
Porting Guide

FreeRTOS

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

FreeRTOS Porting Guide

FreeRTOS: Porting Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

FreeRTOS Porting Guide

Table of Contents

FreeRTOS Porting .. 1
What is FreeRTOS ... 1
Porting FreeRTOS ... 1

Porting FAQs .. 1
Downloading FreeRTOS for Porting ... 3
Setting up your workspace and project for porting ... 4
Porting the FreeRTOS libraries ... 5

Porting flowchart ... 5
FreeRTOS kernel ... 7

Prerequisites ... 7
Configuring the FreeRTOS kernel .. 7
Testing ... 8

Implementing the library logging macros .. 8
Testing ... 8

TCP/IP .. 9
Porting FreeRTOS+TCP .. 9
Testing ... 10

corePKCS11 .. 10
When to implement a complete PKCS #11 module .. 11
When to use FreeRTOS corePKCS11 ... 11
Porting corePKCS11 ... 12
Testing ... 13

Network Transport Interface ... 18
TLS ... 18
NTIL .. 18
Prerequisites ... 18
Porting ... 18
Testing ... 19

coreMQTT ... 21
Prerequisites ... 21
Testing ... 21
Create reference MQTT demo .. 21

coreHTTP .. 22
Testing ... 23

iii

FreeRTOS Porting Guide

Over-the-Air (OTA) updates ... 23
Prerequisites ... 23
Platform porting ... 24
E2E and PAL tests ... 25
IoT device bootloader .. 31

Cellular Interface .. 36
Prerequisites ... 36

Migrating from MQTT Version 3 to coreMQTT .. 37
Migrating from version 1 to version 3 for OTA applications .. 38

Summary of API changes ... 38
Description of changes required ... 42

OTA_Init .. 42
OTA_Shutdown .. 47
OTA_GetState ... 48
OTA_GetStatistics .. 48
OTA_ActivateNewImage .. 49
OTA_SetImageState .. 49
OTA_GetImageState ... 50
OTA_Suspend ... 51
OTA_Resume .. 51
OTA_CheckForUpdate .. 52
OTA_EventProcessingTask ... 52
OTA_SignalEvent ... 53

Integrating the OTA Library as a submodule in your application .. 54
References .. 54

Migrating from version 1 to version 3 for OTA PAL port .. 55
Changes to OTA PAL ... 55

Functions ... 55
Data Types .. 57
Configuration changes ... 58

Changes to the OTA PAL tests .. 59
Checklist ... 60

Document history .. 62

iv

FreeRTOS Porting Guide

FreeRTOS Porting

What is FreeRTOS

Developed in partnership with the world's leading chip companies over a 20-year period, and
now downloaded every 170 seconds, FreeRTOS is a market-leading real-time operating system
(RTOS) for microcontrollers and small microprocessors. Distributed freely under the MIT open
source license, FreeRTOS includes a kernel and a growing set of libraries suitable for use across
all industry sectors. FreeRTOS is built with an emphasis on reliability and ease of use. FreeRTOS
includes libraries for connectivity, security, and over-the-air (OTA) updates, and demo applications
that demonstrate FreeRTOS features on qualified boards.

For more information, visit FreeRTOS.org.

Porting FreeRTOS to your IoT board

You will need to port FreeRTOS software libraries to your microcontroller-based board based on its
features and your application.

To port FreeRTOS to your device

1. Follow the instructions in Downloading FreeRTOS for Porting to download the latest version of
FreeRTOS for porting.

2. Follow the instructions in Setting up your workspace and project for porting to configure the
files and folders in your FreeRTOS download for porting and testing.

3. Follow the instructions in Porting the FreeRTOS libraries to port the FreeRTOS libraries to your
device. Each porting topic includes instructions on testing the ports.

Porting FAQs

What is a FreeRTOS port?

A FreeRTOS port is a board-specific implementation of APIs for the required FreeRTOS libraries
and the FreeRTOS kernel that your platform supports. The port enables the APIs to work on
the board, and implements the required integration with the device drivers and BSPs that are

What is FreeRTOS 1

https://devices.amazonaws.com/search?page=1&sv=freertos
https://www.freertos.org/

FreeRTOS Porting Guide

provided by the platform vendor. Your port should also include any configuration adjustments
(e.g. clock rate, stack size, heap size) that are required by the board.

If you have questions about porting that are not answered on this page or in the rest of the
FreeRTOS Porting Guide, please see the available FreeRTOS support options.

Porting FAQs 2

https://freertos.org/RTOS-contact-and-support.html

FreeRTOS Porting Guide

Downloading FreeRTOS for Porting

Download the latest FreeRTOS or Long Term Support (LTS) version from freertos.org or clone from
GitHub (FreeRTOS-LTS) or (FreeRTOS).

Note

We recommend that you clone the repository. Cloning makes it easier for you to pick up
updates to the main branch as they are pushed to the repository.

Alternatively, submodule the individual libraries from the FreeRTOS or FreeRTOS-LTS repository.
However, ensure that the library versions match the combination listed in the manifest.yml file
in the FreeRTOS or FreeRTOS-LTS repository.

After you download or clone FreeRTOS, you can start porting the FreeRTOS libraries to your board.
For instructions, see Setting up your workspace and project for porting, and then see Porting the
FreeRTOS libraries.

3

https://www.freertos.org/a00104.html
https://github.com/FreeRTOS/FreeRTOS-LTS
https://github.com/FreeRTOS/FreeRTOS

FreeRTOS Porting Guide

Setting up your workspace and project for porting

Follow the steps below to set up your workspace and project:

• Use a project structure and build system of your choice to import the FreeRTOS libraries.

• Create a project using an Integrated Development Environment (IDE) and toolchain supported by
your board.

• Include the board support packages (BSP) and board-specific drivers in your project.

Once your workspace is set up, you can start porting individual FreeRTOS libraries.

4

FreeRTOS Porting Guide

Porting the FreeRTOS libraries

Before you start porting, follow the instructions at Setting up your workspace and project for
porting.

The FreeRTOS porting flowchart describes the libraries required for porting.

To port FreeRTOS to your device, follow the instructions in the topics below.

1. Configuring a FreeRTOS kernel port

2. Implementing the library logging macros

3. Porting a TCP/IP stack

4. Porting the Network Transport Interface

5. Porting the corePKCS11 library

6. Configuring the coreMQTT library

7. Configuring the coreHTTP library

8. Porting the AWS IoT over-the-air (OTA) update library

9. Porting the Cellular Interface library

FreeRTOS porting flowchart

Use the porting flowchart below as a visual aid, as you port FreeRTOS to your board.

Porting flowchart 5

FreeRTOS Porting Guide

Porting flowchart 6

FreeRTOS Porting Guide

Configuring a FreeRTOS kernel port

This section provides instructions for integrating a port of the FreeRTOS kernel into a FreeRTOS
port-testing project. For a list of available kernel ports, see FreeRTOS kernel ports.

FreeRTOS uses the FreeRTOS kernel for multitasking and intertask communications. For more
information, see the FreeRTOS kernel fundamentals in the FreeRTOS User Guide and FreeRTOS.org.

Note

Porting the FreeRTOS kernel to a new architecture is not included in this documentation. If
you are interested, contact the FreeRTOS engineering team.
For the FreeRTOS Qualification program, only existing FreeRTOS kernel ports are
supported. Modifications to these ports are not accepted within the program. Review the
FreeRTOS kernel port policy for more information.

Prerequisites

To set up the FreeRTOS kernel for porting, you need the following:

• An official FreeRTOS kernel port, or FreeRTOS supported ports for the target platform.

• An IDE project that includes the correct FreeRTOS kernel port files for the target platform and
compiler. For information about setting up a test project, see Setting up your workspace and
project for porting.

Configuring the FreeRTOS kernel

FreeRTOS kernel is customized using a configuration file called FreeRTOSConfig.h. This file
specifies application-specific configuration settings for the kernel. For a description of each
configuration option, see Customization on FreeRTOS.org.

To configure the FreeRTOS kernel to work with your device, include FreeRTOSConfig.h, and
modify any additional FreeRTOS configurations.

For a description of each configuration option, see Customization configurations on FreeRTOS.org.

FreeRTOS kernel 7

https://freertos.org/RTOS_ports.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-guide-freertos-kernel.html
https://freertos.org/index.html
https://freertos.org/RTOS-contact-and-support.html
https://freertos.org/differences-between-officially-supported-and-contributed-FreeRTOS-code.html
https://freertos.org/differences-between-officially-supported-and-contributed-FreeRTOS-code.html
https://freertos.org/a00110.html
https://freertos.org/a00110.html

FreeRTOS Porting Guide

Testing

• Run a simple FreeRTOS task to log a message to serial output console.

• Verify that the message outputs to console as expected.

Implementing the library logging macros

The FreeRTOS libraries use the following logging macros, listed in increasing order of verbosity.

• LogError

• LogWarn

• LogInfo

• LogDebug

A definition for all the macros must be provided. The recommendations are:

• Macros should support C89 style logging.

• Logging should be thread safe. Log lines from multiple tasks must not interleave with each
other.

• Logging APIs must not block, and must free application tasks from blocking on I/O.

Refer to the Logging Functionality on FreeRTOS.org for implementation specifics. You can see an
implementation in this example.

Testing

• Run a test with multiple tasks to verify logs do not interleave.

• Run a test to verify that the logging APIs do not block on I/O.

• Test logging macros with various standards, such as C89,C99 style logging.

• Test logging macros by setting different log levels, such as Debug, Info, Error, and Warning.

Testing 8

https://www.freertos.org/logging.html
https://github.com/FreeRTOS/lab-iot-reference-nxp-rt1060/tree/main/examples/common/logging

FreeRTOS Porting Guide

Porting a TCP/IP stack

This section provides instruction for porting and testing on-board TCP/IP stacks. If your platform
offloads TCP/IP and TLS functionality to a separate network processor or module, you can skip this
porting section and visit Porting the Network Transport Interface.

FreeRTOS+TCP is a native TCP/IP stack for the FreeRTOS kernel. FreeRTOS+TCP is developed
and maintained by the FreeRTOS engineering team and is the recommended TCP/IP stack to use
with FreeRTOS. For more information, see Porting FreeRTOS+TCP. Alternatively, you can use the
third-party TCP/IP stack lwIP . The testing instruction provided in this section uses the transport
interface tests for TCP plain text, and is not dependent on the specific implemented TCP/IP stack.

Porting FreeRTOS+TCP

FreeRTOS+TCP is a native TCP/IP stack for the FreeRTOS kernel. For more information, see
FreeRTOS.org.

Prerequisites

To port the FreeRTOS+TCP library, you need the following:

• An IDE project that includes the vendor-supplied Ethernet or Wi-Fi drivers.

For information about setting up a test project, see Setting up your workspace and project for
porting.

• A validated configuration of the FreeRTOS kernel.

For information about configuring the FreeRTOS kernel for your platform, see Configuring a
FreeRTOS kernel port.

Porting

Before you start porting the FreeRTOS+TCP library, check the GitHub directory to see if a port to
your board already exists.

If a port does not exist, do the following:

1. Follow the Porting FreeRTOS+TCP to a Different Microcontroller instructions on FreeRTOS.org
to port FreeRTOS+TCP to your device.

TCP/IP 9

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html
https://savannah.nongnu.org/projects/lwip/
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/main/source/portable/NetworkInterface
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Ethernet_Porting.html

FreeRTOS Porting Guide

2. If necessary, follow the Porting FreeRTOS+TCP to a New Embedded C Compiler instructions on
FreeRTOS.org to port FreeRTOS+TCP to a new compiler.

3. Implement a new port that uses the vendor-supplied Ethernet or Wi-Fi drivers in a file called
NetworkInterface.c. Visit the GitHub repository for a template.

After you create a port, or if a port already exists, create FreeRTOSIPConfig.h, and edit the
configuration options so they are correct for your platform. For more information about the
configuration options, see FreeRTOS+TCP Configuration on FreeRTOS.org.

Testing

Whether you use FreeRTOS+TCP library or a third party library, follow the steps below for testing:

• Provide an implementation for connect/disconnect/send/receive APIs in transport
interface tests.

• Setup an echo server in plain text TCP connection mode, and run transport interface tests.

Note

To officially qualify a device for FreeRTOS, if your architecture requires to port a TCP/IP
software stack, you need to validate the device's ported source code against transport
interface tests in plain text TCP connection mode with AWS IoT Device Tester. Follow the
instructions in Using AWS IoT Device Tester for FreeRTOS in the FreeRTOS User Guide to set
up AWS IoT Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device.json file in the Device Tester configs folder.

Porting the corePKCS11 library

The Public Key Cryptography Standard #11 defines a platform-independent API to manage and
use cryptographic tokens. PKCS 11 refers to the standard and the APIs defined by it. The PKCS #11
cryptographic API abstracts key storage, get/set properties for cryptographic objects, and session
semantics. It's widely used for manipulating common cryptographic objects. Its functions allow
application software to use, create, modify, and delete cryptographic objects, without exposing
those objects to the application's memory.

Testing 10

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/Embedded_Compiler_Porting.html
https://github.com/FreeRTOS/FreeRTOS-Plus-TCP/tree/main/source/portable/NetworkInterface/board_family
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/TCP_IP_Configuration.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://en.wikipedia.org/wiki/PKCS_11

FreeRTOS Porting Guide

FreeRTOS libraries and reference integrations use a subset of the PCKS #11 interface standard,
with a focus on the operations involving asymmetric keys, random number generation, and
hashing. The below table lists the use cases and required PKCS #11 APIs to support.

Use Cases

Use Case Required PKCS #11 API Family

All Initialize, Finalize, Open/Close Session,
GetSlotList, Login

Provisioning GenerateKeyPair, CreateObject, DestroyObject,
InitToken, GetTokenInfo

TLS Random, Sign, FindObject, GetAttributeValue

FreeRTOS+TCP Random, Digest

OTA Verify, Digest, FindObject, GetAttributeValue

When to implement a complete PKCS #11 module

Storing private keys in general-purpose flash memory can be convenient in evaluation and rapid
prototyping scenarios. We recommend you use dedicated cryptographic hardware to reduce the
threats of data theft and device duplication in production scenarios. Cryptographic hardware
includes components with features that prevent cryptographic secret keys from being exported.
To support this, you will have to implement a subset of PKCS #11 required to work with FreeRTOS
libraries as defined in the above table.

When to use FreeRTOS corePKCS11

The corePKCS11 library contains a software-based implementation of the PKCS #11 interface
(API) that uses the cryptographic functionality provided by Mbed TLS. This is provided for rapid
prototyping and evaluation scenarios where the hardware does not have a dedicated cryptographic
hardware. In this case, you only have to implement corePKCS11 PAL to make the corePKCS11
software-based implementation to work with your hardware platform.

When to implement a complete PKCS #11 module 11

https://tls.mbed.org/

FreeRTOS Porting Guide

Porting corePKCS11

You will have to have implementations to read and write cryptographic objects to non-volatile
memory (NVM), such as on-board flash memory. Cryptographic objects must be stored in a
section of NVM that is not initialized and is not erased on device reprogramming. Users of the
corePKCS11 library will provision devices with credentials, and then reprogram the device with a
new application that accesses these credentials through the corePKCS11 interface. The corePKCS11
PAL ports must provide a location to store:

• The device client certificate

• The device client private key

• The device client public key

• A trusted root CA

• A code-verification public key (or a certificate that contains the code-verification public key) for
secure boot-loader and over-the-air (OTA) updates

• A Just-In-Time provisioning certificate

Include the header file and implement the PAL APIs defined.

PAL APIs

Function Description

PKCS11_PAL_Initialize Initializes the PAL layer. Called by the
corePKCS11 library at the start of its initializ
ation sequence.

PKCS11_PAL_SaveObject Writes data to non-volatile storage.

PKCS11_PAL_FindObject Uses a PKCS #11 CKA_LABEL to search for a
corresponding PKCS #11 object in non-volatile
storage, and returns that object’s handle, if it
exists.

PKCS11_PAL_GetObjectValue Retrieves the value of an object, given the
handle.

Porting corePKCS11 12

https://github.com/FreeRTOS/corePKCS11/blob/main/source/include/core_pkcs11_pal.h

FreeRTOS Porting Guide

Function Description

PKCS11_PAL_GetObjectValueCleanup Cleanup for the PKCS11_PAL_GetObje
ctValue call. Can be used to free memory
allocated in a PKCS11_PAL_GetObje
ctValue call.

Testing

If you use the FreeRTOS corePKCS11 library or implement the required subset of PKCS11 APIs,
you must pass FreeRTOS PKCS11 tests. These test if the required functions for FreeRTOS libraries
perform as expected.

This section also describes how you can locally run the FreeRTOS PKCS11 tests with the
qualification tests.

Prerequisites

To set up the FreeRTOS PKCS11 tests, the following has to be implemented.

• A supported port of PKCS11 APIs.

• An implementation of FreeRTOS qualification tests platform functions which include the
following:

• FRTest_ThreadCreate

• FRTest_ThreadTimedJoin

• FRTest_MemoryAlloc

• FRTest_MemoryFree

(See the README.md file for the FreeRTOS Libraries Integration Tests for PKCS #11 on GitHub.)

Porting tests

• Add FreeRTOS-Libraries-Integration-Tests as a submodule into your project. The submodule can
be placed in any directory of the project, as long as it can be built.

Testing 13

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/tree/main/src/pkcs11
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/tree/main/src/pkcs11

FreeRTOS Porting Guide

• Copy config_template/test_execution_config_template.h and config_template/
test_param_config_template.h to a project location in the build path, and rename them to
test_execution_config.h and test_param_config.h.

• Include relevant files into the build system. If using CMake, qualification_test.cmake and
src/pkcs11_tests.cmake can be used to include relevant files.

• Implement UNITY_OUTPUT_CHAR so that test output logs and device logs do not interleave.

• Integrate the MbedTLS, which verifies the cryptoki operation result.

• Call RunQualificationTest() from the application.

Configuring tests

The PKCS11 test suite must be configured according to the PKCS11 implementation. The following
table lists the configuration required by PKCS11 tests in the test_param_config.h header file.

PKSC11 test configurations

Configuration Description

PKCS11_TEST_RSA_KEY_SUPPORT The porting supports RSA key functions.

PKCS11_TEST_EC_KEY_SUPPORT The porting supports EC key functions.

PKCS11_TEST_IMPORT_PRIVATE_KEY_SUPPO
RT

The porting supports the import of the private
key. RSA and EC key import are validated in
the test if the supporting key functions are
enabled.

PKCS11_TEST_GENERATE_KEYPAIR_SUPPORT The porting supports keypair generation. EC
keypair generation is validated in the test if
the supporting key functions are enabled.

PKCS11_TEST_PREPROVISIONED_SUPPORT The porting has pre-provisioned credentia
ls. PKCS11_TEST_LABEL_DEVICE_PR
IVATE_KEY_FOR_TLS , PKCS11_TE
ST_LABEL_DEVICE_PUBLIC_KEY_
FOR_TLS and PKCS11_TEST_LABEL_
DEVICE_CERTIFICATE_FOR_TLS , are
examples of the credentials.

Testing 14

FreeRTOS Porting Guide

Configuration Description

PKCS11_TEST_LABEL_DEVICE_PRIVATE_KEY
_FOR_TLS

The label of the private key used in the test.

PKCS11_TEST_LABEL_DEVICE_PUBLIC_KEY_
FOR_TLS

The label of the public key used in the test.

PKCS11_TEST_LABEL_DEVICE_CERTIFICATE
_FOR_TLS

The label of the certificate used in the test.

PKCS11_TEST_JITP_CODEVERIFY_ROOT_CER
T_SUPPORTED

The porting supports storage for JITP. Set this
to 1 to enable the JITP codeverify test.

PKCS11_TEST_LABEL_CODE_VERIFICATION_
KEY

The label of the code verification key used in
JITP codeverify test.

PKCS11_TEST_LABEL_JITP_CERTIFICATE The label of the JITP certificate used in JITP
codeverify test.

PKCS11_TEST_LABEL_ROOT_CERTIFICATE The label of the root certificate used in JITP
codeverify test.

FreeRTOS libraries and reference integrations must support a minimum of one key function
configuration like RSA or Elliptic curve keys, and one key provisioning mechanism supported by the
PKCS11 APIs. The test must enable the following configurations:

• At least one of the following key function configurations:

• PKCS11_TEST_RSA_KEY_SUPPORT

• PKCS11_TEST_EC_KEY_SUPPORT

• At least one of the following key provisioning configurations:

• PKCS11_TEST_IMPORT_PRIVATE_KEY_SUPPORT

• PKCS11_TEST_GENERATE_KEYPAIR_SUPPORT

• PKCS11_TEST_PREPROVISIONED_SUPPORT

The pre-provisioned device credential test must run under the following conditions:

Testing 15

FreeRTOS Porting Guide

• PKCS11_TEST_PREPROVISIONED_SUPPORT must be enabled and other provisioning
mechanisms disabled.

• Only one key function, either PKCS11_TEST_RSA_KEY_SUPPORT or
PKCS11_TEST_EC_KEY_SUPPORT, is enabled.

• Set up the pre-provisioned key labels according to your key function,
including PKCS11_TEST_LABEL_DEVICE_PRIVATE_KEY_FOR_TLS,
PKCS11_TEST_LABEL_DEVICE_PUBLIC_KEY_FOR_TLS and
PKCS11_TEST_LABEL_DEVICE_CERTIFICATE_FOR_TLS. These credentials must exist before
running the test.

The test may need to run several times with different configurations, if the implementation
supports pre-provisioned credentials and other provisioning mechanisms.

Note

The objects with labels PKCS11_TEST_LABEL_DEVICE_PRIVATE_KEY_FOR_TLS,
PKCS11_TEST_LABEL_DEVICE_PUBLIC_KEY_FOR_TLS and
PKCS11_TEST_LABEL_DEVICE_CERTIFICATE_FOR_TLS are destroyed
during the test if either PKCS11_TEST_GENERATE_KEYPAIR_SUPPORT or
PKCS11_TEST_GENERATE_KEYPAIR_SUPPORT is enabled.

Running tests

This section describes how you can locally test the PKCS11 interface with the qualification tests.
Alternatively, you can also use IDT to automate the execution. See AWS IoT Device Tester for
FreeRTOS in the FreeRTOS User Guide for details.

The following instructions describe how to run the tests:

• Open test_execution_config.h and define CORE_PKCS11_TEST_ENABLED to 1.

• Build and flash the application to your device to run. The test result are output to the serial port.

The following is an example of the output test result.

Testing 16

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

FreeRTOS Porting Guide

TEST(Full_PKCS11_StartFinish, PKCS11_StartFinish_FirstTest) PASS
TEST(Full_PKCS11_StartFinish, PKCS11_GetFunctionList) PASS
TEST(Full_PKCS11_StartFinish, PKCS11_InitializeFinalize) PASS
TEST(Full_PKCS11_StartFinish, PKCS11_GetSlotList) PASS
TEST(Full_PKCS11_StartFinish, PKCS11_OpenSessionCloseSession) PASS
TEST(Full_PKCS11_Capabilities, PKCS11_Capabilities) PASS
TEST(Full_PKCS11_NoObject, PKCS11_Digest) PASS
TEST(Full_PKCS11_NoObject, PKCS11_Digest_ErrorConditions) PASS
TEST(Full_PKCS11_NoObject, PKCS11_GenerateRandom) PASS
TEST(Full_PKCS11_NoObject, PKCS11_GenerateRandomMultiThread) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_CreateObject) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_FindObject) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_GetAttributeValue) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_Sign) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_FindObjectMultiThread) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_GetAttributeValueMultiThread) PASS
TEST(Full_PKCS11_RSA, PKCS11_RSA_DestroyObject) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_GenerateKeyPair) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_CreateObject) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_FindObject) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_GetAttributeValue) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_Sign) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_Verify) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_FindObjectMultiThread) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_GetAttributeValueMultiThread) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_SignVerifyMultiThread) PASS
TEST(Full_PKCS11_EC, PKCS11_EC_DestroyObject) PASS

27 Tests 0 Failures 0 Ignored
OK

Testing is complete when all tests pass.

Note

To officially qualify a device for FreeRTOS, you must validate the device's ported source
code with AWS IoT Device Tester. Follow the instructions in Using AWS IoT Device Tester for
FreeRTOS in the FreeRTOS User Guide to set up AWS IoT Device Tester for port validation.
To test a specific library's port, the correct test group must be enabled in the device.json
file in the AWS IoT Device Tester configs folder.

Testing 17

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

FreeRTOS Porting Guide

Porting the Network Transport Interface

Integrating the TLS library

For Transport Layer Security (TLS) authentication, use your preferred TLS stack. We recommend
using Mbed TLS because it is tested with FreeRTOS libraries. You can find an example of this at this
GitHub repository.

Regardless of the TLS implementation used by your device, you must implement the underlying
transport hooks for TLS stack with TCP/IP stack. They must support the TLS cipher suites that are
supported by AWS IoT.

Porting the Network Transport Interface library

You must implement a network transport interface to use coreMQTT and coreHTTP. Network
Transport Interface contains function pointers and context data required to send and receive data
on a single network connection. See Transport Interface for more details. FreeRTOS provides a
set of built-in network transport interface tests to validate these implementations. The following
section guides you how to set up your project to run these tests.

Prerequisites

To port this test, you need the following:

• A project with a build system that can build FreeRTOS with a validated FreeRTOS kernel port.

• Working implementation of network drivers.

Porting

• Add FreeRTOS-Libraries-Integration-Tests as a submodule into your project. It doesn’t matter
where the submodule is placed in the project, as long as it can be built.

• Copy config_template/test_execution_config_template.h and config_template/
test_param_config_template.h to a project location in the build path, and rename them to
test_execution_config.h and test_param_config.h.

• Include relevant files into the build system. If using CMake, qualification_test.cmake and
src/transport_interface_tests.cmake are used to include relevant files.

• Implement the following functions at an appropriate project location:

Network Transport Interface 18

https://tls.mbed.org/
https://github.com/FreeRTOS/FreeRTOS
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support
https://www.freertos.org/mqtt/index.html
https://www.freertos.org/http/index.html
https://www.freertos.org/network-interface.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests

FreeRTOS Porting Guide

• • A network connect function: The signature is defined by NetworkConnectFunc in src/
common/network_connection.h. This function takes in a pointer to network context, a
pointer to host info, and a pointer to network credentials. It establishes a connection with the
server specified in the host info with the provided network credentials.

• A network disconnect function: The signature is defined by NetworkDisconnectFunc
in src/common/network_connection.h. This function takes in a pointer to a network
context. It disconnects a previously established connection stored in the network context.

• setupTransportInterfaceTestParam(): This is defined in src/
transport_interface/transport_interface_tests.h. The implementation must have
exactly the same name and signature as defined in transport_interface_tests.h. This
function takes in a pointer to a TransportInterfaceTestParam struct. It will populate the fields
in the TransportInterfaceTestParam struct that is used by the transport interface test.

• Implement UNITY_OUTPUT_CHAR so that test output logs do not interleave with device logs.

• Call runQualificationTest()from the application. The device hardware must be properly
initialized and the network must be connected before the call.

Credential management (on-device generated key)

When FORCE_GENERATE_NEW_KEY_PAIR in test_param_config.h is set to 1, the device
application generates a new on-device key pair and outputs the public key. The device application
uses ECHO_SERVER_ROOT_CA and TRANSPORT_CLIENT_CERTIFICATE as the echo server root
CA and client certificate when establishing a TLS connection with the echo server. IDT sets these
parameters during the qualification run.

Credential Management (importing key)

The device application uses ECHO_SERVER_ROOT_CA, TRANSPORT_CLIENT_CERTIFICATE and
TRANSPORT_CLIENT_PRIVATE_KEY in test_param_config.h as the echo server root CA, client
certificate, and client private key when establishing a TLS connection with the echo server. IDT sets
these parameters during the qualification run.

Testing

This section describes how you can locally test the transport interface with the qualification tests.
Additional details can be found in the README.md file provided in the transport_interface section
of the FreeRTOS-Libraries-Integration-Tests on GitHub.

Testing 19

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/tree/main/src/transport_interface

FreeRTOS Porting Guide

Alternatively, you can also use IDT to automate the execution. See AWS IoT Device Tester for
FreeRTOS in the FreeRTOS User Guide for details.

Enable the test

Open test_execution_config.h and define TRANSPORT_INTERFACE_TEST_ENABLED to 1.

Set up the echo server for testing

An echo server accessible from the device running the tests is required for local testing. The echo
server must support TLS if the transport interface implementation supports TLS. If you don’t
have one already, FreeRTOS-Libraries-Integration-Tests GitHub repository has an echo server
implementation.

Configuring the project for testing

In test_param_config.h, update ECHO_SERVER_ENDPOINT and ECHO_SERVER_PORT to the
endpoint and server setup in the previous step.

Setup credentials (on-device generated key)

• Set ECHO_SERVER_ROOT_CA to the server certificate of the echo server.

• Set FORCE_GENERATE_NEW_KEY_PAIR to 1 to generate a key pair and get the public key.

• Set FORCE_GENERATE_NEW_KEY_PAIR back to 0 after key generation.

• User the public key and server key and certificate to generate client certificate.

• Set TRANSPORT_CLIENT_CERTIFICATE to the generated client certificate.

Setup credentials (importing key)

• Set ECHO_SERVER_ROOT_CA to the server certificate of the echo server.

• Set TRANSPORT_CLIENT_CERTIFICATE to the pre-generated client certificate.

• Set TRANSPORT_CLIENT_PRIVATE_KEY to the pre-generated client private key.

Build and flash the application

Build and flash the application using the tool-chain of your choice. When
runQualificationTest() is invoked, the transport interface tests will run. Test results are
outputted to the serial port.

Testing 20

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/tree/main/tools/echo_server

FreeRTOS Porting Guide

Note

To officially qualify a device for FreeRTOS, you must validate the device's ported source
code against OTA PAL and OTA E2E test groups with AWS IoT Device Tester. Follow the
instructions in Using AWS IoT Device Tester for FreeRTOS in the FreeRTOS User Guide to set
up AWS IoT Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device.json file in the AWS IoT Device Tester configs
folder.

Configuring the coreMQTT library

Devices on the edge can use the MQTT protocol to communicate with the AWS Cloud. AWS IoT
hosts an MQTT broker that sends and receives messages to and from connected devices at the
edge.

The coreMQTT library implements the MQTT protocol for devices running FreeRTOS. The
coreMQTT library doesn't need to be ported, but your device's test project must pass all MQTT
tests for qualification. For more information, see coreMQTT Library in the FreeRTOS User Guide.

Prerequisites

To set up the coreMQTT library tests, you need a network transport interface port. See Porting the
Network Transport Interface to learn more.

Testing

Run coreMQTT Integration tests:

• Register your client certificate with MQTT broker.

• Set the broker endpoint in config and run the integration tests.

Create reference MQTT demo

We recommend using the coreMQTT agent to handle thread safety for all MQTT operations.
The user will also need publish and subscribe tasks, and Device Advisor tests to validate if the
application integrates TLS, MQTT and other FreeRTOS libraries effectively.

coreMQTT 21

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/coremqtt.html

FreeRTOS Porting Guide

To officially qualify a device for FreeRTOS, validate your integration project with AWS IoT Device
Tester MQTT test cases. See AWS IoT Device Advisor workflow for instructions to set up and test.
Mandated test cases for TLS and MQTT are listed below:

TLS Test Cases

Test Case Test cases Required tests

TLS TLS Connect Yes

TLS TLS Support AWS IoT Cipher
Suites

A recommended cipher suite

TLS TLS Unsecure Server Cert Yes

TLS TLS Incorrect Subject Name
Servr Cert

Yes

MQTT Test Cases

Test Case Test cases Required tests

MQTT MQTT Connect Yes

MQTT MQTT Connect Jitter Retries Yes without warnings

MQTT MQTT Subscribe Yes

MQTT MQTT Publish Yes

MQTT MQTT ClientPuback QoS1 Yes

MQTT MQTT No Ack PingResp Yes

Configuring the coreHTTP library

Devices on the edge can use the HTTP protocol to communicate with the AWS Cloud. AWS IoT
services host an HTTP server that sends and receives messages to and from connected devices at
the edge.

coreHTTP 22

https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor-console-tutorial.html
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html#tls-cipher-suite-support

FreeRTOS Porting Guide

Testing

Follow the steps below for testing:

• Setup the PKI for TLS mutual authentication with AWS or an HTTP server.

• Run CoreHTTP integration tests.

Porting the AWS IoT over-the-air (OTA) update library

With FreeRTOS over-the-air (OTA) updates, you can do the following:

• Deploy new firmware images to a single device, a group of devices, or your entire fleet.

• Deploy firmware to devices as they are added to groups, reset, or re-provisioned.

• Verify the authenticity and integrity of new firmware after it is deployed to devices.

• Monitor the progress of a deployment.

• Debug a failed deployment.

• Digitally sign firmware using Code Signing for AWS IoT.

For more information, see FreeRTOS Over-the-Air Updates in the FreeRTOS User Guide along with
the AWS IoT Over-the-air Update Documentation.

You can use the OTA update library to integrate OTA functionality into your FreeRTOS applications.
For more information, see FreeRTOS OTA update Library in the FreeRTOS User Guide.

FreeRTOS devices must enforce cryptographic code-signing verification on the OTA firmware
images that they receive. We recommend the following algorithms:

• Elliptic-Curve Digital Signature Algorithm (ECDSA)

• NIST P256 curve

• SHA-256 hash

Prerequisites

• Complete the instructions in Setting up your workspace and project for porting.

• Create a network transport interface port.

Testing 23

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-ota-dev.html
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/index.html
https://docs.aws.amazon.com/freertos/latest/userguide/ota-update-library.html

FreeRTOS Porting Guide

For information, see Porting the Network Transport Interface.

• Integrate coreMQTT library. See coreMQTT library in the FreeRTOS User Guide.

• Create a bootloader that can support OTA updates.

Platform porting

You must provide an implementation of the OTA portable abstraction layer (PAL) to port the OTA
library to a new device. The PAL APIs are defined in the ota_platform_interface.h file for which
implementation specific details must be provided.

Function name Description

otaPal_Abort Stops an OTA update.

otaPal_CreateFileForRx Creates a file to store the received data
chunks.

otaPal_CloseFile Closes the specified file. This might authentic
ate the file if you use storage that implements
cryptographic protection.

otaPal_WriteBlock Writes a block of data to the specified
file at the given offset. On success, the
function returns the number of bytes written.
Otherwise, the function returns a negative
error code. The block size will always be a
power of two and will be aligned. For more
information, see OTA library configuration.

otaPal_ActivateNewImage Activates or launches the new firmware image.
For some ports, if the device is programma
tically reset synchronously, this function will
not return.

otaPal_SetPlatformImageState Does what is required by the platform to
accept or reject the most recent OTA firmware
image (or bundle). To implement this function,

Platform porting 24

https://docs.aws.amazon.com/freertos/latest/userguide/coremqtt.html
https://github.com/aws/ota-for-aws-iot-embedded-sdk/blob/main/source/include/ota_platform_interface.h
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_config.html

FreeRTOS Porting Guide

Function name Description

see the documentation for your board
(platform) details and architecture.

otaPal_GetPlatformImageState Gets the state of the OTA update image.

Implement the functions in this table if your device has built-in support for them.

Function name Description

otaPal_CheckFileSignature Verifies the signature of the specified file.

otaPal_ReadAndAssumeCertificate Reads the specified signer certificate from the
file system and returns it to the caller.

otaPal_ResetDevice Resets the device.

Note

Make sure that you have a bootloader that can support OTA updates. For instructions on
creating your AWS IoT device bootloader, see IoT device bootloader.

E2E and PAL tests

Run OTA PAL and E2E tests.

E2E tests

OTA end to end (E2E) test is used to verify a device’s OTA capability and to simulate scenarios from
reality. This test will include error handling.

Prerequisites

To port this test, you need the following:

• A project with an AWS OTA library integrated in it. Visit the OTA Library Porting Guide for
additional information.

E2E and PAL tests 25

https://www.freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/ota_porting.html

FreeRTOS Porting Guide

• Port the demo application using the OTA library to interact with AWS IoT Core to do the OTA
updates. See Porting the OTA demo application.

• Set up the IDT tool. This runs the OTA E2E host application to build, flash, and monitor the
device with different configurations, and validates the OTA library integration.

Porting the OTA demo application

The OTA E2E test must have an OTA demo application to validate the OTA library integration.
The demo application must have the capacity to perform OTA firmware updates. You can find the
FreeRTOS OTA demo application at FreeRTOS GitHub repository. We recommend that you use the
demo application as a reference, and modify it according to your specifications.

Porting steps

1. Initialize the OTA agent.

2. Implement the OTA application callback function.

3. Create the OTA agent event processing task.

4. Start the OTA agent.

5. Monitor the OTA agent statistics.

6. Shut down the OTA agent.

Visit FreeRTOS OTA over MQTT - Entry point of the demo for detailed instructions.

Configuration

The following configurations are necessary to interact with AWS IoT Core:

• AWS IoT Core client credentials

• Set-up democonfigROOT_CA_PEM in Ota_Over_Mqtt_Demo/demo_config.h with Amazon
Trust Services endpoints. See AWS server-authentication for more details.

• Set-up democonfigCLIENT_CERTIFICATE_PEM and democonfigCLIENT_PRIVATE_KEY_PEM
in Ota_Over_Mqtt_Demo/demo_config.h with your AWS IoT client credentials. See AWS
client-authentication detailsto learn about client certificates and private keys.

• Application version

• OTA Control Protocol

• OTA Data Protocol

E2E and PAL tests 26

https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator
https://www.freertos.org/ota/ota-mqtt-agent-demo.html#OtaMqttAgentEntryPoint
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html
https://docs.aws.amazon.com/iot/latest/developerguide/client-authentication.html

FreeRTOS Porting Guide

• Code Signing credentials

• Other OTA library configurations

You can find the preceding information in demo_config.h and ota_config.h in FreeRTOS OTA
demo applications. Visit FreeRTOS OTA over MQTT - Setting up the device for more information.

Build verification

Run the demo application to run the OTA job. When it completes successfully, you can continue to
run the OTA E2E tests.

FreeRTOS OTA demo provides detailed information about setting up an OTA client and an AWS
IoT Core OTA job on the FreeRTOS windows simulator. AWS OTA supports both MQTT and HTTP
protocols. Refer to the following examples for more details:

• OTA over MQTT Demo on Windows Simulator

• OTA over HTTP Demo on Windows Simulator

Running tests with the IDT tool

To run the OTA E2E tests, you must use AWS IoT Device Tester (IDT) to automate the execution. See
AWS IoT Device Tester for FreeRTOS in the FreeRTOS User Guide for more details.

E2E test cases

Test case Description

OTAE2EGreaterVersion Happy path test for regular OTA updates. It
creates an update with a newer version, which
the device updates successfully.

OTAE2EBackToBackDownloads This test creates 3 consecutive OTA updates.
The device is expected to update 3 consecutive
times.

OTAE2ERollbackIfUnableToCon
nectAfterUpdate

This test verifies that the device rollbacks to
the previous firmware if it cannot connect to
network with the new firmware.

E2E and PAL tests 27

https://www.freertos.org/ota/ota-mqtt-agent-demo.html#OTABasicDemoClient
https://www.freertos.org/ota/ota-mqtt-agent-demo.html
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator/Ota_Over_Mqtt_Demo
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS-Plus/Demo/AWS/Ota_Windows_Simulator/Ota_Over_Http_Demo
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

FreeRTOS Porting Guide

Test case Description

OTAE2ESameVersion This test confirms that the device rejects the
incoming firmware if the version stays the
same.

OTAE2EUnsignedImage This test verifies that the device rejects an
update if the image is not signed.

OTAE2EUntrustedCertificate This test verifies that the device rejects an
update if the firmware is signed with an
untrusted certificate.

OTAE2EPreviousVersion This test verifies that the device rejects an
older update version.

OTAE2EIncorrectSigningAlgorithm Different devices support different signing and
hashing algorithms. This test verifies that the
device fails the OTA update if it's created with
a non-supported algorithm.

OTAE2EDisconnectResume This is the happy path test for the suspend
and resume feature. This test creates an OTA
update and starts the update. It then connects
to AWS IoT Core with the same client ID (thing
name) and credentials. AWS IoT Core then
disconnects the device. The device is expected
to detect that it is disconnected from AWS IoT
Core, and after a period of time, move itself
to a suspended state and try to reconnect to
AWS IoT Core and resume the download.

E2E and PAL tests 28

FreeRTOS Porting Guide

Test case Description

OTAE2EDisconnectCancelUpdate This test checks if the device can recover itself
if the OTA job gets canceled while it is in a
suspended state. It does the same thing as the
OTAE2EDisconnectResume test, except
that after connecting to AWS IoT Core, which
disconnects the device, it cancels the OTA
update. A new update is created. The device
is expected to reconnect to the AWS IoT Core,
abort the current update, go back to waiting
state, and accept and finish the next update.

OTAE2EPresignedUrlExpired When an OTA update is created, you can
configure the lifetime of the S3 pre-signed
url. This test verifies that the device is able to
perform an OTA, even if it cannot finish the
download when the url expires. The device
is expected to request a new job document,
which contains a new url to resume the
download.

OTAE2E2UpdatesCancel1st This test creates two OTA updates in a row.
When the device reports that it is downloadi
ng the first update, the test force-cancels the
first update. The device is expected to abort
the current update and pick up the second
update, and complete it.

OTAE2ECancelThenUpdate This test creates two OTA updates in a row.
When the device reports that it is downloadi
ng the first update, the test force-cancels the
first update. The device is expected to abort
the current update and pick up the second
update, then complete it.

E2E and PAL tests 29

FreeRTOS Porting Guide

Test case Description

OTAE2EImageCrashed This test checks that the device is able to
reject an update when the image crashes.

PAL tests

Prerequisites

To port the Network Transport Interface tests, you need the following:

• A project that can build FreeRTOS with a valid FreeRTOS kernel port.

• A working implementation of OTA PAL.

Porting

• Add FreeRTOS-Libraries-Integration-Tests as a submodule into your project. The location of the
submodule in the project must be where it can be built.

• Copy config_template/test_execution_config_template.h and config_template/
test_param_config_template.h to a location in the build path, and rename them to
test_execution_config.h and test_param_config.h.

• Include relevant files in the build system. If using CMake, qualification_test.cmake and
src/ota_pal_tests.cmake can be used to include relevant files.

• Configure the test by implementing the following functions:

• SetupOtaPalTestParam(): defined in src/ota/ota_pal_test.h. The implementation
must have the same name and signature as defined in ota_pal_test.h. Currently, you do
not need to configure this function.

• Implement UNITY_OUTPUT_CHAR so that test output logs do not interleave with device logs.

• Call RunQualificationTest() from the application. The device hardware must be properly
initialized, and the network must be connected before the call.

Testing

This section describes the local testing of the OTA PAL qualification tests.

E2E and PAL tests 30

https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests

FreeRTOS Porting Guide

Enable the test

Open test_execution_config.h and define OTA_PAL_TEST_ENABLED to 1.

In test_param_config.h, update the following options:

• OTA_PAL_TEST_CERT_TYPE: Select the certificate type used.

• OTA_PAL_CERTIFICATE_FILE: Path to the device certificate, if applicable.

• OTA_PAL_FIRMWARE_FILE: Name of the firmware file, if applicable.

• OTA_PAL_USE_FILE_SYSTEM: Set to 1 if the OTA PAL uses file system abstraction.

Build and flash the application using a tool chain of your choice. When the
RunQualificationTest() is called, the OTA PAL tests will run. The test results are output to the
serial port.

Integrating OTA tasks

• Add OTA agent to your current MQTT demo.

• Run OTA End to End (E2E) tests with AWS IoT. This verifies if the integration is working as
expected.

Note

To officially qualify a device for FreeRTOS, you must validate the device's ported source
code against OTA PAL and OTA E2E test groups with AWS IoT Device Tester. Follow the
instructions in Using AWS IoT Device Tester for FreeRTOS in the FreeRTOS User Guide to set
up AWS IoT Device Tester for port validation. To test a specific library's port, the correct test
group must be enabled in the device.json file in the AWS IoT Device Tester configs
folder.

IoT device bootloader

You must provide your own secure bootloader application. Make sure that the design and
implementation provide proper mitigation to security threats. Below is the threat modeling for
your reference.

IoT device bootloader 31

https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

FreeRTOS Porting Guide

Threat modeling for the IoT device bootloader

Background

As a working definition, the embedded AWS IoT devices referenced by this threat model are
microcontroller-based products that interact with cloud services. They may be deployed in
consumer, commercial, or industrial settings. IoT devices may gather data about a user, a patient, a
machine, or an environment, and may control anything from light bulbs and door locks to factory
machinery.

Threat modeling is an approach to security from the point of view of a hypothetical adversary. By
considering the adversary's goals and methods, a threat list is created. Threats are attacks against
a resource or asset performed by an adversary. The list is prioritized and used to identify and
create mitigation solutions. When choosing a mitigation solution, the cost of implementing and
maintaining it should be balanced with the real security value it provides. There are multiple threat
model methodologies. Each is capable of supporting the development of a secure and successful
AWS IoT product.

FreeRTOS offers OTA (over-the-air) software updates to AWS IoT devices. The update facility
combines cloud services with on-device software libraries and a partner-supplied bootloader. This
threat model focuses specifically on threats against the bootloader.

Bootloader use cases

• Digitally sign and encrypt firmware before deployment.

• Deploy new firmware images to a single device, a group of devices, or an entire fleet.

• Verify the authenticity and integrity of new firmware after it's deployed to devices.

• Devices only run unmodified software from a trusted source.

• Devices are resilient to faulty software received through OTA.

Data Flow Diagram

IoT device bootloader 32

https://en.wikipedia.org/wiki/Threat_model
https://en.wikipedia.org/wiki/Threat_model

FreeRTOS Porting Guide

Threats

Some attacks have multiple mitigation models; for example, a network man-in-the-middle
intended to deliver a malicious firmware image is mitigated by verifying trust in both the certificate
offered by the TLS server, and the code-signer certificate of the new firmware image. To maximize
the security of the bootloader, any non-bootloader mitigation solutions are considered unreliable.
The bootloader should have intrinsic mitigation solutions for each attack. Having layered
mitigation solutions are known as defense-in-depth.

Threats:

• An attacker hijacks the device's connection to the server to deliver a malicious firmware image.

Mitigation example

• Upon boot, the bootloader verifies the cryptographic signature of the image using a known
certificate. If the verification fails, the bootloader rolls back to the previous image.

• An attacker exploits a buffer overflow to introduce malicious behavior to the existing firmware
image stored in flash.

Mitigation examples

• Upon boot, the bootloader verifies, as previously described. When verification fails with no
previous image available, the bootloader halts.

IoT device bootloader 33

FreeRTOS Porting Guide

• Upon boot, the bootloader verifies, as previously described. When verification fails with no
previous image available, the bootloader enters a fail safe OTA only mode.

• An attacker boots the device to a previously stored image, which is exploitable.

Mitigation examples

• Flash sectors storing the last image are erased upon successful installation and test of a new
image.

• A fuse is burned with each successful upgrade, and each image refuses to run unless the
correct number of fuses have been burned.

• An OTA update delivers a faulty or malicious image that bricks the device.

Mitigation example

• The bootloader starts a hardware watchdog timer that triggers rollback to the previous image.

• An attacker patches the bootloader to bypass image verification so the device will accept
unsigned images.

Mitigation examples

• The bootloader is in ROM (read-only memory), and cannot be modified.

• The bootloader is in OTP (one-time-programmable memory), and cannot be modified.

• The bootloader is in the secure zone of ARM TrustZone, and cannot be modified.

• An attacker replaces the verification certificate so the device will accept malicious images.

Mitigation examples

• The certificate is in a cryptographic co-processor, and cannot be modified.

• The certificate is in ROM (or OTP, or secure zone), and cannot be modified.

Further threat modeling

This threat model considers only the bootloader. Further threat modeling could improve overall
security. A recommended method is to list the adversary's goals, the assets targeted by those goals,
and points of entry to the assets. A list of threats can be made by considering attacks on the points
of entry to gain control of the assets. The following are lists of examples of goals, assets, and entry
points for an IoT device. These lists are not exhaustive, and are intended to spur further thought.

IoT device bootloader 34

FreeRTOS Porting Guide

Adversary's goals

• Extort money

• Ruin reputations

• Falsify data

• Divert resources

• Remotely spy on a target

• Gain physical access to a site

• Wreak havoc

• Instill terror

Key assets

• Private keys

• Client certificate

• CA root certificates

• Security credentials and tokens

• Customer's personally identifiable information

• Implementations of trade secrets

• Sensor data

• Cloud analytics data store

• Cloud infrastructure

Entry points

• DHCP response

• DNS response

• MQTT over TLS

• HTTPS response

• OTA software image

• Other, as dictated by application, for example, USB

• Physical access to bus

IoT device bootloader 35

FreeRTOS Porting Guide

• Decapped IC

Porting the Cellular Interface library

FreeRTOS supports the AT commands of a TCP offloaded cellular abstraction layer. For more
information, see the Cellular Interface Library and Porting the Cellular Interface Library on
freertos.org.

Prerequisites

There is no direct dependency for the Cellular Interface library. However, in the FreeRTOS network
stack, Ethernet, Wi-Fi and cellular cannot co-exist, so developers must choose one of them to
integrate with the Porting the Network Transport Interface.

Note

If the cellular module is able to support TLS offload, or does not support AT commands,
developers can implement their own cellular abstraction to integrate with the Porting the
Network Transport Interface.

Cellular Interface 36

https://freertos.org/cellular/index.html
https://freertos.org/cellular-porting-guide.html

FreeRTOS Porting Guide

Migrating from MQTT Version 3 to coreMQTT

This migration guide explains how to migrate applications from MQTT to coreMQTT.

37

https://aws.github.io/aws-iot-device-sdk-embedded-C/202103.00/docs/doxygen/output/html/mqtt_migration.html

FreeRTOS Porting Guide

Migrating from version 1 to version 3 for OTA
applications

This guide will help you migrate your application from OTA library version 1 to version 3.

Note

The OTA version 2 APIs are the same as OTA v3 APIs, so if your application is using version
2 of the APIs then changes are not required for API calls but we recommend that you
integrate version 3 of the library.

Demos for OTA version 3 are available here:

• ota_demo_core_mqtt.

• ota_demo_core_http.

• ota_ble.

Summary of API changes

Summary of API changes between OTA Library version 1 and version 3

OTA version 1 API OTA version 3 API Description of changes

OTA_AgentInit OTA_Init The input paramerts are
changed as well as the
value returned from the
function due to changes in
the implementation in OTA
v3. Please refer to the section
for OTA_Init below for details.

OTA_AgentShutdown OTA_Shutdown Change in the input
parameters including an
additional parameter for an
optional unsubscribe from

Summary of API changes 38

https://github.com/aws/amazon-freertos/tree/main/demos/ota/ota_demo_core_mqtt
https://github.com/aws/amazon-freertos/tree/main/demos/ota/ota_demo_core_http
https://github.com/aws/amazon-freertos/tree/main/demos/ble/ota_ble

FreeRTOS Porting Guide

OTA version 1 API OTA version 3 API Description of changes

MQTT topics. Please refer to
the section for OTA_Shutd
own below for details.

OTA_GetAgentState OTA_GetState The API name is changed
with no changes to the input
parameter. The return value
is the same but the enum
and members are renamed.
Please refer to the section
for OTA_GetState below for
details.

n/a OTA_GetStatistics New API added that replaces
the APIs OTA_GetPacketsRece
ived, OTA_GetPacketsQueued,
OTA_GetPacketsProcessed,
OTA_GetPacketsDropped.
Please refer to the section for
OTA_GetStatistics below for
details.

OTA_GetPacketsReceived n/a This API is removed from
version 3 and replaced by
OTA_GetStatistics.

OTA_GetPacketsQueued n/a This API is removed from
version 3 and replaced by
OTA_GetStatistics.

OTA_GetPacketsProcessed n/a This API is removed from
version 3 and replaced by
OTA_GetStatistics.

Summary of API changes 39

FreeRTOS Porting Guide

OTA version 1 API OTA version 3 API Description of changes

OTA_GetPacketsDropped n/a This API is removed from
version 3 and replaced by
OTA_GetStatistics.

OTA_ActivateNewImage OTA_ActivateNewImage The input parameters are
the same but the return OTA
error code is renamed and
new error codes are added in
version 3 of the OTA library.
Please see the section for
OTA_ActivateNewImage for
details.

OTA_SetImageState OTA_SetImageState The input parameters are
the same and renamed, the
return OTA error code is
renamed and new error codes
are added in version 3 of
the OTA library. Please see
the section for OTA_SetIm
ageState for details.

OTA_GetImageState OTA_GetImageState The input parameters are
the same, the return enum
is renamed in version 3 of
the OTA library. Please see
the section for OTA_GetIm
ageState for details.

Summary of API changes 40

FreeRTOS Porting Guide

OTA version 1 API OTA version 3 API Description of changes

OTA_Suspend OTA_Suspend The input parameters are
the same, the return OTA
error code is renamed and
new error codes are added in
version 3 of the OTA library.
Please see the section for
OTA_Suspend for details.

OTA_Resume OTA_Resume The input parameter for
connection is removed as
the connection is handled in
the OTA demo/application,
the return OTA error code is
renamed and new error codes
are added in version 3 of the
OTA library. Please see the
section for OTA_Resume for
details.

OTA_CheckForUpdate OTA_CheckForUpdate The input parameters are
the same, the return OTA
error code is renamed and
new error codes are added in
version 3 of the OTA library.
Please see the section for
OTA_CheckForUpdate for
details.

n/a OTA_EventProcessingTask New API added and it is the
main event loop to handle
events for OTA update
and must be called by the
application task. Please see
the section for OTA_Event
ProcessingTask for details.

Summary of API changes 41

FreeRTOS Porting Guide

OTA version 1 API OTA version 3 API Description of changes

n/a OTA_SignalEvent New API added and it adds
the event to the back of OTA
event queue and is used by
internal OTA modules to
signal the agent task. Please
see the section for OTA_Signa
lEvent for details.

n/a OTA_Err_strerror New API for error code to
string conversion for OTA
errors.

n/a OTA_JobParse_strerror New API for error code to
string conversion for Job
Parsing errors.

n/a OTA_OsStatus_strerror New API for status code to
string conversion for OTA OS
port status.

n/a OTA_PalStatus_strerror New API for status code to
string conversion for OTA PAL
port status.

Description of changes required

OTA_Init

When initializing the OTA Agent in v1 the OTA_AgentInit API is used which takes parameters for
connection context, thing name, complete callback and timeout as input.

OTA_State_t OTA_AgentInit(void * pvConnectionContext,
 const uint8_t * pucThingName,
 pxOTACompleteCallback_t xFunc,
 TickType_t xTicksToWait);

Description of changes required 42

FreeRTOS Porting Guide

This API is now changed to OTA_Init with parameters for the buffers required for ota, ota
interfaces, thing name and application callback.

OtaErr_t OTA_Init(OtaAppBuffer_t * pOtaBuffer,
 OtaInterfaces_t * pOtaInterfaces,
 const uint8_t * pThingName,
 OtaAppCallback OtaAppCallback);

Removed input parameters -

pvConnectionContext -

The connection context is removed because the OTA Library Version 3 does not require the
connection context to be passed to it and the MQTT/HTTP operations are handled by their
respective interfaces in the OTA demo/application.

xTicksToWait -

The ticks to wait parameter is also removed as the task is created in the OTA demo/
application before calling OTA_Init.

Renamed input parameters -

xFunc -

The parameter is renamed to OtaAppCallback and its type is changed to OtaAppCallback_t.

New input parameters -

pOtaBuffer

The application must allocate the buffers and pass them to the OTA library using the
OtaAppBuffer_t structure during initialization. The buffers required differ slightly depending
on the protocol used for downloading the file. For the MQTT protocol the buffers for
stream name are required and for the HTTP protocol the buffers for pre-signed url and
authorization scheme are required.

Buffers required when using MQTT for file download -

static OtaAppBuffer_t otaBuffer =
{
 .pUpdateFilePath = updateFilePath,
 .updateFilePathsize = otaexampleMAX_FILE_PATH_SIZE,
 .pCertFilePath = certFilePath,
 .certFilePathSize = otaexampleMAX_FILE_PATH_SIZE,

OTA_Init 43

FreeRTOS Porting Guide

 .pStreamName = streamName,
 .streamNameSize = otaexampleMAX_STREAM_NAME_SIZE,
 .pDecodeMemory = decodeMem,
 .decodeMemorySize = (1U << otaconfigLOG2_FILE_BLOCK_SIZE),
 .pFileBitmap = bitmap,
 .fileBitmapSize = OTA_MAX_BLOCK_BITMAP_SIZE
};

Buffers required when using HTTP for file download -

static OtaAppBuffer_t otaBuffer =
{
 .pUpdateFilePath = updateFilePath,
 .updateFilePathsize = otaexampleMAX_FILE_PATH_SIZE,
 .pCertFilePath = certFilePath,
 .certFilePathSize = otaexampleMAX_FILE_PATH_SIZE,
 .pDecodeMemory = decodeMem,
 .decodeMemorySize = (1U << otaconfigLOG2_FILE_BLOCK_SIZE),
 .pFileBitmap = bitmap,
 .fileBitmapSize = OTA_MAX_BLOCK_BITMAP_SIZE,
 .pUrl = updateUrl,
 .urlSize = OTA_MAX_URL_SIZE,
 .pAuthScheme = authScheme,
 .authSchemeSize = OTA_MAX_AUTH_SCHEME_SIZE
};

Where -

 pUpdateFilePath Path to store the files.
 updateFilePathsize Maximum size of the file path.
 pCertFilePath Path to certificate file.
 certFilePathSize Maximum size of the certificate file path.
 pStreamName Name of stream to download the files.
 streamNameSize Maximum size of the stream name.
 pDecodeMemory Place to store the decoded files.
 decodeMemorySize Maximum size of the decoded files buffer.
 pFileBitmap Bitmap of the parameters received.
 fileBitmapSize Maximum size of the bitmap.
 pUrl Presigned url to download files from S3.
 urlSize Maximum size of the URL.
 pAuthScheme Authentication scheme used to validate download.
 authSchemeSize Maximum size of the auth scheme.

OTA_Init 44

FreeRTOS Porting Guide

pOtaInterfaces

The second input parameter to OTA_Init is a reference to the OTA interfaces for type
OtaInterfaces_t. This set of interfaces must be passed to the OTA Library and includes in the
operating system interface the MQTT interface, HTTP interface and platform abstraction
layer interface.

OTA OS Interface

The OTA OS Functional interface is a set of APIs that must be implemented for
the device to use the OTA library. The function implementations for this interface
are provided to the OTA library in the user application. The OTA library calls the
function implementations to perform functionalities that are typically provided by an
operating system. This includes managing events, timers, and memory allocation. The
implementations for FreeRTOS and POSIX are provided with the OTA library.

Example for FreeRTOS using the provided FreeRTOS port -

 OtaInterfaces_t otaInterfaces;
 otaInterfaces.os.event.init = OtaInitEvent_FreeRTOS;
 otaInterfaces.os.event.send = OtaSendEvent_FreeRTOS;
 otaInterfaces.os.event.recv = OtaReceiveEvent_FreeRTOS;
 otaInterfaces.os.event.deinit = OtaDeinitEvent_FreeRTOS;
 otaInterfaces.os.timer.start = OtaStartTimer_FreeRTOS;
 otaInterfaces.os.timer.stop = OtaStopTimer_FreeRTOS;
 otaInterfaces.os.timer.delete = OtaDeleteTimer_FreeRTOS;
 otaInterfaces.os.mem.malloc = Malloc_FreeRTOS;
 otaInterfaces.os.mem.free = Free_FreeRTOS;

Example for Linux using the provided POSIX port -

 OtaInterfaces_t otaInterfaces;
 otaInterfaces.os.event.init = Posix_OtaInitEvent;
 otaInterfaces.os.event.send = Posix_OtaSendEvent;
 otaInterfaces.os.event.recv = Posix_OtaReceiveEvent;
 otaInterfaces.os.event.deinit = Posix_OtaDeinitEvent;
 otaInterfaces.os.timer.start = Posix_OtaStartTimer;
 otaInterfaces.os.timer.stop = Posix_OtaStopTimer;
 otaInterfaces.os.timer.delete = Posix_OtaDeleteTimer;
 otaInterfaces.os.mem.malloc = STDC_Malloc;
 otaInterfaces.os.mem.free = STDC_Free;

OTA_Init 45

FreeRTOS Porting Guide

MQTT Interface

The OTA MQTT interface is a set of APIs that must be implemented in a library to enable
the OTA library to download a file block from streaming service.

Example using the coreMQTT Agent APIs from the OTA over MQTT demo-

 OtaInterfaces_t otaInterfaces;
 otaInterfaces.mqtt.subscribe = prvMqttSubscribe;
 otaInterfaces.mqtt.publish = prvMqttPublish;
 otaInterfaces.mqtt.unsubscribe = prvMqttUnSubscribe;

HTTP Interface

The OTA HTTP interface is a set of APIs that must be implemented in a library to enable
the OTA library to download a file block by connecting to a pre-signed url and fetching
data blocks. It is optional unless you configure the OTA library to download from a pre-
signed URL instead of a streaming service.

Example using the coreHTTP APIs from the OTA over HTTP demo-

 OtaInterfaces_t otaInterfaces;
 otaInterfaces.http.init = httpInit;
 otaInterfaces.http.request = httpRequest;
 otaInterfaces.http.deinit = httpDeinit;

OTA PAL Interface

The OTA PAL interface is a set of APIs that must be implemented for the device to use
the OTA library. The device specific implementation for the OTA PAL is provided to the
library in the user application. These functions are used by the library to store, manage,
and authenticate downloads.

 OtaInterfaces_t otaInterfaces;
 otaInterfaces.pal.getPlatformImageState = otaPal_GetPlatformImageState;
 otaInterfaces.pal.setPlatformImageState = otaPal_SetPlatformImageState;
 otaInterfaces.pal.writeBlock = otaPal_WriteBlock;
 otaInterfaces.pal.activate = otaPal_ActivateNewImage;
 otaInterfaces.pal.closeFile = otaPal_CloseFile;
 otaInterfaces.pal.reset = otaPal_ResetDevice;
 otaInterfaces.pal.abort = otaPal_Abort;

OTA_Init 46

https://github.com/aws/amazon-freertos/blob/main/demos/ota/ota_demo_core_mqtt/ota_demo_core_mqtt.c
https://github.com/aws/amazon-freertos/blob/main/demos/ota/ota_demo_core_http/ota_demo_core_http.c

FreeRTOS Porting Guide

 otaInterfaces.pal.createFile = otaPal_CreateFileForRx;

Changes in return -

The return is changed from OTA agent state to OTA error code. Please refer to AWS IoT
Over-the-air Update v3.0.0 : OtaErr_t.

OTA_Shutdown

In the OTA Library version 1 the API used to shutdown the OTA Agent was OTA_AgentShutdown
which is now changed to OTA_Shutdown along with changes in input parameters.

OTA Agent Shutdown (version 1)

OTA_State_t OTA_AgentShutdown(TickType_t xTicksToWait);

OTA Agent Shutdown (version 3)

OtaState_t OTA_Shutdown(uint32_t ticksToWait,
 uint8_t unsubscribeFlag);

ticksToWait -

The number of ticks to wait for the OTA Agent to complete the shutdown process. If this is set
to zero, the function will return immediately without waiting. The actual state is returned to the
caller. The agent does not sleep for this while but used for busy looping.

New input parameter -

unsubscribeFlag -

Flag to indicate if unsubscribe operations should be performed from the job topics when
shutdown is called. If the flag is 0 then unsubscribe operations are not called for job topics. If
the application must be unsubscribed from the job topics then this flag must be set to 1 when
calling OTA_Shutdown.

Changes in return -

OtaState_t -

The enum for OTA Agent state and its members are renamed. Please refer to AWS IoT Over-the-
air Update v3.0.0.

OTA_Shutdown 47

https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga1cb476a5e0ee81fa486f605e64419dcc
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga1cb476a5e0ee81fa486f605e64419dcc

FreeRTOS Porting Guide

OTA_GetState

The API name is changed from OTA_AgentGetState to OTA_GetState.

OTA Agent Shutdown (version 1)

OTA_State_t OTA_GetAgentState(void);

OTA Agent Shutdown (version 3)

OtaState_t OTA_GetState(void);

Changes in return -

OtaState_t -

The enum for OTA Agent state and its members are renamed. Please refer to AWS IoT Over-the-
air Update v3.0.0.

OTA_GetStatistics

New single API added for statistics. It replaces the APIs OTA_GetPacketsReceived,
OTA_GetPacketsQueued, OTA_GetPacketsProcessed, OTA_GetPacketsDropped. Also, in the OTA
Library version 3, the statistics numbers are related to the current job only.

OTA Library version 1

uint32_t OTA_GetPacketsReceived(void);
uint32_t OTA_GetPacketsQueued(void);
uint32_t OTA_GetPacketsProcessed(void);
uint32_t OTA_GetPacketsDropped(void);

OTA Library version 3

OtaErr_t OTA_GetStatistics(OtaAgentStatistics_t * pStatistics);

pStatistics -

Input/output parameter for statistics data like packets received, dropped, queued and
processed for current job.

OTA_GetState 48

https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga1cb476a5e0ee81fa486f605e64419dcc
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga1cb476a5e0ee81fa486f605e64419dcc

FreeRTOS Porting Guide

Output parameter -

OTA error code.

Example usage -

OtaAgentStatistics_t otaStatistics = { 0 };
OTA_GetStatistics(&otaStatistics);
LogInfo((" Received: %u Queued: %u Processed: %u Dropped: %u",
 otaStatistics.otaPacketsReceived,
 otaStatistics.otaPacketsQueued,
 otaStatistics.otaPacketsProcessed,
 otaStatistics.otaPacketsDropped));

OTA_ActivateNewImage

The input parameters are the same but the return OTA error code is renamed and new error codes
are added in the version 3 of the OTA library.

OTA Library version 1

OTA_Err_t OTA_ActivateNewImage(void);

OTA Library version 3

OtaErr_t OTA_ActivateNewImage(void);

The return OTA error code enum is changed and new error codes are added. Please refer to AWS
IoT Over-the-air Update v3.0.0 : OtaErr_t.

Example usage -

 OtaErr_t otaErr = OtaErrNone;
 otaErr = OTA_ActivateNewImage();
 /* Handle error */

OTA_SetImageState

The input parameters are the same and renamed, the return OTA error code is renamed and new
error codes are added in the version 3 of the OTA library.

OTA_ActivateNewImage 49

https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d

FreeRTOS Porting Guide

OTA Library version 1

OTA_Err_t OTA_SetImageState(OTA_ImageState_t eState);

OTA Library version 3

OtaErr_t OTA_SetImageState(OtaImageState_t state);

The input parameter is renamed to OtaImageState_t. Please refer to AWS IoT Over-the-air
Update v3.0.0.

The return OTA error code enum is changed and new error codes are added. Please refer to AWS
IoT Over-the-air Update v3.0.0 / OtaErr_t.

Example usage -

 OtaErr_t otaErr = OtaErrNone;
 otaErr = OTA_SetImageState(OtaImageStateAccepted);
 /* Handle error */

OTA_GetImageState

The input parameters are same, the return enum is renamed in the version 3 of the OTA library.

OTA Library version 1

OTA_ImageState_t OTA_GetImageState(void);

OTA Library version 3

OtaImageState_t OTA_GetImageState(void);

The return enum is renamed to OtaImageState_t. Please refer to AWS IoT Over-the-air Update
v3.0.0 : OtaImageState_t .

Example usage -

 OtaImageState_t imageState;
 imageState = OTA_GetImageState();

OTA_GetImageState 50

https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#gad4909faa8b9c8672e7f7bef1bc6b5b84
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#gad4909faa8b9c8672e7f7bef1bc6b5b84
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#gad4909faa8b9c8672e7f7bef1bc6b5b84
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#gad4909faa8b9c8672e7f7bef1bc6b5b84

FreeRTOS Porting Guide

OTA_Suspend

The input parameters are the same, the return OTA error code is renamed and new error codes are
added in the version 3 of the OTA library.

OTA Library version 1

OTA_Err_t OTA_Suspend(void);

OTA Library version 3

OtaErr_t OTA_Suspend(void);

The return OTA error code enum is changed and new error codes are added. Please refer to AWS
IoT Over-the-air Update v3.0.0 : OtaErr_t.

Example usage -

OtaErr_t xOtaError = OtaErrUninitialized;
xOtaError = OTA_Suspend();
/* Handle error */

OTA_Resume

The input parameter for connection is removed as the connection is handled in the OTA demo/
application, the return OTA error code is renamed and new error codes are added in the version 3
of the OTA library.

OTA Library version 1

OTA_Err_t OTA_Resume(void * pxConnection);

OTA Library version 3

OtaErr_t OTA_Resume(void);

The return OTA error code enum is changed and new error codes are added. Please refer to AWS
IoT Over-the-air Update v3.0.0 : OtaErr_t.

OTA_Suspend 51

https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d

FreeRTOS Porting Guide

Example usage -

OtaErr_t xOtaError = OtaErrUninitialized;
xOtaError = OTA_Resume();
/* Handle error */

OTA_CheckForUpdate

The input parameters are the same, the return OTA error code is renamed and new error codes are
added in the version 3 of the OTA library.

OTA Library version 1

OTA_Err_t OTA_CheckForUpdate(void);

OTA Library version 3

OtaErr_t OTA_CheckForUpdate(void)

The return OTA error code enum is changed and new error codes are added. Please refer to AWS
IoT Over-the-air Update v3.0.0 : OtaErr_t.

OTA_EventProcessingTask

This is a new API and is the main event loop to handle events for OTA updates. It must be called by
the application task. This loop will continue to handle and execute events received for OTA Update
until this task is terminated by the application.

OTA Library version 3

void OTA_EventProcessingTask(void * pUnused);

Example for FreeRTOS -

/* Create FreeRTOS task*/
xTaskCreate(prvOTAAgentTask,
 "OTA Agent Task",

OTA_CheckForUpdate 52

https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d
https://freertos.org/Documentation/api-ref/ota-for-aws-iot-embedded-sdk/docs/doxygen/output/html/group__ota__enum__types.html#ga7ab3c74dc057383c56c6cb9aa6bf0b2d

FreeRTOS Porting Guide

 otaexampleAGENT_TASK_STACK_SIZE,
 NULL,
 otaexampleAGENT_TASK_PRIORITY,
 NULL);

/* Call OTA_EventProcessingTask from the task */
static void prvOTAAgentTask(void * pParam)
{
 /* Calling OTA agent task. */
 OTA_EventProcessingTask(pParam);
 LogInfo(("OTA Agent stopped."));

 /* Delete the task as it is no longer required. */
 vTaskDelete(NULL);
}

Example for POSIX -

/* Create posix thread.*/
if(pthread_create(&threadHandle, NULL, otaThread, NULL) != 0)
{
 LogError(("Failed to create OTA thread: "
 ",errno=%s",
 strerror(errno)));

 /* Handle error. */
}

/* Call OTA_EventProcessingTask from the thread.*/
static void * otaThread(void * pParam)
{
 /* Calling OTA agent task. */
 OTA_EventProcessingTask(pParam);
 LogInfo(("OTA Agent stopped."));

 return NULL;
}

OTA_SignalEvent

This is a new API that adds the event to the back of the event queue and is also used by internal
OTA modules to signal agent task.

OTA_SignalEvent 53

FreeRTOS Porting Guide

OTA Library version 3

bool OTA_SignalEvent(const OtaEventMsg_t * const pEventMsg);

Example usage -

OtaEventMsg_t xEventMsg = { 0 };
xEventMsg.eventId = OtaAgentEventStart;
(void) OTA_SignalEvent(&xEventMsg);

Integrating the OTA Library as a submodule in your application

If you want to integrate the OTA library in your own application you can use the git submodule
command. Git submodules allow you to keep a Git repository as a subdirectory of another
Git repository. The OTA library version 3 is maintained in the ota-for-aws-iot-embedded-sdk
repository.

git submodule add https://github.com/aws/ota-for-aws-iot-embedded-
sdk.git destination_folder

git commit -m "Added the OTA Library as submodule to the project."

git push

For more information, see Integrating the OTA Agent into your application in the FreeRTOS User
Guide.

References

• OTAv1.

• OTAv3.

Integrating the OTA Library as a submodule in your application 54

https://github.com/aws/ota-for-aws-iot-embedded-sdk
https://docs.aws.amazon.com/freertos/latest/userguide/integrate-ota-agent.html
https://github.com/aws/amazon-freertos/tree/202012.00/libraries/freertos_plus/aws/ota
https://github.com/aws/ota-for-aws-iot-embedded-sdk/tree/v3.0.0

FreeRTOS Porting Guide

Migrating from version 1 to version 3 for OTA PAL port

The Over-the-air Updates Library introduced some changes in the folder structure and the
placement of configurations required by the library and the demo applications. For OTA
applications designed to work with v1.2.0 to migrate to v3.0.0 of the library, you must update
the PAL port function signatures and include additional configuration files as described in this
migration guide.

Changes to OTA PAL

• The OTA PAL port directory name has been updated from ota to ota_pal_for_aws. This
folder must contain 2 files: ota_pal.c and ota_pal.h. The PAL header file libraries/
freertos_plus/aws/ota/src/aws_iot_ota_pal.h has been deleted from the OTA library
and must be defined inside the port.

• The return codes (OTA_Err_t) are translated into an enum OTAMainStatus_t. Refer to
ota_platform_interface.h for translated return codes. Helper macros are also provided to
combine OtaPalMainStatus and OtaPalSubStatus codes and extract OtaMainStatus from
OtaPalStatus and similar.

• Logging in the PAL

• Removed the DEFINE_OTA_METHOD_NAME macro.

• Earlier: OTA_LOG_L1("[%s] Receive file created.\r\n", OTA_METHOD_NAME);.

• Updated: LogInfo(("Receive file created.")); Use LogDebug, LogWarn and
LogError for the appropriate log.

• Variable cOTA_JSON_FileSignatureKey changed to OTA_JsonFileSignatureKey.

Functions

The function signatures are defined in ota_pal.h and start with the prefix otaPal instead of
prvPAL.

Note

The exact name of the PAL is technically open ended, but to be compatible with the
qualification tests, the name should conform to the ones specified below.

Changes to OTA PAL 55

https://github.com/aws/ota-for-aws-iot-embedded-sdk/blob/v3.0.0/source/include/ota_platform_interface.h#L68-L90
https://github.com/aws/ota-for-aws-iot-embedded-sdk/blob/v3.0.0/source/include/ota_platform_interface.h#L68-L90
https://github.com/aws/ota-for-aws-iot-embedded-sdk/blob/666241d0f643b07d5146a3715b649d80f8135e0b/source/include/ota_platform_interface.h#L105-L111

FreeRTOS Porting Guide

• Version 1: OTA_Err_t prvPAL_CreateFileForRx(OTA_FileContext_t * const
C);

Version 3: OtaPalStatus_t otaPal_CreateFileForRx(OtaFileContext_t * const
pFileContext);

Notes: Create a new receive file for the data chunks as they come in.

• Version 1: int16_t prvPAL_WriteBlock(OTA_FileContext_t * const C, uint32_t
ulOffset, uint8_t * const pcData, uint32_t ulBlockSize);

Version 3: int16_t otaPal_WriteBlock(OtaFileContext_t * const pFileContext,
uint32_t ulOffset, uint8_t * const pData, uint32_t ulBlockSize);

Notes: Write a block of data to the specified file at the given offset.

• Version 1: OTA_Err_t prvPAL_ActivateNewImage(void);

Version 3: OtaPalStatus_t otaPal_ActivateNewImage(OtaFileContext_t * const
pFileContext);

Notes: Activate the newest MCU image received via OTA.

• Version 1: OTA_Err_t prvPAL_ResetDevice(void);

Version 3: OtaPalStatus_t otaPal_ResetDevice(OtaFileContext_t * const
pFileContext);

Notes: Reset the device.

• Version 1: OTA_Err_t prvPAL_CloseFile(OTA_FileContext_t * const *C*);

Version 3: OtaPalStatus_t otaPal_CloseFile(OtaFileContext_t * const
pFileContext);

Notes: Authenticate and close the underlying receive file in the specified OTA context.

• Version 1: OTA_Err_t prvPAL_Abort(OTA_FileContext_t * const *C*);

Version 3: OtaPalStatus_t otaPal_Abort(OtaFileContext_t * const
pFileContext);

Notes: Stop an OTA transfer.

Functions 56

FreeRTOS Porting Guide

• Version 1: OTA_Err_t prvPAL_SetPlatformImageState(OTA_ImageState_t
eState);

Version 3: OtaPalStatus_t otaPal_SetPlatformImageState(OtaFileContext_t *
const pFileContext, OtaImageState_t eState);

Notes: Attempt to set the state of the OTA update image.

• Version 1: OTA_PAL_ImageState_t prvPAL_GetPlatformImageState(void);

Version 3: OtaPalImageState_t otaPal_GetPlatformImageState(OtaFileContext_t
* const *pFileContext*);

Notes: Get the state of the OTA update image.

Data Types

• Version 1: OTA_PAL_ImageState_t

File: aws_iot_ota_agent.h

Version 3: OtaPalImageState_t

File: ota_private.h

Notes: The image state set by platform implementation.

• Version 1: OTA_Err_t

File: aws_iot_ota_agent.h

Version 3: OtaErr_t OtaPalStatus_t (combination of OtaPalMainStatus_t and
OtaPalSubStatus_t)

File: ota.h, ota_platform_interface.h

Notes: v1: These were macros defining a 32 unsigned integer. v3: Specialized enum representing
the type of error and associated with an error code.

• Version 1: OTA_FileContext_t

File: aws_iot_ota_agent.h
Data Types 57

FreeRTOS Porting Guide

Version 3: OtaFileContext_t

File: ota_private.h

Notes: v1: Contains an enum and buffers for the data. v3: Contains additional data-length
variables.

• Version 1: OTA_ImageState_t

File: aws_iot_ota_agent.h

Version 3: OtaImageState_t

File: ota_private.h

Notes: OTA Image states

Configuration changes

The file aws_ota_agent_config.h was renamed to ota_config.h which changes the include
guards from _AWS_OTA_AGENT_CONFIG_H_ to OTA_CONFIG_H_.

• The file aws_ota_codesigner_certificate.h has been deleted.

• Included the new logging stack to print debug messages:

/**/
/******* DO NOT CHANGE the following order ********/
/**/

/* Logging related header files are required to be included in the following order:
 * 1. Include the header file "logging_levels.h".
 * 2. Define LIBRARY_LOG_NAME and LIBRARY_LOG_LEVEL.
 * 3. Include the header file "logging_stack.h".
 */

/* Include header that defines log levels. */
#include "logging_levels.h"

/* Configure name and log level for the OTA library. */
#ifndef LIBRARY_LOG_NAME
 #define LIBRARY_LOG_NAME "OTA"

Configuration changes 58

https://github.com/aws/amazon-freertos/blob/main/vendors/pc/boards/windows/aws_demos/config_files/ota_config.h

FreeRTOS Porting Guide

#endif
#ifndef LIBRARY_LOG_LEVEL
 #define LIBRARY_LOG_LEVEL LOG_INFO
#endif

#include "logging_stack.h"

/************ End of logging configuration ****************/

• Added the constant config:

/** * @brief Size of the file data block message (excluding the header). */
#define otaconfigFILE_BLOCK_SIZE (1UL << otaconfigLOG2_FILE_BLOCK_SIZE)

New File: ota_demo_config.h contains the configs that are required by the OTA demo such as
the code signing certificate and application version.

• signingcredentialSIGNING_CERTIFICATE_PEM which was defined in demos/include/
aws_ota_codesigner_certificate.h has been moved to ota_demo_config.h as
otapalconfigCODE_SIGNING_CERTIFICATE and can can be accessed from the PAL files as:

static const char codeSigningCertificatePEM[] = otapalconfigCODE_SIGNING_CERTIFICATE;

The file aws_ota_codesigner_certificate.h has been deleted.

• The macros APP_VERSION_BUILD, APP_VERSION_MINOR, APP_VERSION_MAJOR have been
added to ota_demo_config.h. The old files containing the version information have been
removed, for example tests/include/aws_application_version.h, libraries/
c_sdk/standard/common/include/iot_appversion32.h, demos/demo_runner/
aws_demo_version.c.

Changes to the OTA PAL tests

• Removed the "Full_OTA_AGENT" test group along with all related files. This test group was
previously required for qualification. These tests were for the OTA library and not specific to the
OTA PAL port. The OTA library now has full test coverage that is hosted in the OTA repository so
this test group is no longer required.

Changes to the OTA PAL tests 59

https://github.com/aws/amazon-freertos/blob/main/vendors/pc/boards/windows/aws_demos/config_files/ota_demo_config.h

FreeRTOS Porting Guide

• Removed the "Full_OTA_CBOR" and "Quarantine_OTA_CBOR" test groups as well as all related
files. These tests were not part of the qualification tests. The functionalities these tests covered
are now being tested in the OTA repository.

• Moved the testing files from the library directory to the tests/integration_tests/ota_pal
directory.

• Updated the OTA PAL qualification tests to use v3.0.0 of the OTA library API.

• Updated how the OTA PAL tests access the code signing certificate for tests. Previously there
was a dedicated header file for the code signing credential. This is no longer the case for the new
version of the library. The test code expects this variable to be defined in ota_pal.c. The value
is assigned to a macro that is defined in the platform specific OTA config file.

Checklist

Use this checklist to make sure you follow the steps required for migration:

• Update the name of the ota pal port folder from ota to ota_pal_for_aws.

• Add the file ota_pal.h with the functions mentioned above. For an example ota_pal.h file,
see GitHub.

• Add the configuration files:

• Change the name of the file from aws_ota_agent_config.h to (or create) ota_config.h.

• Add:

otaconfigFILE_BLOCK_SIZE (1UL << otaconfigLOG2_FILE_BLOCK_SIZE)

• Include:

#include "ota_demo_config.h"

• Copy the above files to the aws_test config folder and substitute any includes of
ota_demo_config.h with aws_test_ota_config.h.

• Add an ota_demo_config.h file.

• Add an aws_test_ota_config.h file.

• Make the following changes to ota_pal.c:

• Update the includes with the latest OTA library file names.

• Remove the DEFINE_OTA_METHOD_NAME macro.

Checklist 60

https://github.com/aws/amazon-freertos/blob/main/vendors/pc/boards/windows/ports/ota_pal_for_aws/ota_pal.h

FreeRTOS Porting Guide

• Update the signatures of the OTA PAL functions.

• Update the name of the file context variable from C to pFileContext.

• Update the OTA_FileContext_t struct and all related variables.

• Update cOTA_JSON_FileSignatureKey to OTA_JsonFileSignatureKey.

• Update the OTA_PAL_ImageState_t and Ota_ImageState_t types.

• Update the error type and values.

• Update the printing macros to use the logging stack.

• Update the signingcredentialSIGNING_CERTIFICATE_PEM to be
otapalconfigCODE_SIGNING_CERTIFICATE.

• Update otaPal_CheckFileSignature and otaPal_ReadAndAssumeCertificate
function comments.

• Update the CMakeLists.txt file.

• Update the IDE projects.

Checklist 61

https://github.com/aws/amazon-freertos/pull/3208/commits/432e13fcb8dfbfeb6de25110a3d2ea14ccaf1b9a

FreeRTOS Porting Guide

Document history

The following table describes the documentation history for the FreeRTOS Porting Guide and the
FreeRTOS Qualification Guide.

Date Documentation
version

Change history FreeRTOS version

May, 2022 FreeRTOS Porting
Guide

FreeRTOS Qualifica
tion Guide

• Updated existing
tests, added new
tests, and removed
redundant tests
based on FreeRTOS
Long Term Support
(LTS) libraries. For
more informati
on, see FreeRTOS
Libraries Integrati
on Tests 202205.00
 on GitHub.

• Updated FreeRTOS
porting flowchart.

• Added a new
Porting the
Network Transport
 Interface.

• Porting the AWS
IoT over-the-air
(OTA) update
library is now
required for
qualification.

• Removed Wi-Fi,
and TLS abstracti
on porting guide

202012.04-LTS

202112.00

62

https://docs.aws.amazon.com/freertos/latest/portingguide/porting-guide.html
https://docs.aws.amazon.com/freertos/latest/portingguide/porting-guide.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/latest-changes.html
https://docs.aws.amazon.com/freertos/latest/qualificationguide/latest-changes.html
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/releases/tag/202205.00
https://github.com/FreeRTOS/FreeRTOS-Libraries-Integration-Tests/releases/tag/202205.00
https://github.com/FreeRTOS/FreeRTOS-LTS/releases/tag/202012.04-LTS
https://github.com/FreeRTOS/FreeRTOS/releases/tag/202112.00

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

as it is not required
any more.

• See Latest changes
for further updates
on FreeRTOS
qualification.

July, 2021 202107.00 (Porting
Guide)

202107.00 (Qualific
ation Guide)

• Release 202107.00

• Changed Porting
the AWS IoT over-
the-air (OTA)
update library

• Added Migrating
from version 1 to
version 3 for OTA
applications

• Added Migrating
from version 1 to
version 3 for OTA
PAL port

202107.00

December, 2020 202012.00 (Porting
Guide)

202012.00 (Qualific
ation Guide)

• Release 202012.00

• Added Configuri
ng the coreHTTP
library

• Added Porting the
Cellular Interface
library

202012.00

63

https://docs.aws.amazon.com/freertos/latest/qualificationguide/latest-changes.html
https://github.com/aws/amazon-freertos/blob/202107.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202107.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202107.00
https://github.com/aws/amazon-freertos/blob/202012.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202012.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202012.00

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

November, 2020 202011.00 (Porting
Guide)

202011.00 (Qualific
ation Guide)

• Release 202011.00

• Added Configuri
ng the coreMQTT
library

202011.00

July, 2020 202007.00 (Porting
Guide)

202007.00 (Qualific
ation Guide)

• Release 202007.00 202007.00

February 18, 2020 202002.00 (Porting
Guide)

202002.00 (Qualific
ation Guide)

• Release 202002.00

• Amazon FreeRTOS
is now FreeRTOS

202002.00

December 17, 2019 201912.00 (Porting
Guide)

201912.00 (Qualific
ation Guide)

• Release 201912.00

• Added Porting of
the common I/O
libraries.

201912.00

October 29, 2019 201910.00 (Porting
Guide)

201910.00 (Qualific
ation Guide)

• Release 201910.00

• Updated random
number generator
porting informati
on.

201910.00

64

https://github.com/aws/amazon-freertos/blob/202011.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202011.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202011.00
https://github.com/aws/amazon-freertos/blob/202007.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202007.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202007.00
https://github.com/aws/amazon-freertos/blob/202002.00/doc/freertos_port_qual/FreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/202002.00/doc/freertos_port_qual/FreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/202002.00
https://github.com/aws/amazon-freertos/blob/201912.00/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201912.00/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201912.00
https://github.com/aws/amazon-freertos/blob/201910.00/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201910.00/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201910.00

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

August 26, 2019 201908.00 (Porting
Guide)

201908.00 (Qualific
ation Guide)

• Release 201908.00

• Added Configuring
the HTTPS client
library for testing

Updated Porting
the corePKCS11
library

201908.00

June 17, 2019 201906.00 (Porting
Guide)

201906.00 (Qualific
ation Guide)

• Release 201906.00

• Directory structure
d updated

201906.00 Major

May 21, 2019 1.4.8 (Porting Guide)

1.4.8 (Qualification
Guide)

• Porting documenta
tion moved to the
FreeRTOS Porting
Guide

• Qualification
documentation
moved to the
FreeRTOS Qualifica
tion Guide

1.4.8

February 25, 2019 1.1.6 • Removed
download and
configuration
instructions from
Getting Started
Guide Template
Appendix (page 84)

1.4.5

1.4.6

1.4.7

65

https://github.com/aws/amazon-freertos/blob/201908.00/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201908.00/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201908.00
https://github.com/aws/amazon-freertos/blob/201906.00_Major/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201906.00_Major/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201906.00_Major
https://github.com/aws/amazon-freertos/blob/v1.4.8/tests/afreertos-pg.pdf
https://github.com/aws/amazon-freertos/blob/v1.4.8/tests/afreertos-qg.pdf
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://github.com/aws/amazon-freertos/tree/v1.4.8
https://github.com/aws/amazon-freertos/blob/v1.4.7/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/tree/v1.4.6
https://github.com/aws/amazon-freertos/tree/v1.4.7

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

December 27, 2018 1.1.5 • Updated Checklist
for Qualification
appendix with
CMake requirement
(page 70)

1.4.5

1.4.6

December 12, 2018 1.1.4 • Added lwIP porting
instructions to
TCP/IP porting
appendix (page 31)

1.4.5

November 26, 2018 1.1.3 • Added Bluetooth
Low Energy porting
appendix (page 52)

• Added AWS IoT
Device Tester
for FreeRTOS
testing informati
on throughout
document

• Added CMake link
to Information
for listing on the
FreeRTOS Console
appendix (page 85)

1.4.4

66

https://github.com/aws/amazon-freertos/blob/v1.4.6/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/tree/v1.4.6
https://github.com/aws/amazon-freertos/blob/v1.4.5/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/blob/v1.4.4/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.4

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

November 7, 2018 1.1.2 • Updated PKCS
#11 PAL interface
porting instructi
ons in PKCS #11
porting appendix
(page 38)

• Updated path
to Certifica
teConfigu
rator.html
(page 76)

• Updated Getting
Started Guide
Template appendix
(page 80)

1.4.3

67

https://github.com/aws/amazon-freertos/blob/v1.4.3/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.3

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

October 8, 2018 1.1.1 • Added new
"Required for
AFQP" column
to aws_test_
runner_co
nfig.h test
configuration table
(page 16)

• Updated Unity
module directory
path in Create the
Test Project section
(page 14)

• Updated
"Recommended
Porting Order"
chart (page 22)

• Updated client
certificate and key
variable names in
TLS appendix, Test
Setup (page 40)

• File paths changed
in Secure Sockets
porting appendix,
Test Setup (page
34); TLS porting
appendix, Test
Setup (page 40);
and TLS Server
Setup appendix
(page 57)

1.4.2

68

https://github.com/aws/amazon-freertos/blob/v1.4.2/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.2

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

August 27, 2018 1.1.0 • Added OTA
Updates porting
appendix (page 47)

• Added Bootloade
r porting appendix
(page 51)

1.4.0

1.4.1

August 9, 2018 1.0.1 • Updated
"Recommended
Porting Order"
chart (page 22)

• Updated PKCS #11
porting appendix
(page 36)

• File paths changed
in TLS porting
appendix, Test
Setup (page 40),
and TLS Server
Setup appendix,
step 9 (page 51)

• Fixed hyperlinks
in MQTT porting
appendix, Prerequis
ites (page 45)

• Added AWS CLI
config instructi
ons to examples
in Instructions to
Create a BYOC
appendix (page 57)

1.3.1

1.3.2

69

https://github.com/aws/amazon-freertos/blob/v1.4.0/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.0
https://github.com/aws/amazon-freertos/tree/v1.4.1
https://github.com/aws/amazon-freertos/blob/v1.3.2/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.3.1
https://github.com/aws/amazon-freertos/tree/v1.3.2

FreeRTOS Porting Guide

Date Documentation
version

Change history FreeRTOS version

July 31, 2018 1.0.0 Initial version of the
FreeRTOS Qualifica
tion Program Guide

1.3.0

70

https://github.com/aws/amazon-freertos/blob/v1.3.0/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide-V1.0.0.pdf
https://github.com/aws/amazon-freertos/tree/v1.3.0

	FreeRTOS
	Table of Contents
	FreeRTOS Porting
	What is FreeRTOS
	Porting FreeRTOS to your IoT board
	Porting FAQs

	Downloading FreeRTOS for Porting
	Setting up your workspace and project for porting
	Porting the FreeRTOS libraries
	FreeRTOS porting flowchart
	Configuring a FreeRTOS kernel port
	Prerequisites
	Configuring the FreeRTOS kernel
	Testing

	Implementing the library logging macros
	Testing

	Porting a TCP/IP stack
	Porting FreeRTOS+TCP
	Prerequisites
	Porting

	Testing

	Porting the corePKCS11 library
	When to implement a complete PKCS #11 module
	When to use FreeRTOS corePKCS11
	Porting corePKCS11
	Testing
	Prerequisites
	Porting tests
	Configuring tests
	Running tests

	Porting the Network Transport Interface
	Integrating the TLS library
	Porting the Network Transport Interface library
	Prerequisites
	Porting
	Credential management (on-device generated key)
	Credential Management (importing key)

	Testing
	Enable the test
	Set up the echo server for testing
	Configuring the project for testing
	Setup credentials (on-device generated key)
	Setup credentials (importing key)
	Build and flash the application

	Configuring the coreMQTT library
	Prerequisites
	Testing
	Create reference MQTT demo

	Configuring the coreHTTP library
	Testing

	Porting the AWS IoT over-the-air (OTA) update library
	Prerequisites
	Platform porting
	E2E and PAL tests
	E2E tests
	Prerequisites
	Porting the OTA demo application
	Porting steps
	Configuration
	Build verification

	Running tests with the IDT tool
	E2E test cases

	PAL tests
	Prerequisites
	Porting
	Testing
	Enable the test

	Integrating OTA tasks

	IoT device bootloader
	Threat modeling for the IoT device bootloader
	Background
	Threats
	Further threat modeling

	Porting the Cellular Interface library
	Prerequisites

	Migrating from MQTT Version 3 to coreMQTT
	Migrating from version 1 to version 3 for OTA applications
	Summary of API changes
	Description of changes required
	OTA_Init
	OTA_Shutdown
	OTA_GetState
	OTA_GetStatistics
	OTA_ActivateNewImage
	OTA_SetImageState
	OTA_GetImageState
	OTA_Suspend
	OTA_Resume
	OTA_CheckForUpdate
	OTA_EventProcessingTask
	OTA_SignalEvent

	Integrating the OTA Library as a submodule in your application
	References

	Migrating from version 1 to version 3 for OTA PAL port
	Changes to OTA PAL
	Functions
	Data Types
	Configuration changes

	Changes to the OTA PAL tests
	Checklist

	Document history

