
User Guide

AWS HealthOmics

Version latest

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS HealthOmics User Guide

AWS HealthOmics: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS HealthOmics User Guide

Table of Contents

What is AWS HealthOmics? .. 1
Important notice ... 1
Concepts ... 2

Storage .. 2
Analytics .. 2
Workflows ... 3

HealthOmics features .. 3
Related services .. 4
Regions and endpoints for AWS HealthOmics ... 5
How to access HealthOmics ... 5
Learn more ... 5

Setting up HealthOmics .. 7
Sign up for an AWS account .. 7
Create a user with administrative access .. 7
Create IAM permissions for HealthOmics .. 9
Using Amazon Q CLI with HealthOmics .. 9

Getting started .. 10
Using a Ready2Run workflow in the HealthOmics console .. 10
Example prompts for Amazon Q CLI ... 10

Private workflows .. 12
Creating workflows .. 13

Workflow definition files ... 14
Parameter template files .. 55
Amazon ECR images ... 68
Optional: Sentieon licenses .. 71
Workflow linters .. 72
Creating or updating a workflow .. 73

Workflow versioning .. 83
Default version .. 84
Create a version .. 84
Update a version ... 89
Delete a version .. 91

Starting runs ... 92
Run storage types ... 93

Version latest iii

AWS HealthOmics User Guide

Run retention mode for HealthOmics runs ... 96
Run inputs .. 98
Starting a run .. 101
Run lifecycle .. 109
Run outputs ... 112
Run failure reasons .. 115
Task lifecycle .. 119
Run optimization .. 121

Deleting runs and run groups ... 129
Creating run groups .. 130

Run priority .. 130
Creating a run group using the console .. 131
Creating a run group using the CLI .. 131

Call caching ... 132
How call caching works ... 133
Creating a run cache .. 139
Updating a run cache .. 140
Deleting a run cache .. 141
Contents of a run cache ... 142
Engine-specific caching features ... 143
Using the run cache ... 143

Sharing workflows ... 147
Subscribing to a shared workflow .. 148
Monitoring status of a workflow share ... 149
Sharing a private workflow using the console ... 149
Sharing a private workflow using the CLI ... 149
Accepting a shared workflow using the console .. 150
Running a shared workflow using the console .. 150
Running a shared workflow using the API .. 151

Ready2Run workflows ... 152
Available workflows .. 153
Subscribing to Sentieon workflows ... 159
Starting Ready2Run workflows (console) ... 159
Starting Ready2Run workflows (API) ... 160

HealthOmics storage ... 162
HealthOmics ETags .. 163

Version latest iv

AWS HealthOmics User Guide

Amazon S3 ETags ... 163
How HealthOmics calculates ETags .. 164

Creating a reference store ... 165
Creating a reference store using the console ... 165
Creating a reference store using the CLI ... 166

Creating a sequence store ... 171
Creating a sequence store using the console ... 171
Creating a sequence store using the CLI ... 172
Updating a sequence store ... 174
Updating read set tags for a sequence store ... 175
Importing genomic files .. 175

Deleting stores ... 176
Importing read sets into a sequence store .. 177

Upload files to Amazon S3 .. 177
Creating a manifest file .. 178
Starting the import job ... 181
Monitor the import job ... 181
Find the imported sequence files ... 183
Get details about a read set .. 186
Download the read set data files .. 187

Direct upload to a sequence store ... 188
Direct upload to a sequence store using the AWS CLI ... 188
Configure a fallback location ... 194

Exporting read sets ... 195
Accessing read sets with Amazon S3 URIs ... 197

Amazon S3 URI structure in HealthOmics storage .. 199
Using Hosted or Local IGV to access read sets .. 199
Using Samtools or HTSlib in HealthOmics ... 200
Using Mountpoint HealthOmics .. 200
Using CloudFront with HealthOmics .. 201

Activating read sets ... 201
HealthOmics analytics ... 205

Creating variant stores ... 205
Creating a variant store using the console ... 206
Creating a variant store using the API ... 206

Creating variant store import jobs ... 208

Version latest v

AWS HealthOmics User Guide

Creating annotation stores .. 212
Creating an annotation store using the console .. 212
Creating an annotation store using the API ... 213

Creating annotation store import jobs ... 215
Creating an annotation import job using the API ... 215
Additional parameters for TSV and VCF formats .. 217
Creating TSV formatted annotation stores ... 218
Starting VCF formatted import jobs .. 221

Creating new versions of HealthOmics annotation stores .. 222
Deleting analytics stores .. 225
Querying analytics data ... 226

Configuring Lake Formation ... 226
Configuring Athena for queries ... 229
Runnning queries .. 230

Sharing HealthOmics analytics stores ... 231
Creating a store share ... 232

Resource sharing .. 233
Creating a share ... 233
Retrieve information about a share ... 234
View the shares that you own .. 235
View accepted shares from other accounts .. 235
Delete a share ... 235

Tagging resources in HealthOmics ... 236
Important notice .. 236
Tagging HealthOmics resources ... 236

Best practices .. 238
Tagging requirements .. 238

Sequence store read set tags .. 238
Adding a tag ... 239
Listing tags .. 240
Removing tags .. 240

Permissions .. 242
User policies .. 242

Define custom IAM permissions for runs .. 244
Service roles .. 245

Example IAM service policies ... 246

Version latest vi

AWS HealthOmics User Guide

Example AWS CloudFormation template .. 249
Resource permissions .. 250

Amazon ECR permissions .. 251
Lake Formation permissions .. 256

Amazon S3 URI Permissions .. 257
Policy based sharing .. 258
Example Restriction ... 262

Security .. 266
Data protection .. 266

Encryption at rest ... 267
Encryption in transit .. 278

Identity and access management ... 278
Audience ... 278
Authenticating with identities ... 279
Managing access using policies ... 282
How AWS HealthOmics works with IAM ... 285
Identity-based policy examples ... 294
AWS managed policies .. 296
Troubleshooting .. 300

Compliance validation .. 302
Resilience ... 304
VPC endpoints (AWS PrivateLink) .. 304

Considerations for HealthOmics VPC endpoints .. 305
Creating an interface VPC endpoint for HealthOmics .. 305
Creating a VPC endpoint policy for HealthOmics ... 305
Special considerations for accessing read sets using Amazon S3 URIs 306

Monitoring AWS HealthOmics .. 308
S3 access logging ... 309
CloudWatch metrics .. 309

Viewing AWS HealthOmics metrics .. 310
Creating an alarm ... 310

CloudWatch Logs ... 311
Log types for HealthOmics workflows .. 312
Logs in CloudWatch ... 313
Logs in Amazon S3 .. 314
Interactive CloudWatch Logs in the CLI .. 314

Version latest vii

AWS HealthOmics User Guide

Accessing CloudWatch Logs from the console ... 315
CloudTrail logs .. 315

HealthOmics information in CloudTrail ... 316
Understanding HealthOmics log file entries .. 317

EventBridge ... 318
Set up EventBridge for HealthOmics ... 319
EventBridge events in HealthOmics ... 320
Event message structure ... 322
Event message examples .. 322

Troubleshooting ... 326
Troubleshooting workflows ... 326

How do I troubleshoot a failed run? .. 326
How do I troubleshoot a failed task? ... 326
Where do I find the engine logs for successfully completed runs? .. 327
How can I reduce the input parameter size for a workflow? ... 327
Why is my run not completing? .. 327

Troubleshooting call caching issues ... 327
Why isn’t my run saving to the cache? .. 327
Why isn’t a task using the cache entry? .. 327

Troubleshooting data stores .. 328
Why is S3 GetObject failing on my read set? ... 328
Why can't I see my annotation store or variant store in Athena? ... 329
Why can't I access my data store in Athena? ... 329

Quotas .. 330
Service quotas .. 330
Fixed size quotas .. 335

Analytics file size quotas .. 335
Storage file size quotas ... 336
Workflow fixed size quotas .. 337
Workflow fixed size quotas .. 340

API quotas ... 343
General API quotas .. 343
Storage API quotas .. 344
Workflow API quotas ... 345
Analytics API quotas .. 346

Document history .. 348

Version latest viii

AWS HealthOmics User Guide

What is AWS HealthOmics?

AWS HealthOmics is an AWS service that helps users such as bioinformaticians, researchers, and
scientists to store, query, analyze, and generate insights from genomics and other biological data.
It simplifies and accelerates the process of storing and analyzing genomic information for research
and clinical organizations, and makes scientific discovery and insight generation faster.

HealthOmics has three primary components. HealthOmics Storage helps you store and
share petabytes of genomics data efficiently and at low cost per gigabase. HealthOmics
Analytics simplifies how you prepare genomics data for multiomics and multimodal analyses.
HealthOmics Workflows automatically provisions and scales the underlying infrastructure for your
bioinformatics computation.

Topics

• Important notice

• HealthOmics concepts

• HealthOmics features

• Related services

• Regions and endpoints for AWS HealthOmics

• How to access HealthOmics

• Learn more

Important notice

HealthOmics isn't a substitute for professional medical advice, diagnosis, or treatment, and isn't
intended to cure, treat, mitigate, prevent, or diagnose any disease or health condition. You are
responsible for instituting human review as part of any use of AWS HealthOmics, including in
association with any third-party product intended to inform clinical decision-making.

HealthOmics is intended only for the transferring, storing, formatting, or displaying of data,
and for the provision of infrastructure and configuration support for managing workflows.
AWS HealthOmics isn't intended to directly perform variant calling or genomic analysis and
interpretation. AWS HealthOmics isn't intended to interpret or analyze clinical laboratory tests or
other device data, results, and findings, and isn't a substitute for third-party tools intended for use
in genomic analyses.

Important notice Version latest 1

AWS HealthOmics User Guide

HealthOmics concepts

This topic covers definitions for key concepts and terms that are specific to HealthOmics, to help
you understand the terminology of HealthOmics used this guide.

Topics

• Storage

• Analytics

• Workflows

Storage

Data storage is separated into sequence stores, for your genomics sequences and related
information, and a reference store, for all of your reference genomes. The following terms describe
the implementations that are specific to HealthOmics.

• Sequence store – A data store for the storage of genomics files. You can have one or more
sequence stores within HealthOmics. Access permissions and AWS KMS encryption can be set on
a sequence store to control who has access to the data.

• Read set – A read set is an abstraction of genomics reads, which are stored in FASTQ, BAM, or
CRAM formats. Read sets can be imported into sequence stores and annotated with metadata.
You can apply permissions to read sets using attribute based access control (ABAC).

• Reference – A genome reference is used with reads to identify where in a genome a specific read,
or group of reads, is mapped to. These are in FASTA format and stored in the reference store.

• Reference store – A data store for the storage of reference genomes. You can have a single
reference store in each account and region.

Analytics

You can transform and analyze your genomics data with HealthOmics Analytics. Create a variant
store or annotation store to include additional information for your queries.

• Variant store – data store that stores variant data at a population scale. Variant stores support
both genomic Variant Call Format (gVCF) and VCF inputs.

Concepts Version latest 2

AWS HealthOmics User Guide

• Annotation store – A data store representing an annotation database, such as one from a TSV/
CSV, VCF, or General Feature Format (GFF3) file. Annotation Stores are mapped to the same
coordinate system as variant stores during an import.

Workflows

With HealthOmics Workflows, you can process and analyze your genomics data.

• Workflow – The overall definition of an end to end process including parameters and references
to tools. Workflow definitions can be expressed as WDL, Nextflow, or CWL. Each created
workflow has a unique identifier.

• Run – A single invocation of a workflow. An individual run uses your defined input data and
produces an output. Each created run has a unique identifier.

• Task – The individual processes within a run. HealthOmics Workflows use these defined compute
specifications to run your task. Each task has a unique identifier.

• Run group – A group of runs for which you can set the max vCPU, max duration, or max
concurrent runs to help limit the compute resources used per run. You can specify and configure
priorities for your runs within a run group. For example, you can specify that a high priority run
will be performed before one that's lower priority, creating a priority queue. It is optional to use a
Run Group, and each Run Group has a unique identifier.

HealthOmics features

HealthOmics offers the following features.

• HealthOmics Storage — helps you store and share petabytes of raw genomics data efficiently
and at low cost per gigabase.

• HealthOmics Analytics — simplifies how you prepare genomics data for multiomics and
multimodal analyses.

• HealthOmics Workflows — automatically provisions and scales the underlying infrastructure for
your bioinformatics workflows.

You can use each component independently, or as part of an integrated end-to-end solution.

HealthOmics offers you the following benefits.

Workflows Version latest 3

AWS HealthOmics User Guide

• Securely store and combine genomic data — HealthOmics integrates with other AWS services
such as AWS Lake Formation and Amazon Athena. You can securely store your genomics data
and then query or combine it with medical history data for better diagnoses and personalized
treatment plans.

• Protect patient privacy — HealthOmics is HIPAA eligible. It also integrates with IAM and Amazon
CloudWatch so that you can control and log data access, and track how the data is used in
analyses.

• Built to scale — Support large population data analyses with simplified billing and new
collaboration tools.

• Maximize efficiency — Use automated workflows and integrated tools to streamline data
processing and analysis.

You can use HealthOmics for the following biomedical applications:

• Population sequencing — Query thousands of genomes at once to understand how genomic
variation maps to phenotypes across a population.

• Clinical genomics — Build reproducible genomics workflows from sequencer output to
reportable data. You can also optimize for high volume throughput and set the compute
requirements for high-priority clinical samples to reduce turnaround time.

• Clinical trials — Integrate genome analysis into clinical trials to better understand the efficacy of
new drug candidates. Simplify and accelerate clinical trials with long-term cost savings and data
provenance to meet regulations from governing bodies.

• Enhance research and innovation — Streamline and control storage, access, and analysis of
anonymized genomics data with built-in row and column-based access control.

Related services

The following services work with HealthOmics.

• Amazon Elastic Container Registry – Each private workflow uses an Amazon ECR image (in a
private Amazon ECR repository) to contain all executables, libraries, and scripts required to run
the workflow.

• Amazon Simple Storage Service – Amazon S3 provides file storage for Store and Workflow data.

• AWS Lake Formation – Lake Formation manages data access to your Analytics data stores.

• Amazon Athena – Use Athena to perform queries on your Variant stores.

Related services Version latest 4

AWS HealthOmics User Guide

• Amazon SageMaker AI – Use SageMaker AI to run HealthOmics tasks using Jupyter notebooks.

Regions and endpoints for AWS HealthOmics

For a full list of regions and endpoints, see the AWS General Reference.

In addition to the AWS regions that are active by default, there are also Opt-in Regions which need
to be activated. To learn more about how to activate or deactivate a Region, see Specify which AWS
Regions your account can use in the AWS Account Management guide.

How to access HealthOmics

You can access AWS HealthOmics features using the management console, CLI, SDKs or API.

• AWS Management Console – Provides a web interface that you can use to access HealthOmics.

• AWS Command Line Interface (AWS CLI) – Provides commands for a broad set of AWS services,
including AWS HealthOmics, and is supported on Windows, macOS, and Linux. For more
information about installing the AWS CLI, see AWS Command Line Interface.

• AWS SDKs – AWS provides SDKs (Software Development Kits) that consist of libraries and sample
code for various programming languages and platforms (including Java, Python, Ruby, .NET, iOS,
and Android). The SDKs provide a convenient way to use HealthOmics programmatically. For
more information, see the AWS SDK Developer Center.

• AWS API – You can use API operations to access and manage HealthOmics programmatically. For
more information, see the HealthOmics API Reference.

Learn more

Learn more about HealthOmics from these workshops and tutorials:

• HealthOmics workshop – HealthOmics end to end workshop

• AWS genomics resources – Public Amazon ECR repositories related to genomics

• Python tutorials – Jupyter notebook tutorials on GitHub, covering HealthOmics storage,
analytics, and workflows

Become familiar with additional HealthOmics tools that AWS provides:

Regions and endpoints for AWS HealthOmics Version latest 5

https://docs.aws.amazon.com/general/latest/gr/healthomics-quotas.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html#manage-acct-regions-enable-standalone
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html#manage-acct-regions-enable-standalone
https://aws.amazon.com/cli/
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/omics/latest/api/Welcome.html
https://catalog.workshops.aws/amazon-omics-end-to-end/en-US
https://gallery.ecr.aws/aws-genomics?page=1
https://github.com/aws-samples/amazon-omics-tutorials

AWS HealthOmics User Guide

• WDL linter – HealthOmics linter for WDL

• Nextflow linter – HealthOmics linter for Nextflow

• HealthOmics Amazon ECR helper tool – Amazon ECR helper tool for HealthOmics

• HealthOmics tools on GitHub – Tools for working with HealthOmics (Transfer manager, URI
parser, Omics rerun, Run analyzer).

Learn more Version latest 6

https://gallery.ecr.aws/aws-genomics/healthomics-linter
https://gallery.ecr.aws/aws-genomics/linter-rules-for-nextflow
https://github.com/aws-samples/amazon-ecr-helper-for-aws-healthomics
https://github.com/awslabs/amazon-omics-tools

AWS HealthOmics User Guide

Setting up HealthOmics

To set up AWS HealthOmics, sign up for an AWS account, create an administrative user, and
securely manage access for additional users.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Create IAM permissions for HealthOmics

• Using Amazon Q CLI with HealthOmics

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account Version latest 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/

AWS HealthOmics User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create a user with administrative access Version latest 8

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS HealthOmics User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create IAM permissions for HealthOmics

To use HealthOmics, configure the following IAM permissions:

• IAM identity-based policies for users in your account to access HealthOmics.

• An IAM service role for HealthOmics to access resources on your behalf.

• Permissions in other services (such as Lake Formation and Amazon ECR) for your users and the
HealthOmics service to access resources.

For more information about configuring IAM permissions for HealthOmics, see IAM permissions for
HealthOmics.

Using Amazon Q CLI with HealthOmics

Amazon Q CLI provides natural language interactions with AWS HealthOmics, allowing you to
perform complex genomic workflows and analysis tasks using conversational commands. To use
Amazon Q CLI, be sure to configure IAM permissions for HealthOmics and other services (such as
CloudWatch, Amazon ECR, or Amazon S3) for Amazon Q to access their resources.

The HealthOmics Agentic generative AI tutorial provides a step-by-step guidance for configuring
context files and enabling Amazon Q CLI to create, run, and optimize your AWS HealthOmics
workflows.

Create IAM permissions for HealthOmics Version latest 9

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://github.com/aws-samples/aws-healthomics-tutorials/tree/main/generative-ai

AWS HealthOmics User Guide

Getting started with HealthOmics

To get started with HealthOmics, ensure that you have properly set up your IAM permissions and
roles for HealthOmics.

Using a Ready2Run workflow in the HealthOmics console

The following exercise shows how to use a Ready2Run workflow. A Ready2Run workflow is
preconfigured with the parameters and tool references you need to run the workflow. The
workflow publisher provides sample data, so you do not need to create your own data.

1. Open the HealthOmics console.

2. Select the navigation pane (≡) in the top left, and select Ready2Run workflows.

3. On the Ready2Run workflows page, choose the ESMFold for up to 800 residues workflow. The
console opens the details page for that workflow.

4. The details tab provides information about the workflow. To try out the workflow, in the top
right of the page select Start run.

5. In the Specify run details page, enter a run name.

6. Enter or select an Amazon S3 location for the run output.

7. For Run metadata retention mode, choose whether to retain or remove runmeta data.

8. In the Service role panel, choose Create and use a new service role.

9. Choose Next.

10.On the Add parameter values page, choose Run workflow with Ready2Run test data.

11.Choose Next.

12.Review your inputs, then choose Start run.

Example prompts for Amazon Q CLI

Amazon Q CLI can run genomic workflows and analysis tasks in AWS HealthOmics using natural
language commands. The following example prompts allow you to create workflows, manage runs,
and analyze genomic data. For more information and example prompts for HealthOmics, see the
HealthOmics Agentic generative AI tutorial on GitHub.

Using a Ready2Run workflow in the HealthOmics console Version latest 10

https://docs.aws.amazon.com/omics/latest/dev/setting-up-new.html#setting-up-create-iam-user
https://docs.aws.amazon.com/omics/latest/dev/setting-up-new.html#setting-up-create-iam-user
https://console.aws.amazon.com/omics/
https://github.com/aws-samples/aws-healthomics-tutorials/tree/main/generative-ai

AWS HealthOmics User Guide

• "Create a WDL 1.1 workflow file as main.wdl that will run on HealthOmics. The workflow will
take a reference genome as an input and pairs of fastq files. It will index the reference genome
using BWA and then map each pair of fastq files to the reference. Finally merge each mapped
BAM to a single BAM file and output this file and it's bai index."

• "Package the workflow and create it in HealthOmics"

• "Update the inputs.json file to use real files from my Amazon S3 bucket omics-my-bucket-
with-genome-data" (Provide a specific Amazon S3 bucket location, or let Amazon Q explore)

• "Find suitable containers in my Amazon ECR repositories and update inputs.json to use these"

• "Find or create a suitable IAM role to use when running the workflow"

• "Create a run cache for my workflow"

• "Run the workflow in HealthOmics"

• "Check the status of the run"

Warning

When working with Amazon Q CLI, review all generated content and proposed actions
before proceeding. Provide feedback to improve response quality and to match your
workflow’s requirements. For more information, see Security considerations and best
practices for Amazon Q.

Example prompts for Amazon Q CLI Version latest 11

https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/command-line-chat-security.html
https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/command-line-chat-security.html

AWS HealthOmics User Guide

Private workflows in HealthOmics

Use Private workflows when you want to create your own workflow definition. The workflow
definition specifies information about the workflow and defines the workflow tasks. A run is a
single invocation of a workflow, and a task is a single process within the run.

HealthOmics supports workflow definitions that you create in Workflow Description Language
(WDL), Common Workflow Language (CWL), or Nextflow.

HealthOmics workflows provide the following optional features:

• Run groups – You can add private workflows to a run group to control compute usage. A run
group is a collection of workflow runs that share a set of resource limits, such as maximum
concurrent runs and maximum run duration. You set these limits to control the compute
resources that the run group consumes.

• Call caching – You can use a call cache to save and reuse task outputs, which results in shorter
run durations and compute cost savings.

• Sharing workflows – You can share your private workflows with other AWS accounts in the same
Region.

• Workflow versions – You can create versions of a private workflow. Workflow versioning
provides the ability for users to choose when to start using updated functionality. Workflow
versions are immutable and provide the same level of data provenance as workflows.

For information about configuring IAM permissions for workflows, see IAM permissions for
HealthOmics.

For full examples of how to use HealthOmics private workflows, see HealthOmics Github tutorials
or the AWS workshop end to end tutorial for HealthOmics.

Topics

• Creating private workflows in HealthOmics

• Workflow versioning in HealthOmics

• Starting HealthOmics runs

• Deleting runs and run groups in HealthOmics

• Creating HealthOmics run groups

Version latest 12

https://github.com/aws-samples/amazon-omics-tutorials
https://catalog.workshops.aws/amazon-omics-end-to-end

AWS HealthOmics User Guide

• Call caching for HealthOmics runs

• Sharing HealthOmics workflows

Creating private workflows in HealthOmics

Private workflows depend on a variety of resources that you create and configure before creating
the workflow:

• Input data – Input data for the workflow, stored in an Amazon S3 bucket or a HealthOmics
sequence store. For more information, see HealthOmics storage.

• Workflow definition files – Define your workflow in one or more workflow definition files,
written in WDL, Nextflow, or CWL. The workflow definition specifies the inputs and outputs for
runs that use the workflow. It also includes specifications for the runs and run tasks for your
workflow, including compute and memory requirements.

• (Optional) Parameter template – You can create a parameter template file that defines the run
parameters, or HealthOmics can generate the parameter template for you.

• Amazon ECR container images – Create one or more container images for the workflow. Store
the images in a private Amazon ECR repository.

• (Optional) Sentieon licenses – Request a Sentieon license if you plan to use Sentieon software in
a private workflow.

Optionally, you can run a linter on the workflow definition before or after you create the workflow.
The linter topic describes the linters available in HealthOmics.

Topics

• Workflow definition files in HealthOmics

• Parameter template files for HealthOmics workflows

• Container images in Amazon ECR for private workflows

• Requesting Sentieon licenses for private workflows

• Workflow linters in HealthOmics

• Creating or updating a workflow

Creating workflows Version latest 13

AWS HealthOmics User Guide

Workflow definition files in HealthOmics

You use a workflow definition to specify information about the workflow, runs, and the tasks in the
runs. You create workflow definitions in one or more files using a workflow definition language.
HealthOmics supports workflow definitions written in WDL, Nextflow, or CWL. For details about
each of these languages, see Writing workflow definitions for HealthOmics workflows

You specify the following types of information in the workflow definition:

• Language version – The language and version of the workflow definition.

• Compute and memory – The compute and memory requirements for tasks in the workflow.

• Inputs – Location of the inputs to the workflow tasks. For more information, see HealthOmics
run inputs.

• Outputs – Location to save the outputs that the tasks generate.

• Task resources – Compute and memory requirements for each task.

• Accelerators – other resources that the tasks require, such as accelerators.

Topics

• HealthOmics workflow definition requirements

• Version support for HealthOmics workflow definition languages

• Compute and memory requirements for HealthOmics tasks

• Task outputs in a HealthOmics workflow definition

• Task resources in a HealthOmics workflow definition

• Task accelerators in a HealthOmics workflow definition

• Writing workflow definitions for HealthOmics workflows

HealthOmics workflow definition requirements

The HealthOmics workflow definition files must meet the following requirements:

• Declare all parameters in the workflow definition file. Parameters include input and output
locations, Amazon ECR container repositories, and runtime parameters such as allocated memory
or CPU.

• Your workflow tasks can't access resources using the public internet. Make sure that the workflow
can access all input data from AWS resources such as S3.

Workflow definition files Version latest 14

AWS HealthOmics User Guide

• Declare the output files in the workflow definition file. If you want to copy intermediate run files
to the output location, declare them as workflow outputs.

• The input and output locations must be in the same Region as the workflow run.

• HealthOmics storage workflow inputs must be in ACTIVE status. HealthOmics won't import
inputs with an ARCHIVED status, causing the workflow to fail. For information about Amazon S3
object inputs, see HealthOmics run inputs.

• HealthOmics provides the following methods to specify the main entrypoint for the workflow:

• If the workflow definition consists of one file, that file is the main entrypoint for the workflow

• If the workflow definition consists of multiple files, you can name the entrypoint file
main.ext, where ext is either wdl, nf, or cwl for WDL, Nextflow, or CWL, respectively.

• When you create the workflow, you can specify a main entrypoint that isn't named main.

• Before you create a workflow, create a zip archive of the workflow definition files and any
dependencies, such as subworkflows.

• We recommend that you declare Amazon ECR containers in the workflow as input parameters for
validation of the Amazon ECR permissions.

Additional Nextflow considerations:

• /bin

Nextflow workflow definitions may include a /bin folder with executable scripts. This path has
read-only plus executable access to tasks. Tasks that rely on these scripts should use a container
built with the appropriate script interpreters. Best practice is to call the interpreter directly. For
example:

process my_bin_task {
 ...
 script:
 """
 python3 my_python_script.py
 """
}

• includeConfig

Workflow definition files Version latest 15

AWS HealthOmics User Guide

Nextflow-based workflow definitions can include nextflow.config files that help to abstract
parameter definitions or process resource profiles. To support development and execution of
Nextflow pipelines on multiple environments, use a HealthOmics-specific configuration that you
add to the global config using the includeConfig directive. To maintain portability, configure the
workflow to include the file only when running on HealthOmics by using the following code:

// at the end of the nextflow.config file
if ("$AWS_WORKFLOW_RUN") {
 includeConfig 'conf/omics.config'
}

• Reports

HealthOmics doesn't support engine-generated dag, trace, and execution reports. You can
generate alternatives to the trace and execution reports using a combination of GetRun and
GetRunTask API calls.

Additional CWL considerations:

• Container image uri interpolation

HealthOmics allows the dockerPull property of the DockerRequirement to be an inline javascript
expression. For example:

requirements:
 DockerRequirement:
 dockerPull: "$(inputs.container_image)"

This allows you to specifying container image URIs as input parameters to the workflow.

• Javascript expressions

Javascript expressions must be strict mode compliant.

• Operation process

HealthOmics doesn't support CWL Operation processes.

Workflow definition files Version latest 16

AWS HealthOmics User Guide

Version support for HealthOmics workflow definition languages

HealthOmics supports workflow definition files written in Nextflow, WDL, or CWL. The following
sections provide information about HealthOmics version support for these languages.

Topics

• WDL version support

• CWL version support

• Nextflow version support

WDL version support

HealthOmics supports versions 1.0, 1.1, and the development version of the WDL specification.

Every WDL document must include a version statement to specify which version (major and minor)
of the specification it adheres to. For more information about versions, see WDL versioning

Versions 1.0 and 1.1 of the WDL specification do not support the Directory type. To use the
Directory type for inputs or outputs, set the version to development in the first line of the file:

version development # first line of .wdl file
 ... remainder of the file ...

CWL version support

HealthOmics supports versions 1.0, 1.1, and 1.2 of the CWL language.

You can specify the language version in the CWL workflow definition file. For more information
about CWL, see the CWL user guide

Nextflow version support

HealthOmics actively supports two Nextflow stable versions. Nextflow typically releases a stable
version every six months. HealthOmics doesn't support the monthly “edge” releases.

Supported versions

HealthOmics supports the following Nextflow versions:

• Nextflow v22.04.01 DSL 1 and DSL 2

• Nextflow v23.10.0 DSL 2

Workflow definition files Version latest 17

https://github.com/openwdl/wdl/blob/wdl-1.1/SPEC.md#versioning
https://github.com/common-workflow-language/user_guide

AWS HealthOmics User Guide

Detect and process Nextflow versions

HealthOmics detects the DSL version and Nextflow version that you specify. It automatically
determines the best Nextflow version to run based on these inputs.

DSL version

HealthOmics detects the requested DSL version in your workflow definition file. For example, you
can specify: nextflow.enable.dsl=2.

HealthOmics supports DSL 2 by default. It provides backwards compatibility with DSL 1, if specified
in your workflow definition file.

• If you specify DSL 2, HealthOmics runs the latest supported Nextflow version (unless you specify
Nextflow v22.04).

• If you specify DSL 1, HealthOmics runs Nextflow v22.04 DSL1 (the only supported version that
runs DSL 1).

• If you don't specify a DSL version, or if HealthOmics can’t parse the DSL information for any
reason (such as syntax errors in your workflow definition file), HealthOmics defaults to DSL 2.

• To upgrade your workflow from DSL 1 to DSL 2 to take advantage of the latest Nextflow versions
and software features, see Migrating from DSL 1.

Nextflow versions

HealthOmics detects the requested Nextflow version in the Nextflow configuration file
(nextflow.config), if you provide this file. For more information, see Nextflow configuration.

You can specify a Nextflow version or a range of versions using the following syntax:

 // exact match
 manifest.nextflowVersion = '1.2.3'

 // 1.2 or later (excluding 2 and later)
 manifest.nextflowVersion = '1.2+'

 // 1.2 or later
 manifest.nextflowVersion = '>=1.2'

 // any version in the range 1.2 to 1.5

Workflow definition files Version latest 18

https://nextflow.io/docs/latest/dsl1.html
https://nextflow.io/docs/latest/config.html

AWS HealthOmics User Guide

 manifest.nextflowVersion = '>=1.2, <=1.5'

 // use the "!" prefix to stop execution if the current version does not match the
 required version.
 manifest.nextflowVersion = '!>=1.2'

HealthOmics processes the Nextflow version information as follows:

• If you use = to specify an exact version that HealthOmics supports, HealthOmics uses that
version.

• If you use ! to specify an exact version, HealthOmics ignores the prefix (we don’t support hard
version matches) and uses the latest supported Nextflow version. HealthOmics doesn't fail the
run, but adds a warning message to the run manifest logs.

• If you specify a range of versions, HealthOmics uses the latest supported version in that range.

• If there is no requested version, or if the requested versions aren't valid or can’t be parsed for any
reason:

• If you specified DSL 1, HealthOmics runs Nextflow v22.04.

• Otherwise, HealthOmics runs the latest supported version.

You can retrieve the following information about the Nextflow version that HealthOmics used for
each run:

• The run logs contain information about the actual Nextflow version that HealthOmics used for
the run.

• HealthOmics adds warnings in the run logs if there isn't a direct match with your requested
version or if it needed to use a different version than you specified.

• The response to the GetRun API operation includes a field (engineVersion) with the actual
Nextflow version that HealthOmics used for the run. For example:

"engineVersion":"22.04.0"

Compute and memory requirements for HealthOmics tasks

HealthOmics runs your private workflow tasks in an omics instance. HealthOmics provides a variety
of instance types to accommodate different types of tasks. Each instance type has a fixed memory
and vCPU configuration (and fixed GPU configuration for accelerated computing instance types).

Workflow definition files Version latest 19

AWS HealthOmics User Guide

The cost of using an omics instance varies depending on the instance type. For details, see the
HealthOmics Pricing page.

For tasks in a workflow, you specify the required memory and vCPUs in the workflow definition file.
When a workflow task runs, HealthOmics allocates the smallest omics instance that accommodates
the requested memory and vCPUs. For example, if a task needs 64 GiB of memory and 8 vCPUs,
HealthOmics selects omics.r.2xlarge.

We recommend that you review the instance types and set your requested vCPUs and memory size
to match the instance that best meets your needs. The task container uses the number of vCPUs
and the memory size that you specify in your workflow definition file, even if the instance type has
additional vCPUs and memory.

The following list contains additional information about vCPU and memory allocation:

• Container resource allocations are hard limits. If a task runs out of memory or attempts to use
additional vCPUs , the task generates an error log and exits.

• If you don’t specify any compute or memory requirements, HealthOmics selects omics.c.large
and defaults to a configuration with 1 vCPU and 1 GiB of memory.

• The minimum configuration that you can request is 1 vCPU and 1 GiB of memory.

• If you specify vCPUs, memory, or GPUs that exceeds the supported instance types, HealthOmics
throws an error message and the workflow fails validations

• If you specify fractional units, HealthOmics rounds up to the nearest integer.

• HealthOmics reserves a small amount of memory (5%) for management and logging agents, so
the full memory allocation might not always be available to the application in the task.

• HealthOmics matches instance types to fit the compute and memory requirements that you
specify, and may use a mix of hardware generations. For this reason, there can be some minor
variances in task run times for the same task.

These topics provide details about the instance types that HealthOmics supports.

Topics

• Standard instance types

• Compute-optimized instances

• Memory-optimized instances

• Accelerated-computing instances

Workflow definition files Version latest 20

https://aws.amazon.com/healthomics/pricing/

AWS HealthOmics User Guide

Note

For standard, compute, and memory optimized instances, increase the instance bandwidth
size if the instance requires a higher throughput. Amazon EC2 instances with fewer than 16
vCPUs (size 4xl and smaller) can experience throughput bursting. For more information on
Amazon EC2 instance throughput, see Amazon EC2 available instance bandwidth.

Standard instance types

For standard instance types, the configurations aim for a balance of compute power and memory.

HealthOmics supports the 32xlarge and 48xlarge instances in these regions: US West (Oregon) and
US East (N. Virginia).

Instance Number of vCPUs Memory

omics.m.large 2 8 GiB

omics.m.xlarge 4 16 GiB

omics.m.2xlarge 8 32 GiB

omics.m.4xlarge 16 64 GiB

omics.m.8xlarge 32 128 GiB

omics.m.12xlarge 48 192 GiB

omics.m.16xlarge 64 256 GiB

omics.m.24xlarge 96 384 GiB

omics.m.32xlarge 128 512 GiB

omics.m.48xlarge 192 768 GiB

Workflow definition files Version latest 21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html#available-instance-bandwidth

AWS HealthOmics User Guide

Compute-optimized instances

For compute-optimized instance types, the configurations have more compute power and less
memory.

HealthOmics supports the 32xlarge and 48xlarge instances in these regions: US West (Oregon) and
US East (N. Virginia).

Instance Number of vCPUs Memory

omics.c.large 2 4 GiB

omics.c.xlarge 4 8 GiB

omics.c.2xlarge 8 16 GiB

omics.c.4xlarge 16 32 GiB

omics.c.8xlarge 32 64 GiB

omics.c.12xlarge 48 96 GiB

omics.c.16xlarge 64 128 GiB

omics.c.24xlarge 96 192 GiB

omics.c.32xlarge 128 256 GiB

omics.c.48xlarge 192 384 GiB

Memory-optimized instances

For memory-optimized instance types, the configurations have less compute power and more
memory.

HealthOmics supports the 32xlarge and 48xlarge instances in these regions: US West (Oregon) and
US East (N. Virginia).

Workflow definition files Version latest 22

AWS HealthOmics User Guide

Instance Number of vCPUs Memory

omics.r.large 2 16 GiB

omics.r.xlarge 4 32 GiB

omics.r.2xlarge 8 64 GiB

omics.r.4xlarge 16 128 GiB

omics.r.8xlarge 32 256 GiB

omics.r.12xlarge 48 384 GiB

omics.r.16xlarge 64 512 GiB

omics.r.24xlarge 96 768 GiB

omics.r.32xlarge 128 1024 GiB

omics.r.48xlarge 192 1536 GiB

Accelerated-computing instances

You can optionally specify GPU resources for each task in a workflow, so that HealthOmics
allocates an accelerated-computing instance for the task. For information on how to specify the
GPU information in the workflow definition file, see Task accelerators in a HealthOmics workflow
definition.

If you specify a GPU that supports multiple instance types, HealthOmics selects the instance type
based on availability. If both instance types are available, HealthOmics gives preference to the
lower cost instance.

G4 instances aren't supported in the Israel (Tel Aviv) Region. G5 instances aren't support in the Asia
Pacific (Singapore) Region.

Topics

• G6 and G6e instance types

• G4 and G5 instances

Workflow definition files Version latest 23

AWS HealthOmics User Guide

G6 and G6e instance types

HealthOmics supports the following G6 accelerated-computing instance configurations. All
omics.g6 instances use Nvidia L4 or Nvidia L4 A10G GPUs.

HealthOmics supports the G6 and G6e instances in these regions: US West (Oregon) and US East
(N. Virginia).

Instance Number of
vCPUs

Memory Number of
GPUs

GPU
memory

omics.g6.
xlarge

4 16 GiB 1 48 GiB

omics.g6.
2xlarge

8 32 GiB 1 48 GiB

omics.g6.
4xlarge

16 64 GiB 1 48 GiB

omics.g6.
8xlarge

32 128 GiB 1 48 GiB

omics.g6.
12xlarge

48 192 GiB 4 192 GiB

omics.g6.
16xlarge

64 256 GiB 1 48 GiB

omics.g6.
24xlarge

96 192 GiB 4 192 GiB

All omics.g6e instances use Nvidia L40s GPUs.

Instance Number of
vCPUs

Memory Number of
GPUs

GPU
memory

omics.g6e
.xlarge

4 32 GiB 1 24 GiB

Workflow definition files Version latest 24

AWS HealthOmics User Guide

Instance Number of
vCPUs

Memory Number of
GPUs

GPU
memory

omics.g6e
.2xlarge

8 64 GiB 1 24 GiB

omics.g6e
.4xlarge

16 128 GiB 1 24 GiB

omics.g6e
.8xlarge

32 256 GiB 1 24 GiB

omics.g6e
.12xlarge

48 384 GiB 4 96 GiB

omics.g6e
.16xlarge

64 512 GiB 1 96 GiB

omics.g6e
.24xlarge

96 768 GiB 4 96 GiB

G4 and G5 instances

HealthOmics supports the following G4 and G5 accelerated-computing instance configurations.

All omics.g5 instances use Nvidia L4 A10G, Nvidia Tesla A10G, or Nvidia Tesla T4 A10G GPUs.

Instance Number of
vCPUs

Memory Number of
GPUs

GPU
memory

omics.g5.
xlarge

4 16 GiB 1 24 GiB

omics.g5.
2xlarge

8 32 GiB 1 24 GiB

omics.g5.
4xlarge

16 64 GiB 1 24 GiB

Workflow definition files Version latest 25

AWS HealthOmics User Guide

Instance Number of
vCPUs

Memory Number of
GPUs

GPU
memory

omics.g5.
8xlarge

32 128 GiB 1 24 GiB

omics.g5.
12xlarge

48 192 GiB 4 96 GiB

omics.g5.
16xlarge

64 256 GiB 1 24 GiB

omics.g5.
24xlarge

96 384 GiB 4 96 GiB

All omics.g4dn instances use Nvidia Tesla T4 or Nvidia Tesla T4 A10G GPUs.

Instance Number of
vCPUs

Memory Number of
GPUs

GPU
memory

omics.g4d
n.xlarge

4 16 GiB 1 16 GiB

omics.g4d
n.2xlarge

8 32 GiB 1 16 GiB

omics.g4d
n.4xlarge

16 64 GiB 1 16 GiB

omics.g4d
n.8xlarge

32 128 GiB 1 16 GiB

omics.g4d
n.12xlarge

48 192 GiB 4 64 GiB

omics.g4d
n.16xlarge

64 256 GiB 1 24 GiB

Workflow definition files Version latest 26

AWS HealthOmics User Guide

Task outputs in a HealthOmics workflow definition

You specify task outputs in the workflow definition. By default, HealthOmics discards all
intermediate task files when the workflow completes. To export an intermediate file, you define it
as an output.

If you use call caching, HealthOmics saves task outputs to the cache, including any intermediate
files that you define as outputs.

The following topics include task definition examples for each of the workflow definition
languages.

Topics

• Task outputs for WDL

• Task outputs for Nextflow

• Task outputs for CWL

Task outputs for WDL

For workflow definitions written in WDL, define your outputs in the top level workflow outputs
section.

HealthOmics

Topics

• Task output for STDOUT

• Task output for STDERR

• Task output to a file

• Task output to an array of files

Task output for STDOUT

This example creates a task named SayHello that echoes the STDOUT content to the task output
file. The WDL stdout function captures the STDOUT content (in this example, the input string Hello
World!) in file stdout_file.

Because HealthOmics creates logs for all STDOUT content, the output also appears in CloudWatch
Logs, along with other STDERR logging information for the task.

Workflow definition files Version latest 27

AWS HealthOmics User Guide

version 1.0
 workflow HelloWorld {
 input {
 String message = "Hello, World!"
 String ubuntu_container = "123456789012.dkr.ecr.us-east-1.amazonaws.com/
dockerhub/library/ubuntu:20.04"
 }

 call SayHello {
 input:
 message = message,
 container = ubuntu_container
 }

 output {
 File stdout_file = SayHello.stdout_file
 }
}

task SayHello {
 input {
 String message
 String container
 }

 command <<<
 echo "~{message}"
 echo "Current date: $(date)"
 echo "This message was printed to STDOUT"
 >>>

 runtime {
 docker: container
 cpu: 1
 memory: "2 GB"
 }

 output {
 File stdout_file = stdout()
 }
}

Workflow definition files Version latest 28

AWS HealthOmics User Guide

Task output for STDERR

This example creates a task named SayHello that echoes the STDERR content to the task output
file. The WDL stderr function captures the STDERR content (in this example, the input string Hello
World!) in file stderr_file.

Because HealthOmics creates logs for all STDERR content, the output will appear in CloudWatch
Logs, along with other STDERR logging information for the task.

version 1.0
 workflow HelloWorld {
 input {
 String message = "Hello, World!"
 String ubuntu_container = "123456789012.dkr.ecr.us-east-1.amazonaws.com/
dockerhub/library/ubuntu:20.04"
 }

 call SayHello {
 input:
 message = message,
 container = ubuntu_container
 }

 output {
 File stderr_file = SayHello.stderr_file
 }
}

task SayHello {
 input {
 String message
 String container
 }

 command <<<
 echo "~{message}" >&2
 echo "Current date: $(date)" >&2
 echo "This message was printed to STDERR" >&2
 >>>

 runtime {
 docker: container
 cpu: 1

Workflow definition files Version latest 29

AWS HealthOmics User Guide

 memory: "2 GB"
 }

 output {
 File stderr_file = stderr()
 }
}

Task output to a file

In this example, the SayHello task creates two files (message.txt and info.txt) and explicitly declares
these files as the named outputs (message_file and info_file).

version 1.0
workflow HelloWorld {
 input {
 String message = "Hello, World!"
 String ubuntu_container = "123456789012.dkr.ecr.us-east-1.amazonaws.com/
dockerhub/library/ubuntu:20.04"
 }

 call SayHello {
 input:
 message = message,
 container = ubuntu_container
 }

 output {
 File message_file = SayHello.message_file
 File info_file = SayHello.info_file
 }
}

task SayHello {
 input {
 String message
 String container
 }

 command <<<
 # Create message file
 echo "~{message}" > message.txt

Workflow definition files Version latest 30

AWS HealthOmics User Guide

 # Create info file with date and additional information
 echo "Current date: $(date)" > info.txt
 echo "This message was saved to a file" >> info.txt
 >>>

 runtime {
 docker: container
 cpu: 1
 memory: "2 GB"
 }

 output {
 File message_file = "message.txt"
 File info_file = "info.txt"
 }
}

Task output to an array of files

In this example, the GenerateGreetings task generates an array of files as the task output. The
task dynamically generates one greeting file for each member of the input array names. Because
the file names are not known until runtime, the output definition uses the WDL glob() function to
output all files that match the pattern *_greeting.txt.

version 1.0
 workflow HelloArray {
 input {
 Array[String] names = ["World", "Friend", "Developer"]
 String ubuntu_container = "123456789012.dkr.ecr.us-east-1.amazonaws.com/
dockerhub/library/ubuntu:20.04"
 }

 call GenerateGreetings {
 input:
 names = names,
 container = ubuntu_container
 }

 output {
 Array[File] greeting_files = GenerateGreetings.greeting_files
 }
}

Workflow definition files Version latest 31

AWS HealthOmics User Guide

task GenerateGreetings {
 input {
 Array[String] names
 String container
 }

 command <<<
 # Create a greeting file for each name
 for name in ~{sep=" " names}; do
 echo "Hello, $name!" > ${name}_greeting.txt
 done
 >>>

 runtime {
 docker: container
 cpu: 1
 memory: "2 GB"
 }

 output {
 Array[File] greeting_files = glob("*_greeting.txt")
 }
 }

Task outputs for Nextflow

For workflow definitions written in Nextflow, define a publishDir directive to export task content
to your output Amazon S3 bucket. Set the publishDir value to /mnt/workflow/pubdir.

For HealthOmics to export files to Amazon S3, the files must be in this directory.

If a task produces a group of output files for use as inputs to a subsequent task, we recommend
that you group these files in a directory and emit the directory as a task output. Enumerating each
individual file can result in an I/O bottleneck in the underlying file system. For example:

process my_task {
 ...
 // recommended
 output "output-folder/", emit: output

 // not recommended
 // output "output-folder/**", emit: output
 ...

Workflow definition files Version latest 32

AWS HealthOmics User Guide

 }

Task outputs for CWL

For workflow definitions written in CWL, you can specify the task outputs using
CommandLineTool tasks. The following sections show examples of CommandLineTool tasks that
define different types of outputs.

Topics

• Task output for STDOUT

• Task output for STDERR

• Task output to a file

• Task output to an array of files

Task output for STDOUT

This example creates a CommandLineTool task that echoes the STDOUT content to a text output
file named output.txt. For example, if you provide the following input, the resulting task output is
Hello World! in the output.txt file.

{
 "message": "Hello World!"
}

The outputs directive specifies that the output name is example_out and it’s type is stdout.
For a downstream task to consume the output of this task, it would refer to the output as
example_out.

Because HealthOmics creates logs for all STDERR and STDOUT content, the output also appears in
CloudWatch Logs, along with other STDERR logging information for the task.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: echo
stdout: output.txt
inputs:
 message:
 type: string
 inputBinding:

Workflow definition files Version latest 33

AWS HealthOmics User Guide

 position: 1
outputs:
 example_out:
 type: stdout

requirements:
 DockerRequirement:
 dockerPull: 123456789012.dkr.ecr.us-east-1.amazonaws.com/dockerhub/library/
ubuntu:20.04
 ResourceRequirement:
 ramMin: 2048
 coresMin: 1

Task output for STDERR

This example creates a CommandLineTool task that echoes the STDERR content to a text output
file named stderr.txt. The task modifies the baseCommand so that echo writes to STDERR (instead
of STDOUT).

The outputs directive specifies that the output name is stderr_out and it’s type is stderr.

Because HealthOmics creates logs for all STDERR and STDOUT content, the output will appear in
CloudWatch Logs, along with other STDERR logging information for the task.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: [bash, -c]
stderr: stderr.txt
inputs:
 message:
 type: string
 inputBinding:
 position: 1
 shellQuote: true
 valueFrom: "echo $(self) >&2"
outputs:
 stderr_out:
 type: stderr

requirements:
 DockerRequirement:
 dockerPull: 123456789012.dkr.ecr.us-east-1.amazonaws.com/dockerhub/library/
ubuntu:20.04

Workflow definition files Version latest 34

AWS HealthOmics User Guide

 ResourceRequirement:
 ramMin: 2048
 coresMin: 1

Task output to a file

This example creates a CommandLineTool task that creates a compressed tar archive from the
input files. You provide the name of the archive as an input parameter (archive_name).

The outputs directive specifies that the archive_file output type is File, and it uses a
reference to the input parameter archive_name to bind to the output file.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: [tar, cfz]
inputs:
 archive_name:
 type: string
 inputBinding:
 position: 1
 input_files:
 type: File[]
 inputBinding:
 position: 2

outputs:
 archive_file:
 type: File
 outputBinding:
 glob: "$(inputs.archive_name)"

requirements:
 DockerRequirement:
 dockerPull: 123456789012.dkr.ecr.us-east-1.amazonaws.com/dockerhub/library/
ubuntu:20.04
 ResourceRequirement:
 ramMin: 2048
 coresMin: 1

Task output to an array of files

In this example, the CommandLineTool task creates an array of files using the touch command.
The command uses the strings in the files-to-create input parameter to name the files. The

Workflow definition files Version latest 35

AWS HealthOmics User Guide

command outputs an array of files. The array includes any files in the working directory that match
the glob pattern. This example uses a wildcard pattern ("*") that matches all files.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: touch
inputs:
 files-to-create:
 type:
 type: array
 items: string
 inputBinding:
 position: 1
outputs:
 output-files:
 type:
 type: array
 items: File
 outputBinding:
 glob: "*"

requirements:
 DockerRequirement:
 dockerPull: 123456789012.dkr.ecr.us-east-1.amazonaws.com/dockerhub/library/
ubuntu:20.04
 ResourceRequirement:
 ramMin: 2048
 coresMin: 1

Task resources in a HealthOmics workflow definition

In the workflow definition, define the following for each task:

• The container image for task. For more information, see Container images in Amazon ECR for
private workflows.

• The number of CPUs and memory required for the task. For more information, see Compute and
memory requirements for HealthOmics tasks.

HealthOmics ignores any per-task storage specifications. HealthOmics provides run storage that all
tasks in the run can access. For more information, see Run storage types in HealthOmics workflows.

Workflow definition files Version latest 36

AWS HealthOmics User Guide

WDL

task my_task {
 runtime {
 container: "<aws-account-id>.dkr.ecr.<aws-region>.amazonaws.com/<image-name>"
 cpu: 2
 memory: "4 GB"
 }
 ...
}

For a WDL workflow, HealthOmics attempts up to two retries for a task that fails because of
service errors (API request returns a 5XX HTTP status code). For more information about task
retries, see Task Retries.

You can opt out of the retry behavior by specifying the following configuration for the task in
the WDL definition file:

runtime {
 preemptible: 0
}

NextFlow

process my_task {
 container "<aws-account-id>.dkr.ecr.<aws-region>.amazonaws.com/<image-name>"
 cpus 2
 memory "4 GiB"
 ...
}

CWL

cwlVersion: v1.2
class: CommandLineTool
requirements:
 DockerRequirement:
 dockerPull: "<aws-account-id>.dkr.ecr.<aws-region>.amazonaws.com/<image-
name>"
 ResourceRequirement:
 coresMax: 2
 ramMax: 4000 # specified in mebibytes

Workflow definition files Version latest 37

AWS HealthOmics User Guide

Task accelerators in a HealthOmics workflow definition

In the workflow definition, you can optionally specify the GPU accelerator-spec for a task.
HealthOmics supports the following accelerator-spec values, along with the supported instance
types:

Accelerator
spec

Healthomi
cs instance
types

nvidia-tesla-
t4

G4

nvidia-tesla-
t4-a10g

G4 and G5

nvidia-tesla-
a10g

G5

nvidia-l4-
a10g

G5 and G6

nvidia-l4 G6

nvidia-l40s G6e

If you specify an accelerator type that supports multiple instance types, HealthOmics selects the
instance type based on available capacity. If both instance types are available, HealthOmics gives
preference to the lower cost instance.

For details about the instance types, see Accelerated-computing instances.

In the following example, the workflow definition specifies nvidia-l4 as the accelarator:

WDL

task my_task {

Workflow definition files Version latest 38

AWS HealthOmics User Guide

 runtime {
 ...
 acceleratorCount: 1
 acceleratorType: "nvidia-l4"
 }
 ...
}

NextFlow

process my_task {
 ...
 accelerator 1, type: "nvidia-l4"
 ...
}

CWL

cwlVersion: v1.2
class: CommandLineTool
requirements:
 ...
 cwltool:CUDARequirement:
 cudaDeviceCountMin: 1
 cudaComputeCapability: "nvidia-l4"
 cudaVersionMin: "1.0"

Writing workflow definitions for HealthOmics workflows

HealthOmics supports workflow definitions written in WDL, Nextflow, or CWL. To learn more about
these workflow languages, see the specifications for WDL, Nextflow, or CWL.

HealthOmics supports version management for the three workflow definition languages. For more
information, see Version support for HealthOmics workflow definition languages .

Topics

• Writing workflows in WDL

• Writing workflows in Nextflow

• Writing workflows in CWL

Workflow definition files Version latest 39

https://github.com/openwdl/wdl/blob/main/versions/1.1/SPEC.md
https://www.nextflow.io/docs/latest/script.html
http://www.commonwl.org/user_guide/

AWS HealthOmics User Guide

• Example workflow definition

• WDL workflow definition example

Writing workflows in WDL

The following tables show how inputs in WDL map to the matching primitive type or complex
JSON type. Type coercion is limited and whenever possible, types should be explicit.

Primitive types

WDL type JSON type Example WDL Example JSON
key and value

Notes

Boolean boolean Boolean b "b": true The value must
be lower case
and unquoted.

Int integer Int i "i": 7 Must be
unquoted.

Float number Float f "f": 42.2 Must be
unquoted.

String string String s "s":
"characte
rs"

JSON strings
that are a URI
must be mapped
to a WDL file to
be imported.

File string File f "f": "s3://
amzn-
s3-demo-
bucket1/
path/to/f
ile"

Amazon S3 and
HealthOmics
storage URIs
are imported as
long as the IAM
role provided
for the workflow
has read access
to these objects.
No other URI

Workflow definition files Version latest 40

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

schemes are
supported (such
as file://,
https://,
and ftp://).
The URI must
specify an
object. It cannot
be a directory
meaning it can
not end with a /.

Workflow definition files Version latest 41

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

Directory string Directory d "d": "s3://
bucket/
path/"

The Directory
 type isn't

included in WDL
1.0 or 1.1, so
you will need to
add version
development
to the header
of the WDL file.
The URI must
be a Amazon S3
URI and with a
prefix that ends
with a '/'. All
contents of the
directory will
be recursively
copied to the
workflow as a
single download.
The Directory

 should only
contain files
related to the
workflow.

Complex types in WDL are data structures comprised of primitive types. Data structures such as
lists will be converted to arrays.

Workflow definition files Version latest 42

AWS HealthOmics User Guide

Complex types

WDL type JSON type Example WDL Example JSON
key and value

Notes

Array array Array[Int]
nums

“nums": [1,
2, 3]

The members
of the array
must follow the
format of the
WDL array type.

Pair object Pair[Stri
ng, Int]
str_to_i

“str_to_i
": {"left":
"0",
"right": 1}

Each value of
the pair must
use the JSON
format of its
matching WDL
type.

Map object Map[Int,
String]
int_to_st
ring

"int_to_s
tring":
{ 2:
"hello", 1:
"goodbye" }

Each entry in the
map must use
the JSON format
of its matching
WDL type.

Struct object struct
 SampleBam
AndIndex {
 String
 sample_na
me
 File bam
 File
 bam_index
} SampleBam
AndIndex
 b_and_i

"b_and_i":
 {
 "sample_n
ame":
 "NA12878"
,
 "bam":
 "s3://amz
n-s3-demo
-bucket1/
NA12878.b
am",
 "bam_inde
x": "s3://
amzn-
s3-demo-

The names
of the struct
members must
exactly match
the names of
the JSON object
keys. Each value
must use the
JSON format of
the matching
WDL type.

Workflow definition files Version latest 43

AWS HealthOmics User Guide

WDL type JSON type Example WDL Example JSON
key and value

Notes

bucket1/
NA12878.b
am.bai"
}

Object N/A N/A N/A The WDL
Object type
is outdated
and should be
replaced by
Struct in all
cases.

The HealthOmics workflow engine doesn't support qualified or name-spaced input parameters.
Handling of qualified parameters and their mapping to WDL parameters isn't specified by the WDL
language and can be ambiguous. For these reasons, best practice is to declare all input parameters
in the top level (main) workflow definition file and pass them down to subworkflow calls using
standard WDL mechanisms.

Writing workflows in Nextflow

HealthOmics suppports Nextflow DSL1 and DSL2. For details, see Nextflow version support.

Nextflow DSL2 is based on the Groovy programming language, so parameters are dynamic and
type coercion is possible using the same rules as Groovy. Parameters and values supplied by the
input JSON are available in the parameters (params) map of the workflow.

Note

HealthOmics supports the nf-schema and nf-validation plugins with Nextflow version
v23.10 (but not v22.04).

The following information relates to using these plugins with Nextflow v23.10 workflows:

Workflow definition files Version latest 44

AWS HealthOmics User Guide

• HealthOmics pre-installs the nf-schema@2.3.0 and nf-validation@1.1.1 plugins. HealthOmics
ignores any other plugin versions that you specify in the nextflow.config file.

• You cannot retrieve additional plugins during a workflow run.

• In Nextflow v24.04 and higher, the nf-validation plugin is renamed to nf-schema. For more
information, see nf-schema in the Nextflow GitHub repository.

When an Amazon S3 or HealthOmics URI is used to construct a Nextflow file or path object, it
makes the matching object available to the workflow, as long as read access is granted. The use
of prefixes or directories is allowed for Amazon S3 URIs. For examples, see Amazon S3 input
parameter formats.

HealthOmics supports the use of glob patterns in Amazon S3 URIs or HealthOmics Storage URIs.
Use Glob patterns in the workflow definition for the creation of path or file channels.

For workflows written in Nextflow, define a publishDir directive to export task content to your
output Amazon S3 bucket. As shown in the following example, set the publishDir value to /mnt/
workflow/pubdir. To export files to Amazon S3, the files must be in this directory.

 nextflow.enable.dsl=2

workflow {
 CramToBamTask(params.ref_fasta, params.ref_fasta_index, params.ref_dict,
 params.input_cram, params.sample_name)
 ValidateSamFile(CramToBamTask.out.outputBam)
}

process CramToBamTask {
 container "<account>.dkr.ecr.us-west-2.amazonaws.com/genomes-in-the-cloud"

 publishDir "/mnt/workflow/pubdir"

 input:
 path ref_fasta
 path ref_fasta_index
 path ref_dict
 path input_cram
 val sample_name

 output:
 path "${sample_name}.bam", emit: outputBam

Workflow definition files Version latest 45

https://github.com/nextflow-io/nf-schema

AWS HealthOmics User Guide

 path "${sample_name}.bai", emit: outputBai

 script:
 """
 set -eo pipefail

 samtools view -h -T $ref_fasta $input_cram |
 samtools view -b -o ${sample_name}.bam -
 samtools index -b ${sample_name}.bam
 mv ${sample_name}.bam.bai ${sample_name}.bai
 """
}

process ValidateSamFile {
 container "<account>.dkr.ecr.us-west-2.amazonaws.com/genomes-in-the-cloud"

 publishDir "/mnt/workflow/pubdir"

 input:
 file input_bam

 output:
 path "validation_report"

 script:
 """
 java -Xmx3G -jar /usr/gitc/picard.jar \
 ValidateSamFile \
 INPUT=${input_bam} \
 OUTPUT=validation_report \
 MODE=SUMMARY \
 IS_BISULFITE_SEQUENCED=false
 """
}

Writing workflows in CWL

Workflows written in Common Workflow Language, or CWL, offer similar functionality to
workflows written in WDL and Nextflow. You can use Amazon S3 or HealthOmics storage URIs as
input parameters.

If you define input in a secondaryFile in a sub workflow, add the same definition in the main
workflow.

Workflow definition files Version latest 46

AWS HealthOmics User Guide

HealthOmics workflows don't support operation processes. To learn more about operations
processes in CWL workflows, see the CWL documentation.

To convert an existing CWL workflow definition file to use HealthOmics, make the following
changes:

• Replace all Docker container URIs with Amazon ECR URIs.

• Make sure that all the workflow files are declared in the main workflow as input, and all variables
are explicitly defined.

• Make sure that all JavaScript code is strict-mode complaint.

CWL workflows should be defined for each container used. It isn't recommended to hardcode the
dockerPull entry with a fixed Amazon ECR URI.

The following is an example of a workflow written in CWL.

cwlVersion: v1.2
class: Workflow

inputs:
in_file:
 type: File
 secondaryFiles: [.fai]

out_filename: string
docker_image: string

outputs:
copied_file:
 type: File
 outputSource: copy_step/copied_file

steps:
copy_step:
 in:
 in_file: in_file
 out_filename: out_filename
 docker_image: docker_image
 out: [copied_file]

Workflow definition files Version latest 47

https://www.commonwl.org/user_guide/topics/operations.html

AWS HealthOmics User Guide

 run: copy.cwl

The following file defines the copy.cwl task.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: cp

inputs:
in_file:
 type: File
 secondaryFiles: [.fai]
 inputBinding:
 position: 1

out_filename:
 type: string
 inputBinding:
 position: 2
docker_image:
 type: string

outputs:
copied_file:
 type: File
 outputBinding:
 glob: $(inputs.out_filename)

requirements:
InlineJavascriptRequirement: {}
DockerRequirement:
 dockerPull: "$(inputs.docker_image)"

The following is an example of a workflow written in CWL with a GPU requirement.

cwlVersion: v1.2
class: CommandLineTool
baseCommand: ["/bin/bash", "docm_haplotypeCaller.sh"]
$namespaces:
cwltool: http://commonwl.org/cwltool#
requirements:

Workflow definition files Version latest 48

AWS HealthOmics User Guide

cwltool:CUDARequirement:
 cudaDeviceCountMin: 1
 cudaComputeCapability: "nvidia-tesla-t4"
 cudaVersionMin: "1.0"
InlineJavascriptRequirement: {}
InitialWorkDirRequirement:
 listing:
 - entryname: 'docm_haplotypeCaller.sh'
 entry: |
 nvidia-smi --query-gpu=gpu_name,gpu_bus_id,vbios_version --format=csv

inputs: []
outputs: []

Example workflow definition

The following example shows the same workflow definition in WDL, Nextflow, and CWL.

WDL

version 1.1

task my_task {
 runtime { ... }
 inputs {
 File input_file
 String name
 Int threshold
 }

 command <<<
 my_tool --name ~{name} --threshold ~{threshold} ~{input_file}
 >>>

 output {
 File results = "results.txt"
 }
}

workflow my_workflow {
 inputs {
 File input_file
 String name
 Int threshold = 50

Workflow definition files Version latest 49

AWS HealthOmics User Guide

 }

 call my_task {
 input:
 input_file = input_file,
 name = name,
 threshold = threshold
 }
 outputs {
 File results = my_task.results
 }
}

Nextflow

nextflow.enable.dsl = 2

params.input_file = null
params.name = null
params.threshold = 50

process my_task {
 // <directives>

 input:
 path input_file
 val name
 val threshold

 output:
 path 'results.txt', emit: results

 script:
 """
 my_tool --name ${name} --threshold ${threshold} ${input_file}
 """

}

workflow MY_WORKFLOW {
 my_task(
 params.input_file,

Workflow definition files Version latest 50

AWS HealthOmics User Guide

 params.name,
 params.threshold
)
}

workflow {
 MY_WORKFLOW()
}

CWL

cwlVersion: v1.2
class: Workflow

requirements:
 InlineJavascriptRequirement: {}

inputs:
 input_file: File
 name: string
 threshold: int

outputs:
 result:
 type: ...
 outputSource: ...

steps:
 my_task:
 run:
 class: CommandLineTool
 baseCommand: my_tool
 requirements:
 ...
 inputs:
 name:
 type: string
 inputBinding:
 prefix: "--name"
 threshold:
 type: int

Workflow definition files Version latest 51

AWS HealthOmics User Guide

 inputBinding:
 prefix: "--threshold"
 input_file:
 type: File
 inputBinding: {}
 outputs:
 results:
 type: File
 outputBinding:
 glob: results.txt

WDL workflow definition example

The following examples show private workflow definitions for converting from CRAM to BAM in
WDL. The CRAM to BAM workflow defines two tasks and uses tools from the genomes-in-the-
cloud container, which is shown in the example and is publicly available.

The following example shows how to include the Amazon ECR container as a parameter. This
allows HealthOmics to verify the access permissions to your container before it starts the run the
run.

{
 ...
 "gotc_docker":"<account_id>.dkr.ecr.<region>.amazonaws.com/genomes-in-the-
cloud:2.4.7-1603303710"
 }

The following example shows how to specify which files to use in your run, when the files are in an
Amazon S3 bucket.

{
 "input_cram": "s3://amzn-s3-demo-bucket1/inputs/NA12878.cram",
 "ref_dict": "s3://amzn-s3-demo-bucket1/inputs/Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://amzn-s3-demo-bucket1/inputs/Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://amzn-s3-demo-bucket1/inputs/
Homo_sapiens_assembly38.fasta.fai",
 "sample_name": "NA12878"
 }

Workflow definition files Version latest 52

AWS HealthOmics User Guide

If you want to specify files from a sequence store, indicate that as shown in the following example,
using the URI for the sequence store.

{
 "input_cram": "omics://429915189008.storage.us-west-2.amazonaws.com/111122223333/
readSet/4500843795/source1",
 "ref_dict": "s3://amzn-s3-demo-bucket1/inputs/Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://amzn-s3-demo-bucket1/inputs/Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://amzn-s3-demo-bucket1/inputs/
Homo_sapiens_assembly38.fasta.fai",
 "sample_name": "NA12878"
 }

You can then define your workflow in WDL as shown in the following.

 version 1.0
 workflow CramToBamFlow {
 input {
 File ref_fasta
 File ref_fasta_index
 File ref_dict
 File input_cram
 String sample_name
 String gotc_docker = "<account>.dkr.ecr.us-west-2.amazonaws.com/genomes-in-
the-
 cloud:latest"
 }
 #Converts CRAM to SAM to BAM and makes BAI.
 call CramToBamTask{
 input:
 ref_fasta = ref_fasta,
 ref_fasta_index = ref_fasta_index,
 ref_dict = ref_dict,
 input_cram = input_cram,
 sample_name = sample_name,
 docker_image = gotc_docker,
 }
 #Validates Bam.
 call ValidateSamFile{
 input:
 input_bam = CramToBamTask.outputBam,
 docker_image = gotc_docker,
 }

Workflow definition files Version latest 53

AWS HealthOmics User Guide

 #Outputs Bam, Bai, and validation report to the FireCloud data model.
 output {
 File outputBam = CramToBamTask.outputBam
 File outputBai = CramToBamTask.outputBai
 File validation_report = ValidateSamFile.report
 }
 }
 #Task definitions.
 task CramToBamTask {
 input {
 # Command parameters
 File ref_fasta
 File ref_fasta_index
 File ref_dict
 File input_cram
 String sample_name
 # Runtime parameters
 String docker_image
 }
 #Calls samtools view to do the conversion.
 command {
 set -eo pipefail

 samtools view -h -T ~{ref_fasta} ~{input_cram} |
 samtools view -b -o ~{sample_name}.bam -
 samtools index -b ~{sample_name}.bam
 mv ~{sample_name}.bam.bai ~{sample_name}.bai
 }

 #Runtime attributes:
 runtime {
 docker: docker_image
 }

 #Outputs a BAM and BAI with the same sample name
 output {
 File outputBam = "~{sample_name}.bam"
 File outputBai = "~{sample_name}.bai"
 }
 }

 #Validates BAM output to ensure it wasn't corrupted during the file conversion.
 task ValidateSamFile {
 input {

Workflow definition files Version latest 54

AWS HealthOmics User Guide

 File input_bam
 Int machine_mem_size = 4
 String docker_image
 }
 String output_name = basename(input_bam, ".bam") + ".validation_report"
 Int command_mem_size = machine_mem_size - 1
 command {
 java -Xmx~{command_mem_size}G -jar /usr/gitc/picard.jar \
 ValidateSamFile \
 INPUT=~{input_bam} \
 OUTPUT=~{output_name} \
 MODE=SUMMARY \
 IS_BISULFITE_SEQUENCED=false
 }
 runtime {
 docker: docker_image
 }
 #A text file is generated that lists errors or warnings that apply.
 output {
 File report = "~{output_name}"
 }
 }

Parameter template files for HealthOmics workflows

Parameter templates define the input parameters for a workflow. You can define input parameters
to make your workflow more flexible and versatile. For example, you can define a parameter for
the Amazon S3 location of the reference genome files. Users can then run the workflow using
various data sets.

You can create the parameter template for your workflow, or HealthOmics can generate the
parameter template for you.

The parameter template is a JSON file. In the file, each input parameter is a named object that
must match the name of the workflow input. When you start a run, if you don't provide values for
all the required parameters, the run fails.

The input parameter object includes the following attributes:

• description – This required attribute is a string that the console displays in the Start run page.
This description is also retained as run metadata.

Parameter template files Version latest 55

AWS HealthOmics User Guide

• optional – This optional attribute indicates whether the input parameter is optional. If you don't
specify the optional field, the input parameter is required.

The following example parameter template shows how to specify the input parameters.

{
 "myRequiredParameter1": {
 "description": "this parameter is required",
 },
 "myRequiredParameter2": {
 "description": "this parameter is also required",
 "optional": false
 },
 "myOptionalParameter": {
 "description": "this parameter is optional",
 "optional": true
 }
}

Generating parameter templates

HealthOmics generates the parameter template by parsing the workflow definition to detect input
parameters. If you provide a parameter template file for a workflow, the parameters in your file
override the parameters detected in the workflow definition.

There are slight differences between the parsing logic of the CWL, WDL, and Nextflow engines, as
described in the following sections.

Topics

• Parameter detection for CWL

• Parameter detection for WDL

• Parameter detection for Nextflow

Parameter detection for CWL

In the CWL workflow engine, the parsing logic makes the following assumptions:

• Any nullable supported types are marked as optional input parameters

• Any non-null supported types are marked as required input parameters

Parameter template files Version latest 56

AWS HealthOmics User Guide

• Descriptions are extracted from the label section from the main workflow definition. If label
is not specified, the description will be blank (an empty string).

The following tables show CWL interpolation examples. For each example, the parameter name
is x. If the parameter is required, you must provide a value for the parameter. If the parameter is
optional, you don't need to provide a value.

This table shows CWL interpolation examples for primitive types.

Input Example input/output Required

x:
 type: int

1 or 2 or ... Yes

x:
 type: int
 default: 2

Default value is 2. Valid input
is 1 or 2 or ...

Yes

x:
 type: int?

Valid input is None or 1 or 2
or ...

No

x:
 type: int?
 default: 2

Default value is 2. Valid input
is None or 1 or 2 or ...

No

The following table shows CWL interpolation examples for complex types. A complex type is a
collection of primitive types.

Input Example input/output Required

x:
 type: array
 items: int

[] or [1,2,3] Yes

x: None or [] or [1,2,3] No

Parameter template files Version latest 57

AWS HealthOmics User Guide

Input Example input/output Required

 type: array?
 items: int

x:
 type: array
 items: int?

[] or [None, 3, None] Yes

x:
 type: array?
 items: int?

[None] or None or [1,2,3] or
[None, 3] but not []

No

Parameter detection for WDL

In the WDL workflow engine, the parsing logic makes the following assumptions:

• Any nullable supported types are marked as optional input parameters.

• For non-nullable supported types:

• Any input variable with assignment of literals or expression are marked as optional
parameters. For example:

 Int x = 2
Float f0 = 1.0 + f1

• If no values or expressions have been been assigned to the input parameters, they will be
marked as required parameters.

• Descriptions are extracted from parameter_meta in the main workflow definition. If
parameter_meta is not specified, the description will be blank (an empty string). For more
information, see the WDL specification for Parameter metadata.

The following tables show WDL interpolation examples. For each example, the parameter name
is x. If the parameter is required, you must provide a value for the parameter. If the parameter is
optional, you don't need to provide a value.

This table shows WDL interpolation examples for primitive types.

Parameter template files Version latest 58

https://github.com/openwdl/wdl/blob/wdl-1.2/SPEC.md#metadata-sections

AWS HealthOmics User Guide

Input Example input/output Required

Int x 1 or 2 or ... Yes

Int x = 2 2 No

Int x = 1+2 3 No

Int x = y+z y+z No

Int? x None or 1 or 2 or ... Yes

Int? x = 2 None or 2 No

Int? x = 1+2 None or 3 No

Int? x = y+z None or y+z No

The following table shows WDL interpolation examples for complex types. A complex type is a
collection of primitive types.

Input Example input/
output

Required

Array[Int] x [1,2,3] or [] Yes

Array[Int]+ x [1], but not [] Yes

Array[Int]? x None or [] or
[1,2,3]

No

Array[Int?] x [] or [None, 3,
None]

Yes

Array[Int?]=? x [None] or None
or [1,2,3] or
[None, 3] but
not []

No

Parameter template files Version latest 59

AWS HealthOmics User Guide

Input Example input/
output

Required

Struct sample
{String a, Int y}

later in inputs:
Sample
mySample

String a =
 mySample.a
 Int y =
 mySample.y

Yes

Struct sample
{String a, Int y}

later in inputs:
Sample?
mySample

if (defined(
mySample))
 {

 String a =
 mySample.a
 Int y =
 mySample.y
 }

No

Parameter detection for Nextflow

For Nextflow, HealthOmics generates the parameter template by parsing the
nextflow_schema.json file. If the workflow definition doesn't include a schema file,
HealthOmics parses the main workflow definition file.

Topics

• Parsing the schema file

• Parsing the main file

• Nested parameters

• Examples of Nextflow interpolation

Parsing the schema file

For parsing to work correctly, make sure the schema file meets the following requirements:

Parameter template files Version latest 60

AWS HealthOmics User Guide

• The schema file is named nextflow_schema.json and is located in the same directory as the
main workflow file.

• The schema file is valid JSON as defined in either of the following schemas:

• json-schema.org/draft/2020-12/schema.

• json-schema.org/draft-07/schema.

HealthOmics parses the nextflow_schema.json file to generate the parameter template:

• Extracts all properties that are defined in the schema.

• Includes the property description if available for the property.

• Identifies whether each parameter is optional or required, based on the required field of the
property.

The following example shows a definition file and the generated parameter file.

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "type": "object",
 "$defs": {
 "input_options": {
 "title": "Input options",
 "type": "object",
 "required": ["input_file"],
 "properties": {
 "input_file": {
 "type": "string",
 "format": "file-path",
 "pattern": "^s3://[a-z0-9.-]{3,63}(?:/\\S*)?$",
 "description": "description for input_file"
 },
 "input_num": {
 "type": "integer",
 "default": 42,
 "description": "description for input_num"
 }
 }
 },
 "output_options": {
 "title": "Output options",

Parameter template files Version latest 61

https://json-schema.org/draft/2020-12/schema
https://json-schema.org/draft-07/schema

AWS HealthOmics User Guide

 "type": "object",
 "required": ["output_dir"],
 "properties": {
 "output_dir": {
 "type": "string",
 "format": "file-path",
 "description": "description for output_dir",
 }
 }
 }
 },
 "properties": {
 "ungrouped_input_bool": {
 "type": "boolean",
 "default": true
 }
 },
 "required": ["ungrouped_input_bool"],
 "allOf": [
 { "$ref": "#/$defs/input_options" },
 { "$ref": "#/$defs/output_options" }
]
}

The generated parameter template:

{
 "input_file": {
 "description": "description for input_file",
 "optional": False
 },
 "input_num": {
 "description": "description for input_num",
 "optional": True
 },
 "output_dir": {
 "description": "description for output_dir",
 "optional": False
 },
 "ungrouped_input_bool": {
 "description": None,
 "optional": False
 }

Parameter template files Version latest 62

AWS HealthOmics User Guide

}

Parsing the main file

If the workflow definition doesn't include a nextflow_schema.json file, HealthOmics parses the
main workflow definition file.

HealthOmics analyzes the params expressions found in the main workflow definition file and in
the nextflow.config file. All params with default values are marked as optional.

For parsing to work correctly, note the following requirements:

• HealthOmics parses only the main workflow definition file. To ensure all parameters are
captured, we recommend that you wire all params through to any submodules and imported
workflows.

• The config file is optional. If you define one, name it nextflow.config and place it in the same
directory as the main workflow definition file.

The following example shows a definition file and the generated parameter template.

params.input_file = "default.txt"
params.threads = 4
params.memory = "8GB"

workflow {
 if (params.version) {
 println "Using version: ${params.version}"
 }
}

The generated parameter template:

{
 "input_file": {
 "description": None,
 "optional": True
 },
 "threads": {
 "description": None,
 "optional": True
 },

Parameter template files Version latest 63

AWS HealthOmics User Guide

 "memory": {
 "description": None,
 "optional": True
 },
 "version": {
 "description": None,
 "optional": False
 }
}

For default values that are defined in nextflow.config, HealthOmics collects params assignments
and parameters declared within params {}, as shown in the following example. In assignment
statements, params must appear in the left side of the statement.

params.alpha = "alpha"
params.beta = "beta"

params {
 gamma = "gamma"
 delta = "delta"
}

env {
 // ignored, as this assignment isn't in the params block
 VERSION = "TEST"
}

// ignored, as params is not on the left side
interpolated_image = "${params.cli_image}"

The generated parameter template:

{
 // other params in your main workflow defintion
 "alpha": {
 "description": None,
 "optional": True
 },
 "beta": {
 "description": None,
 "optional": True
 },

Parameter template files Version latest 64

AWS HealthOmics User Guide

 "gamma": {
 "description": None,
 "optional": True
 },
 "delta": {
 "description": None,
 "optional": True
 }
}

Nested parameters

Both nextflow_schema.json and nextflow.config allow nested parameters. However, the
HealthOmics parameter template requires only the top-level parameters. If your workflow uses a
nested parameter, you must provide a JSON object as the input for that parameter.

Nested parameters in schema files

HealthOmics skips nested params when parsing a nextflow_schema.json file. For example, if
you define the following nextflow_schema.json file:

{
 "properties": {
 "input": {
 "properties": {
 "input_file": { ... },
 "input_num": { ... }
 }
 },
 "input_bool": { ... }
 }
}

HealthOmics ignores input_file and input_num when it generates the parameter template:

{
 "input": {
 "description": None,
 "optional": True
 },
 "input_bool": {
 "description": None,
 "optional": True

Parameter template files Version latest 65

AWS HealthOmics User Guide

 }
}

When you run this workflow, HealthOmics expects an input.json file similar to the following:

{
 "input": {
 "input_file": "s3://bucket/obj",
 "input_num": 2
 },
 "input_bool": false
}

Nested parameters in config files

HealthOmics doesn't collect nested params in a nextflow.config file, and skips them during
parsing. For example, if you define the following nextflow.config file:

params.alpha = "alpha"
 params.nested.beta = "beta"

 params {
 gamma = "gamma"
 group {
 delta = "delta"
 }
 }

HealthOmics ignores params.nested.beta and params.group.delta when it generates the
parameter template:

{
 "alpha": {
 "description": None,
 "optional": True
 },
 "gamma": {
 "description": None,
 "optional": True
 }
}

Parameter template files Version latest 66

AWS HealthOmics User Guide

Examples of Nextflow interpolation

The following table shows Nextflow interpolation examples for params in the main file.

Parameters Required

params.input_file Yes

params.input_file = "s3://bucket/data.json" No

params.nested.input_file N/A

params.nested.input_file = "s3://bucket/data.
json"

N/A

The following table shows Nextflow interpolation examples for params in the nextflow.config
file.

Parameters Required

params.input_file = "s3://bucket/
data.json"

No

params {
 input_file = "s3://bucket/data.
json"
}

No

params {
 nested {
 input_file = "s3://bucket/data.
json"
 }
}

N/A

input_file = params.input_file N/A

Parameter template files Version latest 67

AWS HealthOmics User Guide

Container images in Amazon ECR for private workflows

Before you create a private workflow, you create a container image for your workflow. You upload
the image to a private image repository in Amazon Elastic Container Registry (Amazon ECR). When
you run the workflow, the HealthOmics service accesses the containers that you provide.

Container image Amazon ECR repository must reside in the same AWS Region as the account
calling the service. A different AWS account can own the container image, as long as the source
image repository provides appropriate permissions. For more information, see Amazon Elastic
Container Registry repository policies for shared workflows.

We recommend that you define your Amazon ECR container image URIs as parameters in your
workflow so that access can be verified before the run begins. It also makes it easier to run a
workflow in a new Region by changing the Region parameter.

Note

HealthOmics doesn't support ARM containers and doesn't support access to public
repositories.

For information about configuring IAM permissions for HealthOmics to access Amazon ECR, see
Resource permissions.

Topics

• General considerations for Amazon ECR container images

• Environment variables for HealthOmics workflows

• Using Java in Amazon ECR container images

• Add task inputs to an ECR container image

General considerations for Amazon ECR container images

• Architecture

HealthOmics supports x86_64 containers. If your local machine is ARM-based, such as Apple
Mac), use a command such as the following to build an x86_64 container image:

docker build --platform amd64 -t my_tool:latest .

Amazon ECR images Version latest 68

https://docs.aws.amazon.com/omics/latest/dev/permissions-resource.html#permissions-cross-account
https://docs.aws.amazon.com/omics/latest/dev/permissions-resource.html#permissions-cross-account

AWS HealthOmics User Guide

• Entrypoint and shell

HealthOmics workflow engines inject bash scripts as a command override to the container
images used by workflow tasks. Thus, container images should be built without a specified
ENTRYPOINT such that a bash shell is the default.

• Mounted paths

A shared filesystem is mounted to container tasks at /tmp. Any data or tooling built into the
container image at this location will be overridden.

The workflow definition is available to tasks via a read-only mount at /mnt/workflow.

• Image size

See HealthOmics workflow fixed size quotas for the maximum container image sizes.

Environment variables for HealthOmics workflows

HealthOmics provides environment variables that have information about the workflow running in
the container. You can use the values of these variables in the logic of your workflow tasks.

All HealthOmics workflow variables start with the AWS_WORKFLOW_ prefix. This prefix is a
protected environment variable prefix. Don't use this prefix for your own variables in workflow
containers.

HealthOmics provides the following workflow environment variables:

AWS_REGION

This variable is the region where the container is running.

AWS_WORKFLOW_RUN

This variable is the name of the current run.

AWS_WORKFLOW_RUN_ID

This variable is the run identifier of the current run.

AWS_WORKFLOW_RUN_UUID

This variable is the run UUID of the current run.

Amazon ECR images Version latest 69

AWS HealthOmics User Guide

AWS_WORKFLOW_TASK

This variable is the name of the current task.

AWS_WORKFLOW_TASK_ID

This variable is the task identifier of the current task.

AWS_WORKFLOW_TASK_UUID

This variable is the task UUID of the current task.

The following example shows typical values for each environment variable:

AWS Region: us-east-1
Workflow Run: arn:aws:omics:us-east-1:123456789012:run/6470304
Workflow Run ID: 6470304
Workflow Run UUID: f4d9ed47-192e-760e-f3a8-13afedbd4937
Workflow Task: arn:aws:omics:us-east-1:123456789012:task/4192063
Workflow Task ID: 4192063
Workflow Task UUID: f0c9ed49-652c-4a38-7646-60ad835e0a2e

Using Java in Amazon ECR container images

If a workflow task uses a Java application such as GATK, consider the following memory
requirements for the container:

• Java applications use stack memory and heap memory. By default, the maximum heap memory
is a percentage of the total available memory in the container. This default depends on the
specific JVM distribution and JVM version, so consult the relevant documentation for your JVM or
explicitly set the heap memory maximum using Java command line options (such as `-Xmx`).

• Don't set the maximum heap memory to be 100% of the container's memory allocation, because
the JVM stack also requires memory. Memory is also required for the JVM garbage collector and
any other operating system processes running in the container.

• Some Java applications, such as GATK, can use native method invocations or other optimizations
such as memory mapping files. These techniques require memory allocations that are performed
“off heap”, which aren't controlled by the JVM maximum heap parameter.

If you know (or suspect) that your Java application allocates off-heap memory, make sure your
task memory allocation includes the off-heap memory requirements.

Amazon ECR images Version latest 70

AWS HealthOmics User Guide

If these off-heap allocations cause the container to run out of memory, you typically won't see a
Java OutOfMemory error, because the JVM doesn't control this memory.

Add task inputs to an ECR container image

Add all executables, libraries, and scripts needed to run a workflow task into the Amazon ECR
image that's used to run the task.

It's best practice to avoid using scripts, binaries, and libraries that are external to a tasks container
image. This is especially important when using nf-core workflows that use a bin directory as part
of the workflow package. While this directory will be available to the workflow task, it's mounted
as a read-only directory. Required resources in this directory should be copied into the task image
and made available at runtime or when building the container image used for the task.

See HealthOmics workflow fixed size quotas for the maximum size of container image that
HealthOmics supports.

Requesting Sentieon licenses for private workflows

If your private workflow uses Sentieon software, you need a Senieon license. Follow these steps to
request and set up a license for the Sentieon software:

• Request a Sentieon license

• Send an email to the Sentieon support group (support@sentieon.com) to request a software
license.

• Provide your AWS Canonical User ID in the email.

• Find your AWS Canonical User ID by following these instructions.

• Update your HealthOmics service role to grant it access to the Sentieon licensing server proxy
and Sentieon Omics bucket in your Region. The following example grants access in us-east-1.
If required, replace this text with your Region.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Optional: Sentieon licenses Version latest 71

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-identifiers.html#FindCanonicalId

AWS HealthOmics User Guide

 "Action": [
 "s3:GetObjectAcl",
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::omics-ap-us-east-1/*",
 "arn:aws:s3:::sentieon-omics-license-us-east-1/*"
]
 }
]
 }

• Generate an AWS support case to get access to the Sentieon license server proxy.

• To create a support case, navigate to support.console.aws.amazon.com.

• Provide your AWS account and Region in the support case. Your account is added to the
allowlist for the licensing server proxy.

• Build your private workflow using the Sentieon container and the Sentieon license script.

• For additional instructions on using Sentieon tools inside private workflows, see Sentieon-
Amazon-Omics in GitHub.

• Sentieon software version 202112.07 and higher support the HealthOmics licensing server
proxy. To use Sentieon software versions earlier than 202112.07, contact Sentieon support.

Workflow linters in HealthOmics

After you create a workflow, we recommend that you run a linter on the workflow before you start
the first run. The linter detects errors that can cause the run to fail.

For WDL, HealthOmics automatically runs a linter when you create the workflow. The linter
output is available in the statusMessage field of the get-workflow response. Use the following
CLI command to retrieve the status output (use the workflow ID of the WDL workflow that you
created):

aws omics get-workflow
 —id 123456
 —query 'statusMessage'

HealthOmics provides linters that you can run on the workflow defnition before you create the
workflow. Run these linters on existing pipelines that you're migrating to HealthOmics.

Workflow linters Version latest 72

https://support.console.aws.amazon.com
https://github.com/Sentieon/sentieon-amazon-omics
https://github.com/Sentieon/sentieon-amazon-omics

AWS HealthOmics User Guide

• WDL – A public Amazon ECR image to run a WDL linter.

• Nextflow – A public Amazon ECR image to run Linter rules for Nextflow. You can access the
source code for this linter from GitHub.

• CWL – not available

Creating or updating a workflow

To create a private workflow, you require the following inputs:

• A workflow definition file written in WDL, Nextflow, or CWL. For more information, see Workflow
definition files in HealthOmics.

• A parameter template file written in JSON. For more information, see Parameter template files
for HealthOmics workflows.

If your workflow definition file is larger than 4 MiB (zipped), upload it to an Amazon S3 folder, and
specify the Amazon S3 location when you create the workflow.

After you create a workflow, you can change only a few of the configuration values. To change
other information in the workflow, you can either create a new workflow or a new version of the
workflow.

You can use workflow versioning to organize and structure you workflows. Versions also help you
to manage the introduction of iterative workflow updates. For more information about versions,
see Create a workflow version.

Topics

• Create a private workflow

• Update a private workflow

• Delete a private workflow

• Verify the workflow status

• Referencing genome files from a workflow definition

Creating or updating a workflow Version latest 73

https://gallery.ecr.aws/aws-genomics/healthomics-linter
https://gallery.ecr.aws/aws-genomics/linter-rules-for-nextflow
https://github.com/awslabs/linter-rules-for-nextflow

AWS HealthOmics User Guide

Create a private workflow

You can create a workflow using the HealthOmics console, AWS CLI commands, or one of the AWS
SDKs.

Note

Don’t include any personally identifiable information (PII) in workflow names. These names
are visible in CloudWatch logs.

When you create a workflow, HealthOmics assigns a UUID to the workflow. The workflow UUID
is a Globally Unique Identifier (guid) that's unique across workflows and workflow versions. For
data provenance purposes, we recommend that you use the workflow UUID to uniquely identify
workflows.

Topics

• Creating a workflow using the console

• Creating a workflow using the CLI

• Creating a workflow using an SDK

Creating a workflow using the console

To create a workflow

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose Create workflow.

4. On the Create workflow page, provide the following information:

• Workflow name - A distinctive name for this workflow.

• Description (optional) - A description of this workflow.

5. In the Workflow definition panel, provide the following information:

• Workflow language (optional) - you can select the specification language of the workflow.
Otherwise, HealthOmics determines the language from the workflow definition.

Creating or updating a workflow Version latest 74

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• For Workflow definition source, choose whether to retrieve the definition folder from an
Amazon S3 location or from a local drive.

• If you choose Select definion folder from S3:

• Enter the Amazon S3 location that contains the zipped workflow definition folder.

• If your account doesn't own the S3 bucket, enter the bucket owner's AWS account ID in S3
bucket owner's account ID. This information is required so that HealthOmics can verify
the bucket ownership.

• If you choose Select definion folder from a local source, enter the local drive location of
the zipped workflow definition folder.

• Main workflow definition file path (optional) - enter the file path from the zipped workflow
definition folder to the main file. This parameter is not required if there is only one file in the
workflow definition folder, or if the main file is named "main".

6. In the Default run storage configuration panel, provide the default run storage type and
capacity for runs that use this workflow:

• Run storage type (optional) - choose whether to use static or dynamic storage as the default
for the temporary run storage. The default is static storage.

• Run storage capacity (optional) - For static run storage type, you can enter the default
amount of run storage required for this workflow. You can override this default when you
start a workflow run. The default value for this parameter is 1200 GiB.

You can override these default values when you start a run.

7. Tags (optional) - You can associate up to 50 tags with this workflow.

8. Choose Next.

9. On the Add workflow parameters page, provide the workflow parameters. You can upload a
JSON file that specifies the parameters or manually enter your workflow parameters. If you are
using CWL, you can choose Add from CWL workflow definition file.

10. Choose Next.

11. Review the workflow configuration, then choose Create workflow.

Creating a workflow using the CLI

After you define your workflow and the parameters, you can create a workflow using the CLI as
shown.

Creating or updating a workflow Version latest 75

AWS HealthOmics User Guide

aws omics create-workflow \
 --name "my_workflow" \
 --definition-zip fileb://my-definition.zip \
 --parameter-template file://my-parameter-template.json

If your workflow definition file located in an Amazon S3 folder, enter the location using
the definition-uri parameter instead of definition-zip. For more information, see
CreateWorkflow in the AWS HealthOmics API Reference.

You receive the following response to the create-workflow request.

{
 "arn": "arn:aws:omics:us-west-2:....",
 "id": "1234567",
 "status": "CREATING",
 "tags": {
 "resourceArn": "arn:aws:omics:us-west-2:...."
 },
 "uuid": "64c9a39e-8302-cc45-0262-2ea7116d854f"
}

Optional parameters to use when creating a workflow

You can specify any of the optional parameters when you create a workflow. For more information,
see CreateWorkflow in the AWS HealthOmics API Reference.

If you are including multiple workflow definition files, use the main parameter to specify which file
is the main definition file for your workflow.

If you uploaded your workflow definition file to an Amazon S3 folder, specify the location using the
definition-uri parameter, as shown in the following example. If your account doesn't own the
Amazon S3 bucket, provide the owner's AWS account ID.

aws omics create-workflow \
 --name Test \
 --main multi_workflow/workflow2.wdl \
 --definition-uri s3://omics-bucket/workflow-definition/ \
 --owner-id 123456789012 \
 --parameter-template file://params_sample_description.json

Creating or updating a workflow Version latest 76

https://docs.aws.amazon.com/omics/latest/api/API_CreateWorkflow.html
https://docs.aws.amazon.com/omics/latest/api/API_CreateWorkflow.html

AWS HealthOmics User Guide

You can specify the default run storage type (DYNAMIC or STATIC) and run storage capacity
(required for static storage). For more information about run storage types, see Run storage types
in HealthOmics workflows.

aws omics create-workflow \
 --name my_workflow \
 --definition-zip fileb://my-definition.zip \
 --parameter-template file://my-parameter-template.json \
 --storage-type 'STATIC' \
 --storage-capacity 1200 \

Use the accelerators parameter to create a workflow that runs on an accelerated-compute instance.
The following example shows how to use the --accelerators parameter.

aws omics create-workflow --name workflow name \
 --definition-uri s3://amzn-s3-demo-bucket1/GPUWorkflow.zip \
 --accelerators GPU

Creating a workflow using an SDK

You can create a workflow using one of the SDKs. The following example shows how to create a
workflow using the Python SDK

import boto3

omics = boto3.client('omics')

with open('definition.zip', 'rb') as f:
 definition = f.read()

response = omics.create_workflow(
 name='my_workflow',
 definitionZip=definition,
 parameterTemplate={ ... }
)

Update a private workflow

You can update a workflow using the HealthOmics console, AWS CLI commands, or one of the AWS
SDKs.

Creating or updating a workflow Version latest 77

AWS HealthOmics User Guide

Note

Don’t include any personally identifiable information (PII) in workflow names. These names
are visible in CloudWatch logs.

Topics

• Updating a workflow using the console

• Updating a workflow using the CLI

• Updating a workflow using an SDK

Updating a workflow using the console

To update a workflow

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose the workflow to update.

4. On the Workflow page:

• If the workflow has versions, make sure that you select the Default version.

• Choose Edit selected from the Actions list.

5. On the Edit workflow page, you can change any of the following values:

• Workflow name.

• Workflow description.

• The default Run storage type for the workflow.

• The default Run storage capacity (if the run storage type is static storage).

For more information about the default run storage configuration, see Creating a workflow
using the console.

6. Choose Save changes to apply the changes.

Creating or updating a workflow Version latest 78

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Updating a workflow using the CLI

As shown in the following example, you can update the workflow name and description. You
can also change the default run storage type (STATIC or DYNAMIC) and run storage capacity (for
static storage type). For more information about run storage types, see Run storage types in
HealthOmics workflows.

aws omics update-workflow
 --id 1234567
 --name my_workflow
 --description "updated workflow"
 --storage-type 'STATIC'
 --storage-capacity 1200

You don't receive a response to the update-workflow request.

Updating a workflow using an SDK

You can update a workflow using one of the SDKs.

The following example shows how to update a workflow using the Python SDK

import boto3

omics = boto3.client('omics')

response = omics.update_workflow(
 name='my_workflow',
 description='updated workflow'
)

Delete a private workflow

When you no longer need a workflow, you can delete it using the HealthOmics console, AWS CLI
commands, or one of the AWS SDKs. You can delete a workflow that meets the following criteria:

• Its status is ACTIVE or FAILED.

• It has no active shares.

• You've deleted all the workflow versions.

Deleting a workflow doesn't affect any ongoing runs that are using the workflow.

Creating or updating a workflow Version latest 79

AWS HealthOmics User Guide

Topics

• Deleting a workflow using the console

• Deleting a workflow using the CLI

• Deleting a workflow using an SDK

Deleting a workflow using the console

To delete a workflow

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose the workflow to delete.

4. On the Workflow page, choose Delete selected from the Actions list.

5. In the Delete workflow modal, enter "confirm" to confirm the deletion.

6. Choose Delete.

Deleting a workflow using the CLI

The following example shows how you can use the AWS CLI command to delete a workflow. To run
the example, replace the workflow id with the ID of the workflow you want to delete.

aws omics delete-workflow
 --id workflow id

HealthOmics doesn't send a response to the delete-workflow request.

Deleting a workflow using an SDK

You can delete a workflow using one of the SDKs.

The following example shows how to delete a workflow using the Python SDK.

import boto3

omics = boto3.client('omics')

Creating or updating a workflow Version latest 80

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

response = omics.delete_workflow(
 id='1234567'
)

Verify the workflow status

After you create your workflow, you can verify the status and view other details of the workflow
using get-workflow, as shown.

aws omics get-workflow --id 1234567

The response includes workflow details, including the status, as shown.

{
 "arn": "arn:aws:omics:us-west-2:....",
 "creationTime": "2022-07-06T00:27:05.542459"
 "id": "1234567",
 "engine": "WDL",
 "status": "ACTIVE",
 "type": "PRIVATE",
 "main": "workflow-crambam.wdl",
 "name": "workflow_name",
 "storageType": "STATIC",
 "storageCapacity": "1200",
 "uuid": "64c9a39e-8302-cc45-0262-2ea7116d854f"
 }

You can start a run using this workflow after the status transitions to ACTIVE.

Referencing genome files from a workflow definition

An HealthOmics reference store object can be referred to with a URI like the following. Use your
own account ID, reference store ID, and reference ID where indicated.

omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id

Some workflows will require both the SOURCE and INDEX files for the reference genome. The
previous URI is the default short form and will default to the SOURCE file. In order to specify either
file, you can use the long URI form, as follows.

Creating or updating a workflow Version latest 81

AWS HealthOmics User Guide

omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id/
source
omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id/
index

Using a sequence read set would have a similar pattern, as shown.

aws omics create-workflow \
 --name workflow name \
 --main sample workflow.wdl \
 --definition-uri omics://account ID.storage.us-
west-2.amazonaws.com/sequence_store_id/readSet/id \
 --parameter-template file://parameters_sample_description.json

Some read sets, such as those based on FASTQ, can contain paired reads. In the following
examples, they’re referred to as SOURCE1 and SOURCE2. Formats such as BAM and CRAM will
only have a SOURCE1 file. Some read sets will contain INDEX files such as bai or crai files. The
preceding URI is the default short form and will default to the SOURCE1 file. To specify the exact
file or index, you can use the long URI form, as follows.

omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/
source1
omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/
source2
omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/
index

The following is an example of an input JSON file that uses two Omics Storage URIs.

{
 "input_fasta": "omics://123456789012.storage.us-west-2.amazonaws.com/
<reference_store_id>/reference/<id>",
 "input_cram": "omics://123456789012.storage.us-west-2.amazonaws.com/
<sequence_store_id>/readSet/<id>"
}

Reference the input JSON file in the AWS CLI by adding --inputs file://
<input_file.json> to your start-run request.

Creating or updating a workflow Version latest 82

AWS HealthOmics User Guide

Workflow versioning in HealthOmics

If you need to make a changes to a workflow, you can create either a new workflow or a new
workflow version. Versions are immutable, except for allowed configuration changes that don’t
impact the execution logic.

Workflow versions provide the following benefits:

• Versions form a logical group of workflows that are related. You can add a user-defined name
to each workflow version to manage them more easily (especially for a workflow with a large
number of versions).

• You can run multiple versions of a workflow at the same time.

• All versions of a workflow share the same workflow ID and base ARN, which can simplify pipeline
management after you modify a workflow.

• Workflow versions provide the same level of data provenance as workflows. Versions are
immutable, and HealthOmics creates a unique ARN for each workflow version. The version ARN
includes the workflow ID and the version name, as shown in the following example:

arn:aws:omics:us-west-2:123456789012:workflow/1234567/version/
myUniqueVersionName

• If you own a shared workflow, you can update the workflow without disrupting the subscribers
(who can continue to use the previous version). Subscribers can access all workflow versions. If
you create a new version, you don't need to reshare the workflow.

• When you start a workflow run, you can specify the workflow version.

• Users can choose to remain on a stable version for production runs, and try out the latest
version for a test run.

• Users can revert to the previous version of a workflow, if they encounter problems with the
new version.

• Subscribers of a shared workflow can choose which version to use.

Topics

• Default workflow version

• Create a workflow version

• Update a workflow version

• Delete a workflow version

Workflow versioning Version latest 83

AWS HealthOmics User Guide

Default workflow version

After you create one or more versions of a workflow, HealthOmics treats the original workflow as
the default version. When you start a run, you can optionally specify a workflow version for the
run. If you don't specify a version when you start a run, HealthOmics uses the default version.

In the console, HealthOmics indicates the original workflow with a Default version label. The
console uses this label only after you create one or more workflow versions. The original workflow
always remains the default version. You can't assign any other version to be the default.

You can't delete a workflow's default version if there are other versions associated with the
workflow. For more information, see Delete a private workflow.

Create a workflow version

When you create a new version of a workflow, you need to specify the configuration values for the
new version. It doesn't inherit any configuration values from the workflow.

When you create the version, provide a version name that is unique for this workflow. You cannot
change the name after HealthOmics creates the version.

The version name must start with a letter or number and it can include upper-case and lower-case
letters, numbers, hyphens, periods and underscores. The maximum length is 64 characters. For
example, you can use a simple naming scheme, such as version1, version2, version3. You can also
match your workflow versions with your own internal versioning conventions, such as 2.7.0, 2.7.1,
2.7.2.

Optionally, use the version description field to add notes about this version. For example: Fix for
syntax error in workflow definition.

Note

Don’t include any personally identifiable information (PII) in the version name. Version
names appear in the workflow version ARN.

HealthOmics assigns a unique ARN to the workflow version. The ARN is unique based on the
combination of workflow ID and version name.

Default version Version latest 84

AWS HealthOmics User Guide

Warning

After you delete a workflow version, HealthOmics lets you reuse the version name for a
different workflow version. Best practice is to not reuse version names. If you do reuse a
name, the workflow and each version have a unique UUID that you can use for provenance.

Topics

• Create a workflow version using the console

• Create a workflow version using the CLI

• Create a workflow version using an SDK

• Verify the status of a workflow version

Create a workflow version using the console

To create a workflow

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose the workflow for the new version.

4. On the Workflow details page, choose Create new version.

5. On the Create version page, provide the following information:

• Version name - Enter a name for the workflow version that is unique across the workflow.

• Version description (optional) - you can use the description field to add notes about this
version.

6. In the Workflow definition panel, provide the following information

• Workflow language (optional) - you can select the specification language for the workflow
version. Otherwise, HealthOmics determines the language from the workflow definition.

• For Workflow definition source, choose whether to retrieve the definition folder from an
Amazon S3 location or from a local drive.

• If you choose Select definion folder from S3:

• Enter the Amazon S3 location that contains the zipped workflow definition folder.

Create a version Version latest 85

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• If your account doesn't own the S3 bucket, enter the bucket owner's AWS account ID in S3
bucket owner's account ID. This information is required so that HealthOmics can verify
the bucket ownership.

• If you choose Select definion folder from a local source, enter the local drive location of
the zipped workflow definition folder.

• Main workflow definition file path (optional) - enter the file path from the zipped workflow
definition folder to the main file. This parameter is not required if there is only one file in the
workflow definition folder, or if the main file is named "main".

7. In the Default run storage configuration panel, provide the default run storage type and
capacity for runs that use this workflow version:

• Run storage type (optional) - choose whether to use static or dynamic storage as the default
for the temporary run storage. The default is dynamic storage.

• Run storage capacity (optional) - If you choose static run storage type, you can enter the
default amount of run storage required for this workflow. You can override this default when
you start a workflow run. The default value for this parameter is 1200 GiB.

You can override these default values when you start a run.

8. Tags (optional) - you can associate up to 50 tags with this workflow version.

9. Choose Next.

10. On the Add workflow parameters page, provide the workflow parameters. You can upload a
JSON file that specifies the parameters or manually enter your workflow parameters. If you are
using CWL, you can choose Add from CWL workflow definition file.

In Parameter preview, you can review or change the parameters for this workflow version. If
you restore the JSON file, you lose any local changes that you made.

11. Choose Next.

12. Review the version configuration, then choose Create version.

When the version is created, the console returns to the workflow detail page and displays the new
version in the Workflows and versions table.

Create a version Version latest 86

AWS HealthOmics User Guide

Create a workflow version using the CLI

You can create a workflow version using the CreateWorkflowVersion API operation. For
optional parameters, HealthOmics uses the following defaults:

Parameter Default

Engine Determined from the workflow definition

Storage type STATIC

Storage capacity (for static storage) 1200 GiB

Main Determined based on the contents of the
workflow definition folder. For details, see
HealthOmics workflow definition requireme
nts.

Accelerators none

Tags none

The following CLI example creates a workflow version with static storage as the default run
storage:

aws omics create-workflow-version \
--workflow-id 1234567 \
--version-name "my_version" \
--engine WDL \
--definition-zip fileb://workflow-crambam.zip \
--description "my version description" \
--main file://workflow-params.json \
--parameter-template file://workflow-params.json \
--storage-type='STATIC' \
--storage-capacity 1200 \
--tags example123=string \
--accelerators GPU

Create a version Version latest 87

AWS HealthOmics User Guide

If your workflow definition file located in an Amazon S3 folder, enter the location using
the definition-uri parameter instead of definition-zip. For more information, see
CreateWorkflowVersion in the AWS HealthOmics API Reference.

You receive the following response to the create-workflow-version request.

{
 "workflowId": "1234567",
 "versionName": "my_version",
 "arn": "arn:aws:omics:us-west-2:123456789012:workflow/1234567/version/3",
 "status": "ACTIVE",
 "tags": {
 "environment": "production",
 "owner": "team-alpha"
 },
 "uuid": "0ac9a563-355c-fc7a-1b47-a115167af8a2"
}

Create a workflow version using an SDK

You can create a workflow using one of the SDKs.

The following example shows how to create a workflow version using the Python SDK

import boto3

omics = boto3.client('omics')

with open('definition.zip', 'rb') as f:
 definition = f.read()

response = omics.create_workflow_version(
 workflowId='1234567',
 versionName='my_version',
 requestId='my_request_1'
 definitionZip=definition,
 parameterTemplate={ ... }
)

Create a version Version latest 88

https://docs.aws.amazon.com/omics/latest/api/API_CreateWorkflowVersion.html

AWS HealthOmics User Guide

Verify the status of a workflow version

After you create your workflow version, you can verify the status and view other details of the
workflow using get-workflow-version, as shown.

aws omics get-workflow-version
--workflow-id 9876543
--version-name "my_version"

The response gives you your workflow details, including the status, as shown.

{
 "workflowId": "1234567",
 "versionName": "3.0.0",
 "arn": "arn:aws:omics:us-west-2:123456789012:workflow/1234567/version/3.0.0",
 "status": "ACTIVE",
 "description": ...
 "uuid": "0ac9a563-355c-fc7a-1b47-a115167af8a2"
}

Before you can start a run with this workflow version, the status must transition to ACTIVE.

Update a workflow version

You can update the description and the default run storage configuration for a private workflow
version. To change any other information in the workflow version, create a new version.

Topics

• Update a workflow version using the console

• Update a workflow version using the CLI

• Update a workflow version using an SDK

Update a workflow version using the console

To update a workflow

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose the workflow.

Update a version Version latest 89

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

4. On the Workflow page, choose the workflow version to update and choose Edit selected from
the Actions list.

• If you choose the default version, the console opens the Edit workflow page. For more
information, see Update a private workflow.

• If you choose a user-defined version, the console opens the Edit version page.

5. On the Edit version page, provide the following information

• Version description (optional) - A description of this version.

6. In the Default run storage configuration panel, provide the following default values for runs
that use this workflow version. You can override the default values when you start a run:

• For Run storage type, select Static or Dynamic.

• For static run storage, select the default amount of Run storage capacity for runs that use
this workflow version. The default value for this parameter is 1200 GiB.

7. Choose Save changes.

The console returns to the workflow detail page and displays a page banner with the updated
workflow version.

Update a workflow version using the CLI

You can update parameters for a workflow version using the following CLI command. The
combination of workflow ID and version name uniquely identifies the version.

aws omics update-workflow-version
--workflow-id 1234567
--version-name "my_version"
--storage-type 'STATIC'
--storage-capacity 2400
--description "version description"

You receive no response to the update-workflow-version request.

Update a workflow version using an SDK

You can update a workflow version using one of the SDKs. The following python SDK example
shows how to update the storage type and description for a workflow version.

Update a version Version latest 90

AWS HealthOmics User Guide

import boto3

omics = boto3.client('omics')

response = omics.update_workflow_version(
 workflowID=1234567,
 versionName='3.0.0',
 storageType='DYNAMIC',
 description='new version description'
)

Delete a workflow version

You can delete a user-defined workflow version using the console, CLI, or one of the SDKs. Deleting
a workflow version doesn't affect any ongoing runs that are using the workflow version.

You can't delete the Default workflow version. You delete all the user-defined versions, then delete
the workflow.

Topics

• Delete a workflow version using the console

• Delete a workflow version using the CLI

• Delete a workflow version using an SDK

Delete a workflow version using the console

To delete a workflow version

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. On the Private workflows page, choose the workflow.

4. On the Workflow page, choose the workflow version to delete and choose Delete selected
from the Actions list.

5. In the Delete workflow version modal, enter "confirm" to confirm the deletion.

6. Choose Delete.

The console displays a page banner with the deleted workflow version.

Delete a version Version latest 91

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Delete a workflow version using the CLI

You can delete a user-defined workflow version using the following CLI command. The
combination of workflow ID and version name uniquely identifies the version.

aws omics delete-workflow-version
--workflow-id 9876543
--version-name "my_version"

You receive no response to the delete-workflow-version request.

Delete a workflow version using an SDK

You can delete a workflow using one of the SDKs.

The following example shows how to delete a workflow using the Python SDK.

import boto3

omics = boto3.client('omics')

response = omics.delete_workflow_version(
 workflowID=1234567,
 versionName='3.0.0'
)

Starting HealthOmics runs

After you create a workflow, you can start runs using the workflow.

When you start a run, HealthOmics allocates temporary run storage for the workflow engine to use
during the run. To ensure data isolation and security, HealthOmics provisions the storage at the
start of each run, and deprovisions it at the end of the run.

HealthOmics provides several quotas related to workflow runs and tasks. Default values are
intentially conservative, to help you avoid unexpected cost overruns. You can request an increase in
these quotas. For more information, see HealthOmics service quotas.

When you start a run, HealthOmics assigns a run ID and a run uuid to the run. Runs in an account
have unique run IDs. However, HealthOmics reuses deleted run IDs, so a run and a deleted run can

Starting runs Version latest 92

AWS HealthOmics User Guide

have the same run ID. Also, it's rare but possible for a shared workflow to have the same run ID as a
run in your account.

The run uuid is a Globally Unique Identifier (guid) that you can use to identify runs across accounts
or to distinguish between two runs in your account that have the same run ID.

Note

For data provenance purposes, we recommend that you use the run uuid to uniquely
identify runs. The run uuid is also the best identifier to link to your internal lab information
management system (LIMs) or sample tracking system.

Topics

• Run storage types in HealthOmics workflows

• Run retention mode for HealthOmics runs

• HealthOmics run inputs

• Starting a run in HealthOmics

• Run lifecycle in a HealthOmics workflow

• HealthOmics run outputs

• Run failure reasons

• Task lifecycle in a HealthOmics run

• Run optimization for a private HealthOmics workflow

Run storage types in HealthOmics workflows

When you start a run, HealthOmics allocates temporary run storage for the workflow engine to use
during the run. HealthOmics provides the temporary run storage as a file system.

For a given workflow or workflow run, you can choose dynamic or static run storage. By default,
HealthOmics provides static run storage.

Note

Run storage usage incurs charges to your account. For pricing information about static and
dynamic run storage, see HealthOmics pricing.

Run storage types Version latest 93

https://aws.amazon.com/healthomics/pricing/

AWS HealthOmics User Guide

The following sections provide information to consider when deciding which run storage type to
use.

Dynamic run storage

We recommend using dynamic run storage for most runs, including runs that require faster start
times, runs where you don’t know the storage needs in advance, and for iterative development
testing cycles.

You don’t need to estimate the required storage or throughput for the run. HealthOmics
dynamically scales the storage size up or down, based on file system utilization during the run.
HealthOmics also dynamically scales throughput based on the workflow's needs. A run never fails
due to an Out of storage for file system error.

Dynamic run storage provides faster provisioning/deprovisioning time than static run storage.
Faster setup is an advantage for most workflows and is also an advantage during development/
test cycles.

After the run completes (success path or fail path), the getRun API operation returns the maximum
storage used by the run in the storageCapacity field. You can also find this information in the run
manifest logs located in the omics log group. For a dynamic storage run that completes within 2
hours, the maximum storage value may not be available.

For dynamic run storage, the run provisions a filesystem that uses NFS protocol. NFS treats
CREATE, DELETE, and RENAME file operations as non-idempotent, which may occasionally lead
to race conditions for these operations that your code needs to handle gracefully. For example,
your code should not fail if it tries to delete a file that does not exist. Before adopting dynamic run
storage, we recommend adjusting your workflow code to make it resilient to non-idempotent file
operations. See Code examples for safe handling of non-idempotent operations.

Code examples for safe handling of non-idempotent operations

The following python example shows how to delete a file without failing if the file does not exist.

import os
import errno

def remove_file(file_path):
 try:

Run storage types Version latest 94

AWS HealthOmics User Guide

 os.remove(file_path)
 except OSError as e:
 # If the error is "No such file or directory", ignore it (or log it)
 if e.errno != errno.ENOENT:
 # Otherwise, raise the error
 raise

Example usage
remove_file("myfile")

The following examples use the Bash shell. To safely remove a file even if it doesn't exist, use:

rm -f my_file

To safely move (rename) a file, run the move command only if the file old_name exists in the
current directory.

[-f old_name] && mv old_name new_name

For creating a directory, use the following command:

mkdir -p mydir/subdir/

Static run storage

For static run storage, the run provisions a filesystem that uses the Lustre protocol. This protocol
is resilient to non-idempotent file operations by default. You do not need to adjust your workflow
code to handle non-idempotent file operations.

HealthOmics allocates a fixed amount of run storage. You specify this value when you start the
run. The default run storage is 1200 GiB, if you don't specify a value. When you specify a value for
storage size in the StartRun API request, the system rounds up the value to the nearest multiple of
1200 GiB. If that storage size isn't available, it rounds up to the nearest multiple of 2400 GiB.

For static run storage, HealthOmics provisions the following throughput values:

• Baseline throughput of 200 MB/s per TiB of storage capacity provisioned.

• Burst throughput up to 1300 MB/s per TiB of storage capacity provisioned.

Run storage types Version latest 95

AWS HealthOmics User Guide

If the specified storage size is too low, the run fails with an Out of storage for file system error.
Static run storage is a good fit for predictable workflows with known storage requirements.

Static run storage is suitable for large, bursty workloads with high task concurrency (for example,
a large volume of RNASeq samples processed in parallel). It provides higher file system throughput
per GiB and lower cost per GiB than dynamic run storage.

Calculating required static run storage

A workflow requires additional capacity when it uses static run storage (compared with dynamic
run storage) because the base file system installation uses 7% of the static file system capacity.

If you run a dynamic run storage workflow to measure the maximum storage used by the run, use
the following calculation to determine the minimum amount of static storage required:

 static storage required =
 maximum storage in GiB used by the dynamic run storage
 + (total static file system size in GiB * 0.07)

For example:

 Maximum storage measured from a dynamic run storage workflow run: 500GiB
 File system size: 1200GiB
 7% of the file system size: 84GiB
 500 + 84 = 584GiB of static run storage required for this run.

Therefore, 1200GiB (the minimum capacity for static run storage) is sufficient for this run.

Run retention mode for HealthOmics runs

After a run completes, HealthOmics archives the run metadata to CloudWatch. By default,
CloudWatch keeps the run data indefinitely, unless you change the CloudWatch retention policy.
Run outputs are also stored in Amazon S3 until you delete them.

One of the adjustable HealthOmics service quotas is the maximum number of runs (active and
inactive) in a region. HealthOmics retains run metatdata for up to this number of runs for use by
the console and API operations (ListRuns and GetRun). When you start a run, you can set the run
retention mode parameter to indicate the retention behavior for the run. The parameter supports
the values REMOVE and RETAIN.

Run retention mode for HealthOmics runs Version latest 96

AWS HealthOmics User Guide

For a new run with retention mode set to REMOVE, if HealthOmics tries to add the run after it
has already saved the maximum number of runs, it automatically removes the metadata for the
oldest run that has set REMOVE mode. This removal doesn't affect the data stored in CloudWatch
or Amazon S3.

RETAIN is the default value for run retention mode. For runs in this mode, the system doesn't
delete the run metadata. If HealthOmics reaches the maximum number of runs, all set to RETAIN,
you won't be able to create additional runs until you delete some runs.

If you're planning to run a batch of more than the maximum number of runs at the same time,
make sure to set the run retention mode to REMOVE. Otherwise, the batch fails when HealthOmics
tries to start the next run after the maximum.

Additional considerations for using REMOVE retention mode:

• When you first start using REMOVE as the retention mode, consider deleting one or more runs
that use RETAIN mode, to free up slots. As you start additional REMOVE runs, the automatic
removal takes over, so enough slots are available for new runs.

• If you want to re-run an archived run (or a set of runs), use the HealthOmics rerun CLI tool. For
more information and examples of how to use this tool, see Omics rerun in the HealthOmics
tools GitHub repository.

• We recommend that you configure a unique name for each run. After HealthOmics removes
a run, you can't use the console or API to find the run name or run ID. However, you can use
CloudWatch to search for the run name, so use unique names to get the best search results.

• You can use the CloudWatch start-query command to get information about an archived run. If
the run name isn't unique, the query may return multiple manifests. The start-time and end-time
parameters define the time range for the search.

aws logs start-query \
 --log-group-name "/aws/omics/WorkflowLog" \
 --query-string 'filter @logStream like "manifest" and @message like "myRunName"'
 \
 --end-time <END-EPOCH-TIME> --start-time <START-EPOCH-TIME>

The start-query command returns a query ID. Passing the query ID to the get-query-results
command returns the query results.

aws logs get-query-results --query-id QueryId

Run retention mode for HealthOmics runs Version latest 97

https://github.com/awslabs/amazon-omics-tools?tab=readme-ov-file#omics-rerun

AWS HealthOmics User Guide

HealthOmics run inputs

If the workflow definition specifies input files for the workflow or workflow tasks, HealthOmics
stages the files to a scratch volume that's dedicated to the workflow run. These input files are read-
only, which prevents tasks from modifying potential inputs to other tasks in the workflow. For
directory imports, the directories are also read-only.

Many genomics applications assume that index files are co-located with the sequence files (such
as a companion bai file for a bam file). To include index files, specify them as task inputs in the
workflow definition.

Topics

• Managing run parameters size

• Amazon S3 input parameter formats

• Amazon S3 input archive states

Managing run parameters size

When you start a run, you specify run inputs in the run parameters JSON object or file. You can
specify up to 50 KB of run parameters for the workflow. You can use the following techniques to
remain within this size constraint:

• Use directory imports

To specify a large number of input files, specify one parameter as the Amazon S3 location
that contains all the files, rather than specifying a parameter for each file location. For more
information, see the next topic (Amazon S3 input parameter formats).

• Use a sample sheet

A sample sheet is a CSV or TSV file with one column for the fastq.gz address (or two for paired
read) and additional columns for metadata such as sample names. You specify the sample sheet
as a run input parameter instead of a parameter for each input file.

Your workflow defines how your sample sheet maps to data structures in the workflow. While
you could write code for sample sheets in WDL and CWL, they're more common in NextFlow. For
an example, see sample sheet on the nf-core GitHub site.

Run inputs Version latest 98

https://github.com/nf-core/scrnaseq/blob/master/assets/samplesheet.csv

AWS HealthOmics User Guide

Amazon S3 input parameter formats

For an input parameter that accepts an Amazon S3 location, the parameter can specify the location
of one file or a whole directory of files. Using a directory has the following advantages:

• Convenience – You specify the directory name as the parameter. You don't list each file name.

• Compactness – The input parameter maximum file size is 50 KB. If you provide a long list of
input file names, you can exceed this maximum.

Amazon S3 is a flat object-storage system, so it doesn't support directories. You group files into a
"directory" by giving each file the same object key prefix. For more information about Amazon S3
object key prefixes, see Organizing objects using prefixes.

HealthOmics interprets the input parameter value as follows:

• If the Amazon S3 location doesn't end with a forward slash or use the glob pattern, HealthOmics
expects the parameter value to be the key for one Amazon S3 object.

For example, you specify s3://myfiles/runs/inputs/a/file1.fastq to input file1.fastq

• If the Amazon S3 location ends with a forward slash, HealthOmics interprets the parameter
value as an Amazon S3 prefix. It loads all the Amazon S3 objects with that prefix.

For example, you can specify s3://myfiles/runs/inputs/a/ to load all objects whose keys
start with this prefix.

• For Nextflow, HealthOmics supports the glob pattern for Amazon S3 URIs in input parameters.

For example, you can specify “s3://myfiles/runs/inputs/a/*.gz” to input all .gz files
whose keys start with this prefix.

Language-specific handling of double-slash in Amazon S3 inputs

HealthOmics retains the native engine behavior for each workflow engine when handling double-
slashes in Amazon S3 URIs, so that you don't need to make any changes to your workflows when
you migrate them to HealthOmics. The following sections describe how each engine handles
various scenarios.

Run inputs Version latest 99

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html

AWS HealthOmics User Guide

WDL

If the input parameter includes a double-slash in the middle or at the end of the URI, the WDL
engine retains the double-slash.

Input parameter Expected location

s3://myfiles/runs/inputs//f
ile1.fastq

s3://myfiles/runs/inputs//f
ile1.fastq

s3://myfiles/runs/inputs// s3://myfiles/runs/inputs//

Nextflow

If the input parameter includes a double-slash in the middle of the URI, the Nextflow engine
retains double-slash. For a double-slash at the end of the URI, the Nextflow engine resolves it to a
single slash.

Input parameter Expected location

s3://myfiles/runs/inputs//f
ile1.fastq

s3://myfiles/runs/inputs//f
ile1.fastq

s3://myfiles//runs/inputs//
*.gz

s3://myfiles//runs/inputs//
*.gz

s3://myfiles//runs/inputs// s3://myfiles//runs/inputs/

CWL

If the input parameter includes a double-slash in the middle or at the end of the URI, the CWL
engine retains the double-slash.

Input parameter Expected location

s3://myfiles//runs/inputs//
file1.fastq

s3://myfiles//runs/inputs//
file1.fastq

Run inputs Version latest 100

AWS HealthOmics User Guide

Input parameter Expected location

s3://myfiles//runs/inputs// s3://myfiles//runs/inputs//

Amazon S3 input archive states

HealthOmics can retrieve Amazon S3 objects that S3 delivers in real time. For objects that are in
the following archived storage states, restore the objects to make them available to HealthOmics:

• Flexible Retrieval or Deep Archive storage classes in Amazon S3 Glacier.

• Archived Access or Deep Archive Access tiers in Intelligent tiering.

For information about restoring objects, see Restoring an archived object in the Amazon S3 User
Guide.

Starting a run in HealthOmics

When you start a run, you can set the run storage type and storage amount (for static storage). For
additional information, see Run storage types in HealthOmics workflows.

You also set the run priority. How priority impacts the run depends on whether the run is
associated with a run group. For additional information, see Run priority.

If you have created one or more workflow versions, you can specify the version when you start the
run. If you don’t specify a version, HealthOmics starts the default workflow version.

Specify an Amazon S3 location for the output files. If you run a high volume of workflows
concurrently, use separate Amazon S3 output URIs for each workflow to avoid bucket throttling.
For more information, see Organizing objects using prefixes in the Amazon S3 User Guide and
Scale Storage Connections Horizontally in the Optimizing Amazon S3 Performance whitepaper.

Note

You specify an IAM service role when you start a run. Optionally, the console can create the
service role for you. For more information, see Service roles for AWS HealthOmics.

Topics

Starting a run Version latest 101

https://docs.aws.amazon.com/AmazonS3/latest/userguide/restoring-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/whitepapers/latest/s3-optimizing-performance-best-practices/scale-storage-connections-horizontally.html
https://docs.aws.amazon.com/whitepapers/latest/s3-optimizing-performance-best-practices/scale-storage-connections-horizontally.html

AWS HealthOmics User Guide

• HealthOmics run parameters

• Starting a run using the console

• Starting a run using the API

• Get information about a workflow run

• Re-running a workflow run

HealthOmics run parameters

When you start a run, you specify run inputs in the run parameters JSON file or you can enter the
parameter values inline. For information about managing the size of the run parameters JSON file,
see Managing run parameters size.

HealthOmics supports the following JSON types for parameter values.

JSON type Example key and value Notes

boolean "b":true Value is not in quotes, and all
lowercase.

integer "i":7 Value is not in quotes.

number "f":42.3 Value is not in quotes.

string "s":"characters" Value is in quotes. Use string
type for text values and URIs.
The URI target must be the
expected input type.

array "a":[1,2,3] Value is not in quotes. Array
members must each have
the type defined by the input
parameter.

object "o":{"left":"a", "right":1} In WDL, object maps to WDL
Pair, Map, or Struct

Starting a run Version latest 102

AWS HealthOmics User Guide

Starting a run using the console

To start a workflow run

1. Open the HealthOmics console.

2. In the left navigation pane, choose Runs.

3. On the Runs page, choose Start run.

4. In the Run details panel, provide the following information

• Workflow source - Choose Owned workflow or Shared workflow.

• Workflow ID - The workflow ID associated with this run.

• Workflow version (Optional) - Select a workflow version to use for this run. If you don't
select a version, the run uses the workflow default version.

• Run name - A distinctive name for this run.

• Run priority (Optional) - The priority of this run. Higher numbers specify a higher priority,
and the highest priority tasks are run first.

• Run storage type - Specify the storage type here to override the default run storage type
specified for the workflow. Static storage allocates a fixed amount of storage for the run.
Dynamic storage scales up and down as required for each task in the run.

• Run storage capacity - For static run storage, specify the amount of storage needed for the
run. This entry overrides the default run storage amount specified for the workflow.

• Select S3 output destination - The S3 location where the run outputs will be saved.

• Output bucket owner's account ID (Optional) - If your account doesn't own the output
bucket, enter the bucket owner's AWS account ID. This information is required so that
HealthOmics can verify the bucket ownership.

• Run metadata retention mode - Choose whether to retain the metadata for all runs or
have the system remove the oldest run metadata when your account reaches the maximum
number of runs. For more information, see Run retention mode for HealthOmics runs.

5. Under Service role, you can use an existing service role or create a new one.

6. (Optional) For Tags, you can assign up to 50 tags to the run.

7. Choose Next.

8. On the Add parameter values page, provide the run parameters. You can either upload a
JSON file that specifies the parameters or manually enter the values.

9. Choose Next.

Starting a run Version latest 103

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

10. In the Run group panel, you can optionally specify a run group for this run. For more
information, see Creating HealthOmics run groups.

11. In the Run cache panel, you can optionally specify a run cache for this run. For more
information, see Configuring a run with run cache using the console.

12. Choose Review and start run.

13. After you review the run configuration, choose Start run.

Starting a run using the API

Use the start-run API operation with the IAM role and Amazon S3 bucket that you created. This
example sets the retention mode to REMOVE. For more information about retention mode, see Run
retention mode for HealthOmics runs.

aws omics start-run
 --workflow-id workflow id \
 --role-arn arn:aws:iam::1234567892012:role/service-role/
OmicsWorkflow-20221004T164236 \
 --name workflow name \
 --retention-mode REMOVE

In response, you get the following output. The uuid is unique to the run, and along with
outputUri can be used to track where output data is written.

{
 "arn": "arn:aws:omics:us-west-2:....:run/1234567",
 "id": "123456789",
 "uuid":"96c57683-74bf-9d6d-ae7e-f09b097db14a",
 "outputUri":"s3://bucket/folder/8405154/96c57683-74bf-9d6d-ae7e-f09b097db14a"
 "status": "PENDING"
}

If the parameter template for a workflow declares any required parameters, you can provide a local
JSON file of the inputs when you start a workflow run. The JSON file contains the exact name of
each input parameter and a value for the parameter.

Reference the input JSON file in the AWS CLI by adding --parameters file://
<input_file.json> to your start-run request. For more information about run parameters,
see HealthOmics run inputs.

Starting a run Version latest 104

AWS HealthOmics User Guide

You can specify a workflow version for the run.

aws omics start-run
 --workflow-id workflow id \
 ...
 --workflow-version-name '1.2.1'

You can override the default run storage type, which is specified in the workflow.

aws omics start-run
 --workflow-id workflow id \
 ...
 --storage-type STATIC
 --storage-capacity 2400

You can also use the start-run API with a GPU workflow ID, as shown.

aws omics start-run
 --workflow-id workflow id \
 --role-arn arn:aws:iam::1234567892012:role/service-role/
OmicsWorkflow-20221004T164236 \
 --name GPUTestRunModel \
 --output-uri s3://amzn-s3-demo-bucket1

Get information about a workflow run

You can use the ID in the response with the get-run API to check the status of a run, as shown.

aws omics get-run --id run id

The response from this API operation tells you the status of the workflow run. Possible statuses
are PENDING, STARTING, RUNNING, and COMPLETED. When a run is COMPLETED, you can find an
output file called outfile.txt in your output Amazon S3 bucket, in a folder named after the run
ID.

The get-run API operation also returns other details, such as whether the workflow is Ready2Run
or PRIVATE, the workflow engine, and accelerator details. The following example shows the
response for get-run for a run of a private workflow, described in WDL with a GPU accelerator and
no tags assigned to the run.

{

Starting a run Version latest 105

AWS HealthOmics User Guide

 "arn": "arn:aws:omics:us-west-2:123456789012:run/7830534",
 "id": "7830534",
 "uuid":"96c57683-74bf-9d6d-ae7e-f09b097db14a",
 "outputUri":"s3://bucket/folder/8405154/96c57683-74bf-9d6d-ae7e-f09b097db14a"
 "status": "COMPLETED",
 "workflowId": "4074992",
 "workflowType": "PRIVATE",
 "workflowVersionName": "3.0.0",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/
OmicsWorkflow-20221004T164236",
 "name": "RunGroupMaxGpuTest",
 "runGroupId": "9938959",
 "digest":
 "sha256:a23a6fc54040d36784206234c02147302ab8658bed89860a86976048f6cad5ac",
 "accelerators": "GPU",
 "outputUri": "s3://amzn-s3-demo-bucket1",
 "startedBy": "arn:aws:sts::123456789012:assumed-role/Admin/<role_name>",
 "creationTime": "2023-04-07T16:44:22.262471+00:00",
 "startTime": "2023-04-07T16:56:12.504000+00:00",
 "stopTime": "2023-04-07T17:22:29.908813+00:00",
 "tags": {}
}

You can see the status of all runs with the list-runs API operation, as shown.

 aws omics list-runs

To see all the tasks completed for a specific run, use the list-run-tasks API.

 aws omics list-run-tasks --id task ID

To get the details of any specific task, use the get-run-task API.

 aws omics get-run-task --id <run_id> --task-id task ID

After the run completes, the metadata is sent to CloudWatch under the stream manifest/run/
<run ID>/<run UUID>.

The following is an example of the manifest.

{
 "arn": "arn:aws:omics:us-east-1:123456789012:run/1695324",

Starting a run Version latest 106

AWS HealthOmics User Guide

 "creationTime": "2022-08-24T19:53:55.284Z",
 "resourceDigests": {
 "s3://omics-data/broad-references/hg38/v0/Homo_sapiens_assembly38.dict":
 "etag:3884c62eb0e53fa92459ed9bff133ae6",
 "s3://omics-data/broad-references/hg38/v0/Homo_sapiens_assembly38.fasta":
 "etag:e307d81c605fb91b7720a08f00276842-388",
 "s3://omics-data/broad-references/hg38/v0/Homo_sapiens_assembly38.fasta.fai":
 "etag:f76371b113734a56cde236bc0372de0a",
 "s3://omics-data/intervals/hg38-mjs-whole-chr.500M.intervals":
 "etag:27fdd1341246896721ec49a46a575334",
 "s3://omics-data/workflow-input-lists/dragen-gvcf-list.txt":
 "etag:e22f5aeed0b350a66696d8ffae453227"
 },
 "digest":
 "sha256:a5baaff84dd54085eb03f78766b0a367e93439486bc3f67de42bb38b93304964",
 "engine": "WDL",
 "main": "gatk4-basic-joint-genotyping-v2.wdl",
 "name": "1044-gvcfs",
 "outputUri": "s3://omics-data/workflow-output",
 "parameters": {
 "callset_name": "cohort",
 "input_gvcf_uris": "s3://omics-data/workflow-input-lists/dragen-gvcf-list.txt",
 "interval_list": "s3://omics-data/intervals/hg38-mjs-whole-chr.500M.intervals",
 "ref_dict": "s3://omics-data/broad-references/hg38/v0/
Homo_sapiens_assembly38.dict",
 "ref_fasta": "s3://omics-data/broad-references/hg38/v0/
Homo_sapiens_assembly38.fasta",
 "ref_fasta_index": "s3://omics-data/broad-references/hg38/v0/
Homo_sapiens_assembly38.fasta.fai"
 },
 "roleArn": "arn:aws:iam::123456789012:role/OmicsServiceRole",
 "startedBy": "arn:aws:sts::123456789012:assumed-role/admin/ahenroid-Isengard",
 "startTime": "2022-08-24T20:08:22.582Z",
 "status": "COMPLETED",
 "stopTime": "2022-08-24T20:08:22.582Z",
 "storageCapacity": 9600,
 "uuid": "a3b0ca7e-9597-4ecc-94a4-6ed45481aeab",
 "workflow": "arn:aws:omics:us-east-1:123456789012:workflow/1558364",
 "workflowType": "PRIVATE"
 },
 {
 "arn": "arn:aws:omics:us-east-1:123456789012:task/1245938",
 "cpus": 16,
 "creationTime": "2022-08-24T20:06:32.971290",

Starting a run Version latest 107

AWS HealthOmics User Guide

 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/gatk",
 "imageDigest":
 "sha256:8051adab0ff725e7e9c2af5997680346f3c3799b2df3785dd51d4abdd3da747b",
 "memory": 32,
 "name": "geno-123",
 "run": "arn:aws:omics:us-east-1:123456789012:run/1695324",
 "startTime": "2022-08-24T20:08:22.278Z",
 "status": "SUCCESS",
 "stopTime": "2022-08-24T20:08:22.278Z",
 "uuid": "44c1a30a-4eee-426d-88ea-1af403858f76"
 },
 ...

Run metadata isn't deleted if it's not present in the CloudWatch logs. You can also use the run ID to
rerun workflow runs using the CLI tool. Learn more and download the tool from the HealthOmics
Tool GitHub repository.

Re-running a workflow run

The following example shows how to use the reruntool to rerun a run. You need the run ID, which
you can retrieve from the CloudWatch logs.

omics-rerun 9876543 --name workflow name --retention-mode REMOVE

If the run exists in CloudWatch, you receive a response similar to the following.

Original request:
{
 "workflowId": "9679729",
 "roleArn": "arn:aws:iam::123456789012:role/DemoRole",
 "name": "sample_rerun",
 "parameters": {
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/default:latest",
 "file1": "omics://123456789012.storage.us-west-2.amazonaws.com/8647780323/
readSet/6389608538"
 },
 "outputUri": "s3://workflow-output-bcf2fcb1"
}
StartRun request:
{
 "workflowId": "9679729",
 "roleArn": "arn:aws:iam::123456789012:role/DemoRole",

Starting a run Version latest 108

https://github.com/awslabs/amazon-omics-tools
https://github.com/awslabs/amazon-omics-tools

AWS HealthOmics User Guide

 "name": "new test",
 "parameters": {
 "image": "123456789012.dkr.ecr.us-west-2.amazonaws.com/default:latest",
 "file1": "omics://123456789012.storage.us-west-2.amazonaws.com/8647780323/
readSet/6389608538"
 },
 "outputUri": "s3://workflow-output-bcf2fcb1"
}
StartRun response:
{
 "arn": "arn:aws:omics:us-west-2:123456789012:run/9171779",
 "id": "9171779",
 "status": "PENDING",
 "tags": {}
}

If the workflow no longer exists, you receive an error message.

Run lifecycle in a HealthOmics workflow

You can track the progress of a run by monitoring the run status. HealthOmics updates the run
status as a run proceeds through its lifecycle.

You can retrieve run status using any of the following methods:

• The HealthOmics console displays the status of each run on the Runs page.

• The GetRun API operation returns the current run status.

• You can monitor run status using EventBridge events. For more information, see Using
EventBridge with AWS HealthOmics.

Topics

• Run status values

• Task Retries

• Pricing implications of run status

Run status values

When you start a run, HealthOmics sets the run status to Pending. As the run proceeds through its
lifecycle, HealthOmics updates the status value to reflect its current progress.

Run lifecycle Version latest 109

AWS HealthOmics User Guide

Note

You don't incur charges during any run status other than Running. See the next section for
details.

HealthOmics supports the following run status values:

Pending

The run is in the queue, waiting to start. Runs typically remain in Pending for a brief period
before they start.

• Runs can remain in Pending for a longer time if you submit many jobs at the same time.

• Runs remain in Pending after your account reaches the maximum number of concurrent runs.

• A run remains in Pending if the run is part of a run group that has reached any of its resource
maximum values.

• You can adjust run priorities so that specific queued runs start before others. For more
information about run priority, see Run priority.

Starting

HealthOmics creates the run and provisions the resources required for the run (such as
temporary run storage and the engine node).

• HealthOmics provisions temporary run storage at the start of the run, and deprovisions the
run storage when the run is Stopping.

Running

A run remains in Running status during the import process, the processing of each task, and the
export process.

• HealthOmics imports the input files to the temporary run storage file system. The input files
are read-only, to prevent tasks from modifying the inputs to other tasks in a workflow.

• During file export, HealthOmics exports the output files from the run storage file system to
the S3 location.

• HealthOmics delivers the run logs and task logs to CloudWatch in real time while the run
status is Running. For more information, see Logs in CloudWatch .

Stopping

After completion of the export process, the run transitions to the Stopping status.

Run lifecycle Version latest 110

AWS HealthOmics User Guide

• HealthOmics deprovisions all resources (including the run storage file system and the engine
node).

Completed

The run transitions to Completed after HealthOmics completes the resource deprovisioning.

• HealthOmics has completed all run tasks and exported the output data without error.

• The run outputs are available in the specified Amazon S3 URI output location. For WDL and
CWL, HealthOmics generates a run output summary file, which provides information about
the HealthOmics run outputs.

• The final run manifest logs and engine logs (if applicable) are available in CloudWatch.

• For runs that support task retries, a run with Completed status can include one or more tasks
that failed. As long as a task retry succeeded for each failed task, HealthOmics transitions the
run to Completed. HealthOmics assigns a new task ID to each retry, so the run includes task
IDs for the failed attempts and the completed attempt.

Failed

HealthOmics encountered one or more errors and failed to complete all the run tasks.

• A failed run transitions through Stopping status while HealthOmics deprovisions the
resources.

Cancelled

A user initiated a request to cancel the run.

• HealthOmics stops any running tasks and deprovisions all resources.

• HealthOmics doesn't export any run output data when a user cancels a run. You don't have
access to any intermediate files for a cancelled run.

• Your account incurs charges for the tasks and resources that the run consumed during
Running status before the cancellation.

• There are no charges if you cancel a run in Pending or Starting status.

Task Retries

If a task fails during a run, HealthOmics retries the task again, in the following situations:

• For a WDL workflow, HealthOmics supports task retry when the task failed because of service
errors (5XX HTTP status codes).

Run lifecycle Version latest 111

AWS HealthOmics User Guide

By default, HealthOmics attempts up to two retries of a failed task. You can opt out of task
retries by configuring the WDL definition file. For an example configuration, see Task resources in
a HealthOmics workflow definition.

• For a Nextflow workflow, you can configure retry conditions for tasks in the workflow defnition.

• If every task in the run eventually completes, even if they required retries, HealthOmics
transitions the run to Completed.

• HealthOmics assigns a new task ID to each retry, so the run includes task IDs for the failed
attempts and the completed attempt.

Pricing implications of run status

Your account can incur charges while the run status is Running. You don't incur charges during
any other run status. For example, there is no charge for resources when the run is Starting or
Stopping.

A run with Running status has the following billing implications:

• Your account incurs charges for run storage file-system usage while the run status is Running.
For information about the run storage types, See Run storage types in HealthOmics workflows.

• Your account incurs charges for running tasks, based on the compute and memory resources that
you specified for each task in the workflow definition, and based on the task duration. For more
information, see Compute and memory requirements for HealthOmics tasks.

• Each task has a minimum billing threshold of one minute. If you run a task for less than a
minute, you incur a charge for the minimum one minute of usage. If possible, group small tasks
together to optimize costs. Grouping tasks also reduces run time by avoiding the spin-up of
multiple sequential tasks.

For additional information about HealthOmics pricing, see the HealthOmics Pricing.

HealthOmics run outputs

When a WDL or CWL run completes, the outputs include an output summary file (in JSON format)
that lists all the outputs produced by the run. You can use the output summary file for these
purposes:

• Programmatically determine the output files that the run generated.

Run outputs Version latest 112

https://aws.amazon.com/healthomics/pricing/

AWS HealthOmics User Guide

• Validate that the run produced all the expected outputs.

Topics

• Run output summary for WDL

• Run output summary for CWL

Run output summary for WDL

When a WDL run completes, HealthOmics creates an output summary file named output.json.

For each output of the workflow, there is a corresponding key/value pair in the file.
The key contains the workflow name and output name in the following format:
WorkflowName.output_name. For a file output, the value is an S3 URI pointing to the output
location in S3 where the file is stored. For an Array[File] output, the value is an array of S3 URIs.

The following example shows the output.json file for a workflow named BWAMappingWorkflow.

{
 "BWAMappingWorkflow.bam_indexes": [
 "s3://omics-outputs/8886192/out/bam_indexes/0/
pbmc8k_S1_L007_R1_001.sorted.bam.bai",
 "s3://omics-outputs/8886192/out/bam_indexes/1/pbmc8k_S1_L008_R1_001.sorted.bam.bai"
],
 "BWAMappingWorkflow.mapping_stats": "s3://omics-outputs/8886192/out/mapping_stats/
genome_mapping_final_stats.txt",
 "BWAMappingWorkflow.merged_bam": "s3://omics-outputs/8886192/out/merged_bam/
genome_mapping.merged.bam",
 "BWAMappingWorkflow.merged_bam_index": "s3://omics-outputs/8886192/out/
merged_bam_index/genome_mapping.merged.bam.bai",
 "BWAMappingWorkflow.reference_index_tar": "s3://omics-outputs/8886192/out/
reference_index_tar/reference_index.tar",
 "BWAMappingWorkflow.sorted_bams": [
 "s3://omics-outputs/8886192/out/sorted_bams/0/pbmc8k_S1_L007_R1_001.sorted.bam",
 "s3://omics-outputs/8886192/out/sorted_bams/1/pbmc8k_S1_L008_R1_001.sorted.bam"
],
 "BWAMappingWorkflow.unmapped_bams": [
 "s3://omics-outputs/8886192/out/unmapped_bams/0/
pbmc8k_S1_L007_R1_001.unmapped.bam",
 "s3://omics-outputs/8886192/out/unmapped_bams/1/pbmc8k_S1_L008_R1_001.unmapped.bam"
]

Run outputs Version latest 113

AWS HealthOmics User Guide

}

If the workflow produces outputs with non-file types (such as String, Int, Float, or Bool), the field
value is a JSON primitive. For example:

{
 "MyWorkflow.my_int_ouput": 1,
 "MyWorkflow.my_bool_output": false,
 ...
}

Run output summary for CWL

When a CWL run completes, HealthOmics creates an output summary file named outputs.json at
the following location:

{my-S3outputpath}/{runId}/{run-uuid}/logs/outputs.json

The output summary file includes a list of outputs. Each output is a key/value pair, where the key is
the name of the output. The value is an object that includes the following properties:

• location – The fully qualified path to the output file

• basename – The filename portion of the path

• class – The type of the output, which is typically File

• size – The size of the file in bytes

In the following example, the output.json file has a list of two output files.

{
 "example_output": {
 "location": "{my-S3outputpath}/{runId}/{run-uuid}/out/output.txt",
 "basename": "output.txt",
 "class": "File",
 "size": 13
 },
 "another_output": {
 "location": "{my-S3outputpath}/{runId}/{run-uuid}/out/metrics.json",
 "basename": "metrics.json",

Run outputs Version latest 114

AWS HealthOmics User Guide

 "class": "File",
 "size": 256
 }
}

Run failure reasons

If a run fails, use the GetRun API operation to retrieve the failure reason.

Review the failure reason to help you troubleshoot why the run failed. The following table lists
each failure reason along with a description of the error.

Failure reason Error description

ASSUME_ROLE_FAILED HealthOmics doesn't have permission to assume the role.
Specify the HealthOmics principal in the trust relationship for
the role.

CANNOT_START_CONTA
INER_ERROR

Unable to start workflow task: name, id: ID container using
image: image name. Make sure that the image is valid and try
again.

CANNOT_START_CONTA
INER_SIZE_ERROR

Unable to start workflow task: name, id: ID container using
image: image name. Make sure that the image size is less than
25 GB and try again.

ECR_PERMISSION_ERROR HealthOmics doesn't have permission to access the image URI.
Confirm that the Amazon ECR private repository exists and has
granted access to the HealthOmics service principal.

EXPORT_FAILED The export failed. Check that the output bucket exists and the
run role has write permission to the bucket.

FILE_SYSTEM_OUT_OF
_SPACE

The file system doesn't have enough space. Increase the file
system size and run again.

IMAGE_VERIFICATION
_FAILURE

Unable to verify image image name. To correct the issue,
try pulling the image and then push it to your ECR repository
again.

Run failure reasons Version latest 115

https://docs.aws.amazon.com/omics/latest/api/API_GetRun.html

AWS HealthOmics User Guide

Failure reason Error description

IMPORT_FAILED The import failed. Check that the input file exists and the run
role can access input.

INACTIVE_OMICS_STO
RAGE_RESOURCE

The HealthOmics storage URI isn't in ACTIVE state. Activate
the read set and try again. To learn more about activating read
sets, see Activating read sets in HealthOmics.

INPUT_URI_NOT_FOUND The provided URI does not exist: uri. Check that the URI path
exists and confirm that the role can access the object.

INSTANCE_RESERVATI
ON_FAILED

There isn't enough instance capacity to complete the workflow
run. Wait and try the workflow run again.

INVALID_ECR_IMAGE_URI The Amazon ECR image URI structure isn't valid. Provide a valid
URI and try again.

INVALID_TASK_RESOU
RCE_VALUE

The requested GPU, CPU, or memory is either too high for
available compute capacity, or is less than the minimum value
of 1 for task ID.

INVALID_URI_INPUT The URI structure isn't a valid uri. Check the URI structure and
try again.

MODIFIED_INPUT_RESOURCE The provided URI uri was modified after the run started. Retry
the run.

OUT_OF_MEMORY_ERROR The workflow task ID ran out of memory. Increase the memory
value in the workflow definition and try the run again.

RUN_TASK_FAILED The run failed because the task failed. To debug the task
failure, use the GetRunTask API operation and the Amazon
CloudWatch Logs stream.

RUN_TIMED_OUT Run timeout after number minutes.

SERVICE_ERROR There was a transient error in the service. Try the workflow run
again.

Run failure reasons Version latest 116

AWS HealthOmics User Guide

Failure reason Error description

UNSUPPORTED_INPUT_SIZE The total input size is too high. Decrease the input size and try
again.

WORKFLOW_RUN_FAILED Workflow run failed. Review the CloudWatch Logs engine log
stream: ID to debug the failure.

WORKFLOW_VER_VALID
ATION_FAILED

HealthOmics doesn't support requested Nextflow version:
version --. The latest supported version is version. Modify
your Nextflow version to a supported version and try again.

Guidance for unresponsive runs

When developing new workflows, runs or specific tasks could become "stuck" or "hang" if there
are issues with your code, and tasks fail to exit processes properly. This can be challenging to
troubleshoot and catch, as it is normal for tasks to run for extended periods. To prevent and
identify unresponsive runs, follow the suggested best practices in the following sections.

Best practices for preventing unresponsive runs

• Ensure you are closing all the files opened in your task code. Opening too many files can
ocassionally lead to threading issues within the workflow engines.

• Background processes created by a workflow task should exit when the task exits. However, if a
background process does not exit cleanly, you must explicitly shut down that process in your task
code.

• Ensure your processes do not loop without exiting. This can cause an unresponsive run, and
requires a change to your workflow definition code to resolve.

• Provide appropriate memory and CPU allocation to your tasks. Analyze the CloudWatch logs or
use the Run Analyzer on successfully completed runs of your workflow to verify you have optimal
compute allocation. Use the Run Analyzer headroom parameter to include additional headroom,
ensuring processes have sufficient resources to complete. Include at least 5% headroom in
allocated memory and CPU, to account for background operating system processes.

• Additionally, increase the instance bandwidth size if the instance requires a higher throughput.
Amazon EC2 instances with fewer than 16 vCPUs (size 4xl and smaller) can experience
throughput bursting. For more information on Amazon EC2 instance throughput, see Amazon
EC2 available instance bandwidth.

Run failure reasons Version latest 117

https://docs.aws.amazon.com/omics/latest/dev/monitoring-cloudwatch-logs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html#available-instance-bandwidth
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html#available-instance-bandwidth

AWS HealthOmics User Guide

• Ensure you are using the correct file system size for your runs. For unresponsive runs that are
using static run storage, consider increasing the static run storage allocation to enable higher
IO throughput and storage capacity on the file system. Analyze the run manifest to see the
maximum file system storage, use the Run Analyzer to determine if the file system allocation
needs to be increased.

Best practices for catching unresponsive runs

• When developing new workflows, use a run group with the max run time limit set to catch
runaway code. For instance, if a run should take 1 hour to complete, place it in a run group that
times out after 2 or 3 hours (or a different time period based on your use case) to catch run-away
jobs. Also, apply a buffer to account for variance in processing times.

• Set up a series of run groups with different maximum runtime limits. For instance, you could
assign short runs to a run group that terminates the runs after a few hours, and a long runs
group that terminates runs after a few days, based on your expected workflow duration.

• HealthOmics has a default maximum run duration service limit of 604,800 Seconds, or 7 days,
which is adjustable through a request in the quotas tool. Only request a service limit increase of
this quota if you have runs that approach a week in duration. If you have a mix of short and long
runs and are not using run groups, consider putting the long-running runs in a separate account
with a higher maximum run duration service limit.

• Inspect the CloudWatch logs for tasks that you suspect could be unresponsive. If a task normally
outputs regular log statements and has not done so for an extended period, the task is likely
stuck or frozen.

What to do if you encounter an unresponsive run

• Cancel the run to avoid incurring additional costs.

• Inspect the task logs to check if any processes failed to exit correctly.

• Inspect the engine logs to identify any abnormal engine behaviors.

• Compare the task and engine logs from the unresponsive run to those of identical, successfully
completed runs. This can help identify any differences that may have caused the unresponsive
behavior.

• If you are unable to determine the root cause, raise a support case and include the following:

• ARN of the stuck run and ARN of an identical run that completed successfully.

• Engine logs (available once the run has been cancelled or fails)

Run failure reasons Version latest 118

https://docs.aws.amazon.com/omics/latest/dev/monitoring-cloudwatch-logs.html
https://docs.aws.amazon.com/omics/latest/dev/monitoring-cloudwatch-logs.html#cloudwatch-logs
https://docs.aws.amazon.com/omics/latest/dev/monitoring-cloudwatch-logs.html#cloudwatch-logs
https://docs.aws.amazon.com/awssupport/latest/user/case-management.html#creating-a-support-case

AWS HealthOmics User Guide

• Task logs for the unresponsive task. We don't require task logs for all tasks in the workflow to
troubleshoot.

Task lifecycle in a HealthOmics run

A task is a single process within a run. HealthOmics maps each task in your workflow to an
omics computing instance type that best fits the task's required resources. You specify the
required resources in the workflow definition. For more information, See Compute and memory
requirements for HealthOmics tasks.

HealthOmics provides temporary run storage for the task to use. HealthOmics copies the task input
files to the temporary run storage as read-only files. HealthOmics provides symbolic links so that
the task can access the input files from the working directory. The task has access only to the files
that you declare in the workflow definition file.

Task status values

You can track the progress of a task by monitoring the task status. When you start a run,
HealthOmics sets the task status to Pending for each task in the run. When the task starts and
progresses through its lifecycle, HealthOmics updates the status value to reflect its current
progress.

You can retrieve task status using any of the following methods:

• The HealthOmics console displays the status of each task in a run on the Run details page.

• The GetRunTask API operation returns the task status.

• You can monitor task status using EventBridge events. For more information, see Using
EventBridge with AWS HealthOmics.

You can retrieve the current status of a task using the GetRunTask API operation. The HealthOmics
console displays the status for each task in a run on the Run details page.

HealthOmics supports the following task status values:

Pending

Your task is in the queue, waiting to start. Tasks stay in pending for a brief period before they
start.

Task lifecycle Version latest 119

AWS HealthOmics User Guide

• Tasks remain in pending after your account has reached the maximum number of concurrent
tasks.

• Tasks remain in pending if the run is part of a run group that has reached any of its resource
maximum values.

• You can adjust run priorities so that specific queued runs and their tasks start before other
queued runs. For more information about run priority, see Run priority

Starting

HealthOmics is creating the task and provisioning the resources required for the task, such as
the workflow task node.

Running

The task status is Running while HealthOmics is processing the task.

Stopping

After completing the task processing and exporting the output data, the task transitions to
Stopping.

• HealthOmics deprovisions the workflow task node.

Completed

HealthOmics has finished processing the task and has transferred the output data to the run
storage file system.

Failed

HealthOmics encountered an error while processing the task and didn't complete it.

• The task transitions to Stopping status (HealthOmics deprovisions the resources) and then to
Failed status.

• If the error is a service error (5XX HTTP status code), and the workflow supports retries for
this task, HealthOmics attempts to process the task again. HealthOmics assigns a new task ID
to the retry.

Cancelled

HealthOmics stops the task after a user-initiated request to cancel the run.

• The task transitions to Stopping status (HealthOmics deprovisions the resources) and then to
Cancelled status.

Task lifecycle Version latest 120

AWS HealthOmics User Guide

Troubleshooting workflow tasks

The following are best practices and considerations for troubleshooting your tasks.

• Task logs rely on STDOUT and STDERR being produced by the task. If the application used in the
task doesn’t produce either of these, then there won't be a task log. To assist with debugging,
use applications in verbose mode.

• To view the commands being run in a task along with their interpolated values, use the set -x
Bash command. This can help determine if the task is using the correct inputs and identify where
errors might have kept the task from running as intended.

• Use the echo command to output the values of variables to STDOUT or STDERR. This helps you
confirm that they're being set as expected.

• Use commands like ls -l <name_of_input_file> to confirm that inputs are present and are
of the expected size. If they aren't, this might reveal a problem with a prior task producing empty
outputs due to a bug.

• Use the command df -Ph . | awk 'NR==2 {print $4}' in a tasks script to determine the
space currently available to the task and help identify situations where you might need to run
the workflow with additional storage allocation.

Including any of the preceding commands in a task script assumes that the task container also
includes these commands and that they are on the path of the container environment.

Run optimization for a private HealthOmics workflow

You can optimize runs for total cost, total run time, or a combination of both. HealthOmics
provides data and tools to help you with run optimization decisions. Run optimization doesn't
apply to Ready2Run workflows, because you don't have any control over how the service manages
resource provisioning for these workflows.

The first step is to understand the current task resource usage and cost for the tasks in the run, and
then apply methods for optimizing the run cost and performance.

Topics

• Run Analyzer

• Determine run costs

• Determine run time usage

Run optimization Version latest 121

AWS HealthOmics User Guide

• Methods to optimize runs

• Impact of file size variance between runs

• Methods to optimize resource concurrency

Run Analyzer

HealthOmics provides an open source tool named Run Analyzer. This tool extracts task-level
resource usage information for a run and suggests optimization opportunities for cost and run
performance.

Note

Run analyzer estimates task costs and potential cost savings based on AWS list prices at the
time you run the tool. Assess the optimization recommendations and implement those that
make sense for your use cases. Test the optimizations that you adopt to make sure that
they work for your run.

Run Analyzer performs the following tasks:

• Evaluates memory and compute bottlenecks.

• Identifies tasks that are over-provisioned for memory or CPU, and recommends new instance
sizes that can reduce costs.

• Computes cost estimates for individual tasks and computes the potential cost savings if you
apply the recommendations.

• Gives you a timeline view of tasks so you can verify the task dependencies and processing
sequence. The timeline also helps you to identify long running tasks.

• Provides recommendations about the file-system size for the run storage.

• Shows you task provisioning times so that you can identify areas where large container loads
may be slowing down provisioning time.

• The tool includes an input parameter (headroom) you can use to control the aggressiveness of
the optimization recommendations.

The following sections include specific suggestions for using Run Analyzer to optimize runs.

Run optimization Version latest 122

https://github.com/awslabs/amazon-omics-tools?tab=readme-ov-file#omics-run-analyzer

AWS HealthOmics User Guide

Determine run costs

You can use the following methods and guidelines to determine run costs:

• To view the total run costs for a billing period, follow these steps:

1. Open the Billing and Cost Management console and choose Bills.

2. In Charges by service, expand Omics.

3. Expand the region, then view the cost of all your runs itemized by omics instance type, run
storage type, and Ready2Run workflow.

• To generate a cost report that includes information for each run, follow these steps:

1. Open the Billing and Cost Management console and choose Data Exports.

2. Choose Create to create a new data export.

3. Enter an Export name for the data export. Keep the other fields at their default values to
create a CUR (cost and usage) report.

4. For Time granularity, select hourly or daily.

5. Under Data export storage settings, perform these configuration steps:

a. Configure an Amazon S3 bucket for the data export.

b. For File versioning, select whether to overwrite the existing export file or create a new
file each time.

The system generates the first report within the next 24 hours and generates subsequent
reports once a day.

6. For more information about how to create the data export, see Creating data exports in the
AWS Data Exports User Guide.

• You can tag your runs to monitor and optimize costs by category, such as by team or by project.
If you use tags, follow these steps to view run costs by tag category:

1. Open the Billing and Cost Management console and choose Cost Explorer.

2. In Report parameters > Group by, chose Tag as the dimension. and select the desired Tag
name.

• To see resource usage for tasks, view the run manifest logs in CloudWatch. For more information,
see Monitoring HealthOmics with CloudWatch Logs.

• Use the Run Analyzer tool to extract task resource usage information for a run.

Run optimization Version latest 123

https://console.aws.amazon.com/costmanagement/
https://console.aws.amazon.com/costmanagement/
https://docs.aws.amazon.com/cur/latest/userguide/dataexports-create.html
https://console.aws.amazon.com/costmanagement/

AWS HealthOmics User Guide

Determine run time usage

You can use the following methods to help you investigate run time usage:

• From the Runs page of the console, you can view the total run time for a run.

• From the Run details page, you can view the following items:

• View the total run time for a run.

• View the run time for each task in the run.

• Choose one of the links to view the logs in Amazon S3, or to view the run logs or run manifest
logs in CloudWatch.

• From the Run tasks list, choose the View logs link for a task to view the task logs in CloudWatch.

• The response to the listRuns API operation includes the run start time and stop time, so you
can calculate the total run time.

• The Run Analyzer tool shows task durations on a timeline view. This tool provides a visual
representation of the task processing sequence, which you can match with the expected order.

Methods to optimize runs

HealthOmics automatically provisions, manages, and optimizes resources that perform data
staging (such as data imports and data exports). HealthOmics also starts and runs the workflow
engine for your workflow. However, you can influence run start times, task start times, and
overall task run time by setting various run configurations. Your overall approach to the workflow
definition and design also impacts task run time. The following list describes factors that can affect
run and task performance:

Run storage type

The run storage type has an impact on run performance and run provisioning time. Dynamic run
storage provisions faster and never runs out of memory, because it scales dynamically with your
run storage needs. Dynamic run storage is also a good fit for workflows in development, where
you may often start and stop a workflow to troubleshoot issues.

Static run storage requires longer file system provisioning times, but can complete some runs
faster, typically if the runs have high task concurrency or require greater than 9.6 TiB of file
system capacity. Static run storage is well suited for long running workflows with high I/O
requirements.

Run optimization Version latest 124

AWS HealthOmics User Guide

To help you evaluate the cost vs. performance of each run storage type for a given run, you can
try A/B testing to see which run storage type delivers better performance. Also, consider using
dynamic run storage for your development cycles, then use static run storage for production
runs at scale.

For more information about run storage types Run storage types in HealthOmics workflows

Over-provision run static storage

If your workflow task computation is constrained by I/O, consider over-provisioning the static
run storage. Storage cost increases with its size, but maximum throughput of the file system
also increases. If an expensive compute task is experiencing I/O bottlenecks, increasing the file
system size to reduce the task run time may reduce the overall cost.

Reduce container image sizes

When each task starts, HealthOmics loads the container you specified for the task. Larger
containers take longer to load. Optimize your containers to be as small as possible to improve
the efficiency of launching new tasks. If you add large datasets to your containers, consider
storing the datasets in S3 and having your workflow import the data from S3. For the maximum
container sizes that HealthOmics supports, see HealthOmics workflow fixed size quotas.

Task size

You can combine small, sequential tasks into a single task to save task provisioning time. Also,
HealthOmics has a one-minute minimum task duration charge, so combining tasks may reduce
costs. Within the combined task, you may be able to use Unix pipes to avoid the I/O cost of
serializing and deserializing files.

File compression

Avoid overly compressing workflow intermediate files. Most genomics formats use “gzip” or
“block gzip” compression. Decompressing the task input file and recompressing the task output
file can consume a large percentage of the overall task CPU usage. Some genomics applications
allow you to set the compression level when serializing outputs. By reducing the level of
compression, you can reduce CPU time, although larger files increase the time spent writing to
disk. Depending on the task and the application, you can find the optimal compression level
for intermediate files that result in the shortest run time. We recommend that you start by
targeting the tasks with the largest output files. A compression level of 2 works well for several
scenarios. You can start with this level for your use-case, and compare results by trying other
compression levels.

Run optimization Version latest 125

AWS HealthOmics User Guide

Thread count

If you specify threads in your task definition, set the number of threads to the same value as the
number of requested vCPUs.

Specify compute and memory

If you don't specify memory or compute resources in your task, HealthOmics assigns the
smallest instance type (omics.c.large) as the default . Explicitly declare your memory and
compute requirements if you want HealthOmics to assign a larger instance type.

HealthOmics allocates the number of vCPUs, memory, and GPU resources that you request.
For instance, if you ask for 15vCPUs and 33GiB, HealthOmics allocates an omics.m.4xl instance
(16vCPUs, 64GB) for your task, but your task can use only 15 vCPUs and 33GiB. Therefore, we
recommend that you request vCPUs and memory resources that match an omics instance.

Batch multiple samples into one run

Because file system provisioning takes time at the start of the run, you can save on provisioning
time by batching multiple samples into the same run. Consider the following factors before
deciding on this approach:

• A single bad sample can cause a workflow to fail, so batching samples could increase the
number of failed workflows. If you aren't confident that your workflow will succeed most of
the time, one run per sample could be a better approach.

• HealthOmics allocates one run storage file system for the whole workflow. For a batch
of samples, make sure to specify a large enough amount of run storage to process all the
samples.

• There is a maximum amount of run storage per workflow, so that may constrain the number
of samples you can add to the batch.

• The minimum run storage size is 1.2 TiB, so batching may reduce costs if the workflow uses
much less storage than the minimum for each sample.

• Run storage can handle multiple simultaneous connections, so having multiple tasks using
the same run storage shouldn't cause I/O bottlenecks.

• Each run has its own set of tags. If you tag workflows with information for budgeting or
tracking, it may be better to use separate runs.

• IAM roles apply to the whole run. Each user has access to all the data for a batch of samples.
Having separating workflows gives you the ability to use more fine-grained permissions.

Run optimization Version latest 126

AWS HealthOmics User Guide

• HealthOmics sets account-level quotas for maximum number of concurrent workflows and
maximum number of concurrent tasks in a workflow. For information on how to request an
increase for these quotas, see HealthOmics service quotas.

Use parameters for container images

Parameterize your container images rather than embedding their URIs in the workflow. Wheb
they are run parameters, HealthOmics validates that the run has access to your containers
before the run starts. Otherwise, the task fails during the run, when you have incurred charges
for any completed tasks. Also, because these are parameterized inputs, HealthOmics generates
a checksum in the run manifest, which improves the run provenance.

Use a linter

Use a linter to find common workflow errors before you run a new workflow. For more
information, see Workflow linters in HealthOmics.

Use EventBridge to flag issues

Use EventBridge customized alerts to catch anomalies that are specific to your business logic.

Use sequence stores

Consider using a sequence store for your source data to save on storage costs. For more
information, see the Store omics data cost-effectively at any scale with HealthOmics blog post.

Impact of file size variance between runs

Users often design and test runs using a small set of testing data, then encounter a wide variety of
data with significant file-size variance in production runs. Make sure you account for this variance
when you optimize the run.

The following list describes recommendations for optimization where there is significant variance
in file sizes:

Vary file sizes in your testing data

Try to use testing data during development that has a representative amount of variance.

Use Run Analyzer

Use the Run Analyzer tool across a variety of samples to account for variance in data sizes.

Run optimization Version latest 127

https://aws.amazon.com/blogs/industries/store-omics-data-cost-effectively-at-any-scale-with-aws-healthomics/

AWS HealthOmics User Guide

You can use the run analyzer to understand variance between runs in your production data
samples. Use --batch mode in Run Analyzer to generate statistics for a batch of runs and
analyze the maximum compute resources required to handle outliers in your data sets.

For example, you can give run analyzer a full flow cell of data in batch mode to understand
peak vCPU and memory utilization for the full flow cell.

Reduce size variance of the input datasets

If you see high variance in sample sizes, you can bifurcate samples upstream of HealthOmics
and select different file system sizes for each batch to save on run storage costs.

In WDL, use the size function to bifurcate resource allocation for individual tasks for large
versus small samples. Apply this strategy to your most expensive tasks to have the most impact.

In Nextflow, use conditional resources for tiering resource allocation based on file size or file
name. For more information, see Conditional process resources on the Nextflow GitHub site.

Don't optimize too soon

Finalize your workflow code and logic before investing in significant performance tuning
efforts. Changing your code can have significant impacts on required resources. If you optimize
a run too soon in the development process, you may over-optimize or you may need to optimize
again if the workflow definition changes later.

Re-run the Run Analyzer tool periodically

If you make changes to your workflow definition over time or if your sample variance changes,
periodically run the Run Analyzer tool to help you made additional optimizations.

Methods to optimize resource concurrency

HealthOmics provides the following capabilities to help you control and manage costs when
processing runs at scale:

• Use run groups to control your costs and resource usage. You can set maximum values in the run
group for number of concurrent runs, vCPUs, GPUs, and total run time per task. If separate teams
or groups use the same account, you can create a separate run group for each team. You can
control resource usage and costs per team and by configuring the run group maximum values.
For more information, see Creating HealthOmics run groups.

• During development, you can configure a separate run group with lower maximum values to
catch runaway tasks.

Run optimization Version latest 128

https://nextflow-io.github.io/patterns/conditional-resources

AWS HealthOmics User Guide

• Service Quotas also help to protect your account from excessive resource requests. For
information about Service Quotas, including how to request quota value increases, see
HealthOmics service quotas

Deleting runs and run groups in HealthOmics

When you no longer need a run or run group, you can delete it using the AWS CLI, API, or console.

In addition to deleting a run, you can also cancel a run. To cancel a run, its status must be PENDING,
STARTING, RUNNING, or STOPPING.

Note

When you cancel a run, HealthOmics doesn't save any of the run outputs.

The following AWS CLI command shows how you can cancel a run. To run the example, replace the
run id with the ID of the run you would like to cancel. If successful, there is no response.

aws omics cancel-run --id run id

The following AWS CLI command deletes a run. Runs can only be deleted if they are complete or
cancelled. To run the example, replace the run id with the ID of the run you want to delete. There
is no response if the run is successfully deleted.

aws omics delete-run --id run id

You can also delete run groups. Run groups can only be deleted if there are no runs associated with
that run group with the status of PENDING, STARTING, RUNNING, or STOPPING.

The following example shows how you can use the AWS CLI to delete a run group. You will not
receive a response. To run the example, replace the run group id with the ID of the run group
you want to delete.

aws omics delete-run-group --id run group id

Deleting runs and run groups Version latest 129

AWS HealthOmics User Guide

Creating HealthOmics run groups

You can optionally create a run group to cap the compute resources for the runs that you add to
the group. Run groups can help you:

• Queue your runs so that you don’t exceed service limits.

• Catch run-away tasks by setting a maximum run duration.

• Manage the priority of each run so that the most important runs complete first.

If you set the maximum concurrent vCPU, GPU, or runs, run tasks will queue when the maximum is
reached. If you set a maximum run duration, the run fails if it exceeds the maximum duration.

Use the run priority setting to establish priority within a run group.

Service limits take precedence over run group limits. For instance, if you set a run group maximum
to a higher value than your service maximum in a region, HealthOmics applies the service
maximum.

Topics

• Run priority

• Creating a run group using the console

• Creating a run group using the CLI

Run priority

You can use run priority to establish the priority of runs in a run group.

If multiple runs have the same priority, the run that started first has the higher priority.

You can also set a priority for a run that isn't in a run group. The priority is compared with the
priorities of all other runs that aren't in a run group

You set run priority when you start the run. For more information, see Starting a run in
HealthOmics.

Creating run groups Version latest 130

AWS HealthOmics User Guide

Creating a run group using the console

To create a run group

1. Open the HealthOmics console.

2. In the left navigation pane, choose Run groups.

3. On the Run groups page, choose Create run group.

4. On the Create run group details page, provide the following information

• Run group name - A unique name for this run group.

• Max vCPU for concurrent runs - The maximum number of vCPUs that can run concurrently
across all active runs in the run group.

• Max GPUs - The maximum number of GPUs that can run concurrently across all active runs
in the run group.

• Max run time (mins) per run - The maximum time for each run (in minutes). If a run exceeds
the maximum run time, the run fails automatically.

• Max concurrent runs - The maximum number of runs that can be running at the same time.

5. (optional) You can add up to 50 tags to the run group.

6. Choose Create run group.

Creating a run group using the CLI

To create a run group, use the create-run-group API operation to create a run group named
TestRunGroup. The following example sets a maximum of 20 CPUs, 10 GPUs, 5 runs, and a
maximum run duration of 600 minutes.

aws omics create-run-group --name TestRunGroup \
--max-cpus 20 \
--max-gpus 10 \
--max-duration 600 \
--max-runs 5

The response from this API operation includes the ID of the newly created RunGroup.

{
 "arn": "arn:aws:omics:us-west-2:12345678901:runGroup/2839621",

Creating a run group using the console Version latest 131

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

 "id": "2839621",
 "tags": {}
}

To get additional information about the run group, use this ID with the get-run-group API
operation, as shown in the following example.

aws omics get-run-group --id run group id

The response includes the limit settings for the run group and the assigned tags.

{
 "arn": "arn:aws:omics:us-west-2:776893852117:runGroup/2839621",
 "id": "2839621",
 "name": "TestRunGroup",
 "maxCpus": 20,
 "maxRuns": 5,
 "maxDuration": 600,
 "creationTime": "2024-06-12T15:35:39.191730+00:00",
 "tags": {},
 "maxGpus": 10
}

You can also use the list-run-group API operation to view all created run groups.

aws omics list-run-groups

Call caching for HealthOmics runs

AWS HealthOmics supports call caching, also known as resume, for private workflows. Call caching
saves the outputs of completed workflow tasks after a run finishes. Subsequent runs can use the
task outputs from the cache, rather than computing the task outputs again. Call caching reduces
compute resource usage, which results in shorter run durations and compute cost savings.

You can access the cached task output files after the run completes. To perform advanced task
debugging and troubleshooting, you can cache intermediate task files by specifying these files as
task outputs in the workflow definition.

You can use call caching to save the completed task results from failed runs. The next run starts
from the last successfully completed task, rather than computing the completed tasks again.

Call caching Version latest 132

AWS HealthOmics User Guide

If HealthOmics doesn't find a matching cache entry for a task, the run doesn't fail. HealthOmics
recomputes the task and its dependent tasks.

For information about troubleshooting call caching issues, see Troubleshooting call caching issues.

Topics

• How call caching works

• Creating a run cache

• Updating a run cache

• Deleting a run cache

• Contents of a run cache

• Engine-specific caching features

• Using the run cache

How call caching works

To use call caching, you create a run cache and configure it to have an associated Amazon S3
location for the cached data. When you start a run, you specify the run cache. A run cache isn't
dedicated to one workflow. Runs from multiple workflows can use the same cache.

During the export phase of a run, the system exports the completed task outputs to the Amazon
S3 location. To export intermediate task files, declare these files as task outputs in the workflow
definition. Call caching also internally saves metadata and creates unique hashes for each cache
entry.

For each task in a run, the workflow engine detects whether there is a matching cache entry
for this task. If there is no matching cache entry, HealthOmics computes the task. If there is a
matching cache entry, the engine retrieves the cached results.

To match cache entries, HealthOmics uses the hashing mechanism that's included in the native
workflow engines. HealthOmics extends these existing hash implementations to account for
HealthOmics variables, such as S3 eTags and ECR container digests.

HealthOmics supports call caching for these (or later) workflow language versions:

• WDL versions 1.0, 1.1, and the development version

• Nextflow version 23.10

How call caching works Version latest 133

AWS HealthOmics User Guide

• All CWL versions

Note

HealthOmics doesn't support call caching for Ready2Run workflows.

Topics

• Shared responsibility model

• Caching requirements for tasks

• Run cache performance

• Cache data retention and invalidation events

Shared responsibility model

There is a shared responsibility between users and AWS to determine whether tasks and runs
are good candidates for call caching. Call caching achieves the best outcomes when all tasks are
idempotent (repeated executions of a task using the same inputs produce the same results).

However, if a task includes non-deterministic elements (such as random number generations
or system time), repeated executions of the task using the same inputs may result in different
outputs. This can impact the effectiveness of call caching in the following ways:

• If HealthOmics uses a cache entry (created by a previous run) that is not identical to the output
that the task execution would produce for the current run, the run may yield different results
than the same run with no caching.

• HealthOmics may not find a matching cache entry for a task that should match, because of
non-deterministic task outputs. If it doesn't find the valid cache entry, the run unnecessarily
recomputes the task, which reduces the cost saving benefits of using call caching.

The following are known task behaviors that can cause non-deterministic results that affect call
caching outcomes:

• Using random number generators.

• Dependence on the system time.

• Using concurrency (race-conditions can cause output variance).

How call caching works Version latest 134

AWS HealthOmics User Guide

• Fetching local or remote files beyond what is specified in the task input parameters.

For other scenarios that can cause non-deterministic behavior, see Non-deterministic process
inputs on the Nextflow documentation site.

If you suspect that a task produces outputs that are non-deterministic, consider using workflow
engine features, such as cache opt-out in Nextflow, to avoid caching specific tasks that are non-
deterministic.

We recommend that you thoroughly review your specific workflow and task requirements before
enabling call caching in any environments in which ineffective call caching or different outputs
than expected can present risk. For example, the potential limitations of call caching should be
carefully considered in determining whether call caching is appropriate for clinical use cases.

Caching requirements for tasks

HealthOmics caches task outputs for tasks that meet the following requirements:

• The task must define a container. HealthOmics won't cache outputs for a task with no container.

• The task must produce one or more outputs. You specify task outputs in the workflow definition.

• The workflow definition must not use dynamic values. For example, if you pass a parameter to a
task with a value that increments with every run, HealthOmics doesn't cache the task outputs.

Note

If multiple tasks in a run use the same container image, HealthOmics provides the same
image version to all of these tasks. After HealthOmics pulls the image, it ignores any
updates to the container image for the duration of the run. This approach provides a
predictable and consistent experience and prevents potential issues that could arise from
updates to the container image that are deployed mid-run.

Run cache performance

When you turn on call caching for a run, you may notice the following impacts on run performance:

• During the first run, HealthOmics saves the cache data for tasks in the run. You may experience
longer export times for this run, because call caching increases the amount of export data.

How call caching works Version latest 135

https://www.nextflow.io/docs/latest/cache-and-resume.html#non-deterministic-process-inputs
https://www.nextflow.io/docs/latest/cache-and-resume.html#non-deterministic-process-inputs

AWS HealthOmics User Guide

• In subsequent runs, when resuming a run from cache, it may shorten the number of processing
steps and reduce your run time.

• If you also choose to declare intermediate files as outputs, then your export times might be even
longer since this data can be more verbose.

Cache data retention and invalidation events

The main purpose of a run cache is to optimize computation of tasks in the run. If there is a valid
matching cache entry for a task, HealthOmics uses the cache entry instead of recomputing the
task. Otherwise, HealthOmics reverts to the default service behavior, which is to recompute the
task and its dependent tasks. By using this approach, cache misses don't cause the run to fail.

We recommend that you manage the run cache size. Over time, cache entries may no longer be
valid because of workflow engine or HealthOmics service updates or because of changes you made
in the run or the run tasks. The following sections provide additional details.

Topics

• Manifest version updates and data freshness

• Run cache behavior

• Control run cache size

Manifest version updates and data freshness

Periodically, the HealthOmics service may introduce new features or workflow engine updates that
invalidate some or all run cache entries. In this situation, your runs can experience a one-time cache
miss.

HealthOmics creates a JSON manifest file for each cache entry. For runs started after February
12th 2025, the manifest file includes a version parameter. If a service update invalidates any cache
entries, HealthOmics increments the version number so that you can identify the legacy cache
entries for removal.

The following example shows a manifest file with the version set to 2:

{
 "arn": "arn:aws:omics:us-west-2:12345678901:runCache/0123456/
cacheEntry/1234567-195f-3921-a1fa-ffffcef0a6a4",

How call caching works Version latest 136

AWS HealthOmics User Guide

 "s3uri": "s3://example/1234567-d0d1-e230-
d599-10f1539f4a32/1348677/4795326/7e8c69b1-145f-3991-a1fa-ffffcef0a6a4",
 "taskArn": "arn:aws:omics:us-west-2:12345678901:task/4567891",
 "workDir": "/mnt/workflow/1234567-d0d1-e230-d599-10f1539f4a32/workdir/call-
TxtFileCopyTask/5w6tn5feyga7noasjuecdeoqpkltrfo3/wxz2fuddlo6hc4uh5s2lreaayczduxdm",
 "files": [
 {
 "name": "output_txt_file",
 "path": "out/output_txt_file/outfile.txt",
 "etag": "ajdhyg9736b9654673b9fbb486753bc8"
 }
],
 "nextflowContext": {},
 "otherOutputs": {},
 "version": 2,
 }

For runs with cache entries that are no longer valid, rebuild the cache to create new valid entries.
Perform the following steps for each run:

1. Start the run once with cache retention set to CACHE ALWAYS. This run creates the new cache
entries.

2. For subsequent runs, set the cache retention to its former setting (CACHE ALWAYS or CACHE ON
FAILURE).

To clean-up cache entries that are no longer valid, you can delete these cache entries from the
cache Amazon S3 bucket. HealthOmics never reuses these cache entries. If you choose to retain
entries that aren't valid, there is no impact on your runs.

Note

Call caching saves task output data in the Amazon S3 location specified for the cache,
which incurs charges to your AWS account.

Run cache behavior

You can set run cache behavior to save the task outputs for runs that fail (cache on failure) or for
all runs (cache always). When you create a run cache, you set the default cache behavior for all runs
that use this cache. You can override the default behavior when you start a run.

How call caching works Version latest 137

AWS HealthOmics User Guide

Cache on failure is useful if you're debugging a workflow that fails after several tasks completed
successfully. The subsequent run resumes from the last successfully completed task if all the
unique variables considered by the hash are identical to the prior run.

Cache always is useful if you're updating a task in a workflow that completes successfully. We
recommend that you follow these steps:

1. Create a new run. Set the Cache behavior to Cache always, and start the run.

2. After the run completes, update the task in the workflow and start a new run with behavior
set Cache always. This run processes the updated task and any subsequent tasks that have a
dependency on the updated task. All other tasks use the cached results.

3. Repeat step 2 as required, until development is complete for the updated task.

4. Use the updated task as needed on future runs. Remember to switch subsequent runs to Cache
on failure if you plan to use new or different inputs for these runs.

Note

We recommend Cache always mode while using the same test data set, but not for a batch
of runs. If you set this mode for a large batch of runs, the system can export large amounts
of data to Amazon S3, resulting in increased export times and storage costs.

Control run cache size

HealthOmics doesn't delete or auto-archive any run cache data or apply Amazon S3 clean-up rules
for managing the cache data. We recommend that you perform regular cache clean-ups to save on
Amazon S3 storage costs and to keep your run cache size manageable. You can delete files directly
or set data retention/replication policies on the run cache bucket.

For example, you can configure an Amazon S3 lifecycle policy to expire objects after 90 days, or
you can manually clean-up the cache data at the end of each development project.

The following information can help you manage cache data size:

• You can view how much data is in the cache by checking Amazon S3. HealthOmics doesn't
monitor or report on cache size.

• If you delete a valid cache entry, the subsequent run doesn't fail. HealthOmics recomputes the
task and its dependent tasks.

How call caching works Version latest 138

AWS HealthOmics User Guide

• If you modify cache names or directory structures such that HealthOmics can’t find a matching
entry for a task, HealthOmics recomputes the task.

If you need to check whether a cache entry is still valid, check the cache manifest version number.
For more information, see Manifest version updates and data freshness.

Creating a run cache

When you create a run cache, you specify an Amazon S3 location for the cache data. This data must
be immediately accessible. Call caching doesn't retrieve objects archived in Glacier (such as GFR and
GDA storage classes).

If the Amazon S3 bucket for the cache data is owned by another AWS account, provide that
account ID when you create the run cache.

Creating a run cache using the console

From the console, follow these steps to create a run cache.

1. Open the HealthOmics console.

2. In the left navigation pane, choose Run caches.

3. From the Run caches page, choose Create run cache.

4. In the Run cache details panel of the Create run cache page, configure these fields:

a. Enter a name for the run cache.

b. (Optional) Enter a description.

c. Enter an S3 location for the cached output. Choose a bucket in the same Region as your
workflow.

d. (Optional) Enter the AWS account of the bucket owner to verify bucket ownership. If you
don't enter a value, the default value is your account ID.

e. Under Cache behavior, configure the default behavior (whether to cache outputs for
failed runs or for all runs). When you start a run, you can optionally override the default
behavior.

5. (Optional) Associate one or more tags with the run cache.

6. Choose Create run cache. The console displays the new run cache in the Run caches table.

Creating a run cache Version latest 139

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Creating a run cache using the CLI

Use the create-run-cache CLI command to create a run cache. The default cache behavior is
CACHE_ON_FAILURE.

aws omics create-run-cache \
 --name "workflow 123 run cache" \
 --description "my run cache" \
 --cache-s3-location "s3://amzn-s3-demo-bucket" \
 --cache-behavior "CACHE_ALWAYS" \
 --cache-bucket-owner-id "111122223333"

If the create is successful, you receive a response with the following fields.

{
 "arn": "string",
 "id": "string",
 "status": "ACTIVE"
 "tags": {}
 }

Updating a run cache

You can change the cache name, description, tags, or cache behavior, but not the S3 location for
the cache.

Updating a run cache using the console

From the console, follow these steps to update a run cache.

1. Open the HealthOmics console.

2. In the left navigation pane, choose Run caches.

3. From the Run caches table, choose the run cache to update, then choose Edit.

4. In the Run cache details panel, you can update the run cache name, description, and cache
behavior fields.

5. (Optional) Associate one or more new tags with the run cache, or remove existing tags.

6. Choose Save run cache.

Updating a run cache Version latest 140

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Updating a run cache using the CLI

Use the update-run-cache CLI command to update a run cache.

aws omics update-run-cache \
 --name "workflow 123 run cache" \
 --id "workflow id" \
 --description "my run cache" \
 --cache-behavior "CACHE_ALWAYS"

If the update is successful, you receive a response with no data fields.

Deleting a run cache

You can delete a run cache if no active runs are using it. If any runs are using the run cache, wait for
the runs to complete or you can cancel the runs.

Deleting a run cache removes the resource and its metadata, but doesn't delete the data in Amazon
S3. After you delete the cache, you can't reattach it or use it for subsequent runs.

The cached data remains in Amazon S3 for your inspection. You can remove old cache data using
standard S3 Delete operations. Alternatively, create an Amazon S3 lifecycle policy to expire cached
data that you no longer use.

Deleting a run cache using the console

From the console, follow these steps to delete a run cache.

1. Open the HealthOmics console.

2. In the left navigation pane, choose Run caches.

3. From the Run caches table, choose the run cache to delete.

4. From the Run caches table menu, choose Delete.

5. From the modal dialog, save the Amazon S3 cache data link for future reference, then confirm
that you want to delete the run cache.

You can use the Amazon S3 link to inspect the cached data, but you can't relink the data to
another run cache. Delete the cache data when you've finished the inspection.

Deleting a run cache Version latest 141

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Deleting a run cache using the CLI

Use the delete-run-cache CLI command to delete a run cache.

aws omics delete-run-cache \
 --id "my cache id"

If the delete is successful, you receive a response with no data fields.

Contents of a run cache

HealthOmics organizes your run cache with the following structure in your S3 bucket:

s3://{cache.S3location}/{cache.uuid}/runID/taskID/{cacheentry.uuid}/

The cache.uuid is the globally unique id for the cache. The cacheentry.uuid is the globally unique
uuid for a cached task. HealthOmics assigns the uuids to caches and tasks.

For all workflow engines, the cache contains the following files:

• The {cacheentryuuid}.json file – HealthOmics creates this manifest file, which contains
information about the cache, including a list of all items in the cache, and the cache version.

• Task output files – Each task output consists of one or more files, as defined by the task.

For a workflow that uses Nextflow, the Nextflow engine creates these additional files in the cache:

• The command.out file – This file contains the task execution stdout contents.

• The .exitcode file – This file contains the task exit code (an integer).

Note

If you want to access intermediate task files in your run cache for advanced
troubleshooting, declare these files as task outputs in the workflow definition.

Contents of a run cache Version latest 142

AWS HealthOmics User Guide

Engine-specific caching features

HealthOmics tries to provide a consistent implementation of call caching across workflow engines.
There are some differences based on how each workflow engine handles specific cases:

• Nextflow

• You can turn off caching for individual tasks by using the cache false directive. For information
about this directive, see the Processes in the Nextflow specification.

• HealthOmics uses Nextflow lenient mode, but doesn't support deep caching mode.

• Caching evaluates each individual S3 object if you use a glob pattern in the S3 path to the
inputs for a task. If you add a new object, HealthOmics recomputes only the tasks that use the
new object.

• HealthOmics doesn't cache task retries. This behavior is consistent with Nextflow’s default
behavior.

• WDL

• HealthOmics supports the new “directory” type for inputs when you use the development
version of the WDL workflow. For call caching, if any object in the directory changes,
HealthOmics recomputes all tasks that input the directory.

• HealthOmics supports task-level caching, but not workflow-level caching.

• CWL

• Constant outputs from tasks aren't explicitly visible from the manifests. HealthOmics caches
constant outputs as intermediate files.

Using the run cache

By default, runs don't use a run cache. To use a cache for the run, you specify the run cache and the
run cache behavior when you start the run.

After a run completes, you can use the console, CloudWatch Logs, or API operations to track
cache hits or troubleshoot cache issues. For details, see Tracking call caching information and
Troubleshooting call caching issues.

If one or more tasks in a run generate non-deterministic outputs, we strongly recommend that
you don’t use call caching for the run, or you opt out these specific tasks from caching. For more
information, see Shared responsibility model.

Engine-specific caching features Version latest 143

https://www.nextflow.io/docs/latest/process.html#process-cache

AWS HealthOmics User Guide

Note

You provide an IAM service role when you start a run. To use call caching, the service role
needs permission to access the run cache Amazon S3 location. For more information, see
Service roles for AWS HealthOmics.

Topics

• Configuring a run with run cache using the console

• Configuring a run with run cache using the CLI

• Error cases for run caches

• Tracking call caching information

Configuring a run with run cache using the console

From the console, you configure the run cache for a run when you start the run.

1. Open the HealthOmics console.

2. In the left navigation pane, choose Runs.

3. On the Runs page, choose the run to start.

4. Choose Start run and complete steps 1 and 2 of Start run as described in Starting a run using
the console.

5. In step 3 of Start run, choose Select an existing run cache.

6. Select the cache from the Run cache ID drop-down list.

7. To override the default run cache behavior, choose the Cache behavior for the run. For more
information, see Run cache behavior.

8. Continue to step 4 of Start run.

Configuring a run with run cache using the CLI

To start a run that uses a run cache, add the cache-id parameter to the start-run CLI command.
Optionally, use the cache-behavior parameter to override the default behavior that you
configured for the run cache. The following example shows only the cache fields for the command:

aws omics start-run \

Using the run cache Version latest 144

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

 ...
 --cache-id "xxxxxx" \
 --cache-behavior CACHE_ALWAYS

If the operation is successful, you receive a response with no data fields.

Error cases for run caches

For the following scenarios, HealthOmics may not cache task outputs, even for a run with cache
behavior set to Cache always.

• If the run encounters an error before the first task completes successfully, there are no cache
outputs to export.

• If the export process fails, HealthOmics doesn't save the task outputs to the Amazon S3 cache
location.

• If the run fails due to a filesystem out of space error, call caching doesn't save any task outputs.

• If you cancel a run, call caching doesn't save any task outputs.

• If the run experiences a run timeout, call caching doesn't save any task outputs, even if you
configured the run to use cache on failure.

Tracking call caching information

You can track call caching events (such as run cache hits) using the console, the CLI, or CloudWatch
Logs.

Topics

• Track cache hits using the console

• Track call caching using the CLI

• Track call caching using CloudWatch Logs

Track cache hits using the console

In the run details page for a run, the Run tasks table displays Cache hit information for each task.
The table also includes a link to the associated cache entry. Use the following procedure to view
cache hit information for a run.

Using the run cache Version latest 145

AWS HealthOmics User Guide

1. Open the HealthOmics console.

2. In the left navigation pane, choose Runs.

3. On the Runs page, choose the run to inspect.

4. On the run details page, choose the Run tasks tab to display the tasks table.

5. If a task has a cache hit, the Cache hit column contains a link to the run cache entry location in
Amazon S3.

6. Choose the link to inspect the run cache entry.

Track call caching using the CLI

Use the get-run CLI command confirm whether the run used a call cache.

 aws omics get-run --id 1234567

In the response, if the cacheId field is set, the run uses that cache.

Use the list-run-tasks CLI command to retrieve the cache data location for each cached task in the
run.

 aws omics list-run-tasks --id 1234567

In the response, if the cacheHit field for a task is true, the cacheS3Uri field provides the cache data
location for that task.

You can also use the get-run-task CLI command to retrieve the cache data location for a specific
task:

 aws omics get-run-task --id 1234567 --task-id <task_id>

Track call caching using CloudWatch Logs

HealthOmics creates cache activity logs in the /aws/omics/WorkflowLog CloudWatch log group.
There is a log stream for each run cache: runCache/<cache_id>/<cache_uuid>.

For runs that use call caching, HealthOmics generates CloudWatch Logs entries for these events:

• creating a cache entry (CACHE_ENTRY_CREATED)

• matching a cache entry (CACHE_HIT)

Using the run cache Version latest 146

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• failing to match a cache entry (CACHE_MISS)

For more information about these logs, see Logs in CloudWatch .

Use the following CloudWatch Insights query on the /aws/omics/WorkflowLog log group to
return the number of cache hits per run for this cache:

filter @logStream like 'runCache/<CACHE_ID>/'
 fields @timestamp, @message
 filter logMessage like 'CACHE_HIT'
 parse "run: *," as run
 stats count(*) as cacheHits by run

Use the following query to return the number of cache entries created by each run:

filter @logStream like 'runCache/<CACHE_ID>/'
 fields @timestamp, @message
 filter logMessage like 'CACHE_ENTRY_CREATED'
 parse "run: *," as run
 stats count(*) as cacheEntries by run

Sharing HealthOmics workflows

As the owner of a private workflow, you can share the workflow with an AWS account in the same
region. To share a workflow with more than one AWS account, you create multiple shares of the
same workflow.

As the owner, you can revoke access to a shared workflow by deleting the share.

Note

HealthOmics automatically allows a shared workflow to access the Amazon ECR repository
while the workflow is running in the subscriber's account. You don't need to grant
additional repository access for shared workflows.

When you share a workflow, the subscriber can use any of the workflow versions. If you need
version-level access control for a shared workflow, we recommend that you create separate
workflows rather than using workflow versions.

Sharing workflows Version latest 147

AWS HealthOmics User Guide

Topics

• Subscribing to a shared workflow

• Monitoring status of a workflow share

• Sharing a private workflow using the console

• Sharing a private workflow using the CLI

• Accepting a shared workflow using the console

• Running a shared workflow using the console

• Running a shared workflow using the API

Subscribing to a shared workflow

To subscribe to a shared workflow, you follow these overall steps to accept and use the workflow:

1. Use the console or API to accept the share. Set your current region to the same region as the
share request.

• To find the share request in the console, navigate to the All Resource shares page, then
choose the Shared with me tab.

2. Use the console or API to create a run for the shared workflow.

• To find the workflow details page in the console, navigate to Shared with me (see step 1),
then choose the Resource link for the shared workflow.

3. You provide your own input data for the workflow.

4. The shared workflow runs in your AWS account.

As the subscriber to a shared workflow, the system blocks you from performing the following
workflow actions:

• Exporting a shared workflow

• Re-running the shared workflow

• You create a new run for the shared workflow.

• Re-sharing the workflow.

• Assigning a tag to the workflow.

• Deleting the workflow.

• When you no longer need the workflow, you delete the workflow share.

Subscribing to a shared workflow Version latest 148

AWS HealthOmics User Guide

See Cross-account resource sharing in AWS HealthOmics for additional information about resource
sharing.

Monitoring status of a workflow share

HealthOmics sends an event to EventBridge for each status change of a workflow share. If you
want to receive notifications about specific status changes, set up an EventBridge rule to monitor
Workflow share Status Change events. For example:

• You want a notification each time you receive a workflow share request, and each time a user
revokes a workflow share.

• After you initiate a workflow share request, you want to receive a notification when the user
accepts or declines the request.

For details about using events, see Using EventBridge with AWS HealthOmics.

Sharing a private workflow using the console

From the console, you can share a private workflow with an AWS account in the same region as the
workflow.

To share a private workflow

1. Open the HealthOmics console.

2. In the left navigation pane, choose Private workflows.

3. From the Workflows table on the Private workflows page, select the workflow to share, and
choose Share.

4. In the Share details panel of the Share workflow page, enter a descriptive name for the share
and enter the AWS account of the subscriber.

5. Choose Share resource. The console displays resource shares in the All resource shares page.

The initial state of the share is pending. After the subscriber accepts the share, the state changes to
active.

Sharing a private workflow using the CLI

Use the create-share API operation to create a workflow share. The principal subscriber is the AWS
account of the user who will get access to the workflow.

Monitoring status of a workflow share Version latest 149

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

aws omics create-share \
 --resource-arn "arn:aws:omics:us-west-2:555555555555:workflow/123456" \
 --principal-subscriber "123456789012" \
 --name "my_Share-123"

If the create is successful, you receive a response with the share ID and status.

{
"shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
"name": "my_Share-123",
"status": "PENDING"
}

The share remains in pending state until the subscriber accepts it using the accept-share API
operation.

See Cross-account resource sharing in AWS HealthOmics for other API usage examples.

Accepting a shared workflow using the console

You can use the console to accept an offered workflow share. Make sure to set the console to the
same Region as the workflow.

1. Open the HealthOmics console.

2. In the left navigation pane, choose All Resource shares, then choose the Shared with me tab.

3. From the Resources shared with me table , select the workflow share and then choose Accept.

After you accept the workflow, choose the Resource link for the shared workflow to view its
details.

Running a shared workflow using the console

After you accept a workflow share, you can start a run on the workflow.

1. Open the HealthOmics console.

2. In the left navigation pane, choose All Resource shares, then choose the Shared with me tab.

3. From the Resources shared with me table, choose the Resource link for the shared workflow.

4. In the Workflow details page, choose Create run.

Accepting a shared workflow using the console Version latest 150

https://console.aws.amazon.com/omics/
https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

The console opens the Create run page, with the workflow type (shared) and Workflow ID
pre-populated.

5. Configure the remaining fields in the Create run form. For additional information, see Starting
a run using the console.

Running a shared workflow using the API

Use get-workflow to retrieve the ARN of the shared workflow.

aws omics get-workflow --id 1234567 \
--workflow-owner-id 55555555555

When you run the workflow, provide the workflow owner’s AWS account ID and the ARN of the
shared workflow.

aws omics start-run --id 1234567 --workflow-owner-id 55555555555 \
--role-arn arn:aws:iam::1234567892012:role/service-role/OmicsWorkflow-20221004T164236 \
--name ArchiveTest --retention-mode REMOVE

Running a shared workflow using the API Version latest 151

AWS HealthOmics User Guide

Ready2Run workflows in HealthOmics

Ready2Run workflows are preconfigured workflows published by third-party publishers. Some
publishers, such as Sentieon Inc, offer subscription-based workflows. Other Ready2Run workflows
don't require a subscription, and some workflows are open source, such as the NF-Core workflows.

Ready2Run workflows are well-suited to the following scenarios:

• You want to focus on the analysis of pipeline output and generating results, without the need to
set up the underlying infrastructure.

• You want to replicate your results using established workflows.

• As a software developer, you want to integrate your application directly with the HealthOmics
SDK.

HealthOmics supports versioning for Ready2Run workflows. For a Ready2Run workflow that offers
versions, you can specify the version name when you start a run.

All Ready2Run workflows provide logs, including CloudWatch logs, that you can use for
troubleshooting.

Note

Sentieon Ready2Run workflows are subscription-based. When you run a Sentieon
Ready2Run workflow for the first time in an account, Sentieon automatically creates a
two-week evaluation license for your AWS account. The license is valid for all Sentieon
Ready2Run workflows. After the evaluation period ends, you can request a permanent
license or request an extension to the evaluation license. See Subscribing to Sentieon
Ready2Run workflows for details.

Topics

• Available Ready2Run workflows in HealthOmics

• Subscribing to Sentieon Ready2Run workflows

• Starting HealthOmics Ready2Run workflows using the console

• Starting HealthOmics Ready2Run workflows using the API

Version latest 152

AWS HealthOmics User Guide

Available Ready2Run workflows in HealthOmics

The following table lists the Ready2Run workflows that are available in HealthOmics.

You can log in to the HealthOmics console to view detailed information about these workflows,
including input parameters and workflow diagrams. For pricing information about Ready2Run
workflows, see HealthOmics Pricing.

Note

Each Ready2Run workflow has a maximum input file size. These maximum file sizes aren't
adjustable.

Workflow name Publisher Subscription
required?

Maximum input
file size (GiB)

Estimated run
time (HH:MM)

AlphaFold
for 601-1200
residues

Google
DeepMind

No 1 11:15

AlphaFold for up
to 600 residues

Google
DeepMind

No 1 7:30

Bases2Fastq for
2x150

Element
Biosciences

No 1000 1:45

Bases2Fastq for
2x300

Element
Biosciences

No 1000 1:30

Bases2Fastq for
2x75

Element
Biosciences

No 500 0:45

ESMFold for up
to 800 residues

Meta Research No 1 0:15

GATK-BP
fq2bam

Broad Institute No 64 10:10

Available workflows Version latest 153

https://console.aws.amazon.com/omics/home#/ready2run
https://aws.amazon.com/healthomics/pricing/

AWS HealthOmics User Guide

Workflow name Publisher Subscription
required?

Maximum input
file size (GiB)

Estimated run
time (HH:MM)

GATK-BP
Germline
bam2vcf for 30x
genome

Broad Institute No 39 2:45

GATK-BP
Germline fq2vcf
for 30x genome

Broad Institute No 64 12:30

GATK-BP
Somatic WES
bam2vcf

Broad Institute No 86 1:30

NVIDIA
Parabricks
BAM2FQ2BAM
WGS for up to
30X

NVIDIA
Corporation

No 80 1:39

NVIDIA
Parabricks
BAM2FQ2BAM
WGS for up to
50X

NVIDIA
Corporation

No 120 2:45

NVIDIA
Parabricks
BAM2FQ2BAM
WGS for up to
5X

NVIDIA
Corporation

No 20 0:18

NVIDIA
Parabricks
FQ2BAM WGS
for up to 30X

NVIDIA
Corporation

No 71 1:00

Available workflows Version latest 154

AWS HealthOmics User Guide

Workflow name Publisher Subscription
required?

Maximum input
file size (GiB)

Estimated run
time (HH:MM)

NVIDIA
Parabricks
FQ2BAM WGS
for up to 50X

NVIDIA
Corporation

No 137 1:45

NVIDIA
Parabricks
FQ2BAM WGS
for up to 5X

NVIDIA
Corporation

No 13 0:15

NVIDIA
Parabrick
s Germline
DeepVariant
WGS for up to
30X

NVIDIA
Corporation

No 71 2:00

NVIDIA
Parabrick
s Germline
DeepVariant
WGS for up to
50X

NVIDIA
Corporation

No 137 3:30

NVIDIA
Parabrick
s Germline
DeepVariant
WGS for up to
5X

NVIDIA
Corporation

No 12 0:30

Available workflows Version latest 155

AWS HealthOmics User Guide

Workflow name Publisher Subscription
required?

Maximum input
file size (GiB)

Estimated run
time (HH:MM)

NVIDIA
Parabrick
s Germline
HaplotypeCaller
WGS for up to
30X

NVIDIA
Corporation

No 71 1:15

NVIDIA
Parabrick
s Germline
HaplotypeCaller
WGS for up to
50X

NVIDIA
Corporation

No 137 2:00

NVIDIA
Parabrick
s Germline
HaplotypeCaller
WGS for up to
5X

NVIDIA
Corporation

No 13 0:15

NVIDIA
Parabricks
Somatic Mutect2
WGS for up to
50X

NVIDIA
Corporation

No 196 0:45

scRNAseq with
KallistoBUStools

NF-Core No 119 1:30

scRNAseq with
Salmon Alevin-fr
y

NF-Core No 119 2:30

Available workflows Version latest 156

AWS HealthOmics User Guide

Workflow name Publisher Subscription
required?

Maximum input
file size (GiB)

Estimated run
time (HH:MM)

scRNAseq with
STARsolo

NF-Core No 119 2:30

Sentieon
Germline BAM
WES for up to
300x

Sentieon, Inc. Yes 9 1:00

Sentieon
Germline BAM
WGS for up to
32x

Sentieon, Inc. Yes 18 1:30

Sentieon
Germline FASTQ
WES for up to
100x

Sentieon, Inc. Yes 5 0:45

Sentieon
Germline FASTQ
WES for up to
300x

Sentieon, Inc. Yes 26 2:00

Sentieon
Germline FASTQ
WGS for up to
32x

Sentieon, Inc. Yes 51 3:30

Sentieon
LongRead for
ONT

Sentieon, Inc. Yes 25 1:30

Sentieon
LongRead for
PacBio HiFi

Sentieon, Inc. Yes 58 4:00

Available workflows Version latest 157

AWS HealthOmics User Guide

Workflow name Publisher Subscription
required?

Maximum input
file size (GiB)

Estimated run
time (HH:MM)

Sentieon
Somatic WES

Sentieon, Inc. Yes 50 2:30

Sentieon
Somatic WGS

Sentieon, Inc. Yes 113 4:30

Ultima
Genomics
DeepVariant for
up to 40x

Ultima
Genomics

No 91 1:55

When you use a Ready2Run workflow, your workflow is preconfigured and can't be edited. In
contrast to private workflows, Ready2Run workflows don't support the following:

• Increasing the maximum input file size

• Changing the compute resources or run storage

• Changing the workflow definition or containers

• Adding runs to a run group

• Sharing the workflow

If the publisher has shared the Ready2Run workflow on GitHub, you can make your own private
workflow based on the Ready2Run workflow. The following table provides links to GitHub
workflows for each publisher.

Publisher Workflows on GitHub

Google DeepMind, Meta Research Protein folding workflows

Element Biosciences For information, contact Element Biosciences

Broad Institute GATK workflows

NVIDIA Corporation Parabricks workflows

Available workflows Version latest 158

https://github.com/aws-samples/amazon-omics-tutorials/tree/main/example-workflows/protein-folding/workflows
https://github.com/aws-samples/amazon-omics-tutorials/tree/main/example-workflows/gatk-best-practices/workflows
https://github.com/clara-parabricks-workflows/parabricks-omics-private-workflows

AWS HealthOmics User Guide

Publisher Workflows on GitHub

nf-core NF-Core workflows

Sentieon Sentieon workflows

Ultima Genomics Ultima Genomics workflows

Subscribing to Sentieon Ready2Run workflows

Sentieon Ready2Run workflows are subscription-based. When you run a Sentieon Ready2Run
workflow for the first time in an account, Sentieon automatically creates a two-week evaluation
license for your AWS account. The license is valid for all Sentieon Ready2Run workflows. After
the evaluation period ends, you can request a permanent license or request an extension to the
evaluation license.

Follow these steps to subscribe to the Sentieon Ready2Run workflows:

• Find your AWS Canonical User ID by following these instructions.

• Send an email to the Sentieon support group (support@sentieon.com) to request a software
license. Provide your AWS Canonical User ID in the email.

Starting HealthOmics Ready2Run workflows using the console

Using Ready2Run workflows in the console is similar to using a private workflow. One key
difference is that the workflow publisher provides sample data, so that you can try out the
workflow without creating your own data.

To use a Ready2Run workflow in the console

1. Open the HealthOmics console.

2. In the left navigation pane, choose Ready2Run workflows.

3. On the Ready2Run workflows page, choose the workflow that you want to use. The console
opens the details page for that workflow.

4. The details tab lists information such as the name, list price per run, description, workflow
language type, run storage capacity, status, creation date, and parameters with descriptions.
The details tab also tells you whether the workflow requires a subscription.

Subscribing to Sentieon workflows Version latest 159

https://github.com/aws-samples/amazon-omics-tutorials/tree/main/example-workflows/nf-core/workflows/scrnaseq
https://github.com/Sentieon/sentieon-amazon-omics
https://github.com/Ultimagen/healthomics-workflows
https://docs.aws.amazon.com/AmazonS3/latest/userguide/finding-canonical-user-id.html
https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

5. To use the workflow, choose Create run

6. In the Specify run details page, enter a run name. Optionally, you can specify the workflow
version. You can also add run priority to the run.

7. Enter or select an Amazon S3 location for the run output.

8. For Run metadata retention mode, choose whether to retain or remove run metadata.

9. In the Service role panel, choose whether to use an existing service role or create a new one.

10. (Optional) Add tags to help identify and manage your run.

11. Choose Next.

12. From the Add parameters page, choose one of the options to add the run parameter values:

• Select a parameter file (in JSON format) from an Amazon S3 location.

• Select a parameter file (in JSON format) from your local drive.

• Manually enter the parameter values.

• Run workflow with Ready2Run sample data provided by the workflow publisher.

13. If you upload a JSON file, the console parses the file and performs inline validation. You can
then manually update the values of your parameters as needed.

14. Choose Next.

15. Review your inputs, then choose Start run.

Starting HealthOmics Ready2Run workflows using the API

Most of the API operations behave in a similar fashion for Ready2Run workflows and private
workflows.

To return a list of available Ready2Run workflows, use list-workflows with the type parameter set
to READY2RUN.

aws omics list-workflows --type READY2RUN

After you identify the workflow to run from the list-workflows response, you can use get-
workflow with the --id parameter to get more details.

aws omics get-workflow --type READY2RUN --id workflow id

Starting Ready2Run workflows (API) Version latest 160

AWS HealthOmics User Guide

To run a Ready2Run workflow, you can use start-run API operation with the workflow-type
parameter set to READY2RUN, as shown in the following example

aws-omics start-run \
 --workflow-type READY2RUN \
 --workflow-id workflow id \
 --output-uri &example-s3-bucket; \
 --role-arn arn:aws:iam::1234567892012:role/service-role/OmicsWorkflow-20221004T164236
 \
 --parameters file:///path/to/parameters.json

To specify a workflow version, use the workflow-version parameter, as shown in this example.

aws-omics start-run \
 --workflow-type READY2RUN \
 ...
 --version-name '3.0.0'

To monitor your run, you can use the get-run API operation, as shown.

aws-omics get-run \
 --id run id

Starting Ready2Run workflows (API) Version latest 161

AWS HealthOmics User Guide

HealthOmics storage

Use HealthOmics storage to store, retrieve, organize, and share genomics data efficiently and at
low cost. HealthOmics storage understands the relationships between different data objects, so
that you can define which read sets originated from the same source data. This provides you with
data provenance.

Data that's stored in ACTIVE state is retrievable immediately. Data that hasn't been accessed for 30
days or more is stored in ARCHIVE state. To access archived data, you can reactivate it through the
API operations or console.

HealthOmics sequence stores are designed to preserve the content integrity of files. However,
bitwise equivalence of imported data files and exported files isn't preserved because of the
compression during active and archive tiering.

During ingestion, HealthOmics generates an entity tag, or HealthOmics ETag, to make it possible
to validate the content integrity of your data files. Sequencing portions are identified and captured
as an ETag at the source level of a read set. The ETag calculation doesn't alter the actual file or
genomic data. After a read set is created, the ETag shouldn't change throughout the lifecycle of
the read set source. This means that reimporting the same file results in the same ETag value being
calculated.

Topics

• HealthOmics ETags and data provenance

• Creating a HealthOmics reference store

• Creating a HealthOmics sequence store

• Deleting HealthOmics reference and sequence stores

• Importing read sets into a HealthOmics sequence store

• Direct upload to a HealthOmics sequence store

• Exporting HealthOmics read sets to an Amazon S3 bucket

• Accessing HealthOmics read sets with Amazon S3 URIs

• Activating read sets in HealthOmics

Version latest 162

AWS HealthOmics User Guide

HealthOmics ETags and data provenance

A HealthOmics ETag (entity tag) is a hash of the ingested content in a sequence store. This
simplifies data retrieval and processing while maintaining the content integrity of the ingested
data files. The ETag reflects changes to the semantic content of the object, not its metadata. The
specified read set type and algorithm determine how the ETag is calculated. The ETag calculation
doesn't alter the actual file or genomic data. When the file type schema of the read set permits it,
the sequence store updates fields that are linked to data provenance.

Files have a bitwise identity and a semantic identity. The bitwise identity means that the bits of a
file are identical, and a semantic identity means that the contents of a file are identical. Semantic
identity is resilient to metadata changes and compression changes as it captures the content
integrity of the file.

Read sets in HealthOmics sequence stores undergo compression/decompression cycles and data
provenance tracking throughout an object's lifecycle. During this processing, the bitwise identity
of an ingested file may change and is expected to change each time a file is activated; however,
the semantic identity of the file is maintained. The semantic identity is captured as a HealthOmics
entity tag, or ETag that's calculated during sequence store ingestion and available as read set
metadata.

When the file type schema of the read set permits it, the sequence store updates fields are linked
to data provenance. For uBAM, BAM, and CRAM files, a new @CO or Comment tag is added to the
header. The comment contains the sequence store ID and ingestion timestamp.

Amazon S3 ETags

When accessing a file using the Amazon S3 URI, Amazon S3 API operations may also return
Amazon S3 ETag and checksum values. The Amazon S3 ETag and checksum values differ from
the HealthOmics ETags because they represent the file's bitwise identity. To learn more about
descriptive metadata and Objects, see the Amazon S3 Object API documentation. Amazon S3 ETag
values can change with each activation cycle of a read set and you can use them to validate the
reading of a file. However, don't cache Amazon S3 ETag values to use for file identity validation
during the file's lifecycle because they don't remain consistent. In contrast, the HealthOmics ETag
remains consistent throughout the read set's lifecycle.

HealthOmics ETags Version latest 163

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Object.html

AWS HealthOmics User Guide

How HealthOmics calculates ETags

The ETag is generated from a hash of the ingested file contents. The ETag algorithm family is set
to MD5up by default, but it can be configured differently during sequence store creation. When
the ETag is calculated, the algorithm and the calculated hashes are added to the read set. The
supported MD5 algorithms for file types are as follows.

• FASTQ_MD5up – Calculates the MD5 hash of an uncompressed, complete FASTQ read set source.

• BAM_MD5up – Calculates the MD5 hash of the alignment section of an uncompressed BAM
or uBAM read set source as represented in the SAM, based on the linked reference, if one is
available.

• CRAM_MD5up – Calculates the MD5 hash of the alignment section of the uncompressed CRAM
read set source as represented in the SAM, based on the linked reference.

Note

MD5 hashing is known to be vulnerable to collisions. Because of this, two different files
might have the same ETag if they were manufactured to exploit the known collision.

The following algorithms are supported for the SHA256 family. The algorithms are calculated as
follows:

• FASTQ_SHA256up – Calculates the SHA-256 hash of an uncompressed, complete FASTQ read set
source.

• BAM_SHA256up – Calculates the SHA-256 hash of the alignment section of an uncompressed
BAM or uBAM read set source as represented in the SAM, based on the linked reference, if one is
available.

• CRAM_SHA256up – Calculates the SHA-256 hash of the alignment section of an uncompressed
CRAM read set source as represented in the SAM, based on the linked reference.

The following algorithms are supported for the SHA512 family. The algorithms are calculated as
follows:

• FASTQ_SHA512up – Calculates the SHA-512 hash of an uncompressed, complete FASTQ read set
source.

How HealthOmics calculates ETags Version latest 164

AWS HealthOmics User Guide

• BAM_SHA512up – Calculates the SHA-512 hash of the alignment section of an uncompressed
BAM or uBAM read set source as represented in the SAM, based on the linked reference, if one is
available.

• CRAM_SHA512up – Calculates the SHA-512 hash of the alignment section of an uncompressed
CRAM read set source as represented in the SAM, based on the linked reference.

Creating a HealthOmics reference store

A reference store in HealthOmics is a data store for the storage of reference genomes. You can
have a single reference store in each AWS account and Region. You can create a reference store
using the console or CLI.

Topics

• Creating a reference store using the console

• Creating a reference store using the CLI

Creating a reference store using the console

To create a reference store

1. Open the HealthOmics console.

2. In the left navigation pane, choose Get started with HealthOmics.

3. Choose Reference genomes from the Genomics data storage options.

4. You can either choose a previously imported reference genome or import a new one. If you
haven't imported a reference genome,choose Import reference genome in the top right.

5. On the Create reference genome import job page, choose either the Quick create or Manual
create option to create a reference store, and then provide the following information.

• Reference genome name - A unique name for this store.

• Description (optional) - A description of this reference store.

• IAM Role - Select a role with access to your reference genome.

• Reference from Amazon S3 - Select your reference sequence file in an Amazon S3 bucket.

• Tags (optional) - Provide up to 50 tags for this reference store.

Creating a reference store Version latest 165

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

Creating a reference store using the CLI

The following example shows you how to create a reference store by using the AWS CLI. You can
have one reference store per AWS Region.

Reference stores support storage of FASTA files with the extensions .fasta, .fa, .fas, .fsa,
.faa, .fna, .ffn, .frn, .mpfa, .seq, .txt. The bgzip version of these extensions is also
supported.

In the following example, replace reference store name with the name you've chosen for your
reference store.

aws omics create-reference-store --name "reference store name"

You receive a JSON response with the reference store ID and name, the ARN, and the timestamp of
when your reference store was created.

{
 "id": "3242349265",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/3242349265",
 "name": "MyReferenceStore",
 "creationTime": "2022-07-01T20:58:42.878Z"
}

You can use the reference store ID in additional AWS CLI commands. You can retrieve the list of
reference store IDs linked to your account by using the list-reference-stores command, as shown in
the following example.

aws omics list-reference-stores

In response, you receive the name of your newly created reference store.

{
 "referenceStores": [
 {
 "id": "3242349265",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/3242349265",
 "name": "MyReferenceStore",
 "creationTime": "2022-07-01T20:58:42.878Z"

Creating a reference store using the CLI Version latest 166

AWS HealthOmics User Guide

 }
]
}

After you create a reference store, you can create import jobs to load genomic reference files into
it. To do so, you must use or create an IAM role to access the data. The following is an example
policy.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetBucketLocation"

],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1",
 "arn:aws:s3:::amzn-s3-demo-bucket1/*"
]
 }
]
}

You must also have a trust policy similar to the following example.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"

Creating a reference store using the CLI Version latest 167

AWS HealthOmics User Guide

]
 },
 "Action": "sts:AssumeRole"
 }
]
}

You can now import a reference genome. This example uses Genome Reference Consortium Human
Build 38 (hg38), which is open access and available from the Registry of Open Data on AWS. The
bucket that hosts this data is based in US East (Ohio). To use buckets in other AWS Regions, you can
copy the data to an Amazon S3 bucket hosted in your Region. Use the following AWS CLI command
to copy the genome to your Amazon S3 bucket.

aws s3 cp s3://broad-references/hg38/v0/Homo_sapiens_assembly38.fasta s3://amzn-s3-
demo-bucket

You can then begin your import job. Replace reference store ID, role ARN, and source
file path with your own input.

aws omics start-reference-import-job --reference-store-id reference store ID --role-
arn role ARN --sources source file path

After the data is imported, you receive the following response in JSON.

{
 "id": "7252016478",
 "referenceStoreId": "3242349265",
 "roleArn": "arn:aws:iam::111122223333:role/OmicsReferenceImport",
 "status": "CREATED",
 "creationTime": "2022-07-01T21:15:13.727Z"
}

You can monitor the status of a job by using the following command. In the following example,
replace reference store ID and job ID with your reference store ID and the job ID that you
want to learn more about.

aws omics get-reference-import-job --reference-store-id reference store ID --id job ID

Creating a reference store using the CLI Version latest 168

https://registry.opendata.aws/

AWS HealthOmics User Guide

In response, you receive a response with the details for that reference store and its status.

{
 "id": "7252016478",
 "referenceStoreId": "3242349265",
 "roleArn": "arn:aws:iam::555555555555:role/OmicsReferenceImport",
 "status": "RUNNING",
 "creationTime": "2022-07-01T21:15:13.727Z",
 "sources": [
 {
 "sourceFile": "s3://amzn-s3-demo-bucket/Homo_sapiens_assembly38.fasta",
 "status": "IN_PROGRESS",
 "name": "MyReference"
 }
]
}

You can also find the reference that was imported by listing your references and filtering them
based on the reference name. Replace reference store ID with your reference store ID, and
add an optional filter to narrow the list.

aws omics list-references --reference-store-id reference store ID --filter
 name=MyReference

In response, you receive the following information.

{
 "references": [
 {
 "id": "1234567890",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/1234567890/
reference/1234567890",
 "referenceStoreId": "12345678",
 "md5": "7ff134953dcca8c8997453bbb80b6b5e",
 "status": "ACTIVE",
 "name": "MyReference",
 "creationTime": "2022-07-02T00:15:19.787Z",
 "updateTime": "2022-07-02T00:15:19.787Z"
 }
]
}

Creating a reference store using the CLI Version latest 169

AWS HealthOmics User Guide

To learn more about the reference metadata, use the get-reference-metadata API operation.
In the following example, replace reference store ID with your reference store ID and
reference ID with the reference ID that you want to learn more about.

aws omics get-reference-metadata --reference-store-id reference store ID --id reference
 ID

You receive the following information in response.

{
 "id": "1234567890",
 "arn": "arn:aws:omics:us-west-2:555555555555:referenceStore/referencestoreID/
reference/referenceID",
 "referenceStoreId": "1234567890",
 "md5": "7ff134953dcca8c8997453bbb80b6b5e",
 "status": "ACTIVE",
 "name": "MyReference",
 "creationTime": "2022-07-02T00:15:19.787Z",
 "updateTime": "2022-07-02T00:15:19.787Z",
 "files": {
 "source": {
 "totalParts": 31,
 "partSize": 104857600,
 "contentLength": 3249912778
 },
 "index": {
 "totalParts": 1,
 "partSize": 104857600,
 "contentLength": 160928
 }
 }
}

You can also download parts of the reference file by using get-reference. In the following example,
replace reference store ID with your reference store ID and reference ID with the
reference ID that you want to download from.

aws omics get-reference --reference-store-id reference store ID --id reference ID --
part-number 1 outfile.fa

Creating a reference store using the CLI Version latest 170

AWS HealthOmics User Guide

Creating a HealthOmics sequence store

HealthOmics sequence stores support storage of genomic files in the unaligned formats of FASTQ
(gzip-only) and uBAM. It also supports the aligned formats of BAM and CRAM.

Imported files are stored as read sets. You can add tags to read sets and use IAM policies to control
access to read sets. Aligned read sets require a reference genome to align genomic sequences, but
it's optional for unaligned read sets.

To store read sets, you first create a sequence store. When you create a sequence store, you can
specify an optional Amazon S3 bucket as a fallback location and the location where S3 access logs
are stored. The fallback location is used for storing any files that fail to create a read set during a
direct upload. Fallback locations are available for sequence stores created after May 15, 2023. You
specify the fallback location when you create the sequence store.

You can specify up to five read set tag keys. When you create or update a read set with a tag key
that matches one of these keys, the read set tags are propagated to the corresponding Amazon S3
object. System tags created by HealthOmics are propagated by default.

Topics

• Creating a sequence store using the console

• Creating a sequence store using the CLI

• Updating a sequence store

• Updating read set tags for a sequence store

• Importing genomic files

Creating a sequence store using the console

To create a sequence store

1. Open the HealthOmics console.

2. In the left navigation pane, choose Sequence stores.

3. On the Create sequence store page, provide the following information

• Sequence store name - A unique name for this store.

Creating a sequence store Version latest 171

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• Description (optional) - A description of this sequence store.

4. For Fallback location in S3, specify an Amazon S3 location. HealthOmics uses the fallback
location for storing any files that fail to create a read set during a direct upload. You need to
grant the HealthOmics service write access to the Amazon S3 fallback location. For an example
policy, see Configure a fallback location.

Fallback locations aren't available for sequence stores created before May 16, 2023.

5. (Optional) For Read set tag keys for S3 propagation, you can enter up to five read set keys to
propagate from a read set to the underlying S3 Objects. By propagating tags from a read set
to the S3 object, you can grant S3 access permissions based on tags and/or end users to see
the propagated tags through the Amazon S3 getObjectTagging API operation.

a. Enter one key value in the text box. The console creates a new text box to add the next
key.

b. (Optional) Choose Remove to remove all the keys.

6. Under Data Encryption, select whether you want data encryption to be owned and managed
by AWS or to use a customer managed CMK.

7. (Optional) Under S3 Data access, select whether to create a new role and policy to access the
sequence store through Amazon S3.

8. (Optional) For S3 access logging, select Enabled if you want Amazon S3 to collect access log
records.

For Access logging location in S3, specify an Amazon S3 location to store the logs. This field is
visible only if you enabled S3 access logging.

9. Tags (optional) - Provide up to 50 tags for this sequence store. These tags are separate from
read set tags that are set during read set import/tag update

After you create the store, it's ready for Importing genomic files.

Creating a sequence store using the CLI

In the following example, replace sequence store name with the name you chose for your
sequence store.

aws omics create-sequence-store --name sequence store name --fallback-location "s3://
amzn-s3-demo-bucket"

Creating a sequence store using the CLI Version latest 172

AWS HealthOmics User Guide

You receive the following response in JSON, which includes the ID number for your newly created
sequence store.

{
 "id": "3936421177",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/3936421177",
 "name": "sequence_store_example_name",
 "creationTime": "2022-07-13T20:09:26.038Z"
 "fallbackLocation" : "s3://amzn-s3-demo-bucket"
}

You can also view all sequence stores associated with your account by using the list-sequence-
stores command, as shown in the following.

aws omics list-sequence-stores

You receive the following response.

{
 "sequenceStores": [
 {
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/3936421177",
 "id": "3936421177",
 "name": "MySequenceStore",
 "creationTime": "2022-07-13T20:09:26.038Z",
 "updatedTime": "2024-09-13T04:11:31.242Z",
 "fallbackLocation" : "s3://amzn-s3-demo-bucket",
 "status": "Active"
 }
]
}

You can use get-sequence-store to learn more about a sequence store by using its ID, as shown in
the following example:

aws omics get-sequence-store --id sequence store ID

You receive the following response:

{
 "arn": "arn:aws:omics:us-west-2:123456789012:sequenceStore/sequencestoreID",

Creating a sequence store using the CLI Version latest 173

AWS HealthOmics User Guide

 "creationTime": "2024-01-12T04:45:29.857Z",
 "updatedTime": "2024-09-13T04:11:31.242Z",
 "description": null,
 "fallbackLocation": null,
 "id": "2015356892",
 "name": "MySequenceStore",
 "s3Access": {
 "s3AccessPointArn": "arn:aws:s3:us-
west-2:123456789012:accesspoint/592761533288-2015356892",
 "s3Uri": "s3://592761533288-2015356892-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/",
 "accessLogLocation": "s3://IAD-seq-store-log/2015356892/"
 },
 "sseConfig": {
 "keyArn": "arn:aws:kms:us-west-2:123456789012:key/eb2b30f5-635d-4b6d-b0f9-
d3889fe0e648",
 "type": "KMS"
 },
 "status": "Active",
 "statusMessage": null,
 "setTagsToSync": ["withdrawn","protocol"],
}

After creation, several store parameters can also be updated. This can be done through the Console
or the API updateSequenceStore operation.

Updating a sequence store

To update a sequence store, follow these steps:

1. Open the HealthOmics console.

2. In the left navigation pane, choose Sequence stores.

3. Choose the sequence store to update.

4. In the Details panel, choose Edit.

5. On the Edit details page, you can update the following fields:

• Sequence store name - A unique name for this store.

• Description - A description of this sequence store.

• Fallback location in S3, specify an Amazon S3 location. HealthOmics uses the fallback
location for storing any files that fail to create a read set during a direct upload.

Updating a sequence store Version latest 174

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• Read set tag keys for S3 propagation you can enter up to five read set keys to propagate to
Amazon S3.

• (Optional) For S3 access logging, select Enabled if you want Amazon S3 to collect access
log records.

For Access logging location in S3, specify an Amazon S3 location to store the logs. This field
is visible only if you enabled S3 access logging.

• Tags (optional) - Provide up to 50 tags for this sequence store.

Updating read set tags for a sequence store

To update read set tags or other fields for a sequence store, follow these steps:

1. Open the HealthOmics console.

2. In the left navigation pane, choose Sequence stores.

3. Choose the sequence store that you want to update.

4. Choose the Details tab.

5. Choose Edit.

6. Add new read set tags or delete existing tags, as required.

7. Update the name, description, fallback location, or S3 data access, as required.

8. Choose Save changes.

Importing genomic files

To import genomic files to a sequence store, follow these steps:

To import a genomics file

1. Open the HealthOmics console.

2. In the left navigation pane, choose Sequence stores.

3. On the Sequence stores page, choose the sequence store that you want to import your files
into.

4. On the individual sequence store page, choose Import genomic files.

5. On the Specify import details page, provide the following information

Updating read set tags for a sequence store Version latest 175

https://console.aws.amazon.com/omics/
https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

• IAM role - The IAM role that can access the genomic files on Amazon S3.

• Reference genome - The reference genome for this genomics data.

6. On the Specify import manifest page, specify the following information Manifest file. The
manifest file is a JSON or YAML file that describes essential information of your genomics data.
For information about the manifest file, see Importing read sets into a HealthOmics sequence
store.

7. Click Create import job.

Deleting HealthOmics reference and sequence stores

Both reference and sequence stores can be deleted. Sequence stores can only be deleted if they
don't contain read sets, and reference stores can only be deleted if they don't contain references.
Deleting a sequence or reference store also deletes any tags associated with that store.

The following example shows how to delete a reference store by using the AWS CLI. If the action is
successful, you won't receive a response. In the following example, replace reference store ID
with your reference store ID.

aws omics delete-reference-store --id reference store ID

The following example shows you how to delete a sequence store. You don't receive a response if
the action succeeds. In the following example, replace sequence store ID with your sequence
store ID.

aws omics delete-sequence-store --id sequence store ID

You can also delete a reference in a reference store as shown in the following example. References
can only be deleted if they aren't being used in a read set, variant store, or annotation store. In
the following example, replace reference store ID with your reference store ID, and replace
reference ID with the ID for the reference you want to delete.

aws omics delete-reference --id reference ID --reference-store-id reference store ID

Deleting stores Version latest 176

AWS HealthOmics User Guide

Importing read sets into a HealthOmics sequence store

After you create your sequence store, create import jobs to upload read sets into the data store.
You can upload your files from an Amazon S3 bucket, or you can upload directly by using the
synchronous API operations. Your Amazon S3 bucket must be in the same Region as your sequence
store.

You can upload any combination of aligned and unaligned read sets into your sequence store,
however, if any of the read sets in your import are aligned, you must include a reference genome.

You can reuse the IAM access policy that you used to create the Reference store.

The following topics describe the major steps you follow to import a read set into you sequence
store and then get information about the imported data.

Topics

• Upload files to Amazon S3

• Creating a manifest file

• Starting the import job

• Monitor the import job

• Find the imported sequence files

• Get details about a read set

• Download the read set data files

Upload files to Amazon S3

The following example shows how to move files into your Amazon S3 bucket.

aws s3 cp s3://1000genomes/phase1/data/HG00100/alignment/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam s3://your-bucket
aws s3 cp s3://1000genomes/phase3/data/HG00146/sequence_read/SRR233106_1.filt.fastq.gz
 s3://your-bucket
aws s3 cp s3://1000genomes/phase3/data/HG00146/sequence_read/SRR233106_2.filt.fastq.gz
 s3://your-bucket
aws s3 cp s3://1000genomes/data/HG00096/alignment/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram s3://your-bucket
aws s3 cp s3://gatk-test-data/wgs_ubam/NA12878_20k/NA12878_A.bam s3://your-bucket

Importing read sets into a sequence store Version latest 177

AWS HealthOmics User Guide

The sample BAM and CRAM used in this example require different genome references, Hg19 and
Hg38. To learn more or to access these references, see The Broad Genome References in the
Registry of Open Data on AWS.

Creating a manifest file

You must also create a manifest file in JSON to model the import job in import.json (see the
following example). If you create a sequence store in the console, you don't have to specify the
sequenceStoreId or roleARN, so your manifest file starts with the sources input.

API manifest

The following example imports three read sets by using the API: one FASTQ, one BAM, and one
CRAM.

{
 "sequenceStoreId": "3936421177",
 "roleArn": "arn:aws:iam::555555555555:role/OmicsImport",
 "sources":
 [
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam"
 },
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/0123456789/reference/0000000001",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/SRR233106_1.filt.fastq.gz",
 "source2": "s3://amzn-s3-demo-bucket/SRR233106_2.filt.fastq.gz"
 },
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",

Creating a manifest file Version latest 178

https://registry.opendata.aws/broad-references/

AWS HealthOmics User Guide

 "sampleId": "mySample",
 // NOTE: there is no reference arn required here
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram"
 },
 "sourceFileType": "CRAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/0123456789/reference/0000000001",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/NA12878_A.bam"
 },
 "sourceFileType": "UBAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 // NOTE: there is no reference arn required here
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "generatedFrom": "GATK Test Data"
 }
]
}

Console manifest

This example code is used to import a single read set by using the console.

[
 {
 "sourceFiles":

Creating a manifest file Version latest 179

AWS HealthOmics User Guide

 {
 "source1": "s3://amzn-s3-demo-bucket/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam"
 },
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/SRR233106_1.filt.fastq.gz",
 "source2": "s3://amzn-s3-demo-bucket/SRR233106_2.filt.fastq.gz"
 },
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://your-bucket/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram"
 },
 "sourceFileType": "CRAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "generatedFrom": "1000 Genomes"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/NA12878_A.bam"
 },
 "sourceFileType": "UBAM",
 "subjectId": "mySubject",

Creating a manifest file Version latest 180

AWS HealthOmics User Guide

 "sampleId": "mySample",
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "generatedFrom": "GATK Test Data"
 }
]

Alternatively, you can upload the manifest file in YAML format.

Starting the import job

To start the import job, use the following AWS CLI command.

aws omics start-read-set-import-job --cli-input-json file://import.json

You receive the following response, which indicates successful job creation.

{
 "id": "3660451514",
 "sequenceStoreId": "3936421177",
 "roleArn": "arn:aws:iam::111122223333:role/OmicsImport",
 "status": "CREATED",
 "creationTime": "2022-07-13T22:14:59.309Z"
}

Monitor the import job

After the import job starts, you can monitor its progress with the following command. In the
following example, replace sequence store id with your sequence store ID, and replace job
import ID with the import ID.

aws omics get-read-set-import-job --sequence-store-id sequence store id --id job import
 ID

The following shows the statuses for all import jobs associated with the specified sequence store
ID.

{
 "id": "1234567890",
 "sequenceStoreId": "1234567890",

Starting the import job Version latest 181

AWS HealthOmics User Guide

 "roleArn": "arn:aws:iam::111122223333:role/OmicsImport",
 "status": "RUNNING",
 "statusMessage": "The job is currently in progress.",
 "creationTime": "2022-07-13T22:14:59.309Z",
 "sources": [
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/
HG00100.chrom20.ILLUMINA.bwa.GBR.low_coverage.20101123.bam"
 },
 "sourceFileType": "BAM",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/3242349265/reference/8625408453",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "generatedFrom": "1000 Genomes",
 "readSetID": "1234567890"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/SRR233106_1.filt.fastq.gz",
 "source2": "s3://amzn-s3-demo-bucket/SRR233106_2.filt.fastq.gz"
 },
 "sourceFileType": "FASTQ",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "generatedFrom": "1000 Genomes",
 "readSetID": "1234567890"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/
HG00096.alt_bwamem_GRCh38DH.20150718.GBR.low_coverage.cram"

Monitor the import job Version latest 182

AWS HealthOmics User Guide

 },
 "sourceFileType": "CRAM",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/3242349265/reference/1234568870",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "generatedFrom": "1000 Genomes",
 "readSetID": "1234567890"
 },
 {
 "sourceFiles":
 {
 "source1": "s3://amzn-s3-demo-bucket/NA12878_A.bam"
 },
 "sourceFileType": "UBAM",
 "status": "IN_PROGRESS",
 "statusMessage": "The job is currently in progress."
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "generatedFrom": "GATK Test Data",
 "readSetID": "1234567890"
 }
]
}

Find the imported sequence files

After the job completes, you can use the list-read-sets API operation to find the imported
sequence files. In the following example, replace sequence store id with your sequence store
ID.

aws omics list-read-sets --sequence-store-id sequence store id

You receive the following response.

{

Find the imported sequence files Version latest 183

AWS HealthOmics User Guide

 "readSets": [
 {
 "id": "0000000001",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/01234567890/
readSet/0000000001",
 "sequenceStoreId": "1234567890",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00100",
 "description": "BAM for HG00100",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/01234567890/reference/0000000001",
 "fileType": "BAM",
 "sequenceInformation": {
 "totalReadCount": 9194,
 "totalBaseCount": 928594,
 "generatedFrom": "1000 Genomes",
 "alignment": "ALIGNED"
 },
 "creationTime": "2022-07-13T23:25:20Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "BAM_MD5up",
 "source1": "d1d65429212d61d115bb19f510d4bd02"
 }
 },
 {
 "id": "0000000002",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/0123456789/
readSet/0000000002",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "fileType": "FASTQ",
 "sequenceInformation": {
 "totalReadCount": 8000000,
 "totalBaseCount": 1184000000,
 "generatedFrom": "1000 Genomes",
 "alignment": "UNALIGNED"
 },

Find the imported sequence files Version latest 184

AWS HealthOmics User Guide

 "creationTime": "2022-07-13T23:26:43Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "FASTQ_MD5up",
 "source1": "ca78f685c26e7cc2bf3e28e3ec4d49cd"
 }
 },
 {
 "id": "0000000003",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/0123456789/
readSet/0000000003",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "HG00096",
 "description": "CRAM for HG00096",
 "referenceArn": "arn:aws:omics:us-
west-2:111122223333:referenceStore/0123456789/reference/0000000001",
 "fileType": "CRAM",
 "sequenceInformation": {
 "totalReadCount": 85466534,
 "totalBaseCount": 24000004881,
 "generatedFrom": "1000 Genomes",
 "alignment": "ALIGNED"
 },
 "creationTime": "2022-07-13T23:30:41Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "CRAM_MD5up",
 "source1": "66817940f3025a760e6da4652f3e927e"
 }
 },
 {
 "id": "0000000004",
 "arn": "arn:aws:omics:us-west-2:111122223333:sequenceStore/0123456789/
readSet/0000000004",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "status": "ACTIVE",
 "name": "NA12878_A",
 "description": "uBAM for NA12878",
 "fileType": "UBAM",

Find the imported sequence files Version latest 185

AWS HealthOmics User Guide

 "sequenceInformation": {
 "totalReadCount": 20000,
 "totalBaseCount": 5000000,
 "generatedFrom": "GATK Test Data",
 "alignment": "ALIGNED"
 },
 "creationTime": "2022-07-13T23:30:41Z"
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "BAM_MD5up",
 "source1": "640eb686263e9f63bcda12c35b84f5c7"
 }
 }
]
}

Get details about a read set

To view more details about a read set, use the GetReadSetMetadata API operation. In the
following example, replace sequence store id with your sequence store ID, and replace read
set id with your read set ID.

aws omics get-read-set-metadata --sequence-store-id sequence store id --id read set id

You receive the following response.

{
"arn": "arn:aws:omics:us-west-2:123456789012:sequenceStore/2015356892/
readSet/9515444019",
"creationTime": "2024-01-12T04:50:33.548Z",
"creationType": "IMPORT",
"creationJobId": "33222111",
"description": null,
"etag": {
 "algorithm": "FASTQ_MD5up",
 "source1": "00d0885ba3eeb211c8c84520d3fa26ec",
 "source2": "00d0885ba3eeb211c8c84520d3fa26ec"
},
"fileType": "FASTQ",
"files": {
 "index": null,

Get details about a read set Version latest 186

AWS HealthOmics User Guide

 "source1": {
 "contentLength": 10818,
 "partSize": 104857600,
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
},
 "totalParts": 1
 },
 "source2": {
 "contentLength": 10818,
 "partSize": 104857600,
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
 },
 "totalParts": 1
 }
},
"id": "9515444019",
"name": "paired-fastq-import",
"sampleId": "sampleId-paired-fastq-import",
"sequenceInformation": {
 "alignment": "UNALIGNED",
 "generatedFrom": null,
 "totalBaseCount": 30000,
 "totalReadCount": 200
},
"sequenceStoreId": "2015356892",
"status": "ACTIVE",
"statusMessage": null,
"subjectId": "subjectId-paired-fastq-import"
}

Download the read set data files

You can access the objects for an active read set using the Amazon S3 GetObject API operation.
The URI for the object is returned in the GetReadSetMetadata API response. For more information,
see Accessing HealthOmics read sets with Amazon S3 URIs.

Download the read set data files Version latest 187

AWS HealthOmics User Guide

Alternatively, use the HealthOmics GetReadSet API operation. You can use GetReadSet to
download in parallel by downloading individual parts. These parts are similar to Amazon S3 parts.
The following is an example of how to download part 1 from a read set. In the following example,
replace sequence store id with your sequence store ID, and replace read set id with your
read set ID.

aws omics get-read-set --sequence-store-id sequence store id --id read set id --part-
number 1 outfile.bam

You can also use the HealthOmics Transfer Manager to download files for a HealthOmics reference
or read set. You can download the HealthOmics Transfer Manager here. For more information
about using and setting up the Transfer Manager, see this GitHub Repository.

Direct upload to a HealthOmics sequence store

We recommend that you use the HealthOmics Transfer Manager to add files to your sequence
store. For more information about using Transfer Manager, see this GitHub Repository. You can also
upload your read sets directly to a sequence store through the direct upload API operations.

Direct upload read sets exist first in PROCESSING_UPLOAD state. This means that the file parts are
currently being uploaded, and you can access the read set metadata. After the parts are uploaded
and the checksums are validated, the read set becomes ACTIVE and behaves the same as an
imported read set.

If the direct upload fails, the read set status is shown as UPLOAD_FAILED. You can configure an
Amazon S3 bucket as a fallback location for files that fail to upload. Fallback locations are available
for sequence stores created after May 15, 2023.

Topics

• Direct upload to a sequence store using the AWS CLI

• Configure a fallback location

Direct upload to a sequence store using the AWS CLI

To begin, start a multipart upload. You can do this by using the AWS CLI, as shown in the following
example.

Direct upload to a sequence store Version latest 188

https://pypi.org/project/amazon-omics-tools/
https://github.com/awslabs/amazon-omics-tools/
https://github.com/awslabs/amazon-omics-tools/

AWS HealthOmics User Guide

To direct upload using AWS CLI commands

1. Create the parts by separating your data, as shown in the following example.

 split -b 100MiB SRR233106_1.filt.fastq.gz source1_part_

2. After your source files are in parts, create a multipart read set upload, as shown in the
following example. Replace sequence store ID and the other parameters with your
sequence store ID and other values.

aws omics create-multipart-read-set-upload \
--sequence-store-id sequence store ID \
--name upload name \
--source-file-type FASTQ \
--subject-id subject ID \
--sample-id sample ID \
--description "FASTQ for HG00146" "description of upload" \
--generated-from "1000 Genomes""source of imported files"

You get the uploadID and other metadata in the response. Use the uploadID for the next
step of the upload process.

{
"sequenceStoreId": "1504776472",
"uploadId": "7640892890",
"sourceFileType": "FASTQ",
"subjectId": "mySubject",
"sampleId": "mySample",
"generatedFrom": "1000 Genomes",
"name": "HG00146",
"description": "FASTQ for HG00146",
"creationTime": "2023-11-20T23:40:47.437522+00:00"
}

3. Add your read sets to the upload. If your file is small enough, you only have to perform this
step once. For larger files, you perform this step for each part of your file. If you upload a new
part by using a previously used part number, it overwrites the previously uploaded part.

In the following example, replace sequence store ID, upload ID, and the other
parameters with your values.

Direct upload to a sequence store using the AWS CLI Version latest 189

AWS HealthOmics User Guide

aws omics upload-read-set-part \
--sequence-store-id sequence store ID \
--upload-id upload ID \
--part-source SOURCE1 \
--part-number part number \
--payload source1/source1_part_aa.fastq.gz

The response is an ID that you can use to verify that the uploaded file matches the file you
intended.

{
"checksum": "984979b9928ae8d8622286c4a9cd8e99d964a22d59ed0f5722e1733eb280e635"
}

4. Continue uploading the parts of your file, if necessary. To verify that your read sets have been
uploaded, use the list-read-set-upload-parts API operation, as shown in the following. In the
following example, replace sequence store ID , upload ID, and the part source with
your own input.

aws omics list-read-set-upload-parts \
 --sequence-store-id sequence store ID \
 --upload-id upload ID \
 --part-source SOURCE1

The response returns the number of read sets, the size, and the timestamp for when it was
most recently updated.

{
"parts": [
 {
 "partNumber": 1,
 "partSize": 104857600,
 "partSource": "SOURCE1",
 "checksum": "MVMQk+vB9C3Ge8ADHkbKq752n3BCUzyl41qEkqlOD5M=",
 "creationTime": "2023-11-20T23:58:03.500823+00:00",
 "lastUpdatedTime": "2023-11-20T23:58:03.500831+00:00"
 },
 {
 "partNumber": 2,
 "partSize": 104857600,

Direct upload to a sequence store using the AWS CLI Version latest 190

AWS HealthOmics User Guide

 "partSource": "SOURCE1",
 "checksum": "keZzVzJNChAqgOdZMvOmjBwrOPM0enPj1UAfs0nvRto=",
 "creationTime": "2023-11-21T00:02:03.813013+00:00",
 "lastUpdatedTime": "2023-11-21T00:02:03.813025+00:00"
 },
 {
 "partNumber": 3,
 "partSize": 100339539,
 "partSource": "SOURCE1",
 "checksum": "TBkNfMsaeDpXzEf3ldlbi0ipFDPaohKHyZ+LF1J4CHk=",
 "creationTime": "2023-11-21T00:09:11.705198+00:00",
 "lastUpdatedTime": "2023-11-21T00:09:11.705208+00:00"
 }
]
}

5. To view all active multipart read set uploads, use list-multipart-read-set-uploads, as shown in
the following. Replace sequence store ID with the ID for your own sequence store.

aws omics list-multipart-read-set-uploads --sequence-store-id
 sequence store ID

This API only returns multipart read set uploads that are in progress. After the ingested read
sets are ACTIVE, or if the upload has failed, the upload will not be returned in the response to
the list-multipart-read-set-uploads API. To view active read sets, use the list-read-sets API.
An example response for list-multipart-read-set-uploads is shown in the following.

{
"uploads": [
 {
 "sequenceStoreId": "1234567890",
 "uploadId": "8749584421",
 "sourceFileType": "FASTQ",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",
 "name": "HG00146",
 "description": "FASTQ for HG00146",
 "creationTime": "2023-11-29T19:22:51.349298+00:00"
 },
 {

Direct upload to a sequence store using the AWS CLI Version latest 191

AWS HealthOmics User Guide

 "sequenceStoreId": "1234567890",
 "uploadId": "5290538638",
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",
 "referenceArn": "arn:aws:omics:us-
west-2:123456789012:referenceStore/8168613728/reference/2190697383",
 "name": "HG00146",
 "description": "BAM for HG00146",
 "creationTime": "2023-11-29T19:23:33.116516+00:00"
 },
 {
 "sequenceStoreId": "1234567890",
 "uploadId": "4174220862",
 "sourceFileType": "BAM",
 "subjectId": "mySubject",
 "sampleId": "mySample",
 "generatedFrom": "1000 Genomes",
 "referenceArn": "arn:aws:omics:us-
west-2:123456789012:referenceStore/8168613728/reference/2190697383",
 "name": "HG00147",
 "description": "BAM for HG00147",
 "creationTime": "2023-11-29T19:23:47.007866+00:00"
 }
]
}

6. After you upload all parts of your file, use complete-multipart-read-set-upload to conclude
the upload process, as shown in the following example. Replace sequence store ID,
upload ID, and the parameter for parts with your own values.

aws omics complete-multipart-read-set-upload \
--sequence-store-id sequence store ID \
--upload-id upload ID \
--parts '[{"checksum":"gaCBQMe+rpCFZxLpoP6gydBoXaKKDA/
Vobh5zBDb4W4=","partNumber":1,"partSource":"SOURCE1"}]'

The response for complete-multipart-read-set-upload is the read set IDs for your imported
read sets.

{

Direct upload to a sequence store using the AWS CLI Version latest 192

AWS HealthOmics User Guide

"readSetId": "0000000001"
}

7. To stop the upload, use abort-multipart-read-set-upload with the upload ID to end the
upload process. Replace sequence store ID and upload ID with your own parameter
values.

aws omics abort-multipart-read-set-upload \
--sequence-store-id sequence store ID \
--upload-id upload ID

8. After the upload is complete, retrieve your data from the read set by using get-read-set, as
shown in the following. If the upload is still processing, get-read-set returns limited metadata,
and the generated index files are unavailable. Replace sequence store ID and the other
parameters with your own input.

aws omics get-read-set
 --sequence-store-id sequence store ID \
 --id read set ID \
 --file SOURCE1 \
 --part-number 1 myfile.fastq.gz

9. To check the metadata, including the status of your upload, use the get-read-set-metadata
API operation.

aws omics get-read-set-metadata --sequence-store-id sequence store ID --id read set
 ID

The response includes metadata details such as the file type, the reference ARN, the number
of files, and the length of the sequences. It also includes the status. Possible statuses are
PROCESSING_UPLOAD, ACTIVE, and UPLOAD_FAILED.

{
"id": "0000000001",
"arn": "arn:aws:omics:us-west-2:555555555555:sequenceStore/0123456789/
readSet/0000000001",
"sequenceStoreId": "0123456789",
"subjectId": "mySubject",
"sampleId": "mySample",
"status": "PROCESSING_UPLOAD",
"name": "HG00146",

Direct upload to a sequence store using the AWS CLI Version latest 193

AWS HealthOmics User Guide

"description": "FASTQ for HG00146",
"fileType": "FASTQ",
"creationTime": "2022-07-13T23:25:20Z",
"files": {
 "source1": {
 "totalParts": 5,
 "partSize": 123456789012,
 "contentLength": 6836725,

 },
 "source2": {
 "totalParts": 5,
 "partSize": 123456789056,
 "contentLength": 6836726
 }
},
'creationType": "UPLOAD"
}

Configure a fallback location

When you create or update a sequence store, you can configure an Amazon S3 bucket as the
fallback location for files that fail to upload. The file parts for those read sets are transferred to the
fallback location. Fallback locations are available for sequence stores created after May 15, 2023.

Create an Amazon S3 bucket policy to grant HealthOmics write access to the Amazon S3 fallback
location, as shown in the following example:

{
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
}

If the Amazon S3 bucket for fallback or access logs uses a customer managed key, add the
following permissions to the key policy:

 {

Configure a fallback location Version latest 194

AWS HealthOmics User Guide

 "Sid": "Allow use of key",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*"
}

Exporting HealthOmics read sets to an Amazon S3 bucket

You can export read sets as a batch export job to an Amazon S3 bucket. To do so, first create an
IAM policy that has write access to the bucket, similar to the following IAM policy example.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1",
 "arn:aws:s3:::amzn-s3-demo-bucket1/*"
]
 }
]
}

JSON

{

Exporting read sets Version latest 195

AWS HealthOmics User Guide

"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

After the IAM policy is in place, begin your read set export job. The following example shows you
how to do this by using the start-read-set-export-job API operation. In the following example,
replace all parameters, such as sequence store ID, destination , role ARN, and sources,
with your input.

aws omics start-read-set-export-job
--sequence-store-id sequence store id \
--destination valid s3 uri \
--role-arn role ARN \
--sources readSetId=read set id_1 readSetId=read set id_2

You receive the following response with information on the origin sequence store and the
destination Amazon S3 bucket.

{
"id": <job-id>,
"sequenceStoreId": <sequence-store-id>,
"destination": <destination-s3-uri>,
"status": "SUBMITTED",
"creationTime": "2022-10-22T01:33:38.079000+00:00"
}

After the job starts, you can determine its status by using the get-read-set-export-job API
operation, as shown in the following. Replace the sequence store ID and job ID with your
sequence store ID and job ID, respectively.

Exporting read sets Version latest 196

AWS HealthOmics User Guide

aws omics get-read-set-export-job --id job-id --sequence-store-id sequence store ID

You can view all export jobs initialized for a sequence store by using the list-read-set-export-jobs
API operation, as shown in the following. Replace the sequence store ID with your sequence
store ID.

aws omics list-read-set-export-jobs --sequence-store-id sequence store ID.

{
"exportJobs": [
 {
 "id": <job-id>,
 "sequenceStoreId": <sequence-store-id>,
 "destination": <destination-s3-uri>,
 "status": "COMPLETED",
 "creationTime": "2022-10-22T01:33:38.079000+00:00",
 "completionTime": "2022-10-22T01:34:28.941000+00:00"
 }
]
}

In addition to exporting your read sets, you can also share them by using the Amazon S3 access
URIs. To learn more, see Accessing HealthOmics read sets with Amazon S3 URIs.

Accessing HealthOmics read sets with Amazon S3 URIs

You can use Amazon S3 URI paths to access your active sequence store read sets.

With the Amazon S3 URI path, you can use Amazon S3 operations to list, share, and download your
read sets. Access through the S3 APIs accelerates collaboration and tool integration given many
industry tools are built already to read from S3. In addition, you can share access to the S3 APIs
with other accounts and provide cross-region read access to data.

HealthOmics doesn't support Amazon S3 URI access to archived read sets. When you activate a
read set, it's restored to the same URI path each time.

With data loaded into HealthOmics stores, because the Amazon S3 URI is based on Amazon S3
access points, you can directly integrate with industry standard tools that read Amazon S3 URIs,
such as the following:

Accessing read sets with Amazon S3 URIs Version latest 197

AWS HealthOmics User Guide

• Visual analysis applications such as Integrative Genomics Viewer (IGV) or UCSC Genome Browser.

• Common workflows with Amazon S3 extensions such as CWL, WDL, and Nextflow.

• Any tool that can authenticate and read from access point Amazon S3 URIs or read presigned
Amazon S3 URIs.

• Amazon S3 utilities such as Mountpoint or CloudFront.

Amazon S3 Mountpoint makes it possible for you to use an Amazon S3 bucket as a local file
system. To learn more about Mountpoint and to install it for use, see Mountpoint for Amazon S3.

Amazon CloudFront is a content delivery network (CDN) service built for high performance,
security, and developer convenience. To learn more about using Amazon CloudFront, seethe
Amazon CloudFront documentation. To set up CloudFront with a sequence store, contact the AWS
HealthOmics team.

The data owner root account is enabled for the actions S3:GetObject, S3:GetObjectTagging, and
S3:List Bucket on the sequence store prefix. For a user in the account to access the data, you create
an IAM policy and attach it to the user or role. For an example policy, see Permissions for data
access using Amazon S3 URIs.

You can use the following Amazon S3 API operations on the active read sets to list and retrieve
your data. You can access archived read sets through Amazon S3 URIs after they have been
activated.

• GetObject— Retrieves an object from Amazon S3.

• HeadObject— The HEAD operation retrieves metadata from an object without returning the
object itself. This operation is useful if you only want an object's metadata.

• ListObjects and ListObject v2— Returns some or all (up to 1,000) of the objects in a bucket.

• CopyObject— Creates a copy of an object that's already stored in Amazon S3. HealthOmics
supports copying to an Amazon S3 access point, but not writing to an access point.

HealthOmics sequence stores maintain the semantic identity of files through ETags. Throughout
a lifecycle of a file, the Amazon S3 ETag, which is based on bitwise identity, may change, however,
the HealthOmics ETag remains the same. To learn more, see HealthOmics ETags and data
provenance.

Topics

Accessing read sets with Amazon S3 URIs Version latest 198

https://github.com/awslabs/mountpoint-s3
https://docs.aws.amazon.com/cloudfront/
https://docs.aws.amazon.com/cloudfront/
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadObject.html.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CopyObject.html

AWS HealthOmics User Guide

• Amazon S3 URI structure in HealthOmics storage

• Using Hosted or Local IGV to access read sets

• Using Samtools or HTSlib in HealthOmics

• Using Mountpoint HealthOmics

• Using CloudFront with HealthOmics

Amazon S3 URI structure in HealthOmics storage

All files with Amazon S3 URIs have omics:subjectId and omics:sampleId resource
tags. You can use these tags to share access by using IAM policies through a pattern such as
"s3:ExistingObjectTag/omics:subjectId": "pattern desired".

The file structure is as follows:

.../account_id/sequenceStore/seq_store_id/readSet/read_set_id/files.

For files imported into sequence stores from Amazon S3, the sequence store attempts to maintain
the original source name. When the names conflict, the system appends read set information
to ensure that the file names are unique. For instance, for fastq read sets, if both file names are
the same, to make the names unique, sourceX is inserted before .fastq.gz or .fq.gz. For a direct
upload, the file names follow the following patterns:

• For FASTQ— read_set_name_sourcex.fastq.gz

• For uBAM/BAM/CRAM— read_set_name.file extension with extensions of .bam or .cram.
An example is NA193948.bam.

For read sets that are BAM or CRAM, index files are automatically generated during the ingestion
process. For the index files generated, the proper index extension at the end of the file name
is applied. It has the pattern <name of the Source the index is on>.<file index
extension>. The index extensions are .bai or .crai.

Using Hosted or Local IGV to access read sets

IGV is a genome browser used to analyze BAM and CRAM files. It requires both the file and the
index because it only displays a portion of the genome at a time. IGV can be downloaded and used
locally, and there are guides to creating an AWS hosted IGV. The public web version isn't supported
because it requires CORS.

Amazon S3 URI structure in HealthOmics storage Version latest 199

AWS HealthOmics User Guide

Local IGV relies on the local AWS configuration to access files. Ensure that the role used in that
configuration has a policy attached that enables kms:Decrypt and s3:GetObject permissions to the
s3 URI of the read sets being accessed. After that, in IGV, you can use “File > load from URL” and
paste in the URI for the source and index. Alternatively, presigned URLs can be generated and used
in the same manner, which will bypass the AWS configuration. Note that CORS isn't supported with
Amazon S3 URI access, so requests relying on CORS aren't supported.

The example AWS Hosted IGV relies on AWS Cognito to create the correct configurations and
permissions inside the environment. Ensure that a policy is created that enableskms:Decrypt and
s3:GetObject permissions to the Amazon S3 URI of the read sets being accessed, and add this
policy to the role that's assigned to the Cognito user pool. After that, in IGV, you can use “File >
load from URL” and enter in the URI for the source and index. Alternatively, presigned URLs can be
generated and used in the same manner, which bypasses the AWS configuration.

Note that the sequence store will not appear under the “Amazon” tab because that only displays
buckets owned by you in the Region in which the AWS profile is configured.

Using Samtools or HTSlib in HealthOmics

HTSlib is the core library that's shared by several tools such as Samtools, rSamtools, PySam, and
others. Use HTSlib version 1.20 or later to get seamless support for Amazon S3 Access Points. For
older versions of the HTSlib library, you can use the following workarounds:

• Set the environment variable for the HTS Amazon S3 host with: export
HTS_S3_HOST="s3.region.amazonaws.com".

• Generate a presigned URL for the files that you want to use. If a BAM or CRAM is being used,
ensure that a presigned URL is generated for both the file and the index. After that, both files
can be used with the libraries.

• Use Mountpoint to mount the sequence store or read set prefix in the same environment where
you’re using HTSlib libraries. From here, the files can be accessed by using local file paths.

Using Mountpoint HealthOmics

Mountpoint for Amazon S3 is a simple, high-throughput file client for mounting an Amazon S3
bucket as a local file system. With Mountpoint for Amazon S3, your applications can access objects
stored in Amazon S3 through file operations such as open and read. Mountpoint for Amazon S3
automatically translates these operations into Amazon S3 object API calls, giving your applications
access to the elastic storage and throughput of Amazon S3 through a file interface.

Using Samtools or HTSlib in HealthOmics Version latest 200

https://aws.amazon.com/blogs/storage/the-inside-story-on-mountpoint-for-amazon-s3-a-high-performance-open-source-file-client/
https://aws.amazon.com/blogs/storage/the-inside-story-on-mountpoint-for-amazon-s3-a-high-performance-open-source-file-client/

AWS HealthOmics User Guide

Mountpoint can be installed by using the Mountpoint installation instructions. Mountpoint uses
the AWS Profile that's local to the installation and works at an Amazon S3 prefix level. Ensure
that the profile being used has a policy that enables s3:GetObject, s3:ListBucket, and kms:Decrypt
permissions to the Amazon S3 URI prefix of the read set(s) or sequence store being accessed. After
that, the bucket can be mounted by using the following path:

mount-s3 access point arn local path to mount --prefix prefix to sequence store or read
 set --region region

Using CloudFront with HealthOmics

Amazon CloudFront is a content delivery network (CDN) service that's built for high performance,
security, and developer convenience. Customers that want to use CloudFront must work with the
Service team to turn on the CloudFront distribution. Work with your account team to engage the
HealthOmics service team.

Activating read sets in HealthOmics

You can activate read sets that are archived with the start-read-set-activation-job API operation,
or through the AWS CLI, as shown in the following example. Replace the sequence store ID
and read set id with your sequence store ID and read set IDs.

aws omics start-read-set-activation-job
 --sequence-store-id sequence store ID \
 --sources readSetId=read set ID readSetId=read set id_1 read set id_2

You receive a response that contains the activation job information, as shown in the following.

{
 "id": "12345678",
 "sequenceStoreId": "1234567890",
 "status": "SUBMITTED",
 "creationTime": "2022-10-22T00:50:54.670000+00:00"
}

After the activation job starts, you can monitor its progress with the get-read-set-activation-job
API operation. The following is an example of how to use the AWS CLI to check your activation
job status. Replace job ID and sequence store ID with your sequence store ID and job IDs,
respectively.

Using CloudFront with HealthOmics Version latest 201

https://github.com/awslabs/mountpoint-s3/blob/main/doc/INSTALL.md

AWS HealthOmics User Guide

aws omics get-read-set-activation-job --id job ID --sequence-store-id sequence store ID

The response summarizes the activation job, as shown in the following.

{
 "id": 123567890,
 "sequenceStoreId": 123467890,
 "status": "SUBMITTED",
 "statusUpdateReason": "The job is submitted and will start soon.",
 "creationTime": "2022-10-22T00:50:54.670000+00:00",
 "sources": [
 {
 "readSetId": <reads set id_1>,
 "status": "NOT_STARTED",
 "statusUpdateReason": "The source is queued for the job."
 },
 {
 "readSetId": <read set id_2>,
 "status": "NOT_STARTED",
 "statusUpdateReason": "The source is queued for the job."
 }
]
}

You can check the status of an activation job with the get-read-set-metadata API operation.
Possible statuses are ACTIVE, ACTIVATING, and ARCHIVED. In the following example, replace
sequence store ID with your sequence store ID, and replace read set ID with your read set
ID.

aws omics get-read-set-metadata --sequence-store-id sequence store ID --id read set ID

The following response shows you that the read set is active.

{
 "id": "12345678",
 "arn": "arn:aws:omics:us-west-2:555555555555:sequenceStore/1234567890/
readSet/12345678",
 "sequenceStoreId": "0123456789",
 "subjectId": "mySubject",
 "sampleId": "mySample",

Activating read sets Version latest 202

AWS HealthOmics User Guide

 "status": "ACTIVE",
 "name": "HG00100",
 "description": "HG00100 aligned to HG38 BAM",
 "fileType": "BAM",
 "creationTime": "2022-07-13T23:25:20Z",
 "sequenceInformation": {
 "totalReadCount": 1513467,
 "totalBaseCount": 163454436,
 "generatedFrom": "Pulled from SRA",
 "alignment": "ALIGNED"
 },
 "referenceArn": "arn:aws:omics:us-west-2:555555555555:referenceStore/0123456789/
reference/0000000001",
 "files": {
 "source1": {
 "totalParts": 2,
 "partSize": 10485760,
 "contentLength": 17112283,
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
},
 },
 "index": {
 "totalParts": 1,
 "partSize": 53216,
 "contentLength": 10485760
 "s3Access": {
 "s3Uri": "s3://accountID-sequence store ID-ajdpi90jdas90a79fh9a8ja98jdfa9jf98-
s3alias/592761533288/sequenceStore/2015356892/readSet/9515444019/
import_source1.fastq.gz"
},
 }
 },
 "creationType": "IMPORT",
 "etag": {
 "algorithm": "BAM_MD5up",
 "source1": "d1d65429212d61d115bb19f510d4bd02"
 }
}

Activating read sets Version latest 203

AWS HealthOmics User Guide

You can view all read set activation jobs by using list-read-set-activation-jobs, as shown in the
following example. In the following example, replace sequence store ID with your sequence
store ID.

aws omics list-read-set-activation-jobs --sequence-store-id sequence store ID

You receive the following response.

{
 "activationJobs": [
 {
 "id": 1234657890,
 "sequenceStoreId": "1234567890",
 "status": "COMPLETED",
 "creationTime": "2022-10-22T01:33:38.079000+00:00",
 "completionTime": "2022-10-22T01:34:28.941000+00:00"
 }
]
}

Activating read sets Version latest 204

AWS HealthOmics User Guide

HealthOmics analytics

HealthOmics analytics supports the storage and analysis of genomic variants and annotations.
Analytics provides two types of storage resources - Variant stores and Annotation stores. You use
these resources to store, transform, and query genomic variant data and annotation data. After you
import data into a datastore, you can use Athena to peform advanced analytics on the data.

You can use the HealthOmics console or API to create and manage stores, import data, and share
analytic store data with collaborators.

Variant stores support data in VCF formats, and annotation stores support TSV/CSV and GFF3
formats. Genomic coordinates are represented as zero-based, half-closed half-open intervals.
When your data is in the HealthOmics analytics data store, access to the VCF files is managed
through AWS Lake Formation. You can then query the VCF files by using Amazon Athena. Queries
must use Athena query engine version 3. To read more about Athena query engine versions, see
the Amazon Athena documentation.

Topics

• Creating HealthOmics variant stores

• Creating HealthOmics variant store import jobs

• Creating HealthOmics annotation stores

• Creating import jobs for HealthOmics annotation stores

• Creating new versions of HealthOmics annotation stores

• Deleting HealthOmics analytics stores

• Querying HealthOmics analytics data

• Sharing HealthOmics analytics stores

Creating HealthOmics variant stores

The following topics describe how to create HealthOmics variant stores using the console and the
API.

Topics

Creating variant stores Version latest 205

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-changing.html

AWS HealthOmics User Guide

• Creating a variant store using the console

• Creating a variant store using the API

Creating a variant store using the console

You can create a variant store using the HealthOmics console.

1. Open the HealthOmics console.

2. In the left navigation pane, choose Variant stores.

3. On the Create variant store page, provide the following information

• Variant store name - A unique name for this store.

• Description (optional) - A description of this variant store.

• Reference genome - The reference genome for this variant store.

• Data Encryption - Choose whether you want data encryption to be owned and managed by
AWS or by yourself.

• Tags (optional) - Provide up to 50 tags for this variant store.

4. Choose Create variant store.

Creating a variant store using the API

Use HealthOmics CreateVariantStore API operation to create variant stores. You can also
perform this operation with the AWS CLI.

To create a variant store, you provide a name for the store and the ARN of a reference store. The
variant store is ready to ingest data when its status changes to READY.

The following example uses the AWS CLI to create a variant store.

aws omics create-variant-store --name myvariantstore \
 --reference referenceArn="arn:aws:omics:us-
west-2:555555555555:referenceStore/123456789/reference/5987565360"

To confirm the creation of your variant store, you receive the following response.

{

Creating a variant store using the console Version latest 206

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

 "creationTime": "2022-11-03T18:19:52.296368+00:00",
 "id": "45aeb91d5678",
 "name": "myvariantstore",
 "reference": {
 "referenceArn": "arn:aws:omics:us-west-2:555555555555:referenceStore/123456789/
reference/5987565360"
 },
 "status": "CREATING"
}

To learn more about a variant store, use the get-variant-store API.

aws omics get-variant-store --name myvariantstore

You receive the following response.

{
 "id": "45aeb91d5678",
 "reference": {
 "referenceArn": "arn:aws:omics:us-west-2:555555555555:referenceStore/123456789/
reference/5987565360"
 },
 "status": "ACTIVE",
 "storeArn": "arn:aws:omics:us-west-2:555555555555:variantStore/myvariantstore",
 "name": "myvariantstore",
 "creationTime": "2022-11-03T18:19:52.296368+00:00",
 "updateTime": "2022-11-03T18:30:56.272792+00:00",
 "tags": {},
 "storeSizeBytes": 0
}

To view all variant stores associated with an account, use the list-variant-stores API.

aws omics list-variant-stores

You receive a response that lists all variant stores, along with their IDs, statuses, and other details,
as shown in the following example response.

{
 "variantStores": [

Creating a variant store using the API Version latest 207

AWS HealthOmics User Guide

 {
 "id": "45aeb91d5678",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:55555555555:referenceStore/5506874698"
 },
 "status": "ACTIVE",
 "storeArn": "arn:aws:omics:us-west-2:55555555555:variantStore/
new_variant_store",
 "name": "variantstore",
 "creationTime": "2022-11-03T18:19:52.296368+00:00",
 "updateTime": "2022-11-03T18:30:56.272792+00:00",
 "statusMessage": "",
 "storeSizeBytes": 141526
 }
]
}

You can also filter the responses for the list-variant-stores API based on statuses or other criteria.

VCF Files imported into analytic stores created on or after May 15, 2023 have defined schemas for
Variant Effect Predictor (VEP) annotations. This makes it easier to query and parse imported VCF
data. The change doesn't impact stores created before May 15, 2023, except if the annotation
fields parameter is included in the API or CLI call. For these stores, using the annotation
fields parameter will cause the request to fail.

Creating HealthOmics variant store import jobs

The following example shows how to use the AWS CLI to create an import job for a variant store.

aws omics start-variant-import-job \
 --destination-name myvariantstore \
 --runLeftNormalization false \
 --role-arn arn:aws:iam::55555555555:role/roleName \
 --items source=s3://my-omics-bucket/sample.vcf.gz source=s3://my-omics-bucket/
sample2.vcf.gz

{
 "destinationName": "store_a",
 "roleArn": "....",

Creating variant store import jobs Version latest 208

AWS HealthOmics User Guide

 "runLeftNormalization": false,
 "items": [
 {"source": "s3://my-omics-bucket/sample.vcf.gz"},
 {"source": "s3://my-omics-bucket/sample2.vcf.gz"}
]
}

For stores created after May 15, 2023, the following example shows how to add the --
annotation-fields parameter. The annotation fields are defined with the import.

aws omics start-variant-import-job \
 --destination-name annotationparsingvariantstore \
 --role-arn arn:aws:iam::123456789012:role/<role_name> \
 --items source=s3://pathToS3/sample.vcf
 --annotation-fields '{"VEP": "CSQ"}'

{
 "jobId": "981e2286-e954-4391-8a97-09aefc343861"
}

Use get-variant-import-job to check the status.

aws omics get-variant-import-job --job-id 08279950-a9e3-4cc3-9a3c-a574f9c9e229

You'll receive a JSON response that shows the status of your import job. VEP annotations in the
VCF are parsed for information stored in the INFO column as an ID/Value pair. The default ID
for Ensembl Variant Effect Predictor annotations INFO column is CSQ, but you can use the --
annotation-fields parameter to indicate a custom value used in the INFO column. Parsing is
currently supported for VEP annotations.

For a store created before May 15, 2023 or for VCF files that don't include VEP annotation, the
response doesn't include any annotation fields.

{
 "creationTime": "2023-04-11T17:52:37.241958+00:00",
 "destinationName": "annotationparsingvariantstore",
 "id": "7a1c67e3-b7f9-434d-817b-9c571fd63bea",
 "items": [

Creating variant store import jobs Version latest 209

https://useast.ensembl.org/info/docs/tools/vep/index.html/#vcf

AWS HealthOmics User Guide

 {
 "jobStatus": "COMPLETED",
 "source": "s3://amzn-s3-demo-bucket/NA12878.2k.garvan.vcf"
 }
],
 "roleArn": "arn:aws:iam::555555555555:role/<role_name>",

 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T17:58:22.676043+00:00",
}

The VEP annotations that are a part of VCF files are stored as predefined schema with the
following structure. The extras field can be used to store any additional VEP fields that aren't
included in the default schema.

annotations struct<
 vep: array<struct<
 allele:string,
 consequence: array<string>,
 impact:string,
 symbol:string,
 gene:string,
 `feature_type`: string,
 feature: string,
 biotype: string,
 exon: struct<rank:string, total:string>,
 intron: struct<rank:string, total:string>,
 hgvsc: string,
 hgvsp: string,
 `cdna_position`: string,
 `cds_position`: string,
 `protein_position`: string,
 `amino_acids`: struct<reference:string, variant: string>,
 codons: struct<reference:string, variant: string>,
 `existing_variation`: array<string>,
 distance: string,
 strand: string,
 flags: array<string>,
 symbol_source: string,
 hgnc_id: string,
 `extras`: map<string, string>
 >>

Creating variant store import jobs Version latest 210

AWS HealthOmics User Guide

>

The parsing is performed with a best effort approach. If the VEP entry doesn't follow the VEP
standard specifications, it won't be parsed and the row in the array will be empty.

For a new variant store, the response for get-variant-import-job would include the annotation
fields, as shown.

aws omics get-variant-import-job --job-id 08279950-a9e3-4cc3-9a3c-a574f9c9e229

You receive a JSON response that shows the status of your import job.

{
 "creationTime": "2023-04-11T17:52:37.241958+00:00",
 "destinationName": "annotationparsingvariantstore",
 "id": "7a1c67e3-b7f9-434d-817b-9c571fd63bea",
 "items": [

 {
 "jobStatus": "COMPLETED",
 "source": "s3://amzn-s3-demo-bucket/NA12878.2k.garvan.vcf"
 }
],
 "roleArn": "arn:aws:iam::123456789012:role/<role_name>",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T17:58:22.676043+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }
}

You can use list-variant-import-jobs to see all import jobs and their statuses.

aws omics list-variant-import-jobs --ids 7a1c67e3-b7f9-434d-817b-9c571fd63bea

The response contains information as follows.

{
 "variantImportJobs": [

Creating variant store import jobs Version latest 211

https://useast.ensembl.org/info/docs/tools/vep/vep_formats.html#vcf
https://useast.ensembl.org/info/docs/tools/vep/vep_formats.html#vcf

AWS HealthOmics User Guide

 {
 "creationTime": "2023-04-11T17:52:37.241958+00:00",
 "destinationName": "annotationparsingvariantstore",
 "id": "7a1c67e3-b7f9-434d-817b-9c571fd63bea",
 "roleArn": "arn:aws:iam::55555555555:role/roleName",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T17:58:22.676043+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }
]
 }
}

If necessary, you can cancel an import job with the following command.

aws omics cancel-variant-import-job
 --job-id edd7b8ce-xmpl-47e2-bc99-258cac95a508

Creating HealthOmics annotation stores

An annotation store is a data store representing an annotation database, such as one from a TSV,
VCF, or GFF file. If the same reference genome is specified, annotation stores are mapped to the
same coordinate system as variant stores during an import. The following topics show how to use
the HealthOmics console and AWS CLI to create and manage annotation stores.

Topics

• Creating an annotation store using the console

• Creating an annotation store using the API

Creating an annotation store using the console

Use the following procedure to create annotation stores with the HealthOmics console.

To create an annotation store

1. Open the HealthOmics console.

2. In the left navigation pane, choose Annotation stores.

Creating annotation stores Version latest 212

https://console.aws.amazon.com/omics/

AWS HealthOmics User Guide

3. On the Annotation stores page, choose Create annotation store.

4. On the Create annotation store page, provide the following information

• Annotation store name - A unique name for this store.

• Description (optional) - A description of this reference genome.

• Data format and schema details - Select data file format and upload the schema definition
for this store.

• Reference genome - The reference genome for this annotation.

• Data Encryption - Choose whether you want data encryption to be owned and managed by
AWS or by yourself.

• Tags (optional) - Provide up to 50 tags for this annotation store.

5. Choose Create annotation store.

Creating an annotation store using the API

The following example shows how to create an annotation store using the AWS CLI. For all AWS CLI
and API operations, you must specify the format of your data.

aws omics create-annotation-store --name my_annotation_store \
 --store-format GFF \
 --reference referenceArn="arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/5987565360"
 --version-name new_version

You receive the following response to confirm the creation of your annotation store.

{
 "creationTime": "2022-08-24T20:34:19.229500Z",
 "id": "3b93cdef69d2",
 "name": "my_annotation_store",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/5987565360"
 },
 "status": "CREATING"
 "versionName": "my_version"
 }

Creating an annotation store using the API Version latest 213

AWS HealthOmics User Guide

To learn more about an annotation store, use the get-annotation-store API.

aws omics get-annotation-store --name my_annotation_store

You receive the following response.

{
 "id": "eeb019ac79c2",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/5638433913/reference/5871590330“
 },
 "status": "ACTIVE",
 "storeArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/gffstore",
 "name": "my_annotation_store",
 "creationTime": "2022-11-05T00:05:19.136131+00:00",
 "updateTime": "2022-11-05T00:10:36.944839+00:00",
 "tags": {},
 "storeFormat": "GFF",
 "statusMessage": "",
 "storeSizeBytes": 0,
 "numVersions": 1
 }

To view all annotation stores associated with an account, use the list-annotation-stores API
operation.

aws omics list-annotation-stores

You receive a response that lists all annotation stores, along with their IDs, statuses, and other
details, as shown in the following example response.

{
 "annotationStores": [
 {
 "id": "4d8f3eada259",
 "reference":
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/5638433913/reference/5871590330"
 },
 "status": "CREATING",

Creating an annotation store using the API Version latest 214

AWS HealthOmics User Guide

 "name": "gffstore",
 "creationTime": "2022-09-27T17:30:52.182990+00:00",
 "updateTime": "2022-09-27T17:30:53.025362+00:00"
 }
]
 }

You can also filter responses based on status or other criteria.

Creating import jobs for HealthOmics annotation stores

Topics

• Creating an annotation import job using the API

• Additional parameters for TSV and VCF formats

• Creating TSV formatted annotation stores

• Starting VCF formatted import jobs

Creating an annotation import job using the API

The following example shows how to use the AWS CLI to start an annotation import job.

aws omics start-annotation-import-job \
 --destination-name myannostore \
 --version-name myannostore \
 --role-arn arn:aws:iam::123456789012:role/roleName \
 --items source=s3://my-omics-bucket/sample.vcf.gz
 --annotation-fields '{"VEP": "CSQ"}'

Annotation stores created before May 15, 2023 return an error message if the annotation-fields
is included. They don't return output for any API operations involved with annotation store import
jobs.

You can then use the get-annotation-import-job API operation and the job ID parameter to
learn more details about the annotation import job.

aws omics get-annotation-import-job --job-id 9e4198fb-fa85-446c-9301-9b823a1a8ba8

Creating annotation store import jobs Version latest 215

AWS HealthOmics User Guide

You receive the following response, including the annotation fields.

{
 "creationTime": "2023-04-11T19:09:25.049767+00:00",
 "destinationName": "parsingannotationstore",
 "versionName": "parsingannotationstore",
 "id": "9e4198fb-fa85-446c-9301-9b823a1a8ba8",
 "items": [
 {
 "jobStatus": "COMPLETED",
 "source": "s3://my-omics-bucket/sample.vep.vcf"
 }
],
 "roleArn": "arn:aws:iam::55555555555:role/roleName",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T19:13:09.110130+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }

To view all annotation store import jobs, use list-annotation-import-jobs .

aws omics list-annotation-import-jobs --ids 9e4198fb-fa85-446c-9301-9b823a1a8ba8

The response includes the details and statuses of your annotation store import jobs.

{
 "annotationImportJobs": [
 {
 "creationTime": "2023-04-11T19:09:25.049767+00:00",
 "destinationName": "parsingannotationstore",
 "versionName": "parsingannotationstore",
 "id": "9e4198fb-fa85-446c-9301-9b823a1a8ba8",
 "roleArn": "arn:aws:iam::55555555555:role/roleName",
 "runLeftNormalization": false,
 "status": "COMPLETED",
 "updateTime": "2023-04-11T19:13:09.110130+00:00",
 "annotationFields" : {"VEP": "CSQ"}
 }
]

Creating an annotation import job using the API Version latest 216

AWS HealthOmics User Guide

 }

Additional parameters for TSV and VCF formats

For TSV and VCF formats, there are additional parameters that inform the API of how to parse your
input.

Important

CSV annotation data that's exported with query engines directly returns information from
the dataset import. If the imported data contains formulas or commands, the file might be
subject to CSV injection. Therefore, files exported with query engines can prompt security
warnings. To avoid malicious activity, turn off links and macros when reading export files.

The TSV parser also performs basic bioinformatics operations, like left normalization and
standardization of genomics coordinates, that are listed in the following table.

Format type Description

Generic Generic text file. No genomic information.

CHR_POS Start position - 1, Add end position, which is
the same as POS.

CHR_POS_REF_ALT Contains contig, 1-base position, ref and alt
allele information.

CHR_START_END_REF_ALT_ONE_BASE Contains contig, start, end, ref and alt allele
information. Coordinates are 1-based.

CHR_START_END_ZERO_BASE Contains contig, start, and end positions.
Coordinates are 0-based.

CHR_START_END_ONE_BASE Contains contig, start, and end positions.
Coordinates are 1-based.

CHR_START_END_REF_ALT_ZERO_BASE Contains contig, start, end, ref and alt allele
information. Coordinates are 0-based.

Additional parameters for TSV and VCF formats Version latest 217

AWS HealthOmics User Guide

A TSV import annotation store request looks like the following example.

aws omics start-annotation-import-job \
--destination-name tsv_anno_example \
--role-arn arn:aws:iam::555555555555:role/demoRole \
--items source=s3://demodata/genomic_data.bed.gz \
--format-options '{ "tsvOptions": {
 "readOptions": {
 "header": false,
 "sep": "\t"
 }
 }
}'

Creating TSV formatted annotation stores

The following example creates an annotation store using a tab limited file that contains a header,
rows, and comments. The coordinates are CHR_START_END_ONE_BASED, and it contains the HG19
gene map from the OMIM's Synopsis of the Human Gene Map.

aws omics create-annotation-store --name mimgenemap \
 --store-format TSV \
 --reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
 --store-options=tsvStoreOptions='{
 annotationType=CHR_START_END_ONE_BASE,
 formatToHeader={CHR=chromosome, START=genomic_position_start,
 END=genomic_position_end},
 schema=[
 {chromosome=STRING},
 {genomic_position_start=LONG},
 {genomic_position_end=LONG},
 {cyto_location=STRING},
 {computed_cyto_location=STRING},
 {mim_number=STRING},
 {gene_symbols=STRING},
 {gene_name=STRING},
 {approved_gene_name=STRING},
 {entrez_gene_id=STRING},
 {ensembl_gene_id=STRING},
 {comments=STRING},

Creating TSV formatted annotation stores Version latest 218

https://www.omim.org/downloads

AWS HealthOmics User Guide

 {phenotypes=STRING},
 {mouse_gene_symbol=STRING}]}'

You can import files with or without a header. To indicate this in a CLI request, use header=false,
as shown in the following import job example.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://amzn-s3-demo-bucket/annotation-examples/hg38_genemap2.txt \
 --destination-name output-bucket \
 --format-options=tsvOptions='{readOptions={sep="\t",header=false,comment="#"}}'

The following example creates an annotation store for a bed file. A bed file is a simple tab
delimited file. In this example, the columns are chromosome, start, end, and region name. The
coordinates are zero-based, and the data does not have a header.

aws omics create-annotation-store \
 --name cexbed --store-format TSV \
 --reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
 --store-options=tsvStoreOptions='{
 annotationType=CHR_START_END_ZERO_BASE,
 formatToHeader={CHR=chromosome, START=start, END=end},
 schema=[{chromosome=STRING}, {start=LONG}, {end=LONG}, {name=STRING}]}'

You can then import the bed file into the annotation store by using the following the CLI
command.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://amzn-s3-demo-bucket/TruSeq_Exome_TargetedRegions_v1.2.bed \
 --destination-name cexbed \
 --format-options=tsvOptions='{readOptions={sep="\t",header=false,comment="#"}}'

The following example creates an annotation store for a tab delimited file that contains the first
few columns of a VCF file, followed by columns with annotation information. It contains genome
positions with information on the chromosome, start, reference and alternate alleles, and it
contains a header.

aws omics create-annotation-store --name gnomadchrx --store-format TSV \

Creating TSV formatted annotation stores Version latest 219

AWS HealthOmics User Guide

--reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
--store-options=tsvStoreOptions='{
 annotationType=CHR_POS_REF_ALT,
 formatToHeader={CHR=chromosome, POS=start, REF=ref, ALT=alt},
 schema=[
 {chromosome=STRING},
 {start=LONG},
 {ref=STRING},
 {alt=STRING},
 {filters=STRING},
 {ac_hom=STRING},
 {ac_het=STRING},
 {af_hom=STRING},
 {af_het=STRING},
 {an=STRING},
 {max_observed_heteroplasmy=STRING}]}'

You would then import the file into the annotation store using the following the CLI command.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://amzn-s3-demo-bucket/
gnomad.genomes.v3.1.sites.chrM.reduced_annotations.tsv \
 --destination-name gnomadchrx \
 --format-options=tsvOptions='{readOptions={sep="\t",header=true,comment="#"}}'

The following example shows how a customer can create an annotation store for a mim2gene file.
A mim2gene file provides the links between the genes in OMIM and another gene identifier. It's tab
delimited and contains comments.

aws omics create-annotation-store \
 --name mim2gene \
 --store-format TSV \
 --reference=referenceArn=arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/2310864158 \
 --store-options=tsvStoreOptions='
 {annotationType=GENERIC,
 formatToHeader={},
 schema=[
 {mim_gene_id=STRING},
 {mim_type=STRING},

Creating TSV formatted annotation stores Version latest 220

AWS HealthOmics User Guide

 {entrez_id=STRING},
 {hgnc=STRING},
 {ensembl=STRING}]}'

You can then import data into your store as follows.

aws omics start-annotation-import-job \
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items=source=s3://xquek-dev-aws/annotation-examples/mim2gene.txt \
 --destination-name mim2gene \
 --format-options=tsvOptions='{readOptions={sep="\t",header=false,comment="#"}}'

Starting VCF formatted import jobs

For VCF files, there are two additional inputs, ignoreQualField and ignoreFilterField, that
ignore or include those parameters as shown.

aws omics start-annotation-import-job --destination-name annotation_example\
 --role-arn arn:aws:iam::555555555555:role/demoRole \
 --items source=s3://demodata/example.garvan.vcf \
 --format-options '{ "vcfOptions": {
 "ignoreQualField": false,
 "ignoreFilterField": false
 }
 }'

You can also cancel an annotation store import, as shown. If the cancellation succeeds, you don't
receive a response to this AWS CLI call. However, if the import job ID isn't found or the import job is
completed, you receive an error message.

aws omics cancel-annotation-import-job --job-id edd7b8ce-xmpl-47e2-bc99-258cac95a508

Note

Your metadata import job history for get-annotation-import-job, get-variant-import-
job, list-annotation-import-jobs, and list-variant-import-jobs is auto-deleted after two
years. The variant and annotation data that's imported isn't auto-deleted and remains in
your data stores.

Starting VCF formatted import jobs Version latest 221

AWS HealthOmics User Guide

Creating new versions of HealthOmics annotation stores

You can create new versions of annotation stores to collect different versions of your annotation
databases. This helps you organize your annotation data, which is updated regularly.

To create a new version of an existing annotation store, use the create-annotation-store-version
API as shown in the following example.

aws omics create-annotation-store-version \
 --name my_annotation_store \
 --version-name my_version

You will get the following response with the annotation store version ID, confirming that a new
version of your annotation has been created.

{
 "creationTime": "2023-07-21T17:15:49.251040+00:00",
 "id": "3b93cdef69d2",
 "name": "my_annotation_store",
 "reference": {
 "referenceArn": "arn:aws:omics:us-
west-2:555555555555:referenceStore/6505293348/reference/5987565360"
 },
 "status": "CREATING",
 "versionName": "my_version"
}

To update the description of an annotation store version, you can use update-annotation-store-
version to add updates to an annotation store version.

aws omics update-annotation-store-version \
 --name my_annotation_store \
 --version-name my_version \
 --description "New Description"

You will receive the following response, confirming that the annotation store version has been
updated.

{
 "storeId": "4934045d1c6d",

Creating new versions of HealthOmics annotation stores Version latest 222

AWS HealthOmics User Guide

 "id": "2a3f4a44aa7b",
 "description":"New Description",
 "status": "ACTIVE",
 "name": "my_annotation_store",
 "versionName": "my_version",
 "creation Time": "2023-07-21T17:20:59.380043+00:00",
 "updateTime": "2023-07-21T17:26:17.892034+00:00"
}

To view the details of an annotation store version, use get-annotation-store-version.

aws omics get-annotation-store-version --name my_annotation_store --version-name
 my_version

You will receive a response with the version name, status, and other details.

{
 "storeId": "4934045d1c6d",
 "id": "2a3f4a44aa7b",
 "status": "ACTIVE",
 "versionArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/
my_annotation_store/version/my_version",
 "name": "my_annotation_store",
 "versionName": "my_version",
 "creationTime": "2023-07-21T17:15:49.251040+00:00",
 "updateTime": "2023-07-21T17:15:56.434223+00:00",
 "statusMessage": "",
 "versionSizeBytes": 0
 }

To view all versions of an annotation store, you can use list-annotation-store-versions, as shown
in the following example.

aws omics list-annotation-store-versions --name my_annotation_store

You will receive a response with the following information

{
 "annotationStoreVersions": [
 {

Creating new versions of HealthOmics annotation stores Version latest 223

AWS HealthOmics User Guide

 "storeId": "4934045d1c6d",
 "id": "2a3f4a44aa7b",
 "status": "CREATING",
 "versionArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/
my_annotation_store/version/my_version_2",
 "name": "my_annotation_store",
 "versionName": "my_version_2",
 "creation Time": "2023-07-21T17:20:59.380043+00:00",
 "versionSizeBytes": 0
 },
 {
 "storeId": "4934045d1c6d",
 "id": "4934045d1c6d",
 "status": "ACTIVE",
 "versionArn": "arn:aws:omics:us-west-2:555555555555:annotationStore/
my_annotation_store/version/my_version_1",
 "name": "my_annotation_store",
 "versionName": "my_version_1",
 "creationTime": "2023-07-21T17:15:49.251040+00:00",
 "updateTime": "2023-07-21T17:15:56.434223+00:00",
 "statusMessage": "",
 "versionSizeBytes": 0
 }
}

If you no longer need an annotation store version, you can use delete-annotation-store-versions
to delete an annotation store version, as shown in the following example.

aws omics delete-annotation-store-versions --name my_annotation_store --versions
 my_version

If the store version is deleted without errors, you will receive the following response.

{
 "errors": []
}

If there are errors, you will receive a response with the details of the errors, as shown.

{
 "errors": [
 {

Creating new versions of HealthOmics annotation stores Version latest 224

AWS HealthOmics User Guide

 "versionName": "my_version",
 "message": "Version with versionName: my_version was not found."
 }
]
}

If you try to delete an annotation store version that has an active import job, you will receive a
response with an error, as shown.

{
 "errors": [
 {
 "versionName": "my_version",
 "message": "version has an inflight import running"
 }
]
}

In this case, you can force deletion of the annotation store version, as shown in the following
example.

aws omics delete-annotation-store-versions --name my_annotation_store --versions
 my_version --force

Deleting HealthOmics analytics stores

When you delete a variant or annotation store, the system also deletes all imported data in that
store and any associated tags.

The following example shows how to delete a variant store using the AWS CLI. If the action is
successful, the variant store status transitions to DELETING.

aws omics delete-variant-store --id <variant-store-id>

The following example shows how to delete an annotation store. If the action is successful, the
annotation store status transitions to DELETING. Annotation stores can't be deleted if more than
one version exists.

aws omics delete-annotation-store --id <annotation-store-id>

Deleting analytics stores Version latest 225

AWS HealthOmics User Guide

Querying HealthOmics analytics data

You can perform queries on your variant stores using AWS Lake Formation and Amazon Athena
or Amazon EMR. Before you run any queries, complete the setup procedures (described in the
following sections) for Lake Formation and Amazon Athena.

For information about Amazon EMR, see Tutorial: Getting started with Amazon EMR

For variant stores created after Sept 26, 2024, HealthOmics partitions the store by sample ID.
This partitioning means that HealthOmics uses the sample ID to optimize storing of the variant
information. Queries that use sample information as filters will return results faster, as the query
scans less data.

HealthOmics uses sample IDs as partition file names. Before you ingest data, check whether the
sample ID contains any PHI data. If it does, change the sample ID before you ingest the data. For
more information about what content to include and not include in sample IDs, see guidance on
the AWS HIPAA compliance web page.

Topics

• Configuring Lake Formation to use HealthOmics

• Configuring Athena for queries

• Running queries on HealthOmics variant stores

Configuring Lake Formation to use HealthOmics

Before you use Lake Formation to manage HealthOmics data stores, perform the following Lake
Formation configuration procedures.

Topics

• Creating or verify Lake Formation administrators

• Creating resource links using the Lake Formation console

• Configuring permissions for AWS RAM resource shares

Creating or verify Lake Formation administrators

Before you can create a data lake in Lake Formation, you define one or more administrators.

Querying analytics data Version latest 226

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-gs.html
https://aws.amazon.com/compliance/hipaa-compliance

AWS HealthOmics User Guide

Administrators are users and roles with permissions to create resource links. You set up data lake
administrators per account per region.

Create an admin user in the Lake Formation console

1. Open the AWS Lake Formation console: Lake Formation console

2. If the console displays the Welcome to Lake Formation panel, choose Get started.

Lake Formation adds you to the Data lake administrators table.

3. Otherwise, from the left menu, choose Administative roles and tasks.

4. Add any additional administrators as required.

Creating resource links using the Lake Formation console

To make a shared resource that users can query, the default access controls must be disabled. To
learn more about disabling default access controls, see Changing the default security settings for
your data lake in the Lake Formation documentation. You can create resource links individually or
as a group, so that you can access data in Amazon Athena or other AWS services (such as Amazon
EMR).

Creating resource links in the AWS Lake Formation console and sharing them with HealthOmics
Analytics users

1. Open the AWS Lake Formation console: Lake Formation console

2. In the primary navigation bar, choose Databases.

3. In the Databases table, choose the desired database.

4. From the Actions menu, choose Create resource link.

5. Enter a Resource link name. If you plan to access the database from Athena, enter a name
using only lowercase letters (up to 256 characters).

6. Choose Create.

7. The new resource link is now listed under Databases.

Grant access to the shared resource using the Lake Formation console

A Lake Formation database administrator can grant access to the shared resource using the
following procedure.

Configuring Lake Formation Version latest 227

https://console.aws.amazon.com/lakeformation
https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html
https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html
https://console.aws.amazon.com/lakeformation

AWS HealthOmics User Guide

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

2. In the primary navigation bar, choose Databases.

3. On the Databases page, select the resource link you previously created.

4. From the Actions menu, choose Grant on target.

5. On the Grant data permissions page under Principals, choose IAM users or roles.

6. From the IAM users or roles drop-down menu, find the user to which you want to grant access.

7. Next, under LF-Tags or catalog resources card, select the Named data catalog resources
option.

8. From the Tables-optional drop-down menu, select All Tables or the table that you previously
created.

9. In the Table permissions card, under Table permissions choose Describe and Select.

10. Next, choose Grant.

To view the Lake Formation permissions, choose Data lake permissions from the primary
navigation pane. The table shows the available databases and resource links.

Configuring permissions for AWS RAM resource shares

In the AWS Lake Formation console, view the permissions by choosing Data lake permissions in
the primary navigation bar. On the Data permissions page, you can view a table that shows the
Resource types, Databases, and ARN that's related to a shared resource under RAM Resource
Share. If you need to accept an AWS Resource Access Manager (AWS RAM) resource share, AWS
Lake Formation notifies you in the console.

HealthOmics can implicitly accept the AWS RAM resource shares during store creation. To accept
the AWS RAM resource share, the IAM user or role that calls the CreateVariantStore or
CreateAnnotationStore API operations must allow the following actions:

• ram:GetResourceShareInvitations - This action allows HealthOmics to find the invitations.

• ram:AcceptResourceShareInvitation - This action allows HealthOmics to accept the
invitation by using an FAS token.

Without these permissions, you see an authorization error during store creation.

Here is a sample policy that includes these actions. Add this policy to the IAM user or role that
accepts the AWS RAM resource share.

Configuring Lake Formation Version latest 228

https://console.aws.amazon.com/lakeformation

AWS HealthOmics User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*",
 "ram:AcceptResourceShareInvitation",
 "ram:GetResourceShareInvitations"
],
 "Resource": "*"
 }
]
}

Configuring Athena for queries

You can use Athena to query variants and annotations. Before you run any queries, perform the
following setup tasks:

Topics

• Configure a query results location using the Athena console

• Configure a workgroup with Athena engine v3

Configure a query results location using the Athena console

To configure a query results location, follow these steps.

1. Open the Athena console: Athena console

2. In the primary navigation bar, choose Query editor.

3. In the query editor, choose the Settings tab, then choose Manage.

4. Enter an S3 prefix of a location to save the query result.

Configuring Athena for queries Version latest 229

https://console.aws.amazon.com/athena

AWS HealthOmics User Guide

Configure a workgroup with Athena engine v3

To configure a workgroup, follow these steps.

1. Open the Athena console: Athena console

2. In the primary navigation bar, choose Workgroups, then Create workgroup.

3. Enter a name for the workgroup.

4. Select Athena SQL as the type of engine.

5. Under Upgrade query engine, select Manual.

6. Under Query version engine, select Athena version 3.

7. Choose Create workgroup.

Running queries on HealthOmics variant stores

You can perform queries on your variant store using Amazon Athena. Note that genomic
coordinates in variant and annotation stores are represented as zero-based, half-closed half-open
intervals.

Run a simple query using the Athena console

The following example shows how to run a simple query.

1. Open the Athena Query editor: Athena Query editor

2. Under Workgroup, select the workgroup that you created during setup.

3. Verify that Data source is AwsDataCatalog.

4. For Database, select the database resource link that you created during the Lake Formation
setup.

5. Copy the following query into the Query Editor under the Query 1 tab:

SELECT * from omicsvariants limit 10

6. Choose Run to run the query. The console populates the results table with the first 10 rows of
the omicsvariants table.

Runnning queries Version latest 230

https://console.aws.amazon.com/athena
https://console.aws.amazon.com/athena

AWS HealthOmics User Guide

Run a complex query using the Athena console

The following example shows how to run a complex query. To run this query, import ClinVar into
the annotation store.

Run a complex query

1. Open the Athena Query editor: Athena Query editor

2. UnderWorkgroup, select the workgroup that you created during setup.

3. Verify that Data source is AwsDataCatalog.

4. For Database, select the database resource link that you created during the Lake Formation
setup.

5. Choose the + at the top right to create a new query tab named Query 2.

6. Copy the following query into the Query Editor under the Query 2 tab:

SELECT variants.sampleid,
 variants.contigname,
 variants.start,
 variants."end",
 variants.referenceallele,
 variants.alternatealleles,
 variants.attributes AS variant_attributes,
 clinvar.attributes AS clinvar_attributes
FROM omicsvariants as variants
INNER JOIN omicsannotations as clinvar ON
 variants.contigname=CONCAT('chr',clinvar.contigname)
 AND variants.start=clinvar.start
 AND variants."end"=clinvar."end"
 AND variants.referenceallele=clinvar.referenceallele
 AND variants.alternatealleles=clinvar.alternatealleles
WHERE clinvar.attributes['CLNSIG']='Likely_pathogenic'

7. Choose Run to start running the query.

Sharing HealthOmics analytics stores

As the owner of a variant store or an annotation store, you can share the store with other AWS
accounts. The owner can revoke access to the shared resource by deleting the share.

Sharing HealthOmics analytics stores Version latest 231

https://console.aws.amazon.com/athena

AWS HealthOmics User Guide

As the subscriber to a shared store, you first accept the share. You can then define workflows that
use the shared store. The data shows up as a table in both AWS Glue and Lake Formation.

When you no longer need access to the store, you delete the share.

See Cross-account resource sharing in AWS HealthOmics for additional information about resource
sharing.

Creating a store share

To create a store share, use the create-share API operation. The principal subscriber is the AWS
account of the user who will subscribe to the share. The following example creates a share for a
variant store. To share a store with more than one account, you create multiple shares of the same
store.

aws omics create-share \
 --resource-arn "arn:aws:omics:us-west-2:555555555555:variantStore/
omics_dev_var_store" \
 --principal-subscriber "123456789012" \
 --name "my_Share-123"

If the create is successful, you receive a response with the share ID and status.

{
 "shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
 "name": "my_Share-123",
 "status": "PENDING"
 }

The share remains in pending state until the subscriber accepts it using the accept-share API
operation.

Creating a store share Version latest 232

AWS HealthOmics User Guide

Cross-account resource sharing in AWS HealthOmics

Use cross-account sharing to share resources with collaborators without creating copies or
modifying IAM resource policies. The following resources support cross-account sharing:

• HealthOmics variant stores

• HealthOmics annotation stores

• Private workflows

Sharing a resource includes the following steps:

1. The resource owner creates a share, and specifies the ARN of the resource and the AWS account
of the intended subscriber. The resource share remains in pending state until the subscriber
accepts the share.

2. The subscriber accepts the resource share to get access to the resource. The resource share
transitions to activating state.

3. The HealthOmics service provides subscriber account with access to the resource.

4. The resource owner can delete the share, or the subscriber can revoke their access to the share.
The subscriber can't delete the share or the associated resource.

Topics

• Creating a share

• Retrieve information about a share

• View the shares that you own

• View accepted shares from other accounts

• Delete a share

Creating a share

You can use the create-share API operation to create a share. The principal subscriber is the AWS
account of the user who will subscribe to the shared resource. The following example creates a
share for a variant store.

aws omics create-share \

Creating a share Version latest 233

AWS HealthOmics User Guide

 --resource-arn "arn:aws:omics:us-west-2:555555555555:variantStore/
omics_dev_var_store" \
 --principal-subscriber "123456789012" \
 --name "my_Share-123"

If the create is successful, you receive a response with the share ID and status.

{
"shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
 "name": "my_Share-123",
 "status": "PENDING"
}

The share remains in pending state until the subscriber accepts it using the accept-share API
operation.

 aws omics accept-share \
 --share-id "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a"

After the subscriber accepts the share, the share transitions to active state.

{
"status": "ACTIVATING"
}

Retrieve information about a share

Use the get-share API operation to retrieve information about the share.

aws omics get-share --share-id "495c21bedc889d07d0ab69d710a6841e-
dd75ab7a1a9c384fa848b5bd8e5a7e0a"

The API response includes metadata information about the share.

{
 "share":

Retrieve information about a share Version latest 234

AWS HealthOmics User Guide

 {
 "shareId": "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a",
 "name": "my_Share-123",
 "resourceArn": "arn:aws:omics:us-west-2:555555555555:variantStore/
omics_dev_var_store",
 "principalSubscriber": "123456789012",
 "ownerId": "555555555555",
 "status": "PENDING"
 }
}

View the shares that you own

Use the list-shares API to retrieve information about each of the shares that you own.

aws omics list-shares --resource-owner SELF

The API response includes the metadata for each share that you own.

View accepted shares from other accounts

Use the list-shares API to view all shares that you accepted from other accounts.

aws omics list-shares --resource-owner OTHER

The API response includes the metadata for each share that you accepted.

Delete a share

Use the delete-share API to delete a share after you no longer need it.

aws omics delete-share \
 --share-id "495c21bedc889d07d0ab69d710a6841e-dd75ab7a1a9c384fa848b5bd8e5a7e0a"

View the shares that you own Version latest 235

AWS HealthOmics User Guide

Tagging resources in HealthOmics

Topics

• Important notice

• Tagging HealthOmics resources

• Sequence store read set tags

• Adding a tag to a HealthOmics resource

• Listing tags for a resource

• Removing tags from a data store

Important notice

HealthOmics protects customer data under the AWS Shared Responsibility Model policies.
This means that all customer data is encrypted both in transition and at-rest. However, not all
customer-inputed names for resources such as data stores or job-based operations are encrypted.
They should never contain Personally Identifiable Information or Protected Health Information. For
more information, see Security in AWS HealthOmics.

Tagging HealthOmics resources

You can assign metadata to your AWS resources using tags. Each tag is a label consisting of a
user-defined key and value. Tags can help you manage, identify, organize, search for, and filter
resources.

This topic describes commonly used tagging categories and strategies to help you implement a
consistent and effective tagging strategy. The following sections assume basic knowledge of AWS
resources, tagging, detailed billing, and AWS Identity and Access Management.

Each tag has two parts:

• A tag key (for example, CostCenter, Environment, or Project). Tag keys are case sensitive.

• A tag value (for example, 111122223333 or Production). Like tag keys, tag values are case
sensitive.

Important notice Version latest 236

AWS HealthOmics User Guide

You can use tags to categorize resources by purpose, owner, environment, or other criteria. For
more information, see AWS Tagging Strategies.

You can add, change, or remove tags for a resource from the resource’s service console, service API,
or the AWS CLI.

To enable tagging, make sure TagResources is authorized. You can authorize TagResources by
attaching an IAM policy like the following example.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "omics:Create*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:Start*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:Tag*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:Untag*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "omics:List*",
 "Resource": "*"
 }
]
}

Tagging HealthOmics resources Version latest 237

https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

AWS HealthOmics User Guide

Best practices

As you create a tagging strategy for AWS resources, follow best practices:

• Do not store Personally Identifiable Information (PII), Protected Health Information(PHI) or other
sensitive information in tags.

• Use a standardized, case-sensitive format for tags, and apply it consistently across all resource
types.

• Consider tag guidelines that support multiple purposes, like managing resource access control,
cost tracking, automation, and organization.

• Use automated tools to help manage resource tags. AWS Resource Groups and the Resource
Groups Tagging API enable programmatic control of tags, making it possible to automatically
manage, search, and filter tags and resources.

• Tagging is more effective when you use more tags.

• Tags can be edited or modified as user needs change. However to update access control tags, you
must also update the policies that reference those tags to control access to your resources.

Tagging requirements

Tags have the following requirements:

• Keys can't be prefixed with aws:.

• Keys must be unique per tag set.

• A key must be between 1 and 128 allowed characters.

• A value must be between 0 and 256 allowed characters.

• Values don't need to be unique per tag set.

• Allowed characters for keys and values are Unicode letters, digits, white space, and any of the
following symbols: _ . : / = + - @.

• Keys and values are case sensitive.

Sequence store read set tags

For sequence stores, tags created on the read set sit at the read set resource level. Read sets
also contain objects under them that can be accessed, searched, and restricted using S3 APIs. By
default, the sample ID (omics:sampleId) and subject ID (omics:subjectId) are added to the object.

Best practices Version latest 238

https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/overview.html

AWS HealthOmics User Guide

Additionally, up to five tags can be synchronized between the read set and the objects under it.
The configuration for which tags to sync is a store level configuration set during store creation or
update using the propogatedSetLevelTags parameter.

If there is data already in the store, updating the keys may take time. During this update,
HealthOmics changes the store status to Updating. On completion, HealthOmics sets the store
status to Active. While the tags are propagating, permissions relying on the tags may not be
enforced. Permissions will be enforced after the tag propagation is completed.

When tags are set or updated on the read set, the system decides whether to update the objects
for that read set, based on the store configuration.

Adding a tag to a HealthOmics resource

Adding tags to a resource can help you identify and organize your AWS resources and manage
access to them. First, you add one or more tags (key-value pairs) to a resource. You can use up to
50 tags per resource. There are also restrictions on the characters that you can use in the key and
value fields.

After you add tags, you can create IAM policies to manage access to the AWS resource based on
these tags. You can use the HealthOmics console or the AWS CLI to add tags to a resource. Adding
tags to a repository can impact access to that repository. Before you add a tag to a data store,
review any IAM policies that might use tags to control access to resources such as data stores.

Service tags are autogenerated for both a subject and a sample id for sequence stores.

Follow these steps to use the AWS CLI to add a tag to an HealthOmics resource. For example, to
add tags to a sequence store while it's being created, you would use the following command in the
AWS CLI. The name of the sequence store is MySequenceStore, and the two added tags with keys
are key1 and key2 with values as value1 and value2 respectively
:

aws omics create-sequence-store --name "MySequenceStore" --tags key1=value1,key2=value2

The output does not list the tags. It returns the following response.

{

Adding a tag Version latest 239

AWS HealthOmics User Guide

 "id": "6860403586",
 "referenceStoreId": "4889894479",
 "roleArn": "arn:aws:iam::555555555555:role/ImportTest",
 "status": "CREATED",
 "creationTime": "2022-07-21T01:19:07.194Z"
}

To add tags to an existing resource, you would run the following example command.

aws omics tag-resource --resource-arn arn:aws:omics:us-
west-2:555555555555:sequenceStore/2275234794 --tags key1=value1,key2=value2

If successful, this command returns no response.

Listing tags for a resource

Follow these steps to use the AWS CLI to view a list of the AWS tags for an HealthOmics resource. If
no tags have been added, the returned list is empty.

At the terminal or command line, run the list-tags-for-resource command as shown in the
following example.

aws omics list-tags-for-resource --resource-arn arn:aws:omics:us-
west-2:555555555555:sequenceStore/2275234794

You will receive a list of tags in response, in JSON format.

 {
 "tags": {
 "key1": "value1",
 "key2": "value2"
 }
}

Removing tags from a data store

You can remove one or more tags associated with a resource. Removing a tag does not delete the
tag from other AWS resources that are associated with that tag.

Listing tags Version latest 240

AWS HealthOmics User Guide

At the terminal or command line, run the untag-resource command, specifying the Amazon
Resource Name (ARN) of the resource where you want to remove tags and the tag key of the tag
you want to remove.

aws omics untag-resource --resource-arn arn:aws:omics:us-
west-2:555555555555:sequenceStore/2275234794 --tag-keys key1,key2

If successful, this command does not return a response. To verify the tags associated with the
resource, run the list-tags-for-resource command.

Removing tags Version latest 241

AWS HealthOmics User Guide

IAM permissions for HealthOmics

You can use AWS Identity and Access Management (IAM) to manage access to the HealthOmics
API and resources such as stores and workflows. For users and applications in your account that
use HealthOmics, you manage permissions in a permissions policy that you can apply to IAM users,
groups, or roles.

To manage permissions for users and applications in your accounts, use the policies that
HealthOmics provides, or write your own. The HealthOmics console uses multiple services to get
information about your function's configuration and triggers. You can use the provided policies as-
is, or as a starting point for more restrictive policies.

HealthOmics uses IAM service roles to access other services on your behalf. For example, you would
create or choose a service role when you run a workflow that reads data from Amazon S3. For
some features, you also need to configure permissions on resources in other services. Review these
requirements before you start working with HealthOmics

For more information about IAM, see What is IAM? in the IAM User Guide.

Topics

• Identity-based IAM policies for HealthOmics

• Service roles for AWS HealthOmics

• Resource permissions

• Permissions for data access using Amazon S3 URIs

Identity-based IAM policies for HealthOmics

To grant users in your account access to HealthOmics, you use identity-based policies in AWS
Identity and Access Management (IAM). Identity-based policies can apply directly to IAM users, or
to IAM groups and roles that are associated with a user. You can also grant users in another account
permission to assume a role in your account and access your HealthOmics resources.

To grant permission for users to perform actions on a workflow version, you must add the
workflow and the specific workflow version to the resource list.

The following IAM policy allows a user to access all HealthOmics API actions, and to pass service
roles to HealthOmics.

User policies Version latest 242

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS HealthOmics User Guide

Example User policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "omics.amazonaws.com"
 }
 }
 }
]
}

When you use HealthOmics, you also interact with other AWS services. To access these services, use
the managed policies provided by each service. To restrict access to a subset of resources, you can
use the managed policies as a starting point to create your own more restrictive policies.

• AmazonS3FullAccess – Access to Amazon S3 buckets and objects used by jobs.

• AmazonEC2ContainerRegistryFullAccess – Access to Amazon ECR registries and repositories for
workflow container images.

• AWSLakeFormationDataAdmin – Access to Lake Formation databases and tables created by
analytics stores.

User policies Version latest 243

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSLakeFormationDataAdmin

AWS HealthOmics User Guide

• ResourceGroupsandTagEditorFullAccess – Tag HealthOmics resources with HealthOmics tagging
API operations.

The preceding policies don't allow a user to create IAM roles. For a user with these permissions
to run a job, an administrator must create the service role that grants HealthOmics permission to
access data sources. For more information, see Service roles for AWS HealthOmics.

Define custom IAM permissions for runs

You can include any workflow, run, or run group referenced by the StartRun request in an
authorization request. To do so, list the desired combination of workflows, runs, or run groups in
the IAM policy. For example, you can limit the use of a workflow to a specific run or run group. You
can also specify that a workflow only be used with a run group.

The following is an example IAM policy that allows a single workflow with a single run group.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:StartRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:workflow/1234567",
 "arn:aws:omics:us-west-2:123456789012:runGroup/2345678"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "omics:StartRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*",
 "arn:aws:omics:us-west-2:123456789012:runGroup/2345678"

Define custom IAM permissions for runs Version latest 244

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/ResourceGroupsandTagEditorFullAccess

AWS HealthOmics User Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "omics:GetRun",
 "omics:ListRunTasks",
 "omics:GetRunTask",
 "omics:CancelRun",
 "omics:DeleteRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*"
]
 }
]
}

Service roles for AWS HealthOmics

A service role is an AWS Identity and Access Management (IAM) role that grants permissions for an
AWS service to access resources in your account. You provide a service role to AWS HealthOmics
when you start an import job or start a run.

The HealthOmics console can create the required role for you. If you use the HealthOmics API to
manage resources, create the service role using the IAM console. For more information, see Create
a role to delegate permissions to an AWS service.

Service roles must have the following trust policy.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },

Service roles Version latest 245

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS HealthOmics User Guide

 "Action": "sts:AssumeRole"
 }
]
}

The trust policy allows the HealthOmics service to assume the role.

Topics

• Example IAM service policies

• Example AWS CloudFormation template

Example IAM service policies

In these examples, resource names and account IDs are placeholders for you to replace with actual
values.

The following example shows the policy for a service role that you can use for starting a run. The
policy grants permissions to access the Amazon S3 output location, the workflow log group, and
the Amazon ECR container for the run.

Note

If you're using call caching for the run, add the run cache Amazon S3 location as a resource
in the s3 permissions.

Example Service role policy for starting a run

JSON

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"

Example IAM service policies Version latest 246

AWS HealthOmics User Guide

],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogStreams",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:/aws/omics/
WorkflowLog:log-stream:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup"
],
 "Resource": [
 "arn:aws:logs:us-east-1:123456789012:log-group:/aws/omics/
WorkflowLog:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchCheckLayerAvailability"
],
 "Resource": [

Example IAM service policies Version latest 247

AWS HealthOmics User Guide

 "arn:aws:ecr:us-east-1:123456789012:repository/*"
]
 }
]
}

The following example shows the policy for a service role that you can use for a store import job.
The policy grants permissions to access the Amazon S3 input location .

Example Service role for Reference store job

JSON

{
"Version": "2012-10-17",
"Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket"
]
 }

]
}

Example IAM service policies Version latest 248

AWS HealthOmics User Guide

Example AWS CloudFormation template

The following sample AWS CloudFormation template creates a service role that gives HealthOmics
permission to access Amazon S3 buckets that have names prefixed with omics-, and to upload
workflow logs.

Example Reference store, Amazon S3 and CloudWatch Logs permissions

Parameters:
 bucketName:
 Description: Bucket name
 Type: String

Resources:
 serviceRole:
 Type: AWS::IAM::Role
 Properties:
 Policies:
 - PolicyName: read-reference
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - omics:*
 Resource: !Sub arn:${AWS::Partition}:omics:${AWS::Region}:
${AWS::AccountId}:referenceStore/*
 - PolicyName: read-s3
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - s3:ListBucket
 Resource: !Sub arn:${AWS::Partition}:s3:::${bucketName}
 - Effect: Allow
 Action:
 - s3:GetObject
 - s3:PutObject
 Resource: !Sub arn:${AWS::Partition}:s3:::${bucketName}/*
 - PolicyName: upload-logs
 PolicyDocument:
 Version: 2012-10-17

Example AWS CloudFormation template Version latest 249

AWS HealthOmics User Guide

 Statement:
 - Effect: Allow
 Action:
 - logs:DescribeLogStreams
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource: !Sub arn:${AWS::Partition}:logs:${AWS::Region}:
${AWS::AccountId}:loggroup:/aws/omics/WorkflowLog:log-stream:*
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 Resource: !Sub arn:${AWS::Partition}:logs:${AWS::Region}:
${AWS::AccountId}:loggroup:/aws/omics/WorkflowLog:*
 AssumeRolePolicyDocument: |
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 }
 }
]
 }

Resource permissions

AWS HealthOmics creates and accesses resources in other services on your behalf when you run a
job or create a store. In some cases, you need to configure permissions in other services to access
resources or to allow HealthOmics to access them.

Sections

• Amazon ECR permissions

• Lake Formation permissions

Resource permissions Version latest 250

AWS HealthOmics User Guide

Amazon ECR permissions

Before the HealthOmics service can run a workflow in a container from your private Amazon ECR
repository, you create a resource policy for the container. The policy grants permission for the
HealthOmics service to use the container. You add this resource policy to each private repository
referenced by the workflow.

Note

The private repository and the workflow must be in the same region.

The following sections describe the required policy configurations.

Topics

• Create a resource policy for the Amazon ECR repository

• Running workflows with cross-account containers

• Amazon ECR repository policies for shared workflows

Create a resource policy for the Amazon ECR repository

Create a resource policy to allow the HealthOmics service to run a workflow using a container in
the repository. The policy grants permission for the HealthOmics service principal to access the
required Amazon ECR actions.

Follow these steps to create the policy:

1. Open the private repositories page in the Amazon ECR console and select the repository you're
granting access to.

2. From the side bar navigation, select Permissions.

3. Choose Edit JSON.

4. Choose Add Statement.

5. Add the following policy statement and then select Save Policy.

Amazon ECR permissions Version latest 251

https://console.aws.amazon.com/ecr/repositories

AWS HealthOmics User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "omics workflow access",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
]
 }
]
}

Running workflows with cross-account containers

If different AWS accounts own the workflow and the container, you need to configure the following
cross-account permissions:

1. Update the Amazon ECR policy for the repository to explicitly grant permission to the account
that owns the workflow.

2. Update the service role for the account that owns the workflow to grant it access to the
container image.

The following example demonstrates an Amazon ECR resource policy that grants access to the
account that owns the workflow.

In this example:

• Workflow account ID: 111122223333

• Container repository account ID: 444455556666

• Container name: samtools

Amazon ECR permissions Version latest 252

AWS HealthOmics User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
]
 },
 // Explicitly allow access to the service role of the account that owns
 the workflow
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/DemoCustomer"
 },
 "Action": [
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
]
 }
]
}

To complete the setup, add the following policy statement to the service role of the account that
owns the workflow. The policy grants permission for the service role to access the “samtools”
container image. Make sure to replace the account numbers, container name, and region with your
own values.

{
 "Sid": "CrossAccountEcrRepoPolicy",
 "Effect": "Allow",
 "Action": ["ecr:BatchCheckLayerAvailability", "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"],

Amazon ECR permissions Version latest 253

AWS HealthOmics User Guide

 "Resource": "arn:aws:ecr:us-west-2:444455556666:repository/samtools"
}

Amazon ECR repository policies for shared workflows

Note

HealthOmics automatically allows a shared workflow to access the Amazon ECR repository
in the workflow owner's account, while the workflow is running in the subscriber's account.
You don't need to grant additional repository access for shared workflows. For more
information see Sharing HealthOmics workflows.

By default, subscriber don’t have access to the Amazon ECR repository to use the underlying
containers. Optionally, you can customize access to the Amazon ECR repository by adding condition
keys to the repository's resource policy. The following sections provide example policies.

Restrict access to specific workflows

You can list individual workflows in a condition statement, so only these workflow can use
containers in the repository. The SourceArn condition key specifies the ARN of the shared
workflow. The following example grants permission for the specified workflow to use this
repository.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "OmicsAccessPrincipal",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
],

Amazon ECR permissions Version latest 254

https://docs.aws.amazon.com/omics/latest/dev/sharing-workflows.html

AWS HealthOmics User Guide

 "Condition": {
 "StringEquals": {
 "aws:SourceArn": "arn:aws:omics:us-
east-1:111122223333:workflow/1234567"
 }
 }
 }
]
}

Restrict access to specific accounts

You can list subscriber accounts in a condition statement, so that only these accounts have
permission to use containers in the repository. The SourceAccount condition key specifies the AWS
account of the subscriber. The following example grants permission for the specified account to use
this repository.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "OmicsAccessPrincipal",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 }
 }
 }
]

Amazon ECR permissions Version latest 255

AWS HealthOmics User Guide

}

You can also deny Amazon ECR permissions to specific subscribers, as shown in the following
example policy.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "OmicsAccessPrincipal",
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:BatchCheckLayerAvailability"
],
 "Condition": {
 "StringNotEquals": {
 "aws:SourceAccount": "111122223333"
 }
 }
 }
]
 }

Lake Formation permissions

Before you use analytics features in HealthOmics, configure default database settings in Lake
Formation.

To configure resource permissions in Lake Formation

1. Open the Data catalog settings page in the Lake Formation console.

Lake Formation permissions Version latest 256

https://console.aws.amazon.com/lakeformation/home#default-permission-settings

AWS HealthOmics User Guide

2. Uncheck the IAM access control requirements for databases and tables under Default
permissions for newly created databases and tables.

3. Choose Save.

HealthOmics Analytics auto accepts data if your service policy has the correct RAM permissions,
such as the following example.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:AcceptResourceShareInvitation",
 "ram:GetResourceShareInvitations"
],
 "Resource": "*"
 }
]
}

Permissions for data access using Amazon S3 URIs

You can access sequence store data using HealthOmics API operations or Amazon S3 API
operations.

For HealthOmics API access, HealthOmics permissions are managed through an IAM policy.
However, S3 Access requires two levels of configuration: explicit allow in the Store’s S3 Access
Policy and an IAM policy. To learn more about using IAM policies with HealthOmics, see Service
roles for HealthOmics.

Amazon S3 URI Permissions Version latest 257

AWS HealthOmics User Guide

There are three ways to share the capability of reading objects using the Amazon S3 APIs:

1. Policy based sharing – This sharing requires enabling the IAM principal both in the S3 Access
policy and writing an IAM policy and attaching it to the IAM principal. See the next topic for
more details.

2. Presigned URLs – You can also generate a shareable pre-signed URL for a file in the sequence
store. To learn more about creating presigned URLs using Amazon S3, see Using presigned URLs
in the Amazon S3 documentation. The sequence store S3 access policy supports statements for
limiting presigned URL capabilities.

3. Assumed roles – Create a role within the data owner's account that has an access policy that
allows users to assume that role.

Topics

• Policy based sharing

• Example Restriction

Policy based sharing

If you access sequence store data using a direct S3 URI, HealthOmics provides enhanced security
measures for the associated S3 bucket access policy.

The following rules apply to new S3 access policies. For existing policies, the rules apply when you
next update the policy:

• The S3 access policies support the following policy elements

• Version, Id, Statement, Sid, Effect, Principal, Action, Resource, Condition

• The S3 access policies support the following condition keys:

• s3:ExistingObjectTag/<key>, s3:prefix, s3:signatureversion, s3:TlsVersion

• Policies also support aws:PrincipalArn with the following condition operators: ArnEquals and
ArnLike

If you try to add or update a policy to include an unsupported element or condition, the system
rejects the request.

Topics

Policy based sharing Version latest 258

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-presigned-url.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-presigned-url.html#PresignedUrlUploadObject-LimitCapabilities
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-policy-keys

AWS HealthOmics User Guide

• Default S3 access policy

• Customizing the access policy

• IAM policy

• Tag-based access control

Default S3 access policy

When you create a sequence store, HealthOmics creates a default S3 access policy granting the
data store owner’s root account the following permissions for all accessible objects in the sequence
store: S3:GetObject, S3GetObjectTagging, and S3:ListBucket. The default created policy is:

JSON

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Effect": "Allow",
 "Principal":
 {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action":
 [
 "s3:GetObject",
 "s3:GetObjectTagging"
],
 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890/object/111111111111/
sequenceStore/1234567890/*"
 },
 {
 "Effect": "Allow",
 "Principal":
 {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action": "s3:ListBucket",

Policy based sharing Version latest 259

AWS HealthOmics User Guide

 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890/111111111111/
sequenceStore/1234567890/*"
 }
]
}

Customizing the access policy

If the S3 access policy is blank, no S3 access is allowed. If there is an existing policy and you need to
remove s3 access, use deleteS3AccessPolicy to remove all access.

To add restrictions on the sharing or to grant access to other accounts, you can update the policy
using the PutS3AccessPolicy API. Updates to the policy can't go beyond the prefix for the
sequence store or the actions specified.

IAM policy

To allow a user or IAM principal access using Amazon S3 APIs, in addition to permission in the S3
access policy, an IAM policy needs to be created and attached to the principal to grant access. A
policy allowing Amazon S3 API access can be applied at the sequence store level or at a read set
level. At the read set level, permission can be restricted either through the prefix or using resource
tag filters for sample or subject ID patterns.

If the sequence store uses a customer managed key (CMK), the principal must also have rights to
use the KMS key for decryption. For more information, see Cross-account KMS access in the AWS
Key Management Service Developer Guide.

The following example gives a user access to a sequence store. You can fine-tune the access with
additional conditions or resource-based filters.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:root"

Policy based sharing Version latest 260

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html

AWS HealthOmics User Guide

 },
 "Action":
 [
 "s3:GetObject",
 "s3:GetObjectTagging"
],
 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890/object/111111111111/
sequenceStore/1234567890/*",
 "Condition": {
 "StringEquals": {
 "s3:ExistingObjectTag/omics:readSetStatus": "ACTIVE"
 }
 }
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890",
 "Condition": {
 "StringLike": {
 "s3:prefix": "111111111111/sequenceStore/1234567890/*"
 }
 }
 }
]
}

Tag-based access control

To use tag based access control, the sequence store must first be updated to propagate the tag
keys that will be used. This configuration is set during sequence store creation or updating. Once
the tags are propagated, tag conditions can be used to further add restrictions. The restrictions can
be placed in the S3 Access policy or on the IAM policy. The following is an example of a tab based
S3 access policy that would be set:

{
 "Sid": "tagRestrictedGets",

Policy based sharing Version latest 261

AWS HealthOmics User Guide

 "Effect": "Allow",
 "Principal":
 {
 "AWS": "arn:aws:iam::<target_restricted_account_id>:root"
 },
 "Action":
 [
 "s3:GetObject",
 "s3:GetObjectTagging"
],
 "Resource": "arn:aws:s3:us-west-2:222222222222:accesspoint/111111111111-1234567890/
object/111111111111/sequenceStore/1234567890/*",
 "Condition":
 {
 "StringEquals":
 {
 "s3:ExistingObjectTag/tagKey1": "tagValue1",
 "s3:ExistingObjectTag/tagKey2": "tagValue2"
 }
 }
}

Example Restriction

Scenario: Creating a share where the data owner can restrict a user’s ability to download
“withdrawn” data.

In this scenario, a data owner (account #111111111111) managed a data store. This data
owner shares the data with a broad range of third party users, including a researcher (account
#999999999999). As part of managing the data, the data owner periodically get requests to
withdraw a participants data. To manage this withdrawal, the data owner first restricts direct
download access on receiving the request and eventually deletes the data per their requirements.

To meet this need, the data owner sets up a sequence store and each read set receives a tag for
“status” that will be set to “withdrawn” if the withdrawal request comes through. For data with the
tag set to this value, they want to make sure no user can run “getObject” on this file. To do this
setup, the data owner will need to ensure two steps are taken.

Step 1. For the sequence store, ensure that the status tag is updated to be propagated.
This is done by adding the “status” key into the propogatedSetLevelTags when calling
createSequenceStore or updateSequenceStore.

Example Restriction Version latest 262

AWS HealthOmics User Guide

Step 2. Update the store’s s3 Access Policy to restrict getObject on objects with the status tag set
to withdrawn. This is done by updating the stores access policy using the PutS3AccesPolicy API.
The following policy would allow customers to still see the withdrawn files when listing objects but
prevent them from accessing them:

• Statement 1 (restrictedGetWithdrawal): Account 999999999999 can't retrieve objects that are
withdrawn.

• Statement 2 (ownerGetAll): Account 111111111111, the data owner, can retrieve all objects,
including objects that are withdrawn.

• Statement 3 (everyoneListAll): All shared accounts, 111111111111 and 999999999999, can run
the ListBucket operation on the whole prefix.

JSON

{
 "Version": "2012-10-17",
 "Statement":
 [
 {
 "Sid": "restrictedGetWithdrawal",
 "Effect": "Allow",
 "Principal":
 {
 "AWS": "arn:aws:iam::999999999999:root"
 },
 "Action":
 [
 "s3:GetObject",
 "s3:GetObjectTagging"
],
 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890/object/111111111111/
sequenceStore/1234567890/*",
 "Condition":
 {
 "StringNotEquals":
 {
 "s3:ExistingObjectTag/status": "withdrawn"
 }
 }

Example Restriction Version latest 263

AWS HealthOmics User Guide

 },
 {
 "Sid": "ownerGetAll",
 "Effect": "Allow",
 "Principal":
 {
 "AWS": "arn:aws:iam::111111111111:root"
 },
 "Action":
 [
 "s3:GetObject",
 "s3:GetObjectTagging"
],
 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890/object/111111111111/
sequenceStore/1234567890/*",
 "Condition":
 {
 "StringEquals":
 {
 "s3:ExistingObjectTag/omics:readSetStatus": "ACTIVE"
 }
 }
 },
 {
 "Sid": "everyoneListAll",
 "Effect": "Allow",
 "Principal":
 {
 "AWS": [
 "arn:aws:iam::111111111111:root",
 "arn:aws:iam::999999999999:root"
]
 },
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:us-
west-2:222222222222:accesspoint/111111111111-1234567890",
 "Condition":
 {
 "StringLike":
 {
 "s3:prefix": "111111111111/sequenceStore/1234567890/*"
 }
 }

Example Restriction Version latest 264

AWS HealthOmics User Guide

 }
]
}

Example Restriction Version latest 265

AWS HealthOmics User Guide

Security in AWS HealthOmics

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS HealthOmics,
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS HealthOmics. The following topics show you how to configure AWS HealthOmics to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AWS HealthOmics resources.

Topics

• Data protection in AWS HealthOmics

• Identity and access management in HealthOmics

• Compliance validation for AWS HealthOmics

• Resilience in HealthOmics

• AWS HealthOmics and interface VPC endpoints (AWS PrivateLink)

Data protection in AWS HealthOmics

The AWS shared responsibility model applies to data protection in AWS HealthOmics. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the

Data protection Version latest 266

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS HealthOmics User Guide

AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS HealthOmics or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

Topics

• AWS owned keys

• Customer managed keys

Encryption at rest Version latest 267

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS HealthOmics User Guide

• Creating a customer managed key

• Required IAM permissions for using a customer managed key

• Learn more

To protect sensitive customer data at rest, AWS HealthOmics provides encryption by default using
a service-owned AWS Key Management Service (AWS KMS) key. Customer managed keys are also
supported. To learn more about customer managed key, see Amazon Key Management Service.

All HealthOmics data stores (Storage and Analytics) support the use of customer managed keys.
The encryption configuration cannot be changed after a data store has been created. If a data store
is using an AWS owned key, it will be denoted as AWS_OWNED_KMS_KEY and you will not see the
specific key used for encryption at rest.

For HealthOmics Workflows, customer-managed keys aren't supported by the temporary file
system; however, all data is encrypted at rest automatically using XTS-AES-256 block cipher
encryption algorithm to encrypt the file system. The IAM user and role used to start a workflow
run must also have access to the AWS KMS keys used for workflow input and output buckets.
Workflows does not use grants, and AWS KMS encryption is limited to input and output Amazon
S3 buckets. The IAM role used both for workflow APIs must also have access to the AWS KMS
keys used as well as the input and output Amazon S3 buckets. You can use either IAM roles and
permissions to control access or AWS KMS policies. To learn more, see Authentication and access
control for AWS KMS.

When you use AWS Lake Formation with HealthOmics Analytics, any decrypt permissions
associated with the Lake Formation are also given to the input and output Amazon S3 buckets.
More information about how AWS Lake Formation manages permissions can be found in the AWS
Lake Formation documentation.

HealthOmics Analytics grants Lake Formation kms:Decrypt permissions to read the encrypted
data in an Amazon S3 bucket. As long as you have permissions to query the data through Lake
Formation, you will be able to read the encrypted data. Access to the data is controlled through
data access control in Lake Formation, not through a KMS key policy. To learn more, see the AWS
Integrated AWS service requests in the Lake Formation documentation.

AWS owned keys

By default, HealthOmics uses AWS owned keys to automatically encrypt data at rest, because
this data can contain sensitive information such as personally identifiable information (PII) or

Encryption at rest Version latest 268

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/lake-formation/latest/dg/register-encrypted.html
https://docs.aws.amazon.com/lake-formation/latest/dg/register-encrypted.html
https://docs.aws.amazon.com/lake-formation/latest/dg/access-control-underlying-data.html
https://docs.aws.amazon.com/lake-formation/latest/dg/access-control-underlying-data.html

AWS HealthOmics User Guide

Protected Health Information (PHI). AWS owned keys aren't stored in your account. They're part of
a collection of KMS keys that AWS owns and manages for use in multiple AWS accounts.

AWS services can use AWS owned keys to protect your data. You can't view, manage, or access AWS
owned keys, or audit their use. However, you don't need to do any work or change any programs to
protect the keys that encrypt your data.

You aren't charged a monthly fee or a usage fee for using AWS owned keys, and they don't count
against the AWS KMS quotas for your account. For more information, see AWS managed keys.

Customer managed keys

HealthOmics supports the use of symmetric customer managed keys that you create, own, and
manage to add a second layer of encryption over the existing AWS-owned encryption. Because you
have full control of this layer of encryption, you can perform such tasks as:

• Establishing and maintaining key policies, IAM policies, and grants

• Rotating key cryptographic material

• Enabling and disabling key policies

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

You can also use CloudTrail to track the requests that HealthOmics sends to AWS KMS on your
behalf. Additional AWS KMS charges apply. For more information, see customer managed keys.

Creating a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

Follow the steps for Creating symmetric customer managed keys in the AWS Key Management
Service Developer Guide.

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create a customer managed key, you can specify a key policy. For more
information, see Managing access to customer managed keys in the AWS Key Management Service
Developer Guide.

Encryption at rest Version latest 269

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#AWS-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access

AWS HealthOmics User Guide

To use a customer managed key with your HealthOmics Analytics resources, the calling principal
requires kms:CreateGrant operations in the key policy. This allows the system to use a FAS Token
to create a grant to a customer managed key that controls access to a specified KMS key. This key
gives a user access to the kms:grant operations that HealthOmics requires. See Using grants for
more information.

For HealthOmics analytics, the following API operations must be permitted for the calling
principal:

• kms:CreateGrant adds grants to a specific customer managed key, which allows access to grant
operations in HealthOmics Analytics.

• kms:DescribeKey provides the customer managed key details needed to validate the key. This is
required for all operations.

• kms:GenerateDataKey provides access to encrypt resources at rest for all write operations. Also,
this action provides customer managed key details that the service can use to validate that the
caller has access to use the key.

• kms:Decrypt provides access to read or search operations for encrypted resources.

To use a customer managed key with your HealthOmics storage resources, the HealthOmics service
principal and the calling principal must be permitted in the key policy. This allows the service to
validate that the caller has access to the key and uses the service principal to execute the store
management using the customer managed key. For HealthOmics storage, the key policy for the
service principal must permit the following API operations:

• kms:DescribeKey provides the customer managed key details needed to validate the key. This is
required for all operations.

• kms:GenerateDataKey provides access to encrypt resources at rest for all write operations. Also,
this action provides customer managed key details that the service can use to validate that the
caller has access to use the key.

• kms:Decrypt provides access to read or search operations for encrypted resources.

The following example shows a policy statement that allows a service principal to create and
interact with a HealthOmics sequence or reference store that is encrypted using the customer
managed key:

Encryption at rest Version latest 270

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#terms-grant-operations
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS HealthOmics User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
{
 "Effect": "Allow",
 "Principal": {
 "Service": "omics.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*"
 }
]
}

The following example shows a policy that creates permissions for a data store to decrypt data
from an Amazon S3 bucket.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:GetReference",
 "omics:GetReferenceMetadata"
],
 "Resource": [
 "arn:AWS:omics:{{region}}:{{accountId}}:referenceStore/*"
]
 },
 {

Encryption at rest Version latest 271

AWS HealthOmics User Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:AWS:s3:::[[s3path]]/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": [
 "arn:AWS:kms:{{region}}:{{account_id}}:key/{{key_id}}"
].
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "s3.{{region}}.amazonAWS.com"
]
 }
 }
 }
]
}

Required IAM permissions for using a customer managed key

When creating a resource such as a data store with AWS KMS encryption using a customer
managed key, there are required permissions for both the key policy and the IAM policy for the IAM
user or role.

You can use the kms:ViaService condition key to limit use of the KMS key to only requests that
originate from HealthOmics.

For more information about key policies, see Enabling IAM policies in the AWS Key Management
Service Developer Guide.

Topics

• Analytics API permissions

Encryption at rest Version latest 272

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam

AWS HealthOmics User Guide

• Storage API permissions

• How HealthOmics uses grants in AWS KMS

• Monitoring your encryption keys for AWS HealthOmics

Analytics API permissions

For HealthOmics analytics, the IAM user or role that creates the stores must have the
kms:CreateGrant, kms:GenerateDataKey, kms:Decrypt, and kms:DescribeKey permissions plus the
necessary HealthOmics permissions.

Storage API permissions

For HealthOmics storage APIs, the IAM user or role that calls the following API operations requires
the listed permissions:

CreateReferenceStore, CreateSequenceStore

To create a store, the IAM caller must have kms:DescribeKey permissions plus
the necessary HealthOmics permissions. The HealthOmics service principal calls
kms:GenerateDataKeyWithoutPlaintext to perform access validation checks for data
loading and access.

StartReadSetImportJob, StartReferenceImportJob

To start data import jobs, the IAM caller must have kms:Decrypt and kms:GenerateDataKey
permissions for the KMS key on the store for the import, and kms:Decrypt permissions on
the Amazon S3 bucket containing the objects to import. In addition, the role passed into the
call must have kms:Decrypt permissions on the Amazon S3 bucket containing the objects to
import. The IAM caller must also have permissions to pass the role to the job.

CreateMultipartReadSetUpload, UploadReadSetPart, CompleteMultipartReadSetUpload

To complete a multi-part upload, the IAM caller must have kms:Decrypt and
kms:GenerateDataKey to create, upload, and complete the multi-part upload.

StartReadSetExportJob

To start a data export job, the IAM caller must have kms:Decrypt permission for the KMS key
on the store to export from and kms:GenerateDataKey and kms:Decrypt permissions on
the Amazon S3 bucket that receives the objects. In addition, the role passed into the call must

Encryption at rest Version latest 273

AWS HealthOmics User Guide

have kms:Decrypt permissions on the Amazon S3 bucket that receives the objects. The IAM
caller must also have permissions to pass the role to the job.

StartReadsetActivationJob

To start a read set activation job, the IAM caller must have kms:Decrypt and
kms:GenerateDataKey permissions for the objects.

GetReference, GetReadSet

To read objects from the store, the IAM caller must have kms:Decrypt permission for the
objects.

Read Set S3 GetObject

To read objects from the store using the Amazon S3 GetObject API, the IAM caller must have
kms:Decrypt permission for the objects. Set this permission for both customer managed key
and AWS owned key configurations.

How HealthOmics uses grants in AWS KMS

HealthOmics Analytics requires a grant to use your customer managed KMS key. Grants aren't
required or used for HealthOmics Workflows. HealthOmics Storage uses the customer managed
key directly from the service principal, so do not use a grant. When you create an analytics store
encrypted with a customer managed key, HealthOmics analytics creates a grant on your behalf
by sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give HealthOmics
access to a KMS key in a customer account.

It isn't recommended to revoke or retire the grants that HealthOmics analytics creates on your
behalf. If you revoke or retire the grant that gives HealthOmics permission to use the AWS KMS
keys in your account, HealthOmics cannot access this data, encrypt new resources pushed to the
data store, or decrypt them when they are pulled.

When you revoke or retire a grant for HealthOmics, the change occurs immediately. To revoke
access rights, we recommend that you delete the data store rather than revoking the grant. When
you delete the data store, HealthOmics retires the grants on your behalf.

Monitoring your encryption keys for AWS HealthOmics

You can use CloudTrail to track the requests that AWS HealthOmics sends to AWS KMS on
your behalf when using a customer managed key. The log entries in the CloudTrail log show

Encryption at rest Version latest 274

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS HealthOmics User Guide

HealthOmics.amazonAWS.com in the userAgent field to clearly distinguish requests made by
HealthOmics.

The following examples are CloudTrail events for CreateGrant, GenerateDataKey, Decrypt, and
DescribeKey to monitor AWS KMS operations called by HealthOmics to access data encrypted by
your customer managed key.

The following also shows how to use CreateGrant to allow HealthOmics analytics to access a
customer provided KMS key, enabling HealthOmics to use that KMS key to encrypt all customer
data at rest.

You aren't required to create your own grants. HealthOmics creates a grant on your behalf by
sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give HealthOmics
access to a AWS KMS key in a customer account.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "xx:test",
 "arn": "arn:AWS:sts::555555555555:assumed-role/user-admin/test",
 "accountId": "xx",
 "accessKeyId": "xxx",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "xxxx",
 "arn": "arn:AWS:iam::555555555555:role/user-admin",
 "accountId": "555555555555",
 "userName": "user-admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-11-11T01:36:17Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "apigateway.amazonAWS.com"
 },
 "eventTime": "2022-11-11T02:34:41Z",
 "eventSource": "kms.amazonAWS.com",
 "eventName": "CreateGrant",
 "AWSRegion": "us-west-2",

Encryption at rest Version latest 275

AWS HealthOmics User Guide

 "sourceIPAddress": "apigateway.amazonAWS.com",
 "userAgent": "apigateway.amazonAWS.com",
 "requestParameters": {
 "granteePrincipal": "AWS Internal",
 "keyId": "arn:AWS:kms:us-west-2:555555555555:key/a6e87d77-cc3e-4a98-a354-
e4c275d775ef",
 "operations": [
 "CreateGrant",
 "RetireGrant",
 "Decrypt",
 "GenerateDataKey"
]
 },
 "responseElements": {
 "grantId": "4869b81e0e1db234342842af9f5531d692a76edaff03e94f4645d493f4620ed7",
 "keyId": "arn:AWS:kms:us-west-2:245126421963:key/xx-cc3e-4a98-a354-
e4c275d775ef"
 },
 "requestID": "d31d23d6-b6ce-41b3-bbca-6e0757f7c59a",
 "eventID": "3a746636-20ef-426b-861f-e77efc56e23c",
 "readOnly": false,
 "resources": [
 {
 "accountId": "245126421963",
 "type": "AWS::KMS::Key",
 "ARN": "arn:AWS:kms:us-west-2:245126421963:key/xx-cc3e-4a98-a354-
e4c275d775ef"
 }
],
 "eventType": "AWSApiCall",
 "managementEvent": true,
 "recipientAccountId": "245126421963",
 "eventCategory": "Management"
}

The following example shows how to use GenerateDataKey to ensure the user has the necessary
permissions to encrypt data before storing it.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",

Encryption at rest Version latest 276

AWS HealthOmics User Guide

 "principalId": "EXAMPLEUSER",
 "arn": "arn:AWS:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:AWS:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T21:17:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "omics.amazonAWS.com"
 },
 "eventTime": "2021-06-30T21:17:37Z",
 "eventSource": "kms.amazonAWS.com",
 "eventName": "GenerateDataKey",
 "AWSRegion": "us-east-1",
 "sourceIPAddress": "omics.amazonAWS.com",
 "userAgent": "omics.amazonAWS.com",
 "requestParameters": {
 "keySpec": "AES_256",
 "keyId": "arn:AWS:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:AWS:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AWSApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",

Encryption at rest Version latest 277

AWS HealthOmics User Guide

 "eventCategory": "Management"
}

Learn more

The following resources provide more information about data at rest encryption.

For more information about AWS Key Management Service basic concepts, see the AWS KMS
documentation.

For more information about Security best practices in the AWS KMS documentation.

Encryption in transit

AWS HealthOmics uses TLS 1.2+ to encrypt data in transit through the public endpoints and
through backend services.

Identity and access management in HealthOmics

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS HealthOmics resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS HealthOmics works with IAM

• Identity-based policy examples for AWS HealthOmics

• AWS managed policies for AWS HealthOmics

• Troubleshooting AWS HealthOmics identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS HealthOmics.

Encryption in transit Version latest 278

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html

AWS HealthOmics User Guide

Service user – If you use the AWS HealthOmics service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS
HealthOmics features to do your work, you might need additional permissions. Understanding
how access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AWS HealthOmics, see Troubleshooting AWS HealthOmics identity and
access.

Service administrator – If you're in charge of AWS HealthOmics resources at your company, you
probably have full access to AWS HealthOmics. It's your job to determine which AWS HealthOmics
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
AWS HealthOmics, see How AWS HealthOmics works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS HealthOmics. To view example AWS HealthOmics
identity-based policies that you can use in IAM, see Identity-based policy examples for AWS
HealthOmics.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the

Authenticating with identities Version latest 279

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS HealthOmics User Guide

recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating

Authenticating with identities Version latest 280

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS HealthOmics User Guide

IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource

Authenticating with identities Version latest 281

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS HealthOmics User Guide

(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their

Managing access using policies Version latest 282

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS HealthOmics User Guide

permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies Version latest 283

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthOmics User Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about

Managing access using policies Version latest 284

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS HealthOmics User Guide

Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS HealthOmics works with IAM

Before you use IAM to manage access to AWS HealthOmics, learn what IAM features are available
to use with AWS HealthOmics.

IAM features you can use with AWS HealthOmics

IAM feature HealthOmics support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

How AWS HealthOmics works with IAM Version latest 285

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS HealthOmics User Guide

IAM feature HealthOmics support

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how HealthOmics and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission
to perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-
service impersonation can result in the confused deputy problem. Cross-service impersonation can
occur when one service (the calling service) calls another service (the called service). The calling
service can be manipulated to use its permissions to act on another customer's resources in a way
it shouldn't otherwise have permission to access. To prevent this, AWS provides tools that help you
protect your data for all services with service principals that have been given access to resources in
your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS HealthOmics gives another service to
the resource.

To prevent the confused deputy problem in roles assumed by HealthOmics, set the value of
aws:SourceArn to arn:aws:omics:region:accountNumber:* in the role's trust policy. The
wildcard (*) applies the condition for all HealthOmics resources.

The following trust relationship policy grants HealthOmics access to your resources and uses the
aws:SourceArn and aws:SourceAccount global condition context keys to prevent the confused
deputy problem. Use this policy when you create a role for HealthOmics.

JSON

{
 "Version": "2012-10-17",

How AWS HealthOmics works with IAM Version latest 286

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS HealthOmics User Guide

 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "omics.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountNumber"
 },
 "StringLike": {
 "aws:SourceArn": "arn:aws:omics:region:accountNumber:*"
 }
 }
 }
]
}

Identity-based policies for HealthOmics

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for HealthOmics

To view examples of AWS HealthOmics identity-based policies, see Identity-based policy examples
for AWS HealthOmics.

How AWS HealthOmics works with IAM Version latest 287

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS HealthOmics User Guide

Resource-based policies within HealthOmics

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for HealthOmics

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of HealthOmics actions, see Actions Defined by AWS HealthOmics in the Service
Authorization Reference.

Policy actions in HealthOmics use the following prefix before the action:

How AWS HealthOmics works with IAM Version latest 288

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html#awshealthomics-actions-as-permissions

AWS HealthOmics User Guide

omics

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "omics:action1",
 "omics:action2"
]

To view examples of AWS HealthOmics identity-based policies, see Identity-based policy examples
for AWS HealthOmics.

Policy resources for HealthOmics

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of HealthOmics resource types and their ARNs, see Resources Defined by AWS
HealthOmics in the Service Authorization Reference. To learn with which actions you can specify
the ARN of each resource, see Actions Defined by AWS HealthOmics .

To view examples of AWS HealthOmics identity-based policies, see Identity-based policy examples
for AWS HealthOmics.

How AWS HealthOmics works with IAM Version latest 289

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html.html#awshealthomics-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html.html#awshealthomics-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html#awshealthomics-actions-as-permissions

AWS HealthOmics User Guide

Policy condition keys for HealthOmics

Policy condition keys aren't supported in HealthOmics.

Access control lists (ACLs) in HealthOmics

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with HealthOmics

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

For more information about tagging HealthOmics resources, see Tagging resources in HealthOmics.

The following example shows how you can write an IAM policy denying access to a resource
without a specific tag.

How AWS HealthOmics works with IAM Version latest 290

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

AWS HealthOmics User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "omics:*"
],
 "Resource": [
 "*"
],
 "Condition": {
 "Null": {
 "aws:RequestTag/MyCustomTag": "true"
 }
 }
 }
]
}

You can also limit access to a runs within a run group, as shown.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:StartRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*",
 "arn:aws:omics:us-west-2:123456789012:workflow/1234567",
 "arn:aws:omics:us-west-2:123456789012:runGroup/2345678"

How AWS HealthOmics works with IAM Version latest 291

AWS HealthOmics User Guide

],
 "Condition": {
 "StringLike": {
 "omics:Workflow": "arn:aws:omics:us-
east-1:123456789012:workflow/*"
 },
 "StringLike": {
 "omics:RunGroup": "arn:aws:omics:us-
east-1:123456789012:runGroup/*"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "omics:GetRun",
 "omics:ListRunTasks",
 "omics:GetRunTask",
 "omics:CancelRun",
 "omics:DeleteRun"
],
 "Resource": [
 "arn:aws:omics:us-west-2:123456789012:run/*"
]
 },

]
}

Using Temporary credentials with HealthOmics

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then

How AWS HealthOmics works with IAM Version latest 292

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS HealthOmics User Guide

switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for HealthOmics

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for HealthOmics

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break HealthOmics functionality. Edit
service roles only when HealthOmics provides guidance to do so.

Service-linked roles for HealthOmics

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS

How AWS HealthOmics works with IAM Version latest 293

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS HealthOmics User Guide

account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS HealthOmics

By default, users and roles don't have permission to create or modify AWS HealthOmics resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by AWS HealthOmics, including the format
of the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for AWS
HealthOmics in the Service Authorization Reference.

Topics

• Policy best practices

• Using the HealthOmics console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS HealthOmics
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies

Identity-based policy examples Version latest 294

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awshealthomics.html

AWS HealthOmics User Guide

that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the HealthOmics console

To access the AWS HealthOmics console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS HealthOmics resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

Identity-based policy examples Version latest 295

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS HealthOmics User Guide

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

AWS managed policies for AWS HealthOmics

AWS managed policies Version latest 296

AWS HealthOmics User Guide

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonOmicsFullAccess

You can attach the AmazonOmicsFullAccess policy to your IAM identities to give them full
access to HealthOmics.

This policy grants full access permissions to all HealthOmics actions. When you create an
annotation or variant store, Omics will also give you access tothat store through a Resource Share
Invitation in the Resource Access Manager (RAM) console. For more information on Resource Share
invitations through Lake Formation, see the Cross-account data sharing in Lake Formation. For an
Omics admin policy, you also need the following permissions to access your Amazon S3 bucket.

• PutObject

• GetObject

• ListBucket

• AbortMultipartUpload

• ListMultipartUploadParts

AWS managed policies Version latest 297

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/lake-formation/latest/dg/cross-account-permissions.html

AWS HealthOmics User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:AcceptResourceShareInvitation",
 "ram:GetResourceShareInvitations"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "omics.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "omics.amazonaws.com"
 }
 }
 }
]
}

AWS managed policy: AmazonOmicsReadOnlyAccess

AWS managed policies Version latest 298

AWS HealthOmics User Guide

You can attach the AWSOmicsReadOnlyAccess policy to your IAM identities when you wish to
limit the permissions for that identity to read-only access.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "omics:Get*"
 "omics:List*"
],
 "Resource": "*"
 }
]
}

HealthOmics updates to AWS managed policies

View details about updates to AWS managed policies for HealthOmics since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed
on the HealthOmics Document history page.

Change Description Date

AmazonOmicsFullAccess -
New policy added

HealthOmics added a new
policy to grant a user full
access to all actions and
resources. To learn more, see
AmazonOmicsFullAccess.

February 23, 2023

AWS managed policies Version latest 299

AWS HealthOmics User Guide

Change Description Date

HealthOmics started tracking
changes

HealthOmics started tracking
changes for its AWS managed
policies.

November 29, 2022

AmazonOmicsReadOnl
yAccess - New policy added

HealthOmics added a new
policy that limits access to
read only. To learn more,
AmazonOmicsReadOnl
yAccess.

November 29, 2022

Troubleshooting AWS HealthOmics identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS HealthOmics and IAM.

Topics

• I am not authorized to perform an action in HealthOmics

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my HealthOmics resources

I am not authorized to perform an action in HealthOmics

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
omics:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 omics:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the omics:GetWidget action.

Troubleshooting Version latest 300

AWS HealthOmics User Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS HealthOmics.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS HealthOmics. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my HealthOmics
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS HealthOmics supports these features, see How AWS HealthOmics works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

Troubleshooting Version latest 301

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

AWS HealthOmics User Guide

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for AWS HealthOmics

Third-party auditors assess the security and compliance of AWS HealthOmics as part of multiple
AWS compliance programs. This includes HIPAA, FedRAMP, and others. The following table shows
compliance certifications for the HealthOmics service.

Certification Link

HIPAA HIPAA Eligible Services Reference

HiTrust-CSF Health Information Trust Alliance Common
Security Framework

FedRAMP Moderate (East/West) Federal Risk and Authorization Management
Program

ISO/CSA STAR ISO and CSA STAR Certified

C5 Cloud Computing Compliance Controls
Catalog

DoD CC SRG IL2 Department of Defense Cloud Computing
Security Requirements Guide

ENS High Esquema Nacional de Seguridad

FINMA Swiss Financial Market Supervisory Authority

ISMAP Information System Security Management and
Assessment Program

Compliance validation Version latest 302

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference
https://aws.amazon.com/compliance/services-in-scope/HITRUST-CSF/
https://aws.amazon.com/compliance/services-in-scope/HITRUST-CSF/
https://aws.amazon.com/compliance/services-in-scope/FedRAMP
https://aws.amazon.com/compliance/services-in-scope/FedRAMP
https://aws.amazon.com/compliance/iso-certified/
https://aws.amazon.com/compliance/services-in-scope/C5
https://aws.amazon.com/compliance/services-in-scope/C5
https://aws.amazon.com/compliance/services-in-scope/DoD_CC_SRG
https://aws.amazon.com/compliance/services-in-scope/DoD_CC_SRG
https://aws.amazon.com/compliance/services-in-scope//ENS-High
https://aws.amazon.com/compliance/services-in-scope/FINMA
https://aws.amazon.com/compliance/services-in-scope/ISMAP/
https://aws.amazon.com/compliance/services-in-scope/ISMAP/

AWS HealthOmics User Guide

Certification Link

OSPAR Outsourced Service Provider’s Audit Report

PCI Payment Card Industry Data Security Standard

Pinakes Banking association CCI - Third Party Qualifica
tion

PiTuKri Criteria for Assessing the Information Security
of Cloud Services

SOC 1,2,3 System and Organization Controls

For a list of all AWS services in scope for specific compliance programs, see AWS Services in Scope
by Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

HealthOmics data stores use the sample ID for internal file naming and for tagging resources.
Before you ingest data, check whether the sample ID contains any PHI data. If it does, change the
sample ID before you ingest the data. For more information, see guidance on the AWS HIPAA
compliance web page.

Your compliance responsibility when using AWS HealthOmics is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. AWS
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

Compliance validation Version latest 303

https://aws.amazon.com/compliance/services-in-scope/OSPAR/
https://aws.amazon.com/compliance/services-in-scope/PCI/
https://aws.amazon.com/compliance/services-in-scope/pinakes/
https://aws.amazon.com/compliance/services-in-scope/pinakes/
https://aws.amazon.com/compliance/services-in-scope/PiTuKri/
https://aws.amazon.com/compliance/services-in-scope/PiTuKri/
https://aws.amazon.com/compliance/services-in-scope/SOC/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/hipaa-compliance
https://aws.amazon.com/compliance/hipaa-compliance
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/

AWS HealthOmics User Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – AWS Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in HealthOmics

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS HealthOmics offers several features to help
support your data resiliency and backup needs.

AWS HealthOmics and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and AWS HealthOmics by creating an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that you
can use to privately access HealthOmics API operations without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't require public
IP addresses to communicate with HealthOmics API operations. Traffic between your VPC and
HealthOmics doesn't go outside the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

VPC endpoint policies are supported for HealthOmics for all Regions except Israel (Tel Aviv). By
default, full access to HealthOmics is allowed through the endpoint.

Resilience Version latest 304

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

AWS HealthOmics User Guide

Considerations for HealthOmics VPC endpoints

Before you set up an interface VPC endpoint for HealthOmics, make sure that you review Interface
endpoint properties and limitations in the Amazon VPC User Guide.

HealthOmics supports making calls to all HealthOmics Storage API actions from your VPC.

VPC endpoint policies aren't supported for HealthOmics by default, but you can create a
VPC endpoint for full HealthOmics access for the HealthOmics Storage operations. For more
information, see Controlling access to services with VPC endpoints in the Amazon VPC User Guide.

Creating an interface VPC endpoint for HealthOmics

You can create a VPC endpoint for the HealthOmics service by using the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for HealthOmics by using the following service names:

• com.amazonaws.region.storage-omics

• com.amazonaws.region.control-storage-omics

• com.amazonaws.region.analytics-omics

• com.amazonaws.region.workflows-omics

• com.amazonaws.region.tags-omics

If you turn on private DNS for the endpoint, you can make API requests to HealthOmics by using its
default DNS name for the Region, for example, omics.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for HealthOmics

You can attach an endpoint policy to your VPC endpoint that controls access to HealthOmics. The
policy specifies the following information:

• The principal that can perform actions

• The actions that can be performed

• The resources on which actions can be performed

Considerations for HealthOmics VPC endpoints Version latest 305

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint

AWS HealthOmics User Guide

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for HealthOmics actions.

The following is an example of an endpoint policy for HealthOmics. When attached to an endpoint,
this policy grants access to HealthOmics actions for all principals on all resources.

API

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "omics:List*"
],
 "Resource":"*"
 }
]
}

AWS CLI

aws ec2 modify-vpc-endpoint \
 --vpc-endpoint-id vpce-id \
 --region us-west-2 \
 --policy-document \
 "{\"Statement\":[{\"Principal\":\"*\",\"Effect\":\"Allow\",\"Action\":
[\"omics:List*\"],\"Resource\":\"*\"}]}"

Special considerations for accessing read sets using Amazon S3 URIs

To access read sets through Amazon S3 URIs when you're using a private connection, set up the
PrivateLink interface endpoints on the sequence store. After you set them up, the endpoints have
the following formats:

 com.amazonaws.region.storage-omics
 com.amazonaws.region.control-storage-omics

Special considerations for accessing read sets using Amazon S3 URIs Version latest 306

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS HealthOmics User Guide

To use Gateway endpoints, follow the guide Gateway endpoints for Amazon S3 to configure your
gateway endpoints. HealthOmics owns the Amazon S3 bucket, so you don't have to create or adjust
the bucket policy. Gateway endpoints rely on the policy attached to the user or role that accesses
the data, but you can also configure endpoints with more restrictive policies. These policies can
include restrictions on access based on the Amazon S3 Access Point ARN and Amazon S3 actions.

Special considerations for accessing read sets using Amazon S3 URIs Version latest 307

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html

AWS HealthOmics User Guide

Monitoring AWS HealthOmics

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
HealthOmics and your other AWS solutions. AWS provides the following monitoring tools to watch
AWS HealthOmics, report when something is wrong, and take automatic actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify
you or take actions when a specified metric reaches a threshold that you specify. For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time
data from your own applications, Software-as-a-Service (SaaS) applications, and AWS services
and routes that data to targets such as Lambda. This enables you to monitor events that
happen in services, and build event-driven architectures. For more information, see the Amazon
EventBridge User Guide.

Note

For service updates, configure and monitor your Personal Health Dashboard. For more
information on how to manage the dashboard, refer to Getting started with your AWS
Health Dashboard.

Topics

Version latest 308

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://health.console.aws.amazon.com/health/home#/account/dashboard/open-issues
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html

AWS HealthOmics User Guide

• S3 access logging

• Monitoring HealthOmics with CloudWatch metrics

• Monitoring HealthOmics with CloudWatch Logs

• Logging AWS HealthOmics API calls using AWS CloudTrail

• Using EventBridge with AWS HealthOmics

S3 access logging

You can monitor Amazon S3 API access to HealthOmics sequence store data using the store-
created access logs. You can use CloudWatch to monitor S3 access from HealthOmics API
operations . CloudWatch provides visibility into Amazon S3 access originating from your own
account. If you, as a data owner, share access to a third party account, access logging isn't available
in CloudWatch. Instead, use the store’s S3 Access Log. which logs all S3 access to the data in the
configured Amazon S3 bucket .

Configure S3 Access Logs using the CreateSequenceStore or UpdateSequenceStore API
operations. Also, make sure that the HealthOmics service principal (omics.amazonaws.com) has
s3:PutObject permissions to the configured S3 prefix.

Note

Logs use the destination bucket’s default encryption configuration. If the bucket uses a
customer managed key, the service principal must have access to use the key for writing.

To turn off access logging, use UpdateSequenceStore and set the access log configuration to
blank.

Monitoring HealthOmics with CloudWatch metrics

You can monitor HealthOmics using CloudWatch, which collects raw data and processes it into
readable, near real-time metrics. These statistics are kept for 15 months, so that you can access
historical information and gain a better perspective on how your web application or service is
performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

S3 access logging Version latest 309

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS HealthOmics User Guide

The AWS HealthOmics service reports the following metrics in the AWS/Omics namespace.

API Call Count metrics are reported for the following AWS HealthOmics APIs. Only the API
Operation dimension is reported.

• Reference and reference store APIs —CreateReferenceStore, DeleteReferenceStore,
StartReferenceImportJob

• Sequence store and read set APIs —CreateSequenceStore, DeleteSequenceStore,
StartReadSetImportJob, StartReadSetActivationJob, StartReadSetExportJob

• Variant store APIs — CreateVariantStore, DeleteVariantStore, StartVariantImportJob,
CancelVariantImportJob

• Annotation store APIs — CreateAnnotationStore, DeleteAnotationStore,
StartAnnotationImportJob, CancelAnnotationImportJob

• Workflow, run, and run group APIs — CreateWorkflow, DeleteWorkflow, StartRun, CancelRun,
DeleteRun, CreateRunGroup, DeleteRunGroup

Viewing AWS HealthOmics metrics

CloudWatch metrics for AWS HealthOmics are viewable in the CloudWatch console.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Metrics, choose All Metrics, and then choose AWS/Usage.

3. Filter Service for AWS HealthOmics.

4. Choose the dimension, choose a metric name, then choose Add to graph.

5. Choose a value for the date range. The metric count for the selected date range is displayed in
the graph.

Creating an alarm using CloudWatch

A CloudWatch alarm watches a single metric over a specified time period, and performs one or
more actions: sending a notification to an Amazon Simple Notification Service (Amazon SNS) topic
or Auto Scaling policy. The action or actions are based on the value of the metric relative to a
given threshold over a number of time periods that you specify. CloudWatch can also send you an
Amazon SNS message when the alarm changes state.

Viewing AWS HealthOmics metrics Version latest 310

https://console.aws.amazon.com/cloudwatch/home

AWS HealthOmics User Guide

CloudWatch alarms invoke actions only when the state changes and has persisted for the period
you specify.

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Alarms, and then choose Create Alarm.

3. Choose AWS/Usage, and then choose an AWS HealthOmics metric using the Service
dimension.

4. For Time Range, choose a time range to monitor, and then choose Next.

5. Enter a Name and Description.

6. For Whenever, choose >=, and type a maximum value.

7. If you want CloudWatch to send an email when the alarm state is reached, in the Actions
section, for Whenever this alarm, choose State is ALARM. For Send notification to, choose a
mailing list or choose New list and create a new mailing list.

8. Preview the alarm in the Alarm Preview section. If you are satisfied with the alarm, choose
Create Alarm.

Monitoring HealthOmics with CloudWatch Logs

HealthOmics generates a variety of logs to help you understand and troubleshoot your runs. Logs
are available in two places: CloudWatch and Amazon S3.

By default, runs have logging turned on. You can optionally turn off logging for a run by setting
LogLevel = OFF in the startrun request.

Note

For service updates, configure and monitor your Personal Health Dashboard. For more
information on how to manage the dashboard, refer to Getting started with your AWS
Health Dashboard.

Topics

• Log types for HealthOmics workflows

CloudWatch Logs Version latest 311

https://console.aws.amazon.com/cloudwatch/home
https://health.console.aws.amazon.com/health/home#/account/dashboard/open-issues
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html
https://docs.aws.amazon.com/health/latest/ug/getting-started-health-dashboard.html

AWS HealthOmics User Guide

• Logs in CloudWatch

• Logs in Amazon S3

• Interactive CloudWatch Logs in the CLI

• Accessing CloudWatch Logs from the console

Log types for HealthOmics workflows

HealthOmics provides the following types of logs for workflows:

• Engine logs – The underlying workflow engines (Nextflow, WDL, and CWL) produce engine logs
for runs. These logs can help you troubleshoot workflow definition issues.

• Run manifest logs – These logs provide high level information about each run task, such as task
status, start time, stop time, and fail reason (if the task failed).

Run manifest logs also report resource utilization statistics that can be helpful for understanding
resource optimization opportunities. These statistics include:

• cpusAverage

• cpusMaximum

• cpusReserved

• gpusReserved

• memoryAverageGiB

• memoryMaximumGiB

• memoryReservedGiB

• runningSeconds

• Run logs – Run logs provide the overall run status and the time when individual tasks are
starting, running, stopping, and completed. Run logs also give you visibility into file import and
export steps.

• Task logs – Task logs provide detailed logging information about individual tasks in your run. The
outputs in your task log depend on the task definition and where you use log statements in your
code. If your task logs don't provide the level of insight you need, consider adding additional log
statements to your task definition to produce more insightful task logs.

• Run cache logs – Run cache logs provide the overall status of run caches and the caching of
task outputs. Run cache logs give you visibility into cache hits and misses for each run that uses
caching.

Log types for HealthOmics workflows Version latest 312

AWS HealthOmics User Guide

• Outputs.json – For WDL and CWL workflows, HealthOmics delivers an engine-generated file,
named outputs.json, to your Amazon S3 bucket after run completion. This files includes a list
and a map of all outputs for the run.

Logs in CloudWatch

You can find the HealthOmics CloudWatch workflow logs in the following log group: /aws/
omics/WorkflowLog. Also, the output of the get-run API operation provides the CloudWatch log
stream ARNs for the engine logs and run logs.

By default, AWS keeps the CloudWatch Logs indefinitely. You can adjust the retention policy for the
log group to set a retention period between 10 years and one day.

The following table provides a summary of the CloudWatch Logs in HealthOmics.

Log name Available in
CloudWatch Logs

When is log
available

Log stream format

Engine logs Yes, for failed runs After run completes run/runID/engine

Run manifest logs Yes After run completes manifest/
run/runID/runUUID

Run logs Yes In real time run/runID

Task logs Yes In real time run/runID/
task/taskID

Run cache logs Yes In real time runCache/
runCacheI
d /runCacheUUID

Outputs.json (WDL
and CWL)

No n/a n/a

Logs in CloudWatch Version latest 313

AWS HealthOmics User Guide

Logs in Amazon S3

After a run completes, the engine logs are delivered to your S3 bucket and are available indefinitely
until you delete them. These logs are located in the logs directory of the S3 output URI that you
specified for the workflow.

The path to the logs directory has the following format: s3://{user_provided_path}/logs/.

The following table provides a summary of the HealthOmics logs available in your Amazon S3
bucket.

Log name Available in Amazon
S3

When is log
available

Log stream path

Engine logs Yes After run completes s3://user_prov
ided_path /logs/
engine.log

Outputs.json (WDL
and CWL)

Yes After run completes s3://user_prov
ided_path

/runID/runUUID/
logs/outputs.json

Run manifest logs,
run logs, and task
logs

No n/a n/a

Interactive CloudWatch Logs in the CLI

You can interactively view the CloudWatch Logs using the Live Tail command in interactive mode.
You can track run progress in real time and define up to 5 keywords to highlight in the logs:

aws logs start-live-tail \
 --mode interactive \
 --log-group-identifiers arn:aws:logs:region:account-ID:log-group:/aws/omics/
WorkflowLog

For more information, see Start live tail in the AWS CLI Command Reference.

Logs in Amazon S3 Version latest 314

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/logs/start-live-tail.html

AWS HealthOmics User Guide

Accessing CloudWatch Logs from the console

To access the logs for a run, you can link directly to these logs from the Run details page in
HealthOmics console.

1. Open the HealthOmics console.

2. In the left navigation pane, choose Runs.

3. Select the run from the Runs table.

4. In the run details page, you can choose any of these actions:

a. From Run summary, choose View run logs. The console opens the run logs in the
CloudWatch console.

b. From Run summary, choose View logs in Amazon S3. The console opens the logs folder
in the Amazon S3 console.

c. From Run tasks, choose View logs, View run logs or View run manifest logs for a task.
The console opens the logs in the CloudWatch console.

You can also navigate to the logs from the CloudWatch console:

1. Open the CloudWatch console https://console.aws.amazon.com/cloudwatch/.

2. From the left menu, choose Log groups.

3. Select the /aws/omics/WorkflowLog group.

If the list of log groups is long, you can enter omics in the search text box to narrow down the
list.

4. When the Log group details page opens, choose the log stream you want to view. The console
displays the events for this log stream.

Logging AWS HealthOmics API calls using AWS CloudTrail

AWS HealthOmics is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in HealthOmics. CloudTrail captures all API calls for
HealthOmics as events. The calls captured include calls from the HealthOmics console and code
calls to the HealthOmics API operations. If you create a trail, you can enable continuous delivery
of CloudTrail events to an Amazon S3 bucket, including events for HealthOmics. If you don't

Accessing CloudWatch Logs from the console Version latest 315

https://console.aws.amazon.com/omics/
https://console.aws.amazon.com/cloudwatch/

AWS HealthOmics User Guide

configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to HealthOmics, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

HealthOmics information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
HealthOmics, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for HealthOmics, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All HealthOmics actions are logged by CloudTrail and are documented in the AWS HealthOmics API
Reference. For example, calls to the CreateReferenceeStore, StartVariantImportJob and
CreateWorkflow actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

HealthOmics information in CloudTrail Version latest 316

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/omics/latest/api/Welcome.html
https://docs.aws.amazon.com/omics/latest/api/Welcome.html

AWS HealthOmics User Guide

For more information, see the CloudTrail userIdentity element.

Understanding HealthOmics log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateWorkflow action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIU53LOGOMTOPXXNPG:username",
 "arn": "arn:aws:sts::account:assumed-role/admin/username",
 "accountId": "account-id",
 "accessKeyId": "accessKeyId",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIU53LOGOMTOPXXNPG",
 "arn": "arn:aws:iam::account:role/admin",
 "accountId": "account",
 "userName": "admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-07-23T18:26:09Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-07-23T18:46:42Z",
 "eventSource": "omics.amazonaws.com",
 "eventName": "CreateWorkflow",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "205.251.233.176",
 "userAgent": "aws-cli/1.22.45 Python/3.9.13 Darwin/20.6.0 botocore/1.23.45",
 "requestParameters": {
 "name": "parameter_name",

Understanding HealthOmics log file entries Version latest 317

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS HealthOmics User Guide

 "definitionZip": "czM6Ly93b3JrZmxvd2RlZi1oZWxsby9kZWZpbml0aW9uLnppcA==",
 "requestId": "d788a73c-b81b-45fb-a8a6-d8bb4449ec8a"
 },
 "responseElements": {
 "id": "1002571",
 "arn": "arn:aws:omics:us-west-2:555555555555:instance/i-b188560f ",
 "status": "CREATING",
 "tags": {
 "resourceArn": "arn:aws:omics:us-west-2:083685709690:workflow/1002571"
 }
 },
 "requestID": "842d731d-f264-4b08-a2c9-2f7d45e1eaa3",
 "eventID": "76872ca2-f208-4193-807d-7dd7ea34e6b2",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "083685709690",
 "eventCategory": "Management"
}

Using EventBridge with AWS HealthOmics

HealthOmics sends events to Amazon EventBridge when resources change status. Resources
include import jobs, export jobs, resource shares, workflows, tasks, and runs. For each type of
resource, there is a list of status changes that generate an event.

An event bus is a router that receives events and delivers them to destinations. Your account
includes a default event bus that automatically receives events from AWS services. You can create
additional custom event buses.

You create EventBridge rules to specify the actions to take when the event bus receives events. For
example, you can create a rule that notifies you about status changes for a resource.

Common scenarios for using events include:

• To monitor when a user shares a resource with you or revokes the share.

• To monitor whether a run fails or completes successfully.

For more information about using EventBridge, see What is Amazon EventBridge?

Topics

EventBridge Version latest 318

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html

AWS HealthOmics User Guide

• Set up EventBridge for HealthOmics

• EventBridge events in HealthOmics

• Event message structure

• Event message examples

Set up EventBridge for HealthOmics

Before you can monitor for EventBridge events, create an EventBridge bus and create rules for the
events of interest.

Configure an EventBridge bus

You can use the default event bus for your AWS account or configure a custom event bus. To
configure a custom event bus, follow these steps:

1. Open the EventBridge console: https://console.aws.amazon.com/events/.

2. In the left navigation, choose Event buses.

3. Choose Create event bus.

4. In the Create event bus form, enter a name for the bus.

5. Choose Create to create the bus.

Create an EventBridge rule

The following procedure shows how to create a simple rule. For more information about rules, see
Rules in EventBridge.

1. Open the EventBridge console: https://console.aws.amazon.com/events/.

2. In the left navigation, choose Rules.

3. Choose Create rule. The console opens the Create rule form.

4. In Define rule detail, provide a name for the rule.

• For Name, enter a name for the bus.

• For Event bus, select the bus for this rule.

• Choose Next.

Set up EventBridge for HealthOmics Version latest 319

https://console.aws.amazon.com/events/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule.html
https://console.aws.amazon.com/events/

AWS HealthOmics User Guide

5. In Build event pattern, under Event source select AWS events or EventBridge partner events.

6. Scroll down to Event pattern.

a. For Event source, select AWS services.

b. For AWS service, enter omics in the text filter and select AWS HealthOmics as the service.

c. For Event type select the event of interest (or All events).

d. Choose Next.

7. In Select target(s), select a target for the event. For example, choose AWS service, the chose
CloudWatch log group, and configure a log group.

For many target types, EventBridge needs permission to send events to the target. The console
creates these permissions for you.

8. (Optional) In Configure tags, associate tags with the rule.

9. In Review and update, review the configuration and choose Create rule.

EventBridge events in HealthOmics

The following table lists the events that HealthOmics sends to EventBridge, and the list of possible
status values for the event.

Event name Possible status values

Annotation Import Job Status Change Submitted, in progress, cancelled, completed,
failed, or completed with failures

Annotation Store Share Status Change Pending, activating, active, deleting, deleted,
failed

Annotation Store Status Change Creating, created, updating, updated, deleting,
deleted, or creation failed

Read Set Activation Job Status Change Submitted, in progress, completed, failed, or
completed with failures

Read Set Export Job Status Change Submitted, in progress, completed, failed, or
completed with failures

EventBridge events in HealthOmics Version latest 320

AWS HealthOmics User Guide

Event name Possible status values

Read Set Import Job Status Change Submitted, in progress, completed, failed, or
completed with failures

Read Set Status Change Processing upload, upload failed, active,
archived, activating, or deleted

Reference Import Job Status Change Submitted, in progress, completed, failed, or
completed with failures

Reference Status Change Active or deleted

Reference Store Status Change Created, updated, active, or deleted

Run Status Change Pending, starting, running, stopping,
completed, deleted, failed, or cancelled

Sequence Store Status Change Created, updated, active, or deleted

Task Status Change Pending, starting, running, stopping,
completed, deleted, failed, or cancelled

Variant Import Job Status Change Submitted, in progress, cancelled, completed,
failed, or completed with failures

Variant Store Share Status Change Pending, activating, active, deleting, deleted,
failed

Variant Store Status Change Creating, created, updating, updated, deleting,
deleted, or creation failed

Workflow Share Status Change Pending, activating, active, deleting, deleted,
failed

Workflow Status Change Creation success, creation failure, deletion
success, or deletion failure

EventBridge events in HealthOmics Version latest 321

AWS HealthOmics User Guide

Event message structure

HealthOmics provides best effort delivery to send state change event messages to EventBridge.
The event is an object with JSON structure that also contains metadata details. You can use the
metadata as input to either recreate the event or to learn more information. Events include the
following fields:

• version — Currently 0 (zero) for all events.

• id — A Version 4 UUID generated for every event.

• detail-type — The type of event that's being sent.

• account — The 12-digit AWS account ID of the bucket owner.

• source — Identifies the service that generated the event.

• time — The time the event occurred.

• region — Identifies the AWS Region of the bucket.

• resources — A JSON array that contains the Amazon Resource Name (ARN) of the bucket.

• detail — A JSON object that contains information about the event.

Run events include the following fields:

• uuid — The universally unique identifier for the run.

• workflowId — Workflow identifier of the workflow associated with this run.

• workflowName — Name of the workflow associated with this run..

• runId — Run identifier.

• runName — Run name.

• runOutputUri — The URI for where the run will write its output data.

Event message examples

The following example is an event for a change in run status, showing the additional fields.

{
 "version":"0",
 "id":"c0e540f4-df38-b986-86c1-3e3730f971fe",
 "detail-type":"Run Status Change",

Event message structure Version latest 322

AWS HealthOmics User Guide

 "source":"aws.omics",
 "account":"123456789012",
 "time":"2022-10-20T22:07:35Z",
 "region":"us-west-2",
 "resources":[
 "arn:aws:omics:us-west-2:123456789012:run/2101313"
],
 "detail":{
 "omicsVersion":"1.0.0",
 "arn":"arn:aws:omics:us-west-2:123456789012:run/2101313",
 "status":"COMPLETED",
 "uuid":"153893cd-097a-40ec-aec7-838a97cd2b21",
 "runId": "1234567",
 "runName": "run name",
 "runOutputUri": "s3://amzn-s3-demo-bucket/run-output/2101313",
 "workflowId": "1234567",
 "workflowName": "workflow name"
 }
}

The following example is an event for a change in task status.

{
 "version": "0",
 "id": "718d6817-c868-26d3-8ef0-0dc9b2ac73f4",
 "detail-type": "Task Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2024-10-30T09:05:44Z",
 "region": "us-west-2",
 "resources": ["arn:aws:omics:us-west-2:123456789012:task/8888888"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-west-2:123456789012:task/8888888",
 "status": "COMPLETED",
 "runArn": "arn:aws:omics:us-west-2:123456789012:run/2101313",
 "runUuid": "153893cd-097a-40ec-aec7-838a97cd2b21",
 "runId": "1234567",
 "runName": "run name",
 "workflowId": "1234567",
 "workflowName": "workflow name"
 }
}

Event message examples Version latest 323

AWS HealthOmics User Guide

The following is an example of an event for a read set status change.

{
 "version": "0",
 "id": "64ca0eda-9751-dc55-c41a-1bd50b4fc9b7",
 "detail-type": "Read Set Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2023-04-04T17:53:06Z",
 "region": "us-west-2",
 "resources": ["arn:aws:omics:us-west-2:123456789012:sequenceStore/1234567890/
readSet/3456789012"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-west-2:123456789012:sequenceStore/1234567890/
readSet/3456789012",
 "sequenceStoreId" : "1234567890",
 "id": "3456789012",
 "status": "PROCESSING_UPLOAD"
 }
}

A similar event gets created for a variant store import job.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "Variant Store Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2015-12-22T18:43:48Z",
 "region": "us-east-1",
 "resources": ["arn:aws:omics:us-east-1:123456789012:myvariantstore2"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-east-1:123456789012:myvariantstore2",
 "status": "CREATED",
 "storeId": "6710c5f02610",
 "storeName": "myvariantstore2"
 }
}

The following is an event for a change in import job status.

Event message examples Version latest 324

AWS HealthOmics User Guide

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "Variant Import Job Status Change",
 "source": "aws.omics",
 "account": "123456789012",
 "time": "2015-12-22T18:43:48Z",
 "region": "us-east-1",
 "resources": ["arn:aws:omics:us-east-1:123456789012:my_variant_store/
b64ea9a3-459f-4b68-92c3-3ddb83209fe9"],
 "detail": {
 "omicsVersion": "1.0.0",
 "arn": "arn:aws:omics:us-east-1:123456789012:my_variant_store/
b64ea9a3-459f-4b68-92c3-3ddb83209fe9",
 "status": "COMPLETED",
 "jobId": "b64ea9a3-459f-4b68-92c3-3ddb83209fe9",
 "storeId": "a74869f91e20",
 "storeName": "my_variant_store"
 }
}

Event message examples Version latest 325

AWS HealthOmics User Guide

Troubleshooting

The following topics can help you troubleshoot issues that you encounter when using HealthOmics
workflows and data stores.

Topics

• Troubleshooting workflows

• Troubleshooting call caching issues

• Troubleshooting data stores

Troubleshooting workflows

Topics

• How do I troubleshoot a failed run?

• How do I troubleshoot a failed task?

• Where do I find the engine logs for successfully completed runs?

• How can I reduce the input parameter size for a workflow?

• Why is my run not completing?

How do I troubleshoot a failed run?

Use the GetRun API operation to retrieve the failure reason. For more information, see Run failure
reasons.

How do I troubleshoot a failed task?

Review the error code from the task failure message to understand the failure. Review the task
logs in CloudWatch to see detailed logging messages for the task. If you aren’t getting detailed log
messages, you can revise your workflow to output additional log statements. For more information,
see Monitoring HealthOmics with CloudWatch Logs.

Troubleshooting workflows Version latest 326

AWS HealthOmics User Guide

Where do I find the engine logs for successfully completed runs?

HealthOmics publishes logs to CloudWatch for failed runs only. If a run completes successfully,
HealthOmics delivers the engine logs to your Amazon S3 bucket. For more information, see Logs in
Amazon S3.

How can I reduce the input parameter size for a workflow?

You can specify up to 50 KB of input parameters for a workflow. You can use directory imports
or sample sheets to remain within this size constraint. For more information, see Managing run
parameters size.

Why is my run not completing?

If there are issues with your code and the processes have not exited properly, your run could
become unresponsive or “stuck”. For more information on how to prevent and catch unresponsive
runs, see Guidance for unresponsive runs.

Troubleshooting call caching issues

The following topics can help you troubleshoot issues that you encounter with call caching.

Topics

• Why isn’t my run saving to the cache?

• Why isn’t a task using the cache entry?

Why isn’t my run saving to the cache?

1. Verify that the run is configured to use a cache by checking the cacheId field in the GetRun API
operation response. Using the CLI, run this command: aws omics get-run —id <run_id>.

2. If the run was successful, verify the cache behavior returned in the GetRun response is
CACHE_ALWAYS. If the cache behavior is set to CACHE_ON_FAILURE, runs will only save to the
cache when they fail.

Where do I find the engine logs for successfully completed runs? Version latest 327

AWS HealthOmics User Guide

Why isn’t a task using the cache entry?

In the /aws/omics/WorkflowLog CloudWatch log group, open the log stream for the run cache:
runCache/<cache_id>/<cache_uuid>.

1. Verify that a previous run created a cache entry for the task that you expected to be
cached. Runs that have saved to the cache will be recorded with a log message of
CACHE_ENTRY_CREATED.

2. Locate the CACHE_MISS log for the task and run that completed. If there is no log entry, check
that the run was configured to use the cache.

3. If a cache entry was created, verify that the CPUs, memory, GPUs and container digest are
identical for both tasks. The task ARN for the task that created the cache entry is in the log
message.

4. If the compute requirements for both tasks match, verify that the inputs have not changed
between the tasks. To do this, open the engine logs. If the run has a status of FAILED, the logs
will be in Cloudwatch Log Group /aws/omics/WorkflowLog. Otherwise the engine logs can be
found in the output directory of the run.

Troubleshooting data stores

Topics

• Why is S3 GetObject failing on my read set?

• Why can't I see my annotation store or variant store in Athena?

• Why can't I access my data store in Athena?

Why is S3 GetObject failing on my read set?

Most commonly, the failure is due to a missing permission. Sequence store S3 reading permission
is a bi-directional configuration requiring both the sequence store S3 access policy to allow access
and the IAM principal to have a policy attached allowing access. For more detail on the policy
requirements see Permissions for data access using Amazon S3 URIs. Check that the following
configurations are in place:

• The sequence store S3 access policy has explicitly allowed access to the IAM principal or the root
of the principal’s account.

Why isn’t a task using the cache entry? Version latest 328

AWS HealthOmics User Guide

• Check that the IAM principal has a policy explicitly providing permission to the resource being
accessed. Note that the IAM principal policy must use the Access Point ARN and not the Access
point Alias based path when defining permissions and that the ARN is in the condition and not
used to specify a resource.

• If your store uses a customer managed key (CMK-KMS), ensure that the IAM principal has
kms:decrypt permissions on the key. See the KMS cross-account access guide for configuring
usage across accounts.

If you have a policy that's using tag based access controls, ensure the following:

• Ensure that the sequence store has finished synchronizing the tags. For this, the store’s status
needs to be active and not updating.

• Ensure that there are no typos in the tag key or key value on the read set and the policy.

Why can't I see my annotation store or variant store in Athena?

In Lake Formation, be sure to create a resource link based on the store that was shared with you.
Once you create a resource link that you have permission to access, the store should be visible in
Athena. For more information, see Configuring Lake Formation to use HealthOmics.

Why can't I access my data store in Athena?

If your annotation or variant store is visible but you are receiving an error message saying that
access is denied, check which query engine version you're using. Only queries run using engine
version 3 are supported. To read more about Athena query engine versions, see the Amazon
Athena documentation.

Why can't I see my annotation store or variant store in Athena? Version latest 329

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying-external-accounts.html
https://docs.aws.amazon.com/athena/latest/ug/engine-versions-changing.html
https://docs.aws.amazon.com/athena/latest/ug/engine-versions-changing.html

AWS HealthOmics User Guide

Quotas for AWS HealthOmics

AWS populates your account with default values for the HealthOmics quotas. Unless otherwise
noted, each quota value is the per-Region maximum value.

Important

You can request increases to most of the service quotas and API quotas. See the following
topics for details.

Topics

• HealthOmics service quotas

• HealthOmics fixed size quotas

• HealthOmics API quotas

HealthOmics service quotas

The table below lists the HealthOmics service quotas, along with their default values. To view the
current quotas for each Region, open the Service Quotas console.

Important

You can request an increase to an adjustable quota using the Service Quotas console.

For more information about service quotas, see Requesting a quota increase in the Service Quotas
User Guide. For a quota that isn't available in Service Quotas console, use the quota increase form.

Name Default Adjustabl
e

Description

Analytics - Maximum annotation stores Each supported
Region: 10

Yes The maximum number of
annotation stores in the
current AWS region

Service quotas Version latest 330

https://console.aws.amazon.com/servicequotas/home
https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-01A419C5

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Analytics - Maximum concurrent
variant or annotation store import jobs

Each supported
Region: 5

Yes The maximum number of
concurrent import jobs in
the current AWS region

Analytics - Maximum files per variant
store import job

Each supported
Region: 1,000

Yes The maximum number of
files per variant import
job in the current AWS
region

Analytics - Maximum shares per
annotation store

Each supported
Region: 10

Yes The maximum number
of shares per annotation
store in the current AWS
region

Analytics - Maximum shares per variant
store

Each supported
Region: 10

Yes The maximum number
of shares per variant
store in the current AWS
region

Analytics - Maximum size of each file in
a variant import job

Each supported
Region: 20
Gigabytes

Yes The maximum size of
one file in a variant
import job in the current
AWS region

Analytics - Maximum size of each file in
an annotation import job

Each supported
Region: 20
Gigabytes

Yes The maximum size of
one file in an annotation
import job in the current
AWS region

Analytics - Maximum variant stores Each supported
Region: 10

Yes The maximum number
of variant stores in the
current AWS region

Service quotas Version latest 331

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-876AD0A2
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-22E12079
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-E787EB79
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-242998FB
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-13B00733
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-B94B38A2
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-899DA104

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Analytics - Maximum versions per
annotation store

Each supported
Region: 10

Yes The maximum number of
versions per annotation
store in the current AWS
region

Storage - Maximum concurrent read set
activation jobs

Each supported
Region: 25

Yes The maximum number
of concurrent read set
activation jobs in the
current AWS region

Storage - Maximum concurrent
sequence and reference store export
jobs

Each supported
Region: 5

Yes The maximum number
of concurrent export
jobs from a sequence or
reference store in the
current AWS region

Storage - Maximum concurrent
sequence or reference store import jobs

Each supported
Region: 5

Yes The maximum number
of concurrent import
jobs for a sequence or
reference store in the
current AWS region

Storage - Maximum read sets per
sequence store

Each supported
Region: 1,000,000

Yes The maximum number of
read sets in a sequence
store in the current AWS
region

Storage - Maximum references per
reference store

Each supported
Region: 50

Yes The maximum number of
references in a reference
store in the current AWS
region

Storage - Maximum sequence stores Each supported
Region: 20

Yes The maximum number
of sequence stores in the
current AWS region

Service quotas Version latest 332

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-186D3DEB
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-911E26A1
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-473E274D
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-F57A8D18
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-BE766427
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-F34A3FC2
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-BFFBB2FD

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Workflows - Maximum active GPUs Each supported
Region: 12

Yes The maximum number
of concurrent active
GPUs in the current
AWS region. In us-east-1
and us-west-2, quota
increase requests for
values up to 500 are
automatically approved.

Workflows - Maximum active vCPUs us-east-1:
100,000

us-west-2:
100,000

Each of the
other supported
Regions: 3,000

Yes The maximum number of
concurrent active vCPUs
in the current AWS
region. Quota increase
requests for values up to
200,000 are automatic
ally approved.

Workflows - Maximum concurrent
active runs using dynamic run storage

Each supported
Region: 50

Yes The maximum number
of active runs using
dynamic run storage in
the current AWS region.
Quota increase requests
for values up to 200 are
automatically approved.

Workflows - Maximum concurrent
active runs using static run storage

Each supported
Region: 10

Yes The maximum number
of active runs using
static run storage in the
current AWS region.
Quota increase requests
for values up to 50 are
automatically approved.

Service quotas Version latest 333

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-AFB19B96
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-7F5E4C03
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-BE38079A
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-A30FD31B

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Workflows - Maximum concurrent tasks
per run

Each supported
Region: 25

Yes The maximum number
of concurrent tasks in
each run in the current
AWS region. In us-east-1
and us-west-2, quota
increase requests for
values up to 100 are
automatically approved.

Workflows - Maximum run duration Each supported
Region: 604,800
Seconds

Yes The maximum workflow
run duration in the
current AWS region.

Workflows - Maximum runs (active or
inactive)

Each supported
Region: 5,000

Yes The maximum number of
runs (active or inactive)
in the current AWS
region.

Workflows - Maximum shares per
workflow

Each supported
Region: 100

Yes The maximum number
of shares per workflow in
the current AWS region

Workflows - Maximum static run
storage capacity per run

Each supported
Region: 9,600

Yes The maximum static
run storage capacity
in gibibytes (GiB) for
each run in the current
AWS region. In us-east-1
and us-west-2, quota
increase requests for
values up to 50,000 are
automatically approved.

Workflows - Maximum workflows Each supported
Region: 1,000

Yes The maximum number of
workflows in the current
AWS region.

Service quotas Version latest 334

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-25504C8C
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-7B9E5416
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-C9679DBC
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-4E5B34A1
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-35CE76C9
https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-7CAE62CF

AWS HealthOmics User Guide

Name Default Adjustabl
e

Description

Workflows - Transactions per second
(TPS) for the StartRun operation

Each supported
Region: 0.1

Yes The maximum transacti
ons per second (TPS) for
the StartRun operation
in the current AWS
region. Quota increase
requests for values up
to 1 are automatically
approved.

HealthOmics fixed size quotas

In addition to the HealthOmics service quotas, HealthOmics includes quotas that have fixed sizes.
You cannot request an increase for these values.

Unless otherwise noted, each quota lists the maximum value per-Region.

Topics

• HealthOmics analytics fixed size quotas

• HealthOmics storage fixed size quotas

• HealthOmics workflow fixed size quotas

• HealthOmics Ready2Run workflow fixed size quotas

HealthOmics analytics fixed size quotas

The following table shows the maximum supported values for analytics quotas. These values aren't
adjustable.

Name Description Maximum Adjustable Yes/No

Analytics - Maximum
files per annotation
store import job

The maximum
number of files per

1 No

Fixed size quotas Version latest 335

https://console.aws.amazon.com/servicequotas/home/services/omics/quotas/L-24A3B174

AWS HealthOmics User Guide

Name Description Maximum Adjustable Yes/No

annotation import
job.

HealthOmics storage fixed size quotas

The following table shows the maximum supported values for storage files. These values aren't
adjustable.

Name Description Maximum Adjustable Yes/No

Storage - Maximum
S3 access resource
policy size

The maximum size
of the S3 access
resource policy

15 KB No

Storage - Maximum
propagated set level
tags

The maximum
number of set level
tag keys, per store,
that propogate to the
S3 object

5 No

Storage - Maximum
read sets per activatio
n job

The maximum
number of read sets
per activation job.

20 No

Storage - Maximum
read sets per export
job

The maximum
number of read sets
per export job.

100 No

Storage - Maximum
read sets per import
job

The maximum
number of read sets
per import job.

100 No

Storage - Maximum
reference stores

The maximum
number of reference
stores.

1 No

Storage file size quotas Version latest 336

AWS HealthOmics User Guide

Name Description Maximum Adjustable Yes/No

Storage - Maximum
part size for a direct
upload

The maximum part
size for direct upload
to a sequence store.

100 MB No

Storage - Maximum
parts in file for direct
upload

The maximum
number of parts in a
file for direct upload
to a sequence store.

10,000 No

Storage - Maximum
reference size

The maximum size of
a reference file that
can be imported to a
reference store.

15 GB No

Storage - Maximum
read set source size

The maximum size
of a single source
file in a read set that
can be imported to a
sequence store.

976 GB No

HealthOmics workflow fixed size quotas

The following table shows the maximum supported values for workflow quotas. These values
aren't adjustable.

Name Description Maximum size Adjustable Yes/No

Workflows -
Maximum run groups

The maximum
number of run
groups.

1000 No

Workflows -
Maximum run caches

The maximum
number of run caches
that you can create
for one account.

1000 No

Workflow fixed size quotas Version latest 337

AWS HealthOmics User Guide

Name Description Maximum size Adjustable Yes/No

One or more runs
can share the same
run cache. There
is no quota for the
number of runs that
HealthOmics can
cache per account.

Workflows -
Maximum workflow
versions

The maximum
number of workflow
versions per
workflow.

1000 No

Workflows - CPU
instance container
size

The maximum
container image size
for a CPU instance.

45 GiB No

Workflows - GPU
instance container
size

The maximum
container image size
for a GPU instance.

95 GiB No

GPU instance /dev/
shm shared memory

The maximum
amount of shared
memory per GPU
instance.

8 GB per GPU No

Workflows - Run
parameter file

The maximum size of
a run parameter file.

50,000 bytes No

Workflow fixed size quotas Version latest 338

AWS HealthOmics User Guide

Name Description Maximum size Adjustable Yes/No

Workflows -
Workflow parameters
template file

The maximum
number of entries
and maximum file
size for a workflow
parameters template
file. This quota
applies to workflows
that you create using
the console or API.

1,000 entries, 400 KB No

Workflows -
Workflow definition
file size - API

The maximum size
of the workflow
definition file when
you create the
workflow using the
API operation or an
AWS SDK.

100 MB No

Workflows -
Workflow definitio
n file size - Console
(direct upload)

The maximum size
of the workflow
definition file that
you can provide
as a direct upload,
when you create the
workflow using the
console.

4.4 MB No

Workflows -
Workflow definitio
n file size - Console
(upload from Amazon
S3)

The maximum size
of the workflow
definition file that
you can provide as an
upload from Amazon
S3, when you create
the workflow using
the console.

100 MB No

Workflow fixed size quotas Version latest 339

AWS HealthOmics User Guide

For suggestions on how to reduce the size of your run parameter file, see Managing run parameters
size.

HealthOmics Ready2Run workflow fixed size quotas

Each Ready2Run workflow has a maximum input file size. In the following table, the file size units
are listed in Gibibytes (GiB). These maximum file sizes aren't adjustable.

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

AlphaFold for 601-1200
residues

1 No

AlphaFold for up to 600
residues

1 No

Bases2Fastq for 2x150 1000 No

Bases2Fastq for 2x300 1000 No

Bases2Fastq for 2x75 500 No

ESMFold for up to 800
residues

1 No

GATK-BP fq2bam 64 No

GATK-BP Germline bam2vcf
for 30x genome

39 No

GATK-BP Germline fq2vcf for
30x genome

64 No

GATK-BP Somatic WES
bam2vcf

86 No

NVIDIA Parabricks
BAM2FQ2BAM WGS for up to
30X

80 No

Workflow fixed size quotas Version latest 340

AWS HealthOmics User Guide

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

NVIDIA Parabricks
BAM2FQ2BAM WGS for up to
50X

120 No

NVIDIA Parabricks
BAM2FQ2BAM WGS for up to
5X

20 No

NVIDIA Parabricks FQ2BAM
WGS for up to 30X

71 No

NVIDIA Parabricks FQ2BAM
WGS for up to 50X

137 No

NVIDIA Parabricks FQ2BAM
WGS for up to 5X

13 No

NVIDIA Parabricks Germline
DeepVariant WGS for up to
30X

71 No

NVIDIA Parabricks Germline
DeepVariant WGS for up to
50X

137 No

NVIDIA Parabricks Germline
DeepVariant WGS for up to
5X

12 No

NVIDIA Parabricks Germline
HaplotypeCaller WGS for up
to 30X

71 No

NVIDIA Parabricks Germline
HaplotypeCaller WGS for up
to 50X

137 No

Workflow fixed size quotas Version latest 341

AWS HealthOmics User Guide

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

NVIDIA Parabricks Germline
HaplotypeCaller WGS for up
to 5X

13 No

NVIDIA Parabricks Somatic
Mutect2 WGS for up to 50X

196 No

scRNAseq with KallistoB
UStools

119 No

scRNAseq with Salmon
Alevin-fry

119 No

scRNAseq with STARsolo 119 No

Sentieon Germline BAM WES
for up to 300x

9 No

Sentieon Germline BAM WGS
for up to 32x

18 No

Sentieon Germline FASTQ
WES for up to 100x

5 No

Sentieon Germline FASTQ
WES for up to 300x

26 No

Sentieon Germline FASTQ
WGS for up to 32x

51 No

Sentieon LongRead for ONT 25 No

Sentieon LongRead for PacBio
HiFi

58 No

Sentieon Somatic WES 50 No

Workflow fixed size quotas Version latest 342

AWS HealthOmics User Guide

Ready2Run workflow name Maximum input file size
(GiB)

Adjustable (Yes/No)

Sentieon Somatic WGS 113 No

Ultima Genomics DeepVariant
for up to 40x

91 No

HealthOmics API quotas

HealthOmics has the following quotas related to API operations. Where indicated, the quota is
adjustable. To request an increase, use the quota increase form.

For each API operation listed, the quota is the maximum transactions per second (TPS) for that API
operation in each Region.

Topics

• General API quotas

• Storage API quotas

• Workflow API quotas

• Analytics API quotas

General API quotas

The following table lists general API operations that apply to more than one category (storage,
workflows, and analytics).

API operation Default maximum TPS Adjustable (Yes/No)

AcceptShare, CreateSha
re, DeleteShare, GetShare,
 ListShares

1 TPS Yes

API quotas Version latest 343

https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase

AWS HealthOmics User Guide

Storage API quotas

The following table lists the storage API operations.

Storage API operation Default maximum TPS Adjustable (Yes/No)

CreateSequenceStore,
UpdateSequenceStore,
DeleteSequenceStore,
CreateReferenceStore,
DeleteReferenceStore

1 TPS Yes

BatchDeleteReadSet,
DeleteReference

1 TPS Yes

CreateMultipartReadSetUploa
d, CompleteMultipartR
eadSetUpload, AbortMult
ipartReadSetUpload

1 TPS No

GetS3AccessPolicy, PutS3Acce
ssPolicy, DeleteS3AccessPoli
cy

1 TPS Yes

GetReference 10 TPS Yes

UploadReadSetPart 10 TPS Yes

GetReadSet 30 TPS Yes

GetSequenceStore, ListSeque
nceStores

5 TPS Yes

GetReadSetMetadata,
ListReadSets

5 TPS Yes

StartReadSetImportJob,
GetReadSetImportJob,
ListReadSetImportJobs

5 TPS Yes

Storage API quotas Version latest 344

AWS HealthOmics User Guide

Storage API operation Default maximum TPS Adjustable (Yes/No)

StartReadSetExportJob,
GetReadSetExportJob,
ListReadSetExportJobs

5 TPS Yes

ListReferenceStores 5 TPS Yes

StartReferencetImportJob,
GetReferenceImportJob,
ListReferenceImportJobs

5 TPS Yes

ListReferences, GetRefere
nceMetadata

5 TPS Yes

StartReadsetActivationJob 5 TPS Yes

ListReadsetActivationJobs,
GetReadSetActivationJob

5 TPS Yes

ListMultipartReadSetUploads,
ListReadSetUploadParts

5 TPS Yes

TagResource, UntagResource,
ListTagsForResource

5 TPS Yes

Workflow API quotas

The following table lists the workflow API operations.

Workflow API operation Default maximum TPS Adjustable (Yes/No)

StartRun 0.1 TPS Yes

CreateWorkflow 5 TPS Yes

Workflow API quotas Version latest 345

AWS HealthOmics User Guide

Workflow API operation Default maximum TPS Adjustable (Yes/No)

CancelRun, DeleteRun
, GetRun, GetRunTask,
ListRunTasks, ListRuns

10 TPS Yes

CreateRunGroup, DeleteRun
Group, GetRunGroup,
ListRunGroups, UpdateRun
Group

10 TPS Yes

CreateRunCache, UpdateRun
Cache, DeleteRunCache,
GetRunCache, ListRunCaches

10 TPS Yes

DeleteWorkflow, GetWorkfl
ow, ListWorkflows,
UpdateWorkflow

10 TPS Yes

Analytics API quotas

The following table lists the analytics API operations.

Analytics API operation Default maximum TPS Adjustable (Yes/No)

CreateVariantStore, DeleteVar
iantStore, GetVariantStore,
ListVariantStores, UpdateVar
iantStore

1 TPS No

StartVariantImportJob,
CancelVariantImportJob,
GetVariantImportJob,
ListVariantImportJobs

1 TPS No

CreateAnnotationStore,
DeleteAnnotationStore,
GetAnnotationStore,

1 TPS No

Analytics API quotas Version latest 346

AWS HealthOmics User Guide

Analytics API operation Default maximum TPS Adjustable (Yes/No)

ListAnnotationStores,
UpdateAnnotationStore

StartAnnotationImportJob,
ListAnnotationImportJobs,
GetAnnotationImportJob,
CancelAnnotationImportJob

1 TPS No

Analytics API quotas Version latest 347

AWS HealthOmics User Guide

Document history for the HealthOmics User Guide

The following table describes the documentation releases for HealthOmics.

Change Description Date

New Features HealthOmics added support
for Nextflow automatic
parameter interpolation. To
learn more, see Parameter
template files for HealthOmi
cs workflows.

June 27, 2025

New Features HealthOmics added support
for workflow versioning. To
learn more, see Workflow
versioning in HealthOmics.

April 18, 2025

New Features HealthOmics added elastic
throughput for dynamic
run storage. To learn more,
see Run storage types in
HealthOmics.

April 16, 2025

New Features HealthOmics added attribute
based access controls for
Sequence Store S3 locations
, and the abilty to synchroni
ze up to five read-set tags to
a Sequence Store S3 object.
To learn more, see Creating a
HealthOmics sequence store.

November 22, 2024

New Features HealthOmics added support
for call caching, also known as
resume, for private workflows

November 20, 2024

Version latest 348

https://docs.aws.amazon.com/omics/latest/dev/parameter-templates.html
https://docs.aws.amazon.com/omics/latest/dev/parameter-templates.html
https://docs.aws.amazon.com/omics/latest/dev/parameter-templates.html
https://docs.aws.amazon.com/omics/latest/dev/workflow-versions.html
https://docs.aws.amazon.com/omics/latest/dev/workflow-versions.html
https://docs.aws.amazon.com/omics/latest/dev/workflows-run-types.html
https://docs.aws.amazon.com/omics/latest/dev/workflows-run-types.html
https://docs.aws.amazon.com/omics/latest/dev/create-sequence-store.html
https://docs.aws.amazon.com/omics/latest/dev/create-sequence-store.html

AWS HealthOmics User Guide

. To learn more, see Call
caching.

New Features HealthOmics added new
API fields to help you map
between sequence store input
jobs and read sets.

August 29, 2024

New Features HealthOmics added support
for managing Nextflow
versions. To learn more, see
Nextflow versions.

August 14, 2024

New Features HealthOmics added support
for shared workflows and
dynamic run storage.

April 30, 2024

New Features HealthOmics added support
for Amazon S3 access to
reference and sequence
stores, and support for
SHA256 ETags.

April 15, 2024

New Features HealthOmics added entity
tags (ETags) for sequence
stores.

October 6, 2023

New Features HealthOmics added annotatio
n store versioning and
analytic store sharing.

August 15, 2023

New Features HealthOmics added Common
Workflow Language (CWL)
as a supported language for
HealthOmics workflows.

June 30, 2023

Version latest 349

https://docs.aws.amazon.com/omics/latest/dev/workflows-call-caching.html
https://docs.aws.amazon.com/omics/latest/dev/workflows-call-caching.html
https://docs.aws.amazon.com/omics/latest/dev/workflows-lang-versions.html#workflows-lang-versions-nextflow
https://docs.aws.amazon.com/omics/latest/dev/workflows-lang-versions.html#workflows-lang-versions-nextflow

AWS HealthOmics User Guide

New Features HealthOmics added new
Ready2Run workflows, GPU
support for workflows, data
parsing for annotation stores,
direct upload into HealthOmi
cs storage, and integration
with EventBridge.

May 15, 2023

New managed policy HealthOmics added a new
managed policy that provides
full access. To learn more, see
AWS managed policies.

February 23, 2023

New managed policy HealthOmics added a new
managed policy that limits
access to read only. To learn
more, see AWS managed
policies.

November 29, 2022

Initial release Initial release of the
HealthOmics User Guide

November 29, 2022

Version latest 350

https://docs.aws.amazon.com/omics/latest/dev/security-iam-awsmanpol.html?icmpid=docs_omics_rss
https://docs.aws.amazon.com/omics/latest/dev/security-iam-awsmanpol.html?icmpid=docs_omics_rss
https://docs.aws.amazon.com/omics/latest/dev/security-iam-awsmanpol.html?icmpid=docs_omics_rss

	AWS HealthOmics
	Table of Contents
	What is AWS HealthOmics?
	Important notice
	HealthOmics concepts
	Storage
	Analytics
	Workflows

	HealthOmics features
	Related services
	Regions and endpoints for AWS HealthOmics
	How to access HealthOmics
	Learn more

	Setting up HealthOmics
	Sign up for an AWS account
	Create a user with administrative access
	Create IAM permissions for HealthOmics
	Using Amazon Q CLI with HealthOmics

	Getting started with HealthOmics
	Using a Ready2Run workflow in the HealthOmics console
	Example prompts for Amazon Q CLI

	Private workflows in HealthOmics
	Creating private workflows in HealthOmics
	Workflow definition files in HealthOmics
	HealthOmics workflow definition requirements
	Version support for HealthOmics workflow definition languages
	WDL version support
	CWL version support
	Nextflow version support
	Supported versions
	Detect and process Nextflow versions
	DSL version
	Nextflow versions

	Compute and memory requirements for HealthOmics tasks
	Standard instance types
	Compute-optimized instances
	Memory-optimized instances
	Accelerated-computing instances
	G6 and G6e instance types
	G4 and G5 instances

	Task outputs in a HealthOmics workflow definition
	Task outputs for WDL
	Task output for STDOUT
	Task output for STDERR
	Task output to a file
	Task output to an array of files

	Task outputs for Nextflow
	Task outputs for CWL
	Task output for STDOUT
	Task output for STDERR
	Task output to a file
	Task output to an array of files

	Task resources in a HealthOmics workflow definition
	Task accelerators in a HealthOmics workflow definition
	Writing workflow definitions for HealthOmics workflows
	Writing workflows in WDL
	Writing workflows in Nextflow
	Writing workflows in CWL
	Example workflow definition
	WDL workflow definition example

	Parameter template files for HealthOmics workflows
	Generating parameter templates
	Parameter detection for CWL
	Parameter detection for WDL
	Parameter detection for Nextflow
	Parsing the schema file
	Parsing the main file
	Nested parameters
	Nested parameters in schema files
	Nested parameters in config files

	Examples of Nextflow interpolation

	Container images in Amazon ECR for private workflows
	General considerations for Amazon ECR container images
	Environment variables for HealthOmics workflows
	Using Java in Amazon ECR container images
	Add task inputs to an ECR container image

	Requesting Sentieon licenses for private workflows
	Workflow linters in HealthOmics
	Creating or updating a workflow
	Create a private workflow
	Creating a workflow using the console
	Creating a workflow using the CLI
	Optional parameters to use when creating a workflow

	Creating a workflow using an SDK

	Update a private workflow
	Updating a workflow using the console
	Updating a workflow using the CLI
	Updating a workflow using an SDK

	Delete a private workflow
	Deleting a workflow using the console
	Deleting a workflow using the CLI
	Deleting a workflow using an SDK

	Verify the workflow status
	Referencing genome files from a workflow definition

	Workflow versioning in HealthOmics
	Default workflow version
	Create a workflow version
	Create a workflow version using the console
	Create a workflow version using the CLI
	Create a workflow version using an SDK
	Verify the status of a workflow version

	Update a workflow version
	Update a workflow version using the console
	Update a workflow version using the CLI
	Update a workflow version using an SDK

	Delete a workflow version
	Delete a workflow version using the console
	Delete a workflow version using the CLI
	Delete a workflow version using an SDK

	Starting HealthOmics runs
	Run storage types in HealthOmics workflows
	Dynamic run storage
	Code examples for safe handling of non-idempotent operations
	Static run storage
	Calculating required static run storage

	Run retention mode for HealthOmics runs
	HealthOmics run inputs
	Managing run parameters size
	Amazon S3 input parameter formats
	Language-specific handling of double-slash in Amazon S3 inputs
	WDL
	Nextflow
	CWL

	Amazon S3 input archive states

	Starting a run in HealthOmics
	HealthOmics run parameters
	Starting a run using the console
	Starting a run using the API
	Get information about a workflow run
	Re-running a workflow run

	Run lifecycle in a HealthOmics workflow
	Run status values
	Task Retries
	Pricing implications of run status

	HealthOmics run outputs
	Run output summary for WDL
	Run output summary for CWL

	Run failure reasons
	Guidance for unresponsive runs

	Task lifecycle in a HealthOmics run
	Task status values
	Troubleshooting workflow tasks

	Run optimization for a private HealthOmics workflow
	Run Analyzer
	Determine run costs
	Determine run time usage
	Methods to optimize runs
	Impact of file size variance between runs
	Methods to optimize resource concurrency

	Deleting runs and run groups in HealthOmics
	Creating HealthOmics run groups
	Run priority
	Creating a run group using the console
	Creating a run group using the CLI

	Call caching for HealthOmics runs
	How call caching works
	Shared responsibility model
	Caching requirements for tasks
	Run cache performance
	Cache data retention and invalidation events
	Manifest version updates and data freshness
	Run cache behavior
	Control run cache size

	Creating a run cache
	Creating a run cache using the console
	Creating a run cache using the CLI

	Updating a run cache
	Updating a run cache using the console
	Updating a run cache using the CLI

	Deleting a run cache
	Deleting a run cache using the console
	Deleting a run cache using the CLI

	Contents of a run cache
	Engine-specific caching features
	Using the run cache
	Configuring a run with run cache using the console
	Configuring a run with run cache using the CLI
	Error cases for run caches
	Tracking call caching information
	Track cache hits using the console
	Track call caching using the CLI
	Track call caching using CloudWatch Logs

	Sharing HealthOmics workflows
	Subscribing to a shared workflow
	Monitoring status of a workflow share
	Sharing a private workflow using the console
	Sharing a private workflow using the CLI
	Accepting a shared workflow using the console
	Running a shared workflow using the console
	Running a shared workflow using the API

	Ready2Run workflows in HealthOmics
	Available Ready2Run workflows in HealthOmics
	Subscribing to Sentieon Ready2Run workflows
	Starting HealthOmics Ready2Run workflows using the console
	Starting HealthOmics Ready2Run workflows using the API

	HealthOmics storage
	HealthOmics ETags and data provenance
	Amazon S3 ETags
	How HealthOmics calculates ETags

	Creating a HealthOmics reference store
	Creating a reference store using the console
	Creating a reference store using the CLI

	Creating a HealthOmics sequence store
	Creating a sequence store using the console
	Creating a sequence store using the CLI
	Updating a sequence store
	Updating read set tags for a sequence store
	Importing genomic files

	Deleting HealthOmics reference and sequence stores
	Importing read sets into a HealthOmics sequence store
	Upload files to Amazon S3
	Creating a manifest file
	Starting the import job
	Monitor the import job
	Find the imported sequence files
	Get details about a read set
	Download the read set data files

	Direct upload to a HealthOmics sequence store
	Direct upload to a sequence store using the AWS CLI
	Configure a fallback location

	Exporting HealthOmics read sets to an Amazon S3 bucket
	Accessing HealthOmics read sets with Amazon S3 URIs
	Amazon S3 URI structure in HealthOmics storage
	Using Hosted or Local IGV to access read sets
	Using Samtools or HTSlib in HealthOmics
	Using Mountpoint HealthOmics
	Using CloudFront with HealthOmics

	Activating read sets in HealthOmics

	HealthOmics analytics
	Creating HealthOmics variant stores
	Creating a variant store using the console
	Creating a variant store using the API

	Creating HealthOmics variant store import jobs
	Creating HealthOmics annotation stores
	Creating an annotation store using the console
	Creating an annotation store using the API

	Creating import jobs for HealthOmics annotation stores
	Creating an annotation import job using the API
	Additional parameters for TSV and VCF formats
	Creating TSV formatted annotation stores
	Starting VCF formatted import jobs

	Creating new versions of HealthOmics annotation stores
	Deleting HealthOmics analytics stores
	Querying HealthOmics analytics data
	Configuring Lake Formation to use HealthOmics
	Creating or verify Lake Formation administrators
	Creating resource links using the Lake Formation console
	Grant access to the shared resource using the Lake Formation console

	Configuring permissions for AWS RAM resource shares

	Configuring Athena for queries
	Configure a query results location using the Athena console
	Configure a workgroup with Athena engine v3

	Running queries on HealthOmics variant stores
	Run a simple query using the Athena console
	Run a complex query using the Athena console

	Sharing HealthOmics analytics stores
	Creating a store share

	Cross-account resource sharing in AWS HealthOmics
	Creating a share
	Retrieve information about a share
	View the shares that you own
	View accepted shares from other accounts
	Delete a share

	Tagging resources in HealthOmics
	Important notice
	Tagging HealthOmics resources
	Best practices
	Tagging requirements

	Sequence store read set tags
	Adding a tag to a HealthOmics resource
	Listing tags for a resource
	Removing tags from a data store

	IAM permissions for HealthOmics
	Identity-based IAM policies for HealthOmics
	Define custom IAM permissions for runs

	Service roles for AWS HealthOmics
	Example IAM service policies
	Example AWS CloudFormation template

	Resource permissions
	Amazon ECR permissions
	Create a resource policy for the Amazon ECR repository
	Running workflows with cross-account containers
	Amazon ECR repository policies for shared workflows
	Restrict access to specific workflows
	Restrict access to specific accounts

	Lake Formation permissions

	Permissions for data access using Amazon S3 URIs
	Policy based sharing
	Default S3 access policy
	Customizing the access policy
	IAM policy
	Tag-based access control

	Example Restriction

	Security in AWS HealthOmics
	Data protection in AWS HealthOmics
	Encryption at rest
	AWS owned keys
	Customer managed keys
	Creating a customer managed key
	Required IAM permissions for using a customer managed key
	Analytics API permissions
	Storage API permissions
	How HealthOmics uses grants in AWS KMS
	Monitoring your encryption keys for AWS HealthOmics

	Learn more

	Encryption in transit

	Identity and access management in HealthOmics
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS HealthOmics works with IAM
	Cross-service confused deputy prevention
	Identity-based policies for HealthOmics
	Identity-based policy examples for HealthOmics

	Resource-based policies within HealthOmics
	Policy actions for HealthOmics
	Policy resources for HealthOmics
	Policy condition keys for HealthOmics
	Access control lists (ACLs) in HealthOmics
	Attribute-based access control (ABAC) with HealthOmics
	Using Temporary credentials with HealthOmics
	Cross-service principal permissions for HealthOmics
	Service roles for HealthOmics
	Service-linked roles for HealthOmics

	Identity-based policy examples for AWS HealthOmics
	Policy best practices
	Using the HealthOmics console
	Allow users to view their own permissions

	AWS managed policies for AWS HealthOmics
	AWS managed policy: AmazonOmicsFullAccess
	AWS managed policy: AmazonOmicsReadOnlyAccess
	HealthOmics updates to AWS managed policies

	Troubleshooting AWS HealthOmics identity and access
	I am not authorized to perform an action in HealthOmics
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my HealthOmics resources

	Compliance validation for AWS HealthOmics
	Resilience in HealthOmics
	AWS HealthOmics and interface VPC endpoints (AWS PrivateLink)
	Considerations for HealthOmics VPC endpoints
	Creating an interface VPC endpoint for HealthOmics
	Creating a VPC endpoint policy for HealthOmics
	Special considerations for accessing read sets using Amazon S3 URIs

	Monitoring AWS HealthOmics
	S3 access logging
	Monitoring HealthOmics with CloudWatch metrics
	Viewing AWS HealthOmics metrics
	Creating an alarm using CloudWatch

	Monitoring HealthOmics with CloudWatch Logs
	Log types for HealthOmics workflows
	Logs in CloudWatch
	Logs in Amazon S3
	Interactive CloudWatch Logs in the CLI
	Accessing CloudWatch Logs from the console

	Logging AWS HealthOmics API calls using AWS CloudTrail
	HealthOmics information in CloudTrail
	Understanding HealthOmics log file entries

	Using EventBridge with AWS HealthOmics
	Set up EventBridge for HealthOmics
	Configure an EventBridge bus
	Create an EventBridge rule

	EventBridge events in HealthOmics
	Event message structure
	Event message examples

	Troubleshooting
	Troubleshooting workflows
	How do I troubleshoot a failed run?
	How do I troubleshoot a failed task?
	Where do I find the engine logs for successfully completed runs?
	How can I reduce the input parameter size for a workflow?
	Why is my run not completing?

	Troubleshooting call caching issues
	Why isn’t my run saving to the cache?
	Why isn’t a task using the cache entry?

	Troubleshooting data stores
	Why is S3 GetObject failing on my read set?
	Why can't I see my annotation store or variant store in Athena?
	Why can't I access my data store in Athena?

	Quotas for AWS HealthOmics
	HealthOmics service quotas
	HealthOmics fixed size quotas
	HealthOmics analytics fixed size quotas
	HealthOmics storage fixed size quotas
	HealthOmics workflow fixed size quotas
	HealthOmics Ready2Run workflow fixed size quotas

	HealthOmics API quotas
	General API quotas
	Storage API quotas
	Workflow API quotas
	Analytics API quotas

	Document history for the HealthOmics User Guide

