
AWS Whitepaper

Strategies for Migrating Oracle Databases
to AWS

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Strategies for Migrating Oracle Databases to AWS: AWS Whitepaper

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Table of Contents

.. v
Abstract and introduction .. i

Introduction ... 1
Data migration strategies ... 2

One-step migration .. 2
Two-step migration .. 2
Minimal downtime migration .. 3
Nearly continuous data replication ... 3

Tools used for Oracle Database migration .. 4
Creating a database on Amazon RDS, Amazon EC2, or VMware Cloud on AWS 5

Amazon RDS .. 5
Amazon EC2 ... 5

VMware Cloud on AWS .. 6
Data migration methods ... 7
Migrating data for small Oracle databases ... 9

Oracle SQL Developer database copy .. 9
Oracle materialized views .. 11
Oracle SQL*Loader ... 12

Option 1 .. 12
Option 2 .. 13

Oracle Export and Import utilities ... 16
Option 1 .. 17
Option 2 .. 17

Migrating data for large Oracle databases .. 18
Data migration using Oracle Data Pump .. 18

Migrating data to a database in Amazon EC2 .. 19
Migrating data to a database in Amazon RDS ... 19
Using Oracle Data Pump to export data on the source instance .. 19
Using Tsunami to upload files to Amazon EC2 .. 22
Next steps for a database on an Amazon EC2 instance ... 23
Next steps for a database on Amazon RDS .. 24
Transferring files to an Amazon RDS instance ... 25

Data migration using Oracle external tables ... 29
Data migration using Oracle RMAN ... 29

iii

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Creating a full backup of the source database Using RMAN ... 30
Transporting files to AWS ... 31
Migrating data to Oracle Database on AWS ... 31

Data replication using AWS Database Migration Service .. 32
Data replication using Oracle GoldenGate .. 34

Setting up Oracle GoldenGate Hub on Amazon EC2 ... 36
Setting up the source database for use with Oracle GoldenGate ... 39
Setting up the destination database for use with Oracle GoldenGate 40
Working with the Extract and Replicat utilities of Oracle GoldenGate 41

Running the Extract process of Oracle GoldenGate ... 41
Running the Replicat process of Oracle GoldenGate .. 42

Transferring files to AWS .. 44
AWS DataSync ... 44
AWS Storage Gateway .. 44
Amazon RDS integration with S3 ... 44
Tsunami UDP ... 45
AWS Snow Family .. 45

Conclusion .. 46
Contributors ... 47
Further reading .. 48
Document history .. 50
Notices .. 51
AWS Glossary ... 52

iv

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

This whitepaper is for historical reference only. Some content might be outdated and some links
might not be available.

v

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Strategies for Migrating Oracle Databases to AWS

Publication date: January 27, 2022 (Document history)

Amazon Web Services (AWS) provides a comprehensive set of services and tools for deploying
enterprise-grade solutions in a rapid, reliable, and cost-effective manner.

Oracle Database is a widely used relational database management system that is deployed in
enterprises of all sizes. It manages various forms of data in many phases of business transactions.
This whitepaper describes the preferred methods for migrating an Oracle Database to AWS, and
helps you choose the method that is best for your business.

Introduction

This whitepaper presents best practices and methods for migrating Oracle Database from servers
that are on-premises or in your data center to AWS. Data, unlike application binaries, cannot be
recreated or reinstalled, so you should carefully plan your data migration and base it on proven
best practices.

AWS offers its customers the flexibility of running Oracle Database on Amazon Relational Database
Service (Amazon RDS), the managed database service in the cloud, as well as Amazon Elastic
Compute Cloud (Amazon EC2):

• Amazon RDS makes it simple to set up, operate, and scale a relational database in the cloud. It
provides cost-efficient, resizable capacity for an open standard relational database, and manages
common database administration tasks.

• Amazon EC2 provides scalable computing capacity in the cloud. Using Amazon EC2 removes the
need to invest in hardware up front, so you can develop and deploy applications faster. You can
use Amazon EC2 to launch as many or as few virtual servers as you need, configure security and
networking, and manage storage.

Running the database on Amazon EC2 is very similar to running the database on your own servers.
Depending on whether you choose to run your Oracle Database on Amazon EC2 or Amazon RDS,
the process for data migration can differ. For example, users don’t have OS-level access in Amazon
RDS instances. It’s important to understand the different possible strategies, so you can choose the
one that best fits your needs.

Introduction 1

https://www.oracle.com/database/
https://www.oracle.com/database/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Data migration strategies

The migration strategy you choose depends on several factors:

• The size of the database

• Network connectivity between the source server and AWS

• The version and edition of your Oracle Database software

• The database options, tools, and utilities that are available

• The amount of time that is available for migration

• Whether the migration and switchover to AWS will be done in one step or a sequence of steps
over time

The following sections describe some common migration strategies.

One-step migration

One-step migration is a good option for small databases that can be shut down for 24 to 72 hours.
During the shut down period, all the data from the source database is extracted, and the extracted
data is migrated to the destination database in AWS. The destination database in AWS is tested and
validated for data consistency with the source. Once all validations have passed, the database is
switched over to AWS.

Two-step migration

Two-step migration is a commonly used method because it requires only minimal downtime and
can be used for databases of any size:

1. The data is extracted from the source database at a point in time (preferably during non-peak
usage) and migrated while the database is still up and running. Because there is no downtime
at this point, the migration window can be sufficiently large. After you complete the data
migration, you can validate the data in the destination database for consistency with the source
and test the destination database on AWS for performance, connectivity to the applications, and
any other criteria as needed.

2. Data changed in the source database after the initial data migration is propagated to the
destination before switchover. This step synchronizes the source and destination databases. This

One-step migration 2

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

should be scheduled for a time when the database can be shut down (usually over a few hours
late at night on a weekend). During this process, there won’t be any more changes to the source
database because it will be unavailable to the applications.

Normally, the amount of data that is changed after the first step is small compared to the total
size of the database, so this step will be quick and requires only minimal downtime. After all
the changed data is migrated, you can validate the data in the destination database, perform
necessary tests, and, if all tests are passed, switch over to the database in AWS.

Minimal downtime migration

Some business situations require database migration with little to no downtime. This requires
detailed planning and the necessary data replication tools for proper completion.

These migration methodologies typically involve two components: an initial bulk extract/load,
followed by the application of any changes that occurred during the time the bulk step took to run.
After the changes have applied, you should validate the migrated data and conduct any necessary
testing.

The replication process synchronizes the destination database with the source database, and
continues to replicate all data changes at the source to the destination.

Synchronous replication can have an effect on the performance of the source database, so if a
few minutes of downtime for the database is acceptable, then you should set up asynchronous
replication instead. You can switch over to the database in AWS at any time, because the source
and destination databases will always be in sync.

There are a number of tools available to help with minimal downtime migration. The AWS
Database Migration Service (AWS DMS) supports a range of database engines, including Oracle
running on-premises, in EC2, or on RDS. Oracle GoldenGate is another option for real-time data
replication. There are also third-party tools available to do the replication.

Nearly continuous data replication

You can use nearly continuous data replication if the destination database in AWS is used as a clone
for reporting and business intelligence (BI), or for disaster recovery (DR) purposes. In this case, the
process is exactly the same as minimal downtime migration, except that there is no switchover and
the replication never stops.

Minimal downtime migration 3

https://aws.amazon.com/dms/
https://aws.amazon.com/dms/
https://www.oracle.com/integration/goldengate/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Tools used for Oracle Database migration

A number of tools and technologies are available for data migration. You can use some of these
tools interchangeably, or you can use other third-party tools or open-source tools available in the
market.

• AWS DMS helps you move databases to and from AWS easily and securely. It supports most
commercial and open-source databases, and facilitates both homogeneous and heterogeneous
migrations. AWS DMS offers change data capture technology to keep databases in sync and
minimize downtime during a migration. It is a managed service with no client install required.

• Oracle Recovery Manager (RMAN) is a tool available from Oracle for performing and managing
Oracle Database backups and restorations. RMAN allows full hot or cold backups, plus
incremental backups. RMAN maintains a catalogue of the backups, making the restoration
process simple and dependable. RMAN can also duplicate, or clone, a database from a backup or
from an active database.

• Oracle Data Pump Export is a versatile utility for exporting and importing data and metadata
from or to Oracle databases. You can perform Data Pump export/import on an entire database,
selective schemas, table spaces, or database objects. Data Pump export/import also has
powerful data-filtering capabilities for selective export or import of data.

• Oracle GoldenGate is a tool for replicating data between a source and one or more destination
databases. You can use it to build high-availability architectures. You can also use it to perform
real-time data integration, transactional change data capture, and replication in heterogeneous
IT environments.

• Oracle SQL Developer is a no-cost GUI tool available from Oracle for data manipulation,
development, and management. This Java-based tool is available for Microsoft Windows, Linux,
or iOS X.

• Oracle SQL*Loader is a bulk data-load utility available from Oracle for loading data from
external files into a database. SQL*Loader is included as part of the full database client
installation.

4

https://aws.amazon.com/dms/
https://en.wikipedia.org/wiki/Change_data_capture
https://www.oracle.com/database/technologies/high-availability/rman.html
https://docs.oracle.com/cd/B28359_01/server.111/b28319/dp_export.htm#g1022624
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Creating a database on Amazon RDS, Amazon EC2, or
VMware Cloud on AWS

To migrate your data to AWS, you need a source database (either on-premises or in a data center)
and a destination database in AWS. Based on your business needs, you can choose between using
Amazon RDS for Oracle, or installing and managing the database on your own in Amazon EC2
instance. To help you choose the service that’s best for your business, see the following sections.

Amazon RDS

Many customers prefer Amazon RDS for Oracle because it frees them to focus on application
development. Amazon RDS automates time-consuming database administration tasks, including
provisioning, backups, software patching, monitoring, and hardware scaling. Amazon RDS
simplifies the task of running a database by eliminating the need to plan and provision the
infrastructure, as well as install, configure, and maintain the database software.

Amazon RDS for Oracle makes it easy to use replication to enhance availability and reliability for
production workloads. By using the Multi-Availability Zone (AZ) deployment option, you can run
mission-critical workloads with high availability and built-in automated failover from your primary
database to a synchronously replicated secondary database. As with all AWS services, no upfront
investments are required, and you pay only for the resources you use. For more information, see
Amazon RDS for Oracle.

To use Amazon RDS, log in to your AWS account and start an Amazon RDS Oracle instance from
the AWS Management Console. A good strategy is to treat this as an interim migration database
from which the final database will be created. Do not enable the Multi-AZ feature until the
data migration is completely done, because replication for Multi-AZ will hinder data migration
performance. Be sure to give the instance enough space to store the import data files. Typically,
this requires you to provision twice as much capacity as the size of the database.

Amazon EC2

Alternatively, you can run an Oracle database directly on Amazon EC2, which gives you full control
over setup of the entire infrastructure and database environment. This option provides a familiar
approach, but also requires you to set up, configure, manage, and tune all the components, such as
Amazon EC2 instances, networking, storage volumes, scalability, and security, as needed (based on

Amazon RDS 5

https://aws.amazon.com/rds/oracle/
https://aws.amazon.com/console/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

AWS architecture best practices). For more information, see the Advanced Architectures for Oracle
Database on Amazon EC2 whitepaper for guidance about the appropriate architecture to choose,
and for installation and configuration instructions.

VMware Cloud on AWS

VMware Cloud on AWS is the preferred service for AWS for all vSphere-based workloads. VMware
Cloud on AWS brings the VMware software designed data center (SDDC) software to the AWS
Cloud with optimized access to native AWS services. If your Oracle workload runs on VMware on-
premises, you can easily migrate the Oracle workloads to the AWS Cloud using VMware Cloud on
AWS.

VMware Cloud on AWS has the capability to run Oracle Real Application Clusters (RAC) workloads.
It allows multi-cast protocols, and provides shared storage capability across VMs running in
VMware Cloud on AWS SDDC. VMware provides native migration capabilities such as VMware
VMotion and VMware HCX to move virtual machines (VMs) from on-premises to the VMware Cloud
on AWS. Depending on Oracle workload performance patterns, service-level agreement (SLA), and
the bandwidth availability, you can choose to migrate the VM either live or using cold migration
methods.

VMware Cloud on AWS 6

https://d1.awsstatic.com/whitepapers/aws-advanced-architectures-for-oracle-db-on-ec2.pdf
https://d1.awsstatic.com/whitepapers/aws-advanced-architectures-for-oracle-db-on-ec2.pdf
https://www.vmware.com/products/vmc-on-aws.html
https://www.oracle.com/database/real-application-clusters/
https://www.vmware.com/products/hcx.html

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Data migration methods

The remainder of this whitepaper provides details about each method for migrating data from
Oracle Database to AWS. Before you get to the details, you can scan the following table for a quick
summary of each method.

Each method depends upon business recovery point objective (RPO), recovery time objective
(RTO), and overall availability SLA. Migration administrators must evaluate and map these business
agreements with the appropriate methods. Choose the method depending upon your application
SLA, RTO, RPO, tool, and license availability.

Table 1 – Migration methods and tools

Data migration
method

Database size Works for: Recommended for:

AWS Database
Migration Service

Any size Amazon RDS

Amazon EC2

Minimal downtime
migration

Database size
limited by internet
bandwidth

Oracle SQL Developer

Database copy

Up to 200 MB Amazon RDS

Amazon EC2

Small databases
with any number of
objects

Oracle Materialized
Views

Up to 500 MB Amazon RDS

Amazon EC2

Small databases with
limited number of
objects

Oracle SQL*Loader Up to 10 GB Amazon RDS

Amazon EC2

Small to medium
size databases with
limited number of
objects

7

https://aws.amazon.com/dms/
https://aws.amazon.com/dms/
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html
https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r31/DatabaseCopy/DatabaseCopy.html
https://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96567/repmview.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14215/part_ldr.htm

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Data migration
method

Database size Works for: Recommended for:

Oracle Export and
Import

Oracle Utilities

Up to 10 GB Amazon RDS

Amazon EC2

Small to medium size
databases with large
number of objects

Oracle Data Pump Up to 5 TB Amazon RDS

Amazon EC2

VMware Cloud on
AWS

Preferred method for
any database from 10
GB to 5 TB

External tables Up to 1 TB Amazon RDS

Amazon EC2

VMware Cloud on
AWS

Scenarios where
this is the standard
method in use

Oracle RMAN Any size Amazon EC2

VMware Cloud on
AWS

Databases over 5 TB,
or if database backup
is already in Amazon
Simple Storage
Service (Amazon S3)

Oracle GoldenGate Any size Amazon RDS

Amazon EC2

VMware Cloud on
AWS

Minimal downtime
migration

8

https://docs.oracle.com/cd/B10501_01/server.920/a96652/part1.htm
https://docs.oracle.com/cd/B10501_01/server.920/a96652/part1.htm
https://www.oracle.com/industries/utilities/
https://docs.oracle.com/cd/B19306_01/server.102/b14215/dp_overview.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14215/et_concepts.htm
https://www.oracle.com/database/technologies/high-availability/rman.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.oracle.com/integration/goldengate/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Migrating data for small Oracle databases

You should base your strategy for data migration on the database size, reliability, and bandwidth
of your network connection to AWS, and the amount of time available for migration. Many Oracle
databases tend to be medium to large in size, ranging anywhere from 10 GB to 5 TB, with some
as large as 20 TB or more. However, you also might need to migrate smaller databases. This is
especially true for phased migrations where the databases are broken up by schema, making each
migration effort small in size.

If the source database is under 10 GB, and if you have a reliable high-speed internet connection,
you can use one of the following methods for your data migration. All the methods discussed in
this section work with Amazon RDS Oracle or Oracle Database running on Amazon EC2.

Note

The 10 GB size is just a guideline; you can use the same methods for larger databases
as well. The migration time varies based on the data size and the network throughput.
However, if your database size exceeds 50 GB, you should use one of the methods listed in
the Migrating data for large Oracle databases section in this whitepaper.

Topics

• Oracle SQL Developer database copy

• Oracle materialized views

• Oracle SQL*Loader

• Oracle Export and Import utilities

Oracle SQL Developer database copy

If the total size of the data you are migrating is under 200 MB, the simplest solution is to use
the Oracle SQL Developer Database Copy function. Oracle SQL Developer is a no- cost GUI tool
available from Oracle for data manipulation, development, and management. This easy-to-
use, Java-based tool is available for Microsoft Windows, Linux, or Mac OS X. With this method,
data transfer from a source database to a destination database is done directly, without any
intermediary steps.

Oracle SQL Developer database copy 9

https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Because SQL Developer can handle a large number of objects, it can comfortably migrate small
databases, even if the database contains numerous objects. You will need a reliable network
connection between the source database and the destination database to use this method. Keep in
mind that this method does not encrypt data during transfer.

To migrate a database using the Oracle SQL Developer Database Copy function, perform the
following steps:

1. Install Oracle SQL Developer.

2. Connect to your source and destination databases.

3. From the Tools menu of Oracle SQL Developer, choose the Database Copy command to copy
your data to your Amazon RDS or Amazon EC2 instance.

4. Follow the steps in the Database Copy Wizard. You can choose the objects you want to migrate
and use filters to limit the data.

The following screenshot shows the Database Copy Wizard.

Oracle SQL Developer database copy 10

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

The Database Copy Wizard in the Oracle SQL Developer guides you through your data transfer

Oracle materialized views

You can use Oracle Database materialized views to migrate data to Oracle databases on AWS, for
either Amazon RDS or Amazon EC2. This method is well suited for databases under 500 MB.

Because materialized views are available only in Oracle Database Enterprise Edition, this method
works only if Oracle Database Enterprise Edition is used for both the source database and the
destination database. With materialized view replication, you can do a one-time migration of data
to AWS while keeping the destination tables continuously in sync with the source. The result is
a minimal downtime cut over. Replication occurs over a database link between the source and
destination databases. For the initial load, you must do a full refresh so that all the data in the
source tables gets moved to the destination tables.

Important

Because the data is transferred over a database link, the source and destination databases
must be able to connect to each other over SQL*Net. If your network security design
doesn’t allow such a connection, then you cannot use this method.

Unlike the preceding method (the Oracle SQL Developer Database Copy function) in which you
copy an entire database, for this method you must create a materialized view for each table that
you want to migrate. This gives you the flexibility of selectively moving tables to the database in
AWS. However, it also makes the process more cumbersome if you need to migrate a large number
of tables. For this reason, this method is better suited for migrating a limited number of tables.

For best results with this method, complete the following steps. Assume the source database user
ID is SourceUser with password PASS:

1. Create a new user in the Amazon RDS or Amazon EC2 database with sufficient privileges.

 Create user MV_DBLink_AWSUser identified by password

2. Create a database link to the source database.

CREATE DATABASE LINK SourceDB_lnk CONNECT TO SourceUser

Oracle materialized views 11

https://docs.oracle.com/cd/E11882_01/server.112/e25554/basicmv.htm#DWHSG008

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

IDENTIFIED BY PASS USING
'(description=(address=(protocol=tcp) (host= crmdb.acmecorp.com)
(port=1521)) (connect_data=(sid=ORCLCRM)))’

3. Test the database link to make sure you can access the tables in the source database from the
database in AWS through the database link.

 Select * from tab@ SourceDB_lnk

4. Log in to the source database and create a materialized view log for each table that you want to
migrate.

 CREATE MATERIALIZED VIEW LOG ON customers

5. In the destination database in AWS, create materialized views for each table for which you set up
a materialized view log in the source database.

CREATE MATERIALIZED VIEW customer BUILD IMMEDIATE REFRESH
FAST AS SELECT * FROM customer@ SourceDB_lnk

Oracle SQL*Loader

Oracle SQL*Loader is well suited for small to moderate databases under 10 GB that contain a
limited number of objects. Because the process involved in exporting from a source database
and loading to a destination database is specific to a schema, you should use this process for one
schema at a time. If the database contains multiple schemas, you need to repeat the process for
each schema. This method can be a good choice even if the total database size is large, because
you can do the import in multiple phases (one schema at a time).

You can use this method for Oracle Database on either Amazon RDS or Amazon EC2, and you can
choose between the following two options:

Option 1

1. Extract data from the source database, such as into flat files with column and row delimiters.

2. Create tables in the destination database exactly like the source (use a generated script).

3. Using SQL*Loader, connect to the destination database from the source machine and import the
data.

Oracle SQL*Loader 12

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Option 2

1. Extract data from the source database, such as into flat files with column and row delimiters.

2. Compress and encrypt the files.

3. Launch an Amazon EC2 instance, and install the full Oracle client on it (for SQL*Loader). For
the database on Amazon EC2, this can be the same instance where the destination database is
located. For Amazon RDS, this is a temporary instance.

4. Transport the files to the Amazon EC2 instance.

5. Decompress and unencrypt files in the Amazon EC2 instance.

6. Create tables in the destination database exactly like the source (use a generated script).

7. Using SQL*Loader, connect to the destination database from the temporary Amazon EC2
instance and import the data.

Use the first option if your database size is small, if you have direct SQL*Net access to the
destination database in AWS, and if data security is not a concern. Otherwise, use the second
option, because you can use encryption and compression during the transportation phase.
Compression substantially reduces the size of the files, making data transportation much faster.

You can use either SQL*Plus or SQL Developer to perform data extraction, which is the first step in
both options. For SQL*Plus, use a query in a SQL script file and send the output directly to a text
file, as shown in the following example:

set pagesize 0
set head off
set feed off
set line 200

SELECT col1|| '|' ||col2|| '|' ||col3|| '|' ||col4|| '|'
||col5 from SCHEMA.TABLE;
exit;

To create encrypted and compressed output in the second option (see step 2 of the preceding
Option 2 procedure), you can directly pipe the output to a zip utility.

You can also extract data by using Oracle SQL Developer:

1. In the Connections pane, select the tables you want to extract data from.

Option 2 13

https://docs.oracle.com/cd/B19306_01/server.102/b14357/qstart.htm
https://www.oracle.com/database/technologies/appdev/sqldeveloper-landing.html

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

2. From the Tools menu, choose the Database Export command, as shown in the following
screenshot.

Database export command

3. On the Source/Destination page of the Export Wizard (see the next screenshot), select the
Export DDL option to generate the script for creating the table, which will simplify the entire
process.

4. In the Format drop-down on the same page, choose loader.

Option 2 14

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

5. In the Save As box on the same page, choose Separate Files.

Export Wizard options on the Source/Destination page

Continue to follow the Export Wizard steps to complete the export. The Export Wizard helps
you create the data file, control file, and table creation script in one step for multiple tables in a
schema, making it easier than using Oracle SQL*Plus to do the same tasks.

If you use Option 1 as specified, you can run Oracle SQL*Loader from the source environment using
the extracted data and control files to import data into the destination database. To do this, use
the following command:

sqlldr userid=userID/password@$service control=control.ctl
 log=load.log bad=load.bad discard=load.dsc data=load.dat direct=y
 skip_index_maintenance=true errors=0

Option 2 15

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

If you use Option 2, then you need an Amazon EC2 instance with the full Oracle client installed.
Additionally, you need to upload the data files to that Amazon EC2 instance. For the database
on Amazon EC2, this could be the same Amazon EC2 instance where the destination database is
located. For Amazon RDS, this will be a temporary Amazon EC2 instance.

Before you do the upload, we recommend that you compress and encrypt your files. To do this, you
can use a combination of TAR and ZIP/GZIP in Linux or a third-party utility such as WinZip or 7-
Zip. After the Amazon EC2 instance is up and running and the files are compressed and encrypted,
upload the files to the Amazon EC2 instance using Secure File Transfer Protocol (SFTP).

From the Amazon EC2 instance, connect to the destination database using Oracle SQL*Plus to
ensure you can establish the connection. Run the sqlldr command shown in the preceding
example for each control file that you have from the extract. You can also create a shell/bat script
that will run sqlldr for all control files, one after the other.

Note

Enabling skip_index_maintenance=true significantly increases data-load
performance. However, table indexes are not updated, so you will need to rebuild all
indexes after the data load is complete.

Oracle Export and Import utilities

Despite being replaced by Oracle Data Pump, the original Oracle Export and Import utilities are
useful for migrations of databases with sizes less than 10 GB where the data lacks binary float and
double data types. The import process creates the schema objects, so you do not need to run a
script to create them beforehand. This makes the process well suited for databases with a large
number of small tables. You can use this method for Amazon RDS for Oracle and Oracle Database
on Amazon EC2.

The first step is to export the tables from the source database by using the following command.
Substitute the credentials as appropriate:

 exp userID/password@$service FILE=exp_file.dmp LOG=exp_file.log

The export process creates a binary dump file that contains both the schema and data for the
specified tables. You can import the schema and data into a destination database.

Oracle Export and Import utilities 16

https://www.gnu.org/software/tar/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Choose one of the following two options for the next steps:

Option 1

1. Export data from the source database into a binary dump file using exp.

2. Import the data into the destination database by running imp directly from the source server.

Option 2

1. Export data from the source database into a binary dump file using exp.

2. Compress and encrypt the files.

3. Launch an Amazon EC2 instance and install the full Oracle client on it (for the emp/imp utility).
For the database on Amazon EC2, this could be the same instance where the destination
database is located. For Amazon RDS, this will be a temporary instance.

4. Transport the files to the Amazon EC2 instance.

5. Decompress and unencrypt the files in the Amazon EC2 instance.

6. Import the data into the destination database by running imp.

If your database size is larger than a gigabyte, use Option 2, because it includes compression and
encryption. This method will also have better import performance.

For both Option 1 and Option 2, use the following command to import into the destination
database:

imp userID/password@$service FROMUSER=cust_schema
TOUSER=cust_schema FILE=exp_file.dmp LOG=imp_file.log

There are many optional arguments that can be passed to the exp and imp commands based on
your needs. For details, see the Oracle documentation.

Option 1 17

https://docs.oracle.com/cd/E11882_01/server.112/e22490/original_import.htm#SUTIL1637

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Migrating data for large Oracle databases

For larger databases, use one of the methods described in this section rather than one of
the methods described in Migrating Data for small Oracle Databases. For the purpose of this
whitepaper, define a large database as any database 10 GB or more.

This section describes three methods for migrating large databases:

• Data migration using Oracle Data Pump – Oracle Data Pump is an excellent tool for migrating
large amounts of data, and it can be used with databases on either Amazon RDS or Amazon EC2.

• Data migration using Oracle external tables – The process involved in data migration using
Oracle external tables is very similar to that of Oracle Data Pump. Use this method if you already
have processes built around it; otherwise, it is better to use the Oracle Data Pump method.

• Data migration using Oracle RMAN – Migration using RMAN can be useful if you are already
backing up the database to AWS, or using the AWS Import/Export service to bring the data to
AWS. Oracle RMAN can be used only for databases on Amazon EC2, not Amazon RDS.

Data migration using Oracle Data Pump

When the size of the data to be migrated exceeds 10 GB, Oracle Data Pump is probably the best
tool to use for migrating data to AWS. This method allows flexible data- extraction options, a
high degree of parallelism, and scalable operations, which enables high-speed movement of data
and metadata from one database to another. Oracle Data Pump is introduced with Oracle 10g as
a replacement for the original Import/Export tools. It is available only on Oracle Database 10g
Release 1 or later.

You can use the Oracle Data Pump method for both Amazon RDS for Oracle, and Oracle Database
running on Amazon EC2. The process involved is similar for both, although Amazon RDS for Oracle
requires a few additional steps.

Unlike the original Import/Export utilities, the Oracle Data Pump import requires the data files to
be available in the database-server instance to import them into the database.

You cannot access the file system in the Amazon RDS instance directly, so you need to use one or
more Amazon EC2 instances (bridge instances) to transfer files from the source to the Amazon
RDS instance, and then import that into the Amazon RDS database. You need these temporary

Data migration using Oracle Data Pump 18

https://docs.oracle.com/cd/B19306_01/server.102/b14215/dp_overview.htm

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Amazon EC2 bridge instances only for the duration of the import; you can end the instances soon
after the import is done. Use Amazon Linux-based instances for this purpose. You do not need an
Oracle Database installation for an Amazon EC2 bridge instance; you only need to install the Oracle
Instance Client.

Note

To use this method, your Amazon RDS database must be version 11.2.0.3 or later.

The following is the overall process for data migration using Oracle Data Pump for Oracle Database
on Oracle for Amazon EC2 and Amazon RDS.

Migrating data to a database in Amazon EC2

1. Use Oracle Data Pump to export data from the source database as multiple compressed and
encrypted files.

2. Use Tsunami UDP to move the files to an Amazon EC2 instance running the destination Oracle
database in AWS.

3. Import that data into the destination database using the Oracle Data Pump import feature.

Migrating data to a database in Amazon RDS

1. Use Oracle Data Pump to export data from the source database as multiple files.

2. Use Tsunami UDP to move the files to Amazon EC2 bridge instances in AWS.

3. Using the provided Perl script that makes use of the UTL_FILE package, move the data files to
the Amazon RDS instance.

4. Import the data into the Amazon RDS database using a PL/SQL script that utilizes the
DBMS_DATAPUMP package (an example is provided at the end of this section).

Using Oracle Data Pump to export data on the source instance

When you export data from a large database, you should run multiple threads in parallel and
specify a size for each file. This speeds up the export, and also makes files available quickly for the
next step of the process. There is no need to wait for the entire database to be exported before
moving to the next step.

Migrating data to a database in Amazon EC2 19

http://tsunami-udp.sourceforge.net/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

As each file completes, it can be moved to the next step. You can enable compression by using the
parameter COMPRESSION=ALL, which substantially reduces the size of the extract files. You can
encrypt files by providing a password, or by using an Oracle wallet and specifying the parameter
ENCRYPTION=all. To learn more about the compression and encryption options, see the Oracle
Data Pump documentation.

The following example shows the export of a 500 GB database, running eight threads in parallel,
with each output file up to a maximum of 20 GB. This creates 22 files totaling 175 GB. The total
file size is significantly smaller than the actual source database size because of the compression
option of Oracle Data Pump:

expdp demoreinv/demo full=y dumpfile=data_pump_exp1:reinvexp1%U.dmp,
 data_pump_exp2:reinvexp2%U.dmp,
data_pump_exp3:reinvexp3%U.dmp filesize=20G parallel=8
 logfile=data_pump_exp1:reinvexpdp.log compression=all
ENCRYPTION= all ENCRYPTION_PASSWORD=encryption_password job_name=reInvExp

Using Oracle Data Pump to export data from the source database instance

Spreading the output files across different disks enhances input/output (I/O) performance. In the
following examples, three different disks are used to avoid I/O contention.

Using Oracle Data Pump to export data on the source instance 20

https://docs.oracle.com/cd/E11882_01/server.112/e22490/part_dp.htm
https://docs.oracle.com/cd/E11882_01/server.112/e22490/part_dp.htm

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Parallel run in multiple threads writing to three different disks

Using Oracle Data Pump to export data on the source instance 21

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Dump files generated in each disk

The most time-consuming part of this entire process is the file transportation to AWS, so
optimizing the file transport significantly reduces the time required for the data migration. The
following steps show how to optimize the file transport:

1. Compress the dump files during the export.

2. Serialize the file transport in parallel. Serialization here means sending the files one after
the other; you don’t need to wait for the export to finish before uploading the files to AWS.
Uploading many of these files in parallel (if enough bandwidth is available) further improves
the performance. We recommend that you parallel upload as many files as there are disks being
used, and use the same number of Amazon EC2 bridge instances to receive those files in AWS.

3. Use Tsunami UDP or a commercial wide area network (WAN) accelerator to upload the data files
to the Amazon EC2 instances.

Using Tsunami to upload files to Amazon EC2

The following example shows how to install Tsunami on both the source database server and the
Amazon EC2 instance:

yum -y install make

yum -y install automake
 yum -y install gcc

yum -y install autoconf
yum -y install cvs

 wget http://sourceforge.net/projects/tsunami-udp/files/latest/download

 tar -xzf tsunami*gz

 cd tsunami-udp*

./recompile.sh
make install

Using Tsunami to upload files to Amazon EC2 22

http://tsunami-udp.sourceforge.net/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

After you’ve installed Tsunami, open port 46224 to enable Tsunami communication. On the source
database server, start a Tsunami server, as shown in the following example. If you do parallel
upload, then you need to start multiple Tsunami servers:

cd/mnt/expdisk1
 tsunamid *

On the destination Amazon EC2 instances, start a Tsunami server, as shown in the following
example.

If you do multiple parallel file uploads, then you need to start a Tsunami server on each Amazon
EC2 bridge instance.

If you do not use parallel file uploads, and if the migration is to an Oracle database on Amazon EC2
(not Amazon RDS), then you can avoid the Amazon EC2 bridge instance. Instead, you can upload
the files directly to the Amazon EC2 instance where the database is running. If the destination
database is Amazon RDS for Oracle, then the bridge instances are necessary because a Tsunami
server cannot be run on the Amazon RDS server:

cd /mnt/data_files
tsunami
tsunami> connect source.db.server
 tsunami> get *

From this point forward, the process differs for a database on Amazon EC2 versus a database on
Amazon RDS. The following sections show the processes for each service.

Next steps for a database on an Amazon EC2 instance

If you used one or more Amazon EC2 bridge instances in the preceding steps, then bring all the
dump files from the Amazon EC2 bridge instances into the Amazon EC2 database instance. The
easiest way to do this is to detach the Amazon Elastic Block Store (Amazon EBS) volumes that
contain the files from the Amazon EC2 bridge instances, and connect them to the Amazon EC2
database instance.

Once all the dump files are available in the Amazon EC2 database instance, use the Oracle Data
Pump import feature to get the data into the destination Oracle database on Amazon EC2, as
shown in the following example:

impdp demoreinv/demo full=y DIRECTORY=DPUMP_DIR

Next steps for a database on an Amazon EC2 instance 23

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

dumpfile= reinvexp1%U.dmp,reinvexp2%U.dmp, reinvexp3%U.dmp
parallel=8 logfile=DPimp.log ENCRYPTION_PASSWORD=encryption_password
job_name=DPImp

This imports all data into the database. Check the log file to make sure everything went well, and
validate the data to confirm that all the data was migrated as expected.

Next steps for a database on Amazon RDS

Because Amazon RDS is a managed service, the Amazon RDS instance does not provide access
to the file system. However, an Oracle RDS instance has an externally accessible Oracle directory
object named DATA_PUMP_DIR. You can copy Oracle Data Pump dump files to this directory by
using an Oracle UTL_FILE package.

Amazon. RDS supports Amazon S3 integration as well. You could transfer files between
the S3 bucket and Amazon RDS instance through S3 integration of RDS. The S3 integration
option is recommended when you want to transfer moderately large files to the RDS instance
dba_directories. Alternatively, you can use a Perl script to move the files from the bridge
instances to the DATA_PUMP_DIR of the Amazon RDS instance.

Preparing a bridge Instance

To prepare a bridge instance, make sure that Oracle Instant Client, Perl DBI, and Oracle DBD
modules are installed so that Perl can connect to the database. You can use the following
commands to verify if the modules are installed:

$perl -e 'use DBI; print $DBI::VERSION,"\n";'

$perl -e 'use DBD::Oracle; print
$DBD::Oracle::VERSION,"\n";'

If the modules are not already installed, use the following process below to install them before
proceeding further:

1. Download Oracle Database Instant Client from the Oracle website and unzip it into
ORACLE_HOME.

2. Set up the environment variable, as shown in the following example:

$ export ORACLE_BASE=$HOME/oracle

Next steps for a database on Amazon RDS 24

https://www.perl.org/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

$ export ORACLE_HOME=$ORACLE_BASE/instantclient_11_2

$ export PATH=$ORACLE_HOME:$PATH

$ export TNS_ADMIN=$HOME/etc

$ export LD_LIBRARY_PATH=$ORACLE_HOME:$LD_LIBRARY_PATH

3. Download and unzip DBD::Oracle, as shown in the following example:

$ wget http://www.cpan.org/authors/id/P/PY/PYTHIAN/DBD-Oracle-1.74.tar.gz

$ tar xzf DBD-Oracle-1.74.tar.gz

$ cd DBD-Oracle-1.74

4. Install DBD::Oracle, as shown in the following example:

$ mkdir $ORACLE_HOME/log

$ perl Makefile.PL

$ make

$ make install

Transferring files to an Amazon RDS instance

To transfer files to an Amazon RDS instance, you need an Amazon RDS instance with at least twice
as much storage as the actual database, because it needs to have space for the database and the
Oracle Data Pump dump files. After the import is successfully completed, you can delete the dump
files so that space can be utilized.

It might be a better approach to use an Amazon RDS instance solely for data migration. Once
the data is fully imported, take a snapshot of RDS DB. Create a new Amazon RDS instance using
the snapshot and then decommission the data migration instance. Use a single Availability Zone
instance for data migration.

The following example shows a basic Perl script to transfer files to an Amazon RDS instance. Make
changes as necessary. Because this script runs in a single thread, it uses only a small portion of

Transferring files to an Amazon RDS instance 25

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

the network bandwidth. You can run multiple instances of the script in parallel for a quicker file
transfer to the Amazon RDS instance, but make sure to load only one file per process so that there
won’t be any overwriting and data corruption. If you have used multiple bridge instances, you can
run this script from all of the bridge instances in parallel, thereby expediting file transfer into the
Amazon RDS instance:

RDS instance info

my $RDS_PORT=4080;
my $RDS_HOST="myrdshost.xxx.us-east-1-devo.rds-
dev.amazonaws.com";

my $RDS_LOGIN="orauser/orapwd";
my $RDS_SID="myoradb";

my $dirname = "DATA_PUMP_DIR";
my $fname= $ARGV[0];

my $data = ‘‘dummy’’;
my $chunk = 8192;

my $sql_open = "BEGIN perl_global.fh :=
utl_file.fopen(:dirname, :fname, 'wb', :chunk); END;";
my $sql_write = "BEGIN utl_file.put_raw(perl_global.fh,

:data, true); END;";

my $sql_close = "BEGIN utl_file.fclose(perl_global.fh);
END;";

my $sql_global = "create or replace package perl_global as
fh utl_file.file_type; end;";

my $conn =
DBI-

>connect('dbi:Oracle:host='.$RDS_HOST.';sid='.$RDS_SID.';por t='.$RDS_PORT,$RDS_LOGIN,
 '') || die ($DBI::errstr . "\n")

;

my $updated=$conn->do($sql_global);

Transferring files to an Amazon RDS instance 26

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

my $stmt = $conn->prepare ($sql_open);

$stmt->bind_param_inout(":dirname", \$dirname, 12);

$stmt->bind_param_inout(":fname", \$fname, 12);

$stmt->bind_param_inout(":chunk", \$chunk, 4);

$stmt->execute() || die ($DBI::errstr . "\n");

open (INF, $fname) || die "\nCan't open $fname for reading:

$!\n";
binmode(INF);

$stmt = $conn->prepare ($sql_write);
my %attrib = ('ora_type’,’24’);

my $val=1;

while ($val > 0) {

 $val = read (INF, $data, $chunk);

 $stmt->bind_param(":data", $data , \%attrib);

 $stmt->execute() || die ($DBI::errstr . "\n"); };
die "Problem copying: $!\n" if $!;

close INF || die "Can't close $fname: $!\n";

$stmt = $conn->prepare ($sql_close);

$stmt->execute() || die ($DBI::errstr . "\n");

You can check the list of files in the DBMS_DATAPUMP directory using the following query:

SELECT * from
table(RDSADMIN.RDS_FILE_UTIL.LISTDIR('DATA_PUMP_DIR'));

Once all files are successfully transferred to the Amazon RDS instance, connect to the Amazon RDS
database as a database administrator (DBA) user and submit a job by using a PL/SQL script that

Transferring files to an Amazon RDS instance 27

https://www.oracle.com/database/technologies/appdev/plsql.html

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

uses DBMS_DATAPUMP to import the files into the database, as shown in the following PL/SQL
script. Make any changes as necessary:

Declare

 h1 NUMBER;

begin

h1 := dbms_datapump.open (operation => 'IMPORT', job_mode

=> 'FULL', job_name => 'REINVIMP', version => 'COMPATIBLE');

 dbms_datapump.set_parallel(handle => h1, degree => 8);
 dbms_datapump.add_file(handle => h1, filename =>

'IMPORT.LOG', directory => 'DATA_PUMP_DIR', filetype => 3);
 dbms_datapump.set_parameter(handle => h1, name =>

'KEEP_MASTER', value => 0);

 dbms_datapump.add_file(handle => h1, filename =>
'reinvexp1%U.dmp', directory => 'DATA_PUMP_DIR', filetype =>
1);

 dbms_datapump.add_file(handle => h1, filename =>
'reinvexp2%U.dmp', directory => 'DATA_PUMP_DIR', filetype =>
1);

 dbms_datapump.add_file(handle => h1, filename =>
'reinvexp3%U.dmp', directory => 'DATA_PUMP_DIR', filetype =>
1);

 dbms_datapump.set_parameter(handle => h1, name => 'INCLUDE_METADATA', value => 1);

 dbms_datapump.set_parameter(handle => h1, name => 'DATA_ACCESS_METHOD', value =>
 'AUTOMATIC');

 dbms_datapump.set_parameter(handle => h1, name => 'REUSE_DATAFILES', value => 0);

 dbms_datapump.set_parameter(handle => h1, name => 'SKIP_UNUSABLE_INDEXES', value =>
 0);

Transferring files to an Amazon RDS instance 28

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

 dbms_datapump.start_job(handle => h1, skip_current => 0,
abort_step => 0);

 dbms_datapump.detach(handle => h1);
end;
/

Once the job is complete, check the Amazon RDS database to make sure all the data has been
successfully imported. At this point, you can delete all the dump files using UTL_FILE.FREMOVE to
reclaim disk space.

Data migration using Oracle external tables

Oracle external tables are a feature of Oracle Database that allows you to query data in a flat file
as if the file were an Oracle table. The process for using Oracle external tables for data migration
to AWS is almost exactly the same as the one used for Oracle Data Pump. The Oracle Data Pump-
based method is better for large database migrations.

The external tables method is useful if your current process uses this method and you don’t want
to switch to the Oracle Data Pump-based method. Following are the main steps:

1. Move the external table files to RDS DATA_PUMP_DIR.

2. Create external tables using the files loaded.

3. Import data from the external tables to the database tables.

Depending on the size of the data file, you can choose to either write the file directly to RDS
DATA_PUMP_DIR from an on-premises server, or use an Amazon EC2 bridge instance, as in the case
of the Data Pump-based method. If the file size is large and you choose to use a bridge instance,
use compression and encryption on the files as well as Tsunami UDP or a WAN accelerator, exactly
as described for the Data Pump-based migration.

To learn more about Oracle external tables, see External Tables Concepts in the Oracle
documentation.

Data migration using Oracle RMAN

If you are planning to migrate the entire database and your destination database is self-managed
on Amazon EC2, you can use Oracle RMAN to migrate data. Data migration by using Oracle Data

Data migration using Oracle external tables 29

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/sutil/oracle-external-tables-concepts.html#GUID-44323E01-7D72-45EC-915A-99E596769D9E

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Pump is faster and more flexible than data migration using Oracle RMAN; however, Oracle RMAN is
a better option for the following cases:

• You already have an RMAN backup available in Amazon S3 that can be used. If you are looking
for options to migrate RMAN backups to Amazon S3, consider AWS Storage Gateway or AWS
DataSync services.

• The database is very large (greater than 5 TB), and you are planning to use AWS Import/Export.

• You need to make numerous incremental data changes before switching over to the database on
AWS.

Note

This method is for Amazon EC2 and VMware Cloud on AWS. You cannot use this method if
your destination database is Amazon RDS.

To migrate data using Oracle RMAN:

1. Create a full backup of the source database using RMAN.

2. Encrypt and compress the files.

3. Transport files to AWS using the most optimal method.

4. Restore the RMAN backup to the destination database.

5. Capture incremental backups from the source, and apply them to the destination database until
switchover can be performed.

Creating a full backup of the source database Using RMAN

Create a backup of the source database using RMAN:

$ rman target=/

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON; RMAN> BACKUP DATABASE PLUS ARCHIVELOG

If you have a license for the compression and encryption option, then you already have the RMAN
backups created as encrypted and compressed files. Otherwise, after the backup files are created,

Creating a full backup of the source database Using RMAN 30

https://aws.amazon.com/storagegateway/
https://aws.amazon.com/datasync/
https://aws.amazon.com/datasync/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

encrypt and compress them using tools such as ZIP, 7-Zip, or GZIP. All subsequent actions occur on
the server running the destination database.

Transporting files to AWS

Depending on the size of the database and the time available for migration, you can choose the
most optimal method for file transportation to AWS. For small files, consider AWS DataSync. For
moderate to large databases between 100 GB to 5 TB, Tsunami UDP is an option, as described in
Using Tsunami to upload files to EC2. You can achieve the same results using commercial third-
party WAN acceleration tools. For very large databases over 5 TB, consider using AWS Storage
Gateway or AWS Snow Family devices for offline file transfer.

Migrating data to Oracle Database on AWS

There are two ways to migrate data to a destination database. You can create a new database and
restore from the RMAN backup, or you can create a duplicate database from the RMAN backup.
Creating a duplicate database is easier to perform.

To create a duplicate database, move the transported files to a location accessible to the Oracle
Database instance on Amazon EC2. Start the target instance in NOMOUNT mode. Now use RMAN
to connect to the destination database. For this example, we are not connecting to the source
database or the RMAN catalog, so use the following command:

$ rman AUXILIARY /

DUPLICATE TARGET DATABASE TO DBONEC2
 SPFILE
 NOFILENAMECHECK;

The duration of this process varies based on the size of the database and the type of Amazon EC2
instance. For better performance, use Amazon Elastic Block Store (Amazon EBS) General Purpose
(SSD) volumes for the RMAN backup files. For more information about SSD volume types, see
Introducing the Amazon EBS General Purpose (SSD) volume type.

Once the process is finished, RMAN produces a completion message, and you now have your
duplicate instance. After verification, you can delete the Amazon EBS volumes containing the
RMAN backup files. We recommend that you take a snapshot of the volumes for later use before
deleting them if needed.

Transporting files to AWS 31

http://tsunami-udp.sourceforge.net/
https://aws.amazon.com/snow/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://aws.amazon.com/about-aws/whats-new/2014/06/16/introducing-the-amazon-ebs-general-purpose-ssd-volume-type/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Data replication using AWS Database Migration Service

AWS Database Migration Service (AWS DMS) can support a number of migration and replication
strategies including a bulk upload at a point in time, a minimal downtime migration leveraging
Change Data Capture (CDC), or migration of only a subset of the data. AWS DMS supports sources
and targets in EC2, RDS, and on-premises. Because no client install is required, the following steps
are the same for any combination of the above. AWS DMS also offers the ability to migrate data
between databases as easily as from Oracle to Oracle.

The following steps show how to migrate data between Oracle databases using AWS DMS and with
minimal downtime:

1. Ensure supplemental logging is enabled on the source database.

2. Create the target database and ensure database backups and Multi-AZ are turned off if the
target is on RDS.

3. Perform a no-data export of the schema using Oracle SQL Developer or the tool of your choice,
then apply the schema to the target database.

4. Disable triggers, foreign keys, and secondary indexes (optional) on the target.

5. Create a DMS replication instance.

6. Specify the source and target endpoints.

7. Create a “Migrate existing data and replicate ongoing changes” task, mapping your source tables
to your target tables. (The default task includes all tables.)

8. Start the task.

9. After the full load portion of the tasks is complete and the transactions reach a steady state,
enable triggers, foreign keys, and secondary indexes.

10.Turn on backups and Multi-AZ.

11.Turn off any applications using the original source database.

12.Let the final transactions flow through.

13.Point any applications at the new database in AWS and start.

An alternative method is to use Oracle Data Pump for the initial load and DMS to replicate changes
from the Oracle System Change Number (SCN) point where data dump stopped. More details
on using AWS DMS can be found in the documentation. To improve the performance of DMS

32

https://aws.amazon.com/dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

replication, the schemas and tables can be grouped into multiple DMS tasks. DMS tasks support
wildcard entries for the names of the schemas and tables.

33

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Data replication using Oracle GoldenGate

Oracle GoldenGate is a tool for real-time change data capture and replication. Oracle GoldenGate
creates trail files that contain the most recently changed data from the source database, then
pushes these files to the destination database. You can use Oracle GoldenGate to perform minimal
downtime data migration. Oracle GoldenGate is a licensed software from Oracle. You can also use
it for nearly continuous data replication. You can use Oracle GoldenGate with both Amazon RDS for
Oracle, and Oracle Database running on Amazon EC2.

The following steps show how to migrate data using Oracle GoldenGate:

1. The Oracle GoldenGate Extract process extracts all the existing data for the first load. Extract,
Pump and Replicat process refers to the GoldenGate Integrated capture mode.

2. The Oracle GoldenGate Pump process transports the extracted data to the Replicat process
running in Amazon EC2.

3. The Replicat process applies the data to the destination database.

4. After the first load, the process runs continually to capture changed data and applies it to the
destination database.

GoldenGate Replicat is a key part of the entire system. You can run it from a server in the source
environment, but AWS recommends that you run the Replicat process in an Amazon EC2 instance
within AWS for better performance. This Amazon EC2 instance is referred to as a GoldenGate Hub.
You can have multiple GoldenGate Hubs, especially if you are migrating data from one source to
multiple destinations.

Oracle GoldenGate replication data flow process

34

https://www.oracle.com/integration/goldengate/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Reference architecture for Amazon EC2:

Oracle GoldenGate replication from on-premises to Oracle Database on Amazon EC2

Reference architecture for RDS:

35

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Oracle GoldenGate replication from on-premises to RDS Oracle Database on AWS

Setting up Oracle GoldenGate Hub on Amazon EC2

To create an Oracle GoldenGate Hub on Amazon EC2, create an Amazon EC2 instance with a
full client installation of Oracle DBMS 12c version 12.2.0.3 and Oracle GoldenGate 12.3.1.4.
Additionally, apply Oracle patch 13328193. For more information about installing GoldenGate, see
the Oracle GoldenGate documentation.

This GoldenGate Hub stores and processes all the data from your source database, so make sure
that there is enough storage available in this instance to store the trail files. It is a good practice to
choose the largest instance type that your GoldenGate license allows. Use appropriate Amazon EBS
storage volume types, depending on the database change rate and replication performance.

The following process sets up a GoldenGate Hub on an Amazon EC2 instance.

Setting up Oracle GoldenGate Hub on Amazon EC2 36

https://docs.oracle.com/cd/E35209_01/index.htm

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

1. Add the following entry to the tnsname.ora file to create an alias. For more information about
the tnsname.ora file, see the Oracle GoldenGate documentation.

$ cat /example/config/tnsnames.ora
TEST=

(DESCRIPTION=
 (ENABLE=BROKEN)
 (ADDRESS_LIST=

 (ADDRESS=(PROTOCOL=TCP)(HOST=ec2-dns)(PORT=8200))

) (
CONNECT_DATA=

 (SID=ORCL)

)

)

2. Next, create subdirectories in the GoldenGate directory by using the Amazon EC2 command line
shell and ggsci, the GoldenGate command interpreter. The subdirectories are created under the
gg directory and include directories for parameter, report, and checkpoint files:

prompt$ cd /gg
prompt$./ggsci

 GGSCI> CREATE SUBDIRS

3. Create a GLOBALS parameter file using the Amazon EC2 command line shell. Parameters that
affect all GoldenGate processes are defined in the GLOBALS parameter file. The following
example creates the necessary file:

prompt$ cd $GGHOME
prompt$ vi GLOBALS

CheckpointTable oggadm1.oggchkpt

4. Configure the manager. Add the following lines to the GLOBALS file, and then start the manager
by using ggsci:

Setting up Oracle GoldenGate Hub on Amazon EC2 37

https://www.orafaq.com/wiki/Tnsnames.ora

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

PORT 8199
PurgeOldExtracts ./dirdat/*, UseCheckpoints, MINKEEPDAYS

Setting up Oracle GoldenGate Hub on Amazon EC2 38

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Setting up the source database for use with Oracle
GoldenGate

To replicate data to the destination database in AWS, you need to set up a source database for
GoldenGate. Use the following procedure to set up the source database. This process is the same
for both Amazon RDS and Oracle Database on Amazon EC2.

1. Set the compatible parameter to the same as your destination database (for Amazon RDS as the
destination).

2. Enable supplemental logging and force logging.

3. Verify the database is in archivelog mode.

4. Set ENABLE_GOLDENGATE_REPLICATION parameter to TRUE.

5. Set the retention period for archived redo logs for the GoldenGate source database.

6. Create a GoldenGate user account on the source database.

39

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Setting up the destination database for use with Oracle
GoldenGate

The following steps must be performed on the target database for GoldenGate replication to work.
These steps are the same for both Amazon RDS and Oracle Database on Amazon EC2.

1. Create a GoldenGate user account on the destination database.

2. Grant the necessary privileges that are listed in the following example to the GoldenGate user:

CREATE SESSION
ALTER SESSION
CREATE CLUSTER
CREATE INDEXTYPE
CREATE OPERATOR
CREATE PROCEDURE
CREATE SEQUENCE
CREATE TABLE
CREATE TRIGGER
CREATE TYPE
SELECT ANY DICTIONARY
CREATE ANY TABLE
ALTER ANY TABLE
LOCK ANY TABLE
SELECT ANY TABLE
INSERT ANY TABLE
UPDATE ANY TABLE
DELETE ANY TABLE

40

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Working with the Extract and Replicat utilities of Oracle
GoldenGate

The Oracle GoldenGate Extract and Replicat utilities work together to keep the source and
destination databases synchronized by means of incremental transaction replication using trail
files. All changes that occur on the source database are automatically detected by Extract, and then
formatted and transferred to trail files on the GoldenGate Hub on-premises or on the Amazon EC2
instance. After the initial load is completed, the Replicat process reads the data from these files
and replicates the data to the destination database nearly continuously.

Running the Extract process of Oracle GoldenGate

The Extract process of Oracle GoldenGate retrieves, converts, and outputs data from the source
database to trail files. Extract queues transaction details to memory or to temporary disk storage.
When the transaction is committed to the source database, Extract flushes all of the transaction
details to a trail file for routing to the GoldenGate Hub on-premises or on the Amazon EC2
instance, and then to the destination database.

The following process enables and starts the Extract process.

1. First, configure the Extract parameter file on the GoldenGate Hub. The following example shows
an Extract parameter file:

EXTRACT EABC
SETENV (ORACLE_SID=ORCL)
SETENV (NLSLANG=AL32UTF8)

USERID oggadm1@TEST, PASSWORD XXXXXX
EXTTRAIL /path/to/goldengate/dirdat/ab IGNOREREPLICATES
GETAPPLOPS
TRANLOGOPTIONS EXCLUDEUSER OGGADM1 TABLE EXAMPLE.TABLE;

2. On the GoldenGate Hub, launch the GoldenGate command line interface (ggsci). Log in to the
source database. The following example shows the format for logging in:

dblogin userid <user>@<db tnsname>

3. Next, add a checkpoint table for the database:

Running the Extract process of Oracle GoldenGate 41

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

add checkpointtable

Add transdata to turn on supplemental logging for the database table:

add trandata <user>.<table>

Alternatively, you can add transdata to turn on supplemental logging for all tables in the
database:

add trandata <user>.*

4. Using the ggsci command line, use the following commands to enable the Extract process:

add extract <extract name> tranlog, INTEGRATED tranlog,
begin now

add exttrail <path-to-trail-from-the param-file> extract

<extractname-from-paramfile>, MEGABYTES Xm

5. Register the Extract process with the database so that the archive logs are not deleted. This lets
you recover old, uncommitted transactions if necessary. To register the Extract process with the
database, use the following command:

register EXTRACT <extract process name>, DATABASE

6. To start the Extract process, use the following command:

start <extract process name>

Running the Replicat process of Oracle GoldenGate

The Replicat process of Oracle GoldenGate is used to push transaction information in the trail files
to the destination database.

The following process enables and starts the Replicat process.

1. First, configure the Replicat parameter file on the GoldenGate Hub (on-premises or on an
Amazon EC2 instance). The following listing shows an example Replicat parameter file:

Running the Replicat process of Oracle GoldenGate 42

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

REPLICAT RABC

SETENV (ORACLE_SID=ORCL)
SETENV (NLSLANG=AL32UTF8)

USERID oggadm1@TARGET, password XXXXXX
ASSUMETARGETDEFS

MAP EXAMPLE.TABLE, TARGET EXAMPLE.TABLE;

2. Launch the Oracle GoldenGate command line interface (ggsci). Log in to the destination
database. The following example shows the format for logging in:

dblogin userid <user>@<db tnsname>

3. Using the ggsci command line, add a checkpoint table. Note that user indicates the Oracle
GoldenGate user account, not the owner of the destination table schema. The following example
creates a checkpoint table named gg_checkpoint:

add checkpointtable <user>.gg_checkpoint

4. To enable the Replicat process, use the following command:

add replicat <replicat name> EXTTRAIL <extract trail file>
CHECKPOINTTABLE <user>.gg_checkpoint

5. To start the Replicat process, use the following command:

start <replicat name>

Running the Replicat process of Oracle GoldenGate 43

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Transferring files to AWS

Migrating databases to AWS requires the transfer of files to AWS. There are multiple methods of
transferring files to AWS. This section describes the methods you can adopt during the migration
process.

AWS DataSync

AWS DataSync is an online data transfer service that can accelerate moving data between an on-
premises storage system and AWS storage services such as Amazon S3, Amazon EFS, or FSx for
Windows File Server. AWS DataSync agent connects to the on-premises storage and copies data
and metadata securely to AWS. AWS DataSync is the recommended option when you have large
volume of small files 100 MB or less.

AWS Storage Gateway

AWS Storage Gateway is a service connecting an on-premises software appliance with cloud-based
storage to provide seamless and secure integration between an organization’s on-premises IT
environment and the AWS storage infrastructure. The service allows you to securely store data
in the AWS Cloud for scalable and cost-effective storage. AWS Storage Gateway supports open
standard storage protocols that work with your existing applications. It provides low-latency
performance by maintaining frequently accessed data on-premises while securely storing all
of your data encrypted in Amazon S3 or Amazon S3 Glacier. AWS Storage Gateway works with
moderate or large file sizes.

AWS Storage Gateway S3 File Gateway interface provides a Network File System/Server Message
Block (NFS/SMB) file share in your on-premises environment. They run a local VM in your on-
premises data center. Files can be copied at the on-premises location to this local file-share. These
files are copied to the designated S3 bucket in AWS. If your workload uses Windows OS, you can
use Amazon FSx File Gateway to copy files from on-premises via SMB clients to the Amazon FSx for
Windows File Server.

Amazon RDS integration with S3

You can use S3 integration to transfer files between an Amazon S3 bucket and an Amazon RDS
instance. The Amazon RDS instance accesses S3 bucket via a defined IAM role, so you can have

AWS DataSync 44

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/glacier/
https://aws.amazon.com/storagegateway/file/fsx/
https://aws.amazon.com/fsx/windows/
https://aws.amazon.com/fsx/windows/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

granular bucket or object level policies for the Amazon RDS instance. Amazon S3 integration is
useful when you have to use Oracle utilities like utl_file or datapump. Amazon RDS Oracle
rdsadmin package supports both upload and download from S3 buckets.

Tsunami UDP

Tsunami UDP is an open-source, file transfer protocol that uses TCP control and UDP data for
transfer over long-distance networks at a very fast rate. When you use UDP for transfer, you gain
more throughput than is possible with TCP over the same networks.

You can download Tsunami UDP from the Tsunami UDP Protocol page at SourceForge.net. For
moderate to large databases between 100 GB to 5 TB, Tsunami UDP is an option, as described in
Using Tsunami to Upload Files to EC2. You can achieve the same results using commercial third-
party WAN acceleration tools. For very large databases over 5 TB, using AWS Snow Family devices
might be a better option. For smaller databases, you can also use the Amazon S3 multipart upload
capability to keep it simple and efficient.

AWS Snow Family

AWS Snow Family offers a number of physical devices and capacity points transport up to exabytes
of data into and out of AWS. Snow Family devices are owned and managed by AWS and integrate
with AWS security, monitoring, storage management, and computing capabilities. For example,
AWS Snowball Edge Edge has 80 TB of usable capacity and can be mounted as an NFS mount point
in the on-premises location. For smaller capacity, AWS Snowcone offers 8 TB of storage and has the
capability to run the AWS DataSync agent.

Tsunami UDP 45

http://tsunami-udp.sourceforge.net/
https://sourceforge.net/projects/tsunami-udp/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html
https://aws.amazon.com/snow/
https://docs.aws.amazon.com/snowball/latest/developer-guide/whatisedge.html
https://aws.amazon.com/snowcone/
https://aws.amazon.com/datasync/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Conclusion

This whitepaper described the preferred methods for migrating Oracle Database to AWS, for both
Amazon EC2 and Amazon RDS. Depending on your business needs and your migration strategy,
you will probably use a combination of methods to migrate your database. For best performance
during migration, it is critical to choose the appropriate level of resources on AWS, especially for
Amazon EC2 instances and Amazon EBS General Purpose (SSD) volume types.

46

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Contributors

Contributors to this document include:

• Jayaraman Vellore Sampathkumar, AWS Solution Architect – Database, Amazon Web Services

• Praveen Katari, AWS Partner Solution Architect, Amazon Web Services

47

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Further reading

For additional information on data migration with AWS services, consult the following resources:

Oracle Database on AWS:

• Advanced Architectures for Oracle Database on Amazon EC2

• Choosing the Operating System for Oracle Workloads on Amazon EC2

• Determining the IOPS Needs for Oracle Database on AWS

• Best Practices for Running Oracle Database on AWS

• AWS Case Study: Amazon.com Oracle DB Backup to Amazon S3

Oracle on AWS

• Oracle and Amazon Web Services

• Amazon RDS for Oracle

AWS Database Migration Service (AWS DMS)

• AWS Database Migration Service

Oracle licensing on AWS

• Licensing Oracle Software in the Cloud Computing Environment

AWS service details

• AWS Architecture Center

• Cloud Products

• AWS Documentation

• AWS Whitepapers & Guides

AWS pricing information

• AWS Pricing

48

https://d1.awsstatic.com/whitepapers/aws-advanced-architectures-for-oracle-db-on-ec2.pdf
https://d1.awsstatic.com/whitepapers/choosing-os-for-oracle-workloads-on-ec2.pdf
https://docs.aws.amazon.com/whitepapers/latest/determining-iops-needs-oracle-db-on-aws/determining-iops-needs-oracle-db-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/oracle-database-aws-best-practices/oracle-database-aws-best-practices.html
https://aws.amazon.com/solutions/case-studies/amazon/
https://aws.amazon.com/oracle/
https://aws.amazon.com/rds/oracle/
https://aws.amazon.com/dms/
http://www.oracle.com/us/corporate/pricing/cloud-licensing-070579.pdf
https://aws.amazon.com/architecture/
https://aws.amazon.com/products/
https://aws.amazon.com/documentation/
https://aws.amazon.com/whitepapers/
https://aws.amazon.com/pricing/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

• AWS Pricing Calculator

VMware Cloud on AWS

• VMware Cloud on AWS

49

https://calculator.aws/
https://aws.amazon.com/vmware/

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated install code for
Tsunami and Oracle Instant
Client.

July 29, 2022

Whitepaper updated Update to text on page 30 for
clarity.

January 27, 2022

Whitepaper updated Revised to add information
on Amazon Machine Learning,
AWS Lambda, Amazon
OpenSearch Service; general
update.

October 8, 2021

Whitepaper updated General updates. January 1, 2018

Initial publication Whitepaper first published. December 1, 2014

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser that
you are using.

50

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

51

Strategies for Migrating Oracle Databases to AWS AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

52

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Strategies for Migrating Oracle Databases to AWS
	Table of Contents
	
	Strategies for Migrating Oracle Databases to AWS
	Introduction

	Data migration strategies
	One-step migration
	Two-step migration
	Minimal downtime migration
	Nearly continuous data replication

	Tools used for Oracle Database migration
	Creating a database on Amazon RDS, Amazon EC2, or VMware Cloud on AWS
	Amazon RDS
	Amazon EC2
	VMware Cloud on AWS

	Data migration methods
	Migrating data for small Oracle databases
	Oracle SQL Developer database copy
	Oracle materialized views
	Oracle SQL*Loader
	Option 1
	Option 2

	Oracle Export and Import utilities
	Option 1
	Option 2

	Migrating data for large Oracle databases
	Data migration using Oracle Data Pump
	Migrating data to a database in Amazon EC2
	Migrating data to a database in Amazon RDS
	Using Oracle Data Pump to export data on the source instance
	Using Tsunami to upload files to Amazon EC2
	Next steps for a database on an Amazon EC2 instance
	Next steps for a database on Amazon RDS
	Preparing a bridge Instance

	Transferring files to an Amazon RDS instance

	Data migration using Oracle external tables
	Data migration using Oracle RMAN
	Creating a full backup of the source database Using RMAN
	Transporting files to AWS
	Migrating data to Oracle Database on AWS

	Data replication using AWS Database Migration Service
	Data replication using Oracle GoldenGate
	Setting up Oracle GoldenGate Hub on Amazon EC2

	Setting up the source database for use with Oracle GoldenGate
	Setting up the destination database for use with Oracle GoldenGate
	Working with the Extract and Replicat utilities of Oracle GoldenGate
	Running the Extract process of Oracle GoldenGate
	Running the Replicat process of Oracle GoldenGate

	Transferring files to AWS
	AWS DataSync
	AWS Storage Gateway
	Amazon RDS integration with S3
	Tsunami UDP
	AWS Snow Family

	Conclusion
	Contributors
	Further reading
	Document history
	Notices
	AWS Glossary

