

Fix Broadcast bot not receiving messages from users 200

AWS Wickr Bots and Integrations Guide

Using AWS Amazon ECR to host Docker images

We are starting to transition hosting our AWS Wickr bot docker images on AWS Amazon ECR. These
are the AWS Amazon ECR repositories used to host the AWS Wickr bot docker images:

public.ecr.aws/x3s2s6k3/wickrio/bot-cloud
public.ecr.aws/x3s2s6k3/wickrio/bot-enterprise

We will continue to host production docker images on DockerHub for the next couple of releases.

Move from Forever process manager to WPM2

This change affects all bots as they were all using the forever process manager. WPM2 is an internal
project that can be found on NPM at: https://www.npmjs.com/package/wpm2

With WPM2 we rely on the use of PID files to keep track of the running process and the ability to
kill the running process based on the PID (process ID) and WPM2 handles keeping the bot running
and ending the process gracefully when we go to pause or restart the bot. Here is an example of
what the new package.json scripts look like:

"restart": "kill $(cat $(cat pidLocation.json)) && nohup wpm2 start --no-metrics ./
wpm.json >>wpm2.output 2>&1 & echo $! > $(cat pidLocation.json)",
"start": "nohup wpm2 start --no-metrics ./wpm.json >>wpm2.output 2>&1 & echo $! > $(cat
 pidLocation.json)",
"stop": "kill $(cat $(cat pidLocation.json))"

Performance improvement for large broadcast

Performance has been improved for large broadcasts in the broadcast bot. The pre-send
preparation of the broadcast bot will see an obvious increase in performance for large broadcasts.

Updating the Support email in all the bots

In any bots and documentation that made reference to AWS Wickr support we were using the old
support@wickr.com email. All these instances have been updated to the new support email: wickr-
support@amazon.com.

Using AWS Amazon ECR to host Docker images 201

AWS Wickr Bots and Integrations Guide

Updated JSON timestamp

An ISO format timestamp has been added for message JSON. This was done in the compliance bot
and all messages passed to bots and integrations.

Mutex Lock Enhancements

Mutex lock enhancements have been made to reduce the possibilities of database lockups.

Version 5.116.19.02

This version is a bug fix release.

Fix for Enterprise updated password not showing

This version of the enterprise docker image(s) will fix an issue where the changed password was not
being shown if you run the "debug on" command and then the "debug off" command on the CLI.
The debug state was not being set correctly to off when the "debug off" command was performed,
which caused a problem processing the messages from the provisioning software. The debugging
output was stopped but the internal state was not updated appropriately.

Version 5.116.18.01

This version is an update for the wickr/bot-enterprise and the wickr/bot-cloud Docker images. The
5.116.18.01 release is a patch release. Please see the Version 5.116.13.01 Release notes for details
of the 5.116 version. This version includes the following changes:

Fix for Missing Rooms

A bug was detected when upgrading to the 5.112 or 5.112.13.01 releases of the WickrIO Bots,
which made secure room and group conversations not visible to bots/integrations. These
conversations were not deleted they were not being made visible to the bot APIs. This release fixes
these issues.

Fix for upgrades from old bot versions

This issue was seen when an upgrade was performed from an old version of the WickrIO docker
image, specifically 5.62.05.02. The issue was caused by a new database field not being added
during the migration from the old version to the recent version (i.e. 5.112 or 5.116).

Updated JSON timestamp 202

AWS Wickr Bots and Integrations Guide

To identify if your bot is experiencing this issue, the log files will contain a failure message when
ever the bot receives a message. The failure message will contain the following text and can be
seen in the WickrIO<botname>.output file:

BULK INSERT MESSAGE: Failed, can't prepare insertQuery

Fix to address high CPU

Several customers have reported WickrIO bots randomly running at high CPU rates, and staying at
that rate. We have reproduced the problem. This patch release contains a change that has shown
to eliminate this problem. If you have seen this issue and want to confirm it is the same CPU issue
please do the following:

• run the following command which will start a bash shell inside the docker image.

docker exec -ti <dockerimagename/id> bash

• run the "top" command which will show you the processes running inside the docker image. The
process at the top of the list will have the highest CPU value.

• The process at the top of the list should be the "wickrio_bot" process, if it is the problem we are
trying to solve.

Note

If you continue to have the CPU issue after installing this patch, please contact support.

Fix for SAAS Data Retention Network Transmit Failures

The 5.116.13.01 wickr/bot-cloud image would have transmit failure when operating in a SAAS
Data Retention network. This version will fix that problem.

Version 5.116.13.01

This version is an update for the wickr/bot-enterprise and the wickr/bot-cloud Docker images. The
5.116.13.01 release is focused on the following two major changes:

Fix to address high CPU 203

AWS Wickr Bots and Integrations Guide

Support for Mac M1 Host

Changes made to support running on Mac M1 machines. Older versions of the WickrIO Docker
images will not run on the Mac M1 systems.

If you want to run the WickrIO Docker image(s) on a Mac M1 machine, you will have to start the
Docker images with the —platform=linux/amd64 option.

We do not recommend running production bots on Mac M1 hardware at this point. Using Mac M1
systems to do development should be fine.

Support for Node 16

As of the 5.116.13.01 version, all of the Docker images and software are updated to use node
version 16. Node 12 is not supported anymore and will NOT be part of the 5.116.13.01 Docker
images. All of the bots and integrations shipped with the 5.116.13.01 Docker images have been
updated to use Node 16. When you update your WickrIO Docker images to the 5.116.13.01 version,
you will need to upgrade all bots and integrations to use the latest versions. Any bots that use
Node 12 will not work when the 5.116.13.01 version is installed. The bot client will operate and
show that it is running, but the bot/integration software will not be able to start up since they will
be looking for Node 12. The 5.116.13.01 WickrIO Docker images contain upgrades for all of the
supplied bots.

Custom Bots/Integrations

This section applies to you if you have or are developing custom Node-js bots. This does not apply
to anyone using the REST APIs of the wickrio_web_interface bot.

If you are creating custom bots/integrations you will need to use the latest 5.113 version of the
wickrio-bot-api or the the latest 5.113 version of the wickrio_addon (which ever is appropriate for
your custom bot).

Installation Process

We recommend that before you install the new 5.116.13.01 version of the appropriate Docker
image that you pause all of the bots running on each Docker instance. Using the WickrIO CLI you
should see your bot(s) in the "Paused" state.

Enter command:read escape sequence

Support for Mac M1 Host 204

AWS Wickr Bots and Integrations Guide

ubuntu@ip-172-31-25-75:~$ docker attach bot_test_prod
Enter command:
Enter command:list
Current list of clients:
Name Status Integration Version Events Misc
0 dev-test-bot Paused wickrio-compliance-bot 5.112.1 53
Enter command:

After you start the Docker image with the 5.116.13.01 version the CLI will show that your bot has a
needed upgrade available:

Welcome to the WickrIO Console program (v5.116.13.01)

Current list of clients:
Name Status Integration Version Events Misc
0 dev-test-bot Paused wickrio-compliance-bot 5.112.1 43 Needs Upgrade!

Please make sure you upgrade each of your bots to the latest version. The following is a sample
of what upgrading a compliance bot would look like. The software will be upgraded and you will
be prompted to enter the configuration information for the bot (previously configured values are
shown in the parenthesis).

FAQ

Question: Will my bots be running if I don't want to upgrade?

Answer: Your bots will continue to run if you do not upgrade to the 5.116.13.01 version. However,
we recommend upgrading to receive the latest security updates.

Question: If I run into problems with the 5.116.13.01 version can I downgrade my installation?

Answer: Yes you can. The process is very similar to how you upgraded to the 5.116.13.01 version.
Instead you will do the following:

• pause the bots running on the Docker instance

• start the older Docker image

• use the CLI's 'upgrade' command to install the version of the bot software on the older Docker
instance.

• start the bots

FAQ 205

	AWS Wickr
	Table of Contents
	What are AWS Wickr bots?
	AWS Wickr bot capabilities

	Setting up for Wickr IO
	Prerequisites
	Host machine and requirements
	Host OS specifications
	Host resource specifications
	Networking requirements
	Persistent Data

	Security Recommendations
	Installation
	Wickr IO Components
	Version 6.48 announcement

	Quick start
	Prerequisites
	Step 1: Create a bot user
	Step 2: Configure the host
	Step 3: Deploy and configure the Docker container
	Deploy an existing bot
	AWS Wickr managed Integrations
	BroadcastBot Integration
	Broadcast Bot Installation
	Requirements
	Configuration

	Broadcast Bot Enterprise Installation
	BroadcastBot Wickr Interface
	/start Command
	/send Command
	/map Command

	BroadcastBot Web Interface
	BroadcastBot REST API
	Get Security Groups API
	Broadcast a Message or File API
	Broadcasting Messages
	Broadcasting Files

	Get List of Messages Sent API
	Get Broadcast Summary API
	Get Broadcast Details API
	Abort Broadcast Message API
	Event Callbacks
	Set Event Callback URL API
	Get Event Callback URL API
	Delete Event Callback URL API

	Broadcastbot Message Send Failures

	Web Interface Integration
	REST API Configuration
	Authentication
	Web Interface Integration Installation
	Web Interface REST API
	Send Message APIs
	Sending a single message to multiple recipients
	Sending a message with Burn-on-Read
	Sending a message to a Secure Room

	Send File APIs
	Send Files Residing on the Wickr IO Client
	Send Files Referenced by a URL
	Send Files Passed in the REST API Request

	Received Message
	URL Callbacks

	Statistics APIs
	Get Statistics API
	Clear Statistics API

	Secure Room APIs
	Create Secure Room API
	Get Rooms API
	Get Secure Room API
	Delete Room API
	Leave Room API
	Modify Room API
	Group Conversation APIs
	Create Group Conversation API
	Get Group Conversations API
	Get Group Conversation API
	Delete Group Conversation API

	Sample integrations
	Wickr IO rekognition bot
	Prerequisites
	Deploy rekognition bot

	Wickr IO translation bot
	Prerequisites
	Deploy translation bot

	Wickr IO lex bot
	Prerequisites
	Deploy lex bot

	Develop a custom Wickr IO integration on AWS Wickr
	Integration setup
	Add a custom slash command
	Build
	Deploy
	Create a bot data directory
	Start the container

	Node.js Addon API
	Startup and Shutdown APIs
	Configuration API
	Statistics APIs
	Wickr Client APIs
	Secure Room Conversation APIs
	Group Conversation APIs
	Receive Message APIs
	Transmit Message Arguments
	Transmit Message APIs
	Network and Security Group Message APIs
	Message Status APIs
	Key-Value APIs

	Node.js Bot API (Development toolkit)
	Addon and Bot API Usage Examples
	API Initialization
	Sending message to a room
	Creating a room and sending an attachment
	Receive Asynchronous Messages
	API Shutdown

	Logging API
	Getting Started with the Logger
	Logger Configuration

	Python Bot Development
	Set up your Python app
	Send 1-to-1 Message
	Add Room
	Send Room message
	Get Statistics
	Delete Statistics
	Get Room
	Modify Room
	Add Group Convo
	Get Group Convos (All)
	Get Group Convo (One)
	Delete Group Convo (One)
	Get Message
	Set MsgRecvCallback
	Get MsgRecvCallback
	Delete MsgRecvCallback
	Complete Python Bot Example

	Automatic Configuration
	Secrets Manager Value
	Using Custom Integrations

	Definitions
	Wickr message formats
	Text message
	One-to-one messages
	Text messages with links
	Group and Room conversation messages

	File transfer messages
	One-to-one messages
	Group and Room conversation messages

	Calling messages
	Call in a room
	Adding user to a call
	Missed call
	Declined calls

	Location messages
	One-to-one messages
	Group and Room conversation messages

	Edit messages
	Edit content messages

	Edit reaction messages
	Wickr control messages
	Create room control message
	Modify room members control message
	Leave room control message
	Modify room parameters control message
	Delete room control message
	Delete message
	Modify private property

	Text message meta data
	Text message table meta data
	Text message button meta data

	Wickr IO Command Line Interface (CLI)
	General Commands
	Client Management Commands
	Integration Management Commands

	Wickr IO clients logging
	Wickr IO client provisioning logs
	Wickr IO client logs
	Wickr IO integration logs

	Wickr IO clients troubleshooting
	Setting up Wickr IO Docker container
	Provisioning Wickr IO client
	Start bot client failures
	Wickr IO command line interface
	Client and Integration compatibility issues
	Deploying custom Integrations
	Other issues
	Upgrading bots

	Release Notes
	Version 6.48 - Release Date: 04/14/2025
	Upgrade to Node 20
	Deprecate old integrations
	WickrIO Addon to use ZeroMq
	Bug Fix: Data Retention Bot failing to publish CloudWatch metrics

	Version 6.36.20.02 - Hotfix
	Fix Bug: The Edit message, delete message and reactions are not being captured

	Version 6.36.13.01
	Add ability to suspend bot devices
	Better logging for clientConfig.json bad JSON
	Fix Bug: Sending messages to invalid users could hang bot

	Version 6.34.05.01
	Support File Management feature message formats
	Bug Fix: Broadcast Bot security group selection failed
	Bug Fix: Bug fixes inherited from lower layer SDK

	Version 6.32.04.02
	Bug Fix: Airgap version contacting NPM Registry
	Bug Fix: Read receipts not working for Broadcast Bot
	Bug Fix: Registration failures
	Bug Fix: Read receipts never time out

	Version 6.24.06.02
	Bug Fix: Conversations not restored when creating new instance of bot
	Bug Fix: Downloading files in multi-domain environments
	Bug Fix: Handle files with long file names
	Feature to send events to AWS Amazon SNS Topic
	Created new API to set avatar for the bot client

	Version 6.18.19.02
	Continue using AWS Amazon ECR to host Docker images
	Two-way data retention support
	Data retention bots support additional user information

	Version 6.16.19.01
	Continue using AWS Amazon ECR to host Docker images
	Update image from Ubuntu 18.04 to Ubuntu 20.04
	Fix message send error issues
	Support for AWS Wickr Multi-Region
	Fix Broadcast bot not receiving messages from users
	More user-friendly bot startup failure indications
	Fix issue where bot startups more than 5 attempts will stop trying to start
	Update control message to indicate rooms with saved links and files

	Version 6.11.05.01
	Using AWS Amazon ECR to host Docker images
	Move from Forever process manager to WPM2
	Performance improvement for large broadcast
	Updating the Support email in all the bots
	Updated JSON timestamp
	Mutex Lock Enhancements

	Version 5.116.19.02
	Fix for Enterprise updated password not showing

	Version 5.116.18.01
	Fix for Missing Rooms
	Fix for upgrades from old bot versions
	Fix to address high CPU
	Fix for SAAS Data Retention Network Transmit Failures

	Version 5.116.13.01
	Support for Mac M1 Host
	Support for Node 16
	Custom Bots/Integrations

	Installation Process
	FAQ

