
Developer Guide

AWS IoT Events

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT Events Developer Guide

AWS IoT Events: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS IoT Events Developer Guide

Table of Contents

... viii
What is AWS IoT Events? .. 1

Benefits and features .. 1
Use cases .. 2

Monitor and maintain remote devices .. 2
Manage industrial robots .. 3
Track building automation systems .. 3

AWS IoT Events end of support ... 4
Considerations when migrating away from AWS IoT Events .. 4
Detector models ... 5

Comparing architectures .. 5
Step 1: (Optional) export AWS IoT Events detector model configurations 6
Step 2: Create an IAM role ... 7
Step 3: Create Amazon Kinesis Data Streams .. 10
Step 4: Create or update the MQTT message routing rule .. 10
Step 5: Get the endpoint for the destination MQTT topic ... 12
Step 6: Create an Amazon DynamoDB table .. 12
Step 7: Create an AWS Lambda function (console) ... 13
Step 8: Add an Amazon Kinesis Data Streams trigger .. 21
Step 9: Test data ingestion and output functionality (AWS CLI) ... 22

Alarms ... 23
Comparing architectures ... 23
Step 1: Enable MQTT notifications on the asset property ... 24
Step 2: Create an AWS Lambda function .. 24
Step 3: Create AWS IoT Core message routing rule .. 26
Step 4: View CloudWatch metrics ... 27
Step 5: Create CloudWatch alarms ... 27
Step 6: (Optional) import the CloudWatch alarm into AWS IoT SiteWise 28

Setting up .. 29
Setting up an AWS account ... 29

Sign up for an AWS account .. 29
Create a user with administrative access ... 29

Setting up permissions for AWS IoT Events ... 31
Action permissions .. 31

iii

AWS IoT Events Developer Guide

Securing input data .. 33
Amazon CloudWatch logging role policy .. 34
Amazon SNS messaging role policy ... 36

Getting started .. 38
Prerequisites .. 40
Create an input ... 40

Create a JSON input file ... 41
Create and configure an input ... 41
Create an input within the Detector Model .. 42

Create a detector model .. 42
Test the detector model ... 49

Best practices ... 53
Enable Amazon CloudWatch logging when developing AWS IoT Events detector models 53
Publish regularly to save your detector model when working in the AWS IoT Events console ... 54

Tutorials ... 55
Using AWS IoT Events to monitor your IoT devices ... 55

How do you know which states you need in a detector model? ... 57
How do you know if you need one instance of a detector or several? 58

Simple step-by-step example .. 59
Create an input to capture device data ... 61
Create a detector model to represent device states ... 62
Send messages as inputs to a detector ... 66

Detector model restrictions and limitations ... 69
A commented example: HVAC temperature control ... 72

Input definitions for detector models .. 73
Create a detector model definition .. 77
Use BatchUpdateDetector ... 97
Use BatchPutMessage for inputs ... 99
Ingest MQTT messages ... 101
Generate Amazon SNS messages ... 103
Configure the DescribeDetector API ... 104
Use the AWS IoT Core rules engine .. 106

Supported actions ... 110
Use built-in actions ... 111

Set timer action .. 111
Reset timer action .. 111

iv

AWS IoT Events Developer Guide

Clear timer action ... 112
Set variable action ... 112

Work with other AWS services .. 113
AWS IoT Core .. 114
AWS IoT Events ... 115
AWS IoT SiteWise ... 116
Amazon DynamoDB ... 118
Amazon DynamoDB(v2) .. 121
Amazon Data Firehose .. 122
AWS Lambda ... 123
Amazon Simple Notification Service .. 124
Amazon Simple Queue Service ... 125

Expressions ... 127
Syntax to filter device data ... 127

Literals ... 127
Operators .. 127
Functions for expressions ... 129
Reference for inputs and variables in expressions .. 133
Substitution templates .. 136

Usage .. 137
Writing AWS IoT Events expressions .. 137

Detector model examples ... 139
HVAC temperature control ... 139

Background story .. 139
Input definitions ... 140
Detector model definition .. 142
BatchPutMessage examples ... 160
BatchUpdateDetector example .. 166
AWS IoT Core rules engine ... 168

Cranes ... 171
Send commands ... 171
Detector models ... 173
Inputs .. 180
Messages .. 180
Example: Event detection with sensors .. 182
Device HeartBeat ... 184

v

AWS IoT Events Developer Guide

ISA alarm ... 186
Simple alarm ... 196

Monitoring with alarms .. 201
Working with AWS IoT SiteWise ... 201
Acknowledge flow ... 201
Creating an alarm model ... 202

Requirements ... 202
Creating an alarm model (console) .. 203

Responding to alarms ... 206
Managing alarm notifications ... 207

Creating a Lambda function .. 208
Using the Lambda function ... 217
Manage alarm recipients ... 218

Security .. 219
Identity and access management ... 219

Audience ... 220
Authenticating with identities ... 221
Managing access using policies ... 224
More about identity and access management ... 226
How AWS IoT Events works with IAM .. 226
Identity-based policy examples ... 230
Cross-service confused deputy prevention for AWS IoT Events .. 235
Troubleshooting .. 240

Monitoring ... 242
Available tools to monitor AWS IoT Events .. 243
Monitoring AWS IoT Events with Amazon CloudWatch ... 244
Logging AWS IoT Events API calls with AWS CloudTrail .. 245

Compliance validation .. 265
Resilience ... 266
Infrastructure security ... 266

Quotas .. 267
Tagging ... 268

Tag basics .. 268
Tag restrictions and limitations ... 269

Using tags with IAM policies ... 269
Troubleshooting ... 273

vi

AWS IoT Events Developer Guide

Common AWS IoT Events issues and solutions ... 273
Detector model creation errors ... 274
Updates from a deleted detector model ... 274
Action trigger failure (when meeting a condition) .. 274
Action trigger failure (when breeching a threshold) .. 275
Incorrect state usage ... 275
Connection message ... 275
InvalidRequestException message .. 276
Amazon CloudWatch Logs action.setTimer errors ... 276
Amazon CloudWatch payload errors .. 277
Incompatible data types ... 279
Failed to send message to AWS IoT Events .. 280

Troubleshooting a detector model .. 281
Diagnostic information .. 281
Analyze a detector model (Console) .. 294
Analyze a detector model (AWS CLI) ... 296

Commands ... 301
AWS IoT Events actions .. 301
AWS IoT Events data ... 301

Document history .. 302
Earlier updates .. 303

vii

AWS IoT Events Developer Guide

End of support notice: On May 20, 2026, AWS will end support for AWS IoT Events. After May 20,
2026, you will no longer be able to access the AWS IoT Events console or AWS IoT Events resources.
For more information, see AWS IoT Events end of support.

viii

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html

AWS IoT Events Developer Guide

What is AWS IoT Events?

AWS IoT Events enables you to monitor your equipment or device fleets for failures or changes in
operation, and to trigger actions when such events occur. AWS IoT Events continuously watches
IoT sensor data from devices, processes, applications, and other AWS services to identify significant
events so you can take action.

Use AWS IoT Events to build complex event monitoring applications in the AWS Cloud that you can
access through the AWS IoT Events console or APIs.

Topics

• Benefits and features

• Use cases

Benefits and features

Accept inputs from multiple sources

AWS IoT Events accepts inputs from many IoT telemetry data sources. These include sensor
devices, management applications, and other AWS IoT services, such as AWS IoT Core and AWS
IoT Analytics. You can push any telemetry data input to AWS IoT Events by using a standard API
interface (BatchPutMessage API) or the AWS IoT Events console.

For more information on getting started with AWS IoT Events, see Getting started with the AWS
IoT Events console.

Benefits and features 1

AWS IoT Events Developer Guide

Use simple logical expressions to recognize complex patterns of events

AWS IoT Events can recognize patterns of events that involve multiple inputs from a single
IoT device or application, or from diverse equipment and many independent sensors. This is
especially useful because each sensor and application provides important information. But
only by combining diverse sensor and application data can you get a complete picture of
the performance and quality of operations. You can configure AWS IoT Events detectors to
recognize these events using simple logical expressions instead of complex code.

For more information on logical expressions, see Expressions to filter, transform, and process
event data.

Trigger actions based on events

AWS IoT Events enables you to directly trigger actions in Amazon Simple Notification Service
(Amazon SNS), AWS IoT Core, Lambda, Amazon SQS and Amazon Kinesis Firehose. You can also
trigger an AWS Lambda function using the AWS IoT rules engine which makes it possible to take
actions using other services, such as Amazon Connect, or your own enterprise resource planning
(ERP) applications.

AWS IoT Events includes a prebuilt library of actions you can take, and also enables you to
define your own.

To learn more about triggering actions based on events, see Supported actions to receive data
and trigger actions in AWS IoT Events.

Automatically scale to meet the demands of your fleet

AWS IoT Events scales automatically when you are connecting homogeneous devices. You can
define a detector once for a specific type of device, and the service will automatically scale and
manage all instances of that device that connect to AWS IoT Events.

To explore examples of detector models, see AWS IoT Events detector model examples.

Use cases

AWS IoT Events has many uses. Here are a few example use cases.

Monitor and maintain remote devices

Monitoring a fleet of remotely deployed machines can be challenging, especially when a
malfunction occurs without clear context. If one machine stops functioning, this might mean

Use cases 2

AWS IoT Events Developer Guide

replacing the entire processing unit or machine. But this isn't sustainable. With AWS IoT Events you
can receive messages from multiple sensors on each machine to help you diagnose specific issues
over time. Instead of replacing the whole unit, you now have the necessary information to send a
technician with the exact part that needs replacement. With millions of machines, savings can add
up to millions of dollars, lowering your total cost of owning or maintaining each machine.

Manage industrial robots

Deploying robots in your facilities to automate package movement can greatly enhance efficiency.
To minimize costs, robots can be equipped with simple, low-cost sensors that report data to the
cloud. However, with dozens of sensors and hundreds of operating modes, detecting issues in real
time can be challenging. Using AWS IoT Events, you can build an expert system that processes
this sensor data in the cloud, creating alerts to automatically notify technical staff if a failure is
imminent.

Track building automation systems

In data centers, monitoring for high temperatures and low humidity helps to prevent equipment
failures. Sensors are often purchased from many manufacturers and each type comes with its own
management software. However, management software from different vendors sometimes isn't
compatible, making it difficult to detect problems. Using AWS IoT Events, you can set up alerts to
notify your operations analysts of issues with your heating and cooling systems well in advance
of failures. In this way, you can prevent an unscheduled data center shutdown that would cost
thousands of dollars in equipment replacement and potential lost revenue.

Manage industrial robots 3

AWS IoT Events Developer Guide

AWS IoT Events end of support

After careful consideration, we decided to end support for the AWS IoT Events service, effective
May 20, 2026. AWS IoT Events will no longer accept new customers beginning May 20, 2025. As an
existing customer with an account signed up for the service before May 20, 2025, you can continue
to use AWS IoT Events features. After May 20, 2026, you will no longer be able to use AWS IoT
Events.

This page provides instructions and considerations for AWS IoT Events customers to transition to
an alternate solution to meet your business needs.

Note

The solutions presented in these guides are meant to serve as an illustrative examples, not
as a production-ready replacements for AWS IoT Events functionality. Customize the code,
workflow, and related AWS resources to your business needs.

Topics

• Considerations when migrating away from AWS IoT Events

• Migration procedure for detector models in AWS IoT Events

• Migration procedure for AWS IoT SiteWise alarms in AWS IoT Events

Considerations when migrating away from AWS IoT Events

• Implement security best practices, including using IAM roles with least privilege for each
component and encrypting data at rest and in transit. For more information, see Security best
practices in IAM in the IAM User Guide.

• Consider the number of shards for the Kinesis stream based on your data ingestion requirements.
For more information on Kinesis shards, see Amazon Kinesis Data Streams terminology and
concepts in the Amazon Kinesis Data Streams Developer Guide.

• Set up comprehensive monitoring and debugging using CloudWatch for metrics and logs. For
more information, see What is CloudWatch? in the Amazon CloudWatch User Guide.

Considerations when migrating away from AWS IoT Events 4

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

AWS IoT Events Developer Guide

• Consider the structure of your error handling, including how to manage messages that fail
processing repeatedly, implementing retry policies, and setting up a process to isolate and
analyze problematic messages.

• Use the AWS Pricing Calculator to estimate costs for your specific use case.

Migration procedure for detector models in AWS IoT Events

This section describes alternative solutions that deliver similar detector model functionality as you
migrate away from AWS IoT Events.

You can migrate data ingestion through AWS IoT Core rules to a combination of other AWS
services. Instead of data ingestion through the BatchPutMessage API, the data can be routed to the
AWS IoT Core MQTT topic.

This migration approach leverages AWS IoT Core MQTT topics as the entry point for your IoT data,
replacing the direct input to AWS IoT Events. MQTT topics are chosen for several key reasons. They
offer broad compatibility with IoT devices due to MQTT's widespread use in the industry. These
topics can handle high volumes of messages from numerous devices, ensuring scalability. They also
provide flexibility in routing and filtering messages based on content or device type. Additionally,
AWS IoT Core MQTT topics integrate seamlessly with other AWS services, facilitating the migration
process.

Data flows from MQTT topics into an architecture combining Amazon Kinesis Data Streams, a
AWS Lambda function, a Amazon DynamoDB table, and Amazon EventBridge schedules. This
combination of services replicates and enhances the functionality previously provided by AWS IoT
Events, offering you more flexibility and control over your IoT data processing pipeline.

Comparing architectures

The current AWS IoT Events architecture ingests data through an AWS IoT Core rule and the
BatchPutMessage API. This architecture uses AWS IoT Core for data ingestion and event
publishing, with messages routed through AWS IoT Events inputs to detector models that define
the state logic. An IAM role manages the necessary permissions.

The new solution maintains AWS IoT Core for data ingestion (now with dedicated input and output
MQTT topics). It introduces Kinesis Data Streams for data partitioning and an evaluator Lambda
function for state logic. Device states are now stored in a DynamoDB table, and an enhanced IAM
role manages permissions across these services.

Detector models 5

https://calculator.aws
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

AWS IoT Events Developer Guide

Purpose Solution Differences

Data ingestion –
Receives data from
IoT devices

AWS IoT Core Now requires two distinct MQTT topics: one
for ingesting device data and another for
publishing output events

Message direction
 – Routes incoming
messages to
appropriate services

AWS IoT Core
message routing rule

Maintains same routing functionality but now
directs messages to Kinesis Data Streams
instead of AWS IoT Events

Data processin
g – Handles and
organizes incoming
data streams

Kinesis Data Streams Replaces AWS IoT Events input functiona
lity, providing data ingestion with device ID
partitioning for message processing

Logic evaluation
– Processes state
changes and triggers
actions

Evaluator Lambda Replaces AWS IoT Events detector model,
providing customizable state logic evaluation
through code instead of visual workflow

State managemen
t – Maintains device
states

DynamoDB table New component that provides persistent
storage of device states, replacing internal
AWS IoT Events state management

Security – Manages
service permissions

IAM role Updated permissions now include access
to Kinesis Data Streams, DynamoDB, and
EventBridge in addition to existing AWS IoT
Core permissions

Step 1: (Optional) export AWS IoT Events detector model
configurations

Before creating new resources, export your AWS IoT Events detector model definitions. These
contain your event processing logic and can serve as a historical reference for implementing your
new solution.

Step 1: (Optional) export AWS IoT Events detector model configurations 6

AWS IoT Events Developer Guide

Console

Using the AWS IoT Events AWS Management Console, perform the following steps to export
your detector model configurations:

To export detector models using the AWS Management Console

1. Log into the AWS IoT Events console .

2. In the left navigation pane, choose Detector models.

3. Select the detector model to export.

4. Choose Export. Read the information message regarding the output and then choose
Export again.

5. Repeat the process for each detector model that you want to export.

A file containing a JSON output of your detector model is added to your browser's download
folder. You can optionally save each detector model configuration to preserve historical data.

AWS CLI

Using the AWS CLI, run the following commands to export your detector model configurations:

To export detector models using AWS CLI

1. List all detector models in your account:

aws iotevents list-detector-models

2. For each detector model, export its configuration by running:

aws iotevents describe-detector-model \
 --detector-model-name your-detector-model-name

3. Save the output for each detector model.

Step 2: Create an IAM role

Create an IAM role to provide permissions to replicate the functionality of AWS IoT Events. The role
in this example grants access to DynamoDB for state management, EventBridge for scheduling,

Step 2: Create an IAM role 7

https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

Kinesis Data Streams for data ingestion, AWS IoT Core for publishing messages, and CloudWatch
for logging. Together, these services to work as a replacement for AWS IoT Events.

1. Create an IAM role with the following permissions. For more detailed instructions on creating
an IAM role, see Create a role to delegate permissions to an AWS service in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBAccess",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:your-region:your-account-id:table/
EventsStateTable"
 },
 {
 "Sid": "SchedulerAccess",
 "Effect": "Allow",
 "Action": [
 "scheduler:CreateSchedule",
 "scheduler:DeleteSchedule"
],
 "Resource": "arn:aws:scheduler:your-region:your-account-id:schedule/*"
 },
 {
 "Sid": "KinesisAccess",
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": "arn:aws:kinesis:your-region:your-account-id:stream/*"
 },

Step 2: Create an IAM role 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS IoT Events Developer Guide

 {
 "Sid": "IoTPublishAccess",
 "Effect": "Allow",
 "Action": "iot:Publish",
 "Resource": "arn:aws:iot:your-region:your-account-id:topic/*"
 },
 {
 "Effect": "Allow",
 "Action": "logs:CreateLogGroup",
 "Resource": "arn:aws:logs:your-region:your-account-id:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs::your-account-id:log-group:/aws/lambda/your-lambda:*"
]
 }
]
}

2. Add the following IAM role trust policy. A trust policy allows the specified AWS services
to assume the IAM role so that they can to perform necessary actions. For more detailed
instructions on creating an IAM trust policy, see Create a role using custom trust policies in the
IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "scheduler.amazonaws.com",
 "lambda.amazonaws.com",
 "iot.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }

Step 2: Create an IAM role 9

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

AWS IoT Events Developer Guide

]
}

Step 3: Create Amazon Kinesis Data Streams

Create Amazon Kinesis Data Streams using the AWS Management Console or AWS CLI.

Console

To create a Kinesis data stream using the AWS Management Console, follow the procedure
found on the Create a data stream page in the Amazon Kinesis Data Streams Developer Guide.

Adjust the shard count based on your device count and message payload size.

AWS CLI

Using AWS CLI, create Amazon Kinesis Data Streams to ingest and partition the data from your
devices.

Kinesis Data Streams are used in this migration to replace the data ingestion functionality
of AWS IoT Events. It provides a scalable and efficient way to collect, process, and analyze
real-time streaming data from your IoT devices, while providing flexible data handling and
integration with other AWS services.

aws kinesis create-stream --stream-name your-kinesis-stream-name --shard-count 4 --
region your-region

Adjust the shard count based on your device count and message payload size.

Step 4: Create or update the MQTT message routing rule

You can create a new MQTT message routing rule or update an existing rule.

Console

1. Determine if you need a new MQTT message routing rule or if you can update an existing
rule.

2. Open the AWS IoT Core console.

Step 3: Create Amazon Kinesis Data Streams 10

https://docs.aws.amazon.com/streams/latest/dev/tutorial-stock-data-kplkcl-create-stream.html
https://console.aws.amazon.com/iot/

AWS IoT Events Developer Guide

3. In the navigation pane, choose Message Routing, and then choose Rules.

4. In the Manage section, choose Message routing, and then Rules.

5. Choose Create rule.

6. On the Specify rule properties page, enter the AWS IoT Core rule name for Rule name. For
Rule Description - optional, enter a description to identify that you're processing events
and forwarding them to Kinesis Data Streams.

7. On the Configure SQL statement page, enter the following for the SQL statement:
SELECT * FROM 'your-database', then choose Next.

8. On the Attach rules actions page, and under Rule actions, choose kinesis.

9. Choose your Kinesis stream for the stream. For the partition key, enter your-instance-
id. Select the appropriate role for the IAM role, and then choose Add rule action.

For more information, see Creating AWS IoT rules to route device data to other services.

AWS CLI

1. Create a JSON file with the following contents. This JSON configuration file defines an AWS
IoT Core rule that selects all messages from a topic and forwards them to the specified
Kinesis stream, using the instance ID as the partition key.

{
 "sql": "SELECT * FROM 'your-config-file'",
 "description": "Rule to process events and forward to Kinesis Data Streams",
 "actions": [
 {
 "kinesis": {
 "streamName": "your-kinesis-stream-name",
 "roleArn": "arn:aws:iam::your-account-id:role/service-role/your-
iam-role",
 "partitionKey": "${your-instance-id}"
 }
 }
],
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23"
}

2. Create the MQTT topic rule using the AWS CLI. This step uses the AWS CLI to create an AWS
IoT Core topic rule using the configuration defined in the events_rule.json file.

Step 4: Create or update the MQTT message routing rule 11

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules-tutorial.html

AWS IoT Events Developer Guide

aws iot create-topic-rule \
 --rule-name "your-iot-core-rule" \
 --topic-rule-payload file://your-file-name.json

Step 5: Get the endpoint for the destination MQTT topic

Use the destination MQTT topic to configure where your topics publish outgoing messages,
replacing the functionality previously handled by AWS IoT Events. The endpoint is unique to your
AWS account and region.

Console

1. Open the AWS IoT Core console.

2. In the Connect section on the left navigation panel, choose Domain configuration.

3. Choose the iot:Data-ATS domain configuration to open the configuration's detail page.

4. Copy the Domain name value. This value is the endpoint. Save the endpoint value because
you'll need it in later steps.

AWS CLI

Run the following command to get the AWS IoT Core endpoint for publishing outgoing
messages for your account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS --region your-region

Step 6: Create an Amazon DynamoDB table

A Amazon DynamoDB table replaces the state management functionality of AWS IoT Events,
providing a scalable and flexible way to persist and manage the state of your devices and the
detector model logic in your new solution architecture.

Console

Create a Amazon DynamoDB table to persist the state of the detector models. For more
information, see Create a table in DynamoDB in the Amazon DynamoDB Developer Guide.

Step 5: Get the endpoint for the destination MQTT topic 12

https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS IoT Events Developer Guide

Use the following for the table details:

• For Table name, enter a table name of your choosing.

• For Partition key, enter your own instance ID.

• You can use the Default settings for the Table settings

AWS CLI

Run the following command to create a DynamoDB table.

aws dynamodb create-table \
 --table-name your-table-name \
 --attribute-definitions AttributeName=your-instance-
id,AttributeType=S \
 --key-schema AttributeName=your-instance-id,KeyType=HASH \

Step 7: Create an AWS Lambda function (console)

The Lambda function serves as the core processing engine, replacing the detector model
evaluation logic of AWS IoT Events. In the example, we integrate with other AWS services to handle
incoming data, manage state, and trigger actions based on your defined rules.

Create a Lambda function with NodeJS runtime. Use the following code snippet, replacing the
hard-coded constants:

1. Open the AWS Lambda console.

2. Choose Create function.

3. Enter a name for the Function name.

4. Select NodeJS 22.x as the Runtime.

5. In the Change default execution role dropdown, choose Use existing role, and then select the
IAM role that you created in earlier steps.

6. Choose Create function.

7. Paste in the following code snippet after replacing the hard coded constants.

8. After your function creates, under the Code tab, paste the following code example, replacing
the your-destination-endpoint endpoint with your own.

Step 7: Create an AWS Lambda function (console) 13

https://console.aws.amazon.com/lambda/

AWS IoT Events Developer Guide

import { DynamoDBClient, GetItemCommand } from '@aws-sdk/client-dynamodb';
import { PutItemCommand } from '@aws-sdk/client-dynamodb';
import { IoTDataPlaneClient, PublishCommand } from "@aws-sdk/client-iot-data-plane";
import { SchedulerClient, CreateScheduleCommand, DeleteScheduleCommand } from "@aws-
sdk/client-scheduler"; // ES Modules import

//// External Clients and Constants
const scheduler = new SchedulerClient({});
const iot = new IoTDataPlaneClient({
 endpoint: 'https://your-destination-endpoint-ats.iot.your-region.amazonaws.com/'
});
const ddb = new DynamoDBClient({});

//// Lambda Handler function
export const handler = async (event) => {
 console.log('Incoming event:', JSON.stringify(event, null, 2));

 if (!event.Records) {
 throw new Error('No records found in event');
 }

 const processedRecords = [];

 for (const record of event.Records) {
 try {
 if (record.eventSource !== 'aws:kinesis') {
 console.log(`Skipping non-Kinesis record from ${record.eventSource}`);
 continue;
 }

 // Assumes that we are processing records from Kinesis
 const payload = record.kinesis.data;
 const decodedData = Buffer.from(payload, 'base64').toString();
 console.log("decoded payload is ", decodedData);

 const output = await handleDecodedData(decodedData);

 // Add additional processing logic here
 const processedData = {
 output,

Step 7: Create an AWS Lambda function (console) 14

AWS IoT Events Developer Guide

 sequenceNumber: record.kinesis.sequenceNumber,
 partitionKey: record.kinesis.partitionKey,
 timestamp: record.kinesis.approximateArrivalTimestamp
 };

 processedRecords.push(processedData);

 } catch (error) {
 console.error('Error processing record:', error);
 console.error('Failed record:', record);
 // Decide whether to throw error or continue processing other records
 // throw error; // Uncomment to stop processing on first error
 }
 }

 return {
 statusCode: 200,
 body: JSON.stringify({
 message: 'Processing complete',
 processedCount: processedRecords.length,
 records: processedRecords
 })
 };
};

// Helper function to handle decoded data
async function handleDecodedData(payload) {
 try {
 // Parse the decoded data
 const parsedData = JSON.parse(payload);

 // Extract instanceId
 const instanceId = parsedData.instanceId;
 // Parse the input field
 const inputData = JSON.parse(parsedData.payload);
 const temperature = inputData.temperature;
 console.log('For InstanceId: ', instanceId, ' the temperature is:',
 temperature);

 await iotEvents.process(instanceId, inputData)

 return {
 instanceId,
 temperature,

Step 7: Create an AWS Lambda function (console) 15

AWS IoT Events Developer Guide

 // Add any other fields you want to return
 rawInput: inputData
 };
 } catch (error) {
 console.error('Error handling decoded data:', error);
 throw error;
 }
}

//// Classes for declaring/defining the state machine
class CurrentState {
 constructor(instanceId, stateName, variables, inputs) {
 this.stateName = stateName;
 this.variables = variables;
 this.inputs = inputs;
 this.instanceId = instanceId
 }

 static async load(instanceId) {
 console.log(`Loading state for id ${instanceId}`);
 try {
 const { Item: { state: { S: stateContent } } } = await ddb.send(new
 GetItemCommand({
 TableName: 'EventsStateTable',
 Key: {
 'InstanceId': { S: `${instanceId}` }
 }
 }));

 const { stateName, variables, inputs } = JSON.parse(stateContent);

 return new CurrentState(instanceId, stateName, variables, inputs);
 } catch (e) {
 console.log(`No state for id ${instanceId}: ${e}`);
 return undefined;
 }
 }

 static async save(instanceId, state) {
 console.log(`Saving state for id ${instanceId}`);
 await ddb.send(new PutItemCommand({
 TableName: 'your-events-state-table-name',
 Item: {

Step 7: Create an AWS Lambda function (console) 16

AWS IoT Events Developer Guide

 'InstanceId': { S: `${instanceId}` },
 'state': { S: state }
 }
 }));
 }

 setVariable(name, value) {
 this.variables[name] = value;
 }

 changeState(stateName) {
 console.log(`Changing state from ${this.stateName} to ${stateName}`);
 this.stateName = stateName;
 }

 async setTimer(instanceId, frequencyInMinutes, payload) {
 console.log(`Setting timer ${instanceId} for frequency of ${frequencyInMinutes}
 minutes`);

 const base64Payload = Buffer.from(JSON.stringify(payload)).toString();
 console.log(base64Payload);

 const scheduleName = `your-schedule-name-${instanceId}-schedule`;
 const scheduleParams = {
 Name: scheduleName,
 FlexibleTimeWindow: {
 Mode: 'OFF'
 },
 ScheduleExpression: `rate(${frequencyInMinutes} minutes)`,
 Target: {
 Arn: "arn:aws::kinesis:your-region:your-account-id:stream/your-kinesis-
stream-name",
 RoleArn: "arn:aws::iam::your-account-id:role/service-role/your-iam-
role",
 Input: base64Payload,
 KinesisParameters: {
 PartitionKey: instanceId,
 },
 RetryPolicy: {
 MaximumRetryAttempts: 3
 }
 },

 };

Step 7: Create an AWS Lambda function (console) 17

AWS IoT Events Developer Guide

 const command = new CreateScheduleCommand(scheduleParams);
 console.log(`Sending command to set timer ${JSON.stringify(command)}`);
 await scheduler.send(command);
 }

 async clearTimer(instanceId) {
 console.log(`Cleaning timer ${instanceId}`);

 const scheduleName = `your-schedule-name-${instanceId}-schdule`;
 const command = new DeleteScheduleCommand({
 Name: scheduleName
 });
 await scheduler.send(command);
 }

 async executeAction(actionType, actionPayload) {
 console.log(`Will execute the ${actionType} with payload ${actionPayload}`);
 await iot.send(new PublishCommand({
 topic: `${this.instanceId}`,
 payload: actionPayload,
 qos: 0
 }));
 }

 setInput(value) {
 this.inputs = { ...this.inputs, ...value };
 }

 input(name) {
 return this.inputs[name];
 }
}

class IoTEvents {

 constructor(initialState) {
 this.initialState = initialState;
 this.states = {};
 }

 state(name) {
 const state = new IoTEventsState();

Step 7: Create an AWS Lambda function (console) 18

AWS IoT Events Developer Guide

 this.states[name] = state;
 return state;
 }

 async process(instanceId, input) {
 let currentState = await CurrentState.load(instanceId) || new
 CurrentState(instanceId, this.initialState, {}, {});
 currentState.setInput(input);

 console.log(`With inputs as: ${JSON.stringify(currentState)}`);
 const state = this.states[currentState.stateName];

 currentState = await state.evaluate(currentState);
 console.log(`With output as: ${JSON.stringify(currentState)}`);

 await CurrentState.save(instanceId, JSON.stringify(currentState));
 }
}

class Event {
 constructor(condition, action) {
 this.condition = condition;
 this.action = action;
 }
}

class IoTEventsState {
 constructor() {
 this.eventsList = []
 }

 events(eventListArg) {
 this.eventsList.push(...eventListArg);
 return this;
 }

 async evaluate(currentState) {
 for (const e of this.eventsList) {
 console.log(`Evaluating event ${e.condition}`);
 if (e.condition(currentState)) {
 console.log(`Event condition met`);
 // Execute any action as defined in iotEvents DM Definition
 await e.action(currentState);
 }

Step 7: Create an AWS Lambda function (console) 19

AWS IoT Events Developer Guide

 }

 return currentState;
 }
}

////// DetectorModel Definitions - replace with your own defintions
let processAlarmStateEvent = new Event(
 (currentState) => {
 const source = currentState.input('source');
 return (
 currentState.input('temperature') < 70
);
 },
 async (currentState) => {
 currentState.changeState('normal');
 await currentState.clearTimer(currentState.instanceId)
 await currentState.executeAction('MQTT', `{"state": "alarm cleared, timer
 deleted" }`);
 }
);

let processTimerEvent = new Event(
 (currentState) => {
 const source = currentState.input('source');
 console.log(`Evaluating timer event with source ${source}`);
 const booleanOutput = (source !== undefined && source !== null &&
 typeof source === 'string' &&
 source.toLowerCase() === 'timer' &&
 // check if the currentState == state from the timer payload
 currentState.input('currentState') !== undefined &&
 currentState.input('currentState') !== null &&
 currentState.input('currentState').toLowerCase !== 'normal');
 console.log(`Timer event evaluated as ${booleanOutput}`);
 return booleanOutput;
 },
 async (currentState) => {
 await currentState.executeAction('MQTT', `{"state": "timer timed out in
 Alarming state" }`);
 }
);

let processNormalEvent = new Event(
 (currentState) => currentState.input('temperature') > 70,

Step 7: Create an AWS Lambda function (console) 20

AWS IoT Events Developer Guide

 async (currentState) => {
 currentState.changeState('alarm');
 await currentState.executeAction('MQTT', `{"state": "alarm detected, timer
 started" }`);
 await currentState.setTimer(currentState.instanceId, 5, {
 "instanceId": currentState.instanceId,
 "payload":"{\"currentState\": \"alarm\", \"source\": \"timer\"}"
 });
 }
);
const iotEvents = new IoTEvents('normal');
iotEvents
 .state('normal')
 .events(
 [
 processNormalEvent
]);
iotEvents
 .state('alarm')
 .events([
 processAlarmStateEvent,
 processTimerEvent
]
);

Step 8: Add an Amazon Kinesis Data Streams trigger

Add a Kinesis Data Streams trigger to the Lambda function using the AWS Management Console or
AWS CLI.

Adding a Kinesis Data Streams trigger to your Lambda function establishes the connection
between your data ingestion pipeline and your processing logic, letting it automatically evaluate
incoming IoT data streams and react to events in real-time, similar to how AWS IoT Events
processes inputs.

Console

For more information, see Create an event source mapping to invoke a Lambda function in the
AWS Lambda Developer Guide.

Use the following for the event source mapping details:

Step 8: Add an Amazon Kinesis Data Streams trigger 21

https://docs.aws.amazon.com/lambda/latest/dg/services-kinesis-create.html#services-kinesis-eventsourcemapping

AWS IoT Events Developer Guide

• For Function name, enter the lambda name used in Step 7: Create an AWS Lambda function
(console).

• For Consumer - optional, enter the ARN for the your Kinesis stream.

• For Batch size, enter 10.

AWS CLI

Run the following command to create the Lambda function trigger.

aws lambda create-event-source-mapping \
 --function-name your-lambda-name \
 --event-source arn:aws:kinesis:your-region:your-account-id:stream/your-kinesis-
stream-name \
 --batch-size 10 \
 --starting-position LATEST \
 --region your-region

Step 9: Test data ingestion and output functionality (AWS CLI)

Publish a payload to the MQTT topic based on what you defined in your detector model. The
following is an example payload to the MQTT topic your-topic-name to test an implementation.

{
 "instanceId": "your-instance-id",
 "payload": "{\"temperature\":78}"
}

You should see an MQTT message published to a topic with the following (or similar) content:

{
 "state": "alarm detected, timer started"
}

Step 9: Test data ingestion and output functionality (AWS CLI) 22

AWS IoT Events Developer Guide

Migration procedure for AWS IoT SiteWise alarms in AWS IoT
Events

This section describes alternative solutions that deliver similar alarm functionality as you migrate
away from AWS IoT Events.

For AWS IoT SiteWise properties that use AWS IoT Events alarms, you can migrate to a solution
using CloudWatch alarms. This approach provides robust monitoring capabilities with established
SLAs and additional features like anomaly detection and grouped alarms.

Comparing architectures

The current AWS IoT Events alarm configuration for AWS IoT SiteWise properties requires creating
AssetModelCompositeModels in the asset model, as described in Define external alarms in AWS
IoT SiteWise in the AWS IoT SiteWise User Guide. Modifications to the new solution are typically
managed through the AWS IoT Events console.

The new solution provides alarm management by leveraging CloudWatch alarms. This approach
uses AWS IoT SiteWise notifications to publish property data points to AWS IoT Core MQTT topics,
which are then processed by a Lambda function. The function transforms these notifications into
CloudWatch metrics, enabling alarm monitoring through CloudWatch's alarming framework.

Purpose Solution Differences

Data source –
Property data from
AWS IoT SiteWise

AWS IoT SiteWise
MQTT notifications

Replaces direct IoT Events integration with
MQTT notifications from AWS IoT SiteWise
properties

Data processing –
Transforms property
data

Lambda function Processes AWS IoT SiteWise property notificat
ions and converts them to CloudWatch metrics

Alarm evaluation –
Monitors metrics and
triggers alarms

Amazon CloudWatch
alarms

Replaces AWS IoT Events alarms with
CloudWatch alarms, offering additional
features like anomaly detection

Alarms 23

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/define-external-alarms.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/define-external-alarms.html

AWS IoT Events Developer Guide

Purpose Solution Differences

Integration –
Connection with AWS
IoT SiteWise

AWS IoT SiteWise
external alarms

Optional capability to import CloudWatch
alarms back into AWS IoT SiteWise as external
alarms

Step 1: Enable MQTT notifications on the asset property

If you are using AWS IoT Events integrations for AWS IoT SiteWise alarms, you can turn on MQTT
notifications for each property to monitor.

1. Follow the Configure alarms on assets in AWS IoT SiteWise procedure until you each the step
to Edit the asset model's properties.

2. For each property to migrate, change the MQTT Notification status to ACTIVE.

3. Note the topic path to which the alarm publishes for each modified alarm attribute.

For more information, see the following documentation resources:

• Understand asset properties in MQTT topics in the AWS IoT SiteWise User Guide.

• MQTT topics in the AWS IoT Developer Guide.

Step 2: Create an AWS Lambda function

Create an Lambda function for reading the TQV array published by the MQTT topic and publish
individual values to CloudWatch. We’ll use this Lambda function as a destination action to trigger
in AWS IoT Core Message Rules.

1. Open the AWS Lambda console.

Step 1: Enable MQTT notifications on the asset property 24

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-alarms.html#configure-alarm-threshold-value-console
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/mqtt-topics.html
https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://console.aws.amazon.com/lambda

AWS IoT Events Developer Guide

2. Choose Create function.

3. Enter a name for the Function name.

4. Select NodeJS 22.x as the Runtime.

5. In the Change default execution role dropdown, choose Use existing role, and then select the
IAM role that you created in earlier steps.

Note

This procedure assumes that you've already migrated your detector model. If you don't
have an IAM role, see ???.

6. Choose Create function.

7. Paste in the following code snippet after replacing the hard coded constants.

import json
import boto3
from datetime import datetime

Initialize CloudWatch client
cloudwatch = boto3.client('cloudwatch')

def lambda_handler(message, context):
 try:
 # Parse the incoming IoT message
 # Extract relevant information
 asset_id = message['payload']['assetId']
 property_id = message['payload']['propertyId']

 # Process each value in the values array
 for value in message['payload']['values']:
 # Extract timestamp and value
 timestamp = datetime.fromtimestamp(value['timestamp']['timeInSeconds'])
 metric_value = value['value']['doubleValue']
 quality = value.get('quality', 'UNKNOWN')

 # Publish to CloudWatch
 response = cloudwatch.put_metric_data(
 Namespace='IoTSiteWise/AssetMetrics',
 MetricData=[
 {
 'MetricName': f'Property_your-property-id',

Step 2: Create an AWS Lambda function 25

AWS IoT Events Developer Guide

 'Value': metric_value,
 'Timestamp': timestamp,
 'Dimensions': [
 {
 'Name': 'AssetId',
 'Value': 'your-asset-id'
 },
 {
 'Name': 'Quality',
 'Value': quality
 }
]
 }
]
)

 return {
 'statusCode': 200,
 'body': json.dumps('Successfully published metrics to CloudWatch')
 }

 except Exception as e:
 print(f'Error processing message: {str(e)}')
 return {
 'statusCode': 500,
 'body': json.dumps(f'Error: {str(e)}')
 }

Step 3: Create AWS IoT Core message routing rule

• Follow the Tutorial: Republishing an MQTT message procedure entering the following
information when prompted:

a. Name message routing rule SiteWiseToCloudwatchAlarms.

b. For the query, you can use the following:

SELECT * FROM '$aws/sitewise/asset-models/your-asset-model-id/assets/your-
asset-id/properties/your-property-id'

c. In Rule actions, select the Lambda action to send the data generated from AWS IoT
SiteWise to CloudWatch. For example:

Step 3: Create AWS IoT Core message routing rule 26

https://docs.aws.amazon.com/iot/latest/developerguide/iot-repub-rule.html

AWS IoT Events Developer Guide

Step 4: View CloudWatch metrics

As you ingest data to AWS IoT SiteWise, the property selected earlier in Step 1: Enable MQTT
notifications on the asset property, the routes data to the Lambda function we created in Step
2: Create an AWS Lambda function. In this step, you can check to see the Lambda sending your
metrics to CloudWatch.

1. Open the CloudWatch AWS Management Console.

2. In the left navigation, choose Metrics, then All metrics.

3. Choose an alarm's URL to open it.

4. Under the Source tab, the CloudWatch output looks similar to this example. This source
information confirms that the metric data is feeding into CloudWatch.

{
 "view": "timeSeries",
 "stacked": false,
 "metrics": [
 ["IoTSiteWise/AssetMetrics", "Property_your-property-id-hash", "Quality",
 "GOOD", "AssetId", "your-asset-id-hash", { "id": "m1" }]
],
 "region": "your-region"
}

Step 5: Create CloudWatch alarms

Follow the Create a CloudWatch alarm based on a static threshold procedure in the Amazon
CloudWatch User Guide to create alarms for each relevant metric.

Step 4: View CloudWatch metrics 27

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

AWS IoT Events Developer Guide

Note

There are many options for alarm configuration in Amazon CloudWatch For more
information on CloudWatch alarms, see Using Amazon CloudWatch alarms in the Amazon
CloudWatch User Guide.

Step 6: (Optional) import the CloudWatch alarm into AWS IoT SiteWise

You can configure CloudWatch alarms to send data back to AWS IoT SiteWise using CloudWatch
alarm actions and Lambda. This integration enables you to view alarm states and properties in the
SiteWise Monitor portal.

1. Configure the external alarm as a property in an asset model. For more information, see Define
external alarms in AWS IoT SiteWise in the AWS IoT SiteWise User Guide.

2. Create a Lambda function that uses the BatchPutAssetPropertyValue API found in the AWS IoT
SiteWise User Guide to send alarm data to AWS IoT SiteWise.

3. Set up CloudWatch alarm actions to invoke your Lambda function when alarm states change.
For more information, see the Alarm actions section in the Amazon CloudWatch User Guide.

Step 6: (Optional) import the CloudWatch alarm into AWS IoT SiteWise 28

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/define-external-alarms.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/define-external-alarms.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarms-and-actions.html

AWS IoT Events Developer Guide

Setting up AWS IoT Events

This section provides a guide to setting up AWS IoT Events, including creating an AWS account,
configuring necessary permissions, and establishing roles for managing access to resources.

Topics

• Setting up an AWS account

• Setting up permissions for AWS IoT Events

Setting up an AWS account

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Setting up an AWS account 29

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/

AWS IoT Events Developer Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Create a user with administrative access 30

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html

AWS IoT Events Developer Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Setting up permissions for AWS IoT Events

Implementing proper permissions is important for secure and effective use of AWS IoT Events. This
section describes the permissions that are required to use some features of AWS IoT Events. You
can use AWS CLI commands or the AWS Identity and Access Management (IAM) console to create
roles and associated permission policies to access resources or perform certain functions in AWS
IoT Events.

The IAM User Guide has more detailed information about securely controlling permissions to access
AWS resources. For information specific to AWS IoT Events, see Actions, resources, and condition
keys for AWS IoT Events.

To use the IAM console to create and manage roles and permissions, see IAM tutorial: Delegate
access across AWS accounts using IAM roles.

Note

Keys can be 1-128 characters and can include:

• uppercase or lowercase letters a-z

• numbers 0-9

• special characters -, _, or :.

Action permissions for AWS IoT Events

AWS IoT Events enables you to trigger actions which use other AWS services. To do so, you must
grant AWS IoT Events permission to perform these actions on your behalf. This section contains a
list of the actions and an example policy which grants permission to perform all these actions on
your resources. Change the region and account-id references as required. When possible, you
should also change the wildcards (*) to refer to specific resources that will be accessed. You can use
the IAM console to grant permission to AWS IoT Events to send an Amazon SNS alert that you have
defined. .

Setting up permissions for AWS IoT Events 31

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotevents.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotevents.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html

AWS IoT Events Developer Guide

AWS IoT Events supports the following actions that let you use a timer or set a variable:

• setTimer to create a timer.

• resetTimer to reset the timer.

• clearTimer to delete the timer.

• setVariable to create a variable.

AWS IoT Events supports the following actions that let you work with AWS services:

• iotTopicPublish to publish a message on an MQTT topic.

• iotEvents to send data to AWS IoT Events as an input value.

• iotSiteWise to send data to an asset property in AWS IoT SiteWise.

• dynamoDB to send data to an Amazon DynamoDB table.

• dynamoDBv2 to send data to an Amazon DynamoDB table.

• firehose to send data to an Amazon Data Firehose stream.

• lambda to invoke an AWS Lambda function.

• sns to send data as a push notification.

• sqs to send data to an Amazon SQS queue.

Example Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Publish",
 "Resource": "arn:aws:iot:<region>:<account_id>:topic/*"
 },
 {
 "Effect": "Allow",
 "Action": "iotevents:BatchPutMessage",
 "Resource": "arn:aws:iotevents:<region>:<account_id>:input/*"
 },
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",

Action permissions 32

AWS IoT Events Developer Guide

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "dynamodb:PutItem",
 "Resource": "arn:aws:dynamodb:<region>:<account_id>:table/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Resource": "arn:aws:firehose:<region>:<account_id>:deliverystream/*"
 },
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:<region>:<account_id>:function:*"
 },
 {
 "Effect": "Allow",
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:<region>:<account_id>:*"
 },
 {
 "Effect": "Allow",
 "Action": "sqs:SendMessage",
 "Resource": "arn:aws:sqs:<region>:<account_id>:*"
 }
]
}

Securing input data in AWS IoT Events

It's important to consider who can grant access to input data for use in a detector model.
If you have a user or entity whose overall permissions you want to restrict, but that is
permitted to create or update a detector model, you must also grant permission for that
user or entity to update input routing. This means that in addition to granting permission for
iotevents:CreateDetectorModel and iotevents:UpdateDetectorModel, you must also
grant permission for iotevents:UpdateInputRouting.

Securing input data 33

AWS IoT Events Developer Guide

Example

The following policy adds permission for iotevents:UpdateInputRouting.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "updateRoutingPolicy",
 "Effect": "Allow",
 "Action": [
 "iotevents:UpdateInputRouting"
],
 "Resource": "*"
 }
]
}

You can specify a list of input Amazon Resource Names (ARNs) instead of the wildcard "*" for the
"Resource" to limit this permission to specific inputs. This enables you to restrict access to the
input data that is consumed by detector models created or updated by the user or entity.

Amazon CloudWatch logging role policy for AWS IoT Events

The following policy documents provide the role policy and trust policy that allow AWS IoT Events
to submit logs to CloudWatch on your behalf.

Role policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:PutMetricFilter",
 "logs:PutRetentionPolicy",
 "logs:GetLogEvents",
 "logs:DeleteLogStream"

Amazon CloudWatch logging role policy 34

AWS IoT Events Developer Guide

],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

Trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [

 "iotevents.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

You also need an IAM permissions policy attached to the user that allows the user to pass roles, as
follows. For more information, see Granting a user permissions to pass a role to an AWS service in
the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::<account-id>:role/Role_To_Pass"
 }

Amazon CloudWatch logging role policy 35

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS IoT Events Developer Guide

]
}

You can use the following command to put the resource policy for CloudWatch logs. This allows
AWS IoT Events to put log events into CloudWatch streams.

aws logs put-resource-policy --policy-name ioteventsLoggingPolicy --policy-
document "{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Sid\":
 \"IoTEventsToCloudWatchLogs\", \"Effect\": \"Allow\", \"Principal\": { \"Service\":
 [\"iotevents.amazonaws.com\"] }, \"Action\":\"logs:PutLogEvents\", \"Resource\": \"*
\" }] }"

Use the following command to put logging options. Replace the roleArn with the logging role
that you created.

aws iotevents put-logging-options --cli-input-json "{ \"loggingOptions\": {\"roleArn\":
 \"arn:aws:iam::123456789012:role/testLoggingRole\", \"level\": \"INFO\", \"enabled\":
 true } }"

Amazon SNS messaging role policy for AWS IoT Events

Integrating AWS IoT Events with Amazon SNS requires careful permission management for secure
and efficient notification delivery. This guide walks you through the process of configuring IAM
roles and policies to allow AWS IoT Events to publish messages to Amazon SNS topics.

The following policy documents provide the role policy and trust policy that allow AWS IoT Events
to send SNS messages.

Role policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:*"
],
 "Effect": "Allow",
 "Resource": "arn:aws:sns:us-east-1:123456789012:testAction"

Amazon SNS messaging role policy 36

AWS IoT Events Developer Guide

 }
]
}

Trust policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "iotevents.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Amazon SNS messaging role policy 37

AWS IoT Events Developer Guide

Getting started with the AWS IoT Events console

This section shows you how to create an input and a detector model using the AWS IoT Events
console. You model two states of an engine: a normal state and an over-pressure condition. When
the measured pressure in the engine exceeds a certain threshold, the model transitions from
the normal state to the over-pressure state. Then it sends an Amazon SNS message to alert a
technician about the condition. When the pressure again drops below the threshold for three
consecutive pressure readings, the model returns to the normal state and sends another Amazon
SNS message as a confirmation.

We check for three consecutive readings below the pressure threshold to eliminate possible
stuttering of over-pressure or normal messages, in case of a nonlinear recovery phase or an
anomalous pressure reading.

On the console, you can also find several pre-made detector model templates which you can
customize. You can also use the console to import detector models that others have written or
export your detector models and use them in different AWS Regions. If you import a detector
model, make sure that you create the required inputs or recreate them for the new Region, and
update any role ARNs used.

Use the AWS IoT Events console to learn about the following.

Define inputs

To monitor your devices and processes, they must have a way to get telemetry data into AWS
IoT Events. This is done by sending messages as inputs to AWS IoT Events. You can do this in
several ways:

• Use the BatchPutMessage operation.

• In AWS IoT Core, write an AWS IoT Events action rule for the AWS IoT rules engine that
forwards your message data into AWS IoT Events. You must identify the input by name.

• In AWS IoT Analytics, use the CreateDataset operation to create a data set with
contentDeliveryRules. These rules specify the AWS IoT Events input where data set
contents are sent automatically.

Before your devices can send data in this way, you must define one or more inputs. To do
so, give each input a name and specify which fields in the incoming message data the input
monitors.

38

https://console.aws.amazon.com/iotevents/
https://console.aws.amazon.com/iotevents/
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule
https://docs.aws.amazon.com/iotanalytics/latest/userguide/automate.html#aws-iot-analytics-automate-create-dataset

AWS IoT Events Developer Guide

Create a detector model

Define a detector model (a model of your equipment or process) using states. For each state,
define conditional (Boolean) logic that evaluates the incoming inputs to detect significant
events. When the detector model detects an event, it can change the state or initiate custom-
built or predefined actions using other AWS services. You can define additional events that
initiate actions when entering or exiting a state and, optionally, when a condition is met.

In this tutorial, you send an Amazon SNS message as the action when the model enters or exits
a certain state.

Monitor a device or process

If you monitor several devices or processes, specify a field in each input that identifies
the particular device or process from which the input comes. See the key field in
CreateDetectorModel. When the input field identified by the key recognizes a new value, a
new device is identified and a detector is created. Each detector is an instance of the detector
model. The new detector continues responding to inputs coming from that device until its
detector model is updated or deleted.

If you monitor a single process (even if several devices or subprocesses are sending inputs), you
don't specify a unique identifying key field. In this case, the model creates a single detector
(instance) when the first input arrives.

Send messages as inputs to your detector model

There are several ways to send a message from a device or process as an input into an AWS IoT
Events detector that don't require you to perform additional formatting on the message. In this
tutorial, you use the AWS IoT console to write an AWS IoT Events action rule for the AWS IoT
rules engine that forwards your message data into AWS IoT Events.

To do this, identify the input by name and continue to use the AWS IoT console to generate
messages that are forwarded as inputs to AWS IoT Events.

Note

This tutorial uses the console to create the same input and detector model shown in
the example at Tutorials for AWS IoT Events uses cases. You can use the this JSON example
to help you follow the tutorial.

39

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule

AWS IoT Events Developer Guide

Topics

• Prerequisites to get started with AWS IoT Events

• Create an input for models in AWS IoT Events

• Create a detector model in AWS IoT Events

• Send inputs to test the detector model in AWS IoT Events

Prerequisites to get started with AWS IoT Events

If you don't have an AWS account, create one.

1. Follow the step in Setting up AWS IoT Events to ensure proper account setup and permissions.

2. Create two Amazon Simple Notification Service (Amazon SNS) topics.

This tutorial (and the corresponding example) assume that you created two
Amazon SNS topics. The ARNs of these topics are shown as: arn:aws:sns:us-
east-1:123456789012:underPressureAction and arn:aws:sns:us-
east-1:123456789012:pressureClearedAction. Replace these values with the ARNs of
Amazon SNS topics that you create. For more information, see the Amazon Simple Notification
Service Developer Guide.

As an alternative to publishing alerts to Amazon SNS topics, you can have the detectors
send MQTT messages with a topic that you specify. With this option, you can verify that your
detector model is creating instances and that those instances are sending alerts by using the
AWS IoT Core console to subscribe to and monitor messages sent to those MQTT topics. You
can also define the MQTT topic name dynamically at runtime by using an input or variable
created in the detector model.

3. Choose an AWS Region that supports AWS IoT Events. For more information, see AWS IoT
Events in the AWS General Reference. For help, see Getting started with a service in the AWS
Management Console in the Getting Started with the AWS Management Console.

Create an input for models in AWS IoT Events

When you construct the inputs for your models, we recommend gathering files that contain sample
message payloads that your devices or processes send to report their health status. Having these
files helps you define the inputs that are required.

Prerequisites 40

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/general/latest/gr/rande.html#iotevents_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#iotevents_region
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/start-service.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/start-service.html

AWS IoT Events Developer Guide

You can create an input through multiple methods that are described in this section.

Create a JSON input file

1. To get started, create a file named input.json on your local file system with the following
contents:

{
 "motorid": "Fulton-A32",
 "sensorData": {
 "pressure": 23,
 "temperature": 47
 }
}

2. Now that you have this starter input.json file, you can create an input. There are two ways
to create an input. You can create an input by using the navigation pane in the AWS IoT Events
console . Or, you can create an input within the detector model after it's created.

Create and configure an input

Learn how to create an input, for an alarm model or a detector model.

1. Log into the AWS IoT Events console or select the option to Create a new AWS IoT Events
account.

2. In the AWS IoT Events console, in the upper left corner, select and expand the navigation pane.

3. In the left navigation pane, select Inputs.

4. In the right corner of the console, choose Create input.

5. Provide a uniqueInputName.

6. Optional – enter a Description for your input.

7. To Upload a JSON file, select the input.json file that you created in the overview for Create
a JSON input file. Choose input attributes appears with a list of your entered attributes.

8. For Choose input attributes, select the attributes to use, and choose Create. In this example,
we select motorid and sensorData.pressure.

9. Optional – Add relevant Tags to the input.

Create a JSON input file 41

https://console.aws.amazon.com/iotevents/
https://console.aws.amazon.com/iotevents/
https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

Note

You can also create additional inputs within the detector model in the AWS IoT Events
console . For more information, see Create an input within the Detector Model in AWS IoT
Events.

Create an input within the Detector Model in AWS IoT Events

Detector inputs in AWS IoT Events serve as the bridge between your data sources and detector
models. Detector inputs provide the raw data that powers the event detection and automation
capabilities of AWS IoT Events. Learn to configure detector inputs to help your models respond
accurately to real-world events and conditions in your IoT ecosystem.

This section shows how to define an input for a detector model to receive telemetry data, or
messages.

To define an input for a detector model

1. Open the AWS IoT Events console.

2. In the AWS IoT Events console, choose Create detector model.

3. Choose Create new.

4. Choose Create input.

5. For the input, enter an InputName, an optional Description, and choose Upload file. In the
dialog box that displays, select the input.json file that you created in the overview for
Create a JSON input file.

6. For Choose input attributes, select the attributes to use, and choose Create. In this example,
we select motorId and sensorData.pressure.

Create a detector model in AWS IoT Events

In this topic, you define a detector model (a model of your equipment or process) using states.

For each state, you define conditional (Boolean) logic that evaluates the incoming inputs to detect
a significant event. When an event is detected, it changes the state and can initiate additional
actions. These events are known as transition events.

Create an input within the Detector Model 42

https://console.aws.amazon.com/iotevents/
https://console.aws.amazon.com/iotevents/
https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

In your states, you also define events that can run actions whenever the detector enters or exits
that state or when an input is received (these are known as OnEnter, OnExit and OnInput
events). The actions run only if the event's conditional logic evaluates to true.

To create a detector model

1. The first detector state has been created for you. To modify it, select the circle with label
State_1 in the main editing space.

2. In the State pane, enter the State name and OnEnter, choose Add event.

3. On the Add OnEnter event page, enter an Event name and the Event condition. In this
example, enter true to indicate the event is always initiated when the state is entered.

4. Under Event actions, choose Add action.

5. Under Event actions, do the following:

a. Select Set variable

b. For Variable operation, choose Assign value.

c. For Variable name, enter the name of the variable to set.

d. For Variable value, enter the value 0 (zero).

6. Choose Save.

A variable, like the one you defined, can be set (given a value) in any event in the detector
model. The variable's value can only be referenced (for example, in an event's conditional
logic) after the detector has reached a state and run an action where it is defined or set.

7. In the State pane, choose the X next to State to return to the Detector model palette.

8. To create a second detector state, in the Detector model palette, choose State and drag it into
the main editing space. This creates a state titled untitled_state_1.

9. Pause on the first state (Normal). An arrow appears on the circumference of the state.

10. Click and drag the arrow from the first state to the second state. A directed line from the first
state to the second state (labeled Untitled) appears.

11. Select the Untitled line. In the Transition event pane, enter an Event name and Event trigger
logic.

12. In the Transition event pane, choose Add action.

13. On the Add transition event actions pane, choose Add action.

14. For Choose an action, choose Set variable.

Create a detector model 43

AWS IoT Events Developer Guide

a. For Variable operation, choose Assign value.

b. For Variable name, enter the name of the variable.

c. For Assign value, enter the value such as: $variable.pressureThresholdBreached
+ 3

d. Choose Save.

15. Select the second state untitled_state_1.

16. In the State pane, enter the State name and for On Enter, choose Add event.

17. On the Add OnEnter event page, enter the Event name and Event condition. Choose Add
action.

18. For Choose an action, choose Send SNS message.

a. For SNS topic, enter the target ARN of your Amazon SNS topic.

b. Choose Save.

19. Continue to add the events in the example.

a. For OnInput, choose Add event, and enter and save the following event information.

 Event name: Overpressurized
 Event condition: $input.PressureInput.sensorData.pressure > 70
 Event actions:
 Set variable:
 Variable operation: Assign value
 Variable name: pressureThresholdBreached
 Assign value: 3

b. For OnInput, choose Add event, and enter and save the following event information.

 Event name: Pressure Okay
 Event condition: $input.PressureInput.sensorData.pressure <= 70
 Event actions:
 Set variable:
 Variable operation: Decrement
 Variable name: pressureThresholdBreached

c. For OnExit, choose Add event, and enter and save the following event information using
the ARN of the Amazon SNS topic that you created.

Create a detector model 44

AWS IoT Events Developer Guide

 Event name: Normal Pressure Restored
 Event condition: true
 Event actions:
 Send SNS message:
 Target arn: arn:aws:sns:us-east-1:123456789012:pressureClearedAction

20. Pause on the second state (Dangerous). An arrow appears on the circumference of the state

21. Click and drag the arrow from the second state to the first state. A directed line with label
Untitled appears.

22. Choose the Untitled line and in the Transition event pane, enter an Event name and Event
trigger logic using the following information.

{
 Event name: BackToNormal
 Event trigger logic: $input.PressureInput.sensorData.pressure <= 70 &&
 $variable.pressureThresholdBreached <= 0
}

For more information about why we test for the $input value and the $variable value in
the trigger logic, see the entry for availability of variable values in AWS IoT Events detector
model restrictions and limitations.

23. Select the Start state. By default, this state was created when you created a detector model).
In the Start pane, choose the Destination state (for example, Normal).

24. Next, configure your detector model to listen for inputs. In the upper-right corner, choose
Publish.

25. On the Publish detector model page, do the following.

a. Enter a Detector model name, a Description, and the name of a Role. This role is created
for you.

b. Choose Create a detector for each unique key value. To create and use your own Role,
follow the steps in Setting up permissions for AWS IoT Events and enter it as the Role
here.

26. For Detector creation key, choose the name of one of the attributes of the input you defined
earlier. The attribute that you choose as the detector creation key must be present in each

Create a detector model 45

AWS IoT Events Developer Guide

message input, and must be unique to each device that sends messages. This example uses the
motorid attribute.

27. Choose Save and publish.

Note

The number of unique detectors created for a given detector model is based on the
input messages sent. When a detector model is created, a key is selected from the input
attributes. This key determines which detector instance to use. If the key hasn't been seen
before (for this detector model), a new detector instance is created. If the key has been
seen before, we use the existing detector instance corresponding to this key value.

You can make a backup copy of your detector model definition (in JSON) recreate or update the
detector model or use as a template to create another detector model.

You can do this from the console or by using the following CLI command. If necessary, change the
name of the detector model to match what you used when you published it in the previous step.

aws iotevents describe-detector-model --detector-model-name motorDetectorModel >
 motorDetectorModel.json

This creates a file (motorDetectorModel.json) that has contents similar to the following.

{
 "detectorModel": {
 "detectorModelConfiguration": {
 "status": "ACTIVE",
 "lastUpdateTime": 1552072424.212,
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
 "creationTime": 1552072424.212,
 "detectorModelArn": "arn:aws:iotevents:us-
west-2:123456789012:detectorModel/motorDetectorModel",
 "key": "motorid",
 "detectorModelName": "motorDetectorModel",
 "detectorModelVersion": "1"
 },
 "detectorModelDefinition": {
 "states": [
 {

Create a detector model 46

AWS IoT Events Developer Guide

 "onInput": {
 "transitionEvents": [
 {
 "eventName": "Overpressurized",
 "actions": [
 {
 "setVariable": {
 "variableName":
 "pressureThresholdBreached",
 "value":
 "$variable.pressureThresholdBreached + 3"
 }
 }
],
 "condition": "$input.PressureInput.sensorData.pressure
 > 70",
 "nextState": "Dangerous"
 }
],
 "events": []
 },
 "stateName": "Normal",
 "onEnter": {
 "events": [
 {
 "eventName": "init",
 "actions": [
 {
 "setVariable": {
 "variableName":
 "pressureThresholdBreached",
 "value": "0"
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {

Create a detector model 47

AWS IoT Events Developer Guide

 "onInput": {
 "transitionEvents": [
 {
 "eventName": "Back to Normal",
 "actions": [],
 "condition": "$variable.pressureThresholdBreached <= 1
 && $input.PressureInput.sensorData.pressure <= 70",
 "nextState": "Normal"
 }
],
 "events": [
 {
 "eventName": "Overpressurized",
 "actions": [
 {
 "setVariable": {
 "variableName":
 "pressureThresholdBreached",
 "value": "3"
 }
 }
],
 "condition": "$input.PressureInput.sensorData.pressure
 > 70"
 },
 {
 "eventName": "Pressure Okay",
 "actions": [
 {
 "setVariable": {
 "variableName":
 "pressureThresholdBreached",
 "value":
 "$variable.pressureThresholdBreached - 1"
 }
 }
],
 "condition": "$input.PressureInput.sensorData.pressure
 <= 70"
 }
]
 },
 "stateName": "Dangerous",
 "onEnter": {

Create a detector model 48

AWS IoT Events Developer Guide

 "events": [
 {
 "eventName": "Pressure Threshold Breached",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
west-2:123456789012:MyIoTButtonSNSTopic"
 }
 }
],
 "condition": "$variable.pressureThresholdBreached > 1"
 }
]
 },
 "onExit": {
 "events": [
 {
 "eventName": "Normal Pressure Restored",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
west-2:123456789012:IoTVirtualButtonTopic"
 }
 }
],
 "condition": "true"
 }
]
 }
 }
],
 "initialStateName": "Normal"
 }
 }
}

Send inputs to test the detector model in AWS IoT Events

There are several ways to receive telemetry data in AWS IoT Events (see Supported actions to
receive data and trigger actions in AWS IoT Events). This topic shows you how to create an AWS IoT

Test the detector model 49

AWS IoT Events Developer Guide

rule in the AWS IoT console that forwards messages as inputs to your AWS IoT Events detector. You
can use the AWS IoT console's MQTT client to send test messages. You can use this method to get
telemetry data into AWS IoT Events when your devices are able to send MQTT messages using the
AWS IoT message broker.

To send inputs to test the detector model

1. Open the AWS IoT Core console. In the left navigation pane, under Manage, choose Message
routing, then choose Rules.

2. Choose Create rule in the upper right.

3. On the Create a rule page, complete the following steps:

1. Step 1. Specify rule properties. Complete the following fields:

• Rule name. Enter a name for your rule, such as MyIoTEventsRule.

Note

Do not use spaces.

• Rule description. This is optional.

• Choose Next.

2. Step 2. Configure SQL statement. Complete the following fields:

• SQL version. Select the appropriate option from the list.

• SQL statement. Enter SELECT *, topic(2) as motorid FROM 'motors/+/
status'.

Choose Next.

3. Step 3. Attach rule actions. In the Rule actions section, complete the following:

• Action 1. Select IoT Events. The following fields appear:

a. Input name. Select the appropriate option from the list. If your input doesn't appear,
choose Refresh.

To create a new input, choose Create IoT Events input. Complete the following fields:

• Input name. Enter PressureInput.

• Description. This is optional.

Test the detector model 50

https://console.aws.amazon.com/iot/

AWS IoT Events Developer Guide

• Upload a JSON file. Upload a copy of your JSON file. There is a link to a sample file
on this screen, if you don't have a file. The code includes:

{
 "motorid": "Fulton-A32",
 "sensorData": {
 "pressure": 23,
 "temperature": 47
 }
}

• Choose input attributes. Select the appropriate option(s).

• Tags. This is optional.

Choose Create.

Return to the Create rule screen and refresh the Input name field. Select the input you
just created.

b. Batch mode. This is optional. If the payload is an array of messages, select this option.

c. Message ID. This is optional, but recommended.

d. IAM role. Select the appropriate role from the list. If the role isn't listed, choose Create
new role.

Type a Role name and choose Create.

To add another rule, choose Add rule action

• Error action. This section is optional. To add an action, choose Add error action and
select the appropriate action from the list.

Complete the fields that appear.

• Choose Next.

4. Step 4. Review and create. Review the information on the screen and choose Create.

4. In the left navigation pane, under Test, choose MQTT test client.

5. Choose Publish to a topic. Complete the following fields:

• Topic name. Enter a name to identify the message, such as motors/Fulton-A32/status.

• Message payload. Enter the following:
Test the detector model 51

AWS IoT Events Developer Guide

{
 "messageId": 100,
 "sensorData": {
 "pressure": 39
 }
}

Note

Change the messageId each time you publish a new message.

6. For Publish, keep the topic the same, but change the "pressure" in the payload to a value
greater than the threshold value that you specified in the detector model (such as 85).

7. Choose Publish.

The detector instance that you created generates and sends you an Amazon SNS message.
Continue to send messages with pressure readings above or below the pressure threshold (70 for
this example) to see the detector in operation.

In this example, you must send three messages with pressure readings below the threshold to
transition back to the Normal state and receive an Amazon SNS message that indicates the
overpressure condition has cleared. Once back in the Normal state, one message with a pressure
reading above the limit causes the detector to enter the Dangerous state and send an Amazon SNS
message indicating that condition.

Now that you have created a simple input and detector model, try the following.

• See more detector model examples (templates) on the console.

• Follow the steps in Create an AWS IoT Events detector for two states using CLI to create an input
and detector model using the AWS CLI

• Learn details of the Expressions to filter, transform, and process event data used in events.

• Learn about Supported actions to receive data and trigger actions in AWS IoT Events.

• If something isn't working, see Troubleshooting AWS IoT Events.

Test the detector model 52

AWS IoT Events Developer Guide

Best practices for AWS IoT Events

Follow these best practices to get the maximum benefit from AWS IoT Events.

Topics

• Enable Amazon CloudWatch logging when developing AWS IoT Events detector models

• Publish regularly to save your detector model when working in the AWS IoT Events console

Enable Amazon CloudWatch logging when developing AWS IoT
Events detector models

Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS
in real time. With CloudWatch, you gain system-wide visibility into resource use, application
performance, and operational health. When you develop or debug an AWS IoT Events detector
model, CloudWatch helps you know what AWS IoT Events is doing, and any errors that it
encounters.

To enable CloudWatch

1. If you haven't already, follow the steps in Setting up permissions for AWS IoT Events to create
a role with an attached policy that grants permission to create and manage CloudWatch logs
for AWS IoT Events.

2. Go to the AWS IoT Events console.

3. In the navigation pane, choose Settings.

4. On the Settings page, choose Edit.

5. On the Edit logging options page, in the Logging options section, do the following:

a. For Level of verbosity, select an option.

b. For Select role, select a role with sufficient permissions to perform the logging actions
that you chose.

c. (Optional) If you chose Debug for the Level of verbosity, you can add Debug targets by
doing the following:

i. Under Debug targets, choose Add Model Option.

Enable Amazon CloudWatch logging when developing AWS IoT Events detector models 53

https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

ii. Enter a Detector Model Name and (optional) KeyValue to specify the detector
models and specific detectors (instances) to log.

6. Choose Update.

Your logging options are successfully updated.

Publish regularly to save your detector model when working in
the AWS IoT Events console

When you use the AWS IoT Events console, your work in progress is saved locally in your browser.
However, you must choose Publish to save your detector model to AWS IoT Events. After you
publish a detector model, your published work will become available in any browser that you use
to access your account.

Note

If you don't publish your work, it will not be saved. After you publish a detector model, you
can't change its name. However, you can continue modifying its definition.

Publish regularly to save your detector model when working in the AWS IoT Events console 54

AWS IoT Events Developer Guide

Tutorials for AWS IoT Events uses cases

AWS IoT Events tutorials provide a collection of procedures covering various aspects of AWS IoT
Events, from basic setup to more specific use cases. Each tutorial shows examples of practical
scenarios, helping you build real-world skills in creating detector models, configuring inputs,
setting up actions, and integrating with other AWS services to create powerful IoT solutions.

This chapter shows you how to:

• Get help to decide which states to include in your detector model, and determine whether you
need one detector instance or several.

• Follow an example that uses the AWS CLI.

• Create an input to receive telemetry data from a device and a detector model to monitor and
report on the state of the device that sends that data.

• Review restrictions and limitations on inputs, detector models, and the AWS IoT Events service.

• See a more complex example of a detector model, with comments included.

Topics

• Using AWS IoT Events to monitor your IoT devices

• Create an AWS IoT Events detector for two states using CLI

• AWS IoT Events detector model restrictions and limitations

• A commented example: HVAC temperature control with AWS IoT Events

Using AWS IoT Events to monitor your IoT devices

You can use AWS IoT Events to monitor your devices or processes, and take action based on
significant events. To do so, follow these basic steps:

Create inputs

You must have a way for your devices and processes to get telemetry data into AWS IoT Events.
You do this by sending messages as inputs to AWS IoT Events. You can send messages as inputs
in several ways:

• Use the BatchPutMessage operation.

Using AWS IoT Events to monitor your IoT devices 55

https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

AWS IoT Events Developer Guide

• Define an iotEvents rule‐action for the AWS IoT Core rules engine. The rule‐action forwards
message data from your input into AWS IoT Events.

• In AWS IoT Analytics, use the CreateDataset operation to create a data set with
contentDeliveryRules. These rules specify the AWS IoT Events input where data set
contents are sent automatically.

• Define an iotEvents action in an AWS IoT Events detector model's onInput, onExit or
transitionEvents event. Information about the detector model instance and the event
that initiated the action are fed back into the system as an input with the name that you
specify.

Before your devices start sending data in this way, you must define one or more inputs. To do
so, give each input a name and specify which fields in the incoming message data the input
monitors. AWS IoT Events receives its input, in the form of JSON payload, from many sources.
Each input can be acted on by itself, or combined with other inputs to detect more complex
events.

Create a detector model

Define a detector model (a model of your equipment or process) using states. For each state,
you define conditional (Boolean) logic that evaluates the incoming inputs to detect significant
events. When an event is detected, it can change the state or initiate custom-built or predefined
actions using other AWS services. You can define additional events that initiate actions when
entering or exiting a state and, optionally, when a condition is met.

In this tutorial, you send an Amazon SNS message as the action when the model enters or exits
a certain state.

Monitor a device or process

If you're monitoring several devices or processes, you specify a field in each input that
identifies the particular device or process the input comes from. (See the key field in
CreateDetectorModel.) When a new device is identified (a new value is seen in the input
field identified by the key), a detector is created. (Each detector is an instance of the detector
model.) Then the new detector continues responding to inputs coming from that device until its
detector model is updated or deleted.

If you're monitoring a single process (even if several devices or subprocesses are sending inputs),
you don't specify a unique identifying key field. In this case, a single detector (instance) is
created when the first input arrives.

Using AWS IoT Events to monitor your IoT devices 56

https://docs.aws.amazon.com/iot/latest/developerguide/iotevents-rule-action.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/automate.html#aws-iot-analytics-automate-create-dataset
https://docs.aws.amazon.com/iotevents/latest/apireference/API_IotEventsAction.html

AWS IoT Events Developer Guide

Send messages as inputs to your detector model

There are several ways to send a message from a device or process as an input into an AWS IoT
Events detector that don't require you to perform additional formatting on the message. In this
tutorial, you use the AWS IoT console to write an AWS IoT Events action rule for the AWS IoT
Core rules engine that forwards your message data into AWS IoT Events. To do this, you identify
the input by name. Then you continue to use the AWS IoT console to generate some messages
that are forwarded as inputs to AWS IoT Events.

How do you know which states you need in a detector model?

To determine what states your detector model should have, first decide what actions you can take.
For example, if your automobile runs on gasoline, you look at the fuel gauge when you start a trip
to see if you need to refuel. Here you have one action: tell the driver to "go get gas". Your detector
model needs two states: "car doesn't need fuel", and "car does need fuel". In general, you want to
define one state for each possible action, plus one more for when no action is required. This works
even if the action itself is more complicated. For example, you might want to look up and include
information on where to find the closest gas station, or the cheapest price, but you do this when
you send the message to "go get gas".

To decide which state to enter next, you look at inputs. Inputs contain the information that you
need to decide what state you should be in. To create an input, you select one or more fields in a
message sent by your device or process that help you decide. In this example, you need one input
that tells you the current fuel level ("percent full"). Maybe your car is sending you several different
messages, each with several different fields. To create this input, you must select the message
and the field that reports the current gas gauge level. The length of the trip you are about to take
("distance to destination") can be hardcoded to keep things simple; you can use your average trip
length. You'll do some calculations based on the input (how many gallons does that percent full
translate to? is the average trip length greater than the miles you can travel, given the gallons you
have and your average "miles per gallon"). You perform these calculations and send messages in
events.

So far you have two states and one input. You need an event in the first state that performs the
calculations based on the input and decides whether to go to the second state. That is a transition
event. (transitionEvents are in a state's onInput event list. On receiving an input in this first
state, the event performs a transition to the second state, if the event's condition is met.) When
you reach the second state, you send the message as soon as you enter the state. (You use an
onEnter event. On entering the second state, this event sends the message. No need to wait

How do you know which states you need in a detector model? 57

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule

AWS IoT Events Developer Guide

for another input to arrive.) There are other types of events, but that's all you need for a simple
example.

The other types of events are onExit and onInput. As soon as an input is received, and the
condition is met, an onInput event performs the specified actions. When an operation exits its
current state, and the condition is met, the onExit event performs the specified actions.

Are you missing anything? Yes, how do you get back to the first "car doesn't need fuel" state? After
you fill your gas tank, the input shows a full tank. In your second state you need a transition event
back to the first state that happens when the input is received (in the second state's onInput:
events). It should transition back to the first state if its calculations show you now have enough gas
to get you where you want to go.

That's the basics. Some detector models get more complex by adding states that reflect important
inputs, not just possible actions. For example, you might have three states in a detector model that
keeps track of the temperature: a "normal" state, a "too hot" state, and a "potential problem" state.
You transition to the potential problem state when the temperature rises above a certain level, but
hasn't become too hot yet. You don't want to send an alarm unless it stays at this temperature for
more than 15 minutes. If the temperature returns to normal before then, the detector transitions
back to the normal state. If the timer expires, the detector transitions to the too hot state and
sends an alarm, just to be cautious. You could do the same thing using variables and a more
complex set of event conditions. But often it is easier to use another state to, in effect, store the
results of your calculations.

How do you know if you need one instance of a detector or several?

To decide how many instances you need, ask yourself "What are you interested in knowing?"
Let's say you want to know what the weather is like today. Is it raining (state)? Do you need to
take an umbrella (action)? You can have a sensor that reports the temperature, another that
reports the humidity, and others that report the barometric pressure, wind speed and direction,
and precipitation. But you must monitor all these sensors together to determine the state of the
weather (rain, snow, overcast, sunny) and the appropriate action to take (grab an umbrella or apply
sunscreen). In spite of the number of sensors, you want one detector instance to monitor the state
of the weather and inform you which action to take.

But if you're the weather forecaster for your region, you might have multiple instances of such
sensor arrays, situated at different locations throughout the region. People at each location need
to know what the weather is like in that location. In this case, you need multiple instances of your
detector. The data reported by each sensor in each location must include a field that you have

How do you know if you need one instance of a detector or several? 58

AWS IoT Events Developer Guide

designated as the key field. This field enables AWS IoT Events to create a detector instance for the
area, and then to continue to route this information to that detector instance as it continues to
arrive. No more ruined hair or sunburned noses!

Essentially, you need one detector instance if you have one situation (one process or one location)
to monitor. If you have many situations (locations, processes) to monitor, you need multiple
detector instances.

Create an AWS IoT Events detector for two states using CLI

In this example, we call the AWS IoT Events APIs using AWS CLI commands to create a detector
that models two states of an engine: a normal state and an over-pressure condition.

When the measured pressure in the engine exceeds a certain threshold, the model transitions to
the over-pressure state and sends an Amazon Simple Notification Service (Amazon SNS) message
to alert a technician to the condition. When the pressure drops below the threshold for three
consecutive pressure readings, the model returns to the normal state and sends another Amazon
SNS message as a confirmation that the condition has cleared. We require three consecutive
readings below the pressure threshold to eliminate possible stuttering of over-pressure/normal
messages in case of a nonlinear recovery phase or a one-off anomalous recovery reading.

The following is an overview of the steps to create the detector.

Create inputs.

To monitor your devices and processes, they must have a way to get telemetry data into AWS
IoT Events. This is done by sending messages as inputs to AWS IoT Events. You can do this in
several ways:

• Use the BatchPutMessage operation. This method is easy but requires that your devices or
processes are able to access the AWS IoT Events API through an SDK or the AWS CLI.

• In AWS IoT Core, write an AWS IoT Events action rule for the AWS IoT Core rules engine that
forwards your message data into AWS IoT Events. This identifies the input by name. Use this
method if your devices or processes can, or already are, sending messages through AWS IoT
Core. This method generally requires less computing power from a device.

• In AWS IoT Analytics, use the CreateDataset operation to create a data set with
contentDeliveryRules that specify the AWS IoT Events input, where data set contents are
sent automatically. Use this method if you want to control your devices or processes based on
data aggregated or analyzed in AWS IoT Analytics.

Simple step-by-step example 59

https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#iotevents-rule
https://docs.aws.amazon.com/iotanalytics/latest/userguide/automate.html#aws-iot-analytics-automate-create-dataset

AWS IoT Events Developer Guide

Before your devices can send data in this way, you must define one or more inputs. To do so,
give each input a name and specify which fields in the incoming message data that the input
monitors.

Create a detector model

Create a detector model (a model of your equipment or process) using states. For each state,
define conditional (Boolean) logic that evaluates the incoming inputs to detect significant
events. When an event is detected, it can change the state or initiate custom-built or predefined
actions using other AWS services. You can define additional events that initiate actions when
entering or exiting a state and, optionally, when a condition is met.

Monitor several devices or processes

If you're monitoring several devices or processes and you want to keep track of each of them
separately, specify a field in each input that identifies the particular device or process the input
comes from. See the key field in CreateDetectorModel. When a new device is identified (a
new value is seen in the input field identified by the key), a detector instance is created. The
new detector instance continues to respond to inputs coming from that particular device until
its detector model is updated or deleted. You have as many unique detectors (instances) as
there are unique values in input key fields.

Monitor a single device or process

If you're monitoring a single process (even if several devices or subprocesses are sending inputs),
you don't specify a unique identifying key field. In this case, a single detector (instance) is
created when the first input arrives. For example, you might have temperature sensors in each
room of a house, but only one HVAC unit to heat or cool the entire house. So you can only
control this as a single process, even if each room occupant wants their vote (input) to prevail.

Send messages from your devices or processes as inputs to your detector model

We described the several ways to send a message from a device or process as an input into an
AWS IoT Events detector in inputs. After you created the inputs and build the detector model,
you're ready to start sending data.

Note

When you create a detector model, or update an existing one, it takes several minutes
before the new or updated detector model begins receiving messages and creating

Simple step-by-step example 60

AWS IoT Events Developer Guide

detectors (instances). If the detector model is updated, during this time you might
continue to see behavior based on the previous version.

Topics

• Create an AWS IoT Events input to capture device data

• Create a detector model to represent device states in AWS IoT Events

• Send messages as inputs to a detector in AWS IoT Events

Create an AWS IoT Events input to capture device data

When setting up inputs for AWS IoT Events, you can leverage the AWS CLI to define how your
devices communicate sensor data. For example, if your devices send JSON-formatted messages
with motor identifiers and sensor readings, you can capture this data by creating an input that
maps specific attributes from the messages, such as the pressure and the motor ID. The process
starts by defining an input in a JSON file, specifying the relevant data points, and using the AWS
CLI to register the input for AWS IoT Events. This enables AWS IoT to monitor and respond to
critical conditions based on real-time sensor data.

As an example, suppose your devices send messages with the following format.

{
 "motorid": "Fulton-A32",
 "sensorData": {
 "pressure": 23,
 "temperature": 47
 }
}

You can create an input to capture the pressure data and the motorid (that identifies the
specific device that sent the message) using the following AWS CLI command.

aws iotevents create-input --cli-input-json file://pressureInput.json

The file pressureInput.json contains the following.

{

Create an input to capture device data 61

AWS IoT Events Developer Guide

 "inputName": "PressureInput",
 "inputDescription": "Pressure readings from a motor",
 "inputDefinition": {
 "attributes": [
 { "jsonPath": "sensorData.pressure" },
 { "jsonPath": "motorid" }
]
 }
}

When you create your own inputs, remember to first collect example messages as JSON files from
your devices or processes. You can use them to create an input from the console or the CLI.

Create a detector model to represent device states in AWS IoT Events

In Create an AWS IoT Events input to capture device data, you created an input based on a
message that reports pressure data from a motor. To continue with the example, here is a detector
model that responds to an over-pressure event in a motor.

You create two states: "Normal", and "Dangerous". Each detector (instance) enters the "Normal"
state when it's created. The instance is created when an input with a unique value for the key
"motorid" arrives.

If the detector instance receives a pressure reading of 70 or greater, it enters the "Dangerous"
state and sends an Amazon SNS message as a warning. If the pressure readings return to normal
(less than 70) for three consecutive inputs, the detector returns to the "Normal" state and sends
another Amazon SNS message as an all clear.

This example detector model assumes you have created two Amazon SNS topics whose Amazon
Resource Names (ARNs) are shown in the definition as "targetArn": "arn:aws:sns:us-
east-1:123456789012:underPressureAction" and "targetArn": "arn:aws:sns:us-
east-1:123456789012:pressureClearedAction".

For more information, see the Amazon Simple Notification Service Developer Guide and, more
specifically, the documentation of the CreateTopic operation in the Amazon Simple Notification
Service API Reference.

This example also assumes you have created an AWS Identity and Access Management (IAM) role
with appropriate permissions. The ARN of this role is shown in the detector model definition as
"roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole". Follow the steps in

Create a detector model to represent device states 62

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html

AWS IoT Events Developer Guide

Setting up permissions for AWS IoT Events to create this role and copy the ARN of the role in the
appropriate place in the detector model definition.

You can create the detector model using the following AWS CLI command.

aws iotevents create-detector-model --cli-input-json file://motorDetectorModel.json

The file "motorDetectorModel.json" contains the following.

{
 "detectorModelName": "motorDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "Normal",
 "onEnter": {
 "events": [
 {
 "eventName": "init",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "pressureThresholdBreached",
 "value": "0"
 }
 }
]
 }
]
 },
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "Overpressurized",
 "condition": "$input.PressureInput.sensorData.pressure > 70",
 "actions": [
 {
 "setVariable": {
 "variableName": "pressureThresholdBreached",
 "value": "$variable.pressureThresholdBreached + 3"
 }

Create a detector model to represent device states 63

AWS IoT Events Developer Guide

 }
],
 "nextState": "Dangerous"
 }
]
 }
 },
 {
 "stateName": "Dangerous",
 "onEnter": {
 "events": [
 {
 "eventName": "Pressure Threshold Breached",
 "condition": "$variable.pressureThresholdBreached > 1",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:underPressureAction"
 }
 }
]
 }
]
 },
 "onInput": {
 "events": [
 {
 "eventName": "Overpressurized",
 "condition": "$input.PressureInput.sensorData.pressure > 70",
 "actions": [
 {
 "setVariable": {
 "variableName": "pressureThresholdBreached",
 "value": "3"
 }
 }
]
 },
 {
 "eventName": "Pressure Okay",
 "condition": "$input.PressureInput.sensorData.pressure <= 70",
 "actions": [
 {

Create a detector model to represent device states 64

AWS IoT Events Developer Guide

 "setVariable": {
 "variableName": "pressureThresholdBreached",
 "value": "$variable.pressureThresholdBreached - 1"
 }
 }
]
 }
],
 "transitionEvents": [
 {
 "eventName": "BackToNormal",
 "condition": "$input.PressureInput.sensorData.pressure <= 70 &&
 $variable.pressureThresholdBreached <= 1",
 "nextState": "Normal"
 }
]
 },
 "onExit": {
 "events": [
 {
 "eventName": "Normal Pressure Restored",
 "condition": "true",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:pressureClearedAction"
 }
 }
]
 }
]
 }
 }
],
 "initialStateName": "Normal"
 },
 "key" : "motorid",
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole"
}

Create a detector model to represent device states 65

AWS IoT Events Developer Guide

Send messages as inputs to a detector in AWS IoT Events

You have now defined an input that identifies the important fields in messages sent from a device
(see Create an AWS IoT Events input to capture device data). In the previous section, you created a
detector model that responds to an over-pressure event in a motor (see Create a detector model
to represent device states in AWS IoT Events).

To complete the example, send messages from a device (in this case a computer with the AWS CLI
installed) as inputs to the detector.

Note

When you create a detector model or update an existing one, it takes several minutes
before the new or updated detector model begins to receive messages and create detectors
(instances). If you update the detector model, during this time you might continue to see
behavior based on the previous version.

Use the following AWS CLI command to send a message with data that breaches the threshold.

aws iotevents-data batch-put-message --cli-input-json file://highPressureMessage.json
 --cli-binary-format raw-in-base64-out

The file "highPressureMessage.json" contains the following.

{
 "messages": [
 {
 "messageId": "00001",
 "inputName": "PressureInput",
 "payload": "{\"motorid\": \"Fulton-A32\", \"sensorData\": {\"pressure\": 80,
 \"temperature\": 39} }"
 }
]
}

You must change the messageId in each message sent. If you don't change it, the AWS IoT
Events system deduplicates the messages. AWS IoT Events ignores a message if it has the same
messageID as another message that was sent within the last five minutes.

Send messages as inputs to a detector 66

AWS IoT Events Developer Guide

At this point, a detector (instance) is created to monitor events for the motor "Fulton-A32".
This detector enters the "Normal" state when it's created. But because we sent a pressure
value above the threshold, it immediately transitions to the "Dangerous" state. As it does so,
the detector sends a message to the Amazon SNS endpoint whose ARN is arn:aws:sns:us-
east-1:123456789012:underPressureAction.

Run the following AWS CLI command to send a message with data that is beneath the pressure
threshold.

aws iotevents-data batch-put-message --cli-input-json file://normalPressureMessage.json
 --cli-binary-format raw-in-base64-out

The file normalPressureMessage.json contains the following.

{
 "messages": [
 {
 "messageId": "00002",
 "inputName": "PressureInput",
 "payload": "{\"motorid\": \"Fulton-A32\", \"sensorData\": {\"pressure\": 60,
 \"temperature\": 29} }"
 }
]
}

You must change the messageId in the file each time you invoke the BatchPutMessage
command within a five minute period. Send the message two more times. After
the message is sent three times, the detector (instance) for the motor "Fulton-
A32" sends a message to the Amazon SNS endpoint "arn:aws:sns:us-
east-1:123456789012:pressureClearedAction" and reenters the "Normal" state.

Note

You can send multiple messages at one time with BatchPutMessage. However, the order
in which these messages are processed isn't guaranteed. To guarantee messages (inputs)
are processed in order, send them one at a time and wait for a successful response each
time the API is called.

Send messages as inputs to a detector 67

AWS IoT Events Developer Guide

The following are example SNS message payloads created by the detector model example
described in this section.

on event "Pressure Threshold Breached"

IoT> {
 "eventTime":1558129816420,
 "payload":{
 "actionExecutionId":"5d7444df-a655-3587-a609-dbd7a0f55267",
 "detector":{
 "detectorModelName":"motorDetectorModel",
 "keyValue":"Fulton-A32",
 "detectorModelVersion":"1"
 },
 "eventTriggerDetails":{
 "inputName":"PressureInput",
 "messageId":"00001",
 "triggerType":"Message"
 },
 "state":{
 "stateName":"Dangerous",
 "variables":{
 "pressureThresholdBreached":3
 },
 "timers":{}
 }
 },
 "eventName":"Pressure Threshold Breached"
}

on event "Normal Pressure Restored"

IoT> {
 "eventTime":1558129925568,
 "payload":{
 "actionExecutionId":"7e25fd38-2533-303d-899f-c979792a12cb",
 "detector":{
 "detectorModelName":"motorDetectorModel",
 "keyValue":"Fulton-A32",
 "detectorModelVersion":"1"
 },
 "eventTriggerDetails":{
 "inputName":"PressureInput",

Send messages as inputs to a detector 68

AWS IoT Events Developer Guide

 "messageId":"00004",
 "triggerType":"Message"
 },
 "state":{
 "stateName":"Dangerous",
 "variables":{
 "pressureThresholdBreached":0
 },
 "timers":{}
 }
 },
 "eventName":"Normal Pressure Restored"
}

If you have defined any timers, their current state is also shown in the SNS message payloads.

The message payloads contain information about the state of the detector (instance) at the
time the message was sent (that is, at the time the SNS action was run). You can use the https://
docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_DescribeDetector.html
operation to get similar information about the state of the detector.

AWS IoT Events detector model restrictions and limitations

The following things are important to consider when creating a detector model.

How to use the actions field

The actions field is a list of objects. You can have more than one object, but only one action is
allowed in each object.

Example

 "actions": [
 {
 "setVariable": {
 "variableName": "pressureThresholdBreached",
 "value": "$variable.pressureThresholdBreached - 1"
 }
 }
 {
 "setVariable": {

Detector model restrictions and limitations 69

https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_DescribeDetector.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_DescribeDetector.html

AWS IoT Events Developer Guide

 "variableName": "temperatureIsTooHigh",
 "value": "$variable.temperatureIsTooHigh - 1"
 }
 }
]

How to use the condition field

The condition is required for transitionEvents and is optional in other cases.

If the condition field isn't present, it's equivalent to "condition": true.

The result of the evaluation of a condition expression should be a Boolean value. If the result
isn't a Boolean value, it's equivalent to false and won't initiate the actions or transition to
the nextState specified in the event.

Availability of variable values

By default, if the value of a variable is set in an event, its new value isn't available or used to
evaluate conditions in other events in the same group. The new value isn't available or used in
an event condition in the same onInput, onEnter or onExit field.

Set the evaluationMethod parameter in the detector model definition to change this
behavior. When the evaluationMethod is set to SERIAL, variables are updated and event
conditions are evaluated in the order that the events are defined. Otherwise, when the
evaluationMethod is set to BATCH or defaults to it, variables within a state are updated and
events within a state are performed only after all event conditions are evaluated.

In the "Dangerous" state, in the onInput field,
"$variable.pressureThresholdBreached" is decremented by one in the "Pressure
Okay" event when the condition is met (when the current input has pressure less than or equal
to 70).

 {
 "eventName": "Pressure Okay",
 "condition": "$input.PressureInput.sensorData.pressure <= 70",
 "actions": [
 {
 "setVariable": {
 "variableName": "pressureThresholdBreached",
 "value": "$variable.pressureThresholdBreached - 1"
 }

Detector model restrictions and limitations 70

AWS IoT Events Developer Guide

 }
]
 }

The detector should transition back to the "Normal" state when
"$variable.pressureThresholdBreached" reaches 0 (that is, when the detector has
received three contiguous pressure readings less than or equal to 70). The "BackToNormal"
event in transitionEvents must test that "$variable.pressureThresholdBreached"
is less than or equal to 1 (not 0), and also verify again that the current value given by
"$input.PressureInput.sensorData.pressure" is less than or equal to 70.

 "transitionEvents": [
 {
 "eventName": "BackToNormal",
 "condition": "$input.PressureInput.sensorData.pressure <= 70 &&
 $variable.pressureThresholdBreached <= 1",
 "nextState": "Normal"
 }
]

Otherwise, if the condition tests for only the value of the variable, two normal
readings followed by an over-pressure reading would fulfill the condition and
transition back to the "Normal" state. The condition is looking at the value that
"$variable.pressureThresholdBreached" was given during the previous time an input
was processed. The value of the variable is reset to 3 in the "Overpressurized" event, but
remember that this new value is not yet available to any condition.

By default, every time a control enters the onInput field, a condition can only see the
value of a variable as it was at the start of processing the input, before it's changed by any
actions specified in onInput. The same is true for onEnter and onExit. Any change made to a
variable when we enter or exit the state isn't available to other conditions specified in the same
onEnter or onExit fields.

Latency when updating a detector model

If you update, delete, and recreate a detector model (see UpdateDetectorModel), there is
some delay before all spawned detectors (instances) are deleted and the new model is used to
recreate the detectors. They are recreated after the new detector model takes effect and new
inputs arrive. During this time inputs might continue to be processed by the detectors spawned

Detector model restrictions and limitations 71

https://docs.aws.amazon.com/iotevents/latest/apireference/API_UpdateDetectorModel.html

AWS IoT Events Developer Guide

by the previous version of the detector model. During this period, you might continue to receive
alerts defined by the previous detector model.

Spaces in input keys

Spaces are allowed in input keys, but references to the key must be enclosed in backticks,
both in the definition of the input attribute and when the value of the key is referenced in an
expression. For example, given a message payload like the following:

{
 "motor id": "A32",
 "sensorData" {
 "motor pressure": 56,
 "motor temperature": 39
 }
}

Use the following to define the input.

{
 "inputName": "PressureInput",
 "inputDescription": "Pressure readings from a motor",
 "inputDefinition": {
 "attributes": [
 { "jsonPath": "sensorData.`motor pressure`" },
 { "jsonPath": "`motor id`" }
]
 }
}

In a conditional expression, you must refer to the value of any such key using backticks also.

$input.PressureInput.sensorData.`motor pressure`

A commented example: HVAC temperature control with AWS
IoT Events

Some of the following example JSON files have comments inline, which makes them invalid JSON.
Complete versions of these examples, without comments, are available at Example: Using HVAC
temperature control with AWS IoT Events.

A commented example: HVAC temperature control 72

AWS IoT Events Developer Guide

This example implements a thermostat control model that gives you the ability to do the
following.

• Define just one detector model that can be used to monitor and control multiple areas. A
detector instance is created for each area.

• Ingest temperature data from multiple sensors in each control area.

• Change the temperature set point for an area.

• Set operational parameters for each area and reset these parameters while the instance is in use.

• Dynamically add or delete sensors from an area.

• Specify a minimum runtime to protect heating and cooling units.

• Reject anomalous sensor readings.

• Define emergency set points that immediately engage heating or cooling if any one sensor
reports a temperature above or below a given threshold.

• Report anomalous readings and temperature spikes.

Topics

• Input definitions for detector models in AWS IoT Events

• Create an AWS IoT Events detector model definition

• Use BatchUpdateDetector to update an AWS IoT Events detector model

• Use BatchPutMessage for inputs in AWS IoT Events

• Ingest MQTT messages in AWS IoT Events

• Generate Amazon SNS messages in AWS IoT Events

• Configure the DescribeDetector API in AWS IoT Events

• Use the AWS IoT Core rules engine for AWS IoT Events

Input definitions for detector models in AWS IoT Events

We want to create one detector model that we can use to monitor and control the temperature in
several different areas. Each area can have several sensors that report the temperature. We assume
each area is served by one heating unit and one cooling unit that can be turned on or off to control
the temperature in the area. Each area is controlled by one detector instance.

Because the different areas we monitor and control might have different characteristics that
demand different control parameters, we define the 'seedTemperatureInput' to provide those

Input definitions for detector models 73

AWS IoT Events Developer Guide

parameters for each area. When we send one of these input messages to AWS IoT Events, a new
detector model instance is created that has the parameters we want to use in that area. Here's the
definition of that input.

CLI command:

aws iotevents create-input --cli-input-json file://seedInput.json

File: seedInput.json

{
 "inputName": "seedTemperatureInput",
 "inputDescription": "Temperature seed values.",
 "inputDefinition": {
 "attributes": [
 { "jsonPath": "areaId" },
 { "jsonPath": "desiredTemperature" },
 { "jsonPath": "allowedError" },
 { "jsonPath": "rangeHigh" },
 { "jsonPath": "rangeLow" },
 { "jsonPath": "anomalousHigh" },
 { "jsonPath": "anomalousLow" },
 { "jsonPath": "sensorCount" },
 { "jsonPath": "noDelay" }
]
 }
}

Response:

{
 "inputConfiguration": {
 "status": "ACTIVE",
 "inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/
seedTemperatureInput",
 "lastUpdateTime": 1557519620.736,
 "creationTime": 1557519620.736,
 "inputName": "seedTemperatureInput",
 "inputDescription": "Temperature seed values."
 }
}

Input definitions for detector models 74

AWS IoT Events Developer Guide

Notes

• A new detector instance is created for each unique 'areaId' received in any message. See the
'key' field in the 'areaDetectorModel' definition.

• The average temperature can vary from the 'desiredTemperature' by the 'allowedError'
before the heating or cooling units are activated for the area.

• If any sensor reports a temperature above the 'rangeHigh', the detector reports a spike and
immediately starts the cooling unit.

• If any sensor reports a temperature below the 'rangeLow', the detector reports a spike and
immediately starts the heating unit.

• If any sensor reports a temperature above the 'anomalousHigh' or below the
'anomalousLow', the detector reports an anomalous sensor reading, but ignores the reported
temperature reading.

• The 'sensorCount' tells the detector how many sensors are reporting for the area. The
detector calculates the average temperature in the area by giving the appropriate weight factor
to each temperature reading it receives. Because of this, the detector won't have to keep track
of what each sensor reports, and the number of sensors can be changed dynamically, as needed.
However, if an individual sensor goes offline, the detector won't know this or make allowances
for it. We recommend that you create another detector model specifically for monitoring the
connection status of each sensor. Having two complementary detector models simplifies the
design of both.

• The 'noDelay' value can be true or false. After a heating or cooling unit is turned on, it
should remain on for a certain minimum time to protect the integrity of the unit and lengthen
its operating life. If 'noDelay' is set to false, the detector instance enforces a delay before it
turns off the cooling and heating units, to ensure that they are run for the minimum time. The
number of seconds of delay has been hardcoded in the detector model definition because we are
unable to use a variable value to set a timer.

The 'temperatureInput' is used to transmit sensor data to a detector instance.

CLI command:

aws iotevents create-input --cli-input-json file://temperatureInput.json

File: temperatureInput.json

Input definitions for detector models 75

AWS IoT Events Developer Guide

{
 "inputName": "temperatureInput",
 "inputDescription": "Temperature sensor unit data.",
 "inputDefinition": {
 "attributes": [
 { "jsonPath": "sensorId" },
 { "jsonPath": "areaId" },
 { "jsonPath": "sensorData.temperature" }
]
 }
}

Response:

{
 "inputConfiguration": {
 "status": "ACTIVE",
 "inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/temperatureInput",
 "lastUpdateTime": 1557519707.399,
 "creationTime": 1557519707.399,
 "inputName": "temperatureInput",
 "inputDescription": "Temperature sensor unit data."
 }
}

Notes

• The 'sensorId' isn't used by an example detector instance to control or monitor a sensor
directly. It's automatically passed into notifications sent by the detector instance. From there, it
can be used to identify the sensors that are failing (for example, a sensor that regularly sends
anomalous readings might be about to fail), or that have gone offline (when it's used as an input
to an additional detector model that monitors the device's heartbeat). The 'sensorId' can also
help identify warm or cold zones in an area if its readings regularly differ from the average.

• The 'areaId' is used to route the sensor's data to the appropriate detector instance. A detector
instance is created for each unique 'areaId' received in any message. See the 'key' field in
the 'areaDetectorModel' definition.

Input definitions for detector models 76

AWS IoT Events Developer Guide

Create an AWS IoT Events detector model definition

The 'areaDetectorModel' example has comments inline.

CLI command:

aws iotevents create-detector-model --cli-input-json file://areaDetectorModel.json

File: areaDetectorModel.json

{
 "detectorModelName": "areaDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "start",
 // In the 'start' state we set up the operation parameters of the new detector
 instance.
 // We get here when the first input message arrives. If that is a
 'seedTemperatureInput'
 // message, we save the operation parameters, then transition to the 'idle'
 state. If
 // the first message is a 'temperatureInput', we wait here until we get a
 // 'seedTemperatureInput' input to ensure our operation parameters are set.
 We can
 // also reenter this state using the 'BatchUpdateDetector' API. This enables
 us to
 // reset the operation parameters without needing to delete the detector
 instance.
 "onEnter": {
 "events": [
 {
 "eventName": "prepare",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 // initialize 'sensorId' to an invalid value (0) until an actual
 sensor reading
 // arrives
 "variableName": "sensorId",
 "value": "0"

Create a detector model definition 77

AWS IoT Events Developer Guide

 }
 },
 {
 "setVariable": {
 // initialize 'reportedTemperature' to an invalid value (0.1) until
 an actual
 // sensor reading arrives
 "variableName": "reportedTemperature",
 "value": "0.1"
 }
 },
 {
 "setVariable": {
 // When using 'BatchUpdateDetector' to re-enter this state, this
 variable should
 // be set to true.
 "variableName": "resetMe",
 "value": "false"
 }
 }
]
 }
]
 },
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "initialize",
 "condition": "$input.seedTemperatureInput.sensorCount > 0",
 // When a 'seedTemperatureInput' message with a valid 'sensorCount' is
 received,
 // we use it to set the operational parameters for the area to be
 monitored.
 "actions": [
 {
 "setVariable": {
 "variableName": "rangeHigh",
 "value": "$input.seedTemperatureInput.rangeHigh"
 }
 },
 {
 "setVariable": {
 "variableName": "rangeLow",
 "value": "$input.seedTemperatureInput.rangeLow"

Create a detector model definition 78

AWS IoT Events Developer Guide

 }
 },
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 },
 {
 "setVariable": {
 // Assume we're at the desired temperature when we start.
 "variableName": "averageTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 },
 {
 "setVariable": {
 "variableName": "allowedError",
 "value": "$input.seedTemperatureInput.allowedError"
 }
 },
 {
 "setVariable": {
 "variableName": "anomalousHigh",
 "value": "$input.seedTemperatureInput.anomalousHigh"
 }
 },
 {
 "setVariable": {
 "variableName": "anomalousLow",
 "value": "$input.seedTemperatureInput.anomalousLow"
 }
 },
 {
 "setVariable": {
 "variableName": "sensorCount",
 "value": "$input.seedTemperatureInput.sensorCount"
 }
 },
 {
 "setVariable": {
 "variableName": "noDelay",
 "value": "$input.seedTemperatureInput.noDelay == true"
 }

Create a detector model definition 79

AWS IoT Events Developer Guide

 }
],
 "nextState": "idle"
 },
 {
 "eventName": "reset",
 "condition": "($variable.resetMe == true) &&
 ($input.temperatureInput.sensorData.temperature < $variable.anomalousHigh &&
 $input.temperatureInput.sensorData.temperature > $variable.anomalousLow)",
 // This event is triggered if we have reentered the 'start' state using
 the
 // 'BatchUpdateDetector' API with 'resetMe' set to true. When we
 reenter using
 // 'BatchUpdateDetector' we do not automatically continue to the 'idle'
 state, but
 // wait in 'start' until the next input message arrives. This event
 enables us to
 // transition to 'idle' on the next valid 'temperatureInput' message
 that arrives.
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
],
 "nextState": "idle"
 }
]
 },
 "onExit": {
 "events": [
 {
 "eventName": "resetHeatCool",
 "condition": "true",
 // Make sure the heating and cooling units are off before entering
 'idle'.
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
 }

Create a detector model definition 80

AWS IoT Events Developer Guide

 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOff"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/Off"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/Off"
 }
 }
]
 }
]
 }
 },

 {
 "stateName": "idle",
 "onInput": {
 "events": [
 {
 "eventName": "whatWasInput",
 "condition": "true",
 // By storing the 'sensorId' and the 'temperature' in variables, we make
 them
 // available in any messages we send out to report anomalies, spikes,
 or just
 // if needed for debugging.
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "$input.temperatureInput.sensorId"
 }
 },
 {
 "setVariable": {

Create a detector model definition 81

AWS IoT Events Developer Guide

 "variableName": "reportedTemperature",
 "value": "$input.temperatureInput.sensorData.temperature"
 }
 }
]
 },
 {
 "eventName": "changeDesired",
 "condition": "$input.seedTemperatureInput.desiredTemperature !=
 $variable.desiredTemperature",
 // This event enables us to change the desired temperature at any time by
 sending a
 // 'seedTemperatureInput' message. But note that other operational
 parameters are not
 // read or changed.
 "actions": [
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 }
]
 },
 {
 "eventName": "calculateAverage",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
 $variable.anomalousLow",
 // If a valid temperature reading arrives, we use it to update the
 average temperature.
 // For simplicity, we assume our sensors will be sending updates at
 about the same rate,
 // so we can calculate an approximate average by giving equal weight to
 each reading we receive.
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
]

Create a detector model definition 82

AWS IoT Events Developer Guide

 }
],
 "transitionEvents": [
 {
 "eventName": "anomalousInputArrived",
 "condition": "$input.temperatureInput.sensorData.temperature >=
 $variable.anomalousHigh || $input.temperatureInput.sensorData.temperature <=
 $variable.anomalousLow",
 // When an anomalous reading arrives, send an MQTT message, but stay in
 the current state.
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/anomaly"
 }
 }
],
 "nextState": "idle"
 },

 {
 "eventName": "highTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature >
 $variable.rangeHigh",
 // When even a single temperature reading arrives that is above the
 'rangeHigh', take
 // emergency action to begin cooling, and report a high temperature
 spike.
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/On"
 }
 },

Create a detector model definition 83

AWS IoT Events Developer Guide

 {
 "setVariable": {
 // This is necessary because we want to set a timer to delay the
 shutoff
 // of a cooling/heating unit, but we only want to set the timer
 when we
 // enter that new state initially.
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.rangeLow",
 // When even a single temperature reading arrives that is below the
 'rangeLow', take
 // emergency action to begin heating, and report a low-temperature
 spike.
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }

Create a detector model definition 84

AWS IoT Events Developer Guide

 }
],
 "nextState": "heating"
 },

 {
 "eventName": "highTemperatureThreshold",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) >
 ($variable.desiredTemperature + $variable.allowedError))",
 // When the average temperature is above the desired temperature plus the
 allowed error factor,
 // it is time to start cooling. Note that we calculate the average
 temperature here again
 // because the value stored in the 'averageTemperature' variable is not
 yet available for use
 // in our condition.
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureThreshold",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) <
 ($variable.desiredTemperature - $variable.allowedError))",

Create a detector model definition 85

AWS IoT Events Developer Guide

 // When the average temperature is below the desired temperature minus
 the allowed error factor,
 // it is time to start heating. Note that we calculate the average
 temperature here again
 // because the value stored in the 'averageTemperature' variable is not
 yet available for use
 // in our condition.
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "heating"
 }
]
 }
 },

 {
 "stateName": "cooling",
 "onEnter": {
 "events": [
 {
 "eventName": "delay",
 "condition": "!$variable.noDelay && $variable.enteringNewState",
 // If the operational parameters specify that there should be a minimum
 time that the
 // heating and cooling units should be run before being shut off again,
 we set
 // a timer to ensure the proper operation here.

Create a detector model definition 86

AWS IoT Events Developer Guide

 "actions": [
 {
 "setTimer": {
 "timerName": "coolingTimer",
 "seconds": 180
 }
 },
 {
 "setVariable": {
 // We use this 'goodToGo' variable to store the status of the timer
 expiration
 // for use in conditions that also use input variable values. If
 // 'timeout()' is used in such mixed conditionals, its value is
 lost.
 "variableName": "goodToGo",
 "value": "false"
 }
 }
]
 },
 {
 "eventName": "dontDelay",
 "condition": "$variable.noDelay == true",
 // If the heating/cooling unit shutoff delay is not used, no need to
 wait.
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 },
 {
 "eventName": "beenHere",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "false"
 }
 }

Create a detector model definition 87

AWS IoT Events Developer Guide

]
 }
]
 },

 "onInput": {
 "events": [
 // These are events that occur when an input is received (if the condition
 is
 // satisfied), but don't cause a transition to another state.
 {
 "eventName": "whatWasInput",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "$input.temperatureInput.sensorId"
 }
 },
 {
 "setVariable": {
 "variableName": "reportedTemperature",
 "value": "$input.temperatureInput.sensorData.temperature"
 }
 }
]
 },
 {
 "eventName": "changeDesired",
 "condition": "$input.seedTemperatureInput.desiredTemperature !=
 $variable.desiredTemperature",
 "actions": [
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 }
]
 },
 {
 "eventName": "calculateAverage",

Create a detector model definition 88

AWS IoT Events Developer Guide

 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
 $variable.anomalousLow",
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
]
 },
 {
 "eventName": "areWeThereYet",
 "condition": "(timeout(\"coolingTimer\"))",
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 }
],
 "transitionEvents": [
 // Note that some tests of temperature values (for example, the test for an
 anomalous value)
 // must be placed here in the 'transitionEvents' because they work
 together with the tests
 // in the other conditions to ensure that we implement the proper
 "if..elseif..else" logic.
 // But each transition event must have a destination state ('nextState'),
 and even if that
 // is actually the current state, the "onEnter" events for this state
 will be executed again.
 // This is the reason for the 'enteringNewState' variable and related.
 {
 "eventName": "anomalousInputArrived",
 "condition": "$input.temperatureInput.sensorData.temperature >=
 $variable.anomalousHigh || $input.temperatureInput.sensorData.temperature <=
 $variable.anomalousLow",
 "actions": [

Create a detector model definition 89

AWS IoT Events Developer Guide

 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/anomaly"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "highTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature >
 $variable.rangeHigh",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.rangeLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOff"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
 }
 },
 {

Create a detector model definition 90

AWS IoT Events Developer Guide

 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/Off"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "heating"
 },

 {
 "eventName": "desiredTemperature",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) <=
 ($variable.desiredTemperature - $variable.allowedError)) && $variable.goodToGo ==
 true",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOff"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/Off"
 }
 }
],
 "nextState": "idle"
 }
]
 }
 },

Create a detector model definition 91

AWS IoT Events Developer Guide

 {
 "stateName": "heating",
 "onEnter": {
 "events": [
 {
 "eventName": "delay",
 "condition": "!$variable.noDelay && $variable.enteringNewState",
 "actions": [
 {
 "setTimer": {
 "timerName": "heatingTimer",
 "seconds": 120
 }
 },
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "false"
 }
 }
]
 },
 {
 "eventName": "dontDelay",
 "condition": "$variable.noDelay == true",
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 },
 {
 "eventName": "beenHere",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "false"
 }
 }

Create a detector model definition 92

AWS IoT Events Developer Guide

]
 }
]
 },

 "onInput": {
 "events": [
 {
 "eventName": "whatWasInput",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "$input.temperatureInput.sensorId"
 }
 },
 {
 "setVariable": {
 "variableName": "reportedTemperature",
 "value": "$input.temperatureInput.sensorData.temperature"
 }
 }
]
 },
 {
 "eventName": "changeDesired",
 "condition": "$input.seedTemperatureInput.desiredTemperature !=
 $variable.desiredTemperature",
 "actions": [
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 }
]
 },
 {
 "eventName": "calculateAverage",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
 $variable.anomalousLow",
 "actions": [

Create a detector model definition 93

AWS IoT Events Developer Guide

 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
]
 },
 {
 "eventName": "areWeThereYet",
 "condition": "(timeout(\"heatingTimer\"))",
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 }
],
 "transitionEvents": [
 {
 "eventName": "anomalousInputArrived",
 "condition": "$input.temperatureInput.sensorData.temperature >=
 $variable.anomalousHigh || $input.temperatureInput.sensorData.temperature <=
 $variable.anomalousLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/anomaly"
 }
 }
],
 "nextState": "heating"
 },

 {
 "eventName": "highTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature >
 $variable.rangeHigh",
 "actions": [
 {

Create a detector model definition 94

AWS IoT Events Developer Guide

 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/Off"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.rangeLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 }

Create a detector model definition 95

AWS IoT Events Developer Guide

],
 "nextState": "heating"
 },

 {
 "eventName": "desiredTemperature",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) >=
 ($variable.desiredTemperature + $variable.allowedError)) && $variable.goodToGo ==
 true",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/Off"
 }
 }
],
 "nextState": "idle"
 }
]
 }
 }

],

 "initialStateName": "start"
 },
 "key": "areaId",
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole"
}

Response:

{
 "detectorModelConfiguration": {
 "status": "ACTIVATING",
 "lastUpdateTime": 1557523491.168,
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",

Create a detector model definition 96

AWS IoT Events Developer Guide

 "creationTime": 1557523491.168,
 "detectorModelArn": "arn:aws:iotevents:us-west-2:123456789012:detectorModel/
areaDetectorModel",
 "key": "areaId",
 "detectorModelName": "areaDetectorModel",
 "detectorModelVersion": "1"
 }
}

Use BatchUpdateDetector to update an AWS IoT Events detector model

You can use the BatchUpdateDetector operation to put a detector instance into a known
state, including timer and variable values. In the following example, the BatchUpdateDetector
operation resets operational parameters for an area that is under temperature monitoring and
control. This operation enables you to do this without having to delete, and recreate, or update the
detector model.

CLI command:

aws iotevents-data batch-update-detector --cli-input-json file://areaDM.BUD.json

File: areaDM.BUD.json

{
 "detectors": [
 {
 "messageId": "0001",
 "detectorModelName": "areaDetectorModel",
 "keyValue": "Area51",
 "state": {
 "stateName": "start",
 "variables": [
 {
 "name": "desiredTemperature",
 "value": "22"
 },
 {
 "name": "averageTemperature",
 "value": "22"
 },
 {

Use BatchUpdateDetector 97

AWS IoT Events Developer Guide

 "name": "allowedError",
 "value": "1.0"
 },
 {
 "name": "rangeHigh",
 "value": "30.0"
 },
 {
 "name": "rangeLow",
 "value": "15.0"
 },
 {
 "name": "anomalousHigh",
 "value": "60.0"
 },
 {
 "name": "anomalousLow",
 "value": "0.0"
 },
 {
 "name": "sensorCount",
 "value": "12"
 },
 {
 "name": "noDelay",
 "value": "true"
 },
 {
 "name": "goodToGo",
 "value": "true"
 },
 {
 "name": "sensorId",
 "value": "0"
 },
 {
 "name": "reportedTemperature",
 "value": "0.1"
 },
 {
 "name": "resetMe",
 // When 'resetMe' is true, our detector model knows that we have reentered
 the 'start' state

Use BatchUpdateDetector 98

AWS IoT Events Developer Guide

 // to reset operational parameters, and will allow the next valid
 temperature sensor
 // reading to cause the transition to the 'idle' state.
 "value": "true"
 }
],
 "timers": [
]
 }
 }
]
}

Response:

{
 "batchUpdateDetectorErrorEntries": []
}

Use BatchPutMessage for inputs in AWS IoT Events

Example 1

Use the BatchPutMessage operation to send a "seedTemperatureInput" message that sets
the operational parameters for a given area under temperature control and monitoring. Any
message received by AWS IoT Events that has a new "areaId" causes a new detector instance to
be created. But the new detector instance won't change state to "idle" and begin monitoring the
temperature and controlling heating or cooling units until a "seedTemperatureInput" message
is received for the new area.

CLI command:

aws iotevents-data batch-put-message --cli-input-json file://seedExample.json --cli-
binary-format raw-in-base64-out

File: seedExample.json

{
 "messages": [

Use BatchPutMessage for inputs 99

AWS IoT Events Developer Guide

 {
 "messageId": "00001",
 "inputName": "seedTemperatureInput",
 "payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 20.0, \"allowedError
\": 0.7, \"rangeHigh\": 30.0, \"rangeLow\": 15.0, \"anomalousHigh\": 60.0,
 \"anomalousLow\": 0.0, \"sensorCount\": 10, \"noDelay\": false}"
 }
]
}

Response:

{
 "BatchPutMessageErrorEntries": []
}

Example

2

Use the BatchPutMessage operation to send a "temperatureInput" message to report
temperature sensor data for a sensor in a given control and monitoring area.

CLI command:

aws iotevents-data batch-put-message --cli-input-json file://temperatureExample.json --
cli-binary-format raw-in-base64-out

File: temperatureExample.json

{
 "messages": [
 {
 "messageId": "00005",
 "inputName": "temperatureInput",
 "payload": "{\"sensorId\": \"05\", \"areaId\": \"Area51\", \"sensorData\":
 {\"temperature\": 23.12} }"
 }
]
}

Use BatchPutMessage for inputs 100

AWS IoT Events Developer Guide

Response:

{
 "BatchPutMessageErrorEntries": []
}

Example 3

Use the BatchPutMessage operation to send a "seedTemperatureInput" message to change
the value of the desired temperature for a given area.

CLI command:

aws iotevents-data batch-put-message --cli-input-json file://seedSetDesiredTemp.json --
cli-binary-format raw-in-base64-out

File: seedSetDesiredTemp.json

{
 "messages": [
 {
 "messageId": "00001",
 "inputName": "seedTemperatureInput",
 "payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 23.0}"
 }
]
}

Response:

{
 "BatchPutMessageErrorEntries": []
}

Ingest MQTT messages in AWS IoT Events

If your sensor computing resources can't use the "BatchPutMessage" API, but can send their
data to the AWS IoT Core message broker using a lightweight MQTT client, you can create an
AWS IoT Core topic rule to redirect message data to an AWS IoT Events input. The following is a

Ingest MQTT messages 101

AWS IoT Events Developer Guide

definition of an AWS IoT Events topic rule that takes the "areaId" and "sensorId" input fields
from the MQTT topic, and the "sensorData.temperature" field from the message payload
"temp" field, and ingests this data into our AWS IoT Events "temperatureInput".

CLI command:

aws iot create-topic-rule --cli-input-json file://temperatureTopicRule.json

File: seedSetDesiredTemp.json

{
 "ruleName": "temperatureTopicRule",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as areaId, topic(4) as sensorId, temp as
 sensorData.temperature FROM 'update/temperature/#'",
 "description": "Ingest temperature sensor messages into IoT Events",
 "actions": [
 {
 "iotEvents": {
 "inputName": "temperatureInput",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/anotheRole"
 }
 }
],
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23"
 }
}

Response: [none]

If the sensor sends a message on the topic "update/temperature/Area51/03" with the
following payload.

{ "temp": 24.5 }

This results in data being ingested into AWS IoT Events as if the following "BatchPutMessage"
API call had been made.

Ingest MQTT messages 102

AWS IoT Events Developer Guide

aws iotevents-data batch-put-message --cli-input-json file://spoofExample.json --cli-
binary-format raw-in-base64-out

File: spoofExample.json

{
 "messages": [
 {
 "messageId": "54321",
 "inputName": "temperatureInput",
 "payload": "{\"sensorId\": \"03\", \"areaId\": \"Area51\", \"sensorData\":
 {\"temperature\": 24.5} }"
 }
]
}

Generate Amazon SNS messages in AWS IoT Events

The following are examples of SNS messages generated by the "Area51" detector instance.

AWS IoT Events can integrate with Amazon SNS to generate and publish notifications based on
detected events. This section demonstrates how an AWS IoT Events detector instance, specifically
the "Area51" detector, generates Amazon SNS messages. These examples showcase the structure
and content of Amazon SNS notifications triggered by various states and events within the AWS
IoT Events detector, illustrating the power of combining AWS IoT Events with Amazon SNS for real-
time alerting and communication.

Heating system off command> {
 "eventTime":1557520274729,
 "payload":{
 "actionExecutionId":"f3159081-bac3-38a4-96f7-74af0940d0a4",
 "detector":{

 "detectorModelName":"areaDetectorModel","keyValue":"Area51","detectorModelVersion":"1"},"eventTriggerDetails":
{"inputName":"seedTemperatureInput","messageId":"00001","triggerType":"Message"},"state":
{"stateName":"start","variables":
{"sensorCount":10,"rangeHigh":30.0,"resetMe":false,"enteringNewState":true,"averageTemperature":20.0,"rangeLow":15.0,"noDelay":false,"allowedError":0.7,"desiredTemperature":20.0,"anomalousHigh":60.0,"reportedTemperature":0.1,"anomalousLow":0.0,"sensorId":0},"timers":
{}}},"eventName":"resetHeatCool"}

Generate Amazon SNS messages 103

AWS IoT Events Developer Guide

Cooling system off command> {"eventTime":1557520274729,"payload":
{"actionExecutionId":"98f6a1b5-8f40-3cdb-9256-93afd4d66192","detector":
{"detectorModelName":"areaDetectorModel","keyValue":"Area51","detectorModelVersion":"1"},"eventTriggerDetails":
{"inputName":"seedTemperatureInput","messageId":"00001","triggerType":"Message"},"state":
{"stateName":"start","variables":
{"sensorCount":10,"rangeHigh":30.0,"resetMe":false,"enteringNewState":true,"averageTemperature":20.0,"rangeLow":15.0,"noDelay":false,"allowedError":0.7,"desiredTemperature":20.0,"anomalousHigh":60.0,"reportedTemperature":0.1,"anomalousLow":0.0,"sensorId":0},"timers":
{}}},"eventName":"resetHeatCool"}

Configure the DescribeDetector API in AWS IoT Events

The DescribeDetector API in AWS IoT Events lets you to retrieve detailed information about a
specific detector instance. This operation provides insights into the current state, variable values,
and active timers of a detector. By using this API, you can monitor the real-time status of your
AWS IoT Events detectors, facilitating debugging, analysis, and management of your IoT event
processing workflows.

CLI command:

aws iotevents-data describe-detector --detector-model-name areaDetectorModel --key-
value Area51

Response:

{
 "detector": {
 "lastUpdateTime": 1557521572.216,
 "creationTime": 1557520274.405,
 "state": {
 "variables": [
 {
 "name": "resetMe",
 "value": "false"
 },
 {
 "name": "rangeLow",
 "value": "15.0"
 },
 {
 "name": "noDelay",
 "value": "false"
 },

Configure the DescribeDetector API 104

AWS IoT Events Developer Guide

 {
 "name": "desiredTemperature",
 "value": "20.0"
 },
 {
 "name": "anomalousLow",
 "value": "0.0"
 },
 {
 "name": "sensorId",
 "value": "\"01\""
 },
 {
 "name": "sensorCount",
 "value": "10"
 },
 {
 "name": "rangeHigh",
 "value": "30.0"
 },
 {
 "name": "enteringNewState",
 "value": "false"
 },
 {
 "name": "averageTemperature",
 "value": "19.572"
 },
 {
 "name": "allowedError",
 "value": "0.7"
 },
 {
 "name": "anomalousHigh",
 "value": "60.0"
 },
 {
 "name": "reportedTemperature",
 "value": "15.72"
 },
 {
 "name": "goodToGo",
 "value": "false"
 }

Configure the DescribeDetector API 105

AWS IoT Events Developer Guide

],
 "stateName": "idle",
 "timers": [
 {
 "timestamp": 1557520454.0,
 "name": "idleTimer"
 }
]
 },
 "keyValue": "Area51",
 "detectorModelName": "areaDetectorModel",
 "detectorModelVersion": "1"
 }
}

Use the AWS IoT Core rules engine for AWS IoT Events

The following rules republish AWS IoT Core MQTT messages as shadow update request messages.
We assume that AWS IoT Core things are defined for a heating unit and a cooling unit for each
area that is controlled by the detector model. In this example, we have defined things named
"Area51HeatingUnit" and "Area51CoolingUnit".

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOffRule.json

File: ADMShadowCoolOffRule.json

{
 "ruleName": "ADMShadowCoolOff",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/Off'",
 "description": "areaDetectorModel mqtt topic publish to cooling unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",

Use the AWS IoT Core rules engine 106

AWS IoT Events Developer Guide

 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

Response: [empty]

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOnRule.json

File: ADMShadowCoolOnRule.json

{
 "ruleName": "ADMShadowCoolOn",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/On'",
 "description": "areaDetectorModel mqtt topic publish to cooling unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

Response: [empty]

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOffRule.json

Use the AWS IoT Core rules engine 107

AWS IoT Events Developer Guide

File: ADMShadowHeatOffRule.json

{
 "ruleName": "ADMShadowHeatOff",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/Off'",
 "description": "areaDetectorModel mqtt topic publish to heating unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

Response: [empty]

CLI command:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOnRule.json

File: ADMShadowHeatOnRule.json

{
 "ruleName": "ADMShadowHeatOn",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/On'",
 "description": "areaDetectorModel mqtt topic publish to heating unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {

Use the AWS IoT Core rules engine 108

AWS IoT Events Developer Guide

 "topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

Response: [empty]

Use the AWS IoT Core rules engine 109

AWS IoT Events Developer Guide

Supported actions to receive data and trigger actions in
AWS IoT Events

AWS IoT Events can trigger actions when it detects a specified event or transition event. You can
define built-in actions to use a timer or set a variable, or send data to other AWS resources. Learn
how to configure and customize these actions to create automated responses to your various IoT
events.

Note

When you define an action in a detector model, you can use expressions for parameters
that are string data type. For more information, see Expressions.

AWS IoT Events supports the following actions that let you use a timer or set a variable:

• setTimer to create a timer.

• resetTimer to reset the timer.

• clearTimer to delete the timer.

• setVariable to create a variable.

AWS IoT Events supports the following actions that let you work with AWS services:

• iotTopicPublish to publish a message on an MQTT topic.

• iotEvents to send data to AWS IoT Events as an input value.

• iotSiteWise to send data to an asset property in AWS IoT SiteWise.

• dynamoDB to send data to an Amazon DynamoDB table.

• dynamoDBv2 to send data to an Amazon DynamoDB table.

• firehose to send data to an Amazon Data Firehose stream.

• lambda to invoke an AWS Lambda function.

• sns to send data as a push notification.

• sqs to send data to an Amazon SQS queue.

110

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-expressions.html

AWS IoT Events Developer Guide

Use the AWS IoT Events built-in timer and variable actions

AWS IoT Events supports the following actions that let you use a timer or set a variable:

• setTimer to create a timer.

• resetTimer to reset the timer.

• clearTimer to delete the timer.

• setVariable to create a variable.

Set timer action

Set timer action

The setTimer action lets you create a timer with duration in seconds.

More information (2)

When you create a timer, you must specify the following parameters.

timerName

The name of the timer.

durationExpression

(Optional) The duration of the timer, in seconds.

The evaluated result of a duration expression is rounded down to the nearest whole number.
For example, if you set the timer to 60.99 seconds, the evaluated result of the duration
expression is 60 seconds.

For more information, see SetTimerAction in the AWS IoT Events API Reference.

Reset timer action

Reset timer action

The resetTimer action lets you set the timer to the previously evaluated result of the duration
expression.

Use built-in actions 111

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SetTimerAction.html

AWS IoT Events Developer Guide

More information (1)

When you reset a timer, you must specify the following parameter.

timerName

The name of the timer.

AWS IoT Events doesn't reevaluate the duration expression when you reset the timer.

For more information, see ResetTimerAction in the AWS IoT Events API Reference.

Clear timer action

Clear timer action

The clearTimer action lets you delete an existing timer.

More information (1)

When you delete a timer, you must specify the following parameter.

timerName

The name of the timer.

For more information, see ClearTimerAction in the AWS IoT Events API Reference.

Set variable action

Set variable action

The setVariable action lets you create a variable with a specified value.

More information (2)

When you create a variable, you must specify the following parameters.

variableName

The name of the variable.

Clear timer action 112

https://docs.aws.amazon.com/iotevents/latest/apireference/API_ResetTimerAction.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_ClearTimerAction.html

AWS IoT Events Developer Guide

value

The new value of the variable.

For more information, see SetVariableAction in the AWS IoT Events API Reference.

AWS IoT Events working with other AWS services

AWS IoT Events supports the following actions that let you work with AWS services:

• iotTopicPublish to publish a message on an MQTT topic.

• iotEvents to send data to AWS IoT Events as an input value.

• iotSiteWise to send data to an asset property in AWS IoT SiteWise.

• dynamoDB to send data to an Amazon DynamoDB table.

• dynamoDBv2 to send data to an Amazon DynamoDB table.

• firehose to send data to an Amazon Data Firehose stream.

• lambda to invoke an AWS Lambda function.

• sns to send data as a push notification.

• sqs to send data to an Amazon SQS queue.

Important

• You must choose the same AWS Region for both AWS IoT Events and the AWS services to
work with. For the list of supported Regions, see AWS IoT Events endpoints and quotas in
the Amazon Web Services General Reference.

• You must use the same AWS Region when you create other AWS resources for the AWS
IoT Events actions. If you switch AWS Regions, you might have issues accessing the AWS
resources.

By default, AWS IoT Events generates a standard payload in JSON for any action. This action
payload contains all attribute-value pairs that have the information about the detector model
instance and the event that triggered the action. To configure the action payload, you can use a

Work with other AWS services 113

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SetVariableAction.html
https://docs.aws.amazon.com/general/latest/gr/iot-events.html

AWS IoT Events Developer Guide

content expression. For more information, see Expressions to filter, transform, and process event
data and the Payload data type in the AWS IoT Events API Reference.

AWS IoT Core

IoT topic publish action

The AWS IoT Core action lets you publish an MQTT message through the AWS IoT message
broker. For the list of supported Regions, see AWS IoT Core endpoints and quotas in the Amazon
Web Services General Reference.

The AWS IoT message broker connects AWS IoT clients by sending messages from publishing
clients to subscribing clients. For more information, see Device communication protocols in the
AWS IoT Developer Guide.

More information (2)

When you publish an MQTT message, you must specify the following parameters.

mqttTopic

The MQTT topic that receives the message.

You can define an MQTT topic name dynamically at runtime using variables or input values
created in the detector model.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
iot:Publish permission. For more information, see Identity and access management
for AWS IoT Events.

For more information, see IotTopicPublishAction in the AWS IoT Events API Reference.

AWS IoT Core 114

https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/general/latest/gr/iot-core.html
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_IotTopicPublishAction.html

AWS IoT Events Developer Guide

AWS IoT Events

IoT Events action

The AWS IoT Events action lets you send data to AWS IoT Events as input. For the list of
supported Regions, see AWS IoT Events endpoints and quotas in the Amazon Web Services
General Reference.

AWS IoT Events lets you to monitor your equipment or device fleets for failures or changes in
operation, and to trigger actions when such events occur. For more information, see What is
AWS IoT Events? in the AWS IoT Events Developer Guide.

More information (2)

When you send data to AWS IoT Events, you must specify the following parameters.

inputName

The name of the AWS IoT Events input that receives the data.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
iotevents:BatchPutMessage permission. For more information, see Identity and
access management for AWS IoT Events.

For more information, see IotEventsAction in the AWS IoT Events API Reference.

AWS IoT Events 115

https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/what-is-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_IotEventsAction.html

AWS IoT Events Developer Guide

AWS IoT SiteWise

IoT SiteWise action

The AWS IoT SiteWise action lets you send data to an asset property in AWS IoT SiteWise. For
the list of supported Regions, see AWS IoT SiteWise endpoints and quotas in the Amazon Web
Services General Reference.

AWS IoT SiteWise is a managed service that lets you collect, organize, and analyze data from
industrial equipment at scale. For more information, see What is AWS IoT SiteWise? in the AWS
IoT SiteWise User Guide.

More information (11)

When you send data to an asset property in AWS IoT SiteWise, you must specify the following
parameters.

Important

To receive the data, you must use an existing asset property in AWS IoT SiteWise.

• If you use the AWS IoT Events console, you must specify propertyAlias to identify
the target asset property.

• If you use the AWS CLI, you must specify either propertyAlias or both assetId
and propertyId to identify the target asset property.

For more information, see Mapping industrial data streams to asset properties in the
AWS IoT SiteWise User Guide.

propertyAlias

(Optional) The alias of the asset property. You can also specify an expression.

assetId

(Optional) The ID of the asset that has the specified property. You can also specify an
expression.

propertyId

(Optional) The ID of the asset property. You can also specify an expression.

AWS IoT SiteWise 116

https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-data-streams.html

AWS IoT Events Developer Guide

entryId

(Optional) A unique identifier for this entry. You can use the entry ID to track which data
entry causes an error in case of failure. The default is a new unique identifier. You can also
specify an expression.

propertyValue

A structure that contains details about the property value.

quality

(Optional) The quality of the asset property value. The value must be GOOD, BAD, or
UNCERTAIN. You can also specify an expression.

timestamp

(Optional) A structure that contains timestamp information. If you don't specify this
value, the default is the event time.

timeInSeconds

The timestamp, in seconds, in the Unix epoch format. The valid range is between
1-31556889864403199. You can also specify an expression.

offsetInNanos

(Optional) The nanosecond offset converted from timeInSeconds. The valid range is
between 0-999999999. You can also specify an expression.

value

A structure that contains an asset property value.

Important

You must specify one of the following value types, depending on the dataType
of the specified asset property. For more information, see AssetProperty in the
AWS IoT SiteWise API Reference.

AWS IoT SiteWise 117

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetProperty.html

AWS IoT Events Developer Guide

booleanValue

(Optional) The asset property value is a Boolean value that must be TRUE or FALSE.
You can also specify an expression. If you use an expression, the evaluated result
should be a Boolean value.

doubleValue

(Optional) The asset property value is a double. You can also specify an expression. If
you use an expression, the evaluated result should be a double.

integerValue

(Optional) The asset property value is an integer. You can also specify an expression. If
you use an expression, the evaluated result should be an integer.

stringValue

(Optional) The asset property value is a string. You can also specify an expression. If
you use an expression, the evaluated result should be a string.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
iotsitewise:BatchPutAssetPropertyValue permission. For more information,
see Identity and access management for AWS IoT Events.

For more information, see IotSiteWiseAction in the AWS IoT Events API Reference.

Amazon DynamoDB

DynamoDB action

The Amazon DynamoDB action lets you send data to a DynamoDB table. One column of the
DynamoDB table receives all attribute-value pairs in the action payload that you specify. For the
list of supported Regions, see Amazon DynamoDB endpoints and quotas in the Amazon Web
Services General Reference.

Amazon DynamoDB 118

https://docs.aws.amazon.com/iotevents/latest/apireference/API_IotSiteWiseAction.html
https://docs.aws.amazon.com/general/latest/gr/ddb.html

AWS IoT Events Developer Guide

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. For more information, see What is
DynamoDB? in the Amazon DynamoDB Developer Guide.

More information (10)

When you send data to one column of a DynamoDB table, you must specify the following
parameters.

tableName

The name of the DynamoDB table that receives the data. The tableName value must match
the table name of the DynamoDB table. You can also specify an expression.

hashKeyField

The name of the hash key (also called partition key). The hashKeyField value must match
the partition key of the DynamoDB table. You can also specify an expression.

hashKeyType

(Optional) The data type of the hash key. The value of the hash key type must be STRING or
NUMBER. The default is STRING. You can also specify an expression.

hashKeyValue

The value of the hash key. The hashKeyValue uses substitution templates. These templates
provide data at runtime. You can also specify an expression.

rangeKeyField

(Optional) The name of the range key (also called the sort key). The rangeKeyField value
must match the sort key of the DynamoDB table. You can also specify an expression.

rangeKeyType

(Optional) The data type of the range key. The value of the hash key type must be STRING
or NUMBER. The default is STRING. You can also specify an expression.

rangeKeyValue

(Optional) The value of the range key. The rangeKeyValue uses substitution templates.
These templates provide data at runtime. You can also specify an expression.

Amazon DynamoDB 119

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

AWS IoT Events Developer Guide

operation

(Optional) The type of operation to perform. You can also specify an expression. The
operation value must be one of the following values:

• INSERT - Insert data as a new item into the DynamoDB table. This is the default value.

• UPDATE - Update an existing item of the DynamoDB table with new data.

• DELETE - Delete an existing item from the DynamoDB table.

payloadField

(Optional) The name of the DynamoDB column that receives the action payload. The default
name is payload. You can also specify an expression.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

If the specified payload type is a string, DynamoDBAction sends non-JSON data to the
DynamoDB table as binary data. The DynamoDB console displays the data as Base64-
encoded text. The payloadField value is payload-field_raw. You can also specify an
expression.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
dynamodb:PutItem permission. For more information, see Identity and access
management for AWS IoT Events.

For more information, see DynamoDBAction in the AWS IoT Events API Reference.

Amazon DynamoDB 120

https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_DynamoDBAction.html

AWS IoT Events Developer Guide

Amazon DynamoDB(v2)

DynamoDBv2 action

The Amazon DynamoDB(v2) action lets you write data to a DynamoDB table. A separate column
of the DynamoDB table receives one attribute-value pair in the action payload that you specify.
For the list of supported Regions, see Amazon DynamoDB endpoints and quotas in the Amazon
Web Services General Reference.

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and
predictable performance with seamless scalability. For more information, see What is
DynamoDB? in the Amazon DynamoDB Developer Guide.

More information (2)

When you send data to multiple columns of a DynamoDB table, you must specify the following
parameters.

tableName

The name of the DynamoDB table that receives the data. You can also specify an expression.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Important

The payload type must be JSON. You can also specify an expression.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
dynamodb:PutItem permission. For more information, see Identity and access
management for AWS IoT Events.

Amazon DynamoDB(v2) 121

https://docs.aws.amazon.com/general/latest/gr/ddb.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html

AWS IoT Events Developer Guide

For more information, see DynamoDBv2Action in the AWS IoT Events API Reference.

Amazon Data Firehose

Firehose action

The Amazon Data Firehose action lets you send data to an Firehose delivery stream. For the
list of supported Regions, see Amazon Data Firehose endpoints and quotas in the Amazon Web
Services General Reference.

Amazon Data Firehose is a fully managed service for delivering real-time streaming data to
destinations such as Amazon Simple Storage Service (Amazon Simple Storage Service), Amazon
Redshift, Amazon OpenSearch Service (OpenSearch Service), and Splunk. For more information,
see What is Amazon Data Firehose? in the Amazon Data Firehose Developer Guide.

More information (3)

When you send data to an Firehose delivery stream, you must specify the following parameters.

deliveryStreamName

The name of the Firehose delivery stream that receives the data.

separator

(Optional) You can use a character separator to separate continuous data sent to the
Firehose delivery stream. The separator value must be '\n'(newline), '\t' (tab), '\r\n'
(Windows new line), or ',' (comma).

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
firehose:PutRecord permission. For more information, see Identity and access
management for AWS IoT Events.

Amazon Data Firehose 122

https://docs.aws.amazon.com/iotevents/latest/apireference/API_DynamoDBv2Action.html
https://docs.aws.amazon.com/general/latest/gr/fh.html
https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html

AWS IoT Events Developer Guide

For more information, see FirehoseAction in the AWS IoT Events API Reference.

AWS Lambda

Lambda action

The AWS Lambda action lets you call a Lambda function. For the list of supported Regions, see
AWS Lambda endpoints and quotas in the Amazon Web Services General Reference.

AWS Lambda is a compute service that lets you run code without provisioning or managing
servers. For more information, see What is AWS Lambda? in the AWS Lambda Developer Guide.

More information (2)

When you call a Lambda function, you must specify the following parameters.

functionArn

The ARN of the Lambda function to call.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
lambda:InvokeFunction permission. For more information, see Identity and access
management for AWS IoT Events.

For more information, see LambdaAction in the AWS IoT Events API Reference.

AWS Lambda 123

https://docs.aws.amazon.com/iotevents/latest/apireference/API_FirehoseAction.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_LambdaAction.html

AWS IoT Events Developer Guide

Amazon Simple Notification Service

SNS action

The Amazon SNS topic publish action lets you publish an Amazon SNS message. For the list
of supported Regions, see Amazon Simple Notification Service endpoints and quotas in the
Amazon Web Services General Reference.

Amazon Simple Notification Service (Amazon Simple Notification Service) is a web service
that coordinates and manages the delivery or sending of messages to subscribing endpoints
or clients. For more information, see What is Amazon SNS? in the Amazon Simple Notification
Service Developer Guide.

Note

The Amazon SNS topic publish action doesn't support Amazon SNS FIFO (first in, first
out) topics. Because the rules engine is a fully distributed service, the messages may not
display in a specified order when the Amazon SNS action is initiated.

More information (2)

When you publish an Amazon SNS message, you must specify the following parameters.

targetArn

The ARN of the Amazon SNS target that receives the message.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Amazon Simple Notification Service 124

https://docs.aws.amazon.com/general/latest/gr/sns.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html

AWS IoT Events Developer Guide

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
sns:Publish permission. For more information, see Identity and access management
for AWS IoT Events.

For more information, see SNSTopicPublishAction in the AWS IoT Events API Reference.

Amazon Simple Queue Service

SQS action

The Amazon SQS action lets you send data to an Amazon SQS queue. For the list of supported
Regions, see Amazon Simple Queue Service endpoints and quotas in the Amazon Web Services
General Reference.

Amazon Simple Queue Service (Amazon SQS) offers a secure, durable, and available hosted
queue that lets you integrate and decouple distributed software systems and components. For
more information, see What is Amazon Simple Queue Service> in the Amazon Simple Queue
Service Developer Guide.

Note

The Amazon SQS action doesn't support >Amazon SQS FIFO (first in, first out) topics.
Because the rules engine is a fully distributed service, the messages may not display in a
specified order when the Amazon SQS action is initiated.

More information (3)

When you send data to an Amazon SQS queue, you must specify the following parameters.

queueUrl

The URL of the Amazon SQS queue that receives the data.

Amazon Simple Queue Service 125

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SNSTopicPublishAction.html
https://docs.aws.amazon.com/general/latest/gr/sqs-service.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

AWS IoT Events Developer Guide

useBase64

(Optional) AWS IoT Events encodes the data into Base64 text, if you specify TRUE. The
default is FALSE.

payload

(Optional) The default payload contains all attribute-value pairs that have the information
about the detector model instance and the event triggered the action. You can also
customize the payload. For more information, see Payload in the AWS IoT Events API
Reference.

Note

Make sure that the policy attached to your AWS IoT Events service role grants the
sqs:SendMessage permission. For more information, see Identity and access
management for AWS IoT Events.

For more information, see SNSTopicPublishAction in the AWS IoT Events API Reference.

You can also use Amazon SNS and the AWS IoT Core rules engine to trigger an AWS Lambda
function. This makes it possible to take actions using other services, such as Amazon Connect, or
even a company enterprise resource planning (ERP) application.

Note

To collect and process large streams of data records in real time, you can use other AWS
services, such as Amazon Kinesis. From there, you can complete an initial analysis and then
send the results to AWS IoT Events as an input to a detector.

Amazon Simple Queue Service 126

https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_SNSTopicPublishAction.html
https://docs.aws.amazon.com/kinesis/index.html

AWS IoT Events Developer Guide

Expressions to filter, transform, and process event data

Expressions are used to evaluate incoming data, perform calculations, and determine the
conditions under which specific actions or state transitions should occur. AWS IoT Events provides
several ways to specify values when you create and update detector models. You can use
expressions to specify literal values, or AWS IoT Events can evaluate the expressions before you
specify particular values.

Topics

• Syntax to filter device data and define actions in AWS IoT Events

• Expression examples and usage for AWS IoT Events

Syntax to filter device data and define actions in AWS IoT
Events

Expressions offer syntax for filtering device data and defining actions. You can use literals,
operators, functions, references, and substitution templates in the AWS IoT Events expressions. By
combining these components, you can create powerful and flexible expressions to process IoT data,
perform calculations, manipulate strings, and make logical decisions within your detector models.

Literals

• Integer

• Decimal

• String

• Boolean

Operators

Unary

• Not (Boolean): !

• Not (bitwise): ~

• Minus (arithmetic): -

Syntax to filter device data 127

AWS IoT Events Developer Guide

String

• Concatenation: +

Both operands must be strings. String literals must be enclosed in single quotes (').

For example: 'my' + 'string' -> 'mystring'

Arithmetic

• Addition: +

Both operands must be numeric.

• Subtraction: -

• Division: /

The result of the division is a rounded integer value unless at least one of the operands
(divisor or dividend) is a decimal value.

• Multiplication: *

Bitwise (Integer)

• OR: |

For example: 13 | 5 -> 13

• AND: &

For example: 13 & 5 -> 5

• XOR: ^

For example: 13 ^ 5 -> 8

• NOT: ~

For example: ~13 -> -14

Boolean

• Less Than: <

• Less Than Or Equal To: <=

• Equal To: ==

• Not Equal To: !=

• Greater Than Or Equal To: >=

Operators 128

AWS IoT Events Developer Guide

• Greater Than: >

• AND: &&

• OR: ||

Note

When a subexpression of || contains undefined data, that subexpression is treated as
false.

Parentheses

You can use parentheses to group terms within an expression.

Functions to use in AWS IoT Events expressions

AWS IoT Events provides a set of built-in functions to enhance the capabilities of your detector
model expressions. These functions enable timer management, type conversion, null checking,
trigger type identification, input verification, string manipulation, and bitwise operations. By
leveraging these functions, you can create a responsive AWS IoT Events processing logic, improving
the overall effectiveness of your IoT applications.

Built-in Functions

timeout("timer-name")

Evaluates to true if the specified timer has elapsed. Replace "timer-name" with
the name of a timer that you defined, in quotation marks. In an event action, you
can define a timer and then start the timer, reset it, or clear one that you previously
defined. See the field detectorModelDefinition.states.onInput|onEnter|
onExit.events.actions.setTimer.timerName.

A timer set in one state can be referenced in a different state. You must visit the state in
which you created the timer before you enter the state in which the timer is referenced.

For example, a detector model has two states, TemperatureChecked and
RecordUpdated. You created a timer in the TemperatureChecked state. You must visit
the TemperatureChecked state first before you can use the timer in the RecordUpdated
state.

To ensure accuracy, the minimum time that a timer should be set is 60 seconds.

Functions for expressions 129

AWS IoT Events Developer Guide

Note

timeout() returns true only the first time it's checked following the actual timer
expiration and returns false thereafter.

convert(type, expression)

Evaluates to the value of the expression converted to the specified type. The type value
must be String, Boolean, or Decimal. Use one of these keywords or an expression that
evaluates to a string containing the keyword. Only the following conversions succeed and
return a valid value:

• Boolean -> string

Returns the string "true" or "false".

• Decimal -> string

• String -> Boolean

• String -> decimal

The string specified must be a valid representation of a decimal number, or convert()
fails.

If convert() doesn't return a valid value, the expression that it's a part of is also invalid.
This result is equivalent to false and won't trigger the actions or transition to the
nextState specified as part of the event in which the expression occurs.

isNull(expression)

Evaluates to true if the expression returns null. For example, if the input MyInput
receives the message { "a": null }, then the following evaluates to true, but
isUndefined($input.MyInput.a) evaluates to false.

isNull($input.MyInput.a)

isUndefined(expression)

Evaluates to true if the expression is undefined. For example, if the input MyInput
receives the message { "a": null }, then the following evaluates to false, but
isNull($input.MyInput.a) evaluates to true.

Functions for expressions 130

AWS IoT Events Developer Guide

isUndefined($input.MyInput.a)

triggerType("type")

The type value can be "Message" or "Timer". Evaluates to true if the event condition
in which it appears is being evaluated because a timer has expired like in the following
example.

triggerType("Timer")

Or an input message was received.

triggerType("Message")

currentInput("input")

Evaluates to true if the event condition in which it appears is being evaluated because
the specified input message was received. For example, if the input Command receives the
message { "value": "Abort" }, then the following evaluates to true.

currentInput("Command")

Use this function to verify that the condition is being evaluated because a particular input
has been received and a timer hasn't expired, as in the following expression.

currentInput("Command") && $input.Command.value == "Abort"

String Matching Functions

startsWith(expression1, expression2)

Evaluates to true if the first string expression starts with the second string expression. For
example, if input MyInput receives the message { "status": "offline"}, then the
following evaluates to true.

startsWith($input.MyInput.status, "off")

Both expressions must evaluate to a string value. If either expression does not evaluate to a
string value, then the result of the function is undefined. No conversions are performed.

Functions for expressions 131

AWS IoT Events Developer Guide

endsWith(expression1, expression2)

Evaluates to true if the first string expression ends with the second string expression. For
example, if input MyInput receives the message { "status": "offline" }, then the
following evaluates to true.

endsWith($input.MyInput.status, "line")

Both expressions must evaluate to a string value. If either expression does not evaluate to a
string value, then the result of the function is undefined. No conversions are performed.

contains(expression1, expression2)

Evaluates to true if the first string expression contains the second string expression. For
example, if input MyInput receives the message { "status": "offline" }, then the
following evaluates to true.

contains($input.MyInput.value, "fli")

Both expressions must evaluate to a string value. If either expression does not evaluate to a
string value, then the result of the function is undefined. No conversions are performed.

Bitwise Integer Manipulation Functions

bitor(expression1, expression2)

Evaluates the bitwise OR of the integer expressions (the binary OR operation is performed
on the corresponding bits of the integers). For example, if input MyInput receives the
message { "value1": 13, "value2": 5 }, then the following evaluates to 13.

bitor($input.MyInput.value1, $input.MyInput.value2)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

bitand(expression1, expression2)

Evaluates the bitwise AND of the integer expressions (the binary AND operation is
performed on the corresponding bits of the integers). For example, if input MyInput
receives the message { "value1": 13, "value2": 5 }, then the following evaluates to
5.

Functions for expressions 132

AWS IoT Events Developer Guide

bitand($input.MyInput.value1, $input.MyInput.value2)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

bitxor(expression1, expression2)

Evaluates the bitwise XOR of the integer expressions (the binary XOR operation is performed
on the corresponding bits of the integers). For example, if input MyInput receives the
message { "value1": 13, "value2": 5 }, then the following evaluates to 8.

bitxor($input.MyInput.value1, $input.MyInput.value2)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

bitnot(expression)

Evaluates the bitwise NOT of the integer expression (the binary NOT operation is
performed on the bits of the integer). For example, if input MyInput receives the message
{ "value": 13 }, then the following evaluates to -14.

bitnot($input.MyInput.value)

Both expressions must evaluate to an integer value. If either expression does not evaluate to
an integer value, then the result of the function is undefined. No conversions are performed.

AWS IoT Events reference for inputs and variables in expressions

Inputs

$input.input-name.path-to-data

input-name is an input that you create using the CreateInput action.

For example, if you have an input named TemperatureInput for which you defined
inputDefinition.attributes.jsonPath entries, the values might appear in the following
available fields.

{

Reference for inputs and variables in expressions 133

https://docs.aws.amazon.com/iotevents/latest/apireference/API_CreateInput.html

AWS IoT Events Developer Guide

 "temperature": 78.5,
 "date": "2018-10-03T16:09:09Z"
 }

To reference the value of the temperature field, use the following command.

$input.TemperatureInput.temperature

For fields whose values are arrays, you can reference members of the array using [n]. For
example, given the following values:

{
 "temperatures": [
 78.4,
 77.9,
 78.8
],
 "date": "2018-10-03T16:09:09Z"
 }

The value 78.8 can be referenced with the following command.

$input.TemperatureInput.temperatures[2]

Variables

$variable.variable-name

The variable-name is a variable that you defined using the CreateDetectorModel action.

For example, if you have a variable named TechnicianID that you defined using
detectorDefinition.states.onInputEvents.actions.setVariable.variableName,
you can reference the (string) value most recently given to the variable with the following
command.

$variable.TechnicianID

You can set the values of variables only using the setVariable action. You can't assign values
for variables in an expression. A variable can't be unset. For example, you can't assign it the
value null.

Reference for inputs and variables in expressions 134

https://docs.aws.amazon.com/iotevents/latest/apireference/API_CreateDetectorModel.html

AWS IoT Events Developer Guide

Note

In references that use identifiers that don't follow the (regular expression) pattern [a-zA-
Z][a-zA-Z0-9_]*, you must enclose those identifiers in backticks (`). For example, a
reference to an input named MyInput with a field named _value must specify this field as
$input.MyInput.`_value`.

When you use references in expressions, check the following:

• When you use a reference as an operand with one or more operators, make sure that all data
types that you reference are compatible.

For example, in the following expression, integer 2 is an operand of both the == and &&
operators. To ensure that the operands are compatible, $variable.testVariable + 1 and
$variable.testVariable must reference an integer or decimal.

In addition, integer 1 is an operand of the + operator. Therefore, $variable.testVariable
must reference an integer or decimal.

‘$variable.testVariable + 1 == 2 && $variable.testVariable’

• When you use a reference as an argument passed to a function, make sure that the function
supports the data types that you reference.

For example, the following timeout("time-name") function requires a string with double
quotes as the argument. If you use a reference for the timer-name value, you must reference a
string with double quotes.

timeout("timer-name")

Note

For the convert(type, expression) function, if you use a reference for the type
value, the evaluated result of your reference must be String, Decimal, or Boolean.

Reference for inputs and variables in expressions 135

AWS IoT Events Developer Guide

AWS IoT Events expressions support integer, decimal, string, and Boolean data types. The following
table provides a list of incompatible pairs of types.

Incompatible pairs of types

Integer, string

Integer, Boolean

Decimal, string

Decimal, Boolean

String, Boolean

Substitution templates for AWS IoT Events expressions

'${expression}'

The ${} identifies the string as an interpolated string. The expression can be any AWS IoT
Events expression. This includes operators, functions, and references.

For example, you used the SetVariableAction action to define a variable. The variableName is
SensorID, and the value is 10. You can create the following substitution templates.

Substitution template Result string

'${'Sensor ' + $variable.SensorID}' "Sensor 10"

'Sensor ' + '${$variable.SensorID +
 1}'

"Sensor 11"

'Sensor 10: ${$variable.SensorID ==
 10}'

"Sensor 10: true"

Substitution templates 136

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SetVariableAction.html

AWS IoT Events Developer Guide

Substitution template Result string

'{\"sensor\":\"${$variable.SensorID
 + 1}\"}'

"{\"sensor"\:\"11\"}"

'{\"sensor\":${$variable.SensorID +
 1}}'

"{\"sensor\":11}"

Expression examples and usage for AWS IoT Events

You can specify values in a detector model in the following ways:

• Enter supported expressions in the AWS IoT Events console.

• Pass the expressions to the AWS IoT Events APIs as parameters.

Expressions support literals, operators, functions, references, and substitution templates.

Important

Your expressions must reference a integer, decimal, string, or Boolean value.

Writing AWS IoT Events expressions

See the following examples to help you write your AWS IoT Events expressions:

Literal

For literal values, the expressions must contain single quotes. A Boolean value must be either
true or false.

'123' # Integer
'123.12' # Decimal
'hello' # String
'true' # Boolean

Usage 137

AWS IoT Events Developer Guide

Reference

For references, you must specify either variables or input values.

• The following input references a decimal number, 10.01.

$input.GreenhouseInput.temperature

• The following variable references a string, Greenhouse Temperature Table.

$variable.TableName

Substitution template

For a substitution template, you must use ${}, and the template must be in single quotes.
A substitution template can also contain a combination of literals, operators, functions,
references, and substitution templates.

• The evaluated result of the following expression is a string, 50.018 in Fahrenheit.

'${$input.GreenhouseInput.temperature * 9 / 5 + 32} in Fahrenheit'

• The evaluated result of the following expression is a string, {\"sensor_id\":
\"Sensor_1\",\"temperature\":\"50.018\"}.

'{\"sensor_id\":\"${$input.GreenhouseInput.sensors[0].sensor1}\",\"temperature\":
\"${$input.GreenhouseInput.temperature*9/5+32}\"}'

String concatenation

For a string concatenation, you must use +. A string concatenation can also contain a
combination of literals, operators, functions, references, and substitution templates.

• The evaluated result of the following expression is a string, Greenhouse Temperature
Table 2000-01-01.

'Greenhouse Temperature Table ' + $input.GreenhouseInput.date

Writing AWS IoT Events expressions 138

AWS IoT Events Developer Guide

AWS IoT Events detector model examples

This page provides a list of example use cases that demonstrate how to configure various AWS IoT
Events features. The examples range from basic detections like temperature thresholds to more
advanced anomaly detection and machine learning scenarios. Each example includes procedures
and code snippets to help you set up AWS IoT Events detections, actions, and integrations. These
examples showcase the flexibility of the AWS IoT Events service and how it can be customized
for diverse IoT applications and use cases. Refer to this page when exploring AWS IoT Events
capabilities or if you need guidance implementing a specific detection or automation workflow.

Topics

• Example: Using HVAC temperature control with AWS IoT Events

• Example: A crane detecting conditions using AWS IoT Events

• Send commands in response to detected conditions in AWS IoT Events

• An AWS IoT Events detector model for crane monitoring

• AWS IoT Events inputs for crane monitoring

• Send alarm and operational messages with AWS IoT Events

• Example: AWS IoT Events event detection with sensors and applications

• Example: Device HeartBeat to monitor device connections with AWS IoT Events

• Example: An ISA alarm in AWS IoT Events

• Example: Build a simple alarm with AWS IoT Events

Example: Using HVAC temperature control with AWS IoT Events

Background story

This example implements a temperature control model (a thermostat) with these features:

• One detector model you define that can monitor and control multiple areas. (A detector instance
will be created for each area.)

• Each detector instance receives temperature data from multiple sensors placed in each control
area.

• You can change the desired temperature (the set point) for each area at any time.

HVAC temperature control 139

AWS IoT Events Developer Guide

• You can define the operational parameters for each area and change these parameters at any
time.

• You can add sensors to or delete sensors from an area at any time.

• You can enable a minimum run for time heating and cooling units to protect them from damage.

• The detectors will reject, and report, anomalous sensor readings.

• You can define emergency temperature set points. If any one sensor reports a temperature above
or below the set points you have defined, heating or cooling units will be engaged immediately,
and the detector will report that temperature spike.

This example demonstrates the following functional capabilities:

• Create event detector models.

• Create inputs.

• Ingest inputs into a detector model.

• Evaluate trigger conditions.

• Refer to state variables in conditions and set the values of variables depending on conditions.

• Refer to timers in conditions and set timers depending on conditions.

• Take actions that send Amazon SNS and MQTT messages.

Input definitions for an HVAC system in AWS IoT Events

A seedTemperatureInput is used to create a detector instance for an area and define its
operational parameters.

Configuring inputs for HVAC systems in AWS IoT Events is important for effective climate control.
This example shows how to set up inputs that capture parameters such as, temperature, humidity,
occupancy, and energy consumption data. Learn to define input attributes, configure data
sources, and set up preprocessing rules to help your detector models receive accurate and timely
information for optimal management and efficiency.

CLI command used:

aws iotevents create-input --cli-input-json file://seedInput.json

File: seedInput.json

Input definitions 140

AWS IoT Events Developer Guide

{
 "inputName": "seedTemperatureInput",
 "inputDescription": "Temperature seed values.",
 "inputDefinition": {
 "attributes": [
 { "jsonPath": "areaId" },
 { "jsonPath": "desiredTemperature" },
 { "jsonPath": "allowedError" },
 { "jsonPath": "rangeHigh" },
 { "jsonPath": "rangeLow" },
 { "jsonPath": "anomalousHigh" },
 { "jsonPath": "anomalousLow" },
 { "jsonPath": "sensorCount" },
 { "jsonPath": "noDelay" }
]
 }
}

Response:

{
 "inputConfiguration": {
 "status": "ACTIVE",
 "inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/
seedTemperatureInput",
 "lastUpdateTime": 1557519620.736,
 "creationTime": 1557519620.736,
 "inputName": "seedTemperatureInput",
 "inputDescription": "Temperature seed values."
 }
}

A temperatureInput should be sent by each sensor in each area, as necessary.

CLI command used:

aws iotevents create-input --cli-input-json file://temperatureInput.json

File: temperatureInput.json

{

Input definitions 141

AWS IoT Events Developer Guide

 "inputName": "temperatureInput",
 "inputDescription": "Temperature sensor unit data.",
 "inputDefinition": {
 "attributes": [
 { "jsonPath": "sensorId" },
 { "jsonPath": "areaId" },
 { "jsonPath": "sensorData.temperature" }
]
 }
}

Response:

{
 "inputConfiguration": {
 "status": "ACTIVE",
 "inputArn": "arn:aws:iotevents:us-west-2:123456789012:input/temperatureInput",
 "lastUpdateTime": 1557519707.399,
 "creationTime": 1557519707.399,
 "inputName": "temperatureInput",
 "inputDescription": "Temperature sensor unit data."
 }
}

Detector model definition for an HVAC system using AWS IoT Events

The areaDetectorModel defines how each detector instance works. Each state machine
instance will ingest temperature sensor readings, then change state and send control messages
depending on these readings.

CLI command used:

aws iotevents create-detector-model --cli-input-json file://areaDetectorModel.json

File: areaDetectorModel.json

{
 "detectorModelName": "areaDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {

Detector model definition 142

AWS IoT Events Developer Guide

 "stateName": "start",
 "onEnter": {
 "events": [
 {
 "eventName": "prepare",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "0"
 }
 },
 {
 "setVariable": {
 "variableName": "reportedTemperature",
 "value": "0.1"
 }
 },
 {
 "setVariable": {
 "variableName": "resetMe",
 "value": "false"
 }
 }
]
 }
]
 },
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "initialize",
 "condition": "$input.seedTemperatureInput.sensorCount > 0",
 "actions": [
 {
 "setVariable": {
 "variableName": "rangeHigh",
 "value": "$input.seedTemperatureInput.rangeHigh"
 }
 },
 {
 "setVariable": {
 "variableName": "rangeLow",

Detector model definition 143

AWS IoT Events Developer Guide

 "value": "$input.seedTemperatureInput.rangeLow"
 }
 },
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 },
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 },
 {
 "setVariable": {
 "variableName": "allowedError",
 "value": "$input.seedTemperatureInput.allowedError"
 }
 },
 {
 "setVariable": {
 "variableName": "anomalousHigh",
 "value": "$input.seedTemperatureInput.anomalousHigh"
 }
 },
 {
 "setVariable": {
 "variableName": "anomalousLow",
 "value": "$input.seedTemperatureInput.anomalousLow"
 }
 },
 {
 "setVariable": {
 "variableName": "sensorCount",
 "value": "$input.seedTemperatureInput.sensorCount"
 }
 },
 {
 "setVariable": {
 "variableName": "noDelay",
 "value": "$input.seedTemperatureInput.noDelay == true"
 }

Detector model definition 144

AWS IoT Events Developer Guide

 }
],
 "nextState": "idle"
 },
 {
 "eventName": "reset",
 "condition": "($variable.resetMe == true) &&
 ($input.temperatureInput.sensorData.temperature < $variable.anomalousHigh &&
 $input.temperatureInput.sensorData.temperature > $variable.anomalousLow)",
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
],
 "nextState": "idle"
 }
]
 },
 "onExit": {
 "events": [
 {
 "eventName": "resetHeatCool",
 "condition": "true",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOff"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/Off"
 }
 },
 {

Detector model definition 145

AWS IoT Events Developer Guide

 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/Off"
 }
 }
]
 }
]
 }
 },

 {
 "stateName": "idle",
 "onInput": {
 "events": [
 {
 "eventName": "whatWasInput",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "$input.temperatureInput.sensorId"
 }
 },
 {
 "setVariable": {
 "variableName": "reportedTemperature",
 "value": "$input.temperatureInput.sensorData.temperature"
 }
 }
]
 },
 {
 "eventName": "changeDesired",
 "condition": "$input.seedTemperatureInput.desiredTemperature !=
 $variable.desiredTemperature",
 "actions": [
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 }

Detector model definition 146

AWS IoT Events Developer Guide

]
 },
 {
 "eventName": "calculateAverage",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
 $variable.anomalousLow",
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
]
 }
],
 "transitionEvents": [
 {
 "eventName": "anomalousInputArrived",
 "condition": "$input.temperatureInput.sensorData.temperature >=
 $variable.anomalousHigh || $input.temperatureInput.sensorData.temperature <=
 $variable.anomalousLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/anomaly"
 }
 }
],
 "nextState": "idle"
 },

 {
 "eventName": "highTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature >
 $variable.rangeHigh",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },

Detector model definition 147

AWS IoT Events Developer Guide

 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.rangeLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"

Detector model definition 148

AWS IoT Events Developer Guide

 }
 }
],
 "nextState": "heating"
 },

 {
 "eventName": "highTemperatureThreshold",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) >
 ($variable.desiredTemperature + $variable.allowedError))",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureThreshold",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) <
 ($variable.desiredTemperature - $variable.allowedError))",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
 }
 },
 {

Detector model definition 149

AWS IoT Events Developer Guide

 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "heating"
 }
]
 }
 },

 {
 "stateName": "cooling",
 "onEnter": {
 "events": [
 {
 "eventName": "delay",
 "condition": "!$variable.noDelay && $variable.enteringNewState",
 "actions": [
 {
 "setTimer": {
 "timerName": "coolingTimer",
 "seconds": 180
 }
 },
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "false"
 }
 }
]
 },
 {
 "eventName": "dontDelay",
 "condition": "$variable.noDelay == true",
 "actions": [

Detector model definition 150

AWS IoT Events Developer Guide

 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 },
 {
 "eventName": "beenHere",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "false"
 }
 }
]
 }
]
 },

 "onInput": {
 "events": [
 {
 "eventName": "whatWasInput",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "$input.temperatureInput.sensorId"
 }
 },
 {
 "setVariable": {
 "variableName": "reportedTemperature",
 "value": "$input.temperatureInput.sensorData.temperature"
 }
 }
]
 },
 {

Detector model definition 151

AWS IoT Events Developer Guide

 "eventName": "changeDesired",
 "condition": "$input.seedTemperatureInput.desiredTemperature !=
 $variable.desiredTemperature",
 "actions": [
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 }
]
 },
 {
 "eventName": "calculateAverage",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
 $variable.anomalousLow",
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
]
 },
 {
 "eventName": "areWeThereYet",
 "condition": "(timeout(\"coolingTimer\"))",
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 }
],
 "transitionEvents": [
 {
 "eventName": "anomalousInputArrived",

Detector model definition 152

AWS IoT Events Developer Guide

 "condition": "$input.temperatureInput.sensorData.temperature >=
 $variable.anomalousHigh || $input.temperatureInput.sensorData.temperature <=
 $variable.anomalousLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/anomaly"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "highTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature >
 $variable.rangeHigh",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.rangeLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOff"
 }
 },
 {
 "sns": {

Detector model definition 153

AWS IoT Events Developer Guide

 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/Off"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "heating"
 },

 {
 "eventName": "desiredTemperature",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) <=
 ($variable.desiredTemperature - $variable.allowedError)) && $variable.goodToGo ==
 true",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOff"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/Off"
 }
 }
],
 "nextState": "idle"
 }
]

Detector model definition 154

AWS IoT Events Developer Guide

 }
 },

 {
 "stateName": "heating",
 "onEnter": {
 "events": [
 {
 "eventName": "delay",
 "condition": "!$variable.noDelay && $variable.enteringNewState",
 "actions": [
 {
 "setTimer": {
 "timerName": "heatingTimer",
 "seconds": 120
 }
 },
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "false"
 }
 }
]
 },
 {
 "eventName": "dontDelay",
 "condition": "$variable.noDelay == true",
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 },
 {
 "eventName": "beenHere",
 "condition": "true",
 "actions": [
 {
 "setVariable": {

Detector model definition 155

AWS IoT Events Developer Guide

 "variableName": "enteringNewState",
 "value": "false"
 }
 }
]
 }
]
 },

 "onInput": {
 "events": [
 {
 "eventName": "whatWasInput",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "sensorId",
 "value": "$input.temperatureInput.sensorId"
 }
 },
 {
 "setVariable": {
 "variableName": "reportedTemperature",
 "value": "$input.temperatureInput.sensorData.temperature"
 }
 }
]
 },
 {
 "eventName": "changeDesired",
 "condition": "$input.seedTemperatureInput.desiredTemperature !=
 $variable.desiredTemperature",
 "actions": [
 {
 "setVariable": {
 "variableName": "desiredTemperature",
 "value": "$input.seedTemperatureInput.desiredTemperature"
 }
 }
]
 },
 {
 "eventName": "calculateAverage",

Detector model definition 156

AWS IoT Events Developer Guide

 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.anomalousHigh && $input.temperatureInput.sensorData.temperature >
 $variable.anomalousLow",
 "actions": [
 {
 "setVariable": {
 "variableName": "averageTemperature",
 "value": "((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount)"
 }
 }
]
 },
 {
 "eventName": "areWeThereYet",
 "condition": "(timeout(\"heatingTimer\"))",
 "actions": [
 {
 "setVariable": {
 "variableName": "goodToGo",
 "value": "true"
 }
 }
]
 }
],
 "transitionEvents": [
 {
 "eventName": "anomalousInputArrived",
 "condition": "$input.temperatureInput.sensorData.temperature >=
 $variable.anomalousHigh || $input.temperatureInput.sensorData.temperature <=
 $variable.anomalousLow",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/anomaly"
 }
 }
],
 "nextState": "heating"
 },

 {
 "eventName": "highTemperatureSpike",

Detector model definition 157

AWS IoT Events Developer Guide

 "condition": "$input.temperatureInput.sensorData.temperature >
 $variable.rangeHigh",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
 }
 },
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:coolOn"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/Off"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Cooling/On"
 }
 },
 {
 "setVariable": {
 "variableName": "enteringNewState",
 "value": "true"
 }
 }
],
 "nextState": "cooling"
 },

 {
 "eventName": "lowTemperatureSpike",
 "condition": "$input.temperatureInput.sensorData.temperature <
 $variable.rangeLow",
 "actions": [
 {

Detector model definition 158

AWS IoT Events Developer Guide

 "iotTopicPublish": {
 "mqttTopic": "temperatureSensor/spike"
 }
 }
],
 "nextState": "heating"
 },

 {
 "eventName": "desiredTemperature",
 "condition": "(((($variable.averageTemperature * ($variable.sensorCount
 - 1)) + $input.temperatureInput.sensorData.temperature) / $variable.sensorCount) >=
 ($variable.desiredTemperature + $variable.allowedError)) && $variable.goodToGo ==
 true",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-west-2:123456789012:heatOff"
 }
 },
 {
 "iotTopicPublish": {
 "mqttTopic": "hvac/Heating/Off"
 }
 }
],
 "nextState": "idle"
 }
]
 }
 }

],

 "initialStateName": "start"
 },
 "key": "areaId",
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole"
}

Response:

{

Detector model definition 159

AWS IoT Events Developer Guide

 "detectorModelConfiguration": {
 "status": "ACTIVATING",
 "lastUpdateTime": 1557523491.168,
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
 "creationTime": 1557523491.168,
 "detectorModelArn": "arn:aws:iotevents:us-west-2:123456789012:detectorModel/
areaDetectorModel",
 "key": "areaId",
 "detectorModelName": "areaDetectorModel",
 "detectorModelVersion": "1"
 }
}

BatchPutMessage examples for an HVAC system in AWS IoT Events

In this example, BatchPutMessage is used to create a detector instance for an area and define the
initial operating parameters.

CLI command used:

aws iotevents-data batch-put-message --cli-input-json file://seedExample.json --cli-
binary-format raw-in-base64-out

File: seedExample.json

{
 "messages": [
 {
 "messageId": "00001",
 "inputName": "seedTemperatureInput",
 "payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 20.0, \"allowedError
\": 0.7, \"rangeHigh\": 30.0, \"rangeLow\": 15.0, \"anomalousHigh\": 60.0,
 \"anomalousLow\": 0.0, \"sensorCount\": 10, \"noDelay\": false}"
 }
]
}

Response:

{
 "BatchPutMessageErrorEntries": []
}

BatchPutMessage examples 160

AWS IoT Events Developer Guide

In this example, BatchPutMessage is used to report temperature sensor readings for a single
sensor in an area.

CLI command used:

aws iotevents-data batch-put-message --cli-input-json file://temperatureExample.json --
cli-binary-format raw-in-base64-out

File: temperatureExample.json

{
 "messages": [
 {
 "messageId": "00005",
 "inputName": "temperatureInput",
 "payload": "{\"sensorId\": \"05\", \"areaId\": \"Area51\", \"sensorData\":
 {\"temperature\": 23.12} }"
 }
]
}

Response:

{
 "BatchPutMessageErrorEntries": []
}

In this example, BatchPutMessage is used to change the desired temperature for an area.

CLI command used:

aws iotevents-data batch-put-message --cli-input-json file://seedSetDesiredTemp.json --
cli-binary-format raw-in-base64-out

File: seedSetDesiredTemp.json

{
 "messages": [
 {
 "messageId": "00001",
 "inputName": "seedTemperatureInput",
 "payload": "{\"areaId\": \"Area51\", \"desiredTemperature\": 23.0}"

BatchPutMessage examples 161

AWS IoT Events Developer Guide

 }
]
}

Response:

{
 "BatchPutMessageErrorEntries": []
}

Examples of Amazon SNS messages generated by the Area51 detector instance:

Heating system off command> {
 "eventTime":1557520274729,
 "payload":{
 "actionExecutionId":"f3159081-bac3-38a4-96f7-74af0940d0a4",
 "detector":{
 "detectorModelName":"areaDetectorModel",
 "keyValue":"Area51",
 "detectorModelVersion":"1"
 },
 "eventTriggerDetails":{
 "inputName":"seedTemperatureInput",
 "messageId":"00001",
 "triggerType":"Message"
 },
 "state":{
 "stateName":"start",
 "variables":{
 "sensorCount":10,
 "rangeHigh":30.0,
 "resetMe":false,
 "enteringNewState":true,
 "averageTemperature":20.0,
 "rangeLow":15.0,
 "noDelay":false,
 "allowedError":0.7,
 "desiredTemperature":20.0,
 "anomalousHigh":60.0,
 "reportedTemperature":0.1,
 "anomalousLow":0.0,

BatchPutMessage examples 162

AWS IoT Events Developer Guide

 "sensorId":0
 },
 "timers":{}
 }
 },
 "eventName":"resetHeatCool"
}

Cooling system off command> {
 "eventTime":1557520274729,
 "payload":{
 "actionExecutionId":"98f6a1b5-8f40-3cdb-9256-93afd4d66192",
 "detector":{
 "detectorModelName":"areaDetectorModel",
 "keyValue":"Area51",
 "detectorModelVersion":"1"
 },
 "eventTriggerDetails":{
 "inputName":"seedTemperatureInput",
 "messageId":"00001",
 "triggerType":"Message"
 },
 "state":{
 "stateName":"start",
 "variables":{
 "sensorCount":10,
 "rangeHigh":30.0,
 "resetMe":false,
 "enteringNewState":true,
 "averageTemperature":20.0,
 "rangeLow":15.0,
 "noDelay":false,
 "allowedError":0.7,
 "desiredTemperature":20.0,
 "anomalousHigh":60.0,
 "reportedTemperature":0.1,
 "anomalousLow":0.0,
 "sensorId":0
 },
 "timers":{}
 }
 },

BatchPutMessage examples 163

AWS IoT Events Developer Guide

 "eventName":"resetHeatCool"
}

In this example, we use the DescribeDetector API to get information about the current state of
a detector instance.

aws iotevents-data describe-detector --detector-model-name areaDetectorModel --key-
value Area51

Response:

{
 "detector": {
 "lastUpdateTime": 1557521572.216,
 "creationTime": 1557520274.405,
 "state": {
 "variables": [
 {
 "name": "resetMe",
 "value": "false"
 },
 {
 "name": "rangeLow",
 "value": "15.0"
 },
 {
 "name": "noDelay",
 "value": "false"
 },
 {
 "name": "desiredTemperature",
 "value": "20.0"
 },
 {
 "name": "anomalousLow",
 "value": "0.0"
 },
 {
 "name": "sensorId",
 "value": "\"01\""
 },
 {
 "name": "sensorCount",

BatchPutMessage examples 164

AWS IoT Events Developer Guide

 "value": "10"
 },
 {
 "name": "rangeHigh",
 "value": "30.0"
 },
 {
 "name": "enteringNewState",
 "value": "false"
 },
 {
 "name": "averageTemperature",
 "value": "19.572"
 },
 {
 "name": "allowedError",
 "value": "0.7"
 },
 {
 "name": "anomalousHigh",
 "value": "60.0"
 },
 {
 "name": "reportedTemperature",
 "value": "15.72"
 },
 {
 "name": "goodToGo",
 "value": "false"
 }
],
 "stateName": "idle",
 "timers": [
 {
 "timestamp": 1557520454.0,
 "name": "idleTimer"
 }
]
 },
 "keyValue": "Area51",
 "detectorModelName": "areaDetectorModel",
 "detectorModelVersion": "1"
 }

BatchPutMessage examples 165

AWS IoT Events Developer Guide

}

BatchUpdateDetector example for an HVAC system in AWS IoT Events

In this example, BatchUpdateDetector is used to change operational parameters for a working
detector instance.

Efficient HVAC system management often requires batch updates to multiple detectors. This
section demonstrates how to use AWS IoT Events's batch update feature for detectors. Learn to
simultaneously modify multiple control parameters, update threshold values, so that you can
adjust response actions across a fleet of devices, improving your ability to manage large-scale
systems effectively.

CLI command used:

aws iotevents-data batch-update-detector --cli-input-json file://areaDM.BUD.json

File: areaDM.BUD.json

{
 "detectors": [
 {
 "messageId": "0001",
 "detectorModelName": "areaDetectorModel",
 "keyValue": "Area51",
 "state": {
 "stateName": "start",
 "variables": [
 {
 "name": "desiredTemperature",
 "value": "22"
 },
 {
 "name": "averageTemperature",
 "value": "22"
 },
 {
 "name": "allowedError",
 "value": "1.0"
 },
 {

BatchUpdateDetector example 166

AWS IoT Events Developer Guide

 "name": "rangeHigh",
 "value": "30.0"
 },
 {
 "name": "rangeLow",
 "value": "15.0"
 },
 {
 "name": "anomalousHigh",
 "value": "60.0"
 },
 {
 "name": "anomalousLow",
 "value": "0.0"
 },
 {
 "name": "sensorCount",
 "value": "12"
 },
 {
 "name": "noDelay",
 "value": "true"
 },
 {
 "name": "goodToGo",
 "value": "true"
 },
 {
 "name": "sensorId",
 "value": "0"
 },
 {
 "name": "reportedTemperature",
 "value": "0.1"
 },
 {
 "name": "resetMe",
 "value": "true"
 }
],
 "timers": [
]
 }
 }

BatchUpdateDetector example 167

AWS IoT Events Developer Guide

]
}

Response:

{
 An error occurred (InvalidRequestException) when calling the BatchUpdateDetector
 operation: Number of variables in the detector exceeds the limit 10
}

The AWS IoT Core rules engine and AWS IoT Events

The following rules republish AWS IoT Events MQTT messages as shadow update request
messages. We assume that AWS IoT Core things are defined for a heating unit and a cooling unit
for each area that is controlled by the detector model.

In this example, we have defined things named Area51HeatingUnit and Area51CoolingUnit.

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOffRule.json

File: ADMShadowCoolOffRule.json

{
 "ruleName": "ADMShadowCoolOff",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/Off'",
 "description": "areaDetectorModel mqtt topic publish to cooling unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }

AWS IoT Core rules engine 168

AWS IoT Events Developer Guide

}

Response: [empty]

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowCoolOnRule.json

File: ADMShadowCoolOnRule.json

{
 "ruleName": "ADMShadowCoolOn",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Cooling/On'",
 "description": "areaDetectorModel mqtt topic publish to cooling unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}CoolingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

Response: [empty]

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOffRule.json

File: ADMShadowHeatOffRule.json

{
 "ruleName": "ADMShadowHeatOff",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/Off'",

AWS IoT Core rules engine 169

AWS IoT Events Developer Guide

 "description": "areaDetectorModel mqtt topic publish to heating unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

Response: [empty]

CLI command used:

aws iot create-topic-rule --cli-input-json file://ADMShadowHeatOnRule.json

File: ADMShadowHeatOnRule.json

{
 "ruleName": "ADMShadowHeatOn",
 "topicRulePayload": {
 "sql": "SELECT topic(3) as state.desired.command FROM 'hvac/Heating/On'",
 "description": "areaDetectorModel mqtt topic publish to heating unit shadow
 request",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "republish": {
 "topic": "$$aws/things/${payload.detector.keyValue}HeatingUnit/shadow/
update",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/ADMShadowRole"
 }
 }
]
 }
}

AWS IoT Core rules engine 170

AWS IoT Events Developer Guide

Response: [empty]

Example: A crane detecting conditions using AWS IoT Events

An operator of many cranes wants to detect when the machines need maintenance or replacement
and trigger appropriate notifications. Each crane has a motor. A motor emits messages (inputs)
with information about pressure and temperature. The operator wants two levels of event
detectors:

• A crane-level event detector

• A motor-level event detector

Using messages from the motors (that contain metadata with both the craneId and the
motorid), the operator can execute both levels of event detectors using appropriate routing.
When event conditions are met, notifications should be sent to appropriate Amazon SNS topics.
The operator can configure the detector models so that duplicate notifications are not raised.

This example demonstrates the following functional capabilities:

• Create, Read, Update, Delete (CRUD) of inputs.

• Create, Read, Update, Delete (CRUD) of event detector models and different versions of event
detectors.

• Routing one input to multiple event detectors.

• Ingestion of inputs into a detector model.

• Evaluation of trigger conditions and lifecycle events.

• Ability to refer to state variables in conditions and set their values depending on conditions.

• Runtime orchestration with definition, state, trigger evaluator, and actions executor.

• Execution of actions in ActionsExecutor with an SNS target.

Send commands in response to detected conditions in AWS IoT
Events

This page provides an example for using AWS IoT Events commands to set up inputs, create
detector models, and send simulated sensor data. The examples demonstrate how to leverage AWS
IoT Events to monitor industrial equipment like motors and cranes.

Cranes 171

AWS IoT Events Developer Guide

#Create Pressure Input
aws iotevents create-input --cli-input-json file://pressureInput.json
aws iotevents describe-input --input-name PressureInput
aws iotevents update-input --cli-input-json file://pressureInput.json
aws iotevents list-inputs
aws iotevents delete-input --input-name PressureInput

#Create Temperature Input
aws iotevents create-input --cli-input-json file://temperatureInput.json
aws iotevents describe-input --input-name TemperatureInput
aws iotevents update-input --cli-input-json file://temperatureInput.json
aws iotevents list-inputs
aws iotevents delete-input --input-name TemperatureInput

#Create Motor Event Detector using pressure and temperature input
aws iotevents create-detector-model --cli-input-json file://motorDetectorModel.json
aws iotevents describe-detector-model --detector-model-name motorDetectorModel
aws iotevents update-detector-model --cli-input-json file://
updateMotorDetectorModel.json
aws iotevents list-detector-models
aws iotevents list-detector-model-versions --detector-model-name motorDetectorModel
aws iotevents delete-detector-model --detector-model-name motorDetectorModel

#Create Crane Event Detector using temperature input
aws iotevents create-detector-model --cli-input-json file://craneDetectorModel.json
aws iotevents describe-detector-model --detector-model-name craneDetectorModel
aws iotevents update-detector-model --cli-input-json file://
updateCraneDetectorModel.json
aws iotevents list-detector-models
aws iotevents list-detector-model-versions --detector-model-name craneDetectorModel
aws iotevents delete-detector-model --detector-model-name craneDetectorModel

#Replace craneIds
sed -i '' "s/100008/100009/g" messages/*

#Replace motorIds
sed -i '' "s/200008/200009/g" messages/*

#Send HighPressure message
aws iotevents-data batch-put-message --cli-input-json file://messages/
highPressureMessage.json --cli-binary-format raw-in-base64-out

Send commands 172

AWS IoT Events Developer Guide

#Send HighTemperature message
aws iotevents-data batch-put-message --cli-input-json file://messages/
highTemperatureMessage.json --cli-binary-format raw-in-base64-out

#Send LowPressure message
aws iotevents-data batch-put-message --cli-input-json file://messages/
lowPressureMessage.json --cli-binary-format raw-in-base64-out

#Send LowTemperature message
aws iotevents-data batch-put-message --cli-input-json file://messages/
lowTemperatureMessage.json --cli-binary-format raw-in-base64-out

An AWS IoT Events detector model for crane monitoring

Monitor your equipment or device fleets for failures or changes in operation, and trigger actions
when such events occur. You define detector models in JSON which specify states, rules, and
actions. This allows you to monitor inputs like temperature and pressure, track threshold breaches,
and send alerts. The examples show detector models for a crane and motor, detecting overheating
issues and notifying by Amazon SNS when a threshold is exceeded. You can update models to
refine behavior without disrupting monitoring.

File: craneDetectorModel.json

{
 "detectorModelName": "craneDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "Running",
 "onEnter": {
 "events": [
 {
 "eventName": "init",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "craneThresholdBreached",
 "value": "0"
 }
 }

Detector models 173

AWS IoT Events Developer Guide

]
 }
]
 },
 "onInput": {
 "events": [
 {
 "eventName": "Overheated",
 "condition": "$input.TemperatureInput.temperature > 35",
 "actions": [
 {
 "setVariable": {
 "variableName": "craneThresholdBreached",
 "value": "$variable.craneThresholdBreached + 1"
 }
 }
]
 },
 {
 "eventName": "Crane Threshold Breached",
 "condition": "$variable.craneThresholdBreached > 5",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:CraneSNSTopic"
 }
 }
]
 },
 {
 "eventName": "Underheated",
 "condition": "$input.TemperatureInput.temperature < 25",
 "actions": [
 {
 "setVariable": {
 "variableName": "craneThresholdBreached",
 "value": "0"
 }
 }
]
 }
]
 }

Detector models 174

AWS IoT Events Developer Guide

 }
],
 "initialStateName": "Running"
 },
 "key": "craneid",
 "roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"
}

To update an existing detector model. File: updateCraneDetectorModel.json

{
 "detectorModelName": "craneDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "Running",
 "onEnter": {
 "events": [
 {
 "eventName": "init",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "craneThresholdBreached",
 "value": "0"
 }
 },
 {
 "setVariable": {
 "variableName": "alarmRaised",
 "value": "'false'"
 }
 }
]
 }
]
 },
 "onInput": {
 "events": [
 {
 "eventName": "Overheated",
 "condition": "$input.TemperatureInput.temperature > 30",

Detector models 175

AWS IoT Events Developer Guide

 "actions": [
 {
 "setVariable": {
 "variableName": "craneThresholdBreached",
 "value": "$variable.craneThresholdBreached + 1"
 }
 }
]
 },
 {
 "eventName": "Crane Threshold Breached",
 "condition": "$variable.craneThresholdBreached > 5 &&
 $variable.alarmRaised == 'false'",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:CraneSNSTopic"
 }
 },
 {
 "setVariable": {
 "variableName": "alarmRaised",
 "value": "'true'"
 }
 }
]
 },
 {
 "eventName": "Underheated",
 "condition": "$input.TemperatureInput.temperature < 10",
 "actions": [
 {
 "setVariable": {
 "variableName": "craneThresholdBreached",
 "value": "0"
 }
 }
]
 }
]
 }
 }
],

Detector models 176

AWS IoT Events Developer Guide

 "initialStateName": "Running"
 },
 "roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"
}

File: motorDetectorModel.json

{
 "detectorModelName": "motorDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "Running",
 "onEnter": {
 "events": [
 {
 "eventName": "init",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "motorThresholdBreached",
 "value": "0"
 }
 }
]
 }
]
 },
 "onInput": {
 "events": [
 {
 "eventName": "Overheated And Overpressurized",
 "condition": "$input.PressureInput.pressure > 70 &&
 $input.TemperatureInput.temperature > 30",
 "actions": [
 {
 "setVariable": {
 "variableName": "motorThresholdBreached",
 "value": "$variable.motorThresholdBreached + 1"
 }
 }
]

Detector models 177

AWS IoT Events Developer Guide

 },
 {
 "eventName": "Motor Threshold Breached",
 "condition": "$variable.motorThresholdBreached > 5",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:MotorSNSTopic"
 }
 }
]
 }
]
 }
 }
],
 "initialStateName": "Running"
 },
 "key": "motorId",
 "roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"
}

To update an existing detector model. File: updateMotorDetectorModel.json

{
 "detectorModelName": "motorDetectorModel",
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "Running",
 "onEnter": {
 "events": [
 {
 "eventName": "init",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "motorThresholdBreached",
 "value": "0"
 }
 }

Detector models 178

AWS IoT Events Developer Guide

]
 }
]
 },
 "onInput": {
 "events": [
 {
 "eventName": "Overheated And Overpressurized",
 "condition": "$input.PressureInput.pressure > 70 &&
 $input.TemperatureInput.temperature > 30",
 "actions": [
 {
 "setVariable": {
 "variableName": "motorThresholdBreached",
 "value": "$variable.motorThresholdBreached + 1"
 }
 }
]
 },
 {
 "eventName": "Motor Threshold Breached",
 "condition": "$variable.motorThresholdBreached > 5",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
east-1:123456789012:MotorSNSTopic"
 }
 }
]
 }
]
 }
 }
],
 "initialStateName": "Running"
 },
 "roleArn": "arn:aws:iam::123456789012:role/columboSNSRole"
}

Detector models 179

AWS IoT Events Developer Guide

AWS IoT Events inputs for crane monitoring

In this example, we demonstrate how to set up inputs for a crane monitoring system using AWS
IoT Events. It captures pressure and temperature inputs to illustrate how to structure inputs for
complex industrial equipment monitoring.

File: pressureInput.json

{
 "inputName": "PressureInput",
 "inputDescription": "this is a pressure input description",
 "inputDefinition": {
 "attributes": [
 {"jsonPath": "pressure"}
]
 }
}

File: temperatureInput.json

{
 "inputName": "TemperatureInput",
 "inputDescription": "this is temperature input description",
 "inputDefinition": {
 "attributes": [
 {"jsonPath": "temperature"}
]
 }
}

Send alarm and operational messages with AWS IoT Events

Effective message handling is important in crane monitoring systems. This section showcases
how to configure AWS IoT Events to process and respond to various message types from crane
sensors. Setting up alarms based on a particular message can help you parse, filter, and route
status updates to trigger appropriate actions.

File: highPressureMessage.json

{
 "messages": [

Inputs 180

AWS IoT Events Developer Guide

 {
 "messageId": "1",
 "inputName": "PressureInput",
 "payload": "{\"craneid\": \"100009\", \"pressure\": 80, \"motorid\":
 \"200009\"}"

 }
]
}

File: highTemperatureMessage.json

{
 "messages": [
 {
 "messageId": "2",
 "inputName": "TemperatureInput",
 "payload": "{\"craneid\": \"100009\", \"temperature\": 40, \"motorid\":
 \"200009\"}"
 }
]
}

File: lowPressureMessage.json

{
 "messages": [
 {
 "messageId": "1",
 "inputName": "PressureInput",
 "payload": "{\"craneid\": \"100009\", \"pressure\": 20, \"motorid\":
 \"200009\"}"
 }
]
}

File: lowTemperatureMessage.json

{
 "messages": [
 {
 "messageId": "2",

Messages 181

AWS IoT Events Developer Guide

 "inputName": "TemperatureInput",
 "payload": "{\"craneid\": \"100009\", \"temperature\": 20, \"motorid\":
 \"200009\"}"
 }
]
}

Example: AWS IoT Events event detection with sensors and
applications

This detector model is one of the templates available from the AWS IoT Events console. It's
included here for your convenience.

This example demonstrates AWS IoT Events's application event detection using sensor data. It
shows how you can create a detector model that monitors specified events so that you can trigger
appropriate actions. You can create multiple sensor inputs, define complex event conditions, and
set up graduated response mechanisms.

{
 "detectorModelName": "EventDetectionSensorsAndApplications",
 "detectorModelDefinition": {
 "states": [
 {
 "onInput": {
 "transitionEvents": [],
 "events": []
 },
 "stateName": "Device_exception",
 "onEnter": {
 "events": [
 {
 "eventName": "Send_mqtt",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "Device_stolen"
 }
 }
],
 "condition": "true"
 }

Example: Event detection with sensors 182

AWS IoT Events Developer Guide

]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "To_in_use",
 "actions": [],
 "condition": "$variable.position !=
 $input.AWS_IoTEvents_Blueprints_Tracking_DeviceInput.gps_position",
 "nextState": "Device_in_use"
 }
],
 "events": []
 },
 "stateName": "Device_idle",
 "onEnter": {
 "events": [
 {
 "eventName": "Set_position",
 "actions": [
 {
 "setVariable": {
 "variableName": "position",
 "value":
 "$input.AWS_IoTEvents_Blueprints_Tracking_DeviceInput.gps_position"
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [

Example: Event detection with sensors 183

AWS IoT Events Developer Guide

 {
 "eventName": "To_exception",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Tracking_UserInput.device_id !=
 $input.AWS_IoTEvents_Blueprints_Tracking_DeviceInput.device_id",
 "nextState": "Device_exception"
 }
],
 "events": []
 },
 "stateName": "Device_in_use",
 "onEnter": {
 "events": []
 },
 "onExit": {
 "events": []
 }
 }
],
 "initialStateName": "Device_idle"
 }
}

Example: Device HeartBeat to monitor device connections with
AWS IoT Events

This detector model is one of the templates available from the AWS IoT Events console. It's
included here for your convenience.

The Defective Heart Beat (DHB) example illustrates how AWS IoT Events can be used in healthcare
monitoring. This example shows how you can create a detector model that analyzes heart rate
data, detects irregular patterns, and triggers appropriate responses. Learn to set up inputs, define
thresholds, and configure alerts for potential cardiac issues, showcasing AWS IoT Events's versatility
in related healthcare applications.

{
 "detectorModelDefinition": {
 "states": [
 {
 "onInput": {

Device HeartBeat 184

AWS IoT Events Developer Guide

 "transitionEvents": [
 {
 "eventName": "To_normal",
 "actions": [],
 "condition":
 "currentInput(\"AWS_IoTEvents_Blueprints_Heartbeat_Input\")",
 "nextState": "Normal"
 }
],
 "events": []
 },
 "stateName": "Offline",
 "onEnter": {
 "events": [
 {
 "eventName": "Send_notification",
 "actions": [
 {
 "sns": {
 "targetArn": "sns-topic-arn"
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "Go_offline",
 "actions": [],
 "condition": "timeout(\"awake\")",
 "nextState": "Offline"
 }
],
 "events": [
 {
 "eventName": "Reset_timer",

Device HeartBeat 185

AWS IoT Events Developer Guide

 "actions": [
 {
 "resetTimer": {
 "timerName": "awake"
 }
 }
],
 "condition":
 "currentInput(\"AWS_IoTEvents_Blueprints_Heartbeat_Input\")"
 }
]
 },
 "stateName": "Normal",
 "onEnter": {
 "events": [
 {
 "eventName": "Create_timer",
 "actions": [
 {
 "setTimer": {
 "seconds": 300,
 "timerName": "awake"
 }
 }
],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Heartbeat_Input.value > 0"
 }
]
 },
 "onExit": {
 "events": []
 }
 }
],
 "initialStateName": "Normal"
 }
}

Example: An ISA alarm in AWS IoT Events

This detector model is one of the templates available from the AWS IoT Events console. It's
included here for your convenience.

ISA alarm 186

AWS IoT Events Developer Guide

{
 "detectorModelName": "AWS_IoTEvents_Blueprints_ISA_Alarm",
 "detectorModelDefinition": {
 "states": [
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "unshelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
 $variable.state == \"rtnunack\"",
 "nextState": "RTN_Unacknowledged"
 },
 {
 "eventName": "unshelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
 $variable.state == \"ack\"",
 "nextState": "Acknowledged"
 },
 {
 "eventName": "unshelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
 $variable.state == \"unack\"",
 "nextState": "Unacknowledged"
 },
 {
 "eventName": "unshelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unshelve\" &&
 $variable.state == \"normal\"",
 "nextState": "Normal"
 }
],
 "events": []
 },
 "stateName": "Shelved",

ISA alarm 187

AWS IoT Events Developer Guide

 "onEnter": {
 "events": []
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "abnormal_condition",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value > $variable.higher_threshold ||
 $input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value < $variable.lower_threshold",
 "nextState": "Unacknowledged"
 },
 {
 "eventName": "acknowledge",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"acknowledge\"",
 "nextState": "Normal"
 },
 {
 "eventName": "shelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",
 "nextState": "Shelved"
 },
 {
 "eventName": "remove_from_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",
 "nextState": "Out_of_service"
 },
 {
 "eventName": "suppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",

ISA alarm 188

AWS IoT Events Developer Guide

 "nextState": "Suppressed_by_design"
 }
],
 "events": []
 },
 "stateName": "RTN_Unacknowledged",
 "onEnter": {
 "events": [
 {
 "eventName": "State Save",
 "actions": [
 {
 "setVariable": {
 "variableName": "state",
 "value": "\"rtnunack\""
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "abnormal_condition",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value > $variable.higher_threshold ||
 $input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value < $variable.lower_threshold",
 "nextState": "Unacknowledged"
 },
 {
 "eventName": "shelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",
 "nextState": "Shelved"
 },

ISA alarm 189

AWS IoT Events Developer Guide

 {
 "eventName": "remove_from_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",
 "nextState": "Out_of_service"
 },
 {
 "eventName": "suppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",
 "nextState": "Suppressed_by_design"
 }
],
 "events": [
 {
 "eventName": "Create Config variables",
 "actions": [
 {
 "setVariable": {
 "variableName": "lower_threshold",
 "value":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.lower_threshold"
 }
 },
 {
 "setVariable": {
 "variableName": "higher_threshold",
 "value":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.higher_threshold"
 }
 }
],
 "condition": "$variable.lower_threshold !=
 $variable.lower_threshold"
 }
]
 },
 "stateName": "Normal",
 "onEnter": {
 "events": [
 {
 "eventName": "State Save",

ISA alarm 190

AWS IoT Events Developer Guide

 "actions": [
 {
 "setVariable": {
 "variableName": "state",
 "value": "\"normal\""
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "acknowledge",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"acknowledge\"",
 "nextState": "Acknowledged"
 },
 {
 "eventName": "return_to_normal",
 "actions": [],
 "condition":
 "($input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value <= $variable.higher_threshold
 && $input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.value >=
 $variable.lower_threshold)",
 "nextState": "RTN_Unacknowledged"
 },
 {
 "eventName": "shelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",
 "nextState": "Shelved"
 },
 {
 "eventName": "remove_from_service",

ISA alarm 191

AWS IoT Events Developer Guide

 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",
 "nextState": "Out_of_service"
 },
 {
 "eventName": "suppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",
 "nextState": "Suppressed_by_design"
 }
],
 "events": []
 },
 "stateName": "Unacknowledged",
 "onEnter": {
 "events": [
 {
 "eventName": "State Save",
 "actions": [
 {
 "setVariable": {
 "variableName": "state",
 "value": "\"unack\""
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "unsuppression",
 "actions": [],

ISA alarm 192

AWS IoT Events Developer Guide

 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
 $variable.state == \"normal\"",
 "nextState": "Normal"
 },
 {
 "eventName": "unsuppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
 $variable.state == \"unack\"",
 "nextState": "Unacknowledged"
 },
 {
 "eventName": "unsuppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
 $variable.state == \"ack\"",
 "nextState": "Acknowledged"
 },
 {
 "eventName": "unsuppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"unsuppressed\" &&
 $variable.state == \"rtnunack\"",
 "nextState": "RTN_Unacknowledged"
 }
],
 "events": []
 },
 "stateName": "Suppressed_by_design",
 "onEnter": {
 "events": []
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {

ISA alarm 193

AWS IoT Events Developer Guide

 "eventName": "return_to_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
 == \"rtnunack\"",
 "nextState": "RTN_Unacknowledged"
 },
 {
 "eventName": "return_to_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
 == \"unack\"",
 "nextState": "Unacknowledged"
 },
 {
 "eventName": "return_to_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
 == \"ack\"",
 "nextState": "Acknowledged"
 },
 {
 "eventName": "return_to_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"add\" && $variable.state
 == \"normal\"",
 "nextState": "Normal"
 }
],
 "events": []
 },
 "stateName": "Out_of_service",
 "onEnter": {
 "events": []
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {

ISA alarm 194

AWS IoT Events Developer Guide

 "transitionEvents": [
 {
 "eventName": "re-alarm",
 "actions": [],
 "condition": "timeout(\"snooze\")",
 "nextState": "Unacknowledged"
 },
 {
 "eventName": "return_to_normal",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"reset\"",
 "nextState": "Normal"
 },
 {
 "eventName": "shelve",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"shelve\"",
 "nextState": "Shelved"
 },
 {
 "eventName": "remove_from_service",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"remove\"",
 "nextState": "Out_of_service"
 },
 {
 "eventName": "suppression",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_ISA_Alarm_Input.command == \"suppressed\"",
 "nextState": "Suppressed_by_design"
 }
],
 "events": []
 },
 "stateName": "Acknowledged",
 "onEnter": {
 "events": [
 {
 "eventName": "Create Timer",
 "actions": [

ISA alarm 195

AWS IoT Events Developer Guide

 {
 "setTimer": {
 "seconds": 60,
 "timerName": "snooze"
 }
 }
],
 "condition": "true"
 },
 {
 "eventName": "State Save",
 "actions": [
 {
 "setVariable": {
 "variableName": "state",
 "value": "\"ack\""
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 }
],
 "initialStateName": "Normal"
 },
 "detectorModelDescription": "This detector model is used to detect if a monitored
 device is in an Alarming State in accordance to the ISA 18.2.",
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
 "key": "alarmId"
}

Example: Build a simple alarm with AWS IoT Events

This detector model is one of the templates available from the AWS IoT Events console. It's
included here for your convenience.

{

Simple alarm 196

AWS IoT Events Developer Guide

 "detectorModelDefinition": {
 "states": [
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "not_fixed",
 "actions": [],
 "condition": "timeout(\"snoozeTime\")",
 "nextState": "Alarming"
 },
 {
 "eventName": "reset",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"reset\"",
 "nextState": "Normal"
 }
],
 "events": [
 {
 "eventName": "DND",
 "actions": [
 {
 "setVariable": {
 "variableName": "dnd_active",
 "value": "1"
 }
 }
],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"dnd\""
 }
]
 },
 "stateName": "Snooze",
 "onEnter": {
 "events": [
 {
 "eventName": "Create Timer",
 "actions": [
 {
 "setTimer": {
 "seconds": 120,

Simple alarm 197

AWS IoT Events Developer Guide

 "timerName": "snoozeTime"
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "out_of_range",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.value > $variable.threshold",
 "nextState": "Alarming"
 }
],
 "events": [
 {
 "eventName": "Create Config variables",
 "actions": [
 {
 "setVariable": {
 "variableName": "threshold",
 "value":
 "$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.threshold"
 }
 }
],
 "condition": "$variable.threshold != $variable.threshold"
 }
]
 },
 "stateName": "Normal",
 "onEnter": {
 "events": [
 {
 "eventName": "Init",

Simple alarm 198

AWS IoT Events Developer Guide

 "actions": [
 {
 "setVariable": {
 "variableName": "dnd_active",
 "value": "0"
 }
 }
],
 "condition": "true"
 }
]
 },
 "onExit": {
 "events": []
 }
 },
 {
 "onInput": {
 "transitionEvents": [
 {
 "eventName": "reset",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"reset\"",
 "nextState": "Normal"
 },
 {
 "eventName": "acknowledge",
 "actions": [],
 "condition":
 "$input.AWS_IoTEvents_Blueprints_Simple_Alarm_Input.command == \"acknowledge\"",
 "nextState": "Snooze"
 }
],
 "events": [
 {
 "eventName": "Escalated Alarm Notification",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
west-2:123456789012:escalatedAlarmNotification"
 }
 }

Simple alarm 199

AWS IoT Events Developer Guide

],
 "condition": "timeout(\"unacknowledgeTIme\")"
 }
]
 },
 "stateName": "Alarming",
 "onEnter": {
 "events": [
 {
 "eventName": "Alarm Notification",
 "actions": [
 {
 "sns": {
 "targetArn": "arn:aws:sns:us-
west-2:123456789012:alarmNotification"
 }
 },
 {
 "setTimer": {
 "seconds": 300,
 "timerName": "unacknowledgeTIme"
 }
 }
],
 "condition": "$variable.dnd_active != 1"
 }
]
 },
 "onExit": {
 "events": []
 }
 }
],
 "initialStateName": "Normal"
 },
 "detectorModelDescription": "This detector model is used to detect if a monitored
 device is in an Alarming State.",
 "roleArn": "arn:aws:iam::123456789012:role/IoTEventsRole",
 "key": "alarmId"
}

Simple alarm 200

AWS IoT Events Developer Guide

Monitoring with alarms in AWS IoT Events

AWS IoT Events alarms help you monitor your data for changes. The data can be metrics that you
measure for your equipment and processes. You can create alarms that send notifications when
a threshold is breached. Alarms help you detect issues, streamline maintenance, and optimize
performance of your equipment and processes.

Alarms are instances of alarm models. The alarm model specifies what to detect, when to send
notifications, who gets notified, and more. You can also specify one or more supported actions that
occur when the alarm state changes. AWS IoT Events routes input attributes derived from your data
to the appropriate alarms. If the data that you're monitoring is outside the specified range, the
alarm is invoked. You can also acknowledge the alarms or set them to the snooze mode.

Working with AWS IoT SiteWise

You can use AWS IoT Events alarms to monitor asset properties in AWS IoT SiteWise. AWS IoT
SiteWise sends asset property values to AWS IoT Events alarms. AWS IoT Events sends the alarm
state to AWS IoT SiteWise.

AWS IoT SiteWise also supports external alarms. You might choose external alarms if you use
alarms outside of AWS IoT SiteWise and have a solution that returns alarm state data. The external
alarm contains a measurement property that ingests the alarm state data.

AWS IoT SiteWise doesn't evaluate the state of external alarms. Additionally, you can't
acknowledge or snooze an external alarm when the alarm state changes.

You can use the SiteWise Monitor feature to view the state of external alarms in SiteWise Monitor
portals.

For more information, see Monitoring data with alarms in the AWS IoT SiteWise User Guide and
Monitoring with alarms in the SiteWise Monitor Application Guide.

Acknowledge flow

When you create an alarm model, you choose whether to enable acknowledge flow. If you
enable acknowledge flow, your team gets notified when the alarm state changes. Your team
can acknowledge the alarm and leave a note. For example, you can include the information of

Working with AWS IoT SiteWise 201

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-supported-actions.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-detector-input.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-alarms.html
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/monitor-alarms.html

AWS IoT Events Developer Guide

the alarm and the actions that you're going to take to address the issue. If the data that you're
monitoring is outside the specified range, the alarm is invoked.

Alarms have the following states:

DISABLED

When the alarm is in the DISABLED state, it isn't ready to evaluate data. To enable the alarm,
you must change the alarm to the NORMAL state.

NORMAL

When the alarm is in the NORMAL state, it's ready to evaluate data.

ACTIVE

If the alarm is in the ACTIVE state, the alarm is invoked. The data that you're monitoring is
outside the specified range.

ACKNOWLEDGED

When the alarm is in the ACKNOWLEDGED state, the alarm was invoked and you acknowledged
the alarm.

LATCHED

The alarm was invoked, but you didn't acknowledge the alarm after a period of time. The alarm
automatically changes to the NORMAL state.

SNOOZE_DISABLED

When the alarm is in the SNOOZE_DISABLED state, the alarm is disabled for a specified period
of time. After the snooze time, the alarm automatically changes to the NORMAL state.

Creating an alarm model in AWS IoT Events

You can use AWS IoT Events alarms to monitor your data and get notified when a threshold is
breached. Alarms provide parameters that you use to create or configure an alarm model. You can
use the AWS IoT Events console or AWS IoT Events API to create or configure the alarm model.
When you configure the alarm model, changes take effect as new data arrives.

Requirements

The following requirements apply when you create an alarm model.

Creating an alarm model 202

AWS IoT Events Developer Guide

• You can create an alarm model to monitor an input attribute in AWS IoT Events or an asset
property in AWS IoT SiteWise.

• If you choose to monitor an input attribute in AWS IoT Events, Create an input for models in
AWS IoT Events before you create the alarm model.

• If you choose to monitor an asset property, you must create an asset model in AWS IoT
SiteWise before you create the alarm model.

• You must have an IAM role that allows your alarm to perform actions and access AWS resources.
For more information, see Setting up permissions for AWS IoT Events.

• All the AWS resources that this tutorial uses must be in the same AWS Region.

Creating an alarm model (console)

The following shows you how to create an alarm model to monitor an AWS IoT Events attribute in
the AWS IoT Events console.

1. Sign in to the AWS IoT Events console.

2. In the navigation pane, choose Alarm models.

3. On the Alarm models page, choose Create alarm model.

4. In the Alarm model details section, do the following:

a. Enter a unique name.

b. (Optional) Enter a description.

5. In the Alarm target section, do the following:

Important

If you choose AWS IoT SiteWise asset property, you must have created an asset model
in AWS IoT SiteWise.

a. Choose AWS IoT Events input attribute.

b. Choose the input.

c. Choose the input attribute key. This input attribute is used as a key to create the alarm.
AWS IoT Events routes inputs associated with this key to the alarm.

Creating an alarm model (console) 203

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-start.html
https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

Important

If the input message payload does not contain this input attribute key, or if the key
is not in the same JSON path specified in the key, then the message will fail the
ingestion in AWS IoT Events.

6. In the Threshold definitions section, you define the input attribute, threshold value, and
comparison operator that AWS IoT Events uses to change the state of the alarm.

a. For Input attribute, choose the attribute that you want to monitor.

Each time that this input attribute receives new data, it's evaluated to determine the state
of the alarm.

b. For Operator, choose the comparison operator. The operator compares your input
attribute with the threshold value for your attribute.

You can choose from these options:

• > greater than

• >= greater than or equal to

• < less than

• <= less than or equal to

• = equal to

• != not equal to

c. For threshold Value, enter a number or choose an attribute in AWS IoT Events inputs. AWS
IoT Events compares this value with the value of the input attribute you choose.

d. (Optional) For Severity, Use a number that your team understands to reflect the severity
of this alarm.

7. (Optional) In the Notification settings section, configure notification settings for the alarm.

You can add up to 10 notifications. For Notification 1, do the following:

a. For Protocol, choose from the following options:

• Email & text - The alarm sends an SMS notification and an email notification.

• Email - The alarm sends an email notification.

Creating an alarm model (console) 204

AWS IoT Events Developer Guide

• Text - The alarm sends an SMS notification.

b. For Sender, specify the email address that can send notifications about this alarm.

To add more email addresses to your sender list, choose Add sender.

c. (Optional) For Recipient, choose the recipient.

To add more users to your recipient list, choose Add new user. You must add new users
to your IAM Identity Center store before you can add them to your alarm model. For more
information, see Manage IAM Identity Center access of alarm recipients in AWS IoT Events.

d. (Optional) For Additional custom message, enter a message that describes what the
alarm detects and what actions the recipients should take.

8. In the Instance section, you can enable or disable all alarm instances that are created based on
this alarm model.

9. In the Advanced settings section, do the following:

a. For Acknowledge flow, you can enable or disable notifications.

• If you choose Enabled, you receive a notification when the alarm state changes. You
must acknowledge the notification before the alarm state can return to normal.

• If you choose Disabled, no action is required. The alarm automatically changes to the
normal state when the measurement returns to the specified range.

For more information, see Acknowledge flow.

b. For Permissions, choose one of the following options:

• You can Create a new role from AWS policy templates and AWS IoT Events
automatically creates an IAM role for you.

• You can Use an existing IAM role that allows this alarm model to perform actions and
access other AWS resources.

For more information, see Identity and access management for AWS IoT Events.

c. For Additional notification settings, you can edit your AWS Lambda function to manage
alarm notifications. Choose one of the following options for your AWS Lambda function:

• Create a new AWS Lambda function - AWS IoT Events creates a new AWS Lambda
function for you.

Creating an alarm model (console) 205

https://docs.aws.amazon.com/iotevents/latest/developerguide/security-iam.html

AWS IoT Events Developer Guide

• Use an existing AWS Lambda function - Use an existing AWS Lambda function by
choosing an AWS Lambda function name.

For more information about the possible actions, see AWS IoT Events working with other
AWS services.

d. (Optional) For Set state action, you can add one or more AWS IoT Events actions to take
when the alarm state changes.

10. (Optional) You can add Tags to manage your alarms. For more information, see Tagging your
AWS IoT Events resources.

11. Choose Create.

Responding to alarms in AWS IoT Events

Responding to alarms effectively is an important aspect of managing IoT systems with AWS IoT
Events. Explore various ways to configure and handle alarms, including: setting up notification
channels, defining escalation procedures, and implementing automated response actions. Learn to
create nuanced alarm conditions, prioritize alerts, and integrate with other AWS services to build a
responsive alarm management system for your IoT applications.

If you enabled acknowledge flow, you receive notifications when the alarm state changes. To
respond to the alarm, you can acknowledge, disable, enable, reset, or snooze the alarm.

Console

The following shows you how to respond to an alarm in the AWS IoT Events console.

1. Sign in to the AWS IoT Events console.

2. In the navigation pane, choose Alarm models.

3. Choose the target alarm model.

4. In the List of alarms section, choose the target alarm.

5. You can choose one of the following options from Actions:

• Acknowledge - The alarm changes to the ACKNOWLEDGED state.

• Disable - The alarm changes to the DISABLED state.

• Enable - The alarm changes to the NORMAL state.

Responding to alarms 206

https://docs.aws.amazon.com/iotevents/latest/developerguide/tagging-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/tagging-iotevents.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-alarms.html#acknowledge-flow
https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

• Reset - The alarm changes to the NORMAL state.

• Snooze, and then do the following:

1. Choose the Snooze length or enter a Custom snooze length.

2. Choose Save.

The alarm changes to the SNOOZE_DISABLED state

For more information about the alarm states, see Acknowledge flow.

API

To respond to one or more alarms, you can use the following AWS IoT Events API operations:

• BatchAcknowledgeAlarm

• BatchDisableAlarm

• BatchEnableAlarm

• BatchResetAlarm

• BatchSnoozeAlarm

Managing alarm notifications in AWS IoT Events

AWS IoT Events integrates with Lambda, offering custom event processing capabilities. This section
explores how to use Lambda functions within your AWS IoT Events detector models, allowing
you to execute complex logic, interact with external services, and implement sophisticated event
handling.

AWS IoT Events uses a Lambda function to manage alarm notifications. You can use the Lambda
function provided by AWS IoT Events or create a new one.

Topics

• Creating a Lambda function in AWS IoT Events

• Using the Lambda function provided by AWS IoT Events

• Manage IAM Identity Center access of alarm recipients in AWS IoT Events

Managing alarm notifications 207

https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchAcknowledgeAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchDisableAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchEnableAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchResetAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchSnoozeAlarm.html

AWS IoT Events Developer Guide

Creating a Lambda function in AWS IoT Events

AWS IoT Events provides a Lambda function that enables alarms to send and receive email and
SMS notifications.

Requirements

The following requirements apply when you create a Lambda function for alarms:

• If your alarm sends SMS notifications, ensure Amazon SNS is configured to deliver SMS
messages.

• For more information, see the following documentation:

• Mobile text messaging with Amazon SNS and Origination identities for Amazon SNS SMS
messages in the Amazon Simple Notification Service Developer Guide.

• What is AWS End User Messaging SMS? in the AWS SMS User Guide.

• If your alarm sends email or SMS notifications, you must have an IAM role that allows AWS
Lambda to work with Amazon SES and Amazon SNS.

Example policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ses:GetIdentityVerificationAttributes",
 "ses:SendEmail",
 "ses:VerifyEmailIdentity"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish",
 "sns:OptInPhoneNumber",
 "sns:CheckIfPhoneNumberIsOptedOut",
 "sms-voice:DescribeOptedOutNumbers"

Creating a Lambda function 208

https://docs.aws.amazon.com/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-originating-identities.html
https://docs.aws.amazon.com/sns/latest/dg/channels-sms-originating-identities.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/what-is-sms-mms.html

AWS IoT Events Developer Guide

],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "sns:Publish",
 "Resource": "arn:aws:sns:*:*:*"
 },
 {
 "Effect" : "Allow",
 "Action" : [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource" : "*"
 }
]
}

• You must choose the same AWS Region for both AWS IoT Events and AWS Lambda. For the list of
supported Regions, see AWS IoT Events endpoints and quotas and AWS Lambda endpoints and
quotas in the Amazon Web Services General Reference.

Deploy a Lambda function for AWS IoT Events using AWS CloudFormation

This tutorial uses an AWS CloudFormation template to deploy a Lambda function. This template
automatically creates an IAM role that allows the Lambda function to work with Amazon SES and
Amazon SNS.

The following shows you how to use the AWS Command Line Interface (AWS CLI) to create a
CloudFormation stack.

1. In your device's terminal, run aws --version to check if you installed the AWS CLI. For
more information, see Installing or updating to the latest version of the AWS CLI in the AWS
Command Line Interface User Guide.

2. Run aws configure list to check if you configured the AWS CLI in the AWS Region
that has all your AWS resources for this tutorial. For more information, see Set and view
configuration settings using commands in the AWS Command Line Interface User Guide

3. Download the CloudFormation template, notificationLambda.template.yaml.zip.

Creating a Lambda function 209

https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html
https://docs.aws.amazon.com/general/latest/gr/lambda-service.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-methods
samples/notificationLambda.template.yaml.zip

AWS IoT Events Developer Guide

Note

If you have difficulty downloading the file, the template is also available in the
CloudFormation template.

4. Unzip the content and save it locally as notificationLambda.template.yaml.

5. Open a terminal on your device and navigate to the directory where you downloaded the
notificationLambda.template.yaml file.

6. To create a CloudFormation stack, run the following command:

aws cloudformation create-stack --stack-name notificationLambda-stack --template-
body file://notificationLambda.template.yaml --capabilities CAPABILITY_IAM

You might modify this CloudFormation template to customize the Lambda function and its
behavior.

Note

AWS Lambda retries function errors twice. If the function doesn't have enough capacity
to handle all incoming requests, events might wait in the queue for hours or days to be
sent to the function. You can configure an undelivered-message queue (DLQ) on the
function to capture events that weren't successfully processed. For more information, see
Asynchronous invocation in the AWS Lambda Developer Guide.

You can also create or configure the stack in the CloudFormation console. For more information,
see Working with stacks, in the AWS CloudFormation User Guide.

Creating a custom Lambda function for AWS IoT Events

You can create a Lambda function or modify the one provided by AWS IoT Events.

The following requirements apply when you create a custom Lambda function.

• Add permissions that allow your Lambda function to perform specified actions and access AWS
resources.

Creating a Lambda function 210

https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html

AWS IoT Events Developer Guide

• If you use the Lambda function provided by AWS IoT Events, make sure that you choose the
Python 3.7 runtime.

Example Lambda function:

import boto3
import json
import logging
import datetime
logger = logging.getLogger()
logger.setLevel(logging.INFO)
ses = boto3.client('ses')
sns = boto3.client('sns')
def check_value(target):
 if target:
 return True
 return False

Check whether email is verified. Only verified emails are allowed to send emails to
 or from.
def check_email(email):
 if not check_value(email):
 return False
 result = ses.get_identity_verification_attributes(Identities=[email])
 attr = result['VerificationAttributes']
 if (email not in attr or attr[email]['VerificationStatus'] != 'Success'):
 logging.info('Verification email for {} sent. You must have all the emails
 verified before sending email.'.format(email))
 ses.verify_email_identity(EmailAddress=email)
 return False
 return True

Check whether the phone holder has opted out of receiving SMS messages from your
 account
def check_phone_number(phone_number):
 try:
 result = sns.check_if_phone_number_is_opted_out(phoneNumber=phone_number)
 if (result['isOptedOut']):
 logger.info('phoneNumber {} is not opt in of receiving SMS messages. Phone
 number must be opt in first.'.format(phone_number))
 return False
 return True
 except Exception as e:

Creating a Lambda function 211

AWS IoT Events Developer Guide

 logging.error('Your phone number {} must be in E.164 format in SSO. Exception
 thrown: {}'.format(phone_number, e))
 return False

def check_emails(emails):
 result = True
 for email in emails:
 if not check_email(email):
 result = False
 return result

def lambda_handler(event, context):
 logging.info('Received event: ' + json.dumps(event))
 nep = json.loads(event.get('notificationEventPayload'))
 alarm_state = nep['alarmState']
 default_msg = 'Alarm ' + alarm_state['stateName'] + '\n'
 timestamp =
 datetime.datetime.utcfromtimestamp(float(nep['stateUpdateTime'])/1000).strftime('%Y-
%m-%d %H:%M:%S')
 alarm_msg = "{} {} {} at {} UTC ".format(nep['alarmModelName'], nep.get('keyValue',
 'Singleton'), alarm_state['stateName'], timestamp)
 default_msg += 'Sev: ' + str(nep['severity']) + '\n'
 if (alarm_state['ruleEvaluation']):
 property = alarm_state['ruleEvaluation']['simpleRule']['inputProperty']
 default_msg += 'Current Value: ' + str(property) + '\n'
 operator = alarm_state['ruleEvaluation']['simpleRule']['operator']
 threshold = alarm_state['ruleEvaluation']['simpleRule']['threshold']
 alarm_msg += '({} {} {})'.format(str(property), operator, str(threshold))
 default_msg += alarm_msg + '\n'

 emails = event.get('emailConfigurations', [])
 logger.info('Start Sending Emails')
 for email in emails:
 from_adr = email.get('from')
 to_adrs = email.get('to', [])
 cc_adrs = email.get('cc', [])
 bcc_adrs = email.get('bcc', [])
 msg = default_msg + '\n' + email.get('additionalMessage', '')
 subject = email.get('subject', alarm_msg)
 fa_ver = check_email(from_adr)
 tas_ver = check_emails(to_adrs)
 ccas_ver = check_emails(cc_adrs)
 bccas_ver = check_emails(bcc_adrs)
 if (fa_ver and tas_ver and ccas_ver and bccas_ver):

Creating a Lambda function 212

AWS IoT Events Developer Guide

 ses.send_email(Source=from_adr,
 Destination={'ToAddresses': to_adrs, 'CcAddresses': cc_adrs,
 'BccAddresses': bcc_adrs},
 Message={'Subject': {'Data': subject}, 'Body': {'Text': {'Data':
 msg}}})
 logger.info('Emails have been sent')

 logger.info('Start Sending SNS message to SMS')
 sns_configs = event.get('smsConfigurations', [])
 for sns_config in sns_configs:
 sns_msg = default_msg + '\n' + sns_config.get('additionalMessage', '')
 phone_numbers = sns_config.get('phoneNumbers', [])
 sender_id = sns_config.get('senderId')
 for phone_number in phone_numbers:
 if check_phone_number(phone_number):
 if check_value(sender_id):
 sns.publish(PhoneNumber=phone_number, Message=sns_msg,
 MessageAttributes={'AWS.SNS.SMS.SenderID':{'DataType': 'String','StringValue':
 sender_id}})
 else:
 sns.publish(PhoneNumber=phone_number, Message=sns_msg)
 logger.info('SNS messages have been sent')

For more information, see What is AWS Lambda? in the AWS Lambda Developer Guide.

CloudFormation template

Use the following CloudFormation template to create your Lambda function.

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Notification Lambda for Alarm Model'
Resources:
 NotificationLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 Path: "/"
 ManagedPolicyArns:
 - 'arn:aws:iam::aws:policy/AWSLambdaExecute'

Creating a Lambda function 213

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

AWS IoT Events Developer Guide

 Policies:
 - PolicyName: "NotificationLambda"
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Action:
 - "ses:GetIdentityVerificationAttributes"
 - "ses:SendEmail"
 - "ses:VerifyEmailIdentity"
 Resource: "*"
 - Effect: "Allow"
 Action:
 - "sns:Publish"
 - "sns:OptInPhoneNumber"
 - "sns:CheckIfPhoneNumberIsOptedOut"
 - "sms-voice:DescribeOptedOutNumbers"
 Resource: "*"
 - Effect: "Deny"
 Action:
 - "sns:Publish"
 Resource: "arn:aws:sns:*:*:*"
 NotificationLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Role: !GetAtt NotificationLambdaRole.Arn
 Runtime: python3.7
 Handler: index.lambda_handler
 Timeout: 300
 MemorySize: 3008
 Code:
 ZipFile: |
 import boto3
 import json
 import logging
 import datetime
 logger = logging.getLogger()
 logger.setLevel(logging.INFO)
 ses = boto3.client('ses')
 sns = boto3.client('sns')
 def check_value(target):
 if target:
 return True
 return False

Creating a Lambda function 214

AWS IoT Events Developer Guide

 # Check whether email is verified. Only verified emails are allowed to send
 emails to or from.
 def check_email(email):
 if not check_value(email):
 return False
 result = ses.get_identity_verification_attributes(Identities=[email])
 attr = result['VerificationAttributes']
 if (email not in attr or attr[email]['VerificationStatus'] != 'Success'):
 logging.info('Verification email for {} sent. You must have all the
 emails verified before sending email.'.format(email))
 ses.verify_email_identity(EmailAddress=email)
 return False
 return True

 # Check whether the phone holder has opted out of receiving SMS messages from
 your account
 def check_phone_number(phone_number):
 try:
 result = sns.check_if_phone_number_is_opted_out(phoneNumber=phone_number)
 if (result['isOptedOut']):
 logger.info('phoneNumber {} is not opt in of receiving SMS messages.
 Phone number must be opt in first.'.format(phone_number))
 return False
 return True
 except Exception as e:
 logging.error('Your phone number {} must be in E.164 format in SSO.
 Exception thrown: {}'.format(phone_number, e))
 return False

 def check_emails(emails):
 result = True
 for email in emails:
 if not check_email(email):
 result = False
 return result

 def lambda_handler(event, context):
 logging.info('Received event: ' + json.dumps(event))
 nep = json.loads(event.get('notificationEventPayload'))
 alarm_state = nep['alarmState']
 default_msg = 'Alarm ' + alarm_state['stateName'] + '\n'

Creating a Lambda function 215

AWS IoT Events Developer Guide

 timestamp =
 datetime.datetime.utcfromtimestamp(float(nep['stateUpdateTime'])/1000).strftime('%Y-
%m-%d %H:%M:%S')
 alarm_msg = "{} {} {} at {} UTC ".format(nep['alarmModelName'],
 nep.get('keyValue', 'Singleton'), alarm_state['stateName'], timestamp)
 default_msg += 'Sev: ' + str(nep['severity']) + '\n'
 if (alarm_state['ruleEvaluation']):
 property = alarm_state['ruleEvaluation']['simpleRule']['inputProperty']
 default_msg += 'Current Value: ' + str(property) + '\n'
 operator = alarm_state['ruleEvaluation']['simpleRule']['operator']
 threshold = alarm_state['ruleEvaluation']['simpleRule']['threshold']
 alarm_msg += '({} {} {})'.format(str(property), operator, str(threshold))
 default_msg += alarm_msg + '\n'

 emails = event.get('emailConfigurations', [])
 logger.info('Start Sending Emails')
 for email in emails:
 from_adr = email.get('from')
 to_adrs = email.get('to', [])
 cc_adrs = email.get('cc', [])
 bcc_adrs = email.get('bcc', [])
 msg = default_msg + '\n' + email.get('additionalMessage', '')
 subject = email.get('subject', alarm_msg)
 fa_ver = check_email(from_adr)
 tas_ver = check_emails(to_adrs)
 ccas_ver = check_emails(cc_adrs)
 bccas_ver = check_emails(bcc_adrs)
 if (fa_ver and tas_ver and ccas_ver and bccas_ver):
 ses.send_email(Source=from_adr,
 Destination={'ToAddresses': to_adrs, 'CcAddresses':
 cc_adrs, 'BccAddresses': bcc_adrs},
 Message={'Subject': {'Data': subject}, 'Body': {'Text':
 {'Data': msg}}})
 logger.info('Emails have been sent')

 logger.info('Start Sending SNS message to SMS')
 sns_configs = event.get('smsConfigurations', [])
 for sns_config in sns_configs:
 sns_msg = default_msg + '\n' + sns_config.get('additionalMessage', '')
 phone_numbers = sns_config.get('phoneNumbers', [])
 sender_id = sns_config.get('senderId')
 for phone_number in phone_numbers:
 if check_phone_number(phone_number):
 if check_value(sender_id):

Creating a Lambda function 216

AWS IoT Events Developer Guide

 sns.publish(PhoneNumber=phone_number, Message=sns_msg,
 MessageAttributes={'AWS.SNS.SMS.SenderID':{'DataType': 'String','StringValue':
 sender_id}})
 else:
 sns.publish(PhoneNumber=phone_number, Message=sns_msg)
 logger.info('SNS messages have been sent')

Using the Lambda function provided by AWS IoT Events

With alarm notifications, you can use the Lambda function provided by AWS IoT Events for
managing alarm notifications.

The following requirements apply when you use the Lambda function provided by AWS IoT Events
to manage your alarm notifications:

• You must verify the email address that sends the email notifications in Amazon Simple Email
Service (Amazon SES). For more information, see Verifying an email address identity, in the
Amazon Simple Email Service Developer Guide.

If you receive a verification link, click the link to verify your email address. You might also check
your spam folder for a verification email.

• If your alarm sends SMS notifications, you must use E.164 international phone number
formatting for phone numbers. This format contains +<country-calling-code><area-
code><phone-number>.

Example phone numbers:

Country Local phone number E.164 formatted number

United States 206-555-0100 +12065550100

United Kingdom 020-1234-1234 +442012341234

Lithuania 8+601+12345 +37060112345

To find a country calling code, go to countrycode.org.

The Lambda function provided by AWS IoT Events checks if you use E.164 formatted phone
numbers. However, it doesn't verify the phone numbers. If you ensure that you entered accurate

Using the Lambda function 217

https://docs.aws.amazon.com/ses/latest/dg/creating-identities.html#just-verify-email-proc
https://countrycode.org/

AWS IoT Events Developer Guide

phone numbers but didn't receive SMS notifications, you might contact the phone carriers. The
carriers may block the messages.

Manage IAM Identity Center access of alarm recipients in AWS IoT
Events

AWS IoT Events uses AWS IAM Identity Center to manage the SSO access of alarms recipients.
Implementing IAM Identity Center for AWS IoT Events notification recipients can enhance security
and user experience. To enable the alarm to send notifications to the recipients, you must enable
IAM Identity Center and add recipients to your IAM Identity Center store. For more information, see
Add Users in AWS IAM Identity Center User Guide.

Important

• You must choose the same AWS Region for AWS IoT Events, AWS Lambda, and IAM
Identity Center.

• AWS Organizations only supports one IAM Identity Center Region at a time. If you want
to make IAM Identity Center available in a different Region, you must first delete your
current IAM Identity Center configuration. For more information, see IAM Identity Center
Region Data in AWS IAM Identity Center User Guide.

Manage alarm recipients 218

https://docs.aws.amazon.com/singlesignon/latest/userguide/addusers.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/regions.html#region-data
https://docs.aws.amazon.com/singlesignon/latest/userguide/regions.html#region-data

AWS IoT Events Developer Guide

Security in AWS IoT Events

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of
the AWS compliance programs. To learn about the compliance programs that apply to AWS IoT
Events, see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization's
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using AWS IoT Events. The following topics show you how to configure AWS IoT Events to meet
your security and compliance objectives. You'll also learn how to use other AWS services that can
help you to monitor and secure your AWS IoT Events resources.

Topics

• Identity and access management for AWS IoT Events

• Monitoring AWS IoT Events to maintain reliability, availability, and performance

• Compliance validation for AWS IoT Events

• Resilience in AWS IoT Events

• Infrastructure security in AWS IoT Events

Identity and access management for AWS IoT Events

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)

Identity and access management 219

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS IoT Events Developer Guide

and authorized (have permissions) to use AWS IoT Events resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• More about identity and access management

• How AWS IoT Events works with IAM

• AWS IoT Events identity-based policy examples

• Cross-service confused deputy prevention for AWS IoT Events

• Troubleshoot AWS IoT Events identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS IoT Events.

Service user – If you use the AWS IoT Events service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS IoT Events
features to do your work, you might need additional permissions. Understanding how access is
managed can help you request the right permissions from your administrator. If you cannot access
a feature in AWS IoT Events, see Troubleshoot AWS IoT Events identity and access.

Service administrator – If you're in charge of AWS IoT Events resources at your company, you
probably have full access to AWS IoT Events. It's your job to determine which AWS IoT Events
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
AWS IoT Events, see How AWS IoT Events works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS IoT Events. To view example AWS IoT Events identity-
based policies that you can use in IAM, see AWS IoT Events identity-based policy examples.

Audience 220

AWS IoT Events Developer Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 221

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS IoT Events Developer Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 222

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS IoT Events Developer Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 223

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS IoT Events Developer Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

Managing access using policies 224

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS IoT Events Developer Guide

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Managing access using policies 225

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS IoT Events Developer Guide

More about identity and access management

For more information about identity and access management for AWS IoT Events, continue to the
following pages:

• How AWS IoT Events works with IAM

• Troubleshoot AWS IoT Events identity and access

How AWS IoT Events works with IAM

Before you use IAM to manage access to AWS IoT Events, you should understand what IAM features
are available to use with AWS IoT Events. To get a high-level view of how AWS IoT Events and other
AWS services work with IAM, see AWS services that work with IAM in the IAM User Guide.

Topics

• AWS IoT Events identity-based policies

• AWS IoT Events resource-based policies

• Authorization based on AWS IoT Events tags

• AWS IoT Events IAM roles

AWS IoT Events identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. AWS IoT Events supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a JSON
policy, see IAM JSON policy elements reference in the IAM User Guide.

Actions

The Action element of an IAM identity-based policy describes the specific action or actions
that will be allowed or denied by the policy. Policy actions usually have the same name as the
associated AWS API operation. The action is used in a policy to grant permissions to perform the
associated operation.

Policy actions in AWS IoT Events use the following prefix before the action: iotevents:. For
example, to grant someone permission to create an AWS IoT Events input with the AWS IoT Events
CreateInput API operation, you include the iotevents:CreateInput action in their policy.

More about identity and access management 226

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS IoT Events Developer Guide

To grant someone permission to send an input with the AWS IoT Events BatchPutMessage API
operation, you include the iotevents-data:BatchPutMessage action in their policy. Policy
statements must include either an Action or NotAction element. AWS IoT Events defines its own
set of actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "iotevents:action1",
 "iotevents:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action:

"Action": "iotevents:Describe*"

To see a list of AWS IoT Events actions, see Actions Defined by AWS IoT Events in the IAM User
Guide.

Resources

The Resource element specifies the object or objects to which the action applies. Statements
must include either a Resource or a NotResource element. You specify a resource using an ARN
or using the wildcard (*) to indicate that the statement applies to all resources.

The AWS IoT Events detector model resource has the following ARN:

arn:${Partition}:iotevents:${Region}:${Account}:detectorModel/${detectorModelName}

For more information about the format of ARNs, see Identify AWS resources with Amazon Resource
Names (ARNs).

For example, to specify the Foobar detector model in your statement, use the following ARN:

"Resource": "arn:aws:iotevents:us-east-1:123456789012:detectorModel/Foobar"

To specify all instances that belong to a specific account, use the wildcard (*):

How AWS IoT Events works with IAM 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

AWS IoT Events Developer Guide

"Resource": "arn:aws:iotevents:us-east-1:123456789012:detectorModel/*"

Some AWS IoT Events actions, such as those for creating resources, cannot be performed on a
specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

Some AWS IoT Events API actions involve multiple resources. For example,
CreateDetectorModel references inputs in its condition statements, so a user must have
permissions to use the input and the detector model. To specify multiple resources in a single
statement, separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"

To see a list of AWS IoT Events resource types and their ARNs, see Resources Defined by AWS IoT
Events in the IAM User Guide. To learn with which actions you can specify the ARN of each resource,
see Actions Defined by AWS IoT Events.

Condition keys

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can build conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant a
user permission to access a resource only if it is tagged with their user name. For more information,
see IAM policy elements: Variables and tags in the IAM User Guide.

AWS IoT Events does not provide any service-specific condition keys, but it does support using
some global condition keys. To see all AWS global condition keys, see AWS global condition context
keys in the IAM User Guide."

How AWS IoT Events works with IAM 228

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotevents.html#awsiotevents-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS IoT Events Developer Guide

Examples

To view examples of AWS IoT Events identity-based policies, see AWS IoT Events identity-based
policy examples.

AWS IoT Events resource-based policies

AWS IoT Events does not support resource-based policies." To view an example of a detailed
resource-based policy page, see https://docs.aws.amazon.com/lambda/latest/dg/access-control-
resource-based.html.

Authorization based on AWS IoT Events tags

You can attach tags to AWS IoT Events resources or pass tags in a request to AWS IoT Events.
To control access based on tags, you provide tag information in the condition element of a
policy using the iotevents:ResourceTag/key-name, aws:RequestTag/key-name, or
aws:TagKeys condition keys. For more information about tagging AWS IoT Events resources, see
Tagging your AWS IoT Events resources.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see View AWS IoT Events inputs based on tags.

AWS IoT Events IAM roles

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with AWS IoT Events

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume
a cross-account role. You obtain temporary security credentials by calling AWS Security Token
Service (AWS STS) API operations such as AssumeRole or GetFederationToken.

AWS IoT Events does not support using temporary credentials.

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action
on your behalf. Service-linked roles appear in your IAM account and are owned by the service. An
IAM administrator can view but not edit the permissions for service-linked roles.

AWS IoT Events does not support service-linked roles.

How AWS IoT Events works with IAM 229

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts

AWS IoT Events Developer Guide

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

AWS IoT Events supports service roles.

AWS IoT Events identity-based policy examples

By default, users and roles don't have permission to create or modify AWS IoT Events resources.
They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An IAM
administrator must create IAM policies that grant users and roles permission to perform specific
API operations on the specified resources they need. The administrator must then attach those
policies to the users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Topics

• Policy best practices

• Using the AWS IoT Events console

• Allow users to view their own permissions in AWS IoT Events

• Access one AWS IoT Events input

• View AWS IoT Events inputs based on tags

Policy best practices

Identity-based policies are very powerful. They determine whether someone can create, access,
or delete AWS IoT Events resources in your account. These actions can incur costs for your
AWS account. When you create or edit identity-based policies, follow these guidelines and
recommendations:

• Get Started Using AWS Managed Policies – To start using AWS IoT Events quickly, use AWS
managed policies to give your employees the permissions they need. These policies are already
available in your account and are maintained and updated by AWS. For more information, see
Get started using permissions with AWS managed policies in the IAM User Guide.

Identity-based policy examples 230

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies

AWS IoT Events Developer Guide

• Grant Least Privilege – When you create custom policies, grant only the permissions required
to perform a task. Start with a minimum set of permissions and grant additional permissions
as necessary. Doing so is more secure than starting with permissions that are too lenient and
then trying to tighten them later. For more information, see Grant least privilege in the IAM User
Guide.

• Enable MFA for Sensitive Operations – For extra security, require users to use multi-factor
authentication (MFA) to access sensitive resources or API operations. For more information, see
Using multi-factor authentication (MFA) in AWS in the IAM User Guide.

• Use Policy Conditions for Extra Security – To the extent that it's practical, define the conditions
under which your identity-based policies allow access to a resource. For example, you can write
conditions to specify a range of allowable IP addresses that a request must come from. You can
also write conditions to allow requests only within a specified date or time range, or to require
the use of SSL or MFA. For more information, see IAM JSON policy elements: Condition in the
IAM User Guide.

Using the AWS IoT Events console

To access the AWS IoT Events console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS IoT Events resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (users or roles) with that
policy.

To ensure that those entities can still use the AWS IoT Events console, also attach the following
AWS managed policy to the entities. For more information, see Adding permissions to a user in the
IAM User Guide:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotevents-data:BatchPutMessage",
 "iotevents-data:BatchUpdateDetector",
 "iotevents:CreateDetectorModel",
 "iotevents:CreateInput",
 "iotevents:DeleteDetectorModel",

Identity-based policy examples 231

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS IoT Events Developer Guide

 "iotevents:DeleteInput",
 "iotevents-data:DescribeDetector",
 "iotevents:DescribeDetectorModel",
 "iotevents:DescribeInput",
 "iotevents:DescribeLoggingOptions",
 "iotevents:ListDetectorModelVersions",
 "iotevents:ListDetectorModels",
 "iotevents-data:ListDetectors",
 "iotevents:ListInputs",
 "iotevents:ListTagsForResource",
 "iotevents:PutLoggingOptions",
 "iotevents:TagResource",
 "iotevents:UntagResource",
 "iotevents:UpdateDetectorModel",
 "iotevents:UpdateInput",
 "iotevents:UpdateInputRouting"
],
 "Resource": "arn:${Partition}:iotevents:${Region}:${Account}:detectorModel/
${detectorModelName}",
 "Resource": "arn:${Partition}:iotevents:${Region}:${Account}:input/
${inputName}"
 }
]
}

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow users to view their own permissions in AWS IoT Events

This example shows how you might create a policy that allows users to view the inline and
managed policies that are attached to their user identity. Allowing users to view their own IAM
permissions is useful for security awareness and self-service capabilities. This policy includes
permissions to complete this action on the console or programmatically using the AWS CLI or AWS
API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",

Identity-based policy examples 232

AWS IoT Events Developer Guide

 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": [
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
 }

Access one AWS IoT Events input

Granular access control to AWS IoT Events inputs is important for maintaining security in multi-
user or multi-team environments. This section shows how to create IAM policies that grant access
to specific AWS IoT Events inputs while restricting access to others.

In this example, you can grant a user in your AWS account access to one of your AWS IoT Events
inputs, exampleInput. You also can allow the user to add, update, and delete inputs.

The policy grants the iotevents:ListInputs, iotevents:DescribeInput,
iotevents:CreateInput, iotevents:DeleteInput, and iotevents:UpdateInput
permissions to the user. For an example walkthrough for the Amazon Simple Storage Service

Identity-based policy examples 233

AWS IoT Events Developer Guide

(Amazon S3) that grants permissions to users and tests them using the console, see Controlling
access to a bucket with user policies.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"ListInputsInConsole",
 "Effect":"Allow",
 "Action":[
 "iotevents:ListInputs"
],
 "Resource":"arn:aws:iotevents:::*"
 },
 {
 "Sid":"ViewSpecificInputInfo",
 "Effect":"Allow",
 "Action":[
 "iotevents:DescribeInput"
],
 "Resource":"arn:aws:iotevents:::exampleInput"
 },
 {
 "Sid":"ManageInputs",
 "Effect":"Allow",
 "Action":[
 "iotevents:CreateInput",
 "iotevents:DeleteInput",
 "iotevents:DescribeInput",
 "iotevents:ListInputs",
 "iotevents:UpdateInput"
],
 "Resource":"arn:aws:iotevents:::exampleInput/*"
 }
]
}

View AWS IoT Events inputs based on tags

Tags help you organize AWS IoT Events resources. You can use conditions in your identity-based
policy to control access to AWS IoT Events resources based on tags. This example shows how you
might create a policy that allows viewing an input. However, permission is granted only if the

Identity-based policy examples 234

https://docs.aws.amazon.com/AmazonS3/latest/userguide/walkthrough1.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/walkthrough1.html

AWS IoT Events Developer Guide

input tag Owner has the value of that user's user name. This policy also grants the permissions
necessary to complete this action on the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListInputsInConsole",
 "Effect": "Allow",
 "Action": "iotevents:ListInputs",
 "Resource": "*"
 },
 {
 "Sid": "ViewInputsIfOwner",
 "Effect": "Allow",
 "Action": "iotevents:ListInputs",
 "Resource": "arn:aws:iotevents:*:*:input/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
 }
 }
]
}

You can attach this policy to the users in your account. If a user named richard-roe attempts
to view an AWS IoT Events input, the input must be tagged Owner=richard-roe or
owner=richard-roe. Otherwise he is denied access. The condition tag key Owner matches both
Owner and owner because condition key names are not case-sensitive. For more information, see
IAM JSON policy elements: Condition in the IAM User Guide.

Cross-service confused deputy prevention for AWS IoT Events

Note

• The AWS IoT Events service only allows you to use roles to start actions in the same
account in which a resource was created. This helps prevent a confused deputy attack in
AWS IoT Events.

Cross-service confused deputy prevention for AWS IoT Events 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS IoT Events Developer Guide

• This page serves as a reference for you to see how the confused deputy issue works and
can be prevented in the event that cross account resources were allowed in the AWS IoT
Events service.

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem.

Cross-service impersonation can occur when one service (the calling service) calls another service
(the called service). The calling service can be manipulated to use its permissions to act on another
customer's resources in a way it should not otherwise have permission to access. To prevent this,
AWS provides tools that help you protect your data for all services with service principals that have
been given access to resources in your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS IoT Events gives another service to
the resource. If the aws:SourceArn value does not contain the account ID, such as an Amazon
S3 bucket ARN, you must use both global condition context keys to limit permissions. If you use
both global condition context keys and the aws:SourceArn value contains the account ID, the
aws:SourceAccount value and the account in the aws:SourceArn value must use the same
account ID when used in the same policy statement.

Use aws:SourceArn if you want only one resource to be associated with the cross-service access.
Use aws:SourceAccount if you want to allow any resource in that account to be associated with
the cross-service use. The value of aws:SourceArn must be the Detector Model or Alarm model
associated with the sts:AssumeRole request.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:iotevents:*:123456789012:*.

The following examples show how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in AWS IoT Events to prevent the confused deputy problem.

Topics

• Example: Secure access to an AWS IoT Events detector model

Cross-service confused deputy prevention for AWS IoT Events 236

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Events Developer Guide

• Example: Secure access to an AWS IoT Events alarm model

• Example: Access an AWS IoT Events resource in a specified region

• Example: Configure logging options for AWS IoT Events

Example: Secure access to an AWS IoT Events detector model

This example demonstrates how to create an IAM policy that securely grants access to a specific
detector model in AWS IoT Events. The policy uses conditions to ensure that only the specified AWS
account and AWS IoT Events service can assume the role, adding an extra layer of security. In this
example, the role can only access the detector model named WindTurbine01.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "iotevents.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnEquals": {
 "aws:SourceArn":
 "arn:aws:iotevents:region:account_id:detectorModel/WindTurbine01"
 }
 }
 }
]
 }

Example: Secure access to an AWS IoT Events alarm model

This example demonstrates how to create an IAM policy that allows AWS IoT Events to securely
access alarm models. The policy uses conditions to ensure that only the specified AWS account and
AWS IoT Events service can assume the role.

Cross-service confused deputy prevention for AWS IoT Events 237

AWS IoT Events Developer Guide

In this example, the role can access any alarm model within the specified AWS account, as indicated
by the * wildcard in the alarm model ARN. The aws:SourceAccount and aws:SourceArn
conditions work together to prevent the confused deputy problem.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "iotevents.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:iotevents:region:account_id:alarmModel/*"
 }
 }
 }
]
}

Example: Access an AWS IoT Events resource in a specified region

This example demonstrates how to configure an IAM role to access AWS IoT Events resources in
a specific AWS region. By using region-specific ARNs in your IAM policies, you can restrict access
to AWS IoT Events resources across different geographical areas. This approach can help maintain
security and compliance in multi-region deployments. The region in this example is us-east-1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "iotevents.amazonaws.com"

Cross-service confused deputy prevention for AWS IoT Events 238

AWS IoT Events Developer Guide

]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:iotevents:us-east-1:account_id:*"
 }
 }
 }
]
}

Example: Configure logging options for AWS IoT Events

Proper logging is important for monitoring, debugging, and auditing your AWS IoT Events
applications. This section provides an overview of logging options available in AWS IoT Events.

This example demonstrates how to configure an IAM role that allows AWS IoT Events to log data to
CloudWatch Logs. The use of wildcards (*) in the resource ARN allows for comprehensive logging
across your AWS IoT Events infrastructure.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "iotevents.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "account_id"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:iotevents:region:account_id:*"
 }

Cross-service confused deputy prevention for AWS IoT Events 239

AWS IoT Events Developer Guide

 }
 }
]
}

Troubleshoot AWS IoT Events identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS IoT Events and IAM.

Topics

• I am not authorized to perform an action in AWS IoT Events

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS IoT Events resources

I am not authorized to perform an action in AWS IoT Events

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about a input but does not have iotevents:ListInputs permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 iotevents:ListInputs on resource: my-example-input

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-input resource using the iotevents:ListInput action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS IoT Events.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

Troubleshooting 240

AWS IoT Events Developer Guide

The following example error occurs when an IAM user named marymajor tries to use the
console to perform an action in AWS IoT Events. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS IoT Events
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

Consult the following topics to determine your best options:

• To learn whether AWS IoT Events supports these features, see How AWS IoT Events works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 241

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS IoT Events Developer Guide

Monitoring AWS IoT Events to maintain reliability, availability,
and performance

Monitoring is an important part of maintaining the reliability, availability, and performance of
AWS IoT Events and your AWS solutions. You should collect monitoring data from all parts of your
AWS solution so that you can more easily debug a multi-point failure if one occurs. Before you
start monitoring AWS IoT Events, you should create a monitoring plan that includes answers to the
following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal AWS IoT Events performance in your
environment, by measuring performance at various times and under different load conditions.
As you monitor AWS IoT Events, store historical monitoring data so that you can compare it with
current performance data, identify normal performance patterns and performance anomalies, and
devise methods to address issues.

For example, if you're using Amazon EC2, you can monitor CPU utilization, disk I/O, and network
utilization for your instances. When performance falls outside your established baseline, you might
need to reconfigure or optimize the instance to reduce CPU utilization, improve disk I/O, or reduce
network traffic.

Topics

• Available tools to monitor AWS IoT Events

• Monitoring AWS IoT Events with Amazon CloudWatch

• Logging AWS IoT Events API calls with AWS CloudTrail

Monitoring 242

AWS IoT Events Developer Guide

Available tools to monitor AWS IoT Events

AWS provides various tools that you can use to monitor AWS IoT Events. You can configure some of
these tools to do the monitoring for you, while some of the tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

Automated monitoring tools

You can use the following automated monitoring tools to watch AWS IoT Events and report when
something is wrong:

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Using Amazon CloudWatch dashboards in the Amazon
CloudWatch User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log-processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Working with CloudTrail log files in the AWS CloudTrail User Guide.

Manual monitoring tools

Another important part of monitoring AWS IoT Events involves manually monitoring those items
that the CloudWatch alarms don't cover. The AWS IoT Events, CloudWatch, and other AWS console
dashboards provide an at-a-glance view of the state of your AWS environment. We recommend
that you also check the log files on AWS IoT Events.

• The AWS IoT Events console shows:

• Detector models

• Detectors

• Inputs

• Settings

• The CloudWatch home page shows:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

Available tools to monitor AWS IoT Events 243

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS IoT Events Developer Guide

• Create Creating a CloudWatch dashboard to monitor the services you care about

• Graph metric data to troubleshoot issues and discover trends

• Search and browse all your AWS resource metrics

• Create and edit alarms to be notified of problems

Monitoring AWS IoT Events with Amazon CloudWatch

When you develop or debug an AWS IoT Events detector model, you need to know what AWS IoT
Events is doing, and any errors it encounters. Amazon CloudWatch monitors your AWS resources
and the applications you run on AWS in real time. With CloudWatch, you gain systemwide visibility
into resource use, application performance, and operational health. Enable Amazon CloudWatch
logging when developing AWS IoT Events detector models has information on how to enable
CloudWatch logging for AWS IoT Events. To generate logs like the one shown below you must set
the Level of verbosity to 'Debug' and provide one or more Debug Targets that is a Detector Model
Name and an optional KeyValue.

The following example shows a CloudWatch DEBUG level log entry generated by AWS IoT Events.

{
 "timestamp": "2019-03-15T15:56:29.412Z",
 "level": "DEBUG",
 "logMessage": "Summary of message evaluation",
 "context": "MessageEvaluation",
 "status": "Success",
 "messageId": "SensorAggregate_2th846h",
 "keyValue": "boiler_1",
 "detectorModelName": "BoilerAlarmDetector",
 "initialState": "high_temp_alarm",
 "initialVariables": {
 "high_temp_count": 1,
 "high_pressure_count": 1
 },
 "finalState": "no_alarm",
 "finalVariables": {
 "high_temp_count": 0,
 "high_pressure_count": 0
 },
 "message": "{ \"temp\": 34.9, \"pressure\": 84.5}",
 "messageType": "CUSTOMER_MESSAGE",
 "conditionEvaluationResults": [

Monitoring AWS IoT Events with Amazon CloudWatch 244

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/create_dashboard.html

AWS IoT Events Developer Guide

 {
 "result": "True",
 "eventName": "alarm_cleared",
 "state": "high_temp_alarm",
 "lifeCycle": "OnInput",
 "hasTransition": true
 },
 {
 "result": "Skipped",
 "eventName": "alarm_escalated",
 "state": "high_temp_alarm",
 "lifeCycle": "OnInput",
 "hasTransition": true,
 "resultDetails": "Skipped due to transition from alarm_cleared event"
 },
 {
 "result": "True",
 "eventName": "should_recall_technician",
 "state": "no_alarm",
 "lifeCycle": "OnEnter",
 "hasTransition": true
 }
]
}

Logging AWS IoT Events API calls with AWS CloudTrail

AWS IoT Events is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in AWS IoT Events. CloudTrail captures all API calls for AWS IoT
Events as events, including calls from the AWS IoT Events console and from code calls to the AWS
IoT Events APIs.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3
bucket, including events for AWS IoT Events. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected by
CloudTrail, you can determine the request that was made to AWS IoT Events, the IP address from
which the request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Logging AWS IoT Events API calls with AWS CloudTrail 245

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS IoT Events Developer Guide

AWS IoT Events information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS IoT Events, that activity is recorded in a CloudTrail event with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Working with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for AWS IoT Events, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act on the event data
collected in CloudTrail logs. For more information, see:

• Creating a trail for your AWS account

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element. AWS IoT Events actions are
documented in the AWS IoT Events API reference.

Understanding AWS IoT Events log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. AWS CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Logging AWS IoT Events API calls with AWS CloudTrail 246

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/iotevents/latest/apireference/Welcome.html

AWS IoT Events Developer Guide

When CloudTrail logging is enabled in your AWS account, most API calls made to AWS IoT Events
actions are tracked in CloudTrail log files where they are written with other AWS service records.
CloudTrail determines when to create and write to a new file based on a time period and file size.

Every log entry contains information about who generated the request. The user identity
information in the log entry helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

You can store your log files in your Amazon S3 bucket for as long as you want, but you can also
define Amazon S3 lifecycle rules to archive or delete log files automatically. By default, your log
files are encrypted with Amazon S3 server-side encryption (SSE).

To be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS
notifications when new log files are delivered. For more information, see Configuring Amazon SNS
notifications for CloudTrail.

You can also aggregate AWS IoT Events log files from multiple AWS Regions and multiple AWS
accounts into a single Amazon S3 bucket.

For more information, see Receiving CloudTrail log files from multiple regions and Receiving
CloudTrail log files from multiple accounts.

Example: DescribeDetector action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the DescribeDetector
action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:sts::123456789012:assumed-role/Admin/bertholt-brecht",
 "accountId": "123456789012",
 "accessKeyId": "access-key-id",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",

Logging AWS IoT Events API calls with AWS CloudTrail 247

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS IoT Events Developer Guide

 "creationDate": "2019-02-08T18:53:58Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "Admin"
 }
 }
 },
 "eventTime": "2019-02-08T19:02:44Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "DescribeDetector",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-cli/1.15.65 Python/3.7.1 Darwin/16.7.0 botocore/1.10.65",
 "requestParameters": {
 "detectorModelName": "pressureThresholdEventDetector-brecht",
 "keyValue": "1"
 },
 "responseElements": null,
 "requestID": "00f41283-ea0f-4e85-959f-bee37454627a",
 "eventID": "5eb0180d-052b-49d9-a289-0eb8d08d4c27",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: CreateDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
CreateDetectorModel action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-Lambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEvents-RoleForIotEvents-
ABC123DEF456/IotEvents-Lambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {

Logging AWS IoT Events API calls with AWS CloudTrail 248

AWS IoT Events Developer Guide

 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABC123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABC123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:54:43Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "CreateDetectorModel",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "detectorModelName": "myDetectorModel",
 "key": "HIDDEN_DUE_TO_SECURITY_REASONS",
 "roleArn": "arn:aws:iam::123456789012:role/events_action_execution_role"
 },
 "responseElements": null,
 "requestID": "cecfbfa1-e452-4fa6-b86b-89a89f392b66",
 "eventID": "8138d46b-50a3-4af0-9c5e-5af5ef75ea55",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: CreateInput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the CreateInput action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-Lambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABC123DEF456/IotEvents-Lambda",
 "accountId": "123456789012",

Logging AWS IoT Events API calls with AWS CloudTrail 249

AWS IoT Events Developer Guide

 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABC123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABC123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:54:43Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "CreateInput",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "inputName": "batchputmessagedetectorupdated",
 "inputDescription": "batchputmessagedetectorupdated"
 },
 "responseElements": null,
 "requestID": "fb315af4-39e9-4114-94d1-89c9183394c1",
 "eventID": "6d8cf67b-2a03-46e6-bbff-e113a7bded1e",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: DeleteDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
DeleteDetectorModel action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",

Logging AWS IoT Events API calls with AWS CloudTrail 250

AWS IoT Events Developer Guide

 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:54:11Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "DeleteDetectorModel",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "detectorModelName": "myDetectorModel"
 },
 "responseElements": null,
 "requestID": "149064c1-4e24-4160-a5b2-1065e63ee2e4",
 "eventID": "7669db89-dcc0-4c42-904b-f24b764dd808",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: DeleteInput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the DeleteInput action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",

Logging AWS IoT Events API calls with AWS CloudTrail 251

AWS IoT Events Developer Guide

 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:54:38Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "DeleteInput",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "errorCode": "ResourceNotFoundException",
 "errorMessage": "Input of name: NoSuchInput not found",
 "requestParameters": {
 "inputName": "NoSuchInput"
 },
 "responseElements": null,
 "requestID": "ce6d28ac-5baf-423d-a5c3-afd009c967e3",
 "eventID": "be0ef01d-1c28-48cd-895e-c3ff3172c08e",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: DescribeDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
DescribeDetectorModel action.

{

Logging AWS IoT Events API calls with AWS CloudTrail 252

AWS IoT Events Developer Guide

 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AAKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:54:20Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "DescribeDetectorModel",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "detectorModelName": "myDetectorModel"
 },
 "responseElements": null,
 "requestID": "18a11622-8193-49a9-85cb-1fa6d3929394",
 "eventID": "1ad80ff8-3e2b-4073-ac38-9cb3385beb04",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: DescribeInput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the DescribeInput
action.

Logging AWS IoT Events API calls with AWS CloudTrail 253

AWS IoT Events Developer Guide

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AAKIAI44QH8DHBEXAMPLE",
 "sessionContext": {

 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:56:09Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "DescribeInput",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "inputName": "input_createinput"
 },
 "responseElements": null,
 "requestID": "3af641fa-d8af-41c9-ba77-ac9c6260f8b8",
 "eventID": "bc4e6cc0-55f7-45c1-b597-ec99aa14c81a",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Logging AWS IoT Events API calls with AWS CloudTrail 254

AWS IoT Events Developer Guide

Example: DescribeLoggingOptions action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
DescribeLoggingOptions action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:53:23Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "DescribeLoggingOptions",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "b624b6c5-aa33-41d8-867b-025ec747ee8f",
 "eventID": "9c7ce626-25c8-413a-96e7-92b823d6c850",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Logging AWS IoT Events API calls with AWS CloudTrail 255

AWS IoT Events Developer Guide

Example: ListDetectorModels action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the ListDetectorModels
action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:53:23Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "ListDetectorModels",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "nextToken": "CkZEZXRlY3Rvck1vZGVsMl9saXN0ZGV0ZWN0b3Jtb2RlbHN0ZXN0X2VlOWJkZTk1YT",
 "maxResults": 3
 },
 "responseElements": null,
 "requestID": "6d70f262-da95-4bb5-94b4-c08369df75bb",
 "eventID": "2d01a25c-d5c7-4233-99fe-ce1b8ec05516",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"

Logging AWS IoT Events API calls with AWS CloudTrail 256

AWS IoT Events Developer Guide

}

Example: ListDetectorModelVersions action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
ListDetectorModelVersions action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:53:33Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "ListDetectorModelVersions",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "detectorModelName": "myDetectorModel",
 "maxResults": 2
 },
 "responseElements": null,
 "requestID": "ebecb277-6bd8-44ea-8abd-fbf40ac044ee",

Logging AWS IoT Events API calls with AWS CloudTrail 257

AWS IoT Events Developer Guide

 "eventID": "fc6281a2-3fac-4e1e-98e0-ca6560b8b8be",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: ListDetectors action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the ListDetectors
action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:53:54Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "ListDetectors",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "detectorModelName": "batchputmessagedetectorinstancecreated",
 "stateName": "HIDDEN_DUE_TO_SECURITY_REASONS"

Logging AWS IoT Events API calls with AWS CloudTrail 258

AWS IoT Events Developer Guide

 },
 "responseElements": null,
 "requestID": "4783666d-1e87-42a8-85f7-22d43068af94",
 "eventID": "0d2b7e9b-afe6-4aef-afd2-a0bb1e9614a9",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: ListInputs action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the ListInputs action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:53:57Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "ListInputs",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "nextToken": "CkhjYW5hcnlfdGVzdF9pbnB1dF9saXN0ZGV0ZWN0b3Jtb2RlbHN0ZXN0ZDU3OGZ",

Logging AWS IoT Events API calls with AWS CloudTrail 259

AWS IoT Events Developer Guide

 "maxResults": 3
 },
 "responseElements": null,
 "requestID": "dd6762a1-1f24-4e63-a986-5ea3938a03da",
 "eventID": "c500f6d8-e271-4366-8f20-da4413752469",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: PutLoggingOptions action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the PutLoggingOptions
action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }
 },
 "eventTime": "2019-02-07T23:56:43Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "PutLoggingOptions",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",

Logging AWS IoT Events API calls with AWS CloudTrail 260

AWS IoT Events Developer Guide

 "userAgent": "aws-internal/3",
 "requestParameters": {
 "loggingOptions": {
 "roleArn": "arn:aws:iam::123456789012:role/logging__logging_role",
 "level": "INFO",
 "enabled": false
 }
 },
 "responseElements": null,
 "requestID": "df570e50-fb19-4636-9ec0-e150a94bc52c",
 "eventID": "3247f928-26aa-471e-b669-e4a9e6fbc42c",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: UpdateDetectorModel action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the
UpdateDetectorModel action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }
 }

Logging AWS IoT Events API calls with AWS CloudTrail 261

AWS IoT Events Developer Guide

 },
 "eventTime": "2019-02-07T23:55:51Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "UpdateDetectorModel",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "detectorModelName": "myDetectorModel",
 "roleArn": "arn:aws:iam::123456789012:role/Events_action_execution_role"
 },
 "responseElements": null,
 "requestID": "add29860-c1c5-4091-9917-d2ef13c356cf",
 "eventID": "7baa9a14-6a52-47dc-aea0-3cace05147c3",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: UpdateInput action for CloudTrail

The following example shows a CloudTrail log entry that demonstrates the UpdateInput action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:IotEvents-EventsLambda",
 "arn": "arn:aws:sts::123456789012:assumed-role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456/IotEvents-EventsLambda",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-02-07T22:22:30Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/IotEventsLambda-RoleForIotEvents-
ABCD123DEF456",
 "accountId": "123456789012",
 "userName": "IotEventsLambda-RoleForIotEvents-ABCD123DEF456"
 }

Logging AWS IoT Events API calls with AWS CloudTrail 262

AWS IoT Events Developer Guide

 }
 },
 "eventTime": "2019-02-07T23:53:00Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "UpdateInput",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.168.0.1",
 "userAgent": "aws-internal/3",
 "errorCode": "ResourceNotFoundException",
 "errorMessage": "Input of name: NoSuchInput not found",
 "requestParameters": {
 "inputName": "NoSuchInput",
 "inputDescription": "this is a description of an input"
 },
 "responseElements": null,
 "requestID": "58d5d2bb-4110-4c56-896a-ee9156009f41",
 "eventID": "c2df241a-fd53-4fd0-936c-ba309e5dc62d",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: BatchPutMessage action for CloudTrail

AWS IoT Events can use a CloudTrail integration for data plane API logging. This example adds
details on data events through the BatchPutMessage action.

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAI44QH8DHBEXAMPLE:PrincipalId",
 "arn": "arn:aws:sts::123456789012:assumed-role/my-iam-role/my-iam-role-
entity",
 "accountId": "123456789012",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::123456789012:role/my-iam-role",
 "accountId": "123456789012",
 "userName": "sample_user_name"
 },

Logging AWS IoT Events API calls with AWS CloudTrail 263

AWS IoT Events Developer Guide

 "attributes": {
 "creationDate": "2024-11-22T18:32:41Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2024-11-22T18:57:35Z",
 "eventSource": "iotevents.amazonaws.com",
 "eventName": "BatchPutMessage",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "3.239.107.128",
 "userAgent": "aws-internal/3",
 "requestParameters": {
 "messages": [
 {
 "messageId": "e306d827-b2e4-4439-9c86-411d4242a397",
 "payload": "HIDDEN_DUE_TO_SECURITY_REASONS",
 "inputName": "my_input_name"
 }
]
 },
 "responseElements": {
 "batchPutMessageErrorEntries": []
 },
 "requestID": "cefc6b63-9ccf-4e31-9177-4aec8e701bfe",
 "eventID": "b994b52c-6011-4e3c-ad5f-e784e732fde0",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::IoTEvents::Input",
 "ARN": "arn:aws:iotevents:us-east-1:123456789012:input/
my_input_name"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_128_GCM_SHA256",
 "clientProvidedHostHeader": "iotevents.us-east-1.amazonaws.com"
 }

Logging AWS IoT Events API calls with AWS CloudTrail 264

AWS IoT Events Developer Guide

 },

Compliance validation for AWS IoT Events

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious

Compliance validation 265

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html

AWS IoT Events Developer Guide

activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS IoT Events

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS global infrastructure.

Infrastructure security in AWS IoT Events

As a managed service, AWS IoT Events is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS IoT Events through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Resilience 266

https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

AWS IoT Events Developer Guide

AWS service quotas for AWS IoT Events resources

The AWS General Reference Guide provides the default quotas for AWS IoT Events for an AWS
account. Unless specified, each quota is per AWS Region. For more information, see AWS IoT Events
endpoints and quotas and AWS Service Quotas in the AWS General Reference Guide.

To request a service quota increase, submit a support case in the Support center console. For more
information, see Requesting a quota increase in the Service Quotas User Guide.

Note

• All names for detector models and inputs must be unique within an account.

• You can't change names for detector models and inputs after they're created.

267

https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://console.aws.amazon.com/support/cases%23/create?issueType=service-limit-increase&%20%20%20%20%20%20%20%20%20%20%20%20%20limitType=service-code-iot
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS IoT Events Developer Guide

Tagging your AWS IoT Events resources

To help you manage and organize your detector models and inputs you can optionally assign your
own metadata to each of these resources in the form of tags. This section describes tags and shows
you how to create them.

Tag basics

Tags enable you to categorize your AWS IoT Events resources in different ways, for example, by
purpose, owner, or environment. This is useful when you have many resources of the same type.
You can quickly identify a specific resource based on the tags you've assigned to it.

Each tag consists of a key and optional value, both of which you define. For example, you could
define a set of tags for your inputs that helps you track the devices that send these inputs by their
type. We recommend that you create a set of tag keys that meets your needs for each kind of
resource. Using a consistent set of tag keys makes it easier for you to manage your resources.

You can search for and filter resources based on the tags you add or apply, use tags to categorize
and track your costs, and also use tags to control access to your resources as described in Using
tags with IAM policies in the AWS IoT Developer Guide.

For ease of use, the Tag Editor in the AWS Management Console provides a central, unified way
to create and manage your tags. For more information, see Getting started with Tag Editor in the
Tagging AWS Resources and Tag Editor User Guide.

You can also work with tags using the AWS CLI and the AWS IoT Events API. You can associate tags
with detector models and inputs when you create them by using the "Tags" field in the following
commands:

• CreateDetectorModel

• CreateInput

You can add, modify, or delete tags for existing resources that support tagging by using the
following commands:

• TagResource

• ListTagsForResource

Tag basics 268

https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/gettingstarted.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_CreateDetectorModel.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_CreateInput.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_ListTagsForResource.html

AWS IoT Events Developer Guide

• UntagResource

You can edit tag keys and values, and you can remove tags from a resource at any time. You can set
the value of a tag to an empty string, but you can't set the value of a tag to null. If you add a tag
that has the same key as an existing tag on that resource, the new value overwrites the old value. If
you delete a resource, any tags associated with the resource are also deleted.

For more information, see Best Practices for Tagging AWS Resources

Tag restrictions and limitations

The following basic restrictions apply to tags:

• Maximum number of tags per resource – 50

• Maximum key length – 127 Unicode characters in UTF-8

• Maximum value length – 255 Unicode characters in UTF-8

• Tag keys and values are case sensitive.

• Do not use the "aws:" prefix in your tag names or values because it's reserved for AWS use. You
can't edit or delete tag names or values with this prefix. Tags with this prefix don't count against
your tags per resource limit.

• If your tagging schema is used across multiple services and resources, remember that other
services may have restrictions on allowed characters. Generally, allowed characters are: letters,
spaces, and numbers representable in UTF-8, and the following special characters: + - = . _ : / @.

Using tags with IAM policies

You can apply tag-based resource-level permissions in the IAM policies you use for AWS IoT Events
API actions. This gives you better control over what resources a user can create, modify, or use.

You use the Condition element (also called the Condition block) with the following condition
context keys and values in an IAM policy to control user access (permissions) based on a resource's
tags:

• Use aws:ResourceTag/<tag-key>: <tag-value> to allow or deny user actions on resources
with specific tags.

• Use aws:RequestTag/<tag-key>: <tag-value> to require that a specific tag be used (or
not used) when making an API request to create or modify a resource that allows tags.

Tag restrictions and limitations 269

https://docs.aws.amazon.com/iotevents/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html

AWS IoT Events Developer Guide

• Use aws:TagKeys: [<tag-key>, ...] to require that a specific set of tag keys be used (or
not used) when making an API request to create or modify a resource that allows tags.

Note

The condition context keys and values in an IAM policy apply only to those AWS IoT Events
actions where an identifier for a resource capable of being tagged is a required parameter.

Controlling access using tags in the AWS Identity and Access Management User Guide has additional
information on using tags. The IAM JSON policy reference section of that guide has detailed syntax,
descriptions, and examples of the elements, variables, and evaluation logic of JSON policies in IAM.

The following example policy applies two tag-based restrictions. A user restricted by this policy:

• Cannot give a resource the tag "env=prod" (in the example, see the line "aws:RequestTag/
env" : "prod"

• Cannot modify or access a resource that has an existing tag "env=prod" (in the example, see the
line "aws:ResourceTag/env" : "prod").

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "iotevents:CreateDetectorModel",
 "iotevents:CreateAlarmModel",
 "iotevents:CreateInput",
 "iotevents:TagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/env": "prod"
 }
 }
 },
 {

Using tags with IAM policies 270

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS IoT Events Developer Guide

 "Effect": "Deny",
 "Action": [
 "iotevents:DescribeDetectorModel",
 "iotevents:DescribeAlarmModel",
 "iotevents:UpdateDetectorModel",
 "iotevents:UpdateAlarmModel",
 "iotevents:DeleteDetectorModel",
 "iotevents:DeleteAlarmModel",
 "iotevents:ListDetectorModelVersions",
 "iotevents:ListAlarmModelVersions",
 "iotevents:UpdateInput",
 "iotevents:DescribeInput",
 "iotevents:DeleteInput",
 "iotevents:ListTagsForResource",
 "iotevents:TagResource",
 "iotevents:UntagResource",
 "iotevents:UpdateInputRouting"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/env": "prod"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:*"
],
 "Resource": "*"
 }
]
}

You can also specify multiple tag values for a given tag key by enclosing them in a list, as follows.

 "StringEquals" : {
 "aws:ResourceTag/env" : ["dev", "test"]
 }

Using tags with IAM policies 271

AWS IoT Events Developer Guide

Note

If you allow or deny users access to resources based on tags, you must consider explicitly
denying users the ability to add those tags to or remove them from the same resources.
Otherwise, it's possible for a user to circumvent your restrictions and gain access to a
resource by modifying its tags.

Using tags with IAM policies 272

AWS IoT Events Developer Guide

Troubleshooting AWS IoT Events

This troubleshooting guide provides solutions for common issues you may encounter when
using AWS IoT Events. Browse the topics to identify and resolve problems with detecting
events, accessing data, permissions, service integrations, device configurations, and more. With
troubleshooting advice for the AWS IoT Events console, API, CLI, errors, latency, and integrations,
this guide aims to quickly resolve your issues so you can build reliable and scalable event-driven
applications.

Topics

• Common AWS IoT Events issues and solutions

• Troubleshooting a detector model by running analyses in AWS IoT Events

Common AWS IoT Events issues and solutions

See the following section to troubleshoot errors and find possible solutions to resolve issues with
AWS IoT Events.

Errors

• Detector model creation errors

• Updates from a deleted detector model

• Action trigger failure (when meeting a condition)

• Action trigger failure (when breeching a threshold)

• Incorrect state usage

• Connection message

• InvalidRequestException message

• Amazon CloudWatch Logs action.setTimer errors

• Amazon CloudWatch payload errors

• Incompatible data types

• Failed to send message to AWS IoT Events

Common AWS IoT Events issues and solutions 273

AWS IoT Events Developer Guide

Detector model creation errors

I get errors when I attempt to create a detector model.

Solution

When you create a detector model, you must consider the following limitations.

• Only one action is allowed in each action field.

• The condition is required for transitionEvents. It's optional for OnEnter, OnInput, and
OnExit events.

• If the condition field is empty, the evaluated result of the condition expression is equivalent to
true.

• The evaluated result of the condition expression should be a Boolean value. If the result isn't
a Boolean value, it's equivalent to false and doesn't trigger the actions or transition to the
nextState specified in the event.

For more information, see AWS IoT Events detector model restrictions and limitations.

Updates from a deleted detector model

I updated or deleted a detector model a few minutes ago but I'm still getting state updates from
the old detector model through MQTT messages or SNS alerts.

Solution

If you update, delete, or recreate a detector model (see UpdateDetectorModel), there is a delay
before all detector instances are deleted and the new model is used. During this time, inputs might
continue to be processed by the instances of the previous version of the detector model. You might
continue to receive alerts defined by the previous detector model. Wait for at least seven minutes
before you recheck the update or report an error.

Action trigger failure (when meeting a condition)

The detector fails to trigger an action or transition to a new state when the condition is met.

Detector model creation errors 274

https://docs.aws.amazon.com/iotevents/latest/apireference/API_UpdateDetectorModel.html

AWS IoT Events Developer Guide

Solution

Verify that the evaluated result of the detector's conditional expression is a Boolean value. If the
result isn't a Boolean value, it's equivalent to false and doesn't trigger the action or transition to
the nextState specified in the event. For more information, see Conditional expression syntax.

Action trigger failure (when breeching a threshold)

The detector doesn't trigger an action or an event transition when the variable in a conditional
expression reaches a specified value.

Solution

If you update setVariable for onInput, onEnter, or onExit, the new value isn't used
when evaluating any condition during the current processing cycle. Instead, the original
value is used until the current cycle is complete. You can change this behavior by setting the
evaluationMethod parameter in the detector model definition. When evaluationMethod is set
to SERIAL, variables are updated and event conditions evaluated in the order that the events are
defined. When evaluationMethod is set to BATCH (the default), variables are updated and events
performed only after all event conditions are evaluated.

Incorrect state usage

The detector enters the wrong states when I attempt to send messages to inputs by using
BatchPutMessage.

Solution

If you use BatchPutMessage to send multiple messages to inputs, the order in which the messages
or inputs are processed isn't guaranteed. To guarantee ordering, send messages one at time and
wait each time for BatchPutMessage to acknowledge success.

Connection message

I get a ('Connection aborted.', error(54, 'Connection reset by peer')) error
when I attempt to call or invoke an API.

Action trigger failure (when breeching a threshold) 275

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-conditional-expressions.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchPutMessage.html

AWS IoT Events Developer Guide

Solution

Verify that OpenSSL uses TLS 1.1 or a later version to establish the connection. This should be the
default under most Linux distributions or Windows version 7 and later. Users of macOS might need
to upgrade OpenSSL.

InvalidRequestException message

I get InvalidRequestException when I attempt to call CreateDetectorModel and
UpdateDetectorModel APIs.

Solution

Check the following to help resolve the issue. For more information, see CreateDetectorModel and
UpdateDetectorModel.

• Make sure that you don't use both seconds and durationExpression as the parameters of
SetTimerAction at the same time.

• Make sure that your string expression for durationExpression is valid. The string
expression can contain numbers, variables ($variable.<variable-name>), or input values
($input.<input-name>.<path-to-datum>).

Amazon CloudWatch Logs action.setTimer errors

You can set up Amazon CloudWatch Logs to monitor AWS IoT Events detector model instances.
The following are common errors generated by AWS IoT Events, when you use action.setTimer.

• Error: Your duration expression for the timer named <timer-name> could not be evaluated to a
number.

Solution

Make sure that your string expression for durationExpression can be converted to a number.
Other data types, such as Boolean, aren't allowed.

• Error: The evaluated result of your duration expression for the timer named <timer-name> is
greater than 31622440. To ensure accuracy, make sure that your duration expression refers to a
value between 60‐31622400.

InvalidRequestException message 276

https://docs.aws.amazon.com/iotevents/latest/apireference/API_CreateDetectorModel.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_UpdateDetectorModel.html

AWS IoT Events Developer Guide

Solution

Make sure that the duration of your timer is less than or equal to 31622400 seconds. The
evaluated result of the duration is rounded down to the nearest whole number.

• Error: The evaluated result of your duration expression for the timer named <timer-name>
is less than 60. To ensure accuracy, make sure that your duration expression refers to a value
between 60‐31622400.

Solution

Make sure that the duration of your timer is greater than or equal to 60 seconds. The evaluated
result of the duration is rounded down to the nearest whole number.

• Error: Your duration expression for the timer named <timer-name> could not be evaluated.
Check the variable names, input names, and paths to the data to make sure that you refer to the
existing variables and inputs.

Solution

Make sure that your string expression refers to the existing variables and inputs. The string
expression can contain numbers, variables ($variable.variable-name), and input values
($input.input-name.path-to-datum).

• Error: Failed to set the timer named <timer-name>. Check your duration expression, and try
again.

Solution

See the SetTimerAction action to ensure that you specified the correct parameters, and then set
the timer again.

For more information, see Enable Amazon CloudWatch logging when developing AWS IoT Events
detector models.

Amazon CloudWatch payload errors

You can set up Amazon CloudWatch Logs to monitor AWS IoT Events detector model instances.
The following are common errors and warnings generated by AWS IoT Events, when you configure
the action payload.

Amazon CloudWatch payload errors 277

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SetTimerAction.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs
https://docs.aws.amazon.com/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs

AWS IoT Events Developer Guide

• Error: We couldn't evaluate your expression for the action. Make sure that the variable names,
input names, and paths to the data refer to the existing variables and input values. Also, verify
that the size of the payload is less than 1 KB, the maximum allowed size of a payload.

Solution

Make sure that you enter the correct variable names, input names, and paths to the data. You
might also receive this error message if the action payload is larger than 1 KB.

• Error: We couldn't parse your content expression for the payload of <action-type>. Enter a
content expression with the correct syntax.

Solution

The content expression can contain strings ('string'), variables ($variable.variable-
name), input values ($input.input-name.path-to-datum), string concatenations, and strings
that contain ${}.

• Error: Your payload expression {expression} isn't valid. The defined payload type is JSON, so
you must specify an expression that AWS IoT Events would evaluate to a string.

Solution

If the specified payload type is JSON, AWS IoT Events first checks if the service can evaluate your
expression to a string. The evaluated result can't be a Boolean or number. If the validation fails,
you might receive this error.

• Warning: The action was executed, but we couldn't evaluate your content expression for the
action payload to valid JSON. The defined payload type is JSON.

Solution

Make sure that AWS IoT Events can evaluate your content expression for the action payload to
valid JSON, if you define the payload type as JSON. AWS IoT Events runs the action even if AWS
IoT Events can't evaluate the content expression to valid JSON.

For more information, see Enable Amazon CloudWatch logging when developing AWS IoT Events
detector models.

Amazon CloudWatch payload errors 278

https://docs.aws.amazon.com/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs
https://docs.aws.amazon.com/iotevents/latest/developerguide/best-practices.html#best-practices-cw-logs

AWS IoT Events Developer Guide

Incompatible data types

Message: Incompatible data types [<inferred-types>] found for <reference> in the following
expression: <expression>

Solution

You might receive this error for one of the following reasons:

• The evaluated results of your references are not compatible with other operands in your
expressions.

• The type of the argument passed to a function is not supported.

When you use references in expressions, check the following:

• When you use a reference as an operand with one or more operators, make sure that all data
types that you reference are compatible.

For example, in the following expression, integer 2 is an operand of both the == and &&
operators. To ensure that the operands are compatible, $variable.testVariable + 1 and
$variable.testVariable must reference an integer or decimal.

In addition, integer 1 is an operand of the + operator. Therefore, $variable.testVariable
must reference an integer or decimal.

‘$variable.testVariable + 1 == 2 && $variable.testVariable’

• When you use a reference as an argument passed to a function, make sure that the function
supports the data types that you reference.

For example, the following timeout("time-name") function requires a string with double
quotes as the argument. If you use a reference for the timer-name value, you must reference a
string with double quotes.

timeout("timer-name")

Incompatible data types 279

AWS IoT Events Developer Guide

Note

For the convert(type, expression) function, if you use a reference for the type
value, the evaluated result of your reference must be String, Decimal, or Boolean.

For more information, see AWS IoT Events reference for inputs and variables in expressions.

Failed to send message to AWS IoT Events

Message: Failed to send message to Iot Events

Solution

You might experience this error for the following reasons:

• The input message payload does not contain the Input attribute Key.

• The Input attribute Key is not in the same JSON path as specified in the input definition.

• The input message does not match with the schema, as defined in the AWS IoT Events input.

Note

The data ingestion from other services will also experience failure.

Example

For example in AWS IoT Core, the AWS IoT rule will fail with the following message Verify the
Input Attribute key.

To resolve this, ensure that the input payload message schema conforms to the AWS IoT Events
Input definition and the Input attribute Key location matches. For more information, see
Create an input for models in AWS IoT Events to learn how to define AWS IoT Events Inputs.

Failed to send message to AWS IoT Events 280

AWS IoT Events Developer Guide

Troubleshooting a detector model by running analyses in AWS
IoT Events

AWS IoT Events can analyze your detector model and generate analysis results without sending
input data to your detector model. AWS IoT Events performs a series of analyses described in this
section to check your detector model. This advanced troubleshooting solution also summarizes
diagnostic information, including the severity level and location, so that you can quickly find and
fix potential issues in your detector model. For more information about diagnostic error types and
messages for your detector model, see Detector model analysis and diagnostic information for
AWS IoT Events.

You can use the AWS IoT Events console, API, AWS Command Line Interface (AWS CLI), or AWS SDK
to view diagnostic error messages from the analysis of your detector model.

Note

• You must fix all errors before you can publish your detector model.

• We recommend that you review warnings and take necessary actions before you use your
detector model in production environments. Otherwise, the detector model might not
work as expected.

• You can have up to 10 analyses in the RUNNING status at the same time.

To learn how to analyze your detector model, see Analyze a detector model for AWS IoT Events
(Console) or Analyze a detector model in AWS IoT Events (AWS CLI).

Topics

• Detector model analysis and diagnostic information for AWS IoT Events

• Analyze a detector model for AWS IoT Events (Console)

• Analyze a detector model in AWS IoT Events (AWS CLI)

Detector model analysis and diagnostic information for AWS IoT Events

Detector model analyses gather the following diagnostic information:

Troubleshooting a detector model 281

https://docs.aws.amazon.com/iotevents/latest/apireference/
https://docs.aws.amazon.com/cli/latest/reference/iotevents/index.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

AWS IoT Events Developer Guide

• Level – The severity level of the analysis result. Based on the severity level, analysis results fall
into three general categories:

• Information (INFO) – An information result tells you about a significant field in your detector
model. This type of result usually doesn't require immediate action.

• Warning (WARNING) – A warning result draws special attention to fields that might cause
issues for your detector model. We recommend that you review warnings and take necessary
actions before you use your detector model in production environments. Otherwise, the
detector model might not work as expected.

• Error (ERROR) – An error result notifies you about a problem found in your detector model.
AWS IoT Events automatically performs this set of analyses when you try to publish the
detector model. You must fix all errors before you can publish the detector model.

• Location – Contains information that you can use to locate the field in your detector model
that the analysis result references. A location typically includes the state name, transition event
name, event name, and expression (for example, in state TemperatureCheck in onEnter
in event Init in action setVariable).

• Type – The type of the analysis result. Analysis types fall into the following categories:

• supported-actions – AWS IoT Events can invoke actions when a specified event or
transition event is detected. You can define built-in actions to use a timer or set a variable, or
send data to other AWS services. You must specify actions that work with other AWS services
in an AWS Region where the AWS services are available.

• service-limits – Service quotas, also known as limits, are the maximum or minimum
number of service resources or operations for your AWS account. Unless otherwise noted, each
quota is Region-specific. Depending on your business needs, you can update your detector
model to avoid encountering limits or request a quota increase. You can request increases for
some quotas, and other quotas can't be increased. For more information, see Quotas.

• structure – The detector model must have all required components such as states and follow
a structure that AWS IoT Events supports. A detector model must have at least one state and a
condition that evaluates the incoming input data to detect significant events. When an event is
detected, the detector model transitions to the next state and can invoke actions. These events
are known as transition events. A transition event must direct the next state to enter.

• expression-syntax – AWS IoT Events provides several ways to specify values when you
create and update detector models. You can use literals, operators, functions, references, and
substitution templates in the expressions. You can use expressions to specify literal values,
or AWS IoT Events can evaluate the expressions before you specify particular values. Your

Diagnostic information 282

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-quotas.html

AWS IoT Events Developer Guide

expression must follow the required syntax. For more information, see Expressions to filter,
transform, and process event data.

Detector Model expressions in AWS IoT Events can reference specific data or a resource.

• data-type – AWS IoT Events supports integer, decimal, string, and Boolean data types.
If AWS IoT Events can automatically convert the data of one data type to another during
expression evaluation, these data types are compatible.

Note

• Integer and decimal are the only compatible data types supported by AWS IoT
Events.

• AWS IoT Events can't evaluate arithmetic expressions because AWS IoT Events can't
convert an integer to a string.

• referenced-data – You must define the data referenced in your detector model before you
can use the data. For example, if you want to send data to a DynamoDB table, you must define
a variable that references the table name before you can use the variable in an expression
($variable.TableName).

• referenced-resource – Resources that the detector model uses must be available.
You must define resources before you can use them. For example, you want to create a
detector model to monitor the temperature of a greenhouse. You must define an input
($input.TemperatureInput) to route incoming temperature data to your detector model
before you can use the $input.TemperatureInput.sensorData.temperature to
reference the temperature.

See the following section to troubleshoot errors and find possible solutions from the analysis of
your detector model.

Troubleshoot detector model errors in AWS IoT Events

The types of errors described above provide diagnostic information about a detector model and
correspond to messages that you might retrieve. Use these messages and suggested solutions to
troubleshoot errors with your detector model.

Messages and solutions

• Location
Diagnostic information 283

AWS IoT Events Developer Guide

• supported-actions

• service-limits

• structure

• expression-syntax

• data-type

• referenced-data

• referenced-resource

Location

An analysis result with information about Location, corresponds to the following error message:

• Message – Contains additional information about the analysis result. This can be an information,
warning, or error message.

Solution: You might receive this error message if you specified an action that AWS IoT Events
currently doesn't support. For a list of supported actions, see Supported actions to receive data
and trigger actions in AWS IoT Events.

supported-actions

An analysis result with information about supported‐actions, corresponds to the following
error messages:

• Message: Invalid action type present in action definition: action-definition.

Solution: You might receive this error message if you specified an action that AWS IoT Events
currently doesn't support. For a list of supported actions, see Supported actions to receive data
and trigger actions in AWS IoT Events.

• Message: DetectorModel definition has an aws-service action, but the aws-service service
is not supported in the region region-name.

Solution: You might receive this error message if the action that you specified is supported by
AWS IoT Events, but the action isn't available in your current Region. This might occur when you
try to send data to an AWS service that isn't available in the Region. You must also choose the
same Region for both AWS IoT Events and the AWS services that you're using.

Diagnostic information 284

AWS IoT Events Developer Guide

service-limits

An analysis result with information about service‐limits, corresponds to the following error
messages:

• Message: Content Expression allowed in payload exceeded the limit content-expression-
size bytes in event event-name in state state-name.

Solution: You might receive this error message if the content expression for your action payload
is greater than 1024 bytes. The size of the content expression for a payload can be up to 1024
bytes.

• Message: Number of states allowed in detector model definition exceeded the limit states-
per-detector-model.

Solution: You might receive this error message if your detector model has more than 20 states. A
detector model can have up to 20 states.

• Message: The duration for timer timer-name should be at least minimum-timer-duration
seconds long.

Solution: You might receive this error message if the duration of your timer is less than 60
seconds. We recommend that the duration of a timer is between 60 and 31622400 seconds. If
you specify an expression for the duration of your timer, the evaluated result of the duration
expression is rounded down to the nearest whole number.

• Message: Number of actions allowed per event exceeded the limit actions-per-event in
detector model definition

Solution: You might receive this error message if the event has more than 10 actions. You can
have up to 10 actions for each event in your detector model.

• Message: Number of transition events allowed per state exceeded the limit transition-
events-per-state in detector model definition.

Solution: You might receive this error message if the state has more than 20 transition events.
You can have up to 20 transition events for each state in your detector model.

• Message: Number of events allowed per state exceeded the limit events-per-state in
detector model definition

Solution: You might receive this error message if the state has more than 20 events. You can
have up to 20 events for each state in your detector model.

Diagnostic information 285

AWS IoT Events Developer Guide

• Message: The maximum number of detector models that can be associated with a single input
may have reached the limit. Input input-name is used in detector-models-per-input
detector model routes.

Solution: You might receive this warning message if you tried to route an input to more than
10 detector models. You can have up to 10 different detector models associated with a single
detector model.

structure

An analysis result with information about structure, corresponds to the following error
messages:

• Message: Actions may only have one type defined, but found an action with number-of-types
types. Please split into separate Actions.

Solution: You might receive this error message if you specified two or more actions in a single
field by using API operations to create or update your detector model. You can define an array of
Action objects. Make sure that you define each action as a separate object.

• Message: The TransitionEvent transition-event-name transitions to a non-existent state
state-name.

Solution: You might receive this error message if AWS IoT Events couldn't find the next state
that your transition event referenced. Make sure that the next state is defined and that you
entered the correct state name.

• Message: The DetectorModelDefinition had a shared state name: found state state-name with
number-of-states repetitions.

Solution: You might receive this error message if you use the same name for one or more states.
Make sure that you give a unique name to each state in your detector model. The state name
must have 1-128 characters. Valid characters: a-z, A-Z, 0-9, _ (underscore), and - (hyphen).

• Message: The Definition's initialStateName initial-state-name did not correspond to a
defined State.

Solution: You might receive this error message if the initial state name is incorrect. The detector
model remains in the initial (start) state until an input arrives. Once an input arrives, the detector
model immediately transitions to the next state. Make sure that the initial state name is the
name of a defined state and that you enter the correct name.

Diagnostic information 286

AWS IoT Events Developer Guide

• Message: Detector Model Definition must use at least one Input in a condition.

Solution: You might receive this error if you didn't specify an input in a condition. You must
use at least one input in at least one condition. Otherwise, AWS IoT Events doesn't evaluate
incoming data.

• Message: Only one of seconds and durationExpression can be set in SetTimer.

Solution: You might receive this error message if you used both seconds and
durationExpression for your timer. Make sure that you use either seconds or
durationExpression as the parameters of SetTimerAction. For more information, see
SetTimerAction in the AWS IoT Events API Reference.

• Message: An action in your detector model is unreachable. Check the condition that initiates the
action.

Solution: If an action in your detector model is unreachable, the event's condition evaluates to
false. Check the condition of the event that contains the action, to ensure that it evaluates to
true. When the event's condition evaluates to true, the action should become reachable.

• Message: An input attribute is being read, but this may be caused by a timer expiration.

Solution: An input attribute’s value can be read when either of the following occurs:

• A new input value has been received.

• When a timer in the detector has expired.

To ensure that an input attribute is being evaluated only when the new value for that input is
received, include a call to the triggerType(“Message”) function in your condition as follows:

The original condition being evaluated in the detector model:

if ($input.HeartBeat.status == “OFFLINE”)

would become similar to the following:

if (triggerType("MESSAGE") && $input.HeartBeat.status == “OFFLINE”)

where a call to the triggerType(“Message”) function comes before the initial input provided
in the condition. By using this technique, the triggerType("Message") function will evaluate
to true and satisfy the condition of receiving a new input value. For more information about the

Diagnostic information 287

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SetTimerAction.html

AWS IoT Events Developer Guide

usage of the triggerType function, search for triggerType in the Expressions section in the
AWS IoT Events Developer Guide

• Message: A state in your detector model is unreachable. Check the condition that will cause a
transition to the desired state.

Solution: If a state in your detector model is unreachable, a condition that causes an incoming
transition to that state evaluates to false. Check that the conditions of the incoming transitions
to that unreachable state in your detector model evaluates to true, so the desired state can
become reachable.

• Message: An expiring timer can cause an unexpected amount of messages to be sent.

Solution: To prevent your detector model from entering into an infinite state of sending an
unexpected amount of messages because a timer has expired, consider using a call to the
triggerType("Message") function, in the conditions of your detector model as follows:

The original condition being evaluated in the detector model:

if (timeout("awake"))

would be transformed into a condition that looks similar to the following:

 if (triggerType("MESSAGE") && timeout("awake"))

where a call to the triggerType(“Message”) function comes before the initial input provided
in the condition.

This change prevents initiating timer actions in your detector, preventing an infinite loop of
messages being sent. For more information about how to use timer actions in your detector, see
the Using built-in actions page of the AWS IoT Events Developer Guide

expression-syntax

An analysis result with information about expression‐syntax, corresponds to the following
error messages:

• Message: Your payload expression {expression} isn't valid. The defined payload type is JSON,
so you must specify an expression that AWS IoT Events would evaluate to a string.

Diagnostic information 288

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-expressions.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/built-in-actions.html

AWS IoT Events Developer Guide

Solution: If the specified payload type is JSON, AWS IoT Events first checks if the service can
evaluate your expression to a string. The evaluated result can't be a Boolean or number. If the
validation doesn't succeed, you might receive this error.

• Message: SetVariableAction.value must be an expression. Failed to parse value
'variable-value'

Solution: You can use SetVariableAction to define a variable with a name and value. The
value can be a string, number, or Boolean value. You can also specify an expression for the
value. For more information, see SetVariableAction, in the AWS IoT Events API Reference.

• Message: We couldn't parse your expression of the attributes (attribute-name) for the
DynamoDB action. Enter expression with the correct syntax.

Solution: You must use expressions for all parameters in DynamoDBAction. substitution
templates. For more information, see DynamoDBAction in the AWS IoT Events API Reference.

• Message: We couldn't parse your expression of the tableName for the DynamoDBv2 action. Enter
expression with the correct syntax.

Solution: The tableName in DynamoDBv2Action must be a string. You must use an expression
for the tableName. The expressions accept literals, operators, functions, references, and
substitution templates. For more information, see DynamoDBv2Action in the AWS IoT Events API
Reference.

• Message: We couldn't evaluate your expression to valid JSON. The DynamoDBv2 action only
supports the JSON payload type.

Solution: The payload type for DynamoDBv2 must be JSON. Make sure that AWS IoT Events
can evaluate your content expression for the payload to valid JSON. For more information, see
DynamoDBv2Action, in the AWS IoT Events API Reference.

• Message: We couldn't parse your content expression for the payload of action-type. Enter a
content expression with the correct syntax.

Solution: The content expression can contain strings ('string'), variables ($variable.variable-
name), input values ($input.input-name.path-to-datum), string concatenations, and strings
that contain ${}.

• Message: Customized Payloads must be non-empty.

Diagnostic information 289

https://docs.aws.amazon.com/iotevents/latest/apireference/API_SetVariableAction.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_DynamoDBAction.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_DynamoDBv2Action.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_DynamoDBv2Action.html

AWS IoT Events Developer Guide

Solution: You might receive this error message, if you chose Custom payload for your action and
didn't enter a content expression in the AWS IoT Events console. If you choose Custom payload,
you must enter a content expression under Custom payload. For more information, see Payload
in the AWS IoT Events API Reference.

• Message: Failed to parse duration expression 'duration-expression' for timer 'timer-name'.

Solution: The evaluated result of your duration expression for the timer must be a value
between 60–31622400. The evaluated result of the duration is rounded down to the nearest
whole number.

• Message: Failed to parse expression 'expression' for action-name

Solution: You might receive this message if the expression for the specified action has incorrect
syntax. Make sure that you enter an expression with the correct syntax. For more information, see
Syntax to filter device data and define actions in AWS IoT Events.

• Message: Your fieldName for IotSitewiseAction couldn't be parsed. You must use correct
syntax in your expression.

Solution: You might receive this error if AWS IoT Events couldn't parse your fieldName for
IotSitewiseAction. Make sure the fieldName uses an expression that AWS IoT Events can
parse. For more information, see IotSiteWiseAction in the AWS IoT Events API Reference.

data-type

An analysis result with information about data‐type, corresponds to the following error
messages:

• Message: Duration expression duration-expression for timer timer-name is not valid, it
must return a number.

Solution: You might receive this error message if AWS IoT Events couldn't evaluate the duration
expression for your timer to a number. Make sure that your durationExpression can be
converted to a number. Other data types, such as Boolean, aren't supported.

• Message: Expression condition-expression is not a valid condition expression.

Solution: You might receive this error message if AWS IoT Events couldn't evaluate your
condition-expression to a Boolean value. The Boolean value must be either TRUE or FALSE.
Make sure that your condition expression can be converted to a Boolean value. If the result isn't

Diagnostic information 290

https://docs.aws.amazon.com/iotevents/latest/apireference/API_Payload.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_IotSiteWiseAction.html

AWS IoT Events Developer Guide

a Boolean value, it's equivalent to FALSE and doesn't invoke the actions or transition to the
nextState specified in the event.

• Message: Incompatible data types [inferred-types] found for reference in the following
expression: expression

Solution: Solution: All expressions for the same input attribute or variable in the detector model
must reference the same data type.

Use the following information to resolve the issue:

• When you use a reference as an operand with one or more operators, make sure that all data
types that you reference are compatible.

For example, in the following expression, integer 2 is an operand of both the == and &&
operators. To ensure that the operands are compatible, $variable.testVariable + 1 and
$variable.testVariable must reference an integer or decimal.

In addition, integer 1 is an operand of the + operator. Therefore, $variable.testVariable
must reference an integer or decimal.

‘$variable.testVariable + 1 == 2 && $variable.testVariable’

• When you use a reference as an argument passed to a function, make sure that the function
supports the data types that you reference.

For example, the following timeout("time-name") function requires a string with double
quotes as the argument. If you use a reference for the timer-name value, you must reference
a string with double quotes.

timeout("timer-name")

Note

For the convert(type, expression) function, if you use a reference for the type
value, the evaluated result of your reference must be String, Decimal, or Boolean.

For more information, see AWS IoT Events reference for inputs and variables in expressions.

• Message: Incompatible data types [inferred-types] used with reference. This may lead to a
runtime error.

Diagnostic information 291

AWS IoT Events Developer Guide

Solution: You might receive this warning message if two expressions for the same input attribute
or variable reference two data types. Make sure that your expressions for the same input
attribute or variable reference the same data type in the detector model.

• Message: The data types [inferred‐types] that you entered for the operator [operator]
aren't compatible for the following expression: 'expression'

Solution: You might receive this error message if your expression combines data types that are
not compatible with a specified operator. For example, in the following expression, the operator
+ is compatible with Integer, Decimal, and String data types, but not operands of Boolean data
type.

true + false

You must make sure that the data types you use with an operator are compatible.

• Message: The data types [inferred‐types] found for input‐attribute aren't compatible
and can lead to a runtime error.

Solution: You might receive this error message if two expressions for the same input attribute
reference two data types for either the OnEnterLifecycle of a state, or for both the
OnInputLifecycle and OnExitLifecycle of a state. Make sure your expressions in
OnEnterLifecycle (or, both OnInputLifecycle and OnExitLifecycle) reference the
same data type for each state of your detector model.

• Message: The payload expression [expression] isn't valid. Specify an expression that would
evaluate to a string at runtime because the payload type is JSON format.

Solution: You might receive this error if your specified payload type is JSON, but AWS IoT Events
can't evaluate its expression to a String. Make sure the evaluated result is a String, not a Boolean
or a number.

• Message: Your interpolated expression {interpolated-expression} must evaluate to either
an integer or a Boolean value at runtime. Otherwise, your payload expression {payload-
expression} won't be parseable at runtime as valid JSON.

Solution: You might receive this error message if AWS IoT Events couldn't evaluate your
interpolated expression to an integer or a Boolean value. Make sure your interpolated expression
can be converted to an integer or a Boolean value, because other data types, such as tring, aren't
supported.

Diagnostic information 292

AWS IoT Events Developer Guide

• Message: The expression type in the IotSitewiseAction field expression is defined as type
defined‐type and inferred as type inferred‐type. The defined type and the inferred type
must be the same.

Solution: You might receive this error message if your expression in the propertyValue of
IotSitewiseAction has a data type defined differently than the data type inferred by AWS
IoT Events. Make sure you use the same data type for all instances of this expression in your
detector model.

• Message: The data types [inferred-types] used for setTimer action don't evaluate to
Integer for the following expression: expression

Solution: You might receive this error message if the inferred data type for your duration
expression isn't Integer or Decimal. Make sure your durationExpression can be converted to
a number. Other data types, such as Boolean and String, aren't supported.

• Message: The data types [inferred-types] used with operands of the comparison operator
[operator] are not compatible in the following expression: expression

Solution: The inferred data types for the operands of the operator in the conditional
expression (expression) of your detector model don't match. The operands must be used with
the matching data types in all other parts of your detector model.

Tip

You can use convert to change the data type of an expression in your detector model.
For more information, see Functions to use in AWS IoT Events expressions.

referenced-data

An analysis result with information about referenced‐data, corresponds to the following error
messages:

• Message: Detected broken Timer: timer timer-name is used in an expression but is never set.

Solution: You might receive this error message if you use a timer that isn't set. You must set a
timer before you use it in an expression. Also, make sure that you enter the correct timer name.

• Message: Detected broken Variable: variable variable-name is used in an expression but is
never set.

Diagnostic information 293

AWS IoT Events Developer Guide

Solution: You might receive this error message if you use a variable that isn't set. You must set
a variable before you use it in an expression. Also, make sure that you enter the correct variable
name.

• Message: Detected broken Variable: a variable is used in an expression before being set to a
value.

Solution: Each variable must be assigned to a value before it can be evaluated in an expression.
Set the value of the variable before every use so its value can be retrieved. Also, make sure that
you enter the correct variable name.

referenced-resource

An analysis result with information about referenced‐resource, corresponds to the following
error messages:

• Message: Detector Model Definition contains reference to Input that does not exist.

Solution: You might receive this error message if you use expressions to reference an input that
doesn't exist. Make sure that your expression references an existing input and enter the correct
input name. If you don't have an input, create one first.

• Message: Detector Model Definition contains invalid InputName: input-name

Solution: You might receive this error message if your detector model contains an invalid input
name. Make sure that you enter the correct input name. The input name must have 1-128
characters. Valid characters: a-z, A-Z, 0-9, _ (underscore), and - (hyphen).

Analyze a detector model for AWS IoT Events (Console)

AWS IoT Events allows you to monitor and react to IoT data by detecting events and triggering
actions with the AWS IoT Events API. The following steps use the AWS IoT Events console to
analyze a detector model.

Note

After AWS IoT Events starts analyzing your detector model, you have up to 24 hours to
retrieve the analysis results.

Analyze a detector model (Console) 294

AWS IoT Events Developer Guide

A detector model analysis can help you optimize your models, identify potential issues, and
ensure they're functioning as intended. For example, on a windfarm, the detector model analysis
could reveal if the model correctly identifies potential gear failures based on abnormal vibration
patterns. Or, if the model accurately triggers maintenance alerts when wind speeds exceed safe
operating thresholds. By refining a model based on the analysis, you can improve predictive
maintenance, reduce downtime, and enhance overall energy production efficiency.

To analyze a detector model

1. Sign in to the AWS IoT Events console.

2. In the navigation pane, choose Detector models.

3. Under Detector models, choose the target detector model.

4. On your detector model page, choose Edit.

5. In the upper-right corner, choose Run analysis.

The following is an example analysis result in the AWS IoT Events console.

Analyze a detector model (Console) 295

https://console.aws.amazon.com/iotevents/

AWS IoT Events Developer Guide

Analyze a detector model in AWS IoT Events (AWS CLI)

Analyzing your AWS IoT Events detector models programmatically provides valuable insights
into their structure, behavior, and performance. This API-based approach allows for automated
analysis, integration with your existing workflows, and the ability to perform bulk operations
across multiple detector models. By leveraging the StartDetectorModelAnalysis API, you can
initiate in-depth examinations of your models, helping you identify potential issues, optimize logic
flows, and ensure that your IoT event processing aligns with your business requirements.

The following steps use the AWS CLI to analyze a detector model.

To analyze a detector model using AWS CLI

1. Run the following command to start an analysis.

aws iotevents start-detector-model-analysis --cli-input-json file://file-name.json

Analyze a detector model (AWS CLI) 296

https://docs.aws.amazon.com/iotevents/latest/apireference/API_StartDetectorModelAnalysis.html

AWS IoT Events Developer Guide

Note

Replace file-name with the name of the file that contains the detector model
definition.

Example Detector model definition

{
 "detectorModelDefinition": {
 "states": [
 {
 "stateName": "TemperatureCheck",
 "onInput": {
 "events": [
 {
 "eventName": "Temperature Received",
 "condition":
 "isNull($input.TemperatureInput.sensorData.temperature)==false",
 "actions": [
 {
 "iotTopicPublish": {
 "mqttTopic": "IoTEvents/Output"
 }
 }
]
 }
],
 "transitionEvents": []
 },
 "onEnter": {
 "events": [
 {
 "eventName": "Init",
 "condition": "true",
 "actions": [
 {
 "setVariable": {
 "variableName": "temperatureChecked",
 "value": "0"
 }

Analyze a detector model (AWS CLI) 297

AWS IoT Events Developer Guide

 }
]
 }
]
 },
 "onExit": {
 "events": []
 }
 }
],
 "initialStateName": "TemperatureCheck"
 }
}

If you use the AWS CLI to analyze an existing detector model, choose one of the following to
retrieve the detector model definition:

• If you want to use the AWS IoT Events console, do the following:

1. In navigation pane, choose Detector models.

2. Under Detector models, choose the target detector model.

3. Choose Export detector model from Action to download the detector model. The
detector model is saved in JSON.

4. Open the detector model JSON file.

5. You only need the detectorModelDefinition object. Remove the following:

• The first curly bracket ({) at the top of the page

• The detectorModel line

• The detectorModelConfiguration object

• The last curly bracket (}) at the bottom of the page

6. Save the file.

• If you want to use the AWS CLI, do the following:

1. Run the following command in a terminal.

aws iotevents describe-detector-model --detector-model-name detector-model-name

2. Replace detector-model-name with the name of your detector model.

3. Copy the detectorModelDefinition object to a text editor.
Analyze a detector model (AWS CLI) 298

AWS IoT Events Developer Guide

4. Add curly brackets ({}) outside of the detectorModelDefinition.

5. Save the file in JSON.

Example Example response

{
 "analysisId": "c1133390-14e3-4204-9a66-31efd92a4fed"
}

2. Copy the analysis ID from the output.

3. Run the following command to retrieve the status of the analysis.

aws iotevents describe-detector-model-analysis --analysis-id "analysis-id"

Note

Replace analysis-id with the analysis ID that you copied.

Example Example response

{
 "status": "COMPLETE"
}

The status can be one of the following values:

• RUNNING – AWS IoT Events is analyzing your detector model. This process can take up to one
minute to complete.

• COMPLETE – AWS IoT Events finished analyzing your detector model.

• FAILED – AWS IoT Events couldn't analyze your detector model. Try again later.

4. Run the following command to retrieve one or more analysis results of the detector model.

Note

Replace analysis-id with the analysis ID that you copied.

Analyze a detector model (AWS CLI) 299

AWS IoT Events Developer Guide

aws iotevents get-detector-model-analysis-results --analysis-id "analysis-id"

Example Example response

{
 "analysisResults": [
 {
 "type": "data-type",
 "level": "INFO",
 "message": "Inferred data types [Integer] for
 $variable.temperatureChecked",
 "locations": []
 },
 {
 "type": "referenced-resource",
 "level": "ERROR",
 "message": "Detector Model Definition contains reference to Input
 'TemperatureInput' that does not exist.",
 "locations": [
 {
 "path": "states[0].onInput.events[0]"
 }
]
 }
]
}

Note

After AWS IoT Events starts analyzing your detector model, you have up to 24 hours to
retrieve the analysis results.

Analyze a detector model (AWS CLI) 300

AWS IoT Events Developer Guide

AWS IoT Events commands

This chapter provides a comprehensive guide to all the API operations available in AWS IoT Events.
It offers detailed explanations, including sample requests, responses, and potential errors for
each operation across the supported web services protocols. Understanding these API operations
helps you effectively integrate AWS IoT Events into your IoT applications and automate your event
detection and response workflows.

AWS IoT Events actions

You can use AWS IoT Events API commands to create, read, update, and delete inputs and detector
models, and to list their versions. For more information, see the actions and data types that are
supported by AWS IoT Events in the AWS IoT Events API Reference.

The AWS IoT Events sections in the AWS CLI Command Reference include the AWS CLI commands
that you can use to administer and manipulate AWS IoT Events.

AWS IoT Events data

You can use the AWS IoT Events Data API commands to send inputs to detectors, list detectors, and
view or update a detector's status. For more information, see the actions and data types that are
supported by AWS IoT Events Data in the AWS IoT Events API Reference.

The AWS IoT Events data sections in the AWS CLI Command Reference includes the AWS CLI
commands that you can use to process AWS IoT Events data.

AWS IoT Events actions 301

https://docs.aws.amazon.com/iotevents/latest/apireference/API_Operations_AWS_IoT_Events.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Types_AWS_IoT_Events.html
https://docs.aws.amazon.com/cli/latest/reference/iotevents/index.html#cli-aws-iotevents
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Operations_AWS_IoT_Events_Data.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_Types_AWS_IoT_Events_Data.html
https://docs.aws.amazon.com/cli/latest/reference/iotevents-data/index.html

AWS IoT Events Developer Guide

Document history for AWS IoT Events

The following table describes the important changes to the AWS IoT Events Developer Guide
after September 17, 2020. For more information about updates to this documentation, you can
subscribe to an RSS feed.

Change Description Date

End of support notice End of support notice: On
May 20, 2026, AWS will
discontinue support for AWS
IoT Events. After May 20,
2026, you will no longer be
able to access the AWS IoT
Events console or AWS IoT
Events resources.

May 20, 2025

Region launch AWS IoT Events is now
available in the Asia Pacific
(Mumbai) region.

September 30, 2021

Region launch AWS IoT Events is now
available in the AWS
GovCloud (US-West) Region.

September 22, 2021

Troubleshoot a detector
model by running analyses

AWS IoT Events can now
analyze your detector model
and generate analysis results
that you can use to troublesh
oot your detector model.

February 23, 2021

Region launch Launched AWS IoT Events in
China (Beijing).

September 30, 2020

Expression usage Added examples to show you
how to write expressions.

September 22, 2020

302

https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-analyze-api.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-analyze-api.html
https://docs.aws.amazon.com/general/latest/gr/iot-events.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/expression-usage.html

AWS IoT Events Developer Guide

Monitoring with alarms Alarms help you monitor
your data for changes.
You can create alarms that
send notifications when a
threshold is breached.

June 1, 2020

Earlier updates

The following table describes important changes to the AWS IoT Events Developer Guide before
September 18, 2020.

Change Description Date

Added type validation to the
Expressions reference

Added type validation
information to the Expressio
ns reference.

August 3, 2020

Added Region warning for
other services

Added a warning regarding
selecting the same region for
AWS IoT Events and other
AWS services.

May 7, 2020

Additions, updates • Payload Customization
feature

• New event actions: Amazon
DynamoDB and AWS IoT
SiteWise

April 27, 2020

Added built-in functions for
detector model conditional
expressions

Added built-in functions for
detector model conditional
expressions.

September 10, 2019

Added detector model
examples

Added examples for the
detector model.

August 5, 2019

Added new event actions Added new event actions for: July 19, 2019

Earlier updates 303

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-alarms.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/expression-reference.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/expression-reference.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-examples.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-examples.html

AWS IoT Events Developer Guide

Change Description Date

• Lambda

• Amazon SQS

• Kinesis Data Firehose

• AWS IoT Events input

Additions, corrections • Updated description of
timeout() function.

• Added best practice
regarding account inactivit
y.

June 11, 2019

Updated permissions policy
and console debug options

• Updated the console
permissions policy.

• Updated console debug
options page image.

June 5, 2019

Updates AWS IoT Events service open
to general availability.

May 30, 2019

Additions, updates • Updated security informati
on.

• Added annotated detector
model example.

May 22, 2019

Added examples and required
permissions

Added Amazon SNS payload
examples; additions to
required permissions for
CreateDetectorModel .

May 17, 2019

Added additional security
information

Added information to the
security section.

May 9, 2019

Limited preview release Limited preview release of the
documentation.

March 28, 2019

Earlier updates 304

https://docs.aws.amazon.com/iotevents/latest/developerguide/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/security.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/security.html

	AWS IoT Events
	Table of Contents
	
	What is AWS IoT Events?
	Benefits and features
	Use cases
	Monitor and maintain remote devices
	Manage industrial robots
	Track building automation systems

	AWS IoT Events end of support
	Considerations when migrating away from AWS IoT Events
	Migration procedure for detector models in AWS IoT Events
	Comparing architectures
	Step 1: (Optional) export AWS IoT Events detector model configurations
	Step 2: Create an IAM role
	Step 3: Create Amazon Kinesis Data Streams
	Step 4: Create or update the MQTT message routing rule
	Step 5: Get the endpoint for the destination MQTT topic
	Step 6: Create an Amazon DynamoDB table
	Step 7: Create an AWS Lambda function (console)
	Step 8: Add an Amazon Kinesis Data Streams trigger
	Step 9: Test data ingestion and output functionality (AWS CLI)

	Migration procedure for AWS IoT SiteWise alarms in AWS IoT Events
	Comparing architectures
	Step 1: Enable MQTT notifications on the asset property
	Step 2: Create an AWS Lambda function
	Step 3: Create AWS IoT Core message routing rule
	Step 4: View CloudWatch metrics
	Step 5: Create CloudWatch alarms
	Step 6: (Optional) import the CloudWatch alarm into AWS IoT SiteWise

	Setting up AWS IoT Events
	Setting up an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Setting up permissions for AWS IoT Events
	Action permissions for AWS IoT Events
	Securing input data in AWS IoT Events
	Amazon CloudWatch logging role policy for AWS IoT Events
	Amazon SNS messaging role policy for AWS IoT Events

	Getting started with the AWS IoT Events console
	Prerequisites to get started with AWS IoT Events
	Create an input for models in AWS IoT Events
	Create a JSON input file
	Create and configure an input
	Create an input within the Detector Model in AWS IoT Events

	Create a detector model in AWS IoT Events
	Send inputs to test the detector model in AWS IoT Events

	Best practices for AWS IoT Events
	Enable Amazon CloudWatch logging when developing AWS IoT Events detector models
	Publish regularly to save your detector model when working in the AWS IoT Events console

	Tutorials for AWS IoT Events uses cases
	Using AWS IoT Events to monitor your IoT devices
	How do you know which states you need in a detector model?
	How do you know if you need one instance of a detector or several?

	Create an AWS IoT Events detector for two states using CLI
	Create an AWS IoT Events input to capture device data
	Create a detector model to represent device states in AWS IoT Events
	Send messages as inputs to a detector in AWS IoT Events

	AWS IoT Events detector model restrictions and limitations
	A commented example: HVAC temperature control with AWS IoT Events
	Input definitions for detector models in AWS IoT Events
	Create an AWS IoT Events detector model definition
	Use BatchUpdateDetector to update an AWS IoT Events detector model
	Use BatchPutMessage for inputs in AWS IoT Events
	Ingest MQTT messages in AWS IoT Events
	Generate Amazon SNS messages in AWS IoT Events
	Configure the DescribeDetector API in AWS IoT Events
	Use the AWS IoT Core rules engine for AWS IoT Events

	Supported actions to receive data and trigger actions in AWS IoT Events
	Use the AWS IoT Events built-in timer and variable actions
	Set timer action
	Reset timer action
	Clear timer action
	Set variable action

	AWS IoT Events working with other AWS services
	AWS IoT Core
	AWS IoT Events
	AWS IoT SiteWise
	Amazon DynamoDB
	Amazon DynamoDB(v2)
	Amazon Data Firehose
	AWS Lambda
	Amazon Simple Notification Service
	Amazon Simple Queue Service

	Expressions to filter, transform, and process event data
	Syntax to filter device data and define actions in AWS IoT Events
	Literals
	Operators
	Functions to use in AWS IoT Events expressions
	AWS IoT Events reference for inputs and variables in expressions
	Substitution templates for AWS IoT Events expressions

	Expression examples and usage for AWS IoT Events
	Writing AWS IoT Events expressions

	AWS IoT Events detector model examples
	Example: Using HVAC temperature control with AWS IoT Events
	Background story
	Input definitions for an HVAC system in AWS IoT Events
	Detector model definition for an HVAC system using AWS IoT Events
	BatchPutMessage examples for an HVAC system in AWS IoT Events
	BatchUpdateDetector example for an HVAC system in AWS IoT Events
	The AWS IoT Core rules engine and AWS IoT Events

	Example: A crane detecting conditions using AWS IoT Events
	Send commands in response to detected conditions in AWS IoT Events
	An AWS IoT Events detector model for crane monitoring
	AWS IoT Events inputs for crane monitoring
	Send alarm and operational messages with AWS IoT Events
	Example: AWS IoT Events event detection with sensors and applications
	Example: Device HeartBeat to monitor device connections with AWS IoT Events
	Example: An ISA alarm in AWS IoT Events
	Example: Build a simple alarm with AWS IoT Events

	Monitoring with alarms in AWS IoT Events
	Working with AWS IoT SiteWise
	Acknowledge flow
	Creating an alarm model in AWS IoT Events
	Requirements
	Creating an alarm model (console)

	Responding to alarms in AWS IoT Events
	Managing alarm notifications in AWS IoT Events
	Creating a Lambda function in AWS IoT Events
	Requirements
	Deploy a Lambda function for AWS IoT Events using AWS CloudFormation
	Creating a custom Lambda function for AWS IoT Events
	CloudFormation template

	Using the Lambda function provided by AWS IoT Events
	Manage IAM Identity Center access of alarm recipients in AWS IoT Events

	Security in AWS IoT Events
	Identity and access management for AWS IoT Events
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Other policy types
	Multiple policy types

	More about identity and access management
	How AWS IoT Events works with IAM
	AWS IoT Events identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	AWS IoT Events resource-based policies
	Authorization based on AWS IoT Events tags
	AWS IoT Events IAM roles
	Using temporary credentials with AWS IoT Events
	Service-linked roles
	Service roles

	AWS IoT Events identity-based policy examples
	Policy best practices
	Using the AWS IoT Events console
	Allow users to view their own permissions in AWS IoT Events
	Access one AWS IoT Events input
	View AWS IoT Events inputs based on tags

	Cross-service confused deputy prevention for AWS IoT Events
	Example: Secure access to an AWS IoT Events detector model
	Example: Secure access to an AWS IoT Events alarm model
	Example: Access an AWS IoT Events resource in a specified region
	Example: Configure logging options for AWS IoT Events

	Troubleshoot AWS IoT Events identity and access
	I am not authorized to perform an action in AWS IoT Events
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS IoT Events resources

	Monitoring AWS IoT Events to maintain reliability, availability, and performance
	Available tools to monitor AWS IoT Events
	Automated monitoring tools
	Manual monitoring tools

	Monitoring AWS IoT Events with Amazon CloudWatch
	Logging AWS IoT Events API calls with AWS CloudTrail
	AWS IoT Events information in CloudTrail
	Understanding AWS IoT Events log file entries
	Example: DescribeDetector action for CloudTrail
	Example: CreateDetectorModel action for CloudTrail
	Example: CreateInput action for CloudTrail
	Example: DeleteDetectorModel action for CloudTrail
	Example: DeleteInput action for CloudTrail
	Example: DescribeDetectorModel action for CloudTrail
	Example: DescribeInput action for CloudTrail
	Example: DescribeLoggingOptions action for CloudTrail
	Example: ListDetectorModels action for CloudTrail
	Example: ListDetectorModelVersions action for CloudTrail
	Example: ListDetectors action for CloudTrail
	Example: ListInputs action for CloudTrail
	Example: PutLoggingOptions action for CloudTrail
	Example: UpdateDetectorModel action for CloudTrail
	Example: UpdateInput action for CloudTrail
	Example: BatchPutMessage action for CloudTrail

	Compliance validation for AWS IoT Events
	Resilience in AWS IoT Events
	Infrastructure security in AWS IoT Events

	AWS service quotas for AWS IoT Events resources
	Tagging your AWS IoT Events resources
	Tag basics
	Tag restrictions and limitations

	Using tags with IAM policies

	Troubleshooting AWS IoT Events
	Common AWS IoT Events issues and solutions
	Detector model creation errors
	Solution

	Updates from a deleted detector model
	Solution

	Action trigger failure (when meeting a condition)
	Solution

	Action trigger failure (when breeching a threshold)
	Solution

	Incorrect state usage
	Solution

	Connection message
	Solution

	InvalidRequestException message
	Solution

	Amazon CloudWatch Logs action.setTimer errors
	Solution
	Solution
	Solution
	Solution
	Solution

	Amazon CloudWatch payload errors
	Solution
	Solution
	Solution
	Solution

	Incompatible data types
	Solution

	Failed to send message to AWS IoT Events
	Solution

	Troubleshooting a detector model by running analyses in AWS IoT Events
	Detector model analysis and diagnostic information for AWS IoT Events
	Troubleshoot detector model errors in AWS IoT Events
	Location
	

	supported-actions
	
	

	service-limits
	
	
	
	
	
	
	

	structure
	
	
	
	
	
	
	
	
	
	

	expression-syntax
	
	
	
	
	
	
	
	
	
	

	data-type
	
	
	
	
	
	
	
	
	
	
	

	referenced-data
	
	
	

	referenced-resource
	
	

	Analyze a detector model for AWS IoT Events (Console)
	Analyze a detector model in AWS IoT Events (AWS CLI)

	AWS IoT Events commands
	AWS IoT Events actions
	AWS IoT Events data

	Document history for AWS IoT Events
	Earlier updates

