
AWS Whitepaper

Designing MQTT Topics for AWS IoT Core

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Designing MQTT Topics for AWS IoT Core: AWS Whitepaper

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Table of Contents

.. v
Abstract and introduction .. i

Abstract ... 1
Introduction ... 1

MQTT communication patterns .. 2
Point-to-point .. 2
Broadcast .. 3
Fan-In .. 4

Communication workflows ... 6
MQTT design best practices .. 7

General best practices ... 7
Best practices for telemetry ... 9

Using AWS IoT Basic Ingest for telemetry ... 9
Using the MQTT topics for telemetry .. 11

Best practices for commands .. 12
Using the AWS IoT Shadow for commands .. 12
Using AWS IoT Jobs for Commands ... 14
Using the MQTT topics for commands .. 15

Applications on AWS ... 18
MQTT command topics example .. 18

Command request to generate a smart lock code .. 18
Command processing on the smart lock ... 19
Command response delivered to the mobile client ... 21

MQTT telemetry topics example .. 21
Local telemetry from occupancy sensor to AWS IoT Greengrass .. 22
AWS IoT Greengrass telemetry from Edge to cloud .. 23

Best practices for using MQTT topics in the AWS IoT Rules Engine ... 24
Rules Engine integration with telemetry topics .. 24
Rules Engine integration with command topics .. 25

Tracking success of commands .. 25
Aligning Rules Engine capabilities with MQTT topics .. 26

Conclusion .. 28
Further Reading ... 29
Document History and Contributors .. 30

iii

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Document History .. 30
Contributors ... 30

Notices .. 31

iv

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

This whitepaper is for historical reference only. Some content might be outdated and some links
might not be available.

v

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Designing MQTT Topics for AWS IoT Core

Publication date: December 8, 2021 (the section called “Document History”)

Abstract

This whitepaper focuses on best practices for MQTT topic design in Amazon Web Services (AWS)
Internet of Things (IoT). It covers how developing an optimal MQTT topic schema can improve the
overall architecture and efficiency of your IoT solutions. It does so by providing greater visibility
into cloud to device communication, providing more fine-grained security permissions, and
enhancing integration options with other AWS IoT Core services (such as the AWS IoT Rules Engine,
AWS IoT Device Shadow, AWS IoT Device Management, and AWS IoT Analytics). This whitepaper
is intended for technical architects, IoT cloud engineers, and application architects. This paper
assumes that the reader understands fundamental MQTT concepts and terminology.

Introduction

AWS IoT Core supports Message Queuing Telemetry Transport (MQTT), a widely adopted
lightweight messaging protocol designed for constrained devices. MQTT participants receive
information organized through MQTT topics. An MQTT topic acts as a matching mechanism
between publishers and subscribers. Conceptually, an MQTT topic behaves like an ephemeral
notification channel.

For AWS IoT, one of the first considerations when using MQTT is the design strategy of your MQTT
topics. MQTT topics must balance current device communications, cloud side operations, and
future device capabilities. Therefore, it can be challenging to design an ideal MQTT topic structure
that creates enough of a schema to enforce least privilege communication but does not create a
rigid structure that makes it challenging to support future device deployments.

This document provides you with MQTT topic design best practices and guidance. It outlines a
set of commonly-used MQTT topic structures that can be implemented to solve various device
message patterns, then applies several example design patterns using different AWS IoT services.

Abstract 1

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

MQTT communication patterns

IoT applications support multiple communication scenarios, such as device-to-device, device-
to-cloud, cloud-to-device, and device-to-or-from-users. Although the range of patterns can
significantly vary, a majority of MQTT communication models derive from three MQTT patterns:
point-to-point, broadcast, and fan-in.

Point-to-point

A point-to-point communication pattern is one of the basic building blocks of how devices
commonly send and receive messages in MQTT. Two devices use a single MQTT topic as the
communication channel. The device that receives the event subscribes to an MQTT topic. The
thing that sends the message publishes to the same known MQTT topic. This approach is common
in smart home scenarios where an end user receives updates about the thing in the home. In
the following example, the room occupancy publishes a message on a topic subscribed to by an
application running on the digital display outside the screening room.

One-to-one messaging in point-to-point communication

Point-to-point communication is not limited to one-to-one communication between devices.
Point-to-point is also used in one-to-many communication where a single publisher can publish to
individual devices using a different MQTT topic per device.

This approach is common in notification scenarios where an administrator sends distinct updates
to specific devices. In the following example, the repair service uses a set of point-to-point
communications to programmatically loop through a list of appliances and publish a message.

Point-to-point 2

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

One-to-many messaging in point-to-point communication

Broadcast

Broadcast patterns are used for one-to-many messaging. The broadcast pattern sends the same
message to a large fleet of devices. In a broadcast, multiple devices subscribe to the same MQTT
topic, and the sender publishes a message to that topic. A typical use of a broadcast pattern is to
send a notification to devices based on the category or group of the device. For example, a weather
station transmits a broadcast message based on a topic based on its geolocation.

The following illustration depicts an example where a broadcast pattern sends a message on a
weather topic that all delivery vehicles in the state subscribe to. The message includes weather
conditions and detailed location coordinates. Based on the current location of the vehicle, it can
ignore the message or take some action.

Broadcast 3

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

One-to-many messaging in broadcast communication

Fan-In

The fan-in pattern is a many-to-one communication pattern and can be thought of as the reverse
of the broadcast pattern.

Multiple devices publish on a shared or similar topic with a single subscriber to that topic. With
the fan-in pattern, the subscriber may use wildcards as the publishers all use a similar but unique
MQTT topics. The fan-in pattern is commonly used to aggregate telemetry data.

In the following example, each device publishes to an MQTT topic containing a known group
identifier. The AWS IoT Rules Engine uses a wildcard subscription to receive the messages and route
them to an Amazon Kinesis stream. Specifically, the air quality sensors publish on a fan-in topic
associated with a specific building (LAX002). The administrative system receives all updates for the
building using an MQTT wildcard (+).

Rule: Select environment/building/lax002/airqual/+

Fan-In 4

https://aws.amazon.com/kinesis/

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Many-to-one communication in a fan-in pattern

When devices communicate via the cloud using MQTT, avoid using the fan-in pattern to a single
subscribing end device, because this routing may hit a non-adjustable limit on a single device
MQTT connection. Instead, use the fan-in pattern to route a large fleet of messages to your IoT
application via the AWS IoT Rules Engine.

For large scale fan-in scenarios, combine the Rules Engine with a wildcard subscription pattern and
a Rules Engine action to route to Amazon Kinesis Data Streams, Amazon Data Firehose, or Amazon
Simple Queue Service (Amazon SQS).

Fan-In 5

https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Communication workflows

The three common communication workflows are device-to-device, device-to-cloud, and cloud-
to-device. Each workflow determines the topic structure of topic hierarchy. In the case of device-
to-device, MQTT topics should contain identifiers for either the sender or receiver of a message.
For device-to-cloud, MQTT messages should include information about the target application.
The target application is responsible for augmenting any MQTT messages with internal metadata
about the device. Last, for cloud-to-device communication, MQTT messages should contain session
information for tracking acknowledgment of any critical messages.

6

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

MQTT design best practices

General best practices

Although there are numerous combinations of IoT communication patterns that share common
approaches, there are several best practices that apply to any message pattern irrespective of how
a device is publishing or receiving a message. This section articulates several overall best practices
for you to review and implement as you design your MQTT topic structures.

Review the AWS IoT Core default service limits. Design your communication pattern so that it
aligns with any adjustable IoT service limits. AWS IoT has several adjustable and non-adjustable
limits associated with using the AWS IoT Core service. As part of your topic review, review the AWS
IoT limits, and ensure your MQTT topic and device communication do not conflict with any service
limits.

The maximum number of forward slashes (/) in the MQTT topic name for AWS IoT Core is seven.
You should not prefix the topic with a forward slash as it counts towards the topic levels and may
introduce confusion when building AWS IoT policies. This excludes the first three slashes in the
mandatory segments for Basic Ingest topics $AWS/rules/rule-name/.

The topic passed to AWS IoT Core when sending a publish request can be no larger than 256 bytes
of UTF-8 encoded characters. This excludes the first three mandatory segments for Basic Ingest
topics $AWS/rules/rule-name/.

Define a consistent naming standard for MQTT topic levels. Since MQTT topics are case sensitive,
it is important to use a standard set of naming conventions when designing MQTT topics. For
this reason, customers should only use lowercase letters, numbers, and dashes when creating
each topic level. Customers should avoid camel casing and using hard to debug characters such as
spaces. Publish Topic names cannot contain wildcards (# , +). Topics that start with $ are reserved
by AWS IoT Core. They are not supported for publishing and subscribing except for using the
specific topic names defined by AWS IoT Core services (for example, the AWS IoT Device Shadow
service).

Ensure MQTT topic levels structure follows a general to specific pattern. As topic scheme flows
left to right, the topic levels flow general to specific. For example, an HVAC system is associated
with an IoT platform named hv100, is located in the basement of building bld1518, and has a
Thing Name of hvac719. The topic structure begins with the general group, in this case, the name

General best practices 7

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_iot

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

of the IoT platform, and ends with the most specific identity, the Thing Name. This example creates
the following topic level structure:

Include any relevant routing information in the MQTT topic. Relevant routing information
includes, but is not limited to, the IoT application identifier, any groups the device may be a part
of, such as installed location, and the unique identity of your IoT device. To continue with the
previous HVAC system example, the MQTT topic hv100/bld1518/basement/hvac719 includes
all relevant routing information. Based on this MQTT topic, you can design a system that captures
any data related to the entire application using the identifier, hv100, but also can target different
areas of interest for subscribing to messages, such as the building location.

Prefix your MQTT topics to distinguish data topics from command topics. Make sure that
your MQTT topics do not overlap between commands and data messages. By reserving the first
topic level to denote data and command topics, you are more easily able to create fine-grained
permissions using IoT policies, and monitor the status of commands and command responses
separately from passive telemetry commands. For example, use the AWS IoT Device Shadow
service for tracking reported and desired states, and use a separate data topic for passive, real-time
telemetry data.

Document proposed MQTT topic structures as part of your operations practice. The document
should include all topics available for publishing, subscribing, or receiving data, along with the
intended producers and consumers of the data. Review the document to ensure it adheres to any
AWS IoT limits, internal security requirements, and any application use cases.

Include the Thing Name of the device in any MQTT topic the device uses for publishing or
subscribing to its data. To track messages destined for a particular device, include the Thing Name
as part of any MQTT message that is published by the device or sent to a specific device. The Thing
Name should appear near or at the end of the MQTT topic after any routing topic information.

Include additional contextual information about a specific message in the payload of the
MQTT message. This contextual information includes, but is not limited to, a session identifier,
the requestor identifier, logging information, or the return topic on which a device is expecting
to receive a response. Although the MQTT 3.1.1 specification does not require specific payload
attributes, we recommend you include relevant tracking information inside of the MQTT payload.
By creating a standard structure including fields such as session identifier and success or error

General best practices 8

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.html

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

codes, you can more easily analyze trends in device behavior. Standardizing the communication
schema also strengthens a shared vernacular of device use cases across IoT teams.

Avoid MQTT communication patterns that result in a sizeable fan-in scenario to a single device.
Some AWS IoT limits cannot be raised as part of a limit increase and frequently correlate to per
device actions, such as maximum publish-in on a single MQTT connection. Do not allow a single
device to subscribe to a shared topic that is being published to by a large number of other devices.
By avoiding this pattern, you are more likely to avoid hitting a single connection device limit,
particularly a throughput per connection per second limit.

Never allow a device to subscribe to all topics using #, and only use multi-level wildcard
subscriptions in IoT rules. By using multi-level wildcards, you can create unintended consequences
when you inadvertently add new topics to the hierarchy that may not be intended for that
particular device. Instead, reserve use of multi-level wildcards as part of the IoT rules engine, and
use single level wildcards (+) for device subscriptions.

Best practices for telemetry

Telemetry is read-only data that is transmitted by the device and processed in the cloud. It follows
the device-to-cloud pattern along with the fan-in pattern for communication.

Telemetry does not require an acknowledge message back from the MQTT broker, beyond
optionally setting a higher quality of service (QoS) level. Since telemetry is a passive activity, the
MQTT topic for telemetry should not overlap with any MQTT topics for active workflows, such as
command and control messages.

A telemetry topic supports more complex devices that publish telemetry on behalf of other
devices, such as an edge gateway or a mesh network with a single coordinator.

In AWS IoT, you have the ability to use different AWS IoT services to support telemetry
communication patterns. We recommend that you use a combination of AWS IoT Basic Ingest and
standard MQTT topics to support your telemetry use cases.

Using AWS IoT Basic Ingest for telemetry

Basic Ingest optimizes data flow for high volume data ingestion workloads by removing the pub/
sub Message Broker from the ingestion path. As a result, you have a more cost-effective option to
send device data to other AWS services while continuing to benefit from all the security and data
processing features of AWS IoT Core.

Best practices for telemetry 9

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

In cases where devices do not require the publish and subscribe functionality of the Message
Broker, Basic Ingest enables you to send data to cloud services through the Rules Engine.

Basic Ingest is an ideal use case for telemetry when the only interested subscriber for an IoT
message is your backend IoT application. Basic Ingest uses a reserved MQTT topic structure that is
associated to a particular AWS IoT Rule.

A device can publish to the reserved topic associated to a specific AWS IoT Rule, and Basic Ingest
will trigger the IoT Rule for the matching Rule Name. The MQTT topic structure for Basic Ingest
follows a similar syntax as the following example:

$aws/rules/<rule-name>/<optional-customer-defined-segments>

Where the field rule-name matches the name of the AWS IoT Rule that should be invoked, and
optional-customer-defined-segments includes any additional topic levels a customer may
use for routing or logging as part of the AWS IoT Rule Action.

Best practices for using AWS IoT Basic Ingest

Include any additional routing information after the rule name in the Basic Ingest MQTT Topic.
As a best practice, AWS recommends you use the optional segments that can appear after the
rule name in the MQTT topic to include relevant additional information that can be used by the
AWS IoT Rule for features such as Substitution Templates, IoT Rule SQL Functions, and Where
Clauses. Similar to the overall best practice for MQTT topics, any fields that can be used for IoT
Rule evaluation, such as application Identifier or device Identifier, should be appended to the end
of the Basic Ingest topic. The following example would be publishing to an AWS IoT Rule named
BuildingSecurity followed by customer defined segments:

$aws/rules/BuildingSecurity/buildings/warehouse4/section6/motion

Choose short, descriptive rule names for Basic Ingest. When AWS IoT Rules are used directly by
devices via Basic Ingest, AWS recommends that you ensure the rule name follows MQTT topic best
practices for consistency. Since the rule will link directly to a reserved MQTT topic, ensure that the
rule name is short, descriptive of the underlying use case of the rule, and adheres to the syntax
rules described in the section General best practices.

Using AWS IoT Basic Ingest for telemetry 10

https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-where.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-where.html

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Using the MQTT topics for telemetry

In addition to using Basic Ingest, you can also leverage traditional MQTT topics. These types of
MQTT messages are passive AWS IoT data that may be subscribed to by other devices now or in the
future.

For example, a device that sends its current status may expect its data to be routed not only to
your internal application but also to a user who needs the device’s current status. To achieve this
level of flexibility, you can use standard MQTT topics for sending and receiving telemetry.

MQTT telemetry topic syntax

The following example and sections provide the MQTT topic structure for telemetry:

dt/<application>/<context>/<thing-name>/<dt-type>

dt: Set prefix that refers to the type of message. For a telemetry topic, we use dt, short for data.
All telemetry topics use this top-level prefix for an application. By reusing the same value for
telemetry, you can identify the intent of a message by referring to the initial prefixed value. In this
case, any dt topic is a telemetry topic.

application: Identifies the overall IoT application associated with the device. Commonly used
application attributes include device hardware version or an internal identifier for a cloud
application that is the primary ingestion point for a message. The IoT application is associated with
an internal name for your overarching IoT product or relates specifically to the type of hardware of
your device. Because the application topic portion correlates to a group of device messages and is
immutable, the application prefix portion of the telemetry MQTT topic is placed immediately after
the dt message type.

context: Single or multiple levels of additional contextual data about the message a device is
publishing. Contextual information is related to information that is set during device provisioning.
For example, contextual information in a factory setting could include the current physical location
of a device in the facility. Another example of contextual information is a group-id in the MQTT
topic. The group-id denotes when multiple devices have an inherent relationship based on specific
attributes, such as buying a package of smart light bulbs to control lighting in a room. The group-
id enables numerous devices to coordinate activities as a single unit.

thing-name: Identifies which device is transmitting a telemetry message.

Using the MQTT topics for telemetry 11

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

dt-type (optional): Associates a message with a particular subcomponent of a device, or for edge
gateways, any downstream devices. A complex device often has multiple subcomponents with
specific tasks, such as sensors, actuators, or separate system on chips (SOCs). The dt-type allows
you to associate each subcomponent of a particular device to an individual MQTT topic. One
example of this is a subcomponent that measures geolocation and direction of a vehicle. That
subcomponent would have a dt-type value of geo to distinguish its geolocation messages from
other components of the car, such as the accelerometer.

Best practices for commands

In IoT applications, command topics are used to control a device remotely and to acknowledge
successful command executions. Unlike telemetry, command topics are not read-only. Commands
are a back and forth workflow that can occur between two devices or between the cloud and
devices. Because commands are actionable messages, isolate the MQTT topic for command
messages from telemetry topics.

Several services are available for you to implement command and control operations on AWS IoT.
With the capability to store the desired and reported states in the cloud, the AWS IoT Shadow is
the preferred AWS IoT service for implementing individual device commands. AWS IoT Device Jobs
should be used for fleet-wide operations as it provides extra benefits, such as Amazon CloudWatch
metrics for Job tracking, and the ability to track multiple in-transit Jobs for a single device. You can
use a combination of the AWS IoT Shadow, AWS IoT Jobs, and standard MQTT topics to support
your command use cases.

Using the AWS IoT Shadow for commands

The AWS IoT Device Shadow service acts as a state intermediary, allowing devices and applications
to retrieve and update a device’s shadow state. You can use the shadow to get and set the state of
a device over MQTT or HTTP. The shadow includes the following individual state properties that
support command and control:

desired state. Applications that have permissions to send commands to a device can write the
requested state changes to the desired portion of the shadow document. By updating the desired
state, the AWS IoT Shadow service stores the desired state change in the AWS cloud and then
sends an MQTT message to the device using a reserved shadow topic. When a device receives a
shadow request, it can execute the changes required from the desired state.

reported state. The reported state of the AWS IoT Thing’s shadow stores the last published
attributes published by a device. Devices write to this portion of the document to record their

Best practices for commands 12

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

new state while applications read this portion of the Shadow to determine the state of a specific
device. Because shadows are stored by AWS in the cloud, they can collect and report device state
data from apps and other cloud services whether the device is connected or not. Use the AWS IoT
Shadow in situations where a command persists for later use, even if the device is currently offline.
For example, if a GPS system is sent a new destination through the Shadow desired state but is not
immediately reachable, the new coordinates remain in the GPS IoT Shadow. Once the GPS system
regains connectivity, it can actively request its last shadow state and retrieve the new coordinates.
The shadow is also ideal for storing the last reported state for attributes of the device.

Best practices for using the AWS IoT Classic Shadow or Named Shadows

The AWS IoT is a mechanism for command and control along with storing the reported state of a
specific device.

The following list of best practices offers advice on maximizing the efficiency of commands
through the shadow:

IoT devices should not share shadows. To separate commands for each device, make sure that
each device has permissions to its own shadow and that devices do not share a single shadow.
For complex scenarios, like edge gateways or large device assets with multiple subcomponents,
the primary asset should use multiple IoT Things and shadows individually associated with the
downstream devices.

Consider using Named Shadows to create logical groups of properties. You can create a unique
access policy for each Named Shadow, therefore controlling what applications or services can view
or update that group of properties. An example of this would be the device management team
viewing the firmware, battery health, or WiFi signal strength but not having access to the data
being published by the sensors on said devices.

Use the shadow for state or commands that have a medium to low transaction per second
(TPS). The shadow is an ideal fit for infrequent updates that occur in minutes, hours, or days as
the shadow publishes on additional topics to acknowledge an action was successful. For a high
frequency or throughput commands that do not require the updates to the shadow consider
publishing to a MQTT command topic.

Use the shadow for storing status metrics of a device. Store informational data about the current
health of the device including, but not limited to, connectivity, the status of device sensors and
control units, and any error information about those subcomponents. If you know the current
status of the device, you can make actionable decisions during command requests.

Using the AWS IoT Shadow for commands 13

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Use the AWS IoT Device Shadow service to catalog the current firmware version. The shadow
is an ideal location for a device to report the firmware version installed on the hardware. The
firmware should be a simple attribute, such as a field that highlights the major.minor.patch
version of the service.

Use the optional clientToken field with AWS IoT Device Shadow service updates to track
the sender of a shadow message. The clientToken is a field in the Shadow that enables a
subscriber to associate the responses with requests in your MQTT application. If a device sets the
clientToken during a shadow update request, the AWS IoT Shadow service includes that same
clientToken in the associated shadow output events.

Using AWS IoT Jobs for Commands

AWS IoT Jobs is a service that allows you to define a set of remote operations that are sent
to and executed on one or more things connected to AWS IoT. For command use cases,
Jobs allows applications to run tasks that require executing multiple steps. An AWS IoT Job
contains instructions that the thing must run to complete its transaction. AWS IoT Jobs are the
recommended feature for fleet-wide operational tasks, such as software updates, that are only
executed by trusted administrators of the entire IoT application.

Best practices for using AWS IoT Jobs

Use thing groups to organize devices for AWS IoT Jobs. Create multiple thing groups organized
by common device attributes, such as the current firmware version, hardware version, or
deployment environments (for example, staging or production). Thing groups should also have
common hierarchical structures, such as business units or locations. During deployments, you can
use thing groups as the deployment target for a specific IoT job.

Use staged rollouts to deploy commands using Device Jobs. Device Jobs are the ideal solution for
delivering fleet-wide operations to devices. Create multiple smaller deployments first, to subsets of
the fleet, letting the devices apply your changes, and then rolling out the commands to a greater
number of devices over time. By allowing changes to progress over weeks and months, you can
have more confidence that there are fewer unforeseen issues and you can react more quickly if
there is an issue during an earlier rollout.

Using AWS IoT Jobs for Commands 14

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Using the MQTT topics for commands

MQTT command topic syntax

In some scenarios, you may want to design your command communication using the standard
MQTT publish and subscribe model. These types of situations may occur when a device must
execute a command that is temporal (that is, can only be processed at this current type and should
fail if the device is unavailable) or run a single command across multiple devices simultaneously.

It is also possible in a brownfield environment where a device may be incapable of leveraging
higher-level AWS IoT services. You may also require the flexibility to choose your own set of MQTT
topics to define commands to and responses from devices.

In cases where you are using a separate set of command topics, follow similar best practices for
MQTT command topics as described for telemetry. A command topic should have flexibility for
complex devices that publish or relay commands to other devices. Command topics should also
provide visibility into essential attributes. MQTT command topics should be designed in a way that
can answer operational questions based on the MQTT topic and payload:

• Who is the originator of the command?

• Who is the intended receiver of the command?

• Was the command processed successfully?

• What is the current status of the command?

• If the command was not processed successfully, what is the error?

In addition to these questions, you may also want to determine when a command was requested,
when a device responded, and to monitor the state of any single request among the fleet in the
cloud.

When you design MQTT topics for command requests, follow this structure:

cmd/<application>/<context>/<destination-id>/<req-type>

Since commands are two-way communication patterns, design a similar MQTT topic structure for
responding to commands, such as the following:

 cmd/<application>/<context>/<destination-id>/<res-type>

Using the MQTT topics for commands 15

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Because telemetry topic design is similar to command topic design, this section provides only the
portions of the IoT topic for command requests and responses that differ.

cmd: Prefix that refers to the type of message. Command topics use cmd, which is short for
command. By prefixing all commands with cmd and all telemetry with dt, telemetry and
commands are isolated on separate MQTT topics.

req-type: Classifies the command. For simple request and response patterns, the req-type attribute
should be a single command request static value such as req. In cases of limited command types,
the MQTT message includes the additional data in the payload.

In more complex systems, where a device is orchestrating multiple devices, actuators, or
subcomponents, the req-type attribute relates to each subcomponent available to receive
commands. For example, if a device is mobile, you may want to steer the device remotely or receive
navigational information about the device's surroundings. This type of subcomponent would have a
req-type of nav where commands are sent steering in single or multiple planes.

destination-id: Identifies the destination device or application for this message. By including the
destination-id, the target device can subscribe to its own set of command topics and receive
any command requests.

res-type: Denotes command responses and identifies responses that are related to a previously
sent command. The res-type enables a single device to use one single-level wildcard subscription
for all incoming command acknowledgments. If a device has limited commands, the response topic
can use a static field, such as res.

MQTT command payload syntax

In addition to creating a clear MQTT topic structure for commands, make sure that you generate a
schema for message payloads. MQTT payload information is parsed by the receiving device or IoT
application, to inform it of any additional logic it may need to complete its operation. For MQTT
commands, include the following fields with the command message payload:

session-id: Identifies a unique session. The requestor generates the session-id for the command
and includes it in the request payload. The response topic uses the session-id upon command
completion. By using a session-id, the AWS IoT Rules Engine can store and track the status of
commands and determine if a request is still in transit, successful, or in error. Devices can also keep
track of in-transit requests when communicating with multiple devices.

Using the MQTT topics for commands 16

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

response-topic: In a command, there is a request for an action to happen and then a response that
indicates the status of the command (successful or error). To avoid hard-coding response topics, we
recommend that for any MQTT command, the command request payload includes a field that has
a response topic. The device publishes its response payload using the response topic. For example,
consider the following command topic:

 cmd/security/device-1/cert-rotation

In the payload of this request, the IoT application includes a field that denotes where the device
(device-1) should send its response and a session identifier for tracking. See the following
example for this command’s payload structure:

{
 "session-id":"session-820923084792",
 "res-topic":"cmd/security/app1/res"
}

Using the MQTT topics for commands 17

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Applications on AWS

The following sections provide use cases for implementing MQTT topic best practices using AWS
IoT.

MQTT command topics example

For a smart door lock application, a user must be able to submit a command to the lock that
initiates a temporary key to be issued for an approved visitor. The temporary key consists of a TTL,
code, and information about the authorized user.

The ability to create a temporary key allows another individual to open the lock for a specified
period. This use case would apply in scenarios such as visiting family member arriving at the home
while the primary owner is at work.

This scenario assumes the following details:

• The homeowner has a mobile device ID of mobile-1

• The approved visitor has a mobile device ID of mobile-2

• The smart lock is installed as part of a group of other locks in the home. The set of locks has a
context for groupId where groupId equals group-3

• The smart lock for the front door has a lockId of lock-1

• The smart lock hardware has a series number of series100. The series is a unique identifier for
this product version.

Command request to generate a smart lock code

The primary owner first publishes a command to the lock requesting a temporary access
code created for an approved visitor. The command payload includes the identification of the
homeowner’s mobile device, a randomly generated session identifier for tracking the current
request, an action field that contains the type of command, and a topic field. The smart lock uses
the topic in the topic field for publishing its response back to the homeowner.

MQTT command topics example 18

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Mobile user requests temporary credentials for the front door

Augment MQTT messages using any internal standards for requests, responses, and telemetry.
For example, by adding in the requestor of the command in the payload, applications can specify
different response topics based on the use case. If the homeowner requests a temporary lock but
needs the response to reach all door locks in the home, the topic field could be changed to send to
a group of devices.

Command processing on the smart lock

The smart lock receives the command message from the MQTT topic. By leveraging a consistent
naming schema for commands in this application, the smart lock can ensure that it only receives
commands on its specific command topic. This topic design also makes it possible for the lock to
subscribe using a single level MQTT wildcard after its identifier.

The single level wildcard command is backward compatible as the IoT application adds new
command types. The following example is a simplified example to show the topic structure.
Consider using device attributes and policy variables restricting the topic(s) that a device can
subscribe or publish to.

Command processing on the smart lock 19

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

After receiving the MQTT payload, the smart lock parses the command request to determine what
type of action to run. In this case, the command is related to credentials. The device also extracts
the client ID, the session ID, and the response topic from the command payload.

Because a home can have multiple authorized homeowners, the client ID determines which
homeowner has requested this change. In this example, the action field includes the type of
credentials request, generate-password, and the associated user for the temporary key. Last, the
device obtains the response topic field in the MQTT message and uses this information to publish
its response.

Command processing on the smart lock 20

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Smart lock response published to AWS IoT Core

Command response delivered to the mobile client

The homeowner's mobile client subscribes to command responses for any smart locks in the group.
Whenever the mobile client receives a successful command response, the temporary code along
with any additional authorization permissions can be processed on the device and simultaneously
stored in the AWS Cloud. Later, the authorized visitor can use the temporary code along with
additional security credentials, such as exchanging for OAuth credentials, proving local presence to
the door, and so on, to apply the temporary code to the smart lock.

In this workflow, the application used a command topic for a single device. However, a similar
workflow may be used to request commands for multiple devices in a group, such as locking all of
the doors in the home.

Command response sent from AWS IoT Core to mobile client

MQTT telemetry topics example

This section is an example of aggregating telemetry from a set of occupancy sensors that are
placed throughout a building to monitor room usage. The occupancy sensors communicate to a
local gateway that is running AWS IoT Greengrass. AWS IoT Greengrass. AWS IoT Greengrass then
delivers all sensor metrics on an MQTT topic to AWS IoT Core. Because this use case is focused on

Command response delivered to the mobile client 21

https://aws.amazon.com/greengrass/

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

telemetry, a response topic is not needed between AWS IoT Greengrass and AWS IoT Core, either
locally or upstream.

This scenario assumes the following details:

• The occupancy sensors have IDs of occupancy-1 and occupancy-2

• The building is called building-fresco

• Each sensor is placed on a specific floor and within a specific room name in building-fresco.

• The AWS IoT Greengrass local gateway has a unique identifier of gateway-1

• The current building automation system correlates to an internal project called acme

Local telemetry from occupancy sensor to AWS IoT Greengrass

Each occupancy sensor publishes an occupancy reading once per minute and whenever a person
enters or leaves the room. Because the occupancy sensors do not correlate precisely to the state
of the device and instead refer to the state of the room, the sensor publishes the room status
on a telemetry topic. The payload includes a timestamp, occupancy count, and any efficiency
countdown for turning off lights if a room is vacant. The occupancy sensor uses an MQTT topic that
includes the contextual information about the position of the sensor within the building and its
associated project. A AWS IoT Greengrass core receives all occupancy sensor data locally.

Local occupancy sensor publishes sensor reading to AWS IoT Greengrass

Local telemetry from occupancy sensor to AWS IoT Greengrass 22

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

AWS IoT Greengrass telemetry from Edge to cloud

In this example, the primary role of AWS IoT Greengrass is to aggregate the data from multiple
occupancy sensors then send the data to AWS IoT Core. Because AWS IoT Greengrass is the local
bridge to the cloud, AWS IoT Greengrass adds metadata to each sensor reading.

AWS IoT Greengrass adds building information to each message to show the overall usage of the
building in 5-minute increments. AWS IoT Greengrass also augments the MQTT topic by including
the appropriate application identifier, acme.

AWS IoT Greengrass aggregates and augments telemetry, then forwards messages to AWS IoT Core

AWS IoT Greengrass telemetry from Edge to cloud 23

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Best practices for using MQTT topics in the AWS IoT
Rules Engine

The AWS IoT Rules Engine enables you to define how messages sent to AWS IoT Core can interact
with AWS services. An AWS IoT rule consists of a SQL SELECT statement, a topic filter, and a rule
action.

The SQL SELECT statement can extract data from incoming MQTT messages. The topic filter of an
AWS IoT rule specifies which MQTT topics invoke an AWS IoT Rule Action.

The rules engine plays a pivotal role in intelligently directing messages to other AWS services
or republishing to devices. AWS IoT rules support use cases, such as gathering operational
metrics, data enrichment, data aggregation of device telemetry for analytics purpose, and for
troubleshooting errors.

Rules Engine integration with telemetry topics

We recommend using a topic structure for telemetry similar to the following:

 dt/<application-prefix>/<context>/<thing-name>/<dt-type>

The second field in the MQTT topic telemetry pattern defined as application-prefix
represents an immutable, natural bifurcation between your devices in a fleet. A common attribute
for the application is the device hardware version or the name of the IoT application. Using the
telemetry MQTT structure, you can create an IoT rule to capture all telemetry associated with a
specific application version:

{
 "sql":"SELECT *, topic(2) as applicationVersion, topic(3) as
contextIdentifier FROM 'dt/#'",
 "awsIoTSqlVersion":"2016-03-23",
 "ruleDisabled":false,
 "actions":[{
 ...
 }]
}

Rules Engine integration with telemetry topics 24

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Because the MQTT topic structure mirrors a hierarchy, this rule can select different parts of the
MQTT topic hierarchy and inject it into the new payload. These attributes provide further context
as messages are processed and stored in other AWS services.

Rules Engine integration with command topics

The Rules Engine can be used to capture insight into the success or failure of commands, regardless
of whether the commands are sent using the AWS IoT Device Shadow service, AWS IoT Jobs, or by
using an MQTT command topic.

Tracking success of commands

The AWS IoT Rules Engine can be used to track the success rates of individual commands. The IoT
rule extracts payload information, such as the session identifier; generates additional metadata in
the rule select statement, such as creating a time to live; and temporarily stores the new message
payload into a data store, such as Amazon DynamoDB.

The rule that follows mirrors a common implementation of this use case for an AWS customer.
The IoT rule stores each session as an individual DynamoDB record and because the WHERE clause
identifies this as an incoming command, the rule adds a literal value named status that marks the
command as In progress.

{
"sql": "SELECT sessionId AS token,timestamp()/1000 as ttl, topicId AS responseTopic,
 clientId AS requestorID, action.type AS commandType, 'In PRogress' AS status FROM
 'cmd/series100/#' WHERE topic(5) == 'credentials'”
 "actions": [{
 "dynamoDBv2": {
 "roleArn": "arn:aws:iam::12345678:role/service-role/dynamoDBrole",
 "putItem":{
 "tableName": "command sessions table"
 }
 }
 }]

As command messages are published to the topic matching the rule, the preceding rule maintains a
record of all in-transit commands.

Rules Engine integration with command topics 25

https://aws.amazon.com/dynamodb/

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

By following the MQTT topic best practices, the response topic includes overlapping information as
the command itself (for example, the original session ID and the response topic used by the smart
lock).

As an added capability, the cloud application may have a second IoT rule that uses the session ID to
update the status of a specific command using information from the response metadata.

Refer to the following example:

{
 "sql": "SELECT sessionId AS token,timestamp()/1000 as ttl, topic() AS
 responseTopic, clientId AS requestorID, res.code AS response.code, 'Complete' AS
 status FROM 'cmd/series100/#' WHERE topic(5) == 'res'”
 "actions": [{
 "dynamoDBv2": {
 "roleArn": "arn:aws:iam::12345678:role/service-role/dynamoDBrole",
 "putItem":{
 "tableName": "command sessions table"
 }
 }
 }]

Aligning Rules Engine capabilities with MQTT topics

As you define your use of the IoT rules, review the following recommendations as you relate to
MQTT topics and the AWS IoT Rules Engine:

• Use the topic(Decimal) rule function to augment your MQTT messages with contextual
information contained in your MQTT topics.

• Use the timestamp() rule function to include a timestamp that correlates the time that a
message reached AWS IoT Core.

• If your commands are in JSON, reference any contextual payload metadata, such as session ID,
in the SELECT and WHERE clause of the rules engine. The additional payload information can be
used to determine if and when a rule should initiate.

• Use Substitution templates in your AWS IoT actions to express variables as part of the AWS IoT
Rule action that is initiated. Substitution expressions make it easier to scale and dynamically
route to downstream IoT Rule actions.

• To track the completion of a command or request, use the AWS IoT Rules Engine to store
the data and status in a service, such as DynamoDB. As messages are processed, data can be

Aligning Rules Engine capabilities with MQTT topics 26

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-topic
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-timestamp
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-select.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-where.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

automatically expired from DynamoDB using a TTL field. In cases where commands are sent at a
high throughput rate, you can leverage the AWS IoT Rules Engine with Amazon Kinesis to buffer
data before DynamoDB storage.

• Use the AWS IoT Rules WHERE clause to filter messages that do not apply to an AWS IoT Action.
The WHERE clause can be used with the JSON payload or Rules Engine functions, such as
get_thing_shadow(thingName, roleARN) or aws_lambda(functionArn, inputJson).

• After AWS IoT Core receives a message, use AWS services like Amazon Kinesis or Amazon SQS
to buffer the message payload along with the MQTT topic the message was published to. Once
messages are buffered, you can run your own logic on AWS Lambda or Amazon Elastic Compute
Cloud (Amazon EC2) to map fields from the payload or the topic and enrich the payload with
additional metadata related to the individual devices, the type of device, or the device group.
The topic(decimal) rule function can be used to enrich the payload with the entire topic
when using topic(). If you want to enrich the payload with an serial number that is part of the
MQTT topic shown below then you would use topic(4).

dt/customer435/hub/745384327

Aligning Rules Engine capabilities with MQTT topics 27

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-get-thing-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-func-aws-lambda
https://aws.amazon.com/lambda/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Conclusion

MQTT is a simple, secure, flexible, and robust IoT protocol. It allows you to define communication
networks between devices and the cloud that can tailor fit an increasingly large number of
customer use cases. To support you on your initial steps in using MQTT on AWS IoT, this whitepaper
has presented several best practices, guidelines, and considerations that can be used when
reviewing how to implement IoT device communications.

AWS IoT enables the definition of several MQTT communication patterns - point-to-point,
broadcast, and fan-in — that relate to different use cases. In addition, AWS IoT Services provide
you with additional managed services including, but not limited to, AWS IoT Jobs, AWS IoT Device
Shadow service, and the AWS IoT Rules Engine.

28

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Further reading

For additional information, see the following:

• AWS Whitepapers

• AWS IoT Core Documentation

• Rules for AWS IoT

• The IoT Atlas

29

https://aws.amazon.com/whitepapers/
https://docs.aws.amazon.com/iot/latest/developerguide/index.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://iotatlas.net/en/

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Document History and Contributors

Document History

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated for Named Shadows,
Sample diagrams and
examples

December 8, 2021

Minor updates Adjusted page layout April 30, 2021

Whitepaper updated Updated for Basic Ingest. May 1, 2019

Initial publication Whitepaper first published. October 1, 2018

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser you are
using.

Contributors

The following individuals and organizations contributed to this document:

• Olawale Oladehin, Solutions Architect, AWS IoT

• Steve Krems, Solutions Architect, AWS IoT

Document History 30

Designing MQTT Topics for AWS IoT Core AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

31

	Designing MQTT Topics for AWS IoT Core
	Table of Contents
	
	Designing MQTT Topics for AWS IoT Core
	Abstract
	Introduction

	MQTT communication patterns
	Point-to-point
	Broadcast
	Fan-In

	Communication workflows
	MQTT design best practices
	General best practices
	Best practices for telemetry
	Using AWS IoT Basic Ingest for telemetry
	Best practices for using AWS IoT Basic Ingest

	Using the MQTT topics for telemetry
	MQTT telemetry topic syntax

	Best practices for commands
	Using the AWS IoT Shadow for commands
	Best practices for using the AWS IoT Classic Shadow or Named Shadows

	Using AWS IoT Jobs for Commands
	Best practices for using AWS IoT Jobs

	Using the MQTT topics for commands
	MQTT command topic syntax
	MQTT command payload syntax

	Applications on AWS
	MQTT command topics example
	Command request to generate a smart lock code
	Command processing on the smart lock
	Command response delivered to the mobile client

	MQTT telemetry topics example
	Local telemetry from occupancy sensor to AWS IoT Greengrass
	AWS IoT Greengrass telemetry from Edge to cloud

	Best practices for using MQTT topics in the AWS IoT Rules Engine
	Rules Engine integration with telemetry topics
	Rules Engine integration with command topics
	Tracking success of commands

	Aligning Rules Engine capabilities with MQTT topics

	Conclusion
	Further reading
	Document History and Contributors
	Document History
	Contributors

	Notices

