
Developer Guide

AWS HealthLake

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS HealthLake Developer Guide

AWS HealthLake: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS HealthLake Developer Guide

Table of Contents

What is AWS HealthLake? ... 1
Important notice ... 2
Features .. 2
Related services .. 3
Accessing .. 4
HIPAA ... 4
Pricing ... 4

Getting started .. 5
Concepts ... 5

authorization strategy .. 5
Integrated NLP ... 6
Integrated analytics .. 6

Setting up .. 6
Sign up for an AWS account .. 7
Create a user with administrative access ... 7
Configure an IAM user or role .. 9
Add a Data Lake Administrator user or role ... 11
Create S3 buckets ... 12
Create a data store ... 12
Set up import permissions ... 13
Set up export permissions .. 15
Install the AWS CLI ... 18

Tutorial ... 19
Managing data stores .. 21

Creating a data store .. 21
Getting data store properties .. 27
Listing data stores ... 30
Tagging data stores ... 33

Tagging a data store .. 34
Listing tags for a data store ... 36
Untagging a data store ... 39

Deleting a data store .. 41
Importing FHIR data ... 44

Starting an import job .. 45

iii

AWS HealthLake Developer Guide

Getting import job properties ... 49
Listing import jobs ... 52

Managing FHIR resources .. 56
Creating a resource .. 57
Reading a resource .. 60
Reading resource history .. 62

Reading version-specific history .. 65
Updating a resource .. 67

Conditional update ... 69
Bundling resources ... 70

Bundle as independent entities ... 74
Conditional PUTs in Bundles .. 78
Bundle as a single entity .. 81

Deleting a resource .. 84
Conditional delete for FHIR .. 86

Idempotency and Concurrency .. 88
Idempotency Keys ... 88
ETag in AWS HealthLake ... 90

Searching FHIR resources .. 92
Searching with GET ... 92

GET search examples ... 95
Searching with POST ... 96

POST search examples ... 99
Search Consistency Levels ... 101

Consistency levels ... 101
Usage example .. 101
Best practices .. 102

Exporting FHIR data .. 104
Starting an export job .. 104
Getting export job properties ... 108
Listing export jobs ... 111

Code examples ... 115
Basics .. 115

Actions .. 116
Integrating ... 150

Natural language processing ... 150

iv

AWS HealthLake Developer Guide

NLP libraries .. 151
Using FHIR APIs .. 152
Search parameters .. 153
Example requests .. 156

SQL index and query .. 172
Getting started .. 173
Querying with SQL ... 176
Example queries .. 183

Monitoring ... 190
CloudTrail (API calls) ... 190

AWS HealthLake Information in CloudTrail .. 191
Understanding AWS HealthLake Log File Entries .. 192

CloudWatch (Metrics) .. 194
Viewing HealthLake metrics ... 197
Creating an alarm ... 197

EventBridge (Events) ... 198
HealthLake events sent to EventBridge ... 198
HealthLake event structure .. 199

Security .. 213
Data Protection .. 214
Encryption at rest .. 215

AWS owned KMS key ... 215
Customer managed KMS keys ... 215
Create a customer managed key .. 216
Required IAM permissions for using a customer managed KMS key 217

Encryption in transit ... 224
Identity and access management ... 224

Audience ... 225
Authenticating with identities ... 225
Managing access using policies ... 228
How AWS HealthLake works with IAM .. 231
Identity-based policy examples ... 237
AWS managed policies .. 241
Troubleshooting .. 245

Compliance validation .. 247
Infrastructure security ... 248

v

AWS HealthLake Developer Guide

Infrastructure as code ... 248
HealthLake and AWS CloudFormation templates .. 248
Learn more about AWS CloudFormation ... 249

VPC endpoints .. 249
Considerations for HealthLake VPC endpoints .. 250
Creating an interface VPC endpoint for HealthLake; .. 250
Creating a VPC endpoint policy for HealthLake .. 250

Best practices .. 251
Resilience ... 252

Reference .. 253
SMART on FHIR .. 253

Getting started .. 254
Authentication ... 257
OAuth 2.0 scopes ... 258
Token validation ... 262
Fine-grained authorization ... 273
Discovery Document .. 274
Request example .. 275

FHIR R4 .. 276
Capability Statement ... 276
Profile validations ... 277
Resource types .. 281
Search parameters .. 283
Operations .. 295

HealthLake ... 311
Endpoints and quotas ... 312
Preloaded data types ... 320
Sample projects .. 321
Troubleshooting .. 322
Working with AWS SDKs ... 329

Releases .. 331

vi

AWS HealthLake Developer Guide

What is AWS HealthLake?

AWS HealthLake is a HIPAA eligible service for storing, analyzing, and sharing health data in the
cloud using the Fast Healthcare Interoperability Resources (FHIR) R4 specification. HealthLake use
cases include:

• Enterprise health data – Manage and share FHIR R4 health data directly from AWS Cloud while
preserving high performance and availability.

• Healthcare interoperability – Support customer conformance with 21st Century Cures Act for
patient access through a fully managed FHIR data store.

• Natural language processing (NLP) – Utilize integrated NLP models to extract meaningful
medical information from unstructured health data.

• Multimodal analysis – Combine HealthLake data with AWS HealthImaging data and AWS
HealthOmics data to deliver insights for precision medicine.

Topics

• Important notice

• Features of AWS HealthLake

• Related AWS services

1

AWS HealthLake Developer Guide

• Accessing AWS HealthLake

• HIPAA eligibility and data security

• Pricing

Important notice

AWS HealthLake is not a substitute for professional medical advice, diagnosis, or treatment, and
is not intended to cure, treat, mitigate, prevent, or diagnose any disease or health condition. You
are responsible for instituting human review as part of any use of AWS HealthLake, including
in association with any third-party product intended to inform clinical decision-making. AWS
HealthLake should only be used in patient care or clinical scenarios after review by trained
medical professionals applying sound medical judgment.

Features of AWS HealthLake

AWS HealthLake provides the following features.

Import FHIR R4 health data

With the HealthLake native import action, you can easily migrate your FHIR data from an
Amazon S3 bucket to an HealthLake data store, including clinical notes, lab reports, insurance
claims, and more. HealthLake supports the FHIR R4 specification for health care data exchange.
If needed, you can work with an AWS HealthLake Partner to convert your health data to FHIR
R4 format.

Store health data in a secure, compliant, and auditable manner

A HealthLake data store helps index health data so it can be queried. The data store creates
a complete view of each patient’s medical history in chronological order and facilitates
information exchange using the FHIR R4 specification. And it's always running to keep your
index up to date, offering you the ability to search the information anytime using standard FHIR
R4 interactions with durable primary storage and index scaling.

Leverage transactional FHIR server

Leverage FHIR APIs for standard resource validation, SMART on FHIR authorization, and
Bulk data FHIR API export capabilities to support unifying and analyzing your data to reduce

Important notice 2

https://aws.amazon.com/healthlake/partners/

AWS HealthLake Developer Guide

operational costs and improve decision making. HealthLake supports customer conformity
to the latest ONC and CMS regulatory standards including: HL7 FHIR R4 APIs, FHIR Bulk
Data Access, US Core IG STU, HL7 SMART App Launch Framework IG, OAuth 2.0, and OpenID
Connect.

Transform unstructured medical data using NLP

Integrated medical natural language processing (NLP) transforms all raw medical text data in
a HealthLake data store to understand and extract meaningful information from unstructured
healthcare data. With integrated medical NLP, you can automatically extract entities, entity
relationships, entity traits, and protected health information (PHI) from your medical text. The
NLP-extracted entities are stored as native FHIR R4 resources within a HealthLake data store
and can be accessed through FHIR R4 APIs or Amazon Athena (SQL).

Related AWS services

AWS HealthLake features tight integration with other AWS services. A knowledge of the following
services is useful to fully leverage HealthLake.

• AWS Identity and Access Management – Use IAM to securely manage identities and access to
HealthLake resources.

• Amazon Simple Storage Service – Use Amazon S3 as a staging area to import DICOM data into
HealthLake.

• AWS CloudTrail – Use CloudTrail to track HealthLake user activity and API usage.

• Amazon CloudWatch – Use CloudWatch to observe and monitor HealthLake resources.

• AWS CloudFormation – Use AWS CloudFormation to implement infrastructure as code (IaC)
templates to create resources in HealthLake.

• AWS PrivateLink – Use Amazon VPC to establish connectivity between HealthLake and Amazon
Virtual Private Cloud without exposing data to the internet.

• Amazon EventBridge – Use EventBridge to create scalable, event-driven applications by creating
rules that route HealthLake events to targets.

• AWS Lake Formation – Use Lake Formation to centrally govern, secure, and share HealthLake
data for analytics and machine learning.

• Amazon Athena – Use Athena to query HealthLake data with SQL to allow for deeper analysis.

Related services 3

https://aws.amazon.com/iam/
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/privatelink/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/lake-formation/
https://aws.amazon.com/athena/

AWS HealthLake Developer Guide

Accessing AWS HealthLake

You can access AWS HealthLake using the AWS Management Console, AWS Command Line
Interface and the AWS SDKs. This guide provides procedural instructions for the AWS Management
Console and code examples for the AWS CLI and AWS SDKs.

AWS Command Line Interface (AWS CLI)

The AWS CLI provides commands for a broad set of AWS products, and is supported on
Windows, Mac, and Linux. For more information, see the AWS Command Line Interface User
Guide.

AWS SDKs

AWS SDKs provide libraries, code examples, and other resources for software developers. These
libraries provide basic functions that automate tasks such as cryptographically signing your
requests, retrying requests, and handling error responses. For more information, see Tools to
Build on AWS.

AWS Management Console

The AWS Management Console provides a web-based user interface for managing HealthLake
and its associated resources. If you've signed up for an AWS account, you can sign in to the
HealthLake Console.

HIPAA eligibility and data security

This is a HIPAA Eligible Service. For more information about AWS, U.S. Health Insurance Portability
and Accountability Act of 1996 (HIPAA), and using AWS services to process, store, and transmit
protected health information (PHI), see HIPAA Overview.

Connections to HealthLake containing PHI and personally identifiable information (PII) must
be encrypted. By default, all connections to HealthLake use HTTPS over TLS. HealthLake stores
encrypted customer content and operates according to the AWS Shared Responsibility Model.

Pricing

For HealthLake pricing information, see AWS HealthLake pricing. To estimate costs, use the
HealthLake pricing calculator.

Accessing 4

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/developer/tools/
https://aws.amazon.com/developer/tools/
https://console.aws.amazon.com/healthlake/home#
https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/healthlake/pricing/
https://calculator.aws/#/addService/HealthLake
https://calculator.aws/#/addService/HealthLake

AWS HealthLake Developer Guide

Getting started with AWS HealthLake

To start using AWS HealthLake, set up an AWS account and create an AWS Identity and Access
Management user. To use the AWS CLI or the AWS SDKs, you must install and configure them.

Note

The Reference chapter of this guide provides supporting content for SMART on FHIR, FHIR
R4, and AWS HealthLake. For instance, you can find information about SMART on FHIR
configuration, supported FHIR profile validations, and HealthLake endpoints.

After learning about HealthLake concepts and setting up, a short tutorial with code examples is
available to help get you started.

Topics

• AWS HealthLake concepts

• Setting up AWS HealthLake

• AWS HealthLake tutorial

AWS HealthLake concepts

The following terminology and concepts are central to your understanding and use of AWS
HealthLake.

Concepts

• Data store authorization strategy

• Integrated NLP

• Integrated analytics

Data store authorization strategy

A HealthLake data store is a repository of FHIR R4 health data that resides within a single AWS
Region. HealthLake supports the following data store authorization strategies.

Concepts 5

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://aws.amazon.com/developer/tools/

AWS HealthLake Developer Guide

• SigV4 authorization — HealthLake authorizes FHIR API calls using AWS Signature Version 4
(SigV4) authorization.

• SMART on FHIR authorization — HealthLake authorizes FHIR API calls using Substitutable
Medical Applications and Reusable Technologies (SMART) on FHIR authorization.

For more information, see Creating a HealthLake data store.

Integrated NLP

AWS HealthLake integrates with HIPAA eligible natural language processing (NLP) libraries to
extract meaningful health data from unstructured medical text. The NLP libraries identify medical
entities like conditions, medications, dosages, tests, treatments, and procedures. They recognize
relationships among the entities and link them to medical ontology libraries such as ICD-10-
CM and RxNorm. For more information, see Integrated natural language processing (NLP) for
HealthLake.

Integrated analytics

AWS HealthLake goes beyond FHIR search and bundle APIs to provide integrated analytics for
querying and analyzing large volumes of health data. During import, HealthLake automatically
generates tables for SQL index and query. This enables you to gain actionable insights from
complex healthcare data without requiring extensive data engineering work. For more information,
see Querying HealthLake data with Amazon Athena and AWS HealthLake sample projects.

Setting up AWS HealthLake

In this chapter, you use the AWS Management Console to set up the required permissions to start
using AWS HealthLake and create a data store. To set up permissions to create a data store, you
create an IAM user or role that is a data lake administrator and HealthLake administrator. You make
this user a data lake administrator in AWS Lake Formation. The data lake administrator grants
Lake Formation access to resources needed to use Amazon Athena to query a data store. After you
create a HealthLake data store, you can set up permissions for importing and exporting files.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Configure an IAM user or role to use HealthLake (IAM Administrator)

Integrated NLP 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.smarthealthit.org
https://docs.smarthealthit.org

AWS HealthLake Developer Guide

• Add a user or role as the Data Lake Administrator in Lake Formation (IAM Administrator)

• Create S3 buckets

• Create a data store

• Setting up permissions for import jobs

• Setting up permissions for export jobs

• Install the AWS CLI

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

Sign up for an AWS account 7

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/

AWS HealthLake Developer Guide

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 8

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS HealthLake Developer Guide

Configure an IAM user or role to use HealthLake (IAM Administrator)

Persona: IAM Administrator

A user who can create IAM users and roles, and can add data lake administrators.

These steps in this topic must be carried out by an IAM administrator.

To connect your HealthLake data store to Athena, you need create an IAM user or role that is a data
lake administrator and a HealthLake administrator. This new user or role grants access to resources
found in a data store via AWS Lake Formation, and has the AmazonHealthLakeFullAccess AWS
managed policy added to their user or role.

Important

An IAM user or role that is a data lake administrator cannot create new data lake
administrators. To add additional data lake administrator you must use a IAM user or role
which has been granted AdministratorAccess access.

To create an administrator

1. Add the AmazonHealthlakeFullAccess IAM AWS managed policy to a user or role in your
organization.

If you're unfamiliar with creating an IAM user, see Creating an IAM User and Overview of AWS
IAM Policies in the IAM User Guide.

2. Grant the IAM user or role access to AWS Lake Formation.

• Add the following IAM AWS managed policy to a user or role in your organization:
AWSLakeFormationDataAdmin

Note

The AWSLakeFormationDataAdmin policy grants access to all AWS Lake Formation
resources. We recommend that you always use the minimum permissions required to

Configure an IAM user or role 9

https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_SettingUpUser.html#Using_CreateUser_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

AWS HealthLake Developer Guide

accomplish your task. For more information, see IAM Best Practices in the IAM User
Guide.

3. Add the following inline policy to the user or role. For more information, see Inline policies in
the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-source-bucket/*",
 "arn:aws:s3:::amzn-s3-demo-logging-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ram:GetResourceShareInvitations",
 "ram:AcceptResourceShareInvitation",
 "glue:CreateDatabase",
 "glue:DeleteDatabase"
],
 "Resource": "*"
 }
]
}

For more information on the AWSLakeFormationDataAdmin policy, see Lake Formation Personas
and IAM Permissions Reference in the AWS Lake Formation Developer Guide.

Configure an IAM user or role 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.aws.amazon.com/
https://docs.aws.amazon.com/

AWS HealthLake Developer Guide

Add a user or role as the Data Lake Administrator in Lake Formation
(IAM Administrator)

Note

This step is required if you are integrating SQL index and query.

Next, the IAM administrator must add the user or role created in the previous step as a data lake
administrator in Lake Formation.

To add an IAM user or role as a data lake administrator

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

Note

If this is your first time visiting Lake Formation, a Welcome to Lake Formation dialog
box appears asking you to define a Lake Formation administrator.

2. Assign the new user or role to be a AWS Lake Formation data lake administrator.

• Option 1: If you received the Welcome to Lake Formation dialog box.

1. Choose Add other AWS users or roles.

2. Choose the down arrow (▼).

3. Choose the HealthLake administrator you would like to also be Lake Formation
administrators.

4. Choose Get started.

• Option 2: Use the Navigation pane (☰).

1. Choose the Navigation pane (☰).

2. Under Permissions, choose Administrative roles and tasks.

3. In the Data lake administrators section, select Choose administrators .

4. In the Manage data lake administrators dialog box, choose the down arrow (▼).

5. Next, select or search for the HealthLake administrators users or roles who you also want
to be Lake Formation administrators.

Add a Data Lake Administrator user or role 11

https://console.aws.amazon.com/lakeformation/

AWS HealthLake Developer Guide

6. Choose Save.

3. Change the default security settings to be managed by Lake Formation. The HealthLake data
store resources need to be managed by Lake Formation not IAM. To update, see Change the
default permission model in the AWS Lake Formation Developer Guide.

Create S3 buckets

To import FHIR R4 data into AWS HealthLake, two Amazon S3 buckets are recommended.
The Amazon S3 input bucket holds the FHIR data to be imported and HealthLake reads from
this bucket. The Amazon S3 output bucket stores the processing results of the import job and
HealthLake writes (logs) to this bucket.

Note

Due to AWS Identity and Access Management (IAM) policy, your Amazon S3 bucket names
must be unique. For more information, see Bucket naming rules in the Amazon Simple
Storage Service User Guide.

For the purpose of this guide, we specify the following Amazon S3 input and output buckets when
setting up import permissions later in this section.

• Input bucket: arn:aws:s3:::amzn-s3-demo-source-bucket

• Output bucket: arn:aws:s3:::amzn-s3-demo-logging-bucket

For additional information, see Creating a bucket in the Amazon S3 User Guide.

Create a data store

A HealthLake data store is a repository of FHIR R4 data that resides within a single AWS Region. An
AWS account can have zero or many data stores. HealthLake supports two data store authorization
strategies.

Important

Before you create a HealthLake data store, review the Service control policies (SCPs) in
your AWS Organization that might restrict the creation or management of HealthLake

Create S3 buckets 12

https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html#setup-change-cat-settings
https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html#setup-change-cat-settings
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucketnamingrules.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS HealthLake Developer Guide

resources. SCPs can prevent the successful creation of HealthLake data stores, even if your
IAM permissions are set up correctly.
A datastoreID is generated when you create a HealthLake data store. You must use the
datastoreID when setting up import permissions later in this section.

To create a HealthLake data store, see Creating a HealthLake data store.

Setting up permissions for import jobs

Before you import files into a data store, you must grant HealthLake permission to access your
input and output buckets in Amazon S3. To grant HealthLake access, you create an IAM service role
for HealthLake, add a trust policy to the role to grant HealthLake assume role permissions, and
attach a permissions policy to role that grants it to access to your Amazon S3 buckets.

When you create an import job, you specify the Amazon Resource Name (ARN) of this role for the
DataAccessRoleArn. For more information about IAM roles and trust policies, see IAM Roles.

After you set up permission, you are ready to import files into your data store with an import job.
For more information, see Starting a FHIR import job.

To set up import permissions

1. If haven't already, create a destination Amazon S3 bucket for output log files. The Amazon S3
bucket must be in the same AWS Region as the service, and Block Public Access must be turned
on for all options. To learn more, see Using Amazon S3 block public access. An Amazon-owned
or customer-owned KMS key must also be used for encryption. To learn more about using KMS
keys, see Amazon Key Management Service.

2. Create a data access service role for HealthLake and give the HealthLake service permission to
assume it with the following trust policy. HealthLake uses this to write the output Amazon S3
bucket.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["healthlake.amazonaws.com"]
 },
 "Action": "sts:AssumeRole",

Set up import permissions 13

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

AWS HealthLake Developer Guide

 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountID"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:healthlake:us-west-2:accountID:datastore/
fhir/datastoreID"
 }
 }
 }]
}

3. Add a permissions policy to the data access role that allows it to access the Amazon S3 bucket.
Replace amzn-s3-demo-bucket with your bucket's name.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketPublicAccessBlock",
 "s3:GetEncryptionConfiguration"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-source-bucket"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-logging-bucket/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*"
],
 "Resource": [

Set up import permissions 14

AWS HealthLake Developer Guide

 "arn:aws:kms:us-east-1:012345678910:key/d330e7fc-b56c-4216-a250-
f4c43ef46e83"
],
 "Effect": "Allow"
 }]
}

Setting up permissions for export jobs

Before you export files from a data store, you must grant HealthLake permission to access your
output bucket in Amazon S3. To grant HealthLake access, you create an IAM service role for
HealthLake, add a trust policy to the role to grant HealthLake assume role permissions, and attach
a permissions policy to role that grants it to access to your Amazon S3 bucket.

If you already created a role for HealthLake, you can reuse it and grant it the additional permissions
for your export Amazon S3 bucket listed in this topic. To learn more about IAM roles and trust
policies, see IAM Policies and Permissions.

Important

HealthLake supports both native SDK export requests and the FHIR R4 $export operation.
Separate IAM actions must be provided depending on which export API you decide to use.
This allows you to handle allow and deny permissions separately. If you want to restrict
both HealthLake SDK and FHIR REST API exports, you must apply deny permissions to the
separate IAM actions. IAM user permission changes are not required if you give users full
access to HealthLake.

Using AWS CLI and AWS SDKs:

The following native HealthLake actions are available for exporting data from a data store
using the AWS CLI and AWS SDKs:

• StartFHIRExportJob

• DescribeFHIRExportJob

• ListFHIRExportJobs

Using FHIR APIs:

Set up export permissions 15

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS HealthLake Developer Guide

The following IAM actions are available for exporting data from a HealthLake data store
and for cancelling (deleting) an export job using the FHIR $export operation:
POST:

• StartFHIRExportJobWithPost

GET:

• StartFHIRExportJobWithGet

• DescribeFHIRExportJobWithGet

• GetExportedFile

DELETE:

• CancelFHIRExportJobWithDelete

The user or role that sets up permissions must have permission to create roles, create policies, and
attach policies to roles. The following IAM policy grants these permissions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": ["iam:CreateRole", "iam:CreatePolicy", "iam:AttachRolePolicy"],
 "Effect": "Allow",
 "Resource": "*"
 }, {
 "Action": "iam:PassRole"
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "healthlake.amazonaws.com"
 }
 }
 }]
}

Set up export permissions 16

AWS HealthLake Developer Guide

To set up export permissions

1. If haven't already, create a destination Amazon S3 bucket for the data you will export from
your data store. The Amazon S3 bucket must be in the same AWS Region as the service, and
Block Public Access must be turned on for all options. To learn more, see Using Amazon S3
block public access. An Amazon-owned or customer-owned KMS key must also be used for
encryption. To learn more about using KMS keys, see Amazon Key Management Service.

2. If you haven't already, create a data access service role for HealthLake and give the HealthLake
service permission to assume it with the following trust policy. HealthLake uses this to write
the output Amazon S3 bucket. If you already created one in Setting up permissions for import
jobs, you can reuse it and grant it permissions for your Amazon S3 bucket in the next step.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Service": ["healthlake.amazonaws.com"]
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "accountID"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:healthlake:us-west-2:accountID:datastore/
fhir/data store ID"
 }
 }
 }]
}

3. Add a permissions policy to the data access role that allows it to access your output Amazon
S3 bucket. Replace amzn-s3-demo-bucket with your bucket's name.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketPublicAccessBlock",

Set up export permissions 17

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

AWS HealthLake Developer Guide

 "s3:GetEncryptionConfiguration"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-source-bucket"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-logging-bucket/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*"
],
 "Resource": [
 "arn:aws:kms:us-east-1:012345678910:key/d330e7fc-b56c-4216-a250-
f4c43ef46e83"
],
 "Effect": "Allow"
 }]
}

Install the AWS CLI

The AWS CLI is required to describe and list HealthLake import and export job properties. You can
also request this information using HealthLake SDKs.

To set up the AWS CLI

1. Download and configure the AWS CLI. For instructions, see the following topics in the AWS
Command Line Interface User Guide.

• Installing or updating the latest version of the AWS CLI

• Getting started with the AWS CLI

Install the AWS CLI 18

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS HealthLake Developer Guide

2. In the AWS CLI config file, add a named profile for the administrator. You use this profile
when running the AWS CLI commands. Under the security principle of least privilege,
we recommend you create a separate IAM role with privileges specific to the tasks being
performed. For more information about named profiles, see Configuration and credential file
settings in the AWS Command Line Interface User Guide.

[default]
aws_access_key_id = default access key ID
aws_secret_access_key = default secret access key
region = region

3. Verify the setup using the following help command.

aws healthlake help

If the AWS CLI is configured correctly, you see a brief description of AWS HealthLake and a list
of available commands.

AWS HealthLake tutorial

Objective

In this tutorial, you will import FHIR R4 data into a HealthLake data store using native HealthLake
actions. Next, you will manage (create, read, update, delete) a FHIR resource using FHIR RESTful
APIs. To conclude the tutorial, you will export FHIR data using native HealthLake actions.

Prerequisites

All procedures listed in Setting up are required to complete this tutorial.

Tutorial steps

1. Start FHIR import job

2. Get FHIR import job properties

3. Create FHIR resource

4. Read FHIR resource

5. Update FHIR resource

6. Delete FHIR resource

Tutorial 19

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html

AWS HealthLake Developer Guide

7. Export FHIR data

8. Delete data store

Tutorial 20

AWS HealthLake Developer Guide

Managing data stores with AWS HealthLake

With AWS HealthLake, you create and manage data stores for FHIR R4 resources. When you create
a HealthLake data store, a FHIR data respository is made available via a RESTful API endpoint. You
can choose to import (preload) Synthea open source FHIR R4 health data into your data store when
you create it. For more information, see Preloaded data types.

Important

HealthLake supports two types of FHIR data store authorization strategies, AWS SigV4 or
SMART on FHIR. You must choose one of the authorization strategies prior to creating a
HealthLake FHIR data store. For more information, see Data store authorization strategy.

To find the FHIR-related capabilities (behaviors) of an active HealthLake data store, retrieve its
Capability Statement.

The following topics describe how to use HealthLake cloud native actions to create, describe, list,
tag, and delete FHIR data stores using the AWS CLI, AWS SDKs, and AWS Management Console.

Topics

• Creating a HealthLake data store

• Getting HealthLake data store properties

• Listing HealthLake data stores

• Tagging HealthLake data stores

• Deleting a HealthLake data store

Creating a HealthLake data store

Use CreateFHIRDatastore to create an AWS HealthLake data store conformant to the FHIR R4
specification. HealthLake data stores are used for importing, managing, searching, and exporting
FHIR data. You can choose to import (preload) Synthea open source FHIR R4 health data into your
data store when you create it. For more information, see Preloaded data types.

Creating a data store 21

AWS HealthLake Developer Guide

Important

HealthLake supports two types of FHIR data store authorization strategies, AWS SigV4 or
SMART on FHIR. You must choose one of the authorization strategies prior to creating a
HealthLake FHIR data store. For more information, see Data store authorization strategy.

When you create a HealthLake data store, a FHIR data repository is made available via a RESTful
API endpoint. After you've created your HealthLake data store, you can request its Capability
Statement to find all associated FHIR-related capabilities (behaviors).

The following menus provide examples for the AWS CLI and AWS SDKs and a procedure for the
AWS Management Console. For more information, see CreateFHIRDatastore in the AWS
HealthLake API Reference.

To create a HealthLake data store

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

Example 1: Create a SigV4-enabled HealthLake data store

The following create-fhir-datastore example demonstrates how to create a new data
store in AWS HealthLake.

aws healthlake create-fhir-datastore \
 --datastore-type-version R4 \
 --datastore-name "FhirTestDatastore"

Output:

{
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Data store ID)/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Data store ID)",
 "DatastoreStatus": "CREATING",

Creating a data store 22

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_CreateFHIRDatastore.html

AWS HealthLake Developer Guide

 "DatastoreId": "(Data store ID)"
}

Example 2: Create a SMART on FHIR-enabled HealthLake data store

The following create-fhir-datastore example demonstrates how to create a new
SMART on FHIR-enabled data store in AWS HealthLake.

aws healthlake create-fhir-datastore \
 --datastore-name "your-data-store-name" \
 --datastore-type-version R4 \
 --preload-data-config PreloadDataType="SYNTHEA" \
 --sse-configuration '{ "KmsEncryptionConfig": { "CmkType":
 "CUSTOMER_MANAGED_KMS_KEY", "KmsKeyId": "arn:aws:kms:us-east-1:your-account-
id:key/your-key-id" } }' \
 --identity-provider-configuration file://
identity_provider_configuration.json

Contents of identity_provider_configuration.json:

{
 "AuthorizationStrategy": "SMART_ON_FHIR_V1",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\"]}"
}

Output:

{

Creating a data store 23

AWS HealthLake Developer Guide

 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Data store ID)/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Data store ID)",
 "DatastoreStatus": "CREATING",
 "DatastoreId": "(Data store ID)"
}

• For API details, see CreateFHIRDatastore in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def create_fhir_datastore(
 self,
 datastore_name: str,
 sse_configuration: dict[str, any] = None,
 identity_provider_configuration: dict[str, any] = None,
) -> dict[str, str]:
 """
 Creates a new HealthLake data store.
 When creating a SMART on FHIR data store, the following parameters are
 required:
 - sse_configuration: The server-side encryption configuration for a SMART
 on FHIR-enabled data store.
 - identity_provider_configuration: The identity provider configuration
 for a SMART on FHIR-enabled data store.

Creating a data store 24

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/create-fhir-datastore.html

AWS HealthLake Developer Guide

 :param datastore_name: The name of the data store.
 :param sse_configuration: The server-side encryption configuration for a
 SMART on FHIR-enabled data store.
 :param identity_provider_configuration: The identity provider
 configuration for a SMART on FHIR-enabled data store.
 :return: A dictionary containing the data store information.
 """
 try:
 parameters = {"DatastoreName": datastore_name,
 "DatastoreTypeVersion": "R4"}
 if (
 sse_configuration is not None
 and identity_provider_configuration is not None
):
 # Creating a SMART on FHIR-enabled data store
 parameters["SseConfiguration"] = sse_configuration
 parameters[
 "IdentityProviderConfiguration"
] = identity_provider_configuration

 response =
 self.health_lake_client.create_fhir_datastore(**parameters)
 return response
 except ClientError as err:
 logger.exception(
 "Couldn't create data store %s. Here's why %s",
 datastore_name,
 err.response["Error"]["Message"],
)
 raise

The following code shows an example of parameters for a SMART on FHIR-enabled
HealthLake data store.

 sse_configuration = {
 "KmsEncryptionConfig": {"CmkType": "AWS_OWNED_KMS_KEY"}
 }
 # TODO: Update the metadata to match your environment.
 metadata = {
 "issuer": "https://ehr.example.com",
 "jwks_uri": "https://ehr.example.com/.well-known/jwks.json",

Creating a data store 25

AWS HealthLake Developer Guide

 "authorization_endpoint": "https://ehr.example.com/auth/
authorize",
 "token_endpoint": "https://ehr.token.com/auth/token",
 "token_endpoint_auth_methods_supported": [
 "client_secret_basic",
 "foo",
],
 "grant_types_supported": ["client_credential", "foo"],
 "registration_endpoint": "https://ehr.example.com/auth/register",
 "scopes_supported": ["openId", "profile", "launch"],
 "response_types_supported": ["code"],
 "management_endpoint": "https://ehr.example.com/user/manage",
 "introspection_endpoint": "https://ehr.example.com/user/
introspect",
 "revocation_endpoint": "https://ehr.example.com/user/revoke",
 "code_challenge_methods_supported": ["S256"],
 "capabilities": [
 "launch-ehr",
 "sso-openid-connect",
 "client-public",
],
 }
 # TODO: Update the IdpLambdaArn.
 identity_provider_configuration = {
 "AuthorizationStrategy": "SMART_ON_FHIR_V1",
 "FineGrainedAuthorizationEnabled": True,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-
id:function:your-lambda-name",
 "Metadata": json.dumps(metadata),
 }
 data_store = self.create_fhir_datastore(
 datastore_name, sse_configuration,
 identity_provider_configuration
)

• For API details, see CreateFHIRDatastore in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Creating a data store 26

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/CreateFHIRDatastore
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

Note

The following procedure creates a HealthLake data store with AWS SigV4 authorization.
The HealthLake Console does not support the creation of a SMART on FHIR data store.

To create a HealthLake data store with AWS SigV4 authorization

1. Sign in to the Create data store page on the HealthLake Console.

2. Choose Create Data Store.

3. In the Data Store settings section, for Data Store name, specify a name.

4. (Optional) In the Data Store settings section, for Preload sample data, select the check box to
preload Synthea data. Synthea data is an open-source sample dataset. For more information,
see Synthea preloaded data types for HealthLake.

5. In the Data Store encryption section, choose either Use AWS owned key (default) or Choose
a different AWS KMS key (advanced).

6. In the Tags - optional section, you can add tags to your data store. To learn more about
tagging your data store, see Tagging HealthLake data stores.

7. Choose Create Data Store.

The status of your data store is available on the Data stores page.

Getting HealthLake data store properties

Use DescribeFHIRDatastore to get properties for an AWS HealthLake data store. The following
menus provide a procedure for the AWS Management Console and code examples for the AWS CLI
and AWS SDKs. For more information, see DescribeFHIRDatastore in the AWS HealthLake API
Reference.

Getting data store properties 27

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://console.aws.amazon.com/healthlake/home#/create-datastore
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRDatastore.html

AWS HealthLake Developer Guide

To get properties for a HealthLake data store

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To describe a FHIR data store

The following describe-fhir-datastore example demonstrates how to find the
properties of a data store in AWS HealthLake.

aws healthlake describe-fhir-datastore \
 --datastore-id "1f2f459836ac6c513ce899f9e4f66a59"

Output:

{
 "DatastoreProperties": {
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"
 },
 "SseConfiguration": {
 "KmsEncryptionConfig": {
 "CmkType": "CUSTOMER_MANAGED_KMS_KEY",
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 },
 "DatastoreName": "Demo",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:<AWS Account ID>:datastore/
<Data store ID>",
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/
datastore/<Data store ID>/r4/",
 "DatastoreStatus": "ACTIVE",
 "DatastoreTypeVersion": "R4",
 "CreatedAt": 1603761064.881,
 "DatastoreId": "<Data store ID>",
 "IdentityProviderConfiguration": {
 "AuthorizationStrategy": "AWS_AUTH",

Getting data store properties 28

AWS HealthLake Developer Guide

 "FineGrainedAuthorizationEnabled": false
 }
 }
}

• For API details, see DescribeFHIRDatastore in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def describe_fhir_datastore(self, datastore_id: str) -> dict[str, any]:
 """
 Describes a HealthLake data store.
 :param datastore_id: The data store ID.
 :return: The data store description.
 """
 try:
 response = self.health_lake_client.describe_fhir_datastore(
 DatastoreId=datastore_id
)
 return response["DatastoreProperties"]
 except ClientError as err:
 logger.exception(
 "Couldn't describe data store with ID %s. Here's why %s",
 datastore_id,
 err.response["Error"]["Message"],
)
 raise

Getting data store properties 29

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/describe-fhir-datastore.html

AWS HealthLake Developer Guide

• For API details, see DescribeFHIRDatastore in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

The Data Store details page opens and all HealthLake data store properties are available.

Listing HealthLake data stores

Use ListFHIRDatastores to list all HealthLake data stores in a user's account, regardless of data
store status. The following menus provide a procedure for the AWS Management Console and code
examples for the AWS CLI and AWS SDKs. For more information, see ListFHIRDatastores in the
AWS HealthLake API Reference.

To list all HealthLake data stores

Choose a menu based on your access preference to AWS HealthLake.

Listing data stores 30

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DescribeFHIRDatastore
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRDatastores.html

AWS HealthLake Developer Guide

AWS CLI and SDKs

CLI

AWS CLI

To list FHIR data stores

The following list-fhir-datastores example shows to how to use the command and
how users can filter results based on data store status in AWS HealthLake.

aws healthlake list-fhir-datastores \
 --filter DatastoreStatus=ACTIVE

Output:

{
 "DatastorePropertiesList": [
 {
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"
 },
 "SseConfiguration": {
 "KmsEncryptionConfig": {
 "CmkType": "CUSTOMER_MANAGED_KMS_KEY",
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 },
 "DatastoreName": "Demo",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:<AWS Account ID>:datastore/
<Data store ID>",
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/
datastore/<Data store ID>/r4/",
 "DatastoreStatus": "ACTIVE",
 "DatastoreTypeVersion": "R4",
 "CreatedAt": 1603761064.881,
 "DatastoreId": "<Data store ID>",
 "IdentityProviderConfiguration": {
 "AuthorizationStrategy": "AWS_AUTH",
 "FineGrainedAuthorizationEnabled": false
 }
 }

Listing data stores 31

AWS HealthLake Developer Guide

]
}

• For API details, see ListFHIRDatastores in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def list_fhir_datastores(self) -> list[dict[str, any]]:
 """
 Lists all HealthLake data stores.
 :return: A list of data store descriptions.
 """
 try:
 next_token = None
 datastores = []

 # Loop through paginated results.
 while True:
 parameters = {}
 if next_token is not None:
 parameters["NextToken"] = next_token
 response =
 self.health_lake_client.list_fhir_datastores(**parameters)
 datastores.extend(response["DatastorePropertiesList"])
 if "NextToken" in response:
 next_token = response["NextToken"]
 else:

Listing data stores 32

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-fhir-datastores.html

AWS HealthLake Developer Guide

 break

 return datastores
 except ClientError as err:
 logger.exception(
 "Couldn't list data stores. Here's why %s", err.response["Error"]
["Message"]
)
 raise

• For API details, see ListFHIRDatastores in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

• Sign in to the Data stores page on the HealthLake Console.

All HealthLake data stores are listed under the Data stores section.

Tagging HealthLake data stores

You can assign metadata to HealthLake data stores in the form of tags. Each tag is a label
consisting of a user-defined key and value. Tags help you manage, identify, organize, search for,
and filter data stores.

Tagging data stores 33

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListFHIRDatastores
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores

AWS HealthLake Developer Guide

Important

Do not store protected health information (PHI), personally identifiable information (PII),
or other confidential or sensitive information in tags. Tags are not intended to be used for
private or sensitive data.

The following topics describe how to use HealthLake tagging operations using the AWS
Management Console, AWS CLI, and AWS SDKs. For more information, see Tagging your AWS
resources in the AWS General Reference Guide.

Topics

• Tagging a HealthLake data store

• Listing tags for a HealthLake data store

• Untagging a HealthLake data store

Tagging a HealthLake data store

Use TagResource to tag a HealthLake data store. The following menus provide a procedure
for the AWS Management Console and code examples for the AWS CLI and AWS SDKs. For more
information, see TagResource in the AWS HealthLake API Reference.

To tag a HealthLake data store

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To add a tag to data store

The following tag-resource example shows how to add a tag to a data store.

aws healthlake tag-resource \
 --resource-arn "arn:aws:healthlake:us-east-1:123456789012:datastore/
fhir/0725c83f4307f263e16fd56b6d8ebdbe" \

Tagging a data store 34

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_TagResource.html.html

AWS HealthLake Developer Guide

 --tags '[{"Key": "key1", "Value": "value1"}]'

This command produces no output.

• For API details, see TagResource in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def tag_resource(self, resource_arn: str, tags: list[dict[str, str]]) ->
 None:
 """
 Tags a HealthLake resource.
 :param resource_arn: The resource ARN.
 :param tags: The tags to add to the resource.
 """
 try:
 self.health_lake_client.tag_resource(ResourceARN=resource_arn,
 Tags=tags)
 except ClientError as err:
 logger.exception(
 "Couldn't tag resource %s. Here's why %s",
 resource_arn,
 err.response["Error"]["Message"],
)
 raise

Tagging a data store 35

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/tag-resource.html

AWS HealthLake Developer Guide

• For API details, see TagResource in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

The Data store details page opens.

3. Under the Tags section, choose Manage tags.

The Manage tags page opens.

4. Choose Add new tag.

5. Enter a Key and Value (optional).

6. Choose Save.

Listing tags for a HealthLake data store

Use ListTagsForResource to list tags for a HealthLake data store. The following menus provide
a procedure for the AWS Management Console and code examples for the AWS CLI and AWS SDKs.
For more information, see ListTagsForResource in the AWS HealthLake API Reference.

To list tags for a HealthLake data store

Choose a menu based on your access preference to AWS HealthLake.

Listing tags for a data store 36

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/TagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListTagsForResource.html.html

AWS HealthLake Developer Guide

AWS CLI and SDKs

CLI

AWS CLI

To list tags for a data store

The following list-tags-for-resource example lists the tags associated with the
specified data store.:

aws healthlake list-tags-for-resource \
 --resource-arn "arn:aws:healthlake:us-east-1:123456789012:datastore/
fhir/0725c83f4307f263e16fd56b6d8ebdbe"

Output:

{
 "tags": {
 "key": "value",
 "key1": "value1"
 }
}

• For API details, see ListTagsForResource in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

Listing tags for a data store 37

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-tags-for-resource.html

AWS HealthLake Developer Guide

 def list_tags_for_resource(self, resource_arn: str) -> dict[str, str]:
 """
 Lists the tags for a HealthLake resource.
 :param resource_arn: The resource ARN.
 :return: The tags for the resource.
 """
 try:
 response = self.health_lake_client.list_tags_for_resource(
 ResourceARN=resource_arn
)
 return response["Tags"]
 except ClientError as err:
 logger.exception(
 "Couldn't list tags for resource %s. Here's why %s",
 resource_arn,
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListTagsForResource in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

Listing tags for a data store 38

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListTagsForResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores

AWS HealthLake Developer Guide

The Data store details page opens. Under the Tags section, all data store tags are listed.

Untagging a HealthLake data store

Use UntagResource to remove a tag from a HealthLake data store. The following menus provide
a procedure for the AWS Management Console and code examples for the AWS CLI and AWS SDKs.
For more information, see UntagResource in the AWS HealthLake API Reference.

To untag a HealthLake data store

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To remove tags from a data store.

The following untag-resource example shows how to remove tags from a data store.

aws healthlake untag-resource \
 --resource-arn "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
b91723d65c6fdeb1d26543a49d2ed1fa" \
 --tag-keys '["key1"]'

This command produces no output.

• For API details, see UntagResource in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

Untagging a data store 39

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_UntagResource.html.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/untag-resource.html

AWS HealthLake Developer Guide

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def untag_resource(self, resource_arn: str, tag_keys: list[str]) -> None:
 """
 Untags a HealthLake resource.
 :param resource_arn: The resource ARN.
 :param tag_keys: The tag keys to remove from the resource.
 """
 try:
 self.health_lake_client.untag_resource(
 ResourceARN=resource_arn, TagKeys=tag_keys
)
 except ClientError as err:
 logger.exception(
 "Couldn't untag resource %s. Here's why %s",
 resource_arn,
 err.response["Error"]["Message"],
)
 raise

• For API details, see UntagResource in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

Untagging a data store 40

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/UntagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

The Data store details page opens.

3. Under the Tags section, choose Manage tags.

The Manage tags page opens.

4. Choose Remove next to the tag you want to remove.

5. Choose Save.

Deleting a HealthLake data store

Use DeleteFHIRDatastore to delete a HealthLake data store. The following menus provide a
procedure for the AWS Management Console and code examples for the AWS CLI and AWS SDKs.
For more information, see DeleteFHIRDatastore in the AWS HealthLake API Reference.

To delete a HealthLake data store

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To delete a FHIR data store

The following delete-fhir-datastore example demonstrates how to delete a data store
and all of its contents in AWS HealthLake.

aws healthlake delete-fhir-datastore \
 --datastore-id (Data store ID)

Output:

{

Deleting a data store 41

https://console.aws.amazon.com/healthlake/home#/list-datastores
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DeleteFHIRDatastores.html

AWS HealthLake Developer Guide

 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Data store ID)/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Data store ID)",
 "DatastoreStatus": "DELETING",
 "DatastoreId": "(Data store ID)"
}

• For API details, see DeleteFHIRDatastore in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def delete_fhir_datastore(self, datastore_id: str) -> None:
 """
 Deletes a HealthLake data store.
 :param datastore_id: The data store ID.
 """
 try:

 self.health_lake_client.delete_fhir_datastore(DatastoreId=datastore_id)
 except ClientError as err:
 logger.exception(
 "Couldn't delete data store with ID %s. Here's why %s",
 datastore_id,
 err.response["Error"]["Message"],
)
 raise

Deleting a data store 42

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/delete-fhir-datastore.html

AWS HealthLake Developer Guide

• For API details, see DeleteFHIRDatastore in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

The Data store details page opens.

3. Choose Delete.

The Delete data store page opens.

4. To confirm data store deletion, enter the data store name in the text input field.

5. Choose Delete.

Deleting a data store 43

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DeleteFHIRDatastore
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores

AWS HealthLake Developer Guide

Importing FHIR data with AWS HealthLake

After creating a HealthLake data store, the next step is to import files from an Amazon Simple
Storage Service (S3) bucket. You can start a FHIR import job using the AWS Management Console,
AWS CLI, or AWS SDKs. Use native AWS HealthLake actions to start, describe, and list FHIR import
jobs.

Important

HealthLake supports the FHIR R4 specification for health care data exchange. If needed,
you can work with an AWS HealthLake Partner to convert your health data to FHIR R4
format prior to import.

When starting a FHIR import job, you specify an Amazon S3 bucket input location, an Amazon S3
bucket output location (for job processing results), an IAM role that grants HealthLake access to
your Amazon S3 buckets, and a customer owned or AWS owned AWS Key Management Service key.
For more information, see Setting up permissions for import jobs.

Note

You can queue import jobs. The asynchronous import jobs are processed in a FIFO (First
In First Out) manner. You can queue jobs the same way you start import jobs. If one is in
progress, it will simply queue up. You can create, read, update, or delete FHIR resources
while an import job is in progress.

HealthLake generates a manifest.json file for each FHIR import job. The file describes both
the successes and failures of a FHIR import job. HealthLake outputs the manifest.json file to
the Amazon S3 bucket specified when starting a FHIR import job. Log files are organized into
two folders, named SUCCESS and FAILURE. Use the manifest.json file as the first step in
troubleshooting a failed import job, as it provides details on each file.

{
 "inputDataConfig": {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/healthlake-input/invalidInput/"
 },

44

https://hl7.org/fhir/R4/index.html
https://aws.amazon.com/healthlake/partners/

AWS HealthLake Developer Guide

 "outputDataConfig": {
 "s3Uri": "s3://amzn-s3-demo-logging-bucket/32839038a2f47f17c2fe0f53f0c3a0ba-
FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/",
 "encryptionKeyID": "arn:aws:kms:us-west-2:123456789012:key/fbbbfee3-20b3-42a5-
a99d-c48c655ed545"
 },
 "successOutput": {
 "successOutputS3Uri": "s3://amzn-s3-demo-logging-
bucket/32839038a2f47f17c2fe0f53f0c3a0ba-FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/
SUCCESS/"
 },
 "failureOutput": {
 "failureOutputS3Uri": "s3://amzn-s3-demo-logging-
bucket/32839038a2f47f17c2fe0f53f0c3a0ba-FHIR_IMPORT-19dd7bb7bcc8ee12a09bf6d322744a3d/
FAILURE/"
 },
 "numberOfScannedFiles": 1,
 "numberOfFilesImported": 1,
 "sizeOfScannedFilesInMB": 0.023627,
 "sizeOfDataImportedSuccessfullyInMB": 0.011232,
 "numberOfResourcesScanned": 9,
 "numberOfResourcesImportedSuccessfully": 4,
 "numberOfResourcesWithCustomerError": 5,
 "numberOfResourcesWithServerError": 0
}

Topics

• Starting a FHIR import job

• Getting FHIR import job properties

• Listing FHIR import jobs

Starting a FHIR import job

Use StartFHIRImportJob to start a FHIR import job into a HealthLake data store. The following
menus provide a procedure for the AWS Management Console and code examples for the AWS
CLI and AWS SDKs. For more information, see StartFHIRImportJob in the AWS HealthLake API
Reference.

Starting an import job 45

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRImportJob.html

AWS HealthLake Developer Guide

Important

HealthLake supports the FHIR R4 specification for health care data exchange. If needed,
you can work with an AWS HealthLake Partner to convert your health data to FHIR R4
format prior to import.

To start a FHIR import job

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To start a FHIR import job

The following start-fhir-import-job example shows how to start a FHIR import job
using AWS HealthLake.

aws healthlake start-fhir-import-job \
 --input-data-config S3Uri="s3://(Bucket Name)/(Prefix Name)/" \
 --job-output-data-config '{"S3Configuration": {"S3Uri":"s3://(Bucket Name)/
(Prefix Name)/","KmsKeyId":"arn:aws:kms:us-east-1:012345678910:key/d330e7fc-
b56c-4216-a250-f4c43ef46e83"}}' \
 --datastore-id (Data store ID) \
 --data-access-role-arn "arn:aws:iam::(AWS Account ID):role/(Role Name)"

Output:

{
 "DatastoreId": "(Data store ID)",
 "JobStatus": "SUBMITTED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f"
}

• For API details, see StartFHIRImportJob in AWS CLI Command Reference.

Starting an import job 46

https://hl7.org/fhir/R4/index.html
https://aws.amazon.com/healthlake/partners/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/start-fhir-import-job.html

AWS HealthLake Developer Guide

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def start_fhir_import_job(
 self,
 job_name: str,
 datastore_id: str,
 input_s3_uri: str,
 job_output_s3_uri: str,
 kms_key_id: str,
 data_access_role_arn: str,
) -> dict[str, str]:
 """
 Starts a HealthLake import job.
 :param job_name: The import job name.
 :param datastore_id: The data store ID.
 :param input_s3_uri: The input S3 URI.
 :param job_output_s3_uri: The job output S3 URI.
 :param kms_key_id: The KMS key ID associated with the output S3 bucket.
 :param data_access_role_arn: The data access role ARN.
 :return: The import job.
 """
 try:
 response = self.health_lake_client.start_fhir_import_job(
 JobName=job_name,
 InputDataConfig={"S3Uri": input_s3_uri},
 JobOutputDataConfig={
 "S3Configuration": {
 "S3Uri": job_output_s3_uri,
 "KmsKeyId": kms_key_id,

Starting an import job 47

AWS HealthLake Developer Guide

 }
 },
 DataAccessRoleArn=data_access_role_arn,
 DatastoreId=datastore_id,
)
 return response
 except ClientError as err:
 logger.exception(
 "Couldn't start import job. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see StartFHIRImportJob in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

3. Choose Import.

The Import page opens.

4. Under the Input data section, enter the following information:

• Input data location in Amazon S3

5. Under the Import output files section, enter the following information:

Starting an import job 48

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/StartFHIRImportJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores

AWS HealthLake Developer Guide

• Import output files location in Amazon S3

• Import output files encryption

6. Under the Access permissions section, choose Use an existing IAM service role and select the
role from the Service role name menu or choose Create an IAM role.

7. Choose Import data.

Note

During import, choose Copy job ID on the banner at the top of the page. You can use
the JobID to request import job properties using the AWS CLI. For more information,
see Getting FHIR import job properties.

Getting FHIR import job properties

Use DescribeFHIRImportJob to get FHIR import job properties. The following menus provide a
procedure for the AWS Management Console and code examples for the AWS CLI and AWS SDKs.
For more information, see DescribeFHIRImportJob in the AWS HealthLake API Reference.

To get FHIR import job properties

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To describe a FHIR import job

The following describe-fhir-import-job example shows how to learn the properties of
a FHIR import job using AWS HealthLake.

aws healthlake describe-fhir-import-job \
 --datastore-id (Data store ID) \
 --job-id c145fbb27b192af392f8ce6e7838e34f

Getting import job properties 49

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRImportJob.html#HealthLake-DescribeFHIRImportJob-request-JobId
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRImportJob.html

AWS HealthLake Developer Guide

Output:

{
 "ImportJobProperties": {
 "InputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/"
 { "arrayitem2": 2 }
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)",
 "JobStatus": "COMPLETED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f",
 "SubmitTime": 1606272542.161,
 "EndTime": 1606272609.497,
 "DatastoreId": "(Data store ID)"
 }
}

• For API details, see DescribeFHIRImportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def describe_fhir_import_job(
 self, datastore_id: str, job_id: str
) -> dict[str, any]:
 """
 Describes a HealthLake import job.
 :param datastore_id: The data store ID.

Getting import job properties 50

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/describe-fhir-import-job.html

AWS HealthLake Developer Guide

 :param job_id: The import job ID.
 :return: The import job description.
 """
 try:
 response = self.health_lake_client.describe_fhir_import_job(
 DatastoreId=datastore_id, JobId=job_id
)
 return response["ImportJobProperties"]
 except ClientError as err:
 logger.exception(
 "Couldn't describe import job with ID %s. Here's why %s",
 job_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DescribeFHIRImportJob in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

Note

FHIR import job information is not available on the HealthLake Console. Instead, use
the AWS CLI with DescribeFHIRImportJob to request import job properties such as
JobStatus. For more information, refer to the AWS CLI example on this page.

Getting import job properties 51

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DescribeFHIRImportJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ImportJobProperties.html#HealthLake-Type-ImportJobProperties-JobStatus

AWS HealthLake Developer Guide

Listing FHIR import jobs

Use ListFHIRImportJobs to list FHIR import jobs for an active HealthLake data store. The
following menus provide a procedure for the AWS Management Console and code examples for the
AWS CLI and AWS SDKs. For more information, see ListFHIRImportJobs in the AWS HealthLake
API Reference.

To list FHIR import jobs

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To list all FHIR import jobs

The following list-fhir-import-jobs example shows how to use the command to view
a list of all import jobs associated with an account.

aws healthlake list-fhir-import-jobs \
 --datastore-id (Data store ID) \
 --submitted-before (DATE like 2024-10-13T19:00:00Z) \
 --submitted-after (DATE like 2020-10-13T19:00:00Z) \
 --job-name "FHIR-IMPORT" \
 --job-status SUBMITTED \
 -max-results (Integer between 1 and 500)

Output:

{
 "ImportJobPropertiesList": [
 {
 "JobId": "c0fddbf76f238297632d4aebdbfc9ddf",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2024-11-20T10:08:46.813000-05:00",
 "EndTime": "2024-11-20T10:10:09.093000-05:00",
 "DatastoreId": "(Data store ID)",
 "InputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/"

Listing import jobs 52

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRImportJobs.html

AWS HealthLake Developer Guide

 },
 "JobOutputDataConfig": {
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/
import/6407b9ae4c2def3cb6f1a46a0c599ec0-FHIR_IMPORT-
c0fddbf76f238297632d4aebdbfc9ddf/",
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/b7f645cb-
e564-4981-8672-9e012d1ff1a0"
 }
 },
 "JobProgressReport": {
 "TotalNumberOfScannedFiles": 1,
 "TotalSizeOfScannedFilesInMB": 0.001798,
 "TotalNumberOfImportedFiles": 1,
 "TotalNumberOfResourcesScanned": 1,
 "TotalNumberOfResourcesImported": 1,
 "TotalNumberOfResourcesWithCustomerError": 0,
 "TotalNumberOfFilesReadWithCustomerError": 0,
 "Throughput": 0.0
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)"
 }
]
}

• For API details, see ListFHIRImportJobs in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

Listing import jobs 53

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-fhir-import-jobs.html

AWS HealthLake Developer Guide

 def list_fhir_import_jobs(
 self,
 datastore_id: str,
 job_name: str = None,
 job_status: str = None,
 submitted_before: datetime = None,
 submitted_after: datetime = None,
) -> list[dict[str, any]]:
 """
 Lists HealthLake import jobs satisfying the conditions.
 :param datastore_id: The data store ID.
 :param job_name: The import job name.
 :param job_status: The import job status.
 :param submitted_before: The import job submitted before the specified
 date.
 :param submitted_after: The import job submitted after the specified
 date.
 :return: A list of import jobs.
 """
 try:
 parameters = {"DatastoreId": datastore_id}
 if job_name is not None:
 parameters["JobName"] = job_name
 if job_status is not None:
 parameters["JobStatus"] = job_status
 if submitted_before is not None:
 parameters["SubmittedBefore"] = submitted_before
 if submitted_after is not None:
 parameters["SubmittedAfter"] = submitted_after
 next_token = None
 jobs = []
 # Loop through paginated results.
 while True:
 if next_token is not None:
 parameters["NextToken"] = next_token
 response =
 self.health_lake_client.list_fhir_import_jobs(**parameters)
 jobs.extend(response["ImportJobPropertiesList"])
 if "NextToken" in response:
 next_token = response["NextToken"]
 else:
 break

Listing import jobs 54

AWS HealthLake Developer Guide

 return jobs
 except ClientError as err:
 logger.exception(
 "Couldn't list import jobs. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListFHIRImportJobs in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

Note

FHIR import job information is not available on the HealthLake Console. Instead, use the
AWS CLI with ListFHIRImportJobs to list all FHIR import jobs. For more information,
refer to the AWS CLI example on this page.

Listing import jobs 55

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListFHIRImportJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

Managing FHIR resources in AWS HealthLake

Use FHIR R4 RESTful API interactions to manage FHIR resources in a HealthLake data store. The
following sections describe all HealthLake-supported FHIR R4 RESTful API interactions available
for FHIR resource management. For information about HealthLake data store capabilities and
which portions of the FHIR specification it supports, see FHIR R4 Capability Statement for AWS
HealthLake.

Note

The FHIR interactions listed in this chapter are built in conformance to the HL7 FHIR R4
standard for health care data exchange. Because they are representations of HL7 FHIR
services, they are not offered through AWS CLI and AWS SDKs. For more information, see
RESTful API in the FHIR R4 RESTful API documentation.

The following table lists FHIR R4 interactions supported by AWS HealthLake. For information about
FHIR resource types supported by HealthLake, see Resource types.

FHIR R4 interactions supported by AWS HealthLake

Interaction Description

Whole system interactions

 capabilities Get a capability statement for the system. See FHIR R4 Capability
Statement for AWS HealthLake.

 batch Update, create, or delete a set of resources in a single interaction. See
Bundling FHIR resources.

Type level interactions

 create Create a new resource with a server-assigned ID. See Creating a FHIR
resource.

 search Search a resource type based on some filter criteria. See Searching FHIR
resources.

56

https://hl7.org/fhir/R4/http.html
https://hl7.org/fhir/R4/http.html#capabilities
https://hl7.org/fhir/R4/http.html#transaction
https://hl7.org/fhir/R4/http.html#create
https://hl7.org/fhir/R4/http.html#search

AWS HealthLake Developer Guide

Interaction Description

 history Retrieve the change history for a particular resource type. See Reading
FHIR resource history.

Instance level interactions

 read Read the current state of a resource. See Reading a FHIR resource.

 history Read the change history for a particular resource. See Reading FHIR
resource history.

 vread Read the state of a specific version of the resource. See Reading
version-specific FHIR resource history.

 update Update a resource by its ID (or create it if it's new). See Updating a FHIR
resource.

 delete Delete a resource. See Deleting a FHIR resource.

Topics

• Creating a FHIR resource

• Reading a FHIR resource

• Reading FHIR resource history

• Updating a FHIR resource

• Bundling FHIR resources

• Deleting a FHIR resource

• Idempotency and Concurrency

Creating a FHIR resource

The FHIR create interaction creates a new FHIR resource in a HealthLake data store. For additional
information, see create in the FHIR R4 RESTful API documentation.

To create a FHIR resource

Creating a resource 57

https://hl7.org/fhir/R4/http.html#history
https://hl7.org/fhir/R4/http.html#read
https://hl7.org/fhir/R4/http.html#history
https://hl7.org/fhir/R4/http.html#vread
https://hl7.org/fhir/R4/http.html#update
https://hl7.org/fhir/R4/http.html#delete
https://hl7.org/fhir/R4/http.html#create

AWS HealthLake Developer Guide

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the type of FHIR Resource to create. For more information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type to create. To view the entire URL path in
the following example, scroll over the Copy button.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource

4. Construct a JSON body for the request, specifying the FHIR data for the new resource. For the
purpose of this procedure, we are using a FHIR Patient resource, so save the file as create-
patient.json.

{
 "resourceType": "Patient",
 "identifier": [
 {
 "system": "urn:oid:1.2.36.146.595.217.0.1",
 "value": "12345"
 }
],
 "name": [
 {
 "family": "Silva",
 "given": [
 "Ana",
 "Carolina"
]
 }
],
 "gender": "female",
 "birthDate": "1992-02-10"
}

5. Send the request. The FHIR create interaction uses a POST request with either AWS Signature
Version 4 or SMART on FHIR authorization. The following examples create a FHIR Patient
resource in HealthLake using either curl or the HealthLake Console. To view an entire example,
scroll over the Copy button.

Creating a resource 58

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html

AWS HealthLake Developer Guide

SigV4

SigV4 authorization

curl --request POST \
 'https://healthlake.region.amazonaws.com/datastore/datastore-id/r4/Patient' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json' \
 --data @create-patient.json

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

Creating a resource 59

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

AWS Console

Note

The HealthLake Console supports only AWS SigV4 authorization.

1. Sign in to the Run query page on the HealthLake Console.

2. Under the Query settings section, make the following selections.

• Data Store ID — choose a data store ID to generate a query string.

• Query type — choose Create.

• Resource type — choose the FHIR resource type to create.

• Request body — construct a JSON body for the request, specifying the FHIR data for the
new resource.

3. Choose Run query.

Reading a FHIR resource

The FHIR read interaction reads the current state of a resource in a HealthLake data store. For
additional information, see read in the FHIR R4 RESTful API documentation.

To read a FHIR resource

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the type of FHIR Resource to read and collect the associated id value. For more
information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type and its associated id. To view the entire
URL path in the following example, scroll over the Copy button.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource/id

Reading a resource 60

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://console.aws.amazon.com/healthlake/home#/crud
https://hl7.org/fhir/R4/http.html#read

AWS HealthLake Developer Guide

4. Send the request. The FHIR read interaction uses a GET request with either AWS Signature
Version 4 or SMART on FHIR authorization. The following curl example reads the current
state of a FHIR Patient resource in HealthLake. To view the entire example, scroll over the
Copy button.

SigV4

SigV4 authorization

curl --request GET \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id'
 \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json'

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

Reading a resource 61

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

AWS Console

1. Sign in to the Run query page on the HealthLake Console.

2. Under the Query settings section, make the following selections.

• Data Store ID — choose a data store ID to generate a query string.

• Query type — choose Read.

• Resource type — choose the FHIR resource type to read.

• Resource ID — enter the FHIR resource ID.

3. Choose Run query.

Reading FHIR resource history

The FHIR history interaction retrieves the history of a particular FHIR resource in a HealthLake
data store. Using this interaction, you can determine how the contents of a FHIR resource have
changed over time. It is also useful in coordination with audit logs to see the state of a resource
before and after modification. The FHIR interactions create, update, and delete result in a
historical version of the resource to be saved. For additional information, see history in the FHIR
R4 RESTful API documentation.

Note

You can opt out of history for specific FHIR resource types. To opt out, create a case using
AWS Support Center Console. To create your case, log in to your AWS account and choose
Create case.

To read FHIR resource history

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

Reading resource history 62

https://console.aws.amazon.com/healthlake/home#/crud
https://hl7.org/fhir/R4/http.html#history
https://console.aws.amazon.com/support/home#/

AWS HealthLake Developer Guide

2. Determine the type of FHIR Resource to read and collect the associated id value. For more
information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type, its associated id, and optional search
parameters. To view the entire URL path in the following example, scroll over the Copy button.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource/id/
_history{?[parameters]}

HealthLake supported search parameters for FHIR history interaction

Parameter Description

_count : integer The maximum number of search results on
a page. The server will return the number
requested or the maximum number of
search results allowed by default for the
data store, whichever is lower.

_since : instant Only include resource versions that were
created at or after the given instant in time.

_at : date(Time) Only include resource versions that were
current at some point during the time
period specified in the date time value. For
more information, see date in the HL7 FHIR
RESTful API documentation.

4. Send the request. The FHIR history interaction uses a GET request with either AWS Signature
Version 4 or SMART on FHIR authorization. The following curl example uses the _count
search parameter to return 100 historical search results per page for a FHIR Patient resource
in HealthLake. To view the entire example, scroll over the Copy button.

SigV4

SigV4 authorization

curl --request GET \

Reading resource history 63

https://www.hl7.org/fhir/R4/search.html#date
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html

AWS HealthLake Developer Guide

 'https://healthlake.region.amazonaws.com/datastore/datastore-id/r4/Patient/id/
_history?_count=100' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json'

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

The return content of a history interaction is contained in a FHIR resource Bundle, with
type set to history. It contains the specified version history, sorted with oldest versions last,
and includes deleted resources. For more information, see Resource Bundle in the FHIR R4
documentation.

Reading resource history 64

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://hl7.org/fhir/R4/bundle.html

AWS HealthLake Developer Guide

Reading version-specific FHIR resource history

The FHIR vread interaction performs a version-specific read of a resource in a HealthLake data
store. Using this interaction, you can view the contents of a FHIR resource as it was at a particular
time in the past.

Note

If you use FHIR history interaction without vread, HealthLake always returns the latest
version of the resource's metadata.

HealthLake declares it support for versioning in
CapabilityStatement.rest.resource.versioning for each supported resource. All
HealthLake data stores include Resource.meta.versionId (vid) on all resources.

When FHIR history interaction is enabled (by default for data stores created after 10/25/2024 or
by request for older data stores), the Bundle response includes the vid as part of the location
element. In the following example, the vid displays as the number 1. To view the full example, see
Example Bundle/bundle-response (JSON).

"response" : {
 "status" : "201 Created",
 "location" : "Patient/12423/_history/1",
 ...}

To read version-specific FHIR resource history

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the FHIR Resource type to read and collect associated id and vid values. For
more information, see Resource types.

3. Construct a URL for the request using the values collected for HealthLake and FHIR. To view
the entire URL path in the following example, scroll over the Copy button.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource/id/
_history/vid

Reading version-specific history 65

https://hl7.org/fhir/R4/capabilitystatement-definitions.html#CapabilityStatement.rest.resource.versioning
https://hl7.org/fhir/R4/bundle-definitions.html#Bundle.entry.response.location
https://build.fhir.org/bundle-response.json.html

AWS HealthLake Developer Guide

4. Send the request. The FHIR history interaction uses a GET request with either AWS Signature
Version 4 or SMART on FHIR authorization. The following vread interaction returns a single
instance with the content specified for the FHIR Patient resource for the version of the
resource metadata specified by the vid. To view the entire URL path in the following example,
scroll over the Copy button.

SigV4

SigV4 authorization

curl --request GET \
 'https://healthlake.region.amazonaws.com/datastore/datastore-id/r4/Patient/id/
_history/vid' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json'

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"

Reading version-specific history 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

Updating a FHIR resource

The FHIR update interaction creates a new current version for an existing resource or creates an
initial version if no resource already exists for the given id. For additional information, see update
in the FHIR R4 RESTful API documentation.

To update a FHIR resource

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the type of FHIR Resource to update and collect the associated id value. For more
information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type and its associated id. To view the entire
URL path in the following example, scroll over the Copy button.

PUT https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource/id

4. Construct a JSON body for the request, specifying the FHIR data updates to be made. For the
purpose of this procedure, save the file as update-patient.json.

{
 "id": "2de04858-ba65-44c1-8af1-f2fe69a977d9",
 "resourceType": "Patient",
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Doe",
 "given": [
 "Jane"
]
 },

Updating a resource 67

https://hl7.org/fhir/R4/http.html#update

AWS HealthLake Developer Guide

 {
 "use": "usual",
 "given": [
 "Jane"
]
 }
],
 "gender": "female",
 "birthDate": "1985-12-31"
}

5. Send the request. The FHIR update interaction uses a PUT request with either AWS Signature
Version 4 or SMART on FHIR authorization. The following curl example updates a Patient
resource in HealthLake. To view the entire example, scroll over the Copy button.

SigV4

SigV4 authorization

curl --request PUT \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id'
 \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json' \
 --data @update-patient.json

Your request will return a 200 HTTP status code if an existing resource is updated or a 201
HTTP status code if a new resource is created.

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint

Updating a resource 68

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

AWS Console

1. Sign in to the Run query page on the HealthLake Console.

2. Under the Query settings section, make the following selections.

• Data Store ID — choose a data store ID to generate a query string.

• Query type — choose Update (PUT).

• Resource type — choose the FHIR resource type to update or create.

• Request body — construct a JSON body for the request, specifying the FHIR data to
update the resource with.

3. Choose Run query.

Updating FHIR resources based on conditions

Conditional update allows you to update an existing resource based on some identification search
criteria, rather than by logical FHIR id. When the server processes the update, it performs a search
using its standard search capabilities for the resource type, with the goal of resolving a single
logical id for the request.

The action the server takes depends on how many matches it finds:

• No matches, no id provided in the request body: The server creates the FHIR resource.

Conditional update 69

https://console.aws.amazon.com/healthlake/home#/crud

AWS HealthLake Developer Guide

• No matches, id provided and resource doesn't already exist with the id: The server treats the
interaction as an Update as Create interaction.

• No matches, id provided and already exist: The server rejects the update with a 409
Conflict error.

• One Match, no resource id provided OR (resource id provided and it matches the found
resource): The server performs the update against the matching resource as above where, if the
resource was updated, the server SHALL return a 200 OK.

• One Match, resource id provided but does not match resource found: The server returns a
409 Conflict error indicating the client id specification was a problem preferably with an
OperationOutcome

• Multiple matches: The server returns a 412 Precondition Failed error indicating the
client's criteria were not selective enough preferably with an OperationOutcome

The following example updates a Patient resource whose name is peter, birthdate is 1st Jan
2000, and phone number is 1234567890.

PUT https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
name=peter&birthdate=2000-01-01&phone=1234567890

Bundling FHIR resources

A FHIR Bundle is a container for a collection of FHIR resources in AWS HealthLake. AWS
HealthLake supports two types of bundles with different behaviors: batch or transaction.

• For a 'batch' bundle, each FHIR resource contained in the bundle is processed and logged
individually. Each resource operation is treated independently from the other resources.

• For a ‘transaction’ bundle, all FHIR resources contained in the bundle are processed as an atomic
operation. All of the resources in the operation must succeed, or no resource updates in the
bundle are committed and stored.

You can bundle FHIR resources of the same or different types, and they can include a mix of other
FHIR interactions defined in this chapter (e.g. create, read, update, delete, and search). For
additional information, see Resource Bundle in the FHIR R4 documentation.

Key differences between Batch and Transaction type Bundles:

Bundling resources 70

https://hl7.org/fhir/R4/http.html#transaction
https://hl7.org/fhir/R4/http.html#transaction
https://hl7.org/fhir/R4/Bundle

AWS HealthLake Developer Guide

Batch

• Independent operations that can succeed or fail individually

• Processing continues even if some operations fail

• Order of execution not guaranteed

• Ideal for bulk operations where partial success is acceptable

Transaction

• Atomicity guaranteed - either all succeed or all fail

• Maintains referential integrity for locally referenced (within Bundle) resources

• Operations processed in the order specified

• Fails completely if any operation fails

Example Use Cases:

• Batch: Uploading multiple unrelated patient records

• Transaction: Creating a patient with related observations and conditions where all must succeed
together

Note

Both use Bundle resource type but differ in 'type' field:

{
 "resourceType": "Bundle",
 "type": "transaction",
 "entry": [
 {
 "fullUrl": "urn:uuid:4f6a30fb-cd3c-4ab6-8757-532101f72065",
 "resource": {
 "resourceType": "Patient",
 "id": "new-patient",
 "active": true,
 "name": [
 {
 "family": "Johnson",
 "given": [

Bundling resources 71

AWS HealthLake Developer Guide

 "Sarah"
]
 }
],
 "gender": "female",
 "birthDate": "1985-08-12",
 "telecom": [
 {
 "system": "phone",
 "value": "555-123-4567",
 "use": "home"
 }
]
 },
 "request": {
 "method": "POST",
 "url": "Patient"
 }
 },
 {
 "fullUrl": "urn:uuid:7f83f473-d8cc-4a8d-86d3-9d9876a3248b",
 "resource": {
 "resourceType": "Observation",
 "id": "blood-pressure",
 "status": "final",
 "code": {
 "coding": [
 {
 "system": "http://loinc.org",
 "code": "85354-9",
 "display": "Blood pressure panel"
 }
],
 "text": "Blood pressure panel"
 },
 "subject": {
 "reference": "urn:uuid:4f6a30fb-cd3c-4ab6-8757-532101f72065"
 },
 "effectiveDateTime": "2023-10-15T09:30:00Z",
 "component": [
 {
 "code": {
 "coding": [
 {

Bundling resources 72

AWS HealthLake Developer Guide

 "system": "http://loinc.org",
 "code": "8480-6",
 "display": "Systolic blood pressure"
 }
]
 },
 "valueQuantity": {
 "value": 120,
 "unit": "mmHg",
 "system": "http://unitsofmeasure.org",
 "code": "mm[Hg]"
 }
 },
 {
 "code": {
 "coding": [
 {
 "system": "http://loinc.org",
 "code": "8462-4",
 "display": "Diastolic blood pressure"
 }
]
 },
 "valueQuantity": {
 "value": 80,
 "unit": "mmHg",
 "system": "http://unitsofmeasure.org",
 "code": "mm[Hg]"
 }
 }
]
 },
 "request": {
 "method": "POST",
 "url": "Observation"
 }
 },
 {
 "resource": {
 "resourceType": "Appointment",
 "id": "appointment-123",
 "status": "booked",
 "description": "Annual physical examination",
 "start": "2023-11-15T09:00:00Z",

Bundling resources 73

AWS HealthLake Developer Guide

 "end": "2023-11-15T09:30:00Z",
 "participant": [
 {
 "actor": {
 "reference": "urn:uuid:4f6a30fb-cd3c-4ab6-8757-532101f72065"
 },
 "status": "accepted"
 }
]
 },
 "request": {
 "method": "PUT",
 "url": "Appointment/appointment-123"
 }
 },
 {
 "request": {
 "method": "DELETE",
 "url": "MedicationRequest/med-request-456"
 }
 }
]
}

Bundling FHIR resources as independent entities

To bundle FHIR resources as independent entities

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Do not specify a FHIR resource type in the URL. To view the entire URL path in
the following example, scroll over the Copy button.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/

3. Construct a JSON body for the request, specifying each HTTP verb as part of the method
elements. The following example uses a batch type interaction with the Bundle resource
to create new Patient and Medication resources. All required sections are commented
accordingly. For the purpose of this procedure, save the file as batch-independent.json.

Bundle as independent entities 74

AWS HealthLake Developer Guide

{
 "resourceType": "Bundle",
 "id": "bundle-batch",
 "meta": {
 "lastUpdated": "2014-08-18T01:43:30Z"
 },
 "type": "batch",
 "entry": [
 {
 "resource": {
 "resourceType": "Patient",
 "meta": {
 "lastUpdated": "2022-06-03T17:53:36.724Z"
 },
 "text": {
 "status": "generated",
 "div": "Some narrative"
 },
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Jackson",
 "given": [
 "Mateo",
 "James"
]
 }
],
 "gender": "male",
 "birthDate": "1974-12-25"
 },
 "request": {
 "method": "POST",
 "url": "Patient"
 }
 },
 {
 "resource": {
 "resourceType": "Medication",
 "id": "med0310",
 "contained": [
 {

Bundle as independent entities 75

AWS HealthLake Developer Guide

 "resourceType": "Substance",
 "id": "sub03",
 "code": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "55452001",
 "display": "Oxycodone (substance)"
 }
]
 }
 }
],
 "code": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "430127000",
 "display": "Oral Form Oxycodone (product)"
 }
]
 },
 "form": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "385055001",
 "display": "Tablet dose form (qualifier value)"
 }
]
 },
 "ingredient": [
 {
 "itemReference": {
 "reference": "#sub03"
 },
 "strength": {
 "numerator": {
 "value": 5,
 "system": "http://unitsofmeasure.org",
 "code": "mg"
 },
 "denominator": {
 "value": 1,

Bundle as independent entities 76

AWS HealthLake Developer Guide

 "system": "http://terminology.hl7.org/CodeSystem/
v3-orderableDrugForm",
 "code": "TAB"
 }
 }
 }
]
 },
 "request": {
 "method": "POST",
 "url": "Medication"
 }
 }
]
}

4. Send the request. The FHIR Bundle batch type uses a POST request with either AWS Signature
Version 4 or SMART on FHIR authorization. The following code example uses the curl
command line tool for demonstration purposes.

SigV4

SigV4 authorization

curl --request POST \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json' \
 --data @batch-type.json

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",

Bundle as independent entities 77

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

The server returns a response showing the Patient and Medication resources created as a
result of the Bundle batch type request.

Conditional PUTs in Bundles

AWS HealthLake supports conditional updates within Bundles using the following query
parameters:

• _id (standalone)

• _id in combination with one of the following:

• _tag

• _createdAt

• _lastUpdated

Based on the results of matching the conditions provided to the existing resource, the following
will occur with the associated result codes indicating the action taken:

When creating or updating FHIR resources, the system handles different scenarios based on
resource ID provision and existing matches:

Conditional PUTs in Bundles 78

AWS HealthLake Developer Guide

• Resources without IDs are always created (201).

• Resources with new IDs are created (201).

• Resources with existing IDs either update the matching resource (200) or return errors if there's a
conflict (409) or ID mismatch (400).

• Multiple matching resources trigger a precondition failure (419).

In the example Bundle with conditional update, the Patient resource with FHIR ID 456 will only
update if the condition _lastUpdated=lt2025-04-20 is met.

{
 "resourceType": "Bundle",
 "id": "bundle-batch",
 "meta": {
 "lastUpdated": "2014-08-18T01:43:30Z"
 },
 "type": "batch",
 "entry": [
 {
 "resource": {
 "resourceType": "Patient",
 "id": "476",
 "meta": {
 "lastUpdated": "2022-06-03T17:53:36.724Z"
 },
 "active": true,
 "name": [
 {
 "use": "official",
 "family": "Jackson",
 "given": [
 "Mateo",
 "James"
]
 }
],
 "gender": "male",
 "birthDate": "1974-12-25"
 },
 "request": {
 "method": "PUT",
 "url": "Patient?_id=476&_lastUpdated=lt2025-04-20"

Conditional PUTs in Bundles 79

AWS HealthLake Developer Guide

 }
 },
 {
 "resource": {
 "resourceType": "Medication",
 "id": "med0310",
 "contained": [
 {
 "resourceType": "Substance",
 "id": "sub03",
 "code": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "55452001",
 "display": "Oxycodone (substance)"
 }
]
 }
 }
],
 "code": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "430127000",
 "display": "Oral Form Oxycodone (product)"
 }
]
 },
 "form": {
 "coding": [
 {
 "system": "http://snomed.info/sct",
 "code": "385055001",
 "display": "Tablet dose form (qualifier value)"
 }
]
 },
 "ingredient": [
 {
 "itemReference": {
 "reference": "#sub03"
 },

Conditional PUTs in Bundles 80

AWS HealthLake Developer Guide

 "strength": {
 "numerator": {
 "value": 5,
 "system": "http://unitsofmeasure.org",
 "code": "mg"
 },
 "denominator": {
 "value": 1,
 "system": "http://terminology.hl7.org/CodeSystem/v3-
orderableDrugForm",
 "code": "TAB"
 }
 }
 }
]
 },
 "request": {
 "method": "POST",
 "url": "Medication"
 }
 }
]
}

Bundling FHIR resources as a single entity

To bundle FHIR resources as a single entity

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Include the FHIR resource type Bundle as part of the URL. To view the entire
URL path in the following example, scroll over the Copy button.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Bundle

3. Construct a JSON body for the request, specifying the FHIR resources to group together. The
following example groups two Patient resources in HealthLake. For the purpose of this
procedure, save the file as batch-single.json.

{

Bundle as a single entity 81

AWS HealthLake Developer Guide

 "resourceType": "Bundle",
 "id": "bundle-minimal",
 "language": "en-US",
 "identifier": {
 "system": "urn:oid:1.2.3.4.5",
 "value": "28b95815-76ce-457b-b7ae-a972e527db4f"
 },
 "type": "document",
 "timestamp": "2020-12-11T14:30:00+01:00",
 "entry": [
 {
 "fullUrl": "urn:uuid:f40b07e3-37e8-48c3-bf1c-ae70fe12dabf",
 "resource": {
 "resourceType": "Composition",
 "id": "f40b07e3-37e8-48c3-bf1c-ae70fe12dabf",
 "status": "final",
 "type": {
 "coding": [
 {
 "system": "http://loinc.org",
 "code": "60591-5",
 "display": "Patient summary Document"
 }
]
 },
 "date": "2020-12-11T14:30:00+01:00",
 "author": [
 {
 "reference":
 "urn:uuid:45271f7f-63ab-4946-970f-3daaaa0663ff"
 }
],
 "title": "Patient Summary as of December 7, 2020 14:30"
 }
 },
 {
 "fullUrl": "urn:uuid:45271f7f-63ab-4946-970f-3daaaa0663ff",
 "resource": {
 "resourceType": "Practitioner",
 "id": "45271f7f-63ab-4946-970f-3daaaa0663ff",

 "active": true,
 "name": [
 {

Bundle as a single entity 82

AWS HealthLake Developer Guide

 "family": "Doe",
 "given": [
 "John"
]
 }
]
 }
 }
]
}

4. Send the request. The FHIR Bundle document type uses a POST request with AWS Signature
Version 4 signing protocol. The following code example uses the curl command line tool for
demonstration purposes.

SigV4

SigV4 authorization

curl --request POST \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Bundle' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json' \
 --data @document-type.json

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential

Bundle as a single entity 83

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

The server returns a response showing two Patient resources created as a result of the
Bundle document type request.

Deleting a FHIR resource

The FHIR delete interaction removes an existing FHIR resource from a HealthLake data store. For
additional information, see delete in the FHIR R4 RESTful API documentation.

To delete a FHIR resource

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the type of FHIR Resource to delete and collect the associated id value. For more
information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type and its associated id. To view the entire
URL path in the following example, scroll over the Copy button.

DELETE https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource/id

4. Send the request. The FHIR delete interaction uses a DELETE request with either AWS
Signature Version 4 or SMART on FHIR authorization. The following curl example removes
an existing FHIR Patient resource from a HealthLake data store. To view the entire example,
scroll over the Copy button.

Deleting a resource 84

https://hl7.org/fhir/R4/http.html#delete
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html

AWS HealthLake Developer Guide

SigV4

SigV4 authorization

curl --request DELETE \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id'
 \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json'

The server returns a 204 HTTP status code confirming the resource has been removed from
the HealthLake data store. If a delete request fails, you will receive a 400 series HTTP status
code indicating why the request failed.

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

Deleting a resource 85

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

AWS Console

1. Sign in to the Run query page on the HealthLake Console.

2. Under the Query settings section, make the following selections.

• Data Store ID — choose a data store ID to generate a query string.

• Query type — choose Delete.

• Resource type — choose the FHIR resource type to delete.

• Resource ID — enter the FHIR resource ID.

3. Choose Run query.

Deleting FHIR resources based on conditions

Conditional delete is particularly useful when you don't know the specific FHIR resource ID but
have other identifying information about the resource you want to delete.

Conditional delete allows you to delete an existing resource based on search criteria rather than by
logical FHIR ID. When the server processes the delete request, it performs a search using standard
search capabilities for the resource type to resolve a single logical ID for the request.

How conditional delete works

The server's action depends on how many matches it finds:

1. No matches: The server attempts an ordinary delete and responds appropriately (404 Not Found
for non-existent resource, 204 No Content for already deleted resource)

2. One match: The server performs an ordinary delete on the matching resource

3. Multiple matches: Returns a 412 Precondition Failed error indicating the client's criteria were
not selective enough

Conditional delete for FHIR 86

https://console.aws.amazon.com/healthlake/home#/crud

AWS HealthLake Developer Guide

Response scenarios

AWS HealthLake handles conditional delete operations with the following response patterns:

Successful Operations

• When your search criteria successfully identify a single active resource, the system returns 204
No Content after completing the deletion, just like standard delete operations.

ID-Based Conditional Delete

When performing conditional delete based on id with additional parameters (createdAt, tag, or
_lastUpdated):

• 204 No Content: Resource was already deleted

• 404 Not Found: Resource doesn't exist

• 409 Conflict: ID matches but other parameters don't match

Non-ID-Based Conditional Delete

When id is not provided or when using parameters other than createdAt, tag, or
_lastUpdated:

• 404 Not Found: No matches found

Conflict Situations

Several scenarios result in 412 Precondition Failed responses:

• Multiple resources match your search criteria (criteria not specific enough)

• Version conflicts when using ETag headers with If-Match

• Resource updates occurring between search and delete operations

Example of a Successful Conditional Delete

The following example deletes a Patient resource based on specific criteria:

Conditional delete for FHIR 87

AWS HealthLake Developer Guide

DELETE https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
name=peter&birthdate=2000-01-01&phone=1234567890

This request deletes a Patient resource where:

• Name is "peter"

• Birth date is January 1, 2000

• Phone number is 1234567890

Best Practices

1. Use specific search criteria to avoid multiple matches and prevent 412 errors.

2. Consider ETag headers for version control when needed to handle concurrent modifications.

3. Handle error responses appropriately:

• For 404: Refine your search criteria

• For 412: Make criteria more specific or resolve version conflicts

4. Prepare for timing conflicts in high-concurrency environments where resources may be modified
between search and delete operations.

Idempotency and Concurrency

Idempotency Keys

AWS HealthLake supports idempotency keys for FHIR POST operations, providing a robust
mechanism to ensure data integrity during resource creation. By including a unique UUID as an
idempotency key in the request header, healthcare applications can guarantee that each FHIR
resource is created exactly once, even in scenarios involving network instability or automatic
retries.

This feature is particularly crucial for healthcare systems where duplicate medical records could
have serious consequences. When a request is received with the same idempotency key as a
previous request, HealthLake will return the original resource instead of creating a duplicate. For
example, this could occur during a retry loop or due to redundant request pipelines. Using the
idempotency key allows HealthLake to maintain data consistency while providing a seamless
experience for client applications handling intermittent connectivity issues.

Idempotency and Concurrency 88

AWS HealthLake Developer Guide

Implementation

POST /<baseURL>/Patient
x-amz-fhir-idempotency-key: 123e4567-e89b-12d3-a456-426614174000
{
 "resourceType": "Patient",
 "name": [...]
}

Response Scenarios

First Request (201 Created)

• New resource created successfully

• Response includes resource ID

Duplicate Request (409 Conflict)

• Same idempotency key detected

• Original resource returned

• No new resource created

Invalid Request (400 Bad Request)

• Malformed UUID

• Missing required fields

Best Practices

• Generate unique UUID for each new resource creation

• Store idempotency keys for retry logic

• Use consistent key format: UUID v4 recommended

• Implement in client applications handling resource creation

Note

This feature is particularly valuable for healthcare systems requiring strict data accuracy
and preventing duplicate medical records.

Idempotency Keys 89

AWS HealthLake Developer Guide

ETag in AWS HealthLake

AWS HealthLake uses ETags for optimistic concurrency control in FHIR resources, providing a
reliable mechanism to manage concurrent modifications and maintain data consistency. An ETag is
a unique identifier that represents a specific version of a resource, functioning as a version control
system through HTTP headers. When reading or modifying resources, applications can use ETags
to prevent unintended overwrites and ensure data integrity, particularly in scenarios with potential
concurrent updates.

Implementation Example

// Initial Read
GET /fhir/Patient/123
Response:
ETag: W/"1"

// Update with If-Match
PUT /fhir/Patient/123
If-Match: W/"1"
{resource content}

// Create with If-None-Match
PUT /fhir/Patient/123
If-None-Match: *
{resource content}
// Succeeds only if resource doesn't exist
// Fails with 412 if resource exists

Response Scenarios

Successful Operation (200 OK or 204 No Content)

• ETag matches current version

• Operation proceeds as intended

Version Conflict (412 Precondition Failed)

• ETag doesn't match current version

• Update rejected to prevent data loss

ETag in AWS HealthLake 90

AWS HealthLake Developer Guide

Best Practices

• Include ETags in all update and delete operations

• Implement retry logic for handling version conflicts

• Use If-None-Match: * for create-if-not-exists scenarios

• Always verify ETag freshness before modifications

This concurrency control system is essential for maintaining the integrity of healthcare data,
especially in environments with multiple users or systems accessing and modifying the same
resources.

ETag in AWS HealthLake 91

AWS HealthLake Developer Guide

Searching FHIR resources in AWS HealthLake

Use FHIR search interaction to search a set of FHIR resources in a HealthLake data store based on
some filter criteria. The search interaction can be performed using either a GET or POST request.
For searches that involve personally identifiable information (PII) or protected health information
(PHI), it's recommended to use POST requests, as PII and PHI is added as part of the request body
and is encrypted in transit.

Note

The FHIR search interaction described in this chapter is built in conformance to the HL7
FHIR R4 standard for health care data exchange. Because it is a representation of a HL7
FHIR service, it is not offered through AWS CLI and AWS SDKs. For more information, see
search in the FHIR R4 RESTful API documentation.

HealthLake supports a subset of FHIR R4 search parameters. For more information, see FHIR R4
search parameters for HealthLake.

Topics

• Searching FHIR resources with GET

• Searching FHIR resources with POST

• FHIR Search Consistency Levels

Searching FHIR resources with GET

You can use GET requests to search a HealthLake data store. When using GET, HealthLake supports
providing search parameters as part of the URL, but not as part of a request body. For more
information, see FHIR R4 search parameters for HealthLake.

Important

For searches that involve personally identifiable information (PII) or protected health
information (PHI), security best practices call for using POST requests, as PII and PHI is
added as part of the request body and is encrypted in transit. For more information, see
Searching FHIR resources with POST.

Searching with GET 92

https://hl7.org/fhir/R4/http.html#search
https://hl7.org/fhir/R4/http.html#search

AWS HealthLake Developer Guide

The following procedure is followed by examples that use GET to search a HealthLake data store.

To search a HealthLake data store with GET

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the type of FHIR resource to search for and collect the associated id value. For
more information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type and supported search parameters. To
view the entire URL path in the following example, scroll over the Copy button.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource{?
[parameters]{&_format=[mime-type]}}

4. Send the GET request with either AWS Signature Version 4 or SMART on FHIR authorization.
The following curl example returns the total number of Patient resources in a HealthLake
data store. To view the entire example, scroll over the Copy button.

SigV4

SigV4 authorization

curl --request GET \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
_total=accurate' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json'

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,

Searching with GET 93

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

AWS Console

Note

The HealthLake Console supports only SigV4 authorization. SMART on FHIR
authorization is supported through AWS CLI and AWS SDKs.

1. Sign in to the Run query page on the HealthLake Console.

2. Under the Query settings section, make the following selections.

• Data Store ID — choose a data store ID to generate a query string.

• Query type — choose Search with GET.

• Resource type — choose the FHIR resource type to search on.

• Search parameters — Select a search parameter or combination of search parameters to
focus your query on specific records.

3. Choose Run query.

Searching with GET 94

https://console.aws.amazon.com/healthlake/home#/crud

AWS HealthLake Developer Guide

Examples: search with GET

The following tabs provide examples for searching on specific FHIR resource types with GET. The
examples show how to specify search parameters in the request URLs.

Note

The HealthLake Console supports only SigV4 authorization. SMART on FHIR authorization
is supported through AWS CLI and AWS SDKs.
HealthLake supports a subset of FHIR R4 search parameters. For more information, see
Search parameters.

Patient (age)

Although age is not a defined resource type in FHIR, it is captured as an element in the
Patient resource type. Use the following example to make a GET-based search request on
Patient resource types using the birthDate element and the eq search comparator to search
for individuals born in the year 1997.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
birthdate=eq1997

Condition

Use the following example to make a GET request on the Condition resource type. The
search finds conditions in your HealthLake data store that contain the SNOMED medical code
72892002, which translates to Normal pregnancy.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Condition?
code=72892002

DocumentationReference

The following example shows how to create a GET request on the DocumentReference
resource type for Patient(s) with a streptococcal diagnosis and who have also been prescribed
amoxicillin.

GET search examples 95

https://hl7.org/fhir/R4/patient.html
https://hl7.org/fhir/R4/patient.html
https://hl7.org/fhir/R4/patient-definitions.html#Patient.birthDate
https://hl7.org/fhir/R4/condition.html
https://hl7.org/fhir/R4/documentreference.html

AWS HealthLake Developer Guide

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
DocumentReference?_lastUpdated=le2021-12-19&infer-icd10cm-entity-text-concept-
score;=streptococcal|0.6&infer-rxnorm-entity-text-concept-score=Amoxicillin|0.8

Location

Use the following example to make a GET request on the Location resource type. The
following search finds locations in your HealthLake data store that contain the city name
Boston as part of the address.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Location?
address=boston

Observation

Use the following example to make a GET-based search request on the Observation resource
type. This search uses the value-concept search parameter to look for medical code
266919005, which translates to Never smoker.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Observation?
value-concept=266919005

Searching FHIR resources with POST

You can use the FHIR search interaction with POST requests to search a HealthLake data store.
When using POST, HealthLake supports search parameters in either the URL or in a request body,
but you cannot use both in a single request.

Important

For searches that involve personally identifiable information (PII) or protected health
information (PHI), security best practices call for using POST requests, as PII and PHI is
added as part of the request body and is encrypted in transit.

The following procedure is followed by examples using FHIR R4 search interaction with POST to
search a HealthLake data store. The examples show how to specify search parameters in the JSON
request body.

Searching with POST 96

https://hl7.org/fhir/R4/location.html
https://hl7.org/fhir/R4/observation.html
https://hl7.org/fhir/R4/search.html

AWS HealthLake Developer Guide

To search a HealthLake data store with POST

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Determine the type of FHIR resource to search for and collect the associated id value. For
more information, see Resource types.

3. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR Resource type and _search interaction. To view the
entire URL path in the following example, scroll over the Copy button.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Resource/
_search

4. Construct a JSON body for the request, specifying the FHIR data to search for. For the purpose
of this procedure, you will search Observation resources to discover patients who have never
smoked. To specify the medical code status Never smoker, set value-concept=266919005
in the JSON request body. Save the file as search-observation.json.

value-concept=266919005

5. Send the request. The FHIR search interaction uses the GET request with either AWS
Signature Version 4 or SMART on FHIR authorization.

Note

When making a POST request with search parameters in the request body, use
Content-Type: application/x-www-form-urlencoded as part of the header.

The following curl example makes a POST-based search request on the Observation
resource type. The request uses the value-concept search parameter to look for medical
code 266919005 which indicates value Never smoker. To view the entire example, scroll
over the Copy button.

SigV4

SigV4 authorization

Searching with POST 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://hl7.org/fhir/R4/observation.html#search

AWS HealthLake Developer Guide

curl --request POST \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Observation/
_search' \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header "Content-Type: application/x-www-form-urlencoded"
 --header "Accept: application/json"
 --data @search-observation.json

SMART on FHIR

SMART on FHIR authorization example for the IdentityProviderConfiguration data
type.

{
 "AuthorizationStrategy": "SMART_ON_FHIR",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\",
\"permission-v2\"]}"
}

The caller can assign permissions in the authorization lambda. For more information, see
OAuth 2.0 scopes.

Searching with POST 98

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html

AWS HealthLake Developer Guide

Examples: search with POST

The following tabs provide examples for searching on specific FHIR resource types with POST. The
examples show how to specify a request in the URLs.

Note

The HealthLake Console supports only SigV4 authorization. SMART on FHIR authorization
is supported through AWS CLI and AWS SDKs.
HealthLake supports a subset of FHIR R4 search parameters. For more information, see
Search parameters.

Patient (age)

Although age is not a defined resource type in FHIR, it is captured as an element in the
Patient resource type. Use the following example to make a POST-based search request on
the Patient resource type. The following search example uses the eq search comparator to
search for individuals born in 1997.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/
_search

To specify the year 1997 in the search, add the following element to the request body.

birthdate=eq1997

Condition

Using the following to make a POST request on the Condition resource type. This search finds
locations in your HealthLake data store that contain the medical code 72892002.

You have to specify a request URL and a request body. Here is an example request URL.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Condition/
_search

To specify the medical code you want to search, you add the following JSON element to the
request body.

POST search examples 99

https://hl7.org/fhir/R4/patient.html

AWS HealthLake Developer Guide

code=72892002

DocumentReference

To see the results of HealthLake's integrated natural language processing (NLP) when making a
POST request on the DocumentReference resource type, format a request as follows.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
DocumentReference/_search

To specify the DocumentReference search parameters to reference, see Search parameter
types. The following query string uses multiple search parameters to search on Amazon
Comprehend Medical API operations used to generate the integrated NLP results.

_lastUpdated=le2021-12-19&infer-icd10cm-entity-text-concept-score;=streptococcal|
0.6&infer-rxnorm-entity-text-concept-score=Amoxicillin|0.8

Location

Use the following example to make a POST request on the Location resource type. The search
finds locations in your HealthLake data store that contain the city name Boston as part of the
address.

You must specify a request URL and a request body. Here is an example request URL.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Location/
_search

To specify Boston in the search, add the following element to the request body:

address=Boston

Observation

Use the following example to make a POST-based search request on the Observation
resource type. The search uses the value-concept search parameter to look for medical code,
266919005 that indicates Never smoker.

POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Observation/
_search

POST search examples 100

AWS HealthLake Developer Guide

To specify the status, Never smoker , set value-concept=266919005 in the body of the
JSON.

value-concept=266919005

FHIR Search Consistency Levels

AWS HealthLake's search index operates on an Eventual Consistency model for GET and POST with
SEARCH operations. With eventual consistency, if there is a pending search index update for a
resource, the search results exclude version N-1 of the resource until the index update completes.

AWS HealthLake now includes the ability to select how the consistency model will behave for
updated resources. Developers can include either 'Eventual Consistency', the default behavior
described above or 'Strong Consistency'. Strong Consistency will allow the N-1 version of the
resource for resources with pending search index updates to be included in the search results. This
can be used for use case scenarios where all resources are required in the result even when the
search index update has not yet completed. Customers can control this behavior using the x-amz-
fhir-history-consistency-level request header.

Consistency levels

Strong consistency

Set x-amz-fhir-history-consistency-level: strong to return all matching records,
including those with pending search index updates. Use this option when you need to search for
resources immediately after updates.

Eventual consistency

Set x-amz-fhir-history-consistency-level: eventual to return only records that
have completed search index updates. This is the default behavior if no consistency level is
specified.

Usage example

1. When updating a resource:

POST <baseURL>/Patient

Search Consistency Levels 101

AWS HealthLake Developer Guide

Content-Type: application/fhir+json
x-amz-fhir-history-consistency-level: strong

{
 "resourceType": "Patient",
 "id": "123",
 "meta": {
 "profile": ["http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient"]
 },
 "identifier": [
 {
 "system": "http://example.org/identifiers",
 "value": "123"
 }
],
 "active": true,
 "name": [
 {
 "family": "Smith",
 "given": ["John"]
 }
],
 "gender": "male",
 "birthDate": "1970-01-01"
}

2. Subsequent search:

GET <baseURL>/Patient?_id=123

Best practices

• Use strong consistency when you need to immediately search for recently updated resources

• Use eventual consistency for general queries where immediate visibility isn't critical

• Consider the trade-off between immediate visibility and potential performance impact

Note

The consistency level setting affects how quickly updated resources appear in search results
but does not impact the actual storage of the resources.

Best practices 102

AWS HealthLake Developer Guide

Setting the optional x-amz-fhir-history-consistency-level header to 'strong'
doubles the write capacity consumption per resource.
This feature is only applicable for data stores that have version history enabled (all
datastores created after Oct 25, 2024 have it enabled by default).

Best practices 103

AWS HealthLake Developer Guide

Exporting FHIR data with AWS HealthLake

Use native AWS HealthLake actions to start, describe, and list FHIR export jobs. You can queue
export jobs. The asynchronous export jobs are processed in a FIFO (First In First Out) manner. You
can queue jobs the same way you start export jobs. If one is in progress, it will simply queue up.
You can create, read, update, or delete FHIR resources while an export job is in progress.

Note

You can also export FHIR data from a HealthLake data store using the FHIR R4 $export
operation. For more information, see Exporting HealthLake data with FHIR $export.

Topics

• Starting a FHIR export job

• Getting FHIR export job properties

• Listing FHIR export jobs

Starting a FHIR export job

Use StartFHIRExportJob to start a FHIR export job from a HealthLake data store. The following
menus provide a procedure for the AWS Management Console and code examples for the AWS
CLI and AWS SDKs. For more information, see StartFHIRExportJob in the AWS HealthLake API
Reference.

Note

HealthLake supports the FHIR R4 specification for health care data exchange. Therefore, all
health data is exported in FHIR R4 format.

To start a FHIR export job

Choose a menu based on your access preference to AWS HealthLake.

Starting an export job 104

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_StartFHIRExportJob.html
https://hl7.org/fhir/R4/index.html

AWS HealthLake Developer Guide

AWS CLI and SDKs

CLI

AWS CLI

To start a FHIR export job

The following start-fhir-export-job example shows how to start a FHIR export job
using AWS HealthLake.

aws healthlake start-fhir-export-job \
 --output-data-config '{"S3Configuration": {"S3Uri":"s3://(Bucket Name)/
(Prefix Name)/","KmsKeyId":"arn:aws:kms:us-east-1:012345678910:key/d330e7fc-
b56c-4216-a250-f4c43ef46e83"}}' \
 --datastore-id (Data store ID) \
 --data-access-role-arn arn:aws:iam::(AWS Account ID):role/(Role Name)

Output:

{
 "DatastoreId": "(Data store ID)",
 "JobStatus": "SUBMITTED",
 "JobId": "9b9a51943afaedd0a8c0c26c49135a31"
}

• For API details, see StartFHIRExportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.

Starting an export job 105

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/start-fhir-export-job.html

AWS HealthLake Developer Guide

 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def start_fhir_export_job(
 self,
 job_name: str,
 datastore_id: str,
 output_s3_uri: str,
 kms_key_id: str,
 data_access_role_arn: str,
) -> dict[str, str]:
 """
 Starts a HealthLake export job.
 :param job_name: The export job name.
 :param datastore_id: The data store ID.
 :param output_s3_uri: The output S3 URI.
 :param kms_key_id: The KMS key ID associated with the output S3 bucket.
 :param data_access_role_arn: The data access role ARN.
 :return: The export job.
 """
 try:
 response = self.health_lake_client.start_fhir_export_job(
 OutputDataConfig={
 "S3Configuration": {"S3Uri": output_s3_uri, "KmsKeyId":
 kms_key_id}
 },
 DataAccessRoleArn=data_access_role_arn,
 DatastoreId=datastore_id,
 JobName=job_name,
)

 return response
 except ClientError as err:
 logger.exception(
 "Couldn't start export job. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see StartFHIRExportJob in AWS SDK for Python (Boto3) API Reference.

Starting an export job 106

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/StartFHIRExportJob

AWS HealthLake Developer Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

1. Sign in to the Data stores page on the HealthLake Console.

2. Choose a data store.

3. Choose Export.

The Export page opens.

4. Under the Output data section, enter the following information:

• Output data location in Amazon S3

• Output encyryption

5. Under the Access permissions section, choose Use an existing IAM service role and select the
role from the Role name menu or choose Create an IAM role.

6. Choose Export data.

Note

During export, choose Copy job ID on the banner at the top of the page. You can use
the JobID to request export job properties using the AWS CLI. For more information,
see Getting FHIR export job properties.

Starting an export job 107

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://console.aws.amazon.com/healthlake/home#/list-datastores
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRExportJob.html#HealthLake-DescribeFHIRExportJob-request-JobId

AWS HealthLake Developer Guide

Getting FHIR export job properties

Use DescribeFHIRExportJob to get export job properties from a HealthLake data store. The
following menus provide a procedure for the AWS Management Console and code examples for
the AWS CLI and AWS SDKs. For more information, see DescribeFHIRExportJob in the AWS
HealthLake API Reference.

Note

HealthLake supports the FHIR R4 specification for health care data exchange. Therefore, all
health data is exported in FHIR R4 format.

To describe a FHIR export job

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To describe a FHIR export job

The following describe-fhir-export-job example shows how to find the properties of
a FHIR export job in AWS HealthLake.

aws healthlake describe-fhir-export-job \
 --datastore-id (Data store ID) \
 --job-id 9b9a51943afaedd0a8c0c26c49135a31

Output:

{
 "ExportJobProperties": {
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)",
 "JobStatus": "IN_PROGRESS",
 "JobId": "9009813e9d69ba7cf79bcb3468780f16",
 "SubmitTime": "2024-11-20T11:31:46.672000-05:00",

Getting export job properties 108

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DescribeFHIRExportJob.html
https://hl7.org/fhir/R4/index.html

AWS HealthLake Developer Guide

 "EndTime": "2024-11-20T11:34:01.636000-05:00",
 "OutputDataConfig": {
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "KmsKeyId": "arn:aws:kms:us-east-1:012345678910:key/d330e7fc-
b56c-4216-a250-f4c43ef46e83"
 }

 },
 "DatastoreId": "(Data store ID)"
 }
}

• For API details, see DescribeFHIRExportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def describe_fhir_export_job(
 self, datastore_id: str, job_id: str
) -> dict[str, any]:
 """
 Describes a HealthLake export job.
 :param datastore_id: The data store ID.
 :param job_id: The export job ID.
 :return: The export job description.
 """
 try:

Getting export job properties 109

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/describe-fhir-export-job.html

AWS HealthLake Developer Guide

 response = self.health_lake_client.describe_fhir_export_job(
 DatastoreId=datastore_id, JobId=job_id
)
 return response["ExportJobProperties"]
 except ClientError as err:
 logger.exception(
 "Couldn't describe export job with ID %s. Here's why %s",
 job_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DescribeFHIRExportJob in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

Note

FHIR export job information is not available on the HealthLake Console. Instead, use
the AWS CLI with DescribeFHIRExportJob to request export job properties such as
JobStatus. For more information, refer to the AWS CLI example on this page.

Getting export job properties 110

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DescribeFHIRExportJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ExportJobProperties.html#HealthLake-Type-ExportJobProperties-JobStatus

AWS HealthLake Developer Guide

Listing FHIR export jobs

Use ListFHIRExportJobs to list FHIR export jobs for a HealthLake data store. The following
menus provide a procedure for the AWS Management Console and code examples for the AWS
CLI and AWS SDKs. For more information, see ListFHIRExportJobs in the AWS HealthLake API
Reference.

Note

HealthLake supports the FHIR R4 specification for health care data exchange. Therefore, all
health data is exported in FHIR R4 format.

To list FHIR export jobs

Choose a menu based on your access preference to AWS HealthLake.

AWS CLI and SDKs

CLI

AWS CLI

To list all FHIR export jobs

The following list-fhir-export-jobs example shows how to use the command to view
a list of export jobs associated with an account.

aws healthlake list-fhir-export-jobs \
 --datastore-id (Data store ID) \
 --submitted-before (DATE like 2024-10-13T19:00:00Z)\
 --submitted-after (DATE like 2020-10-13T19:00:00Z)\
 --job-name "FHIR-EXPORT" \
 --job-status SUBMITTED \
 --max-results (Integer between 1 and 500)

Output:

{
 "ExportJobPropertiesList": [

Listing export jobs 111

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ListFHIRExportJobs.html
https://hl7.org/fhir/R4/index.html

AWS HealthLake Developer Guide

 {
 "ExportJobProperties": {
 "OutputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "KmsKeyId": "(KmsKey Id)"
 }
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role
 Name)",
 "JobStatus": "COMPLETED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f",
 "JobName": "FHIR-EXPORT",
 "SubmitTime": "2024-11-20T11:31:46.672000-05:00",
 "EndTime": "2024-11-20T11:34:01.636000-05:00",
 "DatastoreId": "(Data store ID)"
 }
 }
]
}

• For API details, see ListFHIRExportJobs in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def list_fhir_export_jobs(

Listing export jobs 112

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-fhir-export-jobs.html

AWS HealthLake Developer Guide

 self,
 datastore_id: str,
 job_name: str = None,
 job_status: str = None,
 submitted_before: datetime = None,
 submitted_after: datetime = None,
) -> list[dict[str, any]]:
 """
 Lists HealthLake export jobs satisfying the conditions.
 :param datastore_id: The data store ID.
 :param job_name: The export job name.
 :param job_status: The export job status.
 :param submitted_before: The export job submitted before the specified
 date.
 :param submitted_after: The export job submitted after the specified
 date.
 :return: A list of export jobs.
 """
 try:
 parameters = {"DatastoreId": datastore_id}
 if job_name is not None:
 parameters["JobName"] = job_name
 if job_status is not None:
 parameters["JobStatus"] = job_status
 if submitted_before is not None:
 parameters["SubmittedBefore"] = submitted_before
 if submitted_after is not None:
 parameters["SubmittedAfter"] = submitted_after
 next_token = None
 jobs = []
 # Loop through paginated results.
 while True:
 if next_token is not None:
 parameters["NextToken"] = next_token
 response =
 self.health_lake_client.list_fhir_export_jobs(**parameters)
 jobs.extend(response["ExportJobPropertiesList"])
 if "NextToken" in response:
 next_token = response["NextToken"]
 else:
 break
 return jobs
 except ClientError as err:
 logger.exception(

Listing export jobs 113

AWS HealthLake Developer Guide

 "Couldn't list export jobs. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListFHIRExportJobs in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Example availability

Can't find what you need? Request a code example using the Provide feedback link on the
right sidebar of this page.

AWS Console

Note

FHIR export job information is not available on the HealthLake Console. Instead, use the
AWS CLI with ListFHIRExportJobs to list all FHIR export jobs. For more information,
refer to the AWS CLI example on this page.

Listing export jobs 114

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListFHIRExportJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

Code examples for HealthLake using AWS SDKs

The following code examples show how to use HealthLake with an AWS software development kit
(SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Code examples

• Basic examples for HealthLake using AWS SDKs

• Actions for HealthLake using AWS SDKs

• Use CreateFHIRDatastore with an AWS SDK or CLI

• Use DeleteFHIRDatastore with an AWS SDK or CLI

• Use DescribeFHIRDatastore with an AWS SDK or CLI

• Use DescribeFHIRExportJob with an AWS SDK or CLI

• Use DescribeFHIRImportJob with an AWS SDK or CLI

• Use ListFHIRDatastores with an AWS SDK or CLI

• Use ListFHIRExportJobs with an AWS SDK or CLI

• Use ListFHIRImportJobs with an AWS SDK or CLI

• Use ListTagsForResource with an AWS SDK or CLI

• Use StartFHIRExportJob with an AWS SDK or CLI

• Use StartFHIRImportJob with an AWS SDK or CLI

• Use TagResource with an AWS SDK or CLI

• Use UntagResource with an AWS SDK or CLI

Basic examples for HealthLake using AWS SDKs

The following code examples show how to use the basics of AWS HealthLake with AWS SDKs.

Examples

Basics 115

AWS HealthLake Developer Guide

• Actions for HealthLake using AWS SDKs

• Use CreateFHIRDatastore with an AWS SDK or CLI

• Use DeleteFHIRDatastore with an AWS SDK or CLI

• Use DescribeFHIRDatastore with an AWS SDK or CLI

• Use DescribeFHIRExportJob with an AWS SDK or CLI

• Use DescribeFHIRImportJob with an AWS SDK or CLI

• Use ListFHIRDatastores with an AWS SDK or CLI

• Use ListFHIRExportJobs with an AWS SDK or CLI

• Use ListFHIRImportJobs with an AWS SDK or CLI

• Use ListTagsForResource with an AWS SDK or CLI

• Use StartFHIRExportJob with an AWS SDK or CLI

• Use StartFHIRImportJob with an AWS SDK or CLI

• Use TagResource with an AWS SDK or CLI

• Use UntagResource with an AWS SDK or CLI

Actions for HealthLake using AWS SDKs

The following code examples demonstrate how to perform individual HealthLake actions with AWS
SDKs. Each example includes a link to GitHub, where you can find instructions for setting up and
running the code.

The following examples include only the most commonly used actions. For a complete list, see the
AWS HealthLake API Reference.

Examples

• Use CreateFHIRDatastore with an AWS SDK or CLI

• Use DeleteFHIRDatastore with an AWS SDK or CLI

• Use DescribeFHIRDatastore with an AWS SDK or CLI

• Use DescribeFHIRExportJob with an AWS SDK or CLI

• Use DescribeFHIRImportJob with an AWS SDK or CLI

• Use ListFHIRDatastores with an AWS SDK or CLI

• Use ListFHIRExportJobs with an AWS SDK or CLI

• Use ListFHIRImportJobs with an AWS SDK or CLI

Actions 116

https://docs.aws.amazon.com/healthlake/latest/APIReference/Welcome.html

AWS HealthLake Developer Guide

• Use ListTagsForResource with an AWS SDK or CLI

• Use StartFHIRExportJob with an AWS SDK or CLI

• Use StartFHIRImportJob with an AWS SDK or CLI

• Use TagResource with an AWS SDK or CLI

• Use UntagResource with an AWS SDK or CLI

Use CreateFHIRDatastore with an AWS SDK or CLI

The following code examples show how to use CreateFHIRDatastore.

CLI

AWS CLI

Example 1: Create a SigV4-enabled HealthLake data store

The following create-fhir-datastore example demonstrates how to create a new data
store in AWS HealthLake.

aws healthlake create-fhir-datastore \
 --datastore-type-version R4 \
 --datastore-name "FhirTestDatastore"

Output:

{
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Data store ID)/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Data store ID)",
 "DatastoreStatus": "CREATING",
 "DatastoreId": "(Data store ID)"
}

Example 2: Create a SMART on FHIR-enabled HealthLake data store

The following create-fhir-datastore example demonstrates how to create a new
SMART on FHIR-enabled data store in AWS HealthLake.

aws healthlake create-fhir-datastore \

Actions 117

AWS HealthLake Developer Guide

 --datastore-name "your-data-store-name" \
 --datastore-type-version R4 \
 --preload-data-config PreloadDataType="SYNTHEA" \
 --sse-configuration '{ "KmsEncryptionConfig": { "CmkType":
 "CUSTOMER_MANAGED_KMS_KEY", "KmsKeyId": "arn:aws:kms:us-east-1:your-account-
id:key/your-key-id" } }' \
 --identity-provider-configuration file://
identity_provider_configuration.json

Contents of identity_provider_configuration.json:

{
 "AuthorizationStrategy": "SMART_ON_FHIR_V1",
 "FineGrainedAuthorizationEnabled": true,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-id:function:your-
lambda-name",
 "Metadata": "{\"issuer\":\"https://ehr.example.com\", \"jwks_uri\":
\"https://ehr.example.com/.well-known/jwks.json\",\"authorization_endpoint
\":\"https://ehr.example.com/auth/authorize\",\"token_endpoint\":\"https://
ehr.token.com/auth/token\",\"token_endpoint_auth_methods_supported\":
[\"client_secret_basic\",\"foo\"],\"grant_types_supported\":[\"client_credential
\",\"foo\"],\"registration_endpoint\":\"https://ehr.example.com/auth/
register\",\"scopes_supported\":[\"openId\",\"profile\",\"launch\"],
\"response_types_supported\":[\"code\"],\"management_endpoint\":\"https://
ehr.example.com/user/manage\",\"introspection_endpoint\":\"https://
ehr.example.com/user/introspect\",\"revocation_endpoint\":\"https://
ehr.example.com/user/revoke\",\"code_challenge_methods_supported\":[\"S256\"],
\"capabilities\":[\"launch-ehr\",\"sso-openid-connect\",\"client-public\"]}"
}

Output:

{
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Data store ID)/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Data store ID)",
 "DatastoreStatus": "CREATING",
 "DatastoreId": "(Data store ID)"
}

• For API details, see CreateFHIRDatastore in AWS CLI Command Reference.

Actions 118

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/create-fhir-datastore.html

AWS HealthLake Developer Guide

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def create_fhir_datastore(
 self,
 datastore_name: str,
 sse_configuration: dict[str, any] = None,
 identity_provider_configuration: dict[str, any] = None,
) -> dict[str, str]:
 """
 Creates a new HealthLake data store.
 When creating a SMART on FHIR data store, the following parameters are
 required:
 - sse_configuration: The server-side encryption configuration for a SMART
 on FHIR-enabled data store.
 - identity_provider_configuration: The identity provider configuration
 for a SMART on FHIR-enabled data store.

 :param datastore_name: The name of the data store.
 :param sse_configuration: The server-side encryption configuration for a
 SMART on FHIR-enabled data store.
 :param identity_provider_configuration: The identity provider
 configuration for a SMART on FHIR-enabled data store.
 :return: A dictionary containing the data store information.
 """
 try:
 parameters = {"DatastoreName": datastore_name,
 "DatastoreTypeVersion": "R4"}
 if (
 sse_configuration is not None

Actions 119

AWS HealthLake Developer Guide

 and identity_provider_configuration is not None
):
 # Creating a SMART on FHIR-enabled data store
 parameters["SseConfiguration"] = sse_configuration
 parameters[
 "IdentityProviderConfiguration"
] = identity_provider_configuration

 response =
 self.health_lake_client.create_fhir_datastore(**parameters)
 return response
 except ClientError as err:
 logger.exception(
 "Couldn't create data store %s. Here's why %s",
 datastore_name,
 err.response["Error"]["Message"],
)
 raise

The following code shows an example of parameters for a SMART on FHIR-enabled
HealthLake data store.

 sse_configuration = {
 "KmsEncryptionConfig": {"CmkType": "AWS_OWNED_KMS_KEY"}
 }
 # TODO: Update the metadata to match your environment.
 metadata = {
 "issuer": "https://ehr.example.com",
 "jwks_uri": "https://ehr.example.com/.well-known/jwks.json",
 "authorization_endpoint": "https://ehr.example.com/auth/
authorize",
 "token_endpoint": "https://ehr.token.com/auth/token",
 "token_endpoint_auth_methods_supported": [
 "client_secret_basic",
 "foo",
],
 "grant_types_supported": ["client_credential", "foo"],
 "registration_endpoint": "https://ehr.example.com/auth/register",
 "scopes_supported": ["openId", "profile", "launch"],
 "response_types_supported": ["code"],
 "management_endpoint": "https://ehr.example.com/user/manage",

Actions 120

AWS HealthLake Developer Guide

 "introspection_endpoint": "https://ehr.example.com/user/
introspect",
 "revocation_endpoint": "https://ehr.example.com/user/revoke",
 "code_challenge_methods_supported": ["S256"],
 "capabilities": [
 "launch-ehr",
 "sso-openid-connect",
 "client-public",
],
 }
 # TODO: Update the IdpLambdaArn.
 identity_provider_configuration = {
 "AuthorizationStrategy": "SMART_ON_FHIR_V1",
 "FineGrainedAuthorizationEnabled": True,
 "IdpLambdaArn": "arn:aws:lambda:your-region:your-account-
id:function:your-lambda-name",
 "Metadata": json.dumps(metadata),
 }
 data_store = self.create_fhir_datastore(
 datastore_name, sse_configuration,
 identity_provider_configuration
)

• For API details, see CreateFHIRDatastore in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteFHIRDatastore with an AWS SDK or CLI

The following code examples show how to use DeleteFHIRDatastore.

Actions 121

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/CreateFHIRDatastore
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

CLI

AWS CLI

To delete a FHIR data store

The following delete-fhir-datastore example demonstrates how to delete a data store
and all of its contents in AWS HealthLake.

aws healthlake delete-fhir-datastore \
 --datastore-id (Data store ID)

Output:

{
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
(Data store ID)/r4/",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:(AWS Account ID):datastore/
(Data store ID)",
 "DatastoreStatus": "DELETING",
 "DatastoreId": "(Data store ID)"
}

• For API details, see DeleteFHIRDatastore in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

Actions 122

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/delete-fhir-datastore.html

AWS HealthLake Developer Guide

 def delete_fhir_datastore(self, datastore_id: str) -> None:
 """
 Deletes a HealthLake data store.
 :param datastore_id: The data store ID.
 """
 try:

 self.health_lake_client.delete_fhir_datastore(DatastoreId=datastore_id)
 except ClientError as err:
 logger.exception(
 "Couldn't delete data store with ID %s. Here's why %s",
 datastore_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteFHIRDatastore in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeFHIRDatastore with an AWS SDK or CLI

The following code examples show how to use DescribeFHIRDatastore.

CLI

AWS CLI

To describe a FHIR data store

The following describe-fhir-datastore example demonstrates how to find the
properties of a data store in AWS HealthLake.

Actions 123

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DeleteFHIRDatastore
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

aws healthlake describe-fhir-datastore \
 --datastore-id "1f2f459836ac6c513ce899f9e4f66a59"

Output:

{
 "DatastoreProperties": {
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"
 },
 "SseConfiguration": {
 "KmsEncryptionConfig": {
 "CmkType": "CUSTOMER_MANAGED_KMS_KEY",
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 },
 "DatastoreName": "Demo",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:<AWS Account ID>:datastore/
<Data store ID>",
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/
datastore/<Data store ID>/r4/",
 "DatastoreStatus": "ACTIVE",
 "DatastoreTypeVersion": "R4",
 "CreatedAt": 1603761064.881,
 "DatastoreId": "<Data store ID>",
 "IdentityProviderConfiguration": {
 "AuthorizationStrategy": "AWS_AUTH",
 "FineGrainedAuthorizationEnabled": false
 }
 }
}

• For API details, see DescribeFHIRDatastore in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":

Actions 124

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/describe-fhir-datastore.html

AWS HealthLake Developer Guide

 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def describe_fhir_datastore(self, datastore_id: str) -> dict[str, any]:
 """
 Describes a HealthLake data store.
 :param datastore_id: The data store ID.
 :return: The data store description.
 """
 try:
 response = self.health_lake_client.describe_fhir_datastore(
 DatastoreId=datastore_id
)
 return response["DatastoreProperties"]
 except ClientError as err:
 logger.exception(
 "Couldn't describe data store with ID %s. Here's why %s",
 datastore_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DescribeFHIRDatastore in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 125

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DescribeFHIRDatastore
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeFHIRExportJob with an AWS SDK or CLI

The following code examples show how to use DescribeFHIRExportJob.

CLI

AWS CLI

To describe a FHIR export job

The following describe-fhir-export-job example shows how to find the properties of
a FHIR export job in AWS HealthLake.

aws healthlake describe-fhir-export-job \
 --datastore-id (Data store ID) \
 --job-id 9b9a51943afaedd0a8c0c26c49135a31

Output:

{
 "ExportJobProperties": {
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)",
 "JobStatus": "IN_PROGRESS",
 "JobId": "9009813e9d69ba7cf79bcb3468780f16",
 "SubmitTime": "2024-11-20T11:31:46.672000-05:00",
 "EndTime": "2024-11-20T11:34:01.636000-05:00",
 "OutputDataConfig": {
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "KmsKeyId": "arn:aws:kms:us-east-1:012345678910:key/d330e7fc-
b56c-4216-a250-f4c43ef46e83"
 }

 },
 "DatastoreId": "(Data store ID)"
 }
}

Actions 126

AWS HealthLake Developer Guide

• For API details, see DescribeFHIRExportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def describe_fhir_export_job(
 self, datastore_id: str, job_id: str
) -> dict[str, any]:
 """
 Describes a HealthLake export job.
 :param datastore_id: The data store ID.
 :param job_id: The export job ID.
 :return: The export job description.
 """
 try:
 response = self.health_lake_client.describe_fhir_export_job(
 DatastoreId=datastore_id, JobId=job_id
)
 return response["ExportJobProperties"]
 except ClientError as err:
 logger.exception(
 "Couldn't describe export job with ID %s. Here's why %s",
 job_id,
 err.response["Error"]["Message"],
)
 raise

Actions 127

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/describe-fhir-export-job.html

AWS HealthLake Developer Guide

• For API details, see DescribeFHIRExportJob in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeFHIRImportJob with an AWS SDK or CLI

The following code examples show how to use DescribeFHIRImportJob.

CLI

AWS CLI

To describe a FHIR import job

The following describe-fhir-import-job example shows how to learn the properties of
a FHIR import job using AWS HealthLake.

aws healthlake describe-fhir-import-job \
 --datastore-id (Data store ID) \
 --job-id c145fbb27b192af392f8ce6e7838e34f

Output:

{
 "ImportJobProperties": {
 "InputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/"
 { "arrayitem2": 2 }
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)",
 "JobStatus": "COMPLETED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f",
 "SubmitTime": 1606272542.161,

Actions 128

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DescribeFHIRExportJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

 "EndTime": 1606272609.497,
 "DatastoreId": "(Data store ID)"
 }
}

• For API details, see DescribeFHIRImportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def describe_fhir_import_job(
 self, datastore_id: str, job_id: str
) -> dict[str, any]:
 """
 Describes a HealthLake import job.
 :param datastore_id: The data store ID.
 :param job_id: The import job ID.
 :return: The import job description.
 """
 try:
 response = self.health_lake_client.describe_fhir_import_job(
 DatastoreId=datastore_id, JobId=job_id
)
 return response["ImportJobProperties"]
 except ClientError as err:
 logger.exception(
 "Couldn't describe import job with ID %s. Here's why %s",
 job_id,

Actions 129

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/describe-fhir-import-job.html

AWS HealthLake Developer Guide

 err.response["Error"]["Message"],
)
 raise

• For API details, see DescribeFHIRImportJob in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListFHIRDatastores with an AWS SDK or CLI

The following code examples show how to use ListFHIRDatastores.

CLI

AWS CLI

To list FHIR data stores

The following list-fhir-datastores example shows to how to use the command and
how users can filter results based on data store status in AWS HealthLake.

aws healthlake list-fhir-datastores \
 --filter DatastoreStatus=ACTIVE

Output:

{
 "DatastorePropertiesList": [
 {
 "PreloadDataConfig": {
 "PreloadDataType": "SYNTHEA"

Actions 130

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/DescribeFHIRImportJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

 },
 "SseConfiguration": {
 "KmsEncryptionConfig": {
 "CmkType": "CUSTOMER_MANAGED_KMS_KEY",
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
 },
 "DatastoreName": "Demo",
 "DatastoreArn": "arn:aws:healthlake:us-east-1:<AWS Account ID>:datastore/
<Data store ID>",
 "DatastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/
datastore/<Data store ID>/r4/",
 "DatastoreStatus": "ACTIVE",
 "DatastoreTypeVersion": "R4",
 "CreatedAt": 1603761064.881,
 "DatastoreId": "<Data store ID>",
 "IdentityProviderConfiguration": {
 "AuthorizationStrategy": "AWS_AUTH",
 "FineGrainedAuthorizationEnabled": false
 }
 }
]
}

• For API details, see ListFHIRDatastores in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

Actions 131

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-fhir-datastores.html

AWS HealthLake Developer Guide

 def list_fhir_datastores(self) -> list[dict[str, any]]:
 """
 Lists all HealthLake data stores.
 :return: A list of data store descriptions.
 """
 try:
 next_token = None
 datastores = []

 # Loop through paginated results.
 while True:
 parameters = {}
 if next_token is not None:
 parameters["NextToken"] = next_token
 response =
 self.health_lake_client.list_fhir_datastores(**parameters)
 datastores.extend(response["DatastorePropertiesList"])
 if "NextToken" in response:
 next_token = response["NextToken"]
 else:
 break

 return datastores
 except ClientError as err:
 logger.exception(
 "Couldn't list data stores. Here's why %s", err.response["Error"]
["Message"]
)
 raise

• For API details, see ListFHIRDatastores in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 132

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListFHIRDatastores
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListFHIRExportJobs with an AWS SDK or CLI

The following code examples show how to use ListFHIRExportJobs.

CLI

AWS CLI

To list all FHIR export jobs

The following list-fhir-export-jobs example shows how to use the command to view
a list of export jobs associated with an account.

aws healthlake list-fhir-export-jobs \
 --datastore-id (Data store ID) \
 --submitted-before (DATE like 2024-10-13T19:00:00Z)\
 --submitted-after (DATE like 2020-10-13T19:00:00Z)\
 --job-name "FHIR-EXPORT" \
 --job-status SUBMITTED \
 --max-results (Integer between 1 and 500)

Output:

{
 "ExportJobPropertiesList": [
 {
 "ExportJobProperties": {
 "OutputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/",
 "KmsKeyId": "(KmsKey Id)"
 }
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role
 Name)",
 "JobStatus": "COMPLETED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f",
 "JobName": "FHIR-EXPORT",

Actions 133

AWS HealthLake Developer Guide

 "SubmitTime": "2024-11-20T11:31:46.672000-05:00",
 "EndTime": "2024-11-20T11:34:01.636000-05:00",
 "DatastoreId": "(Data store ID)"
 }
 }
]
}

• For API details, see ListFHIRExportJobs in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def list_fhir_export_jobs(
 self,
 datastore_id: str,
 job_name: str = None,
 job_status: str = None,
 submitted_before: datetime = None,
 submitted_after: datetime = None,
) -> list[dict[str, any]]:
 """
 Lists HealthLake export jobs satisfying the conditions.
 :param datastore_id: The data store ID.
 :param job_name: The export job name.
 :param job_status: The export job status.
 :param submitted_before: The export job submitted before the specified
 date.

Actions 134

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-fhir-export-jobs.html

AWS HealthLake Developer Guide

 :param submitted_after: The export job submitted after the specified
 date.
 :return: A list of export jobs.
 """
 try:
 parameters = {"DatastoreId": datastore_id}
 if job_name is not None:
 parameters["JobName"] = job_name
 if job_status is not None:
 parameters["JobStatus"] = job_status
 if submitted_before is not None:
 parameters["SubmittedBefore"] = submitted_before
 if submitted_after is not None:
 parameters["SubmittedAfter"] = submitted_after
 next_token = None
 jobs = []
 # Loop through paginated results.
 while True:
 if next_token is not None:
 parameters["NextToken"] = next_token
 response =
 self.health_lake_client.list_fhir_export_jobs(**parameters)
 jobs.extend(response["ExportJobPropertiesList"])
 if "NextToken" in response:
 next_token = response["NextToken"]
 else:
 break
 return jobs
 except ClientError as err:
 logger.exception(
 "Couldn't list export jobs. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListFHIRExportJobs in AWS SDK for Python (Boto3) API Reference.

Actions 135

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListFHIRExportJobs

AWS HealthLake Developer Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListFHIRImportJobs with an AWS SDK or CLI

The following code examples show how to use ListFHIRImportJobs.

CLI

AWS CLI

To list all FHIR import jobs

The following list-fhir-import-jobs example shows how to use the command to view
a list of all import jobs associated with an account.

aws healthlake list-fhir-import-jobs \
 --datastore-id (Data store ID) \
 --submitted-before (DATE like 2024-10-13T19:00:00Z) \
 --submitted-after (DATE like 2020-10-13T19:00:00Z) \
 --job-name "FHIR-IMPORT" \
 --job-status SUBMITTED \
 -max-results (Integer between 1 and 500)

Output:

{
 "ImportJobPropertiesList": [
 {
 "JobId": "c0fddbf76f238297632d4aebdbfc9ddf",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2024-11-20T10:08:46.813000-05:00",
 "EndTime": "2024-11-20T10:10:09.093000-05:00",
 "DatastoreId": "(Data store ID)",

Actions 136

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

 "InputDataConfig": {
 "S3Uri": "s3://(Bucket Name)/(Prefix Name)/"
 },
 "JobOutputDataConfig": {
 "S3Configuration": {
 "S3Uri": "s3://(Bucket Name)/
import/6407b9ae4c2def3cb6f1a46a0c599ec0-FHIR_IMPORT-
c0fddbf76f238297632d4aebdbfc9ddf/",
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/b7f645cb-
e564-4981-8672-9e012d1ff1a0"
 }
 },
 "JobProgressReport": {
 "TotalNumberOfScannedFiles": 1,
 "TotalSizeOfScannedFilesInMB": 0.001798,
 "TotalNumberOfImportedFiles": 1,
 "TotalNumberOfResourcesScanned": 1,
 "TotalNumberOfResourcesImported": 1,
 "TotalNumberOfResourcesWithCustomerError": 0,
 "TotalNumberOfFilesReadWithCustomerError": 0,
 "Throughput": 0.0
 },
 "DataAccessRoleArn": "arn:aws:iam::(AWS Account ID):role/(Role Name)"
 }
]
}

• For API details, see ListFHIRImportJobs in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """

Actions 137

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-fhir-import-jobs.html

AWS HealthLake Developer Guide

 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def list_fhir_import_jobs(
 self,
 datastore_id: str,
 job_name: str = None,
 job_status: str = None,
 submitted_before: datetime = None,
 submitted_after: datetime = None,
) -> list[dict[str, any]]:
 """
 Lists HealthLake import jobs satisfying the conditions.
 :param datastore_id: The data store ID.
 :param job_name: The import job name.
 :param job_status: The import job status.
 :param submitted_before: The import job submitted before the specified
 date.
 :param submitted_after: The import job submitted after the specified
 date.
 :return: A list of import jobs.
 """
 try:
 parameters = {"DatastoreId": datastore_id}
 if job_name is not None:
 parameters["JobName"] = job_name
 if job_status is not None:
 parameters["JobStatus"] = job_status
 if submitted_before is not None:
 parameters["SubmittedBefore"] = submitted_before
 if submitted_after is not None:
 parameters["SubmittedAfter"] = submitted_after
 next_token = None
 jobs = []
 # Loop through paginated results.
 while True:
 if next_token is not None:
 parameters["NextToken"] = next_token
 response =
 self.health_lake_client.list_fhir_import_jobs(**parameters)
 jobs.extend(response["ImportJobPropertiesList"])
 if "NextToken" in response:
 next_token = response["NextToken"]

Actions 138

AWS HealthLake Developer Guide

 else:
 break
 return jobs
 except ClientError as err:
 logger.exception(
 "Couldn't list import jobs. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see ListFHIRImportJobs in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListTagsForResource with an AWS SDK or CLI

The following code examples show how to use ListTagsForResource.

CLI

AWS CLI

To list tags for a data store

The following list-tags-for-resource example lists the tags associated with the
specified data store.:

aws healthlake list-tags-for-resource \
 --resource-arn "arn:aws:healthlake:us-east-1:123456789012:datastore/
fhir/0725c83f4307f263e16fd56b6d8ebdbe"

Output:

Actions 139

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListFHIRImportJobs
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

{
 "tags": {
 "key": "value",
 "key1": "value1"
 }
}

• For API details, see ListTagsForResource in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def list_tags_for_resource(self, resource_arn: str) -> dict[str, str]:
 """
 Lists the tags for a HealthLake resource.
 :param resource_arn: The resource ARN.
 :return: The tags for the resource.
 """
 try:
 response = self.health_lake_client.list_tags_for_resource(
 ResourceARN=resource_arn
)
 return response["Tags"]
 except ClientError as err:
 logger.exception(
 "Couldn't list tags for resource %s. Here's why %s",
 resource_arn,
 err.response["Error"]["Message"],

Actions 140

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/list-tags-for-resource.html

AWS HealthLake Developer Guide

)
 raise

• For API details, see ListTagsForResource in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use StartFHIRExportJob with an AWS SDK or CLI

The following code examples show how to use StartFHIRExportJob.

CLI

AWS CLI

To start a FHIR export job

The following start-fhir-export-job example shows how to start a FHIR export job
using AWS HealthLake.

aws healthlake start-fhir-export-job \
 --output-data-config '{"S3Configuration": {"S3Uri":"s3://(Bucket Name)/
(Prefix Name)/","KmsKeyId":"arn:aws:kms:us-east-1:012345678910:key/d330e7fc-
b56c-4216-a250-f4c43ef46e83"}}' \
 --datastore-id (Data store ID) \
 --data-access-role-arn arn:aws:iam::(AWS Account ID):role/(Role Name)

Output:

{
 "DatastoreId": "(Data store ID)",

Actions 141

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/ListTagsForResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

 "JobStatus": "SUBMITTED",
 "JobId": "9b9a51943afaedd0a8c0c26c49135a31"
}

• For API details, see StartFHIRExportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def start_fhir_export_job(
 self,
 job_name: str,
 datastore_id: str,
 output_s3_uri: str,
 kms_key_id: str,
 data_access_role_arn: str,
) -> dict[str, str]:
 """
 Starts a HealthLake export job.
 :param job_name: The export job name.
 :param datastore_id: The data store ID.
 :param output_s3_uri: The output S3 URI.
 :param kms_key_id: The KMS key ID associated with the output S3 bucket.
 :param data_access_role_arn: The data access role ARN.
 :return: The export job.
 """
 try:
 response = self.health_lake_client.start_fhir_export_job(

Actions 142

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/start-fhir-export-job.html

AWS HealthLake Developer Guide

 OutputDataConfig={
 "S3Configuration": {"S3Uri": output_s3_uri, "KmsKeyId":
 kms_key_id}
 },
 DataAccessRoleArn=data_access_role_arn,
 DatastoreId=datastore_id,
 JobName=job_name,
)

 return response
 except ClientError as err:
 logger.exception(
 "Couldn't start export job. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see StartFHIRExportJob in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use StartFHIRImportJob with an AWS SDK or CLI

The following code examples show how to use StartFHIRImportJob.

CLI

AWS CLI

To start a FHIR import job

Actions 143

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/StartFHIRExportJob
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

The following start-fhir-import-job example shows how to start a FHIR import job
using AWS HealthLake.

aws healthlake start-fhir-import-job \
 --input-data-config S3Uri="s3://(Bucket Name)/(Prefix Name)/" \
 --job-output-data-config '{"S3Configuration": {"S3Uri":"s3://(Bucket Name)/
(Prefix Name)/","KmsKeyId":"arn:aws:kms:us-east-1:012345678910:key/d330e7fc-
b56c-4216-a250-f4c43ef46e83"}}' \
 --datastore-id (Data store ID) \
 --data-access-role-arn "arn:aws:iam::(AWS Account ID):role/(Role Name)"

Output:

{
 "DatastoreId": "(Data store ID)",
 "JobStatus": "SUBMITTED",
 "JobId": "c145fbb27b192af392f8ce6e7838e34f"
}

• For API details, see StartFHIRImportJob in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def start_fhir_import_job(
 self,
 job_name: str,

Actions 144

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/start-fhir-import-job.html

AWS HealthLake Developer Guide

 datastore_id: str,
 input_s3_uri: str,
 job_output_s3_uri: str,
 kms_key_id: str,
 data_access_role_arn: str,
) -> dict[str, str]:
 """
 Starts a HealthLake import job.
 :param job_name: The import job name.
 :param datastore_id: The data store ID.
 :param input_s3_uri: The input S3 URI.
 :param job_output_s3_uri: The job output S3 URI.
 :param kms_key_id: The KMS key ID associated with the output S3 bucket.
 :param data_access_role_arn: The data access role ARN.
 :return: The import job.
 """
 try:
 response = self.health_lake_client.start_fhir_import_job(
 JobName=job_name,
 InputDataConfig={"S3Uri": input_s3_uri},
 JobOutputDataConfig={
 "S3Configuration": {
 "S3Uri": job_output_s3_uri,
 "KmsKeyId": kms_key_id,
 }
 },
 DataAccessRoleArn=data_access_role_arn,
 DatastoreId=datastore_id,
)
 return response
 except ClientError as err:
 logger.exception(
 "Couldn't start import job. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see StartFHIRImportJob in AWS SDK for Python (Boto3) API Reference.

Actions 145

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/StartFHIRImportJob

AWS HealthLake Developer Guide

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use TagResource with an AWS SDK or CLI

The following code examples show how to use TagResource.

CLI

AWS CLI

To add a tag to data store

The following tag-resource example shows how to add a tag to a data store.

aws healthlake tag-resource \
 --resource-arn "arn:aws:healthlake:us-east-1:123456789012:datastore/
fhir/0725c83f4307f263e16fd56b6d8ebdbe" \
 --tags '[{"Key": "key1", "Value": "value1"}]'

This command produces no output.

• For API details, see TagResource in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

Actions 146

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/tag-resource.html

AWS HealthLake Developer Guide

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def tag_resource(self, resource_arn: str, tags: list[dict[str, str]]) ->
 None:
 """
 Tags a HealthLake resource.
 :param resource_arn: The resource ARN.
 :param tags: The tags to add to the resource.
 """
 try:
 self.health_lake_client.tag_resource(ResourceARN=resource_arn,
 Tags=tags)
 except ClientError as err:
 logger.exception(
 "Couldn't tag resource %s. Here's why %s",
 resource_arn,
 err.response["Error"]["Message"],
)
 raise

• For API details, see TagResource in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use UntagResource with an AWS SDK or CLI

The following code examples show how to use UntagResource.

Actions 147

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/TagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

CLI

AWS CLI

To remove tags from a data store.

The following untag-resource example shows how to remove tags from a data store.

aws healthlake untag-resource \
 --resource-arn "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
b91723d65c6fdeb1d26543a49d2ed1fa" \
 --tag-keys '["key1"]'

This command produces no output.

• For API details, see UntagResource in AWS CLI Command Reference.

Python

SDK for Python (Boto3)

 @classmethod
 def from_client(cls) -> "HealthLakeWrapper":
 """
 Creates a HealthLakeWrapper instance with a default AWS HealthLake
 client.

 :return: An instance of HealthLakeWrapper initialized with the default
 HealthLake client.
 """
 health_lake_client = boto3.client("healthlake")
 return cls(health_lake_client)

 def untag_resource(self, resource_arn: str, tag_keys: list[str]) -> None:
 """
 Untags a HealthLake resource.
 :param resource_arn: The resource ARN.
 :param tag_keys: The tag keys to remove from the resource.
 """
 try:
 self.health_lake_client.untag_resource(

Actions 148

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/healthlake/untag-resource.html

AWS HealthLake Developer Guide

 ResourceARN=resource_arn, TagKeys=tag_keys
)
 except ClientError as err:
 logger.exception(
 "Couldn't untag resource %s. Here's why %s",
 resource_arn,
 err.response["Error"]["Message"],
)
 raise

• For API details, see UntagResource in AWS SDK for Python (Boto3) API Reference.

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

For a complete list of AWS SDK developer guides and code examples, see Using HealthLake with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 149

https://docs.aws.amazon.com/goto/boto3/healthlake-2017-07-01/UntagResource
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/healthlake#code-examples

AWS HealthLake Developer Guide

Integrating AWS HealthLake

The following AWS services integrate directly with AWS HealthLake to enable integrated natural
language processing, SQL query, and data warehousing.

• Amazon Comprehend Medical is a HIPAA eligible natural language processing service (NLP) that
uses machine learning libraries to extract meaningful health data from unstructured medical text
in HealthLake. For more information, see the Amazon Comprehend Medical Developer Guide.

• Amazon Athena is an interactive query service that enables you analyze HealthLake data
directly in Amazon Simple Storage Service (Amazon S3) buckets using standard SQL. For more
information, see the Amazon Athena Developer Guide.

Topics

• Integrated natural language processing (NLP) for HealthLake

• Querying HealthLake data with Amazon Athena

Integrated natural language processing (NLP) for HealthLake

AWS HealthLake provides integrated natural language processing (NLP) libraries for parsing,
identifying, and mapping unstructured data stored in FHIR DocumentReference resource types.

Important

Integrated NLP for HealthLake is turned off by default. To have it turned on, submit a
support case using AWS Support Center Console. To create your case, log in to your AWS
account and choose Create case.

HealthLake integrated NLP works by calling the Amazon Comprehend Medical DetectEntities-
V2, InferICD10-CM, and InferRxNorm API actions. The actions append their results as an
extension to the DocumentReference resource. When the Amazon Comprehend Medical API
actions detect traits that are SIGN, SYMPTOM, and/or DIAGNOSIS, they generate a FHIR Linkage
resource. New Condition and Observation resources are created from entities identified with
the traits of SIGN, SYMPTOM, or DIAGNOSIS and they are linked to the source document using the
Linkage resource.

Natural language processing 150

https://docs.aws.amazon.com/comprehend-medical/latest/dev/comprehendmedical-welcome.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://hl7.org/fhir/R4/documentreference.html
https://console.aws.amazon.com/support/home#/
https://hl7.org/fhir/R4/linkage.html

AWS HealthLake Developer Guide

Note

Although GET requests are supported for FHIR resources generated by HealthLake
integrated NLP, FHIR API search functionality is not. To learn more about searching NLP
extensions using HealthLake's integration with Athena, see SQL index and query.

Contents

• HealthLake Integrated NLP libraries

• Using FHIR REST API interactions

• Search parameters for HealthLake integrated NLP

• HealthLake integrated NLP example requests

HealthLake Integrated NLP libraries

HealthLake infers data found in the DocumentReference resource type using Amazon
Comprehend Medical libraries. The Amazon Comprehend Medical API operations
DetectEntities-V2, InferICD10-CM, and InferRxNorm detect medical conditions as traits.
Each operation provides different insights.

Language support

Amazon Comprehend Medical API operations only detect medical entities in English
language texts.

• DetectEntities-V2: Inspects the clinical text for a variety of medical entities and returns specific
information about them, such as entity category, location, and confidence score.

• InferICD10-CM: Detects medical conditions in a patient record as entities, and it links those
entities to normalized concept identifiers in the ICD-10-CM knowledge base from the CDC's
National Center for Health Statistics under authorization by the World Health Organization
(WHO).

• InferRxNorm: Detects medications as entities listed in a patient record, and it links them to the
normalized concept identifiers in the RxNorm database from the National Library of Medicine.

NLP libraries 151

AWS HealthLake Developer Guide

The supported traits for each API operation are SIGN, SYMPTOM, and DIAGNOSIS. If traits are
detected, they are added as FHIR-compliant extensions to different locations in your HealthLake
data store.

Locations where extensions are added.

• DocumentReference: The results from the Amazon Comprehend Medical API operations are
added as an extension to each document found within the DocumentReference resource
type. Results in the extension are divided into two groups. You can find them in the results based
on their URL.

• http://healthlake.amazonaws.com/system-generated-resources/

• These are resource types that have been created or added to by HealthLake.

• http://healthlake.amazonaws.com/aws-cm/

• Where the raw output of the Amazon Comprehend Medical API operations is added to your
HealthLake data store.

• Linkage: This resource type is either added or created as a result of the integrated NLP. A GET
request on a specific Linkage returns a list of linked resources. To identify if a Linkage was
added by HealthLake, look for the added "tag": [{"display": "SYSTEM_GENERATED"}]
key-value pair. To learn more about the FHIR specifications for Linkage, see Linkage in the FHIR
R4 documentation.

• FHIR resource types generated as a result of the Amazon Comprehend Medical operations.

• Observation: includes results from the Amazon Comprehend Medical API actions
DetectEntities-V2 and InferICD10-CM when the traits are SIGN or SYMPTOM.

• Condition: includes results from the Amazon Comprehend Medical API actions
DetectEntities-V2 and InferICD10-CM when the trait is DIAGNOSIS.

• MedicationStatement: includes results from the Amazon Comprehend Medical API actions
InferRxNorm.

Using FHIR REST API interactions

By default, traits detected by the Amazon Comprehend Medical API operations are not returned
when making a GET request. To see the results of the integrated NLP operations, you must specify
a known ID for the following FHIR resource types.

• Linkage
Using FHIR APIs 152

https://hl7.org/fhir/R4/linkage.html

AWS HealthLake Developer Guide

• Observation

• Condition

• MedicationStatement

The results of HealthLake integrated NLP actions outside the DocumentReference resource
type are available using a GET request where the specified ID is know to contain results from the
Amazon Comprehend Medical API operations.

Search parameters for HealthLake integrated NLP

The following table lists the searchable attributes for HealthLake integrated NLP.

Search parameters for HealthLake NLP

Search parameters Finds matches for

detectEntities-entity-category Entity Category within the DetectEntities subextens
ion within the AWS CM Extension

detectEntities-entity-text Entity Text within the DetectEntities subextension
within the AWS CM Extension

detectEntities-entity-type Entity Type within the DetectEntities subextension
within the AWS CM Extension

detectEntities-entity-score Entity Score within the DetectEntities subextension
within the AWS CM Extension

infer-icd10cm-entity-text Entity Text within the InferICD10CM subextension
within the AWS CM Extension

infer-icd10cm-entity-score Entity Score within the InferICD10CM subextension
within the AWS CM Extension

infer-icd10cm-entity-concept-code Entity Concept Code within the InferICD10CM
subextension within the AWS CM Extension

infer-icd10cm-entity-concept-descrip
tion

Entity Concept Description within the InferICD10CM
subextension within the AWS CM Extension

Search parameters 153

AWS HealthLake Developer Guide

Search parameters Finds matches for

infer-icd10cm-entity-concept-score Entity Concept Score within the InferICD10CM
subextension within the AWS CM Extension

infer-rxnorm-entity-score Entity Score within the InferRxNorm subextension
within the AWS CM Extension

infer-rxnorm-entity-text Entity Text within the InferRxNorm subextension
within the AWS CM Extension

infer-rxnorm-entity-concept-code Entity Concept Code within the InferRxNorm
subextension within the AWS CM Extension

infer-rxnorm-entity-concept-description Entity Concept Description within the InferRxNorm
subextension within the AWS CM Extension

infer-rxnorm-entity-concept-score Entity Concept Score within the InferRxNorm
subextension within the AWS CM Extension

HealthLake provides a special search to match the criteria where EntityText and
EntityCategory are part of the same entity. The following table describes the special search
parameters supported by HealthLake.

Search parameters

Search parameters Matches returned

detectEntities-entity-text-category If there is at least one entity in the DetectEntities
subextension that matches both the entityText and
entityCategory.

detectEntities-entity-type-score If there is at least one entity in the DetectEntities
subextension that matches both the entityType and
entityScore.

detectEntities-entity-text-score If there is at least one entity in the DetectEntities
subextension that matches both the entityText and
entityScore.

Search parameters 154

AWS HealthLake Developer Guide

Search parameters Matches returned

detectEntities-entity-text-type If there is at least one entity in the DetectEntities
subextension that matches both the entityText and
entityType.

detectEntities-entity-category-score If there is at least one entity that matches both the
entityCategory and entityScore.

infer-icd10cm-entity-text-concept-code If there is at least one entity in the InferICD10CM
sub-extension that matches the entityText and there
is at least one conceptCode for that entity that
matches the code.

infer-icd10cm-entity-text-concept-score If there is at least one entity in the InferICD10CM
sub-extension that matches the entityText and there
is at least one conceptScore for that entity that
matches the score.

infer-icd10cm-entity-concept-descrip
tion-concept-score

If there is at least one concept within the entity in
the InferICD10CM sub-extension that matches the
concept description and the conceptScore.

infer-rxnorm-entity-text-concept-code If there is at least one entity in the InferRxNorm
sub-extension that matches the entityText and there
is at least one conceptCode for that entity that
matches the code.

infer-rxnorm-entity-text-concept-score If there is at least one entity in the InferRxNorm
sub-extension that matches the entityText and there
is at least one conceptScore for that entity that
matches the score.

infer-rxnorm-entity-concept-descript
ion-concept-score

If there is at least one concept within the entity in
the InferRxNorm sub-extension that matches the
concept description and the conceptScore.

Search parameters 155

AWS HealthLake Developer Guide

HealthLake integrated NLP example requests

Example 1: Patient record ingested into a HealthLake data store

Following is an example of a clinical note based on of a Patient encounter with a health care
professional.

Synthetic data

The text in the following example is synthetic content and does not contain protected
health information (PHI).

1991-08-31

Chief Complaint
- Headache
- Sinus Pain
- Nasal Congestion
- Sore Throat
- Pain with Bright Lights
- Nasal Discharge
- Cough

History of Present Illness
Jerónimo599 is a 4 month-old non-hispanic white male.

Social History
Patient has never smoked.

Patient comes from a middle socioeconomic background.

Patient currently has Aetna.

Allergies
No Known Allergies.

Medications
No Active Medications.

Assessment and Plan

Example requests 156

AWS HealthLake Developer Guide

Patient is presenting with bee venom (substance), mold (organism), house dust
 mite (organism), animal dander (substance), grass pollen (substance), tree pollen
 (substance), lisinopril, sulfamethoxazole / trimethoprim, fish (substance).

Plan

The patient was prescribed the following medications:
- astemizole 10 mg oral tablet
- nda020800 0.3 ml epinephrine 1 mg/ml auto-injector
The patient was placed on a careplan:
- self-care interventions (procedure)

As a reminder, this information is encoded in base64 format in the DocumentReference
resource. When this document is ingested into HealthLake and the Amazon Comprehend Medical
API operations are complete, to see the results, you can start with the GETrequest on the
DocumentReference resource type.

GET https://https://healthlake.region.amazonaws.com/datastore/datastoreId/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/DocumentReference

When the Amazon Comprehend Medical API operations are successful, look for these
key-value pairs inside the extension linked to the following "url": "http://
healthlake.amazonaws.com/aws-cm/"

{
 "url": "http://healthlake.amazonaws.com/aws-cm/status/",
 "valueString": "SUCCESS"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/message/",
 "valueString": "The AWS HealthLake integrated medical NLP operation was successful."
 }

The following tabs show you how the ingested medical record is reported in your HealthLake data
store based on the resource type.

DocumentReference

To the see the results for a single DocumentReference resource type, make a GET request
where the id of a specific resource is provided.

Example requests 157

AWS HealthLake Developer Guide

GET https://https://healthlake.region.amazonaws.com/datastore/datastoreId/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/DocumentReference/0e938f03-da7f-4178-acd8-
eea9586c46ed

When successful, you get a 200 HTTP response code, and the following JSON response (that
has been truncated for clarity).

Here is the http://healthlake.amazonaws.com/system-generated-resources/
portion. You can see that a new Linkage/e366d29f-2c22-4c19-866e-09603937935a has
been added. You can also see where HealthLake has added inference-based findings to specific
Observation and Condition resource types.

To see how these resource types have been amended, choose the related tabs.

{
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "Observation/c6e0a3ff-7a17-4d8b-bfd0-d02d7da090c5"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "Condition/0854e1f3-894d-448e-a8d9-3af5b9902baf"
 }
 }
],
 "url": "http://healthlake.amazonaws.com/system-generated-resources/"
 }

Linkage

To the see the results for a single Linkage resource type, make a GET request where the ID of
a specific resource is provided.

Example requests 158

AWS HealthLake Developer Guide

GET https://https://healthlake.region.amazonaws.com/datastore/datastoreId/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/Linkage/e366d29f-2c22-4c19-866e-09603937935a

When successful, you get a 200 HTTP response code, and the following truncated JSON
response.

The response contains the item element. In it, the key-value pair "type": "source"
indicates the specific DocumentReference entry used to modify the Condition and
Observations listed under the "type": "alternate" key-value pair.

You also see the meta element, and a corresponding key-value pair, "tag": [{"display":
"SYSTEM_GENERATED"}], indicating these resources were created by HealthLake.

{
 "resourceType": "Linkage",
 "id": "e366d29f-2c22-4c19-866e-09603937935a",
 "active": true,
 "item":
 [
 {
 "type": "alternate",
 "resource": {
 "reference": "Observation/c6e0a3ff-7a17-4d8b-bfd0-d02d7da090c5",
 "type": "Observation"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "Condition/9d5c1ef6-f822-4faf-b55f-7c70f2a4aa8d",
 "type": "Condition"
 }
 },
 {
 "type": "source",
 "resource": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed",
 "type": "DocumentReference"
 }
 }
],
 "meta": {

Example requests 159

AWS HealthLake Developer Guide

 "lastUpdated": "2022-10-21T19:38:31.327Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }
 }

Resource type: Observation

To the see the results for a single Observation resource type, make a GET request where the
ID of a specific resource is provided.

GET https://https://healthlake.region.amazonaws.com/
datastore/datastoreId/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/
Observation/e366d29f-2c22-4c19-866e-09603937935a

The results of the Amazon Comprehend Medical API operations are amended to the following
elements: code, meta, and modifierExtension.

code

An element of type CodeableConcept. To learn more, see CodeableConcept in the FHIR R4
documentation.

HealthLake appends the following three key-value pairs.

• "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/": Where
the URL refers to a specific Amazon Comprehend Medical API operation. In this case,
InferICD10CM.

• "code": "A52.06": Where A52.06 is the ICD-10-CM code that identifies the concept found
in the knowledge base from the Centers for Disease Control.

• "display": "Other syphilitic heart involvement": Where "Other syphilitic
heart involvement" is the long description of the ICD-10-CM code in the ontology.

The following truncated JSON response contains only the code element.

"code": {
 "coding":
 [

Example requests 160

https://hl7.org/fhir/R4/datatypes.html#CodeableConcept

AWS HealthLake Developer Guide

 {
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "A52.06",
 "display": "Other syphilitic heart involvement"
 }
],
 "text": "Other syphilitic heart involvement"
 }

To understand the model's confidence that the assigned ICD-10-CM code is correct, use the
modifierExtension element.

meta

The meta element contains metadata that indicates whether the code element contains details
that have been added by the Amazon Comprehend Medical API operations.

The following truncated JSON response contains only the meta element.

"meta": {
 "lastUpdated": "2022-10-21T19:38:30.879Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }

modifierExtension

The modifierExtension element contains more details about the level of confidence of
the assigned codes found in the code element. It also has key-value pairs that provide a link
back to the original DocumentReference used to generate the results and the related Linkage
resource type.

For each coding element added, you will see an entity-score and an entity-Concept-
Score added to the modifierExtension. For each value in the key-value pair, you see a score.
For entity-score, this score is the level of confidence that Amazon Comprehend Medical
has in the accuracy of the detection. For entity-Concept-Score, this score is the level of
confidence that Amazon Comprehend Medical has that the entity is accurately linked to an
ICD-10-CM concept.

The following truncated JSON response contains only the modifierExtension element.

Example requests 161

AWS HealthLake Developer Guide

"modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.45005733
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.1111792
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
]

Full JSON Response

{
 "subject": {
 "reference": "Patient/0679b7b7-937d-488a-b48d-6315b8e7003b"
 },
 "resourceType": "Observation",
 "status": "unknown",
 "code": {
 "coding": [{
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "A52.06",
 "display": "Other syphilitic heart involvement"
 }],
 "text": "Other syphilitic heart involvement"
 },
 "meta": {
 "lastUpdated": "2022-10-21T19:38:30.879Z",
 "tag": [{

Example requests 162

AWS HealthLake Developer Guide

 "display": "SYSTEM_GENERATED"
 }]
 },
 "modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.45005733
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.1111792
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
],
 "id": "7e88c7c5-21a5-4dd7-8fc2-a02474fba583"
 }

Condition

To the see the results for a single Condition resource type, make a GET request where the ID
of a specific resource is provided.

GET https://https://healthlake.region.amazonaws.com/datastore/datastoreId/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/Condition/b06d343d-
ddb8-4f36-82cb-853fcd434dfd

The results of the Amazon Comprehend Medical API operations are amended to the following
elements: code, meta, and modifierExtension.

code

Example requests 163

AWS HealthLake Developer Guide

An element of type CodeableConcept. To learn more, see CodeableConcept in the FHIR R4
documentation.

HealthLake appends the following three key-value pairs.

• "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/": Where
the URL refers to a specific Amazon Comprehend Medical API operation. In this case,
InferICD10CM.

• "code": "I70.0": Where A52.06 is the ICD-10-CM code that identifies the concept found
in the knowledge base from the Centers for Disease Control.

• "display": "Atherosclerosis of aorta": Where "Other syphilitic heart
involvement" is the long description of the ICD-10-CM code in the ontology.

The following truncated JSON response contains only the code element.

"code": {
 "coding":
 [
 {
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "I70.0",
 "display": "Atherosclerosis of aorta"
 }
],
 "text": "Atherosclerosis of aorta"
 }

To understand the model's confidence that the assigned ICD-10-CM code is correct, use the
modifierExtension element.

meta

The meta element contains metadata that indicates whether the code element contains details
that have been added by the Amazon Comprehend Medical API operations.

The following truncated JSON response contains only the meta element.

"meta": {
 "lastUpdated": "2022-10-21T19:38:30.877Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"

Example requests 164

https://hl7.org/fhir/R4/datatypes.html#CodeableConcept

AWS HealthLake Developer Guide

 }]
 }

modifierExtension

The modifierExtension element contains more details about the level of confidence of
the assigned codes found in the code element. It also has key-value pairs that provide a link
back to the original DocumentReference used to generate the results and the related Linkage
resource type.

For each coding element added, you will see an entity-score and an entity-Concept-
Score added to the modifierExtension. For each value in the key-value pair, you see a score.
For entity-score, this score is the level of confidence that Amazon Comprehend Medical
has in the accuracy of the detection. For entity-Concept-Score, this score is the level of
confidence that Amazon Comprehend Medical has that the entity is accurately linked to an
ICD-10-CM concept.

The following truncated JSON response contains only the modifierExtension element.

"modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.94417894
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.8458298
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
]

Example requests 165

AWS HealthLake Developer Guide

Full JSON Response

{
 "subject": {
 "reference": "Patient/0679b7b7-937d-488a-b48d-6315b8e7003b"
 },
 "resourceType": "Condition",
 "code": {
 "coding": [{
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/",
 "code": "I70.0",
 "display": "Atherosclerosis of aorta"
 }],
 "text": "Atherosclerosis of aorta"
 },
 "meta": {
 "lastUpdated": "2022-10-21T19:38:30.877Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 },
 "modifierExtension": [{
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
score",
 "valueDecimal": 0.94417894
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/infer-icd10/aws-cm-icd10-entity-
Concept-Score",
 "valueDecimal": 0.8458298
 },
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/e366d29f-2c22-4c19-866e-09603937935a"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/0e938f03-da7f-4178-acd8-eea9586c46ed"
 }
 }
],

Example requests 166

AWS HealthLake Developer Guide

 "id": "b06d343d-ddb8-4f36-82cb-853fcd434dfd"
 }

Example 2: A DocumentReference that contains MedicationStatement resource type

Here is an example of a clinical note based off of a patient's encounter with a medical professional.

Synthetic data

The text in this example is synthetic content and does not contain protected health
information (PHI).

Tom is not prescribed Advil

The following tabs show how the ingested medical record is reported in your HealthLake data store
based on the resource type.

DocumentReference

To the see the results for a single DocumentReference resource type, make a GET request
where the ID of a specific resource is provided.

GET https://https://healthlake.region.amazonaws.com/datastore/datastoreId/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/DocumentReference/c549125d-a218-421f-
b8bf-23614c5e796c

When successful, you get a 200 HTTP response code and the following truncated JSON
response.

The key-value pair, "url": "http://healthlake.amazonaws.com/system-generated-
resources/", indicates that the resource types inside this extension have been added by
Amazon Comprehend Medical API operations. You can see the new Linkage resource type, and
multiple MedicationStatement resources.

"extension": [{
 "extension": [{
 "url": "http://healthlake.amazonaws.com/linkage",

Example requests 167

AWS HealthLake Developer Guide

 "valueReference": {
 "reference": "Linkage/394bb244-177b-4409-8657-26b20ed56dd7"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/cbf6af10-b0b9-451c-bdde-99611e3498a8"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/9a89b0d3-6681-45ca-9926-27951edce5c7"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/4a01f6c8-5f3a-4122-80ab-405312f96aa2"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/fbfb77d8-70cf-4579-b4c0-d6fe3c01656b"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/nlp-entity",
 "valueReference": {
 "reference": "MedicationStatement/1340c9ce-9c48-4bf9-9b2f-d0ab027f5e0b"
 }
 }
],
 "url": "http://healthlake.amazonaws.com/system-generated-resources/"
 }

Linkage

To the see the results for a single Linkage resource type, make a GET request where the ID of
a specific resource is provided.

Example requests 168

AWS HealthLake Developer Guide

GET https://https://healthlake.region.amazonaws.com/datastore/datastoreId/
r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/Linkage/394bb244-177b-4409-8657-26b20ed56dd7

When successful, you get a 200 HTTP response code and the following JSON response.

The response contains the item element. In it, the key-value pair "type": "source"
indicates the specific DocumentReference entry used to modify the MedicationStatement
resource types.

You can also see the meta element and a corresponding key-value pair, "tag":
[{"display": "SYSTEM_GENERATED"}], indicating that these resources were created by
HealthLake.

{
 "resourceType": "Linkage",
 "id": "394bb244-177b-4409-8657-26b20ed56dd7",
 "active": true,
 "item": [{
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/cbf6af10-b0b9-451c-bdde-99611e3498a8",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/9a89b0d3-6681-45ca-9926-27951edce5c7",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/4a01f6c8-5f3a-4122-80ab-405312f96aa2",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/fbfb77d8-70cf-4579-b4c0-d6fe3c01656b",

Example requests 169

AWS HealthLake Developer Guide

 "type": "MedicationStatement"
 }
 },
 {
 "type": "alternate",
 "resource": {
 "reference": "MedicationStatement/1340c9ce-9c48-4bf9-9b2f-d0ab027f5e0b",
 "type": "MedicationStatement"
 }
 },
 {
 "type": "source",
 "resource": {
 "reference": "DocumentReference/c549125d-a218-421f-b8bf-23614c5e796c",
 "type": "DocumentReference"
 }
 }
],
 "meta": {
 "lastUpdated": "2022-10-24T20:05:03.501Z",
 "tag": [{
 "display": "SYSTEM_GENERATED"
 }]
 }
 }

MedicationStatement

To the see the results for a single MedicationStatement resource type, make a GET request
where the ID of a specific resource is provided.

GET https://https://healthlake.region.amazonaws.com/
datastore/datastoreId/r4/eeb8005725ae22b35b4edbdc68cf2dfd/r4/
MedicationStatement/9a89b0d3-6681-45ca-9926-27951edce5c7

The MedicationStatement resource type is where the results of the Amazon Comprehend
Medical InferRxNorm API operation are found. The results are amended to the following
elements: medicationCodeableConcept, meta, and modifierExtension.

medicationCodeableConcept

An element of type CodeableConcept. To learn more, see CodeableConcept in the FHIR R4
documentation.

Example requests 170

https://hl7.org/fhir/R4/datatypes.html#CodeableConcept

AWS HealthLake Developer Guide

HealthLake appends the following three key-value pairs.

• "system": ""http://healthlake.amazonaws.com/aws-cm/infer-rxnorm/:
Where the URL refers to a specific Amazon Comprehend Medical API operation. In this case,
InferRxNorm.

• "code": "731533": Where 731533 is an RxNorm concept ID, also known as the RxCUI.

• "display": "ibuprofen 200 MG Oral Capsule [Advil]": Where ibuprofen 200
MG Oral Capsule [Advil] is the description of the RxNorm concept.

The following truncated JSON response contains only the MedicationStatement element.

"medicationCodeableConcept": {
 "coding": [
 {
 "system": "http://healthlake.amazonaws.com/aws-cm/infer-rxnorm/",
 "code": "731533",
 "display": "ibuprofen 200 MG Oral Capsule [Advil]"
 }
]
 }

meta

The meta element contains metadata that indicates whether the code element contains details
that have been added by the Amazon Comprehend Medical API operations.

The following truncated JSON response contains only the meta element.

"meta": {
 "lastUpdated": "2022-10-24T20:05:02.800Z",
 "tag": [
 {
 "display": "SYSTEM_GENERATED"
 }
]
 }

modifierExtension

Example requests 171

AWS HealthLake Developer Guide

The modifierExtension element contains key-value pairs that provide a link back to the
original DocumentReference used to generate the results and the related Linkage resource
type.

"modifierExtension": [
 {
 "url": "http://healthlake.amazonaws.com/system-generated-linkage",
 "valueReference": {
 "reference": "Linkage/394bb244-177b-4409-8657-26b20ed56dd7"
 }
 },
 {
 "url": "http://healthlake.amazonaws.com/source-document-reference",
 "valueReference": {
 "reference": "DocumentReference/c549125d-a218-421f-b8bf-23614c5e796c"
 }
 }
]

Querying HealthLake data with Amazon Athena

During a HealthLake import job, nested FHIR JSON data undergoes an ETL process and is stored in
Apache Iceberg open table format, where each FHIR resource type is represented as an individual
table in Athena. This enables users to query the FHIR data using SQL, but without having to export
it first. This is valuable, as it empowers clinicians and scientists to query FHIR data to validate
their decisions or advance their research. For more information about how Apache Iceberg tables
function in Athena, see Query Apache Iceberg tables in the Athena User Guide.

Note

HealthLake supports FHIR R4 read interaction on your HealthLake data in Athena. For
more information, see Reading a FHIR resource.

The topics in this section describe how to connect your HealthLake data store to Athena, how to
query it using SQL, and how to connect results with other AWS services for further analysis.

Topics

• Getting started with Amazon Athena

SQL index and query 172

https://iceberg.apache.org/
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg.html

AWS HealthLake Developer Guide

• Querying HealthLake data with SQL

• Example SQL queries with complex filtering

Getting started with Amazon Athena

To integrate HealthLake with Amazon Athena, you must set up permissions. To do this, you'll create
an Athena user, group or role, and grant them access to FHIR resources located within a HealthLake
data store.

• Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation Console)

• Setting up an Athena account

Granting a user, group, or role access to a HealthLake data store (AWS Lake
Formation Console)

Persona: HealthLake administrator

The HealthLake administrator persona is a data lake administrator in AWS Lake Formation.
They grant access to HealthLake data stores in Lake Formation.

For each data store created, there are two entries visible in the AWS Lake Formation console. One
entry is a resource link. Resource link names are always displayed in italics. Each resource link is
displayed with the name and owner of its linked shared resource. For all HealthLake data stores,
the shared resource owner is the HealthLake service account. The other entry is the HealthLake
data store in the HealthLake service account. The steps in this procedure use the data store that is
the resource link.

To learn more about resource links, see How resource links work in Lake Formation in the AWS Lake
Formation Developer Guide.

For a user, group, or role to be able to query data in Athena, you must grant Describe permission
on the resource database. Then, you must grant Select and Describe on the tables.

STEP 1: To grant DESCRIBE permissions on a HealthLake data store resource link database

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

2. In the primary navigation bar, choose Databases.

Getting started 173

https://docs.aws.amazon.com/lake-formation/latest/dg/resource-links-about.html
https://console.aws.amazon.com/lakeformation

AWS HealthLake Developer Guide

3. On the Databases page, choose the radio button next to the name of the data store that is in
italics.

4. Choose Actions (▼).

5. Choose Grant.

6. On the Grant data permissions page, under Principals, choose IAM users or roles.

7. Under IAM users or roles, use the down arrow (▼), or search for the IAM user, role, or group
that you want to be able to make queries on in Athena.

8. Under LF-Tags or catalog resources card, choose the Named data catalog resources option.

9. Under Databases, use the down arrow (▼) to choose the HealthLake data store database that
you want to share access to.

10. In the Resource link permissions card, under Resource link permissions, choose Describe.

When the grant is successful, the Grant permission success banner appears. To view the
permission you just granted, choose Data lake permissions. Find the user, group, and role in the
table. Under the Permissions column, you will see Describe listed.

Now you must use Grant on target to grant Select and Describe on all tables in the database.

STEP 2: Grant access to all tables in a HealthLake data store resource link

1. Open the AWS Lake Formation console: https://console.aws.amazon.com/lakeformation/

2. In the primary navigation bar, choose Databases.

3. On the Databases page, choose the radio button next to the name of the data store that is in
italics.

4. Choose Actions (▼).

5. Choose Grant on target.

6. On the Grant data permissions page, under Principals, choose IAM users or roles.

7. Under IAM users or roles, use the down arrow (▼) or search for the IAM user, group, or role
that you want to be able to make queries on in Athena.

8. Under LF-Tags or catalog resources card, choose the Named data catalog resources option.

9. Under Databases, use the down arrow (▼) to choose the HealthLake data store database that
you want to grant access to.

10. Under Tables, choose All tables to share all tables with a HealthLake user.

11. In the Table permissions card, under Table permissions, choose Describe and Select.

Getting started 174

https://console.aws.amazon.com/lakeformation

AWS HealthLake Developer Guide

12. Choose Grant.

After choosing grant,a Grant permissions success banner appears. The specified user can now
make queries on a HealthLake data store in Athena.

Getting started with Athena

HealthLake user

The HealthLake user will use the Athena console, AWS CLI, or AWS SDKs to query a
HealthLake data store shared with them by the HealthLake administrator.

To query a data store using Athena, you must do the following three things.

• Grant the IAM user or role access to the HealthLake data store via Lake Formation. To learn
more, see Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation
Console).

• Create a workgroup for your HealthLake data store.

• Designate an Amazon S3 bucket to store your query results.

To get started with Athena, add the AmazonAthenaFullAccess and AmazonS3FullAccess AWS
managed policies to your user, group or role. Using an AWS managed policy is great way to get
started using a new service. Keep in mind that AWS managed policies might not grant least-
privilege permissions for your specific use cases because they are available for use by all AWS
customers. When you set permissions with IAM policies, grant only the permissions required to
perform a task. To learn more about IAM and applying least-privilege, see Apply least-privilege
permissions in the IAM User Guide.

Important

To query a HealthLake data store in Athena, you must use Athena engine version 3.

Workgroups are resources, and therefore you can use IAM-based policies to control access to
specific workgroups. To learn more, see Using workgroups to control query access and costs in the
Athena User Guide.

Getting started 175

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-use-aws-defined-policies
https://docs.aws.amazon.com/athena/latest/ug/manage-queries-control-costs-with-workgroups.html

AWS HealthLake Developer Guide

To learn more about setting up workgroups, see https://docs.aws.amazon.com/athena/latest/ug/
workgroups-procedure.html in the Athena User Guide.

Note

The region your Amazon S3 bucket is in and the Athena console must match.

Before you can run a query, a query result bucket location in Amazon S3 must be specified, or
you must use a workgroup that has specified a bucket and whose configuration overrides client
settings. Output files are saved automatically for every query that runs.

For more details on specifying query result locations in the Athena console, see Specifying a query
result location using the Athena console in the Amazon Athena User Guide.

To see examples of how to query your HealthLake data store in Athena, see Querying HealthLake
data with SQL.

Querying HealthLake data with SQL

When you import your FHIR data into HealthLake data store, the nested JSON FHIR data
simultaneously undergoes an ETL process and is stored in Apache Iceberg open table format in
Amazon S3. Each FHIR resource type from your HealthLake data store is converted into a table,
where it can be queried using Amazon Athena. The tables can be queried individually or as group
using SQL-based queries. Because of the structure of data stores, your data is imported into Athena
as multiple different data types. To learn more about creating SQL queries that can access these
data types, see Query arrays with complex types and nested structures in the Amazon Athena User
Guide.

Note

All examples in this topic use fictionalized data created using Synthea. To learn more about
creating a data store preloaded with Synthea data, see Creating a HealthLake data store.

For each element in a resource type, the FHIR specification defines a cardinality. The cardinality
of an element defines the lower and upper bounds of how many times this element can appear.
When constructing a SQL query, you must take this into account. For example, let's look at some
elements in Resource type: Patient.

Querying with SQL 176

https://docs.aws.amazon.com/athena/latest/ug/workgroups-procedure.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-procedure.html
https://docs.aws.amazon.com/athena/latest/ug/querying.html#query-results-specify-location-console
https://docs.aws.amazon.com/athena/latest/ug/querying.html#query-results-specify-location-console
https://docs.aws.amazon.com/athena/latest/ug/rows-and-structs.html
https://hl7.org/fhir/R4/patient.html

AWS HealthLake Developer Guide

• Element: Name The FHIR specification sets the cardinality as 0..*.

The element is captured as an array.

[{
 id = null,
 extension = null,
 use = official,
 _use = null,
 text = null,
 _text = null,
 family = Wolf938,
 _family = null,
 given = [Noel608],
 _given = null,
 prefix = null,
 _prefix = null,
 suffix = null,
 _suffix = null,
 period = null
}]

In Athena, to see how a resource type has been ingested, search for it under Tables and views.
To access elements in this array, you can use dot notation. Here's a simple example that would
access the values for given and family.

SELECT
 name[1].given as FirstName,
 name[1].family as LastName
FROM Patient

• Element: MaritalStatus The FHIR specification sets the cardinality as 0..1.

This element is captured as JSON.

{
 id = null,
 extension = null,
 coding = [
 {
 id = null,
 extension = null,

Querying with SQL 177

AWS HealthLake Developer Guide

 system = http: //terminology.hl7.org/CodeSystem/v3-MaritalStatus,
 _system = null,
 version = null,
 _version = null,
 code = S,
 _code = null,
 display = Never Married,
 _display = null,
 userSelected = null,
 _userSelected = null
 }

],
 text = Never Married,
 _text = null
}

In Athena, to see how a resource type has been ingested, search for it under Tables and views.
To access key-value pairs in the JSON, you can use dot notation. Because it isn't an array, no array
index is required. Here's a simple example that would access the value for text.

SELECT
 maritalstatus.text as MaritalStatus
FROM Patient

To learn more about accessing and searching JSON, see Querying JSON in the Athena User Guide.

Athena Data Manipulation Language (DML) query statements are based on Trino. Athena does not
support all of Trino's features, and there are significant differences. To learn more, see DML queries,
functions, and operators in the Amazon Athena User Guide.

Furthermore, Athena supports multiple data types that you may encounter when creating queries
of your HealthLake data store. To learn more about data types in Athena, see Data types in Amazon
Athena in the Amazon Athena User Guide.

To learn more about how SQL queries work in Athena, see SQL reference for Amazon Athena in the
Amazon Athena User Guide.

Each tab shows examples of how to search on the specified resource types and associated elements
using Athena.

Querying with SQL 178

https://docs.aws.amazon.com/athena/latest/ug/querying-JSON.html
https://docs.aws.amazon.com/athena/latest/ug/functions-operators-reference-section.html
https://docs.aws.amazon.com/athena/latest/ug/functions-operators-reference-section.html
https://docs.aws.amazon.com/athena/latest/ug/data-types.html
https://docs.aws.amazon.com/athena/latest/ug/data-types.html
https://docs.aws.amazon.com/athena/latest/ug/ddl-sql-reference.html

AWS HealthLake Developer Guide

Element: Extension

The element extension is used to create custom fields in a data store.

This example shows you how to access the features of the extension element found in the
Patient resource type.

When your HealthLake data store is imported into Athena, the elements of a resource type are
parsed differently. Because the structure of the element is variable, it cannot be fully specified
in the schema. To handle that variability, the elements inside the array are passed as strings.

In the table description of Patient, you can see the element extension described as
array<string>, which means you can access the elements of array by using an index value. To
access the elements of the string, however, you must use json_extract.

Here is a single entry from the extension element found in the patient table.

[{
 "valueString": "Kerry175 Cummerata161",
 "url": "http://hl7.org/fhir/StructureDefinition/patient-mothersMaidenName"
 },
 {
 "valueAddress": {
 "country": "DE",
 "city": "Hamburg",
 "state": "Hamburg"
 },
 "url": "http://hl7.org/fhir/StructureDefinition/patient-birthPlace"
 },
 {
 "valueDecimal": 0.0,
 "url": "http://synthetichealth.github.io/synthea/disability-adjusted-life-years"
 },
 {
 "valueDecimal": 5.0,
 "url": "http://synthetichealth.github.io/synthea/quality-adjusted-life-years"
 }
]

Even though this is valid JSON, Athena treats it as a string.

Querying with SQL 179

AWS HealthLake Developer Guide

This SQL query example demonstrates how you can create a table that contains the patient-
mothersMaidenName and patient-birthPlace elements. To access these elements, you
need to use different array indices and json_extract.

SELECT
 extension[1],
 json_extract(extension[1], '$.valueString') AS MothersMaidenName,
 extension[2],
 json_extract(extension[2], '$.valueAddress.city') AS birthPlace
FROM patient

To learn more about queries that involve JSON, see Extracting data from JSON in the Amazon
Athena User Guide.

Element: birthDate (Age)

Age is not an element of the Patient resource type in FHIR. Here are two examples for searches
that filter based on age.

Because age is not an element, we use the birthDate for the SQL queries. To see how an
element has been ingested into FHIR, search for the table name under Tables and views. You
can see that it is of type string.

Example 1: Calculating a value for age

In this sample SQL query, we use a built-in SQL tool, current_date and year to extract those
components. Then, we subtract them to return a patient's actual age as a column called age.

SELECT
 (year(current_date) - year(date(birthdate))) as age
FROM patient

Example 2: Filtering for patients who are born before 2019-01-01 and are male.

The SQL query shows you how to use the CAST function to cast the birthDate element as
type DATE, and how to filter based on two criteria in the WHERE clause. Because the element
is ingested as type string by default, we must CAST it as type DATE. Then you can use the <
operator to compare it to a different date, 2019-01-01. By using AND, you can add a second
criteria to the WHERE clause.

SELECT birthdate

Querying with SQL 180

https://docs.aws.amazon.com/athena/latest/ug/extracting-data-from-JSON.html

AWS HealthLake Developer Guide

FROM patient
-- we convert birthdate (varchar) to date > cast that as date too
WHERE CAST(birthdate AS DATE) < CAST('2019-01-01' AS DATE) AND gender = 'male'

Resource type: Location

This example shows searches for locations within the Location resource type where the city
name is Attleboro.

SELECT *
FROM Location
WHERE address.city='ATTLEBORO'
LIMIT 10;

Element: Age

SELECT birthdate
FROM patient
-- we convert birthdate (varchar) to date > cast that as date too
WHERE CAST(birthdate AS DATE) < CAST('2019-01-01' AS DATE) AND gender = 'male'

Resource type: Condition

The resource type condition stores diagnosis data related to issues that have risen to a level
of concern. HealthLake's integrated medical natural language processing (NLP) generates new
Condition resources based on details found in the DocumentReference resource type. When
new resource are generated, HealthLake appends the tag SYSTEM_GENERATED to the meta
element. This sample SQL query demonstrates how you can search the condition table and
return results where the SYSTEM_GENERATED results have been removed.

To learn more about HealthLake's integrated natural language processing (NLP), see Integrated
natural language processing (NLP) for HealthLake.

SELECT *
FROM condition
WHERE meta.tag[1] is NULL

You can also search within a specified string element to filter your query further. The
modifierextension element contains details about which DocumentReference resource

Querying with SQL 181

AWS HealthLake Developer Guide

was used to generate a set of conditions. Again, you must use json_extract to access the
nested JSON elements that are brought into Athena as a string.

This sample SQL query demonstrates how you can search for all the Condition that has been
generated based off of a specific DocumentReference. Use CAST to set the JSON element as a
string so that you can use LIKE to compare.

SELECT
 meta.tag[1].display as SystemGenerated,
 json_extract(modifierextension[4], '$.valueReference.reference') as
 DocumentReference
FROM condition
WHERE meta.tag[1].display = 'SYSTEM_GENERATED'

AND CAST(json_extract(modifierextension[4], '$.valueReference.reference') as
 VARCHAR) LIKE '%DocumentReference/67aa0278-8111-40d0-8adc-43055eb9d18d%'

Resource type: Observation

The resource type, Observation stores measurements and simple assertions made about a
patient, device, or other subject. HealthLake's integrated natural language processing (NLP)
generates new Observation resources based on details found in a DocumentReference
resource. This sample SQL query includes WHERE meta.tag[1] is NULL commented out,
which means that the SYSTEM_GENERATED results are included.

SELECT valueCodeableConcept.coding[1].code
FROM Observation
WHERE valueCodeableConcept.coding[1].code = '266919005'
-- WHERE meta.tag[1] is NULL

This column was imported as an struct. Therefore, you can access elements inside it using dot
notation.

Resource type: MedicationStatement

MedicationStatement is a FHIR resource type that you can use to store details about
medications a patient has taken, is taking, or will take in the future. HealthLake's integrated
medical natural language processing (NLP) generates new MedicationStatement resources
based on documents found in the DocumentReference resource type. When new resources are
generated, HealthLake appends the tag SYSTEM_GENERATED to the meta element. This sample

Querying with SQL 182

https://iceberg.apache.org/spec/#schemas-and-data-types

AWS HealthLake Developer Guide

SQL query demonstrates how to create a query that filters based off of a single patient by using
their identifier and finds resources that have been added by HealthLake's integrated NLP.

SELECT *
FROM medicationstatement
WHERE meta.tag[1].display = 'SYSTEM_GENERATED' AND subject.reference =
 'Patient/0679b7b7-937d-488a-b48d-6315b8e7003b';

To learn more about HealthLake's integrated natural language processing (NLP), see Integrated
natural language processing (NLP) for HealthLake.

Example SQL queries with complex filtering

The following examples demonstrate how to use Amazon Athena SQL queries with complex
filtering to locate FHIR data from a HealthLake data store.

Example Create filtering criteria based on demographic data

Identifying the correct patient demographics is important when creating a patient cohort. This
sample query demonstrates how you can use Trino dot notation and json_extract to filter data
in your HealthLake data store.

SELECT
 id
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , (year(current_date) - year(date(birthdate))) as age
 , gender as gender
 , json_extract(extension[1], '$.valueString') as MothersMaidenName
 , json_extract(extension[2], '$.valueAddress.city') as birthPlace
 , maritalstatus.coding[1].display as maritalstatus
 , address[1].line[1] as addressline
 , address[1].city as city
 , address[1].district as district
 , address[1].state as state
 , address[1].postalcode as postalcode
 , address[1].country as country
 , json_extract(address[1].extension[1], '$.extension[0].valueDecimal') as latitude
 , json_extract(address[1].extension[1], '$.extension[1].valueDecimal') as longitude
 , telecom[1].value as telNumber
 , deceasedboolean as deceasedIndicator
 , deceaseddatetime

Example queries 183

AWS HealthLake Developer Guide

FROM database.patient;

Using the Athena Console, you can further sort and download the results.

Example Create filters for a patient and their related conditions

The following example query demonstrates how you can find and sort all the related conditions for
the patients found in a HealthLake data store.

SELECT
 patient.id as patientId
 , condition.id as conditionId
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , condition.meta.tag[1].display
 , json_extract(condition.modifierextension[1], '$.valueDecimal') AS confidenceScore
 , category[1].coding[1].code as categoryCode
 , category[1].coding[1].display as categoryDescription
 , code.coding[1].code as diagnosisCode
 , code.coding[1].display as diagnosisDescription
 , onsetdatetime
 , severity.coding[1].code as severityCode
 , severity.coding[1].display as severityDescription
 , verificationstatus.coding[1].display as verificationStatus
 , clinicalstatus.coding[1].display as clinicalStatus
 , encounter.reference as encounterId
 , encounter.type as encountertype
FROM database.patient, condition
WHERE CONCAT('Patient/', patient.id) = condition.subject.reference
ORDER BY name;

You can use the Athena console to further sort the results or download them for further analysis.

Example Create filters for patients and their related observations

The following example query demonstrates how to find and sort all related observations for
patients found in a HealthLake data store.

SELECT
 patient.id as patientId
 , observation.id as observationId
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , meta.tag[1].display
 , json_extract(modifierextension[1], '$.valueDecimal') AS confidenceScore

Example queries 184

AWS HealthLake Developer Guide

 , status
 , category[1].coding[1].code as categoryCode
 , category[1].coding[1].display as categoryDescription
 , code.coding[1].code as observationCode
 , code.coding[1].display as observationDescription
 , effectivedatetime
 , CASE
 WHEN valuequantity.value IS NOT NULL THEN CONCAT(CAST(valuequantity.value AS
 VARCHAR),' ',valuequantity.unit)
 WHEN valueCodeableConcept.coding [1].code IS NOT NULL THEN
 CAST(valueCodeableConcept.coding [1].code AS VARCHAR)
 WHEN valuestring IS NOT NULL THEN CAST(valuestring AS VARCHAR)
 WHEN valueboolean IS NOT NULL THEN CAST(valueboolean AS VARCHAR)
 WHEN valueinteger IS NOT NULL THEN CAST(valueinteger AS VARCHAR)
 WHEN valueratio IS NOT NULL THEN CONCAT(CAST(valueratio.numerator.value AS
 VARCHAR),'/',CAST(valueratio.denominator.value AS VARCHAR))
 WHEN valuerange IS NOT NULL THEN CONCAT(CAST(valuerange.low.value AS
 VARCHAR),'-',CAST(valuerange.high.value AS VARCHAR))
 WHEN valueSampledData IS NOT NULL THEN CAST(valueSampledData.data AS VARCHAR)
 WHEN valueTime IS NOT NULL THEN CAST(valueTime AS VARCHAR)
 WHEN valueDateTime IS NOT NULL THEN CAST(valueDateTime AS VARCHAR)
 WHEN valuePeriod IS NOT NULL THEN valuePeriod.start
 WHEN component[1] IS NOT NULL THEN CONCAT(CAST(component[2].valuequantity.value
 AS VARCHAR),' ',CAST(component[2].valuequantity.unit AS VARCHAR),
 '/', CAST(component[1].valuequantity.value AS VARCHAR),'
 ',CAST(component[1].valuequantity.unit AS VARCHAR))
 END AS observationvalue
 , encounter.reference as encounterId
 , encounter.type as encountertype
FROM database.patient, observation
WHERE CONCAT('Patient/', patient.id) = observation.subject.reference
ORDER BY name;

Example Create filtering conditions for a patient and their related procedures

Connecting procedures to patients is an important aspect of healthcare. The following SQL
example query demonstrates how to use FHIR Patient and Procedure resource types to
accomplish this. The following SQL query will return all patients and their related procedures
found in your HealthLake data store.

SELECT
 patient.id as patientId
 , PROCEDURE.id as procedureId

Example queries 185

AWS HealthLake Developer Guide

 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , status
 , category.coding[1].code as categoryCode
 , category.coding[1].display as categoryDescription
 , code.coding[1].code as procedureCode
 , code.coding[1].display as procedureDescription
 , performeddatetime
 , performer[1]
 , encounter.reference as encounterId
 , encounter.type as encountertype
FROM database.patient, procedure
WHERE CONCAT('Patient/', patient.id) = procedure.subject.reference
ORDER BY name;

You can use the Athena console to download the results for further analysis or sort them to better
understand the results.

Example Create filtering conditions for a patient and their related prescriptions

Seeing a current list of medications that patients are taking is important. Using Athena, you can
write a SQL query that uses both the Patient and MedicationRequest resource types found in
your HealthLake data store.

The following SQL query joins the Patient and MedicationRequest tables imported into
Athena. It also organizes the prescriptions into their individual entries by using dot notation.

SELECT
 patient.id as patientId
 , medicationrequest.id as medicationrequestid
 , CONCAT(name[1].family, ' ', name[1].given[1]) as name
 , status
 , statusreason.coding[1].code as categoryCode
 , statusreason.coding[1].display as categoryDescription
 , category[1].coding[1].code as categoryCode
 , category[1].coding[1].display as categoryDescription
 , priority
 , donotperform
 , encounter.reference as encounterId
 , encounter.type as encountertype
 , medicationcodeableconcept.coding[1].code as medicationCode
 , medicationcodeableconcept.coding[1].display as medicationDescription
 , dosageinstruction[1].text as dosage
FROM database.patient, medicationrequest

Example queries 186

AWS HealthLake Developer Guide

WHERE CONCAT('Patient/', patient.id) = medicationrequest.subject.reference
ORDER BY name

You can use the Athena console to sort the results or download them for further analysis.

Example See medications found in the MedicationStatement resource type

The following example query shows you how to organize the nested JSON imported into Athena
using SQL. The query uses the FHIR meta element to indicate when a medication has been added
by HealthLake's integrated natural language processing (NLP). It also uses json_extract to
search for data inside the array of JSON strings. For more information, see Natural language
processing.

SELECT
 medicationcodeableconcept.coding[1].code as medicationCode
 , medicationcodeableconcept.coding[1].display as medicationDescription
 , meta.tag[1].display
 , json_extract(modifierextension[1], '$.valueDecimal') AS confidenceScore
FROM medicationstatement;

You can use the Athena console to download these results or sort them.

Example Filter for a specific disease type

The example shows how you can find a group of patients, aged 18 to 75, who have been diagnosed
with diabetes.

SELECT patient.id as patientId,
 condition.id as conditionId,
 CONCAT(name [1].family, ' ', name [1].given [1]) as name,
 (year(current_date) - year(date(birthdate))) AS age,
 CASE
 WHEN condition.encounter.reference IS NOT NULL THEN condition.encounter.reference
 WHEN observation.encounter.reference IS NOT NULL THEN observation.encounter.reference
 END as encounterId,
 CASE
 WHEN condition.encounter.type IS NOT NULL THEN observation.encounter.type
 WHEN observation.encounter.type IS NOT NULL THEN observation.encounter.type
 END AS encountertype,
 condition.code.coding [1].code as diagnosisCode,
 condition.code.coding [1].display as diagnosisDescription,
 observation.category [1].coding [1].code as categoryCode,
 observation.category [1].coding [1].display as categoryDescription,

Example queries 187

AWS HealthLake Developer Guide

 observation.code.coding [1].code as observationCode,
 observation.code.coding [1].display as observationDescription,
 effectivedatetime AS observationDateTime,
 CASE
 WHEN valuequantity.value IS NOT NULL THEN CONCAT(CAST(valuequantity.value AS
 VARCHAR),' ',valuequantity.unit)
 WHEN valueCodeableConcept.coding [1].code IS NOT NULL THEN
 CAST(valueCodeableConcept.coding [1].code AS VARCHAR)
 WHEN valuestring IS NOT NULL THEN CAST(valuestring AS VARCHAR)
 WHEN valueboolean IS NOT NULL THEN CAST(valueboolean AS VARCHAR)
 WHEN valueinteger IS NOT NULL THEN CAST(valueinteger AS VARCHAR)
 WHEN valueratio IS NOT NULL THEN CONCAT(CAST(valueratio.numerator.value AS
 VARCHAR),'/',CAST(valueratio.denominator.value AS VARCHAR))
 WHEN valuerange IS NOT NULL THEN CONCAT(CAST(valuerange.low.value AS
 VARCHAR),'-',CAST(valuerange.high.value AS VARCHAR))
 WHEN valueSampledData IS NOT NULL THEN CAST(valueSampledData.data AS VARCHAR)
 WHEN valueTime IS NOT NULL THEN CAST(valueTime AS VARCHAR)
 WHEN valueDateTime IS NOT NULL THEN CAST(valueDateTime AS VARCHAR)
 WHEN valuePeriod IS NOT NULL THEN valuePeriod.start
 WHEN component[1] IS NOT NULL THEN CONCAT(CAST(component[2].valuequantity.value
 AS VARCHAR),' ',CAST(component[2].valuequantity.unit AS VARCHAR),
 '/', CAST(component[1].valuequantity.value AS VARCHAR),'
 ',CAST(component[1].valuequantity.unit AS VARCHAR))
 END AS observationvalue,
 CASE
 WHEN condition.meta.tag [1].display = 'SYSTEM GENERATED' THEN 'YES'
 WHEN condition.meta.tag [1].display IS NULL THEN 'NO'
 WHEN observation.meta.tag [1].display = 'SYSTEM GENERATED' THEN 'YES'
 WHEN observation.meta.tag [1].display IS NULL THEN 'NO'
 END AS IsSystemGenerated,
 CAST(
 json_extract(
 condition.modifierextension [1],
 '$.valueDecimal'
) AS int
) AS confidenceScore
FROM database.patient,
 database.condition,
 database.observation
WHERE CONCAT('Patient/', patient.id) = condition.subject.reference
 AND CONCAT('Patient/', patient.id) = observation.subject.reference
 AND (year(current_date) - year(date(birthdate))) >= 18
 AND (year(current_date) - year(date(birthdate))) <= 75

Example queries 188

AWS HealthLake Developer Guide

 AND condition.code.coding [1].display like ('%diabetes%');

Now you can use the Athena console to sort the results or download them for further analysis.

Example queries 189

AWS HealthLake Developer Guide

Monitoring AWS HealthLake

Monitoring and logging are important parts of maintaining the security, reliability, availability, and
performance of AWS HealthLake. AWS provides the following services to watch HealthLake, report
when something is wrong, and take automatic actions when appropriate.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

• Amazon CloudWatch monitors your AWS resources and the applications you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify
you or take actions when a specified metric reaches a threshold that you specify. For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time
data from your own applications, Software-as-a-Service (SaaS) applications, and AWS services
and routes that data to targets such as Lambda. This enables you to monitor events that
happen in services, and build event-driven architectures. For more information, see the Amazon
EventBridge User Guide.

Topics

• Logging HealthLake API calls using AWS CloudTrail

• Monitoring HealthLake metrics using Amazon CloudWatch

• Monitoring HealthLake events using Amazon EventBridge

Logging HealthLake API calls using AWS CloudTrail

AWS HealthLake is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in HealthLake. CloudTrail captures all API calls for HealthLake
as events. The calls captured include calls from the HealthLake console and code calls to the
HealthLake API operations. If you create a trail, you can enable continuous delivery of CloudTrail

CloudTrail (API calls) 190

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/eventbridge/latest/userguide/

AWS HealthLake Developer Guide

events to an Amazon S3 bucket, including events for HealthLake. If you don't configure a trail,
you can still view the most recent events in the CloudTrail console in Event history. Using the
information collected by CloudTrail, you can determine the request that was made to HealthLake,
the IP address from which the request was made, who made the request, when it was made, and
additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

AWS HealthLake Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
HealthLake, that activity is recorded in a CloudTrail event along with other AWS service events in
Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for HealthLake, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

All HealthLake actions are logged by CloudTrail and are documented in the HealthLake API
Reference and in this Developer Guide for actions performed using the FHIR REST API. For example,
calls to the following actions generate entries in the CloudTrail log files:

• DescribeFHIRImportJob

• DescribeFHIRExportJob

• StartFHIRImportJob

• ListFHIRImportJobs

• StartFHIRExportJob

AWS HealthLake Information in CloudTrail 191

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/Welcome.html

AWS HealthLake Developer Guide

• ListFHIRExportJobs

• CreateFHIRDatastore

• ListFHIRDatastores

• DeleteFHIRDatastore

• DescribeFHIRDatastore

• UpdateResource

• CreateResource

• DeleteResource

• ReadResource

• GetCapabilities

• SearchWithGet

• SearchWithPost

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding AWS HealthLake Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the
CreateFHIRDatastore action.

{

Understanding AWS HealthLake Log File Entries 192

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS HealthLake Developer Guide

 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA2B3ZHOADD2OJ4AHJX:git
 full_access_iam_role580074395690222150",
 "arn": "arn:aws:sts::691207106566:assumed-role/
colossusfrontend_full_access_iam_role/_iam_role580074395690222150",
 "accountId": "AccountID",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROA2B3ZHOADD2OJ4AHJX",
 "arn": "arn:aws:iam::691207106566:role/full_access_iam_role",
 "accountId": "AccountID",
 "userName": "full_access_iam_role"
 },
 "webIdFederationData": {

 },
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-11-20T00:08:15Z"
 }
 }
 },
 "eventTime": "2020-11-20T00:08:16Z",
 "eventSource": "healthlake.amazonaws.com",
 "eventName": "CreateFHIRDatastore",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "3.213.247.1",
 "userAgent": "Coral/Netty4",
 "requestParameters": {
 "datastoreName":
 "testCreateFHIRDatastore_GBYAZFCLLBLSUTOYYFQZRLBLQJNFOYQVRPZBOJAIIUAHICAEAGIWLNVQEYAMSXVWMBLXCDCLMJKYFBTHJLBRURUDVBUTEHIIZHNZGHOKYGJSLWJKNCRQPXDSRCPYJAUBHTQPDRKUGDAAXPBSXLIAKQAQV",
 "datastoreTypeVersion": "R4",
 "clientToken": "d737ffe0-14dd-44cc-9f0a-fdf59b26c66b"
 },
 "responseElements": {
 "datastoreId": "datastoreID",
 "datastoreArn": "arn:aws:healthlake:us-
east-1:691207106566:datastore/55576c487ff4975262b10d1d65eb4509",
 "datastoreStatus": "CREATING",
 "datastoreEndpoint": "datastore_endpoint/"

Understanding AWS HealthLake Log File Entries 193

AWS HealthLake Developer Guide

 },
 "requestID": "68e62bdd-d2d4-44c1-af69-e6f055a69f99",
 "eventID": "7ef483dc-5dca-469e-823a-7d9e3a7fe924",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "691207106566"
}

Monitoring HealthLake metrics using Amazon CloudWatch

You can monitor HealthLake using Amazon CloudWatch, which collects raw data and processes
it into readable, near real-time metrics. These statistics are kept for 15 months, so you can use
that historical information and gain a better perspective on how your web application or service
is performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

Note

Metrics are reported for all native HealthLake actions.

The following tables list HealthLake metrics and dimensions reported to CloudWatch. Each is
presented as a frequency count for a user-specified data range.

The following HealthLake metrics are reported to CloudWatch.

HealthLake metrics reported to CloudWatch

Metric Description

Call Count The number of calls to APIs. This can be
reported for the account or a specified data
store.

Units: Count

Valid Statistics: Sum, Count

CloudWatch (Metrics) 194

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_Operations.html

AWS HealthLake Developer Guide

Metric Description

Dimensions: Operation, datastore ID, data
store type

Successful Requests The number of successful API requests.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store ID, data
store type

User Errors The number of requests that failed due to user
error.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store ID, data
store type

Server Errors The number of requests that failed due to
server error.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store ID, data
store type

CloudWatch (Metrics) 195

AWS HealthLake Developer Guide

Metric Description

Throttled Requests The number of requests that have been
throttled. This metric is not included in user or
server errors counts.

Units: Count

Valid Statistics: Sum, Average

Dimensions: Operation, data store ID, data
store type

Latency The time it took in milliseconds to process the
user request.

Unit: Milliseconds

Valid statistics: Minimum, Maximum, Average

Dimensions: Operation, data store ID, data
store type

The following HealthLake dimensions are reported to CloudWatch.

HealthLake Dimensions reported to CloudWatch

Dimension Description

Operation The API operation used in the request

DataStoreID The data store ID used in the request

DataStoreType The type of data store used in the request

You can get metrics for HealthLake with the AWS Management Console, the AWS CLI, or the
CloudWatch API. You can use the CloudWatch API through one of the Amazon AWS Software
Development Kits (SDKs) or the CloudWatch API tools. The HealthLake console displays graphs
based on the raw data from the CloudWatch API.

CloudWatch (Metrics) 196

AWS HealthLake Developer Guide

You must have the appropriate CloudWatch permissions to monitor HealthLake with CloudWatch.
For more information, see Identity and access management for Amazon CloudWatchin the Amazon
CloudWatch User Guide.

Viewing HealthLake metrics

To view metrics (CloudWatch console)

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Metrics, choose All Metrics, and then choose AWS/HealthLake.

3. Choose the dimension, choose a metric name, then choose Add to graph.

4. Choose a value for the date range. The metric count for the selected date range is displayed in
the graph.

Creating an alarm using CloudWatch

A CloudWatch alarm watches a single metric over a specified time period, and performs one or
more actions: sending a notification to an Amazon Simple Notification Service (SNS) topic or
Auto Scaling policy. The action or actions are based on the value of the metric relative to a given
threshold over a number of time periods that you specify. CloudWatch can also send you an SNS
message when the alarm changes state.

Note

CloudWatch alarms invoke actions only when the state changes and has persisted for the
period you specify.

To view metrics (CloudWatch console)

1. Sign in to the CloudWatch console.

2. Choose Alarms, and then choose Create Alarm.

3. Choose AWS/HealthLake, and then choose a metric.

4. For Time Range, choose a time range to monitor, and then choose Next.

5. Enter a Name and Description.

6. For Whenever, choose >=, and type a maximum value.

Viewing HealthLake metrics 197

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/auth-and-access-control-cw.html
https://console.aws.amazon.com/cloudwatch/home
https://console.aws.amazon.com/cloudwatch/home

AWS HealthLake Developer Guide

7. If you want CloudWatch to send an email when the alarm state is reached, in the Actions
section, for Whenever this alarm, choose State is ALARM. For Send notification to, choose a
mailing list or choose New list and create a new mailing list.

8. Preview the alarm in the Alarm Preview section. If you are satisfied with the alarm, choose
Create Alarm.

Monitoring HealthLake events using Amazon EventBridge

Amazon EventBridge is a serverless service that uses events to connect application components
together, making it easier for you to build scalable event-driven applications. The basis of
EventBridge is to create rules that route events to targets. AWS HealthLake provides durable
delivery of state changes to EventBridge. For more information, see What is Amazon EventBridge?
in the Amazon EventBridge User Guide.

Note

To learn how to send HealthLake events to Amazon EventBridge, see Amazon EventBridge
integration for AWS HealthLake in the AWS for Industries blog.

Topics

• HealthLake events sent to EventBridge

• HealthLake event structure

HealthLake events sent to EventBridge

The following table lists all HealthLake events sent to EventBridge for processing.

HealthLake event type State

Data store events

 Data Store Creating CREATING

 Data Store Active ACTIVE

 Data Store Deleting DELETING

EventBridge (Events) 198

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-targets.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://aws.amazon.com/blogs/industries/amazon-eventbridge-integration-for-aws-healthlake
https://aws.amazon.com/blogs/industries/amazon-eventbridge-integration-for-aws-healthlake

AWS HealthLake Developer Guide

HealthLake event type State

 Data Store Deleted DELETED

For more information, see datastoreStatus in the AWS HealthLake API Reference.

Import job events

 Import Job Submitted SUBMITTED

 Import Job In Progress IN_PROGRESS

 Import Job Completed With Errors COMPLETED_WITH_ERRORS

 Import Job Completed COMPLETED

 Import Job Failed FAILED

For more information, see jobStatus in the AWS HealthLake API Reference.

Export job events

 Export Job Submitted SUBMITTED

 Export Job In Progress IN_PROGRESS

 Export Job Completed With Errors COMPLETED_WITH_ERRORS

 Export Job Completed COMPLETED

 Export Job Failed FAILED

For more information, see jobStatus in the AWS HealthLake API Reference.

HealthLake event structure

HealthLake events are objects with JSON structure that also contain metadata details. You can
use the metadata as input to either recreate an event or learn more information. All associated
metadata fields are listed in a table under the code examples in the following menus. For more
information, see AWS service event metadata in the Amazon EventBridge User Guide.

HealthLake event structure 199

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_DatastoreProperties.html#HealthLake-Type-DatastoreProperties-DatastoreStatus
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ImportJobProperties.html#HealthLake-Type-ImportJobProperties-JobStatus
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_ExportJobProperties.html#HealthLake-Type-ExportJobProperties-JobStatus
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events-structure.html

AWS HealthLake Developer Guide

Note

To learn how to send HealthLake events to Amazon EventBridge, see Amazon EventBridge
integration for AWS HealthLake in the AWS for Industries blog.

Data store events

Data Store Creating

State - CREATING

{
 "version": "0",
 "id": "514ad836-bb8a-4523-a10b-fa2756c3bdb0",
 "detail-type": "Data Store Creating",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T08:58:12Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "datastoreName": "your-data-store-name",
 "datastoreTypeVersion": "R4",
 "datastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
eeb8005725ae22b35b4edbdc68cf2dfd/r4/"
 }
}

Data Store Active

State - ACTIVE

{
 "version": "0",
 "id": "d57105bc-0d2d-4009-b34d-453e2567c599",

HealthLake event structure 200

https://aws.amazon.com/blogs/industries/amazon-eventbridge-integration-for-aws-healthlake
https://aws.amazon.com/blogs/industries/amazon-eventbridge-integration-for-aws-healthlake

AWS HealthLake Developer Guide

 "detail-type": "Data Store Active",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T09:16:51Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "datastoreName": "your-data-store-name",
 "datastoreTypeVersion": "R4",
 "datastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
eeb8005725ae22b35b4edbdc68cf2dfd/r4/"
 }
}

Data Store Deleting

State - DELETING

{
 "version": "0",
 "id": "d135ee1f-e14a-4730-8766-7b98f822c94a",
 "detail-type": "Data Store Deleting",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T12:44:47Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "datastoreName": "your-data-store-name",
 "datastoreTypeVersion": "R4",
 "datastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
eeb8005725ae22b35b4edbdc68cf2dfd/r4/"

HealthLake event structure 201

AWS HealthLake Developer Guide

 }
}

Data Store Deleted

State - DELETED

{
 "version": "0",
 "id": "6d880b86-e115-4947-81a9-494db704571a",
 "detail-type": "Data Store Deleted",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-05-12T12:58:03Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "datastoreName": "your-data-store-name",
 "datastoreTypeVersion": "R4",
 "datastoreEndpoint": "https://healthlake.us-east-1.amazonaws.com/datastore/
eeb8005725ae22b35b4edbdc68cf2dfd/r4/"
 }
}

Data store events - metadata descriptions

Name Type Description

version string The EventBridge event
schema version.

id string The Version 4 UUID generated
for every event.

HealthLake event structure 202

AWS HealthLake Developer Guide

Name Type Description

detail-type string The type of event that is
being sent.

source string Identifies the service that
generated the event.

account string The 12-digit AWS account ID
of the data store owner.

time string The time the event occurred.

region string Identifies the AWS Region of
the data store.

resources array (string) A JSON array that contains
the ARN of the data store.

detail object A JSON object that contains
information about the event.

detail.datastoreId string The data store ID associated
with the status change event.

detail.datastoreName string The data store name.

detail.datastoreTy
peVersion

string The data store FHIR version.

detail.datastoreEn
dpoint

string The data store endpoint.

Import job events

Import Job Submitted

State - SUBMITTED

{

HealthLake event structure 203

AWS HealthLake Developer Guide

 "version": "0",
 "id": "25e606f7-800c-da41-45df-0e68587250c9",
 "detail-type": "Import Job Submitted",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T01:50:51Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "08c60716d6321710893ff88410e902c2",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "inputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/input/"
 }
 }
}

Import Job In Progress

State - IN_PROGRESS

{
 "version": "0",
 "id": "cc886b49-2737-19c4-7c4e-84ac9429ab73",
 "detail-type": "Import Job In Progress",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T01:51:23Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "08c60716d6321710893ff88410e902c2",

HealthLake event structure 204

AWS HealthLake Developer Guide

 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "inputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/input/"
 }
 }
}

Import Job Completed

State - COMPLETED

{
 "version": "0",
 "id": "36c865ef-da41-76ef-c882-3ba8dad8656b",
 "detail-type": "Import Job Completed",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T02:14:42Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "08c60716d6321710893ff88410e902c2",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "inputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/input/"
 }
 }
}

Import Job Completed With Errors

State - COMPLETED_WITH_ERRORS

{

HealthLake event structure 205

AWS HealthLake Developer Guide

 "version": "0",
 "id": "b61387d7-bffe-4f01-8291-65dc4be52cc1",
 "detail-type": "Import Job Completed With Errors",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T02:14:42Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "08c60716d6321710893ff88410e902c2",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "inputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/input/"
 }
 }
}

Import Job Failed

State - FAILED

{
 "version": "0",
 "id": "c4d65575-d1a7-4040-9c6c-c225bf6723c5",
 "detail-type": "Import Job Failed",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T02:14:42Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "08c60716d6321710893ff88410e902c2",

HealthLake event structure 206

AWS HealthLake Developer Guide

 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "inputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/input/"
 }
 }
}

Import job events - metadata descriptions

Name Type Description

version string The EventBridge event
schema version.

id string The Version 4 UUID generated
for every event.

detail-type string The type of event that is
being sent.

source string Identifies the service that
generated the event.

account string The 12-digit AWS account ID
of the data store owner.

time string The time the event occurred.

region string Identifies the AWS Region of
the data store.

resources array (string) A JSON array that contains
the ARN of the data store.

detail object A JSON object that contains
information about the event.

HealthLake event structure 207

AWS HealthLake Developer Guide

Name Type Description

detail.jobId string The import job ID associated
with the status change event.

detail.submitTime string The time the import job was
submitted.

detail.datastoreId string The data store that generated
the status change event.

detail.inputDataCo
nfig

string The input prefix path for
the Amazon S3 bucket that
contains the FHIR files to be
imported.

Export job events

Export Job Submitted

State - SUBMITTED

{
 "version": "0",
 "id": "f8af7d04-2221-4f02-a01a-6fc3ae403bab",
 "detail-type": "Export Job Submitted",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T01:50:51Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "45e899e545bf774710388260fc60b143",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "outputDataConfig":

HealthLake event structure 208

AWS HealthLake Developer Guide

 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/output/"
 }
 }
}

Export Job In Progress

State - IN_PROGRESS

{
 "version": "0",
 "id": "7bb7e39c-707d-4a83-8532-cee015299100",
 "detail-type": "Export Job In Progress",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T01:51:23Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "45e899e545bf774710388260fc60b143",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "outputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/output/"
 }
 }
}

Export Job Completed

State - COMPLETED

{
 "version": "0",
 "id": "d7629aa7-e63a-4b84-858c-96a62b57ebc8",
 "detail-type": "Export Job Completed",

HealthLake event structure 209

AWS HealthLake Developer Guide

 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T02:14:42Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "45e899e545bf774710388260fc60b143",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "outputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/output/"
 }
 }
}

Export Job Completed With Errors

State - COMPLETED_WITH_ERRORS

{
 "version": "0",
 "id": "5fa50bc5-50e3-4bc4-b66a-1b1d2f7b07a7",
 "detail-type": "Export Job Completed With Errors",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T02:14:42Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "45e899e545bf774710388260fc60b143",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "outputDataConfig":

HealthLake event structure 210

AWS HealthLake Developer Guide

 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/output/"
 }
 }
}

Export Job Failed

State - FAILED

{
 "version": "0",
 "id": "49fce45e-7e02-4846-8582-e7f19ca039cb",
 "detail-type": "Export Job Failed",
 "source": "aws.healthlake",
 "account": "123456789012",
 "time": "2023-12-08T02:14:42Z",
 "region": "us-east-1",
 "resources":
 [
 "arn:aws:healthlake:us-east-1:123456789012:datastore/fhir/
eeb8005725ae22b35b4edbdc68cf2dfd"
],
 "detail":
 {
 "jobId": "45e899e545bf774710388260fc60b143",
 "submitTime": "2023-12-08T01:50:50.986Z",
 "datastoreId": "eeb8005725ae22b35b4edbdc68cf2dfd",
 "outputDataConfig":
 {
 "s3Uri": "s3://amzn-s3-demo-source-bucket/output/"
 }
 }
}

Export job events - metadata descriptions

Name Type Description

version string The EventBridge event
schema version.

HealthLake event structure 211

AWS HealthLake Developer Guide

Name Type Description

id string The Version 4 UUID generated
for every event.

detail-type string The type of event that is
being sent.

source string Identifies the service that
generated the event.

account string The 12-digit AWS account ID
of the data store owner.

time string The time the event occurred.

region string Identifies the AWS Region of
the data store.

resources array (string) A JSON array that contains
the ARN of the data store.

detail object A JSON object that contains
information about the event.

detail.jobId string The export job ID associated
with the status change event.

detail.submitTime string The time the export job was
submitted.

detail.datastoreId string The data store that generated
the status change event.

detail.outputDataC
onfig

string The output prefix path for
the Amazon S3 bucket that
contains the FHIR files to be
exported.

HealthLake event structure 212

AWS HealthLake Developer Guide

Security in AWS HealthLake

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud AWS is responsible for protecting the infrastructure that runs AWS services
in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party
auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance
Programs. To learn about the compliance programs that apply to HealthLake, see AWS Services
in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using HealthLake. The following topics show you how to configure HealthLake to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your HealthLake resources.

Topics

• Data Protection in AWS HealthLake

• Encryption at REST for AWS HealthLake

• Encryption in transit for AWS HealthLake

• Identity and access management for AWS HealthLake

• Compliance validation for AWS HealthLake

• Infrastructure security in AWS HealthLake

• Creating AWS HealthLake resources with AWS CloudFormation

• AWS HealthLake and interface VPC endpoints (AWS PrivateLink)

• Security best practices in AWS HealthLake

• Resilience in AWS HealthLake

213

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS HealthLake Developer Guide

Data Protection in AWS HealthLake

The AWS shared responsibility model applies to data protection in AWS HealthLake. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with HealthLake or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Data Protection 214

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS HealthLake Developer Guide

Encryption at REST for AWS HealthLake

HealthLake provides encryption by default to protect sensitive customer data at rest by using a
service owned AWS Key Management Service (AWS KMS) key. Customer-managed KMS keys are
also supported and are required for both importing and exporting files from a data store. To learn
more about Customer-managed KMS Key, see Amazon Key Management Service. Customers can
choose an AWS owned KMS key or a Customer-managed KMS key when creating a data store. The
encryption configuration cannot be changed after a data store has been created. If a data store is
using an AWS owned KMS Key, it will be denoted as AWS_OWNED_KMS_KEY and you will not see
the specific key used for encryption at rest.

AWS owned KMS key

HealthLake uses these keys by default to automatically encrypt potentially sensitive information
such as personally identifiable or Private Health Information(PHI) data at rest. AWS owned KMS
keys aren't stored in your account. They're part of a collection of KMS keys that AWS owns and
manages for use in multiple AWS accounts. AWS services can use AWS owned KMS keys to protect
your data. You can't view, manage, use AWS owned KMS keys, or audit their use. However, you
don't need to do any work or change any programs to protect the keys that encrypt your data.

You're not charged a monthly fee or a usage fee if you use AWS owned KMS keys, and they don't
count against AWS KMS quotas for your account. For more information, see AWS owned keys.

Customer managed KMS keys

HealthLake supports the use of a symmetric customer managed KMS key that you create, own, and
manage to add a second layer of encryption over the existing AWS owned encryption. Because you
have full control of this layer of encryption, you can perform such tasks as:

• Establishing and maintaining key policies, IAM policies, and grants

• Rotating key cryptographic material

• Enabling and disabling key policies

• Adding tags

• Creating key aliases

• Scheduling keys for deletion

Encryption at rest 215

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk

AWS HealthLake Developer Guide

You can also use CloudTrail to track the requests that HealthLake sends to AWS KMS on your
behalf. Additional AWS KMS charges apply.For more information, see customer owned keys.

Create a customer managed key

You can create a symmetric customer managed key by using the AWS Management Console, or the
AWS KMS APIs.

Follow the steps for Creating symmetric customer managed key in the AWS Key Management
Service Developer Guide.

Key policies control access to your customer managed key. Every customer managed key must have
exactly one key policy, which contains statements that determine who can use the key and how
they can use it. When you create your customer managed key, you can specify a key policy. For
more information, see Managing access to customer managed keys in the AWS Key Management
Service Developer Guide.

To use your customer managed key with your HealthLake resources, kms:CreateGrant operations
must be permitted in the key policy. This adds a grant to a customer managed key which controls
access to a specified KMS key, which gives a user access to the kms:grant operations HealthLake
requires. See Using grantsfor more information.

To use your customer managed KMS key with your HealthLake resources, the following API
operations must be permitted in the key policy:

• kms:CreateGrant adds grants to a specific customer managed KMS key which allows access to
grant operations.

• kms:DescribeKey provides the customer managed key details needed to validate the key. This is
required for all operations.

• kms:GenerateDataKey provides access to encrypt resources at rest for all write operations.

• kms:Decrypt provides access to read or search operations for encrypted resources.

The following is a policy statement example that allows a user to create and interact with a data
store in AWS HealthLake which is encrypted by that key:

"Statement": [

Create a customer managed key 216

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-symmetric-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/control-access-overview.html#managing-access
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html#terms-grant-operations
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS HealthLake Developer Guide

 {
 "Sid": "Allow access to create data stores and do CRUD/search in AWS
 HealthLake",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:HealthLakeFullAccessRole"
 },
 "Action": [
 "kms:DescribeKey",
 "kms:CreateGrant",
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "healthlake.amazonaws.com",
 "kms:CallerAccount": "111122223333"
 }
 }
 }
]

Required IAM permissions for using a customer managed KMS key

When creating a data store with AWS KMS encryption enabled using a customer managed KMS
key, there are required permissions for both the key policy and the IAM policy for the user or role
creating the HealthLake data store.

You can use the kms:ViaService condition key to limit use of the KMS key to only requests that
originate from HealthLake.

For more information about key policies, see Enabling IAM policies in the AWS Key Management
Service Developer Guide.

The IAM user, IAM role, or AWS account creating your repositories must have the
kms:CreateGrant,kms:GenerateDataKey, and kms:DescribeKey permissions plus the necessary
HealthLake permissions.

Required IAM permissions for using a customer managed KMS key 217

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-root-enable-iam

AWS HealthLake Developer Guide

How HealthLake uses grants in AWS KMS

HealthLake requires a grant to use your customer managed KMS key. When you create a Data
Store encrypted with a customer managed KMS key, HealthLake creates a grant on your behalf by
sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give HealthLake access
to a KMS key in a customer account.

The grants that HealthLake creates on your behalf should not be revoked or retired. If you revoke
or retire the grant that gives HealthLake permission to use the AWS KMS keys in your account,
HealthLake cannot access this data, encrypt new FHIR resources pushed to the data store, or
decrypt them when they are pulled. When you revoke or retire a grant for HealthLake, the change
occurs immediately. To revoke access rights, you should delete the data store rather than revoking
the grant. When a data store is deleted, HealthLake retires the grants on your behalf.

Monitoring your encryption keys for HealthLake

You can use CloudTrail to track the requests that HealthLake sends to AWS KMS on your
behalf when using a customer managed KMS key. The log entries in the CloudTrail log show
healthlake.amazonaws.com in the userAgent field to clearly distinguish requests made by
HealthLake.

The following examples are CloudTrail events for CreateGrant, GenerateDataKey, Decrypt, and
DescribeKey to monitor AWS KMS operations called by HealthLake to access data encrypted by
your customer managed key.

The following shows how to use CreateGrant to allow HealthLake to access a customer provided
KMS key, enabling HealthLake to use that KMS key to encrypt all customer data at rest.

Users are not required to create their own grants. HealthLake creates a grant on your behalf by
sending a CreateGrant request to AWS KMS. Grants in AWS KMS are used to give HealthLake access
to a AWS KMS key in a customer account.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEROLE:Sampleuser01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01,
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",

Required IAM permissions for using a customer managed KMS key 218

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS HealthLake Developer Guide

 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T19:33:37Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-06-30T20:31:15Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "operations": [
 "CreateGrant",
 "Decrypt",
 "DescribeKey",
 "Encrypt",
 "GenerateDataKey",
 "GenerateDataKeyWithoutPlaintext",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant"
],
 "granteePrincipal": "healthlake.us-east-1.amazonaws.com",
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN",
 "retiringPrincipal": "healthlake.us-east-1.amazonaws.com"
 },
 "responseElements": {
 "grantId": "EXAMPLE_ID_01"
 },
 "requestID": "EXAMPLE_ID_02",
 "eventID": "EXAMPLE_ID_03",
 "readOnly": false,

Required IAM permissions for using a customer managed KMS key 219

AWS HealthLake Developer Guide

 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following examples shows how to use GenerateDataKey to ensure the user has necessary
permissions to encrypt data before storing it.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T21:17:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-06-30T21:17:37Z",

Required IAM permissions for using a customer managed KMS key 220

AWS HealthLake Developer Guide

 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example shows how HealthLake calls the Decrypt operation to use the stored
encrypted data key to access the encrypted data.

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",

Required IAM permissions for using a customer managed KMS key 221

AWS HealthLake Developer Guide

 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-06-30T21:17:06Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-06-30T21:21:59Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

The following example shows how HealthLake uses the DescribeKey operation to verify if the AWS
KMS customer owned AWS KMS key is in a usable state and to help a user troubleshoot if it is not
functional.

Required IAM permissions for using a customer managed KMS key 222

AWS HealthLake Developer Guide

 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLEUSER",
 "arn": "arn:aws:sts::111122223333:assumed-role/Sampleuser01",
 "accountId": "111122223333",
 "accessKeyId": "EXAMPLEKEYID",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "EXAMPLEROLE",
 "arn": "arn:aws:iam::111122223333:role/Sampleuser01",
 "accountId": "111122223333",
 "userName": "Sampleuser01"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2021-07-01T18:36:14Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "healthlake.amazonaws.com"
 },
 "eventTime": "2021-07-01T18:36:36Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "healthlake.amazonaws.com",
 "userAgent": "healthlake.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"
 },
 "responseElements": null,
 "requestID": "EXAMPLE_ID_01",
 "eventID": "EXAMPLE_ID_02",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-east-1:111122223333:key/EXAMPLE_KEY_ARN"

Required IAM permissions for using a customer managed KMS key 223

AWS HealthLake Developer Guide

 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Learn more

The following resources provide more information about data at rest encryption.

For more information about AWS Key Management Service basic concepts, see the AWS KMS
documentation.

For more information about Security best practices in the AWS KMS documentation.

Encryption in transit for AWS HealthLake

AWS HealthLake uses TLS 1.2 to encrypt data in transit through the public endpoint and through
backend services.

Identity and access management for AWS HealthLake

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use HealthLake resources. IAM is an AWS service that you can
use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS HealthLake works with IAM

• Identity-based policy examples for AWS HealthLake

• AWS managed policies for AWS HealthLake

• Troubleshooting AWS HealthLake identity and access

Encryption in transit 224

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html
https://docs.aws.amazon.com/kms/latest/developerguide/best-practices.html

AWS HealthLake Developer Guide

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in HealthLake.

Service user – If you use the HealthLake service to do your job, then your administrator provides
you with the credentials and permissions that you need. As you use more HealthLake features to
do your work, you might need additional permissions. Understanding how access is managed can
help you request the right permissions from your administrator. If you cannot access a feature in
HealthLake, see Troubleshooting AWS HealthLake identity and access.

Service administrator – If you're in charge of HealthLake resources at your company, you probably
have full access to HealthLake. It's your job to determine which HealthLake features and resources
your service users should access. You must then submit requests to your IAM administrator to
change the permissions of your service users. Review the information on this page to understand
the basic concepts of IAM. To learn more about how your company can use IAM with HealthLake,
see How AWS HealthLake works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to HealthLake. To view example HealthLake identity-based
policies that you can use in IAM, see Identity-based policy examples for AWS HealthLake.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If

Audience 225

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS HealthLake Developer Guide

you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating

Authenticating with identities 226

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS HealthLake Developer Guide

IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource

Authenticating with identities 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS HealthLake Developer Guide

(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their

Managing access using policies 228

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS HealthLake Developer Guide

permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Managing access using policies 229

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthLake Developer Guide

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about

Managing access using policies 230

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS HealthLake Developer Guide

Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS HealthLake works with IAM

Before you use IAM to manage access to HealthLake, learn what IAM features are available to use
with HealthLake.

IAM features you can use with AWS HealthLake

IAM feature HealthLake support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

How AWS HealthLake works with IAM 231

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS HealthLake Developer Guide

IAM feature HealthLake support

Service roles Yes

Service-linked roles No

To get a high-level view of how HealthLake and other AWS services work with most IAM features,
see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for AWS HealthLake

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for AWS HealthLake

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Resource-based policies within AWS HealthLake

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal

How AWS HealthLake works with IAM 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS HealthLake Developer Guide

in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for AWS HealthLake

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of HealthLake actions, see Actions defined by AWS HealthLake in the Service
Authorization Reference.

Policy actions in HealthLake use the following prefix before the action:

healthlake

To specify multiple actions in a single statement, separate each action with a comma.

"Action": [
 "healthlake:action1",

How AWS HealthLake works with IAM 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-actions-as-permissions

AWS HealthLake Developer Guide

 "healthlake:action2"
]

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Policy resources for AWS HealthLake

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of HealthLake resource types and their ARNs, see Resources defined by AWS
HealthLake in the Service Authorization Reference. To learn the actions with which you can specify
the ARN of each resource, see Actions defined by AWS HealthLake.

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Policy condition keys for AWS HealthLake

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How AWS HealthLake works with IAM 234

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-actions-as-permissions

AWS HealthLake Developer Guide

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of HealthLake condition keys, see Condition keys for AWS HealthLake in the Service
Authorization Reference. To learn the actions and resources with which you can use a condition key,
see Actions defined by AWS HealthLake.

To view examples of HealthLake identity-based policies, see Identity-based policy examples for
AWS HealthLake.

Access control lists (ACLs) in AWS HealthLake

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with AWS HealthLake

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

How AWS HealthLake works with IAM 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html#amazonhealthlake-actions-as-permissions

AWS HealthLake Developer Guide

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using temporary credentials with AWS HealthLake

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for AWS HealthLake

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a

How AWS HealthLake works with IAM 236

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

AWS HealthLake Developer Guide

different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for AWS HealthLake

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

For information about service roles and the inline policy required for full access to AWS
HealthLake, see Setting up AWS HealthLake.

Warning

Changing the permissions for a service role might break HealthLake functionality. Edit
service roles only when HealthLake provides guidance to do so.

Service-linked roles for AWS HealthLake

Supports service-linked roles: No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for AWS HealthLake

By default, users and roles don't have permission to create or modify HealthLake resources. They
also can't perform tasks by using the AWS Management Console, AWS Command Line Interface

Identity-based policy examples 237

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS HealthLake Developer Guide

(AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they
need, an IAM administrator can create IAM policies. The administrator can then add the IAM
policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by HealthLake, including the format of the
ARNs for each of the resource types, see Actions, resources, and condition keys for AWS HealthLake
in the Service Authorization Reference.

Topics

• Policy best practices

• Using the AWS HealthLake console

• Accessing an AWS HealthLake data store in Amazon Athena

• Allowing users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete HealthLake
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to

Identity-based policy examples 238

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonhealthlake.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS HealthLake Developer Guide

specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS HealthLake console

To access the AWS HealthLake console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the HealthLake resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

For full access to HealthLake, attach the following policies to an IAM user or role:
AmazonHealthLakeFullAccess and AWSLakeFormationDataAdmin. You also need to attach
the HealthLake inline policy which is a service role. A service role is an IAM role that a service
assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete
a service role from within IAM. For more information, see Create a role to delegate permissions to
an AWS service in the IAM User Guide. For information about the inline policy which creates the
required service role, see Setting up AWS HealthLake. You must also use the AWS Lake Formation
console or CLI to assign your HealthLake administrator to be an AWS Lake Formation Data Lake
administrator. For more information, see Setting up AWS HealthLake.

Identity-based policy examples 239

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS HealthLake Developer Guide

Accessing an AWS HealthLake data store in Amazon Athena

If you want to provide users and roles with access to the HealthLake data stores in Amazon
Athena, attach the following IAM policies to the role or user: AmazonAthenaFullAccess and
AmazonS3FullAccess. Select and Describe permissions are also required on tables managed
by AWS Lake Formation. AWS Lake Formation table permissions are granted by an AWS Lake
Formation administrator in the AWS Lake Formation console or via the CLI. For more information,
see Setting up AWS HealthLake

Allowing users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"

Identity-based policy examples 240

AWS HealthLake Developer Guide

],
 "Resource": "*"
 }
]
}

AWS managed policies for AWS HealthLake

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: AmazonHealthLakeFullAccess

The AmazonHealthLakeFullAccess policy provides full access to HealthLake. With this policy
attached to their user or role, users can use HealthLake to access, query, import, and export data in
HealthLake. To perform many common actions in HealthLake, you must add additional policies to
the user or role. For more information, see Setting up AWS HealthLake and HealthLake operations
and permissions.

You can attach the AmazonHealthLakeFullAccess policy to your IAM identities.

AWS managed policies 241

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS HealthLake Developer Guide

This policy grants administrative and contributor permissions that allow users and roles to query,
search, import, and export with HealthLake, and it also makes it possible for HealthLake to perform
actions on behalf of the users and roles that have these permissions.

Permissions details

This policy includes the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "healthlake:*",
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketLocation",
 "iam:ListRoles"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "healthlake.amazonaws.com"
 }
 }
 }
]
}

AWS managed policy: AmazonHealthLakeReadOnlyAccess

AmazonHealthLakeReadOnlyAccess policy grants read-only access and permissions to
HealthLake and related resources in other AWS services. Apply this policy to users who you want
to grant the ability to query and view HealthLake data store, but not the ability to create or make
changes to them.

AWS managed policies 242

AWS HealthLake Developer Guide

You can attach the AmazonHealthLakeReadOnlyAccess policy to your IAM identities.

This policy grants read-only permissions that allow users and roles to query HealthLake.

Permissions details

This policy includes the following statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "healthlake:ListFHIRDatastores",
 "healthlake:DescribeFHIRDatastore",
 "healthlake:DescribeFHIRImportJob",
 "healthlake:DescribeFHIRExportJob",
 "healthlake:GetCapabilities",
 "healthlake:ReadResource",
 "healthlake:SearchWithGet",
 "healthlake:SearchWithPost",
 "healthlake:SearchEverything"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

HealthLake operations and permissions

The following table lists typical operations in HealthLake and the permissions needed to perform
them.

HealthLake operations Required permissions

Create a data store in HealthLake AmazonHealthLakeFu
llAccess ,AmazonLakeFormatio
nDataAdmin , inline policy, and AWS

AWS managed policies 243

AWS HealthLake Developer Guide

HealthLake operations Required permissions

Lake Formation Administrator permissions
managed by AWS Lake Formation

Delete a data store in HealthLake AmazonHealthLakeFullAccess ,
AmazonLakeFormationDataAdmi
n , inline policy, and AWS Lake Formation
Administrator permissions managed by AWS
Lake Formation

List, search, or query a data store in HealthLak
e

AmazonHealthLakeReadOnlyAccess

Query a data store using Amazon Athena AmazonAthenaFullAccess , AmazonS3F
ullAccess , AWS Lake Formation Select
and Describe permissions on tables
managed by AWS Lake Formation

Import data from HealthLake See Setting up permissions for import jobs.

Export data from HealthLake See Setting up permissions for export jobs.

HealthLake updates to AWS managed policies

View details about updates to AWS managed policies for HealthLake from the time that this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the HealthLake Document history page.

Change Description Date

AmazonHealthLakeFullAccess AmazonHealthLakeFu
llAccess policy required to
allow full access to HealthLak
e.

November, 14, 2022

AmazonHealthLakeRe
adOnlyAccess

AmazonHealthLakeRe
adOnlyAccess policy

November, 14, 2022

AWS managed policies 244

AWS HealthLake Developer Guide

Change Description Date

required for read-only access
to HealthLake.

HealthLake started tracking
changes

HealthLake started tracking
changes for its AWS managed
policies.

November, 14, 2022

Troubleshooting AWS HealthLake identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with HealthLake and IAM.

Topics

• I am not authorized to perform an action in AWS HealthLake

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS HealthLake resources

I am not authorized to perform an action in AWS HealthLake

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but does not have the fictional
healthlake:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 healthlake:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the healthlake:GetWidget action.

Troubleshooting 245

AWS HealthLake Developer Guide

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to HealthLake.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in HealthLake. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS HealthLake
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether HealthLake supports these features, see How AWS HealthLake works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

Troubleshooting 246

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html

AWS HealthLake Developer Guide

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for AWS HealthLake

Third-party auditors assess the security and compliance of AWS HealthLake as part of multiple
AWS compliance programs. For HealthLake this includes HIPAA.

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

Compliance validation 247

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html

AWS HealthLake Developer Guide

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Infrastructure security in AWS HealthLake

As a managed service, AWS HealthLake is protected by the AWS global network security procedures
that are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access HealthLake through the network. Clients must support
Transport Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also
support cipher suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE)
or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Creating AWS HealthLake resources with AWS CloudFormation

AWS HealthLake is integrated with AWS CloudFormation, a service that helps you to model and set
up your AWS resources so that you can spend less time creating and managing your resources and
infrastructure. You create a template that describes all the AWS resources that you want and AWS
CloudFormation provisions and configures those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your HealthLake
resources consistently and repeatedly. Describe your resources once, and then provision the same
resources over and over in multiple AWS accounts and Regions.

HealthLake and AWS CloudFormation templates

To provision and configure resources for HealthLake and related services, you must understand
AWS CloudFormation templates. Templates are formatted text files in JSON or YAML. These

Infrastructure security 248

https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html

AWS HealthLake Developer Guide

templates describe the resources that you want to provision in your AWS CloudFormation stacks.
If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

Note

AWS HealthLake supports creating data stores with AWS CloudFormation. For more
information, including examples of JSON and YAML templates for provisioning HealthLake
data stores, see the AWS HealthLake resource type reference in the AWS CloudFormation
User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

AWS HealthLake and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and AWS HealthLake by creating an
interface VPC endpoint. Interface VPC endpoints are powered by AWS PrivateLink, a technology
that you can use to privately access HealthLake; APIs without an internet gateway, NAT device,
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP
addresses to communicate with HealthLake; APIs. Traffic between your VPC and HealthLake; does
not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Learn more about AWS CloudFormation 249

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_HealthLake.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

AWS HealthLake Developer Guide

Considerations for HealthLake VPC endpoints

Before you set up an interface VPC endpoint for HealthLake, be sure you review Interface endpoint
properties and limitations in the Amazon VPC User Guide.

HealthLake supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for HealthLake;

You can create a VPC endpoint for the HealthLake; service using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Creating an interface
endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for HealthLake; using the following service name:

• com.amazonaws.region.healthlake

If you turn on private DNS for the endpoint, you can make API requests to HealthLake using its
default DNS name for the Region. For example, healthlake.us-east-1.amazonaws.com.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for HealthLake

You can attach an endpoint policy to your VPC endpoint that controls access to HealthLake. The
policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Example: VPC endpoint policy for HealthLake actions

The following is an example of an endpoint policy for HealthLake. When attached to an endpoint,
this policy grants access to the HealthLake CreateFHIRDatastore action for all principals on all
resources.

Considerations for HealthLake VPC endpoints 250

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS HealthLake Developer Guide

{
 "Statement":[
 {
 "Principal":"*",
 "Effect":"Allow",
 "Action":[
 "healthlake:create-fhir-datastore"
],
 "Resource":"*"
 }
]
}

Security best practices in AWS HealthLake

AWS HealthLake provides a number of security features to consider as you develop and implement
your own security policies. The following best practices are general guidelines and don’t represent
a complete security solution. Because these best practices might not be appropriate or sufficient
for your environment, treat them as helpful considerations rather than prescriptions.

• Implement least privilege access.

• Whenever possible, use Customer-Managed-Keys(CMKs) to encrypt your data. To learn more
about CMKs, see Amazon Key Management Service.

• Use Search with POST, not Search with GET when querying for PHI or PII in your data store.

• Limit access to sensitive and important auditing functions.

• When creating resources through the update or bulk import APIs, do not use PHI or PII, including
the names of data stores and jobs, in any visible fields or in the logical FHIR ID (LID).

• When sending create, read, update, delete, or search requests, do not use PHI in the HTTP
header.

• Enable AWS CloudTrail to audit AWS HealthLake use and to ensure that there is no unexpected
activity.

• Review best practices for using Amazon S3 buckets securely. To learn more, see Security best
practices in the Amazon S3 user guide.

Best practices 251

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security-best-practices.html

AWS HealthLake Developer Guide

Resilience in AWS HealthLake

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

If you need to replicate your data or applications over greater geographic distances, use AWS Local
Regions. An AWS Local Region is a single data center designed to complement an existing AWS
Region. Like all AWS Regions, AWS Local Regions are completely isolated from other AWS Regions.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Resilience 252

https://aws.amazon.com/about-aws/global-infrastructure/

AWS HealthLake Developer Guide

AWS HealthLake reference

The following supporting reference material is available for SMART on FHIR, FHIR, and AWS
HealthLake.

Note

All native HealthLake actions and data types are described in a separate reference. For
more information, see the AWS HealthLake API Reference.

Topics

• SMART on FHIR support for AWS HealthLake

• FHIR R4 support for AWS HealthLake

• Support reference for AWS HealthLake

SMART on FHIR support for AWS HealthLake

A Substitutable Medical Applications and Reusable Technologies (SMART) on FHIR enabled
HealthLake data store allows access to SMART on FHIR compliant applications. HealthLake data is
accessed by authenticating and authorizing requests using a third-party authorization server. So
instead of managing user credentials via AWS Identity and Access Management, you are doing so
using a SMART on FHIR compliant authorization server.

Note

HealthLake supports SMART on FHIR versions 1.0 and 2.0. To learn more about these
frameworks, see SMART App Launch in the FHIR R4 documentation.
HealthLake data stores support the following authentication and authorization frameworks
for SMART on FHIR requests:

• OpenID (AuthN): for authenticating the person or client application is who (or what) they
claim to be.

SMART on FHIR 253

https://docs.aws.amazon.com/healthlake/latest/APIReference/
https://www.hl7.org/fhir/smart-app-launch/

AWS HealthLake Developer Guide

• OAuth 2.0 (AuthZ): for authorizing which FHIR resources in your HealthLake data store
an authenticated request can read or write to. This is defined by the scopes set up in your
authorization server.

You can create a SMART on FHIR enabled data store using the AWS CLI or AWS SDKs. For more
information, see Creating a HealthLake data store.

Topics

• Getting started with SMART on FHIR

• HealthLake authentication requirements for SMART on FHIR

• SMART on FHIR OAuth 2.0 scopes supported by HealthLake

• Token validation using AWS Lambda

• Using fine-grained authorization with a SMART on FHIR enabled HealthLake data store

• Fetching the SMART on FHIR Discovery Document

• Making a FHIR REST API request on a SMART-enabled HealthLake data store

Getting started with SMART on FHIR

The following topics describe how to get started with SMART on FHIR authorization for AWS
HealthLake. They include the resources you must provision in your AWS account, the creation of
a SMART on FHIR enabled HealthLake data store, and an example of how a SMART on FHIR client
application interacts with an authorization server and a HealthLake data store.

Topics

• Setting up resources for SMART on FHIR

• Client application workflow for SMART on FHIR

Setting up resources for SMART on FHIR

The following steps define how SMART on FHIR requests are handled by HealthLake and the
resources needed for them to succeed. The following elements work together in a workflow to
make a SMART on FHIR request:

Getting started 254

AWS HealthLake Developer Guide

• The end-user: Generally, a patient or clinician using a third-party SMART on FHIR application to
access data in a HealthLake data store.

• The SMART on FHIR application (referred to as the client application): An application that
wants to access data found in HealthLake data store.

• The authorization server: An OpenID Connect compliant server that is able to authenticate users
and issue access tokens.

• The HealthLake data store: A SMART on FHIR enabled HealthLake data store that uses a
Lambda function to respond to FHIR REST requests which provide a bearer token.

For these elements to work together, you must create the following resources.

Note

We recommend creating your SMART on FHIR enabled HealthLake data store after you've
set up the authorization server, defined the necessary scopes on it, and created a AWS
Lambda function to handle token introspection.

1. Set up an authorization server endpoint

To use the SMART on FHIR framework you need to set up an third-party authorization server that
can validate FHIR REST requests made on a data store. For more information, see HealthLake
authentication requirements for SMART on FHIR.

2. Define scopes on your authorization server to control HealthLake data store access levels

The SMART on FHIR framework uses OAuth scopes to determine what FHIR resources an
authenticated request has access to and to what extent. Defining scopes are a way to design
for least-privilege. For more information, see SMART on FHIR OAuth 2.0 scopes supported by
HealthLake.

3. Set up an AWS Lambda function capable of performing token introspection

A FHIR REST request sent by the client application on a SMART on FHIR enabled data store
contains a JSON Web Token (JWT). For more information, see Decoding a JWT.

4. Create a SMART on FHIR enabled HealthLake data store

Getting started 255

AWS HealthLake Developer Guide

To create a SMART on FHIR HealthLake data store you need to provide an
IdentityProviderConfiguration. For more information, see Creating a HealthLake data
store.

Client application workflow for SMART on FHIR

The following section explains how to launch a client application and make a successful FHIR REST
request on an HealthLake data store within the context of SMART on FHIR.

1. Make a GET request to Well-Known Uniform Resource Identifier using client application

A SMART enabled client application must make a GET request to find the authorization endpoints
of your HealthLake data store. This is done via a Well-Known Uniform Resource Identifier (URI)
request. For more information, see Fetching the SMART on FHIR Discovery Document.

2. Request access and scopes

The client application uses the authorization endpoint of the authorization server, so that the user
can login. This process authenticates the user. Scopes are used to define what FHIR resources in
your HealthLake data store a client application can access. For more information, see SMART on
FHIR OAuth 2.0 scopes supported by HealthLake.

3. Access tokens

Now that the user has been authenticated, a client application receives a JWT access token from
the authorization server. This token is provided when the client application sends a FHIR REST
request to HealthLake. For more information, see Token validation.

4. Make a FHIR REST API request on SMART on FHIR enabled HealthLake data store

The client application can now send a FHIR REST API request to a HealthLake data store endpoint
using the access token provided by the authorization server. For more information, see Making a
FHIR REST API request on a SMART-enabled HealthLake data store.

5. Validate the JWT access token

To validate the access token sent in the FHIR REST request, use a Lambda function. For more
information, see Token validation using AWS Lambda.

Getting started 256

AWS HealthLake Developer Guide

HealthLake authentication requirements for SMART on FHIR

To access FHIR resources in a SMART on FHIR-enabled HealthLake data store, a client application
must be authorized by an OAuth 2.0-compliant authorization server and present an OAuth Bearer
token as part of a FHIR REST API request. To find the authorization server's endpoint, use the
HealthLake SMART on FHIR Discovery Document via a Well-Known Uniform Resource Identifier. To
learn more about this process, see Fetching the SMART on FHIR Discovery Document.

When you create a SMART on FHIR HealthLake data store, you must define the
authorization server's end point and the token endpoint in the metadata element of the
CreateFHIRDatastore request. To learn more about defining the metadata element, see
Creating a HealthLake data store.

Using the authorization server endpoints, the client application will authenticate a user with the
authorization service. Once authorized and authenticated, a JSON Web Token (JWT) is generated
by the authorization service and passed to the client application. This token contains FHIR resource
scopes that the client application is allowed to use, which in turn restricts what data the user is
able to access. Optionally, if the launch scope was provided then the response will contain those
details. To learn more about the SMART on FHIR scopes supported by HealthLake, see SMART on
FHIR OAuth 2.0 scopes supported by HealthLake.

Using the JWT granted by the authorization server, a client application makes FHIR REST API calls
to a SMART on FHIR enabled HealthLake data store. To validate and decode the JWT, you need to
create a Lambda function. HealthLake invokes this Lambda function on your behalf when a FHIR
REST API request is received. To see an example starter Lambda function, see Token validation
using AWS Lambda.

Authorization server elements required to create a SMART on FHIR enabled
HealthLake data store

In the CreateFHIRDatastore request, you need to provide the authorization endpoint and the
token endpoint as part of the metadata element in the IdentityProviderConfiguration
object. Both the authorization endpoint and token endpoint are required. To see example of how
this is specifed in CreateFHIRDatastore request, see Creating a HealthLake data store.

Authentication 257

AWS HealthLake Developer Guide

Required claims to complete a FHIR REST API request on a SMART on FHIR
enabled HealthLake data store

Your AWS Lambda function must contain the following claims for it to be a valid FHIR REST API
request on a SMART on FHIR enabled HealthLake data store.

• nbf: (Not Before) Claim — The "nbf" (not before) claim identifies the time before which the
JWT MUST NOT be accepted for processing. The processing of the "nbf" claim requires that the
current date/time MUST be after or equal to the not-before date/time listed in the "nbf" claim.
The sample Lambda function we provide converts iat from the server response into nbf.

• exp: (Expiration Time) Claim — The "exp" (expiration time) claim identifies the expiration time on
or after which the JWT must not be accepted for processing.

• isAuthorized: A boolean set to True. Indicates that request has been authorized on the
authorization server.

• aud: (Audience) Claim — The "aud" (audience) claim identifies the recipients that the JWT is
intended for. This must be a SMART on FHIR enabled HealthLake data store endpoint.

• scope: This must be at least one FHIR resource related scope. This scope is defined on your
authorization server. To learn more about FHIR resource related scopes accepted by HealthLake,
see SMART on FHIR resource scopes for HealthLake.

SMART on FHIR OAuth 2.0 scopes supported by HealthLake

HealthLake uses OAuth 2.0 as an authorization protocol. Using this protocol on your authorization
server allows you to define HealthLake data store permissions (create, read, update, delete, and
search) for FHIR resources that a client application has access to.

The SMART on FHIR framework defines a set of scopes that can be requested from the
authorization server. For example, a client application that is only designed to allow patients
to view their lab results or view their contact details should only be authorized to request read
scopes.

Note

HealthLake provides support for both SMART on FHIR V1 and V2 as described below. The
SMART on FHIR AuthorizationStrategy is set to one of the following three values
when your data store is created:

OAuth 2.0 scopes 258

https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.5
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.4
https://datatracker.ietf.org/doc/html/rfc7519#section-4.1.3
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html#HealthLake-Type-IdentityProviderConfiguration-AuthorizationStrategy

AWS HealthLake Developer Guide

• SMART_ON_FHIR_V1 – Support for only SMART on FHIR V1, which includes read (read/
search) and write (create/update/delete) permissions.

• SMART_ON_FHIR – Support for both SMART on FHIR V1 and V2, which includes create,
read, update, delete, and search permissions.

• AWS_AUTH – The default AWS HealthLake authorization strategy; not affiliated with
SMART on FHIR.

Standalone launch scope

HealthLake supports the standalone launch mode scope launch/patient.

In standalone launch mode a client application requests access to patient's clinical data because
the user and patient are not known to the client application. Thus, the client application's
authorization request explicitly requests the patient scope be returned. After successful
authentication, the authorization server issues a access token containing the requested launch
patient scope. The needed patient context is provided alongside the access token in the
authorization server's response.

Supported launch mode scopes

Scope Description

launch/patient A parameter in a OAuth 2.0 authorization request requesting that
patient data be returned in the authorization response.

SMART on FHIR resource scopes for HealthLake

HealthLake defines three levels of SMART on FHIR resource scopes.

• patient scopes grant access to specific data about a single Patient.

• user scopes grant access to specific data that a user can access.

• system scopes grant access to all FHIR resources found in the HealthLake data store.

The following sections list the syntax for constructing FHIR resource scopes using either SMART on
FHIR V1 or SMART on FHIR V2.

OAuth 2.0 scopes 259

AWS HealthLake Developer Guide

Note

The SMART on FHIR authorization strategy is set when your data store is created. For more
information, see AuthorizationStrategy in the AWS HealthLake API Reference.

SMART on FHIR V1 scopes supported by HealthLake

When using SMART on FHIR V1, the general syntax for constructing FHIR resource scopes for
HealthLake follows. To view the entire URL path in the following example, scroll over the Copy
button.

('patient' | 'user' | 'system') '/' (fhir-resource | '*') '.' ('read' | 'write' | '*')

SMART on FHIR v1 supported authorization scopes

Scope syntax Example scope Result

patient/(fhir-resource | '*').
('read' | 'write' | '*')

patient/A
llergyInt
olerance.*

The patient client
application has
instance-level read/
write access to all
recorded allergies.

user/(fhir-resource | '*').('re
ad' | 'write' | '*')

user/Obse
rvation.read

The user client
application has
instance-level read/
write access to all
recorded observati
ons.

system/('read' | 'write' | *) system/*.* The system client
application has read/
write access to all
FHIR resource data.

OAuth 2.0 scopes 260

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html#HealthLake-Type-IdentityProviderConfiguration-AuthorizationStrategy

AWS HealthLake Developer Guide

SMART on FHIR V2 scopes supported by HealthLake

When using SMART on FHIR V2, the general syntax for constructing FHIR resource scopes for
HealthLake follows. To view the entire URL path in the following example, scroll over the Copy
button.

('patient' | 'user' | 'system') '/' (fhir-resource | '*') '.' ('c' | 'r' | 'u' | 'd' |
 's')

Note

To use SMART on FHIR V2, you must pass in the value permission-v2 into the metadata
capabilities string, which is a member of the IdentityProviderConfiguration
data type.
HealthLake supports granular scopes. For more information, see supported granular scopes
in the FHIR US Core Implementation Guide.

SMART on FHIR V2 supported authorization scopes

Scope syntax Example V1 scope Result

patient/Observation.rs user/Obse
rvation.read

Permission to
read and search
Observation
resource for the
current patient.

system/*.cruds system/*.* The system client
application has full
create/read/update/
delete/search access
to all FHIR resource
data.

OAuth 2.0 scopes 261

https://hl7.org/fhir/smart-app-launch/STU2/conformance.html#permissions
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_IdentityProviderConfiguration.html
https://hl7.org/fhir/us/core/scopes.html#the-following-granular-scopes-shall-be-supported

AWS HealthLake Developer Guide

Token validation using AWS Lambda

When you create a HealthLake SMART on FHIR enabled data store, you must provide the ARN
of the AWS Lambda function in the CreateFHIRDatastore request. The ARN of the Lambda
function is specified in IdentityProviderConfiguration object using the IdpLambdaArn
parameter.

You must create the Lambda function prior to creating your SMART on FHIR enabled data store.
Once you create the data store, the Lambda ARN cannot be changed. To see the Lambda ARN you
specified when the data store was created, use the DescribeFHIRDatastore API action.

For a FHIR REST request to succeed on a SMART on FHIR enabled data store, your Lambda
function must do the following:

• Return a response in less than 1 second to the HealthLake data store endpoint.

• Decode the access token provided in the authorization header of the REST API request sent by
the client application.

• Assign an IAM service role that has sufficient permissions to carry out the FHIR REST API request.

• The following claims are required to complete a FHIR REST API request. To learn more, see
Required claims.

• nbf

• exp

• isAuthorized

• aud

• scope

When working with Lambda, you need to create an execution role and a resource-based policy in
addition to your Lambda function. A Lambda's function's execution role is an IAM role that grants
the function permission to access AWS services and resources needed at run time. The resource-
based policy you provide must allow HealthLake to invoke your function on your behalf.

The sections in this topic describe an example request from a client application and decoded
response, the steps needed to create an AWS Lambda function, and how to create a resource-based
policy that HealthLake can assume.

• Part 1: Creating a Lambda function

Token validation 262

AWS HealthLake Developer Guide

• Part 2: Creating a HealthLake service role used by the AWS Lambda function

• Part 3: Updating the Lambda function's execution role

• Part 4: Adding a resource policy to your Lambda function

• Part 5: Provisioning concurrency for your Lambda function

Creating an AWS Lambda function

The Lambda function created in this topic is triggered when HealthLake receives a requests to a
SMART on FHIR enabled data store. The request from the client application contains a REST API
call, and an authorization header containing an access token.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
Authorization: Bearer i8hweunweunweofiwweoijewiwe

The example Lambda function in this topic uses AWS Secrets Manager to obscure credentials
related to the authorization server. We strongly recommend not providing authorization server
login details directly in a Lambda function.

Example validating a FHIR REST request containing an authorization bearer token

The example Lambda function shows you how to validate an FHIR REST request sent to a SMART
on FHIR enabled data store. To see step-by-steps directions on how to implement this Lambda
function, see Creating a Lambda function using the AWS Management Console.

If the FHIR REST API request does not contain a valid data store endpoint, access token, and REST
operation the Lambda function will fail. To learn more about the required authorization server
elements, see Required claims.

import base64
import boto3
import logging
import json
import os
from urllib import request, parse

logger = logging.getLogger()
logger.setLevel(logging.INFO)

Uses Secrets manager to gain access to the access key ID and secret access key for
 the authorization server

Token validation 263

AWS HealthLake Developer Guide

client = boto3.client('secretsmanager', region_name="region-of-datastore")
response = client.get_secret_value(SecretId='name-specified-by-customer-in-
secretsmanager')
secret = json.loads(response['SecretString'])
client_id = secret['client_id']
client_secret = secret['client_secret']

unencoded_auth = f'{client_id}:{client_secret}'
headers = {
 'Authorization': f'Basic {base64.b64encode(unencoded_auth.encode()).decode()}',
 'Content-Type': 'application/x-www-form-urlencoded'
}

auth_endpoint = os.environ['auth-server-base-url'] # Base URL of the Authorization
 server
user_role_arn = os.environ['iam-role-arn'] # The IAM role client application will use
 to complete the HTTP request on the datastore

def lambda_handler(event, context):
 if 'datastoreEndpoint' not in event or 'operationName' not in event or
 'bearerToken' not in event:
 return {}

 datastore_endpoint = event['datastoreEndpoint']
 operation_name = event['operationName']
 bearer_token = event['bearerToken']
 logger.info('Datastore Endpoint [{}], Operation Name:
 [{}]'.format(datastore_endpoint, operation_name))

 ## To validate the token
 auth_response = auth_with_provider(bearer_token)
 logger.info('Auth response: [{}]'.format(auth_response))
 auth_payload = json.loads(auth_response)
 ## Required parameters needed to be sent to the datastore endpoint for the HTTP
 request to go through
 auth_payload["isAuthorized"] = bool(auth_payload["active"])
 auth_payload["nbf"] = auth_payload["iat"]
 return {"authPayload": auth_payload, "iamRoleARN": user_role_arn}

access the server
def auth_with_provider(token):
 data = {'token': token, 'token_type_hint': 'access_token'}

Token validation 264

AWS HealthLake Developer Guide

 req = request.Request(url=auth_endpoint + '/v1/introspect',
 data=parse.urlencode(data).encode(), headers=headers)
 with request.urlopen(req) as resp:
 return resp.read().decode()

Creating a Lambda function using the AWS Management Console

The following procedure assumes you've already created the service role that you want HealthLake
to assume when handling a FHIR REST API request on a SMART on FHIR enabled data store. If you
have not created the service role, you can still create the Lambda function. You must add the ARN
of service role before the Lambda function will work. To learn more about creating a service role
and specifying it in the Lambda function, see Creating a HealthLake service role for use in the AWS
Lambda function used to decode a JWT

To create a Lambda function (AWS Management Console)

1. Open the Functions page of the Lambda console.

2. Choose Create function.

3. Select Author from scratch.

4. Under Basic information enter a Function name. Under Runtime choose a python based
runtime.

5. For Execution role, choose Create a new role with basic Lambda permissions.

Lambda creates an execution role that grants the function permission to upload logs to
Amazon CloudWatch. The Lambda function assumes the execution role when you invoke your
function, and uses the execution role to create credentials for the AWS SDK.

6. Choose the Code tab, and add the sample Lambda function.

If you've not yet created the service role for the Lambda function to use you'll need to create
it before the sample Lambda function will work. To learn more about creating a service role
for the Lambda function, see Creating a HealthLake service role for use in the AWS Lambda
function used to decode a JWT.

import base64
import boto3
import logging
import json
import os
from urllib import request, parse

Token validation 265

https://console.aws.amazon.com/lambda/home/functions
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS HealthLake Developer Guide

logger = logging.getLogger()
logger.setLevel(logging.INFO)

Uses Secrets manager to gain access to the access key ID and secret access key
 for the authorization server
client = boto3.client('secretsmanager', region_name="region-of-datastore")
response = client.get_secret_value(SecretId='name-specified-by-customer-in-
secretsmanager')
secret = json.loads(response['SecretString'])
client_id = secret['client_id']
client_secret = secret['client_secret']

unencoded_auth = f'{client_id}:{client_secret}'
headers = {
 'Authorization': f'Basic {base64.b64encode(unencoded_auth.encode()).decode()}',
 'Content-Type': 'application/x-www-form-urlencoded'
}

auth_endpoint = os.environ['auth-server-base-url'] # Base URL of the Authorization
 server
user_role_arn = os.environ['iam-role-arn'] # The IAM role client application will
 use to complete the HTTP request on the datastore

def lambda_handler(event, context):
 if 'datastoreEndpoint' not in event or 'operationName' not in event or
 'bearerToken' not in event:
 return {}

 datastore_endpoint = event['datastoreEndpoint']
 operation_name = event['operationName']
 bearer_token = event['bearerToken']
 logger.info('Datastore Endpoint [{}], Operation Name:
 [{}]'.format(datastore_endpoint, operation_name))

 ## To validate the token
 auth_response = auth_with_provider(bearer_token)
 logger.info('Auth response: [{}]'.format(auth_response))
 auth_payload = json.loads(auth_response)
 ## Required parameters needed to be sent to the datastore endpoint for the HTTP
 request to go through
 auth_payload["isAuthorized"] = bool(auth_payload["active"])
 auth_payload["nbf"] = auth_payload["iat"]

Token validation 266

AWS HealthLake Developer Guide

 return {"authPayload": auth_payload, "iamRoleARN": user_role_arn}

Access the server
def auth_with_provider(token):
 data = {'token': token, 'token_type_hint': 'access_token'}
 req = request.Request(url=auth_endpoint + '/v1/introspect',
 data=parse.urlencode(data).encode(), headers=headers)
 with request.urlopen(req) as resp:
 return resp.read().decode()

Modifying a Lambda function's execution role

After creating the Lambda function, you need to update the execution role to include the necessary
permissions to call Secrets Manager. In Secrets Manager, each secret you create has an ARN. To
apply the least privilege, the execution role should only have access to the resources needed for the
Lambda function to execute.

You can modify a Lambda function's execution role by searching for it in the IAM console or by
choosing Configuration in the Lambda console. To learn more about managing your Lambda
functions execution role, see Lambda execution role.

Example Lambda function execution role that grants access to GetSecretValue

Adding the IAM action GetSecretValue to execution role grants the necessary permission for the
sample Lambda function to work.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:your-region:your-aws-account-
id:secret:secret-name-DKodTA"
 }
]
}

At this point you've created a Lambda function that can be used to validate the access token
provided as part of the FHIR REST request sent to your SMART on FHIR enabled data store.

Token validation 267

AWS HealthLake Developer Guide

Creating a HealthLake service role for use in the AWS Lambda function used to
decode a JWT

Persona: IAM Administrator

A user who can add or remove IAM policies, and create new IAM identities.

Service role

A service role is an IAM role that a service assumes to perform actions on your behalf.
An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the
IAM User Guide.

After the JSON Web Token (JWT) is decoded the authorization Lambda needs to also return an IAM
role ARN. This role must have the necessary permissions to carry out the REST API request or it will
fail due to insufficient permissions.

When setting up a custom policy using IAM it is best to grant the minimum permissions required.
To learn more, see Apply least-privilege permissions in the IAM User Guide.

Creating a HealthLake service role to designate in the authorization Lambda function requires two
steps.

• First, you need to create IAM policy. The policy must specify access to the FHIR resources that
you have provided scopes for in the authorization server.

• Second, you need to create the service role. When you create the role you designate a trust
relationship and attach the policy you created in step one. The trust relationship designates
HealthLake as the service principal. You need to specify a HealthLake data store ARN and a AWS
account ID in this step.

Creating a new IAM policy

The scopes you define in your authorization server determine what FHIR resources an
authenticated user has access to in a HealthLake data store.

The IAM policy you create can be tailored to match the scopes you've defined.

Token validation 268

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS HealthLake Developer Guide

The following actions in the Action element of an IAM policy statement can be defined. For each
Action in the table you can define a Resource types. In HealthLake a data store is the only
supported resource type that can be defined in the Resource element of an IAM permission policy
statement.

Individual FHIR resources are not a resource that you can define as an element in a IAM permission
policy.

Actions defined by HealthLake

Actions Description Access
level

Resource type (Required)

CreateRes
ource

Grants permission to a
create resource

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

DeleteRes
ource

Grants permission to
delete resource

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

ReadResou
rce

Grants permission to read
resource

Read Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

SearchWit
hGet

Grants permission to
search resources with
GET method

Read Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

SearchWit
hPost

Grants permission to
search resources with
POST method

Read Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

StartFHIR
ExportJob
WithPost

Grants permission to
begin a FHIR Export job
with GET

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

Token validation 269

AWS HealthLake Developer Guide

Actions Description Access
level

Resource type (Required)

UpdateRes
ource

Grants permission to
update resource

Write Datastore ARN: arn:aws:healthlake:your-regi
on :111122223333 :datastore/fhir/your-
datastore-id

To get started, you can use AmazonHealthLakeFullAccess. This policy would grant read, write,
search, and export on all FHIR resources found in a data store. To grant read-only permissions on a
data store use AmazonHealthLakeReadOnlyAccess.

To learn more about creating a custom policy using the AWS Management Console, AWS CLI, or
IAM SDKs, see Creating IAM policies in the IAM User Guide.

Creating a service role for HealthLake (IAM console)

Use this procedure to create a service role. When you create a service you will also need to
designate an IAM policy.

To create the service role for HealthLake (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Then, choose Create role.

4. On the Select trust entity page, choose Custom trust policy.

5. Next, under Custom trust policy update the sample policy as follows. Replace your-
account-id with your account number, and add the ARN of the data store you want to use in
your import or export jobs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {
 "Service": "healthlake.amazonaws.com"

Token validation 270

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS HealthLake Developer Guide

 },
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "your-account-id"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:healthlake:your-region:your-account-
id:datastore/fhir/your-datastore-id"
 }
 }
 }
]
}

6. Then, choose Next.

7. On the Add permissions page, choose the policy that you want the HealthLake service to
assume. To find your policy, search for it under Permissions policies.

8. Then, choose Attach policy.

9. Then on the Name, review, and create page under Role name enter a name.

10. (Optional)Then under Description, add a short description for your role.

11. If possible, enter a role name or role name suffix to help you identify the purpose of this
role. Role names must be unique within your AWS account. They are not distinguished by
case. For example, you cannot create roles named both PRODROLE and prodrole. Because
various entities might reference the role, you cannot edit the name of the role after it has been
created.

12. Review the role details, and then choose Create role.

To learn how to specify the role ARN in the sample Lambda function, see Creating an AWS Lambda
function.

Lambda execution role

A Lambda function's execution role is an IAM role that grants the function permission to access
AWS services and resources. This page provides information on how to create, view, and manage a
Lambda function's execution role.

By default, Lambda creates an execution role with minimal permissions when you create a new
Lambda function using the AWS Management Console. To manage the permissions granted in the
execution role, see Creating an execution role in the IAM console in the Lambda Developer Guide.

Token validation 271

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-console

AWS HealthLake Developer Guide

The sample Lambda function provided in this topic uses Secrets Manager to obscure the
authorization server's credentials.

As with any IAM role you create it is important to follow the least privilege best practice. During
the development phrase, you might sometimes grant permissions beyond what is required. Before
publishing your function in the production environment, as a best practice, adjust the policy to
include only the required permissions. For more information, see Apply least-privilege in the IAM
User Guide.

Allow HealthLake to trigger your Lambda function

So HealthLake can invoke the Lambda function on your behalf, you must do following:

• You need to set IdpLambdaArn equal to the ARN of the Lambda function you want HealthLake
to invoke in the CreateFHIRDatastore request.

• You need a resource-based policy allowing HealthLake to invoke the Lambda function on your
behalf.

When HealthLake receives a FHIR REST API request on a SMART on FHIR enabled data store, it
needs permissions to invoke the Lambda function specified at data store creation on your behalf.
To grant HealthLake access, you'll use a resource-based policy. To learn more about creating
a resource-based policy for a Lambda function, see Allowing an AWS service to call a Lambda
function in the AWS Lambda Developer Guide.

Provisioning concurrency for your Lambda function

Important

HealthLake requires that the maximum run time for your Lambda function be less than one
second (1000 milliseconds).
If you Lambda function exceeds the run time limit you get a TimeOut exception.

To avoid getting this exception, we recommend configuring provisioned concurrency. By allocating
provisioned concurrency before an increase in invocations, you can ensure that all requests are
served by initialized instances with low latency. To learn more about configuring provisioned
concurrency, see Configuring provisioned concurrency in the Lambda Developer Guide

Token validation 272

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html#permissions-resource-serviceinvoke
https://docs.aws.amazon.com/ambda/latest/dg/provisioned-concurrency.html

AWS HealthLake Developer Guide

To see the average run time for your Lambda function currently use the Monitoring page for your
Lambda function on the Lambda console. By default, the Lambda console provides a Duration
graph which shows you the average, minimum, and maximum amount of time your function code
spends processing an event. To learn more about monitoring Lambda functions, see Monitoring
functions in the Lambda console in the Lambda Developer Guide.

If you have already provisioned concurrency for your Lambda function and want to monitor it, see
Monitoring concurrency in the Lambda Developer Guide.

Using fine-grained authorization with a SMART on FHIR enabled
HealthLake data store

Scopes alone do not provide you with the necessary specificity about what data a requester is
authorized to access in a data store. Using fine-grained authorization enables a higher level of
specificity when granting access to a SMART on FHIR enabled HealthLake data store. To use
fine-grained authorization, set FineGrainedAuthorizationEnabled equal to True in the
IdentityProviderConfiguration parameter of your CreateFHIRDatastore request.

If you enabled fine-grained authorization, your authorization server returns a fhirUser scope in
the id_token along with the access token. This permits information about the User to be retrieved
by client application. The client application should treat the fhirUser claim as the URI of a FHIR
resource representing the current user. This can be Patient, Practitioner, or RelatedPerson.
The authorization server's response also includes a user/ scope that defines what data the user
can access. This uses the syntax defined for scopes related to FHIR resource specific scopes:

user/(fhir-resource | '*').('read' | 'write' | '*')

The following are examples of how fine-grained authorization can be used to further specify data
access related FHIR resource types.

• When fhirUser is a Practitioner, fine-grained authorization determines the collection of
patients that the user can access. Access to fhirUser is allowed for only those patients where
the Patient has reference to the fhirUser as a General Practitioner.

Patient.generalPractitioner : [{Reference(Practitioner)}]

• When fhirUser is a Patient or RelatedPerson and the patient referenced in the request is
different from the fhirUser, fine-grained authorization determines access to fhirUser for the

Fine-grained authorization 273

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-access-metrics.html#monitoring-console-graph-types
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-access-metrics.html#monitoring-console-graph-types
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-concurrency.html

AWS HealthLake Developer Guide

requested patient. Access is allowed when there is a relationship specified in requested Patient
resource.

Patient.link.other : {Reference(Patient|RelatedPerson)}

Fetching the SMART on FHIR Discovery Document

SMART defines a Discovery Document that allows clients to learn the authorization endpoint URLs
and features a HealthLake data store supports. This information helps clients direct authorization
requests to the right endpoint and construct authorization requests the HealthLake data store
supports.

For a client application to make a successful FHIR REST request to HealthLake, it must gather the
authorization requirements defined by the HealthLake data store. A bearer token (authorization) is
not required for this request to succeed..

To request the Discovery Document for a HealthLake data store

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Append /.well-known/smart-configuration to the endpoint of the URL.
To view the entire URL path in the following example, scroll over the Copy button.

https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/.well-known/smart-
configuration

3. Send the request using GET with AWS Signature Version 4 signing protocol. To view the entire
example, scroll over the Copy button.

curl

curl --request GET \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/.well-known/
smart-configuration \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \

Discovery Document 274

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html

AWS HealthLake Developer Guide

 --header 'Accept: application/json'

The Discovery Document for the HealthLake data store returns as a JSON blob, where you can
find the authorization_endpoint and the token_endpoint, along with the specifications
and defined capabilities for the data store.

{
 "authorization_endpoint": "https://oidc.example.com/authorize",
 "token_endpoint": "https://oidc.example.com/oauth/token",
 "capabilities": [
 "launch-ehr",
 "client-public"
]
}

Both the authorization_endpoint and the token_endpoint are required to launch a
client application.

• Authorization endpoint — The URL needed to authorize a client application or user.

• Token endpoint — The endpoint of the authorization server the client application uses to
communicate with.

Making a FHIR REST API request on a SMART-enabled HealthLake data
store

You can make FHIR REST API requests on a SMART on FHIR-enabled HealthLake data store. The
following example shows a request from client application containing a JWT in the authorization
header and how Lambda should decode the response. After the client application request is
authorized and authenticated, it must receive a bearer token from the authorization server. Use the
bearer token in the authorization header when sending a FHIR REST API request on a SMART on
FHIR-enabled HealthLake data store.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/[ID]
Authorization: Bearer auth-server-provided-bearer-token

Because a bearer token was found in the authorization header and no AWS IAM identity was
detected HealthLake invokes the Lambda function specified when the SMART on FHIR enabled

Request example 275

AWS HealthLake Developer Guide

HealthLake data store was created. When the token is successfully decoded by your Lambda
function, the following example response is sent to HealthLake.

{
 "authPayload": {
 "iss": "https://authorization-server-endpoint/oauth2/token", # The issuer
 identifier of the authorization server
 "aud": "https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/", #
 Required, data store endpoint
 "iat": 1677115637, # Identifies the time at which the token was issued
 "nbf": 1677115637, # Required, the earliest time the JWT would be valid
 "exp": 1997877061, # Required, the time at which the JWT is no longer valid
 "isAuthorized": "true", # Required, boolean indicating the request has been
 authorized
 "uid": "100101", # Unique identifier returned by the auth server
 "scope": "system/*.*" # Required, the scope of the request
 },
 "iamRoleARN": "iam-role-arn" #Required, IAM role to complete the request
}

FHIR R4 support for AWS HealthLake

AWS HealthLake supports the FHIR R4 specification for health data exchange. The following
sections provide supporting information on how HealthLake utilizes the FHIR R4 specification to
help you manage and search FHIR resources in your HealthLake data store using FHIR R4 RESTful
APIs.

Topics

• FHIR R4 Capability Statement for AWS HealthLake

• FHIR profile validations for HealthLake

• FHIR R4 supported resource types for HealthLake

• FHIR R4 search parameters for HealthLake

• FHIR R4 operations for HealthLake

FHIR R4 Capability Statement for AWS HealthLake

To find the FHIR-related capabilities (behaviors) of an active HealthLake data store, you must
retrieve its Capability Statement. The Capability Statement is used as a statement of actual

FHIR R4 276

AWS HealthLake Developer Guide

server functionality or a statement of required or desired server implementation. The FHIR
capabilities interaction retrieves information about HealthLake data store capabilities and
which portions of the FHIR specification it supports. HealthLake validates FHIR resource types
according to the FHIR R4 StructureDefinition resource.

To get the Capability Statement for a HealthLake data store

1. Collect HealthLake region and datastoreId values. For more information, see Getting data
store properties.

2. Construct a URL for the request using the collected values for HealthLake region and
datastoreId. Also include the FHIR metadata element in the URL. To view the entire URL
path in the following example, scroll over the Copy button.

https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/metadata

3. Send the request. The FHIR capabilities interaction uses a GET request with AWS Signature
Version 4 signing protocol. The following curl example gets the Capability Statement for the
HealthLake data store specified by the datastoreId. To view the entire example, scroll over
the Copy button.

curl

curl --request GET \
 'https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/metadata \
 --aws-sigv4 'aws:amz:region:healthlake' \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 --header "x-amz-security-token:$AWS_SESSION_TOKEN" \
 --header 'Accept: application/json'

You will receive a 200 HTTP response code and the Capability Statement for your HealthLake
data store. For more information, see CapabilityStatement in the FHIR R4 documentation.

FHIR profile validations for HealthLake

AWS HealthLake supports the base FHIR R4 specification. Included in the base FHIR R4
specification are FHIR Profiles. Profiles are used on a FHIR resource type to define a more specific
resource type definition using constraints and/or extensions on the base resource type. For

Profile validations 277

https://hl7.org/fhir/R4/http.html#capabilities
https://hl7.org/fhir/R4/structuredefinition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://hl7.org/fhir/R4/capabilitystatement.html
https://hl7.org/fhir/R4

AWS HealthLake Developer Guide

example, a FHIR Profile can identify mandatory fields such as extensions and value sets. A resource
can support multiple profiles. All HealthLake data stores support using FHIR Profiles.

Note

Adding a FHIR profile is not required when adding data to a HealthLake data store. If a
FHIR profile is not specified when a resource is added or updated, the resource is validated
against only the base FHIR R4 schema.
FHIR profiles, to which FHIR resources conform to, are included in resources before they
are imported into HealthLake. Therefore, FHIR profiles are validated by HealthLake during
import.

FHIR Profiles are specified in an implementation guide. A FHIR Implementation Guide (IG) is a
set of instructions that describe how to use the FHIR standard for a specific purpose. HealthLake
validates FHIR Profiles defined in the following implementation guides.

FHIR profiles supported by AWS HealthLake

Name VersionImplementation guide Capability

US Core 3.1.1 http://hl7.org/fhir/us/core/STU
3.1.1/

Default

US Core 4.0.0 https://hl7.org/fhir/us/core/STU4/
index.html

Supported

US Core 5.0.1 https://hl7.org/fhir/us/core/ST
U5.0.1/index.html

Supported

US Core 6.1.0 https://hl7.org/fhir/us/core/ST
U6.1/index.html

Supported

US Core 7.0.0 https://hl7.org/fhir/us/core/STU7/ Supported

UK Core 2.0.1 https://simplifier.net/guide/uk-c
ore-implementation-guide-stu2/
Home/ProfilesandExtensions/Pro
filesIndex?version=2.0.1

Supported

Profile validations 278

http://hl7.org/fhir/us/core/STU3.1.1/
http://hl7.org/fhir/us/core/STU3.1.1/
https://hl7.org/fhir/us/core/STU4/index.html
https://hl7.org/fhir/us/core/STU4/index.html
https://hl7.org/fhir/us/core/STU5.0.1/index.html
https://hl7.org/fhir/us/core/STU5.0.1/index.html
https://hl7.org/fhir/us/core/STU6.1/index.html
https://hl7.org/fhir/us/core/STU6.1/index.html
https://hl7.org/fhir/us/core/STU7/
https://simplifier.net/guide/uk-core-implementation-guide-stu2/Home/ProfilesandExtensions/ProfilesIndex?version=2.0.1
https://simplifier.net/guide/uk-core-implementation-guide-stu2/Home/ProfilesandExtensions/ProfilesIndex?version=2.0.1
https://simplifier.net/guide/uk-core-implementation-guide-stu2/Home/ProfilesandExtensions/ProfilesIndex?version=2.0.1
https://simplifier.net/guide/uk-core-implementation-guide-stu2/Home/ProfilesandExtensions/ProfilesIndex?version=2.0.1

AWS HealthLake Developer Guide

Name VersionImplementation guide Capability

CARIN Blue Button 1.1.0 http://hl7.org/fhir/us/carin-bb/
STU1.1/

Default

CARIN Blue Button 1.0.0 https://hl7.org/fhir/us/carin-bb/
STU1/

Supported

Da Vinci Payer Data
Exchange

1.0.0 https://hl7.org/fhir/us/davinci-
pdex/

Default

Da Vinci Health
Record Exchange
(HRex)

0.2.0 https://hl7.org/fhir/us/davinci-
hrex/2020Sep/

Default

DaVinci PDEX Plan
Net

1.1.0 https://hl7.org/fhir/us/davinci-
pdex-plan-net/STU1.1/

Default

DaVinci PDEX Plan
Net

1.0.0 https://hl7.org/fhir/us/davinci-
pdex-plan-net/STU1/

Supported

DaVinci Payer Data
Exchange (PDex)
US Drug Formulary

1.1.0 https://hl7.org/fhir/us/davinci-
drug-formulary/STU1.1/

Default

DaVinci Payer Data
Exchange (PDex)
US Drug Formulary

1.0.1 https://hl7.org/fhir/us/davinci-
drug-formulary/STU1.0.1/

Supported

NCQA HEDIS®
Implementation
Guide

0.3.1 https://www.ncqa.org/resources/
hedis-ig-resource-page/

Default

International
Patient Summary
(IPS)

2.0.0-
bal
lot

https://hl7.org/fhir/uv/ips/202
4Sep/

Default

Quality Measure 5.0.0 https://registry.fhir.org/package/
hl7.fhir.us.cqfmeasures%7C5.0.0

Default

Profile validations 279

http://hl7.org/fhir/us/carin-bb/STU1.1/
http://hl7.org/fhir/us/carin-bb/STU1.1/
https://hl7.org/fhir/us/carin-bb/STU1/
https://hl7.org/fhir/us/carin-bb/STU1/
https://hl7.org/fhir/us/davinci-pdex/
https://hl7.org/fhir/us/davinci-pdex/
https://hl7.org/fhir/us/davinci-hrex/2020Sep/
https://hl7.org/fhir/us/davinci-hrex/2020Sep/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1.1/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1.1/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1/
https://hl7.org/fhir/us/davinci-pdex-plan-net/STU1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/
https://hl7.org/fhir/us/davinci-drug-formulary/STU1.0.1/
https://www.ncqa.org/resources/hedis-ig-resource-page/
https://www.ncqa.org/resources/hedis-ig-resource-page/
https://hl7.org/fhir/uv/ips/2024Sep/
https://hl7.org/fhir/uv/ips/2024Sep/
https://registry.fhir.org/package/hl7.fhir.us.cqfmeasures%7C5.0.0
https://registry.fhir.org/package/hl7.fhir.us.cqfmeasures%7C5.0.0

AWS HealthLake Developer Guide

Name VersionImplementation guide Capability

Genomics
Reporting

3.0.0 https://build.fhir.org/ig/HL7/ge
nomics-reporting/index.html

Default

National Health
Authority's
Ayushman Bharat
Digital Mission
(ABDM)

2.0 https://www.nrces.in/ndhm/fhir/r
4/index.html

Default

Validating FHIR profiles specified in a resource

For a FHIR Profile to be validated add it to the profile element of individual resources using the
profile URL designated in the implementation guide.

FHIR Profiles are validated when you add a new resource to your data store. To add a new resource,
you can use the StartFHIRImportJob API operation, make a POST request to add a new
resource, or make PUT to update an existing resource.

Example – To see which FHIR profile is referenced in a resource

The profile URL is added to the profile element in the "meta" : "profile" key-value pair.
This resource was truncated for clarity.

{
 "resourceType": "Patient",
 "id": "abcd1234efgh5678hijk9012",
 "meta": {
 "lastUpdated": "2023-05-30T00:48:07.8443764-07:00",
 "profile": [
 "http://hl7.org/fhir/us/core/StructureDefinition/us-core-patient"
]
 }
}

Profile validations 280

https://build.fhir.org/ig/HL7/genomics-reporting/index.html
https://build.fhir.org/ig/HL7/genomics-reporting/index.html
https://www.nrces.in/ndhm/fhir/r4/index.html
https://www.nrces.in/ndhm/fhir/r4/index.html

AWS HealthLake Developer Guide

Example – How to reference a non-default supported FHIR profile

To validate against a supported non-default profile (e.g. CarinBB 1.0.0) - add the profile URL with
version (separated by '|') and the base profile URL in the meta.profile element. This example
resource was truncated for clarity.

{
 "resourceType": "ExplanationOfBenefit",
 "id": "sample-EOB",
 "meta": {
 "lastUpdated": "2024-02-02T05:56:09.4+00:00",
 "profile": [
 "http://hl7.org/fhir/us/carin-bb/StructureDefinition/C4BB-
ExplanationOfBenefit-Pharmacy|1.0.0",
 "http://hl7.org/fhir/us/carin-bb/StructureDefinition/C4BB-ExplanationOfBenefit-
Pharmacy“
]
 }
}

FHIR R4 supported resource types for HealthLake

The following table lists the FHIR R4 resource types supported by AWS HealthLake. For more
information, see Resource Index in the FHIR R4 documentation.

FHIR R4 resource types supported by HealthLake

Account DetectedIssue Invoice Practitioner

ActivityDefinition Device Library PractitionerRole

AdverseEvent DeviceDefinition Linkage Procedure

AllergyIntolerance DeviceMetric List Provenance

Appointment DeviceUseStatement Location Questionnaire

AppointmentRespons
e

DeviceRequest Measure QuestionnaireRespo
nse

AuditEvent - See Note DiagnosticReport MeasureReport RelatedPerson

Resource types 281

https://hl7.org/fhir/R4/resourcelist.html

AWS HealthLake Developer Guide

Binary DocumentManifest Media RequestGroup

BodyStructure DocumentReference Medication ResearchStudy

Bundle - See Note EffectEvidenceSynt
hesis

MedicationAdminist
ration

ResearchSubject

CapabilityStatement Encounter MedicationDispense RiskAssessment

CarePlan Endpoint MedicationKnowledg
e

RiskEvidenceSynthe
sis

CareTeam EpisodeOfCare MedicationRequest Schedule

ChargeItem EnrollmentRequest MedicationStatement ServiceRequest

ChargeItemDefinition EnrollmentResponse MessageHeader Slot

Claim ExplanationOfBenefit MolecularSequence Specimen

ClaimResponse FamilyMemberHistor
y

NutritionOrder StructureDefinition

Communication Flag Observation StructureMap

Communica
tionRequest

Goal OperationOutcome -
See Note

Substance

Composition Group Organization SupplyDelivery

ConceptMap GuidanceResponse OrganizationAffili
ation

SupplyRequest

Condition HealthcareService Parameters - See
Note

Task

Consent ImagingStudy Patient ValueSet

Contract Immunization PaymentNotice VisionPrescription

Resource types 282

AWS HealthLake Developer Guide

Coverage ImmunizationEvalua
tion

PaymentReconciliat
ion

VerificationResult -
See Note

CoverageEligibilit
yRequest

Immunizat
ionRecommendation

Person

CoverageEligibilit
yResponse

InsurancePlan PlanDefinition

FHIR specifications and HealthLake

• You cannot make GET or POST requests with FHIR OperationOutcome and
Parameters resource types.

• AuditEvent — An AuditEvent resource can be created or read, but it cannot be updated
or deleted.

• Bundle — There are multiple ways HealthLake manages Bundle requests. For more
details, see Bundling FHIR resources.

• VerificationResult — This resource type is only supported for data stores created after
December 09, 2023.

FHIR R4 search parameters for HealthLake

Use FHIR search interaction to search a set of FHIR resources in a HealthLake data store based on
some filter criteria. The search interaction can be performed using either a GET or POST request.
For searches that involve personally identifiable information (PII) or protected health information
(PHI), it's recommended to use POST requests, as PII and PHI is added as part of the request body
and is encrypted in transit.

Note

The FHIR search interaction described in this chapter is built in conformance to the HL7
FHIR R4 standard for health care data exchange. Because it is a representation of a HL7
FHIR service, it is not offered through AWS CLI and AWS SDKs. For more information, see
search in the FHIR R4 RESTful API documentation.

Search parameters 283

https://hl7.org/fhir/R4/http.html#search
https://hl7.org/fhir/R4/http.html#search

AWS HealthLake Developer Guide

You can also query HealthLake data stores with SQL using Amazon Athena. For more
information, see Integrating.

HealthLake supports the following subset of FHIR R4 search parameters. For more information, see
FHIR R4 search parameters for HealthLake.

Supported search parameter types

The following table shows the supported search parameter types in HealthLake.

Supported search parameters types

Search parameter Description

_id Resource id (not a full URL)

_lastUpdated Date last updated. Server has discretion on the
boundary precision.

_tag Search by a resource tag.

_profile Search for all resources tagged with a profile.

_security Search on security labels applied to this
resource.

_source Search on where the resource comes from.

_text Search on the narrative of the resource.

createdAt Search on custom extension createdAt.

Note

The following search parameters are only supported for datastores created after December
09, 2023 : _security, _source, _text, createdAt.

Search parameters 284

AWS HealthLake Developer Guide

The following table shows examples of how to modify query strings based on specified data types
for a given resource type. For clarity, special characters in the examples column have not been
encoded. To make a successful query, ensure that the query string has been properly encoded.

Search parameter examples

Search Parameter Types Details Examples

Number Searches for a numerical
value in a specified resource.
Significant figures are
observed. The number of
significant digits are specific
in by search parameter value,
excluding leading zeros.
Comparison prefixes are
allowed.

[parameter]=100

[parameter]=1e2

[parameter]=lt100

Date/DateTime Searches for a specific date
or time. The expected format
is yyyy-mm-ddThh:mm:s
s[Z|(+|-)hh:mm] but
can vary.

Accepts the following data
types: date, dateTime,
instant, Period, and
Timing. For more details
using these data types in
searches, see date in the FHIR
R4 RESTful API documenta
tion.

Comparison prefixes are
allowed.

[parameter]=eq2013
-01-14

[parameter]=gt2013
-01-14T10:00

[parameter]=ne2013
-01-14

String Searches for a sequence of
characters in a case-sensitive
manner.

[base]/Patient?giv
en=eve

Search parameters 285

https://www.hl7.org/fhir/search.html#date

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

Supports both HumanName
and Address types. For more
details, see the HumanName
data type entry and the
Address data type entries in
the FHIR R4 documentation.

Advanced search is supported
using :text modifiers.

[base]/Patient?giv
en:contains=eve

Token Searches for a close-to-exact
match against a string of
characters, often compared to
a pair of medical code values.

Case sensitivity is linked
to the code system used
when creating a query.Sub
sumption-based queries can
help reduce issues linked to
case sensitivity. For clarity the
| has not been encoded.

[parameter]=[syste
m]|[code] : Here
[system] refers a coding
system, and [code] refers to
code value found within that
specific system.

[parameter]=[code] :
Here your input will match
either a code or a system.

[parameter]=|[code
] : Here your input will
match a code, and the system
property has no identifier.

Search parameters 286

https://www.hl7.org/fhir/datatypes.html#HumanName
https://www.hl7.org/fhir/datatypes.html#HumanName
https://www.hl7.org/fhir/datatypes.html#Address

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

Composite Searches for multiple
parameters within a single
resource type, using the
modifiers$ and , operation.

Comparison prefixes are
allowed.

/Patient?language=
FR,NL&language=EN

Observation?compon
ent-code-value-qua
ntity=http://loinc
.org|8480-6$lt60

[base]/Group?chara
cteristic-value=ge
nder$mixed

Quantity Searches for a number,
system, and code as values.
A number is required, but
system and code are optional.
Based on the Quantity data
type. For more details, see
Quantity in the FHIR R4
documentation.

Uses the following assumed
syntax [paramete
r]=[prefix][number
]|[system]|[code]

[base]/Observation
?value-quantity=5.
4|http://unitsofme
asure.org|mg

[base]/Observation
?value-quantity=5.
4|http://unitsofme
asure.org|mg

[base]/Observation
?value-quantity=5.
4|http://unitsofme
asure.org|mg

[base]/Observation
?value-quantity=le
5.4|http://unitsof
measure.org|mg

Reference Searches for references to
other resources.

[base]/Observation?
subject=Patient/23

test

Search parameters 287

https://www.hl7.org/fhir/datatypes.html#Quantity

AWS HealthLake Developer Guide

Search Parameter Types Details Examples

URI Searches for a string of
characters that unambiguo
usly identifies a particular
resource.

[base]/ValueSet?ur
l=http://acme.org/
fhir/ValueSet/123

Special Searches based on integrated
medical NLP extensions.

Advanced search parameters supported by HealthLake

HealthLake supports the following advanced search parameters.

Name Description Example Capability

_includeUsed to request that
additional resources be
returned in a search request.
It returns resources which
are referenced by the target
resource instance.

Encounter
?_include
=Encounte
r:subject

_revinclu
de

Used to request that
additional resources be
returned in a search request.
It returns resources that
reference the primary
resource instance.

Patient?_
id= patient-
identifier
&_revincl

ude=Encou
nter:patient

_summary Summary can be used to
request a subset of the
resource.

Patient?_
summary=text

The following summary
parameters are supported
: _summary=true ,
_summary=false ,
_summary=text ,
_summary=data .

Search parameters 288

AWS HealthLake Developer Guide

Name Description Example Capability

_elementsRequest a specific set of
elements to be returned
as part of a resource in the
search results.

Patient?_
elements=
identifie
r,active,
link

_total Returns the number of
resources that match the
search parameters.

Patient?_
total=acc
urate

Support _total=ac
curate , _total=none .

_sort Indicate the sort order of
the returned search results
using a comma-separated list.
The - prefix can be used for
any sort rule in the comma-
separated list to indicate
descending order.

Observati
on?_sort=
status,-date

Support sort by fields with
types Number, String,
Quantity, Token, URI,
Reference . Sort by Date
is only supported for data
stores created after December
09, 2023. Support up to 5
sort rules.

_count Control how many resources
are returned per page of the
search bundle.

Patient?_
count=100

Maximum page size is 100.

chaining Search elements of reference
d resources. The . directs
the chained search to the
element within the referenced
resource.

Diagnosti
cReport?s
ubject:Pa
tient.nam
e=peter

reverse
chaining
(_has)

Search for a resource based
on the elements of resources
that refer to them.

Patient?_
has:Obser
vation:pa
tient:cod
e=1234-5

Search parameters 289

AWS HealthLake Developer Guide

_include

Using _include in a search query allows for additional specified FHIR resources to also be
returned. Use _include to include resources that are linked forward.

Example – To use _include to find the patients or the group of patients who have been
diagnosed with a cough

You would search on the Condition resource type specifying the diagnostic code for cough, and
then using _include specify that you want the subject of that diagnosis returned too. In the
Condition resource type subject refers to either the patient resource type or the group resource
type.

For clarity, special characters in the example have not been encoded. To make a successful query
ensure that the query string has been properly encoded.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
Condition?code=49727002&_include=Condition:subject

_revinclude

Using _revinclude in a search query allows for additional specified FHIR resources to also be
returned. Use _revinclude to include resources that are linked backwards.

Example – To use _revinclude to include related Encounter and Observation resource types
linked to a specific Patient

To make this search, you would first define the individual Patient by specifying their identifier in
the _id search parameter. Then you would specify additional FHIR resources using the structure
Encounter:patient and Observation:patient.

For clarity, special characters in the example have not been encoded. To make a successful query
ensure that the query string has been properly encoded.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
Patient?_id=patient-
identifier&_revinclude=Encounter:patient&_revinclude=Observation:patient

_summary

Using _summary in a search query allows user to request a subset of the FHIR resource. It can
contain one of the following values: true, text, data, false. Any other values will be

Search parameters 290

AWS HealthLake Developer Guide

treated as invalid. The returned resources will be marked with 'SUBSETTED' in meta.tag, to
indicate that resources are incomplete.

• true: Return all supported elements that are marked as 'summary' in the base definition of the
resource(s).

• text: Return only the 'text', 'id', 'meta' elements, and only top-level mandatory elements.

• data: Return all parts except the 'text' element.

• false: Return all parts of the resource(s)

In a single search request, _summary=text cannot be combined with _include or _revinclude
search parameters.

Example – Get “text” element of Patient resources in a data store.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
_summary=text

_elements

Using _elements in a search query allows for specific FHIR resource elements to be requested. The
returned resources will be marked with 'SUBSETTED' in meta.tag, to indicate that resources are
incomplete.

The _elements parameter consists of a comma-separated list of base element names such as
elements defined at the root level in the resource. Only elements that are listed are to be returned.
If _elements parameter values contain invalid elements, server will ignore them and return
mandatory elements and valid elements.

_elements will not be applicable to included resources(returned resources whose search mode is
include).

In a single search request, _elements cannot be combined with _summary search parameters.

Example – Get “identifier”, “active”, “link” elements of Patient resources in your HealthLake
data store.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
_elements=identifier,active,link

Search parameters 291

AWS HealthLake Developer Guide

_total

Using _total in a search query will return number of resources that match the requested search
parameters. HealthLake will return the total number of matched resources(returned resources
whose search mode is match) in the Bundle.total of search response.

_total supports the accurate, none parameter values. _total=estimate is not
supported. Any other values will be treated as invalid. _total is not applicable to the included
resources(returned resources whose search mode is include).

Example – Get the total number of Patient resources in a data store:

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
_total=accurate

_sort

Using _sort in the search query arranges the results in a specific order. The results are ordered
based on the comma-separated list of sort rules in priority order. The sort rules should be valid
search parameters. Any other values will be treated as invalid.

In a single search request, you can use up to 5 sort search parameters. You can optionally use a -
prefix to indicate descending order. Server will sort on ascending order by default.

The supported sort search parameter types are: Number, String, Date, Quantity, Token,
URI, Reference. If a search parameter refers to an element that is nested, this search parameter
is not supported for sort. For example, search on 'name' of resource type Patient refers to
Patient.name element with HumanName data type is considered as nested. Thus, sort on Patient
resources by 'name' is not supported.

Example – Get Patient resources in a data store and sort them by birthdate in ascending order:

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
_sort=birthdate

_count

The parameter _count is defined as an instruction to the server regarding how many resources
should be returned in a single page.

The maximum page size is 100. Any values greater than 100 is invalid. _count=0 is not supported.

Search parameters 292

AWS HealthLake Developer Guide

Example – Search for the Patient resource and set search page size to 25:

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?_count=25

Chaining and Reverse Chaining(_has)

Chaining and reverse chaining in FHIR provide a more efficient and compact way to obtain
interconnected data, reducing the need for multiple separate queries and making data retrieval
more convenient for developers and users.

If any level of recursion return more than 100 results, HealthLake will return 4xx to protect data
store from being overloaded and causing multiple paginations.

Example – Chaining - Gets all DiagnosticReport which refer to a Patient where Patient name is
peter.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/DiagnosticReport?
subject:Patient.name=peter

Example – Reverse Chaining - Get Patient resources, where the patient resource is referred to by
at least one Observation where the observation has a code of 1234, and where the Observation
refers to the patient resource in the patient search parameter.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient?
_has:Observation:patient:code=1234

Supported search modifiers

Search modifiers are used with string-based fields. All search modifiers in HealthLake use Boolean-
based logic. For example, you could specify :contains to specify that larger string field should
include a small string in order for it to be included in your search results.

Supported search modifiers

Search modifier Type

:missing All parameters except Composite

:exact String

Search parameters 293

AWS HealthLake Developer Guide

Search modifier Type

:contains String

:not Token

:text Token

:identifier Reference

Supported search comparators

You can use search comparators to control the nature of the matching in a search. You can use
comparators when searching on number, date, and quantity fields. The following table lists search
comparators and their definitions that are supported by HealthLake.

Supported search comparators

Search comparator Description

eq The value for the parameter in the resource is
equal to the provided value.

ne The value for the parameter in the resource is
not equal to the provided value.

gt The value for the parameter in the resource is
greater than the provided value.

lt The value for the parameter in the resource is
less than the provided value.

ge The value for the parameter in the resource is
greater or equal to the provided value.

le The value for the parameter in the resource is
less or equal to the provided value.

sa The value for the parameter in the resource
starts after the provided value.

Search parameters 294

AWS HealthLake Developer Guide

Search comparator Description

eb The value for the parameter in the resource
ends before the provided value.

FHIR search parameters not supported by HealthLake

HealthLake supports all FHIR search parameters with the exception of those listed in the following
table. For a full list of FHIR search parameters, see the FHIR search parameter registry.

Unsupported search parameters

Bundle-composition Location-near

Bundle-identifier Consent-source-reference

Bundle-message Contract-patient

Bundle-type Resource-content

Bundle-timestamp Resource-query

FHIR R4 operations for HealthLake

AWS HealthLake supports the following FHIR REST API operations.

• Patient/$everything — This operation is used to query a FHIR Patient resource, along with
any other resources related to that Patient. For more information, see Operation-patient-
everything in the FHIR R4 documentation.

• $export — This operation is used to bulk export data from an HealthLake data store. For more
information, see the Bulk Data Access IG in the FHIR R4 documentation.

Note

You can also export FHIR data from a HealthLake data store using native HealthLake
actions. For more information, see Exporting FHIR data with AWS HealthLake.

Operations 295

https://hl7.org/fhir/R4/searchparameter-registry.html
https://hl7.org/fhir/R4/operation-patient-everything.html
https://hl7.org/fhir/R4/operation-patient-everything.html
https://www.hl7.org/fhir/uv/bulkdata/

AWS HealthLake Developer Guide

Topics

• Getting patient data with Patient/$everything

• Exporting HealthLake data with FHIR $export

Getting patient data with Patient/$everything

The Patient/$everything operation is used to query a FHIR Patient resource, along with
any other resources related to that Patient. The operation can be used to provide a patient with
access to their entire record or for a provider to perform a bulk data download related to a patient.
HealthLake supports Patient/$everything for a specific patient id.

Patient/$everything is a FHIR REST API operation that can be invoked as shown in the
examples below.

GET request

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id/
$everything

Note

Resources in response are sorted by resource type and resource id.
Response is always populated with Bundle.total.

Patient/$everything parameters

HealthLake supports the following query parameters

Parameter Details

start Get all Patient data after a specified start date.

end Get all Patient data before a specified end date.

since Get all Patient data updated after a specified date.

_type Get Patient data for specific resource types.

Operations 296

AWS HealthLake Developer Guide

Parameter Details

_count Get Patient data and specify page size.

Example - Get all patient data after a specified start date

Patient/$everything can use the start filter to query only data after a specific date.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id/
$everything?start=2024-03-15T00:00:00.000Z

Example - Get all Patient data before a specified end date

Patient $everything can use the end filter to only query data before a specific date.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id/
$everything?end=2024-03-15T00:00:00.000Z

Example - Get all Patient data updated after a specified date

Patient/$everything can use the since filter to query only data updated after a specific date.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id/
$everything?since=2024-03-15T00:00:00.000Z

Example - Get Patient data for specific resource types

Patient $everything can use the _type filter to specify specific resource types to be included in the
response. Multiple resource types can be specified in a comma separated list.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id/
$everything?_type=Observation,Condition

Example - Get Patient data and specify page size

Patient $everything can use the _count to set the page size.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/Patient/id/
$everything?_count=15

Operations 297

AWS HealthLake Developer Guide

Patient/$everything start and end attributes

HealthLake supports the following resource attributes for the Patient/ $everything start
and end query parameters.

Resource Resource Element

Account Account.servicePeriod.start

AdverseEv
ent

AdverseEvent.date

AllergyIn
tolerance

AllergyIntolerance.recordedDate

Appointme
nt

Appointment.start

Appointme
ntRespons
e

AppointmentResponse.start

AuditEvent AuditEvent.period.start

Basic Basic.created

BodyStruc
ture

NO_DATE

CarePlan CarePlan.period.start

CareTeam CareTeam.period.start

ChargeIte
m

ChargeItem.occurrenceDateTime, ChargeItem.occurrencePeriod.start, ChargeIte
m.occurrenceTiming.event

Claim Claim.billablePeriod.start

ClaimResp
onse

ClaimResponse.created

Operations 298

AWS HealthLake Developer Guide

Resource Resource Element

ClinicalI
mpression

ClinicalImpression.date

Communica
tion

Communication.sent

Communica
tionReque
st

CommunicationRequest.occurrenceDateTime, CommunicationRequest.occurr
encePeriod.start

Compositi
on

Composition.date

Condition Condition.recordedDate

Consent Consent.dateTime

Coverage Coverage.period.start

CoverageE
ligibilit
yRequest

CoverageEligibilityRequest.created

CoverageE
ligibilit
yResponse

CoverageEligibilityResponse.created

DetectedI
ssue

DetectedIssue.identified

DeviceReq
uest

DeviceRequest.authoredOn

DeviceUse
Statement

DeviceUseStatement.recordedOn

Diagnosti
cReport

DiagnosticReport.effective

Operations 299

AWS HealthLake Developer Guide

Resource Resource Element

DocumentM
anifest

DocumentManifest.created

DocumentR
eference

DocumentReference.context.period.start

Encounter Encounter.period.start

Enrollmen
tRequest

EnrollmentRequest.created

EpisodeOf
Care

EpisodeOfCare.period.start

Explanati
onOfBenef
it

ExplanationOfBenefit.billablePeriod.start

FamilyMem
berHistory

NO_DATE

Flag Flag.period.start

Goal Goal.statusDate

Group NO_DATE

ImagingSt
udy

ImagingStudy.started

Immunizat
ion

Immunization.recorded

Immunizat
ionEvalua
tion

ImmunizationEvaluation.date

Operations 300

AWS HealthLake Developer Guide

Resource Resource Element

Immunizat
ionRecomm
endation

ImmunizationRecommendation.date

Invoice Invoice.date

List List.date

MeasureRe
port

MeasureReport.period.start

Media Media.issued

Medicatio
nAdminist
ration

MedicationAdministration.effective

Medicatio
nDispense

MedicationDispense.whenPrepared

Medicatio
nRequest

MedicationRequest.authoredOn

Medicatio
nStatemen
t

MedicationStatement.dateAsserted

Molecular
Sequence

NO_DATE

Nutrition
Order

NutritionOrder.dateTime

Observati
on

Observation.effective

Patient NO_DATE

Operations 301

AWS HealthLake Developer Guide

Resource Resource Element

Person NO_DATE

Procedure Procedure.performed

Provenanc
e

Provenance.occurredPeriod.start, Provenance.occurredDateTime

Questionn
aireRespo
nse

QuestionnaireResponse.authored

RelatedPe
rson

NO_DATE

RequestGr
oup

RequestGroup.authoredOn

ResearchS
ubject

ResearchSubject.period

RiskAsses
sment

RiskAssessment.occurrenceDateTime, RiskAssessment.occurrencePeriod.start

Schedule Schedule.planningHorizon

ServiceRe
quest

ServiceRequest.authoredOn

Specimen Specimen.receivedTime

SupplyDel
ivery

SupplyDelivery.occurrenceDateTime, SupplyDelivery.occurrencePeriod.start,
SupplyDelivery.occurrenceTiming.event

SupplyReq
uest

SupplyRequest.authoredOn

VisionPre
scription

VisionPrescription.dateWritten

Operations 302

AWS HealthLake Developer Guide

Exporting HealthLake data with FHIR $export

You can export data in bulk from your HealthLake data store using the FHIR $export operation.
HealthLake supports FHIR $export using POST and GET requests. To make an export request with
POST, you must have a IAM user, group, or role with the required permissions, specify $export as
part of the request, and include desired parameters in the request body.

Note

All HealthLake export requests made using FHIR $export are returned in ndjson format
and exported to an Amazon S3 bucket, where each Amazon S3 object contains only a single
FHIR resource type.
You can queue export requests per the AWS account service quotas. For more information,
see Service quotas.

HealthLake supports the following three types of bulk export endpoint requests.

HealthLake bulk $export types

Export
type

Description Syntax

System Export all data from the
HealthLake FHIR server.

POST https://healthlake
. region.amazonaws.com/dat
astore/ datastoreId /r4/$export

All
patients

Export all data relating to all
patients including resource
types associated with the
Patient resource type.

POST https://healthlake
. region.amazonaws.com/dat
astore/ datastoreId /r4/Patient/$expor
t

GET https://healthlake. region.amazonaw
s.com/datastore/ datastoreId /r4/Patie
nt/$export

Group
of
patients

Export all data relating to a
group of patients specified
with a Group ID.

POST https://healthlake
. region.amazonaws.com/dat

Operations 303

AWS HealthLake Developer Guide

Export
type

Description Syntax

astore/ datastoreId /r4/Group/ id/
$export

GET https://healthlake. region.amazonaw
s.com/datastore/ datastoreId /r4/Group
/ id/$export

Before you begin

Meet the following requirements to make an export request using the FHIR REST API for
HealthLake.

• You must have set up a user, group, or role that has the necessary permissions to make the
export request. To learn more, see Authorizing an $export request.

• You must have created a service role that grants HealthLake access to the Amazon S3 bucket to
which you want your data to be exported. The service role must also specify HealthLake as the
service principal. For more information about setting up permissions, see Setting up permissions
for export jobs.

Authorizing an $export request

To make a successful export request using the FHIR REST API, authorize your user, group, or role
using either IAM or OAuth2.0. You must also have a service role.

Authorizing a request using IAM

When you make an $export request, the user, group, or role must have IAM actions included in
the policy. For more information, see Setting up permissions for export jobs.

Authorizing a request using SMART on FHIR (OAuth 2.0)

When you make an $export request on a SMART on FHIR-enabled HealthLake data store, you
must have the appropriate scopes assigned. For more information, see SMART on FHIR resource
scopes for HealthLake.

Operations 304

AWS HealthLake Developer Guide

Note

FHIR $export with GET requests require the same authentication method or bearer token
(in the case of SMART on FHIR) to request the export and retrieve files. Files exported using
FHIR $export with GET are available for download for 48 hours.

Making an $export request

This section describes the required steps you must take when making an export request using the
FHIR REST API.

To avoid accidental charges on your AWS account, we recommend testing your requests by making
a POST request without supplying the $export syntax.

To make the request, you must do the following:

1. Specify $export in the POST request URL for a supported endpoint.

2. Specify the required header parameters.

3. Specify a request body that defines the required parameters.

Step 1: Specify $export in the POST request URL for a supported endpoint.

HealthLake supports three types of bulk export endpoint requests. To make a bulk export request,
you must make a POST-based request on one of the three supported endpoints. The following
examples demonstrate where to specify $export in the request URL.

• POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
$export

• POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
Patient/$export

• POST https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
Group/id/$export

You can use the following supported search parameters in the POST request string.

Operations 305

AWS HealthLake Developer Guide

Supported search parameters

HealthLake supports the following search modifiers in bulk export requests.

The following examples include special characters which must be encoded prior to submitting your
request.

Name Required? Description Example

_outputFormat No The format for the
requested Bulk Data
files to be generated
. Accepted values are
application/
fhir+ndjson ,
application/
ndjson , ndjson.

_type No A string of comma
delimited FHIR
resource types that
you want included
in your export job.
We recommend
including _type
because this can have
a cost implication
when all resources
are exported.

&_type=Me
dicationS
tatement,
Observation

_since No Resource types
modified on or after
the date time stamp.
If a resource type
does not have a last
updated time they
will be included in
your response.

&_since=2
024-05-09
T00%3A00%3A00Z

Operations 306

AWS HealthLake Developer Guide

Step 2: Specify the required header parameters

To make an export request using the FHIR REST API, you must specify the following header
parameters.

• Content-Type: application/fhir+json

• Prefer: respond-async

Next, you must specify the required elements in the request body.

Step 3: Specify a request body the defines the required parameters.

The export request also requires a body in JSON format. The body can include the following
parameters.

Key Required? Description Value

DataAccessRoleArn Yes An ARN of a
HealthLake service
role. The service role
used must specify
HealthLake as the
service principal.

arn:aws:i
am:: 444455556
666 :role/your-
healthlake-se
rvice-role

JobName No The name of the
export request.

your-export-
job-name

S3Uri Yes Part of an OutputDat
aConfig key. The S3
URI of the destinati
on bucket where your
exported data will be
downloaded.

s3://amzn
-s3-demo-
bucket/ EXPORT-
JOB /

KmsKeyId Yes Part of an OutputDat
aConfig key. The ARN
of the AWS KMS key
used to secure the
Amazon S3 bucket.

arn:aws:k
ms: region-of-
bucket:123456789
012 :key/1234abcd-
12ab-34cd

Operations 307

AWS HealthLake Developer Guide

Key Required? Description Value

-56ef-123
4567890ab

Example Body of an export request made using the FHIR REST API

To make an export request by using the FHIR REST API, you must specify a body, as shown in the
following.

{
 "DataAccessRoleArn": "arn:aws:iam::444455556666:role/your-healthlake-service-role",
 "JobName": "your-export-job",
 "OutputDataConfig": {
 "S3Configuration": {
 "S3Uri": "s3://amzn-s3-demo-bucket/EXPORT-JOB",
 "KmsKeyId": "arn:aws:kms:region-of-
bucket:444455556666:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
 }
}

When your request is successful, you will receive the following response.

Response Header

content-location: https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/
export/your-export-request-job-id

Response Body

{
 "datastoreId": "your-data-store-id",
 "jobStatus": "SUBMITTED",
 "jobId": "your-export-request-job-id"
}

Managing your export request

After making a successful export request, you can manage the request using $export to describe
the status of a current export request, and $export to cancel a current export request.

Operations 308

AWS HealthLake Developer Guide

When you cancel an export request using the REST API, you are only billed for the portion of the
data that was exported up to the time you submitted the cancel request.

The following topics describe how you can get the status on or cancel a current export request.

Canceling an export request

To cancel an export request, make a DELETE request and supply the job ID in the request URL.

DELETE https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/export/your-
export-request-job-id

When your request is successful, you receive the following.

{
 "exportJobProperties": {
 "jobId": "your-original-export-request-job-id",
 "jobStatus": "CANCEL_SUBMITTED",
 "datastoreId": "your-data-store-id"
 }
}

When your request is not successful, you receive the following.

{
 "resourceType": "OperationOutcome",
 "issue": [
 {
 "severity": "error",
 "code": "not-supported",
 "diagnostics": "Interaction not supported."
 }
]
}

Describing an export request

To get the status of an export request, make a GET request by using export and your export-
request-job-id.

GET https://healthlake.region.amazonaws.com/datastore/datastoreId/r4/export/your-
export-request-id

Operations 309

AWS HealthLake Developer Guide

The JSON response will contain an ExportJobProperties object. It may contain the following
key:value pairs.

Name Required? Description Value

DataAccessRoleArn No An ARN of a
HealthLake service
role. The service role
used must specify
HealthLake as the
service principal.

arn:aws:i
am:: 444455556
666 :role/your-
healthlake-se
rvice-role

SubmitTime No The date time an
export job was
submitted.

Apr 21, 2023
5:58:02

EndTime No The time an export
job was completed.

Apr 21, 2023
6:00:08 PM

JobName No The name of the
export request.

your-export-
job-name

JobStatus No Valid values are:

SUBMITTED |
 IN_PROGRESS
 | COMPLETED
_WITH_ERRORS |
 COMPLETED |
 FAILED

S3Uri Yes Part of an OutputDat
aConfig object. The
Amazon S3 URI
of the destination
bucket where your
exported data will be
downloaded.

s3://amzn
-s3-demo-
bucket/ EXPORT-
JOB /

Operations 310

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html

AWS HealthLake Developer Guide

Name Required? Description Value

KmsKeyId Yes Part of an OutputDat
aConfig object. The
ARN of the AWS
KMS key used to
secure the Amazon
S3 bucket.

arn:aws:k
ms: region-of-
bucket:123456789
012 :key/1234abcd-
12ab-34cd
-56ef-123
4567890ab

Example : Body of a describe export request made using the FHIR REST API

When successful, you will get the following JSON response.

{
 "exportJobProperties": {
 "jobId": "your-export-request-id",
 "JobName": "your-export-job",
 "jobStatus": "SUBMITTED",
 "submitTime": "Apr 21, 2023 5:58:02 PM",
 "endTime": "Apr 21, 2023 6:00:08 PM",
 "datastoreId": "your-data-store-id",
 "outputDataConfig": {
 "s3Configuration": {
 "S3Uri": "s3://amzn-s3-demo-bucket/EXPORT-JOB",
 "KmsKeyId": "arn:aws:kms:region-of-
bucket:444455556666:key/1234abcd-12ab-34cd-56ef-1234567890ab""
 }
 },
 "DataAccessRoleArn": "arn:aws:iam::444455556666:role/your-healthlake-service-role",
 }
}

Support reference for AWS HealthLake

The following supporting reference material is available for AWS HealthLake.

HealthLake 311

https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html
https://docs.aws.amazon.com/healthlake/latest/APIReference/API_OutputDataConfig.html

AWS HealthLake Developer Guide

Note

All native HealthLake actions and data types are described in a separate reference. For
more information, see the AWS HealthLake API Reference.

Topics

• AWS HealthLake endpoints and quotas

• Synthea preloaded data types for HealthLake

• AWS HealthLake sample projects

• Troubleshooting AWS HealthLake

• Using HealthLake with an AWS SDK

AWS HealthLake endpoints and quotas

The following topics contain information about AWS HealthLake service endpoints and quotas.

Topics

• Service endpoints

• Service quotas

Service endpoints

A service endpoint is a URL that identifies a host and port as the entry point for a web service.
Every web service request contains an endpoint. Most AWS services provide endpoints for specific
Regions to enable faster connectivity. The following table lists the service endpoints for AWS
HealthLake.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 healthlake.us-east-2.amazonaws.com

healthlake-fips.us-east-2.amazonaws.com

HTTPS

HTTPS

Endpoints and quotas 312

https://docs.aws.amazon.com/healthlake/latest/APIReference/

AWS HealthLake Developer Guide

Region
Name

Region Endpoint Protocol

US
East (N.
Virginia)

us-east-1 healthlake.us-east-1.amazonaws.com

healthlake-fips.us-east-1.amazonaws.com

HTTPS

HTTPS

US West
(Oregon)

us-
west-2

healthlake.us-west-2.amazonaws.com

healthlake-fips.us-west-2.amazonaws.com

HTTPS

HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

healthlake.ap-south-1.amazonaws.com HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

healthlake.ap-southeast-2.amazonaws.com HTTPS

Europe
(Ireland)

eu-
west-1

healthlake.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-
west-2

healthlake.eu-west-2.amazonaws.com HTTPS

Service quotas

Service quotas are defined as the maximum value for resources, actions, and items in your AWS
account.

Note

For adjustable quotas, you can request a quota increase using the Service Quotas console.
For more information, see Requesting a quota increase in the Service Quotas User Guide.
Sync Write API rate proportionally increases with payload size, with each 1KB increment
consuming additional capacity (e.g., a 4KB payload uses 4x write capacity). Setting the
optional x-amz-fhir-history-consistency-level header to strong doubles the
write capacity consumption per resource.

Endpoints and quotas 313

https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS HealthLake Developer Guide

Resources within Bundles follow standard read/write limits based on 1 KB payload size.
Bundle type transaction consumes twice the write capacity compared to type batch,
meaning batch Bundles can process twice as many resources per second as transaction
Bundles.

The following table lists the default quotas for AWS HealthLake.

Name Default Adjustabl
e

Description

Number of characters in a medical note Each supported
Region: 10,000

No The maximum number of
characters in an individua
l medical note within
the DocumentReference
Resource type (POST/
PUT requests).

Number of concurrent StartFHIR
ExportJob jobs

Each supported
Region: 1

No The maximum concurren
t StartFHIRExportJob
jobs.

Number of concurrent StartFHIR
ImportJob jobs

Each supported
Region: 1

No The maximum concurren
t StartFHIRImportJob
jobs.

Number of data stores per account Each supported
Region: 10

Yes The default maximum
number of active data
stores per account.

Number of files in a StartFHIR
ImportJob

Each supported
Region: 10,000

Yes The maximum number
of files in a StartFHIR
ImportJob.

Number of resources per Bundle Each supported
Region: 500

No The maximum number
of resources allowed in a
Bundle request.

Endpoints and quotas 314

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-3EA1D6C3
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-529B6D50

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of CancelFHIRExportJob requests
using DELETE per account

Each supported
Region: 1

No The maximum number
of CancelFHIRExportJo
b requests using DELETE
that you can make per
second per account.

Rate of CreateFHIRDatastore requests
per account

Each supported
Region: 1

No The maximum number
of CreateFHIRDatastor
e requests that you can
make per minute per
account.

Rate of DeleteFHIRDatastore requests
per account

Each supported
Region: 1

No The maximum number
of DeleteFHIRDatastor
e requests that you can
make per minute per
account.

Rate of DescribeFHIRDatastore
requests per account

Each supported
Region: 10

No The maximum number
of DescribeFHIRDatast
ore requests that you
can make per second per
account.

Rate of DescribeFHIRExportJob
requests per account

Each supported
Region: 10

No The maximum number
of DescribeFHIRExport
Job requests that you
can make per second per
account.

Rate of DescribeFHIRExportJob
requests using GET per account

Each supported
Region: 10

No The maximum number of
DescribeFHIRExportJob
requests using GET that
you can make per second
per account.

Endpoints and quotas 315

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of DescribeFHIRImportJob
requests per account

Each supported
Region: 10

No The maximum number
of DescribeFHIRImport
Job requests that you
can make per second per
account.

Rate of Discovery requests per account Each supported
Region: 10

No The maximum number of
Discovery requests that
you can make per minute
per account.

Rate of GET requests per account Each supported
Region: 6,000

Yes The maximum number
of GET requests that you
can make per second per
account.

Rate of GET requests per data store Each supported
Region: 3,000

Yes The maximum number
of GET requests that you
can make per second
per data store. Data
stores created prior
to 8/21/2023 will be
limited to 100 requests
per second.

Rate of GetCapabilities requests per
account

Each supported
Region: 10

No The maximum number of
GetCapabilities requests
that you can make per
second per account.

Rate of GetExportedFile requests per
datastore

Each supported
Region: 10

No The maximum number of
GetExportedFile requests
that you can make per
second per datastore.

Endpoints and quotas 316

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-F39A95A1
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-863A7B88

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of ListFHIRDatastores requests per
account

Each supported
Region: 10

No The maximum number
of ListFHIRDatastores
requests that you can
make per second per
account.

Rate of ListFHIRExportJobs requests
per account

Each supported
Region: 10

No The maximum number
of ListFHIRExportJobs
requests that you can
make per second per
account.

Rate of ListFHIRImportJobs requests
per account

Each supported
Region: 10

No The maximum number
of ListFHIRImportJobs
requests that you can
make per second per
account.

Rate of ListTagsforResource requests
per account

Each supported
Region: 10

No The maximum number
of ListTagsforResourc
e requests that you can
make per second per
account.

Rate of StartFHIRExportJob requests
per account

Each supported
Region: 1

No The maximum number
of StartFHIRExportJob
requests that you can
make per second per
account.

Rate of StartFHIRExportJob requests
using GET per account

Each supported
Region: 1

No The maximum number
of StartFHIRExportJob
requests using GET that
you can make per second
per account.

Endpoints and quotas 317

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of StartFHIRExportJob requests
using POST per account

Each supported
Region: 1

No The maximum number
of StartFHIRExportJob
requests using POST that
you can make per second
per account.

Rate of StartFHIRImportJob requests
per account

Each supported
Region: 1

No The maximum number
of StartFHIRImportJob
requests that you can
make per second per
account.

Rate of TagResource requests per
account

Each supported
Region: 10

No The maximum number
of TagResource requests
that you can make per
second per account.

Rate of UntagResource requests per
account

Each supported
Region: 10

No The maximum number of
UntagResource requests
that you can make per
second per account.

Rate of WRITE requests per account Each supported
Region: 6,000

Yes The maximum number
of CREATE|UPDATE|DELE
TE requests that you can
make per second per
account.

Endpoints and quotas 318

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-B94D535B

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Rate of WRITE requests per data store Each supported
Region: 3,000

Yes The maximum number
of CREATE|UPDATE|DELE
TE requests that you
can make per second
per data store. Data
stores created prior
to 8/21/2023 will be
limited to 300 requests
per second.

Rate of search requests using GET per
account

Each supported
Region: 200

Yes The maximum number
of search requests using
GET that you can make
per second per account.

Rate of search requests using GET per
data store

Each supported
Region: 100

Yes The maximum number
of search requests using
GET that you can make
per second per data
store.

Rate of search requests using POST per
account

Each supported
Region: 200

Yes The maximum number
of search requests using
POST that you can make
per second per account.

Rate of search requests using POST per
data store

Each supported
Region: 100

Yes The maximum number
of search requests using
POST that you can make
per second per data
store.

Endpoints and quotas 319

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-9EB60712
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-98AD4FBA
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-611058A1
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-6FDC6068
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-7366BBDE

AWS HealthLake Developer Guide

Name Default Adjustabl
e

Description

Size of individual imported file Each supported
Region: 5
Gigabytes

No The maximum size (in
GB) of an individual file
included in a StartFHIR
ImportJob.

Total Queued Bulk Export jobs per
datastore

Each supported
Region: 25

Yes The maximum number
of queued bulk export
jobs per datastore at any
given time.

Total Queued Bulk Import jobs per
datastore

Each supported
Region: 25

Yes The maximum number
of queued bulk import
jobs per datastore at any
given time.

Total import job size Each supported
Region: 500
Gigabytes

Yes The maximum size (in
GB) of all files included in
the import job.

Synthea preloaded data types for HealthLake

HealthLake supports only SYNTHEA as a preloaded data type. Synthea is a synthetic patient
generator that models Patient medical history. It’s hosted in an open-source Git repository that
allows HealthLake to generate a FHIR R4-compliant resource Bundle so that users can test models
without using actual patient data.

The following resource types are available in preloaded HealthLake data stores. For more
information about preloading HealthLake data stores with Synthea data, see Creating a HealthLake
data store.

Note

To view a full list of HealthLake-supported FHIR R4 resources, see FHIR R4 supported
resource types for HealthLake.

Preloaded data types 320

https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-DDD1A3D1
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-5E2BA274
https://console.aws.amazon.com/servicequotas/home/services/healthlake/quotas/L-DEBEEE9B
https://synthetichealth.github.io/synthea/

AWS HealthLake Developer Guide

Synthea FHIR resource types supported by HealthLake

AllergyIntolerance Location

CarePlan MedicationAdministration

CareTeam MedicationRequest

Claim Observation

Condition Organization

Device Patient

DiagnosticReport Practitioner

Encounter PractitionerRole

ExplanationofBenefit Procedure

ImagingStudy Provenance

Immunization

AWS HealthLake sample projects

To further your analysis, you can use HealthLake with other AWS services as demonstrated in the
following blog post examples.

HealthLake integrated analytics

• Population health applications with AWS HealthLake – Part 1: Analytics and monitoring using
Amazon QuickSight.

• Building predictive disease models using Amazon SageMaker AI with AWS HealthLake
normalized data.

• Build a cognitive search and a health knowledge graph using AWS AI services.

HealthLake event monitoring

• Amazon EventBridge integration with AWS HealthLake.

Sample projects 321

https://aws.amazon.com/blogs/machine-learning/population-health-applications-with-amazon-healthlake-part-1-analytics-and-monitoring-using-amazon-quicksight/
https://aws.amazon.com/blogs/machine-learning/population-health-applications-with-amazon-healthlake-part-1-analytics-and-monitoring-using-amazon-quicksight/
https://aws.amazon.com/blogs/machine-learning/building-predictive-disease-models-using-amazon-sagemaker-with-amazon-healthlake-normalized-data/
https://aws.amazon.com/blogs/machine-learning/building-predictive-disease-models-using-amazon-sagemaker-with-amazon-healthlake-normalized-data/
https://aws.amazon.com/blogs/machine-learning/build-a-cognitive-search-and-a-health-knowledge-graph-using-amazon-healthlake-amazon-kendra-and-amazon-neptune/
https://aws.amazon.com/blogs/industries/amazon-eventbridge-integration-for-aws-healthlake/

AWS HealthLake Developer Guide

Troubleshooting AWS HealthLake

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the AWS CLI, AWS SDKs, or HealthLake console. If you find an issue that is not listed in
this section, use the Provide feedback button on the right sidebar of this page to report it.

Topics

• Data store actions

• Import actions

• FHIR APIs

• NLP integrations

• SQL integrations

Data store actions

Issue: When I try to create a HealthLake data store, I receive the following error:

AccessDeniedException: Insufficient Lake Formation permission(s): Required Database on
 Catalog

On November 14, 2022, HealthLake updated the required IAM permissions to create a new
data store. For more information, see Configure an IAM user or role to use HealthLake (IAM
Administrator).

Issue: When creating a HealthLake data store using the AWS SDKs, the data store creation status
returns an exception or unknown status.

Update your AWS SDK to the latest version if your DescribeFHIRDatastore or
ListFHIRDatastores API calls return an exception or unknown data store status.

Import actions

Issue: Can I still use HealthLake if my data isn't in FHIR R4 format?

Only FHIR R4 formatted data can be imported into a HealthLake data store. For a list of partners
that can help transform existing health data to FHIR R4 format, see AWS HealthLake Partners.

Issue: Why did my FHIR import job fail?

Troubleshooting 322

https://docs.aws.amazon.com/healthlake/partners/

AWS HealthLake Developer Guide

A successful import job will generate a folder with results (output log) in .ndjson format,
however, individual records can fail to import. When this happens, a second FAILURE folder will
be generated with a manifest of records that failed to import. For more information, see Importing
FHIR data with AWS HealthLake.

To analyze why an import job failed use the DescribeFHIRImportJob API to analyze the
JobProperties. The following is recommended:

• If the status is FAILED and a message is present, the failures are related to job parameters such
as input data size or number of input files being beyond HealthLake quotas.

• If the import job status is COMPLETED_WITH_ERRORS, check the manifest file, manifest.json,
for information on which files did not import successfully.

• If the import job status is FAILED and a message is not present, go to the job output location to
access the manifest file, manifest.json.

For each input file, there is failure output file with input file name for any resource that fails to
import. The responses contain line number (lineId) corresponding to the location of input data,
FHIR response object (UpdateResourceResponse), and status code (statusCode) of the response.

A sample output file might be similar to the following:

{"lineId":3, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"1 validation error detected:
 Value 'Patient123' at 'resourceType' failed to satisfy constraint: Member must satisfy
 regular expression pattern: [A-Za-z]{1,256}"}]}, "statusCode":400}
{"lineId":5, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"This property must be an
 simple value, not a com.google.gson.JsonArray","location":["/EffectEvidenceSynthesis/
name"]},{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@telecom'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@gender'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@birthDate'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@address'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@maritalStatus'","location":["/EffectEvidenceSynthesis"]},

Troubleshooting 323

AWS HealthLake Developer Guide

{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@multipleBirthBoolean'","location":["/EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Unrecognised
 property '@communication'","location":["/EffectEvidenceSynthesis"]},
{"severity":"warning","code":"processing","diagnostics":"Name should be usable as an
 identifier for the module by machine processing applications such as code generation
 [name.matches('[A-Z]([A-Za-z0-9_]){0,254}')]","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile http://hl7.org/fhir/
StructureDefinition/EffectEvidenceSynthesis, Element 'EffectEvidenceSynthesis.status':
 minimum required = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile
 http://hl7.org/fhir/StructureDefinition/EffectEvidenceSynthesis,
 Element 'EffectEvidenceSynthesis.population': minimum required
 = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile
 http://hl7.org/fhir/StructureDefinition/EffectEvidenceSynthesis,
 Element 'EffectEvidenceSynthesis.exposure': minimum required =
 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile http://
hl7.org/fhir/StructureDefinition/EffectEvidenceSynthesis, Element
 'EffectEvidenceSynthesis.exposureAlternative': minimum required
 = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"error","code":"processing","diagnostics":"Profile http://hl7.org/fhir/
StructureDefinition/EffectEvidenceSynthesis, Element 'EffectEvidenceSynthesis.outcome':
 minimum required = 1, but only found 0","location":["EffectEvidenceSynthesis"]},
{"severity":"information","code":"processing","diagnostics":"Unknown
 extension http://synthetichealth.github.io/synthea/disability-adjusted-
life-years","location":["EffectEvidenceSynthesis.extension[3]"]},
{"severity":"information","code":"processing","diagnostics":"Unknown extension
 http://synthetichealth.github.io/synthea/quality-adjusted-life-years","location":
["EffectEvidenceSynthesis.extension[4]"]}]}, "statusCode":400}
{"lineId":7, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"2 validation errors detected:
 Value at 'resourceId' failed to satisfy constraint: Member must satisfy regular
 expression pattern: [A-Za-z0-9-.]{1,64}; Value at 'resourceId' failed to satisfy
 constraint: Member must have length greater than or equal to 1"}]}, "statusCode":400}
{"lineId":9, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":
[{"severity":"error","code":"processing","diagnostics":"Missing required id field in
 resource json"}]}, "statusCode":400}
{"lineId":15, UpdateResourceResponse:{"jsonBlob":
{"resourceType":"OperationOutcome","issue":

Troubleshooting 324

AWS HealthLake Developer Guide

[{"severity":"error","code":"processing","diagnostics":"Invalid JSON found in input
 file"}]}, "statusCode":400}

The example above shows that there were failures on lines 3, 4, 7, 9, 15 from the corresponding
input lines from input file. For each of those lines, the explanations are as follows:

• On Line 3, the response explains that resourceType provided in line 3 of input file is not valid.

• On Line 5, the response explains that there is a FHIR validation error in line 5 of input file.

• On Line 7, the response explains that there is a validation issue with resourceId provided as
input.

• On Line 9, the response explains that input file must contain a valid resource id.

• On line 15, the response of input file is that the file is not in a valid JSON format.

FHIR APIs

Issue: How do I implement authorization for the FHIR RESTful APIs?

Determine the Data store authorization strategy to use.

To create SigV4 authorization using the AWS SDK for Python (Boto3), create a script similar to the
following example.

import boto3
import requests
import json
from requests_auth_aws_sigv4 import AWSSigV4

Set the input arguments
data_store_endpoint = 'https://healthlake.us-east-1.amazonaws.com/datastore/<datastore
 id>/r4//'
resource_path = "Patient"
requestBody = {"resourceType": "Patient", "active": True, "name": [{"use":
 "official","family": "Dow","given": ["Jen"]},{"use": "usual","given":
 ["Jen"]}],"gender": "female","birthDate": "1966-09-01"}
region = 'us-east-1'

#Frame the resource endpoint
resource_endpoint = data_store_endpoint+resource_path
session = boto3.session.Session(region_name=region)
client = session.client("healthlake")

Troubleshooting 325

AWS HealthLake Developer Guide

Frame authorization
auth = AWSSigV4("healthlake", session=session)

Call data store FHIR endpoint using SigV4 auth

r = requests.post(resource_endpoint, json=requestBody, auth=auth,)
print(r.json())

Issue: Why am I receiving AccessDenied errors when using the FHIR RESTful APIs for a data store
encrypted with a customer managed KMS key?

Permissions for both customer managed keys and IAM policies are required for a user or role to
access a data store. A user must have the required IAM permissions for using a customer managed
key. If a user revoked or retired a grant that gave HealthLake permission to use the customer
managed KMS key, HealthLake will return an AccessDenied error.

HealthLake must have the permission in place to access customer data, to encrypt new FHIR
resources imported to a data store, and to decrypt the FHIR resources when they are requested. For
more information, see Troubleshooting AWS KMS permissions.

Issue: A FHIR POST API operation to HealthLake using a 10MB document is returning the 413
Request Entity Too Large error.

AWS HealthLake has a synchronous Create and Update API limit of 5MB to avoid increased
latencies and timeouts. You can ingest large documents, up to 164MB, using the Binary resource
type using the Bulk Import API.

NLP integrations

Issue: How do I turn on HealthLake's integrated natural language processing feature?

As of November 14, 2022, the default behavior of HealthLake data stores changed.

Current data stores: All current HealthLake data stores will stop using natural language
processing (NLP) on base64-encoded DocumentReference resources. This means that
new DocumentReference resources will not be analyzed using NLP, and no new resources
will be generated based off of text in the DocumentReference resource type. For existing
DocumentReference resources, the data and resources generated via NLP remain, but they will
not be updated after February 20, 2023.

Troubleshooting 326

https://docs.aws.amazon.com/kms/latest/developerguide/policy-evaluation.html

AWS HealthLake Developer Guide

New data stores: HealthLake data stores created after February 20, 2023 will not perform natural
language processing (NLP) on base64-encoded DocumentReference resources.

To turn on HealthLake NLP integration, create a support case using AWS Support Center Console.
To create your case, log in to your AWS account, and then choose Create case. To learn more about
creating a case and case management, see Creating support cases and case management in the
Support User Guide.

Issue: >How do I find DocumentReference resources that could not be processed by integrated
NLP?

If a DocumentReference resource is not valid, HealthLake provides an extension indicating
a validation error instead of providing it in the integrated medical NLP output. To find
DocumentReference resources that led to a validation error during NLP processing, you can
use HealthLake’s FHIR search function with search key cm-decoration-status and search value
VALIDATION_ERROR. This search will list all DocumentReference resources that led to validation
errors, along with an error message describing the nature of the error. The structure of the
extension field in those DocumentReference resources with validation errors will resemble the
following example.

"extension": [
 {
 "extension": [
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/status/",
 "valueString": "VALIDATION_ERROR"
 },
 {
 "url": "http://healthlake.amazonaws.com/aws-cm/message/",
 "valueString": "Resource led to too many nested objects after NLP
 operation processed the document. 10937 nested objects exceeds the limit of 10000."
 }
],
 "url": "http://healthlake.amazonaws.com/aws-cm/"
 }
]

Troubleshooting 327

https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/awssupport/latest/user/case-management.html

AWS HealthLake Developer Guide

Note

A VALIDATION_ERROR can also occur if NLP decoration creates more than 10,000 nested
objects. When this happens, the document must be split into smaller documents before
processing.

SQL integrations

Issue: Why do I get a Lake Formation permissions error:
lakeformation:PutDataLakeSettings when adding a new data lake administrator?

If your IAM user or role contains the AWSLakeFormationDataAdmin AWS managed policy you
cannot add new data lake administrators. You will get an error containing the following:

User arn:aws:sts::111122223333:assumed-role/lakeformation-admin-user is not authorized
 to perform: lakeformation:PutDataLakeSettings on resource: arn:aws:lakeformation:us-
east-2:111122223333:catalog:111122223333 with an explicit deny in an identity-based
 policy

The AWS managed policy AdministratorAccess is required to add an IAM user or role
as a AWS Lake Formation data lake administrator. If your IAM user or role also contains
AWSLakeFormationDataAdmin the action will fail. The AWSLakeFormationDataAdmin
AWS managed policy contains an explicit deny for the AWS Lake Formation API
operation, PutDataLakeSetting. Even administrators with full access to AWS using the
AdministratorAccess managed policy can be limited by the AWSLakeFormationDataAdmin
policy.

Issue: How do I migrate an existing HealthLake data store to use Amazon Athena SQL integration?

HealthLake data stores created before November 14, 2022 are functional, but are not queryable in
Athena using SQL. To query a preexisting data store with Athena, you must first migrate it to a new
data store.

To migrate your HealthLake data to a new data store

1. Create a new data store.

2. Export the data from the pre-existing to an Amazon S3 bucket.

3. Import the data into the new data store from the Amazon S3 bucket.

Troubleshooting 328

AWS HealthLake Developer Guide

Note

Exporting data to an Amazon S3 bucket incurs an extra charge. The extra charge depends
on the size of the data that you export.

Issue: When creating a new HealthLake data store for SQL integration, the data store status is not
changing from Creating.

If you try to create a new HealthLake data store, and your data store status is not changing from
Creating you need to update Athena to use the AWS Glue Data Catalog. For more information, see
Upgrading to the AWS Glue Data Catalog step-by-step in the Amazon Athena User Guide.

After successfully upgrading the AWS Glue Data Catalog, you can create a HealthLake data store.

To remove an old HealthLake data store, create a support case using AWS Support Center Console.
To create your case, log in to your AWS account, and then choose Create case. To learn more, see
Creating support cases and case management in the Support User Guide.

Issue: The Athena console is not working after importing data into a new HealthLake data store

After you import data into a new HealthLake data store, the data may not be available for
immediate use. This is to allow time for the data to be ingested into Apache Iceberg tables. Try
again at a later time.

Issue: How do I connect search results in Athena to other AWS services?

When sharing your search results from Athena with other AWS services, issues can occur when
you use json_extract[1] as part of a SQL search query. To fix this issue, you must update to
CATVAR.

You might encounter this issue when trying to Create save results, a Table (static), or a View
(dynamic).

Using HealthLake with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

Working with AWS SDKs 329

https://docs.aws.amazon.com/athena/latest/ug/glue-upgrade.html
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/awssupport/latest/user/case-management.html

AWS HealthLake Developer Guide

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell AWS Tools for PowerShell code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

Working with AWS SDKs 330

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_5_code_examples.html
https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

AWS HealthLake Developer Guide

AWS HealthLake releases

The following table shows when features and updates were released for AWS HealthLake. For more
information about a release, see the linked topic.

Change Description Date

Conditional Delete HealthLake now supports
FHIR Conditional Delete,
allowing healthcare organizat
ions to delete an existing
resource based on search
criteria rather than by logical
FHIR ID. See Deleting FHIR
resources based on conditions
for more information.

July 7, 2025

Added support for new IGs AWS HealthLake has
expanded its FHIR Implement
ation Guides (IGs) support for
the following:

• US Core 7.0.0 which
specifies how to use FHIR to
implement the USCDI 4.0
standard

• UK Core 2.0.1 Implement
ation Guide to provide UK
wide FHIR implementation
guidance

July 7, 2025

Bundle Type Transactions HealthLake now supports
FHIR Bundle type ‘Transact
ion’, allowing healthcare
organizations to submit
multiple resources as a
single atomic operation.

April 28, 2025

331

https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-delete.html#conditional-delete-fhir
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-delete.html#conditional-delete-fhir

AWS HealthLake Developer Guide

This enables more efficient
data exchange and integrati
on workflows. For example,
a healthcare provider can
now update a patient
record, medication list,
and appointment in a
single transaction, reducing
complexity and potential
errors. See Bundling FHIR
Resources for more informati
on.

332

https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-bundle.html
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-bundle.html

AWS HealthLake Developer Guide

Added support for new IGs AWS HealthLake AWS
HealthLake has expanded its
FHIR Implementation Guides
(IGs) support for the following
:

• NCQA HEDIS® Implement
ation Guide (0.3.1):
Supports quality
measurement and reporting
for the Healthcare Effective
ness Data and Information
Set (HEDIS).

• International Patient
Summary (IPS) (2.0.0):
Enables the exchange of
essential health informati
on to support continuity of
care for patients.

• Quality Measure (5.0.0):
Supports the represent
ation and exchange of
quality measure definitions
and data.

• Genomics Reporting (3.0.0):
Facilitates the exchange of
genomic data and reports.

April 28, 2025

Idempotency Keys HealthLake now supports
idempotency keys for FHIR
POST operations, providing a
robust mechanism to ensure
data integrity during resource
creation. See Idempotency
and Concurrency for more
information.

April 18, 2025

333

https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-idempotency.html
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-idempotency.html

AWS HealthLake Developer Guide

FHIR history consistency HealthLake now supports
strong consistency for
history-enabled data stores
via the new x-amz-fhir-
history-consistency-
level header. When set to
'strong', FHIR search results
include all indexed records
regardless of update status.
See FHIR Search Consistency
Levels for more information.

April 18, 2025

Etag and 'if-match' HealthLake now provides
eTag support, allowing
clients to use the 'If-Match'
header to ensure idempotent
updates. This helps maintain
data integrity by preventing
accidental overwrites during
concurrent updates. This is
particularly valuable in high-
volume healthcare environme
nts where multiple systems
might attempt to update the
same record simultaneously.
See ETag in AWS HealthLake
for more information.

April 18, 2025

334

https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-read-history.html
https://docs.aws.amazon.com/healthlake/latest/devguide/searching-fhir-consistency-levels.html
https://docs.aws.amazon.com/healthlake/latest/devguide/searching-fhir-consistency-levels.html
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-idempotency.html#healthlake-etag

AWS HealthLake Developer Guide

Conditional PUTs in Bundles HealthLake now supports
conditional updates for FHIR
Bundles, giving healthcare
organizations more flexibili
ty to manage and update
their data. Clients can now
specify criteria to condition
ally create, update, or delete
resources as part of a Bundle
transaction. This simplifie
s data synchronization
processes between systems
and reduces the need for
complex client-side logic. See
Conditional PUTs in Bundles
for more information.

April 18, 2025

335

https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-bundle.html#bundle-conditional-PUTs

AWS HealthLake Developer Guide

SMART on FHIR V2 scopes HealthLake supports SMART
on FHIR V2 scopes for
creating, reading, updating,
deleting, and searching FHIR
resources. For more informati
on, see SMART on FHIR
resource scopes for HealthLak
e.

• SMART on FHIR V2
scopes are available to all
HealthLake data stores
created after 01/22/202
5. If your data store was
created before this date,
you can submit a support
ticket to have SMART on
FHIR V2 scopes enabled.
Create a case using AWS
Support Center Console.
To create your case, log in
to your AWS account and
choose Create case.

January 22, 2025

FHIR US Core Profile, version
6.1.0

HealthLake supports version
6.1.0 of the FHIR US Core
Profile. For more information,
see FHIR profile validations
for HealthLake.

January 22, 2025

FHIR $export with GET HealthLake supports FHIR
$export with GET. For more
information, see Exporting
HealthLake data with FHIR
$export.

January 22, 2025

336

https://docs.aws.amazon.com/healthlake/latest/devguide/reference-smart-on-fhir-oauth-scopes.html#smart-on-fhir-scopes-rest
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-smart-on-fhir-oauth-scopes.html#smart-on-fhir-scopes-rest
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-smart-on-fhir-oauth-scopes.html#smart-on-fhir-scopes-rest
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-profile-validations.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-profile-validations.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-operations.html#export-operation
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-operations.html#export-operation
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-operations.html#export-operation

AWS HealthLake Developer Guide

Refactored Developer Guide
with tested code examples

HealthLake introduces a
refactored Developer Guide
with tested code examples for
native AWS CLI and AWS SDK
actions. In addition, procedure
s are now available for all
supported FHIR API interacti
ons. For more informati
on, see Code examples and
Managing FHIR resources.

December 18, 2024

FHIR history and vread
interactions

HealthLake supports the
FHIR history interaction
for retrieving the history of
a particular resource and
the vread interaction for
performing a version-specific
read of a resource. For more
information, see Reading FHIR
resource history.

• FHIR resource history
is enabled by default to
all HealthLake data stores
created after 10/25/202
4. If your data store
was created before this
date, you can submit a
support ticket to have
FHIR history interacti
on enabled. Create a case
using AWS Support Center
Console. To create your
case, log in to your AWS
account and choose Create
case.

October 25, 2024

337

https://docs.aws.amazon.com/healthlake/latest/devguide/service_code_examples.html
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources.html
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-read-history.html
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-read-history.html
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

AWS HealthLake Developer Guide

FHIR Patient/$
everything operation

HealthLake supports the FHIR
Patient/$everythin
g operation for searching
a Patient resource and all
its related resources. Using
this operation, you can access
a patient's entire record or
download Patient data in
bulk. For more information,
see Getting patient data with
Patient/$everything .

• FHIR Patient/$
everything is enabled
by default to all HealthLak
e data stores created after
02/27/2024. If your data
store was created before
this date, you can submit a
support ticket to have the
Patient/$everything
operation enabled. Create
a case using AWS Support
Center Console. To create
your case, log in to your
AWS account and choose
Create case.

February 27, 2024

338

https://docs.aws.amazon.com/healthlake/latest/devguide/patient-everything-operation.html
https://docs.aws.amazon.com/healthlake/latest/devguide/patient-everything-operation.html
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

AWS HealthLake Developer Guide

FHIR Verificat
ionResult resource

HealthLake supports the FHIR
VerificationResult
resource type for describin
g validation requirements,
sources, status, and dates
for one or more elements.
For more information, see
FHIR R4 resource types for
HealthLake.

December 9, 2023

339

https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-resource-types.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-resource-types.html

AWS HealthLake Developer Guide

FHIR $export operation HealthLake supports the
FHIR $export operation for
exporting health data in bulk
from an HealthLake data
store. For more information,
see Exporting HealthLake
data with FHIR $export.

• FHIR $export is enabled
by default to all HealthLak
e data stores created after
June 1, 2023. If your data
store was created before
this date, you can submit
a support ticket to have
the $export operation
enabled. Create a case
using AWS Support Center
Console. To create your
case, log in to your AWS
account and choose Create
case.

• HealthLake data stores
created prior to 06/01/23
support only $export job
requests for system-wide
exports.

• HealthLake data stores
created prior to 06/01/23
do not support getting the
status of an FHIR $export
using a GET request on the
data store's endpoint.

June 1, 2023

340

https://docs.aws.amazon.com/healthlake/latest/devguide/export-operation.html
https://docs.aws.amazon.com/healthlake/latest/devguide/export-operation.html
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

AWS HealthLake Developer Guide

SMART on FHIR support HealthLake adds support for
SMART on FHIR authorization.
For more information, see
SMART on FHIR support for
AWS HealthLake.

May 31, 2023

FHIR profile validations HealthLake supports FHIR
profile validations for
defining specific resource type
definitions using constraints
and/or extensions on base
resource types. For more
information, see Profile
validations.

May 31, 2023

Asia Pacific (Mumbai) region HealthLake is available in the
Asia Pacific (Mumbai) region.
For more information, see
Service endpoints.

April 4, 2023

Natural language processing
turned off by default

HealthLake turned off
integrated natural language
processing (NLP) on all
data stores as of February
20, 2023. You can submit
a support ticket to have
integrated NLP functiona
lity turned on. Create a case
using AWS Support Center
Console. To create your case,
log in to your AWS account
and choose Create case. To
learn more about integrated
NLP, see Integrating NLP with
HealthLake.

•

February 20, 2023

341

https://docs.aws.amazon.com/healthlake/latest/devguide/reference-smart-on-fhir.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-smart-on-fhir.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-profile-validations.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-profile-validations.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-healthlake-endpoints-quotas.html#reference-healthlake-endpoints.html
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/healthlake/latest/devguide/integrating-nlp.html
https://docs.aws.amazon.com/healthlake/latest/devguide/integrating-nlp.html

AWS HealthLake Developer Guide

SQL index and query with
Amazon Athena

HealthLake supports querying
FHIR data with SQL using
Amazon Athena. For more
information, see Querying
HealthLake data with Amazon
Athena.

• SQL query functionality
is enabled by default to
all HealthLake data stores
created after 11/14/202
2. If your data store was
created before this date,
you can submit a support
ticket to have SQL query
functionality enabled.
Create a case using AWS
Support Center Console.
To create your case, log in
to your AWS account and
choose Create case.

• With SQL query functiona
lity, IAM settings to access
HealthLake must be
updated. To both create
HealthLake data stores and
grant access to them in
Athena, you must have the
AWSLakeFormationDa
taAdmin managed
policy added to your IAM
user, group, or role. You
can use the AWSLakeFo
rmationDataAdmin
policy to create data lake
administrators and grant

November 14, 2022

342

https://docs.aws.amazon.com/healthlake/latest/devguide/integrating-athena.html
https://docs.aws.amazon.com/healthlake/latest/devguide/integrating-athena.html
https://docs.aws.amazon.com/healthlake/latest/devguide/integrating-athena.html
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

AWS HealthLake Developer Guide

access to data stores in
Athena. For more informati
on, see Configure an IAM
user or role.

Total import job size
increased

HealthLake updates the
Total import job
size for a StartFHIR
ImportJob request to 500
GB. For more information, see
Service quotas.

October 3, 2022

FHIR Bundle resource HealthLake supports the
FHIR Bundle resource type
for processing multiple FHIR
resources simultaneously.
For more information, see
Bundling FHIR resources.

August 5, 2022

Quota updates for FHIR
interactions

HealthLake updates quotas
for FHIR resource managemen
t interactions. For more
information, see Service
quotas.

July 16, 2022

FHIR _include search
parameter

HealthLake adds support for
the FHIR _include search
parameter to return additiona
l resources in a search
request. For more informati
on, see Advanced search
parameters.

July 16, 2022

AWS HealthLake is generally
available

HealthLake is generally
available in all supported
regions. For more informati
on, see Service endpoints.

July 15, 2021

343

https://docs.aws.amazon.com/healthlake/latest/devguide/getting-started-setting-up.html#gs-configure-iam
https://docs.aws.amazon.com/healthlake/latest/devguide/getting-started-setting-up.html#gs-configure-iam
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-healthlake-endpoints-quotas.html#reference-healthlake-quotas
https://docs.aws.amazon.com/healthlake/latest/devguide/managing-fhir-resources-bundle.html
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-healthlake-endpoints-quotas.html#reference-healthlake-quotas
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-healthlake-endpoints-quotas.html#reference-healthlake-quotas
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-search-parameters.html#search-parameters-advanced
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-fhir-search-parameters.html#search-parameters-advanced
https://docs.aws.amazon.com/healthlake/latest/devguide/reference-healthlake-endpoints-quotas.html#reference-healthlake-endpoints.html

	AWS HealthLake
	Table of Contents
	What is AWS HealthLake?
	Important notice
	Features of AWS HealthLake
	Related AWS services
	Accessing AWS HealthLake
	HIPAA eligibility and data security
	Pricing

	Getting started with AWS HealthLake
	AWS HealthLake concepts
	Data store authorization strategy
	Integrated NLP
	Integrated analytics

	Setting up AWS HealthLake
	Sign up for an AWS account
	Create a user with administrative access
	Configure an IAM user or role to use HealthLake (IAM Administrator)
	Add a user or role as the Data Lake Administrator in Lake Formation (IAM Administrator)
	Create S3 buckets
	Create a data store
	Setting up permissions for import jobs
	Setting up permissions for export jobs
	Install the AWS CLI

	AWS HealthLake tutorial

	Managing data stores with AWS HealthLake
	Creating a HealthLake data store
	AWS CLI and SDKs
	AWS Console

	Getting HealthLake data store properties
	AWS CLI and SDKs
	AWS Console

	Listing HealthLake data stores
	AWS CLI and SDKs
	AWS Console

	Tagging HealthLake data stores
	Tagging a HealthLake data store
	AWS CLI and SDKs
	AWS Console

	Listing tags for a HealthLake data store
	AWS CLI and SDKs
	AWS Console

	Untagging a HealthLake data store
	AWS CLI and SDKs
	AWS Console

	Deleting a HealthLake data store
	AWS CLI and SDKs
	AWS Console

	Importing FHIR data with AWS HealthLake
	Starting a FHIR import job
	AWS CLI and SDKs
	AWS Console

	Getting FHIR import job properties
	AWS CLI and SDKs
	AWS Console

	Listing FHIR import jobs
	AWS CLI and SDKs
	AWS Console

	Managing FHIR resources in AWS HealthLake
	Creating a FHIR resource
	Reading a FHIR resource
	Reading FHIR resource history
	Reading version-specific FHIR resource history

	Updating a FHIR resource
	Updating FHIR resources based on conditions

	Bundling FHIR resources
	Bundling FHIR resources as independent entities
	Conditional PUTs in Bundles
	Bundling FHIR resources as a single entity

	Deleting a FHIR resource
	Deleting FHIR resources based on conditions
	How conditional delete works
	Response scenarios
	

	Idempotency and Concurrency
	Idempotency Keys
	Implementation
	Response Scenarios
	Best Practices

	ETag in AWS HealthLake
	Implementation Example
	Response Scenarios
	Best Practices

	Searching FHIR resources in AWS HealthLake
	Searching FHIR resources with GET
	Examples: search with GET

	Searching FHIR resources with POST
	Examples: search with POST

	FHIR Search Consistency Levels
	Consistency levels
	Usage example
	Best practices

	Exporting FHIR data with AWS HealthLake
	Starting a FHIR export job
	AWS CLI and SDKs
	AWS Console

	Getting FHIR export job properties
	AWS CLI and SDKs
	AWS Console

	Listing FHIR export jobs
	AWS CLI and SDKs
	AWS Console

	Code examples for HealthLake using AWS SDKs
	Basic examples for HealthLake using AWS SDKs
	Actions for HealthLake using AWS SDKs
	Use CreateFHIRDatastore with an AWS SDK or CLI
	Use DeleteFHIRDatastore with an AWS SDK or CLI
	Use DescribeFHIRDatastore with an AWS SDK or CLI
	Use DescribeFHIRExportJob with an AWS SDK or CLI
	Use DescribeFHIRImportJob with an AWS SDK or CLI
	Use ListFHIRDatastores with an AWS SDK or CLI
	Use ListFHIRExportJobs with an AWS SDK or CLI
	Use ListFHIRImportJobs with an AWS SDK or CLI
	Use ListTagsForResource with an AWS SDK or CLI
	Use StartFHIRExportJob with an AWS SDK or CLI
	Use StartFHIRImportJob with an AWS SDK or CLI
	Use TagResource with an AWS SDK or CLI
	Use UntagResource with an AWS SDK or CLI

	Integrating AWS HealthLake
	Integrated natural language processing (NLP) for HealthLake
	HealthLake Integrated NLP libraries
	Using FHIR REST API interactions
	Search parameters for HealthLake integrated NLP
	HealthLake integrated NLP example requests

	Querying HealthLake data with Amazon Athena
	Getting started with Amazon Athena
	Granting a user, group, or role access to a HealthLake data store (AWS Lake Formation Console)
	Getting started with Athena

	Querying HealthLake data with SQL
	Example SQL queries with complex filtering

	Monitoring AWS HealthLake
	Logging HealthLake API calls using AWS CloudTrail
	AWS HealthLake Information in CloudTrail
	Understanding AWS HealthLake Log File Entries

	Monitoring HealthLake metrics using Amazon CloudWatch
	Viewing HealthLake metrics
	Creating an alarm using CloudWatch

	Monitoring HealthLake events using Amazon EventBridge
	HealthLake events sent to EventBridge
	HealthLake event structure
	Data store events
	Import job events
	Export job events

	Security in AWS HealthLake
	Data Protection in AWS HealthLake
	Encryption at REST for AWS HealthLake
	AWS owned KMS key
	Customer managed KMS keys
	Create a customer managed key
	Required IAM permissions for using a customer managed KMS key
	How HealthLake uses grants in AWS KMS
	Monitoring your encryption keys for HealthLake
	Learn more

	Encryption in transit for AWS HealthLake
	Identity and access management for AWS HealthLake
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS HealthLake works with IAM
	Identity-based policies for AWS HealthLake
	Identity-based policy examples for AWS HealthLake

	Resource-based policies within AWS HealthLake
	Policy actions for AWS HealthLake
	Policy resources for AWS HealthLake
	Policy condition keys for AWS HealthLake
	Access control lists (ACLs) in AWS HealthLake
	Attribute-based access control (ABAC) with AWS HealthLake
	Using temporary credentials with AWS HealthLake
	Cross-service principal permissions for AWS HealthLake
	Service roles for AWS HealthLake
	Service-linked roles for AWS HealthLake

	Identity-based policy examples for AWS HealthLake
	Policy best practices
	Using the AWS HealthLake console
	Accessing an AWS HealthLake data store in Amazon Athena
	Allowing users to view their own permissions

	AWS managed policies for AWS HealthLake
	AWS managed policy: AmazonHealthLakeFullAccess
	AWS managed policy: AmazonHealthLakeReadOnlyAccess
	HealthLake operations and permissions
	HealthLake updates to AWS managed policies

	Troubleshooting AWS HealthLake identity and access
	I am not authorized to perform an action in AWS HealthLake
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS HealthLake resources

	Compliance validation for AWS HealthLake
	Infrastructure security in AWS HealthLake
	Creating AWS HealthLake resources with AWS CloudFormation
	HealthLake and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	AWS HealthLake and interface VPC endpoints (AWS PrivateLink)
	Considerations for HealthLake VPC endpoints
	Creating an interface VPC endpoint for HealthLake;
	Creating a VPC endpoint policy for HealthLake

	Security best practices in AWS HealthLake
	Resilience in AWS HealthLake

	AWS HealthLake reference
	SMART on FHIR support for AWS HealthLake
	Getting started with SMART on FHIR
	Setting up resources for SMART on FHIR
	Client application workflow for SMART on FHIR

	HealthLake authentication requirements for SMART on FHIR
	Authorization server elements required to create a SMART on FHIR enabled HealthLake data store
	Required claims to complete a FHIR REST API request on a SMART on FHIR enabled HealthLake data store

	SMART on FHIR OAuth 2.0 scopes supported by HealthLake
	Standalone launch scope
	SMART on FHIR resource scopes for HealthLake
	SMART on FHIR V1 scopes supported by HealthLake
	SMART on FHIR V2 scopes supported by HealthLake

	Token validation using AWS Lambda
	Creating an AWS Lambda function
	Creating a Lambda function using the AWS Management Console
	Modifying a Lambda function's execution role

	Creating a HealthLake service role for use in the AWS Lambda function used to decode a JWT
	Creating a new IAM policy
	Creating a service role for HealthLake (IAM console)

	Lambda execution role
	Allow HealthLake to trigger your Lambda function
	Provisioning concurrency for your Lambda function

	Using fine-grained authorization with a SMART on FHIR enabled HealthLake data store
	Fetching the SMART on FHIR Discovery Document
	Making a FHIR REST API request on a SMART-enabled HealthLake data store

	FHIR R4 support for AWS HealthLake
	FHIR R4 Capability Statement for AWS HealthLake
	FHIR profile validations for HealthLake
	Validating FHIR profiles specified in a resource

	FHIR R4 supported resource types for HealthLake
	FHIR R4 search parameters for HealthLake
	Supported search parameter types
	Advanced search parameters supported by HealthLake
	Supported search modifiers
	Supported search comparators
	FHIR search parameters not supported by HealthLake

	FHIR R4 operations for HealthLake
	Getting patient data with Patient/$everything
	Patient/$everything parameters
	Patient/$everything start and end attributes

	Exporting HealthLake data with FHIR $export
	Before you begin
	Authorizing an $export request
	Making an $export request
	Step 1: Specify $export in the POST request URL for a supported endpoint.
	Supported search parameters

	Step 2: Specify the required header parameters
	Step 3: Specify a request body the defines the required parameters.

	Managing your export request
	Canceling an export request
	Describing an export request

	Support reference for AWS HealthLake
	AWS HealthLake endpoints and quotas
	Service endpoints
	Service quotas

	Synthea preloaded data types for HealthLake
	AWS HealthLake sample projects
	Troubleshooting AWS HealthLake
	Data store actions
	Import actions
	FHIR APIs
	NLP integrations
	SQL integrations

	Using HealthLake with an AWS SDK

	AWS HealthLake releases

