
FlexMatch Developer Guide

Amazon GameLift Servers

Version

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon GameLift Servers FlexMatch Developer Guide

Amazon GameLift Servers: FlexMatch Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon GameLift Servers FlexMatch Developer Guide

Table of Contents

What is FlexMatch? .. 1
Key FlexMatch features ... 2
FlexMatch with Amazon GameLift Servers hosting .. 2
Pricing for Amazon GameLift ServersFlexMatch ... 3
How FlexMatch works .. 3

Matchmaking components .. 4
FlexMatch matchmaking process ... 5

Supported AWS Regions ... 7
Getting started .. 8

Set up an account for FlexMatch .. 8
Roadmap: Create a standalone matchmaking solution .. 9
Roadmap: Add matchmaking to Amazon GameLift Servers hosting .. 11

Building a FlexMatch matchmaker ... 13
Design a matchmaker ... 14

Configure a basic matchmaker .. 14
Choose a location for the matchmaker ... 14
Add optional elements .. 15

Build a rule set ... 17
Design a rule set ... 17
Design a large-match rule set .. 25
Tutorial: Create a rule set ... 29
Rule set examples ... 31

Create a matchmaking configuration .. 55
Tutorial: Create a matchmaker for hosting ... 56
Tutorial: Create a matchmaker for standalone FlexMatch ... 58
Tutorial: Edit a matchmaking configuration ... 60

Set up event notifications .. 61
Set up EventBridge events ... 61
Tutorial: Set up an Amazon SNS topic ... 62
Set up an SNS topic with server-side encryption .. 63
Configure a topic subscription to invoke a Lambda function .. 64

Preparing games for FlexMatch .. 66
Add FlexMatch to a game client ... 66

Prerequisite client-side tasks .. 67

Version iii

Amazon GameLift Servers FlexMatch Developer Guide

Request matchmaking for players .. 68
Track matchmaking events ... 69
Request player acceptance .. 70
Connect to a match ... 71
Sample matchmaking requests .. 71

Add FlexMatch to a game server .. 73
About matchmaker data ... 73
Set up a game server for FlexMatch .. 75

Backfill existing games ... 76
Turn on automatic backfill ... 76
Generate manual backfill requests from a game server .. 77
Generate manual backfill requests from a backend service .. 79
Update match data on the game server ... 82

Security with FlexMatch .. 84
FlexMatch reference .. 85

FlexMatch API reference (AWS SDK) .. 85
Set up matchmaking rules and processes ... 85
Request a match for a player or players ... 86
Available programming languages .. 86

Rules language ... 87
Rule set schema .. 87
Rule set property definitions ... 91
Rule types ... 97
Property expressions .. 104

Matchmaking events ... 108
MatchmakingSearching ... 109
PotentialMatchCreated .. 110
AcceptMatch .. 112
AcceptMatchCompleted ... 113
MatchmakingSucceeded .. 115
MatchmakingTimedOut ... 116
MatchmakingCancelled .. 118
MatchmakingFailed .. 120

Release notes and SDK versions ... 122
All Amazon GameLift Servers guides ... 123

Version iv

Amazon GameLift Servers FlexMatch Developer Guide

What is Amazon GameLift Servers FlexMatch?

Amazon GameLift Servers FlexMatch is a customizable matchmaking service for multiplayer games.
With FlexMatch, you can build a custom set of rules that define what a multiplayer match looks like
for your game, and determines how to evaluate and select compatible players for each match. You
can also fine-tune key aspects of the matchmaking algorithm to fit your game needs.

Use FlexMatch as a standalone matchmaking service or integrated with an Amazon GameLift
Servers game hosting solution. For example, you might implement FlexMatch as a standalone
feature with games with a peer-to-peer architecture or games that use other cloud compute
solutions. Or you might add FlexMatch to your Amazon GameLift Servers managed EC2 or
managed containers hosting, or on-premises hosting with Amazon GameLift Servers Anywhere.
This guide provides detailed information on how to build a FlexMatch matchmaking system for
your particular scenario.

FlexMatch gives you the flexibility to set matchmaking priorities depending on your game
requirements. For example, you can do the following:

• Find a balance between match speed and quality. Set match rules to quickly find matches that
are good enough, or have players wait a little longer to find the best possible match for an
optimum player experience.

• Make matches based on well-matched players or well-matched teams. Create matches where
all players have similar characteristics such as skill or experience. Or form matches where the
combined characteristics of each team meet a common criteria.

• Prioritize how player latency factors into matchmaking. Do you want to set a hard limit on
latency for all players, or are higher latencies acceptable as long as everyone in the match has
similary latency?

Ready to start working with FlexMatch?

For step-by-step guidance on getting your game up and running with FlexMatch, see the
following topics:

• Roadmap: Add matchmaking to a Amazon GameLift Servers hosting solution

• Roadmap: Create a standalone matchmaking solution with FlexMatch

Version 1

Amazon GameLift Servers FlexMatch Developer Guide

Key FlexMatch features

The following features are available with all FlexMatch scenarios, whether you use FlexMatch as a
standalone service or with Amazon GameLift Servers game hosting.

• Customizable player matching. Design and build matchmakers to suit all of the game modes
that you offer your players. Build a set of custom rules to evaluate key player attributes (such as
skill level or role) and geographic latency data to form great player matches for your game.

• Latency-based matching. Provide player latency data and create match rules that require
players in a match to have similar response times. This feature is useful when your player
matchmaking pools span multiple geographic regions.

• Support for match sizes up to 200 players. Create matches of up to 40 players using match
rules that are customized for your game. Create matches of up to 200 players using a matching
process that uses a streamlined custom matching process to keep player wait times manageable.

• Player acceptance. Require players to opt in to a proposed match before finalizing the match
and starting a game session. Use this feature to initiate your custom acceptance workflow and
report player responses to FlexMatch before placing a new game session for the match. If not
all players accept a match, the proposed match fails and players who did accept automatically
return to the matchmaking pool.

• Player parties support. Generate matches for groups of players who want to play together on
the same team. Use FlexMatch to find additional players to fill out the match as needed.

• Expandable matching rules. Gradually relax the match requirements after a certain amount of
time has passed without finding a successful match. Rule expansion lets you decide where and
when to relax the initial match rules, so that players can get into playable games more quickly.

• Match backfill. Fill the empty player slots in an existing game session with well-matched new
players. Customize when and how to request new players, and use the same custom match rules
to find additional players.

FlexMatch with Amazon GameLift Servers hosting

FlexMatch offers the following additional features for use with games that you're hosting with
Amazon GameLift Servers. This includes games with custom game servers or Amazon GameLift
Servers Realtime.

• Game session placement. When a match is successfully made, FlexMatch automatically requests
a new game session placement from Amazon GameLift Servers. The data generated during

Key FlexMatch features Version 2

Amazon GameLift Servers FlexMatch Developer Guide

matchmaking, including player IDs and team assignments, is provided to the game server so
that it can use that information to start the game session for the match. FlexMatch then passes
back game session connection information so that game clients can join the game. To minimize
the latency experienced by players in a match, game session placement with Amazon GameLift
Servers can also use regional player latency data, if provided.

• Automatic match backfill. With this feature enabled, FlexMatch automatically sends a match
backfill request when a new game session starts with unfilled player slots. Your matchmaking
system starts the game session placement process with a minimum number of players, and then
quickly fills the remaining slots. You cannot use automatic backfill to replace players who drop
out of a matched game session.

If you use Amazon GameLift Servers FleetIQ with games that are hosted with Amazon Elastic
Compute Cloud (Amazon EC2) resources, implement FlexMatch as a standalone service.

Pricing for Amazon GameLift ServersFlexMatch

Amazon GameLift Servers charges for instances by duration of use and for bandwidth by quantity
of data transferred. If you host your games on Amazon GameLift Servers servers, FlexMatch usage
is included in the fees for Amazon GameLift Servers. If you host your games on another server
solution, FlexMatch usage is charged separately. For a complete list of charges and prices for
Amazon GameLift Servers, see Amazon GameLift Servers Pricing.

For information on calculating the cost of hosting your games or matchmaking with Amazon
GameLift Servers, see Generating Amazon GameLift Servers pricing estimates, which describes how
to use the AWS Pricing Calculator.

How Amazon GameLift ServersFlexMatch works

This topic provides an overview of the Amazon GameLift Servers FlexMatch service, including the
core components of a FlexMatch system and how they interact.

You can use FlexMatch with games that use Amazon GameLift Servers managed hosting or with
games that use another hosting solution. Games that are hosted on Amazon GameLift Servers
servers, including Amazon GameLift Servers Realtime, use the integrated Amazon GameLift Servers
service to automatically locate available game servers and start game sessions for the matches.
Games that use FlexMatch as a standalone service, including Amazon GameLift Servers FleetIQ,

Pricing for Amazon GameLift ServersFlexMatch Version 3

https://aws.amazon.com/gamelift/servers/pricing
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-calculator.html
https://calculator.aws/#/createCalculator/GameLift

Amazon GameLift Servers FlexMatch Developer Guide

must coordinate with the existing hosting system to assign hosting resources and start game
sessions for the matches.

For detailed guidance on setting up FlexMatch for your games, see Getting started with FlexMatch.

Matchmaking components

A FlexMatch matchmaking system includes some or all of the following components.

Amazon GameLift Servers components

These are Amazon GameLift Servers resources that control how the FlexMatch service performs
matchmaking for your game. They are created and maintained using Amazon GameLift Servers
tools, including the console and the AWS CLI or, alternatively, programmatically using the AWS SDK
for Amazon GameLift Servers.

• FlexMatch matchmaking configuration (also called a matchmaker) – A matchmaker is a set of
configuration values that customizes the matchmaking process for your game. A game can have
multiple matchmakers, each configured for different game modes or experiences as needed.
When your game sends a matchmaking request to FlexMatch, it specifies which matchmaker to
use.

• FlexMatch matchmaking rule set – A rule set contains all the information that is needed to
evaluate players for a potential matches and approve or reject. The rule set defines a match's
team structure, declares the player attributes that are used for evaluation, and provides rules
that describe the criteria for an acceptable match. Rules can apply to individual players, teams,
or the entire match. For example, a rule might require that every players in the match choose the
same game map, or it might require that all teams have similar player skill average.

• Amazon GameLift Servers game session queue (for FlexMatch with Amazon GameLift Servers
managed hosting only) – A game session queue locates available hosting resources and starts a
new game session for the match. The queue's configuration determines where Amazon GameLift
Servers looks for available hosting resources and how to select the best available host for a
match.

Custom components

The following components encompass functionality that's required for a complete FlexMatch
system that you must implement based on the architecture of your game.

Matchmaking components Version 4

Amazon GameLift Servers FlexMatch Developer Guide

• Player interface for matchmaking – This interface enables players to join a match. At
a minimum, it initiates a matchmaking request through the client matchmaking service
component and provides player-specific data, such as skill level and latency data, as needed for
the matchmaking process.

Note

As a best practice, communication with the FlexMatch service should be done by a
backend service, not from a game client.

• Client matchmaking service – This service fields the player join requests from the player
interface, generates matchmaking requests, and sends them to the FlexMatch service. For
requests in process, it monitors matchmaking events, tracks matchmaking status, and takes
action as needed. Depending on how you manage game session hosting in your game, this
service may return game session connection information back to players. This component uses
the AWS SDK with the Amazon GameLift Servers API to communicate with the FlexMatch service.

• Match placement service (for FlexMatch as a standalone service only) – This component works
with your existing game hosting system to locate available hosting resources and start new
game sessions for matches. The component must get the matchmaking results and extract the
information needed to start a new game session, including player IDs, attributes, and team
assignments for all players in the match.

FlexMatch matchmaking process

This topic describes the sequence of events in a basic matchmaking scenario, including the
interactions between the various your game components and the FlexMatch service.

Step 1: Request matchmaking for players

A player using your game client clicks a "Join Game" button. This action causes your client
matchmaking service to send a matchmaking request to FlexMatch. The request identifies the
FlexMatch matchmaker to use when fulfilling the request. The request also includes player
information that your custom matchmaker requires, such as skill level, play preferences, or
geographic latency data. You can make matchmaking requests for one player or multiple
players.

FlexMatch matchmaking process Version 5

Amazon GameLift Servers FlexMatch Developer Guide

Step 2: Add requests to the matchmaking pool

When FlexMatch receives the matchmaking request, it generates a matchmaking ticket and
adds it to the matchmaker's ticket pool. The ticket remains in the pool until it is matched or a
maximum time limit is reached. Your client matchmaking service is periodically notified about
matchmaking events, including changes in ticket status.

Step 3: Build a match

Your FlexMatch matchmaker continually runs the following process on all tickets in its pool:

1. The matchmaker sorts the pool by ticket age, then begins building a potential match starting
with the oldest ticket.

2. The matchmaker adds a second ticket to the potential match and evaluates the result against
your custom matchmaking rules. If the potential match passes evaluation, the ticket's players
are assigned to a team.

3. The matchmaker adds the next ticket in sequence and repeats the evaluation process. When
all player slots have been filled, the match is ready.

Matchmaking for large matches (41 to 200 players) uses a modified version of the process
described above so that it can build matches in a reasonable time frame. Instead of evaluating
each ticket individually, the matchmaker divides a pre-sorted ticket pool into potential matches,
and then balances each match based on a player characteristic that you've specified. For
example, a matchmaker might pre-sort tickets based on similar low-latency locations, and then
use post-match balancing to make sure that the teams are evenly matched by player skill.

Step 4: Report matchmaking results

When an acceptable match is found, all matched tickets are updated and a successful
matchmaking event is generated for each matched ticket.

• FlexMatch as a standalone service: Your game receives match results in a successful
matchmaking event. Result data includes a list of all matched players and their team
assignments. If your match requests contain player latency info, the results also suggest an
optimal geographic location for the match.

• FlexMatch with a Amazon GameLift Servers hosting solution: Match results are automatically
passed to a Amazon GameLift Servers queue for game session placement. The matchmaker
determines which queue is used for game session placement.

FlexMatch matchmaking process Version 6

Amazon GameLift Servers FlexMatch Developer Guide

Step 5: Start a game session for the match

After a proposed match is successfully formed, a new game session is started. Your game
servers must be able to use the matchmaking result data, including player IDs and team
assignments, when setting up a game session for the match.

• FlexMatch as a standalone service: Your custom match placement service gets match result
data from successful matchmaking events, and connects to your existing game session
placement system to locate an available hosting resource for the match. After a hosting
resource is found, the match placement service coordinates with your existing hosting system
to start a new game session and acquire connection information.

• FlexMatch with a Amazon GameLift Servers hosting solution: The game session queue
locates the best available game server for the match. Depending on how the queue is
configured, it tries to place the game session with the lowest-cost resources and where
players will experience low latency (if player latency data is provided). Once the game session
is successfully placed, the Amazon GameLift Servers service prompts the game server to start
a new game session, passing on the matchmaking results and other optional game data.

Step 6: Connect players to the match

After a game session is started, players connect to the session, claim their team assignment,
and begin gameplay.

• FlexMatch as a standalone service: Your game uses the existing game session management
system to provide connection information back to players.

• FlexMatch with a Amazon GameLift Servers hosting solution: On a successful game session
placement, FlexMatch updates all of the matched tickets with game session connection
information and a player session ID.

FlexMatch supported AWS Regions

If you're using FlexMatch with an Amazon GameLift Servers hosting solution, you can host matched
game sessions in any location where you are hosting games. See the complete list of AWS Regions
and locations for Amazon GameLift Servers hosting.

Supported AWS Regions Version 7

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-regions.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-regions.html

Amazon GameLift Servers FlexMatch Developer Guide

Getting started with FlexMatch

Use the resources in this section to help you get started with buildiing a matchmaking system with
FlexMatch.

Topics

• Set up an AWS account for FlexMatch

• Roadmap: Create a standalone matchmaking solution with FlexMatch

• Roadmap: Add matchmaking to a Amazon GameLift Servers hosting solution

Set up an AWS account for FlexMatch

Amazon GameLift Servers FlexMatch is an AWS service, and you must have an AWS account to use
this service. Creating an AWS account is free. For more information on what you can do with an
AWS account, see Getting Started with AWS.

If you are using FlexMatch with other Amazon GameLift Servers solutions, see the following topics:

• Setting up access for Amazon GameLift Servers hosting

• Setting up access for hosting with Amazon GameLift Servers FleetIQ

To set up your account for Amazon GameLift Servers

1. Get an account. Open Amazon Web Services and choose Sign In to the Console. Follow the
prompts to either create a new account or sign in to an existing one.

2. Set up an administrative user group. Open the AWS Identity and Access Management (IAM)
service console and follow the steps to create or update users or user groups. IAM manages
access to your AWS services and resources. Everyone who accesses your FlexMatch resources,
using the Amazon GameLift Servers console or by calling Amazon GameLift Servers APIs, must
be given explicit access. For detailed instructions on using the console (or the AWS CLI or other
tools) to set up user groups, see Creating IAM Users.

3. Attach a permissions policy to your user or user group. Access to AWS services and resources
are managed by attaching an IAM policy to a user or user group. Permissions policies specify a
set of AWS services and actions a user has to have access to.

Set up an account for FlexMatch Version 8

https://aws.amazon.com/getting-started/
https://docs.aws.amazon.com/gamelift/latest/developerguide/setting-up-intro.html
https://docs.aws.amazon.com/gamelift/latest/fleetiqguide/gsg-iam-permissions.html
https://aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Amazon GameLift Servers FlexMatch Developer Guide

For Amazon GameLift Servers, you must create a custom permissions policy and attach it to
each user or user group. A policy is a JSON document. Use the example below to create your
policy.

The following example illustrates an inline permissions policy with administrative permissions for
all Amazon GameLift Servers resources and actions. You can choose to limit access by specifying
only FlexMatch-specific items.

{
"Version": "2012-10-17",
"Statement":
 {
 "Effect": "Allow",
 "Action": "gamelift:*",
 "Resource": "*"
 }
}

Roadmap: Create a standalone matchmaking solution with
FlexMatch

This topic outlines the complete integration process for implementing FlexMatch as a standalone
matchmaking service. Use this process if your multiplayer game is hosted using peer-to-peer,
custom-configured on-premises hardware, or other cloud compute primitives. This process is also
for use with Amazon GameLift Servers FleetIQ, which is a hosting optimization solution for games
that are hosted on Amazon EC2. If you're hosting your game using Amazon GameLift Servers
managed hosting (including Amazon GameLift Servers Realtime), see Roadmap: Add matchmaking
to a Amazon GameLift Servers hosting solution.

Before you start integration, you must have an AWS account and set up access permissions for
the Amazon GameLift Servers service. For details, see Set up an AWS account for FlexMatch.
All essential tasks related to creating and managing Amazon GameLift Servers FlexMatch
matchmakers and rule sets can be done using the Amazon GameLift Servers console.

1. Create a FlexMatch matchmaking rule set. Your custom rule set provides complete
instructions for how to construct a match. In it, you define the structure and size of each team.
You also provide a set of requirements that a match must meet to be valid, which FlexMatch

Roadmap: Create a standalone matchmaking solution Version 9

Amazon GameLift Servers FlexMatch Developer Guide

uses to include or exclude players in a match. These requirements might apply to individual
players. You can also customize the FlexMatch algorithm in the rule set, such as to build large
matches with up to 200 players. See these topics:

• Build a FlexMatch rule set

• FlexMatch rule set examples

2. Set up notifications for matchmaking events. Use notifications to track FlexMatch
matchmaking activity, including the status of pending match requests. This is the mechanism
that's used to deliver the results of a proposed match. Since matchmaking requests are
asynchronous, you need a way to track the status of requests. Using notifications is the
preferred option for this. See these topics:

• Set up FlexMatch event notifications

• FlexMatch matchmaking events

3. Set up a FlexMatch matchmaking configuration. Also called a matchmaker, this component
receives matchmaking requests and processes them. You configure a matchmaker by
specifying a rule set, notification target, and maximum wait time. You can also enable optional
features. See these topics:

• Design a FlexMatch matchmaker

• Create a matchmaking configuration

4. Build a client matchmaking service. Create or expand a game client service with functionality
to build and send matchmaking requests to FlexMatch. To build matchmaking requests, this
component must have mechanisms to get the player data required by the matchmaking rule
set and, optionally, regional latency information. It must also have a method for creating
and assigning unique ticket IDs for each request. You might also choose to build a player
acceptance workflow that requires players to opt in to a proposed match. This service must
also monitor matchmaking events to get match results and initiate game session placement
for successful matches. See this topic:

• Add FlexMatch to a game client

5. Build a match placement service. Create a mechanism that works with your existing
game hosting system to locate available hosting resources and start new game sessions for
successful matches. This component must be able to use match results information to get an
available game server and start a new game session for the match. You might also want to

Roadmap: Create a standalone matchmaking solution Version 10

Amazon GameLift Servers FlexMatch Developer Guide

implement a workflow to make match backfill requests, which uses matchmaking to fill open
slots in matched game sessions that are already running.

Roadmap: Add matchmaking to a Amazon GameLift Servers
hosting solution

FlexMatch is available with the managed Amazon GameLift Servers hosting for custom game
servers and Amazon GameLift Servers Realtime. To add FlexMatch matchmaking to your game,
complete the following tasks.

• Set up a matchmaker. A matchmaker receives matchmaking requests from players and processes
them. It groups players based on a set of defined rules and, for each successful match, creates a
new game sessions and player sessions. Follow these steps to set up a matchmaker:

• Create a rule set. A rule set tells the matchmaker how to construct a valid match. It specifies
team structure and specifies how to evaluate players for inclusion in a match. See these topics:

• Build a FlexMatch rule set

• FlexMatch rule set examples

• Create a game session queue. A queue locates the best region for each match and creates a
new game session in that region. Use an existing queue or create a new one for matchmaking.
See this topic:

• Create a queue

• Set up notifications (optional). Since matchmaking requests are asynchronous, you need a
way to track the status of requests. Notifications is the preferred option. See this topic:

• Set up FlexMatch event notifications

• Configure a matchmaker. Once you have a rule set, queue, and notifications target, create the
configuration for your matchmaker. See these topics:

• Design a FlexMatch matchmaker

• Create a matchmaking configuration

• Integrate FlexMatch into your game client service. Add functionality to your game client
service to start new game sessions with matchmaking. Requests for matchmaking specify which
matchmaker to use and provide the necessary player data for the match. See this topic:

• Add FlexMatch to a game client

Roadmap: Add matchmaking to Amazon GameLift Servers hosting Version 11

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-creating.html

Amazon GameLift Servers FlexMatch Developer Guide

• Integrate FlexMatch into your game server. Add functionality to your game server to start
game sessions that are created through matchmaking. Requests for this type of game session
include match-specific information, including players and team assignments. The game server
needs to access and use this information when constructing a game session for the match. See
this topic:

• Add FlexMatch to an Amazon GameLift Servers-hosted game server

• Set up FlexMatch backfill (optional). Request additional player matches to fill open player slots
in existing games. You can turn on automatic backfill to have Amazon GameLift Servers manage
backfill requests. Or you can manage backfill manually by adding functionality to your game
client service or game server to initiate match backfill requests. See this topic:

• Backfill existing games with FlexMatch

Note

FlexMatch backfill is currently not available for games using Amazon GameLift
Servers Realtime.

Roadmap: Add matchmaking to Amazon GameLift Servers hosting Version 12

Amazon GameLift Servers FlexMatch Developer Guide

Buiding a Amazon GameLift ServersFlexMatch
matchmaker

This section describes the key elements of a matchmaker and how to create and customize one for
your game. This includes setting up a matchmaking configuration and a matchmaking rule set.

Creating your matchmaker is the first step in the FlexMatch roadmaps:

• Roadmap: Add matchmaking to a Amazon GameLift Servers hosting solution

• Roadmap: Create a standalone matchmaking solution with FlexMatch

A FlexMatch matchmaker does the work of building a game match. It manages the pool of
matchmaking requests received, processes and selects players to find the best possible player
groups, and forms teams for a match. For games that use Amazon GameLift Servers for hosting, it
also places and starts a game session for the match.

FlexMatch pairs the matchmaking service with a customizable rules engine. This lets you design
how to match players together based on player attributes and game modes that make sense for
your game, and rely on FlexMatch to manage the nuts and bolts of forming player groups and
placing them into games. See more details about custom matchmaking in FlexMatch rule set
examples.

After forming a match, FlexMatch provides the match data for game session placement. For games
that use Amazon GameLift Servers for hosting, FlexMatch sends a game session placement request
with matched players to the a game session queue. The queue searches for available hosting
resources on your Amazon GameLift Servers fleets and starts a new game session for the match.
For games that use another hosting solution, FlexMatch provides the match data for you to provide
to your own game session placement component.

For a detailed description of how a FlexMatch matchmaker processes the matchmaking requests it
receives, see FlexMatch matchmaking process.

Topics

• Design a FlexMatch matchmaker

• Build a FlexMatch rule set

• Create a matchmaking configuration

Version 13

Amazon GameLift Servers FlexMatch Developer Guide

• Set up FlexMatch event notifications

Design a FlexMatch matchmaker

This topic provides guidance on how to design a matchmaker that fits your game.

Topics

• Configure a basic matchmaker

• Choose a location for the matchmaker

• Add optional elements

Configure a basic matchmaker

At a minimum, a matchmaker needs the following elements:

• The rule set determines the size and scope of teams for a match and defines a set of rules to use
when evaluating players for a match. Each matchmaker is configured to use one rule set. See
Build a FlexMatch rule set and FlexMatch rule set examples.

• The notification target receives all matchmaking event notifications. You need to set up an
Amazon Simple Notification Service (SNS) topic and then add the topic ID to the matchmaker.
See more information on setting up notifications at Set up FlexMatch event notifications.

• The request timeout determines how long matchmaking requests can remain in the request pool
and be evaluated for potential matches. Once a request has timed out, it has failed to make a
match and is removed from the pool.

• When using FlexMatch with Amazon GameLift Servers managed hosting, the game session
queue finds the best available resources to host a game session for the match, and starts a new
game session. Each queue is configured with a list of locations and resource types (including
Spot or On-Demand Instances) that determine where game sessions can be placed. For more
information on queues, see Using multi-location queues.

Choose a location for the matchmaker

Decide where you want matchmaking activity to take place and create your matchmaking
configuration and rule set in that location. Amazon GameLift Servers maintains ticket pools for
your game's match requests where they are sorted and evaluated for viable matches. After making

Design a matchmaker Version 14

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-intro.html

Amazon GameLift Servers FlexMatch Developer Guide

a match, Amazon GameLift Servers sends the match details for game session placement. You can
run the matched game sessions in any location that's supported by your hosting solution.

See FlexMatch supported AWS Regions for the locations where you can create FlexMatch resources.

When choosing an AWS Region for your matchmaker, consider how location might impact
performance and how it can optimize the match experience for players. We recommend the
following best practices:

• Place a matchmaker in an location that is close to your players and your client service that
sends FlexMatch matchmaking requests. This approach decreases the latency effect on your
matchmaking request workflow and makes it more efficient.

• If your game reaches a global audience, consider creating matchmakers in multiple locations and
routing match requests to the matchmaker that is closest to the player. In addition to boosting
efficiency, this causes ticket pools to form with players who are geographically near each other,
which improves the matchmaker's ability to match players based on latency requirements.

• When using FlexMatch with Amazon GameLift Servers managed hosting, place your matchmaker
and the game session queue that it uses in the same location. This helps to minimize
communication latency between the matchmaker and queue.

Add optional elements

In addition to these minimum requirements, you can configure your matchmaker with the
following additional options. If you are using FlexMatch with a Amazon GameLift Servers hosting
solution, many features are built in. If you're using FlexMatch as a standalone matchmaking service,
you might want to build these features into your system.

Player Acceptance

You can configure a matchmaker to require that all players who are selected for a match must
accept participation. If your system requires acceptance, all players must be given the option
to accept or reject a proposed match. A match must receive acceptances from all players in the
proposed match before it can be completed. If any player rejects or fails to accept a match, the
proposed match is discarded and the tickets are handled as follows. Tickets where all players in the
ticket accepted the match are returned to the matchmaking pool for continued processing. Tickets
where at least one player rejected the match or failed to respond are put into a failure status and
are no longer processed. Player acceptance requires a time limit; all players must accept a proposed
match within the time limit for the match to continue.

Add optional elements Version 15

Amazon GameLift Servers FlexMatch Developer Guide

Backfill Mode

Use FlexMatch backfill to keep your game sessions filled with well-matched new players
throughout the life span of the game session. When handling backfill requests, FlexMatch uses
the same matchmaker as was used to match the original players. You can customize how backfill
tickets are prioritized with tickets for new matches, putting backfill tickets to either the front or
end of the line. This means that, as new players enter the matchmaking pool, they are more or less
likely to be placed in an existing game than in a newly formed game.

Manual backfill is available whether your game uses FlexMatch with managed Amazon GameLift
Servers hosting or with other hosting solutions. Manual backfill gives you the flexibility to decide
when to trigger a backfill request. For example, you may want to add new players only during
certain phases of your game or only when certain conditions exist.

Automatic backfill is available only for games that use managed Amazon GameLift Servers hosting.
With this feature enabled, if a game session starts with open player slots, Amazon GameLift
Servers begins automatically generating backfill requests for it. This feature allows you to set up
matchmaking so that new games are started with a minimum number of players and then quickly
filled as new players enter the matchmaking pool. You can turn off automatic backfill at any time
during the game session life span.

Game Properties

For games that use FlexMatch with Amazon GameLift Servers managed hosting, you can provide
additional information to be passed to a game server whenever a new game session is requested.
This can be a useful way to pass game mode configurations that are needed to start a game
session for the type of matches being created. All game sessions for matches that are created by a
matchmaker receive the same set of game properties. You can vary game property information by
creating different matchmaking configurations.

Reserved Player Slots

You can designate that certain player slots in each match be reserved and filled at a later time. This
is done by configuring the "additional player count" property of a matchmaking configuration.

Custom Event Data

Use this property to include a set of custom information in all matchmaking-related events for the
matchmaker. This feature can be useful for tracking certain activity unique to your game, including
tracking performance of your matchmakers.

Add optional elements Version 16

Amazon GameLift Servers FlexMatch Developer Guide

Build a FlexMatch rule set

Every FlexMatch matchmaker must have a rule set. The rule set determines the two key elements
of a match: your game's team structure and size, and how to group players together for the best
possible match.

For example, a rule set might describe a match like this: Create a match with two teams of five
players each, one team is the defenders and the other team the invaders. A team can have novice
and experienced players, but the average skill of the two teams must be within 10 points of each
other. If no match is made after 30 seconds, gradually relax the skill requirements.

The topics in this section describe how design and build a matchmaking rule set. When creating a
rule set, you can use either the Amazon GameLift Servers console or the AWS CLI.

Topics

• Design a FlexMatch rule set

• Design a FlexMatch large-match rule set

• Tutorial: Create a matchmaking rule set

• FlexMatch rule set examples

Design a FlexMatch rule set

This topic covers the basic structure of a rule set and how to build a rule set for small matches up
to 40 players. A matchmaking rule set does two things: lay out a match's team structure and size
and tell the matchmaker how to choose players to form the best possible match.

But your matchmaking rule set can do more. For example, you can:

• Optimize the matchmaking algorithm for your game.

• Set up minimum player latency requirements to protect the quality of gameplay.

• Gradually relax team requirements and match rules over time so all active players can find an
acceptable match when they want one.

• Define handling for group matchmaking requests using party aggregation.

• Process large matches of 40 or more players. For more information about building large
matches, see Design a FlexMatch large-match rule set.

Build a rule set Version 17

Amazon GameLift Servers FlexMatch Developer Guide

When building a matchmaking rule set, consider the following optional and required tasks:

• Describe the rule set (required)

• Customize the match algorithm

• Declare player attributes

• Define match teams

• Set rules for player matching

• Allow requirements to relax over time

You can build your rule set using the Amazon GameLift Servers console or the
CreateMatchmakingRuleSet operation.

Describe the rule set (required)

Provide details for the rule set.

• name (optional) – A descriptive label for your own use. This value isn't associated with the rule
set name that you specify when creating the rule set with Amazon GameLift Servers.

• ruleLanguageVersion – The version of the property expression language used to create FlexMatch
rules. The value must be 1.0.

Customize the match algorithm

FlexMatch optimizes the default algorithm for most games to get players into acceptable matches
with minimal wait time. You can customize the algorithm and adjust matchmaking for your game.

The following is the default FlexMatch matchmaking algorithm:

1. FlexMatch places all open matchmaking tickets and backfill tickets in a ticket pool.

2. FlexMatch randomly groups tickets in the pool into one or more batches. As the ticket pool gets
larger, FlexMatch forms additional batches to maintain optimal batch size.

3. FlexMatch sorts the tickets by age, within each batch.

4. FlexMatch builds a match based on the oldest ticket of each batch.

To customize the match algorithm, add an algorithm component to your rule set schema. See
FlexMatch rule set schema for the complete reference information.

Design a rule set Version 18

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateMatchmakingRuleSet.html

Amazon GameLift Servers FlexMatch Developer Guide

Use the following optional customizations to impact different stages of your matchmaking process.

• Add pre-batch sorting

• Form batches based on batchDistance attributes

• Prioritize backfill tickets

• Favor older tickets with expansions

Add pre-batch sorting

You can sort the ticket pool before forming batches. This type of customization is most effective
with games with large tickets pools. Pre-batch sorting can help speed up the matchmaking process
and increase player uniformity in defined characteristics.

Define Pre-batch sorting methods using the algorithm property batchingPreference. The
default setting is random.

Options for customizing pre-batch sorting include:

• Sort by player attributes. Provide a list of player attributes to pre-sort the ticket pool.

To sort by player attributes, set batchingPreference to sorted, and define your list of
player attributes in sortByAttributes. To use an attribute, first declare the attribute in the
playerAttributes component of the rule set.

In the following example, FlexMatch sorts the ticket pool based on players' preferred game map
and then by player skill. The resulting batches are more likely to contain similarly skilled players
who want to use the same map.

"algorithm": {
 "batchingPreference": "sorted",
 "sortByAttributes": ["map", "player_skill"],
 "strategy": "exhaustiveSearch"
},

• Sort by latency. Create matches with the lowest available latency or quickly create matches with
acceptable latency. This customization is useful for rule sets forming large matches of more than
40 players.

Set the algorithm property strategy to balanced. The balanced strategy limits the available
types of rule statements. For more information, see Design a FlexMatch large-match rule set.

Design a rule set Version 19

https://docs.aws.amazon.com/gamelift/latest/flexmatchguide/match-rules-reference-ruletype.html#match-rules-reference-ruletype-batchdistance

Amazon GameLift Servers FlexMatch Developer Guide

FlexMatch sorts tickets based on players' reported latency data in one of the following ways:

• Lowest latency locations. The ticket pool is pre-sorted by the locations where players report
their lowest latency values. FlexMatch then batches tickets with low latency in the same
locations, creating a better game play experience. It also reduces the number of tickets in each
batch, so matchmaking can take longer. To use this customization, set batchingPreference
to fastestRegion, as shown in the following example.

"algorithm": {
 "batchingPreference": "fastestRegion",
 "strategy": "balanced"
},

• Acceptable latency matches quickly. The ticket pool is pre-sorted by locations where players
report acceptable latency value. This forms fewer batches containing more tickets. With more
tickets in each batch, finding acceptable matches is faster. To use this customization, set
the property batchingPreference to largestPopulation, as shown in the following
example.

"algorithm": {
 "batchingPreference": "largestPopulation",
 "strategy": "balanced"
},

Note

The default value for the balanced strategy is largestPopulation.

Prioritize backfill tickets

If your game implements auto-backfill or manual backfill, you can customize how FlexMatch
processes matchmaking tickets based on request type. The request type can be a new match or
backfill request. By default, FlexMatch treats both types of requests the same.

Backfill prioritization impacts how FlexMatch handles tickets after it batches them. Backfill
prioritization requires rule sets to use the exhaustive search strategy.

FlexMatch doesn't match multiple backfill tickets together.

Design a rule set Version 20

Amazon GameLift Servers FlexMatch Developer Guide

To change prioritization for backfill tickets, set the property backfillPriority.

• Match backfill tickets first. This option tries to match backfill tickets before creating new
matches. This means that incoming players have a higher chance of joining an existing game.

It's best to use this if your game uses auto-backfill. Auto-backfill is often used in games with
short game sessions and high player turnaround. Auto-backfill helps these games form minimum
viable matches and get them started while FlexMatch searches for more players to fill open slots.

Set the backfillPriority to high.

"algorithm": {
 "backfillPriority": "high",
 "strategy": "exhaustiveSearch"
},

• Match backfill tickets last. This option ignores backfill tickets until it evaluates all other tickets.
This means that FlexMatch backfills incoming players into existing games when it can't match
them into new games.

This option is useful when you want to use backfill as a last-chance option to get players into a
game, such as when there aren't enough players to form a new match.

Set backfillPriority to low.

"algorithm": {
 "backfillPriority": "low",
 "strategy": "exhaustiveSearch"
},

Favor older tickets with expansions

Expansion rules relax match criteria when matches are difficult to complete. Amazon GameLift
Servers applies expansion rules when tickets in a partially completed match reach a certain age.
The creation timestamps of the tickets determine when Amazon GameLift Servers applies the
rules; by default, FlexMatch tracks the timestamp of the most recently matched ticket.

To change when FlexMatch applies expansion rules, set the property expansionAgeSelection as
follows:

Design a rule set Version 21

Amazon GameLift Servers FlexMatch Developer Guide

• Expand based on newest tickets. This option applies expansion rules based on the newest
ticket added to the potential match. Each time FlexMatch matches a new ticket, the time
clock is reset. With this option, resulting matches tend to be higher quality but take longer to
match; match requests might time out before completing if they take too long to match. Set
expansionAgeSelection to newest. newest is default.

• Expand based on oldest tickets. This option applies expansion rules based on the oldest ticket
in the potential match. With this option, FlexMatch applies expansions faster, which improves
wait times for the earliest matched players, but lowers the match quality for all players. Set
expansionAgeSelection to oldest.

"algorithm": {
 "expansionAgeSelection": "oldest",
 "strategy": "exhaustiveSearch"
},

Declare player attributes

In this section, list individual player attributes to include in matchmaking requests. There are two
reasons you might declare player attributes in a rule set:

• When the rule set contains rules that rely on player attributes.

• When you want to pass a player attribute to the game session through the match request. For
example, you might want to pass player character choices to the game session before each player
connects.

When declaring a player attribute, include the following information:

• name (required) – This value must be unique to the rule set.

• type (required) – The data type of the attribute value. Valid data types are number, string, string
list, or string map.

• default (optional) – Enter a default value to use if a matchmaking request doesn't provide an
attribute value. If no default is declared and a request doesn't include a value, FlexMatch can't
fulfill the request.

Design a rule set Version 22

Amazon GameLift Servers FlexMatch Developer Guide

Define match teams

Describe the structure and size of the teams for a match. Each match must have at least one team,
and you can define as many teams as you want. Your teams can have the same number of players
or be asymmetric. For example, you might define a single-player monster team and a hunters team
with 10 players.

FlexMatch processes match requests as either small match or large match, based on how the rule
set defines team sizes. Potential matches of up to 40 players are small matches, matches with
more than 40 players are large matches. To determine a rule set's potential match size, add up the
maxPlayer settings for all teams defined in the rule set.

• name (required) – Assign each team a unique name. You use this name in rules and expansions,
and FlexMatch references for the matchmaking data in a game session.

• maxPlayers (required) – Specify the maximum number of players to assign to the team.

• minPlayers (required) – Specify the minimum number of players to assign to the team.

• quantity (optional) – Specify the number of team to make with this definition. When FlexMatch
creates a match, it gives these teams the provided name with an appended number. For example
Red-Team1, Red-Team2, and Red-Team3.

FlexMatch attempts to fill teams to the maximum player size but does create teams with fewer
players. If you want all teams in the match to be equally sized, you can create a rule for that. See
the FlexMatch rule set examples topic for an example of an EqualTeamSizes rule.

Set rules for player matching

Create a set of rule statements that evaluate players for acceptance in to a match. Rules might set
requirements that apply to individual players, teams, or an entire match. When Amazon GameLift
Servers processes a match request, it starts with the oldest player in the pool of available players
and builds a match around that player. For detailed help on creating FlexMatch rules, see FlexMatch
rule types.

• name (required) – A meaningful name that uniquely identifies the rule within a rule set. Rule
names are also referenced in event logs and metrics that track activity related to this rule.

• description (optional) – Use this element to attach a free-form text description.

Design a rule set Version 23

Amazon GameLift Servers FlexMatch Developer Guide

• type (required) – The type element identifies the operation to use when processing the rule. Each
rule type requires a set of additional properties. See a list of valid rule types and properties in
FlexMatch rules language.

• Rule type property (may be required) – Depending on the type of rule defined, you may need to
set certain rule properties. Learn more about properties and how to use the FlexMatch property
expression language in FlexMatch rules language.

Allow requirements to relax over time

Expansions allow you to relax rule criteria over time when FlexMatch can't find a match. This
feature ensures that FlexMatch makes a best available when it can't make a perfect match. By
relaxing your rules with an expansion, you gradually expand the pool of players that are an
acceptable match.

Expansions start when the age of the newest ticket in the incomplete match matches an expansion
wait time. When FlexMatch adds a new ticket to the match, the expansion wait time clock may be
reset. You can customize how expansions start in the algorithm section of the rule set.

Here's an example of an expansion that gradually increases the minimum skill level required for the
match. The rule set uses a distance rule statement, named SkillDelta to require that all players in
a match be within 5 skill levels of each other. If no new matches are made for fifteen seconds, this
expansion looks for a skill level difference of 10, and then ten seconds later looks for a difference
of 20.

"expansions": [{
 "target": "rules[SkillDelta].maxDistance",
 "steps": [{
 "waitTimeSeconds": 15,
 "value": 10
 }, {
 "waitTimeSeconds": 25,
 "value": 20
 }]
 }]

With matchmakers that have automatic backfill enabled, don't relax your player count
requirements too quickly. It takes a few seconds for the new game session to start up and begin
automatic backfill. A better approach is to start your expansion after automatic backfill tends

Design a rule set Version 24

Amazon GameLift Servers FlexMatch Developer Guide

to kicks in for your games. Expansion timing varies depending on your team composition, so do
testing to find the best expansion strategy for your game.

Design a FlexMatch large-match rule set

If your rule set creates matches that allow 41 to 200 players, you need to make some adjustments
to your rule set configuration. These adjustments optimize the match algorithm so that it can build
viable large matches while also keeping player wait times short. As a result, large match rule sets
replace time-consuming custom rules with standard solutions that are optimized for common
matchmaking priorities.

Here's how to determine if you need to optimize your rule set for large matches:

1. For each team defined in your rule set, get the value of maxPlayer,

2. Add up all the maxPlayer values. If the total exceeds 40, you've got a large match rule set.

To optimize your rule set for large matches, make the adjustments described as follows. See the
schema for a large match rule set in Rule set schema for large matches and rule set examples in
Example: Create a large match.

Customize match algorithm for large matches

Add an algorithm component to the rule set, if one doesn't already exist. Set the following
properties.

• strategy (required) – Set the strategy property to “balanced”. This setting triggers FlexMatch
to do additional post-match checks to find the optimal team balance based on a specified player
attribute, which is defined in the balancedAttribute property. The balanced strategy replaces
the need for custom rules to build evenly matched teams.

• balancedAttribute (required) – Identify a player attribute to use when balancing the teams
in a match. This attribute must have a numerical data type (double or integer). For example, if
you choose to balance on player skill, FlexMatch tries to assign players so that all teams have
aggregate skill levels that are as evenly matched as possible. The balancing attribute must be
declared in the rule set's player attributes.

• batchingPreference (optional) – Choose how much emphasis you want to put on forming
the lowest latency matches possible for your players. This setting affects how match tickets are
sorted prior to building matches. Options include:

Design a large-match rule set Version 25

Amazon GameLift Servers FlexMatch Developer Guide

• Largest population. FlexMatch allows matches using all tickets in the pool that have acceptable
latency values in at least one location in common. As a result, the potential ticket pool tends
to be large, which makes it easier to fill matches more quickly. Players might be placed
in games with acceptable, but not always optimal, latency. If the batchingPreference
property isn't set, this is the default behavior when strategy is set to "balanced".

• Fastest location. FlexMatch pre-sorts all tickets in the pool based on where they report the
lowest latency values. As a result, matches tend to be formed with players that report low
latency in the same locations. At the same time, the potential ticket pool for each match is
smaller, which can increase the time needed to fill a match. In addition, because a higher
priority is placed on latency, players in matches may vary more widely with regard to the
balancing attribute.

The following example configures the match algorithm to behave as follows: (1) Pre-sort the ticket
pool to group tickets by location where they have acceptable latency values; (2) Form batches of
sorted tickets for matching; (3) Create matches with tickets in a batch and balance the teams to
even out the average player skill.

"algorithm": {
 "strategy": "balanced",
 "balancedAttribute": "player_skill",
 "batchingPreference": "largestPopulation"
},

Declare player attributes

Make sure that you declare the player attribute that is used as a balancing attribute in the rule set
algorithm. This attribute should be included for each player in a matchmaking request. You can
provide a default value for the player attribute, but attribute balancing works best when player-
specific values are provided.

Define teams

The process of defining team size and structure is the same as with small matches, but the way
FlexMatch fills the teams is different. This affects how matches are likely to look like when only
partially filled. You may want to adjust your minimum team sizes in response.

Design a large-match rule set Version 26

Amazon GameLift Servers FlexMatch Developer Guide

FlexMatch uses the following rules when assigning a player to a team. First: look for teams that
haven't yet reached their minimum player requirement. Second: of those teams, find the one with
the most open slots.

For matches that define multiple equally sized teams, players are added sequentially to each team
until full. As a result, teams in a match always have a nearly equal number of players, even when
the match is not full. There is currently no way to force equally sized teams in large matches.
For matches with asymmetrically sized teams, the process is a bit more complex. In this scenario,
players are initially assigned to the largest teams that have the most open slots. As the number of
open slots become more evenly distributed across all teams, players are slotted into the smaller
teams.

For example, let's say you have a rule set with three teams. The Red and Blue teams are both set
to maxPlayers=10, minPlayers=5. The Green team is set to maxPlayers=3, minPlayers=2.
Here's the fill sequence:

1. No team has reached minPlayers. Red and Blue teams have 10 open slots, while Green has
3. The first 10 players are assigned (5 each) to the Red and Blue teams. Both teams have now
reached minPlayers.

2. Green team has not yet reached minPlayers. The next 2 players are assigned to the Green
team. The Green team has now reached minPlayers.

3. With all teams at minPlayers, additional players are now assigned based on the number of
open slots. The Red and Blue teams each have 5 open slots, while the Green team has 1. The
next 8 players are assigned (4 each) to the Red and Blue teams. All teams now have 1 open slot.

4. The remaining 3 player slots are assigned (1 each) to teams in no particular order.

Set rules for large matches

Matchmaking for large matches relies primarily on the balancing strategy and latency batching
optimizations. Most custom rules are not available. However, you can incorporate the following
types of rules:

• Rule that sets a hard limit on player latency. Use the latency rule type with the property
maxLatency. See Latency rule reference. Here's an example that sets maximum player latency to
200 milliseconds:

"rules": [{
 "name": "player-latency",

Design a large-match rule set Version 27

Amazon GameLift Servers FlexMatch Developer Guide

 "type": "latency",
 "maxLatency": 200
 }],

• Rule to batch players based on closeness in a specified player attribute. This is different than
defining a balancing attribute as part of the large-match algorithm, which focuses on building
evenly matched teams. This rule batches matchmaking tickets based on similarity in the specified
attribute values, such as beginner or expert skill, which tends to lead to matches players who
are closely aligned on the specified attribute. Use the batchDistance rule type, identify a
numerically-based attribute, and specify the widest range to allow. See Batch distance rule
reference. Here's an example that calls for a match's players to be within one skill level of each
other:

"rules": [{
 "name": "batch-skill",
 "type": "batchDistance",
 "batchAttribute": "skill",
 "maxDistance": 1

Relax large match requirements

As with small matches, you can use expansions to relax match requirements over time when no
valid matches are possible. With large matches, you have the option to relax either the latency
rules or the team player counts.

If you're using automatic match backfill for large matches, avoid relaxing your team player counts
too quickly. FlexMatch starts generating backfill requests only after a game session starts, which
may not happen for several seconds after a match is created. During that time, FlexMatch can
create multiple partially filled new game sessions, especially when the player count rules are
lowered. As a result, you end up with more game sessions than you need and players spread too
thinly across them. Best practice is to give the first step in your player count expansion a longer
wait time, long enough for your game session to start. Since backfill requests are given higher
priority with large matches, incoming players will be slotted into existing games before new game
are started. You may need to experiment to find the ideal wait time for your game.

Here's an example that gradually lowers the Yellow team's player count, with a longer initial wait
time. Keep in mind that wait times in rule set expansions are absolute, not compounded. So the
first expansion occurs at five seconds, and the second expansion occurs five seconds later, at ten
seconds.

Design a large-match rule set Version 28

Amazon GameLift Servers FlexMatch Developer Guide

"expansions": [{
 "target": "teams[Yellow].minPlayers",
 "steps": [{
 "waitTimeSeconds": 5,
 "value": 8
 }, {
 "waitTimeSeconds": 10,
 "value": 5
 }]
 }]

Tutorial: Create a matchmaking rule set

Before you create a matchmaking rule set for your Amazon GameLift Servers FlexMatch
matchmaker, we recommend checking the rule set syntax. After you create a rule set using the
Amazon GameLift Servers console or the AWS Command Line Interface (AWS CLI), you can't change
it.

Note that there is a service quota for the maximum number of rule sets that you can have in an
AWS Region, so it's a good idea to delete unused rule sets.

Console

Create a rule set

1. Open the Amazon GameLift Servers console at https://console.aws.amazon.com/gamelift/.

2. Switch to the AWS Region where you want to create your rule set. Define rule sets in the
same Region as the matchmaking configuration that uses them.

3. In the navigation pane, choose FlexMatch, Matchmaking rule sets.

4. On the Matchmaking rule sets page, choose Create rule set.

5. On the Create matchmaking rule set page, do the following:

a. Under Rule set settings, for Name, enter a unique descriptive name that you can use
to identify it in a list or in events and metrics tables.

b. For Rule set, enter your rule set in JSON. For information about designing a rule set,
see Design a FlexMatch rule set. You can also use one of the example rule sets from
FlexMatch rule set examples.

Tutorial: Create a rule set Version 29

https://console.aws.amazon.com/servicequotas/home/services/gamelift/quotas/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Servers FlexMatch Developer Guide

c. Choose Validate to verify that the syntax of your rule set is correct. You can't edit rule
sets after they're created, so it's a good idea to validate them first.

d. (Optional) Under Tags, add tags to help you manage and track your AWS resources.

6. Choose Create. If creation is successful, you can use the rule set with a matchmaker.

AWS CLI

Create a rule set

Open a command line window and use the command create-matchmaking-rule-set.

This example command creates a simple matchmaking rule set that sets up a single team. Be
sure to create the rule set in the same AWS Region as the matchmaking configurations that uses
it.

aws gamelift create-matchmaking-rule-set \
 --name "SampleRuleSet123" \
 --rule-set-body '{"name": "aliens_vs_cowboys", "ruleLanguageVersion": "1.0",
 "teams": [{"name": "cowboys", "maxPlayers": 8, "minPlayers": 4}]}'

If the creation request is successful, Amazon GameLift Servers returns a MatchmakingRuleSet
object that includes the settings that you specified. A matchmaker can now use the new rule
set.

Console

Delete a rule set

1. Open the Amazon GameLift Servers console at https://console.aws.amazon.com/gamelift/.

2. Switch to the Region that you created the rule set in.

3. In the navigation pane, choose FlexMatch, Matchmaking rule sets.

4. On the Matchmaking rule sets page, select the rule set that you want to delete, and then
choose Delete.

5. In the Delete rule set dialog box, choose Delete to confirm deletion.

Tutorial: Create a rule set Version 30

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-matchmaking-rule-set.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingRuleSet.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Servers FlexMatch Developer Guide

Note

If a matchmaking configuration is using the rule set, Amazon GameLift Servers
displays an error message (Can't delete rule set). If this occurs, change the
matchmaking configuration to use a different rule set, then try again. To find out
which matchmaking configurations are using a rule set, choose the name of a rule
set to view its details page.

AWS CLI

Delete a rule set

Open a command line window and use the command delete-matchmaking-rule-set to delete a
matchmaking rule set.

If a matchmaking configuration is using the rule set, Amazon GameLift Servers returns an
error message. If this occurs, change the matchmaking configuration to use a different rule set,
then try again. To get a list of which matchmaking configurations are using a rule set, use the
command describe-matchmaking-configurations and specify the rule set name.

This example command checks for the matchmaking rule set's usage and then deletes the rule
set.

aws gamelift describe-matchmaking-rule-sets \
 --rule-set-name "SampleRuleSet123" \
 --limit 10

aws gamelift delete-matchmaking-rule-set \
 --name "SampleRuleSet123"

FlexMatch rule set examples

FlexMatch rule sets can cover a variety of matchmaking scenarios. The following examples conform
to the FlexMatch configuration structure and property expression language. Copy these rule sets in
their entirety or choose components as needed.

For more information on using FlexMatch rules and rule sets, see the following topics:

Rule set examples Version 31

https://docs.aws.amazon.com/cli/latest/reference/gamelift/delete-matchmaking-rule-set.html
https://docs.aws.amazon.com/cli/latest/reference/gamelift/describe-matchmaking-configurations.html

Amazon GameLift Servers FlexMatch Developer Guide

Note

When evaluating a matchmaking ticket that includes multiple players, all players in the
request must meet the match requirements.

Topics

• Example: Create two teams with evenly matched players

• Example: Create uneven teams (Hunters vs Monster)

• Example: Set team-level requirements and latency limits

• Example: Use explicit sorting to find best matches

• Example: Find intersections across multiple player attributes

• Example: Compare attributes across all players

• Example: Create a large match

• Example: Create a multi-team large match

• Example: Create a large match with players with similar attributes

• Example: Use a compound rule to create a match with players with similar attributes or similar
selections

• Example: Create a rule that uses a player's block list

Example: Create two teams with evenly matched players

This example illustrates how to set up two equally matched teams of players with the following
instructions.

• Create two teams of players.

• Include between four and eight players in each team.

• Final teams must have the same number of players.

• Include a player’s skill level (if not provided, default to 10).

• Choose players based on whether their skill level is similar to other players. Ensure that both
teams have an average player skill within 10 points of each other.

• If the match is not filled quickly, relax the player skill requirement to complete a match in
reasonable time.

• After 5 seconds, expand the search to allow teams with average player skills within 50 points.

Rule set examples Version 32

Amazon GameLift Servers FlexMatch Developer Guide

• After 15 seconds, expand the search to allow teams with average player skills within 100
points.

Notes on using this rule set:

• This example allows for teams to be any size between four and eight players (although they
must be the same size). For teams with a range of valid sizes, the matchmaker makes a best-
effort attempt to match the maximum number of allowed players.

• The FairTeamSkill rule ensures that teams are evenly matched based on player skill. To
evaluate this rule for each new prospective player, FlexMatch tentatively adds the player to a
team and calculates the averages. If rule fails, the prospective player is not added to the match.

• Since both teams have identical structures, you could opt to create just one team definition and
set the team quantity to "2". In this scenario, if you named the team "aliens", then your teams
would be assigned the names "aliens_1" and "aliens_2".

{
 "name": "aliens_vs_cowboys",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [{
 "name": "skill",
 "type": "number",
 "default": 10
 }],
 "teams": [{
 "name": "cowboys",
 "maxPlayers": 8,
 "minPlayers": 4
 }, {
 "name": "aliens",
 "maxPlayers": 8,
 "minPlayers": 4
 }],
 "rules": [{
 "name": "FairTeamSkill",
 "description": "The average skill of players in each team is within 10 points
 from the average skill of all players in the match",
 "type": "distance",
 // get skill values for players in each team and average separately to produce
 list of two numbers

Rule set examples Version 33

Amazon GameLift Servers FlexMatch Developer Guide

 "measurements": ["avg(teams[*].players.attributes[skill])"],
 // get skill values for players in each team, flatten into a single list, and
 average to produce an overall average
 "referenceValue": "avg(flatten(teams[*].players.attributes[skill]))",
 "maxDistance": 10 // minDistance would achieve the opposite result
 }, {
 "name": "EqualTeamSizes",
 "description": "Only launch a game when the number of players in each team
 matches, e.g. 4v4, 5v5, 6v6, 7v7, 8v8",
 "type": "comparison",
 "measurements": ["count(teams[cowboys].players)"],
 "referenceValue": "count(teams[aliens].players)",
 "operation": "=" // other operations: !=, <, <=, >, >=
 }],
 "expansions": [{
 "target": "rules[FairTeamSkill].maxDistance",
 "steps": [{
 "waitTimeSeconds": 5,
 "value": 50
 }, {
 "waitTimeSeconds": 15,
 "value": 100
 }]
 }]
}

Example: Create uneven teams (Hunters vs Monster)

This example describes a game mode in which a group of players hunt a single monster. People
choose either a hunter or a monster role. Hunters specify the minimum skill level for the monster
that they want to face. The minimum size of the hunter team can be relaxed over time to complete
the match. This scenario sets out the following instructions:

• Create one team of exactly five hunters.

• Create a separate team of exactly one monster.

• Include the following player attributes:

• A player’s skill level (if not provided, default to 10).

• A player’s preferred monster skill level (if not provided, default to 10).

• Whether the player wants to be the monster (if not provided, default to 0 or false).

• Choose a player to be the monster based on the following criteria:

Rule set examples Version 34

Amazon GameLift Servers FlexMatch Developer Guide

• Player must request the monster role.

• Player must meet or exceed the highest skill level preferred by the players who are already
added to the hunter team.

• Choose players for the hunter team based on the following criteria:

• Players who request a monster role cannot join the hunter team.

• If the monster role is already filled, player must want a monster skill level that is lower than
the skill of the proposed monster.

• If a match is not filled quickly, relax the hunter team's minimum size as follows:

• After 30 seconds, allow a game to start with only four players in the hunter team.

• After 60 seconds, allow a game to start with only three people in the hunter team.

Notes on using this rule set:

• By using two separate teams for hunters and monster, you can evaluate membership based on
different sets of criteria.

{
 "name": "players_vs_monster_5_vs_1",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [{
 "name": "skill",
 "type": "number",
 "default": 10
 },{
 "name": "desiredSkillOfMonster",
 "type": "number",
 "default": 10
 },{
 "name": "wantsToBeMonster",
 "type": "number",
 "default": 0
 }],
 "teams": [{
 "name": "players",
 "maxPlayers": 5,
 "minPlayers": 5
 }, {
 "name": "monster",

Rule set examples Version 35

Amazon GameLift Servers FlexMatch Developer Guide

 "maxPlayers": 1,
 "minPlayers": 1
 }],
 "rules": [{
 "name": "MonsterSelection",
 "description": "Only users that request playing as monster are assigned to the
 monster team",
 "type": "comparison",
 "measurements": ["teams[monster].players.attributes[wantsToBeMonster]"],
 "referenceValue": 1,
 "operation": "="
 },{
 "name": "PlayerSelection",
 "description": "Do not place people who want to be monsters in the players
 team",
 "type": "comparison",
 "measurements": ["teams[players].players.attributes[wantsToBeMonster]"],
 "referenceValue": 0,
 "operation": "="
 },{
 "name": "MonsterSkill",
 "description": "Monsters must meet the skill requested by all players",
 "type": "comparison",
 "measurements": ["avg(teams[monster].players.attributes[skill])"],
 "referenceValue":
 "max(teams[players].players.attributes[desiredSkillOfMonster])",
 "operation": ">="
 }],
 "expansions": [{
 "target": "teams[players].minPlayers",
 "steps": [{
 "waitTimeSeconds": 30,
 "value": 4
 },{
 "waitTimeSeconds": 60,
 "value": 3
 }]
 }]
}

Rule set examples Version 36

Amazon GameLift Servers FlexMatch Developer Guide

Example: Set team-level requirements and latency limits

This example illustrates how to set up player teams and apply a set of rules to each team instead
of each individual player. It uses a single definition to create three equally matched teams. It also
establishes a maximum latency for all players. Latency maximums can be relaxed over time to
complete the match. This example sets out the following instructions:

• Create three teams of players.

• Include between three and five players in each team.

• Final teams must contain the same or nearly the same number of players (within one).

• Include the following player attributes:

• A player’s skill level (if not provided, default to 10).

• A player’s character role (if not provided, default to “peasant”).

• Choose players based on whether their skill level is similar to other players in the match.

• Ensure that each team has an average player skill within 10 points of each other.

• Limit teams to the following number of “medic” characters:

• An entire match can have a maximum of five medics.

• Only match players who report latency of 50 milliseconds or less.

• If a match is not filled quickly, relax the player latency requirement as follows:

• After 10 seconds, allow player latency values up to 100 ms.

• After 20 seconds, allow player latency values up to 150 ms.

Notes on using this rule set:

• The rule set ensures that teams are evenly matched based on player skill. To evaluate the
FairTeamSkill rule, FlexMatch tentatively adds the prospective player to a team and
calculates the average skill of players in the team. It then compares it against the average skill of
players in both teams. If rule fails, the prospective player is not added to the match.

• The team- and match-level requirements (total number of medics) are achieved through a
collection rule. This rule type takes a list of character attributes for all players and checks against
the maximum counts. Use flatten to create a list for all players in all teams.

• When evaluating based on latency, note the following:

• Latency data is provided in the matchmaking request as part of the Player object. It is not a
player attribute, so it does not need to be listed as one.

Rule set examples Version 37

Amazon GameLift Servers FlexMatch Developer Guide

• The matchmaker evaluates latency by region. Any region with a latency higher than the
maximum is ignored. To be accepted for a match, a player must have at least one region with a
latency below the maximum.

• If a matchmaking request omits latency data one or more players, the request is rejected for all
matches.

{
 "name": "three_team_game",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [{
 "name": "skill",
 "type": "number",
 "default": 10
 },{
 "name": "character",
 "type": "string_list",
 "default": ["peasant"]
 }],
 "teams": [{
 "name": "trio",
 "minPlayers": 3,
 "maxPlayers": 5,
 "quantity": 3
 }],
 "rules": [{
 "name": "FairTeamSkill",
 "description": "The average skill of players in each team is within 10 points
 from the average skill of players in the match",
 "type": "distance",
 // get players for each team, and average separately to produce list of 3
 "measurements": ["avg(teams[*].players.attributes[skill])"],
 // get players for each team, flatten into a single list, and average to
 produce overall average
 "referenceValue": "avg(flatten(teams[*].players.attributes[skill]))",
 "maxDistance": 10 // minDistance would achieve the opposite result
 }, {
 "name": "CloseTeamSizes",
 "description": "Only launch a game when the team sizes are within 1 of each
 other. e.g. 3 v 3 v 4 is okay, but not 3 v 5 v 5",
 "type": "distance",
 "measurements": ["max(count(teams[*].players))"],

Rule set examples Version 38

Amazon GameLift Servers FlexMatch Developer Guide

 "referenceValue": "min(count(teams[*].players))",
 "maxDistance": 1
 }, {
 "name": "OverallMedicLimit",
 "description": "Don't allow more than 5 medics in the game",
 "type": "collection",
 // This is similar to above, but the flatten flattens everything into a single
 // list of characters in the game.
 "measurements": ["flatten(teams[*].players.attributes[character])"],
 "operation": "contains",
 "referenceValue": "medic",
 "maxCount": 5
 }, {
 "name": "FastConnection",
 "description": "Prefer matches with fast player connections first",
 "type": "latency",
 "maxLatency": 50
 }],
 "expansions": [{
 "target": "rules[FastConnection].maxLatency",
 "steps": [{
 "waitTimeSeconds": 10,
 "value": 100
 }, {
 "waitTimeSeconds": 20,
 "value": 150
 }]
 }]
}

Example: Use explicit sorting to find best matches

This example sets up a simple match with two teams of three players. It illustrates how to use
explicit sorting rules to help find the best possible matches as quickly as possible. These rules sort
all active matchmaking tickets to create the best matches based on certain key requirements. This
example is implemented with the following instructions:

• Create two teams of players.

• Include exactly three players in each team.

• Include the following player attributes:

• Experience level (if not provided, default to 50).

Rule set examples Version 39

Amazon GameLift Servers FlexMatch Developer Guide

• Preferred game modes (can list multiple values) (if not provided, default to “coop” and
“deathmatch”).

• Preferred game maps, including map name and preference weighting (if not provided, default
to "defaultMap" with a weight of 100).

• Set up presorting:

• Sort players based on their preference for the same game map as the anchor player. Players
can have multiple favorite game maps, so this example uses a preference value.

• Sort players based on how closely their experience level matches the anchor player. With this
sort, all players in all teams will have experience levels that are as close as possible.

• All players across all teams must have selected at least one game mode in common.

• All players across all teams must have selected at least one game map in common.

Notes on using this rule set:

• The game map sort uses an absolute sort that compares the mapPreference attribute value.
Because it is first in the rule set, this sort is performed first.

• The experience sort uses a distance sort to compare a prospective player's skill level with the
anchor player's skill.

• Sorts are performed in the order they are listed in a rule set. In this scenario, players are sorted
by game map preference, and then by experience level.

{
 "name": "multi_map_game",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [{
 "name": "experience",
 "type": "number",
 "default": 50
 }, {
 "name": "gameMode",
 "type": "string_list",
 "default": ["deathmatch", "coop"]
 }, {
 "name": "mapPreference",
 "type": "string_number_map",
 "default": { "defaultMap": 100 }
 }, {

Rule set examples Version 40

Amazon GameLift Servers FlexMatch Developer Guide

 "name": "acceptableMaps",
 "type": "string_list",
 "default": ["defaultMap"]
 }],
 "teams": [{
 "name": "red",
 "maxPlayers": 3,
 "minPlayers": 3
 }, {
 "name": "blue",
 "maxPlayers": 3,
 "minPlayers": 3
 }],
 "rules": [{
 // We placed this rule first since we want to prioritize players preferring the
 same map
 "name": "MapPreference",
 "description": "Favor grouping players that have the highest map preference
 aligned with the anchor's favorite",
 // This rule is just for sorting potential matches. We sort by the absolute
 value of a field.
 "type": "absoluteSort",
 // Highest values go first
 "sortDirection": "descending",
 // Sort is based on the mapPreference attribute.
 "sortAttribute": "mapPreference",
 // We find the key in the anchor's mapPreference attribute that has the highest
 value.
 // That's the key that we use for all players when sorting.
 "mapKey": "maxValue"
 }, {
 // This rule is second because any tie-breakers should be ordered by similar
 experience values
 "name": "ExperienceAffinity",
 "description": "Favor players with similar experience",
 // This rule is just for sorting potential matches. We sort by the distance
 from the anchor.
 "type": "distanceSort",
 // Lowest distance goes first
 "sortDirection": "ascending",
 "sortAttribute": "experience"
 }, {
 "name": "SharedMode",
 "description": "The players must have at least one game mode in common",

Rule set examples Version 41

Amazon GameLift Servers FlexMatch Developer Guide

 "type": "collection",
 "operation": "intersection",
 "measurements": ["flatten(teams[*].players.attributes[gameMode])"],
 "minCount": 1
 }, {
 "name": "MapOverlap",
 "description": "The players must have at least one map in common",
 "type": "collection",
 "operation": "intersection",
 "measurements": ["flatten(teams[*].players.attributes[acceptableMaps])"],
 "minCount": 1
 }]
}

Example: Find intersections across multiple player attributes

This example illustrates how to use a collection rule to find intersections in two or more player
attributes. When working with collections, you can use the intersection operation for a single
attribute, and the reference_intersection_count operation for multiple attributes.

To illustrate this approach, this example evaluates players in a match based on their character
preferences. The example game is a "free-for-all" style in which all players in a match are
opponents. Each player is asked to (1) choose a character for themselves, and (2) choose characters
they want to play against. We need a rule that ensures that every player in a match is using a
character that is on all other players' preferred opponents list.

The example rule set describes a match with the following characteristics:

• Team structure: One team of five players

• Player attributes:

• myCharacter: The player's chosen character.

• preferredOpponents: List of characters that the player wants to play against.

• Match rules: A potential match is acceptable if each character in use is on every player's preferred
opponents list.

To implement the match rule, this example uses a collection rule with the following property
values:

Rule set examples Version 42

Amazon GameLift Servers FlexMatch Developer Guide

• Operation – Uses reference_intersection_count operation to evaluate how each string list
in the measurement value intersects with the string list in the reference value.

• Measurement – Uses the flatten property expression to create a list of string lists, with each
string list containing one player's myCharacter attribute value.

• Reference value – Uses the set_intersection property expression to create a string list of all
preferredOpponents attribute values that are common to every player in the match.

• Restrictions – minCount is set to 1 to ensure that each player's chosen character (a string list in
the measurement) matches at least one of the preferred opponents common to all players. (a
string in the reference value).

• Expansion – If a match is not filled within 15 seconds, relax the minimum intersection
requirement.

The process flow for this rule is as follows:

1. A player is added to the prospective match. The reference value (a string list) is recalculated to
include intersections with the new player's preferred opponents list. The measurement value (a
list of string lists) is recalculated to add the new player's chosen character as a new string list.

2. Amazon GameLift Servers verifies that each string list in the measurement value (the players'
chosen characters) intersects with at least one string in the reference value (the players'
preferred opponents). Since in this example each string list in the measurement contains only
one value, the intersection is either 0 or 1.

3. If any string list in the measurement does not intersect with the reference value string list, the
rule fails and the new player is removed from the prospective match.

4. If a match is not filled within 15 seconds, drop the opponent match requirement to fill the
remaining player slots in the match.

{
 "name": "preferred_characters",
 "ruleLanguageVersion": "1.0",

 "playerAttributes": [{
 "name": "myCharacter",
 "type": "string_list"
 }, {
 "name": "preferredOpponents",
 "type": "string_list"

Rule set examples Version 43

Amazon GameLift Servers FlexMatch Developer Guide

 }],

 "teams": [{
 "name": "red",
 "minPlayers": 5,
 "maxPlayers": 5
 }],

 "rules": [{
 "description": "Make sure that all players in the match are using a character
 that is on all other players' preferred opponents list.",
 "name": "OpponentMatch",
 "type": "collection",
 "operation": "reference_intersection_count",
 "measurements": ["flatten(teams[*].players.attributes[myCharacter])"],
 "referenceValue":
 "set_intersection(flatten(teams[*].players.attributes[preferredOpponents]))",
 "minCount":1
 }],
 "expansions": [{
 "target": "rules[OpponentMatch].minCount",
 "steps": [{
 "waitTimeSeconds": 15,
 "value": 0
 }]
 }]
}

Example: Compare attributes across all players

This example illustrates how to compare player attributes across a group of players.

The example rule set describes a match with the following characteristics:

• Team structure: Two single-player teams

• Player attributes:

• gameMode: Type of game chosen by the player (if not provided, default to "turn-based").

• gameMap: Game world chosen by the player (if not provided, default to 1).

• character: Character chosen by the player (no default value means that players must specify a
character).

• Match rules: Matched players must meet the following requirements:

Rule set examples Version 44

Amazon GameLift Servers FlexMatch Developer Guide

• Players must choose the same game mode.

• Players must choose the same game map.

• Players much choose different characters.

Notes on using this rule set:

• To implement the match rule, this example uses comparison rules to check all players' attribute
values. For game mode and map, the rule verifies that the values are the same. For character, the
rule verifies that the values are different.

• This example uses one player definition with a quantity property to create both player teams.
The team are assigned the following names: "player_1" and "player_2".

{
 "name": "",
 "ruleLanguageVersion": "1.0",

 "playerAttributes": [{
 "name": "gameMode",
 "type": "string",
 "default": "turn-based"
 }, {
 "name": "gameMap",
 "type": "number",
 "default": 1
 }, {
 "name": "character",
 "type": "number"
 }],

 "teams": [{
 "name": "player",
 "minPlayers": 1,
 "maxPlayers": 1,
 "quantity": 2
 }],

 "rules": [{
 "name": "SameGameMode",
 "description": "Only match players when they choose the same game type",
 "type": "comparison",

Rule set examples Version 45

Amazon GameLift Servers FlexMatch Developer Guide

 "operation": "=",
 "measurements": ["flatten(teams[*].players.attributes[gameMode])"]
 }, {
 "name": "SameGameMap",
 "description": "Only match players when they're in the same map",
 "type": "comparison",
 "operation": "=",
 "measurements": ["flatten(teams[*].players.attributes[gameMap])"]
 }, {
 "name": "DifferentCharacter",
 "description": "Only match players when they're using different characters",
 "type": "comparison",
 "operation": "!=",
 "measurements": ["flatten(teams[*].players.attributes[character])"]
 }]
}

Example: Create a large match

This example illustrates how to set up a rule set for matches that can exceed 40 players. When a
rule set describes teams with a total maxPlayer count greater than 40, it is processed as a large
match. Learn more in Design a FlexMatch large-match rule set.

The example rule set creates a match using the following instructions:

• Create one team with up to 200 players, with a minimum requirement of 175 players.

• Balancing criteria: Select players based on similar skill level. All players must report their skill
level to be matched.

• Batching preference: Group players by similar balancing criteria when creating matches.

• Latency rules: Set the maximum acceptable player latency of 150 milliseconds.

• If the match is not filled quickly, relax the requirements to complete a match in reasonable time.

• After 10 seconds, accept a team with 150 players.

• After 12 seconds, raise the maximum acceptable latency to 200 milliseconds.

• After 15 seconds, accept a team with 100 players.

Notes on using this rule set:

• Because the algorithm uses the "largest population" batching preference, players are first sorted
based on the balancing criteria. As a result, matches tend to be fuller and contain players that

Rule set examples Version 46

Amazon GameLift Servers FlexMatch Developer Guide

are more similar in skill. All players meet acceptable latency requirements, but they may not get
the best possible latency for their location.

• The algorithm strategy used in this rule set, "largest population", is the default setting. To use
the default, you can opt to omit the setting.

• If you've enabled match backfill, do not relax player count requirements too quickly, or you
may end up with too many partially filled game sessions. Learn more in Relax large match
requirements.

{
 "name": "free-for-all",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [{
 "name": "skill",
 "type": "number"
 }],
 "algorithm": {
 "balancedAttribute": "skill",
 "strategy": "balanced",
 "batchingPreference": "largestPopulation"
 },
 "teams": [{
 "name": "Marauders",
 "maxPlayers": 200,
 "minPlayers": 175
 }],
 "rules": [{
 "name": "low-latency",
 "description": "Sets maximum acceptable latency",
 "type": "latency",
 "maxLatency": 150
 }],
 "expansions": [{
 "target": "rules[low-latency].maxLatency",
 "steps": [{
 "waitTimeSeconds": 12,
 "value": 200
 }],
 }, {
 "target": "teams[Marauders].minPlayers",
 "steps": [{
 "waitTimeSeconds": 10,

Rule set examples Version 47

Amazon GameLift Servers FlexMatch Developer Guide

 "value": 150
 }, {
 "waitTimeSeconds": 15,
 "value": 100
 }]
 }]
}

Example: Create a multi-team large match

This example illustrates how to set up a rule set for matches with multiple teams that can exceed
40 players. This example illustrates how to create multiple identical teams with one definition and
how asymmetrically sized teams are filled during match creation.

The example rule set creates a match using the following instructions:

• Create ten identical "hunter" teams with up to 15 players, and one "monster" team with exactly 5
players.

• Balancing criteria: Select players based on number of monster kills. If players don't report their
kill count, use a default value of 5.

• Batching preference: Group players based on the regions where they report the fastest player
latency.

• Latency rule: Sets a maximum acceptable player latency of 200 milliseconds.

• If the match is not filled quickly, relax the requirements to complete a match in reasonable time.

• After 15 seconds, accept teams with 10 players.

• After 20 seconds, accept teams with 8 players.

Notes on using this rule set:

• This rule set defines teams that can potentially hold up to 155 players, which makes it a large
match. (10 x 15 hunters + 5 monsters = 155)

• Because the algorithm uses the "fastest region" batching preference, players tend to be
placed in regions where they report faster latency and not in regions where they report high
(but acceptable) latency. At the same time, matches are likely to have fewer players, and the
balancing criteria (number of monster skills) may vary more widely.

Rule set examples Version 48

Amazon GameLift Servers FlexMatch Developer Guide

• When an expansion is defined for a multi-team definition (quantity > 1), the expansion applies to
all teams created with that definition. So by relaxing the hunter team minimum players setting,
all ten hunter teams are affected equally.

• Since this rule set is optimized to minimize player latency, the latency rule acts as a catch-all
to exclude players who have no acceptable connection options. We don't need to relax this
requirement.

• Here's how FlexMatch fills matches for this rule set before any expansions take effect:

• No teams have reached minPlayers count yet. Hunter teams have 15 open slots, while Monster
team has 5 open slots.

• The first 100 players are assigned (10 each) to the ten hunter teams.

• The next 22 players are assigned sequentially (2 each) to hunter teams and monster team.

• Hunter teams have reached minPlayers count of 12 players each. Monster team has 2 players
and has not reached minPlayers count.

• The next three players are assigned to the monster team.

• All teams have reached minPlayers count. Hunter teams each have three open slots. Monster
team is full.

• The final 30 players are assigned sequentially to the hunter teams, ensuring that all hunter
teams have nearly the same size (plus or minus one player).

• If you've enabled backfill for matches created with this rule set, do not relax player count
requirements too quickly, or you may end up with too many partially filled game sessions. Learn
more in Relax large match requirements.

{
 "name": "monster-hunters",
 "ruleLanguageVersion": "1.0",
 "playerAttributes": [{
 "name": "monster-kills",
 "type": "number",
 "default": 5
 }],
 "algorithm": {
 "balancedAttribute": "monster-kills",
 "strategy": "balanced",
 "batchingPreference": "fastestRegion"
 },
 "teams": [{

Rule set examples Version 49

Amazon GameLift Servers FlexMatch Developer Guide

 "name": "Monsters",
 "maxPlayers": 5,
 "minPlayers": 5
 }, {
 "name": "Hunters",
 "maxPlayers": 15,
 "minPlayers": 12,
 "quantity": 10
 }],
 "rules": [{
 "name": "latency-catchall",
 "description": "Sets maximum acceptable latency",
 "type": "latency",
 "maxLatency": 150
 }],
 "expansions": [{
 "target": "teams[Hunters].minPlayers",
 "steps": [{
 "waitTimeSeconds": 15,
 "value": 10
 }, {
 "waitTimeSeconds": 20,
 "value": 8
 }]
 }]
}

Example: Create a large match with players with similar attributes

This example illustrates how to set up a rule set for matches with two teams using
batchDistance. In the example:

• The SimilarLeague rule ensures all players in a match have a league within 2 of other players.

• The SimilarSkill rule ensures all players in a match have a skill within 10 of other players.
If a player has been waiting 10 seconds, the distance is expanded to 20. If a player has been
waiting 20 seconds, the distance is expanded to 40.

• The SameMap rule ensures all players in a match have requested the same map.

• The SameMode rule ensures all players in a match have requested the same mode.

{

Rule set examples Version 50

Amazon GameLift Servers FlexMatch Developer Guide

 "ruleLanguageVersion": "1.0",
 "teams": [{
 "name": "red",
 "minPlayers": 100,
 "maxPlayers": 100
 }, {
 "name": "blue",
 "minPlayers": 100,
 "maxPlayers": 100
 }],
 "algorithm": {
 "strategy":"balanced",
 "balancedAttribute": "skill",
 "batchingPreference":"fastestRegion"
 },
 "playerAttributes": [{
 "name": "league",
 "type": "number"
 },{
 "name": "skill",
 "type": "number"
 },{
 "name": "map",
 "type": "string"
 },{
 "name": "mode",
 "type": "string"
 }],
 "rules": [{
 "name": "SimilarLeague",
 "type": "batchDistance",
 "batchAttribute": "league",
 "maxDistance": 2
 }, {
 "name": "SimilarSkill",
 "type": "batchDistance",
 "batchAttribute": "skill",
 "maxDistance": 10
 }, {
 "name": "SameMap",
 "type": "batchDistance",
 "batchAttribute": "map"
 }, {
 "name": "SameMode",

Rule set examples Version 51

Amazon GameLift Servers FlexMatch Developer Guide

 "type": "batchDistance",
 "batchAttribute": "mode"
 }],
 "expansions": [{
 "target": "rules[SimilarSkill].maxDistance",
 "steps": [{
 "waitTimeSeconds": 10,
 "value": 20
 }, {
 "waitTimeSeconds": 20,
 "value": 40
 }]
 }]
}

Example: Use a compound rule to create a match with players with similar
attributes or similar selections

This example illustrates how to set up a rule set for matches with two teams using compound. In
the example:

• The SimilarLeagueDistance rule ensures all players in a match have a league within 2 of
other players.

• The SimilarSkillDistance rule ensures all players in a match have a skill within 10 of
other players. If a player has been waiting 10 seconds, the distance is expanded to 20. If a player
has been waiting 20 seconds, the distance is expanded to 40.

• The SameMapComparison rule ensures all players in a match have requested the same map.

• The SameModeComparison rule ensures all players in a match have requested the same mode.

• The CompoundRuleMatchmaker rule ensures a match if at least one of the following conditions
is true:

• Players in a match have requested the same map and the same mode.

• Players in a match have comparable skill and league attributes.

{
 "ruleLanguageVersion": "1.0",
 "teams": [{
 "name": "red",
 "minPlayers": 10,

Rule set examples Version 52

Amazon GameLift Servers FlexMatch Developer Guide

 "maxPlayers": 20
 }, {
 "name": "blue",
 "minPlayers": 10,
 "maxPlayers": 20
 }],
 "algorithm": {
 "strategy":"balanced",
 "balancedAttribute": "skill",
 "batchingPreference":"fastestRegion"
 },
 "playerAttributes": [{
 "name": "league",
 "type": "number"
 },{
 "name": "skill",
 "type": "number"
 },{
 "name": "map",
 "type": "string"
 },{
 "name": "mode",
 "type": "string"
 }],
 "rules": [{
 "name": "SimilarLeagueDistance",
 "type": "distance",
 "measurements": ["max(flatten(teams[*].players.attributes[league]))"],
 "referenceValue": "min(flatten(teams[*].players.attributes[league]))",
 "maxDistance": 2
 }, {
 "name": "SimilarSkillDistance",
 "type": "distance",
 "measurements": ["max(flatten(teams[*].players.attributes[skill]))"],
 "referenceValue": "min(flatten(teams[*].players.attributes[skill]))",
 "maxDistance": 10
 }, {
 "name": "SameMapComparison",
 "type": "comparison",
 "operation": "=",
 "measurements": ["flatten(teams[*].players.attributes[map])"]
 }, {
 "name": "SameModeComparison",
 "type": "comparison",

Rule set examples Version 53

Amazon GameLift Servers FlexMatch Developer Guide

 "operation": "=",
 "measurements": ["flatten(teams[*].players.attributes[mode])"]
 }, {
 "name": "CompoundRuleMatchmaker",
 "type": "compound",
 "statement": "or(and(SameMapComparison, SameModeComparison),
 and(SimilarSkillDistance, SimilarLeagueDistance))"
 }],
 "expansions": [{
 "target": "rules[SimilarSkillDistance].maxDistance",
 "steps": [{
 "waitTimeSeconds": 10,
 "value": 20
 }, {
 "waitTimeSeconds": 20,
 "value": 40
 }]
 }]
}

Example: Create a rule that uses a player's block list

This example illustrates a rule set that lets players avoid being matched with certain other players.
Players can create a block list, which the matchmaker evaluates during player selection for a match.
For more guidance on adding a block list or avoid list feature, see AWS for Games Blog.

This example sets out the following instructions:

• Create two teams of exactly five players.

• Pass in a player's block list, which is a list of player IDs (up to 100).

• Compare all players against each player's block list and reject a proposed match if any blocked
player IDs are found.

Notes on using this rule set:

• When evaluating a new player to add to a proposed match (or to backfill a spot in an existing
match), the player might be rejected for either of the following reasons:

• If the new player is on a block list for any players that are already selected for the match.

• If any players that are already selected for the match are on the new player's block list.

Rule set examples Version 54

https://aws.amazon.com/blogs/gametech/category/game-development/amazon-gamelift/

Amazon GameLift Servers FlexMatch Developer Guide

• As shown, this rule set prevents matching a player with any player on their block list. You can
change this requirement to a preference (also called an "avoid" list) by adding a rule expansion
and increasing the maxCount value.

{
 "name": "Player Block List",
 "ruleLanguageVersion": "1.0",
 "teams": [{
 "maxPlayers": 5,
 "minPlayers": 5,
 "name": "red"
 }, {
 "maxPlayers": 5,
 "minPlayers": 5,
 "name": "blue"
 }],
 "playerAttributes": [{
 "name": "BlockList",
 "type": "string_list",
 "default": []
 }],
 "rules": [{
 "name": "PlayerIdNotInBlockList",
 "type": "collection",
 "operation": "reference_intersection_count",
 "measurements": "flatten(teams[*].players.attributes[BlockList])",
 "referenceValue": "flatten(teams[*].players[playerId])",
 "maxCount": 0
 }]
}

Create a matchmaking configuration

To set up a Amazon GameLift Servers FlexMatch matchmaker to process matchmaking requests,
create a matchmaking configuration. Use either the Amazon GameLift Servers console or the AWS
Command Line Interface (AWS CLI). For more information about creating a matchmaker, see Design
a FlexMatch matchmaker.

Topics

• Tutorial: Create a matchmaker for Amazon GameLift Servers hosting

Create a matchmaking configuration Version 55

Amazon GameLift Servers FlexMatch Developer Guide

• Tutorial: Create a matchmaker for standalone FlexMatch

• Tutorial: Edit a matchmaking configuration

Tutorial: Create a matchmaker for Amazon GameLift Servers hosting

Before creating a matchmaking configuration, create a rule set and a Amazon GameLift Servers
game session queue to use with the matchmaker.

Console

1. In the Amazon GameLift Servers console, in the navigation pane, choose Matchmaking
configurations.

2. Switch to the AWS Region where you want to create your matchmaker.

3. On the Matchmaking configurations page, choose Create matchmaking configuration.

4. On the Define configuration details page, under Matchmaking configuration details, do
the following:

a. For Name, enter a matchmaker name that can help you identify it in a list and in
metrics. The matchmaker name must be unique within the Region. Matchmaking
requests identify which matchmaker to use by its name and Region.

b. (Optional) For Description, add a description to help identify the matchmaker.

c. For Rule set, choose a rule set from the list to use with the matchmaker. The list
contains all rule sets that you've created in the current Region.

d. For FlexMatch mode, choose Managed for Amazon GameLift Servers managed
hosting. This mode prompts FlexMatch to pass successful matches to the specified
game session queue.

e. For AWS Region, choose the Region where you configured the game session queue
that you want to use with the matchmaker.

f. For Queue, choose the game session queue that you want to use with the matchmaker.

5. Choose Next.

6. On the Configure settings page, under Matchmaking settings, do the following:

a. For Request timeout, set the maximum amount of time, in seconds, for the
matchmaker to complete a match for each request. FlexMatch cancels matchmaking
requests that exceed this time.

Tutorial: Create a matchmaker for hosting Version 56

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-creating.html
https://console.aws.amazon.com/gamelift/

Amazon GameLift Servers FlexMatch Developer Guide

b. For Backfill mode, choose a mode for handling match backfills.

• To turn on the automatic backfill feature, choose Automatic.

• To create your own backfill request management or to not use the backfill feature,
choose Manual.

c. (Optional) For Additional player count, set the number of player slots to keep open in
a match. FlexMatch can fill these slots with players in the future.

d. (Optional) Under Match acceptance options, for Acceptance required, if you want to
require each player in a proposed match to actively accept participation in the match,
select Required. If you select this option, then for Acceptance timeout, set how long,
in seconds, you want the matchmaker to wait for player acceptances before canceling
the match.

7. (Optional) Under Event notification settings, do the following:

a. (Optional) For SNS topic, choose an Amazon Simple Notification Service (Amazon SNS)
topic for receiving matchmaking event notifications. If you haven't yet set up an SNS
topic, you can choose this later by editing the matchmaking configuration. For more
information, see Set up FlexMatch event notifications.

b. (Optional) For Custom event data, enter any custom data that you want to associate
with this matchmaker in event messaging. FlexMatch includes this data in every event
associated with the matchmaker.

8. (Optional) Expand Additional game data, and then do the following:

a. (Optional) For Game session data, enter any additional game-related information that
you want FlexMatch to deliver to new game sessions started with matches made using
this matchmaking configuration.

b. (Optional) For Game properties, add key-value pair properties that contain
information about a new game session.

9. (Optional) Under Tags, add tags to help you manage and track your AWS resources.

10. Choose Next.

11. On the Review and create page, review your choices, and then choose Create. Upon
successful creation, the matchmaker is ready to accept matchmaking requests.

Tutorial: Create a matchmaker for hosting Version 57

Amazon GameLift Servers FlexMatch Developer Guide

AWS CLI

To create a matchmaking configuration with the AWS CLI, open a command line window and
use the create-matchmaking-configuration command to define a new matchmaker.

This example command creates a new matchmaking configuration that requires player
acceptance and enables automatic backfill. It also reserves two player slots for FlexMatch to add
players later, and it provides some game session data.

aws gamelift create-matchmaking-configuration \
 --name "SampleMatchamker123" \
 --description "The sample test matchmaker with acceptance" \
 --flex-match-mode WITH_QUEUE \
 --game-session-queue-arns "arn:aws:gamelift:us-
west-2:111122223333:gamesessionqueue/MyGameSessionQueue" \
 --rule-set-name "MyRuleSet" \
 --request-timeout-seconds 120 \
 --acceptance-required \
 --acceptance-timeout-seconds 30 \
 --backfill-mode AUTOMATIC \
 --notification-target "arn:aws:sns:us-
west-2:111122223333:My_Matchmaking_SNS_Topic" \
 --additional-player-count 2 \
 --game-session-data "key=map,value=winter444"

If the matchmaking configuration creation request is successful, Amazon GameLift Servers
returns a MatchmakingConfiguration object with the settings that you requested for the
matchmaker. The new matchmaker is ready to accept matchmaking requests.

Tutorial: Create a matchmaker for standalone FlexMatch

Before creating a matchmaking configuration, create a rule set to use with the matchmaker.

Console

1. Open the Amazon GameLift Servers console at https://console.aws.amazon.com/gamelift/
home.

2. Switch to the AWS Region where you want to create your matchmaker. For a list of Regions
that support FlexMatch matchmaking configurations, see Choose a location for the
matchmaker.

Tutorial: Create a matchmaker for standalone FlexMatch Version 58

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-matchmaking-configuration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingConfiguration.html
https://console.aws.amazon.com/gamelift/
https://console.aws.amazon.com/gamelift/

Amazon GameLift Servers FlexMatch Developer Guide

3. In the navigation pane, choose FlexMatch, Matchmaking configurations.

4. On the Matchmaking configurations page, choose Create matchmaking configuration.

5. On the Define configuration details page, under Matchmaking configuration details, do
the following:

a. For Name, enter a matchmaker name that can help you identify it in a list and in
metrics. The matchmaker name must be unique within the Region. Matchmaking
requests identify which matchmaker to use by its name and Region.

b. (Optional) For Description, add a description to help identify the matchmaker.

c. For Rule set, choose a rule set from the list to use with the matchmaker. The list
contains all rule sets that you've created in the current Region.

d. For FlexMatch mode, choose Standalone. This indicates that you have a custom
mechanism for starting new game sessions on a hosting solution outside of Amazon
GameLift Servers.

6. Choose Next.

7. On the Configure settings page, under Matchmaking settings, do the following:

a. For Request timeout, set the maximum amount of time, in seconds, for the
matchmaker to complete a match for each request. Matchmaking requests that exceed
this time are rejected.

b. (Optional) Under Match acceptance options, for Acceptance required, if you want to
require each player in a proposed match to actively accept participation in the match,
select Required. If you select this option, then for Acceptance timeout, set how long,
in seconds, you want the matchmaker to wait for player acceptances before canceling
the match.

8. (Optional) Under Event notification settings, do the following:

a. (Optional) For SNS topic, choose an Amazon SNS topic for receiving matchmaking
event notifications. If you haven't yet set up an SNS topic, you can choose this later by
editing the matchmaking configuration. For more information, see Set up FlexMatch
event notifications.

b. (Optional) For Custom event data, enter any custom data that you want to associate
with this matchmaker in event messaging. FlexMatch includes this data in every event
associated with the matchmaker.

9. (Optional) Under Tags, add tags to help you manage and track your AWS resources.

Tutorial: Create a matchmaker for standalone FlexMatch Version 59

Amazon GameLift Servers FlexMatch Developer Guide

10. Choose Next.

11. On the Review and create page, review your choices, and then choose Create. Upon
successful creation, the matchmaker is ready to accept matchmaking requests.

AWS CLI

To create a matchmaking configuration with the AWS CLI, open a command line window and
use the create-matchmaking-configuration command to define a new matchmaker.

This example command creates a new matchmaking configuration for a standalone
matchmaker that requires player acceptance.

aws gamelift create-matchmaking-configuration \
 --name "SampleMatchamker123" \
 --description "The sample test matchmaker with acceptance" \
 --flex-match-mode STANDALONE \
 --rule-set-name "MyRuleSetOne" \
 --request-timeout-seconds 120 \
 --acceptance-required \
 --acceptance-timeout-seconds 30 \
 --notification-target "arn:aws:sns:us-
west-2:111122223333:My_Matchmaking_SNS_Topic"

If the matchmaking configuration creation request is successful, Amazon GameLift Servers
returns a MatchmakingConfiguration object with the settings that you requested for the
matchmaker. The new matchmaker is ready to accept matchmaking requests.

Tutorial: Edit a matchmaking configuration

To edit a matchmaking configuration, choose Matchmaking configurations from the navigation
bar and choose the configuration you want to edit. You can update any field in an existing
configuration except for it's name.

When updating a configurations rule set, a new rule set can be incompatible if there are existing
active matchmaking tickets for the following reasons:

• New or different team names or number of teams

• New player attributes

Tutorial: Edit a matchmaking configuration Version 60

https://docs.aws.amazon.com/cli/latest/reference/gamelift/create-matchmaking-configuration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingConfiguration.html

Amazon GameLift Servers FlexMatch Developer Guide

• Changes to existing player attribute types

To make any of the these changes to your rule set, create a new matchmaking configuration with
the updated rule set.

Set up FlexMatch event notifications

You can use event notifications to track the status of individual matchmaking requests. All games
in production, or in pre-production with high-volume matchmaking activity should use event
notifications.

There are two options for setting up event notifications.

• Have your matchmaker publish event notifications to an Amazon Simple Notification Service
(Amazon SNS) topic.

• Use automatically published Amazon EventBridge events and its suite of tools for managing
events.

For a list of the FlexMatch events that Amazon GameLift Servers emits, see FlexMatch
matchmaking events.

Topics

• Set up EventBridge events

• Tutorial: Set up an Amazon SNS topic

• Set up an SNS topic with server-side encryption

• Configure a topic subscription to invoke a Lambda function

Set up EventBridge events

Amazon GameLift Servers automatically posts all matchmaking events to Amazon EventBridge.
With EventBridge, you can set up rules to have matchmaking events routed to targets for
processing. For example, you can set a rule to route the event "PotentialMatchCreated" to an AWS
Lambda function that handles player acceptances. For more information, see What is Amazon
EventBridge?

Set up event notifications Version 61

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-what-is.html

Amazon GameLift Servers FlexMatch Developer Guide

Note

When you configure your matchmakers, keep the notification target field empty or
reference an SNS topic if you want to use both EventBridge and Amazon SNS.

Tutorial: Set up an Amazon SNS topic

You can have Amazon GameLift Servers publish all events that a FlexMatch matchmaker generates
to an Amazon SNS topic.

To create an SNS topic for Amazon GameLift Servers event notifications

1. Open the Amazon SNS console.

2. In the navigation pane, choose Topics.

3. On the Topics page, choose Create topic.

4. Create a topic in the console. For more information, see To create a topic using the AWS
Management Console in the Amazon Simple Notification Service Developer Guide.

5. On the Details page for your topic, choose Edit.

6. (Optional) On the Edit page for your topic, expand Access policy, then add the bold syntax
from the following AWS Identity and Access Management (IAM) policy statement to the
end of your existing policy. (The entire policy is shown here for clarity.) Be sure to use the
Amazon Resource Name (ARN) details for your own SNS topic and Amazon GameLift Servers
matchmaking configuration.

{
 "Version": "2008-10-17",
 "Id": "__default_policy_ID",
 "Statement": [
 {
 "Sid": "__default_statement_ID",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "SNS:GetTopicAttributes",
 "SNS:SetTopicAttributes",
 "SNS:AddPermission",

Tutorial: Set up an Amazon SNS topic Version 62

https://console.aws.amazon.com/sns
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html#create-topic-aws-console
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html#create-topic-aws-console

Amazon GameLift Servers FlexMatch Developer Guide

 "SNS:RemovePermission",
 "SNS:DeleteTopic",
 "SNS:Subscribe",
 "SNS:ListSubscriptionsByTopic",
 "SNS:Publish"
],
 "Resource": "arn:aws:sns:your_region:your_account:your_topic_name",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "your_account"
 }
 }
 },
 {
 "Sid": "__console_pub_0",
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": "SNS:Publish",
 "Resource": "arn:aws:sns:your_region:your_account:your_topic_name",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":
 "arn:aws:gamelift:your_region:your_account:matchmakingconfiguration/
your_configuration_name"
 }
 }
 }
]
}

7. Choose Save changes.

Set up an SNS topic with server-side encryption

You can use server-side encryption (SSE) to store sensitive data in encrypted topics. SSE protects
the contents of messages in Amazon SNS topics using keys managed in AWS Key Management
Service (AWS KMS). For more information about server-side encryption with Amazon SNS, see
Encryption at rest in the Amazon Simple Notification Service Developer Guide.

To set up an SNS topic with server-side encryption, review the following topics:

Set up an SNS topic with server-side encryption Version 63

https://docs.aws.amazon.com/sns/latest/dg/sns-server-side-encryption.html

Amazon GameLift Servers FlexMatch Developer Guide

• Creating key in the AWS Key Management Service Developer Guide

• Enabling SSE for a topic in the Amazon Simple Notification Service Developer Guide

When creating your KMS key, use the following KMS key policy:

{
 "Effect": "Allow",
 "Principal": {
 "Service": "gamelift.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn":
 "arn:aws:gamelift:your_region:your_account:matchmakingconfiguration/
your_configuration_name"
 },
 "StringEquals": {
 "kms:EncryptionContext:aws:sns:topicArn":
 "arn:aws:sns:your_region:your_account:your_sns_topic_name"
 }
 }
}

Configure a topic subscription to invoke a Lambda function

You can invoke a Lambda function using event notifications published to your Amazon SNS topic.
When configuring the matchmaker, be sure to set the notification target to your SNS topic's ARN.

The following AWS CloudFormation template configures a subscription to an SNS
topic named MyFlexMatchEventTopic to invoke a Lambda function named
FlexMatchEventHandlerLambdaFunction. The template creates an IAM permissions
policy that allows Amazon GameLift Servers to write to the SNS topic. The template then adds
permissions for the SNS topic to invoke the Lambda function.

FlexMatchEventTopic:

Configure a topic subscription to invoke a Lambda function Version 64

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/sns/latest/dg/sns-enable-encryption-for-topic.html

Amazon GameLift Servers FlexMatch Developer Guide

 Type: "AWS::SNS::Topic"
 Properties:
 KmsMasterKeyId: alias/aws/sns #Enables server-side encryption on the topic using an
 AWS managed key
 Subscription:
 - Endpoint: !GetAtt FlexMatchEventHandlerLambdaFunction.Arn
 Protocol: lambda
 TopicName: MyFlexMatchEventTopic

FlexMatchEventTopicPolicy:
 Type: "AWS::SNS::TopicPolicy"
 DependsOn: FlexMatchEventTopic
 Properties:
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: gamelift.amazonaws.com
 Action:
 - "sns:Publish"
 Resource: !Ref FlexMatchEventTopic
 Topics:
 - Ref: FlexMatchEventTopic

FlexMatchEventHandlerLambdaPermission:
 Type: "AWS::Lambda::Permission"
 Properties:
 Action: "lambda:InvokeFunction"
 FunctionName: !Ref FlexMatchEventHandlerLambdaFunction
 Principal: sns.amazonaws.com
 SourceArn: !Ref FlexMatchEventTopic

Configure a topic subscription to invoke a Lambda function Version 65

Amazon GameLift Servers FlexMatch Developer Guide

Preparing your game for FlexMatch

Use Amazon GameLift Servers FlexMatch to add player matchmaking functionality to your
games. You can use FlexMatch with a managed Amazon GameLift Servers hosting solution or as
a standalone service with another hosting solution. If you want to add FlexMatch to an Amazon
GameLift Servers FleetIQ solution, use it as a standalone service. For more information on how
FlexMatch works, see How Amazon GameLift ServersFlexMatch works.

Matchmaking solutions require the following work:

• Create a matchmaker with your custom matchmaking rules For more on creating the
matchmaker, see Buiding a Amazon GameLift ServersFlexMatch matchmaker.

• Update your game client to allow players to request a match.

• For games that use Amazon GameLift Servers hosting, update your game server to manage
match data and optionally backfill empty slots on matches.

The topics in this section cover how to add matchmaking support to your game clients and game
servers.

See the roadmap for your preferred FlexMatch matchmaking solution:

• Roadmap: Add matchmaking to a Amazon GameLift Servers hosting solution

• Roadmap: Create a standalone matchmaking solution with FlexMatch

Add FlexMatch to a game client

This topic describes how to add FlexMatch matchmaking functionality to your client-side game
components.

We highly recommend that your game client make matchmaking requests through a backend game
service. By using this trusted source for your communication with the Amazon GameLift Servers
service, you can more easily protect against hacking attempts and fake player data. If your game
has a session directory service, this is a good option for handling matchmaking requests. Using a
backend game service for all calls to the Amazon GameLift Servers service is a best practice when
using FlexMatch with Amazon GameLift Servers hosting and as a standalone service.

Add FlexMatch to a game client Version 66

Amazon GameLift Servers FlexMatch Developer Guide

Client-side updates are required whether you're using FlexMatch with Amazon GameLift Servers
managed hosting or as a standalone service with another hosting solution. Using the service API
for Amazon GameLift Servers, which is part of the AWS SDK, add the following functionality:

• Request matchmaking for one or multiple players (required). Depending on your matchmaking
rule set, this request might require certain player-specific data, including player attributes and
latency.

• Track the status of a matchmaking request (required). In general, this task requires setting up
event notification.

• Request player acceptance for a proposed match (optional). This feature requires additional
interaction with a player to display match details and allow them to accept or reject the match.

• Get game session connection information and join the game (required). After a game session has
been started for the new match, retrieve connection information for the game session and use it
to connect to the game session.

Prerequisite client-side tasks

Before you can add client-side functionality to your game, you need to do these tasks:

• Add the AWS SDK to your backend service. Your backend service uses functionality in the
Amazon GameLift Servers API, which is part of the AWS SDK. See Amazon GameLift Servers
SDKs for client services to learn more about the AWS SDK and download the latest version. For
API descriptions and functionality, see Amazon GameLift ServersFlexMatch API reference (AWS
SDK).

• Set up a matchmaking ticket system. All matchmaking requests must have a unique ticket ID.
Create a mechanism to generate unique ticket IDs and assign them to match requests. A ticket ID
can use any string format, up to a maximum of 128 characters.

• Collect information about your matchmaker. Get the following information from your
matchmaking configuration and rule set.

• Name of the matchmaking configuration resource.

• The list of player attributes, which are defined in the rule set.

• Retrieve player data. Set up a way to get relevant data for each player to include in your
matchmaking requests. You need the player ID and player attribute values. If your rule set has
latency rules or you want to use latency data when placing game sessions, collect latency data
for each geographic location where the player is likely be slotted into a game.

Prerequisite client-side tasks Version 67

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-supported.html#gamelift-supported-clients
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-supported.html#gamelift-supported-clients

Amazon GameLift Servers FlexMatch Developer Guide

Request matchmaking for players

Add code to your game backend service to manage matchmaking requests to a FlexMatch
matchmaker. The process of requesting FlexMatch matchmaking is identical for games that
use FlexMatch with Amazon GameLift Servers hosting and for games that use FlexMatch as a
standalone solution.

To create a matchmaking request:

Call the Amazon GameLift Servers API StartMatchmaking. Each request must contain the following
information.

Matchmaker

The name of the matchmaking configuration to use for the request. FlexMatch places each
request into the pool for the specified matchmaker, and the request is processed based on how
the matchmaker is configured. This includes enforcing a time limit, whether to request player
acceptance of matches, which queue to use when placing a resulting game session, etc. Learn
more about matchmakers and rules sets in Design a FlexMatch matchmaker.

Ticket ID

A unique ticket ID assigned to the request. Everything related to the request, including events
and notifications, will reference the ticket ID.

Player data

List of players that you want to create a match for. If any of the players in the request do not
meet match requirements, based on the match rules and latency minimums, the matchmaking
request will never result in a successful match. You can include up to ten players in a match
request. When there are multiple players in a request, FlexMatch tries to create a single match
and assign all players to the same team (randomly selected). If a request contains too many
players to fit in one of the match teams, the request will fail to be matched. For example, if
you've set up your matchmaker to create 2v2 matches (two teams of two players), you cannot
send a matchmaking request containing more than two players.

Note

A player (identified by their player ID) can only be included in one active matchmaking
request at a time. When you create a new request for a player, any active matchmaking
tickets with the same player ID are automatically canceled.

Request matchmaking for players Version 68

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchmaking.html

Amazon GameLift Servers FlexMatch Developer Guide

For each listed player, include the following data:

• Player ID – Each player must have a unique player ID, which you generate. See Generate
player IDs.

• Player attributes – If the matchmaker in use calls for player attributes, the request must
provide those attributes for each player. The required player attributes are defined in the
matchmaker's rule set, which also specifies the data type for the attribute. A player attribute
is optional only when the rule set specifies a default value for the attribute. If the match
request does not provide required player attributes for all players, the matchmaking request
can never succeed. Learn more about matchmaker rule sets and player attributes in Build a
FlexMatch rule set and FlexMatch rule set examples.

• Player latencies – If the matchmaker in use has a player latency rule, the request must report
latency for each player. Player latency data is a list of one or more values per player. It
represents the latency that the player experiences for regions in the matchmaker's queue. If
no latency values for a player are included in the request, the player cannot be matched, and
the request fails.

To retrieve match request details

After a match request is sent, you can view the request details by calling DescribeMatchmaking
with the request's ticket ID. This call returns the request information, including current status. Once
a request has been successfully completed, the ticket also contains the information that a game
client needs to connect to the match.

To cancel a match request

You can cancel a matchmaking request at any time by calling StopMatchmaking with the request's
ticket ID.

Track matchmaking events

Set up notifications to track events that Amazon GameLift Servers emits for matchmaking
processes. You can set up notifications either directly, by creating an SNS topic, or by using
Amazon EventBridge. For more information on setting up notifications, see Set up FlexMatch event
notifications. Once you've set up notifications, add a listener on your client service to detect the
events and respond as needed.

It's also a good idea to back up notifications by periodically polling for status updates when
a significant period of time passes without notification. To minimize impact on matchmaking

Track matchmaking events Version 69

https://docs.aws.amazon.com/gamelift/latest/developerguide/player-sessions-player-identifiers.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/player-sessions-player-identifiers.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html

Amazon GameLift Servers FlexMatch Developer Guide

performance, be sure to poll only after waiting at least 30 seconds after the matchmaking ticket
was submitted or after the last received notification.

Retrieve a matchmaking request ticket, including current status, by calling DescribeMatchmaking
with the request's ticket ID. We recommend polling no more than once every 10 seconds. This
approach is for use during low-volume development scenarios only.

Note

You should set up your game with event notifications before you have high-volume
matchmaking usage, such as with pre-production load testing. All games in public release
should use notifications regardless of volume. The continuous polling approach is only
appropriate for games in development with low matchmaking usage.

Request player acceptance

If you're using a matchmaker that has player acceptance turned on, add code to your client service
to manage the player acceptance process. The process of managing player acceptances is identical
for games that use FlexMatch with Amazon GameLift Servers-managed hosting and for games that
use FlexMatch as a standalone solution.

Request player acceptance for a proposed match:

1. Detect when a proposed match needs player acceptance. Monitor the matchmaking ticket to
detect when the status changes to REQUIRES_ACCEPTANCE. A change to this status triggers
the FlexMatch event MatchmakingRequiresAcceptance.

2. Get acceptances from all players. Create a mechanism to present the proposed match
details to every player in the matchmaking ticket. Players must be able to indicate that
they either accept or reject the proposed match. You can retrieve match details by calling
DescribeMatchmaking. Players have a limited time to respond before the matchmaker
withdraws the proposed match and moves on.

3. Report player responses to FlexMatch. Report player responses by calling AcceptMatch with
either accept or reject. All players in a matchmaking request must accept the match for it to go
forward.

4. Handle tickets with failed acceptances. A request fails when any player in the proposed
match either rejects the match or fails to respond by the acceptance time limit. Tickets for
players who did accept the match are automatically returned to the ticket pool. Tickets for

Request player acceptance Version 70

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_AcceptMatch.html

Amazon GameLift Servers FlexMatch Developer Guide

players who did not accept the match move to FAILURE status and are no longer processed.
For tickets with multiple players, if any players in the ticket did not accept the match, the
entire ticket fails.

Connect to a match

Add code to your client service to handle a successfully formed match (status COMPLETED or event
MatchmakingSucceeded). This includes notifying the match's players and handing off connection
information to their game clients.

For games that use Amazon GameLift Servers managed hosting, when a matchmaking request
is successfully fulfilled, the game session connection information is added to the matchmaking
ticket. Retrieve a completed matchmaking ticket by calling DescribeMatchmaking. Connection
information includes the game session's IP address and port, as well as a player session ID for each
player ID. Learn more in GameSessionConnectionInfo. Your game client can use this information to
connect directly to the game session for the match. The connection request should include a player
session ID and a player ID. This data associates the connected player to the game session's match
data, which includes team assignments (see GameSession).

For games that use other hosting solutions, including Amazon GameLift Servers FleetIQ, you must
build in a mechanism to enable match players to connect to the appropriate game session.

Sample matchmaking requests

The following code snippets build matchmaking requests for several different matchmakers. As
described, a request must provide the player attributes that are required by the matchmaker in
use, as defined in the matchmaker's rule set. The attribute provided must use the same data type,
number (N) or string (S) that is defined in the rule set.

Uses matchmaker for two-team game mode based on player skill level
def start_matchmaking_for_cowboys_vs_aliens(config_name, ticket_id, player_id, skill,
 team):
 response = gamelift.start_matchmaking(
 ConfigurationName=config_name,
 Players=[{
 "PlayerAttributes": {
 "skill": {"N": skill}
 },
 "PlayerId": player_id,
 "Team": team

Connect to a match Version 71

https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSessionConnectionInfo.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Servers FlexMatch Developer Guide

 }],
 TicketId=ticket_id)

Uses matchmaker for monster hunter game mode based on player skill level
def start_matchmaking_for_players_vs_monster(config_name, ticket_id, player_id, skill,
 is_monster):
 response = gamelift.start_matchmaking(
 ConfigurationName=config_name,
 Players=[{
 "PlayerAttributes": {
 "skill": {"N": skill},
 "desiredSkillOfMonster": {"N": skill},
 "wantsToBeMonster": {"N": int(is_monster)}
 },
 "PlayerId": player_id
 }],
 TicketId=ticket_id)

Uses matchmaker for brawler game mode with latency
def start_matchmaking_for_three_team_brawler(config_name, ticket_id, player_id, skill,
 role):
 response = gamelift.start_matchmaking(
 ConfigurationName=config_name,
 Players=[{
 "PlayerAttributes": {
 "skill": {"N": skill},
 "character": {"S": [role]},
 },
 "PlayerId": player_id,
 "LatencyInMs": { "us-west-2": 20}
 }],
 TicketId=ticket_id)

Uses matchmaker for multiple game modes and maps based on player experience
def start_matchmaking_for_multi_map(config_name, ticket_id, player_id, skill, maps,
 modes):
 response = gamelift.start_matchmaking(
 ConfigurationName=config_name,
 Players=[{
 "PlayerAttributes": {
 "experience": {"N": skill},
 "gameMode": {"SL": modes},
 "mapPreference": {"SL": maps}
 },

Sample matchmaking requests Version 72

Amazon GameLift Servers FlexMatch Developer Guide

 "PlayerId": player_id
 }],
 TicketId=ticket_id)

Add FlexMatch to an Amazon GameLift Servers-hosted game
server

When Amazon GameLift Servers creates a match, it generates a set of match result data that
describes key matchmaking details, including team assignments. A game server uses this data, as
well as other game session information, when starting a new game session to host the match.

For game servers that are hosted with Amazon GameLift Servers

The Amazon GameLift Servers prompts a game server process to start a game session. It delivers a
GameSession object that describes the type of game session to create and includes player-specific
information, including match data.

For game servers that are hosted on other solutions

After successfully fulfilling a matchmaking request, Amazon GameLift Servers emits an event that
includes the match results. You can use this data with your own hosting solution to start a game
session for the match.

About matchmaker data

Match data includes the following information:

• A unique match ID

• The ID of the matchmaking configure that was used to create the match

• The players selected for the match

• Team names and team assignments

• Player attribute values that were used to form the match. Attributes might also provide
information that directs how a game session is set up. For example, the game server might
assign characters to players based on player attributes, or choose a game map preference that
is common to all players. Or your game might unlock certain features or levels based on the
average player skill level.

Add FlexMatch to a game server Version 73

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Servers FlexMatch Developer Guide

Match data doesn't include the player latency. If you need latency data on current players, such as
for match backfill, we recommend getting fresh data.

Note

Matchmaker data specifies the full matchmaking configuration ARN, which identifies
the configuration name, AWS account, and Region. For games hosting with Amazon
GameLift Servers, if you 're using match backfill, you need the configuration name only.
The configuration name is the string that follows ":matchmakingconfiguration/". In the
following example, the matchmaking configuration name is "MyMatchmakerConfig".

This JSON example shows a typical matchmaker data set. It describes a two-player game, with
players matched based on skill ratings and highest level attained.

{
 "matchId":"1111aaaa-22bb-33cc-44dd-5555eeee66ff",
 "matchmakingConfigurationArn":"arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MyMatchmakerConfig",
 "teams":[
 {"name":"attacker",
 "players":[
 {"playerId":"4444dddd-55ee-66ff-77aa-8888bbbb99cc",
 "attributes":{
 "skills":{
 "attributeType":"STRING_DOUBLE_MAP",
 "valueAttribute":{"Body":10.0,"Mind":12.0,"Heart":15.0,"Soul":33.0}}
 }
 }]
 },{
 "name":"defender",
 "players":[{
 "playerId":"3333cccc-44dd-55ee-66ff-7777aaaa88bb",
 "attributes":{
 "skills":{
 "attributeType":"STRING_DOUBLE_MAP",
 "valueAttribute":{"Body":11.0,"Mind":12.0,"Heart":11.0,"Soul":40.0}}
 }
 }]
 }]
}

About matchmaker data Version 74

Amazon GameLift Servers FlexMatch Developer Guide

Set up a game server for FlexMatch

Game servers that are hosted with Amazon GameLift Servers must be integrated with the Amazon
GameLift Servers server SDK and have core functionality as described in Add Amazon GameLift
Servers to your game server. This functionality makes it possible for your game server to run on
Amazon GameLift Servers hosting resources and communicate with the Amazon GameLift Servers
service. The following instructions describe additional tasks that you need to do to add FlexMatch
functionality.

To add FlexMatch to your game server

1. Use matchmaking data when starting game sessions. Your game server implements a
callback function called onStartGameSession(). After creating a match, Amazon GameLift
Servers looks for an available game server process and calls this function to prompt it to start
a game session for the match. This call includes a game session object (GameSession). Your
game server uses the game session information, including matchmaker data, to start the game
session. For more details on starting a game session, see Start a game session. For more on
matchmaker data, see About matchmaker data.

2. Handle player connections. When connecting to a matched game, a game client references
a player ID and a player session ID (see Validate a new player). Set up your game server to use
the player ID to associate an incoming player with player information in the matchmaker data.
Matchmaker data identifies a player's team assignment and other information to represent the
player in the game.

3. Report when players leave a game. Make sure that your game server calls the server SDK
RemovePlayerSession to report a dropped player. This step is particularly important if you're
using FlexMatch backfill to fill empty slots in existing games. Learn more about implementing
FlexMatch backfill in Backfill existing games with FlexMatch.

4. Request new players to fill existing matches (optional). Decide how you want to backfill your
live matches. If your matchmaker has the backfill mode set to "manual", you might want to
add backfill support to your game. If backfill mode is set to "automatic", you might need a way
to turn it off for individual game sessions. For example, after a game session reaches a certain
point in the game, you might want to stop backfilling. Learn more about how to implement
match backfill in Backfill existing games with FlexMatch.

Set up a game server for FlexMatch Version 75

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-startsession
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-validateplayer
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk5-cpp-actions.html#integration-server-sdk5-cpp-removeplayersession

Amazon GameLift Servers FlexMatch Developer Guide

Backfill existing games with FlexMatch

Match backfill uses your FlexMatch mechanisms to find new players for existing matched game
sessions. Although you can always add players to any game (see Join a player to a game session),
match backfill ensures that new players meet the same match criteria as current players. In
addition, match backfill assigns the new players to teams, manages player acceptance, and sends
updated match information to the game server. Learn more about match backfill in FlexMatch
matchmaking process.

Note

FlexMatch backfill is not currently available for games using Amazon GameLift
Servers Realtime.

There are two types of backfill mechanisms:

• Enable automatic backfill to fill game sessions that start with fewer than the maximum allowed
players. Automatic backfill doesn't backfill players who join the game and then drop out.

• Set up a manual backfill mechanism to replace players who drop out of a game session in
progress. This mechanism must be able to detect an open slot and generate a backfill request to
fill it.

Turn on automatic backfill

With automatic match backfill, Amazon GameLift Servers automatically triggers a backfill request
whenever a game session starts with one or more unfilled player slots. This feature allows games
to start as soon as the minimum number of matched players is found and fill remaining slots later
as additional players are matched. You can opt to stop automatic backfill at any time.

As an example, consider a game that can hold six to ten players. FlexMatch initially locates six
players, forms the match, and starts a new game session. With automatic backfill, the new game
session can immediately request an additional four players. Depending on the game style, we
might want to allow new players to join at any time during the game session. Alternatively, we
might want to stop automatic backfill after initial setup phase and before gameplay starts.

To add automatic backfill to your game, make the following updates to your game.

Turn on automatic backfill Version 76

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-client-api.html#gamelift-sdk-client-api-join

Amazon GameLift Servers FlexMatch Developer Guide

1. Enable automatic backfill. Automatic backfill is managed in a matchmaking configuration.
When enabled, it is used with all matched game sessions that are created with that
matchmaker. Amazon GameLift Servers begins generating backfill requests for a non-full
game session as soon as the game session starts up on a game server.

To turn on automatic backfill, open a match configuration and set the backfill mode to
"AUTOMATIC". For more details, see Create a matchmaking configuration

2. Turn on backfill prioritization. Customize your matchmaking process to prioritize filling
backfill requests before creating new matches. In your matchmaking rule set, add an algorithm
component and set backfill priority to "high". For more details, see Customize the match
algorithm.

3. Update game session with new matchmaker data. Amazon GameLift Servers updates
your game server with match information using the Server SDK callback function
onUpdateGameSession (see Initialize the server process). Add code to your game server
to handle updated game session objects as a result of backfill activity. Learn more in Update
match data on the game server.

4. Turn off automatic backfill for a game session. You can opt to stop automatic backfill at any
point during an individual game session. To stop automatic backfill, add code to your game
client or game server to make the Amazon GameLift Servers API call StopMatchmaking. This
call requires a ticket ID. Use the backfill ticket ID from the latest backfill request. You can get
this information from the game session matchmaking data, which is updated as described in
the previous step.

Generate manual backfill requests from a game server

You can manually initiate match backfill requests from the game server process that is hosting the
game session. The server process has the most up-to-date information on players connected to the
game and the status of empty player slots.

This topic assumes that you've already built the necessary FlexMatch components and successfully
added matchmaking processes to your game server and a client-side game service. For more details
on setting up FlexMatch, see Roadmap: Add matchmaking to a Amazon GameLift Servers hosting
solution.

To enable match backfill for your game, add the following functionality:

• Send matchmaking backfill requests to a matchmaker and track the status of requests.

Generate manual backfill requests from a game server Version 77

https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-initialize
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html

Amazon GameLift Servers FlexMatch Developer Guide

• Update match information for the game session. See Update match data on the game server.

As with other server functionality, a game server uses the Amazon GameLift Servers Server SDK.
This SDK is available in C++ and C#.

To make match backfill requests from your game server, complete the following tasks.

1. Trigger a match backfill request. Generally, you want to initiate a backfill request whenever
a matched game has one or more empty player slots. You may want to tie backfill requests to
specific circumstances, such as to fill critical character roles or balance out teams. You'll likely
also want to limit backfilling activity based on a game session's age.

2. Create a backfill request. Add code to create and send match backfill requests to a FlexMatch
matchmaker. Backfill requests are handled using these server APIs:

• StartMatchBackfill()

• StopMatchBackfill()

To create a backfill request, call StartMatchBackfill with the following information. To
cancel a backfill request, call StopMatchBackfill with the backfill request's ticket ID.

• Ticket ID — Provide a matchmaking ticket ID (or opt to have them autogenerated). You can
use the same mechanism to assign ticket IDs to both matchmaking and backfill requests.
Tickets for matchmaking and backfilling are processed the same way.

• Matchmaker — Identify which matchmaker to use for the backfill request. Generally, you'll
want to use the same matchmaker that was used to create the original match. This request
takes a matchmaking configuration ARN. This information is stored in the game session
object (GameSession), which was provided to the server process by Amazon GameLift
Servers when activating the game session. The matchmaking configuration ARN is included
in the MatchmakerData property.

• Game session ARN — Identify the game session being backfilled. You can get the game
session ARN by calling the server API GetGameSessionId(). During the matchmaking process,
tickets for new requests do not have a game session ID, while tickets for backfill requests do.
The presence of at game session ID is one way to tell the difference between tickets for new
matches and tickets for backfills.

• Player data — Include player information (Player) for all current players in the game session
you are backfilling. This information allows the matchmaker to locate the best possible

Generate manual backfill requests from a game server Version 78

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-cpp-ref-actions.html#integration-server-sdk-cpp-ref-startmatchbackfill
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-cpp-ref-actions.html#integration-server-sdk-cpp-ref-stopmatchbackfill
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-cpp-ref-actions.html#integration-server-sdk-cpp-ref-getgamesessionid
https://docs.aws.amazon.com/gamelift/latest/apireference/API_Player.html

Amazon GameLift Servers FlexMatch Developer Guide

player matches for the players currently in the game session. You must include the team
membership for every player. Do not specify a team if you are not using backfill. If your
game server has been accurately reporting player connection status, you should be able to
acquire this data as follows:

1. The server process hosting the game session should have the most up-to-date
information which players are currently connected to the game session.

2. To get player IDs, attributes, and team assignments, pull player data from the game
session object (GameSession), MatchmakerData property (see About matchmaker data).
The matchmaker data includes all players who were matched to the game session, so
you'll need to pull the player data for only the currently connected players.

3. For player latency, if the matchmaker calls for latency data, collect new latency values
from all current players and include it in each Player object. If latency data is omitted
and the matchmaker has a latency rule, the request will not be successfully matched.
Backfill requests require latency data only for the region that the game session is
currently in. You can get a game session's region from the GameSessionId property of
the GameSession object; this value is an ARN, which includes the region.

3. Track the status of a backfill request. Amazon GameLift Servers updates your game
server about the status of backfill requests using the Server SDK callback function
onUpdateGameSession (see Initialize the server process). Add code to handle the status
messages—as well as updated game session objects as a result of successful backfill requests
—at Update match data on the game server.

A matchmaker can process only one match backfill request from a game session at a time. If
you need to cancel a request, call StopMatchBackfill(). If you need to change a request, call
StopMatchBackfill and then submit an updated request.

Generate manual backfill requests from a backend service

As an alternative to sending backfill requests from a game server, you may want to send them from
a client-side game service. To use this option, the client-side service must have access to current
data on game session activity and player connections; if your game uses a session directory service,
this might be a good choice.

This topic assumes that you've already built the necessary FlexMatch components and successfully
added matchmaking processes to your game server and a client-side game service. For more details

Generate manual backfill requests from a backend service Version 79

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-sdk-server-api.html#gamelift-sdk-server-initialize
https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-cpp-ref-actions.html#integration-server-sdk-cpp-ref-stopmatchbackfill

Amazon GameLift Servers FlexMatch Developer Guide

on setting up FlexMatch, see Roadmap: Add matchmaking to a Amazon GameLift Servers hosting
solution.

To enable match backfill for your game, add the following functionality:

• Send matchmaking backfill requests to a matchmaker and track the status of requests.

• Update match information for the game session. See Update match data on the game server

As with other client functionality, a client-side game service uses the AWS SDK with Amazon
GameLift Servers API. This SDK is available in C++, C#, and several other languages. For a general
description of client APIs, see the Amazon GameLift Servers API Reference, which describes the
service API for Amazon GameLift Servers actions and links to language-specific reference guides.

To set up a client-side game service to backfill matched games, complete the following tasks.

1. Trigger a request for backfilling. Generally, a game initiates a backfill request whenever a
matched game has one or more empty player slots. You may want to tie backfill requests to
specific circumstances, such as to fill critical character roles or balance out teams. You'll likely
also want to limit backfilling based on a game session's age. Whatever you use for a trigger,
at a minimum you'll need to the following information. You can get this information from the
game session object (GameSession) by calling DescribeGameSessions with a game session ID.

• Number of currently empty player slots. This value can be calculated from a game session's
maximum player limit and the current player count. Current player count is updated
whenever your game server contacts the Amazon GameLift Servers service to validate a new
player connection or to report a dropped player.

• Creation policy. This setting indicates whether the game session is currently accepting new
players.

The game session object contains other potentially useful information, including game session
start time, custom game properties, and matchmaker data.

2. Create a backfill request. Add code to create and send match backfill requests to a FlexMatch
matchmaker. Backfill requests are handled using these client APIs:

• StartMatchBackfill

• StopMatchmaking

Generate manual backfill requests from a backend service Version 80

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchBackfill.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html

Amazon GameLift Servers FlexMatch Developer Guide

To create a backfill request, call StartMatchBackfill with the following information.
A backfill request is similar to a matchmaking request (see Request matchmaking for
players), but also identifies the existing game session. To cancel a backfill request, call
StopMatchmaking with the backfill request's ticket ID.

• Ticket ID — Provide a matchmaking ticket ID (or opt to have them autogenerated). You can
use the same mechanism to assign ticket IDs to both matchmaking and backfill requests.
Tickets for matchmaking and backfilling are processed the same way.

• Matchmaker — Identify the name of a matchmaking configuration to use. Generally, you'll
want to use the same matchmaker for backfilling that was used to create the original
match. This information is in a game session object (GameSession), MatchmakerData
property, under the matchmaking configuration ARN. The name value is the string following
""matchmakingconfiguration/". (For example, in the ARN value "arn:aws:gamelift:us-
west-2:111122223333:matchmakingconfiguration/MM-4v4", the matchmaking
configuration name is "MM-4v4".)

• Game session ARN — Specify the game session being backfilled. Use the GameSessionId
property from the game session object; this ID uses the ARN value that you need.
Matchmaking tickets (MatchmakingTicket) for backfill requests have the game session ID
while being processed; tickets for new matchmaking requests do not get a game session ID
until the match is placed; the presence of at game session ID is one way to tell the difference
between tickets for new matches and tickets for backfills.

• Player data — Include player information (Player) for all current players in the game session
you are backfilling. This information allows to matchmaker to locate the best possible
player matches for the players currently in the game session. You must include the team
membership for every player. Do not specify a team if you are not using backfill. If your
game server has been accurately reporting player connection status, you should be able to
acquire this data as follows:

1. Call DescribePlayerSessions() with the game session ID to discover all players who are
currently connected to the game session. Each player session includes a player ID. You can
add a status filter to retrieve active player sessions only.

2. Pull player data from the game session object (GameSession), MatchmakerData property
(see About matchmaker data. Use the player IDs acquired in the previous step to get data
for currently connected players only. Since matchmaker data is not updated when players
drop out, you will need extract the data for current players only.

Generate manual backfill requests from a backend service Version 81

https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingTicket.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_Player.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribePlayerSessions.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_GameSession.html

Amazon GameLift Servers FlexMatch Developer Guide

3. For player latency, if the matchmaker calls for latency data, collect new latency values
from all current players and include it in the Player object. If latency data is omitted and
the matchmaker has a latency rule, the request will not be successfully matched. Backfill
requests require latency data only for the region that the game session is currently in. You
can get a game session's region from the GameSessionId property of the GameSession
object; this value is an ARN, which includes the region.

3. Track status of backfill request. Add code to listen for matchmaking ticket status updates.
You can use the mechanism set up to track tickets for new matchmaking requests (see Track
matchmaking events) using event notification (preferred) or polling. Although you don't need
to trigger player acceptance activity with backfill requests, and player information is updated
on the game server, you still need to monitor ticket status to handle request failures and
resubmissions.

A matchmaker can process only one match backfill request from a game session at a time.
If you need to cancel a request, call StopMatchmaking. If you need to change a request, call
StopMatchmaking and then submit an updated request.

Once a match backfill request is successful, your game server receives an updated
GameSession object and handles the tasks needed to join new players to the game session.
See more at Update match data on the game server.

Update match data on the game server

No matter how you initiate match backfill requests in your game, your game server must be able
to handle the game session updates that Amazon GameLift Servers delivers as a result of match
backfill requests.

When Amazon GameLift Servers completes a match backfill request—successfully or not—it calls
your game server using the callback function onUpdateGameSession. This call has three input
parameters: a match backfill ticket ID, a status message , and a GameSession object containing the
most up-to-date matchmaking data including player information. You need to add the following
code to your game server as part of your game server integration:

1. Implement the onUpdateGameSession function. This function must be able to handle the
following status messages (updateReason):

Update match data on the game server Version 82

https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html

Amazon GameLift Servers FlexMatch Developer Guide

• MATCHMAKING_DATA_UPDATED – New players were successfully matched to the game
session. The GameSession object contains updated matchmaker data, including player data
on existing players and newly matched players.

• BACKFILL_FAILED – The match backfill attempt failed due to an internal error. The
GameSession object is unchanged.

• BACKFILL_TIMED_OUT – The matchmaker failed to find a backfill match within the time limit.
The GameSession object is unchanged.

• BACKFILL_CANCELLED – The match backfill request was canceled by a call to
StopMatchmaking (client) or StopMatchBackfill (server). The GameSession object is
unchanged.

2. For successful backfill matches, use the updated matchmaker data to handle the new players
when they connect to the game session. At a minimum, you'll need to use the team assignments
for the new player(s), as well as other player attributes that are required to get the player
started in the game.

3. In your game server's call to the Server SDK action ProcessReady(), add the
onUpdateGameSession callback method name as a process parameter.

Update match data on the game server Version 83

https://docs.aws.amazon.com/gamelift/latest/developerguide/integration-server-sdk-cpp-ref-actions.html#integration-server-sdk-cpp-ref-processready

Amazon GameLift Servers FlexMatch Developer Guide

Security with FlexMatch

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon GameLift
Servers, see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable lAWS and regulations.

For security information related to Amazon GameLift Servers, including FlexMatch, see Security
in Amazon GameLift Servers. This documentation helps you understand how to apply the shared
responsibility model when using Amazon GameLift Servers. The topics show you how to configure
Amazon GameLift Servers to meet your security and compliance objectives. You also learn how
to use other AWS services that help you to monitor and secure your Amazon GameLift Servers
resources.

Version 84

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/gamelift/latest/developerguide/security.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/security.html

Amazon GameLift Servers FlexMatch Developer Guide

Amazon GameLift ServersFlexMatch reference

This section contains reference documentation for matchmaking with Amazon GameLift Servers
FlexMatch.

Topics

• Amazon GameLift ServersFlexMatch API reference (AWS SDK)

• FlexMatch rules language

• FlexMatch matchmaking events

Amazon GameLift ServersFlexMatch API reference (AWS SDK)

This topic provides a task-based list of API operations for Amazon GameLift Servers FlexMatch.
The Amazon GameLift Servers FlexMatch service API is packaged into the AWS SDK in the
aws.gamelift namespace. Download the AWS SDK or view the Amazon GameLift Servers API
reference documentation.

Amazon GameLift Servers FlexMatch provides matchmaking services for use with games that
are hosted with Amazon GameLift Servers hosting solutions (including managed hosting for
custom game servers or Amazon GameLift Servers Realtime, and hosting on Amazon EC2 with
Amazon GameLift Servers FleetIQ), as well as with other hosting systems such as peer-to-peer,
on-premises, or cloud compute primitives. See the Amazon GameLift Servers Developer Guide for
more information on other Amazon GameLift Servers hosting options.

Topics

• Set up matchmaking rules and processes

• Request a match for a player or players

• Available programming languages

Set up matchmaking rules and processes

Call these operations to create a FlexMatch matchmaker, configure the matchmaking process for
your game, and define a set of custom rules for creating matches and teams.

Matchmaking configuration

FlexMatch API reference (AWS SDK) Version 85

https://aws.amazon.com/tools/#SDKs
https://docs.aws.amazon.com/gamelift/latest/apireference/
https://docs.aws.amazon.com/gamelift/latest/apireference/
https://docs.aws.amazon.com/gamelift/latest/developerguide/gamelift-intro.html

Amazon GameLift Servers FlexMatch Developer Guide

• CreateMatchmakingConfiguration – Create a matchmaking configuration with instructions for
evaluating groups of players and building player teams. When using Amazon GameLift Servers
for hosting, also specify how to create a new game session for the match.

• DescribeMatchmakingConfigurations – Retrieve matchmaking configurations defined a Amazon
GameLift Servers region.

• UpdateMatchmakingConfiguration – Change settings for matchmaking configuration. queue.

• DeleteMatchmakingConfiguration – Remove a matchmaking configuration from the region.

Matchmaking rule set

• CreateMatchmakingRuleSet – Create a set of rules to use when searching for player matches.

• DescribeMatchmakingRuleSets – Retrieve matchmaking rule sets defined in a Amazon GameLift
Servers region.

• ValidateMatchmakingRuleSet – Verify syntax for a set of matchmaking rules.

• DeleteMatchmakingRuleSet – Remove a matchmaking rule set from the region.

Request a match for a player or players

Call these operations from your game client service to manage player matchmaking requests.

• StartMatchmaking – Request matchmaking for one player or a group who want to play in the
same match.

• DescribeMatchmaking – Get details on a matchmaking request, including status.

• AcceptMatch – For a match that requires player acceptance, notify Amazon GameLift Servers
when a player accepts a proposed match.

• StopMatchmaking – Cancel a matchmaking request.

• StartMatchBackfill - Request additional player matches to fill empty slots in an existing game
session.

Available programming languages

The AWS SDK with support for Amazon GameLift Servers is available in the following languages.
For information about support for development environments, see the documentation for each
language.

Request a match for a player or players Version 86

https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateMatchmakingConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmakingConfigurations.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_UpdateMatchmakingConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteMatchmakingConfiguration.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_CreateMatchmakingRuleSet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmakingRuleSets.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_ValidateMatchmakingRuleSet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DeleteMatchmakingRuleSet.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_DescribeMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_AcceptMatch.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StopMatchmaking.html
https://docs.aws.amazon.com/gamelift/latest/apireference/API_StartMatchBackfill.html

Amazon GameLift Servers FlexMatch Developer Guide

• C++ (SDK docs) (Amazon GameLift Servers)

• Java (SDK docs) (Amazon GameLift Servers)

• .NET (SDK docs) (Amazon GameLift Servers)

• Go (SDK docs) (Amazon GameLift Servers)

• Python (SDK docs) (Amazon GameLift Servers)

• Ruby (SDK docs) (Amazon GameLift Servers)

• PHP (SDK docs) (Amazon GameLift Servers)

• JavaScript/Node.js (SDK docs) (Amazon GameLift Servers)

FlexMatch rules language

The reference topics in this section describe the syntax and semantics that are used to build
matchmaking rules for use with Amazon GameLift Servers FlexMatch. For detailed help with
writing matchmaking rules and rule sets, see Build a FlexMatch rule set.

Topics

• FlexMatch rule set schema

• FlexMatch rule set property definitions

• FlexMatch rule types

• FlexMatch property expressions

FlexMatch rule set schema

FlexMatch rule sets use standard schema for small-match and large-match rules. For detailed
descriptions of each section, see FlexMatch rule set property definitions.

Rule set schema for small matches

The following schema documents all possible properties and allowed values for a rule set that is
used to build matches of up to 40 players.

{
 "name": "string",
 "ruleLanguageVersion": "1.0",
 "playerAttributes":[{
 "name": "string,

Rules language Version 87

https://aws.amazon.com/sdk-for-cpp/
https://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_game_lift.html
https://aws.amazon.com/sdk-for-java/
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/gamelift/package-summary.html
https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/GameLift/NGameLift.html
https://aws.amazon.com/sdk-for-go/
https://docs.aws.amazon.com/sdk-for-go/api/service/gamelift/
https://aws.amazon.com/sdk-for-python/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/gamelift.html
https://aws.amazon.com/sdk-for-ruby/
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/GameLift.html
https://aws.amazon.com/sdk-for-php/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.GameLift.GameLiftClient.html
https://aws.amazon.com/sdk-for-node-js/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/clients/client-gamelift/index.html

Amazon GameLift Servers FlexMatch Developer Guide

 "type": <"string", "number", "string_list", "string_number_map">,
 "default": "string"
 }],
 "algorithm": {
 "strategy": "exhaustiveSearch",
 "batchingPreference": <"random", "sorted">,
 "sortByAttributes": ["string"],
 "expansionAgeSelection": <"newest", "oldest">,
 "backfillPriority": <"normal", "low", "high">
 },
 "teams": [{
 "name": "string",
 "maxPlayers": number,
 "minPlayers": number,
 "quantity": integer
 }],
 "rules": [{
 "type": "distance",
 "name": "string",
 "description": "string",
 "measurements": "string",
 "referenceValue": number,
 "maxDistance": number,
 "minDistance": number,
 "partyAggregation": <"avg", "min", "max">
 },{
 "type": "comparison",
 "name": "string",
 "description": "string",
 "measurements": "string",
 "referenceValue": number,
 "operation": <"<", "<=", "=", "!=", ">", ">=">,
 "partyAggregation": <"avg", "min", "max">
 },{
 "type": "collection",
 "name": "string",
 "description": "string",
 "measurements": "string",
 "referenceValue": number,
 "operation": <"intersection", "contains", "reference_intersection_count">,
 "maxCount": number,
 "minCount": number,
 "partyAggregation": <"union", "intersection">
 },{

Rule set schema Version 88

Amazon GameLift Servers FlexMatch Developer Guide

 "type": "latency",
 "name": "string",
 "description": "string",
 "maxLatency": number,
 "maxDistance": number,
 "distanceReference": number,
 "partyAggregation": <"avg", "min", "max">
 },{
 "type": "distanceSort",
 "name": "string",
 "description": "string",
 "sortDirection": <"ascending", "descending">,
 "sortAttribute": "string",
 "mapKey": <"minValue", "maxValue">,
 "partyAggregation": <"avg", "min", "max">
 },{
 "type": "absoluteSort",
 "name": "string",
 "description": "string",
 "sortDirection": <"ascending", "descending">,
 "sortAttribute": "string",
 "mapKey": <"minValue", "maxValue">,
 "partyAggregation": <"avg", "min", "max">
 },{
 "type": "compound",
 "name": "string",
 "description": "string",
 "statement": "string"
 }
 }],
 "expansions": [{
 "target": "string",
 "steps": [{
 "waitTimeSeconds": number,
 "value": number
 }, {
 "waitTimeSeconds": number,
 "value": number
 }]
 }]
}

Rule set schema Version 89

Amazon GameLift Servers FlexMatch Developer Guide

Rule set schema for large matches

The following schema documents all possible properties and allowed values for a rule set that is
used to build matches of greater than 40 players. If the total of maxPlayers values for all teams
in the rule set exceeds 40, then FlexMatch processes match requests that use this rule set under the
large-match guidelines.

{
 "name": "string",
 "ruleLanguageVersion": "1.0",
 "playerAttributes":[{
 "name": "string,
 "type": <"string", "number", "string_list", "string_number_map">,
 "default": "string"
 }],
 "algorithm": {
 "strategy": "balanced",
 "batchingPreference": <"largestPopulation", "fastestRegion">,
 "balancedAttribute": "string",
 "expansionAgeSelection": <"newest", "oldest">,
 "backfillPriority": <"normal", "low", "high">
 },
 "teams": [{
 "name": "string",
 "maxPlayers": number,
 "minPlayers": number,
 "quantity": integer
 }],
 "rules": [{
 "name": "string",
 "type": "latency",
 "description": "string",
 "maxLatency": number,
 "partyAggregation": <"avg", "min", "max">
 }, {
 "name": "string",
 "type": "batchDistance",
 "batchAttribute": "string",
 "maxDistance": number
 }],
 "expansions": [{
 "target": "string",
 "steps": [{

Rule set schema Version 90

Amazon GameLift Servers FlexMatch Developer Guide

 "waitTimeSeconds": number,
 "value": number
 }, {
 "waitTimeSeconds": number,
 "value": number
 }]
 }]
}

FlexMatch rule set property definitions

This section defines each property in the rule set schema. For additional help with creating a rule
set, see Build a FlexMatch rule set.

name

A descriptive label for the rule set. This value is not associated with the name assigned to
the Amazon GameLift Servers MatchmakingRuleSet resource. This value is included in the
matchmaking data describing a completed match, but it not used by any Amazon GameLift
Servers processes.

Allowed values: String

Required? No

ruleLanguageVersion

The version of the FlexMatch property expression language being used.

Allowed values: "1.0"

Required? Yes

playerAttributes

A collection of player data that is included in matchmaking requests and is used in the
matchmaking process. You can also declare attributes here to have the player data included
in the matchmaking data that is passed to game servers, even if the data is not used in the
matchmaking process.

Required? No

Rule set property definitions Version 91

https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingRuleSet.html

Amazon GameLift Servers FlexMatch Developer Guide

name

A unique name for player attribute to be used by matchmaker. This name must match the
player attribute name that is referenced in matchmaking requests.

Allowed values: String

Required? Yes

type

The data type of the player attribute value.

Allowed values: "string", "number", "string_list", "string_number_map"

Required? Yes

default

A default value to use when a matchmaking request does not provide one for a player.

Allowed values: Any value allowed for the player attribute.

Required? No

algorithm

Optional configuration settings to customize the matchmaking process.

Required? No

strategy

The method to use when building matches. If this property is not set, the default behavior is
"exhaustiveSearch".

Allowed values:

• "exhaustiveSearch" – Standard matching method. FlexMatch forms a match around the
oldest ticket in a batch by evaluating other tickets in the pool based a set of custom match
rules. This strategy is used for matches of 40 players or fewer. When using this strategy,
batchingPreference should be set to either "random" or "sorted".

• "balanced" – Method that's optimized to form large matches quickly. This strategy is
used only for matches of 41 to 200 players. It forms matches by pre-sorting the ticket
pool, building potential matches and assigning players to teams, and then balancing
each team in a match using a specified player attribute. For example, this strategy can be

Rule set property definitions Version 92

Amazon GameLift Servers FlexMatch Developer Guide

used to equalize the average skill levels of all teams in a match. When using this strategy,
balancedAttribute must be set, and batchingPreference should be set to either
"largestPopulation" or "fastestRegion". Most custom rule types are not recognized with
this strategy.

Required? Yes

batchingPreference

The pre-sorting method to use before grouping tickets for match building. Pre-sorting the
ticket pool causes tickets to be batched together based on a specific characteristic, which
tends to increase uniformity across players in the final matches.

Allowed values:

• "random" – Valid only with strategy = "exhaustiveSearch". No pre-sorting is done; tickets
in the pool are randomly batched. This is the default behavior for an exhaustive search
strategy.

• "sorted" – Valid only with strategy = "exhaustiveSearch". The ticket pool is pre-sorted
based on the player attributes listed in sortbyAttributes.

• "largestPopulation" – Valid only with strategy = "balanced". The ticket pool is pre-
sorted by regions where players are reporting acceptable latency levels. This is the default
behavior for a balanced strategy.

• "fastestRegion" – Valid only with strategy = "balanced". The ticket pool is pre-sorted by
regions where players are reporting their lowest latency levels. Resulting matches take
longer to complete, but latency for all players tends to be low.

Required? Yes

balancedAttribute

The name of a player attribute to use when building large matches with the balanced
strategy.

Allowed values: Any attribute declared in playerAttributes with type = "number".

Required? Yes, if strategy = "balanced".

sortByAttributes

A list of player attributes to use when pre-sorting the ticket pool prior to batching. This
property is only used when pre-sorting with the exhaustive search strategy. The order of the

Rule set property definitions Version 93

Amazon GameLift Servers FlexMatch Developer Guide

attribute list determines sort order. FlexMatch uses standard sorting convention for alpha
and numeric values.

Allowed values: Any attribute declared in playerAttributes.

Required? Yes, if batchingPreference = "sorted".

backfillPriority

The prioritization method for matching backfill tickets. This property determines when
FlexMatch processes the backfill tickets in a batch. It is only used when pre-sorting with the
exhaustive search strategy. If this property is not set, the default behavior is "normal".

Allowed values:

• "normal" – A ticket's request type (backfill or new match) is not considered when forming
matches.

• "high" – A ticket batch is sorted by request type (and then by age), and FlexMatch
attempts to match backfill tickets first.

• "low" – A ticket batch is sorted by request type (and then by age), and FlexMatch attempts
to match non-backfill tickets first.

Required? No

expansionAgeSelection

The method for calculating the wait time for a match rule expansion. Expansions are used to
relax match requirements if a match hasn't been completed after a certain amount of time
passes. Wait time is calculated based on the age of tickets that are already in the partially
filled match. If this property is not set, the default behavior is "newest".

Allowed values:

• "newest" – Expansion wait time is calculated based on the ticket with the most recent
creation timestamp in the partially completed match. Expansions tend to be triggered
more slowly, because one newer ticket can restart the wait time clock.

• "oldest" – Expansion wait time is calculated based on the ticket with the oldest creation
timestamp in the match. Expansions tend to be triggered more quickly.

Required? No

Rule set property definitions Version 94

Amazon GameLift Servers FlexMatch Developer Guide

teams

The configuration of teams in a match. Provide a team name and size range for each team. A
rule set must define at least one team.

name

A unique name for the team. Team names can be referred to in rules and expansions. On a
successful match, players are assigned by team name in the matchmaking data.

Allowed values: String

Required? Yes

maxPlayers

The maximum number of players that can be assigned to the team.

Allowed values: Number

Required? Yes

minPlayers

The minimum number of players that must be assigned to the team before the match is
viable.

Allowed values: Number

Required? Yes

quantity

The number of teams of this type to create in a match. Teams with quantities greater than 1
are designated with an appended number ("Red_1", "Red_2", etc.). If this property is not set,
the default value is "1".

Allowed values: Number

Required? No

rules

A collection of rule statements that define how to evaluate players for a match.

Required? No

Rule set property definitions Version 95

Amazon GameLift Servers FlexMatch Developer Guide

name

A unique name for the rule. All rules in a rule set must have unique names. Rule names are
referenced in event logs and metrics that track activity related to the rule.

Allowed values: String

Required? Yes

description

A text description for the rule. This information can be used to identify the purpose of a rule.
It is not used in the matchmaking process.

Allowed values: String

Required? No

type

The type of rule statement. Each rule type has additional properties that must be set. For
more details on the structure and use of each rule type, see FlexMatch rule types.

Allowed values:

• "absoluteSort" – Sorts using an explicit sorting method that orders tickets in a batch based
on whether a specified player attribute compares to the oldest ticket in the batch.

• "collection" – Evaluates the values in a collection, such as a player attribute that's a
collection, or a set of values for multiple players.

• "comparison" – Compares two values.

• "compound" – Defines a compound matchmaking rule using a logical combination of other
rules in the rule set. Supported only for matches of 40 or fewer players.

• "distance" – Measures the distance between number values.

• "batchDistance" – Measures the difference between an attribute value and uses it to group
match requests.

• "distanceSort" – Sorts using an explicit sorting method that orders tickets in a batch based
on how a specified player attribute with a numerical value compares to the oldest ticket in
the batch.

• "latency" – Evaluates the regional latency data that is reported for a matchmaking
request.

Required? Yes

Rule set property definitions Version 96

Amazon GameLift Servers FlexMatch Developer Guide

expansions

Rules for relaxing match requirements over time when a match cannot be completed. Set up
expansions as a series of steps that apply gradually in order to make matches easier to find.
By default, FlexMatch calculates wait time based on the age of the newest ticket added to a
match. You can change how expansion wait times are calculated using the algorithm property
expansionAgeSelection.

Expansion wait times are absolute values, so each step should have a wait time longer than
the previous step. For example, to schedule a gradual series of expansion, you might use wait
times of 30 seconds, 40 seconds, and 50 seconds. Wait times cannot exceed the maximum time
allowed for a match request, which is set in the matchmaking configuration.

Required? No

target

The rule set element to be relaxed. You can relax team size properties or any rule statement
property. The syntax is "<component name>[<rule/team name>].<property name>".
For example, to change team minimum sizes: teams[Red, Yellow].minPlayers. To
change the minimum skill requirement in a comparison rule statement named "minSkill":
rules[minSkill].referenceValue.

Required? Yes

steps

waitTimeSeconds

The length of time, in seconds, to wait before applying the new value for the target rule
set element.

Required? Yes

value

The new value for the target rule set element.

FlexMatch rule types

Batch distance rule

batchDistance

Rule types Version 97

Amazon GameLift Servers FlexMatch Developer Guide

Batch distance rules measure the difference between two attribute values. You can use the batch
distance rule type with both large and small matches. There are two types of batch distance rules:

• Compare numerical attribute values. For example, a batch distance rule of this type might
require that all players in a match be within two skill levels of each other. For this type, define a
maximum distance between the batchAttribute of all tickets.

• Compare string attribute values. For example, a batch distance rule of this type might require that
all players in a match request the same game mode. For this type, define a batchAttribute
value that FlexMatch uses to form batches.

Batch distance rule properties

• batchAttribute – The player attribute value used to form batches.

• maxDistance – The maximum distance value for a successful match. Used to compare
numerical attributes.

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). Valid options include the minimum (min), maximum (max), and average (avg)
values for a ticket's players. The default is avg.

Example

Examples

{
 "name":"SimilarSkillRatings",
 "description":"All players must have similar skill ratings",
 "type":"batchDistance",
 "batchAttribute":"SkillRating",
 "maxDistance":"500"
}

{
 "name":"SameGameMode",
 "description":"All players must have the same game mode",
 "type":"batchDistance",
 "batchAttribute":"GameMode"
}

Rule types Version 98

Amazon GameLift Servers FlexMatch Developer Guide

Comparison rule

comparison

Comparison rules compare a player attribute value to another value. There are two types of
comparison rules:

• Compare to reference value. For example, a comparison rule of this type might require that
matched players have a certain skill level or greater. For this type, specify a player attribute,
reference value, and a comparison operation.

• Compare across players. For example, a comparison rule of this type might require that all players
in the match use different characters. For this type, specify a player attribute and either the
equal (=) or not-equal (!=) comparison operation. Don't specify a reference value.

Note

Batch distance rules are more efficient for comparing player attributes. To reduce
matchmaking latency, use a batch distance rule when possible.

Comparison rule properties

• measurements – The player attribute value to compare.

• referenceValue – The value to compare the measurement to for a prospective match.

• operation – The value that determines how to compare the measurement to the reference
value. Valid operations include: <, <=, =, !=, >, >=.

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). Valid options include the minimum (min), maximum (max), and average (avg)
values for a ticket's players. The default is avg.

Distance rule

distance

Rule types Version 99

Amazon GameLift Servers FlexMatch Developer Guide

Distance rules measure the difference between two number values, such as the distance between
player skill levels. For example, a distance rule might require that all players have played the game
for at least 30 hours.

Note

Batch distance rules are more efficient for comparing player attributes. To reduce
matchmaking latency, use a batch distance rule when possible.

Distance rule properties

• measurements – The player attribute value to measure distance for. This must be an attribute
with a numerical value.

• referenceValue – The numerical value to measure distance against for a prospective match.

• minDistance/maxDistance – The minimum or maximum distance value for a successful
match.

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). Valid options include the minimum (min), maximum (max), and average (avg)
values for a ticket's players. The default is avg.

Collection rule

collection

Collection rules compare a group of player attribute values to those of other players in the batch
or to a reference value. A collection can contain attribute values for multiple players, a player
attribute as a string list, or both. For example, a collection rule might look at the characters that
the players in a team choose. The rule might then require the team to have at least one of a certain
character.

Collection rule properties

• measurements – The collection of player attribute values to compare. The attribute values must
be string lists.

• referenceValue – The value (or collection of values) to use to compare measurements for a
prospective match.

Rule types Version 100

Amazon GameLift Servers FlexMatch Developer Guide

• operation – The value that determines how to compare a collection of measurements. Valid
operations include the following:

• intersection – This operation measures the number of values that are the same in all
players' collections. For an example of a rule that uses the intersection operation, see Example:
Use explicit sorting to find best matches.

• contains – This operation measures the number of player attribute collections that contain
the specified reference value. For an example of a rule that uses the contains operation, see
Example: Set team-level requirements and latency limits.

• reference_intersection_count – This operation measures the number of items in a
player attribute collection that match items in the reference value collection. You can use
this operation to compare multiple different player attributes. For an example of a rule that
compares multiple player attribute collections, see Example: Find intersections across multiple
player attributes.

• minCount/maxCount – The minimum or maximum count value for a successful match.

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). For this value, you can use union to combine the player attributes of all players
in the party. Or, you can use intersection to use player attributes that the party has in
common. The default is union.

Compound rule

compound

Compound rules use logical statements to form matches of 40 or fewer players. You can use
multiple compound rules in a single rule set. When using multiple compound rules, all compound
rules must be true to form a match.

You can't expand a compound rule using expansion rules, but you can expand underlying or
supporting rules.

Compound rule properties

• statement – The logic used to combine individual rules to form the compound rule. The rules
that you specify in this property must have been defined earlier in your rule set. You can't use
batchDistance rules in a compound rule.

This property supports the following logical operators:

Rule types Version 101

Amazon GameLift Servers FlexMatch Developer Guide

• and – The expression is true if the two provided arguments are true.

• or – The expression is true if either of the two provided arguments are true.

• not – Reverses the outcome of the argument in the expression.

• xor – The expression is true if only one of the arguments is true.

Example Example

The following example matches players of varying skill levels based on the game mode that they
select.

{
 "name": "CompoundRuleExample",
 "type": "compound",
 "statement": "or(and(SeriousPlayers, VeryCloseSkill), and(CasualPlayers,
 SomewhatCloseSkill))"
}

Latency rule

latency

Latency rules measure player latency per location. A latency rule ignores any location with a
latency higher than the maximum. A player must have a latency value below the maximum in at
least one location for the latency rule to accept them. You can use this rule type with large matches
by specifying the maxLatency property.

Latency rule properties

• maxLatency – The maximum acceptable latency value for a location. If a ticket has no locations
with latency under the maximum, then the ticket doesn't match the latency rule.

• maxDistance – The maximum value between the latency of each ticket and the distance
reference value.

• distanceReference – The latency value to compare ticket latency with. Tickets within the
maximum distance of the distance reference value result in a successful match. Valid options
include the minimum (min) and average (avg) player latency values.

Rule types Version 102

Amazon GameLift Servers FlexMatch Developer Guide

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). Valid options include the minimum (min), maximum (max), and average (avg)
values for a ticket's players. The default is avg.

Note

A queue can place a game session in a Region that doesn't match a latency rule. For more
information about latency policies for queues, see Create a player latency policy.

Absolute sort rule

absoluteSort

Absolute sort rules sort a batch of matchmaking tickets based on a specified player attribute
compared to the first ticket added to the batch.

Absolute sort rule properties

• sortDirection – The order to sort the matchmaking tickets in. Valid options include
ascending and descending.

• sortAttribute – The player attribute to sort tickets by.

• mapKey – The options to sort the player attribute if it's a map. Valid options include:

• minValue – The key with the lowest value is first.

• maxValue – The key with the highest value is first.

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). Valid options include the minimum (min) player attribute, the maximum (max)
player attribute, and the average (avg) of all player attributes for players in the party. The
default is avg.

Example

Example

The following example rule sorts players by skill level and averages the skill level of parties.

{

Rule types Version 103

https://docs.aws.amazon.com/gamelift/latest/developerguide/queues-design.html#queues-design-latency

Amazon GameLift Servers FlexMatch Developer Guide

 "name":"AbsoluteSortExample",
 "type":"absoluteSort",
 "sortDirection":"ascending",
 "sortAttribute":"skill",
 "partyAggregation":"avg"
}

Distance sort rule

distanceSort

Distance sort rules sort a batch of matchmaking tickets based on the distance of a specified player
attribute from the first ticket added to the batch.

Distance sort rule properties

• sortDirection – The direction to sort matchmaking tickets. Valid options include ascending
and descending.

• sortAttribute – The player attribute to sort tickets by.

• mapKey – The options to sort the player attribute if it's a map. Valid options include:

• minValue – For the first ticket added to the batch, find the key with the lowest value.

• maxValue – For the first ticket added to the batch, find the key with the highest value.

• partyAggregation – The value that determines how FlexMatch handles tickets with multiple
players (parties). Valid options include the minimum (min), maximum (max), and average (avg)
values for a ticket's players. The default is avg.

FlexMatch property expressions

Property expressions can be used to define certain matchmaking-related properties. They allow
you to use calculations and logic when defining a property value. Property expressions generally
result in one of two forms:

• Individual player data.

• Calculated collections of individual player data.

Property expressions Version 104

Amazon GameLift Servers FlexMatch Developer Guide

Common matchmaking property expressions

A property expression identifies a specific value for a player, team, or match. The following partial
expressions illustrate how to identify teams and players:

Goal Input Meaning Output

To identify a specific
team in a match:

teams[red] The Red team Team

To identify a set of
specific teams in a
match:

teams[red,blue] The Red team and
the Blue team

List<Team>

To identify all teams
in a match:

teams[*] All teams List<Team>

To identify players in
a specific team:

team[red]
.players

Players in the Red
team

List<Player>

To identify players
in a set of specific
teams in a match:

team[red,
blue].players

Players in the match,
grouped by team

List<List<Player>>

To identify players in
a match:

team[*].players Players in the match,
grouped by team

List<List<Player>>

Property expression examples

The following table illustrates some property expressions that build on the previous examples:

Expression Meaning Resulting Type

teams[red].players
[playerId]

The player IDs of all players
on the red team

List<string>

teams[red].players
.attributes[skill]

The "skill" attributes of all
players on the red team

List<number>

Property expressions Version 105

Amazon GameLift Servers FlexMatch Developer Guide

Expression Meaning Resulting Type

teams[red,blue].pl
ayers.attributes[s
kill]

The "skill" attributes of all
players on the Red team and
the Blue team, grouped by
team

List<List<number>>

teams[*].players.a
ttributes[skill]

The "skill" attributes of all
players in the match, grouped
by team

List<List<number>>

Property expression aggregations

Property expressions can be used to aggregate team data by using the following functions or
combinations of functions:

Aggregation Input Meaning Output

min List<number> Get the minimum of
all numbers in the
list.

number

max List<number> Get the maximum of
all numbers in the
list.

number

avg List<number> Get the average of all
numbers in the list.

number

median List<number> Get the median of all
numbers in the list.

number

sum List<number> Get the sum of all
numbers in the list.

number

count List<?> Get the number of
elements in the list.

number

Property expressions Version 106

Amazon GameLift Servers FlexMatch Developer Guide

Aggregation Input Meaning Output

stddev List<number> Get the standard
deviation of all
numbers in the list.

number

flatten List<List<?>> Turn a collection of
nested lists into a
single list containing
all elements.

List<?>

set_inter
section

List<List<string>> Get a list of strings
that are found in
all string lists in a
collection.

List<string>

All above List<List<?>> All operations on a
nested list operate on
each sublist individua
lly to produce a list of
results.

List<?>

The following table illustrates some valid property expressions that use aggregation functions:

Expression Meaning Resulting Type

flatten(teams[*].players.attributes[skill]) The "skill" attribute
s of all players in the
match (not grouped)

List<number>

avg(teams[red].players.attributes[skill]) The average skill of
the red team players

number

avg(teams[*].players.attributes[skill]) The average skill of
each team in the
match

List<number>

Property expressions Version 107

Amazon GameLift Servers FlexMatch Developer Guide

Expression Meaning Resulting Type

avg(flatten(teams[*].players.attributes[skill])) The average skill level
of all players in the
match. This expressio
n gets a flattened list
of player skills and
then averages them.

number

count(teams[red].players) The number of
players on the red
team

number

count (teams[*].players) The number of
players on each team
in the match

List<number>

max(avg(teams[*].players.attributes[skill])) The highest team skill
level in the match

number

FlexMatch matchmaking events

Amazon GameLift Servers FlexMatch emits events for each matchmaking ticket as it is processed.
You can publish these events to an Amazon SNS topic, as described in Set up FlexMatch event
notifications. These events are also emitted to Amazon CloudWatch Events in near real time and on
a best-effort basis.

This topic describes the structure of FlexMatch events and provides an example for each event
type. For more information on matchmaking ticket statuses, see MatchmakingTicket in the Amazon
GameLift Servers API Reference.

Topics

• MatchmakingSearching

• PotentialMatchCreated

• AcceptMatch

• AcceptMatchCompleted

Matchmaking events Version 108

https://docs.aws.amazon.com/gamelift/latest/apireference/API_MatchmakingTicket.html

Amazon GameLift Servers FlexMatch Developer Guide

• MatchmakingSucceeded

• MatchmakingTimedOut

• MatchmakingCancelled

• MatchmakingFailed

MatchmakingSearching

Ticket has been entered into matchmaking. This includes new requests and requests that were part
of a proposed match that failed.

Resource: ConfigurationArn

Detail: type, tickets, estimatedWaitMillis, gameSessionInfo

Example

{
 "version": "0",
 "id": "cc3d3ebe-1d90-48f8-b268-c96655b8f013",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-08T21:15:36.421Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-08T21:15:35.676Z",
 "players": [
 {
 "playerId": "player-1"
 }
]
 }
],
 "estimatedWaitMillis": "NOT_AVAILABLE",

MatchmakingSearching Version 109

Amazon GameLift Servers FlexMatch Developer Guide

 "type": "MatchmakingSearching",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1"
 }
]
 }
 }
}

PotentialMatchCreated

A potential match has been created. This is emitted for all new potential matches, regardless of
whether acceptance is required.

Resource: ConfigurationArn

Detail: type, tickets, acceptanceTimeout, acceptanceRequired, ruleEvaluationMetrics,
gameSessionInfo, matchId

Example

{
 "version": "0",
 "id": "fce8633f-aea3-45bc-aeba-99d639cad2d4",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-08T21:17:41.178Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-08T21:15:35.676Z",
 "players": [
 {
 "playerId": "player-1",

PotentialMatchCreated Version 110

Amazon GameLift Servers FlexMatch Developer Guide

 "team": "red"
 }
]
 },
 {
 "ticketId": "ticket-2",
 "startTime": "2017-08-08T21:17:40.657Z",
 "players": [
 {
 "playerId": "player-2",
 "team": "blue"
 }
]
 }
],
 "acceptanceTimeout": 600,
 "ruleEvaluationMetrics": [
 {
 "ruleName": "EvenSkill",
 "passedCount": 3,
 "failedCount": 0
 },
 {
 "ruleName": "EvenTeams",
 "passedCount": 3,
 "failedCount": 0
 },
 {
 "ruleName": "FastConnection",
 "passedCount": 3,
 "failedCount": 0
 },
 {
 "ruleName": "NoobSegregation",
 "passedCount": 3,
 "failedCount": 0
 }
],
 "acceptanceRequired": true,
 "type": "PotentialMatchCreated",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1",

PotentialMatchCreated Version 111

Amazon GameLift Servers FlexMatch Developer Guide

 "team": "red"
 },
 {
 "playerId": "player-2",
 "team": "blue"
 }
]
 },
 "matchId": "3faf26ac-f06e-43e5-8d86-08feff26f692"
 }
}

AcceptMatch

Players have accepted a potential match. This event contains the current acceptance status of each
player in the match. Missing data means that AcceptMatch hasn't been called for that player.

Resource: ConfigurationArn

Detail: type, tickets, matchId, gameSessionInfo

Example

{
 "version": "0",
 "id": "b3f76d66-c8e5-416a-aa4c-aa1278153edc",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-09T20:04:42.660Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-09T20:01:35.305Z",
 "players": [
 {

AcceptMatch Version 112

Amazon GameLift Servers FlexMatch Developer Guide

 "playerId": "player-1",
 "team": "red"
 }
]
 },
 {
 "ticketId": "ticket-2",
 "startTime": "2017-08-09T20:04:16.637Z",
 "players": [
 {
 "playerId": "player-2",
 "team": "blue",
 "accepted": false
 }
]
 }
],
 "type": "AcceptMatch",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1",
 "team": "red"
 },
 {
 "playerId": "player-2",
 "team": "blue",
 "accepted": false
 }
]
 },
 "matchId": "848b5f1f-0460-488e-8631-2960934d13e5"
 }
}

AcceptMatchCompleted

Match acceptance is complete due to player acceptance, player rejection, or acceptance timeout.

Resource: ConfigurationArn

Detail: type, tickets, acceptance, matchId, gameSessionInfo

AcceptMatchCompleted Version 113

Amazon GameLift Servers FlexMatch Developer Guide

Example

{
 "version": "0",
 "id": "b1990d3d-f737-4d6c-b150-af5ace8c35d3",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-08T20:43:14.621Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-08T20:30:40.972Z",
 "players": [
 {
 "playerId": "player-1",
 "team": "red"
 }
]
 },
 {
 "ticketId": "ticket-2",
 "startTime": "2017-08-08T20:33:14.111Z",
 "players": [
 {
 "playerId": "player-2",
 "team": "blue"
 }
]
 }
],
 "acceptance": "TimedOut",
 "type": "AcceptMatchCompleted",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1",

AcceptMatchCompleted Version 114

Amazon GameLift Servers FlexMatch Developer Guide

 "team": "red"
 },
 {
 "playerId": "player-2",
 "team": "blue"
 }
]
 },
 "matchId": "a0d9bd24-4695-4f12-876f-ea6386dd6dce"
 }
}

MatchmakingSucceeded

Matchmaking has successfully completed and a game session has been created.

Resource: ConfigurationArn

Detail: type, tickets, matchId, gameSessionInfo

Example

{
 "version": "0",
 "id": "5ccb6523-0566-412d-b63c-1569e00d023d",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-09T19:59:09.159Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-09T19:58:59.277Z",
 "players": [
 {
 "playerId": "player-1",
 "playerSessionId": "psess-6e7c13cf-10d6-4756-a53f-db7de782ed67",

MatchmakingSucceeded Version 115

Amazon GameLift Servers FlexMatch Developer Guide

 "team": "red"
 }
]
 },
 {
 "ticketId": "ticket-2",
 "startTime": "2017-08-09T19:59:08.663Z",
 "players": [
 {
 "playerId": "player-2",
 "playerSessionId": "psess-786b342f-9c94-44eb-bb9e-c1de46c472ce",
 "team": "blue"
 }
]
 }
],
 "type": "MatchmakingSucceeded",
 "gameSessionInfo": {
 "gameSessionArn": "arn:aws:gamelift:us-west-2:123456789012:gamesession/836cf48d-
bcb0-4a2c-bec1-9c456541352a",
 "ipAddress": "192.168.1.1",
 "port": 10777,
 "players": [
 {
 "playerId": "player-1",
 "playerSessionId": "psess-6e7c13cf-10d6-4756-a53f-db7de782ed67",
 "team": "red"
 },
 {
 "playerId": "player-2",
 "playerSessionId": "psess-786b342f-9c94-44eb-bb9e-c1de46c472ce",
 "team": "blue"
 }
]
 },
 "matchId": "c0ec1a54-7fec-4b55-8583-76d67adb7754"
 }
}

MatchmakingTimedOut

Matchmaking ticket has failed by timing out.

MatchmakingTimedOut Version 116

Amazon GameLift Servers FlexMatch Developer Guide

Resource: ConfigurationArn

Detail: type, tickets, ruleEvaluationMetrics, message, matchId, gameSessionInfo

Example

{
 "version": "0",
 "id": "fe528a7d-46ad-4bdc-96cb-b094b5f6bf56",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-09T20:11:35.598Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "reason": "TimedOut",
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-09T20:01:35.305Z",
 "players": [
 {
 "playerId": "player-1",
 "team": "red"
 }
]
 }
],
 "ruleEvaluationMetrics": [
 {
 "ruleName": "EvenSkill",
 "passedCount": 3,
 "failedCount": 0
 },
 {
 "ruleName": "EvenTeams",
 "passedCount": 3,
 "failedCount": 0
 },
 {

MatchmakingTimedOut Version 117

Amazon GameLift Servers FlexMatch Developer Guide

 "ruleName": "FastConnection",
 "passedCount": 3,
 "failedCount": 0
 },
 {
 "ruleName": "NoobSegregation",
 "passedCount": 3,
 "failedCount": 0
 }
],
 "type": "MatchmakingTimedOut",
 "message": "Removed from matchmaking due to timing out.",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1",
 "team": "red"
 }
]
 }
 }
}

MatchmakingCancelled

Matchmaking ticket has been canceled.

Resource: ConfigurationArn

Detail: type, tickets, ruleEvaluationMetrics, message, matchId, gameSessionInfo

Example

{
 "version": "0",
 "id": "8d6f84da-5e15-4741-8d5c-5ac99091c27f",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-09T20:00:07.843Z",
 "region": "us-west-2",
 "resources": [

MatchmakingCancelled Version 118

Amazon GameLift Servers FlexMatch Developer Guide

 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "reason": "Cancelled",
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-09T19:59:26.118Z",
 "players": [
 {
 "playerId": "player-1"
 }
]
 }
],
 "ruleEvaluationMetrics": [
 {
 "ruleName": "EvenSkill",
 "passedCount": 0,
 "failedCount": 0
 },
 {
 "ruleName": "EvenTeams",
 "passedCount": 0,
 "failedCount": 0
 },
 {
 "ruleName": "FastConnection",
 "passedCount": 0,
 "failedCount": 0
 },
 {
 "ruleName": "NoobSegregation",
 "passedCount": 0,
 "failedCount": 0
 }
],
 "type": "MatchmakingCancelled",
 "message": "Cancelled by request.",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1"

MatchmakingCancelled Version 119

Amazon GameLift Servers FlexMatch Developer Guide

 }
]
 }
 }
}

MatchmakingFailed

Matchmaking ticket has encountered an error. This may be due to the game session queue not
accessible or to an internal error.

Resource: ConfigurationArn

Detail: type, tickets, ruleEvaluationMetrics, message, matchId, gameSessionInfo

Example

{
 "version": "0",
 "id": "025b55a4-41ac-4cf4-89d1-f2b3c6fd8f9d",
 "detail-type": "GameLift Matchmaking Event",
 "source": "aws.gamelift",
 "account": "123456789012",
 "time": "2017-08-16T18:41:09.970Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:gamelift:us-west-2:123456789012:matchmakingconfiguration/
SampleConfiguration"
],
 "detail": {
 "tickets": [
 {
 "ticketId": "ticket-1",
 "startTime": "2017-08-16T18:41:02.631Z",
 "players": [
 {
 "playerId": "player-1",
 "team": "red"
 }
]
 }
],
 "customEventData": "foo",

MatchmakingFailed Version 120

Amazon GameLift Servers FlexMatch Developer Guide

 "type": "MatchmakingFailed",
 "reason": "UNEXPECTED_ERROR",
 "message": "An unexpected error was encountered during match placing.",
 "gameSessionInfo": {
 "players": [
 {
 "playerId": "player-1",
 "team": "red"
 }
]
 },
 "matchId": "3ea83c13-218b-43a3-936e-135cc570cba7"
 }
}

MatchmakingFailed Version 121

Amazon GameLift Servers FlexMatch Developer Guide

Amazon GameLift Servers release notes and SDK
versions

The Amazon GameLift Servers release notes provide details about new Amazon GameLift Servers
features, updates, and fixes related to the service, including FlexMatch features. You can also find
the Amazon GameLift Servers version history for all SDKs and plugins.

• Amazon GameLift Servers SDK versions

• Amazon GameLift Servers release notes

Version 122

https://docs.aws.amazon.com/gamelift/latest/developerguide/release-notes.html#release-notes-summary
https://docs.aws.amazon.com/gamelift/latest/developerguide/release-notes.html#release-notes-history

Amazon GameLift Servers FlexMatch Developer Guide

Amazon GameLift Servers developer resources

To view all Amazon GameLift Servers documentation and developer resources, see the Amazon
GameLift Servers Documentation home page.

Version 123

https://docs.aws.amazon.com/gamelift/index.html
https://docs.aws.amazon.com/gamelift/index.html

	Amazon GameLift Servers
	Table of Contents
	What is Amazon GameLift Servers FlexMatch?
	Key FlexMatch features
	FlexMatch with Amazon GameLift Servers hosting
	Pricing for Amazon GameLift ServersFlexMatch
	How Amazon GameLift ServersFlexMatch works
	Matchmaking components
	FlexMatch matchmaking process

	FlexMatch supported AWS Regions

	Getting started with FlexMatch
	Set up an AWS account for FlexMatch
	Roadmap: Create a standalone matchmaking solution with FlexMatch
	Roadmap: Add matchmaking to a Amazon GameLift Servers hosting solution

	Buiding a Amazon GameLift ServersFlexMatch matchmaker
	Design a FlexMatch matchmaker
	Configure a basic matchmaker
	Choose a location for the matchmaker
	Add optional elements

	Build a FlexMatch rule set
	Design a FlexMatch rule set
	Describe the rule set (required)
	Customize the match algorithm
	Add pre-batch sorting
	Prioritize backfill tickets
	Favor older tickets with expansions

	Declare player attributes
	Define match teams
	Set rules for player matching
	Allow requirements to relax over time

	Design a FlexMatch large-match rule set
	Customize match algorithm for large matches
	Declare player attributes
	Define teams
	Set rules for large matches
	Relax large match requirements

	Tutorial: Create a matchmaking rule set
	FlexMatch rule set examples
	Example: Create two teams with evenly matched players
	Example: Create uneven teams (Hunters vs Monster)
	Example: Set team-level requirements and latency limits
	Example: Use explicit sorting to find best matches
	Example: Find intersections across multiple player attributes
	Example: Compare attributes across all players
	Example: Create a large match
	Example: Create a multi-team large match
	Example: Create a large match with players with similar attributes
	Example: Use a compound rule to create a match with players with similar attributes or similar selections
	Example: Create a rule that uses a player's block list

	Create a matchmaking configuration
	Tutorial: Create a matchmaker for Amazon GameLift Servers hosting
	Tutorial: Create a matchmaker for standalone FlexMatch
	Tutorial: Edit a matchmaking configuration

	Set up FlexMatch event notifications
	Set up EventBridge events
	Tutorial: Set up an Amazon SNS topic
	Set up an SNS topic with server-side encryption
	Configure a topic subscription to invoke a Lambda function

	Preparing your game for FlexMatch
	Add FlexMatch to a game client
	Prerequisite client-side tasks
	Request matchmaking for players
	To create a matchmaking request:
	To retrieve match request details
	To cancel a match request

	Track matchmaking events
	Request player acceptance
	Connect to a match
	Sample matchmaking requests

	Add FlexMatch to an Amazon GameLift Servers-hosted game server
	About matchmaker data
	Set up a game server for FlexMatch

	Backfill existing games with FlexMatch
	Turn on automatic backfill
	Generate manual backfill requests from a game server
	Generate manual backfill requests from a backend service
	Update match data on the game server

	Security with FlexMatch
	Amazon GameLift ServersFlexMatch reference
	Amazon GameLift ServersFlexMatch API reference (AWS SDK)
	Set up matchmaking rules and processes
	Request a match for a player or players
	Available programming languages

	FlexMatch rules language
	FlexMatch rule set schema
	Rule set schema for small matches
	Rule set schema for large matches

	FlexMatch rule set property definitions
	FlexMatch rule types
	Batch distance rule
	Comparison rule
	Distance rule
	Collection rule
	Compound rule
	Latency rule
	Absolute sort rule
	Distance sort rule

	FlexMatch property expressions
	Common matchmaking property expressions
	Property expression examples
	Property expression aggregations

	FlexMatch matchmaking events
	MatchmakingSearching
	Example

	PotentialMatchCreated
	Example

	AcceptMatch
	Example

	AcceptMatchCompleted
	Example

	MatchmakingSucceeded
	Example

	MatchmakingTimedOut
	Example

	MatchmakingCancelled
	Example

	MatchmakingFailed
	Example

	Amazon GameLift Servers release notes and SDK versions
	Amazon GameLift Servers developer resources

