
User Guide

Amazon Verified Permissions

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Verified Permissions User Guide

Amazon Verified Permissions: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Verified Permissions User Guide

Table of Contents

What is Amazon Verified Permissions? .. 1
Authorization in Verified Permissions .. 1
Cedar policy language ... 2
Benefits of Verified Permissions .. 2

Accelerate application development ... 2
More secure applications ... 2
End-user features .. 3

Related services .. 3
Accessing Verified Permissions .. 3
Pricing for Verified Permissions .. 5

Getting started with policy stores ... 6
Prerequisites .. 7
Step 1: Create a PhotoFlash policy store .. 9
Step 2: Create a policy .. 9
Step 3: Testing a policy store .. 10
Step 4: Clean up resources .. 12

Designing an authorization model ... 13
No single correct model ... 14
Returning errors .. 14
Focus on resources ... 15
Consider multi-tenancy ... 16

Comparing shared policy stores and per-tenant policy stores .. 18
How to choose .. 19

Policy stores ... 20
Creating policy stores .. 20

Creating a policy store using Rust .. 28
API-linked policy stores .. 33

How it works .. 35
Considerations ... 37
Adding ABAC .. 38
Moving to production .. 39
Troubleshooting .. 42

Deleting policy stores .. 44
Policy store schema ... 47

iii

Amazon Verified Permissions User Guide

Editing schema ... 49
Policy validation mode ... 52
Policies ... 54

Creating static policies .. 55
Editing static policies .. 57
... 59

Evaluate example context ... 61
Testing policies ... 67
Example policies ... 69

Uses bracket notation to reference token attributes .. 70
Uses dot notation to reference attributes ... 70
Reflects Amazon Cognito ID token attributes .. 71
Reflects OIDC ID token attributes ... 71
Reflects Amazon Cognito access token attributes ... 72
Reflects OIDC access token attributes .. 72

Policy templates and template-linked policies ... 73
Creating policy templates .. 73
Creating template-linked policies ... 75
Editing policy templates ... 77
Example template-linked policies ... 79

PhotoFlash examples ... 79
DigitalPetStore examples .. 80
TinyToDo examples .. 81

Identity sources ... 82
Choosing the right identity provider ... 83
Working with Amazon Cognito identity sources ... 83

Creating identity sources ... 86
Editing identity sources ... 89
Mapping tokens to schema .. 91
Client and audience validation .. 102

Working with OIDC identity sources .. 105
Creating identity sources .. 106
Editing identity sources ... 109
Mapping tokens to schema .. 111
Client and audience validation .. 118

Integrations .. 122

iv

Amazon Verified Permissions User Guide

Using Express .. 122
Prerequisites .. 123
Setting up the integration .. 123
Configuring authorization ... 124
Implementing the authorization middleware ... 127
Testing the integration .. 127
Troubleshooting .. 128
Next steps .. 128

Authorize requests ... 129
API operations .. 130
Test model ... 131
Integrating with applications .. 133

Security .. 136
Data protection .. 136

Data encryption .. 138
Identity and access management ... 138

Audience ... 139
Authenticating with identities ... 139
Managing access using policies ... 142
How Amazon Verified Permissions works with IAM .. 145
IAM policies for Verified Permissions ... 151
Identity-based policy examples ... 154
AWS managed policies .. 157
Troubleshooting .. 160

Compliance validation .. 162
Resilience ... 163

Monitoring ... 165
CloudTrail logs .. 165

Verified Permissions information in CloudTrail .. 165
Understanding Verified Permissions log file entries ... 166

Working with AWS CloudFormation .. 184
Verified Permissions and AWS CloudFormation templates ... 184
AWS CDK constructs .. 185
Learn more about AWS CloudFormation .. 185

Using AWS PrivateLink .. 186
Considerations .. 186

v

Amazon Verified Permissions User Guide

Create an interface endpoint .. 186
Create an endpoint policy ... 187

Quotas .. 189
Quotas for resources ... 189

Template-linked policy size example ... 190
Quotas for hierarchies .. 192
Quotas for operations per second ... 193

Terms & concepts .. 198
Authorization model ... 199
Authorization request ... 199
Authorization response ... 199
Considered policies .. 199
Context data ... 199
Determining policies ... 200
Entity data ... 200
Permissions, authorization, and principals ... 200
Policy enforcement .. 200
Policy store .. 200
Satisfied policies .. 201
Differences with Cedar .. 201

Namespace definition .. 201
Policy template support ... 201
Schema support .. 202
Action groups definition ... 202
Entity formatting .. 202
Length and size limits ... 207

Cedar v4 FAQ ... 209
What is the current state on the upgrade? .. 209
Do I need to do anything right now? .. 209
Does the upgrade of the console impact the authorization service? .. 209
What are the breaking changes in Cedar v3 and Cedar v4? ... 210
When will the upgrade to Cedar v4 be complete? ... 210

Document history .. 211

vi

Amazon Verified Permissions User Guide

What is Amazon Verified Permissions?

Amazon Verified Permissions is a scalable, fine-grained permissions management and
authorization service for custom applications built by you. Verified Permissions enables your
developers to build secure applications faster by externalizing authorization and centralizing policy
management and administration. Verified Permissions uses the Cedar policy language to define
fine-grained permissions to protect your application's resources.

For guidance and examples for setting up a policy decision point (PDP) using Verified Permissions,
see Implementing a PDP by using Amazon Verified Permissions in AWS Prescriptive Guidance.

Topics

• Authorization in Verified Permissions

• Cedar policy language

• Benefits of Verified Permissions

• Related services

• Accessing Verified Permissions

• Pricing for Verified Permissions

Authorization in Verified Permissions

Verified Permissions provides authorization by verifying whether a principal is allowed to perform
an action on a resource in a given context in your application. Verified Permissions presumes
that the principal has been previously identified and authenticated through other means, such
as by using protocols like OpenID Connect, a hosted provider like Amazon Cognito, or another
authentication solution. Verified Permissions is agnostic to where the principal is managed and
how they were authenticated.

Verified Permissions is a service that enables customers to create, maintain, and test policies in
the AWS Management Console, programmatically using the Verified Permissions APIs, or through
infrastructure as code solutions like AWS CloudFormation. Permissions are expressed using the
Cedar policy language. The client application calls authorization APIs to evaluate the Cedar policies
stored with the service and provide an access decision for whether an action is permitted.

Authorization in Verified Permissions 1

https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/avp.html

Amazon Verified Permissions User Guide

Cedar policy language

Authorization policies in Verified Permissions are written by using the Cedar policy language. Cedar
is an open source language for writing authorization policies and making authorization decisions
based on those policies. When you create an application, you need to ensure that only authorized
principals, human users or machines, can access the application, and can do only what they're
authorized to do. Using Cedar, you can decouple your business logic from the authorization logic.
In your application’s code, you preface requests made to your operations with a call to the Cedar
authorization engine, asking “Is this request authorized?”. Then, the application can either perform
the requested operation if the decision is “allow”, or return an error message if the decision is
“deny”.

Verified Permissions currently uses Cedar version 2.4.

For more information about Cedar, see the following:

• Cedar policy language Reference Guide

• Cedar GitHub repository

Benefits of Verified Permissions

Accelerate application development

Accelerate application development by decoupling authorization from business logic.

Verified Permissions provides integrations with popular development frameworks, making it easier
to implement authorization in your applications with minimal code changes. These integrations
allow you to focus on your core business logic while Verified Permissions handles the authorization
decisions.

• Express.js – A middleware-based integration that enables you to protect API endpoints in your
Express applications without modifying existing route handlers. For more information, see the
section called “Using Express”.

More secure applications

Verified Permissions enables developers to build more secure applications.

Cedar policy language 2

https://docs.cedarpolicy.com/
https://github.com/cedar-policy/

Amazon Verified Permissions User Guide

End-user features

Verified Permissions allows you to deliver richer end-user features for permissions management.

Related services

• Amazon Cognito – Amazon Cognito is an identity platform for web and mobile apps. It’s a user
directory, an authentication server, and an authorization service for OAuth 2.0 access tokens and
AWS credentials. When you create a policy store, you have the option to build your principals
and groups from an Amazon Cognito user pool. For more information, see the Amazon Cognito
Developer Guide.

• Amazon API Gateway – Amazon API Gateway is an AWS service for creating, publishing,
maintaining, monitoring, and securing REST, HTTP, and WebSocket APIs at any scale. When you
create a policy store, you have the option to build your actions and resources from an API in API
Gateway. For more information about API Gateway, see the API Gateway Developer Guide.

• AWS IAM Identity Center – With IAM Identity Center, you can manage sign-in security for your
workforce identities, also known as workforce users. IAM Identity Center provides one place
where you can create or connect workforce users and centrally manage their access across all
their AWS accounts and applications. For more information, see the AWS IAM Identity Center
User Guide.

Accessing Verified Permissions

You can work with Amazon Verified Permissions in any of the following ways.

AWS Management Console

The console is a browser-based interface to manage Verified Permissions and AWS resources.
For more information about accessing Verified Permissions through the console, see How to
sign in to AWS in the AWS Sign-In User Guide.

• Amazon Verified Permissions console

AWS Command Line Tools

You can use the AWS command line tools to issue commands at your system's command line to
perform Verified Permissions and AWS tasks. Using the command line can be faster and more
convenient than the console. The command line tools are also useful if you want to build scripts
that perform AWS tasks.

End-user features 3

https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/apigateway/latest/developerguide/
https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://console.aws.amazon.com/verifiedpermissions/home

Amazon Verified Permissions User Guide

AWS provides two sets of command line tools: the AWS Command Line Interface (AWS CLI) and
the AWS Tools for Windows PowerShell. For information about installing and using the AWS
CLI, see the AWS Command Line Interface User Guide. For information about installing and
using the Tools for Windows PowerShell, see the AWS Tools for PowerShell User Guide.

• verifiedpermissions in the AWS CLI Command Reference

• Amazon Verified Permissions in AWS Tools for Windows PowerShell

AWS SDKs

AWS provides SDKs (software development kits) that consist of libraries and sample code for
various programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android, etc.).
The SDKs provide a convenient way to create programmatic access to Verified Permissions
and AWS. For example, the SDKs take care of tasks such as cryptographically signing requests,
managing errors, and retrying requests automatically.

To learn more and download AWS SDKs, see Tools for Amazon Web Services.

The following are links to documentation for Verified Permissions resources in various AWS
SDKs.

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

• AWS SDK for Rust

AWS CDK constructs

The AWS Cloud Development Kit (AWS CDK) is an open-source software development
framework for defining cloud infrastructure in code and provisioning it through AWS
CloudFormation. Constructs, or reusable cloud components, can be used to create AWS
CloudFormation templates. These templates can then be used to deploy your cloud
infrastructure.

To learn more and download AWS CDK, see AWS Cloud Development Kit.

Accessing Verified Permissions 4

https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/verifiedpermissions/index.html
https://docs.aws.amazon.com/powershell/latest/reference/?page=VerifiedPermissions_cmdlets.html&tocid=VerifiedPermissions_cmdlets
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/VerifiedPermissions/NVerifiedPermissions.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-verifiedpermissions/html/class_aws_1_1_verified_permissions_1_1_verified_permissions_client.html
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/verifiedpermissions
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/verifiedpermissions/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/verifiedpermissions/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-verifiedpermissions-2021-12-01.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/verifiedpermissions.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/VerifiedPermissions/Client.html
https://docs.rs/aws-sdk-verifiedpermissions/latest/aws_sdk_verifiedpermissions/
https://aws.amazon.com/cdk/

Amazon Verified Permissions User Guide

The following are links to documentation for Verified Permissions AWS CDK resources, such as
constructs.

• Amazon Verified Permissions L2 CDK Construct

Verified Permissions API

You can access Verified Permissions and AWS programmatically by using the Verified
Permissions API, which lets you issue HTTPS requests directly to the service. When you use the
API, you must include code to digitally sign requests using your credentials.

• Amazon Verified Permissions API Reference Guide

Pricing for Verified Permissions

Verified Permissions provides tiered pricing based on the amount of authorization requests
per month made by your applications to Verified Permissions. There is also pricing for policy
management actions based on the amount of cURL (client URL) policy API requests per month
made by your applications to Verified Permissions.

For a complete list of charges and prices for Verified Permissions see Amazon Verified Permissions
pricing.

To see your bill, go to the Billing and Cost Management Dashboard in the AWS Billing and Cost
Management console. Your bill contains links to usage reports that provide details about your bill.
To learn more about AWS account billing, see the AWS Billing User Guide.

If you have questions concerning AWS billing, accounts, and events, contact Support.

Pricing for Verified Permissions 5

https://github.com/cdklabs/cdk-verified-permissions
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/
https://aws.amazon.com/verified-permissions/pricing/
https://aws.amazon.com/verified-permissions/pricing/
https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
https://aws.amazon.com/contact-us/

Amazon Verified Permissions User Guide

Create your first Amazon Verified Permissions policy
store

For this tutorial, let's assume you're the developer of a photo sharing application and you are
looking for a way to control what actions the users of the application can perform. You want to
control who can add, delete, or view photos and photo albums. You also want to control what
actions a user can take on their account. Can they manage their account, how about the account
of a friend? To control these actions you would create policies that permit or forbid these actions
based on the identity of the user. Verified Permissions offers policy stores, or containers, to house
these policies.

In this tutorial we'll walk through creating a sample policy store using the Amazon Verified
Permissions console. The console offers a few sample policy store options and we’re going to
create a PhotoFlash policy store. This policy store allows principals, such as users, to perform
actions, such as sharing, on resources, such as photos or albums.

The following diagram illustrates the relationships between a principal, User::alice,
and the actions she can take on various resources, namely her PhotoFlash account, the
VactionPhoto94.jpg file, the photo album alice-favorites-album, and the user group
alice-friend-group.

6

Amazon Verified Permissions User Guide

Now that you have an understanding of the PhotoFlash policy store, let’s create the policy store
and explore it.

Prerequisites

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign

Prerequisites 7

https://portal.aws.amazon.com/billing/signup

Amazon Verified Permissions User Guide

administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Prerequisites 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

Amazon Verified Permissions User Guide

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Step 1: Create a PhotoFlash policy store

In the following procedure you'll create a PhotoFlash policy store using the AWS console.

To create a PhotoFlash policy store

1. In the Verified Permissions console, choose Create new policy store.

2. For Starting options, choose Start from a sample policy store.

3. For Sample project, choose PhotoFlash.

4. Choose Create policy store.

Once you see the message "Created and configured policy store," choose Go to overview to explore
your policy store.

Step 2: Create a policy

When you created the policy store, a default policy was created that allows users to have full
control over their own accounts. This is a useful policy, but for our purposes, let’s create a more
restrictive policy to explore the nuances of Verified Permissions. If you remember the diagram we

Step 1: Create a PhotoFlash policy store 9

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://console.aws.amazon.com/verifiedpermissions

Amazon Verified Permissions User Guide

looked at earlier in the tutorial, we had a principal, User::alice, who could perform an action,
UpdateAlbum, on a resource, alice-favorites-album. Let's add the policy that will allow Alice,
and only Alice, to manage this album.

To create a policy

1. In the Verified Permissions console, choose the policy store you created in step 1.

2. In the navigation, choose Policies.

3. Choose Create policy and then choose Create static policy.

4. For Policy effect, choose Permit.

5. For Principals scope, choose Specific principal, then for Specify entity type, choose
PhotoFlash::User, and for Specify entity identifier, enter alice.

6. For Resources scope, choose Specific resource, then for Specify entity type, choose
PhotoFlash::Album, and for Specify entity identifier, enter alice-favorites-album.

7. For Actions scope, choose Specific set of actions, then for Action(s) this policy should apply
to, select UpdateAlbum.

8. Choose Next.

9. Under Details, for Policy description - optional enter Policy allowing alice to
update alice-favorites-album..

10. Choose Create policy

Now that you've created a policy you can test it in the Verified Permissions console.

Step 3: Testing a policy store

After creating your policy store and policy, you can test them by running a simulated authorization
request using the Verified Permissions test bench.

To test policy store policies

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Test bench.

3. Choose Visual mode.

4. For Principal, do the following:

Step 3: Testing a policy store 10

https://console.aws.amazon.com/verifiedpermissions
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

a. For Principal taking action choose PhotoFlash::User and for Specify entity identifier,
enter alice.

b. Under Attributes, for Account: Entity, make sure that the PhotoFlash::Account entity is
selected, and for Specify entity identifier, enter alice-account.

5. Under Resource, for Resource that principal is acting on, choose the PhotoFlash::Album
resource type and for Specify entity identifier, enter alice-favorites-album.

6. For Action, choose PhotoFlash::Action::"UpdateAlbum" from the list of valid actions.

7. At the top of the page, choose Run authorization request to simulate the authorization
request for the Cedar policies in the sample policy store. The test bench should display
Decision: Allow indicating our policy is working as expected.

The following table provides additional values for the principal, resource, and action you can test
with the Verified Permissions test bench. The table includes the authorization request decision
based on the static policies included with the PhotoFlash sample policy store and the policy you
created in step 2.

Principal
value

Principal
Account:
Entity value

Resource
value

Resource
parent value

Action Authoriza
tion decision

PhotoFlas
h::User | bob

PhotoFlas
h::Account |
alice-account

PhotoFlas
h::Album
| alice-fav
orites-album

N/A PhotoFlas
h::Action
::"Update
Album"

Deny

PhotoFlas
h::User | alice

PhotoFlas
h::Account |
alice-account

PhotoFlas
h::Photo |
photo.jpeg

PhotoFlas
h::Account |
bob-account

PhotoFlas
h::Action
::"ViewPh
oto"

Deny

PhotoFlas
h::User | alice

PhotoFlas
h::Account |
alice-account

PhotoFlas
h::Photo |
photo.jpeg

PhotoFlas
h::Account |
alice-account

PhotoFlas
h::Action
::"ViewPh
oto"

Allow

Step 3: Testing a policy store 11

Amazon Verified Permissions User Guide

Principal
value

Principal
Account:
Entity value

Resource
value

Resource
parent value

Action Authoriza
tion decision

PhotoFlas
h::User | alice

PhotoFlas
h::Account |
alice-account

PhotoFlas
h::Photo |
bob-photo
.jpeg

PhotoFlas
h::Album |
Bob-Vacat
ion-Album

PhotoFlas
h::Action
::"Delete
Photo"

Deny

Step 4: Clean up resources

After you have finished exploring your policy store, delete it.

To delete a policy store

1. In the Verified Permissions console, choose the policy store you created in step 1.

2. In the navigation, choose Settings.

3. Under Delete policy store, choose Delete this policy store.

4. In the Delete this policy store? dialog box, enter delete, and then choose Delete.

Step 4: Clean up resources 12

https://console.aws.amazon.com/verifiedpermissions

Amazon Verified Permissions User Guide

Best practices for designing an authorization model

As you prepare to use the Amazon Verified Permissions service within a software application, it can
be challenging to leap immediately into writing policy statements as a first step. This would be
similar to beginning development of other portions of an application by writing SQL statements or
API specifications before fully deciding what the application should do. Instead, you should begin
with a user experience. Then, work backwards from that experience to arrive at an implementation
approach.

As you do this work, you’ll find yourself asking questions such as:

• What are my resources? How are they organized? For example, do files reside within a folder?

• Does the organization of the resources play a part in the permissions model?

• What actions can principals perform on each resource?

• How do principals acquire those permissions?

• Do you want your end-users to choose from predefined permissions such as “Admin”, “Operator”,
or “ReadOnly”, or should they create ad-hoc policy statements? Or both?

• Are roles global or scoped? For example, is an "operator" limited within a single tenant, or does
"operator" means operator across the whole application?

• What types of queries are necessary to render the user experience? For example, do you need to
list all of the resources that a principal can access to render that user's home page?

• Can users accidentally lock themselves out of their own resources? Does that need to be avoided?

The end result of this exercise is referred to as an authorization model; it defines the principals,
resources, actions, and how they interrelate to each other. Producing this model doesn’t require
unique knowledge of Cedar or the Verified Permissions service. Instead, it is first and foremost a
user experience design exercise, much like any other, and can manifest in artifacts such as interface
mockups, logical diagrams, and an overall description of how permissions influence what users can
do in the product. Cedar is designed to be flexible enough to meet customers at a model, rather
than forcing the model to bend unnaturally to comply with a Cedar's implementation. As a result,
gaining a crisp understanding of the desired user experience is the best way to arrive at an optimal
model.

To help answer the questions and come to an optimal model, do the following:

13

Amazon Verified Permissions User Guide

• Review Cedar design patterns in the Cedar policy language Reference Guide.

• Consider the best practices in the Cedar policy language Reference Guide.

• Consider the best practices included on this page.

Best practices

• There isn't a canonical “correct” model

• Return 403 forbidden errors rather than 404 not found errors

• Focus on your resources beyond API operations

• Multi-tenancy considerations

There isn't a canonical “correct” model

When you design an authorization model, there is no single, uniquely correct answer. Different
applications can effectively use different authorization models for similar concepts, and this is OK.
For example, consider the representation of a computer's file system. When you create a file in a
Unix-like operating system, it doesn't automatically inherit permissions from the parent folder. In
contrast, in many other operating systems and most online file-sharing services, files do inherit
permissions from its parent folder. Both choices are valid depending upon the circumstances the
application is optimizing for.

The correctness of an authorization solution isn’t absolute, but should be viewed in terms of how
it delivers the experience that your customers want, and whether it protects their resources in the
way they expect. If your authorization model delivers on this, then it is successful.

This is why beginning your design with the desired user experience is the most helpful prerequisite
to the creation of an effective authorization model.

Return 403 forbidden errors rather than 404 not found errors

It's best to return a 403 Forbidden error to requests that include an entity, especially a resource,
that doesn't correspond to any policy rather than a 404 Not found error. This provides the highest
level of security because you're not exposing whether an entity exists or not, just that the request
didn't meet the policy conditions in any policy in the policy store.

No single correct model 14

https://docs.cedarpolicy.com/overview/patterns.html
https://docs.cedarpolicy.com/bestpractices/bp-naming-conventions.html

Amazon Verified Permissions User Guide

Focus on your resources beyond API operations

In most applications, permissions are modeled around the resources supported. For example, a file-
sharing application might represent permissions as actions that can be performed on a file or a
folder. This is a good, simple model that abstracts away the underlying implementation and the
backend API operations.

In contrast, other types of applications, particularly web services, frequently design permissions
around the API operations themselves. For example, if a web service provides an API named
createThing(), the authorization model might define a corresponding permission, or an action
in Cedar named createThing. This works in many situations and makes it easy to understand
the permissions. To invoke the createThing operation, you need the createThing action
permission. Seems simple, right?

You'll find that the getting started process in the Verified Permissions console includes the option
to build your resources and actions directly from an API. This is a useful baseline: a direct mapping
between your policy store and the API that it authorizes for.

However, as you further develop your model, this API-focused approach may not be a good fit for
applications with very granular authorization models because APIs are merely a proxy for what
your customers are truly trying to protect: the underlying data and resources. If multiple APIs
control access to the same resources, it can be difficult for administrators to reason about the paths
to those resources and manage access accordingly.

For example, consider a user directory that contains the members of an organization. Users can be
organized into groups, and one of the security goals is to prohibit discovery of group memberships
by unauthorized parties. The service managing this user directory provides two API operations:

• listMembersOfGroup

• listGroupMembershipsForUser

Customers can use either of these operations to discover group membership. Therefore, the
permissions administrator must remember to coordinate access to both operations. This is
complicated further if you later choose to add a new API operation to address additional use cases,
such as the following.

• isUserInGroups (a new API to quickly test if a user belongs in one or more groups)

Focus on resources 15

Amazon Verified Permissions User Guide

From a security perspective, this API opens a third path for discovering group memberships,
disrupting the carefully crafted permissions of the administrator.

We recommend that you focus on the underlying data and resources and their association
operations. Applying this approach to the group membership example would lead to an abstract
permission, such as viewGroupMembership, which each of the three API operations must consult.

API Name Permissions

listMembersOfGroup requires viewGroupMembership permission on the group

listGroupMembershi
psForUser

requires viewGroupMembership permission on the user

isUserInGroups requires viewGroupMembership permission on the user

By defining this one permission, the administrator successfully controls access to discovering group
memberships, now and forever. As a tradeoff, each API operation must now document the possibly
several permissions that it requires, and the administrator must consult this documentation
when crafting permissions. This can be a valid tradeoff when necessary to meet your security
requirements.

Multi-tenancy considerations

You might want to develop applications for use by multiple customers - businesses that consume
your application, or tenants - and integrate them with Amazon Verified Permissions. Before
you develop your authorization model, develop a multi-tenant strategy. You can manage the
policies of your customers in one shared policy store, or assign each a per-tenant policy store. For
more information, see Amazon Verified Permissions multi-tenant design considerations in AWS
Prescriptive Guidance.

1. One shared policy store

All tenants share a single policy store. The application sends all authorization requests to the
shared policy store.

2. Per-tenant policy store

Consider multi-tenancy 16

https://docs.aws.amazon.com/prescriptive-guidance/latest/saas-multitenant-api-access-authorization/avp-design-considerations.html

Amazon Verified Permissions User Guide

Each tenant has a dedicated policy store. The application will query different policy stores for an
authorization decision, depending on the tenant that makes the request.

Neither strategy will have a large impact on your AWS bill. So how, then, should you design
your approach? The following are common conditions that might contribute to your Verified
Permissions multi-tenancy authorization strategy.

Tenant policies isolation

Isolation of the policies of each tenant from the others is important to protect tenant data.
When each tenant has their own policy store, they each have their own isolated set of policies.

Authorization flow

You can identify a tenant making an authorization request with a policy store ID in the request,
with per-tenant policy stores. With a shared policy store, all requests use the same policy store
ID.

Templates and schema management

When your application has multiple policy stores, your policy templates and a policy store
schema add a level of design and maintenance overhead in each policy store.

Global policies management

You might want to apply some global policies to every tenant. The level of overhead for
management of global policies varies between shared and per-tenant policy store models.

Tenant off-boarding

Some tenants will contribute elements to your schema and policies that are specific to their
case. When a tenant is no longer active with your organization and you want to remove their
data, the level of effort varies with their level of isolation from other tenants.

Service resource quotas

Verified Permissions has resource and request-rate quotas that might influence your multi-
tenancy decision. For more information about quotas, see Quotas for resources.

Consider multi-tenancy 17

Amazon Verified Permissions User Guide

Comparing shared policy stores and per-tenant policy stores

Each consideration requires its own level of time and resource commitment in shared and per-
tenant policy store models.

Consideration Effort level in a shared policy
store

Effort level in per-tenant
policy stores

Tenant policies isolation Medium. Must include tenant
identifiers in policies and
authorization requests.

Low. Isolation is default
behavior. Tenant-specific
policies are inaccessible to
other tenants.

Authorization flow Low. All queries target one
policy store.

Medium. Must maintain
mappings between each
tenant and their policy store
ID.

Templates and schema
management

Low. Must make one schema
work for all tenants.

High. Schemas and templates
might be less complex
individually, but changes
require more coordination
and complexity.

Global policies management Low. All policies are global
and can be centrally updated.

High. You must add global
policies to each policy store in
onboarding. Replicate global
policy updates between many
policy stores.

Tenant off-boarding High. Must identify and delete
only tenant-specific policies.

Low. Delete the policy store.

Service resource quotas High. Tenants share resource
quotas that affect policy
stores like schema size, policy
size per resource, and identity
sources per policy store.

Low. Each tenant has
dedicated resource quotas.

Comparing shared policy stores and per-tenant policy stores 18

Amazon Verified Permissions User Guide

How to choose

Each multi-tenant application is different. Carefully compare the two approaches and their
considerations before making an architectural decision.

If your application doesn't require tenant-specific policies and uses a single identity source, one
shared policy store for all tenants is likely to be the most effective solution. This results in a simpler
authorization flow and global policy management. Off-boarding a tenant using one shared policy
store requires less effort because the application does not need to delete tenant-specific policies.

But if your application requires many tenant-specific policies, or uses multiple identity sources, per-
tenant policy stores are likely to be most effective. You can control access to tenant policies with
IAM policies that grant per-tenant permissions to each policy store. Off-boarding a tenant involves
deleting their policy store; in a shared-policy-store environment, you must find and delete tenant-
specific policies.

How to choose 19

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy stores

A policy store is a container for policies and policy templates. In each policy store, you can create
a schema that is used to validate policies added to the policy store. In addition, you can turn on
policy validation. If you add a policy to a policy store with policy validation enabled, the entity
types, common types, and actions defined in the policy are validated against the schema and
invalid policies are rejected.

Deletion protection prevents accidental deletion of a policy store. Deletion protection is enabled on
all new policy stores created through the AWS Management Console. By contrast, it is disabled for
all policy stores created through an API or SDK call.

We recommend creating one policy store per application, or one policy store per tenant for multi-
tenant applications. You must specify a policy store when making an authorization request.

We recommend using namespaces to Cedar entities in your policy stores to prevent ambiguity.
A namespace is a string prefix for a type, separated by a pair of colons (::) as a delimiter. For
example MyApplicationNamespace::exampleType. Verified Permissions supports one
namespace per policy store. These namespaces help keep things straight when you’re working
with multiple similar applications. For example, in multi-tenant applications, using a namespace to
append the name of the tenant to the types defined in the schema will make them distinct from
their similar counterparts used by the other tenants. When looking at the logs for the authorization
requests, you’ll be able to easily indentify the tenant that processed the authorization request. For
more information, see Namespaces in the Cedar policy language Reference Guide.

Topics

• Creating Verified Permissions policy stores

• API-linked policy stores

• Deleting policy stores

Creating Verified Permissions policy stores

You can create a policy store using the following methods:

• Follow a guided setup – You will define a resource type with valid actions and a principal type
before creating your first policy.

Creating policy stores 20

https://docs.cedarpolicy.com/overview/terminology.html#term-namespaces

Amazon Verified Permissions User Guide

• Set up with API Gateway and an identity source– Define your principal entities with users who
sign in with an identity provider (IdP), and your actions and resource entities from an Amazon
API Gateway API. We recommend this option if you want your application to authorize API
requests with users’ group membership or other attributes.

• Start from a sample policy store – Choose a pre-defined sample project policy store. We
recommend this option if you are learning about Verified Permissions and want to view and test
example policies.

• Create an empty policy store – You will define the schema and all access policies yourself. We
recommend this option if you are already familiar with configuring a policy store.

Guided setup

To create a policy store using the Guided setup configuration method

The guided setup wizard leads you through the process of creating the first iteration of your
policy store. You will create a schema for your first resource type, describe the actions that are
applicable for that resource type, and the principal type for which you are granting permissions.
You will then create your first policy. Once you've completed this wizard, you will be able to
add to your policy store, extend the schema to describe other resource and principal types, and
create additional policies and templates.

1. In the Verified Permissions console, select Create new policy store.

2. In the Starting options section, choose Guided setup.

3. Enter a Policy store description. This text can be whatever suits your organization as a
friendly reference to the function of the current policy store, for example Weather updates
web application.

4. In the Details section, type a Namespace for your schema. For more information about
namespaces, see Namespace definition.

5. Choose Next.

6. On the Resource type window, type a name for your resource type. For example,
currentTemperature could be a resource for the Weather updates web application.

7. (Optional) Choose Add an attribute to add resource attributes. Type the Attribute name
and choose an Attribute type for each attribute of the resource. Choose whether each
attribute is Required. For example, temperatureFormat could be an attribute for
the currentTemperature resource and be either Fahrenheit or Celsius. To remove an
attribute that has been added for the resource type, choose Remove next to the attribute.

Creating policy stores 21

https://console.aws.amazon.com/verifiedpermissions

Amazon Verified Permissions User Guide

8. In the Actions field, type the actions to be authorized for the specified resource type.
To add additional actions for the resource type, choose Add an action. For example,
viewTemperature could be an action in the Weather updates web application. To remove
an action that has been added for the resource type, choose Remove next to the action.

9. In the Name of the principal type field, type the name for a type of principal that will be
using the specified actions for your resource type. By default, User is added to this field but
can be replaced.

10. Choose Next.

11. On the Principal type window, choose the identity source for your principal type.

• Choose Custom if the principal's ID and attributes will be provided directly by your
Verified Permissions application. Choose Add an attribute to add principal attributes.
Verified Permissions uses the specified attribute values when verifying policies against
the schema. To remove an attribute that has been added for the principal type, choose
Remove next to the attribute.

• Choose Cognito User Pool if the principal's ID and attributes will be provided from an
ID or access token generated by Amazon Cognito. Choose Connect user pool. Select
the AWS Region and type User pool ID of the Amazon Cognito user pool to connect
to. Choose Connect. For more information, see Authorization with Amazon Verified
Permissions in the Amazon Cognito Developer Guide.

• Choose External OIDC provider if the principal's ID and attributes will be extracted from
an ID and/or Access token, generated by an external OIDC provider and add the provider
and token details.

12. Choose Next.

13. In the Policy details section, type an optional Policy description for your first Cedar policy.

14. In the Principals scope field, choose the principals that will be granted permissions from
the policy.

• Choose Specific principal to apply the policy to a specific principal. Choose the principal
in the Principal that will be permitted to take actions field and type an entity identifier
for the principal. For example, user-id could be an entity identifier in the Weather
updates web application.

Creating policy stores 22

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

Note

If you are using Amazon Cognito, the entity identifier must be formatted as
<userpool-id>|<sub>.

• Choose All principals to apply the policy to all principals in your policy store.

15. In the Resources scope field, choose which resources that the specified principals will be
authorized to act on.

• Choose Specific resource to apply the policy to a specific resource. Choose the resource
in the Resource this policy should apply to field and type an entity identifier for the
resource. For example, temperature-id could be an entity identifier in the Weather
updates web application.

• Choose All resources to apply the policy to all resources in your policy store.

16. In the Actions scope field, choose which actions that the specified principals will be
authorized to perform.

• Choose Specific set of actions to apply the policy to specific actions. Select the check
boxes next to the actions in the Action(s) this policy should apply to field.

• Choose All actions to apply the policy to all actions in your policy store.

17. Review the policy in the Policy preview section. Choose Create policy store.

Set up with API Gateway and an identity source

To create a policy store using the Set up with API Gateway and an identity source
configuration method

The API Gateway option secures APIs with Verified Permissions policies that are designed to
make authorization decisions from users’ groups, or roles. This option builds a policy store for
testing authorization with identity-source groups and an API with a Lambda authorizer.

The users and their groups in an IdP become either your principals (ID tokens) or your context
(access tokens). The methods and paths in an API Gateway API become the actions that your
policies authorize. Your application becomes the resource. As a result of this workflow, Verified
Permissions creates a policy store, a Lambda function, and an API Lambda authorizer. You must
assign the Lambda authorizer to your API after you finish this workflow.

Creating policy stores 23

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Amazon Verified Permissions User Guide

1. In the Verified Permissions console, select Create new policy store.

2. In the Starting options section, choose Set up with API Gateway and an identity source
and select Next.

3. In the Import resources and actions step, under API, choose an API that will function as
the model to your policy store resources and actions.

a. Choose a Deployment stage from the stages configured in your API and select Import
API. For more information about API stages, see Setting up a stage for a REST API in
the Amazon API Gateway Developer Guide.

b. Preview your Map of imported resources and actions.

c. To update resources or actions, modify your API paths or methods in the API Gateway
console and select Import API to see the updates.

d. When you are satisfied with your choices, choose Next.

4. In Identity source, choose an Identity provider type. You can choose an Amazon Cognito
user pool or an OpenID Connect (OIDC) IdP type.

5. If you chose Amazon Cognito:

a. Choose a user pool in the same AWS Region and AWS account as your policy store.

b. Choose the Token type to pass to API that you want to submit for authorization.
Either token types contains user groups, the foundation of this API-linked
authorization model.

c. Under App client validation, you can limit the scope of a policy store to a subset
of the Amazon Cognito app clients in a multi-tenant user pool. To require that user
authenticate with one or more specified app clients in your user pool, select Only
accept tokens with expected app client IDs. To accept any user who authenticates
with the user pool, select Don't validate app client IDs.

d. Choose Next.

6. If you chose External OIDC provider:

a. In Issuer URL, enter the URL of your OIDC issuer. This is the service endpoint that
provides the authorization server, signing keys, and other information about your
provider, for example https://auth.example.com. Your issuer URL must host an
OIDC discovery document at /.well-known/openid-configuration.

Creating policy stores 24

https://console.aws.amazon.com/verifiedpermissions
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-stages.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-stages.html

Amazon Verified Permissions User Guide

b. In Token type, choose the type of OIDC JWT that you want your application to submit
for authorization. For more information, see Mapping Amazon Cognito tokens to
schema and Mapping OIDC tokens to schema.

c. (optional) In Token claims - optional, choose Add a token claim, enter a name for the
token, and select a value type.

d. In User and group token claims, do the following:

i. Enter a User claim name in token for the identity source. This is a claim, typically
sub, from your ID or access token that holds the unique identifier for the entity to
be evaluated. Identities from the connected OIDC IdP will be mapped to the user
type in your policy store.

ii. Enter a Group claim name in token for the identity source. This is a claim,
typically groups, from your ID or access token that contains a list of the user's
groups. Your policy store will authorize requests based on the group membership.

e. In Audience validation, choose Add value and add a value that you want your policy
store to accept in authorization requests.

f. Choose Next.

7. If you chose Amazon Cognito, Verified Permissions queries your user pool for groups. For
OIDC providers, enter group names manually. The Assign actions to groups step creates
policies for your policy store that permit group members to perform actions.

a. Choose or add the groups that you want to include in your policies.

b. Assign actions to each of the groups that you selected.

c. Choose Next.

8. In Deploy app integration, choose whether you want to manually attach the Lambda
authorizer manually later or if you want Verified Permissions to do it for you now and
review the steps that Verified Permissions will take to create your policy store and Lambda
authorizer.

9. When you're ready to create the new resources, choose Create policy store.

10. Keep the Policy store status step open in your browser to monitor the progress of resource
creation by Verified Permissions.

11. After some time, typically about an hour, or when the Deploy Lambda authorizer step
shows Success, if you chose to attach the authorizer manually, configure your authorizer.

Creating policy stores 25

Amazon Verified Permissions User Guide

Verified Permissions will have created a Lambda function and a Lambda authorizer in your
API. Choose Open API to navigate to your API.

To learn how to assign a Lambda authorizer, see Use API Gateway Lambda authorizers in
the Amazon API Gateway Developer Guide.

a. Navigate to Authorizers for your API and note the name of the authorizer that Verified
Permissions created.

b. Navigate to Resources and select a top-level method in your API.

c. Select Edit under Method request settings.

d. Set the Authorizer to be the authorizer name you noted earlier.

e. Expand HTTP request headers, enter a Name or AUTHORIZATION, and select
Required.

f. Deploy the API stage.

g. Save your changes.

12. Test your authorizer with a user pool token of the Token type that you selected in the
Choose identity source step. For more information about user pool sign-in and retrieving
tokens, see User pool authentication flow in the Amazon Cognito Developer Guide.

13. Test authentication again with a user pool token in the AUTHORIZATION header of a
request to your API.

14. Examine your new policy store. Add and refine policies.

Sample policy store

To create a policy store using the Sample policy store configuration method

1. In the Starting options section, choose Sample policy store.

2. In the Sample project section, choose the type of sample Verified Permissions application
to use.

• PhotoFlash is a sample customer-facing web application that enables users to share
individual photos and albums with friends. Users can set fine-grained permissions on
who is allowed to view, comment on, and re-share their photos. Account owners can also
create groups of friends and organize photos into albums.

Creating policy stores 26

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html

Amazon Verified Permissions User Guide

• DigitalPetStore is a sample application where anyone can register and become a
customer. Customers can add pets for sale, search pets, and place orders. Customers who
have added a pet are recorded as the pet owner. Pet owners can update the pet's details,
upload a pet image, or delete the pet listing. Customers who have placed an order are
recorded as the order owner. Order owners can get details on the order or cancel it. Pet
store managers have administrative access.

Note

The DigitalPetStore sample policy store does not include policy templates. The
PhotoFlash and TinyTodo sample policy stores include policy templates.

• TinyTodo is a sample application that enables users to create taks and task lists. List
owners can manage and share their lists and specify who can view or edit their lists.

3. A namespace for the schema of your sample policy store is automatically generated based
on the sample project you chose.

4. Choose Create policy store.

Your policy store is created with policies and a schema for the sample policy store you
chose. For more information on template-linked policies you can create for the sample
policy stores, see Amazon Verified Permissions example template-linked policies.

Empty policy store

To create a policy store using the Empty policy store configuration method

1. In the Starting options section, choose Empty policy store.

2. Choose Create policy store.

An empty policy store is created without a schema, which means policies are not validated.
For more information about updating the schema for your policy store, see Amazon Verified
Permissions policy store schema.

For more information about creating policies for your policy store, see Creating Amazon Verified
Permissions static policies and Creating Amazon Verified Permissions template-linked policies.

Creating policy stores 27

Amazon Verified Permissions User Guide

AWS CLI

To create an empty policy store by using the AWS CLI.

You can create a policy store by using the create-policy-store operation.

Note

A policy store that you create by using the AWS CLI is empty.

• To add schema, see Amazon Verified Permissions policy store schema.

• To add policies, see Creating Amazon Verified Permissions static policies.

• To add policy templates, see Creating Amazon Verified Permissions policy templates.

$ aws verifiedpermissions create-policy-store \
 --validation-settings "mode=STRICT"
{
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111",
 "createdDate": "2023-05-16T17:41:29.103459+00:00",
 "lastUpdatedDate": "2023-05-16T17:41:29.103459+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

AWS SDKs

You can create a policy store using the CreatePolicyStore API. For more information, see
CreatePolicyStore in the Amazon Verified Permissions API Reference Guide.

Implementing Amazon Verified Permissions in Rust with the AWS SDK

This topic provides a practical example of implementing Amazon Verified Permissions in Rust with
the AWS SDK. This example shows how to develop an authorization model that can test whether a
user is able to view a photo. The sample code uses the aws-sdk-verifiedpermissions crate from the
AWS SDK for Rust, which offers a robust set of tools for interacting with AWS services.

Creating a policy store using Rust 28

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyStore.html
https://docs.rs/aws-sdk-verifiedpermissions/latest/aws_sdk_verifiedpermissions/
https://github.com/awslabs/aws-sdk-rust

Amazon Verified Permissions User Guide

Prerequisites

Before starting, ensure that you have the AWS CLI configured on your system and that you're
familiar with Rust.

• For instructions on installing the AWS CLI, see AWS CLI installation guide.

• For instructions on configuring the AWS CLI, see Configuring settings for the AWS CLI and
Configuration and credential file settings in the AWS CLI.

• For more information on Rust, see rust-lang.org and the AWS SDK for Rust Developer Guide.

With your environment prepared, let's explore how to implement Verified Permissions in Rust.

Test the sample code

The sample code does the following:

• Sets up the SDK client to communicate with AWS

• Creates a policy store

• Defines the structure of the policy store by adding a schema

• Adds a policy to check authorization requests

• Sends a test authorization request to verify everything is set up correctly

To test the sample code

1. Create a Rust project.

2. Replace any existing code in main.rs with the following code:

use std::time::Duration;
use std::thread::sleep;
use aws_config::BehaviorVersion;
use aws_sdk_verifiedpermissions::Client;
use aws_sdk_verifiedpermissions::{
 operation::{
 create_policy::CreatePolicyOutput,
 create_policy_store::CreatePolicyStoreOutput,
 is_authorized::IsAuthorizedOutput,
 put_schema::PutSchemaOutput,
 },

Creating a policy store using Rust 29

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://www.rust-lang.org/
https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html

Amazon Verified Permissions User Guide

 types::{
 ActionIdentifier, EntityIdentifier, PolicyDefinition, SchemaDefinition,
 StaticPolicyDefinition, ValidationSettings
 },
};

//Function that creates a policy store in the client that's passed
async fn create_policy_store(client: &Client, valid_settings: &ValidationSettings)-
> CreatePolicyStoreOutput {
 let policy_store =
 client.create_policy_store().validation_settings(valid_settings.clone()).send().await;
 return policy_store.unwrap();
}

//Function that adds a schema to the policy store in the client
async fn put_schema(client: &Client, ps_id: &str, schema: &str) -> PutSchemaOutput
 {
 let schema =
 client.put_schema().definition(SchemaDefinition::CedarJson(schema.to_string())).policy_store_id(ps_id.to_string()).send().await;
 return schema.unwrap();
}

//Function that creates a policy in the policy store in the client
async fn create_policy(client: &Client, ps_id: &str,
 policy_definition:&PolicyDefinition) -> CreatePolicyOutput {
 let create_policy =
 client.create_policy().definition(policy_definition.clone()).policy_store_id(ps_id).send().await;
 return create_policy.unwrap();
}

//Function that tests the authorization request to the policy store in the client
async fn authorize(client: &Client, ps_id: &str, principal: &EntityIdentifier,
 action: &ActionIdentifier, resource: &EntityIdentifier) -> IsAuthorizedOutput {
 let is_auth =
 client.is_authorized().principal(principal.to_owned()).action(action.to_owned()).resource(resource.to_owned()).policy_store_id(ps_id).send().await;
 return is_auth.unwrap();
}

#[::tokio::main]
async fn main() -> Result<(), aws_sdk_verifiedpermissions::Error> {

//Set up SDK client
 let config = aws_config::load_defaults(BehaviorVersion::latest()).await;
 let client = aws_sdk_verifiedpermissions::Client::new(&config);

Creating a policy store using Rust 30

Amazon Verified Permissions User Guide

//Create a policy store
 let valid_settings = ValidationSettings::builder()
 .mode({aws_sdk_verifiedpermissions::types::ValidationMode::Strict
 })
 .build()
 .unwrap();
 let policy_store = create_policy_store(&client, &valid_settings).await;
 println!(
 "Created Policy store with ID: {:?}",
 policy_store.policy_store_id
);

//Add schema to policy store
 let schema= r#"{
 "PhotoFlash": {
 "actions": {
 "ViewPhoto": {
 "appliesTo": {
 "context": {
 "type": "Record",
 "attributes": {}
 },
 "principalTypes": [
 "User"
],
 "resourceTypes": [
 "Photo"
]
 },
 "memberOf": []
 }
 },
 "entityTypes": {
 "Photo": {
 "memberOfTypes": [],
 "shape": {
 "type": "Record",
 "attributes": {
 "IsPrivate": {
 "type": "Boolean"
 }
 }
 }

Creating a policy store using Rust 31

Amazon Verified Permissions User Guide

 },
 "User": {
 "memberOfTypes": [],
 "shape": {
 "attributes": {},
 "type": "Record"
 }
 }
 }
 }
 }"#;
 let put_schema = put_schema(&client, &policy_store.policy_store_id,
 schema).await;
 println!(
 "Created Schema with Namespace: {:?}",
 put_schema.namespaces
);

//Create policy
 let policy_text = r#"
 permit (
 principal in PhotoFlash::User::"alice",
 action == PhotoFlash::Action::"ViewPhoto",
 resource == PhotoFlash::Photo::"VacationPhoto94.jpg"
);
 "#;
 let policy_definition =
 PolicyDefinition::Static(StaticPolicyDefinition::builder().statement(policy_text).build().unwrap());
 let policy = create_policy(&client, &policy_store.policy_store_id,
 &policy_definition).await;
 println!(
 "Created Policy with ID: {:?}",
 policy.policy_id
);

//Break to make sure the resources are created before testing authorization
 sleep(Duration::new(2, 0));

//Test authorization
 let principal=
 EntityIdentifier::builder().entity_id("alice").entity_type("PhotoFlash::User").build().unwrap();
 let action =
 ActionIdentifier::builder().action_type("PhotoFlash::Action").action_id("ViewPhoto").build().unwrap();

Creating a policy store using Rust 32

Amazon Verified Permissions User Guide

 let resource =
 EntityIdentifier::builder().entity_id("VacationPhoto94.jpg").entity_type("PhotoFlash::Photo").build().unwrap();
 let auth = authorize(&client, &policy_store.policy_store_id, &principal,
 &action, &resource).await;
 println!(
 "Decision: {:?}",
 auth.decision
);
 println!(
 "Policy ID: {:?}",
 auth.determining_policies
);
 Ok(())
}

3. Run the code by entering cargo run in the terminal.

If the code runs correctly, the terminal will show Decision: Allow followed by the policy ID of
the determining policy. This means you've successfully created a policy store and tested it using the
AWS SDK for Rust.

Clean up resources

After you have finished exploring your policy store, delete it.

To delete a policy store

You can delete a policy store by using the delete-policy-store operation, replacing
PSEXAMPLEabcdefg111111 with the policy store ID you want to delete.

$ aws verifiedpermissions delete-policy-store \
 --policy-store-id PSEXAMPLEabcdefg111111

If successful, this command produces no output.

API-linked policy stores

A common use case is to use Amazon Verified Permissions to authorize user access to APIs hosted
on Amazon API Gateway. Using a wizard in the AWS console, you can create role-based access
policies for users managed in Amazon Cognito, or any OIDC identity provider (IdP), and deploy an
AWS Lambda Authorizer that calls Verified Permissions to evaluate these policies.

API-linked policy stores 33

https://aws.amazon.com/cognito

Amazon Verified Permissions User Guide

To complete the wizard, choose Set up with API Gateway and an identity provider when you
create a new policy store and follow the steps.

An API-linked policy store is created and it provisions your authorization model and resources
for authorization requests. The policy store has an identity source and a Lambda authorizer that
connects API Gateway to Verified Permissions. Once the policy store is created, you can authorize
API requests based on users’ group memberships. For example, Verified Permissions can grant
access only to users who are members of the Directors group.

As your application grows, you can implement fine-grained authorization with user attributes and
OAuth 2.0 scopes using the Cedar policy language. For example, Verified Permissions can grant
access only to users who have an email attribute in the domain mycompany.co.uk.

After you have set up the authorization model for your API, your remaining responsibility is to
authenticate users and generate API requests in your application, and to maintain your policy store.

To see an demo, see Amazon Verified Permissions - Quick Start Overview and Demo on the Amazon
Web Services YouTube channel.

Topics

• How Verified Permissions authorizes API requests

• Considerations for API-linked policy stores

• Adding attribute-based access control (ABAC)

• Moving to production with AWS CloudFormation

• Troubleshooting API-linked policy stores

Important

Policy stores that you create with the Set up with API Gateway and an identity source
option in the Verified Permissions console aren’t intended for immediate deployment to
production. With your initial policy store, finalize your authorization model and export
the policy store resources to CloudFormation. Deploy Verified Permissions to production
programmatically with the AWS Cloud Development Kit (CDK). For more information, see
Moving to production with AWS CloudFormation.

API-linked policy stores 34

https://docs.cedarpolicy.com/
https://www.youtube.com/watch?v=OBrSrzfuWhQ
https://aws.amazon.com/cdk

Amazon Verified Permissions User Guide

In a policy store that's linked to an API and an identity source, your application presents a user pool
token in an authorization header when it makes a request to the API. The identity source of your
policy store provides token validation for Verified Permissions. The token forms the principal
in authorization requests with the IsAuthorizedWithToken API. Verified Permissions builds policies
around the group membership of your users, as presented in a groups claim in identity (ID) and
access tokens, for example cognito:groups for user pools. Your API processes the token from
your application in a Lambda authorizer and submits it to Verified Permissions for an authorization
decision. When your API receives the authorization decision from the Lambda authorizer, it passes
the request on to your data source or denies the request.

Components of identity source and API Gateway authorization with Verified Permissions

• An Amazon Cognito user pool or OIDC IdP that authenticates and groups users. Users' tokens
populate the group membership and the principal or context that Verified Permissions evaluates
in your policy store.

• An API Gateway REST API. Verified Permissions defines actions from API paths and API methods,
for example MyAPI::Action::get /photo.

• A Lambda function and a Lambda authorizer for your API. The Lambda function takes in bearer
tokens from your user pool, requests authorization from Verified Permissions, and returns
a decision to API Gateway. The Set up with API Gateway and an identity source workflow
automatically creates this Lambda authorizer for you.

• A Verified Permissions policy store. The policy store identity source is your Amazon Cognito user
pool or OIDC provider group. The policy store schema reflects the configuration of your API, and
the policies link user groups to permitted API actions.

• An application that authenticates users with your IdP and appends tokens to API requests.

How Verified Permissions authorizes API requests

When you create a new policy store and select the Set up with API Gateway and an identity
source option, Verified Permissions creates policy store schema and policies. The schema and
policies reflect API actions and the user groups that you want to authorize to take the actions.
Verified Permissions also creates the Lambda function and authorizer.

How it works 35

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Amazon Verified Permissions User Guide

1. Your user signs in with your application through Amazon Cognito or another OIDC IdP. The IdP
issues ID and access tokens with the user's information.

2. Your application stores the JWTs. For more information, see Using tokens with user pools in the
Amazon Cognito Developer Guide..

3. Your user requests data that your application must retrieve from an external API.

4. Your application requests data from a REST API in API Gateway. It appends an ID or access token
as a request header.

5. If your API has a cache for the authorization decision, it returns the previous response. If caching
is disabled or the API has no current cache, API Gateway passes the request parameters to a
token-based Lambda authorizer.

How it works 36

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Amazon Verified Permissions User Guide

6. The Lambda function sends an authorization request to a Verified Permissions policy store with
the IsAuthorizedWithToken API. The Lambda function passes the elements of an authorization
decision:

a. The user's token as the principal.

b. The API method combined with the API path, for example GetPhoto, as the action.

c. The term Application as the resource.

7. Verified Permissions validates the token. For more information about how Amazon Cognito
tokens are validated, see Authorization with Amazon Verified Permissions in the Amazon Cognito
Developer Guide.

8. Verified Permissions evaluates the authorization request against the policies in your policy store
and returns an authorization decision.

9. The Lambda authorizer returns an Allow or Deny response to API Gateway.

10.The API returns data or an ACCESS_DENIED response to your application. Your application
processes and displays the results of the API request.

Considerations for API-linked policy stores

When you build an API-linked policy store in the Verified Permissions console, you're creating a
test for an eventual production deployment. Before you move to production, establish a fixed
configuration for your API and user pool. Consider the following factors:

API Gateway caches responses

In API-linked policy stores, Verified Permissions creates a Lambda authorizer with an
Authorization caching TTL of 120 seconds. You can adjust this value or turn off caching in your
authorizer. In an authorizer with caching enabled, your authorizer returns the same response
each time until the TTL expires. This can extend the effective lifetime of user pool tokens by a
duration that equals the caching TTL of the requested stage.

Amazon Cognito groups can be reused

Amazon Verified Permissions determines group membership for user pool users from the
cognito:groups claim in a user's ID or access token. The value of this claim is an array of the
friendly names of the user pool groups that the user belongs to. You can't associate user pool
groups with a unique identifier.

Considerations 37

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

User pool groups that you delete and recreate with the same name present to your policy store
as the same group. When you delete a group from a user pool, delete all references to the
group from your policy store.

API-derived namespace and schema are point-in-time

Verified Permissions captures your API at a point in time: it only queries your API when you
create your policy store. When the schema or name of your API changes, you must update your
policy store and Lambda authorizer, or create a new API-linked policy store. Verified Permissions
derives the policy store namespace from the name of your API.

Lambda function has no VPC configuration

The Lambda function that Verified Permissions creates for your API authorizer is launched
in the default VPC. By default. APIs that have network access restricted to private VPCs
can't communicate with the Lambda function that authorizes access requests with Verified
Permissions.

Verified Permissions deploys authorizer resources in CloudFormation

To create an API-linked policy store, you must sign in a highly-privileged AWS principal to the
Verified Permissions console. This user deploys an AWS CloudFormation stack that creates
resources across several AWS services. This principal must have the permission to add and
modify resources in Verified Permissions, IAM, Lambda, and API Gateway. As a best practice,
don't share these credentials with other administrators in your organization.

See Moving to production with AWS CloudFormation for an overview of the resources that
Verified Permissions creates.

Adding attribute-based access control (ABAC)

A typical authentication session with an IdP returns ID and access tokens. You can pass either of
these token types as a bearer token in application requests to your API. Depending on your choices
when you create your policy store, Verified Permissions expects one of the two types of tokens.
Both types carry information about the user’s group membership. For more information about
token types in Amazon Cognito, see Using tokens with user pools in the Amazon Cognito Developer
Guide.

After you create a policy store, you can add and extend policies. For example, you can add new
groups to your policies as you add them to your user pool. Because your policy store is already

Adding ABAC 38

https://docs.cedarpolicy.com/schema/schema.html#schema-namespace
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon Verified Permissions User Guide

aware of the way that your user pool presents groups in tokens, you can permit a set of actions for
any new group with a new policy.

You might also want to extend the group-based model of policy evaluation into a more precise
model based on user properties. User pool tokens contain additional user information that can
contribute to authorization decisions.

ID tokens

ID tokens represent a user’s attributes and have a high level of fine-grained access control. To
evaluate email addresses, phone numbers, or custom attributes like department and manager,
evaluate the ID token.

Access tokens

Access tokens represent a user’s permissions with OAuth 2.0 scopes. To add a layer of
authorization or to set up requests for additional resources, evaluate the access token. For
example, you can validate that a user is in the appropriate groups and carries a scope like
PetStore.read that generally authorizes access to the API. User pools can add custom scopes
to tokens with resource servers and with token customization at runtime.

See Mapping Amazon Cognito tokens to schema and Mapping OIDC tokens to schema for example
policies that process claims in ID and access tokens.

Moving to production with AWS CloudFormation

API-linked policy stores are a way to quickly build an authorization model for an API Gateway API.
They are designed to serve as a testing environment for the authorization component of your
application. After you create your test policy store, spend time refining the policies, schema, and
Lambda authorizer.

You might adjust the architecture of your API, requiring equivalent adjustments to your policy store
schema and policies. API-linked policy stores don't automatically update their schema from API
architecture–Verified Permissions only polls the API at the time you create a policy store. If your
API changes sufficiently, you might have to repeat the process with a new policy store.

When your application and authorization model are ready for deployment to production, integrate
the API-linked policy store that you developed with your automation processes. As a best practice,
we recommend that you export the policy store schema and policies into a AWS CloudFormation
template that you can deploy to other AWS accounts and AWS Regions.

Moving to production 39

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html#user-pool-lambda-pre-token-generation-accesstoken

Amazon Verified Permissions User Guide

The results of the API-linked policy store process are an initial policy store and a Lambda
authorizer. The Lambda authorizer has several dependent resources. Verified Permissions deploys
these resources in an automatically-generated CloudFormation stack. To deploy to production, you
must collect the policy store and the Lambda authorizer resources into a template. An API-linked
policy store is made of the following resources:

1. AWS::VerifiedPermissions::PolicyStore: Copy your schema to the SchemaDefinition object.
Escape " characters as \".

2. AWS::VerifiedPermissions::IdentitySource: Copy values from the output of GetIdentitySource
from your test policy store and modify as needed.

3. One or more of AWS::VerifiedPermissions::Policy: Copy your policy statement to the
Definition object. Escape " characters as \".

4. AWS::Lambda::Function, AWS::IAM::Role, AWS::IAM::Policy, AWS::ApiGateway::Authorizer,
AWS::Lambda::Permission

The following template is an example policy store. You can append the Lambda authorizer
resources from your existing stack to this template.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MyExamplePolicyStore": {
 "Type": "AWS::VerifiedPermissions::PolicyStore",
 "Properties": {
 "ValidationSettings": {
 "Mode": "STRICT"
 },
 "Description": "ApiGateway: PetStore/test",
 "Schema": {
 "CedarJson": "{\"PetStore\":{\"actions\":{\"get /pets\":
{\"appliesTo\":{\"principalTypes\":[\"User\"],\"resourceTypes\":[\"Application\"],
\"context\":{\"type\":\"Record\",\"attributes\":{}}}},\"get /\":{\"appliesTo\":
{\"principalTypes\":[\"User\"],\"resourceTypes\":[\"Application\"],\"context\":{\"type
\":\"Record\",\"attributes\":{}}}},\"get /pets/{petId}\":{\"appliesTo\":{\"context
\":{\"type\":\"Record\",\"attributes\":{}},\"resourceTypes\":[\"Application\"],
\"principalTypes\":[\"User\"]}},\"post /pets\":{\"appliesTo\":{\"principalTypes\":
[\"User\"],\"resourceTypes\":[\"Application\"],\"context\":{\"type\":\"Record\",
\"attributes\":{}}}}},\"entityTypes\":{\"Application\":{\"shape\":{\"type\":\"Record\",
\"attributes\":{}}},\"User\":{\"memberOfTypes\":[\"UserGroup\"],\"shape\":{\"attributes

Moving to production 40

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-verifiedpermissions-policystore.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-verifiedpermissions-identitysource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetIdentitySource.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-verifiedpermissions-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-apigateway-authorizer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html

Amazon Verified Permissions User Guide

\":{},\"type\":\"Record\"}},\"UserGroup\":{\"shape\":{\"type\":\"Record\",\"attributes
\":{}}}}}}"
 }
 }
 },
 "MyExamplePolicy": {
 "Type": "AWS::VerifiedPermissions::Policy",
 "Properties": {
 "Definition": {
 "Static": {
 "Description": "Policy defining permissions for testgroup
 cognito group",
 "Statement": "permit(\nprincipal in PetStore::UserGroup::
\"us-east-1_EXAMPLE|testgroup\",\naction in [\n PetStore::Action::\"get /\",
\n PetStore::Action::\"post /pets\",\n PetStore::Action::\"get /pets\",\n
 PetStore::Action::\"get /pets/{petId}\"\n],\nresource);"
 }
 },
 "PolicyStoreId": {
 "Ref": "MyExamplePolicyStore"
 }
 },
 "DependsOn": [
 "MyExamplePolicyStore"
]
 },
 "MyExampleIdentitySource": {
 "Type": "AWS::VerifiedPermissions::IdentitySource",
 "Properties": {
 "Configuration": {
 "CognitoUserPoolConfiguration": {
 "ClientIds": [
 "1example23456789"
],
 "GroupConfiguration": {
 "GroupEntityType": "PetStore::UserGroup"
 },
 "UserPoolArn": "arn:aws:cognito-idp:us-
east-1:123456789012:userpool/us-east-1_EXAMPLE"
 }
 },
 "PolicyStoreId": {
 "Ref": "MyExamplePolicyStore"
 },

Moving to production 41

Amazon Verified Permissions User Guide

 "PrincipalEntityType": "PetStore::User"
 },
 "DependsOn": [
 "MyExamplePolicyStore"
]
 }
 }
}

Troubleshooting API-linked policy stores

Use the information here to help you diagnose and fix common issues when you build Amazon
Verified Permissions API-linked policy stores.

Topics

• I updated my policy but the authorization decision didn't change

• I attached the Lambda authorizer to my API but it's not generating authorization requests

• I received an unexpected authorization decision and want to review the authorization logic

• I want to find logs from my Lambda authorizer

• My Lambda authorizer doesn't exist

• My API is in a private VPC and can't invoke the authorizer

• I want to process additional user attributes in my authorization model

• I want to add new actions, action context attributes, or resource attributes

I updated my policy but the authorization decision didn't change

By default, Verified Permissions configures the Lambda authorizer to cache authorization decisions
for 120 seconds. Try again after two minutes, or disable cache on your authorizer. For more
information, see Enabling API caching to enhance responsiveness in the Amazon API Gateway
Developer Guide.

I attached the Lambda authorizer to my API but it's not generating authorization
requests

To begin processing requests, you must deploy the API stage that you attached your authorizer to.
For more information, see Deploying a REST API in the Amazon API Gateway Developer Guide.

Troubleshooting 42

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-deploy-api.html

Amazon Verified Permissions User Guide

I received an unexpected authorization decision and want to review the
authorization logic

The API-linked policy store process creates a Lambda function for your authorizer. Verified
Permissions automatically builds the logic of your authorization decisions into the authorizer
function. You can go back after you create your policy store to review and update the logic in the
function.

To locate your Lambda function from the AWS CloudFormation console, choose the Check
deployment button on the Overview page of your new policy store.

You can also locate your function in the AWS Lambda console. Navigate to the console
in the AWS Region of your policy store and search for a function name with a prefix of
AVPAuthorizerLambda. If you have create more than one API-linked policy store, use the Last
modified time of your functions to correlate them with policy store creation.

I want to find logs from my Lambda authorizer

Lambda functions collect metrics and log their invocation results in Amazon CloudWatch. To review
your logs, locate your function in the Lambda console and choose the Monitor tab. Select View
CloudWatch logs and review the entries in the log group.

For more information about Lambda function logs, see Using Amazon CloudWatch Logs with AWS
Lambda in the AWS Lambda Developer Guide.

My Lambda authorizer doesn't exist

After you complete setup of an API-linked policy store, you must attach the Lambda authorizer to
your API. If you can't locate your authorizer in the API Gateway console, the additional resources
for your policy store might have failed or not deployed yet. API-linked policy stores deploy these
resources in an AWS CloudFormation stack.

Verified Permissions displays a link with the label Check deployment at the end of the creation
process. If you already navigated away from this screen, go to the CloudFormation console
and search recent stacks for a name that's prefixed with AVPAuthorizer-<policy store
ID>. CloudFormation provides valuable troubleshooting information in the output of a stack
deployment.

For help troubleshooting CloudFormation stacks, see Troubleshooting CloudFormation in the AWS
CloudFormation User Guide.

Troubleshooting 43

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html

Amazon Verified Permissions User Guide

My API is in a private VPC and can't invoke the authorizer

Verified Permissions doesn't support access to Lambda authorizers through VPC endpoints.
You must open a network path between your API and the Lambda function that serves as your
authorizer.

I want to process additional user attributes in my authorization model

The API-linked policy store process derives Verified Permissions policies from the groups claim in
users' tokens. To update your authorization model to consider additional user attributes, integrate
those attributes in your policies.

You can map many claims in ID and access tokens from Amazon Cognito user pools to Verified
Permissions policy statements. For example, most users have an email claim in their ID token. For
more information about adding claims from your identity source to policies, see Mapping Amazon
Cognito tokens to schema and Mapping OIDC tokens to schema.

I want to add new actions, action context attributes, or resource attributes

An API-linked policy store and the Lambda authorizer that it creates are a point-in-time resource.
They reflect the state of your API at the time of creation. The policy store schema doesn't assign
any context attributes to actions, nor any attributes or parents to the default Application
resource.

When you add actions—paths and methods—to your API, you must update your policy store to be
aware of the new actions. You must also update your Lambda authorizer to process authorization
requests for the new actions. You can start again with a new policy store or you can update your
existing policy store.

To update your existing policy store, locate your function. Examine the logic in the automatically-
generated function and update it to process the new actions, attributes, or context. Then edit your
schema to include the new actions and attributes.

Deleting policy stores

You can delete Amazon Verified Permissions policy stores using the AWS Management Console or
the AWS CLI. Deleting a policy store permanently deletes the schema and any policies in the policy
store.

Deleting policy stores 44

Amazon Verified Permissions User Guide

Deletion protection prevents accidental deletion of a policy store. Deletion protection is enabled on
all new policy stores created through the AWS Management Console. By contrast, it is disabled for
all policy stores created through an API or SDK call.

You may want to delete policy stores for the following reasons:

• You have reached the quota of available policy stores in a given Region. For more information,
see Quotas for resources.

• You're no longer supporting a tenant in a multi-tenant application and, therefore, no longer
need that policy store.

AWS Management Console

To delete a policy store

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Settings.

3. Choose Delete this policy store.

4. Type delete in the text box and choose Delete.

Note

If deletion protection is enabled, you'll need to disable it before you can choose
Delete. To disable it, select Disable deletion protection.

AWS CLI

To delete a policy store

You can delete a policy store by using the delete-policy-store operation, replacing
PSEXAMPLEabcdefg111111 with the policy store ID you want to delete.

$ aws verifiedpermissions delete-policy-store \
 --policy-store-id PSEXAMPLEabcdefg111111

If successful, this command produces no output.

Deleting policy stores 45

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

Note

If deletion protection is enabled for this policy store, you must first run the update-
policy-store operation and disable deletion protection.

aws verifiedpermissions update-policy-store \
 --deletion-protection "DISABLED" \
 --policy-store-id PSEXAMPLEabcdefg111111

Deleting policy stores 46

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy store schema

A schema is a declaration of the structure of the entity types supported by your application, and
the actions your application may provide in authorization requests. To see the difference between
how Verified Permissions and Cedar handles schemas, see Schema support.

For more information, see Cedar schema format in the Cedar policy language Reference Guide.

Note

The use of schemas in Verified Permissions is optional, but they are highly recommended
for production software. When you create a new policy, Verified Permissions can use the
schema to validate the entities and attributes referenced in the scope and conditions to
avoid typos and mistakes in policies that can lead to confusing system behavior. If you
activate policy validation, then all new policies must conform with the schema.

AWS Management Console

To create a schema

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose Create schema.

AWS CLI

To submit a new schema, or overwrite an existing schema by using the AWS CLI.

You can create a policy store by running a AWS CLI command similar to the following example.

Consider a schema that contains the following Cedar content:

{
 "MySampleNamespace": {
 "actions": {
 "remoteAccess": {

47

https://docs.cedarpolicy.com/overview/terminology.html#schema
https://docs.cedarpolicy.com/schema/schema.html
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

 "appliesTo": {
 "principalTypes": ["Employee"]
 }
 }
 },
 "entityTypes": {
 "Employee": {
 "shape": {
 "type": "Record",
 "attributes": {
 "jobLevel": {"type": "Long"},
 "name": {"type": "String"}
 }
 }
 }
 }
 }
}

You must first escape the JSON into a single line string, and preface it with a declaration of its
data type: cedarJson. The following example uses the following contents of schema.json
file that contains the escaped version of the JSON schema.

Note

The example here is line wrapped for readability. You must have the entire file on a
single line for the command to accept it.

{"cedarJson": "{\"MySampleNamespace\": {\"actions\": {\"remoteAccess\": {\"appliesTo
\":
{\"principalTypes\": [\"Employee\"]}}},\"entityTypes\": {\"Employee\": {\"shape\":
{\"attributes\": {\"jobLevel\": {\"type\": \"Long\"},\"name\": {\"type\": \"String
\"}},
\"type\": \"Record\"}}}}}"}

$ aws verifiedpermissions put-schema \
 --definition file://schema.json \
 --policy-store PSEXAMPLEabcdefg111111
{
 "policyStoreId": "PSEXAMPLEabcdefg111111",

48

Amazon Verified Permissions User Guide

 "namespaces": [
 "MySampleNamespace"
],
 "createdDate": "2023-07-17T21:07:43.659196+00:00",
 "lastUpdatedDate": "2023-08-16T17:03:53.081839+00:00"
}

AWS SDKs

You can create a policy store using the PutSchema API. For more information, see PutSchema
in the Amazon Verified Permissions API Reference Guide.

Editing policy store schemas

When you select Schema in the Amazon Verified Permissions console, the Entity types and Actions
that make up your schema are displayed. You can view edit your schema in either Visual mode
or JSON mode. Visual mode lets you update the schema by adding new types and actions using
various wizards. Using JSON mode, you can start updating the JSON code of the schema directly in
the JSON editor.

Visual Mode

The visual schema editor begins with a series of diagrams that illustrate the relationships
between the entities in your schema. Choose Expand to maximize your view of the diagrams.
There are two diagrams available:

• Actions diagram – The Actions diagram view lists the types of Principals you have
configured in your policy store, the Actions they are eligible to perform, and the Resources
that they are eligible to perform actions on. The lines between entities indicate your ability to
create a policy that allows a principal to take an action on a resource. If your actions diagram
doesn't indicate a relationship between two entities, you must create that relationship
between them before you can allow or deny it in policies. Select an entity to see a properties
overview and drill down to view full details. Choose Filter by this [action | resource type |
principal type] to see an entity in a view with only its own connections.

• Entity types diagram – The Entity types diagram focuses on the relationships between
principals and resources. When you want to understand the complex nested parent
relationships in your schema, review this diagram. Hover over an entity to drill down into the
parent relationships that it has.

Editing schema 49

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_PutSchema.html

Amazon Verified Permissions User Guide

Under the diagrams are list views of the Entity types and Actions in your schema. The list
view is useful when you want to immediately view the details of a specific action or entity
type. Select any entity to view details.

To edit a Verified Permissions schema in Visual mode

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose Visual mode. Review the entity-relationship diagrams and plan the changes that
you want to make to your schema. You can optionally Filter by one entity to examine its
individual connections to other entities.

4. Choose Edit schema.

5. In the Details section, type a Namespace for your schema.

6. In the Entity types section, choose Add new entity type.

7. Type the name of the entity.

8. (Optional) Choose Add a parent to add parent entities that the new entity is a member of.
To remove a parent that has been added to the entity, choose Remove next to the name of
the parent.

9. Choose Add an attribute to add attributes to the entity. Type the Attribute name and
choose the Attribute type for each attribute of the entity. Verified Permissions uses the
specified attribute values when verifying policies against the schema. Select whether each
attribute is Required. To remove an attribute that has been added to the entity, choose
Remove next to the attribute.

10. Choose Add entity type to add the entity to the schema.

11. In the Actions section, choose Add new action.

12. Type the name of the action.

13. (Optional) Choose Add a resource to add resource types for which the action applies to.
To remove a resource type that has been added to the action, choose Remove next to the
name of the resource type.

14. (Optional) Choose Add a principal to add a principal type that the action applies to. To
remove a principal type that has been added to the action, choose Remove next to the
name of the principal type.

Editing schema 50

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

15. Choose Add an attribute to add attributes that can be added to the context of an action
in your authorization requests. Enter the Attribute name and choose the Attribute type
for each attribute. Verified Permissions uses the specified attribute values when verifying
policies against the schema. Select whether each attribute is Required. To remove an
attribute that has been added to the action, choose Remove next to the attribute.

16. Choose Add action.

17. After all the entity types and actions have been added to the schema, choose Save
changes.

JSON mode

While making updates, you'll notice the JSON editor validates your code against JSON syntax
and will identify errors and warnings as you edit, making it easier for you to find issues quickly.
In addition, you don't need to worry about the formatting of the JSON, simply choose Format
JSON once you've made your updates and the format will be updated to match expected JSON
formatting.

To edit a Verified Permissions schema in JSON mode

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose JSON mode and then choose Edit schema.

4. Enter the content of your JSON schema in the Contents field. You can't save updates to
your schema until you resolve all syntax errors. You can choose Format JSON to format the
JSON syntax of your schema with the recommended spacing and indentation.

5. Choose Save changes.

Editing schema 51

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

Enabling Amazon Verified Permissions policy validation
mode

You can set the policy validation mode in Verified Permissions to control whether policy changes
are validated against the schema in your policy store.

Important

When you turn on policy validation, all attempts to create or update a policy or policy
template are validated against the schema in the policy store. Verified Permissions rejects
the request attempt if validation fails. For this reason, we recommend leaving validation
off while you're developing your application and turning it on for testing and leaving it on
while your application is in production.

AWS Management Console

To set the policy validation mode for a policy store

1. Open the Verified Permissions console. Choose your policy store.

2. Choose Settings.

3. In the Policy validation mode section, choose Modify.

4. Do one of the following:

• To activate policy validation and enforce that all policy changes must be validated
against your schema, choose the Strict (recommended) radio button.

• To turn off policy validation for policy changes, choose the Off radio button. Type
confirm to confirm that updates to policies will no longer be validated against your
schema.

5. Choose Save changes.

AWS CLI

To set the validation mode for a policy store

52

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

You can change the validation mode for a policy store by using the UpdatePolicyStore
operation and specifying a different value for the ValidationSettings parameter.

$ aws verifiedpermissions update-policy-store \
 --validation-settings "mode=OFF",
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-17T18:36:10.134448+00:00",
 "lastUpdatedDate": "2023-05-17T18:36:10.134448+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "validationSettings": {
 "Mode": "OFF"
 }
}

For more information, see Policy validation in the Cedar policy language Reference Guide.

53

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicyStore.html#amazonverifiedpermissions-UpdatePolicyStore-request-ValidationSettings
https://docs.cedarpolicy.com/policies/validation.html

Amazon Verified Permissions User Guide

Amazon Verified Permissions policies

A policy is a statement that either permits or forbids a principal to take one or more actions on a
resource. Each policy is evaluated independently of every other policy. For more information about
how Cedar policies are structured and evaluated, see Cedar policy validation against schema in the
Cedar policy language Reference Guide.

Important

When you write Cedar policies that reference principals, resources and actions, you can
define the unique identifiers used for each of those elements. We strongly recommend that
you follow these best practices:

• Use universally unique identifiers (UUIDs) for all principal and resource identifiers.

For example, if user jane leaves the company, and you later let someone else use the
name jane, then that new user automatically gets access to everything granted by
policies that still reference User::"jane". Cedar can’t distinguish between the new user
and the old. This applies to both principal and resource identifiers. Always use identifiers
that are guaranteed unique and never reused to ensure that you don’t unintentionally
grant access because of the presence of an old identifier in a policy.

Where you use a UUID for an entity, we recommend that you follow it with the //
comment specifier and the ‘friendly’ name of your entity. This helps to make your policies
easier to understand. For example: principal == Role::"a1b2c3d4-e5f6-a1b2-c3d4-
EXAMPLE11111", // administrators

• Do not include personally identifying, confidential, or sensitive information as part of
the unique identifier for your principals or resources. These identifiers are included in
log entries shared in AWS CloudTrail trails.

Topics

• Creating Amazon Verified Permissions static policies

• Editing Amazon Verified Permissions static policies

• Adding context

• Using the Amazon Verified Permissions test bench

54

https://docs.cedarpolicy.com/policies/validation.html

Amazon Verified Permissions User Guide

• Amazon Verified Permissions example policies

Creating Amazon Verified Permissions static policies

You can create a static policy for principals to permit or forbid them from performing specified
actions on specified resources for your application. A static policy has specific values included for
the principal and resource and are ready to be used in authorization decisions.

AWS Management Console

To create a static policy

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy and then choose Create static policy.

Note

If you have a policy statement you'd like to use, skip to Step 8 and paste the policy
into the Policy section on the next page.

4. In the Policy effect section, choose whether the policy will Permit or Forbid when a
request matches the policy. If you choose Permit, the policy allows the principals to
perform the actions on the resources. Conversely, if you choose Forbid, the policy doesn't
allow the principals to perform the actions on the resources.

5. In the Principals scope field, choose the scope of the principals that the policy will apply
to.

• Choose Specific principal to apply the policy to a specific principal. Specify the entity
type and identifier for the principal that will be permitted or forbidden to take the
actions specified in the policy.

• Choose Group of principals to apply the policy to a group of principals. Type the
principal group name in the Group of principals field.

• Choose All principals to apply the policy to all principals in your policy store.

6. In the Resources scope field, choose the scope of the resources that the policy will apply to.

Creating static policies 55

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

• Choose Specific resources to apply the policy to a specific resource. Specify the entity
type and identifier for the resource that the policy should apply to.

• Choose Group of resources to apply the policy to a group of resources. Type the resource
group name in the Group of resources field.

• Choose All resources to apply the policy to all resources in your policy store.

7. In the Actions scope section, choose the scope of the resources that the policy will apply
to.

• Choose Specific set of actions to apply the policy to a set of actions. Select the check
boxes next to the actions to apply the policy.

• Choose All actions to apply the policy to all actions in your policy store.

8. Choose Next.

9. In the Policy section, review your Cedar policy. You can choose Format to format the syntax
of your policy with the recommended spacing and indentation. For more information, see
Basic policy construction in Cedar in the Cedar policy language Reference Guide.

10. In the Details section, type an optional description of the policy.

11. Choose Create policy.

AWS CLI

To create a static policy

You can create a static policy by using the CreatePolicy operation. The following example
creates a simple static policy.

$ aws verifiedpermissions create-policy \
 --definition "{ \"static\": { \"Description\": \"MyTestPolicy\", \"Statement\":
 \"permit(principal,action,resource) when {principal.owner == resource.owner};\"}}"
 \
 --policy-store-id PSEXAMPLEabcdefg111111
{
"Arn": "arn:aws:verifiedpermissions::123456789012:policy/PSEXAMPLEabcdefg111111/
SPEXAMPLEabcdefg111111",
 "createdDate": "2023-05-16T20:33:01.730817+00:00",
 "lastUpdatedDate": "2023-05-16T20:33:01.730817+00:00",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",

Creating static policies 56

https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicy.html

Amazon Verified Permissions User Guide

 "policyType": "STATIC"
}

Editing Amazon Verified Permissions static policies

You can edit an existing static policy in your policy store. You can only directly update static
policies. To change a template-linked policy, you must update the policy template. For more
information, see Editing Amazon Verified Permissions policy templates.

You can change the following elements of a static policy:

• The action referenced by the policy.

• A condition clause, such as when and unless.

You can't change the following elements of a static policy. To change any of these elements you
will need to delete and re-created the policy.

• A policy from a static policy to a template-linked policy.

• The effect of a static policy from permit or forbid.

• The principal referenced by a static policy.

• The resource referenced by a static policy.

AWS Management Console

To edit a static policy

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose the radio button next to the static policy to edit and then choose Edit.

4. In the Policy body section, update the action or condition clause of your static policy. You
can't update the policy effect, principal, or resource of the policy.

5. Choose Update policy.

Editing static policies 57

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

Note

If policy validation is enabled in the policy store, then updating a static policy
causes Verified Permissions to validate the policy against the schema in the policy
store. If the updated static policy doesn't pass validation, the operation fails and
the update isn't saved.

AWS CLI

To edit a static policy

You can edit a static policy by using the UpdatePolicy operation. The following example edits a
simple static policy.

The example uses the file definition.txt to contain the policy definition.

{
 "static": {
 "description": "Grant everyone of janeFriends UserGroup access to the
 vacationFolder Album",
 "statement": "permit(principal in UserGroup::\"janeFriends\", action,
 resource in Album::\"vacationFolder\");"
 }
}

The following command references that file.

$ aws verifiedpermissions create-policy \
 --definition file://definition.txt \
 --policy-store-id PSEXAMPLEabcdefg111111

{
 "createdDate": "2023-06-12T20:33:37.382907+00:00",
 "lastUpdatedDate": "2023-06-12T20:33:37.382907+00:00",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "STATIC",
 "principal": {
 "entityId": "janeFriends",

Editing static policies 58

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicy.html

Amazon Verified Permissions User Guide

 "entityType": "UserGroup"
 },
 "resource": {
 "entityId": "vacationFolder",
 "entityType": "Album"
 }
}

Adding context

Context is the information that's relevant to policy decisions, but not part of the identity of
your principal, action, or resource. Access token claim are context. You might want to allow an
action only from a set of source IP addresses, or only if your user has signed in with MFA. Your
application has access to this contextual session data and must populate it to authorization
requests. The context data in a Verified Permissions authorization request must be JSON-formatted
in a contextMap element.

The examples that illustrate this content come from a sample policy store. To follow along, create
the DigitalPetStore sample policy store in your testing environment.

The following context object declares one of each Cedar data type for an application based on the
sample DigitalPetStore policy store.

"context": {
 "contextMap": {
 "AccountCodes": {
 "set": [
 {
 "long": 111122223333
 },
 {
 "long": 444455556666
 },
 {
 "long": 123456789012
 }
]
 },
 "approvedBy": {
 "entityIdentifier": {
 "entityId": "Bob",

59

Amazon Verified Permissions User Guide

 "entityType": "DigitalPetStore::User"
 }
 },
 "MfaAuthorized": {
 "boolean": true
 },
 "NetworkInfo": {
 "record": {
 "IPAddress": {
 "string": "192.0.2.178"
 },
 "Country": {
 "string": "United States of America"
 },
 "SSL": {
 "boolean": true
 }
 }
 },
 "RequestedOrderCount": {
 "long": 4
 },
 "UserAgent": {
 "string": "My UserAgent 1.12"
 }
 }
}

Data types in authorization context

Boolean

A binary true or false value. In the example, the boolean value of true for
MfaAuthenticated indicates that the customer has performed multi-factor authentication
before requesting to view their order.

Set

A collection of context elements. Set members can be all the same type, like in this example,
or of different types, including a nested set. In the example, the customer is associated with 3
different accounts.

60

Amazon Verified Permissions User Guide

String

A sequence of letters, numbers, or symbols, enclosed in " characters. In the example, the
UserAgent string represents the browser that the customer used to request to view their order.

Long

An integer. In the example, the RequestedOrderCount indicates that this request is part of a
batch that resulted from the customer asking to view four of their past orders.

Record

A collection of attributes. You must declare these attributes in the request context. A policy
store with a schema must include this entity and the attributes of the entity in the schema. In
the example, the NetworkInfo record contains information about the user's originating IP, the
geolocation of that IP as determined by the client, and encryption in transit.

EntityIdentifier

A reference to an entity and attributes declared in the entities element of the request. In the
example, the user's order was approved by employee Bob.

To test this example context in the example DigitalPetStore app, you must update your request
entities, your policy store schema, and the static policy with the description Customer Role -
Get Order.

Modifying DigitalPetStore to accept authorization context

Initially, DigitalPetStore is not a very complex policy store. It doesn't include any preconfigured
policies or context attributes to support the context that we have presented. To evaluate an
example authorization request with this context information, make the following modifications
to your policy store and your authorization request. For context examples with access token
information as the context, see Mapping Amazon Cognito access tokens and Mapping OIDC access
tokens.

Schema

Apply the following updates to your policy store schema to support the new context attributes.
Update GetOrder in actions as follows.

"GetOrder": {
 "memberOf": [],

Evaluate example context 61

Amazon Verified Permissions User Guide

 "appliesTo": {
 "resourceTypes": [
 "Order"
],
 "context": {
 "type": "Record",
 "attributes": {
 "AccountCodes": {
 "type": "Set",
 "required": true,
 "element": {
 "type": "Long"
 }
 },
 "approvedBy": {
 "name": "User",
 "required": true,
 "type": "Entity"
 },
 "MfaAuthorized": {
 "type": "Boolean",
 "required": true
 },
 "NetworkInfo": {
 "type": "NetworkInfo",
 "required": true
 },
 "RequestedOrderCount": {
 "type": "Long",
 "required": true
 },
 "UserAgent": {
 "required": true,
 "type": "String"
 }
 }
 },
 "principalTypes": [
 "User"
]
 }
}

Evaluate example context 62

Amazon Verified Permissions User Guide

To reference the record data type named NetworkInfo in your request context, create
a commonType construct in your schema by adding the following to your schema before
actions. A commonType construct is a shared set of attributes that you can apply to different
entities.

"commonTypes": {
 "NetworkInfo": {
 "attributes": {
 "IPAddress": {
 "type": "String",
 "required": true
 },
 "SSL": {
 "required": true,
 "type": "Boolean"
 },
 "Country": {
 "required": true,
 "type": "String"
 }
 },
 "type": "Record"
 }
},

Policy

The following policy sets up conditions that must be fulfilled by each of the provided context
elements. It builds on the existing static policy with the description Customer Role - Get Order.
This policy initially only requires that the principal that makes a request is the owner of the
resource.

permit (
 principal in DigitalPetStore::Role::"Customer",
 action in [DigitalPetStore::Action::"GetOrder"],
 resource
) when {
 principal == resource.owner &&
 context.AccountCodes.contains(111122223333) &&
 context.approvedBy in DigitalPetStore::Role::"Employee" &&
 context.MfaAuthorized == true &&
 context.NetworkInfo.Country like "*United States*" &&

Evaluate example context 63

https://docs.cedarpolicy.com/schema/schema.html#schema-commonTypes

Amazon Verified Permissions User Guide

 context.NetworkInfo.IPAddress like "192.0.2.*" &&
 context.NetworkInfo.SSL == true &&
 context.RequestedOrderCount <= 4 &&
 context.UserAgent like "*My UserAgent*"
};

We have now required that the request to retrieve an order meets the additional context
conditions that we added to the request.

1. The user must have signed in with MFA.

2. The user's web browser User-Agent must contain the string My UserAgent.

3. The user must have requested to view 4 or fewer orders.

4. One of the user's account codes must be 111122223333.

5. The user's IP address must originate in the United States, they must be on an encrypted
session, and their IP address must begin with 192.0.2..

6. An employee must have approved their order. In the entities element of the authorization
request, we will declare a user Bob who has the role of Employee.

Request body

After you configure your policy store with the appropriate schema and policy, you can present
this authorization request to the Verified Permissions API operation IsAuthorized. Note that the
entities segment contains a definition of Bob, a user with a role of Employee.

{
 "principal": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Alice"
 },
 "action": {
 "actionType": "DigitalPetStore::Action",
 "actionId": "GetOrder"
 },
 "resource": {
 "entityType": "DigitalPetStore::Order",
 "entityId": "1234"
 },
 "context": {
 "contextMap": {

Evaluate example context 64

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html

Amazon Verified Permissions User Guide

 "AccountCodes": {
 "set": [
 {"long": 111122223333},
 {"long": 444455556666},
 {"long": 123456789012}
]
 },
 "approvedBy": {
 "entityIdentifier": {
 "entityId": "Bob",
 "entityType": "DigitalPetStore::User"
 }
 },
 "MfaAuthorized": {
 "boolean": true
 },
 "NetworkInfo": {
 "record": {
 "Country": {"string": "United States of America"},
 "IPAddress": {"string": "192.0.2.178"},
 "SSL": {"boolean": true}
 }
 },
 "RequestedOrderCount":{
 "long": 4
 },
 "UserAgent": {
 "string": "My UserAgent 1.12"
 }
 }
 },
 "entities": {
 "entityList": [
 {
 "identifier": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Alice"
 },
 "attributes": {
 "memberId": {
 "string": "801b87f2-1a5c-40b3-b580-eacad506d4e6"
 }
 },
 "parents": [

Evaluate example context 65

Amazon Verified Permissions User Guide

 {
 "entityType": "DigitalPetStore::Role",
 "entityId": "Customer"
 }
]
 },
 {
 "identifier": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Bob"
 },
 "attributes": {
 "memberId": {
 "string": "49d9b81e-735d-429c-989d-93bec0bcfd8b"
 }
 },
 "parents": [
 {
 "entityType": "DigitalPetStore::Role",
 "entityId": "Employee"
 }
]
 },
 {
 "identifier": {
 "entityType": "DigitalPetStore::Order",
 "entityId": "1234"
 },
 "attributes": {
 "owner": {
 "entityIdentifier": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Alice"
 }
 }
 },
 "parents": []
 }
]
 },
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

Evaluate example context 66

Amazon Verified Permissions User Guide

Using the Amazon Verified Permissions test bench

Use the Verified Permissions test bench to test and troubleshoot Verified Permissions policies by
running authorization requests against them. The test bench uses the parameters that you specify
to determine whether the Cedar policies in your policy store would authorize the request. You
can toggle between Visual mode and JSON mode while testing authorization requests. For more
information about how Cedar policies are structured and evaluated, see Basic policy construction in
Cedar in the Cedar policy language Reference Guide.

Note

When you make an authorization request using Verified Permissions, you can provide the
list of principals and resources as part of the request in the Additional entities section.
However, you can't include the details about the actions. They must be specified in the
schema or inferred from the request. You can't put an action in the Additional entities
section.

For a visual overview and demonstration of the test bench, see Amazon Verified Permissions -
Policy Creation and Testing (Primer Series #3) on the AWS YouTube channel.

Visual mode

Note

You must have a schema defined in your policy store to use the Visual mode of the test
bench.

To test policies in Visual mode

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Test bench.

3. Choose Visual mode.

4. In the Principal section, choose the Principal taking action from the principal types in your
schema. Type an identifier for the principal in the text box.

Testing policies 67

https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/syntax-policy.html
https://www.youtube.com/watch?v=Gi3joEySMPQ
https://www.youtube.com/watch?v=Gi3joEySMPQ
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

5. (Optional) Choose Add a parent to add parent entities for the specified principal. To
remove a parent that has been added to the principal, choose Remove next to the name of
the parent.

6. Specify the Attribute value for each attribute of the specified principal. The test bench
uses the specified attribute values in the simulated authorization request.

7. In the Resource section, choose the Resource that principal is acting on. Type an identifier
for the resource in the text box.

8. (Optional) Choose Add a parent to add parent entities for the specified resource. To
remove a parent that has been added to the resource, choose Remove next to the name of
the parent.

9. Specify the Attribute value for each attribute of the specified resource. The test bench uses
the specified attribute values in the simulated authorization request.

10. In the Action section, choose the Action that principal is taking from the list of valid
actions for the specified principal and resource.

11. Specify the Attribute value for each attribute of the specified action. The test bench uses
the specified attribute values in the simulated authorization request.

12. (Optional) In the Additional entities section, choose Add entity to add entities to be
evaluated for the authorization decision.

13. Choose the Entity Identifier from the dropdown list and type the entity identifier.

14. (Optional) Choose Add a parent to add parent entities for the specified entity. To remove a
parent that has been added to the entity, choose Remove next to the name of the parent.

15. Specify the Attribute value for each attribute of the specified entity. The test bench uses
the specified attribute values in the simulated authorization request.

16. Choose Confirm to add the entity to the test bench.

17. Choose Run authorization request to simulate the authorization request for the Cedar
policies in your policy store. The test bench displays the decision to allow or deny the
request along with information about the policies satisfied or the errors encountered
during evaluation.

JSON mode

To test policies in JSON mode

1. Open the Verified Permissions console. Choose your policy store.

Testing policies 68

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

2. In the navigation pane on the left, choose Test bench.

3. Choose JSON mode.

4. In the Request details section, if you have a schema defined, choose the Principal taking
action from the principal types in your schema. Type an identifier for the principal in the
text box.

If you do not have a schema defined, type the principal in the Principal taking action text
box.

5. If you have a schema defined, choose the Resource from the resource types in your schema.
Type an identifier for the resource in the text box.

If you do not have a schema defined, type the resource in the Resource text box.

6. If you have a schema defined, choose the Action from the list of valid actions for the
specified principal and resource.

If you do not have a schema defined, type the action in the Action text box.

7. Enter the context of the request to simulate in the Context field. The request context is
additional information that can be used for authorization decisions.

8. In the Entities field, enter the hierarchy of the entities and their attributes to be evaluated
for the authorization decision.

9. Choose Run authorization request to simulate the authorization request for the Cedar
policies in your policy store. The test bench displays the decision to allow or deny the
request along with information about the policies satisfied or the errors encountered
during evaluation.

Amazon Verified Permissions example policies

Some of the policy examples included here are basic Cedar policy examples and some are Verified
Permissions-specific. The basic ones link to the Cedar policy language Reference Guide and are
included there. For more information about Cedar policy syntax, see Basic policy construction in
Cedar in the Cedar policy language Reference Guide.

Policy examples

• Allows access to individual entities

• Allows access to groups of entities

Example policies 69

https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/policy-examples.html#allow-acces-indivuals
https://docs.cedarpolicy.com/policies/policy-examples.html#allow-acces-groups

Amazon Verified Permissions User Guide

• Allows access for any entity

• Allows access for attributes of an entity (ABAC)

• Denies access

• Uses bracket notation to reference token attributes

• Uses dot notation to reference attributes

• Reflects Amazon Cognito ID token attributes

• Reflects OIDC ID token attributes

• Reflects Amazon Cognito access token attributes

• Reflects OIDC access token attributes

Uses bracket notation to reference token attributes

This following example shows how you might create a policy that uses bracket notation to
reference token attributes.

For more information about using token attributes in policies in Verified Permissions, see Mapping
Amazon Cognito tokens to schema and Mapping OIDC tokens to schema.

permit (
 principal in MyCorp::UserGroup::"us-west-2_EXAMPLE|MyUserGroup",
 action,
 resource
) when {
 principal["cognito:username"] == "alice" &&
 principal["custom:employmentStoreCode"] == "petstore-dallas" &&
 principal has email && principal.email == "alice@example.com" &&
 context["ip-address"] like "192.0.2.*"
};

Uses dot notation to reference attributes

This following example shows how you might create a policy that uses dot notation to reference
attributes.

For more information about using token attributes in policies in Verified Permissions, see Mapping
Amazon Cognito tokens to schema and Mapping OIDC tokens to schema.

Uses bracket notation to reference token attributes 70

https://docs.cedarpolicy.com/policies/policy-examples.html#allow-any
https://docs.cedarpolicy.com/policies/policy-examples.html#allow-abac
https://docs.cedarpolicy.com/policies/policy-examples.html#deny-access

Amazon Verified Permissions User Guide

permit(principal, action, resource)
when {
 principal.cognito.username == "alice" &&
 principal.custom.employmentStoreCode == "petstore-dallas" &&
 principal.tenant == "x11app-tenant-1" &&
 principal has email && principal.email == "alice@example.com"
};

Reflects Amazon Cognito ID token attributes

This following example shows how you might create a policy references ID token attributes from
Amazon Cognito.

For more information about using token attributes in policies in Verified Permissions, see Mapping
Amazon Cognito tokens to schema and Mapping OIDC tokens to schema.

permit (
 principal in MyCorp::UserGroup::"us-west-2_EXAMPLE|MyUserGroup",
 action,
 resource
) when {
 principal["cognito:username"] == "alice" &&
 principal["custom:employmentStoreCode"] == "petstore-dallas" &&
 principal.tenant == "x11app-tenant-1" &&
 principal has email && principal.email == "alice@example.com"
};

Reflects OIDC ID token attributes

This following example shows how you might create a policy references ID token attributes from an
OIDC provider.

For more information about using token attributes in policies in Verified Permissions, see Mapping
Amazon Cognito tokens to schema and Mapping OIDC tokens to schema.

permit (
 principal in MyCorp::UserGroup::"MyOIDCProvider|MyUserGroup",
 action,
 resource
) when {
 principal.email_verified == true && principal.email == "alice@example.com" &&

Reflects Amazon Cognito ID token attributes 71

Amazon Verified Permissions User Guide

 principal.phone_number_verified == true && principal.phone_number like "+1206*"
};

Reflects Amazon Cognito access token attributes

This following example shows how you might create a policy references access token attributes
from Amazon Cognito.

For more information about using token attributes in policies in Verified Permissions, see Mapping
Amazon Cognito tokens to schema and Mapping OIDC tokens to schema.

permit(principal, action in [MyApplication::Action::"Read",
 MyApplication::Action::"GetStoreInventory"], resource)
when {
 context.token.client_id == "52n97d5afhfiu1c4di1k5m8f60" &&
 context.token.scope.contains("MyAPI/mydata.write")
};

Reflects OIDC access token attributes

This following example shows how you might create a policy references access token attributes
from an OIDC provider.

For more information about using token attributes in policies in Verified Permissions, see Mapping
Amazon Cognito tokens to schema and Mapping OIDC tokens to schema.

permit(
 principal,
 action in [MyApplication::Action::"Read",
 MyApplication::Action::"GetStoreInventory"],
 resource
)
when {
 context.token.client_id == "52n97d5afhfiu1c4di1k5m8f60" &&
 context.token.scope.contains("MyAPI-read")
};

Reflects Amazon Cognito access token attributes 72

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy templates and
template-linked policies

In Verified Permissions, policy templates are policies with placeholders for the principal,
resource, or both. Policy templates alone can't be used to handle authorization requests.
To handle authorization requests, a template-linked policy must be created based on a policy
template. Policy templates allow a policy to be defined once and then used with multiple principals
and resources. Updates to the policy template are reflected across all policies that use the
template. For more information, see Cedar policy templates in the Cedar policy language Reference
Guide.

For example, the following policy template provides Read, Edit, and Comment permissions for the
principal and resource that use the policy template.

permit(
 principal == ?principal,
 action in [Action::"Read", Action::"Edit", Action::"Comment"],
 resource == ?resource
);

If you were to create a policy named Editor based on this template, when a principal is
designated as an editor for a specific resource, your application would create a policy that provides
permissions for the principal to read, edit, and comment on the resource.

Unlike static policies, template-linked policies are dynamic. Take the previous example, if you were
to remove the Comment action from the policy template, any policy linked to, or based on, that
template would be updated accordingly and the principals specified in the policies would no longer
be able to comment on the corresponding resources.

For more template-linked policy examples, see Amazon Verified Permissions example template-
linked policies.

Creating Amazon Verified Permissions policy templates

You can create policy templates in Verified Permissions using the AWS Management Console,
the AWS CLI, or the AWS SDKs. Policy templates allow a policy to be defined once and then used

Creating policy templates 73

https://docs.cedarpolicy.com/policies/templates.html

Amazon Verified Permissions User Guide

with multiple principals and resources. Once you create a policy template you can then create
template-linked policies to use the policy templates with specific principals and resources. For
more information, see Creating Amazon Verified Permissions template-linked policies.

AWS Management Console

To create a policy template

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Policy templates.

3. Choose Create policy template.

4. In the Details section, type a Policy template description.

5. In the Policy template body section, use placeholders ?principal and ?resource to
allow policies created based on this template to customize permissions they grant. You
can choose Format to format the syntax of your policy template with the recommended
spacing and indentation.

6. Choose Create policy template.

AWS CLI

To create a policy template

You can create a policy template by using the CreatePolicyTemplate operation. The following
example creates a policy template with a placeholder for the principal.

The file template1.txt contains the following.

"VacationAccess"
permit(
 principal in ?principal,
 action == Action::"view",
 resource == Photo::"VacationPhoto94.jpg"
);

$ aws verifiedpermissions create-policy-template \
 --description "Template for vacation picture access"
 --statement file://template1.txt
 --policy-store-id PSEXAMPLEabcdefg111111

Creating policy templates 74

https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyTemplate.html

Amazon Verified Permissions User Guide

{
 "createdDate": "2023-05-18T21:17:47.284268+00:00",
 "lastUpdatedDate": "2023-05-18T21:17:47.284268+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
}

Creating Amazon Verified Permissions template-linked policies

You can create template-linked policies, or policies that are based on a policy template, using the
AWS Management Console, AWS CLI, or the AWS SDKs. Template-linked policies stay linked to their
policy templates. If you change the policy statement in the policy template, any policies linked to
that template automatically use the new statement for all authorization decisions made from that
moment forward.

For template-linked policy examples, see Amazon Verified Permissions example template-linked
policies.

AWS Management Console

To create a template-linked policy by instantiating a policy template

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy and then choose Create template-linked policy.

4. Choose the radio button next to the policy template to use and then choose Next.

5. Type the Principal and Resource to be used for this specific instance of the template-linked
policy. The specified values are displayed in the Policy statement preview field.

Note

The Principal and Resource values must have the same formatting as static
policies. For example, to specify the AdminUsers group for the principal, type
Group::"AdminUsers". If you type AdminUsers, a validation error is displayed.

6. Choose Create template-linked policy.

The new template-linked policy is displayed under Policies.

Creating template-linked policies 75

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

AWS CLI

To create a template-linked policy by instantiating a policy template

You can create a template-linked policy that references an existing policy template and that
specifies values for any placeholders used by the template.

The following example creates a template-linked policy that uses a template with the following
statement:

permit(
 principal in ?principal,
 action == PhotoFlash::Action::"view",
 resource == PhotoFlash::Photo::"VacationPhoto94.jpg"
);

It also uses the following definition.txt file to supply the value for the definition
parameter:

{
 "templateLinked": {
 "policyTemplateId": "PTEXAMPLEabcdefg111111",
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 }
 }
}

The output shows both the resource, which it gets from the template, and the principal, which it
gets from the definition parameter

$ aws verifiedpermissions create-policy \
 --definition file://definition.txt
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-22T18:57:53.298278+00:00",
 "lastUpdatedDate": "2023-05-22T18:57:53.298278+00:00",
 "policyId": "TPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "TEMPLATELINKED",

Creating template-linked policies 76

Amazon Verified Permissions User Guide

 "principal": {
 "entityId": "alice",
 "entityType": "PhotoFlash::User"
 },
 "resource": {
 "entityId": "VacationPhoto94.jpg",
 "entityType": "PhotoFlash::Photo"
 }
}

Editing Amazon Verified Permissions policy templates

You can edit, or update, policy templates in Verified Permissions using the AWS Management
Console, the AWS CLI, or the AWS SDKs. Editing a policy template will automatically update the
policies that are linked to, or based on, the template so take care when editing the policy templates
and make sure you don’t accidentally introduce a change that breaks your application.

You can change the following elements of a policy template:

• The action referenced by the policy template

• A condition clause, such as when and unless

You can't change the following elements of a policy template. To change any of these elements
you will need to delete and re-created the policy template.

• The effect of a policy template from permit or forbid

• The principal referenced by a policy template

• The resource referenced by a policy template

AWS Management Console

To edit your policy templates

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Policy templates. The console displays all of the
policy templates you created in the current policy store.

Editing policy templates 77

https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

3. Choose the radio button next to a policy template to display details about the policy
template, such as when the policy template was created, updated, and the policy template
contents.

4. Choose Edit to edit your policy template. Update the Policy description and Policy body as
necessary and then choose Update policy template.

5. You can delete a policy template by choosing the radio button next to a policy template
and then choosing Delete. Choose OK to confirm deleting the policy template.

AWS CLI

To edit a policy template

You can create a static policy by using the UpdatePolicy operation. The following example
updates the specified policy template by replacing its policy body with a new policy defined in a
file.

Contents of file template1.txt:

permit(
 principal in ?principal,
 action == Action::"view",
 resource in ?resource)
when {
 principal has department && principal.department == "research"
};

$ aws verifiedpermissions update-policy-template \
 --policy-template-id PTEXAMPLEabcdefg111111 \
 --description "My updated template description" \
 --statement file://template1.txt \
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-17T18:58:48.795411+00:00",
 "lastUpdatedDate": "2023-05-17T19:18:48.870209+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
}

Editing policy templates 78

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicy.html

Amazon Verified Permissions User Guide

Amazon Verified Permissions example template-linked policies

When you create a policy store in Verified Permissions using the Sample policy store method, your
policy store is created with predefined policies, policy templates, and a schema for the sample
project you chose. The following Verified Permissions template-linked policy examples can be used
with the sample policy stores and their respective policies, policy templates, and schemas.

PhotoFlash examples

The following example shows how you might create a template-linked policy that uses the policy
template Grant limited access to non-private shared photos with an individual user and photo.

Note

Cedar policy language considers an entity to be in itself. Therefore, principal in
User::"Alice" is equivalent to principal == User::"Alice".

permit (
 principal in PhotoFlash::User::"Alice",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Photo::"VacationPhoto94.jpg"
);

The following example shows how you might create a template-linked policy that uses the policy
template Grant limited access to non-private shared photos with an individual user and album.

permit (
 principal in PhotoFlash::User::"Alice",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Album::"Italy2023"
);

The following example shows how you might create a template-linked policy that uses the policy
template Grant limited access to non-private shared photos with a friend group and individual
photo.

permit (

Example template-linked policies 79

Amazon Verified Permissions User Guide

 principal in PhotoFlash::FriendGroup::"Jane::MySchoolFriends",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Photo::"VacationPhoto94.jpg"
);

The following example shows how you might create a template-linked policy that uses the policy
template Grant limited access to non-private shared photos with a friend group and album.

permit (
 principal in PhotoFlash::FriendGroup::"Jane::MySchoolFriends",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Album::"Italy2023"
);

The following example shows how you might create a template-linked policy that uses the policy
template Grant full access to non-private shared photos with a friend group and an individual
photo.

permit (
 principal in PhotoFlash::UserGroup::"Jane::MySchoolFriends",
 action in PhotoFlash::Action::"SharePhotoFullAccess",
 resource in PhotoFlash::Photo::"VacationPhoto94.jpg"
);

The following example shows how you might create a template-linked policy that uses the policy
template Block user from an account.

forbid(
 principal == PhotoFlash::User::"Bob",
 action,
 resource in PhotoFlash::Account::"Alice-account"
);

DigitalPetStore examples

The DigitalPetStore sample policy store does not include any policy templates. You can view the
policies included with the policy store by choosing Policies in the navigation pane on the left after
creating the DigitalPetStore sample policy store.

DigitalPetStore examples 80

Amazon Verified Permissions User Guide

TinyToDo examples

The following example shows how you might create a template-linked policy that uses the policy
template that gives viewer access for an individual user and task list.

permit (
 principal == TinyTodo::User::"https://cognito-idp.us-east-1.amazonaws.com/us-
east-1_h2aKCU1ts|5ae0c4b1-6de8-4dff-b52e-158188686f31|bob",
 action in [TinyTodo::Action::"ReadList", TinyTodo::Action::"ListTasks"],
 resource == TinyTodo::List::"1"
);

The following example shows how you might create a template-linked policy that uses the policy
template that gives editor access for an individual user and task list.

permit (
 principal == TinyTodo::User::"https://cognito-idp.us-east-1.amazonaws.com/us-
east-1_h2aKCU1ts|5ae0c4b1-6de8-4dff-b52e-158188686f31|bob",
 action in [
 TinyTodo::Action::"ReadList",
 TinyTodo::Action::"UpdateList",
 TinyTodo::Action::"ListTasks",
 TinyTodo::Action::"CreateTask",
 TinyTodo::Action::"UpdateTask",
 TinyTodo::Action::"DeleteTask"
],
 resource == TinyTodo::List::"1"
);

TinyToDo examples 81

Amazon Verified Permissions User Guide

Secure your applications with identity sources and
tokens

Secure you applications quickly by creating an identity source to represent an external identity
provider (IdP) in Amazon Verified Permissions. Identity sources provide information from a user
who authenticated with an IdP that has a trust relationship with your policy store. When your
application makes an authorization request with a token from an identity source, your policy store
can make authorization decisions from user properties and access permissions. You can add an
Amazon Cognito user pool or a custom OpenID Connect (OIDC) IdP as your identity source.

You can use OpenID Connect (OIDC) identity providers (IdPs) with Verified Permissions. Your
application can generate authorization requests with JSON web tokens (JWTs) generated by an
OIDC-compliant identity provider. The user identity in the token is mapped to the principal ID. With
ID tokens, Verified Permissions maps attribute claims to principal attributes. With Access tokens,
these claims are mapped to context. With both token types, you can map a claim like groups to a
principal group, and build policies that evaluate role-based access control (RBAC).

Note

Verified Permissions makes authorization decisions based on information from an IdP token
but doesn't interact directly with the IdP in any way.

For a step-by-step walkthrough that builds authorization logic for Amazon API Gateway REST APIs
using an Amazon Cognito user pool or OIDC identity provider, see Authorize API Gateway APIs
using Amazon Verified Permissions with Amazon Cognito or bring your own identity provider on
the AWS Security Blog.

Topics

• Choosing the right identity provider

• Working with Amazon Cognito identity sources

• Working with OIDC identity sources

82

https://openid.net/specs/openid-connect-core-1_0.html
https://aws.amazon.com/blogs/security/authorize-api-gateway-apis-using-amazon-verified-permissions-and-amazon-cognito/
https://aws.amazon.com/blogs/security/authorize-api-gateway-apis-using-amazon-verified-permissions-and-amazon-cognito/

Amazon Verified Permissions User Guide

Choosing the right identity provider

While Verified Permissions works with a variety of IdPs, consider the following when deciding
which one to use in your application:

Use Amazon Cognito when:

• You're building new applications without existing identity infrastructure

• You want AWS-managed user pools with built-in security features

• You need social identity provider integration

• You want simplified token management

Use OIDC providers when:

• You have existing identity infrastructure (Auth0, Okta, Azure AD)

• You need to maintain centralized user management

• You have compliance requirements for specific IdPs

Working with Amazon Cognito identity sources

Verified Permissions works closely with Amazon Cognito user pools. Amazon Cognito JWTs have a
predictable structure. Verified Permissions recognizes this structure and draws maximum benefit
from the information that it contains. For example, you can implement a role-based access control
(RBAC) authorization model with either ID tokens or access tokens.

A new Amazon Cognito user pools identity source requires the following information:

• The AWS Region.

• The user pool ID.

• The principal entity type that you want to associate with your identity source, for example
MyCorp::User.

• The principal group entity type that you want to associate with your identity source, for example
MyCorp::UserGroup.

• The client IDs from your user pool that you want to authorize to make requests to your policy
store.

Choosing the right identity provider 83

Amazon Verified Permissions User Guide

Because Verified Permissions only works with Amazon Cognito user pools in the same AWS
account, you can't specify an identity source in another account. Verified Permissions sets the
entity prefix—the identity-source identifier that you must reference in policies that act on user pool
principals—to the ID of your user pool, for example us-west-2_EXAMPLE. In this case, you would
reference a user in that user pool with ID a1b2c3d4-5678-90ab-cdef-EXAMPLE22222 as us-
west-2_EXAMPLE|a1b2c3d4-5678-90ab-cdef-EXAMPLE22222

User pool token claims can contain attributes, scopes, groups, client IDs, and custom data.
Amazon Cognito JWTs have the ability to include a variety of information that can contribute to
authorization decisions in Verified Permissions. These include:

1. Username and group claims with a cognito: prefix

2. Custom user attributes with a custom: prefix

3. Custom claims added at runtime

4. OIDC standard claims like sub and email

We cover these claims in detail, and how to manage them in Verified Permissions policies, in
Mapping Amazon Cognito tokens to schema.

Important

Although you can revoke Amazon Cognito tokens before they expire, JWTs are considered
to be stateless resources that are self-contained with a signature and validity. Services that
conform with the JSON Web Token RFC 7519 are expected to validate tokens remotely and
aren't required to validate them with the issuer. This means that it is possible for Verified
Permissions to grant access based on a token that was revoked or issued for a user that
was later deleted. To mitigate this risk, we recommend that you create your tokens with
the shortest possible validity duration and revoke refresh tokens when you want to remove
authorization to continue a user's session. For more information, see Ending user sessions
with token revocation

This following example shows how you might create a policy that references some of the Amazon
Cognito user pools claims associated with a principal.

permit(
 principal,

Working with Amazon Cognito identity sources 84

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-attributes.html#user-pool-settings-custom-attributes
https://datatracker.ietf.org/doc/html/rfc7519
https://docs.aws.amazon.com/cognito/latest/developerguide/token-revocation.html
https://docs.aws.amazon.com/cognito/latest/developerguide/token-revocation.html

Amazon Verified Permissions User Guide

 action,
 resource == ExampleCo::Photo::"VacationPhoto94.jpg"
)
when {
 principal["cognito:username"]) == "alice" &&
 principal["custom:department"]) == "Finance"
};

This following example shows how you might create a policy that references a principal that's
a user in a Cognito user pool. Note that the principal ID takes the form of "<userpool-id>|
<sub>".

permit(
 principal == ExampleCo::User::"us-east-1_example|a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111",
 action,
 resource == ExampleCo::Photo::"VacationPhoto94.jpg"
);

Cedar policies for user pool identity sources in Verified Permissions use a special syntax for claim
names that contain characters other than alphanumeric and underscore (_). This includes user pool
prefix claims that contain a : character, like cognito:username and custom:department. To
write a policy condition that references the cognito:username or custom:department claim,
write them as principal["cognito:username"] and principal["custom:department"],
respectively.

Note

If a token contains a claim with a cognito: or custom: prefix and a claim name with the
literal value cognito or custom, an authorization request with IsAuthorizedWithToken will
fail with a ValidationException.

For more information about mapping claims, see Mapping Amazon Cognito tokens to schema. For
more information about authorization for Amazon Cognito users, see Authorization with Amazon
Verified Permissions in the Amazon Cognito Developer Guide.

Topics

• Creating Amazon Verified Permissions Amazon Cognito identity sources

Working with Amazon Cognito identity sources 85

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

• Editing Amazon Verified Permissions Amazon Cognito identity sources

• Mapping Amazon Cognito tokens to schema

• Client and audience validation for Amazon Cognito

Creating Amazon Verified Permissions Amazon Cognito identity sources

The following procedure adds an identity source to an existing policy store.

You can also create an identity source when you create a new policy store in the Verified
Permissions console. In this process, you can automatically import the claims in your identity
source tokens into entity attributes. Choose the Guided setup or Set up with API Gateway and an
identity provider option. These options also create initial policies.

Note

Identity sources is not available in the navigation pane on the left until you have created a
policy store. Identity sources that you create are associated with the current policy store.

You can leave out the principal entity type when you create an identity source with create-identity-
source in the AWS CLI or CreateIdentitySource in the Verified Permissions API. However, a blank
entity type creates an identity source with an entity type of AWS::Cognito. This entity name isn't
compatible with policy store schema. To integrate Amazon Cognito identities with your policy store
schema, you must set the principal entity type to a supported policy store entity.

AWS Management Console

To create an Amazon Cognito user pools identity source

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Identity sources.

3. Choose Create identity source.

4. In Cognito user pool details, select the AWS Region and enter the User pool ID for your
identity source.

5. In Principal configuration, for Principal type, choose the entity type for principals from
this source. Identities from the connected Amazon Cognito user pools will be mapped to
the selected principal type.

Creating identity sources 86

https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-identity-source.html
https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-identity-source.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

6. In Group configuration, select Use Cognito group if you want to map the user pool
cognito:groups claim. Choose an entity type that is a parent of the principal type.

7. In Client application validation, choose whether to validate client application IDs.

• To validate client application IDs, choose Only accept tokens with matching client
application IDs. Choose Add new client application ID for each client application ID to
validate. To remove a client application ID that has been added, choose Remove next to
the client application ID.

• Choose Do not validate client application IDs if you do not want to validate client
application IDs.

8. Choose Create identity source.

9. (Optional) If your policy store has a schema, before you can reference attributes you extract
from identity or access tokens in your Cedar policies, you must update your schema to
make Cedar aware of the type of principal that your identity source creates. That addition
to the schema must include the attributes that you want to reference in your Cedar policies.
For more information about mapping Amazon Cognito token attributes to Cedar principal
attributes, see Mapping Amazon Cognito tokens to schema.

Note

When you create an API-linked policy store or use Set up with API Gateway and
an identity provider when creating policy stores, Verified Permissions queries your
user pool for user attributes and creates a schema where your principal type is
populated with user pool attributes.

10. Create policies that use information from the tokens to make authorization decisions. For
more information, see Creating Amazon Verified Permissions static policies.

Now that you've created an identity source, updated the schema, and created policies, use
IsAuthorizedWithToken to have Verified Permissions make authorization decisions. For
more information, see IsAuthorizedWithToken in the Amazon Verified Permissions API reference
guide.

AWS CLI

To create an Amazon Cognito user pools identity source

Creating identity sources 87

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html

Amazon Verified Permissions User Guide

You can an create an identity source by using the CreateIdentitySource operation. The following
example creates an identity source that can access authenticated identities from a Amazon
Cognito user pool.

1. Create a config.txt file that contains the following details of the Amazon Cognito user
pool for use by the --configuration parameter in the create-identity-source
command.

{
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:us-west-2:123456789012:userpool/us-
west-2_1a2b3c4d5",
 "clientIds":["a1b2c3d4e5f6g7h8i9j0kalbmc"],
 "groupConfiguration": {
 "groupEntityType": "MyCorp::UserGroup"
 }
 }
}

2. Run the following command to create an Amazon Cognito identity source.

$ aws verifiedpermissions create-identity-source \
 --configuration file://config.txt \
 --principal-entity-type "User" \
 --policy-store-id 123456789012
{
 "createdDate": "2023-05-19T20:30:28.214829+00:00",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-05-19T20:30:28.214829+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

3. (Optional) If your policy store has a schema, before you can reference attributes you extract
from identity or access tokens in your Cedar policies, you must update your schema to
make Cedar aware of the type of principal that your identity source creates. That addition
to the schema must include the attributes that you want to reference in your Cedar policies.
For more information about mapping Amazon Cognito token attributes to Cedar principal
attributes, see Mapping Amazon Cognito tokens to schema.

Creating identity sources 88

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html

Amazon Verified Permissions User Guide

Note

When you create an API-linked policy store or use Set up with API Gateway and
an identity provider when creating policy stores, Verified Permissions queries your
user pool for user attributes and creates a schema where your principal type is
populated with user pool attributes.

4. Create policies that use information from the tokens to make authorization decisions. For
more information, see Creating Amazon Verified Permissions static policies.

Now that you've created an identity source, updated the schema, and created policies, use
IsAuthorizedWithToken to have Verified Permissions make authorization decisions. For
more information, see IsAuthorizedWithToken in the Amazon Verified Permissions API reference
guide.

For more information about using Amazon Cognito access and identity tokens for authenticated
users in Verified Permissions, see Authorization with Amazon Verified Permissions in the Amazon
Cognito Developer Guide.

Editing Amazon Verified Permissions Amazon Cognito identity sources

You can edit some parameters of your identity source after you create it. You can't change the
type of identity source, you have to delete the identity source and create a new one to switch
from Amazon Cognito to OIDC or OIDC to Amazon Cognito. If your policy store schema matches
your identity source attributes, note that you must update your schema separately to reflect the
changes that you make to your identity source.

AWS Management Console

To update an Amazon Cognito identity source

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Identity sources.

3. Choose the ID of the identity source to edit.

4. Choose Edit.

Editing identity sources 89

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

5. In Cognito user pool details, select the AWS Region and type the User pool ID for your
identity source.

6. In Principal details, you can update the Principal type for the identity source. Identities
from the connected Amazon Cognito user pools will be mapped to the selected principal
type.

7. In Group configuration, select Use Cognito groups if you want to map the user pool
cognito:groups claim. Choose an entity type that is a parent of the principal type.

8. In Client application validation, choose whether to validate client application IDs.

• To validate client application IDs, choose Only accept tokens with matching client
application IDs. Choose Add new client application ID for each client application ID to
validate. To remove a client application ID that has been added, choose Remove next to
the client application ID.

• Choose Do not validate client application IDs if you do not want to validate client
application IDs.

9. Choose Save changes.

10. If you changed the principal type for the identity source, you must update your schema to
correctly reflect the updated principal type.

You can delete an identity source by choosing the radio button next to an identity source and
then choosing Delete identity source. Type delete in the text box and then choose Delete
identity source to confirm deleting the identity source.

AWS CLI

To update an Amazon Cognito identity source

You can update an identity source by using the UpdateIdentitySource operation. The following
example updates the specified identity source to use a different Amazon Cognito user pool.

1. Create a config.txt file that contains the following details of the Amazon Cognito user
pool for use by the --configuration parameter in the update-identity-source
command.

{
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:us-west-2:123456789012:userpool/us-
west-2_1a2b3c4d5",

Editing identity sources 90

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdateIdentitySource.html

Amazon Verified Permissions User Guide

 "clientIds":["a1b2c3d4e5f6g7h8i9j0kalbmc"],
 "groupConfiguration": {
 "groupEntityType": "MyCorp::UserGroup"
 }
 }
}

2. Run the following command to update an Amazon Cognito identity source.

$ aws verifiedpermissions update-identity-source \
 --update-configuration file://config.txt \
 --policy-store-id 123456789012
{
 "createdDate": "2023-05-19T20:30:28.214829+00:00",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-05-19T20:30:28.214829+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

Note

If you change the principal type for the identity source, you must update your schema
to correctly reflect the updated principal type.

Mapping Amazon Cognito tokens to schema

You might find that you want to add an identity source to a policy store and map provider claims,
or tokens, to your policy store schema. You can automate this process, by using the Guided setup
to create your policy store with an identity source, or update your schema manually after the policy
store is created. Once you have mapped the tokens to the schema you can create policies that
reference them.

This section of the user guide has the following information:

• When you can automatically populate attributes to a policy store schema

• How to use Amazon Cognito token claims in your Verified Permissions policies

• How to manually build a schema for an identity source

Mapping tokens to schema 91

Amazon Verified Permissions User Guide

API-linked policy stores and policy stores with an identity source that were created through Guided
setup don't require manual mapping of identity (ID) token attributes to schema. You can provide
Verified Permissions with the attributes in your user pool and create a schema that is populated
with user attributes. In ID token authorization, Verified Permissions maps claims to attributes of a
principal entity. You might need to manually map Amazon Cognito tokens to your schema in the
following conditions:

• You created an empty policy store or policy store from a sample.

• You want to extend your use of access tokens beyond role-based access control (RBAC).

• You create policy stores with the Verified Permissions REST API, an AWS SDK, or the AWS CDK.

To use Amazon Cognito as an identity source in your Verified Permissions policy store, you must
have provider attributes in your schema. The schema is fixed and must correspond to the entities
that provider tokens create in IsAuthorizedWithToken or BatchIsAuthorizedWithToken API requests.
If you created your policy store in a way that automatically populates your schema from provider
information in an ID token, you're ready to write policies. If you create a policy store without a
schema for your identity source, you must add provider attributes to the schema that match the
entities created using API requests. Then you can write policies using attributes from the provider
token.

For more information about using Amazon Cognito ID and access tokens for authenticated users in
Verified Permissions, see Authorization with Amazon Verified Permissions in the Amazon Cognito
Developer Guide.

Topics

• Mapping ID tokens to schema

• Mapping access tokens

• Alternative notation for Amazon Cognito colon-delimited claims

• Things to know about schema mapping

Mapping ID tokens to schema

Verified Permissions processes ID token claims as the attributes of the user: their names and titles,
their group membership, their contact information. ID tokens are most useful in an attribute-based
access control (ABAC) authorization model. When you want Verified Permissions to analyze access
to resources based on who's making the request, choose ID tokens for your identity source.

Mapping tokens to schema 92

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

Amazon Cognito ID tokens work with most OIDC relying-party libraries. They extend the features
of OIDC with additional claims. Your application can authenticate the user with Amazon Cognito
user pools authentication API operations, or with the user pool hosted UI. For more information,
see Using the API and endpoints in the Amazon Cognito Developer Guide.

Useful claims in Amazon Cognito ID tokens

cognito:username and preferred_username

Variants of the user's username.

sub

The user's unique user identifier (UUID)

Claims with a custom: prefix

A prefix for custom user pool attributes like custom:employmentStoreCode.

Standard claims

Standard OIDC claims like email and phone_number. For more information, see Standard
claims in OpenID Connect Core 1.0 incorporating errata set 2.

cognito:groups

A user's group memberships. In an authorization model based on role-based access control
(RBAC), this claim presents the roles that you can evaluate in your policies.

Transient claims

Claims that aren't a property of the user, but are added at runtime by a user pool Pre token
generation Lambda trigger. Transient claims resemble standard claims but are outside the
standard, for example tenant or department.

In policies that reference Amazon Cognito attributes that have a : separator, reference the
attributes in the format principal["cognito:username"]. The roles claim cognito:groups
is an exception to this rule. Verified Permissions maps the contents of this claim to parent entities
of the user entity.

For more information about the structure of ID tokens from Amazon Cognito user pools, see Using
the ID token in the Amazon Cognito Developer Guide.

Mapping tokens to schema 93

https://openid.net/developers/certified-openid-connect-implementations/
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pools-API-operations.html
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-the-id-token.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-the-id-token.html

Amazon Verified Permissions User Guide

The following example ID token has each of the four types of attributes. It includes the Amazon
Cognito-specific claim cognito:username, the custom claim custom:employmentStoreCode,
the standard claim email, and the transient claim tenant.

{
 "sub": "91eb4550-XXX",
 "cognito:groups": [
 "Store-Owner-Role",
 "Customer"
],
 "email_verified": true,
 "clearance": "confidential",
 "iss": "https://cognito-idp.us-east-2.amazonaws.com/us-east-2_EXAMPLE",
 "cognito:username": "alice",
 "custom:employmentStoreCode": "petstore-dallas",
 "origin_jti": "5b9f50a3-05da-454a-8b99-b79c2349de77",
 "aud": "1example23456789",
 "event_id": "0ed5ad5c-7182-4ecf-XXX",
 "token_use": "id",
 "auth_time": 1687885407,
 "department": "engineering",
 "exp": 1687889006,
 "iat": 1687885407,
 "tenant": "x11app-tenant-1",
 "jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "email": "alice@example.com"
}

When you create an identity source with your Amazon Cognito user pool, you specify the
type of principal entity that Verified Permissions generates in authorization requests with
IsAuthorizedWithToken. Your policies can then test attributes of that principal as part of
evaluating that request. Your schema defines the principal type and attributes for an identity
source, and then you can reference them in your Cedar policies.

You also specify the type of group entity that you want to derive from the ID token groups claim. In
authorization requests, Verified Permissions maps each member of the groups claim to that group
entity type. In policies, you can reference that group entity as the principal.

The following example shows how to reflect the attributes from the example identity token in your
Verified Permissions schema. For more information about editing your schema, see Editing policy

Mapping tokens to schema 94

Amazon Verified Permissions User Guide

store schemas. If your identity source configuration specifies the principal type User, then you can
include something similar to the following example to make those attributes available to Cedar.

"User": {
 "shape": {
 "type": "Record",
 "attributes": {
 "cognito:username": {
 "type": "String",
 "required": false
 },
 "custom:employmentStoreCode": {
 "type": "String",
 "required": false
 },
 "email": {
 "type": "String"
 },
 "tenant": {
 "type": "String",
 "required": true
 }
 }
 }
}

For an example policy that will validate against this schema, see Reflects Amazon Cognito ID token
attributes.

Mapping access tokens

Verified Permissions processes access-token claims other than the groups claim as attributes of the
action, or context attributes. Along with group membership, the access tokens from your IdP might
contain information about API access. Access tokens are useful in authorization models that use
role-based access control (RBAC). Authorization models that rely on access-token claims other than
group membership require additional effort in schema configuration.

Amazon Cognito access tokens have claims that can be used for authorization:

Mapping tokens to schema 95

Amazon Verified Permissions User Guide

Useful claims in Amazon Cognito access tokens

client_id

The ID of the client application of an OIDC relying party. With the client ID, Verified Permissions
can verify that the authorization request comes from a permitted client for the policy store. In
machine-to-machine (M2M) authorization, the requesting system authorizes a request with a
client secret and provides the client ID and scopes as evidence of authorization.

scope

The OAuth 2.0 scopes that represent the access permissions of the bearer of the token.

cognito:groups

A user's group memberships. In an authorization model based on role-based access control
(RBAC), this claim presents the roles that you can evaluate in your policies.

Transient claims

Claims that aren't an access permission, but are added at runtime by a user pool Pre token
generation Lambda trigger. Transient claims resemble standard claims but are outside the
standard, for example tenant or department. Customization of access tokens adds cost to
your AWS bill.

For more information about the structure of access tokens from Amazon Cognito user pools, see
Using the access token in the Amazon Cognito Developer Guide.

An Amazon Cognito access token is mapped to a context object when passed
to Verified Permissions. Attributes of the access token can be referenced using
context.token.attribute_name. The following example access token includes both the
client_id and scope claims.

{
 "sub": "91eb4550-9091-708c-a7a6-9758ef8b6b1e",
 "cognito:groups": [
 "Store-Owner-Role",
 "Customer"
],
 "iss": "https://cognito-idp.us-east-2.amazonaws.com/us-east-2_EXAMPLE",
 "client_id": "1example23456789",
 "origin_jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "event_id": "bda909cb-3e29-4bb8-83e3-ce6808f49011",

Mapping tokens to schema 96

https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-the-access-token.html

Amazon Verified Permissions User Guide

 "token_use": "access",
 "scope": "MyAPI/mydata.write",
 "auth_time": 1688092966,
 "exp": 1688096566,
 "iat": 1688092966,
 "jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN2222222",
 "username": "alice"
}

The following example shows how to reflect the attributes from the example access token in your
Verified Permissions schema. For more information about editing your schema, see Editing policy
store schemas.

{
 "MyApplication": {
 "actions": {
 "Read": {
 "appliesTo": {
 "context": {
 "type": "ReusedContext"
 },
 "resourceTypes": [
 "Application"
],
 "principalTypes": [
 "User"
]
 }
 }
 },
 ...
 ...
 "commonTypes": {
 "ReusedContext": {
 "attributes": {
 "token": {
 "type": "Record",
 "attributes": {
 "scope": {
 "type": "Set",
 "element": {
 "type": "String"
 }

Mapping tokens to schema 97

Amazon Verified Permissions User Guide

 },
 "client_id": {
 "type": "String"
 }
 }
 }
 },
 "type": "Record"
 }
 }
 }
}

For an example policy that will validate against this schema, see Reflects Amazon Cognito access
token attributes.

Alternative notation for Amazon Cognito colon-delimited claims

At the time that Verified Permissions launched, the recommended schema for Amazon Cognito
token claims like cognito:groups and custom:store converted these colon-delimited
strings to use the . character as a hierarchy delimiter. This format is called dot notation. For
example, a reference to cognito:groups became principal.cognito.groups in your
policies. Although you can continue to use this format, we recommend that you build your schema
and policies with bracket notation. In this format, a reference to cognito:groups becomes
principal["cognito:groups"] in your policies. Automatically-generated schemas for user
pool ID tokens from the Verified Permissions console use bracket notation.

You can continue to use dot notation in manually-built schema and policies for Amazon Cognito
identity sources. You can't use dot notation with : or any other non-alphanumeric characters in
schema or policies for any other type of OIDC IdP.

A schema for dot notation nests each instance of a : character as a child of the cognito or
custom initial phrase, as shown in the following example:

"CognitoUser": {
 "shape": {
 "type": "Record",
 "attributes": {
 "cognito": {
 "type": "Record",
 "required": true,

Mapping tokens to schema 98

Amazon Verified Permissions User Guide

 "attributes": {
 "username": {
 "type": "String",
 "required": true
 }
 }
 },
 "custom": {
 "type": "Record",
 "required": true,
 "attributes": {
 "employmentStoreCode": {
 "type": "String",
 "required": true
 }
 }
 },
 "email": {
 "type": "String"
 },
 "tenant": {
 "type": "String",
 "required": true
 }
 }
 }
}

For an example policy that will validate against this schema and use dot notation, see Uses dot
notation to reference attributes.

Things to know about schema mapping

Attribute mapping differs between token types

In access token authorization, Verified Permissions maps claims to context. In ID token
authorization, Verified Permissions maps claims to principal attributes. For policy stores that you
create in the Verified Permissions console, only empty and sample policy stores leave you with
no identity source and require you to populate your schema with user pool attributes for ID token
authorization. Access token authorization is based on role-based access control (RBAC) with group-
membership claims and doesn't automatically map other claims to the policy store schema.

Identity source attributes aren't required

Mapping tokens to schema 99

Amazon Verified Permissions User Guide

When you create an identity source in the Verified Permissions console, no attributes are marked as
required. This prevents missing claims from causing validation errors in authorization requests. You
can set attributes to required as needed, but they must be present in all authorization requests.

RBAC doesn't require attributes in schema

Schemas for identity sources depend on the entity associations that you make when you add your
identity source. An identity source maps one claim to a user entity type, and one claim to a group
entity type. These entity mappings are the core of an identity-source configuration. With this
minimum information, you can write policies that perform authorization actions for specific users
and specific groups that users might be members of, in a role-based access control (RBAC) model.
The addition of token claims to the schema extends the authorization scope of your policy store.
User attributes from ID tokens have information about users that can contribute to attribute-based
access control (ABAC) authorization. Context attributes from access tokens have information like
OAuth 2.0 scopes that can contribute additional access-control information from your provider, but
require additional schema modifications.

The Set up with API Gateway and an identity provider and Guided setup options in the Verified
Permissions console assign ID token claims to the schema. This isn't the case for access token
claims. To add non-group access-token claims to your schema, you must edit your schema in JSON
mode and add commonTypes attributes. For more information, see Mapping access tokens.

Choose a token type

The way that your policy store works with your identity source depends on a key decision in
identity-source configuration: whether you will process ID or access tokens. With an Amazon
Cognito identity provider, you have the choice of token type when you create an API-linked policy
store. When you create an API-linked policy store, you must choose whether you want to set up
authorization for ID or access tokens. This information affects the schema attributes that Verified
Permissions applies to your policy store, and the syntax of the Lambda authorizer for your API
Gateway API. Especially if you wish to benefit from the automatic mapping of ID token claims to
attributes in the Verified Permissions console, decide early about the token type that you want to
process before you create your identity source. Changing the token type requires significant effort
to refactor your policies and schema. The following topics describe the use of ID and access tokens
with policy stores.

Cedar parser requires brackets for some characters

Policies typically reference schema attributes in a format like principal.username. In the case
of most non-alphanumeric characters like :, ., or / that might appear in token claim names,

Mapping tokens to schema 100

https://docs.cedarpolicy.com/schema/json-schema.html#schema-commonTypes

Amazon Verified Permissions User Guide

Verified Permissions can't parse a condition value like principal.cognito:username or
context.ip-address. You must instead format these conditions with bracket notation in
the format principal["cognito:username"] or context["ip-address"], respectively.
The underscore character _ is a valid character in claim names, and the only non-alphanumeric
exception to this requirement.

A partial example schema for a principal attribute of this type looks like the following:

"User": {
 "shape": {
 "type": "Record",
 "attributes": {
 "cognito:username": {
 "type": "String",
 "required": true
 },
 "custom:employmentStoreCode": {
 "type": "String",
 "required": true,
 },
 "email": {
 "type": "String",
 "required": false
 }
 }
 }
}

A partial example schema for a context attribute of this type looks like the following:

"GetOrder": {
 "memberOf": [],
 "appliesTo": {
 "resourceTypes": [
 "Order"
],
 "context": {
 "type": "Record",
 "attributes": {
 "ip-address": {
 "required": false,
 "type": "String"

Mapping tokens to schema 101

Amazon Verified Permissions User Guide

 }
 }
 },
 "principalTypes": [
 "User"
]
 }
}

For an example policy that will validate against this schema, see Uses bracket notation to reference
token attributes.

Client and audience validation for Amazon Cognito

When you add an identity source to a policy store, Verified Permissions has configuration options
that verify that ID and access tokens are being used as intended. This validation happens in the
processing of IsAuthorizedWithToken and BatchIsAuthorizedWithToken API requests. The
behavior differs between ID and access tokens, and between Amazon Cognito and OIDC identity
sources. With Amazon Cognito user pools providers, Verified Permissions can validate the client ID
in both ID and access tokens. With OIDC providers, Verified Permissions can validate the client ID in
ID tokens, and the audience in access tokens.

A client ID is an identifier associated with the identity provider instance that your application uses,
for example 1example23456789. An audience is a URL path associated with the intended relying
party, or destination, of the access token, for example https://mytoken.example.com. When
using access tokens, the aud claim is always associated with the audience.

Amazon Cognito ID tokens have an aud claim that contains the app client ID. Access tokens have a
client_id claim that also contains the app client ID.

When you enter one or more values for Client application validation in your identity source,
Verified Permissions compares this list of app client IDs to the ID token aud claim or the access
token client_id claim. Verified Permissions doesn't validate a relying-party audience URL for
Amazon Cognito identity sources.

Client-side authorization for JWTs

You might want to process JSON web tokens in your application and pass their claims to Verified
Permissions without using a policy store identity source. You can extract your entity attributes from
a JSON Web Token (JWT) and parse it into Verified Permissions.

Client and audience validation 102

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html

Amazon Verified Permissions User Guide

This example shows how you might call Verified Permissions from an application using a JWT.¹

async function authorizeUsingJwtToken(jwtToken) {

 const payload = await verifier.verify(jwtToken);

 let principalEntity = {
 entityType: "PhotoFlash::User", // the application needs to fill in the
 relevant user type
 entityId: payload["sub"], // the application need to use the claim that
 represents the user-id
 };
 let resourceEntity = {
 entityType: "PhotoFlash::Photo", //the application needs to fill in the
 relevant resource type
 entityId: "jane_photo_123.jpg", // the application needs to fill in the
 relevant resource id
 };
 let action = {
 actionType: "PhotoFlash::Action", //the application needs to fill in the
 relevant action id
 actionId: "GetPhoto", //the application needs to fill in the relevant action
 type
 };
 let entities = {
 entityList: [],
 };
 entities.entityList.push(...getUserEntitiesFromToken(payload));
 let policyStoreId = "PSEXAMPLEabcdefg111111"; // set your own policy store id

 const authResult = await client
 .isAuthorized({
 policyStoreId: policyStoreId,
 principal: principalEntity,
 resource: resourceEntity,
 action: action,
 entities,
 })
 .promise();

 return authResult;

}

Client and audience validation 103

Amazon Verified Permissions User Guide

function getUserEntitiesFromToken(payload) {
 let attributes = {};
 let claimsNotPassedInEntities = ['aud', 'sub', 'exp', 'jti', 'iss'];
 Object.entries(payload).forEach(([key, value]) => {
 if (claimsNotPassedInEntities.includes(key)) {
 return;
 }
 if (Array.isArray(value)) {
 var attibuteItem = [];
 value.forEach((item) => {
 attibuteItem.push({
 string: item,
 });
 });
 attributes[key] = {
 set: attibuteItem,
 };
 } else if (typeof value === 'string') {
 attributes[key] = {
 string: value,
 }
 } else if (typeof value === 'bigint' || typeof value ==='number') {
 attributes[key] = {
 long: value,
 }
 } else if (typeof value === 'boolean') {
 attributes[key] = {
 boolean: value,
 }
 }

 });

 let entityItem = {
 attributes: attributes,
 identifier: {
 entityType: "PhotoFlash::User",
 entityId: payload["sub"], // the application needs to use the claim that
 represents the user-id
 }
 };
 return [entityItem];
}

Client and audience validation 104

Amazon Verified Permissions User Guide

¹ This code example uses the aws-jwt-verify library for verifying JWTs signed by OIDC-compatible
IdPs.

Working with OIDC identity sources

You can also configure any compliant OpenID Connect (OIDC) IdP as the identity source of a policy
store. OIDC providers are similar to Amazon Cognito user pools: they produce JWTs as the product
of authentication. To add an OIDC provider, you must provide an issuer URL

A new OIDC identity source requires the following information:

• The issuer URL. Verified Permissions must be able to discover a .well-known/openid-
configuration endpoint at this URL.

• CNAME records that don't include wild cards. For example, a.example.com can't be mapped to
*.example.net. Conversely, *.example.com can't be mapped to a.example.net.

• The token type that you want to use in authorization requests. In this case, you chose Identity
token.

• The user entity type that you want to associate with your identity source, for example
MyCorp::User.

• The group entity type that you want to associate with your identity source, for example
MyCorp::UserGroup.

• An example ID token, or a definition of the claims in the ID token.

• The prefix that you want to apply to user and group entity IDs. In the CLI and API, you can
choose this prefix. In policy stores that you create with the Set up with API Gateway and
an identity provider or Guided setup option, Verified Permissions assigns a prefix of the
issuer name minus https://, for example MyCorp::User::"auth.example.com|
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111".

For more information about using API operations to authorize requests from OIDC sources, see
Available API operations for authorization.

This following example shows how you might create a policy that permits access to year-end
reports for employees in the accounting department, have a confidential classification, and aren't
in a satellite office. Verified Permissions derives these attributes from the claims in the principal's
ID token.

Working with OIDC identity sources 105

https://github.com/awslabs/aws-jwt-verify

Amazon Verified Permissions User Guide

Note that when referencing a group in the principal, you must use the in operator for the policy to
be evaluated correctly.

permit(
 principal in MyCorp::UserGroup::"MyOIDCProvider|Accounting",
 action,
 resource in MyCorp::Folder::"YearEnd2024"
) when {
 principal.jobClassification == "Confidential" &&
 !(principal.location like "SatelliteOffice*")
};

Topics

• Creating Amazon Verified Permissions OIDC identity sources

• Editing Amazon Verified Permissions OIDC identity sources

• Mapping OIDC tokens to schema

• Client and audience validation for OIDC providers

Creating Amazon Verified Permissions OIDC identity sources

The following procedure adds an identity source to an existing policy store.

You can also create an identity source when you create a new policy store in the Verified
Permissions console. In this process, you can automatically import the claims in your identity
source tokens into entity attributes. Choose the Guided setup or Set up with API Gateway and an
identity provider option. These options also create initial policies.

Note

Identity sources is not available in the navigation pane on the left until you have created a
policy store. Identity sources that you create are associated with the current policy store.

You can leave out the principal entity type when you create an identity source with create-identity-
source in the AWS CLI or CreateIdentitySource in the Verified Permissions API. However, a blank
entity type creates an identity source with an entity type of AWS::Cognito. This entity name isn't
compatible with policy store schema. To integrate Amazon Cognito identities with your policy store
schema, you must set the principal entity type to a supported policy store entity.

Creating identity sources 106

https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-identity-source.html
https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-identity-source.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html

Amazon Verified Permissions User Guide

AWS Management Console

To create an OpenID Connect (OIDC) identity source

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Identity sources.

3. Choose Create identity source.

4. Choose External OIDC provider.

5. In Issuer URL, enter the URL of your OIDC issuer. This is the service endpoint that provides
the authorization server, signing keys, and other information about your provider, for
example https://auth.example.com. Your issuer URL must host an OIDC discovery
document at /.well-known/openid-configuration.

6. In Token type, choose the type of OIDC JWT that you want your application to submit for
authorization. For more information, see Mapping OIDC tokens to schema.

7. In Map token claims to schema entities, choose a User entity and User claim for the
identity source. The User entity is an entity in your policy store that you want to refer to
users from your OIDC provider. The User claim is a claim, typically sub, from your ID or
access token that holds the unique identifier for the entity to be evaluated. Identities from
the connected OIDC IdP will be mapped to the selected principal type.

8. (Optional) In Map token claims to schema entities, choose a Group entity and Group
claim for the identity source. The Group entity is a parent of the User entity. Group claims
get mapped to this entity. The Group claim is a claim, typically groups, from your ID or
access token that contains a string, JSON, or space-delimited string of user-group names
for the entity to be evaluated. Identities from the connected OIDC IdP will be mapped to
the selected principal type.

9. In validation - optional, enter the client IDs or audience URLs that you want your policy
store to accept in authorization requests, if any.

10. Choose Create identity source.

11. (Optional) If your policy store has a schema, before you can reference attributes that
you extract from identity or access tokens in your Cedar policies, you must update your
schema to make Cedar aware of the type of principal that your identity source creates.
That addition to the schema must include the attributes that you want to reference in
your Cedar policies. For more information about mapping OIDC token attributes to Cedar
principal attributes, see Mapping OIDC tokens to schema.

Creating identity sources 107

https://console.aws.amazon.com/verifiedpermissions/
https://docs.cedarpolicy.com/overview/terminology.html#term-group

Amazon Verified Permissions User Guide

12. Create policies that use information from the tokens to make authorization decisions. For
more information, see Creating Amazon Verified Permissions static policies.

Now that you've created an identity source, updated the schema, and created policies, use
IsAuthorizedWithToken to have Verified Permissions make authorization decisions. For
more information, see IsAuthorizedWithToken in the Amazon Verified Permissions API reference
guide.

AWS CLI

To create an OIDC identity source

You can an create an identity source by using the CreateIdentitySource operation. The following
example creates an identity source that can access authenticated identities from a an OIDC
identity provider(IdP).

1. Create a config.txt file that contains the following details of an OIDC IdP for use by the
--configuration parameter of the create-identity-source command.

{
 "openIdConnectConfiguration": {
 "issuer": "https://auth.example.com",
 "tokenSelection": {
 "identityTokenOnly": {
 "clientIds":["1example23456789"],
 "principalIdClaim": "sub"
 },
 },
 "entityIdPrefix": "MyOIDCProvider",
 "groupConfiguration": {
 "groupClaim": "groups",
 "groupEntityType": "MyCorp::UserGroup"
 }
 }
}

2. Run the following command to create an OIDC identity source.

$ aws verifiedpermissions create-identity-source \
 --configuration file://config.txt \
 --principal-entity-type "User" \
 --policy-store-id 123456789012

Creating identity sources 108

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html

Amazon Verified Permissions User Guide

{
 "createdDate": "2023-05-19T20:30:28.214829+00:00",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-05-19T20:30:28.214829+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

3. (Optional) If your policy store has a schema, before you can reference attributes that
you extract from identity or access tokens in your Cedar policies, you must update your
schema to make Cedar aware of the type of principal that your identity source creates.
That addition to the schema must include the attributes that you want to reference in
your Cedar policies. For more information about mapping OIDC token attributes to Cedar
principal attributes, see Mapping OIDC tokens to schema.

4. Create policies that use information from the tokens to make authorization decisions. For
more information, see Creating Amazon Verified Permissions static policies.

Now that you've created an identity source, updated the schema, and created policies, use
IsAuthorizedWithToken to have Verified Permissions make authorization decisions. For
more information, see IsAuthorizedWithToken in the Amazon Verified Permissions API reference
guide.

Editing Amazon Verified Permissions OIDC identity sources

You can edit some parameters of your identity source after you create it. You can't change the
type of identity source, you have to delete the identity source and create a new one to switch
from Amazon Cognito to OIDC or OIDC to Amazon Cognito. If your policy store schema matches
your identity source attributes, note that you must update your schema separately to reflect the
changes that you make to your identity source.

AWS Management Console

To update an OIDC identity source

1. Open the Verified Permissions console. Choose your policy store.

2. In the navigation pane on the left, choose Identity sources.

3. Choose the ID of the identity source to edit.

4. Choose Edit.

Editing identity sources 109

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

5. In OIDC provider details, change the Issuer URL as needed.

6. In Map token claims to schema attributes, change the associations between user and
group claims and policy store entity types, as needed. After you change entity types, you
must update your policies and schema attributes to apply to the new entity types.

7. In Audience validation, add or remove audience values that you want to enforce.

8. Choose Save changes.

You can delete an identity source by choosing the radio button next to an identity source and
then choosing Delete identity source. Type delete in the text box and then choose Delete
identity source to confirm deleting the identity source.

AWS CLI

To update an OIDC identity source

You can update an identity source by using the UpdateIdentitySource operation. The following
example updates the specified identity source to use a different OIDC provider.

1. Create a config.txt file that contains the following details of an OIDC IdP for use by the
--configuration parameter of the update-identity-source command.

{
 "openIdConnectConfiguration": {
 "issuer": "https://auth2.example.com",
 "tokenSelection": {
 "identityTokenOnly": {
 "clientIds":["2example10111213"],
 "principalIdClaim": "sub"
 },
 },
 "entityIdPrefix": "MyOIDCProvider",
 "groupConfiguration": {
 "groupClaim": "groups",
 "groupEntityType": "MyCorp::UserGroup"
 }
 }
}

2. Run the following command to update an OIDC identity source.

$ aws verifiedpermissions update-identity-source \

Editing identity sources 110

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdateIdentitySource.html

Amazon Verified Permissions User Guide

 --update-configuration file://config.txt \
 --policy-store-id 123456789012
{
 "createdDate": "2023-05-19T20:30:28.214829+00:00",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-05-19T20:30:28.214829+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

Note

If you change the principal type for the identity source, you must update your schema
to correctly reflect the updated principal type.

Mapping OIDC tokens to schema

You might find that you want to add an identity source to a policy store and map provider claims,
or tokens, to your policy store schema. You can automate this process, by using the Guided setup
to create your policy store with an identity source, or update your schema manually after the policy
store is created. Once you have mapped the tokens to the schema you can create policies that
reference them.

This section of the user guide has the following information:

• When you can automatically populate attributes to a policy store schema

• How to manually build a schema for an identity source

API-linked policy stores and policy stores with an identity source that were created through Guided
setup don't require manual mapping of identity (ID) token attributes to schema. You can provide
Verified Permissions with the attributes in your user pool and create a schema that is populated
with user attributes. In ID token authorization, Verified Permissions maps claims to attributes of a
principal entity.

To use an OIDC identity provider (IdP) as an identity source in your Verified Permissions
policy store, you must have provider attributes in your schema. The schema is fixed and
must correspond to the entities that provider tokens create in IsAuthorizedWithToken or
BatchIsAuthorizedWithToken API requests. If you created your policy store in a way that

Mapping tokens to schema 111

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorizedWithToken.html

Amazon Verified Permissions User Guide

automatically populates your schema from provider information in an ID token, you're ready to
write policies. If you create a policy store without a schema for your identity source, you must add
provider attributes to the schema that match the entities created using API requests. Then you can
write policies using attributes from the provider token.

Topics

• Mapping ID tokens to schema

• Mapping access tokens

• Things to know about schema mapping

Mapping ID tokens to schema

Verified Permissions processes ID token claims as the attributes of the user: their names and titles,
their group membership, their contact information. ID tokens are most useful in an attribute-based
access control (ABAC) authorization model. When you want Verified Permissions to analyze access
to resources based on who's making the request, choose ID tokens for your identity source.

Working with ID tokens from an OIDC provider is much the same as working with Amazon Cognito
ID tokens. The difference is in the claims. Your IdP might present standard OIDC attributes, or have
a custom schema. When you create a new policy store in the Verified Permissions console, you can
add an OIDC identity source with an example ID token, or you can manually map token claims to
user attributes. Because Verified Permissions isn't aware of the attribute schema of your IdP, you
must provide this information.

For more information, see Creating Verified Permissions policy stores.

The following is an example schema for a policy store with an OIDC identity source.

"User": {
 "shape": {
 "type": "Record",
 "attributes": {
 "email": {
 "type": "String"
 },
 "email_verified": {
 "type": "Boolean"
 },
 "name": {

Mapping tokens to schema 112

https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Verified Permissions User Guide

 "type": "String",
 "required": true
 },
 "phone_number": {
 "type": "String"
 },
 "phone_number_verified": {
 "type": "Boolean"
 }
 }
 }
}

For an example policy that will validate against this schema, see Reflects OIDC ID token attributes.

Mapping access tokens

Verified Permissions processes access-token claims other than the groups claim as attributes of the
action, or context attributes. Along with group membership, the access tokens from your IdP might
contain information about API access. Access tokens are useful in authorization models that use
role-based access control (RBAC). Authorization models that rely on access-token claims other than
group membership require additional effort in schema configuration.

Most access tokens from external OIDC providers align closely with Amazon Cognito access
tokens. An OIDC access token is mapped to a context object when passed to Verified Permissions.
Attributes of the access token can be referenced using context.token.attribute_name. The
following example OIDC access token includes example base claims.

{
 "sub": "91eb4550-9091-708c-a7a6-9758ef8b6b1e",
 "groups": [
 "Store-Owner-Role",
 "Customer"
],
 "iss": "https://auth.example.com",
 "client_id": "1example23456789",
 "aud": "https://myapplication.example.com"
 "scope": "MyAPI-Read",
 "exp": 1688096566,
 "iat": 1688092966,
 "jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN2222222",
 "username": "alice"

Mapping tokens to schema 113

Amazon Verified Permissions User Guide

}

The following example shows how to reflect the attributes from the example access token in your
Verified Permissions schema. For more information about editing your schema, see Editing policy
store schemas.

{
 "MyApplication": {
 "actions": {
 "Read": {
 "appliesTo": {
 "context": {
 "type": "ReusedContext"
 },
 "resourceTypes": [
 "Application"
],
 "principalTypes": [
 "User"
]
 }
 }
 },
 ...
 ...
 "commonTypes": {
 "ReusedContext": {
 "attributes": {
 "token": {
 "type": "Record",
 "attributes": {
 "scope": {
 "type": "Set",
 "element": {
 "type": "String"
 }
 },
 "client_id": {
 "type": "String"
 }
 }
 }
 },

Mapping tokens to schema 114

Amazon Verified Permissions User Guide

 "type": "Record"
 }
 }
 }
}

For an example policy that will validate against this schema, see Reflects OIDC access token
attributes.

Things to know about schema mapping

Attribute mapping differs between token types

In access token authorization, Verified Permissions maps claims to context. In ID token
authorization, Verified Permissions maps claims to principal attributes. For policy stores that you
create in the Verified Permissions console, only empty and sample policy stores leave you with
no identity source and require you to populate your schema with user pool attributes for ID token
authorization. Access token authorization is based on role-based access control (RBAC) with group-
membership claims and doesn't automatically map other claims to the policy store schema.

Identity source attributes aren't required

When you create an identity source in the Verified Permissions console, no attributes are marked as
required. This prevents missing claims from causing validation errors in authorization requests. You
can set attributes to required as needed, but they must be present in all authorization requests.

RBAC doesn't require attributes in schema

Schemas for identity sources depend on the entity associations that you make when you add your
identity source. An identity source maps one claim to a user entity type, and one claim to a group
entity type. These entity mappings are the core of an identity-source configuration. With this
minimum information, you can write policies that perform authorization actions for specific users
and specific groups that users might be members of, in a role-based access control (RBAC) model.
The addition of token claims to the schema extends the authorization scope of your policy store.
User attributes from ID tokens have information about users that can contribute to attribute-based
access control (ABAC) authorization. Context attributes from access tokens have information like
OAuth 2.0 scopes that can contribute additional access-control information from your provider, but
require additional schema modifications.

The Set up with API Gateway and an identity provider and Guided setup options in the Verified
Permissions console assign ID token claims to the schema. This isn't the case for access token

Mapping tokens to schema 115

Amazon Verified Permissions User Guide

claims. To add non-group access-token claims to your schema, you must edit your schema in JSON
mode and add commonTypes attributes. For more information, see Mapping access tokens.

OIDC groups claim supports multiple formats

When you add an OIDC provider, you can choose the name of the groups claim in ID or access
tokens that you want to map to a user’s group membership in your policy store. Verified
permissions recognizes groups claims in the following formats:

1. String without spaces: "groups": "MyGroup"

2. Space-delimited list: "groups": "MyGroup1 MyGroup2 MyGroup3". Each string is a group.

3. JSON (comma-delimited) list: "groups": ["MyGroup1", "MyGroup2", "MyGroup3"]

Note

Verified Permissions interprets each string in a space-separated groups claim as a separate
group. To interpret a group name with a space character as a single group, replace or
remove the space in the claim. For example, format a group named My Group as MyGroup.

Choose a token type

The way that your policy store works with your identity source depends on a key decision in
identity-source configuration: whether you will process ID or access tokens. With an OIDC provider,
you must choose a token type when you add the identity source. You can choose ID or access token,
and your choice excludes the unchosen token type from being processed in your policy store.
Especially if you wish to benefit from the automatic mapping of ID token claims to attributes in the
Verified Permissions console, decide early about the token type that you want to process before
you create your identity source. Changing the token type requires significant effort to refactor
your policies and schema. The following topics describe the use of ID and access tokens with policy
stores.

Cedar parser requires brackets for some characters

Policies typically reference schema attributes in a format like principal.username. In the case
of most non-alphanumeric characters like :, ., or / that might appear in token claim names,
Verified Permissions can't parse a condition value like principal.cognito:username or
context.ip-address. You must instead format these conditions with bracket notation in

Mapping tokens to schema 116

https://docs.cedarpolicy.com/schema/json-schema.html#schema-commonTypes

Amazon Verified Permissions User Guide

the format principal["cognito:username"] or context["ip-address"], respectively.
The underscore character _ is a valid character in claim names, and the only non-alphanumeric
exception to this requirement.

A partial example schema for a principal attribute of this type looks like the following:

"User": {
 "shape": {
 "type": "Record",
 "attributes": {
 "cognito:username": {
 "type": "String",
 "required": true
 },
 "custom:employmentStoreCode": {
 "type": "String",
 "required": true,
 },
 "email": {
 "type": "String",
 "required": false
 }
 }
 }
}

A partial example schema for a context attribute of this type looks like the following:

"GetOrder": {
 "memberOf": [],
 "appliesTo": {
 "resourceTypes": [
 "Order"
],
 "context": {
 "type": "Record",
 "attributes": {
 "ip-address": {
 "required": false,
 "type": "String"
 }
 }
 },

Mapping tokens to schema 117

Amazon Verified Permissions User Guide

 "principalTypes": [
 "User"
]
 }
}

For an example policy that will validate against this schema, see Uses bracket notation to reference
token attributes.

Client and audience validation for OIDC providers

When you add an identity source to a policy store, Verified Permissions has configuration options
that verify that ID and access tokens are being used as intended. This validation happens in the
processing of IsAuthorizedWithToken and BatchIsAuthorizedWithToken API requests. The
behavior differs between ID and access tokens, and between Amazon Cognito and OIDC identity
sources. With Amazon Cognito user pools providers, Verified Permissions can validate the client ID
in both ID and access tokens. With OIDC providers, Verified Permissions can validate the client ID in
ID tokens, and the audience in access tokens.

A client ID is an identifier associated with the identity provider instance that your application uses,
for example 1example23456789. An audience is a URL path associated with the intended relying
party, or destination, of the access token, for example https://mytoken.example.com. When
using access tokens, the aud claim is always associated with the audience.

OIDC ID tokens have an aud claim that contains client IDs, such as 1example23456789.

OIDC Access tokens have an aud claim that contains the audience URL for the token, such as
https://myapplication.example.com, and a client_id claim that contains client IDs, such
as 1example23456789.

When setting up your policy store, enter one or more values for Audience validation that your
policy store with use to validate the audience of a token.

• ID tokens – Verified Permissions validates the client ID by checking that at least one member of
the client IDs in the aud claim matches an audience validation value.

• Access tokens – Verified Permissions validates the audience by checking that the URL in the aud
claim matches an audience validation value. If no aud claim exists, the audience can be validated
using the cid or client_id claims. Check with your identity provider for the correct audience
claim and format.

Client and audience validation 118

Amazon Verified Permissions User Guide

Client-side authorization for JWTs

You might want to process JSON web tokens in your application and pass their claims to Verified
Permissions without using a policy store identity source. You can extract your entity attributes from
a JSON Web Token (JWT) and parse it into Verified Permissions.

This example shows how you might call Verified Permissions from an application using a JWT.¹

async function authorizeUsingJwtToken(jwtToken) {

 const payload = await verifier.verify(jwtToken);

 let principalEntity = {
 entityType: "PhotoFlash::User", // the application needs to fill in the
 relevant user type
 entityId: payload["sub"], // the application need to use the claim that
 represents the user-id
 };
 let resourceEntity = {
 entityType: "PhotoFlash::Photo", //the application needs to fill in the
 relevant resource type
 entityId: "jane_photo_123.jpg", // the application needs to fill in the
 relevant resource id
 };
 let action = {
 actionType: "PhotoFlash::Action", //the application needs to fill in the
 relevant action id
 actionId: "GetPhoto", //the application needs to fill in the relevant action
 type
 };
 let entities = {
 entityList: [],
 };
 entities.entityList.push(...getUserEntitiesFromToken(payload));
 let policyStoreId = "PSEXAMPLEabcdefg111111"; // set your own policy store id

 const authResult = await client
 .isAuthorized({
 policyStoreId: policyStoreId,
 principal: principalEntity,
 resource: resourceEntity,
 action: action,
 entities,

Client and audience validation 119

Amazon Verified Permissions User Guide

 })
 .promise();

 return authResult;

}

function getUserEntitiesFromToken(payload) {
 let attributes = {};
 let claimsNotPassedInEntities = ['aud', 'sub', 'exp', 'jti', 'iss'];
 Object.entries(payload).forEach(([key, value]) => {
 if (claimsNotPassedInEntities.includes(key)) {
 return;
 }
 if (Array.isArray(value)) {
 var attibuteItem = [];
 value.forEach((item) => {
 attibuteItem.push({
 string: item,
 });
 });
 attributes[key] = {
 set: attibuteItem,
 };
 } else if (typeof value === 'string') {
 attributes[key] = {
 string: value,
 }
 } else if (typeof value === 'bigint' || typeof value ==='number') {
 attributes[key] = {
 long: value,
 }
 } else if (typeof value === 'boolean') {
 attributes[key] = {
 boolean: value,
 }
 }

 });

 let entityItem = {
 attributes: attributes,
 identifier: {
 entityType: "PhotoFlash::User",

Client and audience validation 120

Amazon Verified Permissions User Guide

 entityId: payload["sub"], // the application needs to use the claim that
 represents the user-id
 }
 };
 return [entityItem];
}

¹ This code example uses the aws-jwt-verify library for verifying JWTs signed by OIDC-compatible
IdPs.

Client and audience validation 121

https://github.com/awslabs/aws-jwt-verify

Amazon Verified Permissions User Guide

Integrations for Amazon Verified Permissions

Amazon Verified Permissions integrations help you implement fine-grained authorization in
your applications while minimizing code and following framework-specific best practices. These
integrations provide middleware components and utilities that seamlessly connect your application
with Verified Permissions.

With integrations, you can:

• Implement authorization in minutes

• Follow framework-specific patterns and conventions

• Reduce maintenance overhead

• Minimize potential security implementation errors

• Focus on business logic rather than authorization code

When added to your application, integrations do the following:

1. Intercept incoming requests through framework-specific middleware

2. Extract relevant authorization context from requests

3. Determine authorization decisions using Verified Permissions

4. Enforce access control based on authorization results

Verified Permissions currently supports the following frameworks:

• Express.js for Node.js applications

Integrating Express with Amazon Verified Permissions

The Verified Permissions Express integration provides a middleware-based approach to
implementing authorization in your Express.js applications. With this integration, you can protect
your API endpoints using fine-grained authorization policies without modifying your existing route
handlers. The integration handles authorization checks automatically by intercepting requests,
evaluating them against your defined policies, and ensuring that only authorized users can access
protected resources.

Using Express 122

Amazon Verified Permissions User Guide

This topic walks you through setting up the Express integration, from creating a policy store to
implementing and testing the authorization middleware. By following these steps, you can add
robust authorization controls to your Express application with minimal code changes.

The following GitHub repos are referenced throughout this topic:

• cedar-policy/authorization-for-expressjs - The Cedar authorization middleware for Express.js

• verifiedpermissions/authorization-clients-js - The Verified Permissions authorization clients for
JavaScript

• verifiedpermissions/examples/express-petstore - Example implementation using the Express.js
middleware

Prerequisites

Before you implement the Express integration, ensure you have:

• An AWS account with access to Verified Permissions

• Node.js and npm installed

• An Express.js application

• An OpenID Connect (OIDC) identity provider (such as Amazon Cognito)

• AWS CLI configured with appropriate permissions

Setting up the integration

Step 1: Create a policy store

Create a policy store using the AWS CLI:

aws verifiedpermissions create-policy-store --validation-settings "mode=STRICT"

Note

Save the policy store ID returned in the response for use in subsequent steps.

Prerequisites 123

https://github.com/cedar-policy/authorization-for-expressjs
https://github.com/verifiedpermissions/authorization-clients-js
https://github.com/verifiedpermissions/examples/tree/main/express-petstore
https://docs.aws.amazon.com/accounts/latest/reference/getting-started.html
https://nodejs.org/
https://docs.npmjs.com/
https://expressjs.com/
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html

Amazon Verified Permissions User Guide

Step 2: Install dependencies

Install the required packages in your Express application:

npm i --save @verifiedpermissions/authorization-clients-js
npm i --save @cedar-policy/authorization-for-expressjs

Configuring authorization

Step 1: Generate and upload Cedar schema

A schema defines the authorization model for an application, including the entities types in the
application and the actions users are allowed to take. We recommend defining a namespace for
your schema. In this example, we use YourNamespace. You attach your schema to your Verified
Permissions policy stores, and when policies are added or modified, the service automatically
validates the policies against the schema.

The @cedar-policy/authorization-for-expressjs package can analyze the OpenAPI
specifications of your application and generate a Cedar schema. Specifically, the paths object is
required in your specification.

If you don't have an OpenAPI specification, you can follow the quick instructions of the express-
openapi-generator package to generate an OpenAPI specification.

Generate a schema from your OpenAPI specification:

npx @cedar-policy/authorization-for-expressjs generate-schema --api-spec schemas/
openapi.json --namespace YourNamespace --mapping-type SimpleRest

Next, format the Cedar schema for use with the AWS CLI. For more information about the specific
format required, see Policy store schema. If you need help formatting the schema, there's a script
called prepare-cedar-schema.sh in the verifiedpermissions/examples GitHub repo. The
following is an example call to that script that outputs the Verified Permissions formatted schema
in the v2.cedarschema.forAVP.json file.

./scripts/prepare-cedar-schema.sh v2.cedarschema.json v2.cedarschema.forAVP.json

Upload the formatted schema to your policy store, replacing policy-store-id with your policy
store ID:

Configuring authorization 124

https://docs.cedarpolicy.com/overview/terminology.html#term-namespaces
https://swagger.io/specification/
https://swagger.io/specification/
https://github.com/nklisch/express-openapi-generator
https://github.com/nklisch/express-openapi-generator
https://github.com/verifiedpermissions/examples/tree/main/express-petstore/start/scripts

Amazon Verified Permissions User Guide

aws verifiedpermissions put-schema \
 --definition file://v2.cedarschema.forAVP.json \
 --policy-store-id policy-store-id

Step 2: Create authorization policies

If no policies are configured, Cedar denies all authorization requests. The Express framework
integration helps bootstrap this process by generating example policies based on the previously
generated schema.

When using this integration in your production applications, we recommend creating new
policies using infrastructure as a code (IaaC) tools. For more information, see Working with AWS
CloudFormation.

Generate sample Cedar policies:

npx @cedar-policy/authorization-for-expressjs generate-policies --schema
 v2.cedarschema.json

This will generate sample policies in the /policies directory. You can then customize these
policies based on your use cases. For example:

// Defines permitted administrator user group actions
permit (
 principal in YourNamespace::UserGroup::"<userPoolId>|administrator",
 action,
 resource
);

// Defines permitted employee user group actions
permit (
 principal in YourNamespace::UserGroup::"<userPoolId>|employee",
 action in
 [YourNamespace::Action::"GET /resources",
 YourNamespace::Action::"POST /resources",
 YourNamespace::Action::"GET /resources/{resourceId}",
 YourNamespace::Action::"PUT /resources/{resourceId}"],
 resource
);

Configuring authorization 125

Amazon Verified Permissions User Guide

Format the policies for use with the AWS CLI. Fore more information about the required format,
see create-policy in the AWS CLI reference. If you need help formatting the policies, there's a script
called convert_cedar_policies.sh in the verifiedpermissions/examples GitHub repo. The
following is a call to that script:

./scripts/convert_cedar_policies.sh

Upload the formatted policies to Verified Permissions, replacing policy_1.json with the path
and name of your policy file and policy-store-id with your policy store ID:

aws verifiedpermissions create-policy \
 --definition file://policies/json/policy_1.json \
 --policy-store-id policy-store-id

Step 3: Connect an identity provider

By default, the Verified Permissions authorizer middleware reads a JSON Web Token (JWT)
provided within the authorization header of the API request to get user information. Verified
Permissions can validate the token in addition to performing authorization policy evaluation.

Create an identity source configuration file named identity-source-configuration.txt that
looks like the following with your userPoolArn and clientId:

{
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:region:account:userpool/pool-id",
 "clientIds": ["client-id"],
 "groupConfiguration": {
 "groupEntityType": "YourNamespace::UserGroup"
 }
 }
}

Create the identity source by running the following AWS CLI command, replacing policy-store-
id with your policy store ID:

aws verifiedpermissions create-identity-source \
 --configuration file://identity-source-configuration.txt \
 --policy-store-id policy-store-id \
 --principal-entity-type YourNamespace::User

Configuring authorization 126

https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-policy.html
https://github.com/verifiedpermissions/examples/tree/main/express-petstore/start/scripts

Amazon Verified Permissions User Guide

Implementing the authorization middleware

Update your Express application to include the authorization middleware. In this example we're
using identity tokens, but you can also use access tokens. For more information, see authorization-
for-expressjs on GitHub.

const { ExpressAuthorizationMiddleware } = require('@cedar-policy/authorization-for-
expressjs');

const { AVPAuthorizationEngine } = require('@verifiedpermissions/authorization-
clients');

const avpAuthorizationEngine = new AVPAuthorizationEngine({
 policyStoreId: 'policy-store-id',
 callType: 'identityToken'
});

const expressAuthorization = new ExpressAuthorizationMiddleware({
 schema: {
 type: 'jsonString',
 schema: fs.readFileSync(path.join(__dirname, '../v4.cedarschema.json'),
 'utf8'),
 },
 authorizationEngine: avpAuthorizationEngine,
 principalConfiguration: { type: 'identityToken' },
 skippedEndpoints: [],
 logger: {
 debug: (s) => console.log(s),
 log: (s) => console.log(s),
 }
});

// Add the middleware to your Express application
app.use(expressAuthorization.middleware);

Testing the integration

You can test your authorization implementation by making requests to your API endpoints with
different user tokens. The authorization middleware will automatically evaluate each request
against your defined policies.

For example, if you've set up different user groups with different permissions:

Implementing the authorization middleware 127

https://github.com/cedar-policy/authorization-for-expressjs
https://github.com/cedar-policy/authorization-for-expressjs

Amazon Verified Permissions User Guide

• Administrators: Full access to all resources and management functions

• Employees: Can view, create, and update resources

• Customers: Can only view resources

You can validate that the permissions policies are working as expected by signing in with different
users and attempting various operations. In the terminal for the Express application, you can see
log output that provides additional details about the authorization decisions.

Troubleshooting

If you have authorization failures, try the following:

• Verify your policy store ID is correct

• Ensure your identity source is properly configured

• Check that your policies are correctly formatted

• Validate that your JWT tokens are valid

Next steps

After implementing the basic integration, consider:

• Implementing custom mappers for specific authorization scenarios

• Setting up monitoring and logging for authorization decisions

• Creating additional policies for different user roles

Troubleshooting 128

Amazon Verified Permissions User Guide

Implementing authorization in Amazon Verified
Permissions

After you build your policy store, policies, templates, schema, and authorization model, you're
ready to start authorizing requests using Amazon Verified Permissions. To implement Verified
Permissions authorization, you must combine configuration of authorization policies in AWS
with integration in an application. To integrate Verified Permissions with your application, add
an AWS SDK and implement the methods that invoke the Verified Permissions API and generate
authorization decisions against your policy store.

Authorization with Verified Permissions is useful for UX permissions and API permissions in your
applications.

UX permissions

Control user access to your application UX. You can permit a user to view only the exact forms,
buttons, graphics and other resources that they need to access. For example, when a user signs
in, you might want to determine whether a "Transfer funds" button is visible in their account.
You can also control actions that a user can take. For example, in same banking app you might
want to determine whether your user is permitted to change the category of a transaction.

API permissions

Control user access to data. Applications are often part of a distributed system and bring in
information from external APIs. In the example of the banking app where Verified Permissions
has permitted the display of a "Transfer funds" button, a more complex authorization decision
must be made when your user initiates a transfer. Verified Permissions can authorize the API
request that lists the destination accounts that are eligible transfer targets, and then the
request to push the transfer to the other account.

The examples that illustrate this content come from a sample policy store. To follow along, create
the DigitalPetStore sample policy store in your testing environment.

For an end to end sample application that implements UX permissions using batch authorization,
see Use Amazon Verified Permissions for fine-grained authorization at scale on the AWS Security
Blog.

Topics

129

https://aws.amazon.com/blogs/security/use-amazon-verified-permissions-for-fine-grained-authorization-at-scale/

Amazon Verified Permissions User Guide

• Available API operations for authorization

• Testing your authorization model

• Integrating your authorization models with applications

Available API operations for authorization

The Verified Permissions API has the following authorization operations.

IsAuthorized

The IsAuthorized API operation is the entry point to authorization requests with Verified
Permissions. You must submit principal, action, resource, context, and entities elements.
Verified Permissions validates the entities in your request against your policy store schema.
Verified Permissions then evaluates your request against all policies in the requested policy
store that apply to the entities in the request.

IsAuthorizedWithToken

The IsAuthorizedWithToken operation generates an authorization request from user data in
JSON web tokens (JWTs). Verified Permissions works directly with OIDC providers like Amazon
Cognito as an identity source in your policy store. Verified Permissions populates all attributes
to the principal in your request from the claims in users' ID or access tokens. You can authorize
actions and resources from user attributes or group membership in an identity source.

You can't include information about group or user principal types in an
IsAuthorizedWithToken request. You must populate all principal data to the JWT that you
provide.

BatchIsAuthorized

The BatchIsAuthorized operation processes multiple authorization decisions for a single
principal or resource in a single API request. This operation groups requests into a single batch
operation that minimizes quota usage and returns authorization decisions for each of up to
30 complex nested actions. With batch authorization for a single resource, you can filter the
actions that a user can take on a resource. With batch authorization for a single principal, you
can filter for the resources that a user can take action on.

BatchIsAuthorizedWithToken

The BatchIsAuthorizedWithToken operation processes multiple authorization decisions
for a single principal in one API request. The principal is provided by your policy store identity

API operations 130

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorizedWithToken.html

Amazon Verified Permissions User Guide

source in an ID or access token. This operation groups requests into a single batch operation
that minimizes quota usage and returns authorization decisions for each of up to 30 requests
for actions and resources. In your policies, you can authorize their access from their attributes or
their group membership in a user directory.

Like with IsAuthorizedWithToken, you can't include information about group or user
principal types in a BatchIsAuthorizedWithToken request. You must populate all principal
data to the JWT that you provide.

Testing your authorization model

To understand the effect of Amazon Verified Permissions authorization decision when you deploy
your application, you can evaluate your policies as you develop them with the Using the Amazon
Verified Permissions test bench and with HTTPS REST API requests to Verified Permissions. The test
bench is a tool in the AWS Management Console to evaluate authorization requests and responses
in your policy store.

The Verified Permissions REST API is the next step in your development as you move from a
conceptual understanding to application design. The Verified Permissions API accepts authorization
requests with IsAuthorized, IsAuthorizedWithToken, and BatchIsAuthorized as signed AWS API
requests to Regional service endpoints. To test your authorization model, you can generate
requests with any API client and verify that your policies are returning authorization decisions as
expected.

For example, you can test IsAuthorized in a sample policy store with the following procedure.

Test bench

1. Open the Verified Permissions console at Verified Permissions console. Create a policy store
from the Sample policy store with the name DigitalPetStore.

2. Select Test bench in your new policy store.

3. Populate your test bench request from IsAuthorized in the Verified Permissions API
reference. The following details replicate the conditions in Example 4 that references the
DigitalPetStore sample.

a. Set Alice as the principal. For Principal taking action, choose
DigitalPetStore::User and enter Alice.

Test model 131

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorized.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/general/latest/gr/verifiedpermissions.html
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html#API_IsAuthorized_Examples

Amazon Verified Permissions User Guide

b. Set Alice's role as customer. Choose Add a parent, choose DigitalPetStore::Role,
and enter Customer.

c. Set the resource as order "1234." For Resource that the principal is acting on, choose
DigitalPetStore::Order and enter 1234.

d. The DigitalPetStore::Order resource requires an owner attribute. Set Alice as the
owner of the order. Choose DigitalPetStore::User and enter Alice

e. Alice requested to view the order. For Action that principal is taking, choose
DigitalPetStore::Action::"GetOrder".

4. Choose Run authorization request. In an unmodified policy store, this request results in an
ALLOW decision. Note the Satisfied policy that returned the decision.

5. Choose Policies from the left navigation bar. Review the static policy with the description
Customer Role - Get Order.

6. Observe that Verified Permissions allowed the request because the principal was in a
customer role and was the owner of the resource.

REST API

1. Open the Verified Permissions console at Verified Permissions console. Create a policy store
from the Sample policy store with the name DigitalPetStore.

2. Note the Policy store ID of your new policy store.

3. From IsAuthorized in the Verified Permissions API reference, copy the request body of
Example 4 that references the DigitalPetStore sample.

4. Open your API client and create a request to the Regional service endpoint for your policy
store. Populate the headers as shown in the example.

5. Paste in the sample request body and change the value of policyStoreId to the policy
store ID you noted earlier.

6. Submit the request and review the results. In a default DigitalPetStore policy store, this
request returns an ALLOW decision.

You can make changes to policies, schema, and requests in your test environment to change the
outcomes and produce more complex decisions.

1. Change the request in a way that changes the decision from Verified Permissions. For example,
change Alice's role to Employee or change the owner attribute of order 1234 to Bob.

Test model 132

https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html#API_IsAuthorized_Examples
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html#API_IsAuthorized_Examples

Amazon Verified Permissions User Guide

2. Change policies in ways that affect authorization decisions. For example, modify the policy with
the description Customer Role - Get Order to remove the condition that the User must be the
owner of the Resource and modify the request so that Bob wants to view the order.

3. Change the schema to allow policies to make a more complex decision. Update the request
entities so that Alice can satisfy the new requirements. For example, edit the schema to allow
User to be a member of ActiveUsers or InactiveUsers. Update the policy so that only
active users can view their own orders. Update the request entities so that Alice is an active or
inactive user.

Integrating your authorization models with applications

To implement Amazon Verified Permissions in your application, you must define the policies and
schema that you want your app to enforce. With your authorization model in place and tested, your
next step is to start generating API requests from the point of enforcement. To do this, you must
set up application logic to collect user data and populate it to authorization requests.

How an app authorizes requests with Verified Permissions

1. Gather information about the current user. Typically, a user's details are provided in the details
of an authenticated session, like a JWT or web session cookie. This user data might originate
from an Amazon Cognito identity source linked to your policy store or from another OpenID
Connect (OIDC) provider.

2. Gather information about the resource that a user wants to access. Typically, your application
will receive information about the resource when a user makes a selection that requires your
app to load a new asset.

3. Determine the action that your user wants to take.

4. Generate an authorization request to Verified Permissions with the principal, action, resource,
and entities for your user's attempted operation.Verified Permissions evaluates the request
against the policies in your policy store and returns an authorization decision.

5. Your application reads the allow or deny response from Verified Permissions and enforces the
decision on the user's request.

Verified Permissions API operations are built into AWS SDKs. To include Verified Permissions in an
app, integrate the AWS SDK for your chosen language into the app package.

To learn more and download AWS SDKs, see Tools for Amazon Web Services.

Integrating with applications 133

https://aws.amazon.com/tools/

Amazon Verified Permissions User Guide

The following are links to documentation for Verified Permissions resources in various AWS SDKs.

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

• AWS SDK for Rust

The following AWS SDK for JavaScript example for IsAuthorized originates from Simplify fine-
grained authorization with Amazon Verified Permissions and Amazon Cognito.

const authResult = await avp.isAuthorized({
 principal: 'User::"alice"',
 action: 'Action::"view"',
 resource: 'Photo::"VacationPhoto94.jpg"',
 // whenever our policy references attributes of the entity,
 // isAuthorized needs an entity argument that provides
 // those attributes
 entities: {
 entityList: [
 {
 "identifier": {
 "entityType": "User",
 "entityId": "alice"
 },
 "attributes": {
 "location": {
 "String": "USA"
 }
 }
 }
]
 }
});

Integrating with applications 134

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/VerifiedPermissions/NVerifiedPermissions.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-verifiedpermissions/html/class_aws_1_1_verified_permissions_1_1_verified_permissions_client.html
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/verifiedpermissions
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/verifiedpermissions/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/verifiedpermissions/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-verifiedpermissions-2021-12-01.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/verifiedpermissions.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/VerifiedPermissions/Client.html
https://docs.rs/aws-sdk-verifiedpermissions/latest/aws_sdk_verifiedpermissions/
https://aws.amazon.com/blogs/security/simplify-fine-grained-authorization-with-amazon-verified-permissions-and-amazon-cognito/
https://aws.amazon.com/blogs/security/simplify-fine-grained-authorization-with-amazon-verified-permissions-and-amazon-cognito/

Amazon Verified Permissions User Guide

More developer resources

• Amazon Verified Permissions workshop

• Amazon Verified Permissions - Resources

• Implement custom authorization policy provider for ASP.NET Core apps using Amazon Verified
Permissions

• Build an entitlement service for business applications using Amazon Verified Permissions

• Simplify fine-grained authorization with Amazon Verified Permissions and Amazon Cognito

Integrating with applications 135

https://catalog.workshops.aws/verified-permissions-in-action
https://aws.amazon.com/verified-permissions/resources/
https://aws.amazon.com/blogs/dotnet/implement-a-custom-authorization-policy-provider-for-asp-net-core-apps-using-amazon-verified-permissions/
https://aws.amazon.com/blogs/dotnet/implement-a-custom-authorization-policy-provider-for-asp-net-core-apps-using-amazon-verified-permissions/
https://aws.amazon.com/blogs/security/build-an-entitlement-service-for-business-applications-using-amazon-verified-permissions/
https://aws.amazon.com/blogs/security/simplify-fine-grained-authorization-with-amazon-verified-permissions-and-amazon-cognito/

Amazon Verified Permissions User Guide

Security in Amazon Verified Permissions

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Verified
Permissions, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Verified Permissions. The following topics show you how to configure Verified Permissions to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Verified Permissions resources.

Topics

• Data protection in Amazon Verified Permissions

• Identity and access management for Amazon Verified Permissions

• Compliance validation for Amazon Verified Permissions

• Resilience in Amazon Verified Permissions

Data protection in Amazon Verified Permissions

The AWS shared responsibility model applies to data protection in Amazon Verified Permissions.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the

Data protection 136

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Verified Permissions User Guide

AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

• For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties.

• We recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering
and securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through
a command line interface or an API, use a FIPS endpoint. For more information about the
available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

• We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Verified Permissions or other AWS services using the console, API, AWS
CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may
be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request
to that server.

• Your action names should not include any sensitive information.

• We also strongly recommend that you always use unique, non-mutable, and non-reusable
identifiers for your entities (resources and principals). In a test environment, you might choose
to use simple entity identifiers, such as jane or bob for the name of an entity of type User.
However, in a production system, it’s critical for security reasons that you use unique values that
can’t be reused. We recommend that you use values like universally unique identifiers (UUIDs).
For example, consider the user jane who leaves the company. Later, you let someone else use
the name jane. That new user gets access automatically to everything granted by policies that
still reference User::"jane". Verified Permissions and Cedar can’t distinguish between the new
user and the previous user.

Data protection 137

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Verified Permissions User Guide

This guidance applies to both principal and resource identifiers. Always use identifiers that are
guaranteed unique and never reused to ensure that you don’t grant access unintentionally
because of the presence of an old identifier in a policy.

• Ensure that the strings that you provide to define Long and Decimal values are within the
valid range of each type. Also, ensure that your use of any arithmetic operators don't result in
a value outside of the valid range. If the range is exceeded, the operation results in an overflow
exception. A policy that results in an error is ignored, meaning that a Permit policy might
unexpectedly fail to allow access, or a Forbid policy might unexpectedly fail to block access.

Data encryption

Amazon Verified Permissions automatically encrypts all customer data such as policies with an
AWS managed key, so the use of a customer managed key is neither necessary nor supported.

Identity and access management for Amazon Verified
Permissions

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Verified Permissions resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Verified Permissions works with IAM

• IAM policies for Verified Permissions

• Identity-based policy examples for Amazon Verified Permissions

• AWS managed policies for Amazon Verified Permissions

• Troubleshooting Amazon Verified Permissions identity and access

Data encryption 138

Amazon Verified Permissions User Guide

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Verified Permissions.

Service user – If you use the Verified Permissions service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Verified
Permissions features to do your work, you might need additional permissions. Understanding
how access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in Verified Permissions, see Troubleshooting Amazon Verified Permissions
identity and access.

Service administrator – If you're in charge of Verified Permissions resources at your company,
you probably have full access to Verified Permissions. It's your job to determine which Verified
Permissions features and resources your service users should access. You must then submit
requests to your IAM administrator to change the permissions of your service users. Review the
information on this page to understand the basic concepts of IAM. To learn more about how your
company can use IAM with Verified Permissions, see How Amazon Verified Permissions works with
IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Verified Permissions. To view example Verified Permissions
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
Verified Permissions.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

Audience 139

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

Amazon Verified Permissions User Guide

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

Authenticating with identities 140

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

Amazon Verified Permissions User Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 141

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon Verified Permissions User Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 142

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Verified Permissions User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 143

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

Amazon Verified Permissions User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 144

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Verified Permissions User Guide

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Verified Permissions works with IAM

Before you use IAM to manage access to Verified Permissions, learn what IAM features are available
to use with Verified Permissions.

IAM features you can use with Amazon Verified Permissions

IAM feature Verified Permissions support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles No

To get a high-level view of how Verified Permissions and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

How Amazon Verified Permissions works with IAM 145

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Verified Permissions User Guide

Identity-based policies for Verified Permissions

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Verified Permissions

To view examples of Verified Permissions identity-based policies, see Identity-based policy
examples for Amazon Verified Permissions.

Resource-based policies within Verified Permissions

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource

How Amazon Verified Permissions works with IAM 146

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Verified Permissions User Guide

are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Verified Permissions

Supports policy actions Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Verified Permissions actions, see Actions defined by Amazon Verified Permissions in
the Service Authorization Reference.

Policy actions in Verified Permissions use the following prefix before the action:

verifiedpermissions

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "verifiedpermissions:action1",
 "verifiedpermissions:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

How Amazon Verified Permissions works with IAM 147

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-actions-as-permissions

Amazon Verified Permissions User Guide

"Action": "verifiedpermissions:Get*"

To view examples of Verified Permissions identity-based policies, see Identity-based policy
examples for Amazon Verified Permissions.

Policy resources for Verified Permissions

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Verified Permissions resource types and their ARNs, see Resource types defined by
Amazon Verified Permissions in the Service Authorization Reference. To learn with which actions you
can specify the ARN of each resource, see Actions defined by Amazon Verified Permissions.

Policy condition keys for Verified Permissions

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

How Amazon Verified Permissions works with IAM 148

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

Amazon Verified Permissions User Guide

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

ACLs in Verified Permissions

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Verified Permissions

Supports ABAC (tags in policies) Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

How Amazon Verified Permissions works with IAM 149

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

Amazon Verified Permissions User Guide

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with Verified Permissions

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Verified Permissions

Supports principal permissions Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made

How Amazon Verified Permissions works with IAM 150

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Verified Permissions User Guide

when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Verified Permissions

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Service-linked roles for Verified Permissions

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

IAM policies for Verified Permissions

Verified Permissions manages the permissions of users within your application. In order for
your application to call the Verified Permissions APIs or for AWS Management Console users to
be allowed to manage Cedar policies in a Verified Permissions policy store, you must add the
necessary IAM permissions.

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

IAM policies for Verified Permissions 151

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Verified Permissions User Guide

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied (listed below). You can't specify the
principal in an identity-based policy because it applies to the user or role to which it is attached. To
learn about all of the elements that you can use in a JSON policy, see IAM JSON policy elements
reference in the IAM User Guide.

Action Description

CreateIdentitySource Action to create a new identity source.

CreatePolicy Action to create a Cedar policy in a policy
store. You can create either a static policy or a
policy linked to a policy template.

CreatePolicyStore Action to create a new policy store.

CreatePolicyTemplate Action to create a new policy template.

DeleteIdentitySource Action to delete an identity source.

DeletePolicy Action to delete a policy from a policy store.

DeletePolicyStore Action to delete a policy store.

DeletePolicyTemplate Action to delete a policy template.

GetIdentitySource Action to get an identity source.

GetPolicy Action to retrieve information about a
specified policy.

GetPolicyStore Action to retrieve information about a
specified policy store.

GetPolicyTemplate Action to get a policy template.

GetSchema Action to get a schema.

IAM policies for Verified Permissions 152

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyTemplate.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_DeleteIdentitySource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_DeletePolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_DeletePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_DeletePolicyTemplate.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetIdentitySource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetPolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetPolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetPolicyTemplate.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetSchema.html

Amazon Verified Permissions User Guide

Action Description

IsAuthorized Action to get an authorization response based
on the parameters described in the authoriza
tion request.

IsAuthorizedWithToken Action to get an authorization response based
on the parameters described in the authoriza
tion request where the principal comes from
an identity token.

ListIdentitySources Action to list all the identity sources in the
AWS account.

ListPolicies Action to list all policies in a policy store.

ListPolicyStores Action to list all policy stores in the AWS
account.

ListPolicyTemplates Action to list all policy templates in the AWS
account.

ListTagsForResource Action to list all the tags for a resource.

PutSchema Action to add a schema to a policy store.

TagResource Action to add a tag to a resource.

UpdateIdentitySource Action to update an identity source.

UpdatePolicy Action to update a policy in a policy store.

UpdatePolicyStore Action to update a policy store.

UpdatePolicyTemplate Action to update a policy template.

UntagResource Action to remove a tag from a resource.

Example IAM policy for permission to the CreatePolicy action:

IAM policies for Verified Permissions 153

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListIdentitySources.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListPolicies.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListPolicyStores.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListPolicyTemplates.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListTagsForResource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_PutSchema.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdateIdentitySource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicyTemplate.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UntagResource.html

Amazon Verified Permissions User Guide

JSON

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:CreatePolicy"
],
 "Resource": "*"
 }
]
 }

Identity-based policy examples for Amazon Verified Permissions

By default, users and roles don't have permission to create or modify Verified Permissions
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. An IAM administrator must create IAM policies that grant
users and roles permission to perform actions on the resources that they need. The administrator
must then attach those policies for users that require them.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Verified Permissions, including the format
of the ARNs for each of the resource types, see see Actions, resources, and condition keys for
Amazon Verified Permissions in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Verified Permissions console

• Allow users to view their own permissions

Identity-based policy examples 154

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html

Amazon Verified Permissions User Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Verified
Permissions resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Identity-based policy examples 155

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Verified Permissions User Guide

Using the Verified Permissions console

To access the Amazon Verified Permissions console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the Verified Permissions resources
in your AWS account. If you create an identity-based policy that is more restrictive than the
minimum required permissions, the console won't function as intended for entities (users or roles)
with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Verified Permissions console, also attach the
Verified Permissions ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [

Identity-based policy examples 156

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Verified Permissions User Guide

 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

AWS managed policies for Amazon Verified Permissions

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to
write policies yourself. It takes time and expertise to create IAM customer managed policies that
provide your team with only the permissions they need. To get started quickly, you can use our
AWS managed policies. These policies cover common use cases and are available in your AWS
account. For more information about AWS managed policies, see AWS managed policies in the IAM
User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in
AWS managed policies. Services occasionally add additional permissions to an AWS managed
policy to support new features. This type of update affects all identities (users, groups, and roles)
where the policy is attached. Services are most likely to update an AWS managed policy when
a new feature is launched or when new operations become available. Services do not remove
permissions from an AWS managed policy, so policy updates won't break your existing permissions.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list and descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policies 157

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon Verified Permissions User Guide

AWS managed policy: AmazonVerifiedPermissionsFullAccess

The AmazonVerifiedPermissionsFullAccess managed policy grants full access to Verified
Permissions. To work with Amazon Cognito-based identity sources, you'll need to attach a separate
policy, such as the AmazonCognitoReadOnly policy.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccountLevelPermissions",
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:CreatePolicyStore",
 "verifiedpermissions:ListPolicyStores"
],
 "Resource": "*"
 },
 {
 "Sid": "PolicyStoreLevelPermissions",
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:*"
],
 "Resource": [
 "arn:aws:verifiedpermissions::*:policy-store/*"
]
 }
]
}

AWS managed policy: AmazonVerifiedPermissionsReadOnlyAccess

The AmazonVerifiedPermissionsReadOnlyAccess managed policy grants read-only access to
Verified Permissions.

This policy grants access to all read operations of Amazon Verified Permissions, including the
authorization query APIs IsAuthorized and IsAuthorizedWithToken.

AWS managed policies 158

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonCognitoReadOnly.html

Amazon Verified Permissions User Guide

Note

Access to BatchIsAuthorized and BatchIsAuthorizedWithToken are granted
automatically when access is granted to IsAuthorized and IsAuthorizedWithToken,
respectively.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccountLevelPermissions",
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:ListPolicyStores"
],
 "Resource": "*"
 },
 {
 "Sid": "PolicyStoreLevelPermissions",
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:GetIdentitySource",
 "verifiedpermissions:GetPolicy",
 "verifiedpermissions:GetPolicyStore",
 "verifiedpermissions:GetPolicyTemplate",
 "verifiedpermissions:GetSchema",
 "verifiedpermissions:IsAuthorized",
 "verifiedpermissions:IsAuthorizedWithToken",
 "verifiedpermissions:ListIdentitySources",
 "verifiedpermissions:ListPolicies",
 "verifiedpermissions:ListPolicyTemplates"
],
 "Resource": [
 "arn:aws:verifiedpermissions::*:policy-store/*"
]
 }
]
}

AWS managed policies 159

Amazon Verified Permissions User Guide

Verified Permissions updates to AWS managed policies

View details about updates to AWS managed policies for Verified Permissions since this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the Verified Permissions Document history page.

Change Description Date

AmazonVerifiedPermissionsFu
llAccess – New policy

Verified Permissions added a
new policy to allow full access
to Verified Permissions.

October 11, 2024

AmazonVerifiedPermissionsRe
adOnlyAccess – New policy

Verified Permissions added
a new policy to allow access
to all read operations of
Amazon Verified Permissions,
including the authorization
query APIs IsAuthorized
and IsAuthorizedWithTo
ken .

October 11, 2024

Verified Permissions started
tracking changes

Verified Permissions started
tracking changes for its AWS
managed policies.

October 11, 2024

Troubleshooting Amazon Verified Permissions identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Verified Permissions and IAM.

Topics

• I am not authorized to perform an action in Verified Permissions

• I am not authorized to perform iam:PassRole

Troubleshooting 160

Amazon Verified Permissions User Guide

• I want to allow people outside of my AWS account to access my Verified Permissions resources

I am not authorized to perform an action in Verified Permissions

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
verifiedpermissions:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 verifiedpermissions:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the verifiedpermissions:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Verified Permissions.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Verified Permissions. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

Troubleshooting 161

Amazon Verified Permissions User Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Verified
Permissions resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Verified Permissions supports these features, see How Amazon Verified
Permissions works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for Amazon Verified Permissions

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Compliance validation 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon Verified Permissions User Guide

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Verified Permissions

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

Resilience 163

https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

Amazon Verified Permissions User Guide

When you create a Verified Permissions policy store , it is created within an individual AWS Region,
and is automatically replicated across the data centers that make up that Region's Availability
Zones. At this time, Verified Permissions doesn't support any cross-region replication.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Resilience 164

https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Verified Permissions User Guide

Monitoring Amazon Verified Permissions API calls
Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Verified Permissions and your other AWS solutions. AWS provides the following tools to
monitor Verified Permissions, report when something is wrong, and take automatic actions when
appropriate:

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

For more information about monitoring Verified Permissions with CloudTrail, see Logging Amazon
Verified Permissions API calls using AWS CloudTrail.

Logging Amazon Verified Permissions API calls using AWS
CloudTrail

Amazon Verified Permissions is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in Verified Permissions. CloudTrail captures
all API calls for Verified Permissions as events. The calls captured include calls from the Verified
Permissions console and code calls to the Verified Permissions API operations. If you create a
trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including
events for Verified Permissions. If you don't configure a trail, you can still view the most recent
management action events in the CloudTrail console in Event history, but not events for API calls
such as isAuthorized. Using the information collected by CloudTrail, you can determine the
request that was made to Verified Permissions, the IP address from which the request was made,
who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Verified Permissions information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Verified Permissions, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail Event history.

CloudTrail logs 165

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Verified Permissions User Guide

For an ongoing record of events in your AWS account, including events for Verified Permissions,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,
when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Verified Permissions actions are logged by CloudTrail and are documented in the Amazon
Verified Permissions API Reference Guide. For example, calls to the CreateIdentitySource,
DeletePolicy, and ListPolicyStores actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Data events like IsAuthorized and IsAuthorizedWithToken are not logged by default when you
create a trail or event data store. To record CloudTrail data events, you must explicitly add the
supported resources or resource types for which you want to collect activity. For more information,
see Data events in the AWS CloudTrail User Guide.

Understanding Verified Permissions log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of

Understanding Verified Permissions log file entries 166

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events

Amazon Verified Permissions User Guide

the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

For authorization API calls, the response elements, such as the decision, are included under
additionalEventData rather than responseElements.

Topics

• IsAuthorized

• BatchIsAuthorized

• CreatePolicyStore

• ListPolicyStores

• DeletePolicyStore

• PutSchema

• GetSchema

• CreatePolicyTemplate

• DeletePolicyTemplate

• CreatePolicy

• GetPolicy

• CreateIdentitySource

• GetIdentitySource

• ListIdentitySources

• DeleteIdentitySource

Note

Some fields have been redacted from the examples for data privacy.

IsAuthorized

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",

Understanding Verified Permissions log file entries 167

Amazon Verified Permissions User Guide

 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-11-20T22:55:03Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "IsAuthorized",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-cli/2.11.18 Python/3.11.3 Linux/5.4.241-160.348.amzn2int.x86_64
 exe/x86_64.amzn.2 prompt/off command/verifiedpermissions.is-authorized",
 "requestParameters": {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "ViewPhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 },
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "additionalEventData": {
 "decision": "ALLOW"
 },
 "requestID": "346c4b6a-d12f-46b6-bc06-6c857bd3b28e",
 "eventID": "8a4fed32-9605-45dd-a09a-5ebbf0715bbc",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",

Understanding Verified Permissions log file entries 168

Amazon Verified Permissions User Guide

 "eventCategory": "Data"
}

BatchIsAuthorized

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-11-20T23:02:33Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "BatchIsAuthorized",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-cli/2.11.18 Python/3.11.3 Linux/5.4.241-160.348.amzn2int.x86_64
 exe/x86_64.amzn.2 prompt/off command/verifiedpermissions.is-authorized",
 "requestParameters": {
 "requests": [
 {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "ViewPhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 },
 {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "annalisa"
 },
 "action": {

Understanding Verified Permissions log file entries 169

Amazon Verified Permissions User Guide

 "actionType": "PhotoFlash::Action",
 "actionId": "DeletePhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 }
],
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "additionalEventData": {
 "results": [
 {
 "request": {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "ViewPhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 },
 "decision": "ALLOW"
 },
 {
 "request": {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "annalisa"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "DeletePhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"

Understanding Verified Permissions log file entries 170

Amazon Verified Permissions User Guide

 }
 },
 "decision": "DENY"
 }
]
 },
 "requestID": "a8a5caf3-78bd-4139-924c-7101a8339c3b",
 "eventID": "7d81232f-f3d1-4102-b9c9-15157c70487b",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data"
}

CreatePolicyStore

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:33Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreatePolicyStore",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "clientToken": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "validationSettings": {

Understanding Verified Permissions log file entries 171

Amazon Verified Permissions User Guide

 "mode": "OFF"
 }
 },
 "responseElements": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111",
 "createdDate": "2023-05-22T07:43:33.962794Z",
 "lastUpdatedDate": "2023-05-22T07:43:33.962794Z"
 },
 "requestID": "1dd9360e-e2dc-4554-ab65-b46d2cf45c29",
 "eventID": "b6edaeee-3584-4b4e-a48e-311de46d7532",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

ListPolicyStores

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:33Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "ListPolicyStores",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "maxResults": 10
 },
 "responseElements": null,
 "requestID": "5ef238db-9f87-4f37-ab7b-6cf0ba5df891",
 "eventID": "b0430fb0-12c3-4cca-8d05-84c37f99c51f",
 "readOnly": true,

Understanding Verified Permissions log file entries 172

Amazon Verified Permissions User Guide

 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

DeletePolicyStore

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:32Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "DeletePolicyStore",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "1368e8f9-130d-45a5-b96d-99097ca3077f",
 "eventID": "ac482022-b2f6-4069-879a-dd509123d8d7",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 173

Amazon Verified Permissions User Guide

PutSchema

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-16T12:58:57Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "PutSchema",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": {
 "lastUpdatedDate": "2023-05-16T12:58:57.513442Z",
 "namespaces": "[some_namespace]",
 "createdDate": "2023-05-16T12:58:57.513442Z",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 },
 "requestID": "631fbfa1-a959-4988-b9f8-f1a43ff5df0d",
 "eventID": "7cd0c677-733f-4602-bc03-248bae581fe5",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 174

Amazon Verified Permissions User Guide

GetSchema

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::222222222222:role/ExampleRole",
 "accountId": "222222222222",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-25T01:12:07Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "GetSchema",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "a1f4d4cd-6156-480a-a9b8-e85a71dcc7c2",
 "eventID": "0b3b8e3d-155c-46f3-a303-7e9e8b5f606b",
 "readOnly": true,
 "resources": [
 {
 "accountId": "222222222222",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::222222222222:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "222222222222",
 "eventCategory": "Management"
}

CreatePolicyTemplate

{
 "eventVersion": "1.08",
 "userIdentity": {

Understanding Verified Permissions log file entries 175

Amazon Verified Permissions User Guide

 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-16T13:00:24Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreatePolicyTemplate",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": {
 "lastUpdatedDate": "2023-05-16T13:00:23.444404Z",
 "createdDate": "2023-05-16T13:00:23.444404Z",
 "policyTemplateId": "PTEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 },
 "requestID": "73953bda-af5e-4854-afe2-7660b492a6d0",
 "eventID": "7425de77-ed84-4f91-a4b9-b669181cc57b",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

DeletePolicyTemplate

{
 "eventVersion": "1.08",
 "userIdentity": {

Understanding Verified Permissions log file entries 176

Amazon Verified Permissions User Guide

 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::222222222222:role/ExampleRole",
 "accountId": "222222222222",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-25T01:11:48Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "DeletePolicyTemplate",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "5ff0f22e-6bbd-4b85-a400-4fb74aa05dc6",
 "eventID": "c0e0c689-369e-4e95-a9cd-8de113d47ffa",
 "readOnly": false,
 "resources": [
 {
 "accountId": "222222222222",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::222222222222:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "222222222222",
 "eventCategory": "Management"
}

CreatePolicy

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",

Understanding Verified Permissions log file entries 177

Amazon Verified Permissions User Guide

 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:42:30Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreatePolicy",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "clientToken": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyType": "STATIC",
 "principal": {
 "entityType": "PhotoApp::Role",
 "entityId": "PhotoJudge"
 },
 "resource": {
 "entityType": "PhotoApp::Application",
 "entityId": "PhotoApp"
 },
 "lastUpdatedDate": "2023-05-22T07:42:30.70852Z",
 "createdDate": "2023-05-22T07:42:30.70852Z"
 },
 "requestID": "93ffa151-3841-4960-9af6-30a7f817ef93",
 "eventID": "30ab405f-3dff-43ff-8af9-f513829e8bde",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 178

Amazon Verified Permissions User Guide

GetPolicy

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:29Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "GetPolicy",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyId": "SPEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "23022a9e-2f5c-4dac-b653-59e6987f2fac",
 "eventID": "9b4d5037-bafa-4d57-b197-f46af83fc684",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

CreateIdentitySource

{
 "eventVersion": "1.08",

Understanding Verified Permissions log file entries 179

Amazon Verified Permissions User Guide

 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-19T01:27:44Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreateIdentitySource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "clientToken": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "configuration": {
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:000011112222:us-east-1:userpool/us-
east-1_aaaaaaaaaa"
 }
 },
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "principalEntityType": "User"
 },
 "responseElements": {
 "createdDate": "2023-07-14T15:05:01.599534Z",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-07-14T15:05:01.599534Z",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "requestID": "afcc1e67-d5a4-4a9b-a74c-cdc2f719391c",
 "eventID": "f13a41dc-4496-4517-aeb8-a389eb379860",
 "readOnly": false,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",

Understanding Verified Permissions log file entries 180

Amazon Verified Permissions User Guide

 "eventCategory": "Management"
}

GetIdentitySource

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-24T19:55:31Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "GetIdentitySource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "7a6ecf79-c489-4516-bb57-9ded970279c9",
 "eventID": "fa158e6c-f705-4a15-a731-2cdb4bd9a427",
 "readOnly": true,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 181

Amazon Verified Permissions User Guide

ListIdentitySources

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-24T20:05:32Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "ListIdentitySources",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "95d2a7bc-7e9a-4efe-918e-97e558aacaf7",
 "eventID": "d3dc53f6-1432-40c8-9d1d-b9eeb75c6193",
 "readOnly": true,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",
 "eventCategory": "Management"
}

DeleteIdentitySource

{
 "eventVersion": "1.08",
 "userIdentity": {

Understanding Verified Permissions log file entries 182

Amazon Verified Permissions User Guide

 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-24T19:55:32Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "DeleteIdentitySource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "d554d964-0957-4834-a421-c417bd293086",
 "eventID": "fe4d867c-88ee-4e5d-8d30-2fbc208c9260",
 "readOnly": false,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 183

Amazon Verified Permissions User Guide

Creating Amazon Verified Permissions resources with
AWS CloudFormation

Amazon Verified Permissions is integrated with AWS CloudFormation, a service that helps you to
model and set up your AWS resources so that you can spend less time creating and managing your
resources and infrastructure. You create a template that describes all the AWS resources that you
want (such as policy stores), and AWS CloudFormation provisions and configures those resources
for you.

When you use AWS CloudFormation, you can reuse your template to set up your Verified
Permissions resources consistently and repeatedly. Describe your resources once, and then
provision the same resources over and over in multiple AWS accounts and Regions.

Important

Amazon Cognito Identity is not available in all of the same AWS Regions as
Amazon Verified Permissions. If you receive an error from AWS CloudFormation
regarding Amazon Cognito Identity, such as Unrecognized resource types:
AWS::Cognito::UserPool, AWS::Cognito::UserPoolClient, we recommend that
you create the Amazon Cognito user pool and client in the geographically closest AWS
Region where Amazon Cognito Identity is available. Use this newly created user pool when
creating the Verified Permissions identity source.

Verified Permissions and AWS CloudFormation templates

To provision and configure resources for Verified Permissions and related services, you must
understand AWS CloudFormation templates. Templates are formatted text files in JSON or YAML.
These templates describe the resources that you want to provision in your AWS CloudFormation
stacks. If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

Verified Permissions supports creating identity sources, policies, policy stores, and policy templates
in AWS CloudFormation. For more information, including examples of JSON and YAML templates
for Verified Permissions resources, see the Amazon Verified Permissions resource type reference in
the AWS CloudFormation User Guide.

Verified Permissions and AWS CloudFormation templates 184

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_VerifiedPermissions.html

Amazon Verified Permissions User Guide

AWS CDK constructs

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework
for defining cloud infrastructure in code and provisioning it through AWS CloudFormation.
Constructs, or reusable cloud components, can be used to create AWS CloudFormation templates.
These templates can then be used to deploy your cloud infrastructure.

To learn more and download AWS CDK, see AWS Cloud Development Kit.

The following are links to documentation for Verified Permissions AWS CDK resources, such as
constructs.

• Amazon Verified Permissions L2 CDK Construct

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

AWS CDK constructs 185

https://aws.amazon.com/cdk/
https://github.com/cdklabs/cdk-verified-permissions
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Verified Permissions User Guide

Access Amazon Verified Permissions using AWS
PrivateLink

You can use AWS PrivateLink to create a private connection between your VPC and Amazon
Verified Permissions. You can access Verified Permissions as if it were in your VPC, without the use
of an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances
in your VPC don't need public IP addresses to access Verified Permissions.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for Verified Permissions.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for Verified Permissions

Before you set up an interface endpoint for Verified Permissions, review Considerations in the AWS
PrivateLink Guide.

Verified Permissions supports making calls to all of its API actions through the interface endpoint.

VPC endpoint policies are not supported for Verified Permissions. By default, full access to Verified
Permissions is allowed through the interface endpoint. Alternatively, you can associate a security
group with the endpoint network interfaces to control traffic to Verified Permissions through the
interface endpoint.

Create an interface endpoint for Verified Permissions

You can create an interface endpoint for Verified Permissions using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Create an interface
endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for Verified Permissions using the following service name:

com.amazonaws.region.verifiedpermissions

Considerations 186

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon Verified Permissions User Guide

If you enable private DNS for the interface endpoint, you can make API requests to Verified
Permissions using its default Regional DNS name. For example, verifiedpermissions.us-
east-1.amazonaws.com.

Create an endpoint policy for your interface endpoint

An endpoint policy is an IAM resource that you can attach to an interface endpoint. The default
endpoint policy allows full access to Verified Permissions through the interface endpoint. To
control the access allowed to Verified Permissions from your VPC, attach a custom endpoint policy
to the interface endpoint.

An endpoint policy specifies the following information:

• The principals that can perform actions (AWS accounts, IAM users, and IAM roles).

• The actions that can be performed.

• The resources on which the actions can be performed.

For more information, see Control access to services using endpoint policies in the AWS PrivateLink
Guide.

Example: VPC endpoint policy for Verified Permissions actions

The following is an example of a custom endpoint policy. When you attach this policy to your
interface endpoint, it grants access to the listed Verified Permissions actions for all principals on all
resources.

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:IsAuthorized",
 "verifiedpermissions:IsAuthorizedWithToken",
 "verifiedpermissions:GetPolicy"
],
 "Resource":"*"
 }
]

Create an endpoint policy 187

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

Amazon Verified Permissions User Guide

}

Create an endpoint policy 188

Amazon Verified Permissions User Guide

Quotas for Amazon Verified Permissions

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To view the quotas for Verified Permissions, open the Service Quotas console. In the navigation
pane, choose AWS services and select Verified Permissions.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota is not yet available in Service Quotas, use the limit increase form.

Your AWS account has the following quotas related to Verified Permissions.

Topics

• Quotas for resources

• Quotas for hierarchies

• Quotas for operations per second

Quotas for resources

Name Default Adjustabl
e

Description

Policy stores per Region per account Each supported
Region: 30,000

Yes The maximum number of
policy stores.

Policy templates per policy store Each supported
Region: 40

Yes The maximum number
of policy templates in a
policy store.

Identity sources per policy store 1 No The maximum number of
identity sources that you
can define for a policy
store.

Quotas for resources 189

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-919F2C9C
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-97BDA0CF

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

Authorization request size¹ 1 MB No The maximum size of an
authorization request.

Policy size 10,000 bytes No The maximum size of an
individual policy.

Schema size 100,000 bytes No The maximum size of the
schema of a policy store.

Policy size per resource 200,000 bytes² Yes The maximum size of all
policies that reference a
specific resource.

¹ The quota for an authorization request is the same for both IsAuthorized and
IsAuthorizedWithToken.

² The default limit for the total size of all the policies scoped for a single resource is 200,000 bytes.
Similarly, the total size of all the policies, where the scope leaves the resource undefined, thereby
applying to all resources, is limited by default to 200,000 bytes. Note that for template-linked
policies the size of the policy template is counted only once, plus the size of each set of parameters
used to instantiate each template-linked policy. This limit can be raised, provided that your policy
design meets certain constraints. If you need to explore this option, contact Support.

Template-linked policy size example

You can determine how template-linked policies contribute to the Policy size per resource quota
by taking the sum of the length of the principal and resource. If the principal or resource isn't
specified, the length of that piece is 0. If a resource isn't specified, its size counts towards the
"unspecified" resource quota. The size of the template body itself has no impact on the policy
size.

Let's look at the following template:

@id("template1")

Template-linked policy size example 190

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://aws.amazon.com/contact-us/

Amazon Verified Permissions User Guide

permit (
 principal in ?principal,
 action in [Action::"view", Action::"comment"],
 resource in ?resource
)
unless {
 resource.tag =="private"
};

Let's create the following policies from that template:

TemplateLinkedPolicy {
 policyId: "policy1",
 templateId: "template1",
 principal: User::"alice",
 resource: Photo::"car.jpg"
}

TemplateLinkedPolicy {
 policyId: "policy2",
 templateId: "template1",
 principal: User::"bob",
 resource: Photo::"boat.jpg"
}

TemplateLinkedPolicy {
 policyId: "policy3",
 templateId: "template1",
 principal: User::"jane",
 resource: Photo::"car.jpg"

TemplateLinkedPolicy {
 policyId: "policy4",
 templateId: "template1",
 principal: User::"jane",
 resource
}

Now, let's calculate the size of those policies by counting the characters in the principal and
resource for each one. Each character counts as 1 byte.

The size of policy1 would be the length of the principal User::"alice" (13) plus the length of
the resource Photo::"car.jpg" (16). Adding them up we have 13 + 16 = 29 bytes.

Template-linked policy size example 191

Amazon Verified Permissions User Guide

The size of policy2 would be the length of the principal User::"bob" (11) plus the length of the
resource Photo::"boat.jpg" (17). Adding them up we have 11 + 17 = 28 bytes.

The size of policy3 would be the length of the principal User::"jane" (12) plus the length of
the resource Photo::"car.jpg" (16). Adding them up we have 12 + 16 = 28 bytes.

The size of policy4 would be the length of the principal User::"jane" (12) plus the length of
the resource (0). Adding them up we have 12 + 0 = 12 bytes.

Since policy2 is the only policy that references the resource Photo::"boat.jpg", the total
resource size is 28 bytes.

Since policy1 and policy3 both reference the resource Photo::"car.jpg", the total resource
size is 29 + 28 = 57 bytes.

Since policy4 is the only policy that references the "unspecified" resource, the total resource
size is 12 bytes.

Quotas for hierarchies

Note

The following quotas are aggregated, meaning they are added together. The maximum
number of transitive parents for the group is what's listed. For example, if the limit of
Transitive parents per principal is 100 that means there could be 100 parents of principals
and 0 parents for both actions and resources, or any combination of parents that add up to
100 total parents.

Name Default Adjustabl
e

Description

Transitive parents per principal 100 No The maximum number
of transitive parents for
each principal.

Transitive parents per action 100 No The maximum number
of transitive parents for
each action.

Quotas for hierarchies 192

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

Transitive parents per resource 100 No The maximum number
of transitive parents for
each resource.

The diagram below illustrates how transitive parents can be defined for an entity (principal, action,
or resource).

Quotas for operations per second

Verified Permissions throttles requests to service endpoints in an AWS Region when application
requests exceed the quota for an API operation. Verified Permissions might return an exception
when you exceed the quota in requests per second, or you attempt simultaneous write operations.
You can view your current RPS quotas in Service Quotas. To prevent applications from exceeding
the quota for an operation, you must optimize them for retries and exponential backoff. For more
information, see Retry with backoff pattern and Managing and monitoring API throttling in your
workloads.

Quotas for operations per second 193

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/retry-backoff.html
https://aws.amazon.com/blogs/mt/managing-monitoring-api-throttling-in-workloads/
https://aws.amazon.com/blogs/mt/managing-monitoring-api-throttling-in-workloads/

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

BatchGetPolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
BatchGetPolicy requests
per second.

BatchIsAuthorized requests per second
per Region per account

Each supported
Region: 30

Yes The maximum number
of BatchIsAuthorized
requests per second.

BatchIsAuthorizedWithToken requests
per second per Region per account

Each supported
Region: 30

Yes The maximum number
of BatchIsAuthorizedW
ithToken requests per
second.

CreateIdentitySource requests per
second per Region per account

Each supported
Region: 1

Yes The maximum number
of CreateIdentitySource
requests per second.

CreatePolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
CreatePolicy requests per
second.

CreatePolicyStore requests per second
per Region per account

Each supported
Region: 1

No The maximum number
of CreatePolicyStore
requests per second.

CreatePolicyTemplate requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of CreatePolicyTemplate
requests per second.

DeleteIdentitySource requests per
second per Region per account

Each supported
Region: 1

Yes The maximum number
of DeleteIdentitySource
requests per second.

Quotas for operations per second 194

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-8D5CB09F
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-F81CF58F

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

DeletePolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
DeletePolicy requests per
second.

DeletePolicyStore requests per second
per Region per account

Each supported
Region: 1

No The maximum number
of DeletePolicyStore
requests per second.

DeletePolicyTemplate requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of DeletePolicyTemplate
requests per second.

GetIdentitySource requests per second
per Region per account

Each supported
Region: 10

Yes The maximum number
of GetIdentitySource
requests per second.

GetPolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number
of GetPolicy requests per
second.

GetPolicyStore requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
GetPolicyStore requests
per second.

GetPolicyTemplate requests per second
per Region per account

Each supported
Region: 10

Yes The maximum number
of GetPolicyTemplate
requests per second.

GetSchema requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
GetSchema requests per
second.

IsAuthorized requests per second per
Region per account

Each supported
Region: 200

Yes The maximum number of
IsAuthorized requests per
second.

Quotas for operations per second 195

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-F81CF58F
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-5CA93A13
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-C9736881
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-C9736881
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-C9736881
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-D82415D2
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-B49B9779
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-771544C7

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

IsAuthorizedWithToken requests per
second per Region per account

Each supported
Region: 200

Yes The maximum number of
IsAuthorizedWithToken
requests per second.

ListIdentitySources requests per second
per Region per account

Each supported
Region: 10

Yes The maximum number
of ListIdentitySources
requests per second.

ListPolicies requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
ListPolicies requests per
second.

ListPolicyStores requests per second
per Region per account

Each supported
Region: 10

Yes The maximum number of
ListPolicyStores requests
per second.

ListPolicyTemplates requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of ListPolicyTemplates
requests per second.

PutSchema requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
PutSchema requests per
second.

UpdateIdentitySource requests per
second per Region per account

Each supported
Region: 1

Yes The maximum number
of UpdateIdentitySource
requests per second.

UpdatePolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number
of UpdatePolicy requests
per second.

UpdatePolicyStore requests per second
per Region per account

Each supported
Region: 10

No The maximum number
of UpdatePolicyStore
requests per second.

Quotas for operations per second 196

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-645D3857
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-4E0E8AFD
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-4E0E8AFD
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-271BE7E8
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-70239429
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-886D79EB
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-2AFF096D
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-2AFF096D

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

UpdatePolicyTemplate requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of UpdatePolicyTemplate
requests per second.

Quotas for operations per second 197

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-DC54B663

Amazon Verified Permissions User Guide

Amazon Verified Permissions and Cedar policy language
terms and concepts

You should understand the following concepts to use Amazon Verified Permissions.

Verified Permissions concepts

• Authorization model

• Authorization request

• Authorization response

• Considered policies

• Context data

• Determining policies

• Entity data

• Permissions, authorization, and principals

• Policy enforcement

• Policy store

• Satisfied policies

• Differences between Amazon Verified Permissions and the Cedar policy language

Cedar policy language concepts

• Authorization

• Entity

• Groups and hierarchies

• Namespaces

• Policy

• Policy template

• Schema

198

https://docs.cedarpolicy.com/overview/terminology.html#authorization
https://docs.cedarpolicy.com/overview/terminology.html#entity
https://docs.cedarpolicy.com/overview/terminology.html#term-group
https://docs.cedarpolicy.com/policies/validation.html#namespaces
https://docs.cedarpolicy.com/overview/terminology.html#policy
https://docs.cedarpolicy.com/overview/terminology.html#policy-template
https://docs.cedarpolicy.com/overview/terminology.html#schema

Amazon Verified Permissions User Guide

Authorization model

The authorization model describes the scope of the authorization requests made by the application
and the basis for evaluating those requests. It is defined in terms of the different types of
resources, the actions taken on those resources, and the types principals that take those actions. It
also considers the context in which those actions are being taken.

Role-based Access Control (RBAC) is an evaluation basis in which roles are defined and associated
with a set of permissions. These roles can then be assigned to one or more identities. The assigned
identity acquires the permissions associated with the role. If the permissions associated with the
role are modified, then the modification automatically impacts any identity to which the role has
been assigned. Cedar can support RBAC decisions through the use of principal groups.

Attribute-based Access Control (ABAC) is an evaluation basis in which the permissions associated
with an identity are determined by attributes of that identity. Cedar can support ABAC decisions
through the use of policy conditions that reference attributes of the principal.

The Cedar policy language enables the combination of RBAC and ABAC in a single policy by
allowing permissions to be defined for a group of users, which have attribute-based conditions.

Authorization request

An authorization request is a request made of Verified Permissions by an application to evaluate a
set of policies in order to determine whether a principal may perform an action on a resource for a
given context.

Authorization response

The authorization response is the response to the authorization request. It includes an allow or deny
decision, plus additional information, such as the IDs of the determining policies.

Considered policies

Considered policies are the full set of policies that are selected by Verified Permissions for inclusion
when evaluating an authorization request.

Context data

Context data are attribute values that provide additional information to be evaluated.

Authorization model 199

Amazon Verified Permissions User Guide

Determining policies

Determining policies are the policies that determine the authorization response. For example, if
there are two satisfied policies, where one is a deny and the other is an allow, then the deny policy
will be the determining policy. If there are multiple satisfied permit policies and no satisfied forbid
policies, then there are multiple determining policies. In the case that no policies match and the
response is deny, there are no determining policies.

Entity data

Entity data are data about the principal, action, and resource. Entity data relevant for policy
evaluation are group membership all the way up the entity hierarchy and attribute values of the
principal and resource.

Permissions, authorization, and principals

Verified Permissions manages fine-grained permissions and authorization within custom
applications that you build.

A principal is user of an application, either human or machine, that has an identity bound to an
identifier such as a username or machine ID. The process of authentication determines whether the
principal is truly the identity they claim to be.

Associated with that identity are a set of application permissions that determine what that
principal is permitted to do within that application. Authorization is the process of assessing those
permissions to determine whether a principal is permitted to perform a particular action in the
application. These permissions can be expressed as policies.

Policy enforcement

Policy enforcement is the process of enforcing the evaluation decision within the application
outside of Verified Permissions. If Verified Permissions evaluation returns a deny, then enforcement
would ensure that the principal was prevented from accessing the resource.

Policy store

A policy store is a container for policies and templates. Each store contains a schema that is used
to validate policies added to the store. By default, each application has its own policy store, but

Determining policies 200

https://docs.cedarpolicy.com/overview/terminology.html#policy

Amazon Verified Permissions User Guide

multiple applications can share a single policy store. When an application makes an authorization
request, it identifies the policy store used to evaluate that request. Policy stores provide a way
to isolate a set of policies, and can therefore be used in a multi-tenant application to contain the
schemas and policies for each tenant. A single application can have separate policy stores for each
tenant.

When evaluating an authorization request, Verified Permissions only considers the subset of the
policies in the policy store that are relevant to the request. Relevance is determined based on the
scope of the policy. The scope identifies the specific principal and resource to which the policy
applies, and the actions that the principal can perform on the resource. Defining the scope helps
improve performance by narrowing the set of considered policies.

Satisfied policies

Satisfied policies are the policies that match the parameters of the authorization request.

Differences between Amazon Verified Permissions and the
Cedar policy language

Amazon Verified Permissions uses the Cedar policy language engine to perform its authorization
tasks. However, there are some differences between the native Cedar implementation and the
implementation of Cedar found in Verified Permissions. This topic identifies those differences.

Namespace definition

Verified Permissions implementation of Cedar has the following differences from the native Cedar
implementation:

• Verified Permissions supports only one namespace in a schema defined in a policy store.

• Verified Permissions doesn't allow you to create a namespace that's an empty string or includes
the following values: aws, amazon, or cedar.

Policy template support

Both Verified Permissions and Cedar allow placeholders in the scope for only the principal and
resource. However, Verified Permissions also requires that neither the principal and resource
are unconstrained.

Satisfied policies 201

https://docs.cedarpolicy.com/schema/schema.html#namespace
https://docs.cedarpolicy.com/schema/schema.html#namespace

Amazon Verified Permissions User Guide

The following policy is valid in Cedar but is rejected by Verified Permissions because the
principal is unconstrained.

permit(principal, action == Action::"view", resource == ?resource);

Both of the following examples are valid in both Cedar and Verified Permissions because both the
principal and resource have constraints.

permit(principal == User::"alice", action == Action::"view", resource == ?resource);

permit(principal == ?principal, action == Action::"a", resource in ?resource);

Schema support

Verified Permissions requires all schema JSON key names to be non-empty strings. Cedar allows
empty strings in a few cases, such as for properties or namespaces.

Action groups definition

The Cedar authorization methods require a list of the entities to be considered when evaluating an
authorization request against the policies.

You can define the actions and action groups used by your application in the schema. However,
Cedar doesn't include the schema as part of an evaluation request. Instead, Cedar uses the schema
only to validate the policies and policy templates that you submit. Because Cedar doesn't reference
the schema during evaluation requests, even if you defined action groups in the schema, you
must also include the list of any action groups as part of the entities list you must pass to the
authorization API operations.

Verified Permissions does this for you. Any action groups that you define in your schema are
automatically appended to the entities list that you pass to as a parameter to the IsAuthorized
or IsAuthorizedWithToken operations.

Entity formatting

The JSON formatting of entities in Verified Permissions using the entityList parameter differs
from Cedar in the following ways:

Schema support 202

Amazon Verified Permissions User Guide

• In Verified Permissions, a JSON object must have all of its key-value pairs wrapped in a JSON
object with the name of Record.

• A JSON list in Verified Permissions must be wrapped in a JSON key-value pair where the key
name is Set and the value is the original JSON list from Cedar.

• For String, Long, and Boolean type names, each key-value pair from Cedar is replaced by a
JSON object in Verified Permissions. The name of the object is the original key name. Inside the
JSON object, there is one key-value pair where the key name is the type name of the scalar value
(String, Long, or Boolean) and the value is the value from the Cedar entity.

• The syntax formatting of Cedar entities and Verified Permissions entities differs in the following
ways:

Cedar format Verified Permissions format

uid Identifier

type EntityType

id EntityId

attrs Attributes

parents Parents

Example - Lists

The following examples show how a list of entities is expressed in Cedar and Verified Permissions,
respectively.

Cedar

[
 {
 "number": 1
 },
 {
 "sentence": "Here is an example sentence"
 },
 {
 "Question": false

Entity formatting 203

Amazon Verified Permissions User Guide

 }
]

Verified Permissions

{
 "Set": [
 {
 "Record": {
 "number": {
 "Long": 1
 }
 }
 },
 {
 "Record": {
 "sentence": {
 "String": "Here is an example sentence"
 }
 }
 },
 {
 "Record": {
 "question": {
 "Boolean": false
 }
 }
 }
]
}

Example - Policy evaluation

The following examples shows how entities are formatted for evaluating a policy in an
authorization request in Cedar and Verified Permissions, respectively.

Cedar

[
 {
 "uid": {
 "type": "PhotoApp::User",

Entity formatting 204

Amazon Verified Permissions User Guide

 "id": "alice"
 },
 "attrs": {
 "age": 25,
 "name": "alice",
 "userId": "123456789012"
 },
 "parents": [
 {
 "type": "PhotoApp::UserGroup",
 "id": "alice_friends"
 },
 {
 "type": "PhotoApp::UserGroup",
 "id": "AVTeam"
 }
]
 },
 {
 "uid": {
 "type": "PhotoApp::Photo",
 "id": "vacationPhoto.jpg"
 },
 "attrs": {
 "private": false,
 "account": {
 "__entity": {
 "type": "PhotoApp::Account",
 "id": "ahmad"
 }
 }
 },
 "parents": []
 },
 {
 "uid": {
 "type": "PhotoApp::UserGroup",
 "id": "alice_friends"
 },
 "attrs": {},
 "parents": []
 },
 {
 "uid": {

Entity formatting 205

Amazon Verified Permissions User Guide

 "type": "PhotoApp::UserGroup",
 "id": "AVTeam"
 },
 "attrs": {},
 "parents": []
 }
]

Verified Permissions

[
 {
 "Identifier": {
 "EntityType": "PhotoApp::User",
 "EntityId": "alice"
 },
 "Attributes": {
 "age": {
 "Long": 25
 },
 "name": {
 "String": "alice"
 },
 "userId": {
 "String": "123456789012"
 }
 },
 "Parents": [
 {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "alice_friends"
 },
 {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "AVTeam"
 }
]
 },
 {
 "Identifier": {
 "EntityType": "PhotoApp::Photo",
 "EntityId": "vacationPhoto.jpg"
 },

Entity formatting 206

Amazon Verified Permissions User Guide

 "Attributes": {
 "private": {
 "Boolean": false
 },
 "account": {
 "EntityIdentifier": {
 "EntityType": "PhotoApp::Account",
 "EntityId": "ahmad"
 }
 }
 },
 "Parents": []
 },
 {
 "Identifier": {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "alice_friends"
 },
 "Parents": []
 },
 {
 "Identifier": {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "AVTeam"
 },
 "Parents": []
 }
]

Length and size limits

Verified Permissions supports storage in the form of policy stores to hold your schema, policies,
and policy templates. That storage causes Verified Permissions to impose some length and size
limits that aren't relevant to Cedar.

Object Verified Permissions limit (in
bytes)

Cedar limit

Policy size¹ 10,000 None

Inline policy description 150 Not applicable to Cedar

Length and size limits 207

Amazon Verified Permissions User Guide

Object Verified Permissions limit (in
bytes)

Cedar limit

Policy template size 10,000 None

Schema size 100,000 None

Entity type 200 None

Policy ID 64 None

Policy template ID 64 None

Entity ID 200 None

Policy store ID 64 Not applicable to Cedar

¹ There is a limit for policies per policy store in Verified Permissions based on the combined size
of principals, actions, and resources of policies created in the policy store. The total size of all
policies pertaining to a single resource can't exceed 200,000 bytes. For template-linked policies,
the size of the policy template is counted only once, plus the size of each set of parameters used to
instantiate each template-linked policy.

Length and size limits 208

Amazon Verified Permissions User Guide

Amazon Verified Permissions upgrade to Cedar v4 FAQ

Amazon Verified Permissions is in the process of updating to Cedar v4. We're working to make this
as seamless as possible for you. The following FAQs should answer your questions and help you
prepare.

Topics

• What is the current state on the upgrade?

• Do I need to do anything right now?

• Does the upgrade of the console impact the authorization service?

• What are the breaking changes in Cedar v3 and Cedar v4?

• When will the upgrade to Cedar v4 be complete?

What is the current state on the upgrade?

As a first step we've upgraded the console to use Cedar v4.3, however the back end is still running
on Cedar v2.5.0. This means that while you can now use the console to author policies using new
features like the is operator, when you attempt to save them you will still get an error until we
complete the upgrade.

Do I need to do anything right now?

No. You can start exploring Cedar v4 using the console, if you want, but don't need to do anything.

Does the upgrade of the console impact the authorization
service?

No. Prior to upgrading we will run tests to check that your policy store works correctly with Cedar
v4. There are some minor breaking changes between v2.5.0 and v4.3, but it’s very unlikely that
your policy store will be impacted. If it is, then your policy store will not be upgraded, and will
continue to authorize using Cedar v2.5.0. Should this happen, we will reach out to explain any
changes you need to make before being able to upgrade.

What is the current state on the upgrade? 209

Amazon Verified Permissions User Guide

What are the breaking changes in Cedar v3 and Cedar v4?

Breaking changes are identified in the Cedar change log, marked with an (*).

Note

If your policy store is affected by breaking changes it won't be upgraded, and we'll work
with you to update the policy store so it can be upgraded.

When will the upgrade to Cedar v4 be complete?

Our goal is for all accounts to be upgraded by December 31, 2025.

What are the breaking changes in Cedar v3 and Cedar v4? 210

https://github.com/cedar-policy/cedar/releases

Amazon Verified Permissions User Guide

Document history for the Amazon Verified Permissions
User Guide

The following table describes the documentation releases for Verified Permissions.

Change Description Date

New AWS managed policies You can now use the
AmazonVerifiedPerm
issionsFullAccess
and AmazonVerifiedPerm
issionsReadOnlyAcc
ess IAM managed policies
with Verified Permissions.

October 11, 2024

OIDC identity sources You can now authorize users
from OpenID Connect (OIDC)
identity providers.

June 8, 2024

Batch authorization with
identity source tokens

You can now authorize users
from a Amazon Cognito user
pool in a single BatchIsAu
thorizedWithToken API
request.

April 5, 2024

Creating a policy store with
API Gateway

You can now create a policy
store from an existing API and
Amazon Cognito user pool.

April 1, 2024

Context concepts and
example

Added information about
context in authorization
requests with Verified
Permissions.

February 1, 2024

Authorization concepts and
example

Added information about
authorization requests with
Verified Permissions.

February 1, 2024

211

https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/identity-sources.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/policy-stores-create.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/policy-stores-create.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/context.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/context.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html

Amazon Verified Permissions User Guide

AWS CloudFormation
integration

Verified Permissions supports
creating identity sources,
policies, policy stores, and
policy templates in AWS
CloudFormation.

June 30, 2023

Initial release Initial release of the Amazon
Verified Permissions User
Guide

June 13, 2023

212

https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/cloudformation-verified-permissions.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/cloudformation-verified-permissions.html

	Amazon Verified Permissions
	Table of Contents
	What is Amazon Verified Permissions?
	Authorization in Verified Permissions
	Cedar policy language
	Benefits of Verified Permissions
	Accelerate application development
	More secure applications
	End-user features

	Related services
	Accessing Verified Permissions
	Pricing for Verified Permissions

	Create your first Amazon Verified Permissions policy store
	Prerequisites
	Sign up for an AWS account
	Create a user with administrative access

	Step 1: Create a PhotoFlash policy store
	Step 2: Create a policy
	Step 3: Testing a policy store
	Step 4: Clean up resources

	Best practices for designing an authorization model
	There isn't a canonical “correct” model
	Return 403 forbidden errors rather than 404 not found errors
	Focus on your resources beyond API operations
	Multi-tenancy considerations
	Comparing shared policy stores and per-tenant policy stores
	How to choose

	Amazon Verified Permissions policy stores
	Creating Verified Permissions policy stores
	Implementing Amazon Verified Permissions in Rust with the AWS SDK
	Prerequisites
	Test the sample code
	Clean up resources

	API-linked policy stores
	How Verified Permissions authorizes API requests
	Considerations for API-linked policy stores
	Adding attribute-based access control (ABAC)
	Moving to production with AWS CloudFormation
	Troubleshooting API-linked policy stores
	I updated my policy but the authorization decision didn't change
	I attached the Lambda authorizer to my API but it's not generating authorization requests
	I received an unexpected authorization decision and want to review the authorization logic
	I want to find logs from my Lambda authorizer
	My Lambda authorizer doesn't exist
	My API is in a private VPC and can't invoke the authorizer
	I want to process additional user attributes in my authorization model
	I want to add new actions, action context attributes, or resource attributes

	Deleting policy stores

	Amazon Verified Permissions policy store schema
	Editing policy store schemas

	Enabling Amazon Verified Permissions policy validation mode
	Amazon Verified Permissions policies
	Creating Amazon Verified Permissions static policies
	Editing Amazon Verified Permissions static policies
	Adding context
	Modifying DigitalPetStore to accept authorization context

	Using the Amazon Verified Permissions test bench
	Amazon Verified Permissions example policies
	Uses bracket notation to reference token attributes
	Uses dot notation to reference attributes
	Reflects Amazon Cognito ID token attributes
	Reflects OIDC ID token attributes
	Reflects Amazon Cognito access token attributes
	Reflects OIDC access token attributes

	Amazon Verified Permissions policy templates and template-linked policies
	Creating Amazon Verified Permissions policy templates
	Creating Amazon Verified Permissions template-linked policies
	Editing Amazon Verified Permissions policy templates
	Amazon Verified Permissions example template-linked policies
	PhotoFlash examples
	DigitalPetStore examples
	TinyToDo examples

	Secure your applications with identity sources and tokens
	Choosing the right identity provider
	Working with Amazon Cognito identity sources
	Creating Amazon Verified Permissions Amazon Cognito identity sources
	Editing Amazon Verified Permissions Amazon Cognito identity sources
	Mapping Amazon Cognito tokens to schema
	Mapping ID tokens to schema
	Mapping access tokens
	Alternative notation for Amazon Cognito colon-delimited claims
	Things to know about schema mapping

	Client and audience validation for Amazon Cognito
	Client-side authorization for JWTs

	Working with OIDC identity sources
	Creating Amazon Verified Permissions OIDC identity sources
	Editing Amazon Verified Permissions OIDC identity sources
	Mapping OIDC tokens to schema
	Mapping ID tokens to schema
	Mapping access tokens
	Things to know about schema mapping

	Client and audience validation for OIDC providers
	Client-side authorization for JWTs

	Integrations for Amazon Verified Permissions
	Integrating Express with Amazon Verified Permissions
	Prerequisites
	Setting up the integration
	Step 1: Create a policy store
	Step 2: Install dependencies

	Configuring authorization
	Step 1: Generate and upload Cedar schema
	Step 2: Create authorization policies
	Step 3: Connect an identity provider

	Implementing the authorization middleware
	Testing the integration
	Troubleshooting
	Next steps

	Implementing authorization in Amazon Verified Permissions
	Available API operations for authorization
	Testing your authorization model
	Integrating your authorization models with applications

	Security in Amazon Verified Permissions
	Data protection in Amazon Verified Permissions
	Data encryption

	Identity and access management for Amazon Verified Permissions
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Verified Permissions works with IAM
	Identity-based policies for Verified Permissions
	Identity-based policy examples for Verified Permissions

	Resource-based policies within Verified Permissions
	Policy actions for Verified Permissions
	Policy resources for Verified Permissions
	Policy condition keys for Verified Permissions
	ACLs in Verified Permissions
	ABAC with Verified Permissions
	Using temporary credentials with Verified Permissions
	Cross-service principal permissions for Verified Permissions
	Service roles for Verified Permissions
	Service-linked roles for Verified Permissions

	IAM policies for Verified Permissions
	Identity-based policy examples for Amazon Verified Permissions
	Policy best practices
	Using the Verified Permissions console
	Allow users to view their own permissions

	AWS managed policies for Amazon Verified Permissions
	AWS managed policy: AmazonVerifiedPermissionsFullAccess
	AWS managed policy: AmazonVerifiedPermissionsReadOnlyAccess
	Verified Permissions updates to AWS managed policies

	Troubleshooting Amazon Verified Permissions identity and access
	I am not authorized to perform an action in Verified Permissions
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Verified Permissions resources

	Compliance validation for Amazon Verified Permissions
	Resilience in Amazon Verified Permissions

	Monitoring Amazon Verified Permissions API calls
	Logging Amazon Verified Permissions API calls using AWS CloudTrail
	Verified Permissions information in CloudTrail
	Understanding Verified Permissions log file entries
	IsAuthorized
	BatchIsAuthorized
	CreatePolicyStore
	ListPolicyStores
	DeletePolicyStore
	PutSchema
	GetSchema
	CreatePolicyTemplate
	DeletePolicyTemplate
	CreatePolicy
	GetPolicy
	CreateIdentitySource
	GetIdentitySource
	ListIdentitySources
	DeleteIdentitySource

	Creating Amazon Verified Permissions resources with AWS CloudFormation
	Verified Permissions and AWS CloudFormation templates
	AWS CDK constructs
	Learn more about AWS CloudFormation

	Access Amazon Verified Permissions using AWS PrivateLink
	Considerations for Verified Permissions
	Create an interface endpoint for Verified Permissions
	Create an endpoint policy for your interface endpoint

	Quotas for Amazon Verified Permissions
	Quotas for resources
	Template-linked policy size example

	Quotas for hierarchies
	Quotas for operations per second

	Amazon Verified Permissions and Cedar policy language terms and concepts
	Authorization model
	Authorization request
	Authorization response
	Considered policies
	Context data
	Determining policies
	Entity data
	Permissions, authorization, and principals
	Policy enforcement
	Policy store
	Satisfied policies
	Differences between Amazon Verified Permissions and the Cedar policy language
	Namespace definition
	Policy template support
	Schema support
	Action groups definition
	Entity formatting
	Length and size limits

	Amazon Verified Permissions upgrade to Cedar v4 FAQ
	What is the current state on the upgrade?
	Do I need to do anything right now?
	Does the upgrade of the console impact the authorization service?
	What are the breaking changes in Cedar v3 and Cedar v4?
	When will the upgrade to Cedar v4 be complete?

	Document history for the Amazon Verified Permissions User Guide

