
User Guide

AWS CloudHSM

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS CloudHSM User Guide

AWS CloudHSM: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



AWS CloudHSM User Guide

Table of Contents

What is AWS CloudHSM? ................................................................................................................ 1
Use cases ........................................................................................................................................................ 2
How it works ................................................................................................................................................. 4

Clusters ...................................................................................................................................................... 5
Users in AWS CloudHSM ....................................................................................................................... 5
Keys in AWS CloudHSM ......................................................................................................................... 6
Client SDKs ............................................................................................................................................... 7
Backups ...................................................................................................................................................... 7
Supported Regions for AWS CloudHSM ............................................................................................. 8

Pricing for AWS CloudHSM ........................................................................................................................ 9
Getting started .............................................................................................................................. 10

Create IAM administrators ....................................................................................................................... 10
Create an IAM user and administrator group ................................................................................. 11

Create a VPC ............................................................................................................................................... 13
Create a cluster ........................................................................................................................................... 13
Review the cluster security group .......................................................................................................... 18
Launch an EC2 client ................................................................................................................................. 19
Configure EC2 instance security groups ................................................................................................ 22

Step 1. Modify the default security group ...................................................................................... 22
Step 2. Connect the Amazon EC2 instance to the AWS CloudHSM cluster ............................... 23

Create an HSM ............................................................................................................................................ 24
Verify HSM identity (optional) ................................................................................................................ 25

Step 1. Get certificates from the HSM ............................................................................................. 28
Step 2. Get the root certificates ........................................................................................................ 31
Step 3. Verify certificate chains ......................................................................................................... 31
Step 4. Extract and compare public keys ........................................................................................ 33

Initialize the cluster ................................................................................................................................... 33
Step 1. Get the cluster CSR ................................................................................................................ 34
Step 2. Sign the CSR ............................................................................................................................ 36
Step 3. Initialize the cluster ............................................................................................................... 38

Install CloudHSM CLI ................................................................................................................................. 40
Activate the cluster .................................................................................................................................... 44
Setup mTLS (recommended) ................................................................................................................... 47

Step 1. Create and register a trust anchor onto the HSM ............................................................ 47

iii



AWS CloudHSM User Guide

Step 2. Enable mTLS for AWS CloudHSM ....................................................................................... 51
Step 3. Set the mTLS enforcement for AWS CloudHSM .............................................................. 56

Create and use keys in AWS CloudHSM ................................................................................................ 58
Best practices ................................................................................................................................. 59

Cluster management ................................................................................................................................. 59
Scale your cluster to handle peak traffic ......................................................................................... 59
Architect your cluster for high availability ...................................................................................... 59
Have at least three HSMs to ensure durability for newly generated keys ................................. 60
Secure access to your cluster ............................................................................................................. 60
Reduce costs by scaling to your needs ............................................................................................ 60

User management ...................................................................................................................................... 61
Protect your HSM users' credentials ................................................................................................. 61
Have at least two admins to prevent lockout ................................................................................ 61
Enable quorum for all user management operations ................................................................... 61
Create multiple crypto users, each with limited permissions ...................................................... 61

Key management ....................................................................................................................................... 62
Choose the right key type .................................................................................................................. 62
Manage key storage limits .................................................................................................................. 62
Managing and securing key wrapping .............................................................................................. 63

Application integration ............................................................................................................................. 63
Bootstrap your Client SDK .................................................................................................................. 63
Authenticate to perform operations ................................................................................................. 64
Effectively manage keys in your application ................................................................................... 65
Use multi-threading ............................................................................................................................. 65
Handle throttling errors ...................................................................................................................... 66
Integrate retries on cluster operations ............................................................................................ 66
Implement disaster recovery strategies ........................................................................................... 66

Monitoring ................................................................................................................................................... 67
Monitor client logs ............................................................................................................................... 67
Monitor audit logs ................................................................................................................................ 67
Monitor AWS CloudTrail ...................................................................................................................... 68
Monitor Amazon CloudWatch metrics .............................................................................................. 68

Clusters ........................................................................................................................................... 69
Cluster architecture .................................................................................................................................... 69
Cluster synchronization ............................................................................................................................. 71
Cluster high availability and load balancing ........................................................................................ 72

iv



AWS CloudHSM User Guide

Cluster modes ............................................................................................................................................. 73
HSM types .................................................................................................................................................... 74
Connecting to the cluster ......................................................................................................................... 76

Place the issuing certificate on each EC2 instance ........................................................................ 76
Specify the location of the issuing certificate ................................................................................ 76
Bootstrap the Client SDK .................................................................................................................... 78

Scaling HSMs ............................................................................................................................................... 82
Adding an HSM ..................................................................................................................................... 82
Removing an HSM ................................................................................................................................ 84

Deleting a cluster ....................................................................................................................................... 85
Creating clusters from backups .............................................................................................................. 87

Create clusters from backups (console) ........................................................................................... 87
Create clusters from backups (AWS CLI) .......................................................................................... 88
Create clusters from backups (AWS CloudHSM API) ..................................................................... 89

Migrating HSM cluster types ................................................................................................................... 89
Migrating from hsm1.medium to hsm2m.medium ....................................................................... 90

HSM users ...................................................................................................................................... 98
User management with CloudHSM CLI ................................................................................................. 98

Prerequisites ........................................................................................................................................... 99
User types ............................................................................................................................................ 100
Permissions table ................................................................................................................................ 102
Create admin ....................................................................................................................................... 104
Create CUs ............................................................................................................................................ 105
List all users ......................................................................................................................................... 106
Change passwords .............................................................................................................................. 106
Delete users ......................................................................................................................................... 108
Manage user MFA ............................................................................................................................... 109
Manage quorum authentication (M of N) ..................................................................................... 124

User management with CMU ................................................................................................................ 148
Prerequisites ........................................................................................................................................ 149
User types ............................................................................................................................................ 153
Permissions table ................................................................................................................................ 154
Create users ......................................................................................................................................... 156
List all users ......................................................................................................................................... 159
Change passwords .............................................................................................................................. 161
Delete users ......................................................................................................................................... 164

v



AWS CloudHSM User Guide

Manage user 2FA ................................................................................................................................ 165
Using CMU to manage quorum authentication ........................................................................... 174

Keys .............................................................................................................................................. 194
Key sync and durability .......................................................................................................................... 194

Concepts ............................................................................................................................................... 195
Understanding key synchronization ............................................................................................... 195
Change client key durability settings ............................................................................................. 197
Synchronizing keys across cloned clusters .................................................................................... 202

AES key wrapping .................................................................................................................................... 202
Supported algorithms ........................................................................................................................ 203
Using AES key wrap in AWS CloudHSM ........................................................................................ 204

Trusted keys .............................................................................................................................................. 206
Understanding trusted keys ............................................................................................................. 206
Trusted key attributes ....................................................................................................................... 206
How to use trusted keys to wrap data keys ................................................................................. 207
How to unwrap a data key with a trusted key ............................................................................. 210

Key management with CloudHSM CLI ................................................................................................ 210
Generate keys ...................................................................................................................................... 211
Delete keys ........................................................................................................................................... 217
Share and unshare keys .................................................................................................................... 220
Filter by keys ....................................................................................................................................... 227
Mark a key as trusted ........................................................................................................................ 234
Manage quorum authentication (M of N) ..................................................................................... 236

Key management with KMU .................................................................................................................. 256
Generate keys ...................................................................................................................................... 257
Import keys .......................................................................................................................................... 258
Export keys .......................................................................................................................................... 261
Delete keys ........................................................................................................................................... 263
Share and unshare keys .................................................................................................................... 263
Mark a key as trusted ........................................................................................................................ 264

Cluster backups ........................................................................................................................... 265
Working with backups ............................................................................................................................ 265

Removing expired keys or inactive users ....................................................................................... 266
Considering disaster recovery .......................................................................................................... 266

Delete backups ......................................................................................................................................... 266
Restore backups ....................................................................................................................................... 268

vi



AWS CloudHSM User Guide

Configure backup retention ................................................................................................................... 269
Managed backup retention .............................................................................................................. 269

Copying backups across Regions .......................................................................................................... 273
Copy backups to different Regions (console) ............................................................................... 273
Copy backups to different Regions (AWS CLI) .............................................................................. 274
Copy backups to different Regions (AWS CloudHSM API) ......................................................... 274

Working with shared backups ............................................................................................................... 274
Prerequisites for sharing backups ................................................................................................... 275
Sharing a backup ................................................................................................................................ 275
Unsharing a shared backup .............................................................................................................. 278
Identifying a shared backup ............................................................................................................ 279
Permissions for shared backups ...................................................................................................... 279
Billing and metering .......................................................................................................................... 280

Cloned clusters ............................................................................................................................ 281
Get an IP address for an HSM .............................................................................................................. 282
Related topics ........................................................................................................................................... 283

Tag resources ............................................................................................................................... 284
Add or update tags ................................................................................................................................. 284
List tags ...................................................................................................................................................... 285
Remove tags ............................................................................................................................................. 286

Command line tools .................................................................................................................... 288
Configure tool ........................................................................................................................................... 289

Client SDK 5 configure tool ............................................................................................................. 290
Client SDK 3 configure tool ............................................................................................................. 317

CloudHSM CLI ........................................................................................................................................... 326
Supported platforms ......................................................................................................................... 327
Migrate from CMU and KMU to CloudHSM CLI ........................................................................... 328
Getting started .................................................................................................................................... 328
Command modes ................................................................................................................................ 336
Key attributes ...................................................................................................................................... 337
Advanced configurations ................................................................................................................... 343
Reference .............................................................................................................................................. 350

AWS CloudHSM Management Utility ................................................................................................... 590
Supported platforms ......................................................................................................................... 591
Getting started .................................................................................................................................... 592
Install the client (Linux) .................................................................................................................... 596

vii



AWS CloudHSM User Guide

Install the client (Windows) ............................................................................................................. 599
Reference .............................................................................................................................................. 600

Key Management Utility ......................................................................................................................... 659
Getting started .................................................................................................................................... 659
Install the client (Linux) .................................................................................................................... 664
Install the client (Windows) ............................................................................................................. 666
Reference .............................................................................................................................................. 667

Client SDKs .................................................................................................................................. 792
Check your version .................................................................................................................................. 793
Compare component support ............................................................................................................... 795

PKCS #11 library ................................................................................................................................. 795
CloudHSM Management Utility (CMU) ........................................................................................... 796
Key Management Utility (KMU) ....................................................................................................... 796
JCE provider ......................................................................................................................................... 796
OpenSSL Dynamic Engine ................................................................................................................ 796
Key storage provider (KSP) ............................................................................................................... 797

Migrating to the latest SDK .................................................................................................................. 797
Migrate PKCS #11 library ................................................................................................................. 798
Migrate OpenSSL Dynamic Engine ................................................................................................. 801
Migrate Key Storage Provider (KSP) ............................................................................................... 803
Migrate JCE provider ......................................................................................................................... 810

Client SDK 5 .............................................................................................................................................. 821
Benefits of the latest SDK ................................................................................................................ 821
Supported platforms ......................................................................................................................... 823
PKCS #11 library ................................................................................................................................. 825
OpenSSL Dynamic Engine ................................................................................................................ 876
Key storage provider (KSP) ............................................................................................................... 882
JCE provider ......................................................................................................................................... 913

Previous version ....................................................................................................................................... 950
Upgrade Client SDK 3 ....................................................................................................................... 951
Supported platforms ......................................................................................................................... 960
PKCS #11 library ................................................................................................................................. 962
OpenSSL Dynamic Engine .............................................................................................................. 1004
JCE provider ...................................................................................................................................... 1008
KSP and CNG providers .................................................................................................................. 1037

Integrating third-party applications ........................................................................................ 1050

viii



AWS CloudHSM User Guide

SSL/TLS offload ..................................................................................................................................... 1050
How it works ..................................................................................................................................... 1051
Offload on Linux with OpenSSL ................................................................................................... 1052
Offload on Linux with JSSE ........................................................................................................... 1121
Offload on Windows ........................................................................................................................ 1132
Add a load balancer (optional) ...................................................................................................... 1147

Windows Server CA ............................................................................................................................... 1153
Client SDK 5 with Windows Server CA ........................................................................................ 1154
Client SDK 3 with Windows Server CA ........................................................................................ 1159

Oracle database encryption ................................................................................................................ 1164
Set up prerequisites ......................................................................................................................... 1165
Step 3: Generate the Oracle TDE master encryption key ........................................................ 1166

Microsoft SignTool ................................................................................................................................ 1168
Client SDK 5 with Microsoft SignTool ......................................................................................... 1168
Client SDK 3 with Microsoft SignTool ......................................................................................... 1172

Java Keytool and Jarsigner ................................................................................................................. 1177
Client SDK 5 with Java Keytool and Jarsigner ........................................................................... 1177
Client SDK 3 with Java Keytool and Jarsigner ........................................................................... 1189

Microsoft Manifest Generation and Editing Tool ............................................................................ 1205
Step 1: Set up the prerequisites ................................................................................................... 1205
Step 2: Create a signing certificate .............................................................................................. 1206
Step 3: Sign a file ............................................................................................................................ 1208

Other third-party vendor integrations .............................................................................................. 1209
Monitoring ................................................................................................................................. 1211

Client SDK logs ...................................................................................................................................... 1211
Client SDK 5 logging ....................................................................................................................... 1212
Client SDK 3 logging ....................................................................................................................... 1213

AWS CloudTrail ....................................................................................................................................... 1215
AWS CloudHSM information in CloudTrail ................................................................................. 1215
Understanding AWS CloudHSM log file entries ......................................................................... 1216

Audit logs ................................................................................................................................................ 1217
How logging works .......................................................................................................................... 1218
Viewing logs ...................................................................................................................................... 1219
Interpreting logs ............................................................................................................................... 1222
Log reference .................................................................................................................................... 1237

CloudWatch metrics .............................................................................................................................. 1240

ix



AWS CloudHSM User Guide

Performance ............................................................................................................................... 1242
Performance data .................................................................................................................................. 1242

............................................................................................................................................................. 1242
HSM throttling ....................................................................................................................................... 1243

Security ...................................................................................................................................... 1244
Control API access with IAM policies ................................................................................................. 1245

Upgrade IAM policies to IPv6 ........................................................................................................ 1245
Data protection ...................................................................................................................................... 1248

Encryption at rest ............................................................................................................................ 1249
Encryption in transit ........................................................................................................................ 1250
End-to-end encryption .................................................................................................................... 1250
Cluster backups ................................................................................................................................ 1251

Identity and access management ...................................................................................................... 1252
Grant permissions using IAM policies .......................................................................................... 1253
API actions for AWS CloudHSM .................................................................................................... 1254
Condition keys for AWS CloudHSM .............................................................................................. 1254
Predefined AWS managed policies for AWS CloudHSM ........................................................... 1255
Customer managed policies for AWS CloudHSM ...................................................................... 1255
Service-linked roles .......................................................................................................................... 1258

Compliance .............................................................................................................................................. 1260
PCI-PIN FAQs ..................................................................................................................................... 1262
Deprecations ...................................................................................................................................... 1263

Resilience ................................................................................................................................................. 1265
Infrastructure security .......................................................................................................................... 1265

Network isolation ............................................................................................................................. 1265
Authorization of users ..................................................................................................................... 1266

VPC endpoints (AWS PrivateLink) ...................................................................................................... 1266
Considerations for AWS CloudHSM VPC endpoints .................................................................. 1266
Creating an interface VPC endpoint for AWS CloudHSM ........................................................ 1266
Creating a VPC endpoint policy for AWS CloudHSM ................................................................ 1267

Update management ............................................................................................................................ 1268
Troubleshooting ......................................................................................................................... 1269

AWS CloudHSM known issues ............................................................................................................ 1269
Known issues for all HSM instances ............................................................................................. 1270
Known issues for hsm1.medium ................................................................................................... 1274
Known issues for hsm2m.medium ............................................................................................... 1275

x



AWS CloudHSM User Guide

Known issues for the PKCS #11 library ....................................................................................... 1277
Known issues for the JCE SDK ...................................................................................................... 1283
Known issues for the OpenSSL Dynamic Engine ....................................................................... 1288
Known issues for the Key Storage Provider (KSP) ..................................................................... 1290
Known issues for Amazon EC2 instances running Amazon Linux 2 ....................................... 1292
Known issues for integrating third-party applications ............................................................. 1293
Known issues for cluster modification ......................................................................................... 1293
Known issues of operation failure using AWS CloudHSM client version 5.12.0 on 
hsm2.medium .................................................................................................................................... 1294

Client SDK 3 key synchronization failures ........................................................................................ 1295
Client SDK 3 verify performance ....................................................................................................... 1295

Test recommendations .................................................................................................................... 1297
Configurable options for the pkpspeed tool .............................................................................. 1297
Tests that can be ran with the pkpspeed tool ........................................................................... 1298
Examples ............................................................................................................................................ 1299

Client SDK 5 user contains inconsistent values .............................................................................. 1302
Client SDK 5 user replicate failures ................................................................................................... 1308

Problem: The selected user is not synchronized throughout the cluster .............................. 1308
Problem: User exists on the destination cluster with different attributes ............................ 1310

Client SDK 5 key replicate failures .................................................................................................... 1310
Problem: The selected key is not synchronized throughout the cluster ............................... 1310
Problem: Key with same reference exists in destination cluster with different information 
or attributes ...................................................................................................................................... 1312

AWS CloudHSM error seen during key availability check .............................................................. 1313
Extracting keys using JCE .................................................................................................................... 1314

getEncoded, getPrivateExponent, or getS returns null ............................................................ 1314
getEncoded, getPrivateExponent, or getS return key bytes outside of the HSM ................ 1314

HSM throttling ....................................................................................................................................... 1314
Resolution .......................................................................................................................................... 1315

Keep HSM users in sync ....................................................................................................................... 1316
Lost connection ...................................................................................................................................... 1316
Missing AWS CloudHSM audit logs in CloudWatch ........................................................................ 1319
Non-compliant AES key wraps ........................................................................................................... 1320

Determine whether your code generates irrecoverable wrapped keys ................................. 1320
Actions you must take if your code generates irrecoverable wrapped keys ......................... 1321

Resolving AWS CloudHSM cluster creation failures ....................................................................... 1322

xi



AWS CloudHSM User Guide

Add the missing permission ........................................................................................................... 1323
Create the service-linked role manually ...................................................................................... 1323
Use a non-federated user ............................................................................................................... 1323

Retrieving AWS CloudHSM client configuration logs ..................................................................... 1324
Client SDK 5 support tool .............................................................................................................. 1325
Client SDK 3 support tool .............................................................................................................. 1326

Quotas ........................................................................................................................................ 1328
Downloads .................................................................................................................................. 1330

Latest release ......................................................................................................................................... 1330
Client SDK 5 release: Version 5.16.0 ............................................................................................ 1330

Previous release ..................................................................................................................................... 1336
Deprecated releases .............................................................................................................................. 1356

Deprecated Client SDK 5 releases ................................................................................................ 1356
Deprecated Client SDK 3 releases ................................................................................................ 1371

End-of-life releases ............................................................................................................................... 1381
Document history ...................................................................................................................... 1382

Recent updates ...................................................................................................................................... 1382
Earlier updates ....................................................................................................................................... 1388

xii



AWS CloudHSM User Guide

What is AWS CloudHSM?

AWS CloudHSM combines the benefits of the AWS cloud with the security of hardware security 
modules (HSMs). A hardware security module (HSM) is a computing device that processes 
cryptographic operations and provides secure storage for cryptographic keys. With AWS CloudHSM, 
you have complete control over high availability HSMs that are in the AWS Cloud, have low-
latency access, and a secure root of trust that automates HSM management (including backups, 
provisioning, configuration, and maintenance).

AWS CloudHSM offers customers a variety of benefits:

Access to FIPS and non-FIPS clusters

AWS CloudHSM offers clusters in two modes: FIPS and non-FIPS. In FIPS mode, only Federal 
Information Processing Standard (FIPS) validated keys and algorithms can be used. Non-FIPS 
mode offers all the keys and algorithms that are supported by AWS CloudHSM, regardless of 
FIPS approval. For more information, see AWS CloudHSM cluster modes.

HSMs are general purpose, single tenant, and either FIPS 140-2 level-3 or FIPS 140-3 level-3 
validated for clusters in FIPS mode

AWS CloudHSM uses general purpose HSMs that provide more flexibility when compared to 
the fully-managed AWS services that have predetermined algorithms and key lengths for your 
application. We offer HSMs that are standards-compliant, single-tenant, and are either FIPS 
140-2 level-3 or FIPS 140-3 level-3 validated for clusters in FIPS mode. For customers with use 
cases outside the restrictions of FIPS 140-2 or FIPS 140-3 level-3 validation, AWS CloudHSM 
also offers clusters in non-FIPS mode. See AWS CloudHSM clusters for more information.

E2E encryption is not visible to AWS

Because your data plane is end-to-end (E2E) encrypted and not visible to AWS, you control your 
own user management (outside of IAM roles). The trade off for this control is you have more 
responsibility than if you used a managed AWS service.

Full control of your keys, algorithms, and application development

AWS CloudHSM gives you full control of the algorithms and keys you use. You can generate, 
store, import, export, manage, and use cryptographic keys (including, session keys, token 
keys, symmetric keys and asymmetric key pairs). Additionally, AWS CloudHSM SDKs give you 
full control over application development, application language, threading, and where your 
applications physically exist.

1



AWS CloudHSM User Guide

Migrate your cryptographic workloads to the cloud

Customers migrating public key infrastructure that use Public Key Cryptography Standards #11 
(PKCS #11), Java Cryptographic Extension (JCE), Cryptography API: Next Generation (CNG), 
or Key Storage Provider (KSP) can migrate to AWS CloudHSM with fewer changes to their 
application.

To learn more about what you can do with AWS CloudHSM, see the following topics. When you are 
ready to get started with AWS CloudHSM, see Getting started.

Note

If you want a managed service for creating and controlling your encryption keys but you 
don't want or need to operate your own HSMs, consider using AWS Key Management 
Service.
If you are looking for an elastic service that manages payment HSMs and keys for payment 
processing applications in the cloud, consider using AWS Payment Cryptography.

Contents

• AWS CloudHSM use cases

• How AWS CloudHSM works

• Pricing for AWS CloudHSM

AWS CloudHSM use cases

AWS CloudHSM can be used to accomplish a variety of goals. The content in this topic provides an 
overview of what you can do with AWS CloudHSM.

Achieve regulatory compliance

Businesses that need to align with enterprise security standards can use AWS CloudHSM 
to manage private keys that protect highly confidential data. The HSMs provided by AWS 
CloudHSM are FIPS 140-2 level 3 certified and comply with PCI DSS. Additionally, AWS 
CloudHSM is PCI PIN compliant and PCI-3DS compliant. For more information, see Compliance.

Use cases 2

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://aws.amazon.com/payment-cryptography/


AWS CloudHSM User Guide

Encrypt and decrypt data

Use AWS CloudHSM to manage private keys that protect highly confidential data, encryption 
in transit, and encryption at rest. Additionally, AWS CloudHSM offers standards-compliant 
integration with multiple cryptographic SDKs.

Sign and verify documents with private and public keys

In cryptography, using a private key to sign a document allows recipients to use a public key 
to verify that you (and not someone else) actually sent the document. Use AWS CloudHSM to 
create asymmetric public and private key pairs that are specifically designed for this purpose.

Authenticate messages using HMACs and CMACs

In cryptography, Cipher Message Authentication Codes (CMACs) and Hash-based Message 
Authentication Codes (HMACs) are used to authenticate and ensure the integrity of messages 
sent over unsafe networks. With AWS CloudHSM, you can securely create and manage 
symmetric keys that support HMACs and CMACs.

Leverage the benefits of AWS CloudHSM and AWS Key Management Service

Customers can combine AWS CloudHSM and AWS KMS to store key material in a single-tenant 
environment while also getting the key management, scaling, and cloud integration benefits 
of AWS KMS. For details on how to do this, see AWS CloudHSM key stores in the AWS Key 
Management Service Developer Guide.

Offload SSL/TLS processing for web servers

To securely send data over the internet, web servers use public–private key pairs and SSL/TLS 
public key certificate to establish HTTPS sessions. This process involves a lot of computation 
for web servers, but you can reduce computational burden while providing extra security by 
offloading some of this to your AWS CloudHSM cluster. For information about setting up SSL/
TLS offload with AWS CloudHSM, see SSL/TLS offload.

Enable transparent data encryption (TDE)

Transparent Data Encryption (TDE) is used to encrypt database files. Using TDE, database 
software encrypts data before storing it on disk. You can achieve greater security by storing the 

Use cases 3

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/keystore-cloudhsm.html


AWS CloudHSM User Guide

TDE master encryption key in HSMs in your AWS CloudHSM. For information about setting up 
Oracle TDE with AWS CloudHSM, see Oracle database encryption.

Manage the private keys of an issuing certificate authority (CA)

A certificate authority (CA) is a trusted entity that issues digital certificates that bind a public 
key to an identity (a person or organization). To operate a CA, you must maintain trust by 
protecting the private key that signs certificates issued by your CA. You can store such private 
keys in your AWS CloudHSM cluster and then use your HSMs to perform cryptographic signing 
operations.

Generate random numbers

Generating random numbers to create encryption keys is core to online security. AWS 
CloudHSM can be used to securely generate random numbers in HSMs you control and are only 
visible to you.

How AWS CloudHSM works

This topic provides an overview of the basic concepts and architecture you use to securely encrypt 
data and perform cryptographic operations in HSMs. AWS CloudHSM operates in your own Amazon 
Virtual Private Cloud (VPC). Before you can use AWS CloudHSM, you first create a cluster, add HSMs 
to it, create users and keys, and then use Client SDKs to integrate your HSMs with your application. 
Once this is done, you use Client SDK logs, AWS CloudTrail, audit logs, and Amazon CloudWatch to
monitor AWS CloudHSM.

Learn AWS CloudHSM's basic concepts and how they work together to help protect your data.

Topics

• AWS CloudHSM clusters

• Users in AWS CloudHSM

• Keys in AWS CloudHSM

• Client SDKs for AWS CloudHSM

• AWS CloudHSM cluster backups

• Supported Regions for AWS CloudHSM

How it works 4



AWS CloudHSM User Guide

AWS CloudHSM clusters

Making individual HSMs work together in a synchronized, redundant, and highly-available way 
can be difficult, but AWS CloudHSM does the heavy lifting for you by providing hardware security 
modules (HSMs) in clusters. A cluster is a collection of individual HSMs that AWS CloudHSM keeps 
in sync. When you perform a task or operation on one HSM in a cluster, the other HSMs in that 
cluster are automatically kept up to date.

AWS CloudHSM offers clusters in two modes: FIPS and non-FIPS. In FIPS mode, only Federal 
Information Processing Standard (FIPS) validated keys and algorithms can be used. Non-FIPS 
mode offers all the keys and algorithms that are supported by AWS CloudHSM, regardless of FIPS 
approval. AWS CloudHSM also offers two types of HSMs: hsm1.medium and hsm2m.medium. For 
details on the differences between each HSM type and cluster mode, see AWS CloudHSM cluster 
modes. The hsm1.medium HSM type is reaching end of support so new clusters cannot be created 
with this type. For more information, see Deprecation notifications for details.

To meet your availability, durability, and scalability goals, you set the number of HSMs in your 
cluster across multiple availability zones. You can create a cluster that has 1 to 28 HSMs (the
default limit is 6 HSMs per AWS account per AWS Region). You can place the HSMs in different
Availability Zones in an AWS region. Adding more HSMs to a cluster provides higher performance. 
Spreading clusters across Availability Zones provides redundancy and high availability.

For more information about clusters, see Clusters in AWS CloudHSM.

To create a cluster, see Getting started.

Users in AWS CloudHSM

Unlike most AWS services and resources, you do not use AWS Identity and Access Management 
(IAM) users or IAM policies to access resources within your AWS CloudHSM cluster. Instead, you use
HSM users directly on HSMs in your AWS CloudHSM cluster.

HSM users are distinct from IAM users. IAM users who have the correct credentials can create HSMs 
by interacting with resources through the AWS API. Since E2E encryption is not visible to AWS, you 
must use HSM user credentials to authenticate operations on the HSM because credentials takes 
place directly on the HSM. The HSM authenticates each HSM user by means of credentials that 
you define and manage. Each HSM user has a type that determines which operations that user can 
perform on the HSM. Each HSM authenticates each HSM user by means of credentials that you 
define using CloudHSM CLI.

Clusters 5

https://docs.aws.amazon.com/cloudhsm/latest/userguide/regions.html
https://wa.aws.amazon.com/wellarchitected/2020-07-02T19-33-23/wat.concept.az.en.html


AWS CloudHSM User Guide

If you are using the previous SDK version series, then you will use CloudHSM Management Utility 
(CMU).

Keys in AWS CloudHSM

AWS CloudHSM allows you to securely generate, store, and manage your encryption keys in single-
tenant HSMs that are in your AWS CloudHSM cluster. Keys can be symmetric or asymmetric, can be 
session keys (ephemeral keys) for single sessions, token keys (persistent keys) for long-term use, 
and can be exported from and imported into AWS CloudHSM. Keys can also be used to complete 
common cryptographic tasks and functions:

• Perform cryptographic data signing and signature verification with both symmetric and 
asymmetric encryption algorithms.

• Work with hash functions to compute message digests and hash-based message authentication 
codes (HMACs).

• Wrap and protect other keys.

• Access cryptographically secure random data.

The maximum keys a cluster can have depends on the type of HSMs that are in the cluster. For 
example, hsm2m.medium stores more keys than hsm1,medium. For a comparison, see AWS 
CloudHSM quotas.

Additionally, AWS CloudHSM follows a few foundational principles for key usage and management:

Many key types and algorithms to choose from

To allow you to customize your own solutions, AWS CloudHSM provides many key types and 
algorithms to choose from. algorithms support a range of key sizes. For more information, refer 
to the attributes and mechanism pages of each Offload operations with AWS CloudHSM Client 
SDKs.

How you manage keys

AWS CloudHSM keys are managed through SDKs and command line tools. For information on 
how to use these tools to manage keys, see Keys in AWS CloudHSM and Best practices for AWS 
CloudHSM.

Keys in AWS CloudHSM 6



AWS CloudHSM User Guide

Who owns keys

In AWS CloudHSM, the crypto user (CU) who creates the key owns it. The owner can use the
key share and key unshare commands to share and unshare the key with other CUs. For more 
information, see Share and unshare keys using CloudHSM CLI.

Access and usage can be controlled with attribute-based encryption

AWS CloudHSM allows you to use attribute-based encryption, a form of encryption that lets 
you use key attributes to control who can decrypt data based on policies.

Client SDKs for AWS CloudHSM

When using AWS CloudHSM, you perform cryptographic operations with AWS CloudHSM Client 
Software Development Kits (SDKs). AWS CloudHSM Client SDKs include:

• Public Key Cryptography Standards #11 (PKCS #11)

• JCE provider

• OpenSSL Dynamic Engine

• Key Storage Provider (KSP) for Microsoft Windows

You can use any or all of these SDKS in your AWS CloudHSM cluster. Write your application code to 
use these SDKs to perform cryptographic operations in your HSMs. To see what platforms and HSM 
types support each SDK, see AWS CloudHSM Client SDK 5 supported platforms

Utility and command line tools are needed not only to use SDKs but also to configure the 
credentials, policies, and settings of your application. For more information, refer to AWS 
CloudHSM command line tools.

For more information about installing and using the Client SDK or the security of the client 
connection, see Client SDKs and End-to-end encryption.

AWS CloudHSM cluster backups

AWS CloudHSM makes periodic backups of the users, keys, and policies in the cluster. Backups 
are secure, durable, and updated on a predictable schedule. The following illustration shows the 
relationship of your backups to the cluster.

Client SDKs 7



AWS CloudHSM User Guide

For more information about working with backups, see Cluster backups.

Security

When AWS CloudHSM makes a backup from the HSM, the HSM encrypts all of its data before 
sending it to AWS CloudHSM. The data never leaves the HSM in plaintext form. Additionally, 
backups cannot be decrypted by AWS because AWS doesn’t have access to key used to decrypt 
the backups. For more information, see Security of cluster backups

Durability

AWS CloudHSM stores backups in a service-controlled Amazon Simple Storage Service (Amazon 
S3) bucket in the same region as your cluster. Backups have a 99.999999999% durability level, 
the same as any object stored in Amazon S3.

Supported Regions for AWS CloudHSM

For information about the supported Regions for AWS CloudHSM, see AWS CloudHSM Regions and 
Endpoints in the AWS General Reference, or the Region Table.

Supported Regions for AWS CloudHSM 8

https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html
https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/


AWS CloudHSM User Guide

AWS CloudHSM might not be available in all Availability Zones in a given Region. However, this 
should not affect performance, as AWS CloudHSM automatically load balances across all HSMs in a 
cluster.

Like most AWS resources, clusters and HSMs are regional resources. You cannot reuse or extend a 
cluster across Regions. You must perform all the required steps listed in Getting started with AWS 
CloudHSM to create a cluster in a new Region.

For disaster recovery purposes, AWS CloudHSM allows you to copy backups of your AWS CloudHSM 
Cluster from one region to another. For more information, see AWS CloudHSM cluster backups.

Pricing for AWS CloudHSM

With AWS CloudHSM, you pay by the hour with no long-term commitments or upfront payments. 
For more information, see AWS CloudHSM Pricing on the AWS website.

Pricing for AWS CloudHSM 9

https://aws.amazon.com/cloudhsm/pricing/


AWS CloudHSM User Guide

Getting started with AWS CloudHSM

The following topics help you create, initialize, and activate a cluster in AWS CloudHSM. After you 
complete these procedures, you'll be ready to manage users, manage clusters, and use the included 
software libraries to perform cryptographic operations. For the best experience, follow the topics 
in the listed order.

Contents

• Create IAM administrative groups for AWS CloudHSM

• Create a virtual private cloud (VPC) for AWS CloudHSM

• Create a cluster in AWS CloudHSM

• Review the security group for your cluster in AWS CloudHSM

• Launch an Amazon EC2 client instance for interacting with AWS CloudHSM

• Configure the Client Amazon EC2 instance security groups for AWS CloudHSM

• Create an HSM in AWS CloudHSM

• Verify the identity and authenticity of your cluster's HSM in AWS CloudHSM (optional)

• Initialize the cluster in AWS CloudHSM

• Install and configure CloudHSM CLI

• Activate the cluster in AWS CloudHSM

• Set up mutual TLS between client and AWS CloudHSM (recommended)

• Create and use keys in AWS CloudHSM

Create IAM administrative groups for AWS CloudHSM

The first step to getting started with AWS CloudHSM is to set up IAM permissions.

As a best practice, don't use your AWS account root user to interact with AWS, including AWS 
CloudHSM. Instead, use AWS Identity and Access Management (IAM) to create an IAM user, IAM 
role, or federated user. Follow the steps in the section Create an IAM user and administrator group
to create an administrator group and attach the AdministratorAccess policy to it. Then create 
a new administrator user and add the user to the group. Add additional users to the group as 
needed. Each user you add inherits the AdministratorAccess policy from the group.

Create IAM administrators 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users


AWS CloudHSM User Guide

Another best practice is to create an AWS CloudHSM administrator group that has only the 
permissions required to run AWS CloudHSM. Add individual users to this group as needed. Each 
user inherits the limited permissions that are attached to the group rather than full AWS access. 
The Customer managed policies for AWS CloudHSM section that follows contains the policy that 
you should attach to your AWS CloudHSM administrator group.

AWS CloudHSM defines a service–linked role for your AWS account. The service–linked role 
currently defines permissions that allow your account to log AWS CloudHSM events. The role can 
be created automatically by AWS CloudHSM or manually by you. You cannot edit the role, but you 
can delete it. For more information, see Service-linked roles for AWS CloudHSM.

Create an IAM user and administrator group

Start by creating an IAM user along with an administrator group for that user.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code 
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user 
has access to all AWS services and resources in the account. As a security best practice, assign 
administrative access to a user, and use only the root user to perform tasks that require root 
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can 
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity 
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Create an IAM user and administrator group 11

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/


AWS CloudHSM User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and 
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User 
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in 
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User 
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see 
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity 
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email 
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in 
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see  Create a permission set in the AWS IAM Identity Center User Guide.

Create an IAM user and administrator group 12

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html


AWS CloudHSM User Guide

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see  Add groups in the AWS IAM Identity Center User Guide.

For example policies for AWS CloudHSM that you can attach to your IAM user group, see Identity 
and access management for AWS CloudHSM.

Create a virtual private cloud (VPC) for AWS CloudHSM

You need a virtual private cloud (VPC) for your cluster in AWS CloudHSM. If you don't already have 
one, follow the steps in this topic to create a VPC.

Note

Following these steps will result in the creation of public and private subnets.

To create a VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. On the navigation bar, use the region selector to choose one of the AWS Regions where AWS 
CloudHSM is currently supported.

3. Select the Create VPC button.

4. For Resources to create, choose VPC and more.

5. For Name tag auto-generation, type an identifiable name such as CloudHSM.

6. For IPv6 CIDR block, select Amazon-provided IPv6 CIDR block to use IPv6 connectivity for 
your HSMs and have AWS allocate an IPv6 CIDR block for your cluster. This setting supports 
the dual-stack Network Type. Keep the default setting if you don't need IPv6 connectivity.

7. Leave all other options set to their defaults.

8. Choose Create VPC.

9. After the VPC is created, select View VPC to view the VPC you just created.

Create a cluster in AWS CloudHSM

A cluster is a collection of individual hardware security modules (HSMs). AWS CloudHSM 
synchronizes the HSMs in each cluster so that they function as a logical unit. AWS CloudHSM offers 

Create a VPC 13

https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/general/latest/gr/rande.html#cloudhsm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#cloudhsm_region


AWS CloudHSM User Guide

two types of HSMs: hsm1.medium and hsm2m.medium. When you create a cluster, you choose 
which of the two will be in your cluster. For details on the differences between each HSM type and 
cluster mode, see AWS CloudHSM cluster modes.

When you create a cluster, AWS CloudHSM creates a security group for the cluster on your 
behalf. This security group controls network access to the HSMs in the cluster. It allows inbound 
connections only from Amazon Elastic Compute Cloud (Amazon EC2) instances that are in the 
security group. By default, the security group doesn't contain any instances. Later, you launch a 
client instance and configure the cluster's security group to allow communication and connections 
with the HSM.

Important

When you create a cluster, AWS CloudHSM creates a service-linked role named 
AWSServiceRoleForCloudHSM. If AWS CloudHSM cannot create the role or the role does 
not already exist, you may not be able to create a cluster. For more information, see
Resolving AWS CloudHSM cluster creation failures. For more information about service–
linked roles, see Service-linked roles for AWS CloudHSM.

Important

If you are using the AWS CloudHSM dual-stack endpoint (that is, 
cloudhsmv2.<region>.api.aws), ensure that your IAM policies are updated to handle IPv6. 
For more information, see the Upgrade IAM policies to IPv6 section under Security.

You can create a cluster from the AWS CloudHSM console, the AWS Command Line Interface (AWS 
CLI), or the AWS CloudHSM API.

Note

For details on cluster arguments and APIs, see create-cluster in the AWS CLI Command 
Reference.

Create a cluster 14

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/ip-access.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/create-cluster.html


AWS CloudHSM User Guide

Console

To create a cluster (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. On the navigation bar, use the region selector to choose one of the AWS Regions where 
AWS CloudHSM is currently supported.

3. Choose Create cluster.

4. In the Cluster configuration section, do the following:

a. For VPC, select the VPC that you created in Create a virtual private cloud (VPC) for 
AWS CloudHSM.

b. For Availability Zone(s), next to each Availability Zone, choose the private subnet that 
you created.

Note

Even if AWS CloudHSM is not supported in a given Availability Zone, 
performance should not be affected, as AWS CloudHSM automatically 
load balances across all HSMs in a cluster. See AWS CloudHSM Regions and 
Endpoints in the AWS General Reference to see Availability Zone support for 
AWS CloudHSM.

c. For HSM type, select the HSM type that can be created in your cluster along with the 
desired mode of the cluster. To see what HSM types are supported in each region, see 
the AWS CloudHSM pricing calculator.

Important

After the cluster is created, the cluster mode cannot be changed. For 
information on which type and mode is right for your use case, see AWS 
CloudHSM cluster modes.

d. For Network Type, choose the IP address protocols for accessing your HSMs. IPv4 
limits communication between your application and HSMs to IPv4 only. This is the 
default option. Dual-stack enables both IPv4 and IPv6 communication. To use dual-
stack, add both IPv4 and IPv6 CIDRs to your VPC and subnet configurations. The 
Network Type is difficult to change after initial setup. To modify it, create a backup of 

Create a cluster 15

https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/general/latest/gr/rande.html#cloudhsm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#cloudhsm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#cloudhsm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#cloudhsm_region
https://aws.amazon.com/cloudhsm/pricing/


AWS CloudHSM User Guide

your existing cluster and restore a new cluster with the desired Network Type. For more 
information, see Creating AWS CloudHSM clusters from backups

e. For Cluster source, specify whether you want to create a new cluster or restore one 
from an existing backup.

• Backups of clusters in non-FIPS mode can only be used to restore clusters that are in 
non-FIPS mode.

• Backups of clusters in FIPS mode can only be used to restore clusters that are in FIPS 
mode.

5. Choose Next.

6. Specify how long the service should retain backups.

Note

Accept the default retention period of 90 days or type a new value between 7 and 
379 days. The service will automatically delete backups in this cluster older than 
the value you specify here. You can change this later. For more information, see
Configure backup retention.

7. Choose Next.

8. (Optional) Type a tag key and an optional tag value. To add more than one tag to the 
cluster, choose Add tag.

9. Choose Review.

10. Review your cluster configuration, and then choose Create cluster.

If your attempts to create a cluster fail, it might be related to problems with the AWS 
CloudHSM service-linked roles. For help on resolving the failure, see Resolving AWS CloudHSM 
cluster creation failures.

AWS CLI

To create a cluster (AWS CLI)

• At a command prompt, run the create-cluster command. Specify the HSM instance type, 
the backup retention period, and the subnet IDs of the subnets where you plan to create 
HSMs. Use the subnet IDs of the private subnets that you created. Specify only one subnet 
per Availability Zone.

Create a cluster 16

https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/create-cluster.html


AWS CloudHSM User Guide

$ aws cloudhsmv2 create-cluster --hsm-type hsm2m.medium \ 
                    --backup-retention-policy Type=DAYS,Value=<number of days> \ 
                    --subnet-ids <subnet ID> \ 
                    --mode <FIPS> \ 
                    --network-type <IPV4>

{ 
    "Cluster": { 
        "BackupPolicy": "DEFAULT", 
        "BackupRetentionPolicy": { 
            "Type": "DAYS", 
            "Value": 90 
         }, 
        "VpcId": "vpc-50ae0636", 
        "SubnetMapping": { 
            "us-west-2b": "subnet-49a1bc00", 
            "us-west-2c": "subnet-6f950334", 
            "us-west-2a": "subnet-fd54af9b" 
        }, 
        "SecurityGroup": "sg-6cb2c216", 
        "HsmType": "hsm2m.medium", 
        "NetworkType": "IPV4", 
        "Certificates": {}, 
        "State": "CREATE_IN_PROGRESS", 
        "Hsms": [], 
        "ClusterId": "cluster-igklspoyj5v", 
        "ClusterMode": "FIPS", 
        "CreateTimestamp": 1502423370.069 
    }
}

Note

ClusterMode is a required parameter for all hsm types except hsm1.medium.--
mode:

$ aws cloudhsmv2 create-cluster --hsm-type hsm2m.medium \ 
      --backup-retention-policy Type=DAYS,Value=<number of days> \ 
      --subnet-ids <subnet ID> \ 
    --mode NON_FIPS

Create a cluster 17



AWS CloudHSM User Guide

If your attempts to create a cluster fail, it might be related to problems with the AWS 
CloudHSM service-linked roles. For help on resolving the failure, see Resolving AWS CloudHSM 
cluster creation failures.

AWS CloudHSM API

To create a cluster (AWS CloudHSM API)

• Send a CreateCluster request. Specify the HSM instance type, the backup retention policy, 
and the subnet IDs of the subnets where you plan to create HSMs. Use the subnet IDs of 
the private subnets that you created. Specify only one subnet per Availability Zone.

If your attempts to create a cluster fail, it might be related to problems with the AWS 
CloudHSM service-linked roles. For help on resolving the failure, see Resolving AWS CloudHSM 
cluster creation failures.

Review the security group for your cluster in AWS CloudHSM

When you create a cluster, AWS CloudHSM creates a security group with the name cloudhsm-
cluster-<clusterID>-sg. This security group contains a preconfigured TCP rule that allows 
inbound and outbound communication within the cluster security group over ports 2223-2225. 
This SG allows your EC2 instances to use your VPC to talk to HSMs in your cluster.

Warning

• Do not delete or modify the preconfigured TCP rule, which is populated in the cluster 
security group. This rule can prevent connectivity issues and unauthorized access to your 
HSMs.

• The cluster security group prevents unauthorized access to your HSMs. Anyone that can 
access instances in the security group can access your HSMs. Most operations require a 
user to log in to the HSM. However, it's possible to zeroize HSMs without authentication, 
which destroys the key material, certificates, and other data. If this happens, data 
created or modified after the most recent backup is lost and unrecoverable. To prevent 
unauthorized access, ensure that only trusted administrators can modify or access the 
instances in the default security group.

Review the cluster security group 18

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateCluster.html


AWS CloudHSM User Guide

• The hsm2m.medium clusters introduces mTLS feature to restrict unauthorized 
users from connecting to the cluster. Unauthorized users will require a valid mTLS 
credentials to successfully connect to cluster before attempting zeroization.

In the next step, you can launch an Amazon EC2 instance and connect it to your HSMs by attaching 
the cluster security group to it.

Launch an Amazon EC2 client instance for interacting with AWS 
CloudHSM

To interact with and manage your AWS CloudHSM cluster and HSM instances, you must be able to 
communicate with the elastic network interfaces of your HSMs. The easiest way to do this is to use 
an EC2 instance in the same VPC as your cluster. You can also use the following AWS resources to 
connect to your cluster:

• Amazon VPC Peering

• AWS Direct Connect

• VPN Connections

Note

This guide provides a simplified example of how to connect an EC2 instance to your AWS 
CloudHSM cluster. For best practices around secure network configurations, refer to Secure 
access to your cluster.

The AWS CloudHSM documentation typically assumes that you are using an EC2 instance in the 
same VPC and Availability Zone (AZ) in which you create your cluster.

To create an EC2 instance

1. Open the EC2 Dashboard at https://console.aws.amazon.com/ec2/.

2. Select Launch instance. From the drop-down menu, choose Launch instance.

3. In the Name field, enter a name for your EC2 instance.

Launch an EC2 client 19

https://docs.aws.amazon.com/vpc/latest/peering/Welcome.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpn-connections.html
https://console.aws.amazon.com/ec2/


AWS CloudHSM User Guide

4. In the Applications and OS Images (Amazon Machine Image) section, choose an Amazon 
Machine Image (AMI) that corresponds to a platform CloudHSM supports. For more 
information, see AWS CloudHSM Client SDK 5 supported platforms.

5. In the Instance Type section, choose an instance type.

6. In the Key pair section, use an existing key pair or select Create new key pair and complete 
the following steps:

a. For Key pair name, enter a name for the key pair.

b. For Key pair type, choose a key pair type.

c. For Private key file format, choose the private key file format.

d. Select Create key pair.

e. Download and save the private key file.

Important

This is your only chance to save the private key file. Download and store the file in a 
safe place. You must provide the name of your key pair when you launch an instance. 
Additionally, you must provide the corresponding private key each time you connect to 
the instance and choose the key pair that you created when setting up.

7. In Network settings, select Edit.

8. For VPC, choose the VPC that you previously created for your cluster.

9. For Subnet, choose the public subnet that you created for the VPC.

10. For Auto-assign Public IP, choose Enable.

11. For Auto-assign IPv6 IP, choose Enable to use IPv6 connectivity with your clusters and 
the Dual-stack NetworkType. If you enable this option, update your Amazon EC2 instance's 
security group rules, VPC and subnet route tables, and network ACLs to allow IPv6 outbound 
traffic from the instance to the HSMs.

12. Choose Select an existing security group.

13. In Common security groups, select the default security group from the drop-down menu.

14. In Configure Storage, use the drop-down menus to choose a storage configuration.

15. In the Summary window, select Launch instance.

Launch an EC2 client 20



AWS CloudHSM User Guide

Note

Completing this step will start the process for creating your EC2 instance.

For more information about creating a Linux Amazon EC2 client, see Getting Started with Amazon 
EC2 Linux Instances. For information about connecting to the running client, see the following 
topics:

• Connecting to Your Linux Instance Using SSH

• Connecting to Your Linux Instance from Windows Using PuTTY

The Amazon EC2 user guide contains detailed instructions for setting up and using your Amazon 
EC2 instances. The following list provides an overview of available documentation for Linux and 
Windows Amazon EC2 clients:

• To create a Linux Amazon EC2 client, see Getting Started with Amazon EC2 Linux Instances.

For information about connecting to the running client, see the following topics:

• Connecting to your Linux Instance Using SSH

• Connecting to Your Linux Instance from Windows Using PuTTY

• To create a Windows Amazon EC2 client, see Getting Started with Amazon EC2 Windows 
Instances. For more information about connecting to your Windows client, see Connect to Your 
Windows Instance.

Note

Your EC2 instance can run all of the AWS CLI commands contained in this guide. If the AWS 
CLI is not installed, you can download it from AWS Command Line Interface. If you are 
using Windows, you can download and run a 64-bit or 32-bit Windows installer. If you are 
using Linux or macOS, you can install the CLI using pip.

Launch an EC2 client 21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://aws.amazon.com/cli/


AWS CloudHSM User Guide

Configure the Client Amazon EC2 instance security groups for 
AWS CloudHSM

When you launched an Amazon EC2 instance for your cluster in AWS CloudHSM, you associated it 
with a default Amazon VPC security group. This topic explains how to associate the cluster security 
group with the EC2 instance. This association allows the AWS CloudHSM client running on your EC2 
instance to communicate with your HSMs. To connect your EC2 instance to your AWS CloudHSM 
cluster, you must properly configure the VPC default security group and associate the cluster 
security group with the instance.

Use the following steps to complete the configuration changes.

Topics

• Step 1. Modify the default security group

• Step 2. Connect the Amazon EC2 instance to the AWS CloudHSM cluster

Step 1. Modify the default security group

You need to modify the default security group to permit the SSH or RDP connection so that you 
can download and install client software, and interact with your HSM.

To modify the default security group

1. Open the EC2 Dashboard at https://console.aws.amazon.com/ec2/.

2. Select Instances (running) and then select the check box next to the EC2 instance you want to 
install the AWS CloudHSM client.

3. Under the Security tab, choose the security group named Default.

4. At the top of the page, choose Actions, and then Edit Inbound Rules.

5. Select Add Rule.

6. For Type, do one of the following:

• For a Windows Server Amazon EC2 instance, choose RDP. The port 3389 is automatically 
populated.

• For a Linux Amazon EC2 instance, choose SSH. The port range 22 is automatically 
populated.

Configure EC2 instance security groups 22

https://console.aws.amazon.com/ec2/


AWS CloudHSM User Guide

7. For either option, set Source to My IP to allow you to communicate with your Amazon EC2 
instance.

Important

Do not specify 0.0.0.0/0 as the CIDR range to avoid allowing anyone to access your 
instance.

8. Choose Save.

Step 2. Connect the Amazon EC2 instance to the AWS CloudHSM cluster

You must attach the cluster security group to the EC2 instance so that the EC2 instance can 
communicate with HSMs in your cluster. The cluster security group contains a preconfigured rule 
that allows inbound communication over ports 2223-2225.

To connect the EC2 instance to the AWS CloudHSM cluster

1. Open the EC2 Dashboard at https://console.aws.amazon.com/ec2/.

2. Select Instances (running) and then select the check box for the EC2 instance on which you 
want to install the AWS CloudHSM client.

3. At the top of the page, choose Actions, Security, and then Change Security Groups.

4. Select the security group with the group name that matches your cluster ID, such as
cloudhsm-cluster-<clusterID>-sg.

5. Choose Add Security Groups.

6. Select Save.

Note

You can assign a maximum of five security groups to an Amazon EC2 instance. If you have 
reached the maximum limit, you must modify the default security group of the Amazon 
EC2 instance and the cluster security group:

In the default security group, do the following:

• Add an inbound rule to permit traffic using the TCP protocol over ports 2223-2225 from 
the cluster security group.

Step 2. Connect the Amazon EC2 instance to the AWS CloudHSM cluster 23

https://console.aws.amazon.com/ec2/


AWS CloudHSM User Guide

In the cluster security group, do the following:

• Add an inbound rule to permit traffic using the TCP protocol over ports 2223-2225 from 
the default security group.

Create an HSM in AWS CloudHSM

After you create a cluster in AWS CloudHSM, you can create a hardware security module (HSM). 
However, before you can create an HSM in your cluster, the cluster must be in the uninitialized 
state. To determine the cluster's state, view the clusters page in the AWS CloudHSM console, use 
the AWS CLI to run the describe-clusters command, or send a DescribeClusters request in the AWS 
CloudHSM API. You can create an HSM from the AWS CloudHSM console, the AWS CLI, or the AWS 
CloudHSM API.

Console

To create an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Select the radio button next to the ID of the cluster you want to create an HSM for.

3. Select Actions. From the drop down menu, choose Initialize.

4. Choose an Availability Zone (AZ) for the HSM that you are creating.

5. Select Create.

After you create a cluster and HSM, you can optionally verify the identity of the HSM, or 
proceed directly to Initialize the cluster.

AWS CLI

To create an HSM (AWS CLI)

• At a command prompt, run the create-hsm command. Specify the cluster ID of the cluster 
that you created previously and an Availability Zone for the HSM. Specify the Availability 
Zone in the form of us-west-2a, us-west-2b, etc.

Create an HSM 24

https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/create-hsm.html


AWS CloudHSM User Guide

$ aws cloudhsmv2 create-hsm --cluster-id <cluster ID> --availability-
zone <Availability Zone>

{ 
    "Hsm": { 
        "HsmId": "hsm-ted36yp5b2x", 
        "EniIp": "10.0.1.12", 
        "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733", 
        "AvailabilityZone": "us-west-2a", 
        "ClusterId": "cluster-igklspoyj5v", 
        "EniId": "eni-5d7ade72", 
        "SubnetId": "subnet-fd54af9b", 
        "State": "CREATE_IN_PROGRESS" 
    }
}

After you create a cluster and HSM, you can optionally verify the identity of the HSM, or 
proceed directly to Initialize the cluster.

AWS CloudHSM API

To create an HSM (AWS CloudHSM API)

• Send a CreateHsm request. Specify the cluster ID of the cluster that you created previously 
and an Availability Zone for the HSM.

After you create a cluster and HSM, you can optionally verify the identity of the HSM, or 
proceed directly to Initialize the cluster.

Verify the identity and authenticity of your cluster's HSM in 
AWS CloudHSM (optional)

To initialize your cluster in AWS CloudHSM, you sign a certificate signing request (CSR) generated 
by the cluster's first hardware security module (HSM). Before you do this, you might want to verify 
the identity and authenticity of the HSM.

Verify HSM identity (optional) 25

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateHsm.html


AWS CloudHSM User Guide

Note

This process is optional. However, it works only until a cluster is initialized. After the cluster 
is initialized, you cannot use this process to get the certificates or verify the HSMs.

To verify the identity of your cluster's first HSM, complete the following steps:

1. Get the certificates and CSR – In this step, you get three certificates and a CSR from the HSM. 
You also get two root certificates, one from AWS CloudHSM and one from the HSM hardware 
manufacturer.

2. Verify the certificate chains – In this step, you construct two certificate chains, one to the AWS 
CloudHSM root certificate and one to the manufacturer root certificate. Then you verify the HSM 
certificate with these certificate chains to determine that AWS CloudHSM and the hardware 
manufacturer both attest to the identity and authenticity of the HSM.

3. Compare public keys – In this step, you extract and compare the public keys in the HSM 
certificate and the cluster CSR, to ensure that they are the same. This should give you confidence 
that the CSR was generated by an authentic, trusted HSM.

The following diagram shows the CSR, the certificates, and their relationship to each other. The 
subsequent list defines each certificate.

Verify HSM identity (optional) 26



AWS CloudHSM User Guide

AWS Root Certificate

This is AWS CloudHSM's root certificate.

Manufacturer Root Certificate

This is the hardware manufacturer's root certificate.

AWS Hardware Certificate

AWS CloudHSM created this certificate when the HSM hardware was added to the fleet. This 
certificate asserts that AWS CloudHSM owns the hardware.

Manufacturer Hardware Certificate

The HSM hardware manufacturer created this certificate when it manufactured the HSM 
hardware. This certificate asserts that the manufacturer created the hardware.

Verify HSM identity (optional) 27



AWS CloudHSM User Guide

HSM Certificate

The HSM certificate is generated by the FIPS-validated hardware when you create the first HSM 
in the cluster. This certificate asserts that the HSM hardware created the HSM.

Cluster CSR

The first HSM creates the cluster CSR. When you sign the cluster CSR, you claim the cluster. 
Then, you can use the signed CSR to initialize the cluster.

Step 1. Get certificates from the HSM

To verify the identity and authenticity of your HSM, start by getting a CSR and five certificates. You 
get three of the certificates from the HSM, which you can do with the AWS CloudHSM console, the
AWS Command Line Interface (AWS CLI), or the AWS CloudHSM API.

Console

To get the CSR and HSM certificates (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Select the radio button next to the cluster ID with the HSM you want to verify.

3. Select Actions. From the drop down menu, choose Initialize.

4. If you did not complete the previous step to create an HSM, choose an Availability Zone 
(AZ) for the HSM that you are creating. Then select Create.

5. When the certificates and CSR are ready, you see links to download them.

Step 1. Get certificates from the HSM 28

https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

6. Choose each link to download and save the CSR and certificates. To simplify the 
subsequent steps, save all of the files to the same directory and use the default file names.

AWS CLI

To get the CSR and HSM certificates (AWS CLI)

• At a command prompt, run the describe-clusters command four times, extracting the CSR 
and different certificates each time and saving them to files.

a. Issue the following command to extract the cluster CSR. Replace <cluster ID> with 
the ID of the cluster that you created previously.

Step 1. Get certificates from the HSM 29

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \ 
                                   --output text \ 
                                   --query 
 'Clusters[].Certificates.ClusterCsr' \ 
                                   > <cluster ID>_ClusterCsr.csr

b. Issue the following command to extract the HSM certificate. Replace <cluster ID>
with the ID of the cluster that you created previously.

$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \ 
                                   --output text \ 
                                   --query 
 'Clusters[].Certificates.HsmCertificate' \ 
                                   > <cluster ID>_HsmCertificate.crt

c. Issue the following command to extract the AWS hardware certificate. Replace
<cluster ID> with the ID of the cluster that you created previously.

$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \ 
                                   --output text \ 
                                   --query 
 'Clusters[].Certificates.AwsHardwareCertificate' \ 
                                   > <cluster ID>_AwsHardwareCertificate.crt

d. Issue the following command to extract the manufacturer hardware certificate. 
Replace <cluster ID> with the ID of the cluster that you created previously.

$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \ 
                                   --output text \ 
                                   --query 
 'Clusters[].Certificates.ManufacturerHardwareCertificate' \ 
                                   > <cluster 
 ID>_ManufacturerHardwareCertificate.crt

AWS CloudHSM API

To get the CSR and HSM certificates (AWS CloudHSM API)

• Send a DescribeClusters request, then extract and save the CSR and certificates from the 
response.

Step 1. Get certificates from the HSM 30

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html


AWS CloudHSM User Guide

Step 2. Get the root certificates

Follow these steps to get the root certificates for AWS CloudHSM and the manufacturer. Save the 
root certificate files to the directory that contains the CSR and HSM certificate files.

To get the AWS CloudHSM and manufacturer root certificates

1. Download the AWS CloudHSM root certificate: AWS_CloudHSM_Root-G1.zip

2. Download the right manufacturer root certificate for your HSM type:

• hsm1.medium manufacturer root certificate: liquid_security_certificate.zip

• hsm2m.medium manufacturer root certificate: liquid_security_certificate.zip

Note

To download each certificate from its landing page, use the following links:

• Landing page for hsm1.medium's manufacturer root certificate

• Landing page for hsm2m.medium's manufacturer root certificate

You might need to right-click the Download Certificate link and then choose Save 
Link As... to save the certificate file.

3. After you download the files, extract (unzip) the contents.

Step 3. Verify certificate chains

In this step, you construct two certificate chains, one to the AWS CloudHSM root certificate and 
one to the manufacturer root certificate. Then use OpenSSL to verify the HSM certificate with each 
certificate chain.

To create the certificate chains, open a Linux shell. You need OpenSSL, which is available in most 
Linux shells, and you need the root certificate and HSM certificate files that you downloaded. 
However, you do not need the AWS CLI for this step, and the shell does not need to be associated 
with your AWS account.

Step 2. Get the root certificates 31

samples/AWS_CloudHSM_Root-G1.zip
https://www.marvell.com/content/dam/marvell/en/public-collateral/security-solutions/liquid_security_certificate.zip
https://www.marvell.com/content/dam/marvell/en/public-collateral/security-solutions/liquidsecurity2_ar_v1.zip
https://www.marvell.com/products/security-solutions/liquid-security-hsm-adapters-and-appliances/liquidsecurity-certificate.html
https://www.marvell.com/products/security-solutions/nitrox-hs-adapters/liquidsecurity2-certificate-ls2-g-axxx-ar-f-bo-v1.html


AWS CloudHSM User Guide

To verify the HSM certificate with the AWS CloudHSM root certificate

1. Navigate to the directory where you saved the root certificate and HSM certificate files that 
you downloaded. The following commands assume that all of the certificates are in the current 
directory and use the default file names.

Use the following command to create a certificate chain that includes the AWS hardware 
certificate and the AWS CloudHSM root certificate, in that order. Replace <cluster ID> with 
the ID of the cluster that you created previously.

$ cat <cluster ID>_AwsHardwareCertificate.crt \ 
      AWS_CloudHSM_Root-G1.crt \ 
      > <cluster ID>_AWS_chain.crt

2. Use the following OpenSSL command to verify the HSM certificate with the AWS certificate 
chain. Replace <cluster ID> with the ID of the cluster that you created previously.

$ openssl verify -CAfile <cluster ID>_AWS_chain.crt <cluster ID>_HsmCertificate.crt
<cluster ID>_HsmCertificate.crt: OK

To verify the HSM certificate with the manufacturer root certificate

1. Use the following command to create a certificate chain that includes the manufacturer 
hardware certificate and the manufacturer root certificate, in that order. Replace <cluster 
ID> with the ID of the cluster that you created previously.

$ cat <cluster ID>_ManufacturerHardwareCertificate.crt \ 
      liquid_security_certificate.crt \ 
      > <cluster ID>_manufacturer_chain.crt

2. Use the following OpenSSL command to verify the HSM certificate with the manufacturer 
certificate chain. Replace <cluster ID> with the ID of the cluster that you created 
previously.

$ openssl verify -CAfile <cluster ID>_manufacturer_chain.crt <cluster 
 ID>_HsmCertificate.crt
<cluster ID>_HsmCertificate.crt: OK

Step 3. Verify certificate chains 32



AWS CloudHSM User Guide

Step 4. Extract and compare public keys

Use OpenSSL to extract and compare the public keys in the HSM certificate and the cluster CSR, to 
ensure that they are the same.

To compare the public keys, use your Linux shell. You need OpenSSL, which is available in 
most Linux shells, but you do not need the AWS CLI for this step. The shell does not need to be 
associated with your AWS account.

To extract and compare the public keys

1. Use the following command to extract the public key from the HSM certificate.

$ openssl x509 -in <cluster ID>_HsmCertificate.crt -pubkey -noout > <cluster 
 ID>_HsmCertificate.pub

2. Use the following command to extract the public key from the cluster CSR.

$ openssl req -in <cluster ID>_ClusterCsr.csr -pubkey -noout > <cluster 
 ID>_ClusterCsr.pub

3. Use the following command to compare the public keys. If the public keys are identical, the 
following command produces no output.

$ diff <cluster ID>_HsmCertificate.pub <cluster ID>_ClusterCsr.pub

After you verify the identity and authenticity of the HSM, proceed to Initialize the cluster.

Initialize the cluster in AWS CloudHSM

After you create your cluster and add your hardware security module (HSM) in AWS CloudHSM, you 
can initialize the cluster. Complete the steps in the following topics to initialize your cluster.

Note

Before you initialize the cluster, review the process by which you can verify the identity 
and authenticity of the HSMs. This process is optional and works only until a cluster is 

Step 4. Extract and compare public keys 33



AWS CloudHSM User Guide

initialized. After the cluster is initialized, you cannot use this process to get your certificates 
or verify the HSMs.

Topics

• Step 1. Get the cluster CSR

• Step 2. Sign the CSR

• Step 3. Initialize the cluster

Step 1. Get the cluster CSR

Before you can initialize the cluster, you must download and sign a certificate signing request (CSR) 
that is generated by the cluster's first HSM. If you followed the steps to verify the identity of your 
cluster's HSM, you already have the CSR and you can sign it. Otherwise, get the CSR now by using 
the AWS CloudHSM console, the AWS Command Line Interface (AWS CLI), or the AWS CloudHSM 
API.

Important

To initialize your cluster, your trust anchor must comply with RFC 5280 and meet the 
following requirements:

• If using X509v3 extensions, the X509v3 Basic Constraints extension must be present.

• The trust anchor must be a self-signed certificate.

• Extension values must not conflict with each other.

Console

To get the CSR (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Select the radio button next to the cluster ID with the HSM you want to verify.

3. Select Actions. From the drop down menu, choose Initialize.

4. If you did not complete the previous step to create an HSM, choose an Availability Zone 
(AZ) for the HSM that you are creating. Then select Create.

Step 1. Get the cluster CSR 34

https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://datatracker.ietf.org/doc/html/rfc5280
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

5. When the CSR is ready, you see a link to download it.

6. Choose Cluster CSR to download and save the CSR.

AWS CLI

To get the CSR (AWS CLI)

• At a command prompt, run the following describe-clusters command, which extracts 
the CSR and saves it to a file. Replace <cluster ID> with the ID of the cluster that you
created previously.

$ aws cloudhsmv2 describe-clusters --filters clusterIds=<cluster ID> \ 

Step 1. Get the cluster CSR 35

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

                                   --output text \ 
                                   --query 'Clusters[].Certificates.ClusterCsr' 
 \ 
                                   > <cluster ID>_ClusterCsr.csr

AWS CloudHSM API

To get the CSR (AWS CloudHSM API)

1. Send a DescribeClusters request.

2. Extract and save the CSR from the response.

Step 2. Sign the CSR

Currently, you must create a self-signed signing certificate and use it to sign the CSR for your 
cluster. You do not need the AWS CLI for this step, and the shell does not need to be associated 
with your AWS account. To sign the CSR, you must do the following:

1. Complete the previous section (see Step 1. Get the cluster CSR).

2. Create a private key.

3. Use the private key to create a signing certificate.

4. Sign your cluster CSR.

Create a private key

Note

For a production cluster, the key you are about to create should be created in a secure 
manner using a trusted source of randomness. We recommend that you use a secured 
offsite and offline HSM or the equivalent. Store the key safely. The key establishes the 
identity of the cluster and your sole control over the HSMs it contains.
For development and testing, you can use any convenient tool (such as OpenSSL) to create 
and sign the cluster certificate. The following example shows you how to create a key. After 
you have used the key to create a self-signed certificate (see below), you should store it in 
a safe manner. To sign into your AWS CloudHSM instance, the certificate must be present, 
but the private key does not.

Step 2. Sign the CSR 36

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html


AWS CloudHSM User Guide

Use the following command to create a private key. When initializing an AWS CloudHSM cluster, 
you must use the RSA 2048 certificate or the RSA 4096 certificate.

$ openssl genrsa -aes256 -out customerCA.key 2048
Generating RSA private key, 2048 bit long modulus
........+++
............+++
e is 65537 (0x10001)
Enter pass phrase for customerCA.key:
Verifying - Enter pass phrase for customerCA.key:

Use the private key to create a self-signed certificate

The trusted hardware that you use to create the private key for your production cluster should 
also provide a software tool to generate a self-signed certificate using that key. The following 
example uses OpenSSL and the private key that you created in the previous step to create a signing 
certificate. The certificate is valid for 10 years (3652 days). Read the on-screen instructions and 
follow the prompts.

$ openssl req -new -x509 -days 3652 -key customerCA.key -out customerCA.crt
Enter pass phrase for customerCA.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

This command creates a certificate file named customerCA.crt. Put this certificate on every host 
from which you will connect to your AWS CloudHSM cluster. If you give the file a different name 
or store it in a path other than the root of your host, you should edit your client configuration file 

Step 2. Sign the CSR 37



AWS CloudHSM User Guide

accordingly. Use the certificate and the private key you just created to sign the cluster certificate 
signing request (CSR) in the next step.

Sign the cluster CSR

The trusted hardware that you use to create your private key for your production cluster should 
also provide a tool to sign the CSR using that key. The following example uses OpenSSL to sign the 
cluster's CSR. The example uses your private key and the self-signed certificate that you created in 
the previous step.

$ openssl x509 -req -days 3652 -in <cluster ID>_ClusterCsr.csr \ 
                              -CA customerCA.crt \ 
                              -CAkey customerCA.key \ 
                              -CAcreateserial \ 
                              -out <cluster ID>_CustomerHsmCertificate.crt
Signature ok
subject=/C=US/ST=CA/O=Cavium/OU=N3FIPS/L=SanJose/CN=HSM:<HSM 
 identifier>:PARTN:<partition number>, for FIPS mode
Getting CA Private Key
Enter pass phrase for customerCA.key:

This command creates a file named <cluster ID>_CustomerHsmCertificate.crt. Use this 
file as the signed certificate when you initialize the cluster.

Step 3. Initialize the cluster

Use your signed HSM certificate and your signing certificate to initialize your cluster. You can use 
the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM API.

Console

To initialize a cluster (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Select the radio button next to the cluster ID with the HSM you want to verify.

3. Select Actions. From the drop down menu, choose Initialize.

4. If you did not complete the previous step to create an HSM, choose an Availability Zone 
(AZ) for the HSM that you are creating. Then select Create.

5. On the Download certificate signing request page, choose Next. If Next is not available, 
first choose one of the CSR or certificate links. Then choose Next.

Step 3. Initialize the cluster 38

https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

6. On the Sign certificate signing request (CSR) page, choose Next.

7. On the Upload the certificates page, do the following:

a. Next to Cluster certificate, choose Upload file. Then locate and select the HSM 
certificate that you signed previously. If you completed the steps in the previous 
section, select the file named <cluster ID>_CustomerHsmCertificate.crt.

b. Next to Issuing certificate, choose Upload file. Then select your signing 
certificate. If you completed the steps in the previous section, select the file named
customerCA.crt.

c. Choose Upload and initialize.

AWS CLI

To initialize a cluster (AWS CLI)

• At a command prompt, run the initialize-cluster command. Provide the following:

• The ID of the cluster that you created previously.

• The HSM certificate that you signed previously. If you completed the 
steps in the previous section, it's saved in a file named <cluster 
ID>_CustomerHsmCertificate.crt.

• Your signing certificate. If you completed the steps in the previous section, the signing 
certificate is saved in a file named customerCA.crt.

$ aws cloudhsmv2 initialize-cluster --cluster-id <cluster ID> \ 
                                    --signed-cert file://<cluster 
 ID>_CustomerHsmCertificate.crt \ 
                                    --trust-anchor file://customerCA.crt
{ 
    "State": "INITIALIZE_IN_PROGRESS", 
    "StateMessage": "Cluster is initializing. State will change to INITIALIZED 
 upon completion."
}

Step 3. Initialize the cluster 39

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/initialize-cluster.html


AWS CloudHSM User Guide

AWS CloudHSM API

To initialize a cluster (AWS CloudHSM API)

• Send an InitializeCluster request with the following:

• The ID of the cluster that you created previously.

• The HSM certificate that you signed previously.

• Your signing certificate.

Install and configure CloudHSM CLI

To interact with the HSM in your AWS CloudHSM cluster, you need the CloudHSM CLI.

Connect to your client instance and run the following commands to download and install the AWS 
CloudHSM command line tools. For more information, see Launch an Amazon EC2 client instance 
for interacting with AWS CloudHSM.

Amazon Linux 2023

Amazon Linux 2023 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-cli-latest.amzn2023.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.amzn2023.x86_64.rpm

Amazon Linux 2023 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-cli-latest.amzn2023.aarch64.rpm

$ sudo yum install ./cloudhsm-cli-latest.amzn2023.aarch64.rpm

Amazon Linux 2

Amazon Linux 2 on x86_64 architecture:

Install CloudHSM CLI 40

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_InitializeCluster.html


AWS CloudHSM User Guide

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-
latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el7.x86_64.rpm

Amazon Linux 2 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-
latest.el7.aarch64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el7.aarch64.rpm

RHEL 9 (9.2+)

RHEL 9 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-
latest.el9.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el9.x86_64.rpm

RHEL 9 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-
latest.el9.aarch64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el9.aarch64.rpm

RHEL 8 (8.3+)

RHEL 8 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-cli-
latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el8.x86_64.rpm

Install CloudHSM CLI 41



AWS CloudHSM User Guide

Ubuntu 24.04 LTS

Ubuntu 24.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-
cli_latest_u24.04_amd64.deb

$ sudo apt install ./cloudhsm-cli_latest_u24.04_amd64.deb

Ubuntu 24.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-
cli_latest_u24.04_arm64.deb

$ sudo apt install ./cloudhsm-cli_latest_u24.04_arm64.deb

Ubuntu 22.04 LTS

Ubuntu 22.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-
cli_latest_u22.04_amd64.deb

$ sudo apt install ./cloudhsm-cli_latest_u22.04_amd64.deb

Ubuntu 22.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-
cli_latest_u22.04_arm64.deb

$ sudo apt install ./cloudhsm-cli_latest_u22.04_arm64.deb

Ubuntu 20.04 LTS

Ubuntu 20.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-
cli_latest_u20.04_amd64.deb

Install CloudHSM CLI 42



AWS CloudHSM User Guide

$ sudo apt install ./cloudhsm-cli_latest_u20.04_amd64.deb

Windows Server 2022

For Windows Server 2022 on x86_64 architecture, open PowerShell as an administrator and run 
the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMCLI-latest.msi -Outfile C:\AWSCloudHSMCLI-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMCLI-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

Windows Server 2019

For Windows Server 2019 on x86_64 architecture, open PowerShell as an administrator and run 
the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMCLI-latest.msi -Outfile C:\AWSCloudHSMCLI-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMCLI-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

Windows Server 2016

For Windows Server 2016 on x86_64 architecture, open PowerShell as an administrator and run 
the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMCLI-latest.msi -Outfile C:\AWSCloudHSMCLI-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMCLI-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

Use the following commands to configure CloudHSM CLI.

Install CloudHSM CLI 43



AWS CloudHSM User Guide

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

$ sudo /opt/cloudhsm/bin/configure-cli -a <The ENI IPv4 / IPv6 addresses of the 
 HSMs>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" -a <The ENI 
 IPv4 / IPv6 addresses of the HSMs>

Activate the cluster in AWS CloudHSM

When you activate an AWS CloudHSM cluster, the cluster's state changes from initialized to active. 
You can then manage the hardware security module (HSM) users and use the HSM.

Important

Before you can activate the cluster, you must first copy the issuing certificate to the default 
location for the platform on each EC2 instance that connects to the cluster (you create the 
issuing certificate when you initialize the cluster).
Linux

/opt/cloudhsm/etc/customerCA.crt

Windows

C:\ProgramData\Amazon\CloudHSM\customerCA.crt

After placing the issuing certificate, install CloudHSM CLI and run the cluster activate command 
on your first HSM. You will notice the admin account on the first HSM in your cluster has the
unactivated-admin role. This a temporary role that only exists prior to cluster activation. When you 
activate your cluster, the unactivated-admin role changes to admin.

Activate the cluster 44



AWS CloudHSM User Guide

To activate a cluster

1. Connect to the client instance that you previously launched in. For more information, see
Launch an Amazon EC2 client instance for interacting with AWS CloudHSM. You can launch a 
Linux instance or a Windows Server.

2. Run the CloudHSM CLI in interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

3. (Optional) Use the user list command to display the existing users.

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "unactivated-admin", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

4. Use the cluster activate command to set the initial admin password.

Activate the cluster 45



AWS CloudHSM User Guide

aws-cloudhsm > cluster activate
Enter 
 password:<NewPassword>
Confirm password:<NewPassword>
{ 
  "error_code": 0, 
  "data": "Cluster activation successful"
}

We recommend that you write down the new password on a password worksheet. Do not lose 
the worksheet. We recommend that you print a copy of the password worksheet, use it to 
record your critical HSM passwords, and then store it in a secure place. We also recommended 
that you store a copy of this worksheet in secure off-site storage.

5. (Optional) Use the user list command to verify that the user's type changed to admin/CO.

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      }, 
       { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
} 
     

6. Use the quit command to stop the CloudHSM CLI tool.

Activate the cluster 46



AWS CloudHSM User Guide

aws-cloudhsm > quit

For more information about working with CloudHSM CLI or the CMU, see Understanding HSM 
Users and Understanding HSM User Management with CMU.

Set up mutual TLS between client and AWS CloudHSM 
(recommended)

The following topics describe the steps that you must complete to enable the mutual TLS 
(mTLS) between client and AWS CloudHSM. Currently this feature is exclusively available on 
hsm2m.medium. For more information about HSM type, see AWS CloudHSM cluster modes .

Topics

• Step 1. Create and register a trust anchor onto the HSM

• Step 2. Enable mTLS for AWS CloudHSM

• Step 3. Set the mTLS enforcement for AWS CloudHSM

Step 1. Create and register a trust anchor onto the HSM

A trust anchor must be created and registered onto the HSM before enabling mTLS. This is a two-
step process:

Topics

• Create a private key and self-signed root certificate

• Register the trust anchor onto the HSM

Create a private key and self-signed root certificate

Note

For a production cluster, the key you are about to create should be created in a secure 
manner using a trusted source of randomness. We recommend that you use a secured 
offsite and offline HSM or the equivalent. Store the key safely.

Setup mTLS (recommended) 47



AWS CloudHSM User Guide

For development and testing, you can use any convenient tool (such as OpenSSL) to create 
the key and self-sign a root certificate. You will need the key and root certificate to sign the 
client certificate in the enable mTLS for AWS CloudHSM.

The following examples show how to create a private key and self-signed root certificate with
OpenSSL.

Example – Create a private key with OpenSSL

Use the following command to create a 4096-bit RSA key encrypted with the AES-256 algorithm. 
To use this example, replace <mtls_ca_root_1.key> with the name of the file where you want 
to store the key.

$ openssl genrsa -out <mtls_ca_root_1.key> -aes256 4096
Generating RSA private key, 4096 bit long modulus
.....................................+++
.+++
e is 65537 (0x10001)
Enter pass phrase for mtls_ca_root_1.key:
Verifying - Enter pass phrase for mtls_ca_root_1.key:

Example – Create a self-signed root certificate with OpenSSL

Use the following command to create a self-signed root certificate named mtls_ca_root_1.crt
from the private key you just created. The certificate is valid for 25 years (9130 days). Read the on-
screen instructions and follow the prompts.

$ openssl req -new -x509 -days 9130 -key mtls_ca_root_1.key -out mtls_ca_root_1.crt
Enter pass phrase for mtls_ca_root_1.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Step 1. Create and register a trust anchor onto the HSM 48

https://www.openssl.org/


AWS CloudHSM User Guide

Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

Register the trust anchor onto the HSM

After creating a self-signed root certificate, the admin must register it as the trust anchor with the 
AWS CloudHSM cluster.

To register a trust anchor with the HSM

1. Use the following command to start CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

aws-cloudhsm > login --username <admin> --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

3. Use the  Register a trust anchor with CloudHSM CLI  command to register the trust anchor. 
For more information, see the following example or use the help cluster mtls register-trust-
anchor command.

Example – Register a trust anchor with AWS CloudHSM cluster

The following example shows how to use the cluster mtls register-trust-anchor command in 
CloudHSM CLI to register an trust anchor onto the HSM. To use this command, the admin must be 
logged in to the HSM. Replace these values with your own:

Step 1. Create and register a trust anchor onto the HSM 49



AWS CloudHSM User Guide

aws-cloudhsm > cluster mtls register-trust-anchor --path </path/mtls_ca_root_1.crt>
{ 
  "error_code": 0, 
  "data": { 
    "trust_anchor": { 
      "certificate-reference": "0x01", 
      "certificate": "<PEM Encoded Certificate>", 
      "cluster-coverage": "full" 
    } 
  }
}

Note

AWS CloudHSM supports registering intermediate certificates as trust anchor. In such cases, 
the entire PEM-encoded certificate chain file needs to be registered onto the HSM, with the 
certificates in hierarchical order.
AWS CloudHSM supports a certificate chain of 6980 bytes.

After successfully registering the trust anchor, you can run the cluster mtls list-trust-anchors
command to check the current registered trust anchors, as shown below:

aws-cloudhsm > cluster mtls list-trust-anchors
{ 
  "error_code": 0, 
  "data": { 
    "trust_anchors": [ 
      { 
        "certificate-reference": "0x01", 
        "certificate": "<PEM Encoded Certificate>", 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

Note

The maximum number of trust anchors can be registered onto hsm2m.medium is two (2).

Step 1. Create and register a trust anchor onto the HSM 50



AWS CloudHSM User Guide

Step 2. Enable mTLS for AWS CloudHSM

To enable the mTLS for AWS CloudHSM, you need to create a private key and a client certificate 
signed by the root certificate we generated in Create and register a trust anchor onto the HSM, and 
then use any of the Client SDK 5 configure tool to setup the private key path and client certificate 
chain path.

Topics

• Create a private key and client certificate chain

• Configure mTLS for Client SDK 5

Create a private key and client certificate chain

Example – Create a private key with OpenSSL

Use the following command to create a 4096-bit RSA key. To use this example, replace <ssl-
client.key> with the name of the file where you want to store the key.

$ openssl genrsa -out <ssl-client.key> 4096
Generating RSA private key, 4096 bit long modulus
.....................................+++
.+++
e is 65537 (0x10001)

Example – Generate a certificate signing request (CSR) with OpenSSL

Use the following command to generate a certificate signing request (CSR) from the private key 
you just created. Read the on-screen instructions and follow the prompts.

$ openssl req -new -key <ssl-client.key> -out <ssl-client.csr>
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:

Step 2. Enable mTLS for AWS CloudHSM 51



AWS CloudHSM User Guide

Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

Example – Sign the CSR with the root certificate

Use the following command to sign the CSR with the root certificate we created and registered 
in Create and register a trust anchor onto the HSM and create a client certificate named ssl-
client.crt. The certificate is valid for 5 years (1826 days).

$ openssl x509 -req -days 1826 -in <ssl-client.csr> -CA <mtls_ca_root_1.crt> -
CAkey <mtls_ca_root_1.key> -CAcreateserial -out <ssl-client.crt>

Example – Create a client certificate chain

Use the following command to combine the client certificate and root certificate we created and 
registered in Create and register a trust anchor onto the HSM and create a client certificate chain 
named ssl-client.pem, which will be used to configure in next step.

$ cat <ssl-client.crt> <mtls_ca_root_1.crt> > <ssl-client.pem>

Note

If you registered intermediate certificates in Create and register a trust anchor onto the 
HSM as trust anchor, make sure to combine the client certificate with the entire certificate 
chain to create a client certificate chain.

Configure mTLS for Client SDK 5

Use any of the Client SDK 5 configure tools to enable the mutual TLS by providing the right client 
key path and client certificate chain path. For more information about configure tool for Client SDK 
5, see ??? .

Step 2. Enable mTLS for AWS CloudHSM 52



AWS CloudHSM User Guide

PKCS #11 library

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
$ sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

OpenSSL Dynamic Engine

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

Step 2. Enable mTLS for AWS CloudHSM 53



AWS CloudHSM User Guide

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-dyn \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

Key Storage Provider (KSP)

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

JCE provider

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
sudo cp ssl-client.key </opt/cloudhsm/etc>

Step 2. Enable mTLS for AWS CloudHSM 54



AWS CloudHSM User Guide

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-jce \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

CloudHSM CLI

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-cli \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

Step 2. Enable mTLS for AWS CloudHSM 55



AWS CloudHSM User Guide

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

Step 3. Set the mTLS enforcement for AWS CloudHSM

After configuring with any of the Client SDK 5 configure tools, connection between client and AWS 
CloudHSM will be mutual TLS in the cluster. However, removing the private key path and client 
certificate chain path from the config file will turn the connection into regular TLS again. You can 
use CloudHSM CLI to set the mtls enforcement in the cluster by completing the following steps:

1. Use the following command to start CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

aws-cloudhsm > login --username <admin> --role admin
Enter password:
{ 
  "error_code": 0, 

Step 3. Set the mTLS enforcement for AWS CloudHSM 56



AWS CloudHSM User Guide

  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

Note

1. Make sure you have configured the CloudHSM CLI and start the CloudHSM CLI under 
a mTLS connection.
2. You must be logged in as the default admin user with username as admin before set 
mTLS enforcement.

3. Use the  Set the mTLS enforcement level with CloudHSM CLI  command to set the 
enforcement. For more information, see the following example or use the help cluster mtls 
set-enforcement command.

Example – Set mTLS enforcement with AWS CloudHSM cluster

The following example shows how to use the cluster mtls set-enforcement command in 
CloudHSM CLI to set the mTLS enforcement with the HSM. To use this command, the admin 
with username as admin must be logged in to the HSM.

aws-cloudhsm > cluster mtls set-enforcement --level cluster
{ 
  "error_code": 0, 
  "data": { 
    "message": "Mtls enforcement level set to Cluster successfully" 
  }
}

Warning

After you enforce mTLS usage in the cluster, all existing non-mTLS connections will be 
dropped and you can only connect to the cluster with mTLS certificates.

Step 3. Set the mTLS enforcement for AWS CloudHSM 57



AWS CloudHSM User Guide

Create and use keys in AWS CloudHSM

Before you can create and use keys in your new cluster, create a hardware security module (HSM) 
user with the AWS CloudHSM CLI For more information, see Understanding HSM User Management 
Tasks, Getting started with AWS CloudHSM Command Line Interface (CLI), and How to Manage 
HSM Users.

Note

If using Client SDK 3, use CloudHSM Management Utility (CMU) instead of CloudHSM CLI.

After you create HSM users, you can sign in to the HSM and manage keys using any of these 
options:

• Use key management utility, a command line tool

• Build a C application using the PKCS #11 library

• Build a Java application using the JCE provider

• Use the OpenSSL Dynamic Engine directly from the command line

• Use the OpenSSL Dynamic Engine for TLS offload with NGINX and Apache web servers

• Use the Key Storage Provider (KSP) for AWS CloudHSM with Microsoft Windows Server 
Certificate Authority (CA)

• Use the Key Storage Provider (KSP) for AWS CloudHSM with Microsoft Sign Tool

• Use the Key Storage Provider (KSP) for TLS offload with Internet Information Server (IIS) web 
server

Create and use keys in AWS CloudHSM 58



AWS CloudHSM User Guide

Best practices for AWS CloudHSM

Perform the best practices in this topic to effectively use AWS CloudHSM.

Contents

• AWS CloudHSM cluster management best practices

• AWS CloudHSM user management best practices

• AWS CloudHSM key management best practices

• AWS CloudHSM application integration best practices

• AWS CloudHSM monitoring best practices

AWS CloudHSM cluster management best practices

Follow the best practices in this section when creating, accessing, and managing your AWS 
CloudHSM cluster.

Scale your cluster to handle peak traffic

Several factors can influence the maximum throughput that your cluster can handle, including 
client instance size, cluster size, network topography, and the cryptographic operations you require 
for your use case.

As a starting point, refer to the topic AWS CloudHSM performance information for performance 
estimates on common cluster sizes and configurations. We recommend you load test your cluster 
with the peak load you anticipate to determine whether your current architecture is resilient and at 
the right scale.

Architect your cluster for high availability

Add redundancy to account for maintenance: AWS may replace your HSM for scheduled 
maintenance or if it detects a problem. As a general rule, your cluster size should have at least 
+1 redundancy. For example, if you require two HSMs for your service to operate at peak times, 
your ideal cluster size will then be three. If you follow the best practices relating to availability, 
these HSM replacements should not impact your service. However, in-progress operations on the 
replaced HSM may fail and must be retried.

Cluster management 59



AWS CloudHSM User Guide

Spread your HSMs across many Availability Zones: Consider how your service will be able to 
operate during an Availability Zone outage. AWS recommends that you spread your HSMs across as 
many Availability Zones as possible. For a cluster with three HSMs, you should spread HSMs across 
three Availability Zones. Depending on your system, you may require additional redundancy.

Have at least three HSMs to ensure durability for newly generated keys

For applications that require durability of newly generated keys, we recommend having at least 
three HSMs spread across different Availability Zones in a region.

Secure access to your cluster

Use private subnets to limit access to your instance: Launch your HSMs and client instances in the 
private subnets of your VPC. This limits access to your HSMs from the outside world.

Use VPC endpoints to access APIs: The AWS CloudHSM data plane was designed to operate 
without needing access to the internet or AWS APIs. If your client instance requires access to the 
AWS CloudHSM API, you can use VPC endpoints to access the API without requiring internet access 
on your client instance. See AWS CloudHSM and VPC endpoints for more information.

Reduce costs by scaling to your needs

There are no upfront costs to use AWS CloudHSM. You pay an hourly fee for each HSM you launch 
until you terminate the HSM. If your service does not require continuous usage of AWS CloudHSM, 
you can reduce costs by scaling down (deleting) your HSMs to zero when they are not needed. 
When HSMs are again needed, you can restore your HSMs from a backup. If, for example, you have 
a workload requiring you to sign code once a month, specifically on the last day of the month, you 
can scale up your cluster before, scale it down by deleting your HSMs after the work is completed, 
and then restore your cluster to perform signing operations again at the end of the next month.

AWS CloudHSM automatically makes periodic backups of the HSMs in the cluster. When adding 
a new HSM at a later date, AWS CloudHSM will restore the latest backup onto the new HSM so 
that you can resume usage from the same place you left it. To calculate your AWS CloudHSM 
architecture costs, see AWS CloudHSM Pricing.

Related resources:

• General overview of backups

• Backup retention policy

• Copying AWS CloudHSM cluster backups across AWS Regions

Have at least three HSMs to ensure durability for newly generated keys 60

https://aws.amazon.com/cloudhsm/pricing/


AWS CloudHSM User Guide

AWS CloudHSM user management best practices

Follow the best practices in this section to effectively manage users in your AWS CloudHSM cluster. 
HSM users are distinct from IAM users. IAM users and entities that have an identity-based policy 
with the appropriate permissions can create HSMs by interacting with resources through the AWS 
API. After the HSM is created, you must use HSM user credentials to authenticate operations on the 
HSM. For a detailed guide of HSM users, see HSM users in AWS CloudHSM.

Protect your HSM users' credentials

It is imperative to keep the credentials of your HSM users securely protected as HSM users are the 
entities that can access and perform cryptographic and management operations on your HSM. 
AWS CloudHSM does not have access to your HSM user credentials, and will be unable to assist you 
if you lose access to them.

Have at least two admins to prevent lockout

To avoid being locked out of your cluster, we recommend you have at least two admins in case 
one admin password is lost. In the event this happens, you can use the other admin to reset the 
password.

Note

Admins in Client SDK 5 are synonymous with crypto officers (COs) in Client SDK 3.

Enable quorum for all user management operations

Quorum allows you to set a min number of admins that must approve a user management 
operation before that operation can take place. Due to the privilege that admins have, we 
recommend that you enable quorum for all user management operations. This can limit the 
potential for impact if one of your admin passwords is compromised. For more information, see
Managing Quorum.

Create multiple crypto users, each with limited permissions

By separating the responsibilities of crypto users, no one user has total control over the entire 
system. For this reason, we recommend you create multiple crypto users and limit the permissions 
of each. Typically, this is done by giving different crypto users distinctly different responsibilities 

User management 61



AWS CloudHSM User Guide

and actions they perform (for example, having one crypto user who is responsible for generating 
and sharing keys with other crypto users who then utilize them in your application).

Related resources:

• Share a key using CloudHSM CLI

• Unshare a key using CloudHSM CLI

AWS CloudHSM key management best practices

Follow the best practices in this section when managing keys in AWS CloudHSM.

Choose the right key type

When using a session key, your transactions per second (TPS) will be limited to one HSM where 
the key exists. Extra HSMs in your cluster will not increase the throughput of requests for that 
key. If you use a token key for the same application, your requests will be load balanced across 
all available HSMs in your cluster. For more information, see Key synchronization and durability 
settings in AWS CloudHSM.

Manage key storage limits

HSMs have limits on the maximum number of token and session keys that can be stored on an 
HSM at a single time. For information on key storage limits, see AWS CloudHSM quotas. If your 
application requires more than the limit, you can use one or more of the following strategies to 
effectively manage keys:

Use trusted wrapping to store your keys in an external data store: Using trusted key wrapping, 
you can overcome the key storage limit by storing all of your keys wrapped inside an external data 
store. When you are required to use this key, you can unwrap the key into the HSM as a session key, 
use the key for your required operation, and then discard the session key. The original key data 
remains safely stored in your data store for use whenever you need it. Using trusted keys to do this 
maximizes your protection.

Distribute keys across clusters: Another strategy for overcoming the key storage limit is storing 
your keys in multiple clusters. In this approach, you maintain a mapping of the keys that are stored 
in each cluster. Use this mapping to route your client requests to the cluster with the required key. 
For information on how to connect to multiple clusters from the same client application, see the 
following topics:

Key management 62



AWS CloudHSM User Guide

• Connecting to multiple AWS CloudHSM clusters with the JCE provider

• Multiple slot configuration with PKCS #11 library for AWS CloudHSM

Managing and securing key wrapping

Keys may be marked either extractable or non-extractable through the EXTRACTABLE attribute. By 
default, HSM keys are marked as extractable.

Extractable keys are keys that are permitted to be exported from the HSM through key wrapping. 
Keys that are wrapped are encrypted, and must be unwrapped using the same wrapping key 
before they can be used. Non-extractable keys may not be exported from the HSM under any 
circumstance. There is no way to make a non-extractable key extractable. For this reason, it is 
important to consider whether you require your keys to be extractable or not and to set the 
corresponding key attribute accordingly.

If you require key wrapping in your application, you should utilize trusted key wrapping to limit the 
ability of your HSM users to only wrap/unwrap keys which have been explicitly marked as trusted 
by an admin. For more information, see topics on trusted key wrapping in Keys in AWS CloudHSM.

Related resources

• Wrap and Unwrap functions

• Cipher functions for JCE

• Supported Java key attributes for AWS CloudHSM Client SDK 5

• Key attributes for CloudHSM CLI

AWS CloudHSM application integration best practices

Follow the best practices in this section to optimize how your application integrates with your AWS 
CloudHSM cluster.

Bootstrap your Client SDK

Before your client SDK can connect to your cluster, it must be bootstrapped. When bootstrapping 
IP addresses to your cluster, we recommend using the --cluster-id parameter when possible. 
This method populates your config with all HSM IP addresses in your cluster without needing 
to keep track of each individual address. Doing this adds extra resilience to your application 

Managing and securing key wrapping 63



AWS CloudHSM User Guide

initialization in the event an HSM is undergoing maintenance or during an Availability Zone outage. 
For more details, see Bootstrap the Client SDK.

Authenticate to perform operations

In AWS CloudHSM, you must authenticate to your cluster before you are able to perform most 
operations such as cryptographic operations.

Authenticate with CloudHSM CLI: You can authenticate with CloudHSM CLI using either its single 
command mode or interactive mode. Use the Log in to an HSM using CloudHSM CLI command 
to authenticate in interactive mode. To authenticate in single command mode, you must set the 
environmental variables CLOUDHSM_ROLE and CLOUDHSM_PIN. For details on doing this, refer to
Single Command mode. AWS CloudHSM recommends securely storing your HSM credentials when 
not being used by your application.

Authenticate with PKCS #11: In PKCS #11, you login using the C_Login API after opening a session 
using C_OpenSession. You only need to perform one C_Login per slot (cluster). After you have 
successfully logged in, you can open additional sessions using C_OpenSession without the need 
to perform additional login operations. For examples on authenticating to PKCS #11, see Code 
samples for the PKCS #11 library for AWS CloudHSM Client SDK 5.

Authenticate with JCE: The AWS CloudHSM JCE Provider supports both implicit and explicit 
login. The method that works for you depends on your use case. When possible, we recommend 
using Implicit Login because the SDK will automatically handle authentication if your application 
becomes disconnected from your cluster and needs to be re-authenticated. Using implicit login 
also allows you to provide credentials to your application when using an integration that doesn’t 
allow you to have control over your application code. For more about login methods, see Step 2: 
Provide credentials to the JCE provider.

Authenticate with OpenSSL: With the OpenSSL Dynamic Engine, you provide credentials through 
environment variables. AWS CloudHSM recommends securely storing your HSM credentials 
when not being used by your application. If possible, you should configure your environment to 
systematically retrieve and set these environment variables without manual entry. For details on 
authenticating with OpenSSL, see Install the OpenSSL Dynamic Engine for AWS CloudHSM Client 
SDK 5.

Authenticate with KSP: You can authenticate with Key Storage Provider (KSP) using either 
Windows credential manager or environment variables, see Install the Key storage provider (KSP) 
for AWS CloudHSM Client SDK 5.

Authenticate to perform operations 64



AWS CloudHSM User Guide

Effectively manage keys in your application

Use key attributes to control what keys can do: When generating a key, use key attributes to 
define a set of permissions that will allow or deny specific types of operations for that key. We 
recommend that keys be generated with the least amount of attributes needed to complete their 
task. For example, an AES key used for encryption should not also be allowed to wrap keys out of 
the HSM. For more information, see our attributes pages for the following Client SDKs:

• PKCS #11 key attributes

• JCE key attributes

When possible, cache key objects to minimize latency: Key find operations will query every HSM 
in your cluster. This operation is expensive and does not scale with HSM count in your cluster.

• With PKCS #11, you find keys using the C_FindObjects API.

• With JCE, you find keys using the KeyStore.

For optimal performance, AWS recommends that you utilize key find commands (like Search for 
AWS CloudHSM keys by attributes using KMU and List keys for a user with CloudHSM CLI) only 
once during your application start-up and cache the key object returned in application memory. 
If you require this key object later on, you should retrieve the object from your cache instead of 
querying for this object for each operation which will add significant performance overhead.

Use multi-threading

AWS CloudHSM supports multi-threaded applications, but there are certain things to keep in mind 
with multi-threaded applications.

With PKCS #11, you should initialize the PKCS #11 library (calling C_Initialize) only once. Each 
thread should be assigned its own session (C_OpenSession). Using the same session in multiple 
threads is not recommended.

With JCE, the AWS CloudHSM provider should be initialized only once. Do not share instances of 
SPI objects across threads. For example, Cipher, Signature, Digest, Mac, KeyFactory or KeyGenerator 
objects should only be utilized in the context of their own thread.

Effectively manage keys in your application 65



AWS CloudHSM User Guide

Handle throttling errors

You may experience HSM throttling errors under the following circumstances:

• Your cluster is not properly scaled to manage peak traffic.

• Your cluster is not sized with a +1 redundancy during maintenance events.

• Availability Zone outages result in a reduced number of available HSMs in your cluster.

See HSM throttling for information on how to best handle this scenario.

To ensure your cluster is adequately sized and will not be throttled, AWS recommends you load test 
in your environment with your expected peak traffic.

Integrate retries on cluster operations

AWS may replace your HSM for operational or maintenance reasons. In order to make your 
application resilient to such situations, AWS recommends that you implement client-side retry logic 
on all operations that are routed to your cluster. Subsequent retries on failed operations due to 
replacements are expected to succeed.

Implement disaster recovery strategies

In response to an event, it may be necessary to shift your traffic away from an entire cluster or 
region. The following sections describe multiple strategies for doing this.

Use VPC peering to access your cluster from another account or region: You can utilize VPC 
peering to access your AWS CloudHSM cluster from another account or region. For information on 
how to set this up, see What is VPC peering? in the VPC Peering Guide. Once you have established 
your peering connections and configured your security groups appropriately, you can communicate 
with HSM IP addresses in the same way as you normally would.

Connect to multiple clusters from the same application: The JCE provider, PKCS #11 library, and 
CloudHSM CLI in Client SDK 5 support connecting to multiple clusters from the same application. 
For example, you can have two active clusters, each in different regions, and your application can 
connect to both at once and load balance between the two as part of normal operations. If your 
application is not using Client SDK 5 (the latest SDK), then you cannot connect to multiple clusters 
from the same application. Alternatively, you can keep another cluster up and running and, in the 
event there is a regional outage, shift your traffic to the other cluster to minimize downtime. See 
the respective pages for details:

Handle throttling errors 66

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html


AWS CloudHSM User Guide

• Multiple slot configuration with PKCS #11 library for AWS CloudHSM

• Connecting to multiple AWS CloudHSM clusters with the JCE provider

• Connecting to multiple clusters with CloudHSM CLI

Restore a cluster from a backup: You can create a new Cluster from a backup of an existing 
Cluster. For more information, see Cluster backups in AWS CloudHSM.

AWS CloudHSM monitoring best practices

This section describes multiple mechanisms you can use to monitor your cluster and application. 
For additional details on monitoring, see Monitoring AWS CloudHSM.

Monitor client logs

Every Client SDK writes logs that you can monitor. For information on client logging, see Working 
with AWS CloudHSM client SDK logs.

On platforms that are designed to be ephemeral, such as Amazon ECS and AWS Lambda, collecting 
client logs from a file can be difficult. In these situations, it is a best practice to configure your 
Client SDK logging to write logs to the console. Most services will automatically collect this output 
and publish it to Amazon CloudWatch logs for you to keep and view.

If you are using any third-party integration on top of the AWS CloudHSM Client SDK, you should 
ensure that you configure that software package to log its output to the console as well. The 
output from the AWS CloudHSM Client SDK may be captured by this package and written to its 
own log file otherwise.

See the AWS CloudHSM Client SDK 5 configure tool for information on how to configure logging 
options in your application.

Monitor audit logs

AWS CloudHSM publishes audit logs to your Amazon CloudWatch account. Audit logs come from 
the HSM and track certain operations for auditing purposes.

You can use audit logs to keep track of any management commands that are invoked on your HSM. 
For example, you can trigger an alarm when you notice an unexpected management operation 
being performed.

Monitoring 67



AWS CloudHSM User Guide

See How HSM audit logging works for more details.

Monitor AWS CloudTrail

AWS CloudHSM is integrated with AWS CloudTrail, a service that provides a record of actions taken 
by a user, role, or an AWS service in AWS CloudHSM. AWS CloudTrail captures all API calls for AWS 
CloudHSM as events. The calls captured include calls from the AWS CloudHSM console and code 
calls to the AWS CloudHSM API operations.

You can use AWS CloudTrail to audit any API call that is made to the AWS CloudHSM control plane 
to ensure that no unwanted activity is taking place in your account.

See Working with AWS CloudTrail and AWS CloudHSM for details.

Monitor Amazon CloudWatch metrics

You can use Amazon CloudWatch metrics to monitor your AWS CloudHSM cluster in real time. The 
metrics can be grouped by region, cluster ID, or HSM ID and cluster ID.

Using Amazon CloudWatch metrics, you can configure Amazon CloudWatch alarms to alert you 
of any potential issue that may arise that could impact your service. We recommend configuring 
alarms to monitor the following:

• Approaching your key limit on an HSM

• Approaching the HSM session count limit on an HSM

• Approaching the HSM user count limit on an HSM

• Differences in HSM user or key count to identify synchronization issues

• Unhealthy HSMs to scale your cluster up until AWS CloudHSM can resolve the issue

For more details, see Working with Amazon CloudWatch Logs and AWS CloudHSM Audit Logs.

Monitor AWS CloudTrail 68



AWS CloudHSM User Guide

Clusters in AWS CloudHSM

A cluster is a collection of individual hardware security modules (HSM) that AWS CloudHSM keeps 
in sync. When you perform a task or operation on one HSM in a cluster, the other HSMs in that 
cluster are automatically kept up to date.

You can manage your AWS CloudHSM clusters from the AWS CloudHSM console or one of the AWS 
SDKs or command line tools. For more information, see the following topics.

To create a cluster, see Getting started.

The following topics provide more information about clusters.

Topics

• AWS CloudHSM cluster architecture

• AWS CloudHSM cluster synchronization

• AWS CloudHSM cluster high availability and load balancing

• AWS CloudHSM cluster modes

• HSM types in AWS CloudHSM

• Connect the client SDK to the AWS CloudHSM cluster

• Scaling HSMs in an AWS CloudHSM cluster

• Deleting an AWS CloudHSM cluster

• Creating AWS CloudHSM clusters from backups

• Cluster HSM type migration

AWS CloudHSM cluster architecture

When you create a cluster, you specify an Amazon Virtual Private Cloud (VPC) in your AWS 
account and one or more subnets in that VPC. We recommend that you create one subnet in each 
Availability Zone (AZ) in your chosen AWS Region. You can create private subnets when you create 
a VPC. To learn more, see Create a virtual private cloud (VPC) for AWS CloudHSM.

Each time you create an HSM, you specify the cluster and Availability Zone for the HSM. By putting 
the HSMs in different Availability Zones, you achieve redundancy and high availability in case one 
Availability Zone is unavailable.

Cluster architecture 69

https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/


AWS CloudHSM User Guide

When you create an HSM, AWS CloudHSM puts an elastic network interface (ENI) in the specified 
subnet in your AWS account. The elastic network interface is the interface for interacting with the 
HSM. The HSM resides in a separate VPC in an AWS account that is owned by AWS CloudHSM. The 
HSM and its corresponding network interface are in the same Availability Zone.

To interact with the HSMs in a cluster, you need the AWS CloudHSM client software. Typically you 
install the client on Amazon EC2 instances, known as client instances, that reside in the same VPC 
as the HSM ENIs, as shown in the following figure. That's not technically required though; you can 
install the client on any compatible computer, as long as it can connect to the HSM ENIs. The client 
communicates with the individual HSMs in your cluster through their ENIs.

The following figure represents an AWS CloudHSM cluster with three HSMs, each in a different 
Availability Zone in the VPC.

Cluster architecture 70



AWS CloudHSM User Guide

AWS CloudHSM cluster synchronization

In an AWS CloudHSM cluster, AWS CloudHSM keeps the keys on the individual HSMs in sync. You 
don't need to do anything to synchronize the keys on your HSMs. To keep the users and policies 

Cluster synchronization 71



AWS CloudHSM User Guide

on each HSM in sync, update the AWS CloudHSM client configuration file before you manage HSM 
users. For more information, see Keep HSM users in sync.

When you add a new HSM to a cluster, AWS CloudHSM makes a backup of all keys, users, and 
policies on an existing HSM. It then restores that backup onto the new HSM. This keeps the two 
HSMs in sync.

If the HSMs in a cluster fall out of synchronization, AWS CloudHSM automatically resynchronizes 
them. To enable this, AWS CloudHSM uses the credentials of the appliance user. This user exists on 
all HSMs provided by AWS CloudHSM and has limited permissions. It can get a hash of objects on 
the HSM and can extract and insert masked (encrypted) objects. AWS cannot view or modify your 
users or keys and cannot perform any cryptographic operations using those keys.

AWS CloudHSM cluster high availability and load balancing

When you create an AWS CloudHSM cluster with more than one HSM, you automatically get 
load balancing. Load balancing means that the AWS CloudHSM client distributes cryptographic 
operations across all HSMs in the cluster based on each HSM's capacity for additional processing.

When you create the HSMs in different AWS Availability Zones, you automatically get high 
availability. High availability means that you get higher reliability because no individual HSM is a 
single point of failure. We recommend that you have a minimum of two HSMs in each cluster, with 
each HSM in different Availability Zones within an AWS Region.

For example, the following figure shows an Oracle database application that is distributed to 
two different Availability Zones. The database instances store their master keys in a cluster that 
includes an HSM in each Availability Zone. AWS CloudHSM automatically synchronizes the keys to 
both HSMs so that they are immediately accessible and redundant.

Cluster high availability and load balancing 72



AWS CloudHSM User Guide

AWS CloudHSM cluster modes

AWS CloudHSM offers clusters in two modes: FIPS and non-FIPS. In FIPS mode, only Federal 
Information Processing Standard (FIPS) validated keys and algorithms can be used. Non-FIPS 
mode offers all the keys and algorithms that are supported by AWS CloudHSM, regardless of FIPS 
approval.

Review the details on this page before deciding which cluster mode and HSM type is right for your 
needs.

Note

All clusters created before June 10, 2024 are in FIPS mode and have HSM type 
hsm1.medium.

To see your cluster's mode and HSM type, use the describe-clusters command.

Cluster modes 73

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

The following table lists the major differences between each cluster mode:

Differentiating feature FIPS mode Non-FIPS mode

HSM type compatibility Available with hsm1.medium 
and hsm2m.medium.

Available with hsm2m.med 
ium.

Backup compatibility Can only be used to backup 
restore clusters in FIPS mode.

Can only be used to backup 
restore clusters in non-FIPS 
mode.

Key selection Supports generating and 
using keys with mechanisms 

that are FIPS approved1.

Supports generating and 
using keys with all FIPS-
validated mechanisms, in 
addition to other non-valid 
ated mechanisms.

Algorithms Supports AWS CloudHSM 
algorithms that are FIPS 

approved1.

Supports AWS CloudHSM 
algorithms that are both 
FIPS approved and not FIPS 
approved.

[1] See Deprecation notifications for details.

Before choosing a cluster mode, note that a cluster’s mode (FIPS or non-FIPS) cannot be changed 
after it is created, so ensure you select the right mode for your needs.

HSM types in AWS CloudHSM

AWS CloudHSM also offers two hardware security module (HSM) types: hsm1.medium and
hsm2m.medium. Review the details on this page before deciding which HSM type is right for your 
needs.

In addition to cluster modes, AWS CloudHSM offers two HSM types: hsm1.medium and
hsm2m.medium. Each HSM type uses different hardware, and each cluster can only contain one 
type of HSM. The following table lists the major differences between the two:

HSM types 74



AWS CloudHSM User Guide

Differentiating feature hsm1.medium hsm2m.medium

Cluster mode compatibility Available for clusters in FIPS 
mode.

Available for clusters in FIPS 
or non-FIPS mode.

Network type compatibility Not available Available for clusters in FIPS 
or non-FIPS mode.

Backup compatibility Can be used to backup and 
restore to hsm1.medium and
hsm2m.medium clusters in 
FIPS mode.

Can only be used to backup 
and restore hsm2m.medium
clusters.

Key capacity 3,300 per cluster. 16,666 total keys, with 
asymmetric keys having 
a maximum of 3,333 per 
cluster.

Client SDKs Supports all Client SDKs. Supports all Client SDKs.

Client SDK versions Compatible with SDK version 
3.1.0 and later.

Compatible with Client SDK 
version 5.9.0 and later.

Region availability CloudHSM no longer supports 
creating new clusters in 
any AWS Region. For more 
information, see Deprecation 
notifications for details.

Available in all regions that
CloudHSM is available, except 
for:

• US West (N. California) (us-
west-1 )

• Asia Pacific (Hyderabad) 
(ap-south-2 )

Additional regions coming 
soon.

Performance To see the performance of each HSM type, refer 
to AWS CloudHSM performance information.

HSM types 75

https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html


AWS CloudHSM User Guide

Differentiating feature hsm1.medium hsm2m.medium

Certification FIPS 140-2, PCI DSS, PCI PIN, 
SOC2, and PCI-3DS compliant 
.

FIPS 140-3, PCI DSS, PCI PIN, 
and SOC2 compliant.

Connect the client SDK to the AWS CloudHSM cluster

To connect to the cluster with either Client SDK 5 or Client SDK 3, you must first do two things:

• Have an issuing certificate in place on the EC2 instance

• Bootstrap the Client SDK to the cluster

Place the issuing certificate on each EC2 instance

You create the issuing certificate when you initialize the cluster. Copy the issuing certificate to the 
default location for the platform on each EC2 instance that connects to the cluster.

Linux

/opt/cloudhsm/etc/customerCA.crt

Windows

C:\ProgramData\Amazon\CloudHSM\customerCA.crt

Specify the location of the issuing certificate

With Client SDK 5, you use the configure tool to specify the location of the issuing certificate.

PKCS #11 library

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

Connecting to the cluster 76



AWS CloudHSM User Guide

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --hsm-ca-cert <customerCA certificate 
 file>

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --hsm-ca-
cert <customerCA certificate file>

OpenSSL Dynamic Engine

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-dyn --hsm-ca-cert <customerCA certificate 
 file>

Key Storage Provider (KSP)

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --hsm-ca-
cert <customerCA certificate file>

JCE provider

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-jce --hsm-ca-cert <customerCA certificate 
 file>

Specify the location of the issuing certificate 77



AWS CloudHSM User Guide

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --hsm-ca-
cert <customerCA certificate file>

CloudHSM CLI

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-cli --hsm-ca-cert <customerCA certificate 
 file>

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" --hsm-ca-
cert <customerCA certificate file>

For more information, see Configure Tool.

For more information about initializing the cluster or creating and signing the certificate, see
Initialize the Cluster.

Bootstrap the Client SDK

The bootstrap process is different depending on the version of the Client SDK you're using, but you 
must have the IP address of one of the hardware security modules (HSM) in the cluster. You can use 
the IP address of any HSM attached to your cluster. After the Client SDK connects, it retrieves the IP 
addresses of any additional HSMs and performs load balancing and client-side key synchronization 
operations.

Bootstrap the Client SDK 78



AWS CloudHSM User Guide

To get an IP address for the cluster

To get an IP address for an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. To open the cluster detail page, in the cluster table, choose the cluster ID.

4. To get the IP address, go to the HSMs tab. For IPv4 clusters, choose an address listed under ENI 
IPv4 address. For dual-stack clusters use either the ENI IPv4 or the ENI IPv6 address.

To get an IP address for an HSM (AWS CLI)

• Get the IP address of an HSM by using the describe-clusters command from the AWS CLI. 
In the output from the command, the IP address of the HSMs are the values of EniIp and
EniIpV6 (if it is a dual-stack cluster).

$ aws cloudhsmv2 describe-clusters
{ 
    "Clusters": [ 
        { ... } 
            "Hsms": [ 
                {
... 
                    "EniIp": "10.0.0.9",
... 
                }, 
                {
... 
                    "EniIp": "10.0.1.6", 
                    "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733",
...

For more information about bootstrapping, see Configure Tool.

Bootstrap the Client SDK 79

https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

To bootstrap Client SDK 5

PKCS #11 library

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 -a <HSM IP addresses>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" -a <HSM IP 
 addresses>

OpenSSL Dynamic Engine

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-dyn -a <HSM IP addresses>

Key Storage Provider (KSP)

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" -a <HSM IP 
 addresses>

Bootstrap the Client SDK 80



AWS CloudHSM User Guide

JCE provider

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-jce -a <HSM IP addresses>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" -a <HSM IP 
 addresses>

CloudHSM CLI

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

$ sudo /opt/cloudhsm/bin/configure-cli -a <The ENI IPv4 / IPv6 addresses of the 
 HSMs>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" -a <The ENI 
 IPv4 / IPv6 addresses of the HSMs>

Note

you can use the –-cluster-id parameter in place of -a <HSM_IP_ADDRESSES>. To see 
requirements for using –-cluster-id, see AWS CloudHSM Client SDK 5 configure tool.

Bootstrap the Client SDK 81



AWS CloudHSM User Guide

To bootstrap Client SDK 3

To bootstrap a Linux EC2 instance for Client SDK 3

• Use configure to specify the IP address of an HSM in your cluster.

sudo /opt/cloudhsm/bin/configure -a <IP address>

To bootstrap a Windows EC2 instance for Client SDK 3

• Use configure to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" -a <HSM IP address>

For more information about configure, see ???.

Scaling HSMs in an AWS CloudHSM cluster

To scale up or down your AWS CloudHSM cluster, add or remove HSMs by using the AWS 
CloudHSM console or one of the AWS SDKs or command line tools. We recommend load testing 
your cluster to determine the peak load you should anticipate, and then add one more HSM to it to 
ensure high availability.

Topics

• Adding an HSM to an AWS CloudHSM cluster

• Removing an HSM from an AWS CloudHSM cluster

Adding an HSM to an AWS CloudHSM cluster

The following figure illustrates the events that occur when you add an HSM to a cluster.

Scaling HSMs 82

https://console.aws.amazon.com/cloudhsm/
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/tools/


AWS CloudHSM User Guide

1. You add a new HSM to a cluster. The following procedures explain how to do this from the AWS 
CloudHSM console, the AWS Command Line Interface (AWS CLI), and the AWS CloudHSM API.

This is the only action that you take. The remaining events occur automatically.

2. AWS CloudHSM makes a backup copy of an existing HSM in the cluster. For more information, 
see Backups.

3. AWS CloudHSM restores the backup onto the new HSM. This ensures that the HSM is in sync 
with the others in the cluster.

4. The existing HSMs in the cluster notify the AWS CloudHSM client that there's a new HSM in the 
cluster.

5. The client establishes a connection to the new HSM.

To add an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Choose a cluster for the HSM that you are adding.

Adding an HSM 83

https://console.aws.amazon.com/cloudhsm/
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

3. On the HSMs tab, choose Create HSM.

4. Choose an Availability Zone (AZ) for the HSM that you are creating. Then choose Create.

To add an HSM (AWS CLI)

• At a command prompt, issue the create-hsm command, specifying a cluster ID and an 
Availability Zone for the HSM that you are creating. If you don't know the cluster ID of your 
preferred cluster, issue the describe-clusters command. Specify the Availability Zone in the 
form of us-east-2a, us-east-2b, etc.

$ aws cloudhsmv2 create-hsm --cluster-id <cluster ID> --availability-
zone <Availability Zone>
{ 
    "Hsm": { 
        "State": "CREATE_IN_PROGRESS", 
        "ClusterId": "cluster-5a73d5qzrdh", 
        "HsmId": "hsm-lgavqitns2a", 
        "SubnetId": "subnet-0e358c43", 
        "AvailabilityZone": "us-east-2c", 
        "EniId": "eni-bab18892", 
        "EniIp": "10.0.3.10", 
        "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733" 
    }
}

To add an HSM (AWS CloudHSM API)

• Send a CreateHsm request, specifying the cluster ID and an Availability Zone for the HSM that 
you are creating.

Removing an HSM from an AWS CloudHSM cluster

You can remove an HSM by using the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM 
API.

To remove an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

Removing an HSM 84

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/create-hsm.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateHsm.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

2. Choose the cluster that contains the HSM that you are removing.

3. On the HSMs tab, choose the HSM that you are removing. Then choose Delete HSM.

4. Confirm that you want to delete the HSM. Then choose Delete.

To remove an HSM (AWS CLI)

• At a command prompt, issue the delete-hsm command. Pass the ID of the cluster that 
contains the HSM that you are deleting and one of the following HSM identifiers:

• The HSM ID (--hsm-id)

• The HSM IP address (--eni-ip)

• The HSM's elastic network interface ID (--eni-id)

If you don't know the values for these identifiers, issue the describe-clusters command.

$ aws cloudhsmv2 delete-hsm --cluster-id <cluster ID> --eni-ip <HSM IP address>
{ 
    "HsmId": "hsm-lgavqitns2a"
}

To remove an HSM (AWS CloudHSM API)

• Send a DeleteHsm request, specifying the cluster ID and an identifier for the HSM that you are 
deleting.

Deleting an AWS CloudHSM cluster

Before you can delete a cluster, you must remove all HSMs from the cluster. For more information, 
see Removing an HSM from an AWS CloudHSM cluster.

After you remove all HSMs, you can delete a cluster by using the AWS CloudHSM console, the AWS 
Command Line Interface (AWS CLI), or the AWS CloudHSM API.

To delete a cluster (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

Deleting a cluster 85

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/delete-hsm.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DeleteHsm.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

2. Choose the cluster that you are deleting. Then choose Delete cluster.

3. Confirm that you want to delete the cluster, then choose Delete.

To delete a cluster (AWS CLI)

• At a command prompt, issue the delete-cluster command, passing the ID of the cluster that 
you are deleting. If you don't know the cluster ID, issue the describe-clusters command.

$ aws cloudhsmv2 delete-cluster --cluster-id <cluster ID>
{ 
    "Cluster": { 
        "Certificates": { 
            "ClusterCertificate": "<certificate string>" 
        }, 
        "SourceBackupId": "backup-rtq2dwi2gq6", 
        "SecurityGroup": "sg-40399d28", 
        "CreateTimestamp": 1504903546.035, 
        "SubnetMapping": { 
            "us-east-2a": "subnet-f1d6e798", 
            "us-east-2c": "subnet-0e358c43", 
            "us-east-2b": "subnet-40ed9d3b" 
        }, 
        "ClusterId": "cluster-kdmrayrc7gi", 
        "VpcId": "vpc-641d3c0d", 
        "State": "DELETE_IN_PROGRESS", 
        "HsmType": "hsm1.medium", 
        "StateMessage": "The cluster is being deleted.", 
        "Hsms": [], 
        "BackupPolicy": "DEFAULT" 
    }
}

To delete a cluster (AWS CloudHSM API)

• Send a DeleteCluster request, specifying the ID of the cluster that you are deleting.

Deleting a cluster 86

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/delete-cluster.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DeleteCluster.html


AWS CloudHSM User Guide

Creating AWS CloudHSM clusters from backups

To restore an AWS CloudHSM cluster from a backup, follow the steps in this topic. Your cluster 
will contain the same users, key material, certificates, configuration, and policies that were in the 
backup. For more information about managing backups, see Cluster backups.

Create clusters from backups (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Choose Create cluster.

3. In the Cluster configuration section, do the following:

a. For VPC, choose a VPC for the cluster that you are creating.

b. For AZ(s), choose a private subnet for each Availability Zone that you are adding to the 
cluster.

c. For Network type, choose the IP protocol your HSMs will use for connections.

4. In the Cluster source section, do the following:

a. Choose Restore cluster from existing backup.

b. Choose the backup that you are restoring.

5. Choose Next: Review.

6. Review your cluster configuration, then choose Create cluster.

7. Specify how long the service should retain backups.

Accept the default retention period of 90 days or type a new value between 7 and 379 days. 
The service will automatically delete backups in this cluster older than the value you specify 
here. You can change this later. For more information, see Configure backup retention.

8. Choose Next.

9. (Optional) Type a tag key and an optional tag value. To add more than one tag to the cluster, 
choose Add tag.

10. Choose Review.

11. Review your cluster configuration, and then choose Create cluster.

Creating clusters from backups 87

https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

Tip

To create an HSM in this cluster that contains the same users, key material, certificates, 
configuration, and policies that were in the backup that you restored, add an HSM to the 
cluster.

Create clusters from backups (AWS CLI)

To determine the backup ID, issue the describe-backups command.

• At a command prompt, issue the create-cluster command. Specify the HSM instance type, the 
subnet IDs of the subnets where you plan to create HSMs, and the backup ID of the backup 
that you are restoring.

$ aws cloudhsmv2 create-cluster --hsm-type hsm2m.medium \ 
                                --subnet-ids <subnet ID 1> <subnet ID 2> <subnet ID 
 N> \ 
                                --source-backup-id <backup ID>
                                --mode <FIPS> \ 
                                --network-type <IPV4>
{ 
    "Cluster": { 
        "HsmType": "hsm2m.medium", 
        "VpcId": "vpc-641d3c0d", 
        "Hsms": [], 
        "State": "CREATE_IN_PROGRESS", 
        "SourceBackupId": "backup-rtq2dwi2gq6", 
        "BackupPolicy": "DEFAULT", 
        "BackupRetentionPolicy": { 
            "Type": "DAYS", 
            "Value": 90 
         }, 
        "NetworkType": "IPV4", 
        "SecurityGroup": "sg-640fab0c", 
        "CreateTimestamp": 1504907311.112, 
        "SubnetMapping": { 
            "us-east-2c": "subnet-0e358c43", 
            "us-east-2a": "subnet-f1d6e798", 
            "us-east-2b": "subnet-40ed9d3b" 
        }, 
        "Certificates": { 

Create clusters from backups (AWS CLI) 88

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-backups.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/create-cluster.html


AWS CloudHSM User Guide

            "ClusterCertificate": "<certificate string>" 
        }, 
        "ClusterId": "cluster-jxhlf7644ne" 
    }
}

Create clusters from backups (AWS CloudHSM API)

Refer to the following topic to learn how to create clusters from backups by using the API.

• CreateCluster

Cluster HSM type migration

AWS CloudHSM offers the ability to change the HSM type of an existing cluster. Review the table 
on this page to determine whether the HSM type modification is allowed.

For more information on the types of HSMs supported and their features please refer to HSM types 
in AWS CloudHSM.

Note

You cannot change the FIPS mode of a cluster during this operation.

From To Comment

hsm1.medium hsm2m.medium Allowed

hsm2m.medium hsm1.medium Conditional. You can roll 
back from hsm2m.medium 
to hsm1.medium within 
24 hours of the start of a 
migration.

Topics

Create clusters from backups (AWS CloudHSM API) 89

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateCluster.html


AWS CloudHSM User Guide

• Migrating from hsm1.medium to hsm2m.medium

Migrating from hsm1.medium to hsm2m.medium

You can migrate your AWS CloudHSM cluster from hsm1.medium to hsm2m.medium. This topic 
describes the prerequisites, migration process, and rollback procedures.

Before starting the migration, make sure your application follows the recommendations in
Architect your cluster for high availability. This helps avoid downtime during the process.

Overview of the hsm1.medium to hsm2m.medium migration process

You can start the migration using the AWS CloudHSM Console, the AWS CLI, or the AWS CloudHSM 
API. No matter where you initiate it, the AWS CloudHSM cluster migration uses the modify-
cluster API endpoint. Once the migration starts, your entire cluster enters a limited-write mode. 
For more information, see Cluster limited-write mode.

To minimize impact, AWS CloudHSM changes HSMs from hsm1.medium to hsm2m.medium one at 
a time. The replacement HSMs maintain the same IP addresses, thereby requiring no configuration 
changes during or after migration.

Here's how the migration works:

1. Before migrating the first HSM, AWS CloudHSM creates a full backup of the entire cluster.

2. Using this backup, AWS CloudHSM creates a new HSM of the requested type (hsm2m.medium) 
to replace the first HSM.

3. Before migrating each subsequent HSM, AWS CloudHSM creates a new full backup of the entire 
cluster.

4. AWS CloudHSM repeats steps 3 and 4 for each HSM in the cluster, migrating one HSM at a time.

5. Each individual HSM migration takes approximately 30 minutes.

AWS CloudHSM monitors cluster health and performs validations throughout the migration 
process. If AWS CloudHSM detects an increase in errors or a validation check fails, it will 
automatically stop the migration and revert the cluster to its original HSM type. You can also roll 
back manually for up to 24 hours after starting the migration. Before rolling back, see HSM type 
rollback considerations.

Migrating from hsm1.medium to hsm2m.medium 90



AWS CloudHSM User Guide

Prerequisites for migrating to hsm2m.medium

Your existing AWS CloudHSM cluster must meet these requirements to migrate to hsm2m.medium. 
If any condition isn't met during validation checks, AWS CloudHSM automatically reverts the 
cluster to its original HSM type.

For a list of known migration issues, see ???

• In the last 7 days:

• All client connections have used SDK 5.9 or higher.

• If performing ECDSA Verify, all client connections have used SDK 5.13 or higher.

• AWS CloudHSM instances have used only supported (and none of the deprecated) 
functionalities. See Deprecation notifications for details.

• You must have used an SDK to connect with at least one HSM in the cluster in the past 7 days.

• The cluster is in an ACTIVE state.

• The cluster has 27 HSMs or fewer.

• The error rate for HSM operations doesn't increase during migration.

Note

The previous restriction which prevented customers with token key workloads from 
migrated has been removed.

Cluster limited-write mode

When you start the cluster migration, it enters a limited-write mode. Operations that can change 
the HSM state are rejected. All read operations remain unaffected.

During migration, your application receives an error from the HSM when attempting these 
operations:

• Token key generation and deletion (session key workloads continue to operate).

• All user creation, deletion, or modification.

• Quorum operations.

• Modification of keys within the HSM, such as changing key attributes.

Migrating from hsm1.medium to hsm2m.medium 91



AWS CloudHSM User Guide

• mTLS registration.

AWS CloudHSM also places your cluster in a MODIFY_IN_PROGRESS state during migration. During 
this time, you can't add or remove HSMs from the cluster.

Starting the migration

The cluster migration process replaces individual HSMs in your cluster one at a time. The duration 
depends on the number of HSMs in your cluster. On average, this process takes about 30 minutes 
per HSM. You can track progress by monitoring the HSM type of individual HSMs in the cluster to 
see how many have been migrated to the new type.

Console

To change the HSM type (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Select the radio button next to the ID of the cluster you want to change

3. From the Actions menu, choose Modify HSM Type and select the desired HSM type

This procedure puts your cluster into the MODIFY_IN_PROGRESS state. After migration, your 
cluster returns to the ACTIVE state.

AWS CLI

To change the HSM type (AWS CLI)

• At a command prompt, run the  modify-cluster command. Specify the cluster ID and the 
desired HSM type.

$ aws cloudhsmv2 modify-cluster --cluster-id <cluster ID> --hsm-type <HSM Type>
                                                 
 
 { 
     "Cluster": { 
         "BackupPolicy": "DEFAULT", 
         "BackupRetentionPolicy": { 
             "Type": "DAYS", 
             "Value": 90 
          }, 

Migrating from hsm1.medium to hsm2m.medium 92

https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/modify-cluster.html


AWS CloudHSM User Guide

         "VpcId": "vpc-50ae0636", 
         "SubnetMapping": { 
             "us-west-2b": "subnet-49a1bc00", 
             "us-west-2c": "subnet-6f950334", 
             "us-west-2a": "subnet-fd54af9b" 
         }, 
         "SecurityGroup": "sg-6cb2c216", 
         "HsmType": "hsm2m.medium", 
         "HsmTypeRollbackExpiration": 1730383180.000, 
         "Certificates": {}, 
         "State": "MODIFY_IN_PROGRESS", 
         "Hsms": [], 
         "ClusterId": "cluster-igklspoyj5v", 
         "ClusterMode": "FIPS", 
         "CreateTimestamp": 1502423370.069 
     } 
 } 
                                    
                             

This procedure puts your cluster into the MODIFY_IN_PROGRESS state. After migration, your 
cluster returns to the ACTIVE state.

AWS CloudHSM API

To change the HSM type (AWS CloudHSM API)

• Send a ModifyCluster request. Specify the cluster ID and the desired HSM type for the 
cluster.

This procedure puts your cluster into the MODIFY_IN_PROGRESS state. After migration, your 
cluster returns to the ACTIVE state.

Rolling back the migration

AWS CloudHSM monitors for elevated error rates and performs continuous validation checks 
throughout the migration. If AWS CloudHSM detects a decrease in service quality or any validation 
failures, it automatically initiates a rollback to your cluster's original HSM type. During a rollback, 
for each HSM in the cluster:

Migrating from hsm1.medium to hsm2m.medium 93

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_ModifyCluster.html


AWS CloudHSM User Guide

• AWS CloudHSM uses the backup taken at the start of that HSM's migration.

• It replaces one HSM at a time until all HSMs are returned to the original type.

• Your cluster remains in limited-write mode throughout the process.

You can roll back the migration within 24 hours of starting it. To check the rollback deadline:

1. Run the describe-clusters command.

2. Look for the HsmTypeRollbackExpiration value. This timestamp is your rollback deadline.

If you decide to roll back, do it before this deadline. The rollback uses the latest backup of your 
original HSM type.

Warning

Be cautious about rolling back after a migration is complete. If you complete a migration 
and then use AWS CloudHSM to create new keys or users, rolling back can result in data 
loss. See Synchronizing Data After a Rollback to learn how to mitigate data loss after a 
rollback.

Console

To roll back your HSM type (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Select the ID of the cluster you want to roll back.

3. From the Actions menu, choose Modify HSM Type and select the original HSM type

This procedure puts your cluster into the ROLLBACK_IN_PROGRESS state. After rollback, your 
cluster returns to the ACTIVE state.

AWS CLI

To roll back your HSM type (AWS CLI)

• At a command prompt, run the  modify-cluster command. Specify the cluster ID and the 
original HSM type.

Migrating from hsm1.medium to hsm2m.medium 94

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/modify-cluster.html


AWS CloudHSM User Guide

$ aws cloudhsmv2 modify-cluster --cluster-id <cluster ID> --hsm-type <HSM Type>
                                
{ 
 "Cluster": { 
     "BackupPolicy": "DEFAULT", 
     "BackupRetentionPolicy": { 
         "Type": "DAYS", 
         "Value": 90 
      }, 
     "VpcId": "vpc-50ae0636", 
     "SubnetMapping": { 
         "us-west-2b": "subnet-49a1bc00", 
         "us-west-2c": "subnet-6f950334", 
         "us-west-2a": "subnet-fd54af9b" 
     }, 
     "SecurityGroup": "sg-6cb2c216", 
     "HsmType": "hsm1.medium", 
     "HsmTypeRollbackExpiration": 1730383180.000, 
     "Certificates": {}, 
     "State": "ROLLBACK_IN_PROGRESS", 
     "Hsms": [], 
     "ClusterId": "cluster-igklspoyj5v", 
     "ClusterMode": "FIPS", 
     "CreateTimestamp": 1502423370.069 
 }
} 
                              
                          

This procedure puts your cluster into the ROLLBACK_IN_PROGRESS state. After rollback, your 
cluster returns to the ACTIVE state.

AWS CloudHSM API

To roll back your HSM type (AWS CloudHSM API)

• Send a ModifyCluster request. Specify the cluster ID and the original HSM type for the 
cluster.

Migrating from hsm1.medium to hsm2m.medium 95

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_ModifyCluster.html


AWS CloudHSM User Guide

This procedure puts your cluster into the ROLLBACK_IN_PROGRESS state. After rollback, your 
cluster returns to the ACTIVE state.

Synchronizing data after a rollback

During migration, HSMs are in limited-write mode, preventing changes to HSM state. If you roll 
back during this time (while the cluster is MODIFY_IN_PROGRESS), it results in a cluster with 
content identical to the original cluster.

After your cluster returns to the ACTIVE state, limited-write mode is lifted. If you create a key or 
user while in ACTIVE state and then roll back, that key or user won't be present in your rolled back 
cluster.

To resolve this, use the CloudHSM CLI's key replicate command to replicate a key between two 
clusters. If you haven't installed it, see the instructions in ???.

To synchronize keys after rollback

Follow these steps after completing the rollback. We'll use these terms:

• "cluster-1": Your rolled back cluster (now hsm1.medium)

• "cluster-2": A new temporary hsm2m.medium cluster that you will create

1. Create a new hsm2m.medium cluster (cluster-2) using the latest hsm2m.medium backup from 
cluster-1:

aws cloudhsmv2 create-cluster --hsm-type hsm2m.medium \ 
                                --subnet-ids <subnet ID 1> <subnet ID 2> <subnet ID 
 N> \ 
                                --source-backup-id <backup ID>
                                --mode <FIPS>
                    

2. Create an HSM in cluster-2:

aws cloudhsmv2 create-hsm --cluster-id <cluster-2 ID>

3. List keys in cluster-2 that need replication:

Migrating from hsm1.medium to hsm2m.medium 96



AWS CloudHSM User Guide

cloudhsm-cli key list --cluster-id <cluster-2 ID>

4. Replicate each key from cluster-2 to cluster-1:

cloudhsm-cli key replicate --source-cluster-id <cluster-2 ID> \ 
                        --destination-cluster-id <cluster-1 ID> \ 
                        --filter attr.label=<key ID>
                    

5. Repeat step 4 for each key that needs copying.

6. Delete the HSM in cluster-2:

aws cloudhsmv2 delete-hsm --cluster-id <cluster-2 ID> --hsm-id <HSM ID>

7. Delete cluster-2:

aws cloudhsmv2 delete-cluster --cluster-id <cluster-2 ID>

Migrating from hsm1.medium to hsm2m.medium 97



AWS CloudHSM User Guide

HSM users in AWS CloudHSM

Before you can use your AWS CloudHSM cluster for cryptoprocessing, you must create users and
keys on the hardware security modules (HSM) in your cluster.

Note

HSM users are distinct from IAM users. IAM users who have the correct credentials can 
create HSMs by interacting with resources through the AWS API. After the HSM is created, 
you must use HSM user credentials to authenticate operations on the HSM.

In AWS CloudHSM, you must use CloudHSM CLI or CloudHSM Management Utility (CMU) command 
line tools to create and manage the users on your HSM. CloudHSM CLI is designed to be used with
the latest SDK version series, while the CMU is designed to be used with the previous SDK version 
series.

See the following topics for more information about managing HSM users in AWS CloudHSM. You 
can also learn how to use quorum authentication (also known as M of N access control).

Topics

• HSM user management with CloudHSM CLI

• HSM user management with CloudHSM Management Utility (CMU)

HSM user management with CloudHSM CLI

To manage hardware security module (HSM) users in AWS CloudHSM, you must log in to the HSM 
with the user name and password of an admin. Only admins can manage users. The HSM contains a 
default admin named admin. You set the password for admin when you activated the cluster.

This topic provides step-by-step instruction on and detail about managing HSM users with 
CloudHSM CLI.

Topics

• Prerequisites for user management in CloudHSM CLI

• HSM user types for CloudHSM CLI

User management with CloudHSM CLI 98



AWS CloudHSM User Guide

• HSM user permissions table for CloudHSM CLI

• Create an HSM user admin using CloudHSM CLI

• Create an HSM crypto user using CloudHSM CLI

• List all HSM users in the cluster using CloudHSM CLI

• Change HSM user passwords using CloudHSM CLI

• Delete HSM users using CloudHSM CLI

• Manage MFA for HSM users using CloudHSM CLI

• Manage quorum authentication (M of N access control) using CloudHSM CLI

Prerequisites for user management in CloudHSM CLI

Before you use CloudHSM CLI to manage hardware security modules (HSM) users in AWS 
CloudHSM, you must complete these prerequisites. The following topics describe getting started 
with the CloudHSM CLI.

Topics

• Get the IP address of an HSM in AWS CloudHSM

• Download CloudHSM CLI

Get the IP address of an HSM in AWS CloudHSM

To use CloudHSM CLI, you must use the configure tool to update the local configuration. For 
instructions on running the configure tool with CloudHSM CLI, see Getting started with AWS 
CloudHSM Command Line Interface (CLI). The -a parameter requires you to add the IP address 
of an HSM in your cluster. If you have multiple HSMs, you can use any IP address. This ensures 
CloudHSM CLI can propagate any changes you make across the entire cluster. Remember that 
CloudHSM CLI uses its local file to track cluster information. If the cluster has changed since the 
last time you used CloudHSM CLI from a particular host, you must add those changes to the local 
configuration file stored on that host. Never remove an HSM while you're using CloudHSM CLI.

To get an IP address for an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. To open the cluster detail page, in the cluster table, choose the cluster ID.

Prerequisites 99

https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

4. To get the IP address, go to the HSMs tab. For IPv4 clusters, choose an address listed under ENI 
IPv4 address. For dual-stack clusters use either the ENI IPv4 or the ENI IPv6 address.

To get an IP address for an HSM (AWS CLI)

• Get the IP address of an HSM by using the describe-clusters command from the AWS CLI. 
In the output from the command, the IP address of the HSMs are the values of EniIp and
EniIpV6 (if it is a dual-stack cluster).

$ aws cloudhsmv2 describe-clusters
{ 
    "Clusters": [ 
        { ... } 
            "Hsms": [ 
                {
... 
                    "EniIp": "10.0.0.9",
... 
                }, 
                {
... 
                    "EniIp": "10.0.1.6", 
                    "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733",
...

Download CloudHSM CLI

The latest version of CloudHSM CLI is available for HSM user management tasks for Client SDK 5. 
To download and install CloudHSM CLI, follow the instructions in Install and configure CloudHSM 
CLI.

HSM user types for CloudHSM CLI

Most operations that you perform on the hardware security module (HSM) require the credentials 
of an AWS CloudHSM HSM user. The HSM authenticates each HSM user and each HSM user has a
type that determines which operations you can perform on the HSM as that user.

User types 100

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

Note

HSM users are distinct from IAM users. IAM users who have the correct credentials can 
create HSMs by interacting with resources through the AWS API. After the HSM is created, 
you must use HSM user credentials to authenticate operations on the HSM.

User types

• Unactivated admin

• Admin

• Crypto user (CU)

• Appliance user (AU)

Unactivated admin

In CloudHSM CLI, The unactivated admin is a temporary user that exists only on the first HSM in an 
AWS CloudHSM cluster that has never been activated. To activate a cluster, run the cluster activate
command in CloudHSM CLI. After running this command, unactivated admin are prompted to 
change the password. After changing the password, the unactivated admin becomes an admin.

Admin

In CloudHSM CLI, admin can perform user management operations. For example, they can create 
and delete users and change user passwords. For more information about admins, see the HSM 
user permissions table for CloudHSM CLI.

Crypto user (CU)

A crypto user (CU) can perform the following key management and cryptographic operations.

• Key management – Create, delete, share, import, and export cryptographic keys.

• Cryptographic operations – Use cryptographic keys for encryption, decryption, signing, 
verifying, and more.

For more information, see the HSM user permissions table for CloudHSM CLI.

User types 101



AWS CloudHSM User Guide

Appliance user (AU)

The appliance user (AU) can perform cloning and synchronization operations on your cluster's 
HSMs. AWS CloudHSM uses the AU to synchronize the HSMs in an AWS CloudHSM cluster. The AU 
exists on all HSMs provided by AWS CloudHSM, and has limited permissions. For more information, 
see the HSM user permissions table for CloudHSM CLI.

AWS cannot perform any operations on your HSMs . AWS cannot view or modify your users or keys 
and cannot perform any cryptographic operations using those keys.

HSM user permissions table for CloudHSM CLI

The following table lists hardware security module (HSM) operations sorted by the type of HSM 
user or session that can perform the operation in AWS CloudHSM.

  Admin Crypto User 
(CU)

Appliance User 
(AU)

Unauthent 
icated Session

Get basic cluster 
info¹

Yes Yes Yes Yes

Change own 
password

Yes Yes Yes

Not applicable

Change any 
user's password

Yes No No No

Add, remove 
users

Yes No No No

Permissions table 102



AWS CloudHSM User Guide

  Admin Crypto User 
(CU)

Appliance User 
(AU)

Unauthent 
icated Session

Get sync status²

Yes Yes Yes No

Extract, insert 
masked objects³

Yes Yes Yes No

Key managemen 
t functions⁴

No Yes No No

Encrypt, decrypt

No Yes No No

Sign, verify

No Yes No No

Generate digests 
and HMACs

No Yes No No

• [1] Basic cluster information includes the number of HSMs in the cluster and each HSM's IP 
address, model, serial number, device ID, firmware ID, etc.

Permissions table 103



AWS CloudHSM User Guide

• [2] The user can get a set of digests (hashes) that correspond to the keys on the HSM. An 
application can compare these sets of digests to understand the synchronization status of HSMs 
in a cluster.

• [3] Masked objects are keys that are encrypted before they leave the HSM. They cannot be 
decrypted outside of the HSM. They are only decrypted after they are inserted into an HSM that 
is in the same cluster as the HSM from which they were extracted. An application can extract and 
insert masked objects to synchronize the HSMs in a cluster.

• [4] Key management functions include creating, deleting, wrapping, unwrapping, and modifying 
the attributes of keys.

Create an HSM user admin using CloudHSM CLI

Follow these steps to create a hardware security module (HSM) admin user using the CloudHSM 
CLI.

1. Use the following command to start CloudHSM CLI interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Use the login command and log in to the cluster as the admin.

aws-cloudhsm > login --username <username> --role admin

3. The system prompts you for your password. Enter the password, and the output shows that 
the command was successful.

Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<username>", 
    "role": "admin" 
  }

Create admin 104



AWS CloudHSM User Guide

}

4. Enter the following command to create an admin:

aws-cloudhsm > user create --username <username> --role admin

5. Enter the password for the new user.

6. Re-enter the password to confirm the password you entered is correct.

Create an HSM crypto user using CloudHSM CLI

Follow these steps to create a hardware security module (HSM) crypto user (CU) using the 
CloudHSM CLI.

1. Use the following command to start CloudHSM CLI interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Use the login command and log in to the cluster as the admin.

aws-cloudhsm > login --username <username> --role admin

3. The system prompts you for your password. Enter the password, and the output shows that 
the command was successful.

Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<USERNAME>", 
    "role": "admin" 
  }
}

4. Enter the following command to create a crypto user:

Create CUs 105



AWS CloudHSM User Guide

aws-cloudhsm > user create --username <username> --role crypto-user

5. Enter the password for the new crypto user.

6. Re-enter the password to confirm the password you entered is correct.

List all HSM users in the cluster using CloudHSM CLI

Use user list command in the CloudHSM CLI to list all the users in the AWS CloudHSM cluster. You 
do not have to log in to run user list. All user types can list users.

Follow these steps to list all users in the cluster

1. Use the following command to start CloudHSM CLI interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Enter the following command to list all the users in the cluster:

aws-cloudhsm > user list

For more information about user list, see user list.

Change HSM user passwords using CloudHSM CLI

Use the user change-password command in the CloudHSM CLI to change a hardware security 
module (HSM) user's password.

User types and passwords are case sensitive, but user names are not case sensitive.

Admin, crypto user (CU), and appliance user (AU) can change their own password. To change the 
password of another user, you must log in as an admin. You cannot change the password of a user 
who is currently logged in.

List all users 106



AWS CloudHSM User Guide

To change your own password

1. Use the following command to start CloudHSM CLI interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Use the login command and log in as the user with the password you want to change.

aws-cloudhsm > login --username <username> --role <role>

3. Enter the user's password.

Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<username>", 
    "role": "<role>" 
  }
}

4. Enter the user change-password command.

aws-cloudhsm > user change-password --username <username> --role <role>

5. Enter the new password.

6. Re-enter the new password.

To change the password of another user

1. Use the following command to start CloudHSM CLI interactive mode.

Change passwords 107



AWS CloudHSM User Guide

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

aws-cloudhsm > login --username <admin> --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

3. Enter the user change-password command along with the username of the user whose 
password you want to change.

aws-cloudhsm > user change-password --username <username> --role <role>

4. Enter the new password.

5. Re-enter the new password.

For more information about user change-password, see user change-password.

Delete HSM users using CloudHSM CLI

Use user delete in the CloudHSM CLI to delete a hardware security module (HSM) user. You must 
log in as an admin to delete another user.

Tip

You can't delete crypto users (CU) that own keys.

Delete users 108



AWS CloudHSM User Guide

To delete a user

1. Use the following command to start CloudHSM CLI interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Use the login command and log in to the cluster as the admin.

aws-cloudhsm > login --username <username> --role admin

3. The system prompts you for your password. Enter the password, and the output shows that 
the command was successful.

Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<username>", 
    "role": "admin" 
  }
}

4. Use the user delete command to delete the user.

aws-cloudhsm > user delete --username <username> --role <role>

For more information about user delete, see deleteUser.

Manage MFA for HSM users using CloudHSM CLI

For increased security, you can configure multi-factor authentication (MFA) for users to help protect 
the AWS CloudHSM cluster.

Manage user MFA 109



AWS CloudHSM User Guide

When you log in to a cluster with an MFA enabled hardware security module (HSM) user account, 
you provide the CloudHSM CLI with your password—the first factor, what you know—and 
CloudHSM CLI provides you with a token and prompts you to have the token signed.

To provide the second factor—what you have—you sign the token with a private key from a key 
pair you've already created and associated with the HSM user. To access the cluster, you provide the 
signed token to CloudHSM CLI.

For more information on setting up MFA for a user see Set up MFA for CloudHSM CLI

The following topics provide more information about working with quorum authentication in AWS 
CloudHSM.

Topics

• Quorum authentication and MFA in AWS CloudHSM clusters using CloudHSM CLI

• MFA key pair requirements for AWS CloudHSM using CloudHSM CLI

• Set up MFA for CloudHSM CLI

• Create users with MFA enabled for CloudHSM CLI

• Log in users with MFA enabled for CloudHSM CLI

• Rotate keys for users with MFA enabled for CloudHSM CLI

• Deregister an MFA public key using CloudHSM CLI

• Token file reference for MFA with CloudHSM CLI

Quorum authentication and MFA in AWS CloudHSM clusters using CloudHSM CLI

The AWS CloudHSM cluster uses the same key for quorum authentication and for multi-factor 
authentication (MFA). This means a user with MFA enabled is effectively registered for MofN or 
quorum access control. To successfully use MFA and quorum authentication for the same HSM user, 
consider the following points:

• If you are using quorum authentication for a user today, you should use the same key pair you 
created for the quorum user to enable MFA for the user.

• If you add the MFA requirement for a non-MFA user who is not a quorum authentication user, 
then you register that user as a quorum (MofN) registered user with MFA authentication.

• If you remove the MFA requirement or change the password for an MFA user who is also a 
registered quorum authentication user, you will also remove the user's registration as a quorum 
(MofN) user.

Manage user MFA 110



AWS CloudHSM User Guide

• If you remove the MFA requirement or change the password for an MFA user who is also a 
quorum authentication user, but you still want that user to participate in quorum authentication, 
then you must register that user again as a Quorum (MofN) user.

For more information about quorum authentication, see Manage quorum authentication (M of N).

MFA key pair requirements for AWS CloudHSM using CloudHSM CLI

To enable multi-factor authentication (MFA) for a hardware security module (HSM) user in 
AWS CloudHSM, you can create a new key pair or use an existing key that meets the following 
requirements:

• Key type: Asymmetric

• Key usage: Sign and verify

• Key spec: RSA_2048

• Signing algorithm includes: sha256WithRSAEncryption

Note

If you are using quorum authentication or plan to use quorum authentication, see Quorum 
authentication and MFA in AWS CloudHSM clusters using CloudHSM CLI

You can use CloudHSM CLI and the key pair to create a new admin user with MFA enabled.

Set up MFA for CloudHSM CLI

Follow these steps to set up multi-factor authentication (MFA) for CloudHSM CLI.

1. To setup MFA using the Token Sign Strategy you must first generate a 2048 bit RSA private key 
and associated public key.

$ openssl genrsa -out officer1.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
...........................................................+++++
....................................................................+++++
e is 65537 (0x010001)

$ openssl rsa -in officer1.key -outform PEM -pubout -out officer1.pub

Manage user MFA 111



AWS CloudHSM User Guide

writing RSA key

2. Use the following command to start the CLI in interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

3. Using the CloudHSM CLI, login to your user account.

aws-cloudhsm > login --username <admin> --role <admin> --cluster-id <cluster ID>
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "<admin>" 
  }
}

4. Next, execute the command to change you MFA strategy. You must provide the parameter --
token. This parameter specifies a file that will have unsigned tokens written to it.

aws-cloudhsm > user change-mfa token-sign --token unsigned-tokens.json --
username <username> --role crypto-user --change-quorum
Enter password:
Confirm password:

5. You now have a file with unsigned tokens that need to be signed: unsigned-tokens.json. 
The number of tokens in this file depends on the number of HSMs in your cluster. Each token 
represents one HSM. This file is JSON formatted and contains tokens that need to be signed to 
prove you have a private key.

$ cat unsigned-tokens.json
{ 
  "version": "2.0", 
  "tokens": [
{ 

Manage user MFA 112



AWS CloudHSM User Guide

    { 
      "unsigned": "Vtf/9QOFY45v/E1osvpEMr59JsnP/hLDm4ItOO2vqL8=", 
      "signed": "" 
    }, 
    { 
      "unsigned": "wVbC0/5IKwjyZK2NBpdFLyI7BiayZ24YcdUdlcxLwZ4=", 
      "signed": "" 
    }, 
    { 
      "unsigned": "z6aW9RzErJBL5KqFG5h8lhTVt9oLbxppjod0Ebysydw=", 
      "signed": "" 
    } 
  ]
}

6. The next step is to sign these tokens with the private key created in step 1. Place the 
signatures back in the file. First, you have to extract and decode the base64 encoded tokens.

$ echo "Vtf/9QOFY45v/E1osvpEMr59JsnP/hLDm4ItOO2vqL8=" > token1.b64
$ echo "wVbC0/5IKwjyZK2NBpdFLyI7BiayZ24YcdUdlcxLwZ4=" > token2.b64
$ echo "z6aW9RzErJBL5KqFG5h8lhTVt9oLbxppjod0Ebysydw=" > token3.b64
$ base64 -d token1.b64 > token1.bin
$ base64 -d token2.b64 > token2.bin
$ base64 -d token3.b64 > token3.bin

7. Now, you have binary tokens that you can sign using the RSA private key created in step 1.

$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token1.bin \ 
      -out token1.sig.bin
$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token2.bin \ 
      -out token2.sig.bin
$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 

Manage user MFA 113



AWS CloudHSM User Guide

      -in token3.bin \ 
      -out token3.sig.bin

8. Now, you have binary signatures of the tokens. You must encode them using base64, and then 
place them back in your token file.

$ base64 -w0 token1.sig.bin > token1.sig.b64
$ base64 -w0 token2.sig.bin > token2.sig.b64 
$ base64 -w0 token3.sig.bin > token3.sig.b64

9. Finally, you can copy and paste the base64 values back into your token file:

{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "unsigned": "1jqwxb9bJOUUQLiNb7mxXS1uBJsEXh0B9nj05BqnPsE=", 
      "signed": "eiw3fZeCKIY50C4zPeg9Rt90M1Qlq3WlJh6Yw7xXm4nF6e9ETLE39+9M
+rUqDWMRZjaBfaMbg5d9yDkz5p13U7ch2tlF9LoYabsWutkT014KRq/rcYMvFsU9n/Ey/
TK0PVaxLN42X+pebV4juwMhN4mK4CzdFAJgM+UGBOj4yB9recpOBB9K8QFSpJZALSEdDgUc/
mS1eDq3rU0int6+4NKuLQjpR
+LSEIWRZ6g6+MND2vXGskxHjadCQ09L7Tz8VcWjKDbxJcBiGKvkqyozl9zrGo8fA3WHBmwiAgS61Merx77ZGY4PFR37+j/
YMSC14prCN15DtMRv2xA1SGSb4w==" 
    }, 
    { 
      "unsigned": "LMMFc34ASPnvNPFzBbMbr9FProS/Zu2P8zF/xzk5hVQ=", 
      "signed": "HBImKnHmw+6R2TpFEpfiAg4+hu2pFNwn43ClhKPkn2higbEhUD0JVi
+4MerSyvU/NN79iWVxDvJ9Ito+jpiRQjTfTGEoIteyuAr1v/Bzh+HjmrO53OQpZaJ/VXGIgApD0myuu/
ZGNKQTCSkkL7+V81FG7yR1Nm22jUeGa735zvm/E+cenvZdy0VVx6A7WeWrl3JEKKBweHbi+7BwbaW
+PTdCuIRd4Ug76Sy+cFhsvcG1k7cMwDh8MgXzIZ2m1f/hdy2j8qAxORTLlmwyUOYvPYOvUhc
+s83hx36QpGwGcD7RA0bPT5OrTx7PHd0N1CL+Wwy91We8yIOFBS6nxo1R7w==" 
    }, 
    { 
      "unsigned": "dzeHbwhiVXQqcUGj563z51/7sLUdxjL93SbOUyZRjH8=", 
      "signed": "VgQPvrTsvGljVBFxHnswduq16x8ZrnxfcYVYGf/
N7gEzI4At3GDs2EVZWTRdvS0uGHdkFYp1apHgJZ7PDVmGcTkIXVD2lFYppcgNlSzkYlftr5EOjqS9ZjYEqgGuB4g//
MxaBaRbJai/6BlcE92NIdBusTtreIm3yTpjIXNAVoeRSnkfuw7wZcL96QoklNb1WUuSHw
+psUyeIVtIwFMHEfFoRC0t
+VhmnlnFnkjGPb9W3Aprw2dRRvFM3R2ZTDvMCiOYDzUCd43GftGq2LfxH3qSD51oFHglHQVOY0jyVzzlAvub5HQdtOQdErIeO0/9dGx5yot07o3xaGl5yQRhwA==" 
    } 
  ]
}

Manage user MFA 114



AWS CloudHSM User Guide

10. Now that your token file has all the required signatures, you can proceed. Enter the name of 
the file containing the signed tokens and press the enter key. Finally, enter the path of your 
public key.

Enter signed token file path (press enter if same as the unsigned token file):
Enter public key PEM file path:officer1.pub
{ 
  "error_code": 0, 
  "data": { 
    "username": "<username>", 
    "role": "crypto-user" 
  }
}

Now you have setup your user with MFA.

{ 
    "username": "<username>", 
    "role": "crypto-user", 
    "locked": "false", 
    "mfa": [ 
      { 
        "strategy": "token-sign", 
        "status": "enabled" 
      } 
    ], 
    "cluster-coverage": "full"
}, 

Create users with MFA enabled for CloudHSM CLI

Follow these steps to create AWS CloudHSM users with multi-factor authentication (MFA) enabled.

1. Use CloudHSM CLI to log in to the HSM as an admin.

2. Use the user create command to create a user of your choice. Then follow the steps in Set up 
MFA for CloudHSM CLI to setup MFA for the user.

Manage user MFA 115



AWS CloudHSM User Guide

Log in users with MFA enabled for CloudHSM CLI

Follow these steps to log in AWS CloudHSM users with multi-factor authentication (MFA) enabled.

1. Use the login mfa-token-sign command in CloudHSM CLI to start the login process with MFA 
for a user who has MFA enabled.

aws-cloudhsm > login --username <username> --role <role> mfa-token-sign --
token <unsigned-tokens.json>
Enter password:

2. Enter your password. You will then be prompted to enter the path to the token file which 
contains unsigned/signed token pairs, where signed tokens are those generated by using your 
private key.

aws-cloudhsm > login --username <username> --role <role> mfa-token-sign --
token <unsigned-tokens.json>
Enter password:
Enter signed token file path (press enter if same as the unsigned token file):

3. While prompted to enter the signed token file path, you can inspect the unsigned token 
file in a separate terminal. Identify the file with unsigned tokens that need to be signed:
<unsigned-tokens.json>. The number of tokens in this file depends on the number of 
HSMs in your cluster. Each token represents one HSM. This file is JSON formatted and contains 
tokens that need to be signed to prove you have a private key.

$ cat <unsigned-tokens.json>
{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "unsigned": "Vtf/9QOFY45v/E1osvpEMr59JsnP/hLDm4ItOO2vqL8=", 
      "signed": "" 
    }, 
    { 
      "unsigned": "wVbC0/5IKwjyZK2NBpdFLyI7BiayZ24YcdUdlcxLwZ4=", 
      "signed": "" 
    }, 
    { 
      "unsigned": "z6aW9RzErJBL5KqFG5h8lhTVt9oLbxppjod0Ebysydw=", 
      "signed": "" 
    } 

Manage user MFA 116



AWS CloudHSM User Guide

  ]
}

4. Sign the unsigned tokens with the private key created in step 2. First you have to extract and 
decode the base64 encoded tokens.

$ echo "Vtf/9QOFY45v/E1osvpEMr59JsnP/hLDm4ItOO2vqL8=" > token1.b64
$ echo "wVbC0/5IKwjyZK2NBpdFLyI7BiayZ24YcdUdlcxLwZ4=" > token2.b64
$ echo "z6aW9RzErJBL5KqFG5h8lhTVt9oLbxppjod0Ebysydw=" > token3.b64
$ base64 -d token1.b64 > token1.bin 
$ base64 -d token2.b64 > token2.bin
$ base64 -d token3.b64 > token3.bin

5. You now have binary tokens. Sign them using the RSA private key you previously created in
step 1 of MFA setup.

$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token1.bin \ 
      -out token1.sig.bin
$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token2.bin \ 
      -out token2.sig.bin
$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token3.bin \ 
      -out token3.sig.bin

6. You now have binary signatures of the tokens. Encode them using base64, and place them 
back in your token file.

$ base64 -w0 token1.sig.bin > token1.sig.b64
$ base64 -w0 token2.sig.bin > token2.sig.b64
$ base64 -w0 token3.sig.bin > token3.sig.b64

7. Finally, copy and paste the base64 values back into your token file:

Manage user MFA 117



AWS CloudHSM User Guide

{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "unsigned": "1jqwxb9bJOUUQLiNb7mxXS1uBJsEXh0B9nj05BqnPsE=", 
      "signed": "eiw3fZeCKIY50C4zPeg9Rt90M1Qlq3WlJh6Yw7xXm4nF6e9ETLE39+9M
+rUqDWMRZjaBfaMbg5d9yDkz5p13U7ch2tlF9LoYabsWutkT014KRq/rcYMvFsU9n/Ey/
TK0PVaxLN42X+pebV4juwMhN4mK4CzdFAJgM+UGBOj4yB9recpOBB9K8QFSpJZALSEdDgUc/
mS1eDq3rU0int6+4NKuLQjpR
+LSEIWRZ6g6+MND2vXGskxHjadCQ09L7Tz8VcWjKDbxJcBiGKvkqyozl9zrGo8fA3WHBmwiAgS61Merx77ZGY4PFR37+j/
YMSC14prCN15DtMRv2xA1SGSb4w==" 
    }, 
    { 
      "unsigned": "LMMFc34ASPnvNPFzBbMbr9FProS/Zu2P8zF/xzk5hVQ=", 
      "signed": "HBImKnHmw+6R2TpFEpfiAg4+hu2pFNwn43ClhKPkn2higbEhUD0JVi
+4MerSyvU/NN79iWVxDvJ9Ito+jpiRQjTfTGEoIteyuAr1v/Bzh+HjmrO53OQpZaJ/VXGIgApD0myuu/
ZGNKQTCSkkL7+V81FG7yR1Nm22jUeGa735zvm/E+cenvZdy0VVx6A7WeWrl3JEKKBweHbi+7BwbaW
+PTdCuIRd4Ug76Sy+cFhsvcG1k7cMwDh8MgXzIZ2m1f/hdy2j8qAxORTLlmwyUOYvPYOvUhc
+s83hx36QpGwGcD7RA0bPT5OrTx7PHd0N1CL+Wwy91We8yIOFBS6nxo1R7w==" 
    }, 
    { 
      "unsigned": "dzeHbwhiVXQqcUGj563z51/7sLUdxjL93SbOUyZRjH8=", 
      "signed": "VgQPvrTsvGljVBFxHnswduq16x8ZrnxfcYVYGf/
N7gEzI4At3GDs2EVZWTRdvS0uGHdkFYp1apHgJZ7PDVmGcTkIXVD2lFYppcgNlSzkYlftr5EOjqS9ZjYEqgGuB4g//
MxaBaRbJai/6BlcE92NIdBusTtreIm3yTpjIXNAVoeRSnkfuw7wZcL96QoklNb1WUuSHw
+psUyeIVtIwFMHEfFoRC0t
+VhmnlnFnkjGPb9W3Aprw2dRRvFM3R2ZTDvMCiOYDzUCd43GftGq2LfxH3qSD51oFHglHQVOY0jyVzzlAvub5HQdtOQdErIeO0/9dGx5yot07o3xaGl5yQRhwA==" 
    } 
  ]
}

8. Now that your token file has all the required signatures, you can proceed. Enter the name 
of the file containing the signed tokens and press the enter key. You should now log in 
successfully.

aws-cloudhsm > login --username <username> --role <role> mfa-token-sign --
token <unsigned-tokens.json>
Enter password:
Enter signed token file path (press enter if same as the unsigned token file):
{ 
  "error_code": 0, 
  "data": { 

Manage user MFA 118



AWS CloudHSM User Guide

    "username": "<username>", 
    "role": "<role>" 
  }
}

Rotate keys for users with MFA enabled for CloudHSM CLI

Follow these steps to rotate keys for AWS CloudHSM users with multi-factor authentication (MFA) 
enabled.

<result>

You have signed the generated JSON formatted token file with your private key and registered a 
new MFA public key.
</result>

1. Use CloudHSM CLI to log in to the HSM as any admin or as the specific user who has MFA 
enabled (see Log in users with MFA enabled for details).

2. Next, execute the command to change you MFA strategy. You must provide the parameter --
token. This parameter specifies a file that will have unsigned tokens written to it.

aws-cloudhsm > user change-mfa token-sign --token unsigned-tokens.json --
username <username> --role crypto-user --change-quorum
Enter password:
Confirm password:

3. Identify the file with unsigned tokens that need to be signed: unsigned-tokens.json. 
The number of tokens in this file depends on the number of HSMs in your cluster. Each token 
represents one HSM. This file is JSON formatted and contains tokens that need to be signed to 
prove you have a private key. This will be the new private key from the new RSA public/private 
key pair you wish to use for rotating the currently registered public key.

$ cat unsigned-tokens.json
{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "unsigned": "Vtf/9QOFY45v/E1osvpEMr59JsnP/hLDm4ItOO2vqL8=", 
      "signed": "" 
    }, 

Manage user MFA 119



AWS CloudHSM User Guide

    { 
      "unsigned": "wVbC0/5IKwjyZK2NBpdFLyI7BiayZ24YcdUdlcxLwZ4=", 
      "signed": "" 
    }, 
    { 
      "unsigned": "z6aW9RzErJBL5KqFG5h8lhTVt9oLbxppjod0Ebysydw=", 
      "signed": "" 
    } 
  ]
}

4. Sign these tokens with the private key you previously created during setup. First we have to 
extract and decode the base64 encoded tokens.

$ echo "Vtf/9QOFY45v/E1osvpEMr59JsnP/hLDm4ItOO2vqL8=" > token1.b64
$ echo "wVbC0/5IKwjyZK2NBpdFLyI7BiayZ24YcdUdlcxLwZ4=" > token2.b64
$ echo "z6aW9RzErJBL5KqFG5h8lhTVt9oLbxppjod0Ebysydw=" > token3.b64
$ base64 -d token1.b64 > token1.bin
$ base64 -d token2.b64 > token2.bin
$ base64 -d token3.b64 > token3.bin

5. You now have binary tokens. Sign them using the RSA private key you previously created 
during setup.

$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token1.bin \ 
      -out token1.sig.bin
$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token2.bin \ 
      -out token2.sig.bin
$ openssl pkeyutl -sign \ 
      -inkey officer1.key \ 
      -pkeyopt digest:sha256 \ 
      -keyform PEM \ 
      -in token3.bin \ 
      -out token3.sig.bin

Manage user MFA 120



AWS CloudHSM User Guide

6. You now have binary signatures of the tokens. Encode them using base64, and place them 
back in your token file.

$ base64 -w0 token1.sig.bin > token1.sig.b64
$ base64 -w0 token2.sig.bin > token2.sig.b64 
$ base64 -w0 token3.sig.bin > token3.sig.b64

7. Finally, copy and paste the base64 values back into your token file:

{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "unsigned": "1jqwxb9bJOUUQLiNb7mxXS1uBJsEXh0B9nj05BqnPsE=", 
      "signed": "eiw3fZeCKIY50C4zPeg9Rt90M1Qlq3WlJh6Yw7xXm4nF6e9ETLE39+9M
+rUqDWMRZjaBfaMbg5d9yDkz5p13U7ch2tlF9LoYabsWutkT014KRq/rcYMvFsU9n/Ey/
TK0PVaxLN42X+pebV4juwMhN4mK4CzdFAJgM+UGBOj4yB9recpOBB9K8QFSpJZALSEdDgUc/
mS1eDq3rU0int6+4NKuLQjpR
+LSEIWRZ6g6+MND2vXGskxHjadCQ09L7Tz8VcWjKDbxJcBiGKvkqyozl9zrGo8fA3WHBmwiAgS61Merx77ZGY4PFR37+j/
YMSC14prCN15DtMRv2xA1SGSb4w==" 
    }, 
    { 
      "unsigned": "LMMFc34ASPnvNPFzBbMbr9FProS/Zu2P8zF/xzk5hVQ=", 
      "signed": "HBImKnHmw+6R2TpFEpfiAg4+hu2pFNwn43ClhKPkn2higbEhUD0JVi
+4MerSyvU/NN79iWVxDvJ9Ito+jpiRQjTfTGEoIteyuAr1v/Bzh+HjmrO53OQpZaJ/VXGIgApD0myuu/
ZGNKQTCSkkL7+V81FG7yR1Nm22jUeGa735zvm/E+cenvZdy0VVx6A7WeWrl3JEKKBweHbi+7BwbaW
+PTdCuIRd4Ug76Sy+cFhsvcG1k7cMwDh8MgXzIZ2m1f/hdy2j8qAxORTLlmwyUOYvPYOvUhc
+s83hx36QpGwGcD7RA0bPT5OrTx7PHd0N1CL+Wwy91We8yIOFBS6nxo1R7w==" 
    }, 
    { 
      "unsigned": "dzeHbwhiVXQqcUGj563z51/7sLUdxjL93SbOUyZRjH8=", 
      "signed": "VgQPvrTsvGljVBFxHnswduq16x8ZrnxfcYVYGf/
N7gEzI4At3GDs2EVZWTRdvS0uGHdkFYp1apHgJZ7PDVmGcTkIXVD2lFYppcgNlSzkYlftr5EOjqS9ZjYEqgGuB4g//
MxaBaRbJai/6BlcE92NIdBusTtreIm3yTpjIXNAVoeRSnkfuw7wZcL96QoklNb1WUuSHw
+psUyeIVtIwFMHEfFoRC0t
+VhmnlnFnkjGPb9W3Aprw2dRRvFM3R2ZTDvMCiOYDzUCd43GftGq2LfxH3qSD51oFHglHQVOY0jyVzzlAvub5HQdtOQdErIeO0/9dGx5yot07o3xaGl5yQRhwA==" 
    } 
  ]
}

8. Now that your token file has all the required signatures, you can proceed. Enter the name of 
the file containing the signed tokens and press the enter key. Finally, enter the path of your 
new public key. Now you will see the following as part of the output of user list.

Manage user MFA 121



AWS CloudHSM User Guide

Enter signed token file path (press enter if same as the unsigned token file):
Enter public key PEM file path:officer1.pub
{ 
  "error_code": 0, 
  "data": { 
    "username": "<username>", 
    "role": "crypto-user" 
  }
}

Now we have setup our user with MFA.

{ 
    "username": "<username>", 
    "role": "crypto-user", 
    "locked": "false", 
    "mfa": [ 
      { 
        "strategy": "token-sign", 
        "status": "enabled" 
      } 
    ], 
    "cluster-coverage": "full"
},

Deregister an MFA public key using CloudHSM CLI

Follow these steps to deregister a multi-factor authentication (MFA) public key for AWS CloudHSM 
admin users when MFA public key is registered.

1. Use CloudHSM CLI to log in to the HSM as an admin with MFA enabled.

2. Use the user change-mfa token-sign command to remove MFA for a user.

aws-cloudhsm > user change-mfa token-sign --username <username> --role admin --
deregister --change-quorum
Enter password:
Confirm password:
{ 
  "error_code": 0, 
  "data": { 

Manage user MFA 122



AWS CloudHSM User Guide

    "username": "<username>", 
    "role": "admin" 
  }
}

Token file reference for MFA with CloudHSM CLI

The token file generated when either registering a multi-factor authentication (MFA) public key or 
when attempting to login to the CloudHSM CLI using MFA consists of the following:

• Tokens: An array base64 encoded unsigned/signed token pairs in the form of JSON object 
literals.

• Unsigned: A base64 encoded and SHA256 hashed token.

• Signed: A base64 encoded signed token (signature) of the unsigned token, using the RSA 2048-
bit private key.

{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "unsigned": "1jqwxb9bJOUUQLiNb7mxXS1uBJsEXh0B9nj05BqnPsE=", 
      "signed": "eiw3fZeCKIY50C4zPeg9Rt90M1Qlq3WlJh6Yw7xXm4nF6e9ETLE39+9M
+rUqDWMRZjaBfaMbg5d9yDkz5p13U7ch2tlF9LoYabsWutkT014KRq/rcYMvFsU9n/Ey/TK0PVaxLN42X
+pebV4juwMhN4mK4CzdFAJgM+UGBOj4yB9recpOBB9K8QFSpJZALSEdDgUc/mS1eDq3rU0int6+4NKuLQjpR
+LSEIWRZ6g6+MND2vXGskxHjadCQ09L7Tz8VcWjKDbxJcBiGKvkqyozl9zrGo8fA3WHBmwiAgS61Merx77ZGY4PFR37+j/
YMSC14prCN15DtMRv2xA1SGSb4w==" 
    }, 
    { 
      "unsigned": "LMMFc34ASPnvNPFzBbMbr9FProS/Zu2P8zF/xzk5hVQ=", 
      "signed": "HBImKnHmw+6R2TpFEpfiAg4+hu2pFNwn43ClhKPkn2higbEhUD0JVi
+4MerSyvU/NN79iWVxDvJ9Ito+jpiRQjTfTGEoIteyuAr1v/Bzh+HjmrO53OQpZaJ/VXGIgApD0myuu/
ZGNKQTCSkkL7+V81FG7yR1Nm22jUeGa735zvm/E+cenvZdy0VVx6A7WeWrl3JEKKBweHbi+7BwbaW
+PTdCuIRd4Ug76Sy+cFhsvcG1k7cMwDh8MgXzIZ2m1f/hdy2j8qAxORTLlmwyUOYvPYOvUhc
+s83hx36QpGwGcD7RA0bPT5OrTx7PHd0N1CL+Wwy91We8yIOFBS6nxo1R7w==" 
    }, 
    { 
      "unsigned": "dzeHbwhiVXQqcUGj563z51/7sLUdxjL93SbOUyZRjH8=", 
      "signed": "VgQPvrTsvGljVBFxHnswduq16x8ZrnxfcYVYGf/
N7gEzI4At3GDs2EVZWTRdvS0uGHdkFYp1apHgJZ7PDVmGcTkIXVD2lFYppcgNlSzkYlftr5EOjqS9ZjYEqgGuB4g//
MxaBaRbJai/6BlcE92NIdBusTtreIm3yTpjIXNAVoeRSnkfuw7wZcL96QoklNb1WUuSHw

Manage user MFA 123



AWS CloudHSM User Guide

+psUyeIVtIwFMHEfFoRC0t
+VhmnlnFnkjGPb9W3Aprw2dRRvFM3R2ZTDvMCiOYDzUCd43GftGq2LfxH3qSD51oFHglHQVOY0jyVzzlAvub5HQdtOQdErIeO0/9dGx5yot07o3xaGl5yQRhwA==" 
    } 
  ]
}

Manage quorum authentication (M of N access control) using CloudHSM 
CLI

AWS CloudHSM clusters support quorum authentication, also known as M of N access control. This 
feature requires HSM users to cooperate for certain operations, adding an extra layer of protection.

With quorum authentication, no single user on the HSM can perform quorum-controlled 
operations on the HSM. Instead, a minimum number of HSM users (at least 2) must cooperate to do 
these operations.

Quorum authentication can control the following operations:

• HSM user management by admin: Creating and deleting HSM users or changing a different 
HSM user's password. For more information, see User management with quorum authentication 
enabled for AWS CloudHSM using CloudHSM CLI.

Key points about quorum authentication in AWS CloudHSM.

• An HSM user can sign their own quorum token—that is, providing one of the required approvals 
for quorum authentication.

• You choose the minimum number of quorum approvers, which ranges from two (2) to eight (8).

• HSMs can store up to 1024 quorum tokens. When this limit is reached, the HSM purges an 
expired token to create a new one.

• Tokens expire ten minutes after creation by default.

• For clusters with MFA enabled, the same key is used for quorum authentication and multi-factor 
authentication (MFA). See Using CloudHSM CLI to manage MFA for more information.

• Each HSM can contain one token per Admin service and multiple tokens per Crypto User service.

The following topics provide more information about quorum authentication in AWS CloudHSM.

Topics

Manage quorum authentication (M of N) 124



AWS CloudHSM User Guide

• Quorum authentication process for CloudHSM CLI

• Supported AWS CloudHSM service names and types for quorum authentication with CloudHSM 
CLI

• Set up quorum authentication for AWS CloudHSM admins using CloudHSM CLI

• User management with quorum authentication enabled for AWS CloudHSM using CloudHSM CLI

• Change the quorum minimum value for AWS CloudHSM using CloudHSM CLI

Quorum authentication process for CloudHSM CLI

The following steps summarize the quorum authentication processes for CloudHSM CLI. For the 
specific steps and tools, see User management with quorum authentication enabled for AWS 
CloudHSM using CloudHSM CLI.

1. Each hardware security module (HSM) user creates an asymmetric key for signing. Users do this 
outside of the HSM, taking care to protect the key appropriately.

2. Each HSM user logs in to the HSM and registers the public part of their signing key (the public 
key) with the HSM.

3. When an HSM user wants to do a quorum-controlled operation, the same user logs in to the 
HSM and gets a quorum token.

4. The HSM user gives the quorum token to one or more other HSM users and asks for their 
approval.

5. The other HSM users approve by using their keys to cryptographically sign the quorum token. 
This occurs outside the HSM.

6. When the HSM user has the required number of approvals, the same user logs in to the HSM 
and runs the quorum-controlled operation with the --approval argument, supplying the signed 
quorum token file, which contains all necessary approvals (signatures).

7. The HSM uses the registered public keys of each signer to verify the signatures. If the signatures 
are valid, the HSM approves the token and the quorum-controlled operation is performed.

Supported AWS CloudHSM service names and types for quorum authentication 
with CloudHSM CLI

Admin Services: Quorum authentication is used for admin privileged services like creating users, 
deleting users, changing user passwords, setting quorum values, and deactivating quorum and MFA 
capabilities.

Manage quorum authentication (M of N) 125



AWS CloudHSM User Guide

Crypto User Services: Quorum authentication is used for crypto-user privileged services associated 
with a specific key like signing with a key, sharing/unsharing a key, wrapping/unwrapping a key, 
and setting a key's attribute. The quorum value of an associated key is configured when the key is 
generated, imported, or unwrapped. The quorum value must be equal to or less than the number 
of users that the key is associated with, which includes users that the key is shared with and the key 
owner.

Each service type is further broken down into a qualifying service name, which contains a specific 
set of quorum supported service operations that can be performed.

Service name Service type Service operations

user Admin • user create

• user delete

• user change-password

• user change-mfa

quorum Admin • quorum token-sign set-
quorum-value

cluster1 Admin • cluster mtls register-trust-
anchor

• cluster mtls deregister-
trust-anchor

• cluster mtls set-enfor 
cement

key-management Crypto User • key wrap

• key unwrap

• key share

• key unshare

• key set-attribute

key-usage Crypto User • key sign

[1] Cluster service is exclusively available on hsm2m.medium

Manage quorum authentication (M of N) 126



AWS CloudHSM User Guide

Set up quorum authentication for AWS CloudHSM admins using CloudHSM CLI

The following topics describe the steps that you must complete to configure your hardware 
security module (HSM) so that AWS CloudHSM admins can use quorum authentication. You need 
to do these steps only once when you first configure quorum authentication for admins. After 
you complete these steps, see User management with quorum authentication enabled for AWS 
CloudHSM using CloudHSM CLI.

Topics

• Prerequisites

• Step 1. Create and register a key for signing

• Step 2. Set the quorum minimum value on the HSM

• Quorum minimum values

Prerequisites

To understand this example, you should be familiar with CloudHSM CLI.

Step 1. Create and register a key for signing

To use quorum authentication, each admin must complete all of the following steps:

Topics

• Create an RSA key pair

• Create and sign a registration token

• Register the public key with the HSM

Create an RSA key pair

There are many different ways to create and protect a key pair. The following examples show how 
to do it with OpenSSL.

Example – Create a private key with OpenSSL

The following example demonstrates how to use OpenSSL to create a 2048-bit RSA key. To use this 
example, replace <admin.key> with the name of the file where you want to store the key.

$ openssl genrsa -out <admin.key>

Manage quorum authentication (M of N) 127

https://www.openssl.org/


AWS CloudHSM User Guide

Generating RSA private key, 2048 bit long modulus
.....................................+++
.+++
e is 65537 (0x10001)

Next, generate the public key using the private key that you just created.

Example – Create a public key with OpenSSL

The following example demonstrates how to use OpenSSL to create a public key from the private 
key you just created.

$ openssl rsa -in admin.key -outform PEM -pubout -out admin1.pub
writing RSA key

Create and sign a registration token

You create a token and sign it with the private key you just generated in the previous step.

Example – Create a registration token

1. Use the following command to start the CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Create a registration token by running the quorum token-sign generate command:

aws-cloudhsm > quorum token-sign generate --service registration --token /path/
tokenfile
{ 
  "error_code": 0, 
  "data": { 
    "path": "/path/tokenfile" 
  }
}

Manage quorum authentication (M of N) 128



AWS CloudHSM User Guide

3. The quorum token-sign generate command generates a registration token at the specified file 
path. Inspect the token file:

$ cat /path/tokenfile
{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "approval_data": <approval data in base64 encoding>, 
      "unsigned": <unsigned token in base64 encoding>, 
      "signed": "" 
    } 
  ]
}

The token file consists of the following:

• approval_data: A base64 encoded randomized data token whose raw data doesn’t exceed 
the maximum of 245 bytes.

• unsigned: A base64 encoded and SHA256 hashed token of the approval_data.

• signed: A base64 encoded signed token (signature) of the unsigned token, using the RSA 
2048-bit private key previously generated with OpenSSL.

You sign the unsigned token with the private key to demonstrate that you have access to the 
private key. You will need the registration token file fully populated with a signature and the 
public key to register the admin as a quorum user with the AWS CloudHSM cluster.

Example – Sign the unsigned registration token

1. Decode the base64 encoded unsigned token and place it into a binary file:

$ echo -n '6BMUj6mUjjko6ZLCEdzGlWpR5sILhFJfqhW1ej3Oq1g=' | base64 -d > admin.bin

2. Use OpenSSL and the private key to sign the now binary unsigned registration token and 
create a binary signature file:

$ openssl pkeyutl -sign \
-inkey admin.key \
-pkeyopt digest:sha256 \

Manage quorum authentication (M of N) 129



AWS CloudHSM User Guide

-keyform PEM \
-in admin.bin \
-out admin.sig.bin

3. Encode the binary signature into base64:

$ base64 -w0 admin.sig.bin > admin.sig.b64

4. Copy and paste the base64 encoded signature into the token file:

{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "approval_data": <approval data in base64 encoding>, 
      "unsigned": <unsigned token in base64 encoding>, 
      "signed": <signed token in base64 encoding>
    } 
  ]
}

Register the public key with the HSM

After creating a key, the admin must register the public key with the AWS CloudHSM cluster.

To register a public key with the HSM

1. Use the following command to start CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

aws-cloudhsm > login --username <admin> --role admin
Enter password:

Manage quorum authentication (M of N) 130



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

3. Use the Register a user's token-sign quorum strategy using CloudHSM CLI command to 
register the public key. For more information, see the following example or use the help user 
change-quorum token-sign register command.

Example – Register a public key with AWS CloudHSM cluster

The following example shows how to use the user change-quorum token-sign register command 
in CloudHSM CLI to register an admin' public key with the HSM. To use this command, the admin 
must be logged in to the HSM. Replace these values with your own:

aws-cloudhsm > user change-quorum token-sign register --public-key </path/admin.pub> --
signed-token </path/tokenfile>
{ 
  "error_code": 0, 
  "data": { 
    "username": "admin", 
    "role": "admin" 
  }
}

Note

/path/admin.pub: The filepath to the public key PEM file
Required: Yes
/path/tokenfile: The filepath with token signed by user private key
Required: Yes

After all admins register their public keys, the output from the user list command shows this in the 
quorum field, stating the enabled quorum strategy in use, as shown below:

aws-cloudhsm > user list

Manage quorum authentication (M of N) 131



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin2", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin3", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 

Manage quorum authentication (M of N) 132



AWS CloudHSM User Guide

        "username": "admin4", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

In this example, the AWS CloudHSM cluster has two HSMs, each with the same admins, as shown in 
the following output from the user list command. For more information about creating users, see
User management with CloudHSM CLI

Step 2. Set the quorum minimum value on the HSM

To use quorum authentication, an admin must log in to the HSM and then set the quorum 
minimum value. This is the minimum number of admin approvals that are required to perform 
HSM user management operations. Any admin on the HSM can set the quorum minimum value, 
including admins who have not registered a key for signing. You can change the quorum minimum 
value at any time. For more information, see Change the minimum value.

To set the quorum minimum value on the HSM

1. Use the following command to start CloudHSM CLI:

Manage quorum authentication (M of N) 133



AWS CloudHSM User Guide

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

aws-cloudhsm > login --username <admin> --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

3. Use the Update a quorum value using CloudHSM CLI command to set the quorum minimum 
value. The --service flag identifies the HSM service that you're setting values for. See the 
following example or use the help quorum token-sign set-quorum-value command for more 
information.

Example – Set the quorum minimum value on the HSM

This example uses a quorum minimum value of two (2). You can choose any value from two (2) 
to eight (8), up to the total number of admins on the HSM. In this example, the HSM has four (4) 
admins, so the maximum possible value is four (4).

To use the following example command, replace the final number (<2>) with the preferred quorum 
minimum value.

aws-cloudhsm > quorum token-sign set-quorum-value --service user --value <2>
{ 
  "error_code": 0, 
  "data": "Set quorum value successful"
}

Manage quorum authentication (M of N) 134



AWS CloudHSM User Guide

In this example, the Show quorum values using CloudHSM CLI command lists the HSM service 
types, names, and descriptions that are included in the service.

Quorum minimum values

To get the quorum minimum value for a service, use the quorum token-sign list-quorum-values
command:

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 
  "data": { 
    "user": 2, 
    "quorum": 1 
  }
}

The output from the preceding quorum token-sign list-quorum-values command shows that the 
quorum minimum value for HSM user service, responsible for user management operations, is now 
two (2). After you complete these steps, see User management with quorum (M of N).

Admin Services: Quorum authentication is used for admin privileged services like creating users, 
deleting users, changing user passwords, setting quorum values, and deactivating quorum and MFA 
capabilities.

Crypto User Services: Quorum authentication is used for crypto-user privileged services associated 
with a specific key like signing with a key, sharing/unsharing a key, wrapping/unwrapping a key, 
and setting a key's attribute. The quorum value of an associated key is configured when the key is 
generated, imported, or unwrapped. The quorum value must be equal to or less than the number 
of users that the key is associated with, which includes users that the key is shared with and the key 
owner.

Each service type is further broken down into a qualifying service name, which contains a specific 
set of quorum supported service operations that can be performed.

Service name Service type Service operations

user Admin • user create

• user delete

Manage quorum authentication (M of N) 135



AWS CloudHSM User Guide

Service name Service type Service operations

• user change-password

• user change-mfa

quorum Admin • quorum token-sign set-
quorum-value

cluster1 Admin • cluster mtls register-trust-
anchor

• cluster mtls deregister-
trust-anchor

• cluster mtls set-enfor 
cement

key-management Crypto User • key wrap

• key unwrap

• key share

• key unshare

• key set-attribute

key-usage Crypto User • key sign

[1] Cluster service is exclusively available on hsm2m.medium

User management with quorum authentication enabled for AWS CloudHSM using 
CloudHSM CLI

An AWS CloudHSM admin on the hardware security module (HSM) can configure quorum 
authentication for the following operations in the AWS CloudHSM cluster:

• Create an AWS CloudHSM user with CloudHSM CLI

• Delete an AWS CloudHSM user with CloudHSM CLI

• Change a user's password with CloudHSM CLI

• The user change-mfa category in CloudHSM CLI

Manage quorum authentication (M of N) 136



AWS CloudHSM User Guide

After the AWS CloudHSM cluster is configured for quorum authentication, admins cannot perform 
HSM user management operations on their own. The following example shows the output when 
an admin attempts to create a new user on the HSM. The command fails with an error, stating that 
quorum authentication is required.

aws-cloudhsm > user create --username user1 --role crypto-user
Enter password:
Confirm password:
{ 
  "error_code": 1, 
  "data": "Quorum approval is required for this operation"
}

To perform an HSM user management operation, an admin must complete the following tasks:

Topics

• Step 1. Get a quorum token

• Step 2. Get signatures from approving admins

• Step 3. Approve the token on the AWS CloudHSM cluster and execute a user management 
operation

Step 1. Get a quorum token

First, the admin must use CloudHSM CLI to request a quorum token.

To get a quorum token

1. Use the following command to start CloudHSM CLI.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

Manage quorum authentication (M of N) 137



AWS CloudHSM User Guide

aws-cloudhsm > login --username <admin> --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

3. Use the quorum token-sign generate command to generate a quorum token. For more 
information, see the following example or use the help quorum token-sign generate
command.

Example – Generate a quorum token

This example gets a quorum token for the admin with user name admin and saves the token to a 
file named admin.token. To use the example command, replace these values with your own:

• <admin> – The name of the admin who is getting the token. This must be the same admin who 
is logged in to the HSM and is running this command.

• <admin.token> – The name of the file to use for storing the quorum token.

In the following command, user identifies the service name for which you can use the token that 
you are generating. In this case, the token is for HSM user management operations (user service). .

aws-cloudhsm > login --username <admin> --role admin --password <password>
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

aws-cloudhsm > quorum token-sign generate --service user --token </path/admin.token>
{ 
  "error_code": 0, 
  "data": { 

Manage quorum authentication (M of N) 138



AWS CloudHSM User Guide

    "path": "/home/tfile" 
  }
}

The quorum token-sign generate command generates a user service quorum token at the 
specified file path. The token file can be inspected:

$ cat </path/admin.token>
{ 
  "version": "2.0", 
  "service": "user-management", 
  "approval_data": "AAEAAwAAABgAAAAAAAAAAJ9eFkfcP3mNzJAlfK
+OWbNhZG1pbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj5vbeAAAAAAAAAAAAAQADAAAAFQAAAAAAAAAAW/
v5Euk83amq1fij0zyvD2FkbWluAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPm9t4AAAAAAAAAAAABAAMAAAAUAAAAAAAAAABDw2XDwfK4hB8a15Xh1E0nYWRtaW4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY
+b23gAAAAAAAAAA", 
  "token": "0l2LZkmAHZyAc1hPhyckOoVW33aGrgG77qmDHWQ3CJ8=", 
  "signatures": []
}

The token file consists of the following:

• service: An identifier for the quorum service the token is associated with.

• approval_data: A base64 encoded raw data token generated by the HSM.

• token: A base64 encoded and SHA-256 hashed token of the approval_data

• signatures: An array of base64 encoded signed tokens (signatures) of the unsigned token, where 
each signature of an approver is in the form of a JSON object literal:

{ 
      "username": "<APPROVER_USERNAME>", 
      "role": "<APPROVER_ROLE>", 
      "signature": "<APPROVER_RSA2048_BIT_SIGNATURE>"
}

Each signature is created from the result of an approver using their corresponding RSA 2048-bit 
private key whose public key was registered with the HSM.

The generated user service quorum token can be confirmed to exist on the CloudHSM cluster by 
running the quorum token-sign list command:

Manage quorum authentication (M of N) 139



AWS CloudHSM User Guide

aws-cloudhsm > quorum token-sign list
{ 
  "error_code": 0, 
  "data": { 
    "tokens": [ 
      { 
        "username": "admin", 
        "service": "user", 
        "approvals-required": { 
          "value": 2 
        }, 
        "number-of-approvals": { 
          "value": 0 
        }, 
        "token-timeout-seconds": { 
          "value": 597 
        }, 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

The token-timeout-seconds time indicates the timeout period in seconds for a generated 
token to be approved before it expires.

Step 2. Get signatures from approving admins

An admin who has a quorum token must get the token approved by other admins. To give their 
approval, the other admins use their signing key to cryptographically sign the token. They do this 
outside the HSM.

There are many different ways to sign the token. The following example shows how to do it with
OpenSSL. To use a different signing tool, make sure that the tool uses the admin's private key 
(signing key) to sign a SHA-256 digest of the token.

Example – Get signatures from approving admins

In this example, the admin that has the token (admin) needs at least two (2) approvals. The 
following example commands show how two (2) admins can use OpenSSL to cryptographically sign 
the token.

Manage quorum authentication (M of N) 140

https://www.openssl.org/


AWS CloudHSM User Guide

1. Decode the base64 encoded unsigned token and place it into a binary file:

$ echo -n '0l2LZkmAHZyAc1hPhyckOoVW33aGrgG77qmDHWQ3CJ8=' | base64 -d > admin.bin

2. Use OpenSSL and the respective private key of the approver (admin3) to sign the now binary 
quorum unsigned token for the user service and create a binary signature file:

$ openssl pkeyutl -sign \
-inkey admin3.key \
-pkeyopt digest:sha256 \
-keyform PEM \
-in admin.bin \
-out admin.sig.bin

3. Encode the binary signature into base64:

$ base64 -w0 admin.sig.bin > admin.sig.b64

4. Finally, copy and paste the base64 encoded signature into the token file, following the JSON 
object literal format specified earlier for approver signature:

{ 
  "version": "2.0", 
  "approval_data": "AAEAAwAAABgAAAAAAAAAAJ9eFkfcP3mNzJAlfK
+OWbNhZG1pbgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj5vbeAAAAAAAAAAAAAQADAAAAFQAAAAAAAAAAW/
v5Euk83amq1fij0zyvD2FkbWluAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGPm9t4AAAAAAAAAAAABAAMAAAAUAAAAAAAAAABDw2XDwfK4hB8a15Xh1E0nYWRtaW4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY
+b23gAAAAAAAAAA", 
  "token": "0l2LZkmAHZyAc1hPhyckOoVW33aGrgG77qmDHWQ3CJ8=", 
  "signatures": [ 
    { 
      "username": "admin2", 
      "role": "admin", 
      "signature": "O6qx7/mUaVkYYVr1PW7l8JJko+Kh3e8zBIqdk3tAiNy+1rW
+OsDtvYujhEU4aOFVLcrUFmyB/CX9OQmgJLgx/pyK+ZPEH+GoJGqk9YZ7X1nOXwZRP9g7hKV
+7XCtg9TuDFtHYWDpBfz2jWiu2fXfX4/
jTs4f2xIfFPIDKcSP8fhxjQ63xEcCf1jzGha6rDQMu4xUWWdtDgfT7um7EJ9dXNoHqLB7cTzphaubNaEFbFPXQ1siGmYKmvETlqe/
ssktwyruGFLpXs1n0tJOEglGhx2qbYTs+omKWZdORl5WIWEXW3IXw/
Dg5vVObrNpvG0eZKO8nSMc27+cyPySc+ZbNw==" 
    }, 
    { 
      "username": "admin3", 
      "role": "admin", 

Manage quorum authentication (M of N) 141



AWS CloudHSM User Guide

      "signature": "O6qx7/mUaVkYYVr1PW7l8JJko+Kh3e8zBIqdk3tAiNy+1rW
+OsDtvYujhEU4aOFVLcrUFmyB/CX9OQmgJLgx/pyK+ZPEH+GoJGqk9YZ7X1nOXwZRP9g7hKV
+7XCtg9TuDFtHYWDpBfz2jWiu2fXfX4/
jTs4f2xIfFPIDKcSP8fhxjQ63xEcCf1jzGha6rDQMu4xUWWdtDgfT7um7EJ9dXNoHqLB7cTzphaubNaEFbFPXQ1siGmYKmvETlqe/
ssktwyruGFLpXs1n0tJOEglGhx2qbYTs+omKWZdORl5WIWEXW3IXw/
Dg5vVObrNpvG0eZKO8nSMc27+cyPySc+ZbNw==" 
    } 
  ]
}

Step 3. Approve the token on the AWS CloudHSM cluster and execute a user management 
operation

After an admin has the necessary approvals/signatures, as detailed in the previous section, the 
admin can supply that token to the AWS CloudHSM cluster along with one of the following user 
management operations:

• create

• delete

• change-password

• user change-mfa

For more information about using these commands, see User management with CloudHSM CLI.

During the transaction, the token will be approved within the AWS CloudHSM cluster and execute 
the requested user management operation. The success of the user management operation is 
contingent upon both a valid approved quorum token and a valid user management operation.

The admin can use the token for only one operation. When that operation succeeds, the token is 
no longer valid. To do another HSM user management operation, the admin must repeat the above 
outlined process. That is, the admin must generate a new quorum token, get new signatures from 
approvers, and then approve and consume the new token on the HSM with the requested user 
management operation.

Note

The quorum token is only valid as long as your current login session is open. If you log out 
of CloudHSM CLI or if the network disconnects, the token is no longer valid. Similarly, an 

Manage quorum authentication (M of N) 142



AWS CloudHSM User Guide

authorized token can only be used within CloudHSM CLI. It cannot be used to authenticate 
in a different application.

Example Creating a new user as an admin

In the following example, a logged in admin creates a new user on the HSM:

aws-cloudhsm > user create --username user1 --role crypto-user --approval /path/
admin.token
Enter password:
Confirm password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "user1", 
    "role": "crypto-user" 
  }
}

The admin then enters the user list command to confirm the creation of the new user:

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin2", 
        "role": "admin", 

Manage quorum authentication (M of N) 143



AWS CloudHSM User Guide

        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin3", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin4", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "user1", 
        "role": "crypto-user", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      }, 

Manage quorum authentication (M of N) 144



AWS CloudHSM User Guide

      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

If the admin tries to perform another HSM user management operation, it fails with a quorum 
authentication error:

aws-cloudhsm > user delete --username user1 --role crypto-user
{ 
  "error_code": 1, 
  "data": "Quorum approval is required for this operation"
}

As shown below, the quorum token-sign list command shows that the admin has no approved 
tokens. To perform another HSM user management operation, the admin must generate a new 
quorum token, get new signatures from approvers, and execute the desired user management 
operation with the --approval argument to supply the quorum token to be approved and 
consumed during execution of the user management operation.

aws-cloudhsm > quorum token-sign list
{ 
  "error_code": 0, 
  "data": { 
    "tokens": [] 
  }
}

Change the quorum minimum value for AWS CloudHSM using CloudHSM CLI

After setting the quorum minimum value for CloudHSM admins, you might need to adjust the 
quorum minimum value. The HSM allows changes to the quorum minimum value only when the 
number of approvers meets or exceeds the current value. For example, with a quorum minimum 
value of two (2), at least two (2) admins must approve any changes.

Manage quorum authentication (M of N) 145



AWS CloudHSM User Guide

Note

The quorum value of the user service must always be less than the quorum value of the 
quorum service. For information on service names, see Supported AWS CloudHSM service 
names and types for quorum authentication with CloudHSM CLI.

To get quorum approval to change the quorum minimum value, you need a quorum token for 
the quorum service using the quorum token-sign set-quorum-value command. To generate a 
quorum token for the for the quorum service using the quorum token-sign set-quorum-value
command, the quorum service must be higher than one (1). This means that before you can change 
the quorum minimum value for user service, you might need to change the quorum minimum value 
for quorum service.

Steps to change the quorum minimum value for admins

1. Start the CloudHSM CLI interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as an admin.

aws-cloudhsm > login --username <admin> --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "<admin>", 
    "role": "admin" 
  }
}

3. Check current quorum minimum values:

Manage quorum authentication (M of N) 146



AWS CloudHSM User Guide

aws-cloudhsm > quorum token-sign list-quorum-values

4. If the quorum minimum value for the quorum service is lower than the value for the user 
service, change the quorum service value:

aws-cloudhsm > quorum token-sign set-quorum-value --service quorum --value <3>

5. Generate a quorum token for the quorum service.

6. Get approvals (signatures) from other admins.

7. Approve the token on the CloudHSM cluster and execute a user management operation..

8. Change the quorum minimum value for the user service:

aws-cloudhsm > quorum token-sign set-quorum-value

Example Adjusting quorum service minimum values

1. Check current values. The example shows that the quorum minimum value for user service is 
currently two (2).

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 
  "data": { 
    "user": 2, 
    "quorum": 1 
  }
}

2. Change quorum service value. Set the quorum minimum value for quorum service to a value 
that is the same or higher than the value for user service. This example sets the quorum 
minimum value for quorum service to two (2), the same value that was set for user service in the 
previous example.

aws-cloudhsm > quorum token-sign set-quorum-value --service quorum --value 2
{ 
  "error_code": 0, 
  "data": "Set quorum value successful"
}

Manage quorum authentication (M of N) 147



AWS CloudHSM User Guide

3. Verify the changes. This example shows that the quorum minimum value is now two (2) for user 
service and quorum service.

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 
  "data": { 
    "user": 2, 
    "quorum": 2 
  }
}

HSM user management with CloudHSM Management Utility 
(CMU)

To manage hardware security module (HSM) users in AWS CloudHSM, you must log in to the HSM 
with the user name and password of a cryptographic officer (CO). Only COs can manage users. The 
HSM contains a default CO named admin. You set the password for admin when you activated the 
cluster.

This topic provides step-by-step instruction on and detail about managing HSM users with AWS 
CloudHSM Management Utility (CMU).

Topics

• Prerequisites for user management in AWS CloudHSM Management Utility

• HSM user types for AWS CloudHSM Management Utility

• HSM user permissions table for AWS CloudHSM Management Utility

• Create HSM users using AWS CloudHSM Management Utility

• List all HSM users in the cluster using AWS CloudHSM Management Utility

• Change HSM user passwords using AWS CloudHSM Management Utility

• Delete HSM users using AWS CloudHSM Management Utility

• Manage 2FA for users using AWS CloudHSM Management Utility

• Using CloudHSM Management Utility (CMU) to manage quorum authentication (M of N access 
control)

User management with CMU 148



AWS CloudHSM User Guide

Prerequisites for user management in AWS CloudHSM Management 
Utility

Before you use AWS CloudHSM Management Utility (CMU) to manage hardware security module 
(HSM) users in AWS CloudHSM, you must complete these prerequisites. The following topics 
describe getting started with the CMU.

Sections

• Get the IP address of an HSM in AWS CloudHSM

• Using CMU with Client SDK 3.2.1 and earlier

• Download CloudHSM Management Utility

Get the IP address of an HSM in AWS CloudHSM

To use CMU, you must use the configure tool to update the local configuration. CMU creates its 
own connection to the cluster and this connection is not cluster aware. To track cluster information, 
CMU maintains a local configuration file. This means that each time you use CMU, you should 
first update the configuration file by running the configure command line tool with the --cmu
parameter. If you are using Client SDK 3.2.1 or earlier, you must use a different parameter than --
cmu. For more information, see the section called “Using CMU with Client SDK 3.2.1 and earlier”.

The --cmu parameter requires you to add the IP address of an HSM in your cluster. If you have 
multiple HSMs, you can use any IP address. This ensures CMU can propagate any changes you make 
across the entire cluster. Remember that CMU uses its local file to track cluster information. If the 
cluster has changed since the last time you used CMU from a particular host, you must add those 
changes to the local configuration file stored on that host. Never add or remove an HSM while 
you're using CMU.

To get an IP address for an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. To open the cluster detail page, in the cluster table, choose the cluster ID.

4. To get the IP address, go to the HSMs tab. For IPv4 clusters, choose an address listed under ENI 
IPv4 address. For dual-stack clusters use either the ENI IPv4 or the ENI IPv6 address.

Prerequisites 149

https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

To get an IP address for an HSM (AWS CLI)

• Get the IP address of an HSM by using the describe-clusters command from the AWS CLI. 
In the output from the command, the IP address of the HSMs are the values of EniIp and
EniIpV6 (if it is a dual-stack cluster).

$ aws cloudhsmv2 describe-clusters
{ 
    "Clusters": [ 
        { ... } 
            "Hsms": [ 
                {
... 
                    "EniIp": "10.0.0.9",
... 
                }, 
                {
... 
                    "EniIp": "10.0.1.6", 
                    "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733",
...

Using CMU with Client SDK 3.2.1 and earlier

With Client SDK 3.3.0, AWS CloudHSM added support for the --cmu parameter, which simplifies 
the process of updating the configuration file for CMU. If you're using a version of CMU from 
Client SDK 3.2.1 or earlier, you must continue to use the -a and -m parameters to update the 
configuration file. For more information about these parameters, see Configure Tool.

Download CloudHSM Management Utility

The latest version of CMU is available for HSM user management tasks whether you are using 
Client SDK 5 and Client SDK 3.

To download and install CMU

• Download and install CMU.

Prerequisites 150

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
mgmt-util-latest.el6.x86_64.rpm

$ sudo yum install ./cloudhsm-mgmt-util-latest.el6.x86_64.rpm

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
mgmt-util-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-mgmt-util-latest.el7.x86_64.rpm

CentOS 7.8+

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
mgmt-util-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-mgmt-util-latest.el7.x86_64.rpm

CentOS 8.3+

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
mgmt-util-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-mgmt-util-latest.el8.x86_64.rpm

RHEL 7 (7.8+)

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
mgmt-util-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-mgmt-util-latest.el7.x86_64.rpm

Prerequisites 151



AWS CloudHSM User Guide

RHEL 8 (8.3+)

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
mgmt-util-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-mgmt-util-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/
cloudhsm-mgmt-util_latest_amd64.deb

$ sudo apt install ./cloudhsm-mgmt-util_latest_amd64.deb

Ubuntu 18.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/
cloudhsm-mgmt-util_latest_u18.04_amd64.deb

$ sudo apt install ./cloudhsm-mgmt-util_latest_u18.04_amd64.deb

Windows Server 2012

1. Download CloudHSM Management Utility.

2. Run the CMU installer (AWSCloudHSMManagementUtil-latest.msi) with Windows 
administrative privilege.

Windows Server 2012 R2

1. Download CloudHSM Management Utility.

2. Run the CMU installer (AWSCloudHSMManagementUtil-latest.msi) with Windows 
administrative privilege.

Windows Server 2016

1. Download CloudHSM Management Utility.

Prerequisites 152

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMManagementUtil-latest.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMManagementUtil-latest.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMManagementUtil-latest.msi


AWS CloudHSM User Guide

2. Run the CMU installer (AWSCloudHSMManagementUtil-latest.msi) with Windows 
administrative privilege.

HSM user types for AWS CloudHSM Management Utility

Most operations that you perform on the hardware security module (HSM) require the credentials 
of an AWS CloudHSM HSM user. The HSM authenticates each HSM user and each HSM user has a
type that determines which operations you can perform on the HSM as that user.

Note

HSM users are distinct from IAM users. IAM users who have the correct credentials can 
create HSMs by interacting with resources through the AWS API. After the HSM is created, 
you must use HSM user credentials to authenticate operations on the HSM.

User types

• Precrypto officer (PRECO)

• Crypto officer (CO)

• Crypto user (CU)

• Appliance user (AU)

Precrypto officer (PRECO)

In both the cloud management utility (CMU) and the key management utility (KMU), the PRECO 
is a temporary user that exists only on the first HSM in an AWS CloudHSM cluster. The first HSM 
in a new cluster contains an PRECO user indicating that this cluster has never been activated. To
activate a cluster, you execute the cloudhsm-cli and run the cluster activate command. Log in to 
the HSM and change the PRECO's password. When you change the password, this user becomes the 
crypto officer (CO).

Crypto officer (CO)

In both the cloud management utility (CMU) and the key management utility (KMU), a crypto 
officer (CO) can perform user management operations. For example, they can create and delete 
users and change user passwords. For more information about CO users, see the HSM user 

User types 153



AWS CloudHSM User Guide

permissions table for AWS CloudHSM Management Utility. When you activate a new cluster, the 
user changes from a Precrypto Officer (PRECO) to a crypto officer (CO).-->

Crypto user (CU)

A crypto user (CU) can perform the following key management and cryptographic operations.

• Key management – Create, delete, share, import, and export cryptographic keys.

• Cryptographic operations – Use cryptographic keys for encryption, decryption, signing, 
verifying, and more.

For more information, see the HSM user permissions table for AWS CloudHSM Management Utility.

Appliance user (AU)

The appliance user (AU) can perform cloning and synchronization operations on your cluster's 
HSMs. AWS CloudHSM uses the AU to synchronize the HSMs in an AWS CloudHSM cluster. The AU 
exists on all HSMs provided by AWS CloudHSM, and has limited permissions. For more information, 
see the HSM user permissions table for AWS CloudHSM Management Utility.

AWS cannot perform any operations on your HSMs . AWS cannot view or modify your users or keys 
and cannot perform any cryptographic operations using those keys.

HSM user permissions table for AWS CloudHSM Management Utility

The following table lists hardware security module (HSM( operations sorted by the type of HSM 
user or session that can perform the operation in AWS CloudHSM.

  Crypto officer 
(CO)

Crypto User 
(CU)

Appliance User 
(AU)

Unauthent 
icated Session

Get basic cluster 
info¹

Yes Yes Yes Yes

Permissions table 154



AWS CloudHSM User Guide

  Crypto officer 
(CO)

Crypto User 
(CU)

Appliance User 
(AU)

Unauthent 
icated Session

Change own 
password

Yes Yes Yes

Not applicable

Change any 
user's password

Yes No No No

Add, remove 
users

Yes No No No

Get sync status²

Yes Yes Yes No

Extract, insert 
masked objects³

Yes Yes Yes No

Key managemen 
t functions⁴

No Yes No No

Encrypt, decrypt

No Yes No No

Permissions table 155



AWS CloudHSM User Guide

  Crypto officer 
(CO)

Crypto User 
(CU)

Appliance User 
(AU)

Unauthent 
icated Session

Sign, verify

No Yes No No

Generate digests 
and HMACs

No Yes No No

• [1] Basic cluster information includes the number of HSMs in the cluster and each HSM's IP 
address, model, serial number, device ID, firmware ID, etc.

• [2] The user can get a set of digests (hashes) that correspond to the keys on the HSM. An 
application can compare these sets of digests to understand the synchronization status of HSMs 
in a cluster.

• [3] Masked objects are keys that are encrypted before they leave the HSM. They cannot be 
decrypted outside of the HSM. They are only decrypted after they are inserted into an HSM that 
is in the same cluster as the HSM from which they were extracted. An application can extract and 
insert masked objects to synchronize the HSMs in a cluster.

• [4] Key management functions include creating, deleting, wrapping, unwrapping, and modifying 
the attributes of keys.

Create HSM users using AWS CloudHSM Management Utility

Use createUser in AWS CloudHSM Management Utility (CMU) to create new users on the hardware 
security module (HSM). You must log in as a CO to create a user.

To create a new CO user

1. Use the configure tool to update the CMU configuration.

Create users 156



AWS CloudHSM User Guide

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Start CMU.

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

3. Log in to the HSM as a CO user.

aws-cloudhsm > loginHSM CO admin co12345

Make sure the number of connections CMU lists match the number of HSMs in the cluster. If 
not, log out and start over.

4. Use createUser to create a CO user named example_officer with a password of
password1.

aws-cloudhsm > createUser CO example_officer password1

CMU prompts you about the create user operation.

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Create users 157



AWS CloudHSM User Guide

Do you want to continue(y/n)?

5. Type y.

To create a new CU user

1. Use the configure tool to update the CMU configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Start CMU.

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

3. Log in to the HSM as a CO user.

aws-cloudhsm > loginHSM CO admin co12345

Make sure the number of connections CMU lists match the number of HSMs in the cluster. If 
not, log out and start over.

4. Use createUser to create a CU user named example_user with a password of password1.

aws-cloudhsm > createUser CU example_user password1

CMU prompts you about the create user operation.

Create users 158



AWS CloudHSM User Guide

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?

5. Type y.

For more information about createUser, see createUser.

List all HSM users in the cluster using AWS CloudHSM Management 
Utility

Use listUsers command in the AWS CloudHSM Management Utility (CMU) to list all the users in the 
AWS CloudHSM cluster. You do not have to log in to run listUsers and all user types can list users.

To list all users on the cluster

1. Use the configure tool to update the CMU configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Start CMU.

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

List all users 159



AWS CloudHSM User Guide

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

3. Use listUsers to list all the users on the cluster.

aws-cloudhsm > listUsers

CMU lists all the users on the cluster.

Users on server 0(10.0.2.9):
Number of users found:4 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              AU              app_user                                 NO 
               0               NO 
         2              CO              example_officer                          NO 
               0               NO 
         3              CU              example_user                             NO 
               0               NO
Users on server 1(10.0.3.11):
Number of users found:4 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              AU              app_user                                 NO 
               0               NO 
         2              CO              example_officer                          NO 
               0               NO 
         3              CU              example_user                             NO 
               0               NO
Users on server 2(10.0.1.12):
Number of users found:4 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              AU              app_user                                 NO 
               0               NO 
         2              CO              example_officer                          NO 
               0               NO 

List all users 160



AWS CloudHSM User Guide

         3              CU              example_user                             NO 
               0               NO

For more information about listUsers, see listUsers.

Change HSM user passwords using AWS CloudHSM Management Utility

Use changePswd in the AWS CloudHSM Management Utility (CMU) to change a hardware security 
module (HSM) user's password.

User types and passwords are case sensitive, but user names are not case sensitive.

CO, Crypto user (CU), and appliance user (AU) can change their own password. To change the 
password of another user, you must log in as a CO. You cannot change the password of a user who 
is currently logged in.

To change your own password

1. Use the configure tool to update the CMU configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Start CMU.

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

3. Log in to the HSM.

Change passwords 161



AWS CloudHSM User Guide

aws-cloudhsm > loginHSM CO admin co12345

Make sure the number of connections CMU lists match the number of HSMs in the cluster. If 
not, log out and start over.

4. Use changePswd to change your own password.

aws-cloudhsm > changePswd CO example_officer <new password>

CMU prompts you about the change password operation.

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?

5. Type y.

CMU prompts you about the change password operation.

Changing password for example_officer(CO) on 3 nodes

To change the password of another user

1. Use the configure tool to update the CMU configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Start CMU.

Change passwords 162



AWS CloudHSM User Guide

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

3. Log in to the HSM as a CO user.

aws-cloudhsm > loginHSM CO admin co12345

Make sure the number of connections CMU lists match the number of HSMs in the cluster. If 
not, log out and start over.

4. Use changePswd to change the password of another user.

aws-cloudhsm > changePswd CU example_user <new password>

CMU prompts you about the change password operation.

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?

5. Type y.

CMU prompts you about the change password operation.

Changing password for example_user(CU) on 3 nodes

For more information about changePswd, see changePswd.

Change passwords 163



AWS CloudHSM User Guide

Delete HSM users using AWS CloudHSM Management Utility

Use deleteUser in the AWS CloudHSM Management Utility (CMU) to delete a hardware security 
module (HSM) user. You must log in as a CO to delete another user.

Tip

You can't delete crypto users (CU) that own keys.

To delete a user

1. Use the configure tool to update the CMU configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Start CMU.

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

3. Log in to the HSM as a CO user.

aws-cloudhsm > loginHSM CO admin co12345

Make sure the number of connections CMU lists match the number of HSMs in the cluster. If 
not, log out and start over.

Delete users 164



AWS CloudHSM User Guide

4. Use deleteUser to delete a user.

aws-cloudhsm > deleteUser CO example_officer

CMU deletes the user.

Deleting user example_officer(CO) on 3 nodes
deleteUser success on server 0(10.0.2.9)
deleteUser success on server 1(10.0.3.11)
deleteUser success on server 2(10.0.1.12)

For more information about deleteUser, see deleteUser.

Manage 2FA for users using AWS CloudHSM Management Utility

For increased security, you can configure two-factor authentication (2FA) to help protect the AWS 
CloudHSM cluster. You can only enable 2FA for crypto officers (CO).

When you log in to a cluster with a 2FA-enabled hardware service module (HSM) account, you 
provide cloudhsm_mgmt_util (CMU) with your password—the first factor, what you know—and 
CMU provides you with a token and prompts you to have the token signed. To provide the second 
factor—what you have—you sign the token with a private key from a key pair you've already 
created and associated with the HSM user. To access the cluster, you provide the signed token to 
CMU.

Note

You cannot enable 2FA for crypto users (CU) or applications. Two-factor authentication 
(2FA) is only for CO users.

Topics

• Quorum authentication and 2FA in AWS CloudHSM clusters using AWS CloudHSM Management 
Utility

• 2FA key pair requirements for AWS CloudHSM using AWS CloudHSM Management Utility

• Create users with 2FA enabled for AWS CloudHSM Management Utility users

• Manage 2FA for HSM users using AWS CloudHSM Management Utility

Manage user 2FA 165



AWS CloudHSM User Guide

• Disable 2FA for HSM users using AWS CloudHSM Management Utility

• Configuration reference for 2FA with AWS CloudHSM Management Utility

Quorum authentication and 2FA in AWS CloudHSM clusters using AWS CloudHSM 
Management Utility

The cluster uses the same key for quorum authentication and for two-factor authentication 2FA). 
This means a user with 2FA enabled is effectively registered for M-of-N-access-control (MofN). To 
successfully use 2FA and quorum authentication for the same HSM user, consider the following 
points:

• If you are using quorum authentication for a user today, you should use the same key pair you 
created for the quorum user to enable 2FA for the user.

• If you add the 2FA requirement for a non-2FA user that is not a quorum authentication user, then 
you register that user as an MofN user with 2FA authentication.

• If you remove the 2FA requirement or change the password for a 2FA user that is also a quorum 
authentication user, you will also remove the registration of the quorum user as an MofN user.

• If you remove the 2FA requirement or change the password for a 2FA user that is also a quorum 
authentication user, but you still want that user to participate in quorum authentication, then you 
must register that user again as an MofN user.

For more information about quorum authentication, see Using CMU to manage quorum 
authentication.

2FA key pair requirements for AWS CloudHSM using AWS CloudHSM Management 
Utility

To enable two-factor authentication (2FA) for an AWS CloudHSM hardware security module (HSM) 
user, use a key that meets the following requirements.

You can create a new key pair or use an existing key that meets the following requirements.

• Key type: Asymmetric

• Key usage: Sign and Verify

• Key spec: RSA_2048

• Signing algorithm includes:

Manage user 2FA 166



AWS CloudHSM User Guide

• sha256WithRSAEncryption

Note

If you are using quorum authentication or plan to use quorum authentication, see the 
section called “Quorum authentication”.

Create users with 2FA enabled for AWS CloudHSM Management Utility users

Use AWS CloudHSM Management Utility CMU (CMU) and the key pair to create a new crypto office 
(CO) user with two-factor authentication (2FA) enabled.

To create CO users with 2FA enabled

1. In one terminal, perform the following steps:

a. Access your HSM and log in to the CloudHSM Management utility:

/opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

b. Log in as a CO and use the following command to create a new user MFA with 2FA:

aws-cloudhsm > createUser CO MFA <CO USER NAME> -2fa /home/ec2-user/authdata
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the  
nodes on which this operation is not executed or failed, please  
ensure this operation is executed on all nodes in the cluster.   
****************************************************************

Do you want to continue(y/n)? y

Creating User exampleuser3(CO) on 1 nodesAuthentication data written to: "/
home/ec2-user/authdata"Generate Base64-encoded signatures for SHA256 digests in 
 the authentication datafile.  
To generate the signatures, use the RSA private key, which is the second factor 
 ofauthentication for this user. Paste the signatures and the corresponding 
 public keyinto the authentication data file and provide  

Manage user 2FA 167



AWS CloudHSM User Guide

the file path below.Leave this field blank to use the path initially 
 provided.Enter filename:

c. Leave the above terminal in this state. Do not press enter or enter any filename.

2. In another terminal, perform the following steps:

a. Access your HSM and log in to the CloudHSM Management utility:

/opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

b. Generate a public-private key-pair using the following commands:

openssl genpkey -algorithm RSA -out private_key.pem -pkeyopt 
 rsa_keygen_bits:2048

openssl rsa -pubout -in private_key.pem -out public_key.pem

c. Run the following command to install a json querying feature for extracting the Digest 
from authdata file:

sudo yum install jq

d. To extract the digest value, first find the following data in the authdata file:

{ 
  "Version":"1.0", 
  "PublicKey":"", 
  "Data":[ 
    { 
      "HsmId": <"HSM ID">, 
      "Digest": <"DIGEST">, 
      "Signature": "" 
    } 
  ]
}

Manage user 2FA 168



AWS CloudHSM User Guide

Note

The obtained Digest is base64 encoded, however to sign the digest, you need the 
file to be decoded first and then signed. The following command will decode the 
digest and store the decoded content in ‘digest1.bin’

cat authdata | jq '.Data[0].Digest' | cut -c2- | rev | cut -c2- | rev | 
 base64 -d > digest1.bin

e. Convert the public key content, adding "\n" and removing spaces as shown here:

-----BEGIN PUBLIC KEY-----\n<PUBLIC KEY>\n-----END PUBLIC KEY----- 

Important

The above command shows how "\n" is added immediately after BEGIN PUBLIC 
KEY-----, spaces between "\n" and the first character of the public key are 
removed, "\n" is added before -----END PUBLIC KEY, and spaces are removed 
between "\n" and the end of the public key.

This is the PEM format for public key which is accepted in the authdata file.

f. Paste the public key pem format content in the public key section in the authdata file.

vi authdata

{ 
  "Version":"1.0", 
  "PublicKey":"-----BEGIN PUBLIC KEY-----\n<"PUBLIC KEY">\n-----END PUBLIC 
 KEY-----", 
  "Data":[     
    {       
      "HsmId":<"HSM ID">, 
      "Digest":<"DIGEST">,       
      "Signature": ""    
    }   
  ]

Manage user 2FA 169



AWS CloudHSM User Guide

}

g. Sign the token file using the following command:

openssl pkeyutl -sign -in digest1.bin -inkey private_key.pem -pkeyopt 
 digest:sha256 | base64
Output Expected:
<"THE SIGNATURE">

Note

As shown in the above command, use openssl pkeyutl instead of openssl dgst for 
signing.

h. Add the signed digest in the Authdata File in "Signature" field.

vi authdata

{ 
    "Version": "1.0", 
    "PublicKey": "-----BEGIN PUBLIC KEY----- ... -----END PUBLIC KEY-----", 
    "Data": [ 
        { 
            "HsmId": <"HSM ID">, 
            "Digest": <"DIGEST">, 
            "Signature": <"Kkdl ... rkrvJ6Q==">
        }, 
        { 
            "HsmId": <"HSM ID">, 
            "Digest": <"DIGEST">, 
            "Signature": <"K1hxy ... Q261Q==">
        } 
    ]
}

3. Go back to the first terminal and press Enter:

Generate Base64-encoded signatures for SHA256 digests in the authentication 
 datafile. To generate the signatures, use the RSA private key,  

Manage user 2FA 170



AWS CloudHSM User Guide

which is the second factor ofauthentication for this user. Paste the signatures and 
 the corresponding public keyinto the authentication data file and provide the file 
 path below. Leave this field blank to use the path initially provided.  
Enter filename: >>>>> Press Enter here

createUser success on server 0(10.0.1.11)

Manage 2FA for HSM users using AWS CloudHSM Management Utility

Use changePswd in AWS CloudHSM Management Utility (CMU) to modify two-factor 
authentication (2FA) for a user. Each time you enable 2FA, you must provide a public key for 2FA 
logins.

changePswd performs any of the following scenarios:

• Change the password for a 2FA user

• Change the password for a non-2FA user

• Add 2FA to a non-2FA user

• Remove 2FA from a 2FA user

• Rotate the key for a 2FA user

You can also combine tasks. For example, you can remove 2FA from a user and change the 
password at the same time, or you might rotate the 2FA key and change the user password.

To change passwords or rotate keys for CO users with 2FA enabled

1. Use CMU to log in to the HSM as a CO with 2FA enabled.

2. Use changePswd to change the password or rotate the key from CO users with 2FA enabled. 
Use the -2fa parameter and include a location in the file system for the system to write the
authdata file. This file includes a digest for each HSM in the cluster.

aws-cloudhsm > changePswd CO example-user <new-password> -2fa /path/to/authdata

CMU prompts you to use the private key to sign the digests in the authdata file and return 
the signatures with the public key.

Manage user 2FA 171



AWS CloudHSM User Guide

3. Use the private key to sign the digests in the authdata file, add the signatures and the public 
key to the JSON formatted authdata file and then provide CMU with the location of the
authdata file. For more information, see the section called “Configuration reference”.

Note

The cluster uses the same key for quorum authentication and 2FA. If you are using 
quorum authentication or plan to use quorum authentication, see the section called 
“Quorum authentication”.

Disable 2FA for HSM users using AWS CloudHSM Management Utility

Use the AWS CloudHSM Management Utility (CMU) to disable two-factor authentication (2FA) for 
hardware security module HSM) users in AWS CloudHSM.

To disable 2FA for CO users with 2FA enabled

1. Use CMU to log in to the HSM as a CO with 2FA enabled.

2. Use changePswd to remove 2FA from CO users with 2FA enabled.

aws-cloudhsm > changePswd CO example-user <new password>

CMU prompts you to confirm the change password operation.

Note

If you remove the 2FA requirement or change the password for a 2FA user that is also a 
quorum authentication user, you will also remove the registration of the quorum user 
as an MofN user. For more information about quorum users and 2FA, see the section 
called “Quorum authentication”.

3. Type y.

CMU confirms the change password operation.

Manage user 2FA 172



AWS CloudHSM User Guide

Configuration reference for 2FA with AWS CloudHSM Management Utility

The following is an example of the two-factor authentication (2FA) properties in the authdata file 
for both the AWS CloudHSM Management Utility (CMU) generated request and your responses.

{ 
    "Version": "1.0", 
    "PublicKey": "-----BEGIN PUBLIC KEY----- ... -----END PUBLIC KEY-----", 
    "Data": [ 
        { 
            "HsmId": "hsm-lgavqitns2a", 
            "Digest": "k5O1p3f6foQRVQH7S8Rrjcau6h3TYqsSdr16A54+qG8=", 
            "Signature": "Kkdl ... rkrvJ6Q==" 
        }, 
        { 
            "HsmId": "hsm-lgavqitns2a", 
            "Digest": "IyBcx4I5Vyx1jztwvXinCBQd9lDx8oQe7iRrWjBAi1w=", 
            "Signature": "K1hxy ... Q261Q==" 
        } 
    ]
}

Data

Top-level node. Contains a subordinate node for each HSM in the cluster. Appears in requests 
and responses for all 2FA commands.

Digest

This is what you must sign to provide the second factor of authentication. CMU generated in 
requests for all 2FA commands.

HsmId

The ID of your HSM. Appears in requests and responses for all 2FA commands.

PublicKey

The public key portion of the key pair you generated inserted as PEM-formatted string. You 
enter this in responses for createUser and changePswd.

Signature

The Base 64 encoded signed digest. You enter this in responses for all 2FA commands.

Manage user 2FA 173



AWS CloudHSM User Guide

Version

The version of the authentication data JSON formatted file. Appears in requests and responses 
for all 2FA commands.

Using CloudHSM Management Utility (CMU) to manage quorum 
authentication (M of N access control)

The HSMs in your AWS CloudHSM cluster support quorum authentication, which is also known as 
M of N access control. With quorum authentication, no single user on the HSM can do quorum-
controlled operations on the HSM. Instead, a minimum number of HSM users (at least 2) must 
cooperate to do these operations. With quorum authentication, you can add an extra layer of 
protection by requiring approvals from more than one HSM user.

Quorum authentication can control the following operations:

• HSM user management by crypto officers (COs) – Creating and deleting HSM users, and changing 
a different HSM user's password. For more information, see User management with quorum 
authentication enabled for AWS CloudHSM Management Utility.

Note the following additional information about using quorum authentication in AWS CloudHSM.

• An HSM user can sign their own quorum token—that is, the requesting user can provide one of 
the required approvals for quorum authentication.

• You choose the minimum number of quorum approvers for quorum-controlled operations. The 
smallest number you can choose is two (2), and the largest number you can choose is eight (8).

• The HSM can store up to 1024 quorum tokens. If the HSM already has 1024 tokens when you 
try to create a new one, the HSM purges one of the expired tokens. By default, tokens expire ten 
minutes after their creation.

• The cluster uses the same key for quorum authentication and for two-factor authentication 
(2FA). For more information about using quorum authentication and 2FA, see Quorum 
Authentication and 2FA.

The following topics provide more information about quorum authentication in AWS CloudHSM.

Topics

Using CMU to manage quorum authentication 174



AWS CloudHSM User Guide

• Quorum authentication process for AWS CloudHSM Management Utility

• Set up quorum authentication for AWS CloudHSM crypto officers

• User management with quorum authentication enabled for AWS CloudHSM Management Utility

• Change the quorum minimum value with AWS CloudHSM Management Utility

Quorum authentication process for AWS CloudHSM Management Utility

The following steps summarize the quorum authentication processes. For the specific steps and 
tools, see User management with quorum authentication enabled for AWS CloudHSM Management 
Utility.

1. Each HSM user creates an asymmetric key for signing. They do this outside of the HSM, taking 
care to protect the key appropriately.

2. Each HSM user logs in to the HSM and registers the public part of their signing key (the public 
key) with the HSM.

3. When an HSM user wants to do a quorum-controlled operation, each user logs in to the HSM 
and gets a quorum token.

4. The HSM user gives the quorum token to one or more other HSM users and asks for their 
approval.

5. The other HSM users approve by using their keys to cryptographically sign the quorum token. 
This occurs outside the HSM.

6. When the HSM user has the required number of approvals, the same user logs in to the HSM and 
gives the quorum token and approvals (signatures) to the HSM.

7. The HSM uses the registered public keys of each signer to verify the signatures. If the signatures 
are valid, the HSM approves the token.

8. The HSM user can now do a quorum-controlled operation.

Set up quorum authentication for AWS CloudHSM crypto officers

The following topics describe the steps that you must complete to configure your hardware 
security module (HSM) so that AWS CloudHSM crypto officers (COs) can use quorum 
authentication. You need to do these steps only once when you first configure quorum 
authentication for COs. After you complete these steps, see User management with quorum 
authentication enabled for AWS CloudHSM Management Utility.

Using CMU to manage quorum authentication 175



AWS CloudHSM User Guide

Topics

• Prerequisites

• Step 1. Create and register a key for signing

• Step 2. Set the quorum minimum value on the HSM

Prerequisites

To understand this example, you should be familiar with the cloudhsm_mgmt_util (CMU) command 
line tool. In this example, the AWS CloudHSM cluster has two HSMs, each with the same COs, as 
shown in the following output from the listUsers command. For more information about creating 
users, see HSM users.

aws-cloudhsm > listUsers
Users on server 0(10.0.2.14):
Number of users found:7 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PRECO           admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              officer1                                 NO     
           0               NO 
         4              CO              officer2                                 NO     
           0               NO 
         5              CO              officer3                                 NO     
           0               NO 
         6              CO              officer4                                 NO     
           0               NO 
         7              CO              officer5                                 NO     
           0               NO
Users on server 1(10.0.1.4):
Number of users found:7 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PRECO           admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 

Using CMU to manage quorum authentication 176



AWS CloudHSM User Guide

         3              CO              officer1                                 NO     
           0               NO 
         4              CO              officer2                                 NO     
           0               NO 
         5              CO              officer3                                 NO     
           0               NO 
         6              CO              officer4                                 NO     
           0               NO 
         7              CO              officer5                                 NO     
           0               NO

Step 1. Create and register a key for signing

To use quorum authentication, each CO must do all of the following steps:

Topics

• Create an RSA key pair

• Create and sign a registration token

• Register the public key with the HSM

Create an RSA key pair

There are many different ways to create and protect a key pair. The following examples show how 
to do it with OpenSSL.

Example – Create a private key with OpenSSL

The following example demonstrates how to use OpenSSL to create a 2048-bit RSA key that is 
protected by a pass phrase. To use this example, replace officer1.key with the name of the file 
where you want to store the key.

$ openssl genrsa -out <officer1.key> -aes256 2048
        Generating RSA private key, 2048 bit long modulus
.....................................+++
.+++
e is 65537 (0x10001)
Enter pass phrase for officer1.key:
Verifying - Enter pass phrase for officer1.key:

Next, generate the public key using the private key that you just created.

Using CMU to manage quorum authentication 177

https://www.openssl.org/


AWS CloudHSM User Guide

Example – Create a public key with OpenSSL

The following example demonstrates how to use OpenSSL to create a public key from the private 
key you just created.

$ openssl rsa -in officer1.key -outform PEM -pubout -out officer1.pub
Enter pass phrase for officer1.key:
writing RSA key

Create and sign a registration token

You create a token and sign it with the private key you just generated in the previous step.

Example – Create a token

The registration token is just a file with any random data that doesn't exceed the maximum size 
of 245 bytes. You sign the token with the private key to demonstrate that you have access to the 
private key. The following command uses echo to redirect a string to a file.

$ echo <token to be signed> > officer1.token

Sign the token and save it to a signature file. You will need the signed token, the unsigned token, 
and the public key to register the CO as an MofN user with the HSM.

Example – Sign the token

Use OpenSSL and the private key to sign the registration token and create the signature file.

$ openssl dgst -sha256 \ 
    -sign officer1.key \ 
    -out officer1.token.sig officer1.token

Register the public key with the HSM

After creating a key, the CO must register the public part of the key (the public key) with the HSM.

To register a public key with the HSM

1. Use the following command to start the cloudhsm_mgmt_util command line tool.

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Using CMU to manage quorum authentication 178



AWS CloudHSM User Guide

2. Use the loginHSM command to log in to the HSM as a CO. For more information, see ???.

3. Use the registerQuorumPubKey command to register the public key. For more information, 
see the following example or use the help registerQuorumPubKey command.

Example – Register a public key with the HSM

The following example shows how to use the registerQuorumPubKey command in the 
cloudhsm_mgmt_util command line tool to register a CO's public key with the HSM. To use this 
command, the CO must be logged in to the HSM. Replace these values with your own:

aws-cloudhsm > registerQuorumPubKey 
 CO <officer1> <officer1.token> <officer1.token.sig> <officer1.pub>
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y
registerQuorumPubKey success on server 0(10.0.2.14)

<officer1.token>

The path to a file that contains an unsigned registration token. Can have any random data of 
max file size of 245 bytes.

Required: Yes

<officer1.token.sig>

The path to a file that contains the SHA256_PKCS mechanism signed hash of the registration 
token.

Required: Yes

<officer1.pub>

The path to the file that contains the public key of an asymmetric RSA-2048 key pair. Use the 
private key to sign the registration token.

Required: Yes

Using CMU to manage quorum authentication 179



AWS CloudHSM User Guide

After all COs register their public keys, the output from the listUsers command shows this in the
MofnPubKey column, as shown in the following example.

aws-cloudhsm > listUsers
Users on server 0(10.0.2.14):
Number of users found:7 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PRECO           admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              officer1                                YES     
           0               NO 
         4              CO              officer2                                YES     
           0               NO 
         5              CO              officer3                                YES     
           0               NO 
         6              CO              officer4                                YES     
           0               NO 
         7              CO              officer5                                YES     
           0               NO
Users on server 1(10.0.1.4):
Number of users found:7 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PRECO           admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              officer1                                YES     
           0               NO 
         4              CO              officer2                                YES     
           0               NO 
         5              CO              officer3                                YES     
           0               NO 
         6              CO              officer4                                YES     
           0               NO 
         7              CO              officer5                                YES     
           0               NO

Using CMU to manage quorum authentication 180



AWS CloudHSM User Guide

Step 2. Set the quorum minimum value on the HSM

To use quorum authentication for COs, a CO must log in to the HSM and then set the quorum 
minimum value, also known as the m value. This is the minimum number of CO approvals that are 
required to perform HSM user management operations. Any CO on the HSM can set the quorum 
minimum value, including COs that have not registered a key for signing. You can change the 
quorum minimum value at any time; for more information, see Change the minimum value.

To set the quorum minimum value on the HSM

1. Use the following command to start the cloudhsm_mgmt_util command line tool.

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

2. Use the loginHSM command to log in to the HSM as a CO. For more information, see ???.

3. Use the setMValue command to set the quorum minimum value. For more information, see 
the following example or use the help setMValue command.

Example – Set the quorum minimum value on the HSM

This example uses a quorum minimum value of two. You can choose any value from two (2) to 
eight (8), up to the total number of COs on the HSM. In this example, the HSM has six COs, so the 
maximum possible value is six.

To use the following example command, replace the final number (2) with the preferred quorum 
minimum value.

aws-cloudhsm > setMValue 3 <2>
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y
Setting M Value(2) for 3 on 2 nodes

In the preceding example, the first number (3) identifies the HSM service whose quorum minimum 
value you are setting.

Using CMU to manage quorum authentication 181



AWS CloudHSM User Guide

The following table lists the HSM service identifiers along with their names, descriptions, and the 
commands that are included in the service.

Service Identifier Service Name Service Description HSM Commands

3 USER_MGMT HSM user 
management

• createUser

• deleteUser

• changePswd
(applies only when 
changing the 
password of a 
different HSM user)

4 MISC_CO Miscellaneous CO 
service

• setMValue

To get the quorum minimum value for a service, use the getMValue command, as in the following 
example.

aws-cloudhsm > getMValue 3
MValue of service 3[USER_MGMT] on server 0 : [2]
MValue of service 3[USER_MGMT] on server 1 : [2]

The output from the preceding getMValue command shows that the quorum minimum value for 
HSM user management operations (service 3) is now two.

After you complete these steps, see User management with quorum authentication enabled for 
AWS CloudHSM Management Utility.

User management with quorum authentication enabled for AWS CloudHSM 
Management Utility

An AWS CloudHSM crypto officer (CO) on the hardware security module (HSM) can configure 
quorum authentication for the following operations on the HSM:

• Creating HSM users

• Deleting HSM users

Using CMU to manage quorum authentication 182



AWS CloudHSM User Guide

• Changing another HSM user's password

After the HSM is configured for quorum authentication, COs cannot perform HSM user 
management operations on their own. The following example shows the output when a CO 
attempts to create a new user on the HSM. The command fails with a RET_MXN_AUTH_FAILED
error, which indicates that quorum authentication failed.

aws-cloudhsm > createUser CU user1 password
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y
Creating User user1(CU) on 2 nodes
createUser failed: RET_MXN_AUTH_FAILED
creating user on server 0(10.0.2.14) failed

Retry/Ignore/Abort?(R/I/A): A

To perform an HSM user management operation, a CO must complete the following tasks:

1. Get a quorum token.

2. Get approvals (signatures) from other COs.

3. Approve the token on the HSM.

4. Perform the HSM user management operation.

If you have not yet configured the HSM for quorum authentication for COs, do that now. For more 
information, see First time setup.

Step 1. Get a quorum token

First the CO must use the cloudhsm_mgmt_util command line tool to request a quorum token.

To get a quorum token

1. Use the following command to start the cloudhsm_mgmt_util command line tool.

Using CMU to manage quorum authentication 183



AWS CloudHSM User Guide

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

2. Use the loginHSM command to log in to the HSM as a CO. For more information, see ???.

3. Use the getToken command to get a quorum token. For more information, see the following 
example or use the help getToken command.

Example – Get a quorum token

This example gets a quorum token for the CO with user name officer1 and saves the token to a file 
named officer1.token. To use the example command, replace these values with your own:

• officer1 – The name of the CO who is getting the token. This must be the same CO who is 
logged in to the HSM and is running this command.

• officer1.token – The name of the file to use for storing the quorum token.

In the following command, 3 identifies the service for which you can use the token that you are 
getting. In this case, the token is for HSM user management operations (service 3). For more 
information, see Step 2. Set the quorum minimum value on the HSM.

aws-cloudhsm > getToken 3 officer1 officer1.token
getToken success on server 0(10.0.2.14)
Token:
Id:1
Service:3
Node:1
Key Handle:0
User:officer1
getToken success on server 1(10.0.1.4)
Token:
Id:1
Service:3
Node:0
Key Handle:0
User:officer1

Using CMU to manage quorum authentication 184



AWS CloudHSM User Guide

Step 2. Get signatures from approving COs

A CO who has a quorum token must get the token approved by other COs. To give their approval, 
the other COs use their signing key to cryptographically sign the token. They do this outside the 
HSM.

There are many different ways to sign the token. The following example shows how to do it with
OpenSSL. To use a different signing tool, make sure that the tool uses the CO's private key (signing 
key) to sign a SHA-256 digest of the token.

Example – Get signatures from approving COs

In this example, the CO that has the token (officer1) needs at least two approvals. The following 
example commands show how two COs can use OpenSSL to cryptographically sign the token.

In the first command, officer1 signs his or her own token. To use the following example commands, 
replace these values with your own:

• officer1.key and officer2.key – The name of the file that contains the CO's signing key.

• officer1.token.sig1 and officer1.token.sig2 – The name of the file to use for storing 
the signature. Make sure to save each signature in a different file.

• officer1.token – The name of the file that contains the token that the CO is signing.

$ openssl dgst -sha256 -sign officer1.key -out officer1.token.sig1 officer1.token
Enter pass phrase for officer1.key:

In the following command, officer2 signs the same token.

$ openssl dgst -sha256 -sign officer2.key -out officer1.token.sig2 officer1.token
Enter pass phrase for officer2.key:

Step 3. Approve the signed token on the HSM

After a CO gets the minimum number of approvals (signatures) from other COs, he or she must 
approve the signed token on the HSM.

To approve the signed token on the HSM

1. Create a token approval file. For more information, see the following example.

Using CMU to manage quorum authentication 185

https://www.openssl.org/


AWS CloudHSM User Guide

2. Use the following command to start the cloudhsm_mgmt_util command line tool.

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

3. Use the loginHSM command to log in to the HSM as a CO. For more information, see ???.

4. Use the approveToken command to approve the signed token, passing the token approval file. 
For more information, see the following example.

Example – Create a token approval file and approve the signed token on the HSM

The token approval file is a text file in a particular format that the HSM requires. The file contains 
information about the token, its approvers, and the approvers' signatures. The following shows an 
example token approval file.

# For "Multi Token File Path", type the path to the file that contains
# the token. You can type the same value for "Token File Path", but
# that's not required. The "Token File Path" line is required in any
# case, regardless of whether you type a value.
Multi Token File Path = officer1.token;
Token File Path = ;

# Total number of approvals
Number of Approvals = 2;

# Approver 1
# Type the approver's type, name, and the path to the file that
# contains the approver's signature.
Approver Type = 2; # 2 for CO, 1 for CU
Approver Name = officer1;
Approval File = officer1.token.sig1;

# Approver 2
# Type the approver's type, name, and the path to the file that
# contains the approver's signature.
Approver Type = 2; # 2 for CO, 1 for CU
Approver Name = officer2;
Approval File = officer1.token.sig2;

After creating the token approval file, the CO uses the cloudhsm_mgmt_util command line tool to 
log in to the HSM. The CO then uses the approveToken command to approve the token, as shown 
in the following example. Replace approval.txt with the name of the token approval file.

Using CMU to manage quorum authentication 186



AWS CloudHSM User Guide

aws-cloudhsm > approveToken approval.txt
approveToken success on server 0(10.0.2.14)
approveToken success on server 1(10.0.1.4)

When this command succeeds, the HSM has approved the quorum token. To check the status of a 
token, use the listTokens command, as shown in the following example. The command's output 
shows that the token has the required number of approvals.

The token validity time indicates how long the token is guaranteed to persist on the HSM. Even 
after the token validity time elapses (zero seconds), you can still use the token.

aws-cloudhsm > listTokens
===================== 
    Server 0(10.0.2.14)
=====================
-------- Token - 0 ----------
Token:
Id:1
Service:3
Node:1
Key Handle:0
User:officer1
Token Validity: 506 sec
Required num of approvers : 2
Current num of approvals : 2
Approver-0: officer1
Approver-1: officer2
Num of tokens = 1

===================== 
    Server 1(10.0.1.4)
=====================
-------- Token - 0 ----------
Token:
Id:1
Service:3
Node:0
Key Handle:0
User:officer1
Token Validity: 506 sec
Required num of approvers : 2
Current num of approvals : 2

Using CMU to manage quorum authentication 187



AWS CloudHSM User Guide

Approver-0: officer1
Approver-1: officer2
Num of tokens = 1

listTokens success

Step 4. Use the token for user management operations

After a CO has a token with the required number of approvals, as shown in the previous section, 
the CO can perform one of the following HSM user management operations:

• Create an HSM user with the createUser command

• Delete an HSM user with the deleteUser command

• Change a different HSM user's password with the changePswd command

For more information about using these commands, see HSM users.

The CO can use the token for only one operation. When that operation succeeds, the token is no 
longer valid. To do another HSM user management operation, the CO must get a new quorum 
token, get new signatures from approvers, and approve the new token on the HSM.

Note

The MofN token is only valid as long as your current login session is open. If you log out of 
cloudhsm_mgmt_util or the network connection disconnects, the token is no longer valid. 
Similarly, an authorized token can only be used within cloudhsm_mgmt_util, it cannot be 
used to authenticate in a different application.

In the following example command, the CO creates a new user on the HSM.

aws-cloudhsm > createUser CU user1 <password>
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y

Using CMU to manage quorum authentication 188



AWS CloudHSM User Guide

Creating User user1(CU) on 2 nodes

After the previous command succeeds, a subsequent listUsers command shows the new user.

aws-cloudhsm > listUsers
Users on server 0(10.0.2.14):
Number of users found:8 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              officer1                                YES     
           0               NO 
         4              CO              officer2                                YES     
           0               NO 
         5              CO              officer3                                YES     
           0               NO 
         6              CO              officer4                                YES     
           0               NO 
         7              CO              officer5                                YES     
           0               NO 
         8              CU              user1                                    NO     
           0               NO
Users on server 1(10.0.1.4):
Number of users found:8 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              officer1                                YES     
           0               NO 
         4              CO              officer2                                YES     
           0               NO 
         5              CO              officer3                                YES     
           0               NO 
         6              CO              officer4                                YES     
           0               NO 

Using CMU to manage quorum authentication 189



AWS CloudHSM User Guide

         7              CO              officer5                                YES     
           0               NO 
         8              CU              user1                                    NO     
           0               NO

If the CO tries to perform another HSM user management operation, it fails with a quorum 
authentication error, as shown in the following example.

aws-cloudhsm > deleteUser CU user1
Deleting user user1(CU) on 2 nodes
deleteUser failed: RET_MXN_AUTH_FAILED
deleteUser failed on server 0(10.0.2.14)

Retry/rollBack/Ignore?(R/B/I): I
deleteUser failed: RET_MXN_AUTH_FAILED
deleteUser failed on server 1(10.0.1.4)

Retry/rollBack/Ignore?(R/B/I): I

The listTokens command shows that the CO has no approved tokens, as shown in the following 
example. To perform another HSM user management operation, the CO must get a new quorum 
token, get new signatures from approvers, and approve the new token on the HSM.

aws-cloudhsm > listTokens
===================== 
    Server 0(10.0.2.14)
=====================
Num of tokens = 0

===================== 
    Server 1(10.0.1.4)
=====================
Num of tokens = 0

listTokens success

Change the quorum minimum value with AWS CloudHSM Management Utility

After you set the quorum minimum value so that AWS CloudHSM crypto officers (COs) can use 
quorum authentication, you might want to change the quorum minimum value. The HSM allows 
you to change the quorum minimum value only when the number of approvers is the same or 

Using CMU to manage quorum authentication 190



AWS CloudHSM User Guide

higher than the current quorum minimum value. For example, if the quorum minimum value is 
two, at least two COs must approve to change the quorum minimum value.

To get quorum approval to change the quorum minimum value, you need a quorum token for the
setMValue command (service 4). To get a quorum token for the setMValue command (service 4), 
the quorum minimum value for service 4 must be higher than one. This means that before you 
can change the quorum minimum value for COs (service 3), you might need to change the quorum 
minimum value for service 4.

The following table lists the HSM service identifiers along with their names, descriptions, and the 
commands that are included in the service.

Service Identifier Service Name Service Description HSM Commands

3 USER_MGMT HSM user 
management

• createUser

• deleteUser

• changePswd
(applies only when 
changing the 
password of a 
different HSM user)

4 MISC_CO Miscellaneous CO 
service

• setMValue

To change the quorum minimum value for crypto officers

1. Use the following command to start the cloudhsm_mgmt_util command line tool.

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

2. Use the loginHSM command to log in to the HSM as a CO. For more information, see ???.

3. Use the getMValue command to get the quorum minimum value for service 3. For more 
information, see the following example.

4. Use the getMValue command to get the quorum minimum value for service 4. For more 
information, see the following example.

Using CMU to manage quorum authentication 191



AWS CloudHSM User Guide

5. If the quorum minimum value for service 4 is lower than the value for service 3, use the
setMValue command to change the value for service 4. Change the value for service 4 to one 
that is the same or higher than the value for service 3. For more information, see the following 
example.

6. Get a quorum token, taking care to specify service 4 as the service for which you can use the 
token.

7. Get approvals (signatures) from other COs.

8. Approve the token on the HSM.

9. Use the setMValue command to change quorum minimum value for service 3 (user 
management operations performed by COs).

Example – Get quorum minimum values and change the value for service 4

The following example command shows that the quorum minimum value for service 3 is currently 
two.

aws-cloudhsm > getMValue 3
MValue of service 3[USER_MGMT] on server 0 : [2]
MValue of service 3[USER_MGMT] on server 1 : [2]

The following example command shows that the quorum minimum value for service 4 is currently 
one.

aws-cloudhsm > getMValue 4
MValue of service 4[MISC_CO] on server 0 : [1]
MValue of service 4[MISC_CO] on server 1 : [1]

To change the quorum minimum value for service 4, use the setMValue command, setting a value 
that is the same or higher than the value for service 3. The following example sets the quorum 
minimum value for service 4 to two (2), the same value that is set for service 3.

aws-cloudhsm > setMValue 4 2
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Using CMU to manage quorum authentication 192



AWS CloudHSM User Guide

Do you want to continue(y/n)? y
Setting M Value(2) for 4 on 2 nodes

The following commands show that the quorum minimum value is now two for service 3 and 
service 4.

aws-cloudhsm > getMValue 3
MValue of service 3[USER_MGMT] on server 0 : [2]
MValue of service 3[USER_MGMT] on server 1 : [2]

aws-cloudhsm > getMValue 4
MValue of service 4[MISC_CO] on server 0 : [2]
MValue of service 4[MISC_CO] on server 1 : [2]

Using CMU to manage quorum authentication 193



AWS CloudHSM User Guide

Keys in AWS CloudHSM

Before you can use your AWS CloudHSM cluster for cryptoprocessing, you must create users and 
keys on the hardware security modules (HSM) in your cluster.

In AWS CloudHSM, use any of the following to manage keys on the HSMs in your cluster:

• PKCS #11 library

• JCE provider

• CNG and KSP providers

• CloudHSM CLI

Before you can manage keys, you must log in to the HSM with the user name and password of a 
crypto user (CU). Only a CU can create a key. The CU who creates a key owns and manages that key.

See the following topics for more information about managing keys in AWS CloudHSM.

Topics

• Key synchronization and durability settings in AWS CloudHSM

• AES key wrapping in AWS CloudHSM

• Using trusted keys in AWS CloudHSM

• Key management with CloudHSM CLI

• Key management with the AWS CloudHSM KMU

Key synchronization and durability settings in AWS CloudHSM

AWS CloudHSM synchronizes every token key you create. Key synchronization is mostly an 
automatic process, but you can use a minimum of two hardware security modules (HSM) in your 
cluster to make keys more durable. This topic describes key synchronization settings, common 
issues customers face working with keys on a cluster, and strategies for making keys more durable.

This topic describes key synchronization settings in AWS CloudHSM, common issues customers face 
working with keys on a cluster, and strategies for making keys more durable.

Topics

Key sync and durability 194



AWS CloudHSM User Guide

• AWS CloudHSM key concepts

• Understanding AWS CloudHSM key synchronization

• Change AWS CloudHSM client key durability settings

• Synchronizing keys across cloned AWS CloudHSM clusters

AWS CloudHSM key concepts

The following are concepts to be aware of when working with keys in AWS CloudHSM.

Token keys

Persistent keys that you create during key generate, import or unwrap operations. AWS 
CloudHSM synchronizes token keys across a cluster.

Session keys

Ephemeral keys that exist only on one hardware security module (HSM) in the cluster. AWS 
CloudHSM does not synchronize session keys across a cluster.

Client-side key synchronization

A client-side process that clones token keys you create during key generate, import or unwrap 
operations. You can make token keys more durable by running a cluster with a minimum of two 
HSMs.

Server-side key synchronization

Periodically clones keys to every HSM in the cluster. Requires no management.

Client key durability settings

Settings you configure on the client that impact key durability. These settings work differently 
in Client SDK 5 and Client SDK 3.

• In Client SDK 5, use this setting to run a single HSM cluster.

• In Client SDK 3, use this setting to specify the number of HSMs required for key creation 
operations to succeed.

Understanding AWS CloudHSM key synchronization

AWS CloudHSM uses key synchronization to clone token keys across all the hardware security 
modules (HSM) in a cluster. You create token keys as persistent keys during key generation, import, 

Concepts 195



AWS CloudHSM User Guide

or unwrap operations. To distribute these keys across the cluster, CloudHSM offers both client-side 
and server-side key synchronization.

The goal with key synchronization—both server side and client side—is to distribute new keys 
across the cluster as quickly as possible after you create them. This is important because the 
subsequent calls you make to use new keys can get routed to any available HSM in the cluster. If 
the call you make routes to an HSM without the key, then the call fails. You can mitigate these 
type failures by specifying that your applications retry subsequent calls made after key creation 
operations. The time required to synchronize can vary, depending on the workload of your cluster 
and other intangibles. Use CloudWatch metrics to determine the timing your application should 
employ in this type situation. For more information, see CloudWatch Metrics.

The challenge with key synchronization in a cloud environment is key durability. You create keys on 
a single HSM and often begin using those keys immediately. If the HSM on which you create keys 
should fail before the keys have been cloned to another HSM in the cluster, you lose the keys and
access to anything encrypted by the keys. To mitigate this risk, we offer client-side synchronization. 
Client side synchronization is a client-side process that clones the keys you create during key 
generate, import, or unwrap operations. Cloning keys as you create them makes keys more durable. 
Of course, you can't clone keys in a cluster with a single HSM. To make keys more durable, we 
also recommend you configure your cluster to use a minimum of two HSMs. With client-side 
synchronization and a cluster with two HSMs, you can meet the challenge of key durability in a 
cloud environment.

Understanding key synchronization 196



AWS CloudHSM User Guide

Change AWS CloudHSM client key durability settings

Key synchronization is mostly an automatic process, but you can manage client-side key durability 
settings. Client-side key durability settings works differently in Client SDK 5 and Client SDK 3.

• In Client SDK 5, we introduce the concept of key availability quorums which requires you to run 
clusters with a minimum of two HSMs. You can use client-side key durability settings to opt out 
of the two HSM requirement. For more information about quorums, see the section called “Client 
SDK 5 concepts”.

• In Client SDK 3, you use client-side key durability settings to specify the number of HSMs on 
which key creation must succeed for the overall operation to be deemed a success.

Client SDK 5 client key durability settings

In Client SDK 5, key synchronization is a fully automatic process. With key availability quorum, 
newly created keys must exist on two HSMs in the cluster before your application can use the key. 
To use key availability quorum, your cluster must have a minimum of two HSMs.

If your cluster configuration doesn’t meet the key durability requirements, any attempt to create or 
use a token key will fail with the following error message in the logs:

Key <key handle> does not meet the availability requirements - The key must be 
 available on at least 2 HSMs before being used.

You can use client configuration settings to opt out of key availability quorum. You might want to 
opt out to run a cluster with a single HSM, for example.

Client SDK 5 concepts

Key Availability Quorum

AWS CloudHSM specifies the number of HSMs in a cluster on which keys must exist before your 
application can use the key. Requires clusters with a minimum of two HSMs.

Managing client key durability settings

To manage client key durability settings, you must use the configure tool for Client SDK 5.

Change client key durability settings 197



AWS CloudHSM User Guide

PKCS #11 library

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --disable-key-availability-check

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --disable-
key-availability-check

OpenSSL Dynamic Engine

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-dyn --disable-key-availability-check

Key Storage Provider (KSP)

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --disable-
key-availability-check

JCE provider

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

Change client key durability settings 198



AWS CloudHSM User Guide

$ sudo /opt/cloudhsm/bin/configure-jce --disable-key-availability-check

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --disable-
key-availability-check

CloudHSM CLI

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-cli --disable-key-availability-check

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" --disable-
key-availability-check

Client SDK 3 client key durability settings

In Client SDK 3, key synchronization is mostly an automatic process, but you can use the 
client key durability settings to make keys more durable. You specify the number of HSMs on 
which key creation must succeed for the overall operation to be deemed a success. Client-side 
synchronization always makes a best-effort attempt to clone keys to every HSM in the cluster no 
matter what setting you choose. Your setting enforces key creation on the number of HSMs you 
specify. If you specify a value and the system cannot replicate the key to that number of HSMs, 
then the system automatically cleans up any unwanted key material and you can try again.

Change client key durability settings 199



AWS CloudHSM User Guide

Important

If you don’t set client key durability settings (or if you use the default value of 1), your keys 
are vulnerable to loss. If your current HSM should fail before the server-side service has 
cloned that key to another HSM, you lose the key material.

To maximize key durability, consider specifying at least two HSMs for client-side synchronization. 
Remember that no matter how many HSMs you specify, the workload on your cluster remains the 
same. Client-side synchronization always makes a best-effort attempt to clone keys to every HSM 
in the cluster.

Recommendations

• Minimum: Two HSMs per cluster

• Maximum: One fewer than the total number of HSMs in your cluster

If client-side synchronization fails, the client service cleans up any unwanted keys that may have 
been created and are now unwanted. This clean up is a best-effort response that may not always 
work. If cleanup fails, you may have to delete unwanted key material. For more information, see
Key Synchronization Failures.

Setting up the configuration file for client key durability

To specify client key durability settings, you must edit cloudhsm_client.cfg.

To edit the client configuration file

1. Open cloudhsm_client.cfg.

Linux:

/opt/cloudhsm/etc/cloudhsm_client.cfg

Windows:

C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

Change client key durability settings 200



AWS CloudHSM User Guide

2. In the client node of the file, add create_object_minimum_nodes and specify a value for 
the minimum number of HSMs on which AWS CloudHSM must successfully create keys for key 
creation operations to succeed.

"create_object_minimum_nodes" : 2

Note

The key_mgmt_util (KMU) command-line tool has an additional setting for client 
key durability. For more information, see the section called “KMU and client-side 
synchronization”

Configuration reference

These are the client-side synchronization properties, shown in an excerpt of the
cloudhsm_client.cfg:

{ 
    "client": { 
        "create_object_minimum_nodes" : 2, 
        ... 
    }, 
     
    ...
}

create_object_minimum_nodes

Specifies the minimum number of HSMs required to deem key generation, key import, or 
key unwrap operations a success. If set, the default is 1. This means that for every key create 
operation, the client-side service attempts to create keys on every HSM in the cluster, but to 
return a success, only needs to create a single key on one HSM in the cluster.

KMU and client-side synchronization

If you create keys with the key_mgmt_util (KMU) command-line tool, you use an optional 
command line parameter (-min_srv) to limit the number of HSMs on which to clone keys. If you 

Change client key durability settings 201



AWS CloudHSM User Guide

specify the command-line parameter and a value in the configuration file, AWS CloudHSM honors 
the LARGER of the two values.

For more information, see the following topics:

• genDSAKeyPair

• genECCKeyPair

• genRSAKeyPair

• genSymKey

• importPrivateKey

• importPubKey

• imSymKey

• insertMaskedObject

• unWrapKey

Synchronizing keys across cloned AWS CloudHSM clusters

Client-side and server-side synchronization are only for synchronizing keys within the same AWS 
CloudHSM cluster. If you copy a backup of a cluster to another region, you can use the syncKey 
command of the cloudhsm_mgmt_util (CMU) for synchronizing keys between clusters. You might 
use cloned clusters for cross-region redundancy or to simplify your disaster recovery process. For 
more information, see syncKey.

AES key wrapping in AWS CloudHSM

This topic describes the options for AES key wrapping in AWS CloudHSM. AES key wrapping uses an 
AES key (the wrapping key) to wrap another key of any type (the target key). You use key wrapping 
to protect stored keys or transmit keys over insecure networks.

Topics

• Supported algorithms

• Using AES key wrap in AWS CloudHSM

Synchronizing keys across cloned clusters 202



AWS CloudHSM User Guide

Supported algorithms

AWS CloudHSM offers three options for AES key wrapping, each based on how the target key is 
padded before being wrapped. Padding is done automatically, in accordance with the algorithm 
you use, when you call key wrap. The following table lists the supported algorithms and associated 
details to help you choose an appropriate wrapping mechanism for your application.

AES Key Wrap 
Algorithm

Specification Supported 
Target Key 
Types

Padding 
Scheme

AWS CloudHSM 
Client Availabil 
ity

AES Key Wrap 
with Zero 
Padding

RFC 5649 and
SP 800–38F

All Adds zeros 
after key bits, 
if necessary, to 
block align

SDK 3.1 and 
later

AES Key Wrap 
with No Padding

RFC 3394 and
SP 800–38F

Block-aligned 
keys such as AES 
and 3DES

None SDK 3.1 and 
later

AES Key Wrap 
with PKCS #5 
Padding

None All At least 8 bytes 
are added as 
per PKCS #5 
padding scheme 
to block align

All

To learn how to use the AES key wrap algorithms from the preceding table in your application, see
Using AES Key Wrap in AWS CloudHSM.

Understanding initialization vectors in AES key wrap

Prior to wrapping, CloudHSM appends an initialization vector (IV) to the target key for data 
integrity. Each key wrap algorithm has specific restrictions on what type of IV is allowed. To set the 
IV in AWS CloudHSM, you have two options:

• Implicit: set the IV to NULL and CloudHSM uses the default value for that algorithm for wrap and 
unwrap operations (recommended)

• Explicit: set the IV by passing the default IV value to the key wrap function

Supported algorithms 203

https://tools.ietf.org/html/rfc5649
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
https://tools.ietf.org/html/rfc3394
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf


AWS CloudHSM User Guide

Important

You must understand what IV you are using in your application. To unwrap the key, you 
must provide the same IV that you used to wrap the key. If you use an implicit IV to wrap, 
then use an implicit IV to unwrap. With an implicit IV, CloudHSM will use the default value 
to unwrap.

The following table describes permitted values for IVs, which the wrapping algorithm specifies.

AES Key Wrap Algorithm Implicit IV Explicit IV

AES Key Wrap with Zero 
Padding

Required

Default value: (IV calculated 
internally based on specifica 
tion)

Not allowed

AES Key Wrap with No 
Padding

Allowed (recommended)

Default value: 0xA6A6A6A 
6A6A6A6A6

Allowed

Only this value accepted: 
  0xA6A6A6A6A6A6A6A6

AES Key Wrap with PKCS #5 
Padding

Allowed (recommended)

Default value: 0xA6A6A6A 
6A6A6A6A6

Allowed

Only this value accepted: 
  0xA6A6A6A6A6A6A6A6

Using AES key wrap in AWS CloudHSM

You wrap and unwrap keys as follows:

• In the PKCS #11 library, select the appropriate mechanism for the C_WrapKey and
C_UnWrapKey functions as shown in the following table.

• In the JCE provider, select the appropriate algorithm, mode and padding combination, 
implementing cipher methods Cipher.WRAP_MODE and Cipher.UNWRAP_MODE as shown in the 
following table.

Using AES key wrap in AWS CloudHSM 204



AWS CloudHSM User Guide

• In the CloudHSM CLI, choose the appropriate algorithm from the list of supported The key wrap 
command in CloudHSM CLI and The key unwrap command in CloudHSM CLI algorithms as shown 
in the following table.

• In key_mgmt_util (KMU), use commands Export an AWS CloudHSM key using KMU and Unwrap 
an AWS CloudHSM key using KMU with appropriate m values as shown in the following table.

AES Key Wrap 
Algorithm

PKCS #11 
Mechanism

Java Method CloudHSM CLI 
Sub Command

Key 
Management 
Utility (KMU) 
Argument

AES Key Wrap 
with Zero 
Padding

• CKM_CLOUD 
HSM_AES_K 
EY_WRAP_Z 
ERO_PAD
(Vendor 
Defined 
Mechanism)

AESWrap/E 
CB/ZeroPa 
dding

aes-zero-pad m = 6

AES Key Wrap 
with No Padding

• CKM_CLOUD 
HSM_AES_K 
EY_WRAP_N 
O_PAD
(Vendor 
Defined 
Mechanism)

AESWrap/E 
CB/NoPadd 
ing

aes-no-pad m = 5

AES Key Wrap 
with PKCS #5 
Padding

• CKM_CLOUD 
HSM_AES_K 
EY_WRAP_P 
KCS5_PAD
(Vendor 
Defined 
Mechanism)

AESWrap/E 
CB/PKCS5P 
adding

aes-pkcs5-pad m = 4

Using AES key wrap in AWS CloudHSM 205



AWS CloudHSM User Guide

Using trusted keys in AWS CloudHSM

AWS CloudHSM supports trusted key wrapping to protect data keys from insider threats. This topic 
describes how to create trusted keys to secure data.

Topics

• Understanding trusted keys in AWS CloudHSM

• Trusted key attributes in AWS CloudHSM

• How to use trusted keys to wrap data keys in AWS CloudHSM

• How to unwrap a data key with a trusted key for AWS CloudHSM

Understanding trusted keys in AWS CloudHSM

A trusted key is a key that is used to wrap other keys and that admins and cryptographic officers 
(COs) specifically identify as trusted using the attribute CKA_TRUSTED. Additionally, admins and 
cryptographic officers (COs) use CKA_UNWRAP_TEMPLATE and related attributes to specify what 
actions data keys can do once they are unwrapped by a trusted key. Data keys that are unwrapped 
by the trusted key must also contain these attributes for the unwrap operation to succeed, which 
helps ensure that unwrapped data keys are only permitted for the use you intend.

Use the attribute CKA_WRAP_WITH_TRUSTED to identify all of the data keys you want to wrap with 
trusted keys. Doing this allows you to restrict data keys so applications can only use trusted keys 
to unwrap them. Once you set this attribute on the data keys, the attribute becomes read-only and 
you cannot change it. With these attributes in place, applications can only unwrap your data keys 
with the keys you trust, and unwraps always result in data keys with attributes that limit how these 
keys can be used.

Trusted key attributes in AWS CloudHSM

The following attributes allow you to mark an AWS CloudHSM key as trusted, specify a data key 
can only be wrapped and unwrapped with a trusted key, and control what a data key can do after it 
is unwrapped:

• CKA_TRUSTED: Apply this attribute (in addition to CKA_UNWRAP_TEMPLATE) to the key that will 
wrap data keys to specify that an admin or crypto officer (CO) has done the necessary diligence 
and trusts this key. Only an admin or CO can set CKA_TRUSTED. The crypto user (CU) owns the 
key, but only a CO can set its CKA_TRUSTED attribute.

Trusted keys 206



AWS CloudHSM User Guide

• CKA_WRAP_WITH_TRUSTED: Apply this attribute to an exportable data key to specify 
that you can only wrap this key with keys marked as CKA_TRUSTED. Once you set
CKA_WRAP_WITH_TRUSTED to true, the attribute becomes read-only and you cannot change or 
remove the attribute.

• CKA_UNWRAP_TEMPLATE: Apply this attribute to the wrapping key (in addition to CKA_TRUSTED) 
to specify which attribute names and values the service must automatically apply to data keys 
that the service unwraps. When an application submits a key for unwrapping, the application can 
also provide its own unwrap template. If you specify an unwrap template and the application 
provides its own unwrap template, the HSM uses both templates to apply attribute names and 
values to the key. However, if a value in the CKA_UNWRAP_TEMPLATE for the wrapping key 
conflicts with an attribute provided by the application during the unwrap request, then the 
unwrap request fails.

For more information about attributes, refer to the following topics:

• PKCS #11 key attributes

• JCE key attributes

• CloudHSM CLI key attributes

How to use trusted keys to wrap data keys in AWS CloudHSM

To use a trusted key to wrap a data key in AWS CloudHSM, you must complete three basic steps:

1. For the data key you plan to wrap with a trusted key, set its CKA_WRAP_WITH_TRUSTED
attribute to true.

2. For the trusted key you plan to wrap the data key with, set its CKA_TRUSTED attribute to true.

3. Use the trusted key to wrap the data key.

Step 1: Set the data key's CKA_WRAP_WITH_TRUSTED to true

For the data key you want to wrap, choose one of the following options to set the key’s
CKA_WRAP_WITH_TRUSTED attribute to true. Doing this restricts the data key so applications can 
only use trusted keys to wrap it.

How to use trusted keys to wrap data keys 207



AWS CloudHSM User Guide

Option 1: If generating a new key, set CKA_WRAP_WITH_TRUSTED to true

Generate a key using PKCS #11, JCE, or CloudHSM CLI. See the following examples for more 
details.

PKCS #11

To generate a key with PKCS #11, you need to set the key's CKA_WRAP_WITH_TRUSTED
attribute to true. As shown in the following example, do this by including this attribute in the 
key’s CK_ATTRIBUTE template and then setting the attribute to true:

CK_BYTE_PTR label = "test_key";
CK_ATTRIBUTE template[] = { 
        {CKA_WRAP_WITH_TRUSTED, &true_val,         sizeof(CK_BBOOL)}, 
        {CKA_LABEL,             label,             strlen(label)}, 
        ...
};

For more information, see our public samples demonstrating key generation with PKCS #11.

JCE

To generate a key with JCE, you need to set the key's WRAP_WITH_TRUSTED attribute to 
true. As shown in the following example, do this by including this attribute in the key’s
KeyAttributesMap and then setting the attribute to true:

final String label = "test_key";
final KeyAttributesMap keySpec = new KeyAttributesMap();
keySpec.put(KeyAttribute.WRAP_WITH_TRUSTED, true);
keySpec.put(KeyAttribute.LABEL, label);
...

For more information, see our public samples demonstrating key generation with JCE.

CloudHSM CLI

To generate a key with CloudHSM CLI, you need to set the key's wrap-with-trusted attribute 
to true. Do this by including wrap-with-trusted=true in the appropriate argument for the 
key generation command:

• For symmetric keys, add wrap-with-trusted to the attributes argument.

How to use trusted keys to wrap data keys 208

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/generate
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-samples.html#java-samples-code_5


AWS CloudHSM User Guide

• For public keys, add wrap-with-trusted to the public-attributes argument.

• For private keys, add wrap-with-trusted to the private-attributes argument.

For more information on key pair generation, see The generate-asymmetric-pair category in 
CloudHSM CLI.

For more information on symmetric key generation, see The generate-symmetric category in 
CloudHSM CLI.

Option 2: If using an existing key, use CloudHSM CLI to set its CKA_WRAP_WITH_TRUSTED to 
true

To set an existing key's CKA_WRAP_WITH_TRUSTED attribute to true, follow these steps:

1. Use the Log in to an HSM using CloudHSM CLI command to log in as a crypto user (CU).

2. Use the Set the attributes of keys with CloudHSM CLI command to set the key's wrap-with-
trusted attribute to true.

aws-cloudhsm > key set-attribute --filter attr.label=test_key --name wrap-with-
trusted --value true
{ 
  "error_code": 0, 
  "data": { 
    "message": "Attribute set successfully" 
  }
}

Step 2: Set the trusted key's CKA_TRUSTED to true

To make a key a trusted key, its CKA_TRUSTED attribute must be set to true. You can either use 
CloudHSM CLI or the CloudHSM Management Utility (CMU) to do this.

• If using CloudHSM CLI to set a key's CKA_TRUSTED attribute, see Mark a key as trusted using 
CloudHSM CLI.

• If using the CMU to set a key's CKA_TRUSTED attribute, see How to mark a key as trusted with 
the AWS CloudHSM Management Utility.

How to use trusted keys to wrap data keys 209



AWS CloudHSM User Guide

Step 3. Use the trusted key to wrap the data key

To wrap the data key referenced in Step 1 with the trusted key you set in Step 2, refer to the 
following links for code samples. Each demonstrates how to wrap keys.

• AWS CloudHSM PKCS #11 examples

• AWS CloudHSM JCE examples

How to unwrap a data key with a trusted key for AWS CloudHSM

To unwrap a data key in AWS CloudHSM, you need a trusted key that has CKA_UNWRAP set to true. 
To be such a key, it must also meet the following criteria:

• The key’s CKA_TRUSTED attribute must be set to true.

• The key must use CKA_UNWRAP_TEMPLATE and related attributes to specify what actions data 
keys can perform once they are unwrapped. If, for example, you want an unwrapped key to be 
non-exportable, you set CKA_EXPORTABLE = FALSE as part of the CKA_UNWRAP_TEMPLATE.

Note

CKA_UNWRAP_TEMPLATE is only available with PKCS #11.

When an application submits a key to be unwrapped, the application can also provide its own 
unwrap template. If you specify an unwrap template and the application provides its own unwrap 
template, the HSM uses both templates to apply attribute names and values to the key. However, 
if during the unwrap request a value in the trusted key’s CKA_UNWRAP_TEMPLATE conflicts with an 
attribute provided by the application, the unwrap request fails.

To see an example on unwrapping a data key with a trusted key, refer to this PKCS #11 example.

Key management with CloudHSM CLI

If using the latest SDK version series, use CloudHSM CLI to manage the keys in your AWS 
CloudHSM cluster. For more details, see the topics below.

• Using trusted keys describes how to use CloudHSM CLI to create trusted keys to secure data.

How to unwrap a data key with a trusted key 210

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/wrapping
https://github.com/aws-samples/aws-cloudhsm-jce-examples/tree/sdk5/src/main/java/com/amazonaws/cloudhsm/examples
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/unwrap_with_template.c


AWS CloudHSM User Guide

• Generating keys includes instructions on creating keys, including symmetric keys, RSA keys, and 
EC keys.

• Deleting keys describes how key owners delete keys.

• Sharing and unsharing keys details how key owners share and unshare keys.

• Filtering keys offers guidelines on how to use filters to find keys.

• Manage key quorum authentication (M of N)  offers guidelines on how to setup and use quorum 
authentication with keys.

Generate keys with CloudHSM CLI

Before you can generate a key, you must start CloudHSM CLI and log in as a crypto user (CU). To 
generate keys on the HSM, use the command that corresponds to the type of key that you want to 
generate.

Topics

• Generate symmetric keys with CloudHSM CLI

• Generate asymmetric keys using CloudHSM CLI

• AWS CloudHSM key related topics

Generate symmetric keys with CloudHSM CLI

Use the commands listed in The generate-symmetric category in CloudHSM CLI to generate 
symmetric keys for AWS CloudHSM. To see all available options, use the help key generate-
symmetric command.

Generate an AES key

Use the key generate-symmetric aes command to generate AES keys. To see all available options, 
use the help key generate-symmetric aes command.

Example

The following example generates a 32-byte AES key.

aws-cloudhsm > key generate-symmetric aes \ 
    --label aes-example \ 
    --key-length-bytes 32

Generate keys 211



AWS CloudHSM User Guide

Arguments

<LABEL>

Specifies a user-defined label for the AES key.

Required: Yes

<KEY-LENGTH-BYTES>

Specifies the key length in bytes.

Valid values:

• 16, 24, and 32

Required: Yes

<KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated AES key in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true)

For a list of supported AWS CloudHSM key attributes, see Key attributes for CloudHSM CLI.

Required: No

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends. Use this parameter when you need a key only briefly, such as a wrapping key that 
encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that 
you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use key set-attribute.

By default, when keys are generated they are persistent/token keys. Using <SESSION> changes 
this, ensuring a key generated with this argument is a session/ephemeral

Required: No

Generate generic secret key

Use the key generate-symmetric generic-secret command to generate generic secret keys. To see 
all available options, use the help key generate-symmetric generic-secret command.

Generate keys 212



AWS CloudHSM User Guide

Example

The following example generates a 32-byte generic secret key.

aws-cloudhsm > key generate-symmetric generic-secret \ 
    --label generic-secret-example \ 
    --key-length-bytes 32

Arguments

<LABEL>

Specifies a user-defined label for the generic secret key.

Required: Yes

<KEY-LENGTH-BYTES>

Specifies the key length in bytes.

Valid values:

• 1 to 800

Required: Yes

<KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated generic secret key in 
the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true)

For a list of supported AWS CloudHSM key attributes, see Key attributes for CloudHSM CLI.

Required: No

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends. Use this parameter when you need a key only briefly, such as a wrapping key that 
encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that 
you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use key set-attribute.

Generate keys 213



AWS CloudHSM User Guide

By default, when keys are generated they are persistent/token keys. Using <SESSION> changes 
this, ensuring a key generated with this argument is a session/ephemeral

Required: No

Generate asymmetric keys using CloudHSM CLI

Use the commands listed in The generate-asymmetric-pair category in CloudHSM CLI to 
generate asymmetric key pairs for AWS CloudHSM clusters.

Generate an RSA key

Use the key generate-asymmetric-pair rsa command to generate an RSA key pair. To see all 
available options, use the help key generate-asymmetric-pair rsa command.

Example

The following example generates an RSA 2048-bit key pair.

aws-cloudhsm > key generate-asymmetric-pair rsa \ 
    --public-exponent 65537 \ 
    --modulus-size-bits 2048 \ 
    --public-label rsa-public-example \ 
    --private-label rsa-private-example

Arguments

<PUBLIC_LABEL>

Specifies a user-defined label for the public-key.

Required: Yes

<PRIVATE_LABEL>

Specifies a user-defined label for the private-key.

Required: Yes

<MODULUS_SIZE_BITS>

Specifies the length of the modulus in bits. The minimum value is 2048.

Generate keys 214



AWS CloudHSM User Guide

Required: Yes

<PUBLIC_EXPONENT>

Specifies the public exponent. The value must be an odd number greater than or equal to 
65537.

Required: Yes

<PUBLIC_KEY_ATTRIBUTES>

Specifies a space-separated list of key attributes to set for the generated RSA public key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true).

For a list of supported AWS CloudHSM key attributes, see Key attributes for CloudHSM CLI.

Required: No

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends. Use this parameter when you need a key only briefly, such as a wrapping key that 
encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that 
you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use key set-attribute.

By default, when keys are generated they are persistent/token keys. Using <SESSION> changes 
this, ensuring a key generated with this argument is a session/ephemeral

Required: No

Generate EC (elliptic curve cryptography) key pairs

Use the key generate-asymmetric-pair ec command to generate an EC key pair. To see all 
available options,including a list of the supported elliptic curves, use the help key generate-
asymmetric-pair ec command.

Example

The following example generates an EC key pair using the Secp384r1 elliptic curve.

aws-cloudhsm > key generate-asymmetric-pair ec \ 

Generate keys 215



AWS CloudHSM User Guide

    --curve secp384r1 \ 
    --public-label ec-public-example \ 
    --private-label ec-private-example

Arguments

<PUBLIC_LABEL>

Specifies a user-defined label for the public-key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<PRIVATE_LABEL>

Specifies a user-defined label for the private-key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<CURVE>

Specifies the identifier for the elliptic curve.

Valid values:

• prime256v1

• secp256r1

• secp224r1

• secp384r1

• secp256k1

• secp521r1

Required: Yes

<PUBLIC_KEY_ATTRIBUTES>

Specifies a space-separated list of key attributes to set for the generated EC public key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, verify=true).

For a list of supported AWS CloudHSM key attributes, see Key attributes for CloudHSM CLI.

Generate keys 216



AWS CloudHSM User Guide

Required: No

<PRIVATE_KEY_ATTRIBUTES>

Specifies a space-separated list of key attributes to set for the generated EC private key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true).

For a list of supported AWS CloudHSM key attributes, see Key attributes for CloudHSM CLI.

Required: No

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends. Use this parameter when you need a key only briefly, such as a wrapping key that 
encrypts, and then quickly decrypts, another key. Do not use a session key to encrypt data that 
you might need to decrypt after the session ends.

To change a session key to a persistent (token) key, use key set-attribute.

By default, keys that are generated are persistent (token) keys. Passing in <SESSION> changes 
this, ensuring a key generated with this argument is a session (ephemeral) key.

Required: No

AWS CloudHSM key related topics

See the following sections for additional information about keys in AWS CloudHSM.

• Key attributes for CloudHSM CLI

• The generate-asymmetric-pair category in CloudHSM CLI

• The generate-symmetric category in CloudHSM CLI

Delete keys using CloudHSM CLI

Use the example in this topic to delete a key with CloudHSM CLI. Only key owners can delete keys.

Topics

• Example: Delete a key

• Related topics

Delete keys 217



AWS CloudHSM User Guide

Example: Delete a key

1. Run the key list command to identify the key you want to delete:

aws-cloudhsm > key list --filter attr.label="my_key_to_delete" --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x0000000000540011", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "my_crypto_user", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "my_key_to_delete", 
          "id": "", 
          "check-value": "0x29bbd1", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 

Delete keys 218



AWS CloudHSM User Guide

          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1217, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0x8b3a7c20618e8be08220ed8ab2c8550b65fc1aad8d4cf04fbf2be685f97eeb78fcbbad9b02cd91a3b15e990c2a7c7cdeff0b730576c6c5630a8509a778a96acbc7c36931e9a86e8956fbd07f0863404ce06c8bd68256784be9f5b258a35e229ce7f630228b9323b4e1f14a0384ead90bdf07dc762f710fc5663887d0787ad98d64bbe303134f545acb2ab194fee6edaecd4dd5cf31ff7f7491e37d7a850ab23247414b42d9abdd5de89b78fd464560df29a90607e9d462f21b22365da419021fb9f28ea7e6fdb1f40bf83aaf1636fba5e475ad19889cfe3f28186a969b4826c39466c0855c974d1fb723d111e4a32ab6e32b3129bc95c9206fced160015d8b2f", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }

2. After identifying the key, run the key delete with the key's unique label attribute to delete 
the key:

aws-cloudhsm > key delete --filter attr.label="my_key_to_delete"
{ 
  "error_code": 0, 
  "data": { 
    "message": "Key deleted successfully" 
  }
}

3. Run the key list command with the key's unique label attribute and confirm the key has been 
deleted. As shown in the following example, no key with the label my_key_to_delete is in 
the HSM cluster:

aws-cloudhsm > key list --filter attr.label="my_key_to_delete"
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [], 
    "total_key_count": 0, 
    "returned_key_count": 0 
  }
}

Delete keys 219



AWS CloudHSM User Guide

Related topics

• Key attributes for CloudHSM CLI

• Delete a key with CloudHSM CLI

Share and unshare keys using CloudHSM CLI

Use the commands in this topic to share and unshare keys in CloudHSM CLI. In AWS CloudHSM, the 
crypto user (CU) who creates the key owns it. The owner can use the key share and key unshare
commands to share and unshare the key with other CUs. Users with whom the key is shared can 
use the key in cryptographic operations, but they cannot export the key, delete the key, or share it 
with other users.

Before you can share a key, you must log in to the HSM as the crypto user (CU) who owns the key.

Topics

• Example: Sharing and unsharing a key

• Related topics

Example: Sharing and unsharing a key

Example

The following example shows how to share and unshare a key with crypto user (CU) alice. Along 
with the key share and key unshare commands, sharing and unsharing commands also requires a 
specific key using CloudHSM CLI key filters and the specific username of the user whom the key will 
be shared or unshared with.

1. Start by running the key list command with a filter to return a specific key and see whom the 
key is already shared with.

aws-cloudhsm > key list --filter attr.label="rsa_key_to_share" --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 

Share and unshare keys 220



AWS CloudHSM User Guide

          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu4", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu5", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu6", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu7", 
              "key-coverage": "full" 
            }, 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 

Share and unshare keys 221



AWS CloudHSM User Guide

          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

2. View the shared-users output to identify whom the key is currently shared with.

3. To share this key with crypto user (CU) alice, enter the following command:

aws-cloudhsm > key share --filter attr.label="rsa_key_to_share" attr.class=private-
key --username alice --role crypto-user
{ 
  "error_code": 0, 
  "data": { 
    "message": "Key shared successfully" 
  }
}

Share and unshare keys 222



AWS CloudHSM User Guide

Note that, along with the key share command, this command uses the unique label of the key 
and the name of the user whom the key will be shared with.

4. Run the key list command to confirm that the key has been shared with alice:

aws-cloudhsm > key list --filter attr.label="rsa_key_to_share" --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu4", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu5", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu6", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu7", 
              "key-coverage": "full" 

Share and unshare keys 223



AWS CloudHSM User Guide

            }, 
            { 
              "username": "alice", 
              "key-coverage": "full" 
            } 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 

Share and unshare keys 224



AWS CloudHSM User Guide

    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

5. To unshare the same key with alice, run the following unshare command:

aws-cloudhsm > key unshare --filter attr.label="rsa_key_to_share" 
 attr.class=private-key --username alice --role crypto-user
{ 
  "error_code": 0, 
  "data": { 
    "message": "Key unshared successfully" 
  }
}

Note that, along with the key unshare command, this command uses the unique label of the 
key and the name of the user whom the key will be shared with.

6. Run the key list command again and confirm the key was unshared with crypto user alice:

aws-cloudhsm > key list --filter attr.label="rsa_key_to_share" --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 

Share and unshare keys 225



AWS CloudHSM User Guide

            }, 
            { 
              "username": "cu4", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu5", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu6", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu7", 
              "key-coverage": "full" 
            }, 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 

Share and unshare keys 226



AWS CloudHSM User Guide

          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

Related topics

• Key attributes for CloudHSM CLI

• Share a key using CloudHSM CLI

• Unshare a key using CloudHSM CLI

• Filter keys using CloudHSM CLI

Filter keys using CloudHSM CLI

Use the following key commands to utilize the standardized key filtration mechanisms for
CloudHSM CLI.

• key list

• key delete

• key share

• key unshare

• key set-attribute

To select and/or filter keys with CloudHSM CLI, key commands utilize a standardized filtration 
mechanism based on Key attributes for CloudHSM CLI. A key or set of keys can be specified in 

Filter by keys 227



AWS CloudHSM User Guide

key commands by using one or more AWS CloudHSM attributes that can identify a single key or 
multiple keys. The key filtration mechanism operates only on keys that the currently logged in user 
owns and shares, as well as all public keys in the AWS CloudHSM cluster.

Topics

• Requirements

• Filtering to find a single key

• Filtration Errors

• Related topics

Requirements

To filter keys, you must be a logged in as a crypto user (CUs).

Filtering to find a single key

Please note that in the following examples, each attribute that is used as a filter must be written in 
the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE. For example, if you want to 
filter by the label attribute, you will write attr.label=my_label.

Example Use a single attribute to find a single key

This example demonstrates how to filter to a single unique key using only a single identifying 
attribute.

aws-cloudhsm > key list --filter attr.label="my_unique_key_label" --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 

Filter by keys 228



AWS CloudHSM User Guide

            { 
              "username": "alice", 
              "key-coverage": "full" 
            } 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "my_unique_key_label", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 

Filter by keys 229



AWS CloudHSM User Guide

    "returned_key_count": 1 
  }
}

Example Use a multiple attributes to find a single key

The following example demonstrates how to find a single key using multiple key attributes.

aws-cloudhsm > key list --filter attr.key-type=rsa attr.class=private-key attr.check-
value=0x29bbd1 --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x0000000000540011", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            } 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "my_crypto_user", 
          "id": "", 
          "check-value": "0x29bbd1", 
          "class": "my_test_key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 

Filter by keys 230



AWS CloudHSM User Guide

          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1217, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0x8b3a7c20618e8be08220ed8ab2c8550b65fc1aad8d4cf04fbf2be685f97eeb78fcbbad9b02cd91a3b15e990c2a7c7cdeff0b730576c6c5630a8509a778a96acbc7c36931e9a86e8956fbd07f0863404ce06c8bd68256784be9f5b258a35e229ce7f630228b9323b4e1f14a0384ead90bdf07dc762f710fc5663887d0787ad98d64bbe303134f545acb2ab194fee6edaecd4dd5cf31ff7f7491e37d7a850ab23247414b42d9abdd5de89b78fd464560df29a90607e9d462f21b22365da419021fb9f28ea7e6fdb1f40bf83aaf1636fba5e475ad19889cfe3f28186a969b4826c39466c0855c974d1fb723d111e4a32ab6e32b3129bc95c9206fced160015d8b2f", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

Example Filtering to find a set of keys

The following example demonstrates how to filter to find a set of private rsa keys.

aws-cloudhsm > key list --filter attr.key-type=rsa attr.class=private-key --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "my_crypto_user", 
              "key-coverage": "full" 

Filter by keys 231



AWS CloudHSM User Guide

            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            }, 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 

Filter by keys 232



AWS CloudHSM User Guide

          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      }, 
      { 
        "key-reference": "0x0000000000540011", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "my_crypto_user", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            } 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "my_test_key", 
          "id": "", 
          "check-value": "0x29bbd1", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 

Filter by keys 233



AWS CloudHSM User Guide

          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1217, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0x8b3a7c20618e8be08220ed8ab2c8550b65fc1aad8d4cf04fbf2be685f97eeb78fcbbad9b02cd91a3b15e990c2a7c7cdeff0b730576c6c5630a8509a778a96acbc7c36931e9a86e8956fbd07f0863404ce06c8bd68256784be9f5b258a35e229ce7f630228b9323b4e1f14a0384ead90bdf07dc762f710fc5663887d0787ad98d64bbe303134f545acb2ab194fee6edaecd4dd5cf31ff7f7491e37d7a850ab23247414b42d9abdd5de89b78fd464560df29a90607e9d462f21b22365da419021fb9f28ea7e6fdb1f40bf83aaf1636fba5e475ad19889cfe3f28186a969b4826c39466c0855c974d1fb723d111e4a32ab6e32b3129bc95c9206fced160015d8b2f", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 2, 
    "returned_key_count": 2 
  }
}

Filtration Errors

Certain key operations can only be performed on a single key at a time. For these operations, the 
CloudHSM CLI will provide an error if the filtration criteria is not sufficiently refined and multiple 
keys match the criteria. One such example is shown below with the key delete.

Example Filtration Error when matching too many keys

aws-cloudhsm > key delete --filter attr.key-type=rsa
{ 
  "error_code": 1, 
  "data": "Key selection criteria matched 48 keys. Refine selection criteria to select 
 a single key."
}

Related topics

• Key attributes for CloudHSM CLI

Mark a key as trusted using CloudHSM CLI

The content in this section provides instructions on using CloudHSM CLI to mark a key as trusted.

Mark a key as trusted 234



AWS CloudHSM User Guide

1. Using the CloudHSM CLI login command, log in as a crypto user (CU).

2. Use the key list command to identify the key reference of the key you want to mark as trusted. 
The following example lists the key with the label key_to_be_trusted.

aws-cloudhsm > key list --filter attr.label=test_aes_trusted
        { 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x0000000000200333", 
        "attributes": { 
          "label": "test_aes_trusted" 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

3. Using the Log out of an HSM using CloudHSM CLI command, log out as a crypto user (CU).

4. Using the Log in to an HSM using CloudHSM CLI command, log in as an admin.

5. Using the key set-attribute command with the key reference you identified in step 2, set the 
key's trusted value to true:

aws-cloudhsm > key set-attribute --filter key-reference=<Key Reference> --name 
 trusted --value true
{ 
  "error_code": 0, 
  "data": { 
    "message": "Attribute set successfully" 
  }
}

Mark a key as trusted 235



AWS CloudHSM User Guide

Manage quorum authentication (M of N access control) using CloudHSM 
CLI

The hardware security modules (HSMs) in your AWS CloudHSM cluster support quorum 
authentication, also known as M of N access control. With quorum authentication, no single user 
on the HSM can perform quorum-controlled operations. Instead, a minimum number of HSM users 
(at least 2) must cooperate to do these operations. Quorum authentication adds an extra layer of 
protection by requiring approvals from multiple HSM users.

Quorum authentication can control the following operations:

• HSM key usage and management by a crypto-user – Creating signatures with a key, or wrapping, 
unwrapping, sharing, unsharing, and setting an attribute of a key.

Important considerations

• An HSM user can sign their own quorum token—that is, the requesting user can provide one of 
the required approvals for quorum authentication.

• You choose the minimum number of quorum approvers for quorum-controlled operations. The 
smallest number you can choose is two (2), and the largest number you can choose is eight (8).

• The HSM can store up to 1,024 quorum tokens. If the HSM already has 1,024 tokens when you 
try to create a new one, the HSM purges one of the expired tokens. By default, tokens expire ten 
minutes after their creation.

• If multi-factor authentication (MFA) is enabled, the cluster uses the same key for quorum 
authentication and for MFA. For more information about using quorum authentication and MFA, 
see Using CloudHSM CLI to manage MFA.

• Each HSM can only contain one token per Admin service at a time, but multiple tokens per 
Crypto User service.

The following topics provide more information about quorum authentication in AWS CloudHSM.

Topics

• Quorum authentication process for CloudHSM CLI

• Supported AWS CloudHSM service names and types for quorum authentication with CloudHSM 
CLI

• Set up quorum authentication for AWS CloudHSM crypto-users using CloudHSM CLI

Manage quorum authentication (M of N) 236



AWS CloudHSM User Guide

• Key management and usage with quorum authentication enabled for AWS CloudHSM using 
CloudHSM CLI

Quorum authentication process for CloudHSM CLI

The following steps summarize the quorum authentication processes for CloudHSM CLI. For the 
specific steps and tools, see Key management and usage with quorum authentication enabled for 
AWS CloudHSM using CloudHSM CLI.

1. Each hardware security module (HSM) user creates an asymmetric key for signing. Users do this 
outside of the HSM, taking care to protect the key appropriately.

2. Each HSM user logs in to the HSM and registers the public part of their signing key (the public 
key) with the HSM.

3. When an HSM user wants to do a quorum-controlled operation, the same user logs in to the 
HSM and gets a quorum token.

4. The HSM user gives the quorum token to one or more other HSM users and asks for their 
approval.

5. The other HSM users approve by using their keys to cryptographically sign the quorum token. 
This occurs outside the HSM.

6. When the HSM user has the required number of approvals, the same user logs in to the HSM 
and runs the quorum-controlled operation with the --approval argument, supplying the signed 
quorum token file, which contains all necessary approvals (signatures).

7. The HSM uses the registered public keys of each signer to verify the signatures. If the signatures 
are valid, the HSM approves the token and the quorum-controlled operation is performed.

Supported AWS CloudHSM service names and types for quorum authentication 
with CloudHSM CLI

Admin Services: Quorum authentication is used for admin privileged services like creating users, 
deleting users, changing user passwords, setting quorum values, and deactivating quorum and MFA 
capabilities.

Crypto User Services: Quorum authentication is used for crypto-user privileged services associated 
with a specific key like signing with a key, sharing/unsharing a key, wrapping/unwrapping a key, 
and setting a key's attribute. The quorum value of an associated key is configured when the key is 

Manage quorum authentication (M of N) 237



AWS CloudHSM User Guide

generated, imported, or unwrapped. The quorum value must be equal to or less than the number 
of users that the key is associated with, which includes users that the key is shared with and the key 
owner.

Each service type is further broken down into a qualifying service name, which contains a specific 
set of quorum supported service operations that can be performed.

Service name Service type Service operations

user Admin • user create

• user delete

• user change-password

• user change-mfa

quorum Admin • quorum token-sign set-
quorum-value

cluster1 Admin • cluster mtls register-trust-
anchor

• cluster mtls deregister-
trust-anchor

• cluster mtls set-enfor 
cement

key-management Crypto User • key wrap

• key unwrap

• key share

• key unshare

• key set-attribute

key-usage Crypto User • key sign

[1] Cluster service is exclusively available on hsm2m.medium

Manage quorum authentication (M of N) 238



AWS CloudHSM User Guide

Set up quorum authentication for AWS CloudHSM crypto-users using CloudHSM 
CLI

These topics describe how to configure your CloudHSM for quorum authentication by crypto-users. 
Perform these steps once during initial setup. For subsequent key management and usage, refer 
to Key management and usage with quorum authentication enabled for AWS CloudHSM using 
CloudHSM CLI.

Topics

• Prerequisites

• Step 1. Create and register a key for signing

• Step 2. Set the key quorum values during key generation

Prerequisites

• Familiarity with the CloudHSM CLI

Step 1. Create and register a key for signing

To use quorum authentication, each crypto-user must complete all of the following steps:

Topics

• Create an RSA key pair

• Create a registration token

• Sign the unsigned registration token

• Register the public key with the HSM

Create an RSA key pair

There are many different ways to create and protect a key pair. The following examples show how 
to do it with OpenSSL.

Example – Create a private key with OpenSSL

The following example demonstrates how to use OpenSSL to create a 2048-bit RSA key. To use this 
example, replace <crypto_user1.key> with the name of the file where you want to store the 
key.

Manage quorum authentication (M of N) 239

https://www.openssl.org/


AWS CloudHSM User Guide

$ openssl genrsa -out <crypto_user1.key>
Generating RSA private key, 2048 bit long modulus
.....................................+++
.+++
e is 65537 (0x10001)

Next, generate the public key using the private key that you just created.

Example – Create a public key with OpenSSL

The following example demonstrates how to use OpenSSL to create a public key from the private 
key you just created.

$ openssl rsa -in crypto_user1.key -outform PEM -pubout -out crypto_user1.pub
writing RSA key

Create a registration token

You create a token and sign it with the private key you just generated in the previous step.

Create a registration token

1. Use the following command to start the CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Create a registration token by running the quorum token-sign generate command:

aws-cloudhsm > quorum token-sign generate --service registration --token /path/
tokenfile
{ 
  "error_code": 0, 
  "data": { 
    "path": "/path/tokenfile" 
  }

Manage quorum authentication (M of N) 240



AWS CloudHSM User Guide

}

3. The quorum token-sign generate command generates a registration token at the specified file 
path. Inspect the token file:

$ cat /path/tokenfile
{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "approval_data": <approval data in base64 encoding>, 
      "unsigned": <unsigned token in base64 encoding>, 
      "signed": "" 
    } 
  ]
}

The token file consists of the following:

• approval_data: A base64 encoded randomized data token whose raw data doesn’t exceed 
the maximum of 245 bytes.

• unsigned: A base64 encoded and SHA256 hashed token of the approval_data.

• signed: A base64 encoded signed token (signature) of the unsigned token, using the RSA 
2048-bit private key previously generated with OpenSSL.

You sign the unsigned token with the private key to demonstrate that you have access to the 
private key. You will need the registration token file fully populated with a signature and the 
public key to register the crypto-user as a quorum user with the AWS CloudHSM cluster.

Sign the unsigned registration token

1. Decode the base64 encoded unsigned token and place it into a binary file:

$ echo -n '6BMUj6mUjjko6ZLCEdzGlWpR5sILhFJfqhW1ej3Oq1g=' | base64 -d > 
 crypto_user.bin

2. Use OpenSSL and the private key to sign the now binary unsigned registration token and 
create a binary signature file:

Manage quorum authentication (M of N) 241



AWS CloudHSM User Guide

$ openssl pkeyutl -sign \
-inkey crypto_user1.key \
-pkeyopt digest:sha256 \
-keyform PEM \
-in crypto_user.bin \
-out crypto_user.sig.bin

3. Encode the binary signature into base64:

$ base64 -w0 crypto_user.sig.bin > crypto_user.sig.b64

4. Copy and paste the base64 encoded signature into the token file:

{ 
  "version": "2.0", 
  "tokens": [ 
    { 
      "approval_data": <approval data in base64 encoding>, 
      "unsigned": <unsigned token in base64 encoding>, 
      "signed": <signed token in base64 encoding>
    } 
  ]
}

Register the public key with the HSM

After creating a key, the crypto-user must register the public key with the AWS CloudHSM cluster.

1. Start CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Sign in as the crypto-user whose public key you want to register.

Manage quorum authentication (M of N) 242



AWS CloudHSM User Guide

aws-cloudhsm > login --username crypto_user1 --role crypto-user
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "crypto_user1", 
    "role": "crypto-user" 
  }
}

3. Register the public key with the Register a user's token-sign quorum strategy using 
CloudHSM CLI. For more information, see the following example or use the help user change-
quorum token-sign register command.

Example – Register a public key with AWS CloudHSM cluster

The following example shows how to use the user change-quorum token-sign register
command in CloudHSM CLI to register a crypto-user public key with the HSM. To use this 
command, the crypto-user must be logged in to the HSM. Replace these values with your own:

aws-cloudhsm > user change-quorum token-sign register --public-key </path/
crypto_user.pub> --signed-token </path/tokenfile>
{ 
  "error_code": 0, 
  "data": { 
    "username": "crypto_user1", 
    "role": "crypto-user" 
  }
}

Note

/path/crypto_user.pub: The filepath to the public key PEM file
Required: Yes
/path/token_file: The filepath with token signed by user private key
Required: Yes

4. After all crypto-users register their public keys, the output from the user list command shows 
this in the quorum field, stating the enabled quorum strategy in use.

Manage quorum authentication (M of N) 243



AWS CloudHSM User Guide

In this example, the AWS CloudHSM cluster has two HSMs, each with the same crypto-users, 
as shown in the following output from the user list command. For more information about 
creating users, see User management with CloudHSM CLI.

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "crypto_user1", 
        "role": "crypto-user", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "crypto_user2", 
        "role": "crypto-user", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 

Manage quorum authentication (M of N) 244



AWS CloudHSM User Guide

      }, 
      { 
        "username": "crypto_user3", 
        "role": "crypto-user", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

Step 2. Set the key quorum values during key generation

To use quorum authentication, a crypto-user must log in to the HSM and then set the associated
key quorum values. This is the minimum number of crypto-user approvals that are required to 
perform HSM key management/usage operations. For more information about the associated key 
commands associated with either key management or key usage, see Supported services and types.

Generate a key pair with key quorum values set

1. Use the following command to start CloudHSM CLI:

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Manage quorum authentication (M of N) 245



AWS CloudHSM User Guide

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Using CloudHSM CLI, log in as a crypto-user.

aws-cloudhsm > login --username crypto_user1 --role crypto-user
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "crypto_user1", 
    "role": "crypto-user" 
  }
}

This example generates an RSA key pair which has key quorum values of two (2) set for both key-
management and key-usage operations. You can choose any value from zero (0) to eight (8), up to 
the total number of crypto-users on the HSM. In this example, the HSM has three (3) crypto-users, 
so the maximum possible value is three (3). Note that in this example we are sharing the key with
<crypto_user2> during key generation. Also note that public keys do not have quorum values.

aws-cloudhsm > key generate-asymmetric-pair rsa \
--public-exponent 65537 \
--modulus-size-bits 2048 \
--public-label rsa-public-key-example \
--private-label rsa-private-key-example \
--public-attributes verify=true \
--private-attributes sign=true
--share-crypto-users crypto_user2 \
--manage-private-key-quorum-value 2 \
--use-private-key-quorum-value 2
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x0000000000640006", 
      "key-info": { 
        "key-owners": [ 
          { 

Manage quorum authentication (M of N) 246



AWS CloudHSM User Guide

            "username": "crypto_user", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-public-key-example", 
        "id": "0x", 
        "check-value": "0x218f50", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xbdf471a3d2a869492f51c767bece8780730ae6479a9a75efffe7cea3594fb28ca518630e7b1d988b45d2fedc830b7ab848448c24c476cacb73d1523278aed289551e07af0fbfabe4811cc4601678bd097b5c0a578249ed1eb0e4878a80ba1ed85ac46eb1fee60d2a8bdd322075196dec4b57fa2cd82af44ad068115ac219bc073ec65c19c97bd883cf26931408d7bc51e237626b8b9b8f2485425907a0eb42f2f4c40018c8dac7ceeb1b646305a2e537ab904346883e41d568264abee0137048e4657d2cf72801810f3212f662b7a7ae134848b922771f6a30aa76718008d9cc74ff8ddcd8d867b05c3d40020d1514999af96889911467191b9f390d8de07f83", 
        "modulus-size-bits": 2048 
      } 
    }, 
    "private_key": { 
      "key-reference": "0x0000000000640007", 

Manage quorum authentication (M of N) 247



AWS CloudHSM User Guide

      "key-info": { 
        "key-owners": [ 
          { 
            "username": "crypto_user", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [ 
          { 
            "username": "crypto_user2", 
            "key-coverage": "full" 
          } 
        ], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 2, 
          "use-key-quorum-value": 2 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-private-key-example", 
        "id": "0x", 
        "check-value": "0x218f50", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 1216, 

Manage quorum authentication (M of N) 248



AWS CloudHSM User Guide

        "public-exponent": "0x010001", 
        "modulus": 
 "0xbdf471a3d2a869492f51c767bece8780730ae6479a9a75efffe7cea3594fb28ca518630e7b1d988b45d2fedc830b7ab848448c24c476cacb73d1523278aed289551e07af0fbfabe4811cc4601678bd097b5c0a578249ed1eb0e4878a80ba1ed85ac46eb1fee60d2a8bdd322075196dec4b57fa2cd82af44ad068115ac219bc073ec65c19c97bd883cf26931408d7bc51e237626b8b9b8f2485425907a0eb42f2f4c40018c8dac7ceeb1b646305a2e537ab904346883e41d568264abee0137048e4657d2cf72801810f3212f662b7a7ae134848b922771f6a30aa76718008d9cc74ff8ddcd8d867b05c3d40020d1514999af96889911467191b9f390d8de07f83", 
        "modulus-size-bits": 2048 
      } 
    } 
  }
}

When generating a key with quorum controls, the key must be associated with a minimum number 
of users equal to the largest key quorum value. Associated users include the key owner and 
Crypto Users with whom the key is shared with. To determine the number of minimum users to 
share the key with, get the largest quorum value between the key usage quorum value and the 
key management quorum value and subtract 1 to account for the key owner, who is by default 
associated with the key. To share the key with more users, use the Share a key using CloudHSM 
CLI command.

Failure to share the key with enough users at key generation will result in failure, as shown below.

aws-cloudhsm > key generate-asymmetric-pair rsa \
--public-exponent 65537 \
--modulus-size-bits 2048 \
--public-label rsa-public-key-example \
--private-label rsa-private-key-example \
--public-attributes verify=true \
--private-attributes sign=true
--share-crypto-users crypto_user2 crypto_user3 \
--manage-private-key-quorum-value 3 \
--use-private-key-quorum-value 4
{ 
  "error_code": 1, 
  "data": "Invalid quorum value provided."
}

Key management and usage with quorum authentication enabled for AWS 
CloudHSM using CloudHSM CLI

After you configure quorum authentication for your AWS CloudHSM cluster, crypto users can't 
perform HSM key management or usage operations on their own if their key has associated 
quorum values. This topic explains how a crypto-user can get a temporary token to perform an 
HSM key management or key usage operation.

Manage quorum authentication (M of N) 249



AWS CloudHSM User Guide

Note

Each quorum token is valid for one operation. When that operation succeeds, the token 
is no longer valid and the crypto-user must obtain a new token. A quorum token is only 
valid during your current login session. If you log out of the CloudHSM CLI or if the network 
disconnects, the token is no longer valid and you need to get a new token. You can only use 
a CloudHSM token within the CloudHSM CLI. You can't use it to authenticate in a different 
application.

The following example shows the output when a crypto-user tries to create a signature with a 
quorum-associated key on the HSM after quorum authentication is configured. The command fails 
with a Quorum Failed error, which means quorum authentication failed:

aws-cloudhsm > crypto sign rsa-pkcs --key-filter attr.label=rsa-private-key-example --
hash-function sha256 --data YWJjMTIz
{ 
  "error_code": 1, 
  "data": "Quorum Failed"
}

A crypto-user must complete the following tasks to get a temporary token for performing a key 
management or key usage operation on the HSM:

Steps

• Step 1. Get a quorum token

• Step 2. Get signatures from approving crypto-users

• Step 3. Approve the token on the CloudHSM; cluster and execute an operation

Step 1. Get a quorum token

1. Start CloudHSM CLI.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Manage quorum authentication (M of N) 250



AWS CloudHSM User Guide

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Log in to the cluster as a crypto-user.

aws-cloudhsm > login --username <crypto_user1> --role crypto-user --
password password123

This example signs crypto_user1 into the CloudHSM CLI with the crypto-user role. 
Replace these values with your own.

{ 
  "error_code": 0, 
  "data": { 
    "username": "crypto_user1", 
    "role": "crypto-user" 
  }
}

3. Generate a quorum token using the quorum token-sign generate command.

In the following command, key-usage identifies the service name where you will use token 
that you are generating. In this case, the token is for key-usage operations (key-usage
service) This example uses the --filter flag to associate the token with a specific key.

aws-cloudhsm > quorum token-sign generate --service key-usage --token </path/
crypto_user1.token> --filter attr.label=rsa-private-key-example
{ 
  "error_code": 0, 
  "data": { 
    "path": "/home/crypto_user1.token" 
  }
}

This example gets a quorum token for the crypto-user with username crypto_user1 and 
saves the token to a file named crypto_user1.token. To use the example command, 
replace these values with your own:

Manage quorum authentication (M of N) 251



AWS CloudHSM User Guide

The quorum token-sign generate command generates a key-usage service quorum token at 
the specified file path. You can inspect the token file:

$ cat </path/crypto_user1.token>
{ 
  "version": "2.0", 
  "service": "key-usage", 
  "key_reference": "0x0000000000680006", 
  "approval_data": 
 "AAIABQAAABkAAAAAAGgABi5CDa9x9VyyRIaFbkSrHgJjcnlwdG9fdXNlcgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnPQBLAAAAAAAAAAAAAgAFAAAAGgAAAAAAaAAGQvd2qKY
+GJj8gXo9lKuANGNyeXB0b191c2VyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGc9AEsAAAAAAAAAAA==", 
  "token": "5GlgoWOlQU4fw4QIlbxkPGZVOVoDugFGuSKE/k67ncM=", 
  "signatures": []
}

The token file consists of the following:

• service: An identifier for the quorum service the token is associated with.

• key_reference: An identifier for the key that this quorum token is associated with.

• approval_data: A base64 encoded raw data token generated by the HSM.

• token: A base64 encoded and SHA-256 hashed token of the approval_data

• signatures: An array of base64 encoded signed tokens (signatures) of the unsigned token. 
Each approver signature is in the form of a JSON object literal:

{ 
      "username": "<APPROVER_USERNAME>", 
      "role": "<APPROVER_ROLE>", 
      "signature": "<APPROVER_RSA2048_BIT_SIGNATURE>"
}

Each signature is created from the result of an approver using their corresponding RSA 
2048-bit private key whose public key was registered with the HSM.

4. Validate the new user service quorum token. The quorum token-sign list command confirms 
that the token exists on CloudHSM.

aws-cloudhsm > quorum token-sign list
{ 
  "error_code": 0, 

Manage quorum authentication (M of N) 252



AWS CloudHSM User Guide

  "data": { 
    "tokens": [ 
      { 
        "username": "crypto_user", 
        "service": "key-usage", 
        "key-reference": "0x0000000000680006", 
        "minimum-token-count": 2 
      } 
    ] 
  }
}

The minimum-token-count presents an aggregated cluster view of the minimum usable 
number of key tokens corresponding to the username, service, and key-reference that are 
retrieved from a single HSM in the cluster.

For example, assuming a 2-HSM cluster, if we receive two (2) key-usage tokens generated by 
user crypto_user1 for key with reference 0x0000000000680006 from the first HSM in 
the cluster and we receive one (1) key-usage tokens generated by user crypto_user1 for 
key with reference 0x0000000000680006 from the other HSM in the cluster, we will display
"minimum-token-count": 1.

Step 2. Get signatures from approving crypto-users

An crypto user who has a quorum token must get the token approved by other crypto-users. To 
give their approval, the other crypto =-users use their signing key to cryptographically sign the 
token outside the HSM.

There are many different ways to sign the token. The following example shows how to sign the 
token using OpenSSL. To use a different signing tool, make sure that the tool uses the private key 
(signing key) of the crypto-user to sign a SHA-256 digest of the token.

In this example, the crypto-user that has the token (crypto-user) needs at least two (2) 
approvals. The following example commands show how two (2) crypto-users can use OpenSSL to 
cryptographically sign the token.

1. Decode the base64 encoded unsigned token and place it into a binary file:

$echo -n '5GlgoWOlQU4fw4QIlbxkPGZVOVoDugFGuSKE/k67ncM=' | base64 -d > 
 crypto_user1.bin

Manage quorum authentication (M of N) 253

https://www.openssl.org/


AWS CloudHSM User Guide

2. Use OpenSSL and the approver's private key to sign the binary quorum unsigned token for the 
user service and create a binary signature file:

$openssl pkeyutl -sign \
-inkey crypto_user1.key \
-pkeyopt digest:sha256 \
-keyform PEM \
-in crypto_user1.bin \
-out crypto_user1.sig.bin

3. Encode the binary signature into base64:

$ base64 -w0 crypto_user1.sig.bin > crypto_user1.sig.b64

4. Copy and paste the base64 encoded signature into the token file, using the JSON object literal 
format specified earlier for approver signature:

{ 
  "version": "2.0", 
  "service": "key-usage", 
  "key_reference": "0x0000000000680006", 
  "approval_data": 
 "AAIABQAAABkAAAAAAGgABi5CDa9x9VyyRIaFbkSrHgJjcnlwdG9fdXNlcgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnPQBLAAAAAAAAAAAAAgAFAAAAGgAAAAAAaAAGQvd2qKY
+GJj8gXo9lKuANGNyeXB0b191c2VyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGc9AEsAAAAAAAAAAA==", 
  "token": "5GlgoWOlQU4fw4QIlbxkPGZVOVoDugFGuSKE/k67ncM=", 
  "signatures": [ 
    { 
      "username": "crypto_user1", 
      "role": "crypto-user", 
      "signature": "wa7aPzmGwBjcEoZ6jAzYASp841AfgOvcI27Y/
tGlCj1E9DawnFw5Uf0IJT2Ca7T5XD2ThVkUi0B+dhAomdqYNl6aUUFrJyH9GBJ
+E0PmA5jNVm25tzeRWBJzneTg4/
zTeE2reNqrHFHicWnttQLe9jS09J1znuDGWDe0HaBKWUaz2gUInJRqmeXDsZYdSvZksrqUH5dci/
RsaDE2+tGiS9g0RcIkFbsPW4HpGe2e5HVzGsqrV8O3PKlYQv6+fymfcNTTuoxKcHAkOjpl43QSuSIu2gVq7KI8mSmmWaPJL47NPjmcBVB5vdEQU
+oiukaNfLJr+MoDKzAvCGDg4cDArg==" 
    }, 
    { 
      "username": "crypto_user2", 
      "role": "crypto-user", 
      "signature": "wa7aPzmGwBjcEoZ6jAzYASp841AfgOvcI27Y/
tGlCj1E9DawnFw5Uf0IJT2Ca7T5XD2ThVkUi0B+dhAomdqYNl6aUUFrJyH9GBJ
+E0PmA5jNVm25tzeRWBJzneTg4/
zTeE2reNqrHFHicWnttQLe9jS09J1znuDGWDe0HaBKWUaz2gUInJRqmeXDsZYdSvZksrqUH5dci/

Manage quorum authentication (M of N) 254



AWS CloudHSM User Guide

RsaDE2+tGiS9g0RcIkFbsPW4HpGe2e5HVzGsqrV8O3PKlYQv6+fymfcNTTuoxKcHAkOjpl43QSuSIu2gVq7KI8mSmmWaPJL47NPjmcBVB5vdEQU
+oiukaNfLJr+MoDKzAvCGDg4cDArg==" 
    } 
  ]
}

Step 3. Approve the token on the CloudHSM; cluster and execute an operation

After a crypto-user has the necessary approvals and signatures, they can supply that token to the 
CloudHSM cluster along with a key management or key usage operation.

Make sure the key operation corresponds to the appropriate quorum service associated with the 
quorum token. For more information, see Supported services and types for more information.

During the transaction, the token will be approved within the AWS CloudHSM cluster and execute 
the requested key operation. The success of the key operation is contingent upon both a valid 
approved quorum token and a valid key operation.

Example Generate a signature with the RSA-PKCS mechanism

In the following example, a logged in crypto-user creates a signature with a key on the HSM:

aws-cloudhsm > crypto sign rsa-pkcs --key-filter attr.label=rsa-private-key-example --
hash-function sha256 --data YWJjMTIz --approval /path/crypto_user1.token
      
{ 
  "error_code": 0, 
  "data": { 
    "key-reference": "0x0000000000640007", 
    "signature": 
 "h6hMqXacBrT3x3MXV13RXHdQno0+IQ6iy0kVrGzo23+eoWT0ZZgrSpBCu5KcuP6IYYHw9goQ5CfPf4jI1nO5m/
IUJtF1A1lmcz0HjEy1CJ7ICXNReDRyeOU8m43dkJzt0OUdkbtkDJGAcxkbKHLZ02uWsGXaQ8bOKhoGwsRAHHF6nldTXquICfOHgSd4nimObKTqzUkghhJW5Ot5oUyLMYP
+pZmUS38ythybney94Wj6fzYOER8v7VIY5ijQGa3LfxrjSG4aw6QijEEbno5LSf18ahEaVKmVEnDBL54tylCJBGvGsYSY9HNhuJoHPgiDL/
TDd2wfvP4PaxbFRyyHaw==" 
  }
}

If the crypto user tries to perform another HSM key usage operation with the same token, it fails:

aws-cloudhsm > crypto sign rsa-pkcs --key-filter attr.label=rsa-private-key-example --
hash-function sha256 --data YWJjMTIz --approval /home/crypto_user1.token

Manage quorum authentication (M of N) 255



AWS CloudHSM User Guide

{ 
  "error_code": 1, 
  "data": "Quorum approval is required for this operation"
}

To perform another HSM key operation, the crypto user must generate a new quorum token, 
get new signatures from approvers, and execute the desired key operation with the --approval 
argument to supply the quorum token.

Use the quorum token-sign list to check for available token. This example shows that the crypto-
user has no approved tokens.

aws-cloudhsm > quorum token-sign list
{ 
  "error_code": 0, 
  "data": { 
    "tokens": [] 
  }
}

Key management with the AWS CloudHSM KMU

If using the latest SDK version series, use CloudHSM CLI to manage the keys in your AWS 
CloudHSM cluster.

If using the previous SDK version series, you can manage keys on the hardware security modules 
(HSM) in your AWS CloudHSM cluster using the key_mgmt_util (KMU) command line tool. Before 
you can manage keys, you must start the AWS CloudHSM client, start key_mgmt_util, and log in to 
the HSMs. For more information, see Getting Started with key_mgmt_util.

• Using trusted keys describes how to use PKCS #11 library attributes and CMU to create trusted 
keys to secure data.

• Generating keys has instructions on generating keys, including symmetric keys, RSA keys, and EC 
keys.

• Importing keys provides details on how key owners import keys.

• Exporting keys provides details on how key owners export keys.

• Deleting keys provides details on how key owners delete keys.

Key management with KMU 256



AWS CloudHSM User Guide

• Sharing and unsharing keys details how key owners share and unshare keys.

Generate keys with the AWS CloudHSM KMU

To generate keys on the hardware security module (HSM), use the command in AWS CloudHSM 
key_mgmt_util (KMU) that corresponds to the type of key that you want to generate.

Topics

• Generate symmetric keys with the AWS CloudHSM KMU

• Generate RSA key pairs with the AWS CloudHSM KMU

• Generate ECC (elliptic curve cryptography) key pairs using the AWS CloudHSM KMU

Generate symmetric keys with the AWS CloudHSM KMU

Use the genSymKey command in AWS CloudHSM key_mgmt_util (KMU) to generate AES and other 
types of symmetric keys for AWS CloudHSM. To see all available options, use the genSymKey -h
command.

The following example creates a 256-bit AES key.

Command: genSymKey -t 31 -s 32 -l aes256
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS

Symmetric Key Created.  Key Handle: 524295

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Generate RSA key pairs with the AWS CloudHSM KMU

To generate an RSA key pair for AWS CloudHSM, use the genRSAKeyPair command in AWS 
CloudHSM key_mgmt_util. To see all available options, use the genRSAKeyPair -h command.

The following example generates an RSA 2048-bit key pair.

Command: genRSAKeyPair -m 2048 -e 65537 -l rsa2048

Generate keys 257



AWS CloudHSM User Guide

Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS

Cfm3GenerateKeyPair:    public key handle: 524294    private key handle: 524296

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Generate ECC (elliptic curve cryptography) key pairs using the AWS CloudHSM 
KMU

To generate an ECC key pair for AWS CloudHSM, use the genECCKeyPair command in AWS 
CloudHSM key_mgmt_util. To see all available options, including a list of the supported elliptic 
curves, use the genECCKeyPair -h command.

The following example generates an ECC key pair using the P-384 elliptic curve defined in NIST 
FIPS publication 186-4.

Command: genECCKeyPair -i 14 -l ecc-p384
Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS

Cfm3GenerateKeyPair:    public key handle: 524297    private key handle: 524298

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Import keys with the AWS CloudHSM KMU

To import secret keys—that is, symmetric keys and asymmetric private keys—into the hardware 
security module (HSM) using the AWS CloudHSM key_mgmt_util, you must first create a wrapping 
key on the HSM. You can import public keys directly without a wrapping key.

Topics

• Import secret keys with the AWS CloudHSM KMU

• Import public keys with the AWS CloudHSM KMU

Import keys 258

http://dx.doi.org/10.6028/NIST.FIPS.186-4
http://dx.doi.org/10.6028/NIST.FIPS.186-4


AWS CloudHSM User Guide

Import secret keys with the AWS CloudHSM KMU

Complete the following steps to import a secret key into AWS CloudHSM using the key_mgmt_util 
(KMU). Before you import a secret key, save it to a file. Save symmetric keys as raw bytes, and 
asymmetric private keys in PEM format.

This example shows how to import a plaintext secret key from a file into the HSM. To import an 
encrypted key from a file into the HSM, use the unWrapKey command.

To import a secret key

1. Use the genSymKey command to create a wrapping key. The following command creates a 
128-bit AES wrapping key that is valid only for the current session. You can use a session key 
or a persistent key as a wrapping key.

Command: genSymKey -t 31 -s 16 -sess -l import-wrapping-key
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS

Symmetric Key Created.  Key Handle: 524299

Cluster Error Status
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

2. Use one of the following commands, depending on the type of secret key that you are 
importing.

• To import a symmetric key, use the imSymKey command. The following command imports 
an AES key from a file named aes256.key using the wrapping key created in the previous 
step. To see all available options, use the imSymKey -h command.

Command: imSymKey -f aes256.key -t 31 -l aes256-imported -w 524299
Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS

Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS

Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS

Symmetric Key Unwrapped.  Key Handle: 524300

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

Import keys 259



AWS CloudHSM User Guide

Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

• To import an asymmetric private key, use the importPrivateKey command. The following 
command imports a private key from a file named rsa2048.key using the wrapping key 
created in the previous step. To see all available options, use the importPrivateKey -h
command.

Command: importPrivateKey -f rsa2048.key -l rsa2048-imported -w 524299
BER encoded key length is 1216

Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS

Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS

Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS

Private Key Unwrapped.  Key Handle: 524301

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Import public keys with the AWS CloudHSM KMU

Use the importPubKey command in the AWS CloudHSM key_mgmt_util (KMU) to import a public 
key. To see all available options, use the importPubKey -h command.

The following example imports an RSA public key from a file named rsa2048.pub.

Command: importPubKey -f rsa2048.pub -l rsa2048-public-imported
Cfm3CreatePublicKey returned: 0x00 : HSM Return: SUCCESS

Public Key Handle: 524302

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Import keys 260



AWS CloudHSM User Guide

Export keys with the AWS CloudHSM KMU

To export AWS CloudHSM secret keys—that is, symmetric keys and asymmetric private keys—from 
the hardware security module (HSM) using the AWS CloudHSM key_mgmt_util (KMU), you must 
first create a wrapping key. You can export public keys directly without a wrapping key.

Only the key owner can export a key. Users with whom the key is shared can use the key in 
cryptographic operations, but they cannot export it. When running this example, be sure to export 
a key that you created.

Important

The exSymKey command writes a plaintext (unencrypted) copy of the secret key to a file. 
The export process requires a wrapping key, but the key in the file is not a wrapped key. To 
export a wrapped (encrypted) copy of a key, use the wrapKey command.

Topics

• Export secret keys with the AWS CloudHSM KMU

• Export public keys with the AWS CloudHSM KMU

Export secret keys with the AWS CloudHSM KMU

Complete the following steps to export a secret key from AWS CloudHSM using the key_mgmt_util 
(KMU).

To export a secret key

1. Use the genSymKey command to create a wrapping key. The following command creates a 
128-bit AES wrapping key that is valid only for the current session.

Command: genSymKey -t 31 -s 16 -sess -l export-wrapping-key
Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS

Symmetric Key Created.  Key Handle: 524304

Cluster Error Status
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Export keys 261



AWS CloudHSM User Guide

2. Use one of the following commands, depending on the type of secret key that you are 
exporting.

• To export a symmetric key, use the exSymKey command. The following command exports an 
AES key to a file named aes256.key.exp. To see all available options, use the exSymKey -
h command.

Command: exSymKey -k 524295 -out aes256.key.exp -w 524304
Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS

Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Wrapped Symmetric Key written to file "aes256.key.exp"

Note

The command's output says that a "Wrapped Symmetric Key" is written to the 
output file. However, the output file contains a plaintext (not wrapped) key. To 
export a wrapped (encrypted) key to a file, use the wrapKey command.

• To export a private key, use the exportPrivateKey command. The following command 
exports a private key to a file named rsa2048.key.exp. To see all available options, use 
the exportPrivateKey -h command.

Command: exportPrivateKey -k 524296 -out rsa2048.key.exp -w 524304
Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS

Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

PEM formatted private key is written to rsa2048.key.exp

Export public keys with the AWS CloudHSM KMU

Use the exportPubKey command in the AWS CloudHSM key_mgmt_util (KMU) to export a public 
key. To see all available options, use the exportPubKey -h command.

The following example exports an RSA public key to a file named rsa2048.pub.exp.

Export keys 262



AWS CloudHSM User Guide

Command: exportPubKey -k 524294 -out rsa2048.pub.exp
PEM formatted public key is written to rsa2048.pub.key

Cfm3ExportPubKey returned: 0x00 : HSM Return: SUCCESS

Delete keys with KMU and CMU

Use the deleteKey command to delete a key, as in the following example. Only the key owner can 
delete a key.

Command: deleteKey -k 524300
Cfm3DeleteKey returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Share and unshare keys with KMU and CMU

In AWS CloudHSM, the CU who creates the key owns it. The owner manages the key, can export 
and delete it, and can use the key in cryptographic operations. The owner can also share the 
key with other CU users. Users with whom the key is shared can use the key in cryptographic 
operations, but they cannot export or delete the key, or share it with other users.

You can share keys with other CU users when you create the key, such as by using the -u parameter 
of the genSymKey or genRSAKeyPair commands. To share existing keys with a different HSM 
user, use the cloudhsm_mgmt_util command line tool. This is different from most of the tasks 
documented in this section, which use the key_mgmt_util command line tool.

Before you can share a key, you must start cloudhsm_mgmt_util, enable end-to-end encryption, 
and log in to the HSMs. To share a key, log in to the HSM as the crypto user (CU) that owns the key. 
Only key owners can share a key.

Use the shareKey command to share or unshare a key, specifying the handle of the key and the IDs 
of the user or users. To share or unshare with more than one user, specify a comma-separated list 
of user IDs. To share a key, use 1 as the command's last parameter, as in the following example. To 
unshare, use 0.

aws-cloudhsm > shareKey 524295 4 1

Delete keys 263



AWS CloudHSM User Guide

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y
shareKey success on server 0(10.0.2.9)
shareKey success on server 1(10.0.3.11)
shareKey success on server 2(10.0.1.12)

The following shows the syntax for the shareKey command.

aws-cloudhsm > shareKey <key handle> <user ID> <Boolean: 1 for share, 0 for unshare>

How to mark a key as trusted with the AWS CloudHSM Management 
Utility

The content in this section provides instructions on using the AWS CloudHSM management Utility 
(CMU) to mark a key as trusted.

1. Using the loginHSM command, log in as a crypto officer (CO).

2. Use the Set the attributes of AWS CloudHSM keys using CMU command with
OBJ_ATTR_TRUSTED (value 134) set to true (1).

aws-cloudhsm > setAttribute <Key Handle> 134 1

Mark a key as trusted 264



AWS CloudHSM User Guide

Cluster backups in AWS CloudHSM

AWS CloudHSM makes periodic backups of your cluster at least once every 24 hours. Each backup 
contains encrypted copies of the following data:

• Users (COs, CUs, and AUs)

• Key material and certificates

• Hardware security module (HSM) configuration and policies

You can't instruct the service to make backups, but you can take certain actions that force the 
service to create a backup. The service makes a backup when you perform any of the following 
actions:

• Activate a cluster

• Add an HSM to an active cluster

• Remove an HSM from an active cluster

AWS CloudHSM deletes backups based on the backup retention policy you set when you create 
clusters. For information about managing backup retention policy, see Configure backup retention.

Topics

• Working with AWS CloudHSM cluster backups

• Delete AWS CloudHSM cluster backups

• Restore AWS CloudHSM backups

• Configure AWS CloudHSM backup retention policy

• Copying AWS CloudHSM cluster backups across AWS Regions

• Working with shared backups in AWS CloudHSM

Working with AWS CloudHSM cluster backups

When you add a hardware security module (HSM) to a cluster in AWS CloudHSM that previously 
contained one or more active HSMs, the service restores the latest backup onto the new HSM. Use 
backups to manage HSMs you use infrequently. When you don't need the HSM, delete it to trigger 

Working with backups 265



AWS CloudHSM User Guide

a backup. Later, when you need the HSM, create a new one in the same cluster, and this action will 
restore the backup you previously created with the delete HSM operation.

Removing expired keys or inactive users

You may want to remove unwanted cryptographic materials from your environment such as 
expired keys or inactive users. This is a two-step process. First, delete these materials from your 
HSM. Next, delete all existing backups. Following this process ensures you do not restore deleted 
information when initializing a new cluster from backup. For more information, see the section 
called “Delete backups”.

Considering disaster recovery

You can create a cluster from a backup. You might want to do this to set a recovery point for your 
cluster. Nominate a backup that contains all the users, key material, certificates that you want in 
your recovery point, and then use that backup to create a new cluster. For more information about 
creating a cluster from a backup, see Creating clusters from backups.

You can also copy a backup of a cluster into a different region, where you can create a new cluster 
as a clone of the original. You may want to do this for a number of reasons, including simplification 
of the disaster recovery process. For more information about copying backups to regions, see
Copying backups across Regions.

Delete AWS CloudHSM cluster backups

After you delete an AWS CloudHSM cluster backup, the service holds the backup for seven days, 
during which time you can restore the backup. After the seven-day period, you can no longer 
restore the backup. For more information about managing backups, see Cluster backups.

The following table describes how to delete a backup.

Console

To delete a backup (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Backups.

4. Choose a backup to delete.

Removing expired keys or inactive users 266

https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

5. To delete the selected backup, choose Actions, Delete.

The Delete backups dialog box appears.

6. Choose Delete.

The state of the backup changes to PENDING_DELETE. You can restore a backup that is 
pending deletion for up to 7 days after you request the deletion.

To list backups (AWS CLI)

• To see a list of all backups in the PENDING_DELETION state, run the describe-backups
command and include states=PENDING_DELETION as a filter.

$ aws cloudhsmv2 describe-backups --filters states=PENDING_DELETION
{ 
    "Backups": [ 
        { 
            "BackupId": "backup-ro5c4er4aac", 
            "BackupState": "PENDING_DELETION", 
            "ClusterId": "cluster-dygnwhmscg5", 
            "CreateTimestamp": 1534461854.64, 
            "DeleteTimestamp": 1536339805.522, 
            "HsmType": "hsm2m.medium", 
            "Mode": "NON_FIPS", 
            "NeverExpires": false, 
            "TagList": [] 
        }
}

AWS CLI

Check the status of a backup or find its ID by using the describe-backups command from the 
AWS CLI.

To delete a backup (AWS CLI)

• At a command prompt, run the delete-backup command, passing the ID of the backup to 
be deleted.

$ aws cloudhsmv2 delete-backup --backup-id <backup ID>

Delete backups 267

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-backups.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/delete-backup.html


AWS CloudHSM User Guide

{ 
    "Backup": { 
        "CreateTimestamp": 1534461854.64, 
        "ClusterId": "cluster-dygnwhmscg5", 
        "BackupId": "backup-ro5c4er4aac", 
        "BackupState": "PENDING_DELETION", 
        "DeleteTimestamp": 1536339805.522, 
        "HsmType": "hsm1.medium", 
        "Mode": "FIPS"        
    }
}

AWS CloudHSM API

Refer to DeleteBackup to learn how to delete backups by using the API.

Restore AWS CloudHSM backups

AWS CloudHSM holds deleted backups for seven days, during which time you can restore the 
backup. After the seven-day period, you can no longer restore the backup. For more information 
about managing backups, see Cluster backups.

The following table describes how to delete a backup.

Console

To restore a backup (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Backups.

4. Choose a backup in the PENDING_DELETE state to restore.

5. To restore the selected backup, choose Actions, Restore.

Restore backups 268

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DeleteBackup.html
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

AWS CLI

To restore a backup (AWS CLI)

• To restore a backup, issue the restore-backup command, passing the ID of a backup that is 
in the PENDING_DELETION state.

$ aws cloudhsmv2 restore-backup --backup-id <backup ID>
{ 
    "Backup": { 
        "ClusterId": "cluster-dygnwhmscg5", 
        "CreateTimestamp": 1534461854.64, 
        "BackupState": "READY", 
        "BackupId": "backup-ro5c4er4aac" 
    }
}

AWS CloudHSM API

Refer to RestoreBackup to learn how to restore backups by using the API.

Configure AWS CloudHSM backup retention policy

AWS CloudHSM purges backups based on the backup retention policy you set when you create 
a cluster. Backup retention policy applies to clusters. If you move a backup to a different region, 
that backup is no longer associated with a cluster and has no backup retention policy. You must 
manually delete any backups not associated with a cluster. AWS CloudHSM does not delete a 
cluster's last backup.

AWS CloudTrail reports backups marked for deletion. You can restore backups the service purges 
just as you would restore manually deleted backups. To prevent a race condition, you should 
change the backup retention policy for the cluster before you restore a backup deleted by the 
service. If you want to keep the retention policy the same and preserve select backups, you can 
specify that the service exclude backups from the cluster backup retention policy.

Managed backup retention

Clusters created before 18 November 2020 have a backup retention policy of 90 days plus the age 
of the cluster. For example, if you created a cluster on 18 November 2019, the service would assign 

Configure backup retention 269

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/restore-backup.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_RestoreBackup.html


AWS CloudHSM User Guide

your cluster a backup retention policy of one year plus 90 days (455 days). You can set this period 
to any number between 7 and 379 days. AWS CloudHSM does not delete a cluster's last backup. 
For more information about managing backups, see Cluster backups.

Note

You can opt out of managed backup retention altogether by contacting support (https:// 
aws.amazon.com/support).

The following table describes how to set the backup retention.

Console

To configure backup retention policy (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. Click the cluster ID of a cluster in the Active state to manage the backup retention policy 
for that cluster.

4. To change the backup retention policy, choose Actions, Change backup retention period.

The Change backup retention period dialog box appears.

5. In Backup retention period (in days), type a value between 7 and 379 days.

6. Choose Change backup retention period.

To exclude or include a backup from backup retention policy (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To view your backups, in the navigation pane choose Backups.

3. Click the backup ID of a backup in the Ready state to exclude or include.

4. On the Backup details page, take one of the following actions.

• To exclude a backup with a date in Expiration time, choose Actions, Disable 
expiration.

• To include a backup that does not expire, choose Actions, Use cluster retention policy.

Managed backup retention 270

https://aws.amazon.com/support
https://aws.amazon.com/support
https://console.aws.amazon.com/cloudhsm/home
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

AWS CLI

To configure backup retention policy (AWS CLI)

• At a command prompt, issue the modify-cluster command. Specify the cluster ID and the 
backup retention policy.

$ aws cloudhsmv2 modify-cluster --cluster-id <cluster ID> \ 
                                --backup-retention-policy  
 Type=DAYS,Value=<number of days to retain backups>
{ 
   "Cluster": {  
      "BackupPolicy": "DEFAULT", 
      "BackupRetentionPolicy": { 
         "Type": "DAYS", 
         "Value": 90 
      }, 
      "Certificates": {}, 
      "ClusterId": "cluster-kdmrayrc7gi", 
      "CreateTimestamp": 1504903546.035, 
      "Hsms": [], 
      "HsmType": "hsm1.medium", 
      "SecurityGroup": "sg-40399d28", 
      "State": "ACTIVE", 
      "SubnetMapping": {  
         "us-east-2a": "subnet-f1d6e798", 
         "us-east-2c": "subnet-0e358c43", 
         "us-east-2b": "subnet-40ed9d3b"  
      }, 
      "TagList": [  
         {  
            "Key": "Cost Center", 
            "Value": "12345" 
         } 
      ], 
      "VpcId": "vpc-641d3c0d" 
   }
}

Managed backup retention 271



AWS CloudHSM User Guide

To exclude a backup from backup retention policy (AWS CLI)

• At a command prompt, issue the modify-backup-attributes command. Specify the backup 
ID and set the never-expires flag to preserve the backup.

$ aws cloudhsmv2 modify-backup-attributes --backup-id <backup ID> \ 
                                          --never-expires
{ 
   "Backup": {  
      "BackupId": "backup-ro5c4er4aac", 
      "BackupState": "READY", 
      "ClusterId": "cluster-dygnwhmscg5", 
      "NeverExpires": true 
   }
}

To include a backup in backup retention policy (AWS CLI)

• At a command prompt, issue the modify-backup-attributes command. Specify the backup 
ID and set the no-never-expires flag to include the backup in backup retention policy, which 
means the service will eventually delete the backup.

$ aws cloudhsmv2 modify-backup-attributes --backup-id <backup ID> \ 
                                          --no-never-expires
{ 
   "Backup": {  
      "BackupId": "backup-ro5c4er4aac", 
      "BackupState": "READY", 
      "ClusterId": "cluster-dygnwhmscg5", 
      "NeverExpires": false 
   }
}

AWS CloudHSM API

Refer to the following topics to learn how to manage backup retention by using the API.

• ModifyCluster

• ModifyBackupAttributes

Managed backup retention 272

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_ModifyCluster.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_ModifyBackupAttributes.html


AWS CloudHSM User Guide

Copying AWS CloudHSM cluster backups across AWS Regions

You can copy AWS CloudHSM cluster backups across Regions for many reasons, including cross-
region resilience, global workloads, and disaster recovery. After you copy backups, they appear in 
the destination region with a CREATE_IN_PROGRESS status. Upon successful completion of the 
copy, the status of the backup changes to READY. If the copy fails, the status of the backup changes 
to DELETED. Check your input parameters for errors and ensure that the specified source backup is 
not in a DELETED state before rerunning the operation. For information about backups or how to 
create a cluster from a backup, see Cluster backups or Creating clusters from backups.

Note the following:

• To copy a cluster backup to a destination region, your account must have the proper IAM policy 
permissions. In order to copy the backup to a different region, your IAM policy must allow access 
to the source region in which the backup is located. Once copied across regions, your IAM policy 
must allow access to the destination region in order to interact with the copied backup, which 
includes using the CreateCluster operation. For more information, see Create IAM administrators.

• The original cluster and the cluster that may be built from a backup in the destination region are 
not linked. You must manage each of these clusters independently. For more information, see
Clusters.

• Backups cannot be copied between AWS restricted regions and standard regions. Backups can be 
copied between the AWS GovCloud (US-East) and AWS GovCloud (US-West) regions.

Copy backups to different Regions (console)

To copy backups to different Regions (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Backups.

4. Choose a backup to copy to a different region.

5. To copy the selected backup, choose Actions, Copy backup to another region.

The Copy backup to another region dialog box appears.

6. In Destination region, choose a region from Select a region.

Copying backups across Regions 273

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateCluster.html
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

7. (Optional) Type a tag key and an optional tag value. To add more than one tag to the cluster, 
choose Add tag.

8. Choose Copy backup.

Copy backups to different Regions (AWS CLI)

To determine the backup ID, run the describe-backups command.

To copy backups to different regions (AWS CLI)

• At a command prompt, run the  copy-backup-to-region command. Specify the destination 
region and the backup ID of the source backup. If you specify a backup ID, the associated 
backup is copied.

$ aws cloudhsmv2 copy-backup-to-region --destination-region <destination region> \ 
                                           --backup-id <backup ID>

Copy backups to different Regions (AWS CloudHSM API)

Refer to the following topic to learn how to copy backups to different regions by using the API.

• CopyBackupToRegion

Working with shared backups in AWS CloudHSM

CloudHSM integrates with AWS Resource Access Manager (AWS RAM) to enable resource sharing. 
AWS RAM is a service that enables you to share some CloudHSM resources with other AWS 
accounts or through AWS Organizations. With AWS RAM, you share resources that you own by 
creating a resource share. A resource share specifies the resources to share, and the consumers with 
whom to share them. Consumers can include:

• Specific AWS accounts inside or outside of its organization in AWS Organizations

• An organizational unit inside its organization in AWS Organizations

• An entire organization in AWS Organizations

Copy backups to different Regions (AWS CLI) 274

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-backups.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/copy-backup-to-region.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CopyBackupToRegion.html


AWS CloudHSM User Guide

For more information about AWS RAM, see the AWS RAM User Guide.

This topic explains how to share resources that you own, and how to use resources that are shared 
with you.

Contents

• Prerequisites for sharing backups

• Sharing a backup

• Unsharing a shared backup

• Identifying a shared backup

• Permissions for shared backups

• Billing and metering

Prerequisites for sharing backups

• To share a backup, you must own it in your AWS account. This means that the resource must be 
allocated or provisioned in your account. You cannot share a backup that has been shared with 
you.

• To share a backup, it must be in the READY state.

• To share a backup with your organization or an organizational unit in AWS Organizations, you 
must enable sharing with AWS Organizations. For more information, see  Enable Sharing with 
AWS Organizations in the AWS RAM User Guide.

Sharing a backup

When you share a backup with other AWS accounts, you enable them to restore clusters from the 
backup which contain the keys and users stored in the backup.

To share a backup, you must add it to a resource share. A resource share is an AWS RAM resource 
that lets you share your resources across AWS accounts. A resource share specifies the resources 
to share, and the consumers with whom they are shared. When you share a backup using the 
CloudHSM console, you add it to an existing resource share. To add the backup to a new resource 
share, you must first create the resource share using the AWS RAM console.

If you are part of an organization in AWS Organizations and sharing within your organization is 
enabled, consumers in your organization are automatically granted access to the shared backup. 

Prerequisites for sharing backups 275

https://docs.aws.amazon.com/ram/latest/userguide/
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-orgs
https://docs.aws.amazon.com/ram/latest/userguide/getting-started-sharing.html#getting-started-sharing-orgs
https://console.aws.amazon.com/ram


AWS CloudHSM User Guide

Otherwise, consumers receive an invitation to join the resource share and are granted access to the 
shared backup after accepting the invitation.

You can share a backup that you own using the AWS RAM console or AWS CLI.

To share a backup that you own using the AWS RAM console

See Creating a Resource Share in the AWS RAM User Guide.

To share a backup that you own (AWS RAM command)

Use the create-resource-share command.

To share a backup that you own (CloudHSM command)

Important

While you can share a backup using the CloudHSM PutResourcePolicy operation, we 
recommend using AWS Resource Access Manager (AWS RAM) instead. Using AWS RAM 
provides multiple benefits as it creates the policy for you, allows multiple resources to 
be shared at one time, and increases the discoverability of shared resources. If you use 
PutResourcePolicy and want consumers to be able to describe the backups you shared with 
them, you must promote the backup to a standard AWS RAM Resource Share using the 
AWS RAM PromoteResourceShareCreatedFromPolicy API operation.

Use the put-resource-policy command.

1. Create a file named policy.json and copy the following policy into it.

{ 
  "Version":"2012-10-17", 
  "Statement":[{ 
    "Effect":"Allow", 
    "Principal":{ 
      "AWS":"<consumer-aws-account-id-or-user>" 
    }, 
    "Action":[ 
      "cloudhsm:CreateCluster", 
      "cloudhsm:DescribeBackups"], 
    "Resource":"<arn-of-backup-to-share>" 
  }]

Sharing a backup 276

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html#working-with-sharing-create
https://docs.aws.amazon.com/cli/latest/reference/ram/create-resource-share.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/put-resource-policy.html


AWS CloudHSM User Guide

}

2. Update policy.json with the backup ARN and identifiers to share it with. The following 
example grants read-only access to the root user for the AWS account identified by 
123456789012.

{ 
  "Version":"2012-10-17", 
  "Statement":[{ 
    "Effect":"Allow", 
    "Principal":{ 
      "AWS": [ 
        "account-id" 
      ] 
    }, 
    "Action":[ 
      "cloudhsm:CreateCluster", 
      "cloudhsm:DescribeBackups"], 
    "Resource":"arn:aws:cloudhsm:us-west-2:123456789012:backup/backup-123" 
  }]
}

Important

You can only grant permissions to DescribeBackups at the account level. When 
you share a backup with another customer, any principal that has DescribeBackups 
permission in that account can describe the backup.

3. Run the put-resource-policy command.

$ aws cloudhsmv2 put-resource-policy --resource-arn <resource-arn> --policy file://
policy.json

Note

At this point, the consumer can use the backup but it will not show up in the 
DescribeBackups response with the shared parameter. The next steps describe how to 
promote the AWS RAM resource share in order for the backup to be included in the 
response.

Sharing a backup 277

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/put-resource-policy.html


AWS CloudHSM User Guide

4. Get the AWS RAM resource share ARN.

$ aws ram list-resources --resource-owner SELF --resource-arns <backup-arn>

This returns a response similar to this:

{ 
  "resources": [ 
    { 
      "arn": "<project-arn>", 
      "type": "<type>", 
      "resourceShareArn": "<resource-share-arn>", 
      "creationTime": "<creation-time>", 
      "lastUpdatedTime": "<last-update-time>" 
    } 
  ]
}

From the response, copy the <resource-share-arn> value to use in the next steps.

5. Run the AWS RAM promote-resource-share-created-from-policy command.

$ aws ram promote-resource-share-created-from-policy --resource-share-
arn <resource-share-arn>

6. To validate that the resource share has been promoted, you can run the AWS RAM get-
resource-shares command.

$ aws ram get-resource-shares --resource-owner SELF --resource-share-
arns <resource-share-arn>

When the policy has been promoted, the featureSet listed in the response is STANDARD. This 
also means the backup can be described by the new accounts in the policy.

Unsharing a shared backup

When you unshare a resource, the consumer may no longer use it to restore a cluster. Consumers 
will still be able to access any clusters that they restored from the shared backup.

Unsharing a shared backup 278

https://docs.aws.amazon.com/cli/latest/reference/ram/promote-resource-share-created-from-policy.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-shares.html
https://docs.aws.amazon.com/cli/latest/reference/ram/get-resource-shares.html


AWS CloudHSM User Guide

To unshare a shared backup that you own, you must remove it from the resource share. You can do 
this using the AWS RAM console or AWS CLI.

To unshare a shared backup that you own using the AWS RAM console

See Updating a Resource Share in the AWS RAM User Guide.

To unshare a shared backup that you own (AWS RAM command)

Use the disassociate-resource-share command.

To unshare a shared backup that you own (CloudHSM command)

Use the delete-resource-policy command.

$ aws cloudhsmv2 delete-resource-policy --resource-arn <resource-arn>

Identifying a shared backup

Consumers can identify a backup shared with them using the CloudHSM console and AWS CLI.

To identify backups shared with you using the CloudHSM console

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Backups.

4. In the table, choose the Shared backups tab.

To identify backups shared with you using the AWS CLI

Use the describe-backups command with the --shared parameter to return the backups that are 
shared with you.

Permissions for shared backups

Permissions for owners

Backup owners can describe and manage a shared backup as well as use it to restore a cluster.

Identifying a shared backup 279

https://docs.aws.amazon.com/ram/latest/userguide/working-with-sharing.html#working-with-sharing-update
https://docs.aws.amazon.com/cli/latest/reference/ram/disassociate-resource-share.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/delete-resource-policy.html
https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-backups.html


AWS CloudHSM User Guide

Permissions for consumers

Backup consumers cannot modify a shared backup, but they can describe it and use it to restore a 
cluster.

Billing and metering

There are no additional charges for sharing backups.

Billing and metering 280



AWS CloudHSM User Guide

Cloned clusters in AWS CloudHSM

Use AWS CloudHSM Management Utility (CMU) to synchronize a cluster in a remote region, if the 
cluster in that region was originally created from the backup of a cluster in another region. Let's 
say you copied a cluster to another region (destination) and then later you want to synchronize 
changes from the original cluster (source). In scenarios like this, you use CMU to synchronize 
the clusters. You do this by creating a new CMU configuration file, specifying hardware security 
modules (HSM) from both clusters in the new file, and then using CMU to connect to the cluster 
with that file.

To use CMU across cloned clusters

1. Create a copy of your current configuration file and change the name of the copy to something 
else.

For example, use the following file locations to locate and create a copy of your current 
configuration file, then change the name of the copy from cloudhsm_mgmt_config.cfg to
syncConfig.cfg.

• Linux: /opt/cloudhsm/etc/cloudhsm_mgmt_config.cfg

• Windows: C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_config.cfg

2. In the renamed copy, add the Elastic Network Interface (ENI) IP of the destination HSM 
(the HSM in the foreign region that needs to be synced). We recommend that you add the 
destination HSM below the source HSM.

{ 
    ... 
    "servers": [ 
        { 
            ... 
            "hostname": "<ENI Source IP>", 
            ... 
        }, 
        { 
            ... 
            "hostname": "<ENI Destination IP>", 
            ... 
        } 
    ]

281



AWS CloudHSM User Guide

}  
       

For more information about how to get the IP address, see the section called “Get an IP 
address for an HSM”.

3. Initialize CMU with the new configuration file:

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/userSync.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\userSync.cfg

4. Check the status messages returned to ensure that the CMU is connected to all desired HSMs 
and determine which of the returned ENI IPs corresponds to each cluster. Use syncUser and 
syncKey to manually synchronize users and keys. For more information, see syncUser and
syncKey.

Get an IP address for an HSM

Use this section to obtain an IP address for an HSM.

To get an IP address for an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. To open the cluster detail page, in the cluster table, choose the cluster ID.

4. To get the IP address, go to the HSMs tab. For IPv4 clusters, choose an address listed under ENI 
IPv4 address. For dual-stack clusters use either the ENI IPv4 or the ENI IPv6 address.

Get an IP address for an HSM 282

https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

To get an IP address for an HSM (AWS CLI)

• Get the IP address of an HSM by using the describe-clusters command from the AWS CLI. 
In the output from the command, the IP address of the HSMs are the values of EniIp and
EniIpV6 (if it is a dual-stack cluster).

$ aws cloudhsmv2 describe-clusters
{ 
    "Clusters": [ 
        { ... } 
            "Hsms": [ 
                {
... 
                    "EniIp": "10.0.0.9",
... 
                }, 
                {
... 
                    "EniIp": "10.0.1.6", 
                    "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733",
...

Related topics

• syncUser

• syncKey

• Copying Backups Across Regions

Related topics 283

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

Tag AWS CloudHSM resources

A tag is a label that you assign to an AWS resource. You can assign tags to your AWS CloudHSM 
clusters. Each tag consists of a tag key and a tag value, both of which you define. For example, the 
tag key might be Cost Center and the tag value might be 12345. Tag keys must be unique for each 
cluster.

You can use tags for a variety of purposes. One common use is to categorize and track your AWS 
costs. You can apply tags that represent business categories (such as cost centers, application 
names, or owners) to organize your costs across multiple services. When you add tags to your AWS 
resources, AWS generates a cost allocation report with usage and costs aggregated by tags. You 
can use this report to view your AWS CloudHSM costs in terms of projects or applications, instead 
of viewing all AWS CloudHSM costs as a single line item.

For more information about using tags for cost allocation, see Using Cost Allocation Tags in the
AWS Billing User Guide.

You can use the AWS CloudHSM console or one of the AWS SDKs or command line tools to add, 
update, list, and remove tags.

Topics

• Add or update tags for AWS CloudHSM resources

• List tags for AWS CloudHSM resources

• Remove tags from AWS CloudHSM resources

Add or update tags for AWS CloudHSM resources

You can add or update tags from the AWS CloudHSM console, the AWS Command Line Interface 
(AWS CLI), or the AWS CloudHSM API.

To add or update tags (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Choose the cluster that you are tagging.

3. Choose Tags.

4. To add a tag, do the following:

Add or update tags 284

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/tools/
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

a. Choose Edit Tag and then choose Add Tag.

b. For Key, type a key for the tag.

c. (Optional) For Value, type a value for the tag.

d. Choose Save.

5. To update a tag, do the following:

a. Choose Edit Tag.

Note

If you update the tag key for an existing tag, the console deletes the existing tag 
and creates a new one.

b. Type the new tag value.

c. Choose Save.

To add or update tags (AWS CLI)

1. At a command prompt, issue the tag-resource command, specifying the tags and the ID of 
the cluster that you are tagging. If you don't know the cluster ID, issue the describe-clusters
command.

$ aws cloudhsmv2 tag-resource --resource-id <cluster ID> \ 
                              --tag-list Key="<tag key>",Value="<tag value>"

2. To update tags, use the same command but specify an existing tag key. When you specify a 
new tag value for an existing tag, the tag is overwritten with the new value.

To add or update tags (AWS CloudHSM API)

• Send a TagResource request. Specify the tags and the ID of the cluster that you are tagging.

List tags for AWS CloudHSM resources

You can list tags for a cluster from the AWS CloudHSM console, the AWS CLI, or the AWS CloudHSM 
API.

List tags 285

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_TagResource.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/


AWS CloudHSM User Guide

To list tags (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Choose the cluster whose tags you are listing.

3. Choose Tags.

To list tags (AWS CLI)

• At a command prompt, issue the list-tags command, specifying the ID of the cluster whose 
tags you are listing. If you don't know the cluster ID, issue the describe-clusters command.

$ aws cloudhsmv2 list-tags --resource-id <cluster ID>
{ 
    "TagList": [ 
        { 
            "Key": "Cost Center", 
            "Value": "12345" 
        } 
    ]
}

To list tags (AWS CloudHSM API)

• Send a ListTags request, specifying the ID of the cluster whose tags you are listing.

Remove tags from AWS CloudHSM resources

You can remove tags from an AWS CloudHSM cluster by using the AWS CloudHSM console, the
AWS CLI, or the AWS CloudHSM API.

To remove tags (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. Choose the cluster whose tags you are removing.

3. Choose Tags.

4. Choose Edit Tag and then choose Remove tag for the tag you want to remove.

5. Choose Save.

Remove tags 286

https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/list-tags.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_ListTags.html
https://console.aws.amazon.com/cloudhsm/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

To remove tags (AWS CLI)

• At a command prompt, issue the untag-resource command, specifying the tag keys of the tags 
that you are removing and the ID of the cluster whose tags you are removing. When you use 
the AWS CLI to remove tags, specify only the tag keys, not the tag values.

$ aws cloudhsmv2 untag-resource --resource-id <cluster ID> \ 
                                --tag-key-list "<tag key>"

To remove tags (AWS CloudHSM API)

• Send an UntagResource request in the AWS CloudHSM API, specifying the ID of the cluster and 
the tags that you are removing.

Remove tags 287

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/untag-resource.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_UntagResource.html


AWS CloudHSM User Guide

AWS CloudHSM command line tools

In addition to the AWS Command Line Interface (AWS CLI) that you use for managing your AWS 
resources, AWS CloudHSM offers command-line tools for creating and managing hardware security 
module (HSM) users and keys on your HSMs. In AWS CloudHSM, you use the familiar CLI to manage 
your cluster, and the CloudHSM command-line tools to manage your HSM.

These are the various command-line tools:

To manage HSMs and clusters

CloudHSMv2 commands in AWS CLI and HSM2 PowerShell cmdlets in the AWSPowerShell 
module

• These tools get, create, delete, and tag AWS CloudHSM clusters and HSMs:

• To use the commands in CloudHSMv2 commands in CLI, you need to install and configure
AWS CLI.

• HSM2 PowerShell cmdlets in the AWSPowerShell module are available in a Windows 
PowerShell module and a cross-platform PowerShell Core module.

To manage HSM users

CloudHSM CLI

• Use CloudHSM CLI to create users, delete users, list users, change user passwords, and 
update user multi-factor authentication (MFA). It is not included in the AWS CloudHSM client 
software. For guidance on installing this tool, see Install and configure CloudHSM CLI.

Helper Tools

Two tools help you to use AWS CloudHSM tools and software libraries:

• The configure tool updates your CloudHSM client configuration files. This allows AWS 
CloudHSM to synchronize the HSMs in a cluster.

AWS CloudHSM offers two major versions, and Client SDK 5 is the latest. It offers a variety of 
advantages over Client SDK 3 (the previous series).

• pkpspeed measures the performance of your HSM hardware independent of software 
libraries.

288

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/index.html
https://aws.amazon.com/powershell/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/index.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://aws.amazon.com/powershell/


AWS CloudHSM User Guide

Tools for previous SDKs

Use the key management tool (KMU) create, delete, import, and export symmetric keys and 
asymmetric key pairs:

• key_mgmt_util. This tool is included in the AWS CloudHSM client software.

Use the CloudHSM management tool (CMU) to create and delete HSM users, including 
implementing quorum authentication of user management tasks

• cloudhsm_mgmt_util. This tool is included in the AWS CloudHSM client software.

The following topics further describe the command-line tools available for managing and using 
AWS CloudHSM.

Topics

• AWS CloudHSM configure tool

• AWS CloudHSM Command Line Interface (CLI)

• AWS CloudHSM Management Utility (CMU)

• AWS CloudHSM Key Management Utility (KMU)

AWS CloudHSM configure tool

AWS CloudHSM automatically synchronizes data among all hardware security modules (HSM) 
in a cluster. The configure tool updates the HSM data in the configuration files that the 
synchronization mechanisms use. Use configure to refresh the HSM data before you use the 
command line tools, especially when the HSMs in the cluster have changed.

AWS CloudHSM includes two major Client SDK versions:

• Client SDK 5: This is our latest and default Client SDK. For information on the benefits and 
advantages it provides, see Benefits of AWS CloudHSM Client SDK 5.

• Client SDK 3: This is our older Client SDK. It includes a full set of components for platform and 
language-based applications compatibility and management tools.

For instructions on migrating from Client SDK 3 to Client SDK 5, see Migrating from AWS 
CloudHSM Client SDK 3 to Client SDK 5.

Configure tool 289



AWS CloudHSM User Guide

Topics

• AWS CloudHSM Client SDK 5 configure tool

• AWS CloudHSM Client SDK 3 configure tool

AWS CloudHSM Client SDK 5 configure tool

Use the AWS CloudHSM Client SDK 5 configure tool to update client-side configuration files.

Each component in Client SDK 5 includes a configure tool with a designator of the component in 
the file name of the configure tool. For example, the PKCS #11 library for Client SDK 5 includes a 
configure tool named configure-pkcs11 on Linux or configure-pkcs11.exe on Windows.

Topics

• AWS CloudHSM Client SDK 5 configuration syntax

• AWS CloudHSM Client SDK 5 configuration parameters

• AWS CloudHSM Client SDK 5 configuration examples

• Advanced configurations for the Client SDK 5 configure tool

• AWS CloudHSM Client SDK 5 related topics

AWS CloudHSM Client SDK 5 configuration syntax

The following table illustrates the syntax for AWS CloudHSM configuration files for Client SDK 5.

PKCS #11

configure-pkcs11[ .exe ]  
             -a <ENI IP address>
             [--hsm-ca-cert <customerCA certificate file path>] 
             [--cluster-id <cluster ID>] 
             [--endpoint <endpoint>] 
             [--region <region>]  
             [--client-cert-hsm-tls-file <client certificate hsm tls path>] 
             [--client-key-hsm-tls-file <client key hsm tls path>] 
             [--log-level <error | warn | info | debug | trace>] 
                  Default is <info>
             [--log-rotation <daily | weekly>] 
                  Default is <daily>
             [--log-file <file name with path>] 

Client SDK 5 configure tool 290



AWS CloudHSM User Guide

                  Default is </opt/cloudhsm/run/cloudhsm-pkcs11.log>
                  Default for Windows is <C:\\Program Files\\Amazon\\CloudHSM\
\cloudhsm-pkcs11.log>
             [--log-type <file | term>] 
                  Default is <file>
             [-h | --help] 
             [-V | --version] 
             [--disable-key-availability-check] 
             [--enable-key-availability-check] 
             [--disable-validate-key-at-init] 
             [--enable-validate-key-at-init] 
                  This is the default for PKCS #11

OpenSSL

configure-dyn[ .exe ]  
             -a <ENI IP address>
             [--hsm-ca-cert <customerCA certificate file path>] 
             [--cluster-id <cluster ID>] 
             [--endpoint <endpoint>] 
             [--region <region>]  
             [--client-cert-hsm-tls-file <client certificate hsm tls path>] 
             [--client-key-hsm-tls-file <client key hsm tls path>] 
             [--log-level <error | warn | info | debug | trace>] 
                  Default is <error>
             [--log-type <file | term>] 
                  Default is <term>
             [-h | --help] 
             [-V | --version] 
             [--disable-key-availability-check] 
             [--enable-key-availability-check] 
             [--disable-validate-key-at-init] 
                  This is the default for OpenSSL 
             [--enable-validate-key-at-init]

KSP

configure-ksp[ .exe ]  
             -a <ENI IP address>
             [--hsm-ca-cert <customerCA certificate file path>] 
             [--cluster-id <cluster ID>] 
             [--endpoint <endpoint>] 
             [--region <region>]  

Client SDK 5 configure tool 291



AWS CloudHSM User Guide

             [--client-cert-hsm-tls-file <client certificate hsm tls path>] 
             [--client-key-hsm-tls-file <client key hsm tls path>] 
             [--log-level <error | warn | info | debug | trace>] 
                  Default is <info>
             [--log-rotation <daily | weekly>] 
                  Default is <daily>
             [--log-file <file name with path>] 
                  Default is <C:\\Program Files\\Amazon\\CloudHSM\\cloudhsm-ksp.log>
             [--log-type <file | term>] 
                  Default is <file>
             [-h | --help] 
             [-V | --version] 
             [--disable-key-availability-check] 
             [--enable-key-availability-check] 
             [--disable-validate-key-at-init] 
                  This is the default for KSP 
             [--enable-validate-key-at-init]

JCE

configure-jce[ .exe ]  
             -a <ENI IP address>
             [--hsm-ca-cert <customerCA certificate file path>] 
             [--cluster-id <cluster ID>] 
             [--endpoint <endpoint>] 
             [--region <region>]  
             [--client-cert-hsm-tls-file <client certificate hsm tls path>] 
             [--client-key-hsm-tls-file <client key hsm tls path>] 
             [--log-level <error | warn | info | debug | trace>] 
                  Default is <info>
             [--log-rotation <daily | weekly>] 
                  Default is <daily>
             [--log-file <file name with path>] 
                  Default is </opt/cloudhsm/run/cloudhsm-jce.log>
                  Default for Windows is <C:\\Program Files\\Amazon\\CloudHSM\
\cloudhsm-jce.log>
             [--log-type <file | term>] 
                  Default is <file>
             [-h | --help] 
             [-V | --version] 
             [--disable-key-availability-check] 
             [--enable-key-availability-check] 
             [--disable-validate-key-at-init] 

Client SDK 5 configure tool 292



AWS CloudHSM User Guide

                  This is the default for JCE 
             [--enable-validate-key-at-init]

CloudHSM CLI

configure-cli[ .exe ]  
             -a <ENI IP address>
             [--hsm-ca-cert <customerCA certificate file path>] 
             [--cluster-id <cluster ID>] 
             [--endpoint <endpoint>] 
             [--region <region>]  
             [--client-cert-hsm-tls-file <client certificate hsm tls path>] 
             [--client-key-hsm-tls-file <client key hsm tls path>] 
             [--log-level <error | warn | info | debug | trace>] 
                  Default is <info>
             [--log-rotation <daily | weekly>] 
                  Default is <daily>
             [--log-file <file name with path>] 
                  Default for Linux is </opt/cloudhsm/run/cloudhsm-cli.log>
                  Default for Windows is <C:\\Program Files\\Amazon\\CloudHSM\
\cloudhsm-cli.log>
             [--log-type <file | term>] 
                  Default setting is <file>
             [-h | --help] 
             [-V | --version] 
             [--disable-key-availability-check] 
             [--enable-key-availability-check] 
             [--disable-validate-key-at-init] 
             [--enable-validate-key-at-init] 
                  This is the default for CloudHSM CLI 
             

AWS CloudHSM Client SDK 5 configuration parameters

The following is a list of parameters to configure AWS CloudHSM Client SDK 5.

-a <ENI IP address>

Adds the specified IP address to Client SDK 5 configuration files. Enter any ENI IP address of an 
HSM from the cluster. For more information about how to use this option, see Bootstrap Client 
SDK 5.

Client SDK 5 configure tool 293



AWS CloudHSM User Guide

Required: Yes

--hsm-ca-cert <customerCA certificate file path>

Path to the directory storing the certificate authority (CA) certificate use to connect EC2 client 
instances to the cluster. You create this file when you initialize the cluster. By default, the 
system looks for this file in the following location:

Linux

/opt/cloudhsm/etc/customerCA.crt

Windows

C:\ProgramData\Amazon\CloudHSM\customerCA.crt

For more information about initializing the cluster or placing the certificate, see ??? and ???.

Required: No

--cluster-id <cluster ID>

Makes a DescribeClusters call to find all of the HSM elastic network interface (ENI) IP 
addresses in the cluster associated with the cluster ID. The system adds the ENI IP addresses to 
the AWS CloudHSM configuration files.

Note

If you use the --cluster-id parameter from an EC2 instance within a VPC that does 
not have access to the public internet, then you must create an interface VPC endpoint 
to connect with AWS CloudHSM. For more information about VPC endpoints, see ???.

Required: No

--endpoint <endpoint>

Specify the AWS CloudHSM API endpoint used for making the DescribeClusters call. You 
must set this option in combination with --cluster-id.

Required: No

Client SDK 5 configure tool 294



AWS CloudHSM User Guide

--region <region>

Specify the region of your cluster. You must set this option in combination with --cluster-
id.

If you don’t supply the --region parameter, the system chooses the region by attempting 
to read the AWS_DEFAULT_REGION or AWS_REGION environment variables. If those variables 
aren’t set, then the system checks the region associated with your profile in your AWS config 
file (typically ~/.aws/config) unless you specified a different file in the AWS_CONFIG_FILE
environment variable. If none of the above are set, the system defaults to the us-east-1
region.

Required: No

--client-cert-hsm-tls-file <client certificate hsm tls path>

Path to the client certificate used for TLS client-HSM mutual authentication.

Only use this option if you have registered at least one trust anchor onto HSM with CloudHSM 
CLI. You must set this option in combination with --client-key-hsm-tls-file.

Required: No

--client-key-hsm-tls-file <client key hsm tls path>

Path to the client key used for TLS client-HSM mutual authentication.

Only use this option if you have registered at least one trust anchor onto HSM with CloudHSM 
CLI. You must set this option in combination with --client-cert-hsm-tls-file.

Required: No

--log-level <error | warn | info | debug | trace>

Specifies the minimum logging level the system should write to the log file. Each level includes 
the previous levels, with error as the minimum level and trace the maximum level. This means 
that if you specify errors, the system only writes errors to the log. If you specify trace, the 
system writes errors, warnings, informational (info) and debug messages to the log. For more 
information, see Client SDK 5 Logging.

Required: No

Client SDK 5 configure tool 295



AWS CloudHSM User Guide

--log-rotation <daily | weekly>

Specifies the frequency with which the system rotates logs. For more information, see Client 
SDK 5 Logging.

Required: No

--log-file <file name with path>

Specifies where the system will write the log file. For more information, see Client SDK 5 
Logging.

Required: No

--log-type <term | file>

Specifies whether the system will write the log to a file or terminal. For more information, see
Client SDK 5 Logging.

Required: No

-h | --help

Displays help.

Required: No

-v | --version

Displays version.

Required: No

--disable-key-availability-check

Flag to disable key availability quorum. Use this flag to indicate AWS CloudHSM should disable 
key availability quorum and you can use keys that exist on only one HSM in the cluster. For 
more information about using this flag to set key availability quorum, see ???.

Required: No

--enable-key-availability-check

Flag to enable key availability quorum. Use this flag to indicate AWS CloudHSM should use key 
availability quorum and not allow you to use keys until those keys exist on two HSMs in the 
cluster. For more information about using this flag to set key availability quorum, see ???.

Client SDK 5 configure tool 296



AWS CloudHSM User Guide

Enabled by default.

Required: No

--disable-validate-key-at-init

Improves performance by specifying that you can skip an initialization call to verify permissions 
on a key for subsequent calls. Use with caution.

Background: Some mechanisms in the PKCS #11 library support multi-part operations where an 
initialization call verifies if you can use the key for subsequent calls. This requires a verification 
call to the HSM, which adds latency to the overall operation. This option enables you to disable 
the subsequent call and potentially improve performance.

Required: No

--enable-validate-key-at-init

Specifies that you should use an initialization call to verify permissions on a key for subsequent 
calls. This is the default option. Use enable-validate-key-at-init to resume these 
initialization calls after you use disable-validate-key-at-init to suspend them.

Required: No

AWS CloudHSM Client SDK 5 configuration examples

These examples show how to use the configure tool for AWS CloudHSM Client SDK 5.

Bootstrap Client SDK 5

Example

This example uses the -a parameter to update the HSM data for Client SDK 5. To use the -a
parameter, you must have the IP address for one of the HSMs in your cluster.

PKCS #11 library

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 -a <HSM IP addresses>

Client SDK 5 configure tool 297



AWS CloudHSM User Guide

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" -a <HSM IP 
 addresses>

OpenSSL Dynamic Engine

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-dyn -a <HSM IP addresses>

Key Storage Provider (KSP)

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" -a <HSM IP 
 addresses>

JCE provider

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-jce -a <HSM IP addresses>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of an HSM in your cluster.

Client SDK 5 configure tool 298



AWS CloudHSM User Guide

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" -a <HSM IP 
 addresses>

CloudHSM CLI

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

$ sudo /opt/cloudhsm/bin/configure-cli -a <The ENI IPv4 / IPv6 addresses of the 
 HSMs>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" -a <The ENI 
 IPv4 / IPv6 addresses of the HSMs>

Note

you can use the –-cluster-id parameter in place of -a <HSM_IP_ADDRESSES>. To see 
requirements for using –-cluster-id, see AWS CloudHSM Client SDK 5 configure tool.

For more information about the -a parameter, see the section called “Parameters”.

Specify cluster, region, and endpoint for Client SDK 5

Example

This example uses the cluster-id parameter to bootstrap Client SDK 5 by making a
DescribeClusters call.

Client SDK 5 configure tool 299



AWS CloudHSM User Guide

PKCS #11 library

To bootstrap a Linux EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --cluster-id <cluster-1234567>

To bootstrap a Windows EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --cluster-
id <cluster-1234567>

OpenSSL Dynamic Engine

To bootstrap a Linux EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-dyn --cluster-id <cluster-1234567>

Key Storage Provider (KSP)

To bootstrap a Windows EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --cluster-
id <cluster-1234567>

JCE provider

To bootstrap a Linux EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

Client SDK 5 configure tool 300



AWS CloudHSM User Guide

$ sudo /opt/cloudhsm/bin/configure-jce --cluster-id <cluster-1234567>

To bootstrap a Windows EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --cluster-
id <cluster-1234567>

CloudHSM CLI

To bootstrap a Linux EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

$ sudo /opt/cloudhsm/bin/configure-cli --cluster-id <cluster-1234567>

To bootstrap a Windows EC2 instance for Client SDK 5 with cluster-id

• Use the cluster ID cluster-1234567 to specify the IP address of an HSM in your cluster.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" --cluster-
id <cluster-1234567>

You can use the --region and --endpoint parameters in combination with the cluster-id
parameter to specify how the system makes the DescribeClusters call. For instance, if the 
region of the cluster is different than the one configured as your AWS CLI default, you should 
use the --region parameter to use that region. Additionally, you have the ability to specify the 
AWS CloudHSM API endpoint to use for the call, which might be necessary for various network 
setups, such as using VPC interface endpoints that don’t use the default DNS hostname for AWS 
CloudHSM.

Client SDK 5 configure tool 301



AWS CloudHSM User Guide

PKCS #11 library

To bootstrap a Linux EC2 instance with a custom endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --cluster-id <cluster-1234567> --
region <us-east-1> --endpoint <https://cloudhsmv2.us-east-1.amazonaws.com>

To bootstrap a Windows EC2 instance with a endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --cluster-
id <cluster-1234567>--region <us-east-1> --endpoint <https://cloudhsmv2.us-
east-1.amazonaws.com>

OpenSSL Dynamic Engine

To bootstrap a Linux EC2 instance with a custom endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

$ sudo /opt/cloudhsm/bin/configure-dyn --cluster-id <cluster-1234567> --
region <us-east-1> --endpoint <https://cloudhsmv2.us-east-1.amazonaws.com>

Key Storage Provider (KSP)

To bootstrap a Windows EC2 instance with a endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

Client SDK 5 configure tool 302



AWS CloudHSM User Guide

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --cluster-
id <cluster-1234567> --region <us-east-1> --endpoint <https://cloudhsmv2.us-
east-1.amazonaws.com>

JCE provider

To bootstrap a Linux EC2 instance with a custom endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

$ sudo /opt/cloudhsm/bin/configure-jce --cluster-id <cluster-1234567> --
region <us-east-1> --endpoint <https://cloudhsmv2.us-east-1.amazonaws.com>

To bootstrap a Windows EC2 instance with a endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --cluster-
id <cluster-1234567> --region <us-east-1> --endpoint <https://cloudhsmv2.us-
east-1.amazonaws.com>

CloudHSM CLI

To bootstrap a Linux EC2 instance with a custom endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

$ sudo /opt/cloudhsm/bin/configure-cli --cluster-id <cluster-1234567> --
region <us-east-1> --endpoint <https://cloudhsmv2.us-east-1.amazonaws.com>

Client SDK 5 configure tool 303



AWS CloudHSM User Guide

To bootstrap a Windows EC2 instance with a endpoint and region

• Use the configure tool to specify the IP address of an HSM in your cluster with a custom 
region and endpoint.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" --cluster-
id <cluster-1234567> --region <us-east-1> --endpoint <https://cloudhsmv2.us-
east-1.amazonaws.com>

For more information about the --cluster-id, --region, and --endpoint parameters, see the 
section called “Parameters”.

Update client certificate and key for TLS client-HSM mutual authentication

Example

This examples shows how to use the --client-cert-hsm-tls-file and --client-key-hsm-
tls-file parameters to reconfigure SSL by specifying a custom key and SSL certificate for AWS 
CloudHSM

PKCS #11 library

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
$ sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

Client SDK 5 configure tool 304



AWS CloudHSM User Guide

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

OpenSSL Dynamic Engine

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-dyn \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

Key Storage Provider (KSP)

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

Client SDK 5 configure tool 305



AWS CloudHSM User Guide

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

JCE provider

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-jce \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 

Client SDK 5 configure tool 306



AWS CloudHSM User Guide

            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

CloudHSM CLI

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Linux

1. Copy your key and certificate to the appropriate directory.

$ sudo cp ssl-client.pem </opt/cloudhsm/etc>
sudo cp ssl-client.key </opt/cloudhsm/etc>

2. Use the configure tool to specify ssl-client.pem and ssl-client.key.

$ sudo /opt/cloudhsm/bin/configure-cli \ 
            --client-cert-hsm-tls-file </opt/cloudhsm/etc/ssl-client.pem> \ 
            --client-key-hsm-tls-file </opt/cloudhsm/etc/ssl-client.key>

To use a custom certificate and key for TLS client-HSM mutual authentication with Client 
SDK 5 on Windows

1. Copy your key and certificate to the appropriate directory.

cp ssl-client.pem <C:\ProgramData\Amazon\CloudHSM\ssl-client.pem>
cp ssl-client.key <C:\ProgramData\Amazon\CloudHSM\ssl-client.key>

2. With a PowerShell interpreter, use the configure tool to specify ssl-client.pem and
ssl-client.key.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" ` 
            --client-cert-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.pem> ` 
            --client-key-hsm-tls-file <C:\ProgramData\Amazon\CloudHSM\ssl-
client.key>

For more information about the --client-cert-hsm-tls-file and --client-key-hsm-
tls-file parameters, see the section called “Parameters”.

Client SDK 5 configure tool 307



AWS CloudHSM User Guide

Disable client key durability settings

Example

This example uses the --disable-key-availability-check parameter to disable client 
key durability settings. To run a cluster with a single HSM, you must disable client key durability 
settings.

PKCS #11 library

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --disable-key-availability-check

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --disable-
key-availability-check

OpenSSL Dynamic Engine

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-dyn --disable-key-availability-check

Key Storage Provider (KSP)

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

Client SDK 5 configure tool 308



AWS CloudHSM User Guide

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --disable-
key-availability-check

JCE provider

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-jce --disable-key-availability-check

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --disable-
key-availability-check

CloudHSM CLI

To disable client key durability for Client SDK 5 on Linux

• Use the configure tool to disable client key durability settings.

$ sudo /opt/cloudhsm/bin/configure-cli --disable-key-availability-check

To disable client key durability for Client SDK 5 on Windows

• Use the configure tool to disable client key durability settings.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" --disable-
key-availability-check

For more information about the --disable-key-availability-check parameter, see the 
section called “Parameters”.

Client SDK 5 configure tool 309



AWS CloudHSM User Guide

Manage logging options

Example

Client SDK 5 uses the log-file, log-level, log-rotation, and log-type parameters to 
manage logging.

Note

To configure your SDK for serverless environments such as AWS Fargate or AWS Lambda, 
we recommend you configure your AWS CloudHSM log type to term. The client logs will 
be output to stderr and captured in the CloudWatch Logs log group configured for that 
environment.

PKCS #11 library

Default logging location

• If you do not specify a location for the file, the system writes logs to the following default 
location:

Linux

/opt/cloudhsm/run/cloudhsm-pkcs11.log

Windows

C:\Program Files\Amazon\CloudHSM\cloudhsm-pkcs11.log

To configure the logging level and leave other logging options set to default

• $ sudo /opt/cloudhsm/bin/configure-pkcs11 --log-level info

Client SDK 5 configure tool 310



AWS CloudHSM User Guide

To configure file logging options

• $ sudo /opt/cloudhsm/bin/configure-pkcs11 --log-type file --log-file <file name 
 with path> --log-rotation daily --log-level info

To configure terminal logging options

• $ sudo /opt/cloudhsm/bin/configure-pkcs11 --log-type term --log-level info

OpenSSL Dynamic Engine

Default logging location

• If you do not specify a location for the file, the system writes logs to the following default 
location:

Linux

stderr

To configure the logging level and leave other logging options set to default

• $ sudo /opt/cloudhsm/bin/configure-dyn --log-level info

To configure file logging options

• $ sudo /opt/cloudhsm/bin/configure-dyn --log-type <file name> --log-file file --
log-rotation daily --log-level info

To configure terminal logging options

• $ sudo /opt/cloudhsm/bin/configure-dyn --log-type term --log-level info

Client SDK 5 configure tool 311



AWS CloudHSM User Guide

Key Storage Provider (KSP)

Default logging location

• If you do not specify a location for the file, the system writes logs to the following default 
location:

Windows

C:\Program Files\Amazon\CloudHSM\cloudhsm-ksp.log

To configure the logging level and leave other logging options set to default

• PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --log-level 
 info

To configure file logging options

• PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --log-type 
 file --log-file <file name> --log-rotation daily --log-level info

To configure terminal logging options

• PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --log-type 
 term --log-level info

JCE provider

Default logging location

• If you do not specify a location for the file, the system writes logs to the following default 
location:

Linux

/opt/cloudhsm/run/cloudhsm-jce.log

Client SDK 5 configure tool 312



AWS CloudHSM User Guide

Windows

C:\Program Files\Amazon\CloudHSM\cloudhsm-jce.log

To configure the logging level and leave other logging options set to default

• $ sudo /opt/cloudhsm/bin/configure-jce --log-level info

To configure file logging options

• $ sudo /opt/cloudhsm/bin/configure-jce --log-type file --log-file <file name> --
log-rotation daily --log-level info

To configure terminal logging options

• $ sudo /opt/cloudhsm/bin/configure-jce --log-type term --log-level info

CloudHSM CLI

Default logging location

• If you do not specify a location for the file, the system writes logs to the following default 
location:

Linux

/opt/cloudhsm/run/cloudhsm-cli.log

Windows

C:\Program Files\Amazon\CloudHSM\cloudhsm-cli.log

Client SDK 5 configure tool 313



AWS CloudHSM User Guide

To configure the logging level and leave other logging options set to default

• $ sudo /opt/cloudhsm/bin/configure-cli --log-level info

To configure file logging options

• $ sudo /opt/cloudhsm/bin/configure-cli --log-type file --log-file <file name> --
log-rotation daily --log-level info

To configure terminal logging options

• $ sudo /opt/cloudhsm/bin/configure-cli --log-type term --log-level info

For more information about the log-file, log-level, log-rotation,and log-type
parameters, see the section called “Parameters”.

Place the issuing certificate for Client SDK 5

Example

This example uses the --hsm-ca-cert parameter to update the location of the issuing certificate 
for Client SDK 5.

PKCS #11 library

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --hsm-ca-cert <customerCA certificate 
 file>

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

Client SDK 5 configure tool 314



AWS CloudHSM User Guide

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --hsm-ca-
cert <customerCA certificate file>

OpenSSL Dynamic Engine

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-dyn --hsm-ca-cert <customerCA certificate 
 file>

Key Storage Provider (KSP)

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --hsm-ca-
cert <customerCA certificate file>

JCE provider

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-jce --hsm-ca-cert <customerCA certificate 
 file>

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --hsm-ca-
cert <customerCA certificate file>

Client SDK 5 configure tool 315



AWS CloudHSM User Guide

CloudHSM CLI

To place the issuing certificate on Linux for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

$ sudo /opt/cloudhsm/bin/configure-cli --hsm-ca-cert <customerCA certificate 
 file>

To place the issuing certificate on Windows for Client SDK 5

• Use the configure tool to specify a location for the issuing certificate.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" --hsm-ca-
cert <customerCA certificate file>

For more information about the --hsm-ca-cert parameter, see the section called “Parameters”.

Advanced configurations for the Client SDK 5 configure tool

The AWS CloudHSM Client SDK 5 configure tool includes advanced configurations that are not 
part of the general features most customers utilize. Advanced configurations provide additional 
capabilities.

Important

After making any changes to your configuration, you need to restart your application for 
the changes to take effect.

• Advanced configurations for PKCS #11

• Multiple slot configuration with PKCS #11 library for AWS CloudHSM

• Retry commands for PKCS #11 library for AWS CloudHSM

• Advanced configurations for OpenSSL

• Retry commands for OpenSSL for AWS CloudHSM

• Advanced configurations for KSP

• SDK3 compatibility mode for Key Storage Provider (KSP) for AWS CloudHSM

Client SDK 5 configure tool 316



AWS CloudHSM User Guide

• Advanced configurations for JCE

• Connecting to multiple AWS CloudHSM clusters with the JCE provider

• Retry commands for JCE for AWS CloudHSM

• Key extraction using JCE for AWS CloudHSM

• Advanced configurations for AWS CloudHSM Command Line Interface (CLI)

• Connecting to multiple clusters with CloudHSM CLI

AWS CloudHSM Client SDK 5 related topics

See the following related topics to learn more about the AWS CloudHSM Client SDK 5.

• DescribeClusters API operation

• describe-clusters AWS CLI

• Get-HSM2Cluster PowerShell cmdlet

• Bootstrap Client SDK 5

• AWS CloudHSM VPC endpoints

• Managing Client SDK 5 Key Durability Settings

• Client SDK 5 Logging

• Setup mTLS (recommended)

AWS CloudHSM Client SDK 3 configure tool

Use the AWS CloudHSM Client SDK 3 configure tool to bootstrap the client daemon and configure 
CloudHSM Management Utility (CMU).

Topics

• AWS CloudHSM Client SDK 3 configuration syntax

• AWS CloudHSM Client SDK 3 configuration parameters

• AWS CloudHSM Client SDK 3 configuration examples

• AWS CloudHSM Client SDK 3 configuration related topics

AWS CloudHSM Client SDK 3 configuration syntax

The following table illustrates the syntax for AWS CloudHSM configuration files for Client SDK 3.

Client SDK 3 configure tool 317

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-HSM2Cluster.html


AWS CloudHSM User Guide

configure -h | --help 
          -a <ENI IP address>
          -m [-i <daemon_id>] 
          --ssl --pkey <private key file> --cert <certificate file>
          --cmu <ENI IP address>

AWS CloudHSM Client SDK 3 configuration parameters

The following is a list of parameters to configure AWS CloudHSM Client SDK 3.

-h | --help

Displays command syntax.

Required: Yes

-a <ENI IP address>

Adds the specified HSM elastic network interface (ENI) IP address to AWS CloudHSM 
configuration files. Enter the ENI IP address of any one of the HSMs in the cluster. It does not 
matter which one you select.

To get the ENI IP addresses of the HSMs in your cluster, use the DescribeClusters operation, the
describe-clusters AWS CLI command, or the Get-HSM2Cluster PowerShell cmdlet.

Note

Before running the  -a configure command, stop the AWS CloudHSM client. Then, 
when the -a command completes, restart the AWS CloudHSM client. For details, see the 
examples.

This parameter edits the following configuration files:

• /opt/cloudhsm/etc/cloudhsm_client.cfg: Used by AWS CloudHSM client and
key_mgmt_util.

• /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg: Used by cloudhsm_mgmt_util.

When the AWS CloudHSM client starts, it uses the ENI IP address in its configuration file 
to query the cluster and update the cluster.info file (/opt/cloudhsm/daemon/1/
cluster.info) with the correct ENI IP addresses for all HSMs in the cluster.

Client SDK 3 configure tool 318

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-HSM2Cluster.html


AWS CloudHSM User Guide

Required: Yes

-m

Updates the HSM ENI IP addresses in the configuration file that CMU uses.

Note

The -m parameter is for use with CMU from Client SDK 3.2.1 and earlier. For CMU 
from Client SDK 3.3.0 and later, see --cmu parameter, which simplifies the process of 
updating HSM data for CMU.

When you update the -a parameter of configure and then start the AWS CloudHSM client, the 
client daemon queries the cluster and updates the cluster.info files with the correct HSM IP 
addresses for all HSMs in the cluster. Running the -m configure command completes the update 
by copying the HSM IP addresses from the cluster.info to the cloudhsm_mgmt_util.cfg
configuration file that cloudhsm_mgmt_util uses.

Be sure to run -a configure command and restart the AWS CloudHSM client before running 
the -m command. This ensures that the data copied into cloudhsm_mgmt_util.cfg from
cluster.info is complete and accurate.

Required: Yes

-i

Specifies an alternate client daemon. The default value represents the AWS CloudHSM client.

Default: 1

Required: No

--ssl

Replaces the SSL key and certificate for the cluster with the specified private key and certificate. 
When you use this parameter, the --pkey and --cert parameters are required.

Required: No

--pkey

Specifies the new private key. Enter the path and file name of the file that contains the private 
key.

Client SDK 3 configure tool 319



AWS CloudHSM User Guide

Required: Yes if --ssl is specified. Otherwise, this should not be used.

--cert

Specifies the new certificate. Enter the path and file name of the file that contains the 
certificate. The certificate should chain up to the customerCA.crt certificate, the self-signed 
certificate used to initialize the cluster. For more information, see Initialize the Cluster.

Required: Yes if --ssl is specified. Otherwise, this should not be used.

--cmu <ENI IP address>

Combines the -a and -m parameters into one parameter. Adds the specified HSM elastic 
network interface (ENI) IP address to AWS CloudHSM configuration files and then updates the 
CMU configuration file. Enter an IP address from any HSM in the cluster. For Client SDK 3.2.1 
and earlier, see Using CMU with Client SDK 3.2.1 and Earlier.

Required: Yes

AWS CloudHSM Client SDK 3 configuration examples

These examples show how to use the configure tool for AWS CloudHSM Client SDK 3.

Example : Update the HSM data for the AWS CloudHSM client and key_mgmt_util

This example uses the -a parameter of configure to update the HSM data for the AWS CloudHSM 
client and key_mgmt_util. To use the -a parameter, you must have the IP address for one of the 
HSMs in your cluster. Use either the console or the AWS CLI to get the IP address.

To get an IP address for an HSM (console)

1. Open the AWS CloudHSM console at https://console.aws.amazon.com/cloudhsm/home.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. To open the cluster detail page, in the cluster table, choose the cluster ID.

4. To get the IP address, go to the HSMs tab. For IPv4 clusters, choose an address listed under ENI 
IPv4 address. For dual-stack clusters use either the ENI IPv4 or the ENI IPv6 address.

Client SDK 3 configure tool 320

https://docs.aws.amazon.com/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr
https://console.aws.amazon.com/cloudhsm/home


AWS CloudHSM User Guide

To get an IP address for an HSM (AWS CLI)

• Get the IP address of an HSM by using the describe-clusters command from the AWS CLI. 
In the output from the command, the IP address of the HSMs are the values of EniIp and
EniIpV6 (if it is a dual-stack cluster).

$ aws cloudhsmv2 describe-clusters
{ 
    "Clusters": [ 
        { ... } 
            "Hsms": [ 
                {
... 
                    "EniIp": "10.0.0.9",
... 
                }, 
                {
... 
                    "EniIp": "10.0.1.6", 
                    "EniIpV6": "2600:113f:404:be09:310e:ed34:3412:f733",
...

To update the HSM data

1. Before updating the -a parameter, stop the AWS CloudHSM client. This prevents conflicts that 
might occur while configure edits the client's configuration file. If the client is already stopped, 
this command has no effect, so you can use it in a script.

Amazon Linux

$ sudo stop cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client stop

CentOS 7

$ sudo service cloudhsm-client stop

Client SDK 3 configure tool 321

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

CentOS 8

$ sudo service cloudhsm-client stop

RHEL 7

$ sudo service cloudhsm-client stop

RHEL 8

$ sudo service cloudhsm-client stop

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client stop

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client stop

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe stop AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

Use Ctrl+C in the command window where you started the AWS CloudHSM client.

2. This step uses the -a parameter of configure to add the 10.0.0.9 ENI IP address to the 
configurations files.

Amazon Linux

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

Client SDK 3 configure tool 322



AWS CloudHSM User Guide

Amazon Linux 2

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

CentOS 7

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

CentOS 8

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

RHEL 7

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

RHEL 8

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

Ubuntu 16.04 LTS

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

Ubuntu 18.04 LTS

$ sudo /opt/cloudhsm/bin/configure -a 10.0.0.9

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" -a 10.0.0.9

3. Next, restart the AWS CloudHSM client. When the client starts, it uses the ENI IP address in its 
configuration file to query the cluster. Then, it writes the ENI IP addresses of all HSMs in the 
cluster to the cluster.info file.

Client SDK 3 configure tool 323



AWS CloudHSM User Guide

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client start

CentOS 7

$ sudo service cloudhsm-client start

CentOS 8

$ sudo service cloudhsm-client start

RHEL 7

$ sudo service cloudhsm-client start

RHEL 8

$ sudo service cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client start

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe start AWSCloudHSMClient

Client SDK 3 configure tool 324



AWS CloudHSM User Guide

• For Windows clients 1.1.1 and older:

C:\Program Files\Amazon\CloudHSM>start "cloudhsm_client" cloudhsm_client.exe 
 C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

When the command completes, the HSM data that the AWS CloudHSM client and 
key_mgmt_util use is complete and accurate.

Example : Update the HSM Data for CMU from client SDK 3.2.1 and earlier

This example uses the -m configure command to copy the updated HSM data from the
cluster.info file to the cloudhsm_mgmt_util.cfg file that cloudhsm_mgmt_util uses. Use 
this with CMU that ships with Client SDK 3.2.1 and earlier.

• Before running the -m, stop the AWS CloudHSM client, run the -a command, and then restart 
the AWS CloudHSM client, as shown in the previous example. This ensures that the data 
copied into the cloudhsm_mgmt_util.cfg file from the cluster.info file is complete and 
accurate.

Linux

$ sudo /opt/cloudhsm/bin/configure -m

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" -m

Example : Update the HSM Data for CMU from client SDK 3.3.0 and later

This example uses the --cmu parameter of the configure command to update HSM data for CMU. 
Use this with CMU that ships with Client SDK 3.3.0 and later. For more information about using 
CMU, see Using CloudHSM Management Utility (CMU) to Manage Users and Using CMU with Client 
SDK 3.2.1 and Earlier.

• Use the --cmu parameter to pass the IP address of an HSM in your cluster.

Client SDK 3 configure tool 325



AWS CloudHSM User Guide

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

AWS CloudHSM Client SDK 3 configuration related topics

See the following related topics to learn more about the AWS CloudHSM Client SDK 3.

• Set up AWS CloudHSM key_mgmt_util

AWS CloudHSM Command Line Interface (CLI)

CloudHSM CLI helps admins manage users and crypto users manage keys in their cluster in 
AWS CloudHSM. The CLI includes tools that can be used to create, delete and list users, change 
user passwords, update user multi-factor authentication (MFA). It also includes commands 
that generate, delete, import, and export keys, get and set attributes, find keys, and perform 
cryptographic operations.

For defined list of CloudHSM CLI users, see HSM user management with CloudHSM CLI . For 
a defined list of key attributes for CloudHSM CLI, see Key attributes for CloudHSM CLI. For 
information on how to use CloudHSM CLI to manage keys, see Key management with CloudHSM 
CLI.

For a quick start, see Getting started with AWS CloudHSM Command Line Interface (CLI). For 
detailed information about the CloudHSM CLI commands and examples of using the commands, 
see Reference for CloudHSM CLI commands.

Topics

• AWS CloudHSM Command Line Interface (CLI) supported platforms

• Migrate from AWS CloudHSM Client SDK 3 CMU and KMU to Client SDK 5 CloudHSM CLI

• Getting started with AWS CloudHSM Command Line Interface (CLI)

• Command modes in CloudHSM CLI

CloudHSM CLI 326



AWS CloudHSM User Guide

• Key attributes for CloudHSM CLI

• Advanced configurations for CloudHSM CLI

• Reference for CloudHSM CLI commands

AWS CloudHSM Command Line Interface (CLI) supported platforms

This topic describes the Linux and Windows platforms that the AWS CloudHSM CLI supports.

Linux support

Supported platforms X86_64 Architecture ARM architecture

Amazon Linux 2 Yes Yes

Amazon Linux 2023 Yes Yes

Red Hat Enterprise Linux 8 
(8.3+)

Yes No

Red Hat Enterprise Linux 9 
(9.2+)

Yes Yes

Ubuntu 22.04 LTS Yes Yes

Ubuntu 24.04 LTS Yes Yes

• SDK 5.16 was the last release to provide Ubuntu 20.04 LTS platform support. For more 
information, see the Ubuntu website.

• SDK 5.12 was the last release to provide CentOS 7 (7.8+) platform support. For more 
information, see the CentOS website.

• SDK 5.12 was the last release to provide Red Hat Enterprise Linux 7 (7.8+) platform support. For 
more information, see the Red Hat website.

• SDK 5.4.2 was the last release to provide CentOS 8 platform support. For more information, see 
the CentOS website.

Supported platforms 327

https://ubuntu.com/blog/ubuntu-20-04-lts-end-of-life-standard-support-is-coming-to-an-end-heres-how-to-prepare
https://blog.centos.org/2023/04/end-dates-are-coming-for-centos-stream-8-and-centos-linux-7/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/rhel-7-end-of-maintenance
https://www.centos.org/centos-linux-eol/


AWS CloudHSM User Guide

Windows support

• Microsoft Windows Server 2016

• Microsoft Windows Server 2019

Migrate from AWS CloudHSM Client SDK 3 CMU and KMU to Client SDK 
5 CloudHSM CLI

Use this topic to migrate workflows that use the AWS CloudHSM Client SDK 3 command line tools, 
the CloudHSM Management Utility (CMU) and the Key Management Utility (KMU), to instead use 
the Client SDK 5 command line tool, CloudHSM CLI.

In AWS CloudHSM, customer applications perform cryptographic operations using the AWS 
CloudHSM Client Software Development Kit (SDK). Client SDK 5 is the primary SDK that continues 
to have new features and platform support added to it. This topic provides details specific to 
migrating from Client SDK 3 to Client SDK 5 for command line tools.

Client SDK 3 includes two separate command line tools: the CMU for managing users and the KMU 
for managing keys and performing operations with keys. Client SDK 5 consolidates the functions 
of the CMU and KMU (tools that were offered with Client SDK 3) into a single tool, the AWS 
CloudHSM Command Line Interface (CLI). User management operations can be found under the 
subcommands The user category in CloudHSM CLI and The quorum category in CloudHSM CLI. Key 
management operations can be found under the key subcommand, and cryptographic operations 
can be found under the crypto subcommand. See Reference for CloudHSM CLI commands for a 
complete list of commands.

For instructions on migrating to Client SDK 5, see Migrating from AWS CloudHSM Client SDK 3 to 
Client SDK 5. For benefits on migrating, see Benefits of AWS CloudHSM Client SDK 5.

Getting started with AWS CloudHSM Command Line Interface (CLI)

With the CloudHSM CLI Command Line Interface (CLI), you can manage users in your AWS 
CloudHSM cluster. Use this topic to get started with basic hardware security module (HSM) user 
management tasks, such as creating users, listing users, and connecting CloudHSM CLI to the 
cluster.

Topics

Migrate from CMU and KMU to CloudHSM CLI 328



AWS CloudHSM User Guide

• Install the CloudHSM CLI

• Use the CloudHSM CLI

Install the CloudHSM CLI

Use the following commands to download and install the CloudHSM CLI for AWS CloudHSM.

Amazon Linux 2023

Amazon Linux 2023 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-cli-latest.amzn2023.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.amzn2023.x86_64.rpm

Amazon Linux 2023 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-cli-latest.amzn2023.aarch64.rpm

$ sudo yum install ./cloudhsm-cli-latest.amzn2023.aarch64.rpm

Amazon Linux 2

Amazon Linux 2 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-
latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el7.x86_64.rpm

Amazon Linux 2 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-
latest.el7.aarch64.rpm

Getting started 329



AWS CloudHSM User Guide

$ sudo yum install ./cloudhsm-cli-latest.el7.aarch64.rpm

RHEL 9 (9.2+)

RHEL 9 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-
latest.el9.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el9.x86_64.rpm

RHEL 9 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-
latest.el9.aarch64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el9.aarch64.rpm

RHEL 8 (8.3+)

RHEL 8 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-cli-
latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-cli-latest.el8.x86_64.rpm

Ubuntu 24.04 LTS

Ubuntu 24.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-
cli_latest_u24.04_amd64.deb

$ sudo apt install ./cloudhsm-cli_latest_u24.04_amd64.deb

Ubuntu 24.04 LTS on ARM64 architecture:

Getting started 330



AWS CloudHSM User Guide

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-
cli_latest_u24.04_arm64.deb

$ sudo apt install ./cloudhsm-cli_latest_u24.04_arm64.deb

Ubuntu 22.04 LTS

Ubuntu 22.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-
cli_latest_u22.04_amd64.deb

$ sudo apt install ./cloudhsm-cli_latest_u22.04_amd64.deb

Ubuntu 22.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-
cli_latest_u22.04_arm64.deb

$ sudo apt install ./cloudhsm-cli_latest_u22.04_arm64.deb

Ubuntu 20.04 LTS

Ubuntu 20.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-
cli_latest_u20.04_amd64.deb

$ sudo apt install ./cloudhsm-cli_latest_u20.04_amd64.deb

Windows Server 2022

For Windows Server 2022 on x86_64 architecture, open PowerShell as an administrator and run 
the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMCLI-latest.msi -Outfile C:\AWSCloudHSMCLI-latest.msi

Getting started 331



AWS CloudHSM User Guide

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMCLI-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

Windows Server 2019

For Windows Server 2019 on x86_64 architecture, open PowerShell as an administrator and run 
the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMCLI-latest.msi -Outfile C:\AWSCloudHSMCLI-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMCLI-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

Windows Server 2016

For Windows Server 2016 on x86_64 architecture, open PowerShell as an administrator and run 
the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMCLI-latest.msi -Outfile C:\AWSCloudHSMCLI-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMCLI-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

Use the following commands to configure CloudHSM CLI.

To bootstrap a Linux EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

$ sudo /opt/cloudhsm/bin/configure-cli -a <The ENI IPv4 / IPv6 addresses of the 
 HSMs>

To bootstrap a Windows EC2 instance for Client SDK 5

• Use the configure tool to specify the IP address of the HSM(s) in your cluster.

Getting started 332



AWS CloudHSM User Guide

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" -a <The ENI 
 IPv4 / IPv6 addresses of the HSMs>

Use the CloudHSM CLI

Use the following commands to start and use the CloudHSM CLI.

1. Use the following command to start CloudHSM CLI.

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

2. Use the login command to log in to the cluster. All users can use this command.

The command in the following example logs in admin, which is the default admin account. You 
set this user's password when you activated the cluster.

aws-cloudhsm > login --username admin --role admin

The system prompts you for your password. You enter the password, and the output shows 
that the command was successful.

Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "admin", 
    "role": "admin" 
  }
}

3. Run the user list command to list all the users on the cluster.

aws-cloudhsm > user list

Getting started 333



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
} 
     

4. Use user create to create a CU user named example_user.

You can create CUs because in a previous step you logged in as an admin user. Only admin 
users can perform user management tasks, such as creating and deleting users and changing 
the passwords of other users.

aws-cloudhsm > user create --username example_user --role crypto-user     
Enter password:
Confirm password:
{ 
 "error_code": 0, 
 "data": { 
   "username": "example_user", 
   "role": "crypto-user" 
 }
}

5. Use user list to list all the users on the cluster.

aws-cloudhsm > user list

Getting started 334



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "example_user", 
        "role": "crypto_user", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

6. Use the logout command to log out of AWS CloudHSM cluster.

aws-cloudhsm > logout
{ 
  "error_code": 0, 
  "data": "Logout successful"
}

7. Use the quit command to stop the CLI.

aws-cloudhsm > quit

Getting started 335



AWS CloudHSM User Guide

Command modes in CloudHSM CLI

In CloudHSM CLI, you can run commands two different ways: in single command mode and 
interactive mode. Interactive mode is designed for users, and single command mode is designed for 
scripts.

Note

All commands work in interactive mode and single command mode.

Interactive mode

Use the following commands to start CloudHSM CLI interactive mode

Linux

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive

When using the CLI in Interactive Mode, you can log in to a user account using the login command.

aws-cloudhsm > login --username <USERNAME> --role ROLE>

To list all CloudHSM CLI commands, run the following command:

aws-cloudhsm > help

To get the syntax for a CloudHSM CLI command, run the following command:

aws-cloudhsm >  help <command-name>

To get a list of users on the HSMs, enter user list.

aws-cloudhsm > user list

Command modes 336



AWS CloudHSM User Guide

To end your CloudHSM CLI session, run the following command:

aws-cloudhsm > quit

Single Command mode

If you run CloudHSM CLI using Single Command Mode, you need to set two environment variables 
to provide credentials: CLOUDHSM_PIN and CLOUDHSM_ROLE:

$ export CLOUDHSM_ROLE=admin

$ export CLOUDHSM_PIN=admin_username:admin_password

After doing this, you can execute commands using the credentials stored in your environment.

$ cloudhsm-cli user change-password --username alice --role crypto-user
Enter password:
Confirm password:
{ 
    "error_code": 0, 
    "data": { 
      "username": "alice", 
      "role": "crypto-user" 
    }
}

Key attributes for CloudHSM CLI

This topic describes how to use CloudHSM CLI to set key attributes. A key attribute in CloudHSM 
CLI can define a key’s type, how a key can function, or how a key is labeled. Some attributes define 
unique characteristics (a key’s type, for example). Other attributes can be set to true or false—
changing them either activates or deactivates a part of the key’s functionality.

For examples showing how to use key attributes, see the commands listed under the parent 
command The key category in CloudHSM CLI.

The following topics provide additional detail about key attributes in CloudHSM CLI.

Topics

• Supported attributes for CloudHSM CLI

Key attributes 337



AWS CloudHSM User Guide

• Check value in CloudHSM CLI

• Related topics for CloudHSM CLI

Supported attributes for CloudHSM CLI

As a best practice, only set values for attributes you wish to make restrictive. If you don’t specify a 
value, CloudHSM CLI uses the default value specified in the table below.

The following table lists the key attributes, possible values, defaults, and related notes for 
CloudHSM CLI. An empty cell in the Value column indicates that there is no specific default value 
assigned to the attribute.

CloudHSM 
CLI attribute

Value Modifiable with key 
set-attribute

Settable at key 
creation

always-
sensitive

The value is True
if sensitive
has always been 
set to True and 

has never changed.

No No

check-value The check value of 
the key. For more 
information, see

Additional Details.

No No

class Possible values:
secret-key ,

public-key , and
private-key .

No Yes

curve Elliptic curve 
used to generate 
the EC key pair.

Valid Values:
secp224r1 ,
secp256r1 ,

No Settable with EC, not 
settable with RSA

Key attributes 338



AWS CloudHSM User Guide

CloudHSM 
CLI attribute

Value Modifiable with key 
set-attribute

Settable at key 
creation

prime256v1 ,
secp384r1 ,
secp256k1 , 

and secp521r1

decrypt Default: False Yes Yes

derive Default: False Derive can be set 
on hsm2m.medium 
instances. It cannot 
be set for RSA keys 
on hsm1.medium 
instances.

Yes

destroyable Default: True Yes Yes

ec-point For EC keys, DER-
encoding of ANSI 

X9.62 ECPoint 
value "Q" in a 

hexadecimal format.

For other key 
types, this attribute 

does not exist.

No No

encrypt Default: False Yes Yes

extractable Default: True No Yes

id Default: Empty id can be set on 
hsm2m.medium 
instances. It cannot 
be set on hsm1.medi 
um instances.

Yes

Key attributes 339



AWS CloudHSM User Guide

CloudHSM 
CLI attribute

Value Modifiable with key 
set-attribute

Settable at key 
creation

key-lengt 
h-bytes

Required for 
generating 
an AES key.

Valid values: 16,
24, and 32 bytes.

No No

key-type Possible values:
aes, rsa, and ec

No Yes

label Default: Empty Yes Yes

local Default: True for 
keys generated in 
the HSM, False

for keys imported 
into the HSM.

No No

modifiable Default: True Can be changed from 
true to false, but not 
from false to true.

Yes

modulus The modulus that 
was used to generate 

an RSA key pair. 
For other key 

types, this attribute 
does not exist.

No No

modulus-
size-bits

Required for 
generating an 
RSA key pair.

Minimum 
value is 2048.

No Settable with RSA, 
not settable with EC

Key attributes 340



AWS CloudHSM User Guide

CloudHSM 
CLI attribute

Value Modifiable with key 
set-attribute

Settable at key 
creation

never-ext 
ractable

The value is True if 
extractable has never 

been set to False.

The value is False if 
extractable has ever 

been set to True.

No No

private Default: True No Yes

public-exponent Required for 
generating an 
RSA key pair.

Valid values: The 
value must be an odd 
number greater than 
or equal to 65537.

No Settable with RSA, 
not settable with EC

sensitive Default:

• The value is True
for AES keys 

and EC and RSA 
private keys.

• The value is
False for EC and 
RSA public keys.

No Settable with private 
keys, not settable 
with public keys.

Key attributes 341



AWS CloudHSM User Guide

CloudHSM 
CLI attribute

Value Modifiable with key 
set-attribute

Settable at key 
creation

sign Default:

• The value is True
for AES keys.

• The value is
False for RSA 

and EC keys.

Yes Yes

token Default: True Can be changed from 
false to true, but not 
from true to false.

Yes

trusted Default: False Only admin users can 
set this parameter.

No

unwrap Default: False Yes Yes, except for public 
keys.

unwrap-template Values should use the 
attribute template 
applied to any key 
unwrapped using 
this wrapping key.

Yes No

verify Default:

• The value is True
for AES keys.

• The value is
False for RSA 

and EC keys.

Yes Yes

wrap Default: False Yes Yes, except for 
private keys.

Key attributes 342



AWS CloudHSM User Guide

CloudHSM 
CLI attribute

Value Modifiable with key 
set-attribute

Settable at key 
creation

wrap-template Values should use the 
attribute template 
to match the key 
wrapped using 

this wrapping key.

Yes No

wrap-with 
-trusted

Default: False Yes Yes

Check value in CloudHSM CLI

The check value in CloudHSM CLI is a 3-byte hash or checksum of a key that is generated when the 
HSM imports or generates a key. You can also calculate a check value outside of the HSM, such as 
after you export a key. You can then compare the check value values to confirm the identity and 
integrity of the key. To get the check value of a key, use key list with the verbose flag.

AWS CloudHSM uses the following standard methods to generate a check value:

• Symmetric keys: First 3 bytes of the result of encrypting a zero-block with the key.

• Asymmetric key pairs: First 3 bytes of the SHA-1 hash of the public key.

• HMAC keys: KCV for HMAC keys is not supported at this time.

Related topics for CloudHSM CLI

See the following topics for more information about CloudHSM CLI.

• The key category in CloudHSM CLI

• Reference for CloudHSM CLI commands

Advanced configurations for CloudHSM CLI

The AWS CloudHSM Command Line Interface (CLI) includes the following advanced configuration, 
which is not part of the general configurations most customers utilize. These configurations 
provide additional capabilities.

Advanced configurations 343



AWS CloudHSM User Guide

• Connecting to multiple clusters

Connecting to multiple clusters with CloudHSM CLI

With AWS CloudHSM Client SDK 5, you can configure CloudHSM CLI to allow connections to 
multiple CloudHSM clusters from a single CLI instance.

The following topics describe how to use the CloudHSM CLI multi-cluster functionality to connect 
with multiple clusters.

Topics

• Multi-cluster prerequisites for AWS CloudHSM

• Configure the CloudHSM CLI for multi-cluster functionality

• Add a cluster to your AWS CloudHSM configuration

• Remove a cluster from your AWS CloudHSM configuration

• Interact with multiple clusters in AWS CloudHSM

Multi-cluster prerequisites for AWS CloudHSM

Before configuring your cluster in AWS CloudHSM to connect to multiple clusters, you must meet 
the following prerequisites:

• Two or more AWS CloudHSM clusters to which you’d like to connect to, along with their cluster 
certificates.

• An EC2 instance with Security Groups correctly configured to connect to all of the clusters above. 
For more information about how to set up a cluster and the client instance, refer to Getting 
started with AWS CloudHSM.

• To set up multi-cluster functionality, you must have already downloaded and installed the 
CloudHSM CLI. If you have not already done this, refer to the instructions in ???.

• You will not be able to access a cluster configured with ./configure-cli[.exe] -a since 
it will not be associated with a cluster-id. You can reconfigure it by following config-cli 
add-cluster as described in this guide.

Configure the CloudHSM CLI for multi-cluster functionality

To configure your CloudHSM CLI for multi-cluster functionality, follow these steps:

Advanced configurations 344



AWS CloudHSM User Guide

1. Identify the clusters you want to connect to.

2. Add these clusters to your CloudHSM CLI configuration using the configure-cli subcommand
add-cluster as described below.

3. Restart any CloudHSM CLI processes in order for the new configuration to take effect.

Add a cluster to your AWS CloudHSM configuration

When connecting to multiple clusters, use the configure-cli add-cluster command to add a 
cluster to your configuration.

Syntax

configure-cli add-cluster [OPTIONS]
        --cluster-id <CLUSTER ID> 
        [--region <REGION>] 
        [--endpoint <ENDPOINT>] 
        [--hsm-ca-cert <HSM CA CERTIFICATE FILE>] 
        [--client-cert-hsm-tls-file <CLIENT CERTIFICATE FILE>] 
        [--client-key-hsm-tls-file <CLIENT KEY FILE>] 
        [-h, --help]

Examples

Add a cluster using the cluster-id parameter

Example

Use the configure-cli add-cluster along with the cluster-id parameter to add a cluster 
(with the ID of cluster-1234567) to your configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure-cli add-cluster --cluster-id <cluster-1234567>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" add-cluster --
cluster-id <cluster-1234567>

Advanced configurations 345



AWS CloudHSM User Guide

Tip

If using configure-cli add-cluster with the cluster-id parameter doesn't result 
in the cluster being added, refer to the following example for a longer version of this 
command that also requires --region and --endpoint parameters to identify the cluster 
being added. If, for example, the region of the cluster is different than the one configured 
as your AWS CLI default, you should use the --region parameter to use the correct region. 
Additionally, you have the ability to specify the AWS CloudHSM API endpoint to use for 
the call, which may be necessary for various network setups, such as using VPC interface 
endpoints that don’t use the default DNS hostname for AWS CloudHSM.

Add a cluster using cluster-id, endpoint, and region parameters

Example

Use the configure-cli add-cluster along with the cluster-id, endpoint, and region
parameters to add a cluster (with the ID of cluster-1234567) to your configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure-cli add-cluster --cluster-id <cluster-1234567> --
region <us-east-1> --endpoint <https://cloudhsmv2.us-east-1.amazonaws.com>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" add-cluster --
cluster-id <cluster-1234567> --region <us-east-1> --endpoint <https://cloudhsmv2.us-
east-1.amazonaws.com>

For more information about the --cluster-id, --region, and --endpoint parameters, see the 
section called “Parameters”.

Advanced configurations 346



AWS CloudHSM User Guide

Parameters

--cluster-id <Cluster ID>

Makes a DescribeClusters call to find all of the HSM elastic network interface (ENI) IP 
addresses in the cluster associated with the cluster ID. The system adds the ENI IP addresses to 
the AWS CloudHSM configuration files.

Note

If you use the --cluster-id parameter from an EC2 instance within a VPC that does 
not have access to the public internet, then you must create an interface VPC endpoint 
to connect with AWS CloudHSM. For more information about VPC endpoints, see ???.

Required: Yes

--endpoint <Endpoint>

Specify the AWS CloudHSM API endpoint used for making the DescribeClusters call. You 
must set this option in combination with --cluster-id.

Required: No

--hsm-ca-cert <HsmCA Certificate Filepath>

Specifies the filepath to the HSM CA certificate.

Required: No

--region <Region>

Specify the region of your cluster. You must set this option in combination with --cluster-
id.

If you don’t supply the --region parameter, the system chooses the region by attempting 
to read the AWS_DEFAULT_REGION or AWS_REGION environment variables. If those variables 
aren’t set, then the system checks the region associated with your profile in your AWS config 
file (typically ~/.aws/config) unless you specified a different file in the AWS_CONFIG_FILE
environment variable. If none of the above are set, the system defaults to the us-east-1
region.

Required: No

Advanced configurations 347



AWS CloudHSM User Guide

--client-cert-hsm-tls-file <client certificate hsm tls path>

Path to the client certificate used for TLS client-HSM mutual authentication.

Only use this option if you have registered at least one trust anchor onto HSM with CloudHSM 
CLI. You must set this option in combination with --client-key-hsm-tls-file.

Required: No

--client-key-hsm-tls-file <client key hsm tls path>

Path to the client key used for TLS client-HSM mutual authentication.

Only use this option if you have registered at least one trust anchor onto HSM with CloudHSM 
CLI. You must set this option in combination with --client-cert-hsm-tls-file.

Required: No

Remove a cluster from your AWS CloudHSM configuration

When connecting to multiple clusters with CloudHSM CLI, use the configure-cli remove-
cluster command to remove a cluster from your configuration.

Syntax

configure-cli remove-cluster [OPTIONS]
        --cluster-id <CLUSTER ID>
        [-h, --help]

Examples

Remove a cluster using the cluster-id parameter

Example

Use the configure-cli remove-cluster along with the cluster-id parameter to remove a 
cluster (with the ID of cluster-1234567) from your configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure-cli remove-cluster --cluster-id <cluster-1234567>

Advanced configurations 348



AWS CloudHSM User Guide

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-cli.exe" remove-cluster --
cluster-id <cluster-1234567>

For more information about the --cluster-id parameter, see the section called “Parameters”.

Parameter

--cluster-id <Cluster ID>

The ID of the cluster to remove from the configuration.

Required: Yes

Interact with multiple clusters in AWS CloudHSM

After configuring multiple clusters with CloudHSM CLI, use the cloudhsm-cli command to 
interact with them.

Examples

Setting a default cluster-id when using interactive mode

Example

Use the ??? along with the cluster-id parameter to set a default cluster (with the ID of
cluster-1234567) from your configuration.

Linux

$ cloudhsm-cli interactive --cluster-id <cluster-1234567>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" interactive --
cluster-id <cluster-1234567>

Advanced configurations 349



AWS CloudHSM User Guide

Setting the cluster-id when running a single command

Example

Use the cluster-id parameter to set the cluster (with the ID of cluster-1234567) to get ???
from.

Linux

$ cloudhsm-cli cluster hsm-info --cluster-id <cluster-1234567>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" cluster hsm-info 
 --cluster-id <cluster-1234567>

Reference for CloudHSM CLI commands

CloudHSM CLI helps admins manage users in their AWS CloudHSM cluster. CloudHSM CLI can be 
run in two modes: Interactive Mode and Single Command Mode. For a quick start, see Getting 
started with AWS CloudHSM Command Line Interface (CLI).

To run most CloudHSM CLI commands, you must start the CloudHSM CLI and log in to the HSM. If 
you add or delete HSMs, update the configuration files for CloudHSM CLI. Otherwise, the changes 
that you make might not be effective for all HSMs in the cluster.

The following topics describe commands in CloudHSM CLI:

Command Description User Type

activate Activates an CloudHSM 
cluster and provides 
confirmation the cluster 
is new. This must be done 
before any other operations 
can be performed.

Unactivated admin

Reference 350



AWS CloudHSM User Guide

Command Description User Type

hsm-info List the HSMs in your cluster. All 1, including unauthent 
icated users. Login is not 
required.

ECDSA Generates a signature using 
an EC private key and the 
ECDSA signing mechanism.

Crypto users (CU)

rsa-pkcs Generates a signature using 
an RSA private key and the 
RSA-PKCS signing mechanism 
.

CU

rsa-pkcs-pss Generates a signature using 
an RSA private key and 
the RSA-PKCS-PSS signing 
mechanism.

CU

ecdsa Confirms a file has been 
signed in the HSM by a 
given public key. Verifies the 
signature was generated 
using the ECDSA signing 
mechanism. Compares a 
signed file against a source 
file and determine whether 
the two are cryptographically 
related based on a given 
ecdsa public key and signing 
mechanism.

CU

Reference 351



AWS CloudHSM User Guide

Command Description User Type

rsa-pkcs Confirms a file has been 
signed in the HSM by a 
given public key. Verifies the 
signature was generated 
using the RSA-PKCS signing 
mechanism. Compares a 
signed file against a source 
file and determines whether 
the two are cryptographically 
related based on a given 
rsa public key and signing 
mechanism.

CU

rsa-pkcs-pss Confirms a file has been 
signed in the HSM by a 
given public key. Verifies the 
signature was generated 
using the RSA-PKCS- 
PSS signing mechanism 
. Compares a signed file 
against a source file and 
determines whether the two 
are cryptographically related 
based on a given rsa public 
key and signing mechanism.

CU

key delete Deletes a key from your AWS 
CloudHSM cluster.

CU

key generate-file Generates a key file in your 
AWS CloudHSM cluster.

CU

key generate-asymmetric-pair 
rsa

Generates an asymmetric 
RSA key pair in your AWS 
CloudHSM cluster.

CU

Reference 352



AWS CloudHSM User Guide

Command Description User Type

key generate-asymmetric-pair 
ec

Generates an asymmetric 
Elliptic-curve (EC) key pair in 
your AWS CloudHSM cluster.

CU

key generate-symmetric aes Generates a symmetric AES 
key in your AWS CloudHSM 
cluster.

CU

key generate-symmetric 
generic-secret

Generates a symmetric 
Generic Secret key in your 
AWS CloudHSM cluster.

CU

key import pem Imports a PEM format key 
into an HSM. You can use it 
to import public keys that 
were generated outside of the 
HSM.

CU

key list Finds all keys for the current 
user present in your AWS 
CloudHSM cluster.

CU

key replicate Replicate a key from a source 
cluster to a cloned destinati 
on cluster.

CU

key set-attribute Sets the attributes of keys in 
your AWS CloudHSM cluster.

CUs can run this command, 
admins can set the trusted 
attribute.

key share Shares a key with other CUs in 
your AWS CloudHSM cluster.

CU

key unshare Unshares a key with other 
CUs in your AWS CloudHSM 
cluster.

CU

Reference 353



AWS CloudHSM User Guide

Command Description User Type

aes-gcm Unwraps a payload key into 
the cluster using the AES 
wrapping key and the AES-
GCM unwrapping mechanism.

CU

aes-no-pad Unwraps a payload key 
into the cluster using the 
AES wrapping key and the 
AES-NO-PAD unwrapping 
mechanism.

CU

aes-pkcs5-pad Unwraps a payload key using 
the AES wrapping key and the 
AES-PKCS5-PAD unwrapping 
mechanism.

CU

aes-zero-pad Unwraps a payload key into 
the cluster using the AES 
wrapping key and the AES-
ZERO-PAD unwrapping 
mechanism.

CU

cloudhsm-aes-gcm Unwraps a payload key 
into the cluster using the 
AES wrapping key and the 
CLOUDHSM-AES-GCM 
unwrapping mechanism.

CU

rsa-aes Unwraps a payload key 
using an RSA private key and 
the RSA-AES unwrapping 
mechanism.

CU

Reference 354



AWS CloudHSM User Guide

Command Description User Type

rsa-oaep Unwraps a payload key using 
the RSA private key and 
the RSA-OAEP unwrapping 
mechanism.

CU

rsa-pkcs Unwraps a payload key using 
the RSA private key and 
the RSA-PKCS unwrapping 
mechanism.

CU

aes-gcm Wraps a payload key using 
an AES key on the HSM and 
the AES-GCM wrapping 
mechanism.

CU

aes-no-pad Wraps a payload key using 
an AES key on the HSM and 
the AES-NO-PAD wrapping 
mechanism.

CU

aes-pkcs5-pad Wraps a payload key using 
an AES key on the HSM and 
the AES-PKCS5-PAD wrapping 
mechanism.

CU

aes-zero-pad Wraps a payload key using 
an AES key on the HSM and 
the AES-ZERO-PAD wrapping 
mechanism.

CU

cloudhsm-aes-gcm Wraps a payload key using 
an AES key on the HSM and 
the CLOUDHSM-AES-GCM 
wrapping mechanism.

CUs

Reference 355



AWS CloudHSM User Guide

Command Description User Type

rsa-aes Wraps a payload key using an 
RSA public key on the HSM 
and the RSA-AES wrapping 
mechanism.

CU

rsa-oaep Wraps a payload key using an 
RSA public key on the HSM 
and the RSA-OAEP wrapping 
mechanism.

CU

Reference 356



AWS CloudHSM User Guide

Command Description User Type

Use the key wrap rsa-pkcs
command in CloudHSM CLI 
to wrap a payload key using 
an RSA public key on the 
hardware security module 
(HSM) and the RSA-PKCS
wrapping mechanism. The 
payload key’s extractable
attribute must be set to true.

Only the owner of a key, that 
is the crypto user (CU) who 
created the key, can wrap the 
key. Users who share the key 
can use the key in cryptogra 
phic operations.

To use the key wrap rsa-
pkcs command, you must 
first have an RSA key in your 
AWS CloudHSM cluster. You 
can generate an RSA key 
pair using the The generate- 
asymmetric-pair category 
in CloudHSM CLI command 
and the wrap attribute set to
true.

User type

The following types of users 
can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you 
must be logged in as a CU.

Syntax

aws-cloudhsm > help key 

 wrap rsa-pkcs

Usage: key wrap rsa-pkcs 

 [OPTIONS] --payload 

-filter [ <PAYLOAD_ 

FILTER> ...] --wrappin 

g-filter [ <WRAPPING 

_FILTER> ...]

Options: 

      --cluster-

id <CLUSTER_ID>

          Unique Id 

 to choose which of 

 the clusters in the 

 config file to run the 

 operation against. 

 If not provided, will 

 fall back to the value 

 provided when interacti 

ve mode was started, or 

 error 

      --payload-filter 

 [<PAYLOAD_FILTER> ...] 

          Key reference 

 (e.g. key-refer 

ence=0xabc) or space 

 separated list of key 

 attributes in the form 

 of attr.KEY_ATTRIBUTE 

_NAME=KEY_ATTRIBUT 

E_VALUE to select a 

 payload key 

      --wrapping-filter 

 [<WRAPPING_FILTER> ...] 

          Key reference 

 (e.g. key-refer 

ence=0xabc) or space 

 separated list of key 

 attributes in the form 

 of attr.KEY_ATTRIBUTE 

_NAME=KEY_ATTRIBUT 

E_VALUE to select a 

 wrapping key 

      --path <PATH>

          Path to the 

 binary file where the 

 wrapped key data will 

 be saved 

      --wrapping-

approval <WRAPPING 

_APPROVALR>

          File path 

 of signed quorum 

 token file to approve 

 operation for wrapping 

 key 

      --payload-

approval <PAYLOAD_ 

APPROVALR>

          File path 

 of signed quorum 

 token file to approve 

 operation for payload 

 key 

  -h, --help 

          Print help

Example

This example shows how to 
use the key wrap rsa-pkcs
command using an RSA public 
key.

Example

aws-cloudhsm > key wrap 

 rsa-pkcs --payload 

-filter attr.labe 

l=payload-key --

wrapping-filter 

 attr.label=rsa-pub 

lic-key-example

{ 

  "error_code": 0, 

  "data": { 

    "payload_key_refer 

ence": "0x000000 

00001c08f1", 

    "wrapping_key_refe 

rence": "0x000000 

00007008da", 

    "wrapped_key_data" 

: "am0Nc7+YE8FWs+5Hv 

U7sIBcXVb24QA0l65n 

bNAD+1bK+e18BpSfna 

I3P+r8Dp+pLu1ofoUy 

/vtzRjZoCiDofcz4Eq 

CFnGl4GdcJ1/3W/5WR 

vMatCa2d7cx02swaeZ 

cjKsermPXYRO1lGlfq 

6NskwMeeTkV8R7Rx9a 

rtFrs1y0DdIgIKVaiF 

HwnBIUMnlQrR2zRmMk 

fwU1jxMYmOYyD031F5 

VbnjSrhfMwkww2la7u 

f/c3XdFJ2+0Bo94c6o 

g/yfPcpOOobJlITCoX 

htMRepSdO4OggYq/6n 

UDuHCtJ86pPGnNahyr 

7+sAaSI3a5ECQLUjwa 

IARUCyoRh7EFK3qPXc 

g==" 

  }

Arguments

<CLUSTER_ID>

The ID of the cluster to 
run this operation on.

Required: If multiple 
clusters have been
configured.

<PAYLOAD_FILTER>

Key reference (for 
example, key-refer 
ence=0xabc ) or space 
separated list of key 
attributes in the form of
attr.KEY_ATTRIBUTE 
_NAME=KEY_ATTRIBUT 
E_VALUE  to select a 
payload key.

Required: Yes

<PATH>

Path to the binary file 
where the wrapped key 
data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for 
example, key-refer 
ence=0xabc ) or space 
separated list of key 
attributes in the form of
attr.KEY_ATTRIBUTE 
_NAME=KEY_ATTRIBUT 
E_VALUE  to select a 
wrapping key.

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to 
a signed quorum token 
file to approve operation 
for wrapping key. Only 
required if wrapping key's 
key management service 
quorum value is greater 
than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to 
a signed quorum token 
file to approve operation 
for payload key. Only 
required if payload key's 
key management service 
quorum value is greater 
than 1.

Related topics

• The key wrap command in 
CloudHSM CLI

• The key unwrap command 
in CloudHSM CLI

Wraps a payload key using an 
RSA public key on the HSM 
and the RSA-PKCS wrapping 
mechanism.

CU

Reference 357



AWS CloudHSM User Guide

Command Description User Type

login Log in to your AWS CloudHSM 
cluster.

Admin, crypto user (CU), and 
appliance user (AU)

logout Log out of your AWS 
CloudHSM cluster.

Admin, CU, and appliance 
user (AU)

quorum token-sign delete Deletes one or more tokens 
for a quorum authorized 
service.

Admin

quorum token-sign generate Generates a token for a 
quorum authorized service.

Admin

quorum token-sign list Lists all token-sign quorum 
tokens present in your 
CloudHSM cluster.

All 1, including unauthent 
icated users. Login is not 
required.

quorum token-sign list-quor 
um-values

Lists the quorum values set in 
your CloudHSM cluster.

All 1, including unauthent 
icated users. Login is not 
required.

quorum token-sign set-quoru 
m-value

Sets a new quorum value for 
a quorum authorized service.

Admin

user change-mfa Changes a user's multi-factor 
authentication (MFA) strategy.

Admin, CU

user change-password Changes the passwords of 
users on the HSMs. Any 
user can change their own 
password. Admins can change 
anyone's password.

Admin, CU

user create Creates a user in your AWS 
CloudHSM cluster.

Admin

Reference 358



AWS CloudHSM User Guide

Command Description User Type

user delete Deletes a user in your AWS 
CloudHSM cluster.

Admin

user list Lists the users in your AWS 
CloudHSM cluster.

All 1, including unauthent 
icated users. Login is not 
required.

user change-quorum token-
sign register

Registers the quorum token-
sign quorum strategy for a 
user.

Admin

Annotations

• [1] All users includes all listed roles and users not logged in.

The cluster category in CloudHSM CLI

In the CloudHSM CLI, cluster is a parent category for a group of commands that, when combined 
with the parent category, create a command specific to clusters. Currently, the cluster category 
consists of the following commands:

Topics

• Activate a cluster with CloudHSM CLI

• List HSMs with CloudHSM CLI

• The cluster mtls category in CloudHSM CLI

Activate a cluster with CloudHSM CLI

Use the cluster activate command in CloudHSM CLI to activate a new cluster in AWS CloudHSM. 
This command must be run before the cluster can be used to perform cryptographic operations.

User type

The following types of users can run this command.

• Unactivated admin

Reference 359



AWS CloudHSM User Guide

Syntax

This command has no parameters.

aws-cloudhsm > help cluster activate
Activate a cluster

This command will set the initial Admin password. This process will cause your CloudHSM 
 cluster to
move into the ACTIVE state.

USAGE: 
    cloudhsm-cli cluster activate [OPTIONS] [--password <PASSWORD>]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --password <PASSWORD>
          Optional: Plaintext activation password If you do not include this argument 
 you will be prompted for it 

  -h, --help 
          Print help (see a summary with '-h')

Example

This command activates your cluster by setting the initial password for you admin user.

aws-cloudhsm > cluster activate
Enter password:
Confirm password:
{ 
  "error_code": 0, 
  "data": "Cluster activation successful"
}

Related topics

• user create

• user delete

Reference 360



AWS CloudHSM User Guide

• user change-password

List HSMs with CloudHSM CLI

Use the cluster hsm-info command in CloudHSM CLI to list the hardware security modules (HSMs) 
in your AWS CloudHSM cluster. You do not need to be logged in to CloudHSM CLI to run this 
command.

Note

If you add or delete HSMs, update the configuration files that the AWS CloudHSM client 
and the command line tools use. Otherwise, the changes that you make might not be 
effective on all HSMs in the cluster.

User type

The following types of users can run this command.

• All users. You do not need to be logged in to run this command.

Syntax

aws-cloudhsm > help cluster hsm-info
List info about each HSM in the cluster

Usage: cloudhsm-cli cluster hsm-info [OPTIONS]

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
  -h, --help                     Print help 
   
   

Example

This command lists the HSMs present in your AWS CloudHSM cluster.

aws-cloudhsm > cluster hsm-info

Reference 361



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "hsms": [ 
      { 
        "vendor": "Marvell Semiconductors, Inc.", 
        "model": "NITROX-III CNN35XX-NFBE", 
        "serial-number": "5.3G1941-ICM000590", 
        "hardware-version-major": "5", 
        "hardware-version-minor": "3", 
        "firmware-version-major": "2", 
        "firmware-version-minor": "6", 
        "firmware-build-number": "16", 
        "firmware-id": "CNN35XX-NFBE-FW-2.06-16" 
        "fips-state": "2 [FIPS mode with single factor authentication]" 
      }, 
      { 
        "vendor": "Marvell Semiconductors, Inc.", 
        "model": "NITROX-III CNN35XX-NFBE", 
        "serial-number": "5.3G1941-ICM000625", 
        "hardware-version-major": "5", 
        "hardware-version-minor": "3", 
        "firmware-version-major": "2", 
        "firmware-version-minor": "6", 
        "firmware-build-number": "16", 
        "firmware-id": "CNN35XX-NFBE-FW-2.06-16" 
        "fips-state": "2 [FIPS mode with single factor authentication]" 
      }, 
      { 
        "vendor": "Marvell Semiconductors, Inc.", 
        "model": "NITROX-III CNN35XX-NFBE", 
        "serial-number": "5.3G1941-ICM000663", 
        "hardware-version-major": "5", 
        "hardware-version-minor": "3", 
        "firmware-version-major": "2", 
        "firmware-version-minor": "6", 
        "firmware-build-number": "16", 
        "firmware-id": "CNN35XX-NFBE-FW-2.06-16" 
        "fips-state": "2 [FIPS mode with single factor authentication]" 
      } 
    ] 
  }
}

Reference 362



AWS CloudHSM User Guide

The output has the following attributes:

• Vendor: The vendor name of the HSM.

• Model: The model number of the HSM.

• Serial-number: The serial number of the HSM. This may change due to replacements.

• Hardware-version-major: The major hardware version.

• Hardware-version-minor: The minor hardware version.

• Firmware-version-major: The major firmware version.

• Firmware-version-minor: The minor firmware version.

• Firmware-build-number: The firmware build number.

• Firmware-id: The firmware ID, which includes the major and minor versions along with the build.

• FIPS-state: The FIPS mode the cluster and the HSMs in it. If in FIPS mode, the output is "2 [FIPS 
mode with single factor authentication]." If in non-FIPS mode, the output is "0 [non-FIPS mode 
with single factor authentication]".

Related topics

• Activate a cluster with CloudHSM CLI

The cluster mtls category in CloudHSM CLI

In CloudHSM CLI, cluster mtls is a parent category for a group of commands that, when combined 
with the parent category, create a command specific to AWS CloudHSM clusters. Currently, this 
category consists of the following commands:

Topics

• Deregister a trust anchor with CloudHSM CLI

• Get the mTLS enforcement level with CloudHSM CLI

• List trust anchors with CloudHSM CLI

• Register a trust anchor with CloudHSM CLI

• Set the mTLS enforcement level with CloudHSM CLI

Reference 363



AWS CloudHSM User Guide

Deregister a trust anchor with CloudHSM CLI

Use the cluster mtls deregister-trust-anchor command in CloudHSM CLI to deregister a trust 
anchor for mutual TLS between client and AWS CloudHSM.

User type

The following users can run this command.

• Admin

Requirements

• To run this command, you must be logged in as a admin user.

Syntax

aws-cloudhsm > help cluster mtls deregister-trust-anchor
            
Deregister a trust anchor for mtls

Usage: cluster mtls deregister-trust-anchor [OPTIONS] --certificate-reference 
 [<CERTIFICATE_REFERENCE>...]

Options: 
      --certificate-reference <CERTIFICATE_REFERENCE>  A hexadecimal or decimal 
 certificate reference 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
      --approval <APPROVAL>  Filepath of signed quorum token file to approve operation 
  -h, --help                     Print help
        

Example

Example

In the following example, this command removes a trust anchor from the HSM.

aws-cloudhsm > cluster mtls deregister-trust-anchor --certificate-reference 0x01

Reference 364



AWS CloudHSM User Guide

                
{ 
  "error_code": 0, 
  "data": { 
    "message": "Trust anchor with reference 0x01 deregistered successfully" 
  }
}
            

You can then run the list-trust-anchors command to confirm that trust anchor has been 
deregistered from the AWS CloudHSM:

aws-cloudhsm > cluster mtls list-trust-anchors
                
{ 
  "error_code": 0, 
  "data": { 
    "trust_anchors": [] 
  }
}
            

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<CERTIFICATE_REFERENCE>

A hexadecimal or decimal certificate reference.

Required: Yes

Warning

After you deregister a trust anchor in the cluster, all existing mTLS connections using 
the client certificate signed by that trust anchor will be dropped.

Reference 365



AWS CloudHSM User Guide

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum cluster service quorum value is greater than 1.

Related topics

• cluster mtls reregister-trust-anchor

• cluster mtls list-trust-anchors

• Setup mTLS (recommended)

Get the mTLS enforcement level with CloudHSM CLI

Use the cluster mtls get-enforcement command in CloudHSM CLI to get the enforcement level of 
the usage of mutual TLS between client and AWS CloudHSM.

User type

The following users can run this command.

• Admin

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a admin user or crypto user (CUs).

Syntax

aws-cloudhsm > help cluster mtls get-enforcement
            
Get the status of mtls enforcement in the cluster

Usage: cluster mtls get-enforcement [OPTIONS]

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 

Reference 366



AWS CloudHSM User Guide

  -h, --help                     Print help
        

Example

Example

In the following example, this command lists the mtls enforcement level of the AWS CloudHSM.

aws-cloudhsm > cluster mtls get-enforcement
                
{ 
  "error_code": 0, 
  "data": { 
    "mtls-enforcement-level": "none" 
  }
}
            

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

Related topics

• cluster mtls set-enforcement

• Setup mTLS (recommended)

List trust anchors with CloudHSM CLI

Use the cluster mtls list-trust-anchors command in CloudHSM CLI to list all the trust anchors 
which can be used for mutual TLS between client and AWS CloudHSM.

User type

The following users can run this command.

• All users. You do not need to be logged in to run this command.

Reference 367



AWS CloudHSM User Guide

Syntax

aws-cloudhsm > help cluster mtls list-trust-anchors
            
List all trust anchors for mtls

Usage: cluster mtls list-trust-anchors [OPTIONS]

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
  -h, --help                     Print help
        

Example

Example

In the following example, this command lists all the registered trust anchors from the AWS 
CloudHSM.

aws-cloudhsm > cluster mtls list-trust-anchors
                
{ 
  "error_code": 0, 
  "data": { 
    "trust_anchors": [ 
      { 
        "certificate-reference": "0x01", 
        "certificate": "<PEM Encoded Certificate 1>", 
        "cluster-coverage": "full" 
      }, 
      { 
        "certificate-reference": "0x02", 
        "certificate": "<PEM Encoded Certificate 2>", 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}
            

Reference 368



AWS CloudHSM User Guide

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

Related topics

• cluster mtls reregister-trust-anchor

• cluster mtls deregister-trust-anchor

• Setup mTLS (recommended)

Register a trust anchor with CloudHSM CLI

Use the cluster mtls register-trust-anchor command in CloudHSM CLI to register a trust anchor 
for mutual TLS between client and AWS CloudHSM.

User type

The following users can run this command.

• Admin

Requirements

The AWS CloudHSM accepts trust anchors with the following key types:

Key Type Description

EC secp256r1 (P-256), secp384r1 (P-384), and 
secp521r1 (P-521) curves.

RSA 2048-bit, 3072-bit, and 4096-bit RSA keys.

Syntax

aws-cloudhsm > help cluster mtls register-trust-anchor

Reference 369



AWS CloudHSM User Guide

            
Register a trust anchor for mtls

Usage: cluster mtls register-trust-anchor [OPTIONS] --path [<PATH>...]

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
      --path <PATH>  Filepath of the trust anchor to register 
      --approval <APPROVAL>  Filepath of signed quorum token file to approve operation 
  -h, --help                     Print help
        

Example

Example

In the following example, this command registers a trust anchor onto the HSM. The maximum 
number of trust anchors can be registered is two (2).

aws-cloudhsm > cluster mtls register-trust-anchor --path /home/rootCA
                
{ 
  "error_code": 0, 
  "data": { 
    "trust_anchor": { 
      "certificate-reference": "0x01", 
      "certificate": "<PEM Encoded Certificate>", 
      "cluster-coverage": "full" 
    } 
  }
}
            

You can then run the list-trust-anchors command to confirm that trust anchor has been registered 
onto the AWS CloudHSM:

aws-cloudhsm > cluster mtls list-trust-anchors
                
{ 
  "error_code": 0, 
  "data": { 

Reference 370



AWS CloudHSM User Guide

    "trust_anchors": [ 
      { 
        "certificate-reference": "0x01", 
        "certificate": "<PEM Encoded Certificate>", 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}
            

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PATH>

Filepath of the trust anchor to register.

Required: Yes

Note

AWS CloudHSM supports registering intermediate certificates as trust anchor. In such 
cases, the entire PEM-encoded certificate chain file needs to be registered onto the 
HSM, with the certificates in hierarchical order.
AWS CloudHSM supports a certificate chain of 6980 bytes.

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum cluster service quorum value is greater than 1.

Related topics

• cluster mtls deregister-trust-anchor

• cluster mtls list-trust-anchors

Reference 371



AWS CloudHSM User Guide

• Setup mTLS (recommended)

Set the mTLS enforcement level with CloudHSM CLI

Use the cluster mtls set-enforcement command in CloudHSM CLI to set the enforcement level of 
the usage of mutual TLS between client and AWS CloudHSM.

User type

The following users can run this command.

• Admin with username as admin

Requirements

To run this command:

• At least one trust anchor has been successfully registered onto the AWS CloudHSM.

• Configure the CloudHSM CLI with the right private key and client certificate, and start CloudHSM 
CLI under a mutual TLS connection.

• You must be logged in as the default admin with username "admin". Any other admin user will 
not be able to run this command.

Syntax

aws-cloudhsm > help cluster mtls set-enforcement
            
Set mtls enforcement policy in the cluster

Usage: cluster mtls set-enforcement [OPTIONS] --level [<LEVEL>...]

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
      --level <LEVEL>  Level to be set for mtls in the cluster [possible values: none, 
 cluster] 
      --approval <APPROVAL>  Filepath of signed quorum token file to approve operation 
  -h, --help                     Print help
        

Reference 372



AWS CloudHSM User Guide

Example

Example

In the following example, this command set the mtls enforcement level of the AWS CloudHSM 
to be cluster. The set-enforcement command can only be performed in a mutual TLS connection 
and logged in as the admin user with username as admin, see set the mTLS enforcement for AWS 
CloudHSM.

aws-cloudhsm > cluster mtls set-enforcement --level cluster
                
{ 
  "error_code": 0, 
  "data": { 
    "message": "Mtls enforcement level set to Cluster successfully" 
  }
}
            

You can then run the get-enforcement command to confirm that enforcement level has been set 
to cluster:

aws-cloudhsm > cluster mtls get-enforcement
                
{ 
  "error_code": 0, 
  "data": { 
    "mtls-enforcement-level": "cluster" 
  }
}
            

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<LEVEL>

Level to be set for mtls in the cluster.

Reference 373



AWS CloudHSM User Guide

Valid values

• cluster: Enforce the usage of mutual TLS between client and AWS CloudHSM in the cluster.

• none: Do not enforce the usage of mutual TLS between client and AWS CloudHSM in the 
cluster.

Required: Yes

Warning

After you enforce mTLS usage in the cluster, all existing non-mTLS connections will be 
dropped and you can only connect to the cluster with mTLS certificates.

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum cluster service quorum value is greater than 1.

Related topics

• cluster mtls get-enforcement

• Setup mTLS (recommended)

The crypto category in CloudHSM CLI

In the CloudHSM CLI, crypto is a parent category for a group of commands that, when combined 
with the parent category, create a command specific to cryptographic operations. Currently, this 
category consists of the following commands:

• sign

• ECDSA

• rsa-pkcs

• rsa-pkcs-pss

• verify

• ecdsa

• rsa-pkcs

Reference 374



AWS CloudHSM User Guide

• rsa-pkcs-pss

The crypto sign category in CloudHSM CLI

In the CloudHSM CLI, crypto sign is a parent category for a group of commands that, when 
combined with the parent category, uses a chosen private key in your AWS CloudHSM cluster to 
generate a signature. crypto sign has the following subcommands:

• Generate a signature with the ECDSA mechanism in CloudHSM CLI

• Generate a signature with the RSA-PKCS mechanism in CloudHSM CLI

• Generate a signature with the RSA-PKCS-PSS mechanism in CloudHSM CLI

To use crypto sign, you must have a private key in your HSM. You can generate a private key with 
the following commands:

• key generate-asymmetric-pair ec

• key generate-asymmetric-pair rsa

Generate a signature with the ECDSA mechanism in CloudHSM CLI

Use the crypto sign ecdsa command in CloudHSM CLI to generate a signature using an EC private 
key and the ECDSA signing mechanism.

To use the crypto sign ecdsa command, you must first have an EC private key in your AWS 
CloudHSM cluster. You can generate an EC private key using the Generate an asymmetric EC key 
pair with CloudHSM CLI command with the sign attribute set to true.

Note

Signatures can be verified in AWS CloudHSM with The crypto verify category in CloudHSM 
CLI subcommands.

User type

The following types of users can run this command.

• Crypto users (CUs)

Reference 375



AWS CloudHSM User Guide

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help crypto sign ecdsa
Sign with the ECDSA mechanism

Usage: crypto sign ecdsa --key-filter [<KEY_FILTER>>...] --hash-
function <HASH_FUNCTION> <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --key-filter [<KEY_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key 
      --hash-function <HASH_FUNCTION>
          [possible values: sha1, sha224, sha256, sha384, sha512] 
      --data-path <DATA_PATH>
          The path to the file containing the data to be signed 
      --data <DATA>
          Base64 Encoded data to be signed 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Example

These examples show how to use crypto sign ecdsa to generate a signature using the ECDSA 
signing mechanism and SHA256 hash function. This command uses a private key in the HSM.

Example Example: Generate a signature for base 64 encoded data

aws-cloudhsm > crypto sign ecdsa --key-filter attr.label=ec-private --hash-function 
 sha256 --data YWJjMTIz
{ 

Reference 376



AWS CloudHSM User Guide

  "error_code": 0, 
  "data": { 
    "key-reference": "0x00000000007808dd", 
    "signature": "4zki+FzjhP7Z/KqoQvh4ueMAxQQVp7FQguZ2wOS3Q5bzk
+Hc5irV5iTkuxQbropPttVFZ8V6FgR2fz+sPegwCw==" 
  }
}

Example Example: Generate a signature for a data file

aws-cloudhsm > crypto sign ecdsa --key-filter attr.label=ec-private --hash-function 
 sha256 --data-path data.txt
{ 
  "error_code": 0, 
  "data": { 
    "key-reference": "0x00000000007808dd", 
    "signature": "4zki+FzjhP7Z/KqoQvh4ueMAxQQVp7FQguZ2wOS3Q5bzk
+Hc5irV5iTkuxQbropPttVFZ8V6FgR2fz+sPegwCw==" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<DATA>

Base64 encoded data to be signed.

Required: Yes (unless provided through data path)

<DATA_PATH>

Specifies the location of the data to be signed.

Required: Yes (unless provided through data path)

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

Reference 377



AWS CloudHSM User Guide

• sha1

• sha224

• sha256

• sha384

• sha512

Required: Yes

<KEY_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching key.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key usage service quorum value of the private key is greater than 1.

Related topics

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

Generate a signature with the RSA-PKCS mechanism in CloudHSM CLI

Use the crypto sign rsa-pkcs command in CloudHSM CLI to generate a signature using an RSA 
private key and the RSA-PKCS signing mechanism.

To use the crypto sign rsa-pkcs command, you must first have a RSA private key in your AWS 
CloudHSM cluster. You can generate an RSA private key using the Generate an asymmetric RSA key 
pair with CloudHSM CLI command with the sign attribute set to true.

Note

Signatures can be verified in AWS CloudHSM with The crypto verify category in CloudHSM 
CLI subcommands.

Reference 378



AWS CloudHSM User Guide

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help crypto sign rsa-pkcs
Sign with the RSA-PKCS mechanism

Usage: crypto sign rsa-pkcs --key-filter [<KEY_FILTER>>...] --hash-
function <HASH_FUNCTION> <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --key-filter [<KEY_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key 
      --hash-function <HASH_FUNCTION>
          [possible values: sha1, sha224, sha256, sha384, sha512] 
      --data-path <DATA_PATH>
          The path to the file containing the data to be signed 
      --data <DATA>
          Base64 Encoded data to be signed 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Example

These examples show how to use crypto sign rsa-pkcs to generate a signature using the RSA-PKCS 
signing mechanism and SHA256 hash function. This command uses a private key in the HSM.

Reference 379



AWS CloudHSM User Guide

Example Example: Generate a signature for base 64 encoded data

aws-cloudhsm > crypto sign rsa-pkcs --key-filter attr.label=rsa-private --hash-function 
 sha256 --data YWJjMTIz
{ 
  "error_code": 0, 
  "data": { 
    "key-reference": "0x00000000007008db", 
    "signature": "XJ7mRyHnDRYrDWTQuuNb
+5mhoXx7VTsPMjgOQW4iMN7E42eNHj2Q0oovMmBdHUEH0F4HYG8FBJOBhvGuM8J/
z6y41GbowVpUT6WzjnIQs79K9i7i6oR1TYjLnIS3r/zkimuXcS8/ZxyDzru+GO9BUT9FFU/
of9cvu4Oyn6a5+IXuCbKNQs19uASuFARUTZ0a0Ny1CB1MulxUpqGTmI91J6evlP7k/2khwDmJ5E8FEar5/
Cvbn9t21p3Uj561ngTXrYbIZ2KHpef9jQh/cEIvFLG61sexJjQi8EdTxeDA
+I3ITO0qrvvESvA9+Sj7kdG2ceIicFS8/8LwyxiIC31UHQ==" 
  }
}

Example Example: Generate a signature for a data file

aws-cloudhsm > crypto sign rsa-pkcs --key-filter attr.label=rsa-private --hash-function 
 sha256 --data-path data.txt
{ 
  "error_code": 0, 
  "data": { 
    "key-reference": "0x00000000007008db", 
    "signature": "XJ7mRyHnDRYrDWTQuuNb
+5mhoXx7VTsPMjgOQW4iMN7E42eNHj2Q0oovMmBdHUEH0F4HYG8FBJOBhvGuM8J/
z6y41GbowVpUT6WzjnIQs79K9i7i6oR1TYjLnIS3r/zkimuXcS8/ZxyDzru+GO9BUT9FFU/
of9cvu4Oyn6a5+IXuCbKNQs19uASuFARUTZ0a0Ny1CB1MulxUpqGTmI91J6evlP7k/2khwDmJ5E8FEar5/
Cvbn9t21p3Uj561ngTXrYbIZ2KHpef9jQh/cEIvFLG61sexJjQi8EdTxeDA
+I3ITO0qrvvESvA9+Sj7kdG2ceIicFS8/8LwyxiIC31UHQ==" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

Reference 380



AWS CloudHSM User Guide

<DATA>

Base64 encoded data to be signed.

Required: Yes (unless provided through data path)

<DATA_PATH>

Specifies the location of the data to be signed.

Required: Yes (unless provided through data)

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

• sha224

• sha256

• sha384

• sha512

Required: Yes

<KEY_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key usage service quorum value of the private key is greater than 1.

Related topics

• The crypto sign category in CloudHSM CLI

Reference 381



AWS CloudHSM User Guide

• The crypto verify category in CloudHSM CLI

Generate a signature with the RSA-PKCS-PSS mechanism in CloudHSM CLI

Use the crypto sign rsa-pkcs-pss command in CloudHSM CLI to generate a signature using an RSA 
private key and the RSA-PKCS-PSS signing mechanism.

To use the crypto sign rsa-pkcs-pss command, you must first have a RSA private key in your AWS 
CloudHSM cluster. You can generate an RSA private key using the Generate an asymmetric RSA key 
pair with CloudHSM CLI command with the sign attribute set to true.

Note

Signatures can be verified in AWS CloudHSM with The crypto verify category in CloudHSM 
CLI subcommands.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help crypto sign rsa-pkcs-pss
Sign with the RSA-PKCS-PSS mechanism

Usage: crypto sign rsa-pkcs-pss [OPTIONS] --key-filter [<KEY_FILTER>...] --
hash-function <HASH_FUNCTION> --mgf <MGF> --salt-length <SALT_LENGTH> <--data-
path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>        Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 

Reference 382



AWS CloudHSM User Guide

      --key-filter [<KEY_FILTER>...]   Key reference (e.g. key-
reference=0xabc) or space separated list of key attributes in the form of 
 attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching key 
      --hash-function <HASH_FUNCTION>  [possible values: sha1, sha224, sha256, sha384, 
 sha512] 
      --data-path <DATA_PATH>          The path to the file containing the data to be 
 signed 
      --data <DATA>                    Base64 Encoded data to be signed 
      --mgf <MGF>                      The mask generation function [possible values: 
 mgf1-sha1, mgf1-sha224, mgf1-sha256, mgf1-sha384, mgf1-sha512] 
      --salt-length <SALT_LENGTH>      The salt length 
      --approval <APPROVAL>            Filepath of signed quorum token file to approve 
 operation 
  -h, --help                           Print help

Example

These examples show how to use crypto sign rsa-pkcs-pss to generate a signature using the RSA-
PKCS-PSS signing mechanism and SHA256 hash function. This command uses a private key in the 
HSM.

Example Example: Generate a signature for base 64 encoded data

aws-cloudhsm > crypto sign rsa-pkcs-pss --key-filter attr.label=rsa-private --hash-
function sha256 --data YWJjMTIz --salt-length 10 --mgf mgf1-sha256
{ 
  "error_code": 0, 
  "data": { 
    "key-reference": "0x00000000007008db", 
    "signature": "H/z1rYVMzNAa31K4amE5MTiwGxDdCTgQXCJXRBKVOVm7ZuyI0fGE4sT/BUN
+977mQEV2TqtWpTsiF2IpwGM1VfSBRt7h/g4o6YERm1tTQLl7q+AJ7uGGK37zCsWQrAo7Vy8NzPShxekePo/
ZegrB1aHWN1fE8H3IPUKqLuMDI9o1Jq6kM986ExS7YmeOIclcZkyykTWqHLQVL2C3+A2bHJZBqRcM5XoIpk8HkPypjpN
+m4FNUds30GAemoOMl6asSrEJSthaZWV53OBsDOqzA8Rt8JdhXS+GZp3vNLdL1OTBELDPweXVgAu4dBX0FOvpw/
gg6sNvuaDK4YOBv2fqKg==" 
  }
}

Example Example: Generate a signature for a data file

aws-cloudhsm > crypto sign rsa-pkcs-pss --key-filter attr.label=rsa-private --hash-
function sha256 --data-path data.txt --salt-length 10 --mgf mgf1-sha256
{ 

Reference 383



AWS CloudHSM User Guide

  "error_code": 0, 
  "data": { 
    "key-reference": "0x00000000007008db", 
    "signature": "H/z1rYVMzNAa31K4amE5MTiwGxDdCTgQXCJXRBKVOVm7ZuyI0fGE4sT/BUN
+977mQEV2TqtWpTsiF2IpwGM1VfSBRt7h/g4o6YERm1tTQLl7q+AJ7uGGK37zCsWQrAo7Vy8NzPShxekePo/
ZegrB1aHWN1fE8H3IPUKqLuMDI9o1Jq6kM986ExS7YmeOIclcZkyykTWqHLQVL2C3+A2bHJZBqRcM5XoIpk8HkPypjpN
+m4FNUds30GAemoOMl6asSrEJSthaZWV53OBsDOqzA8Rt8JdhXS+GZp3vNLdL1OTBELDPweXVgAu4dBX0FOvpw/
gg6sNvuaDK4YOBv2fqKg==" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<DATA>

Base64 encoded data to be signed.

Required: Yes (unless provided through data path)

<DATA_PATH>

Specifies the location of the data to be signed.

Required: Yes (unless provided through data)

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

• sha224

• sha256

• sha384

• sha512

Reference 384



AWS CloudHSM User Guide

Required: Yes

<KEY_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<MGF>

Specifies the mask generation function.

Note

The mask generation function hash function must match the signing mechanism hash 
function.

Valid values:

• mgf1-sha1

• mgf1-sha224

• mgf1-sha256

• mgf1-sha384

• mgf1-sha512

Required: Yes

<SALT_LENGTH>

Specifies the salt length.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key usage service quorum value of the private key is greater than 1.

Reference 385



AWS CloudHSM User Guide

Related topics

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

Related topics

• The crypto verify category in CloudHSM CLI

The crypto verify category in CloudHSM CLI

In the CloudHSM CLI, crypto verify is a parent category for a group of commands that, when 
combined with the parent category, confirms whether a file has been signed by a given key. crypto 
verify has the following subcommands:

• crypto verify ecdsa

• crypto verify rsa-pkcs

• crypto verify rsa-pkcs-pss

The crypto verify command compares a signed file against a source file and analyzes whether they 
are cryptographically related based on a given public key and signing mechanism.

Note

Files can be signed in AWS CloudHSM with the The crypto sign category in CloudHSM CLI
operation.

Verify a signature signed with the ECDSA mechanism in CloudHSM CLI

Use the crypto verify ecdsa command in CloudHSM CLI to complete the following operations:

• Confirm a file has been signed in the HSM by a given public key.

• Verify the signature was generated using the ECDSA signing mechanism.

• Compare a signed file against a source file and determine whether the two are cryptographically 
related based on a given ecdsa public key and signing mechanism.

Reference 386



AWS CloudHSM User Guide

To use the crypto verify ecdsa command, you must first have an EC public key in your AWS 
CloudHSM cluster. You can import an EC public key using the Import a PEM format key with 
CloudHSM CLI command with the verify attribute set to true.

Note

You can generate a signature in CloudHSM CLI with The crypto sign category in CloudHSM 
CLI subcommands.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help crypto verify ecdsa
Verify with the ECDSA mechanism

Usage: crypto verify ecdsa --key-filter [<KEY_FILTER>...] --hash-
function <HASH_FUNCTION> <--data-path <DATA_PATH>|--data <DATA>> <--signature-
path <SIGNATURE_PATH>|--signature <SIGNATURE>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --key-filter [<KEY_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key 
      --hash-function <HASH_FUNCTION>
          [possible values: sha1, sha224, sha256, sha384, sha512] 
      --data-path <DATA_PATH>

Reference 387



AWS CloudHSM User Guide

          The path to the file containing the data to be verified 
      --data <DATA>
          Base64 encoded data to be verified 
      --signature-path <SIGNATURE_PATH>
          The path to where the signature is located 
      --signature <SIGNATURE>
          Base64 encoded signature to be verified 
  -h, --help 
          Print help

Example

These examples show how to use crypto verify ecdsa to verify a signature that was generated 
using the ECDSA signing mechanism and SHA256 hash function. This command uses a public key in 
the HSM.

Example Example: Verify a Base64 encoded signature with Base64 encoded data

aws-cloudhsm > crypto verify ecdsa --hash-function sha256 --key-filter attr.label=ec-
public --data YWJjMTIz --signature 4zki+FzjhP7Z/KqoQvh4ueMAxQQVp7FQguZ2wOS3Q5bzk
+Hc5irV5iTkuxQbropPttVFZ8V6FgR2fz+sPegwCw==
{ 
  "error_code": 0, 
  "data": { 
    "message": "Signature verified successfully" 
  }
}

Example Example: Verify a signature file with a data file

aws-cloudhsm > crypto verify ecdsa --hash-function sha256 --key-filter attr.label=ec-
public --data-path data.txt --signature-path signature-file
{ 
   "error_code": 0, 
  "data": { 
    "message": "Signature verified successfully" 
  }
}

Reference 388



AWS CloudHSM User Guide

Example Example: Prove false signing relationship

This command verifies whether the data located at /home/data was signed by a public key with 
the label ecdsa-public using the ECDSA signing mechanism to produce the signature located in
/home/signature. Because the given arguments do not make up a true signing relationship, the 
command returns an error message.

aws-cloudhsm > crypto verify ecdsa --hash-function sha256 --
key-filter attr.label=ec-public --data aW52YWxpZA== --signature 
 +ogk7M7S3iTqFg3SndJfd91dZFr5Qo6YixJl8JwcvqqVgsVuO6o+VKvTRjz0/V05kf3JJbBLr87Q
+wLWcMAJfA==
{ 
  "error_code": 1, 
  "data": "Signature verification failed"
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<DATA>

Base64 encoded data to be signed.

Required: Yes (unless provided through data path)

<DATA_PATH>

Specifies the location of the data to be signed.

Required: Yes (unless provided through data path)

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

• sha224

Reference 389



AWS CloudHSM User Guide

• sha256

• sha384

• sha512

Required: Yes

<KEY_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<SIGNATURE>

Base64 encoded signature.

Required: Yes (unless provided through signature path)

<SIGNATURE_PATH>

Specifies the location of the signature.

Required: Yes (unless provided through signature path)

Related topics

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

Verify a signature signed with the RSA-PKCS mechanism in CloudHSM CLI

Use the crypto verify rsa-pkcs command in CloudHSM CLI complete the following operations:

• Confirm a file has been signed in the HSM by a given public key.

• Verify the signature was generated using the RSA-PKCS signing mechanism.

• Compare a signed file against a source file and determines whether the two are 
cryptographically related based on a given rsa public key and signing mechanism.

Reference 390



AWS CloudHSM User Guide

To use the crypto verify rsa-pkcs command, you must first have an RSA public key in your AWS 
CloudHSM cluster.

Note

You can generate a signature using the CloudHSM CLI with the The crypto sign category in 
CloudHSM CLI subcommands.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help crypto verify rsa-pkcs
Verify with the RSA-PKCS mechanism

Usage: crypto verify rsa-pkcs --key-filter [<KEY_FILTER>...] --hash-
function <HASH_FUNCTION> <--data-path <DATA_PATH>|--data <DATA>> <--signature-
path <SIGNATURE_PATH>|--signature <SIGNATURE>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --key-filter [<KEY_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key 
      --hash-function <HASH_FUNCTION>
          [possible values: sha1, sha224, sha256, sha384, sha512] 
      --data-path <DATA_PATH>
          The path to the file containing the data to be verified 

Reference 391



AWS CloudHSM User Guide

      --data <DATA>
          Base64 encoded data to be verified 
      --signature-path <SIGNATURE_PATH>
          The path to where the signature is located 
      --signature <SIGNATURE>
          Base64 encoded signature to be verified 
  -h, --help 
          Print help

Example

These examples show how to use crypto verify rsa-pkcs to verify a signature that was generated 
using the RSA-PKCS signing mechanism and SHA256 hash function. This command uses a public 
key in the HSM.

Example Example: Verify a Base64 encoded signature with Base64 encoded data

aws-cloudhsm > crypto verify rsa-pkcs --hash-function sha256 --key-filter 
 attr.label=rsa-public --data YWJjMTIz --signature XJ7mRyHnDRYrDWTQuuNb
+5mhoXx7VTsPMjgOQW4iMN7E42eNHj2Q0oovMmBdHUEH0F4HYG8FBJOBhvGuM8J/
z6y41GbowVpUT6WzjnIQs79K9i7i6oR1TYjLnIS3r/zkimuXcS8/ZxyDzru+GO9BUT9FFU/
of9cvu4Oyn6a5+IXuCbKNQs19uASuFARUTZ0a0Ny1CB1MulxUpqGTmI91J6evlP7k/2khwDmJ5E8FEar5/
Cvbn9t21p3Uj561ngTXrYbIZ2KHpef9jQh/cEIvFLG61sexJjQi8EdTxeDA
+I3ITO0qrvvESvA9+Sj7kdG2ceIicFS8/8LwyxiIC31UHQ==
{ 
  "error_code": 0, 
  "data": { 
    "message": "Signature verified successfully" 
  }
}

Example Example: Verify a signature file with a data file

aws-cloudhsm > crypto verify rsa-pkcs --hash-function sha256 --key-filter 
 attr.label=rsa-public --data-path data.txt --signature-path signature-file
{ 
  "error_code": 0, 
  "data": { 
    "message": "Signature verified successfully" 
  }
}

Reference 392



AWS CloudHSM User Guide

Example Example: Prove false signing relationship

This command verifies whether the invalid data was signed by a public key with the label rsa-
public using the RSAPKCS signing mechanism to produce the signature located in /home/
signature. Because the given arguments do not make up a true signing relationship, the 
command returns an error message.

aws-cloudhsm > crypto verify rsa-pkcs --hash-function sha256 --key-filter 
 attr.label=rsa-public --data aW52YWxpZA== --signature XJ7mRyHnDRYrDWTQuuNb
+5mhoXx7VTsPMjgOQW4iMN7E42eNHj2Q0oovMmBdHUEH0F4HYG8FBJOBhvGuM8J/
z6y41GbowVpUT6WzjnIQs79K9i7i6oR1TYjLnIS3r/zkimuXcS8/ZxyDzru+GO9BUT9FFU/
of9cvu4Oyn6a5+IXuCbKNQs19uASuFARUTZ0a0Ny1CB1MulxUpqGTmI91J6evlP7k/2khwDmJ5E8FEar5/
Cvbn9t21p3Uj561ngTXrYbIZ2KHpef9jQh/cEIvFLG61sexJjQi8EdTxeDA
+I3ITO0qrvvESvA9+Sj7kdG2ceIicFS8/8LwyxiIC31UHQ==
{ 
  "error_code": 1, 
  "data": "Signature verification failed"
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<DATA>

Base64 encoded data to be signed.

Required: Yes (unless provided through data path)

<DATA_PATH>

Specifies the location of the data to be signed.

Required: Yes (unless provided through data path)

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

Reference 393



AWS CloudHSM User Guide

• sha224

• sha256

• sha384

• sha512

Required: Yes

<KEY_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<SIGNATURE>

Base64 encoded signature.

Required: Yes (unless provided through signature path)

<SIGNATURE_PATH>

Specifies the location of the signature.

Required: Yes (unless provided through signature path)

Related topics

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

Verify a signature signed with the RSA-PKCS-PSS mechanism in CloudHSM CLI

Use the crypto sign rsa-pkcs-pss command in CloudHSM CLI to complete the following operations.

• Confirm a file has been signed in the HSM by a given public key.

• Verify the signature was generated using the RSA-PKCS-PSS signing mechanism.

• Compare a signed file against a source file and determines whether the two are 
cryptographically related based on a given rsa public key and signing mechanism.

Reference 394



AWS CloudHSM User Guide

To use the crypto verify rsa-pkcs-pss command, you must first have an RSA public key in your 
AWS CloudHSM cluster. You can import an RSA public key using the key import pem command 
ADD UNWRAP LINK HERE) with the verify attribute set to true.

Note

You can generate a signature using the CloudHSM CLI with the The crypto sign category in 
CloudHSM CLI subcommands.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help crypto verify rsa-pkcs-pss
Verify with the RSA-PKCS-PSS mechanism

Usage: crypto verify rsa-pkcs-pss --key-filter [<KEY_FILTER>...] --hash-
function <HASH_FUNCTION> --mgf <MGF> --salt-length >SALT_LENGTH< <--data-
path <DATA_PATH>|--data <DATA> <--signature-path <SIGNATURE_PATH>|--
signature <SIGNATURE>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --key-filter [<KEY_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key 
      --hash-function <HASH_FUNCTION>
          [possible values: sha1, sha224, sha256, sha384, sha512] 

Reference 395



AWS CloudHSM User Guide

      --data-path <DATA_PATH>
          The path to the file containing the data to be verified 
      --data <DATA>
          Base64 encoded data to be verified 
      --signature-path <SIGNATURE_PATH>
          The path to where the signature is located 
      --signature <SIGNATURE>
          Base64 encoded signature to be verified 
      --mgf <MGF>
          The mask generation function [possible values: mgf1-sha1, mgf1-sha224, mgf1-
sha256, mgf1-sha384, mgf1-sha512] 
      --salt-length <SALT_LENGTH>
          The salt length 
  -h, --help 
          Print help

Example

These examples show how to use crypto verify rsa-pkcs-pss to verify a signature that was 
generated using the RSA-PKCS-PSS signing mechanism and SHA256 hash function. This command 
uses a public key in the HSM.

Example Example: Verify a Base64 encoded signature with Base64 encoded data

aws-cloudhsm > crypto verify rsa-pkcs-pss --key-filter attr.label=rsa-public 
 --hash-function sha256 --data YWJjMTIz --salt-length 10 --mgf mgf1-sha256 
 --signature H/z1rYVMzNAa31K4amE5MTiwGxDdCTgQXCJXRBKVOVm7ZuyI0fGE4sT/BUN
+977mQEV2TqtWpTsiF2IpwGM1VfSBRt7h/g4o6YERm1tTQLl7q+AJ7uGGK37zCsWQrAo7Vy8NzPShxekePo/
ZegrB1aHWN1fE8H3IPUKqLuMDI9o1Jq6kM986ExS7YmeOIclcZkyykTWqHLQVL2C3+A2bHJZBqRcM5XoIpk8HkPypjpN
+m4FNUds30GAemoOMl6asSrEJSthaZWV53OBsDOqzA8Rt8JdhXS+GZp3vNLdL1OTBELDPweXVgAu4dBX0FOvpw/
gg6sNvuaDK4YOBv2fqKg==
{ 
  "error_code": 0, 
  "data": { 
    "message": "Signature verified successfully" 
  }
}

Example Example: Verify a signature file with a data file

aws-cloudhsm > crypto verify rsa-pkcs-pss --key-filter attr.label=rsa-public --hash-
function sha256 --data-path data.txt --salt-length 10 --mgf mgf1-sha256 --signature 
 signature-file

Reference 396



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "message": "Signature verified successfully" 
  }
}

Example Example: Prove false signing relationship

This command verifies whether the invalid data was signed by a public key with the label rsa-
public using the RSAPKCSPSS signing mechanism to produce the signature located in /home/
signature. Because the given arguments do not make up a true signing relationship, the 
command returns an error message.

aws-cloudhsm > crypto verify rsa-pkcs-pss --key-filter attr.label=rsa-public 
 --hash-function sha256 --data aW52YWxpZA== --salt-length 10 --mgf mgf1-sha256 
 --signature H/z1rYVMzNAa31K4amE5MTiwGxDdCTgQXCJXRBKVOVm7ZuyI0fGE4sT/BUN
+977mQEV2TqtWpTsiF2IpwGM1VfSBRt7h/g4o6YERm1tTQLl7q+AJ7uGGK37zCsWQrAo7Vy8NzPShxekePo/
ZegrB1aHWN1fE8H3IPUKqLuMDI9o1Jq6kM986ExS7YmeOIclcZkyykTWqHLQVL2C3+A2bHJZBqRcM5XoIpk8HkPypjpN
+m4FNUds30GAemoOMl6asSrEJSthaZWV53OBsDOqzA8Rt8JdhXS+GZp3vNLdL1OTBELDPweXVgAu4dBX0FOvpw/
gg6sNvuaDK4YOBv2fqKg==
{ 
  "error_code": 1, 
  "data": "Signature verification failed"
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<DATA>

Base64 encoded data to be signed.

Required: Yes (unless provided through data path)

<DATA_PATH>

Specifies the location of the data to be signed.

Reference 397



AWS CloudHSM User Guide

Required: Yes (unless provided through data path)

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

• sha224

• sha256

• sha384

• sha512

Required: Yes

<KEY_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<MFG>

Specifies the mask generation function.

Note

The mask generation function hash function must match the signing mechanism hash 
function.

Valid values:

• mgf1-sha1

• mgf1-sha224

• mgf1-sha256

Reference 398



AWS CloudHSM User Guide

• mgf1-sha384

• mgf1-sha512

Required: Yes

<SIGNATURE>

Base64 encoded signature.

Required: Yes (unless provided through signature path)

<SIGNATURE_PATH>

Specifies the location of the signature.

Required: Yes (unless provided through signature path)

Related topics

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

The key category in CloudHSM CLI

In the CloudHSM CLI, key is a parent category for a group of commands that, when combined with 
the parent category, create a command specific to keys. Currently, this category consists of the 
following commands:

• delete

• generate-file

• key generate-asymmetric-pair

• key generate-asymmetric-pair rsa

• key generate-asymmetric-pair ec

• key generate-symmetric

• key generate-symmetric aes

• key generate-symmetric generic-secret

• import pem

Reference 399



AWS CloudHSM User Guide

• list

• replicate

• set-attribute

• share

• unshare

• unwrap

• wrap

Delete a key with CloudHSM CLI

Use the key delete command in CloudHSM CLI to delete a key from an AWS CloudHSM cluster. You 
can only delete one key at a time. Deleting one key in a key pair has no effect on the other key in 
the pair.

Only the CU who created the key and consequently owns it can delete the key. Users who share the 
key, but do not own it, can use the key in cryptographic operations, but can not delete it.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key delete
Delete a key in the HSM cluster

Usage: key delete [OPTIONS] --filter [<FILTER>...]

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 

Reference 400



AWS CloudHSM User Guide

      --filter [<FILTER>...]     Key reference (e.g. key-reference=0xabc) 
 or space separated list of key attributes in the form of 
 attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching key for deletion 
  -h, --help                     Print help

Example

aws-cloudhsm > key delete --filter attr.label="ec-test-public-key"
{ 
  "error_code": 0, 
  "data": { 
    "message": "Key deleted successfully" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key for deletion.

For a list of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI

Required: Yes

Related topics

• List keys for a user with CloudHSM CLI

• Export an asymmetric key with CloudHSM CLI

• Unshare a key using CloudHSM CLI

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

Reference 401



AWS CloudHSM User Guide

Export an asymmetric key with CloudHSM CLI

Use the key generate-file command in CloudHSM CLI to export an asymmetric key from the 
hardware security module (HSM). If the target is a private key, then the reference to the private key 
will be exported in fake PEM format. If the target is a public key, then the public key bytes will be 
exported in PEM format.

The fake PEM file, which does not contain the actual private key material but instead references the 
private key in the HSM, can be used to establish SSL/TLS offloading from your web server to AWS 
CloudHSM. For more information, see SSL/TLS offloading.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key generate-file
Generate a key file from a key in the HSM cluster. This command does not export any 
 private key data from the HSM

Usage: key generate-file --encoding <ENCODING> --path <PATH> --filter [<FILTER>...]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --encoding <ENCODING>
          Encoding format for the key file 

          Possible values: 
          - reference-pem: PEM formatted key reference (supports private keys) 
          - pem:           PEM format (supports public keys) 

      --path <PATH>

Reference 402



AWS CloudHSM User Guide

          Filepath where the key file will be written 

      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key for file generation 

  -h, --help 
          Print help (see a summary with '-h')

Example

This example shows how to use key generate-file to generate a key file in your AWS CloudHSM 
cluster.

Example

aws-cloudhsm > key generate-file --encoding reference-pem --path /tmp/ec-private-
key.pem --filter attr.label="ec-test-private-key"
{ 
  "error_code": 0, 
  "data": { 
    "message": "Successfully generated key file" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key for deletion.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI

Required: No

Reference 403



AWS CloudHSM User Guide

<ENCODING>

Specifies the encoding format for the key file

Required: Yes

<PATH>

Specifies the file path where the key file will be written

Required: Yes

Generating KSP key references (Windows)

Prerequisites

• You can generate KSP key references only on Windows platforms.

• You must sign in as a crypto user (CU).

File location

By default, AWS CloudHSM stores generated files in: C:\Users\Default\AppData\Roaming
\Microsoft\Crypto\CaviumKSP\GlobalPartition

To specify a different location, use the --path parameter.

Syntax

aws-cloudhsm > help key generate-file --encoding ksp-key-reference 
Generate a key file from a key in the HSM cluster. This command does not export any 
 private key data from the HSM

Usage: key generate-file --encoding <ENCODING> --path <PATH> --filter [<FILTER>...]

Options: 
      --encoding <ENCODING>
        Encoding format for the key file 

        Possible values: 
        - reference-pem:     PEM formatted key reference (supports private keys) 
        - pem:               PEM format (supports public keys) 
        - ksp-key-reference: KSP key reference format 

Reference 404



AWS CloudHSM User Guide

      --cluster-id <CLUSTER_ID>
        Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided with multiple clusters configured, will error 

      --path <PATH>
        Directory path where the key file will be written 

      --filter [<FILTER>...] 
        Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key for file generation 

      --all 
        Generate ksp key reference for all available key pairs in HSM 

  -h, --help 
        Print help (see a summary with '-h')

Example – Generate a KSP key reference using an attribute filter of a private key

The following example generates a KSP key reference for a private key with a specific label.

Example

aws-cloudhsm > key generate-file --encoding ksp-key-reference --path  --filter 
 attr.label="ec-test-private-key"
{ 
  "error_code": 0, 
  "data": { 
    "message": "Successfully generated key file" 
  }
}

Example – Generate KSP key references for all key pairs

The following example generates KSP key references for all key pairs in your cluster.

Example

aws-cloudhsm > key generate-file --encoding ksp-key-reference --all
{ 
  "error_code": 0, 
  "data": { 

Reference 405



AWS CloudHSM User Guide

    "message": "Successfully generated key file" 
  }
}

Related topics

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

• The generate-asymmetric-pair category in CloudHSM CLI

• The generate-symmetric category in CloudHSM CLI

The generate-asymmetric-pair category in CloudHSM CLI

In the CloudHSM CLI, key generate-asymmetric-pair is a parent category for a group of 
commands that, when combined with the parent category, create a command that generates 
asymmetric key pairs. Currently, this category consists of the following commands:

• key generate-asymmetric-pair ec

• key generate-asymmetric-pair rsa

Generate an asymmetric EC key pair with CloudHSM CLI

Use the key asymmetric-pair ec command in CloudHSM CLI to generate an asymmetric Elliptic-
curve (EC) key pair in your AWS CloudHSM cluster.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key generate-asymmetric-pair ec
Generate an Elliptic-Curve Cryptography (ECC) key pair

Reference 406



AWS CloudHSM User Guide

Usage: key generate-asymmetric-pair ec [OPTIONS] --public-label <PUBLIC_LABEL> --
private-label <PRIVATE_LABEL> --curve <CURVE>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --public-label <PUBLIC_LABEL>
          Label for the public key 
      --private-label <PRIVATE_LABEL>
          Label for the private key 
      --session 
          Creates a session key pair that exists only in the current session. The key 
 cannot be recovered after the session ends 
      --curve <CURVE>
          Elliptic curve used to generate the key pair [possible values: prime256v1, 
 secp256r1, secp224r1, secp384r1, secp256k1, secp521r1] 
      --public-attributes [<PUBLIC_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes to set for the generated EC public key 
 in the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE 
      --private-attributes [<PRIVATE_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes to set for the generated EC private 
 key in the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE 
      --share-crypto-users [<SHARE_CRYPTO_USERS>...] 
          Space separated list of Crypto User usernames to share the EC private key 
 with 
      --manage-private-key-quorum-value <MANAGE_PRIVATE_KEY_QUORUM_VALUE>
          The quorum value for key management operations for the private key 
      --use-private-key-quorum-value <USE_PRIVATE_KEY_QUORUM_VALUE>
          The quorum value for key usage operations for the private key 
  -h, --help 
          Print help

Examples

These examples show how to use the key generate-asymmetric-pair ec command to create an EC 
key pair.

Example Example: Create an EC key pair

aws-cloudhsm > key generate-asymmetric-pair ec \ 
    --curve secp224r1 \ 
    --public-label ec-public-key-example \ 

Reference 407



AWS CloudHSM User Guide

    --private-label ec-private-key-example
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x000000000012000b", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "ec-public-key-example", 
        "id": "", 
        "check-value": "0xd7c1a7", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 

Reference 408



AWS CloudHSM User Guide

        "key-length-bytes": 57, 
        "ec-point": 
 "0x047096513df542250a6b228fd9cb67fd0c903abc93488467681974d6f371083fce1d79da8ad1e9ede745fb9f38ac8622a1b3ebe9270556000c", 
        "curve": "secp224r1" 
      } 
    },
"private_key": { 
      "key-reference": "0x000000000012000c", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "ec-private-key-example", 
        "id": "", 
        "check-value": "0xd7c1a7", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 

Reference 409



AWS CloudHSM User Guide

        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 122, 
        "ec-point": 
 "0x047096513df542250a6b228fd9cb67fd0c903abc93488467681974d6f371083fce1d79da8ad1e9ede745fb9f38ac8622a1b3ebe9270556000c", 
        "curve": "secp224r1" 
      } 
    } 
  }
}

Example Example: Create an EC key pair with optional attributes

aws-cloudhsm > key generate-asymmetric-pair ec \ 
    --curve secp224r1 \ 
    --public-label ec-public-key-example \ 
    --private-label ec-private-key-example \ 
    --public-attributes encrypt=true \ 
    --private-attributes decrypt=true
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x00000000002806eb", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "ec-public-key-example", 
        "id": "", 
        "check-value": "0xedef86", 

Reference 410



AWS CloudHSM User Guide

        "class": "public-key", 
        "encrypt": true, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 57, 
        "ec-point": 
 "0x0487af31882189ec29eddf17a48e8b9cebb075b7b5afc5522fe9c83a029a450cc68592889a1ebf45f32240da5140d58729ffd7b2d44262ddb8", 
        "curve": "secp224r1" 
      } 
    }, 
    "private_key": { 
      "key-reference": "0x0000000000280c82", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "ec-private-key-example", 

Reference 411



AWS CloudHSM User Guide

        "id": "", 
        "check-value": "0xedef86", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": true, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 122, 
        "ec-point": 
 "0x0487af31882189ec29eddf17a48e8b9cebb075b7b5afc5522fe9c83a029a450cc68592889a1ebf45f32240da5140d58729ffd7b2d44262ddb8", 
        "curve": "secp224r1" 
      } 
    } 
  }
}

Example Example: Create an EC key pair with quorum values

When generating a key with quorum controls, the key must be associated with a minimum number 
of users equal to the largest key quorum value. Associated users include the key owner and 
Crypto Users with whom the key is shared with. To determine the number of minimum users to 
share the key with, get the largest quorum value between the key usage quorum value and the 
key management quorum value and subtract 1 to account for the key owner, who is by default 
associated with the key. To share the key with more users, use the Share a key using CloudHSM 
CLI command.

aws-cloudhsm > key generate-asymmetric-pair ec \ 
    --curve secp224r1 \ 

Reference 412



AWS CloudHSM User Guide

    --public-label ec-public-key-example \ 
    --private-label ec-private-key-example \ 
    --public-attributes verify=true \ 
    --private-attributes sign=true 
    --share-crypto-users cu2 cu3 cu4 \ 
    --manage-private-key-quorum-value 4 \ 
    --use-private-key-quorum-value 2
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x00000000002806eb", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "ec-public-key-example", 
        "id": "", 
        "check-value": "0xedef86", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 

Reference 413



AWS CloudHSM User Guide

        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 57, 
        "ec-point": 
 "0x0487af31882189ec29eddf17a48e8b9cebb075b7b5afc5522fe9c83a029a450cc68592889a1ebf45f32240da5140d58729ffd7b2d44262ddb8", 
        "curve": "secp224r1" 
      } 
    }, 
    "private_key": { 
      "key-reference": "0x0000000000280c82", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [ 
          { 
            "username": "cu2", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu3", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu4", 
            "key-coverage": "full" 
          }, 
        ], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 4, 
          "use-key-quorum-value": 2 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "ec-private-key-example", 

Reference 414



AWS CloudHSM User Guide

        "id": "", 
        "check-value": "0xedef86", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 122, 
        "ec-point": 
 "0x0487af31882189ec29eddf17a48e8b9cebb075b7b5afc5522fe9c83a029a450cc68592889a1ebf45f32240da5140d58729ffd7b2d44262ddb8", 
        "curve": "secp224r1" 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<CURVE>

Specifies the identifier for the elliptic curve.

• prime256v1

• secp256r1

Reference 415



AWS CloudHSM User Guide

• secp224r1

• secp384r1

• secp256k1

• secp521r1

Required: Yes

<PUBLIC_KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated EC public key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, verify=true)

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: No

<PUBLIC_LABEL>

Specifies a user defined label for the public-key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<PRIVATE_KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated EC private key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true)

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: No

<PRIVATE_LABEL>

Specifies a user defined label for the private-key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Reference 416



AWS CloudHSM User Guide

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

By default, keys that are generated are persistent (token) keys. Passing in <SESSION> changes 
this, ensuring a key generated with this argument is a session (ephemeral) key.

Required: No

<SHARE_CRYPTO_USERS>

Specifies a space separated list of Crypto User usernames to share the EC private key with

Required: No

<MANAGE_PRIVATE_KEY_QUORUM_VALUE>

The quorum value for the private key's key management operations. This value must be less 
than or equal to the number of users that the key is associated with. This includes users with 
whom the key is shared with and the key owner. Max value of 8.

Required: No

<USE_PRIVATE_KEY_QUORUM_VALUE>

The quorum value for private key's key usage operations. This value must be less than or equal 
to the number of users that the key is associated with. This includes users with whom the key is 
shared with and the key owner. Max value of 8.

Required: No

Related topics

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

Generate an asymmetric RSA key pair with CloudHSM CLI

Use the key generate-asymmetric-pair rsa command in CloudHSM CLI to generate an asymmetric 
RSA key pair in your AWS CloudHSM cluster.

Reference 417



AWS CloudHSM User Guide

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key generate-asymmetric-pair rsa
Generate an RSA key pair

Usage: key generate-asymmetric-pair rsa [OPTIONS] --public-label <PUBLIC_LABEL>
 --private-label <PRIVATE_LABEL> --modulus-size-bits <MODULUS_SIZE_BITS> --public-
exponent <PUBLIC_EXPONENT>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --public-label <PUBLIC_LABEL>
          Label for the public key 
      --private-label <PRIVATE_LABEL>
          Label for the private key 
      --session 
          Creates a session key pair that exists only in the current session. The key 
 cannot be recovered after the session ends 
      --modulus-size-bits <MODULUS_SIZE_BITS>
          Modulus size in bits used to generate the RSA key pair 
      --public-exponent <PUBLIC_EXPONENT>
          Public exponent used to generate the RSA key pair 
      --public-attributes [<PUBLIC_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes to set for the generated RSA public 
 key in the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE 
      --private-attributes [<PRIVATE_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes to set for the generated RSA private 
 key in the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE 
      --share-crypto-users [<SHARE_CRYPTO_USERS>...] 
          Space separated list of Crypto User usernames to share the RSA key with 

Reference 418



AWS CloudHSM User Guide

      --manage-private-key-quorum-value <MANAGE_PRIVATE_KEY_QUORUM_VALUE>
          The quorum value for key management operations for the private key 
      --use-private-key-quorum-value <USE_PRIVATE_KEY_QUORUM_VALUE>
          The quorum value for key usage operations for the private key 
  -h, --help 
          Print help

Examples

These examples show how to use key generate-asymmetric-pair rsa to create a RSA key 
pair.

Example Example: Create an RSA key pair

aws-cloudhsm > key generate-asymmetric-pair rsa \
--public-exponent 65537 \
--modulus-size-bits 2048 \
--public-label rsa-public-key-example \
--private-label rsa-private-key-example
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x0000000000160010", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-public-key-example", 
        "id": "", 
        "check-value": "0x498e1f", 

Reference 419



AWS CloudHSM User Guide

        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xdfca0669dc8288ed3bad99509bd21c7e6192661407021b3f4cdf4a593d939dd24f4d641af8e4e73b04c847731c6dbdff3385818e08dd6efcbedd6e5b130344968c
e89a065e7d1a46ced96b46b909db2ab6be871ee700fd0a448b6e975bb64cae77c49008749212463e37a577baa57ce3e574cb057e9db131e119badf50c938f26e8a5975c61a8ba7ffe7a1115a
bcebb7d20bd6df1948ae336ae23b52d73b7f3b6acc2543edb6358e08d326d280ce489571f4d34e316a2ea1904d513ca12fa04075fc09ad005c81b7345d7804ff24c45117f0a1020dca7794df037a10aadec8653473b2088711f7b7d8b58431654e14e31af0e00511da641058fb7475ffdbe60f", 
        "modulus-size-bits": 2048 
      } 
    },
"private_key": { 
      "key-reference": "0x0000000000160011", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 

Reference 420



AWS CloudHSM User Guide

      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-private-key-example", 
        "id": "", 
        "check-value": "0x498e1f", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 1217, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xdfca0669dc8288ed3bad99509bd21c7e6192661407021b3f4cdf4a593d939dd24f4d641af8e4e73b04c847731c6dbdff3385818e08dd6efcbedd6e5b130344968ce89a065e7d1a46ced96b46b909db2ab6be871ee700fd0a448b6e975bb64cae77c49008749212463e37a577baa57ce3e574cb057e9db131e119badf50c938f26e8a5975c61a8ba7ffe7a1115abcebb7d20bd6df1948ae336ae23b52d73b7f3b6acc2543edb6358e08d326d280ce489571f4d34e316a2ea1904d513ca12fa04075fc09ad005c81b7345d7804ff24c45117f0a1020dca7794df037a10aadec8653473b2088711f7b7d8b58431654e14e31af0e00511da641058fb7475ffdbe60f", 
        "modulus-size-bits": 2048 
      } 
    } 
  }
}

Example Example: Create an RSA key pair with optional attributes

aws-cloudhsm > key generate-asymmetric-pair rsa \
--public-exponent 65537 \
--modulus-size-bits 2048 \
--public-label rsa-public-key-example \
--private-label rsa-private-key-example \
--public-attributes encrypt=true \
--private-attributes decrypt=true

Reference 421



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x0000000000280cc8", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-public-key-example", 
        "id": "", 
        "check-value": "0x01fe6e", 
        "class": "public-key", 
        "encrypt": true, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 

Reference 422



AWS CloudHSM User Guide

        "public-exponent": "0x010001", 
        "modulus": 
 "0xb1d27e857a876f4e9fd5de748a763c539b359f937eb4b4260e30d1435485a732c878cdad9c72538e2215351b1d41358c9bf80b599c
73a80fdb457aa7b20cd61e486c326e2cfd5e124a7f6a996437437812b542e3caf85928aa866f0298580f7967ee6aa01440297d7308fdd9b76b70d1b67f12634d
f6e6296d6c116d5744c6d60d14d3bf3cb978fe6b75ac67b7089bafd50d8687213b31abc7dc1bad422780d29c851d5102b56f932551eaf52a9591fd8c43d81ecc
133022653225bd129f8491101725e9ea33e1ded83fb57af35f847e532eb30cd7e726f23910d2671c6364092e834697ec3cef72cc23615a1ba7c5e100156ae0ac
ac3160f0ca9725d38318b7", 
        "modulus-size-bits": 2048 
      } 
    }, 
    "private_key": { 
      "key-reference": "0x0000000000280cc7", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-private-key-example", 
        "id": "", 
        "check-value": "0x01fe6e", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": true, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 

Reference 423



AWS CloudHSM User Guide

        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 1217, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xb1d27e857a876f4e9fd5de748a763c539b359f937eb4b4260e30d1435485a732c878cdad9c72538e2215351b1d41358c9bf80b599c73a80fdb457aa7b20cd61e486c326e2cfd5e124a7f6a996437437812b542e3caf85928aa866f0298580f7967ee6aa01440297d7308fdd9b76b70d1b67f12634df6e6296d6c116d5744c6d60d14d3bf3cb978fe6b75ac67b7089bafd50d8687213b31abc7dc1bad422780d29c851d5102b56f932551eaf52a9591fd8c43d81ecc133022653225bd129f8491101725e9ea33e1ded83fb57af35f847e532eb30cd7e726f23910d2671c6364092e834697ec3cef72cc23615a1ba7c5e100156ae0acac3160f0ca9725d38318b7", 
        "modulus-size-bits": 2048 
      } 
    } 
  }
}

Example Example: Create an RSA key pair with quorum values

When generating a key with quorum controls, the key must be associated with a minimum number 
of users equal to the largest key quorum value. Associated users include the key owner and 
Crypto Users with whom the key is shared with. To determine the number of minimum users to 
share the key with, get the largest quorum value between the key usage quorum value and the 
key management quorum value and subtract 1 to account for the key owner, who is by default 
associated with the key. To share the key with more users, use the Share a key using CloudHSM 
CLI command.

aws-cloudhsm > key generate-asymmetric-pair rsa \
--public-exponent 65537 \
--modulus-size-bits 2048 \
--public-label rsa-public-key-example \
--private-label rsa-private-key-example \
--public-attributes verify=true \
--private-attributes sign=true
--share-crypto-users cu2 cu3 cu4 \
--manage-private-key-quorum-value 4 \
--use-private-key-quorum-value 2
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x0000000000280cc8", 
      "key-info": { 

Reference 424



AWS CloudHSM User Guide

        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-public-key-example", 
        "id": "", 
        "check-value": "0x01fe6e", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xb1d27e857a876f4e9fd5de748a763c539b359f937eb4b4260e30d1435485a732c878cdad9c72538e2215351b1d41358c9bf80b599c
73a80fdb457aa7b20cd61e486c326e2cfd5e124a7f6a996437437812b542e3caf85928aa866f0298580f7967ee6aa01440297d7308fdd9b76b70d1b67f12634d
f6e6296d6c116d5744c6d60d14d3bf3cb978fe6b75ac67b7089bafd50d8687213b31abc7dc1bad422780d29c851d5102b56f932551eaf52a9591fd8c43d81ecc
133022653225bd129f8491101725e9ea33e1ded83fb57af35f847e532eb30cd7e726f23910d2671c6364092e834697ec3cef72cc23615a1ba7c5e100156ae0ac

Reference 425



AWS CloudHSM User Guide

ac3160f0ca9725d38318b7", 
        "modulus-size-bits": 2048 
      } 
    }, 
    "private_key": { 
      "key-reference": "0x0000000000280cc7", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [ 
          { 
            "username": "cu2", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu3", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu4", 
            "key-coverage": "full" 
          }, 
        ], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 4, 
          "use-key-quorum-value": 2 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "rsa-private-key-example", 
        "id": "", 
        "check-value": "0x01fe6e", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 

Reference 426



AWS CloudHSM User Guide

        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 1217, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xb1d27e857a876f4e9fd5de748a763c539b359f937eb4b4260e30d1435485a732c878cdad9c72538e2215351b1d41358c9bf80b599c73a80fdb457aa7b20cd61e486c326e2cfd5e124a7f6a996437437812b542e3caf85928aa866f0298580f7967ee6aa01440297d7308fdd9b76b70d1b67f12634df6e6296d6c116d5744c6d60d14d3bf3cb978fe6b75ac67b7089bafd50d8687213b31abc7dc1bad422780d29c851d5102b56f932551eaf52a9591fd8c43d81ecc133022653225bd129f8491101725e9ea33e1ded83fb57af35f847e532eb30cd7e726f23910d2671c6364092e834697ec3cef72cc23615a1ba7c5e100156ae0acac3160f0ca9725d38318b7", 
        "modulus-size-bits": 2048 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<MODULUS_SIZE_BITS>

Specifies the length of the modulus in bits. The minimum value is 2048.

Required: Yes

<PRIVATE_KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated RSA private key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true)

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: No

Reference 427



AWS CloudHSM User Guide

<PRIVATE_LABEL>

Specifies a user defined label for the private-key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<PUBLIC_EXPONENT>

Specifies the public exponent. The value must be an odd number greater than or equal to 
65537.

Required: Yes

<PUBLIC_KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated RSA public key in the 
form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, verify=true)

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: No

<PUBLIC_LABEL>

Specifies a user defined label for the public-key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

By default, keys that are generated are persistent (token) keys. Passing in <SESSION> changes 
this, ensuring a key generated with this argument is a session (ephemeral) key.

Required: No

Reference 428



AWS CloudHSM User Guide

<SHARE_CRYPTO_USERS>

Specifies a space separated list of Crypto User usernames to share the RSA private key with

Required: No

<MANAGE_PRIVATE_KEY_QUORUM_VALUE>

The quorum value for the private key's key management operations. This value must be less 
than or equal to the number of users that the key is associated with. This includes users with 
whom the key is shared with and the key owner. Max value of 8.

Required: No

<USE_PRIVATE_KEY_QUORUM_VALUE>

The quorum value for private key's key usage operations. This value must be less than or equal 
to the number of users that the key is associated with. This includes users with whom the key is 
shared with and the key owner. Max value of 8.

Required: No

Related topics

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

The generate-symmetric category in CloudHSM CLI

In the CloudHSM CLI, key generate-symmetric is a parent category for a group of commands 
that, when combined with the parent category, create a command that generates symmetric keys. 
Currently, this category consists of the following commands:

• key generate-symmetric aes

• key generate-symmetric generic-secret

Generate a symmetric AES key with CloudHSM CLI

Use the key generate-symmetric aes command in CloudHSM CLI to generate a symmetric AES key 
in your AWS CloudHSM cluster.

Reference 429



AWS CloudHSM User Guide

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key generate-symmetric aes
Generate an AES key

Usage: key generate-symmetric aes [OPTIONS] --label <LABEL> --key-length-
bytes <KEY_LENGTH_BYTES>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --label <LABEL>
          Label for the key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --key-length-bytes <KEY_LENGTH_BYTES>
          Key length in bytes 
      --attributes [<KEY_ATTRIBUTES>...] 
          Space separated list of key attributes to set for the generated AES key in 
 the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE 
      --share-crypto-users [<SHARE_CRYPTO_USERS>...] 
          Space separated list of Crypto User usernames to share the AES key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE>
          The quorum value for key management operations 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE>
          The quorum value for key usage operations 
  -h, --help 
          Print help

Reference 430



AWS CloudHSM User Guide

Examples

These examples show how to use the key generate-symmetric aes command to create an AES key.

Example Example: Create an AES key

aws-cloudhsm > key generate-symmetric aes \
--label example-aes \
--key-length-bytes 24
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000002e06bf", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "example-aes", 
        "id": "", 
        "check-value": "0x9b94bd", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 

Reference 431



AWS CloudHSM User Guide

        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 24 
      } 
    } 
  }
}

Example Example: Create an AES key with optional attributes

aws-cloudhsm > key generate-symmetric aes \
--label example-aes \
--key-length-bytes 24 \
--attributes decrypt=true encrypt=true
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000002e06bf", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "example-aes", 
        "id": "", 

Reference 432



AWS CloudHSM User Guide

        "check-value": "0x9b94bd", 
        "class": "secret-key", 
        "encrypt": true, 
        "decrypt": true, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 24 
      } 
    } 
  }
}

Example Example: Create an AES key with quorum values

When generating a key with quorum controls, the key must be associated with a minimum number 
of users equal to the largest key quorum value. Associated users include the key owner and 
Crypto Users with whom the key is shared with. To determine the number of minimum users to 
share the key with, get the largest quorum value between the key usage quorum value and the 
key management quorum value and subtract 1 to account for the key owner, who is by default 
associated with the key. To share the key with more users, use the Share a key using CloudHSM 
CLI command.

aws-cloudhsm > key generate-symmetric aes \
--label example-aes \
--key-length-bytes 24 \
--attributes decrypt=true encrypt=true
--share-crypto-users cu2 cu3 cu4 \
--manage-key-quorum-value 4 \

Reference 433



AWS CloudHSM User Guide

--use-key-quorum-value 2
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000002e06bf", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [ 
          { 
            "username": "cu2", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu3", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu4", 
            "key-coverage": "full" 
          }, 
        ], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 4, 
          "use-key-quorum-value": 2 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "example-aes", 
        "id": "", 
        "check-value": "0x9b94bd", 
        "class": "secret-key", 
        "encrypt": true, 
        "decrypt": true, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 

Reference 434



AWS CloudHSM User Guide

        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 24 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated AES key in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true).

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: No

<KEY-LENGTH-BYTES>

Specifies the key length in bytes.

Valid values:

• 16, 24, and 32

Required: Yes

Reference 435



AWS CloudHSM User Guide

<LABEL>

Specifies a user defined label for the AES key. The maximum size allowable for label is 
127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

By default, keys that are generated are persistent (token) keys. Passing in <SESSION> changes 
this, ensuring a key generated with this argument is a session (ephemeral) key.

Required: No

<SHARE_CRYPTO_USERS>

Specifies a space separated list of Crypto User usernames to share the AES key with

Required: No

<MANAGE_KEY_QUORUM_VALUE>

The quorum value for key management operations. This value must be less than or equal to the 
number of users that the key is associated with. This includes users with whom the key is shared 
with and the key owner. Max value of 8.

Required: No

<USE_KEY_QUORUM_VALUE>

The quorum value for key usage operations. This value must be less than or equal to the 
number of users that the key is associated with. This includes users with whom the key is shared 
with and the key owner. Max value of 8.

Required: No

Reference 436



AWS CloudHSM User Guide

Related topics

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

Generate a symmetric Generic Secret key with CloudHSM CLI

Use the key generate-asymmetric-pair command in CloudHSM CLI to generate a symmetric 
Generic Secret key in your AWS CloudHSM cluster.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > key help generate-symmetric generic-secret
Generate a generic secret key

Usage: key generate-symmetric generic-secret [OPTIONS] --label <LABEL> --key-length-
bytes <KEY_LENGTH_BYTES>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --label <LABEL>
          Label for the key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --key-length-bytes <KEY_LENGTH_BYTES>
          Key length in bytes 
      --attributes [<KEY_ATTRIBUTES>...] 

Reference 437



AWS CloudHSM User Guide

          Space separated list of key attributes to set for the generated generic 
 secret key in the form of KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE 
      --share-crypto-users [<SHARE_CRYPTO_USERS>...] 
          Space separated list of Crypto User usernames to share the generic secret key 
 with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE>
          The quorum value for key management operations 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE>
          The quorum value for key usage operations 
  -h, --help 
          Print help

Examples

These examples show how to use the key generate-symmetric generic-secret command to create 
a generic secret key.

Example Example: Create a generic secret key

aws-cloudhsm > key generate-symmetric generic-secret \
--label example-generic-secret \
--key-length-bytes 256
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000002e08fd", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "generic-secret", 

Reference 438



AWS CloudHSM User Guide

        "label": "example-generic-secret", 
        "id": "", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 256 
      } 
    } 
  }
}

Example Example: Create a generic secret key with optional attributes

aws-cloudhsm > key generate-symmetric generic-secret \
--label example-generic-secret \
--key-length-bytes 256 \
--attributes encrypt=true
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000002e08fd", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 

Reference 439



AWS CloudHSM User Guide

          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "generic-secret", 
        "label": "example-generic-secret", 
        "id": "", 
        "class": "secret-key", 
        "encrypt": true, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 256 
      } 
    } 
  }
}

Example Example: Create a generic secret key with quorum values

When generating a key with quorum controls, the key must be associated with a minimum number 
of users equal to the largest key quorum value. Associated users include the key owner and 
Crypto Users with whom the key is shared with. To determine the number of minimum users to 

Reference 440



AWS CloudHSM User Guide

share the key with, get the largest quorum value between the key usage quorum value and the 
key management quorum value and subtract 1 to account for the key owner, who is by default 
associated with the key. To share the key with more users, use the Share a key using CloudHSM 
CLI command.

aws-cloudhsm > key generate-symmetric generic-secret \
--label example-generic-secret \
--key-length-bytes 256 \
--attributes encrypt=true
--share-crypto-users cu2 cu3 cu4 \
--manage-key-quorum-value 4 \
--use-key-quorum-value 2
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000002e08fd", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [ 
          { 
            "username": "cu2", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu3", 
            "key-coverage": "full" 
          }, 
          { 
            "username": "cu4", 
            "key-coverage": "full" 
          }, 
        ], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 4, 
          "use-key-quorum-value": 2 
        }, 
        "cluster-coverage": "full" 

Reference 441



AWS CloudHSM User Guide

      }, 
      "attributes": { 
        "key-type": "generic-secret", 
        "label": "example-generic-secret", 
        "id": "", 
        "class": "secret-key", 
        "encrypt": true, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 256 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the generated AES key in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true).

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Reference 442



AWS CloudHSM User Guide

Required: No

<KEY-LENGTH-BYTES>

Specifies the key length in bytes.

Valid values:

• 1 to 800

Required: Yes

<LABEL>

Specifies a user defined label for the generic secret key. The maximum size allowable for label
is 127 characters for Client SDK 5.11 and after. Client SDK 5.10 and before has a limit of 126 
characters.

Required: Yes

<SESSION>

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

By default, keys that are generated are persistent (token) keys. Passing in <SESSION> changes 
this, ensuring a key generated with this argument is a session (ephemeral) key.

Required: No

<SHARE_CRYPTO_USERS>

Space separated list of Crypto User usernames to share the generic secret key with

Required: No

<MANAGE_KEY_QUORUM_VALUE>

The quorum value for key management operations. This value must be less than or equal to the 
number of users that the key is associated with. This includes users with whom the key is shared 
with and the key owner. Max value of 8.

Required: No

Reference 443



AWS CloudHSM User Guide

<USE_KEY_QUORUM_VALUE>

The quorum value for key usage operations. This value must be less than or equal to the 
number of users that the key is associated with. This includes users with whom the key is shared 
with and the key owner. Max value of 8.

Required: No

Related topics

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

Import a PEM format key with CloudHSM CLI

Use the key import pem command in AWS CloudHSM to import a PEM format key into a hardware 
security module (HSM). You can use it to import public keys that were generated outside of the 
HSM.

Note

Use the Export an asymmetric key with CloudHSM CLI command to create a standard PEM 
file from a public key or to create a reference PEM file from a private key.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key import pem
Import key from a PEM file

Reference 444



AWS CloudHSM User Guide

Usage: key import pem [OPTIONS] --path <PATH> --label <LABEL> --key-type-
class <KEY_TYPE_CLASS>
Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --path <PATH>
          Path where the key is located in PEM format 
      --label <LABEL>
          Label for the imported key 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of the imported key [possible values: ec-public, rsa-
public] 
      --attributes [<IMPORT_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the imported key 
  -h, --help 
          Print help

Examples

These example shows how to use the key import pem command to import an RSA public key from 
a file in PEM format.

Example Example: Import an RSA public key

aws-cloudhsm > key import pem --path /home/example --label example-imported-key --key-
type-class rsa-public
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001e08e3", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1",                                    
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 

Reference 445



AWS CloudHSM User Guide

          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "example-imported-key", 
        "id": "0x", 
        "check-value": "0x99fe93", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0x8e9c172c37aa22ed1ce25f7c3a7c936dadc532201400128b044ebb4b96#··3e4930ab910df5a2896eaeb8853cfea0e341227654a8337a7864cc8a87d136f006cfba9e68d0b329#··746c1ad60941668b18699fc8169ff1ec363d0d18292845b2454d6a0b8c5d111b79c047619d460cdf#··be59debbacb66b7abeaf3f3d35dd2b9cfa6b6b7b1258b6866cb4085ac749e9d8552b3a4509e1b86c#··828cc794e22767b4f6b5bc6ff5c96f4b7e60eab305d669cfa2197e85379cb35c659bb58fcd246d48#··d9f6a7f36063b42da025459275aa8e3abedad775387086bd6c198ded868403f4b87ffda5a2d455ac#··aa6cbd00003c31d8d2f51d10cd272b31cf0c4037791f48ad51fb35", 
        "modulus-size-bits": 2048 
      } 
    }, 
    "message": "Successfully imported key" 
  }
}

Reference 446



AWS CloudHSM User Guide

Example Example: Import an RSA public key with optional attributes

aws-cloudhsm > key import pem --path /home/example --label example-imported-key-with-
attributes --key-type-class rsa-public --attributes verify=true
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001e08e3", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1",                                       
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "example-imported-key-with-attributes", 
        "id": "0x", 
        "check-value": "0x99fe93", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 

Reference 447



AWS CloudHSM User Guide

        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0x8e9c172c37aa22ed1ce25f7c3a7c936dadc532201400128b044ebb4b96#··3e4930ab910df5a2896eaeb8853cfea0e341227654a8337a7864cc8a87d136f006cfba9e68d0b329#··746c1ad60941668b18699fc8169ff1ec363d0d18292845b2454d6a0b8c5d111b79c047619d460cdf#··be59debbacb66b7abeaf3f3d35dd2b9cfa6b6b7b1258b6866cb4085ac749e9d8552b3a4509e1b86c#··828cc794e22767b4f6b5bc6ff5c96f4b7e60eab305d669cfa2197e85379cb35c659bb58fcd246d48#··d9f6a7f36063b42da025459275aa8e3abedad775387086bd6c198ded868403f4b87ffda5a2d455ac#··aa6cbd00003c31d8d2f51d10cd272b31cf0c4037791f48ad51fb35", 
        "modulus-size-bits": 2048 
      } 
    }, 
    "message": "Successfully imported key" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PATH>

Specifies the file path where the key file is located.

Required: Yes

<LABEL>

Specifies a user defined label for the imported key. The maximum size allowable for label is 
126 characters.

Required: Yes

<KEY_TYPE_CLASS>

Key type and class of wrapped key.

Possible values:

• ec-public

• rsa-public

Required: Yes

Reference 448



AWS CloudHSM User Guide

<IMPORT_KEY_ATTRIBUTES>

Specifies a space separated list of key attributes to set for the imported key in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE (for example, sign=true). For a list of 
supported key attributes, see Key attributes for CloudHSM CLI.

Required: No

Related topics

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

List keys for a user with CloudHSM CLI

Use the key list command in CloudHSM CLI to find all keys for the current user present in your AWS 
CloudHSM cluster. The output includes keys that the user owns and shares, as well as all public keys 
in the CloudHSM cluster.

User type

The following types of users can run this command.

• Admins (COs)

• Crypto users (CUs)

Syntax

aws-cloudhsm > help key list
List the keys the current user owns, shares, and all public keys in the HSM cluster

Usage: key list [OPTIONS]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 

Reference 449



AWS CloudHSM User Guide

          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select 
 matching key(s) to list 
      --max-items <MAX_ITEMS>
          The total number of items to return in the command's output. If the total 
 number of items available is more than the value specified, a next-token is provided 
 in the command's output. To resume pagination, provide the next-token value in the 
 starting-token argument of a subsequent command [default: 10] 
      --starting-token <STARTING_TOKEN>
          A token to specify where to start paginating. This is the next-token from a 
 previously truncated response 
  -v, --verbose 
          If included, prints all attributes and key information for each matched key. 
 By default each matched key only displays its key-reference and label attribute. This 
 flag when used by Admins has no effect 
  -h, --help 
          Print help

Examples

The following examples show the different ways you run the key list command. The following 
examples show the outputs as a crypto user.

Example Example: Find all keys – default

This command lists the keys of the logged in user present in the AWS CloudHSM cluster.

Note

By default, only 10 keys of the currently logged in user are displayed, and only the key-
reference and label are displayed as output. Use the appropriate pagination options to 
display more or less keys as output.

aws-cloudhsm > key list
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000000003d5", 
        "attributes": { 

Reference 450



AWS CloudHSM User Guide

          "label": "test_label_1" 
        } 
      }, 
      { 
        "key-reference": "0x0000000000000626", 
        "attributes": { 
          "label": "test_label_2" 
        } 
      },. 
      ...8 keys later... 
    ], 
    "total_key_count": 56, 
    "returned_key_count": 10, 
    "next_token": "10" 
  }
}

Example Example: Find all keys – verbose

The output includes keys that the user owns and shares, as well as all public keys in the HSMs.

Note

Note: By default, only 10 keys of the currently logged in user are displayed. Use the 
appropriate pagination options to display more or less keys as output.

aws-cloudhsm > key list --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x000000000012000c", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 

Reference 451



AWS CloudHSM User Guide

        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "ec", 
          "label": "ec-test-private-key", 
          "id": "", 
          "check-value": "0x2a737d", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": false, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": false, 
          "trusted": false, 
          "unwrap": false, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 122, 
          "ec-point": 
 "0x0442d53274a6c0ec1a23c165dcb9ccdd72c64e98ae1a9594bb5284e752c746280667e11f1e983493c1c605e0a8071ede47ca280f94c6b2aa33", 
          "curve": "secp224r1" 
        } 
      }, 
      { 
        "key-reference": "0x000000000012000d", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 

Reference 452



AWS CloudHSM User Guide

          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "ec", 
          "label": "ec-test-public-key", 
          "id": "", 
          "check-value": "0x2a737d", 
          "class": "public-key", 
          "encrypt": false, 
          "decrypt": false, 
          "token": true, 
          "always-sensitive": false, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": false, 
          "sign": false, 
          "trusted": false, 
          "unwrap": false, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 57, 
          "ec-point": 
 "0x0442d53274a6c0ec1a23c165dcb9ccdd72c64e98ae1a9594bb5284e752c746280667e11f1e983493c1c605e0a8071ede47ca280f94c6b2aa33", 
          "curve": "secp224r1" 
        } 
      } 
    ], 
      ...8 keys later... 
    "total_key_count": 1580, 
    "returned_key_count": 10 
  }

Reference 453



AWS CloudHSM User Guide

}

Example Example: Paginated return

The following example displays a paginated subset of the keys which shows only two keys. The 
example then provides a subsequent call to display the next two keys.

aws-cloudhsm > key list --verbose --max-items 2
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x0000000000000030", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "aes", 
          "label": "98a6688d1d964ed7b45b9cec5c4b1909", 
          "id": "", 
          "check-value": "0xb28a46", 
          "class": "secret-key", 
          "encrypt": false, 
          "decrypt": false, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 

Reference 454



AWS CloudHSM User Guide

          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": false, 
          "verify": true, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 32 
        } 
      }, 
      { 
        "key-reference": "0x0000000000000042", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "aes", 
          "label": "4ad6cdcbc02044e09fa954143efde233", 
          "id": "", 
          "check-value": "0xc98104", 
          "class": "secret-key", 
          "encrypt": true, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 

Reference 455



AWS CloudHSM User Guide

          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": true, 
          "wrap": true, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 16 
        } 
      } 
    ], 
    "total_key_count": 1580, 
    "returned_key_count": 2, 
    "next_token": "2" 
  }
}

To display the next 2 keys, a subsequent call can be made:

aws-cloudhsm > key list --verbose --max-items 2 --starting-token 2
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x0000000000000081", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "aes", 

Reference 456



AWS CloudHSM User Guide

          "label": "6793b8439d044046982e5b895791e47f", 
          "id": "", 
          "check-value": "0x3f986f", 
          "class": "secret-key", 
          "encrypt": false, 
          "decrypt": false, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": false, 
          "verify": true, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 32 
        } 
      }, 
      { 
        "key-reference": "0x0000000000000089", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "aes", 
          "label": "56b30fa05c6741faab8f606d3b7fe105", 

Reference 457



AWS CloudHSM User Guide

          "id": "", 
          "check-value": "0xe9201a", 
          "class": "secret-key", 
          "encrypt": false, 
          "decrypt": false, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": false, 
          "verify": true, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 32 
        } 
      } 
    ], 
    "total_key_count": 1580, 
    "returned_key_count": 2, 
    "next_token": "4" 
  }
}

For more examples that demonstrate how the key filtration mechanism works in the CloudHSM 
CLI, see Filter keys using CloudHSM CLI.

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

Reference 458



AWS CloudHSM User Guide

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select matching 
key(s) to list.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI

Required: No

<MAX_ITEMS>

The total number of items to return in the command's output. If the total number of items 
available is more than the value specified, a next-token is provided in the command's output. 
To resume pagination, provide the next-token value in the starting-token argument of a 
subsequent command.

Required: No

<STARTING_TOKEN>

A token to specify where to start paginating. This is the next-token from a previously truncated 
response.

Required: No

<VERBOSE>

If included, prints all attributes and key information for each matched key. By default each 
matched key only displays its key-reference and label attribute. This flag when used by Admins 
has no effect.

Required: No

Related topics

• Delete a key with CloudHSM CLI

• Export an asymmetric key with CloudHSM CLI

• Unshare a key using CloudHSM CLI

• Key attributes for CloudHSM CLI

• Filter keys using CloudHSM CLI

Reference 459



AWS CloudHSM User Guide

Replicate a key with CloudHSM CLI

Use the key replicate command in CloudHSM CLI to replicate a key from a source AWS CloudHSM 
cluster to a destination AWS CloudHSM cluster.

User type

The following types of users can run this command.

• Admins (COs)

• Crypto users (CUs)

Note

Crypto Users must own the key to use this command.

Requirements

• The source and destination clusters must be clones. This means one was created from a backup 
of the other, or they were both created from a common backup. See Creating clusters from 
backups for more information.

• The owner of the key must exist on the destination cluster. Additionally, if the key is shared with 
any users, those users must also exist on the destination cluster.

• To run this command, you must be logged in as a crypto user or an admin on both the source 
and destination clusters.

• In single command mode, the command will use the CLOUDHSM_PIN and CLOUDHSM_ROLE 
environmental variables to authenticate on the source cluster. See Single Command 
mode for more information. To provide credentials for the destination cluster, you need 
to set two additional environmental variables: DESTINATION_CLOUDHSM_PIN and 
DESTINATION_CLOUDHSM_ROLE:

$ export DESTINATION_CLOUDHSM_ROLE=<role>

$ export DESTINATION_CLOUDHSM_PIN=<username:password>

• In interactive mode, users will need to explicitly log into both the source and destination 
clusters.

Reference 460



AWS CloudHSM User Guide

Syntax

aws-cloudhsm > help key replicate
Replicate a key from a source to a destination cluster

Usage: key replicate --filter [<FILTER>...] --source-cluster-id <SOURCE_CLUSTER_ID> --
destination-cluster-id <DESTINATION_CLUSTER_ID>

Options: 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select 
 matching key on the source cluster 
      --source-cluster-id <SOURCE_CLUSTER_ID> 
          Source cluster ID 
      --destination-cluster-id <DESTINATION_CLUSTER_ID> 
          Destination cluster ID 
  -h, --help 
          Print help

Examples

Example Example: Replicate key

This command replicates a key from a source cluster with to a cloned destination cluster. The 
example below demonstrates the output when logged in as a crypto user on both clusters.

crypto-user-1@cluster-1234abcdefg > key replicate \ 
      --filter attr.label=example-key \ 
      --source-cluster-id cluster-1234abcdefg \ 
      --destination-cluster-id cluster-2345bcdefgh
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x0000000000300006", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "crypto-user-1", 
            "key-coverage": "full" 
          } 
        ], 

Reference 461



AWS CloudHSM User Guide

        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "example-key", 
        "id": "0x", 
        "check-value": "0x5e118e", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": true, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    }, 
    "message": "Successfully replicated key" 
  }
}

Reference 462



AWS CloudHSM User Guide

Arguments

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key on the source cluster.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI

Required: Yes

<SOURCE_CLUSTER_ID>

The source cluster ID.

Required: Yes

<DESTINATION_CLUSTER_ID>

The destination cluster ID.

Required: Yes

Related topics

• Connecting to multiple clusters with CloudHSM CLI

Set the attributes of keys with CloudHSM CLI

Use the key set-attribute command in CloudHSM CLI to set the attributes of keys in your AWS 
CloudHSM cluster. Only the CU who created the key and consequently owns it can change the key's 
attributes.

For a list of key attributes that can be used in CloudHSM CLI, see Key attributes for CloudHSM CLI.

User type

The following types of users can run this command.

• Crypto users (CUs) can run this command.

Reference 463



AWS CloudHSM User Guide

• Admins can set the trusted attribute.

Requirements

To run this command, you must be logged in as a CU. To set the trusted attribute, you must be 
logged in as an admin user.

Syntax

aws-cloudhsm > help key set-attribute
Set an attribute for a key in the HSM cluster

Usage: cloudhsm-cli key set-attribute [OPTIONS] --filter [<FILTER>...] --
name <KEY_ATTRIBUTE> --value <KEY_ATTRIBUTE_VALUE>

Options: 
      --cluster-id <CLUSTER_ID>         Unique Id to choose which of the clusters in 
 the config file to run the operation against. If not provided, will fall back to the 
 value provided when interactive mode was started, or error 
      --filter [<FILTER>...]            Key reference (e.g. key-
reference=0xabc) or space separated list of key attributes in the form of 
 attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching key to modify 
      --name <KEY_ATTRIBUTE>            Name of attribute to be set 
      --value <KEY_ATTRIBUTE_VALUE>...  Attribute value to be set 
      --approval <APPROVAL>            Filepath of signed quorum token file to approve 
 operation 
  -h, --help                            Print help

Example: Setting a key attribute

The following example shows how to use the key set-attribute command to set the label.

Example

1. Use the key with the label my_key, as shown here:

aws-cloudhsm > key set-attribute --filter attr.label=my_key --name encrypt --value 
 false
{ 
  "error_code": 0, 
  "data": { 
    "message": "Attribute set successfully" 

Reference 464



AWS CloudHSM User Guide

  }
}

2. Use the key list command to confirm the encrypt attribute has changed:

aws-cloudhsm > key list --filter attr.label=my_key --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000006400ec", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "bob", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "aes", 
          "label": "my_key", 
          "id": "", 
          "check-value": "0x6bd9f7", 
          "class": "secret-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": true, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 

Reference 465



AWS CloudHSM User Guide

          "sign": true, 
          "trusted": true, 
          "unwrap": true, 
          "verify": true, 
          "wrap": true, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 32 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<KEY_ATTRIBUTE>

Specifies the name of the key's attribute.

Required: Yes

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key for deletion.

For a listing of supported CloudHSM CLI key attributes, see Key attributes for CloudHSM CLI

Required: No

<KEY_ATTRIBUTE_VALUE>

Specifies the value of the key's attribute.

Required: Yes

Reference 466



AWS CloudHSM User Guide

<KEY_REFERENCE>

A hexadecimal or decimal representation of the key. (such as a key handle).

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the key is greater than 1.

Related topics

• Filter keys using CloudHSM CLI

• Key attributes for CloudHSM CLI

Share a key using CloudHSM CLI

Use the key share command in CloudHSM CLI to share a key with other CUs in your AWS CloudHSM 
cluster.

Only the CU who created the key and consequently owns it can share the key. Users with whom a 
key is shared can use the key in cryptographic operations, but they cannot delete, export, share, or 
unshare the key. Additionally, these users cannot change key attributes.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key share
Share a key in the HSM cluster with another user

Usage: key share --filter [<FILTER>...] --username <USERNAME> --role <ROLE>

Reference 467



AWS CloudHSM User Guide

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key for sharing 

      --username <USERNAME>
          A username with which the key will be shared 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 
          - admin:       An Admin has the ability to manage user accounts 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 

  -h, --help 
          Print help (see a summary with '-h')

Example: Share a key with another CU

The following example shows how to use the key share command to share a key with the CU
alice.

Example

1. Run the key share command to share the key with alice.

aws-cloudhsm > key share --filter attr.label="rsa_key_to_share" attr.class=private-
key --username alice --role crypto-user
{ 
  "error_code": 0, 
  "data": { 
    "message": "Key shared successfully" 
  }

Reference 468



AWS CloudHSM User Guide

}

2. Run the key list command.

aws-cloudhsm > key list --filter attr.label="rsa_key_to_share" attr.class=private-
key --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu4", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu5", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu6", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu7", 
              "key-coverage": "full" 
            }, 

Reference 469



AWS CloudHSM User Guide

            { 
              "username": "alice", 
              "key-coverage": "full" 
            } 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 

Reference 470



AWS CloudHSM User Guide

    "returned_key_count": 1 
  }
}

3. In the above list, verify alice is in the list of shared-users

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key for deletion.

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ). The username is not case sensitive in this command, 
username is always displayed in lowercase.

Required: Yes

<ROLE>

Specifies the role assigned to this user. This parameter is required. To get the user’s role, use 
the user list command. For detailed information about the user types on an HSM, see HSM user 
types for CloudHSM CLI.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the key is greater than 1.

Reference 471



AWS CloudHSM User Guide

Related topics

• Filter keys using CloudHSM CLI

• Key attributes for CloudHSM CLI

Unshare a key using CloudHSM CLI

Use the key unshare command in CloudHSM CLI to unshare a key with other CUs in your AWS 
CloudHSM cluster.

Only the CU who created the key and consequently owns it can unshare the key. Users with whom 
a key is shared can use the key in cryptographic operations, but they cannot delete, export, share, 
or unshare the key. Additionally, these users cannot change key attributes.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unshare
Unshare a key in the HSM cluster with another user

Usage: key unshare --filter [<FILTER>...] --username <USERNAME> --role <ROLE>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 matching key for unsharing 

Reference 472



AWS CloudHSM User Guide

      --username <USERNAME>
          A username with which the key will be unshared 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 
          - admin:       An Admin has the ability to manage user accounts 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 

  -h, --help 
          Print help (see a summary with '-h')

Example: Unshare a key with another CU

The following example shows how to use the key unshare command to unshare a key with the CU
alice.

Example

1. Run the key list command and filter by the specific key you want to unshare with alice.

aws-cloudhsm > key list --filter attr.label="rsa_key_to_share" attr.class=private-
key --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 

Reference 473



AWS CloudHSM User Guide

              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu4", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu5", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu6", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu7", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "alice", 
              "key-coverage": "full" 
            } 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 

Reference 474



AWS CloudHSM User Guide

          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

2. Confirm alice is in the shared-users output, and run the following key unshare command 
to unshare the key with alice.

aws-cloudhsm > key unshare --filter attr.label="rsa_key_to_share" 
 attr.class=private-key --username alice --role crypto-user
{ 
  "error_code": 0, 
  "data": { 
    "message": "Key unshared successfully" 
  }
}

3. Run the key list command again to confirm that the key has been unshared with alice.

aws-cloudhsm > key list --filter attr.label="rsa_key_to_share" attr.class=private-
key --verbose
{ 

Reference 475



AWS CloudHSM User Guide

  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x00000000001c0686", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu3", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [ 
            { 
              "username": "cu2", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu4", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu5", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu6", 
              "key-coverage": "full" 
            }, 
            { 
              "username": "cu7", 
              "key-coverage": "full" 
            }, 
          ], 
          "key-quorum-values": { 
            "manage-key-quorum-value": 0, 
            "use-key-quorum-value": 0 
          }, 
          "cluster-coverage": "full" 
        }, 

Reference 476



AWS CloudHSM User Guide

        "attributes": { 
          "key-type": "rsa", 
          "label": "rsa_key_to_share", 
          "id": "", 
          "check-value": "0xae8ff0", 
          "class": "private-key", 
          "encrypt": false, 
          "decrypt": true, 
          "token": true, 
          "always-sensitive": true, 
          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": true, 
          "trusted": false, 
          "unwrap": true, 
          "verify": false, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 1219, 
          "public-exponent": "0x010001", 
          "modulus": 
 "0xa8855cba933cec0c21a4df0450ec31675c024f3e65b2b215a53d2bda6dcd191f75729150b59b4d86df58254c8f518f7d000cc04d8e958e7502c7c33098e28da4d94378ef34fb57d1cc7e042d9119bd79be0df728421a980a397095157da24cf3cc2b6dab12225d33fdca11f0c6ed1a5127f12488cda9a556814b39b06cd8373ff5d371db2212887853621b8510faa7b0779fbdec447e1f1d19f343acb02b22526487a31f6c704f8f003cb4f7013136f90cc17c2c20e414dc1fc7bcfb392d59c767900319679fc3307388633485657ce2e1a3deab0f985b0747ef4ed339de78147d1985d14fdd8634219321e49e3f5715e79c298f18658504bab04086bfbdcd3b", 
          "modulus-size-bits": 2048 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Reference 477



AWS CloudHSM User Guide

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a matching 
key for deletion.

For a list of supported key attributes, see Key attributes for CloudHSM CLI.

Required: Yes

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ). The username is not case sensitive in this command, 
username is always displayed in lowercase.

Required: Yes

<ROLE>

Specifies the role assigned to this user. This parameter is required. To get the user’s role, use 
the user list command. For detailed information about the user types on an HSM, see HSM user 
types for CloudHSM CLI.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the key is greater than 1.

Related topics

• Filter keys using CloudHSM CLI

• Key attributes for CloudHSM CLI

The key unwrap command in CloudHSM CLI

The key unwrap parent command in CloudHSM CLI imports an encrypted (wrapped) symmetric 
or asymmetric private key from a file and into the HSM. This command is designed to import 

Reference 478



AWS CloudHSM User Guide

encrypted keys that were wrapped by the The key wrap command in CloudHSM CLI command, 
but it can also be used to unwrap keys that were wrapped with other tools. However, in those 
situations, we recommend using the PKCS#11 or JCE software libraries to unwrap the key.

• aes-gcm

• aes-no-pad

• aes-pkcs5-pad

• aes-zero-pad

• cloudhsm-aes-gcm

• rsa-aes

• rsa-oaep

• rsa-pkcs

Unwrap a key with AES-GCM using CloudHSM CLI

Use the key unwrap aes-gcm command in CloudHSM CLI to unwrap a payload key into the cluster 
using the AES wrapping key and the AES-GCM unwrapping mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap aes-gcm command, you must have the AES wrapping key in your AWS 
CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unwrap aes-gcm

Reference 479



AWS CloudHSM User Guide

Usage: key unwrap aes-gcm [OPTIONS] --filter [<FILTER>...] --tag-length-
bits <TAG_LENGTH_BITS> --key-type-class <KEY_TYPE_CLASS> --label <LABEL> --iv <IV> <--
data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --aad <AAD>
          Aes GCM Additional Authenticated Data (AAD) value, in hex 
      --tag-length-bits <TAG_LENGTH_BITS>
          Aes GCM tag length in bits 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --iv <IV>
          Initial value used to wrap the key, in hex 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 

Reference 480



AWS CloudHSM User Guide

          Print help

Examples

These examples show how to use the key unwrap aes-gcm command using an AES key with the
unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap aes-gcm --key-type-class aes --label aes-unwrapped 
 --filter attr.label=aes-example --tag-length-bits 64  --aad 0x10 --iv 
 0xf90613bb8e337ec0339aad21 --data xvslgrtg8kHzrvekny97tLSIeokpPwV8
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001808e4", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 

Reference 481



AWS CloudHSM User Guide

        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap aes-gcm --key-type-class aes --label aes-unwrapped 
 --filter attr.label=aes-example --tag-length-bits 64  --aad 0x10 --iv 
 0xf90613bb8e337ec0339aad21 --data-path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001808e4", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 

Reference 482



AWS CloudHSM User Guide

        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

Reference 483



AWS CloudHSM User Guide

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

<AAD>

Aes GCM Additional Authenticated Data (AAD) value, in hex.

Required: No

<TAG_LENGTH_BITS>

Aes GCM tag length in bits.

Required: Yes

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Reference 484



AWS CloudHSM User Guide

Required: No

<IV>

Initial value used to wrap the key, in hex.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Unwrap a key with AES-NO-PAD using CloudHSM CLI

Use the key unwrap aes-no-pad command in CloudHSM CLI to unwrap a payload key into the AWS 
CloudHSM cluster using the AES wrapping key and the AES-NO-PAD unwrapping mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap aes-no-pad command, you must have the AES wrapping key in your AWS 
CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Reference 485



AWS CloudHSM User Guide

Syntax

aws-cloudhsm > help key unwrap aes-no-pad
Usage: key unwrap aes-no-pad [OPTIONS] --filter [<FILTER>...] --key-type-
class <KEY_TYPE_CLASS> --label <LABEL> <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Reference 486



AWS CloudHSM User Guide

Examples

These examples show how to use the key unwrap aes-no-pad command using an AES key with the
unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap aes-no-pad --key-type-class aes --label aes-unwrapped --
filter attr.label=aes-example --data eXK3PMAOnKM9y3YX6brbhtMoC060EOH9
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08ec", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 

Reference 487



AWS CloudHSM User Guide

        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap aes-no-pad --key-type-class aes --label aes-unwrapped --
filter attr.label=aes-example --data-path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08ec", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 

Reference 488



AWS CloudHSM User Guide

        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

Reference 489



AWS CloudHSM User Guide

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Reference 490



AWS CloudHSM User Guide

Unwrap a key with AES-PKCS5-PAD using CloudHSM CLI

Use the key unwrap aes-pkcs5-pad command in CloudHSM CLI to unwrap a payload key using the 
AES wrapping key and the AES-PKCS5-PAD unwrapping mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap aes-pkcs5-pad command, you must have the AES wrapping key in your 
AWS CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unwrap aes-pkcs5-pad
Usage: key unwrap aes-pkcs5-pad [OPTIONS] --filter [<FILTER>...] --key-type-
class <KEY_TYPE_CLASS> --label <LABEL> <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 

Reference 491



AWS CloudHSM User Guide

          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Examples

These examples show how to use the key unwrap aes-pkcs5-pad command using an AES key with 
the unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap aes-pkcs5-pad --key-type-class aes --label aes-unwrapped --
filter attr.label=aes-example --data MbuYNresfOKyGNnxKWen88nSfX+uUE/0qmGofSisicY=
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08e3", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 

Reference 492



AWS CloudHSM User Guide

        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap aes-pkcs5-pad --key-type-class aes --label aes-unwrapped --
filter attr.label=aes-example --data-path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 

Reference 493



AWS CloudHSM User Guide

    "key": { 
      "key-reference": "0x00000000001c08e3", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }

Reference 494



AWS CloudHSM User Guide

}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<LABEL>

Label for the unwrapped key.

Reference 495



AWS CloudHSM User Guide

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Unwrap a key with AES-ZERO-PAD using CloudHSM CLI

Use the key unwrap aes-zero-pad command in CloudHSM CLI to unwrap a payload key into 
the AWS CloudHSM cluster using the AES wrapping key and the AES-ZERO-PAD unwrapping 
mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap aes-no-pad command, you must have the AES wrapping key in your AWS 
CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Reference 496



AWS CloudHSM User Guide

Syntax

aws-cloudhsm > help key unwrap aes-zero-pad
Usage: key unwrap aes-zero-pad [OPTIONS] --filter [<FILTER>...] --key-type-
class <KEY_TYPE_CLASS> --label <LABEL> <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Reference 497



AWS CloudHSM User Guide

Examples

These examples show how to use the key unwrap aes-zero-pad command using an AES key with 
the unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap aes-zero-pad --key-type-class aes --label aes-unwrapped --
filter attr.label=aes-example --data L1wVlL/YeBNVAw6Mpk3owFJZXBzDLONt
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08e7", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 

Reference 498



AWS CloudHSM User Guide

        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap aes-zero-pad --key-type-class aes --label aes-unwrapped --
filter attr.label=aes-example --data-path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08e7", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 

Reference 499



AWS CloudHSM User Guide

        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

Reference 500



AWS CloudHSM User Guide

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Reference 501



AWS CloudHSM User Guide

Unwrap a key with CLOUDHSM-AES-GCM using CloudHSM CLI

Use the key unwrap cloudhsm-aes-gcm command in CloudHSM CLI to unwrap a payload key into 
the AWS CloudHSM cluster using the AES wrapping key and the CLOUDHSM-AES-GCM unwrapping 
mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap cloudhsm-aes-gcm command, you must have the AES wrapping key in your 
AWS CloudHSM cluster and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unwrap cloudhsm-aes-gcm
Usage: key unwrap cloudhsm-aes-gcm [OPTIONS] --filter [<FILTER>...] --tag-length-
bits <TAG_LENGTH_BITS> --key-type-class <KEY_TYPE_CLASS> --label <LABEL> <--data-
path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 

Reference 502



AWS CloudHSM User Guide

      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --aad <AAD>
          Aes GCM Additional Authenticated Data (AAD) value, in hex 
      --tag-length-bits <TAG_LENGTH_BITS>
          Aes GCM tag length in bits 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Examples

These examples show how to use the key unwrap cloudhsm-aes-gcm command using an AES key 
with the unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap cloudhsm-aes-gcm --key-type-class aes --label aes-
unwrapped --filter attr.label=aes-example --tag-length-bits 64  --aad 0x10 --data 
 6Rn8nkjEriDYlnP3P8nPkYQ8hplOEJ899zsrF+aTB0i/fIlZ
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001408e8", 
      "key-info": { 
        "key-owners": [ 

Reference 503



AWS CloudHSM User Guide

          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Reference 504



AWS CloudHSM User Guide

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap cloudhsm-aes-gcm --key-type-class aes --label aes-unwrapped 
 --filter attr.label=aes-example --tag-length-bits 64  --aad 0x10 --data-path payload-
key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001408e8", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 

Reference 505



AWS CloudHSM User Guide

        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

Reference 506



AWS CloudHSM User Guide

<AAD>

Aes GCM Additional Authenticated Data (AAD) value, in hex.

Required: No

<TAG_LENGTH_BITS>

Aes GCM tag length in bits.

Required: Yes

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Reference 507



AWS CloudHSM User Guide

Unwrap a key with RSA-AES using CloudHSM CLI

Use the key unwrap rsa-aes command in CloudHSM CLI to unwrap a payload key using an RSA 
private key and the RSA-AES unwrapping mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap rsa-aes, you must have the RSA private key of the RSA public wrapping key 
in your AWS CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unwrap rsa-aes
Usage: key unwrap rsa-aes [OPTIONS] --filter [<FILTER>...] --hash-
function <HASH_FUNCTION> --mgf <MGF> --key-type-class <KEY_TYPE_CLASS> --label <LABEL>
 <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 

Reference 508



AWS CloudHSM User Guide

          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --hash-function <HASH_FUNCTION>
          Hash algorithm [possible values: sha1, sha224, sha256, sha384, sha512] 
      --mgf <MGF>
          Mask Generation Function algorithm [possible values: mgf1-sha1, mgf1-sha224, 
 mgf1-sha256, mgf1-sha384, mgf1-sha512] 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Example

These examples show how to use the key unwrap rsa-aes command using the RSA private key with 
the unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap rsa-aes --key-type-class aes --label aes-unwrapped 
 --filter attr.label=rsa-private-key-example --hash-function sha256 --
mgf mgf1-sha256 --data HrSE1DEyLjIeyGdPa9R+ebiqB5TIJGyamPker31ZebPwRA
+NcerbAJO8DJ1lXPygZcI21vIFSZJuWMEiWpe1R9D/5WSYgxLVKex30xCFqebtEzxbKuv4DOmU4meSofqREYvtb3EoIKwjyxCMRQFgoyUCuP4y0f0eSv0k6rSJh4NuCsHptXZbtgNeRcR4botN7LlzkEIUcq4fVHaatCwd0J1QGKHKyRhkol
+RL5WGXKe4nAboAkC5GO7veI5yHL1SaKlssSJtTL/CFpbSLsAFuYbv/NUCWwMY5mwyVTCSlw+HlgKK
+5TH1MzBaSi8fpfyepLT8sHy2Q/VRl6ifb49p6m0KQFbRVvz/OWUd6l4d97BdgtaEz6ueg==
{ 
  "error_code": 0, 
  "data": { 
    "key": { 

Reference 509



AWS CloudHSM User Guide

      "key-reference": "0x00000000001808e2", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }

Reference 510



AWS CloudHSM User Guide

}

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap rsa-aes --key-type-class aes --label aes-unwrapped --filter 
 attr.label=rsa-private-key-example --hash-function sha256 --mgf mgf1-sha256 --data-
path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001808e2", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 

Reference 511



AWS CloudHSM User Guide

        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Reference 512



AWS CloudHSM User Guide

Required: No

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

• sha224

• sha256

• sha384

• sha512

Required: Yes

<MGF>

Specifies the mask generation function.

Note

The mask generation function hash function must match the signing mechanism hash 
function.

Valid values:

• mgf1-sha1

• mgf1-sha224

• mgf1-sha256

• mgf1-sha384

• mgf1-sha512

Reference 513



AWS CloudHSM User Guide

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Unwrap a key with RSA-OAEP using CloudHSM CLI

Use the key unwrap rsa-oaep command in CloudHSM CLI to unwrap a payload key using the RSA 
private key and the RSA-OAEP unwrapping mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap rsa-oaep command, you must have the RSA private key of the RSA public 
wrapping key in your AWS CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Reference 514



AWS CloudHSM User Guide

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unwrap rsa-oaep
Usage: key unwrap rsa-oaep [OPTIONS] --filter [<FILTER>...] --hash-
function <HASH_FUNCTION> --mgf <MGF> --key-type-class <KEY_TYPE_CLASS> --label <LABEL>
 <--data-path <DATA_PATH>|--data <DATA>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>
          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --hash-function <HASH_FUNCTION>
          Hash algorithm [possible values: sha1, sha224, sha256, sha384, sha512] 
      --mgf <MGF>
          Mask Generation Function algorithm [possible values: mgf1-sha1, mgf1-sha224, 
 mgf1-sha256, mgf1-sha384, mgf1-sha512] 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 

Reference 515



AWS CloudHSM User Guide

      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Examples

These examples show how to use the key unwrap rsa-oaep command using the RSA private key 
with the unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap rsa-oaep --key-type-class aes --label aes-unwrapped --filter 
 attr.label=rsa-private-example-key --hash-function sha256 --mgf mgf1-sha256 --data 
 OjJe4msobPLz9TuSAdULEu17T5rMDWtSlLyBSkLbaZnYzzpdrhsbGLbwZJCtB/jGkDNdB4qyTAOQwEpggGf6v
+Yx6JcesNeKKNU8XZal/YBoHC8noTGUSDI2qr+u2tDc84NPv6d+F2KOONXsSxMhmxzzNG/
gzTVIJhOuy/B1yHjGP4mOXoDZf5+7f5M1CjxBmz4Vva/wrWHGCSG0yOaWblEvOiHAIt3UBdyKmU+/
My4xjfJv7WGGu3DFUUIZ06TihRtKQhUYU1M9u6NPf9riJJfHsk6QCuSZ9yWThDT9as6i7e3htnyDhIhGWaoK8JU855cN/
YNKAUqkNpC4FPL3iw==
{ 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001808e9", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 

Reference 516



AWS CloudHSM User Guide

        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap rsa-oaep --key-type-class aes --label aes-unwrapped --filter 
 attr.label=rsa-private-example-key --hash-function sha256 --mgf mgf1-sha256 --data-
path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001808e9", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 

Reference 517



AWS CloudHSM User Guide

        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Reference 518



AWS CloudHSM User Guide

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<HASH_FUNCTION>

Specifies the hash function.

Valid values:

• sha1

• sha224

• sha256

• sha384

• sha512

Reference 519



AWS CloudHSM User Guide

Required: Yes

<MGF>

Specifies the mask generation function.

Note

The mask generation function hash function must match the signing mechanism hash 
function.

Valid values:

• mgf1-sha1

• mgf1-sha224

• mgf1-sha256

• mgf1-sha384

• mgf1-sha512

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

Reference 520



AWS CloudHSM User Guide

• The key unwrap command in CloudHSM CLI

Unwrap a key with RSA-PKCS using CloudHSM CLI

Use the key unwrap rsa-pkcs command in CloudHSM CLI to unwrap a payload key using the RSA 
private key and the RSA-PKCS unwrapping mechanism.

Unwrapped keys can be used in the same ways as the keys generated by AWS CloudHSM. To 
indicate that they were not generated locally, their local attribute is set to false.

To use the key unwrap rsa-pkcs command, you must have the RSA private key of the RSA public 
wrapping key in your AWS CloudHSM cluster, and its unwrap attribute must be set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key unwrap rsa-pkcs
Usage: key unwrap rsa-pkcs [OPTIONS] --filter [<FILTER>...] --key-type-
class <KEY_TYPE_CLASS> --label <LABEL> <--data-path <DATA_PATH>|--data <DATA>>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --filter [<FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key 
 to unwrap with 
      --data-path <DATA_PATH>
          Path to the binary file containing the wrapped key data 
      --data <DATA>

Reference 521



AWS CloudHSM User Guide

          Base64 encoded wrapped key data 
      --attributes [<UNWRAPPED_KEY_ATTRIBUTES>...] 
          Space separated list of key attributes in the form of 
 KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the unwrapped key 
      --share-crypto-users [<SHARE_CRYPTO_USERS;...] 
          Space separated list of Crypto User usernames to share the unwrapped key with 
      --manage-key-quorum-value <MANAGE_KEY_QUORUM_VALUE;
          The quorum value for key management operations for the unwrapped key 
      --use-key-quorum-value <USE_KEY_QUORUM_VALUE;
          The quorum value for key usage operations for the unwrapped key 
      --key-type-class <KEY_TYPE_CLASS>
          Key type and class of wrapped key [possible values: aes, des3, ec-private, 
 generic-secret, rsa-private] 
      --label <LABEL>
          Label for the unwrapped key 
      --session 
          Creates a session key that exists only in the current session. The key cannot 
 be recovered after the session ends 
      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
  -h, --help 
          Print help

Examples

These examples show how to use the key unwrap rsa-oaep command using an AES key with the
unwrap attribute value set to true.

Example Example: Unwrap a payload key from Base64 encoded wrapped key data

aws-cloudhsm > key unwrap rsa-pkcs --key-type-class aes --label 
 aes-unwrapped --filter attr.label=rsa-private-key-example --data 
 am0Nc7+YE8FWs+5HvU7sIBcXVb24QA0l65nbNAD+1bK+e18BpSfnaI3P+r8Dp+pLu1ofoUy/
vtzRjZoCiDofcz4EqCFnGl4GdcJ1/3W/5WRvMatCa2d7cx02swaeZcjKsermPXYRO1lGlfq6NskwMeeTkV8R7Rx9artFrs1y0DdIgIKVaiFHwnBIUMnlQrR2zRmMkfwU1jxMYmOYyD031F5VbnjSrhfMwkww2la7uf/
c3XdFJ2+0Bo94c6og/
yfPcpOOobJlITCoXhtMRepSdO4OggYq/6nUDuHCtJ86pPGnNahyr7+sAaSI3a5ECQLUjwaIARUCyoRh7EFK3qPXcg==
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08ef", 
      "key-info": { 
        "key-owners": [ 

Reference 522



AWS CloudHSM User Guide

          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Reference 523



AWS CloudHSM User Guide

Example Example: Unwrap a payload key provided through a data path

aws-cloudhsm > key unwrap rsa-pkcs --key-type-class aes --label aes-unwrapped --filter 
 attr.label=rsa-private-key-example --data-path payload-key.pem
{ 
  "error_code": 0, 
  "data": { 
    "key": { 
      "key-reference": "0x00000000001c08ef", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "aes", 
        "label": "aes-unwrapped", 
        "id": "0x", 
        "check-value": "0x8d9099", 
        "class": "secret-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": false, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 

Reference 524



AWS CloudHSM User Guide

        "verify": true, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 16 
      } 
    } 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a key to 
unwrap with.

Required: Yes

<DATA_PATH>

Path to the binary file containing the wrapped key data.

Required: Yes (unless provided through Base64 encoded data)

<DATA>

Base64 encoded wrapped key data.

Required: Yes (unless provided through data path)

<ATTRIBUTES>

Space separated list of key attributes in the form of
KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE for the wrapped key.

Required: No

Reference 525



AWS CloudHSM User Guide

<KEY_TYPE_CLASS>

Key type and class of wrapped key [possible values: aes, des3, ec-private, generic-
secret, rsa-private].

Required: Yes

<LABEL>

Label for the unwrapped key.

Required: Yes

<SESSION>

Creates a session key that exists only in the current session. The key cannot be recovered after 
the session ends.

Required: No

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if the 
key management service quorum value of the unwrapping key is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

The key wrap command in CloudHSM CLI

The key wrap command in CloudHSM CLI exports an encrypted copy of a symmetric or asymmetric 
private key from the hardware security module (HSM) to a file. When you run key wrap, you specify 
two things: The key to export and the output file. The key to export is a key on the HSM that will 
encrypt (wrap) the key that you want to export.

The key wrap command does not remove the key from the HSM or prevent you from using it in 
cryptographic operations. You can export the same key multiple times. To import the encrypted 
key back into the HSM, use The key unwrap command in CloudHSM CLI. Only the owner of a key, 
that is the crypto user (CU) who created the key, can wrap the key. Users with whom the key is 
shared can only use the key in cryptographic operations.

Reference 526



AWS CloudHSM User Guide

The key wrap command consists of the following subcommands:

• aes-gcm

• aes-no-pad

• aes-pkcs5-pad

• aes-zero-pad

• cloudhsm-aes-gcm

• rsa-aes

• rsa-oaep

• rsa-pkcs

Wrap a key with AES-GCM using CloudHSM CLI

Use the key wrap aes-gcm command in CloudHSM CLI to wrap a payload key using an AES key on 
the hardware security module (HSM) and the AES-GCM wrapping mechanism. The payload key’s
extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap aes-gcm command, you must first have an AES key in your AWS CloudHSM 
cluster. You can generate an AES key for wrapping with the Generate a symmetric AES key with 
CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap aes-gcm

Reference 527



AWS CloudHSM User Guide

Usage: key wrap aes-gcm [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --wrapping-
filter [<WRAPPING_FILTER>...] --tag-length-bits <TAG_LENGTH_BITS>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
      --aad <AAD>
          Aes GCM Additional Authenticated Data (AAD) value, in hex 
      --tag-length-bits <TAG_LENGTH_BITS>
          Aes GCM tag length in bits 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap aes-gcm command using an AES key.

Example

aws-cloudhsm > key wrap aes-gcm --payload-filter attr.label=payload-key --wrapping-
filter attr.label=aes-example --tag-length-bits 64  --aad 0x10
{ 
  "error_code": 0, 
  "data": { 
    "payload_key_reference": "0x00000000001c08f1", 
    "wrapping_key_reference": "0x00000000001c08ea", 
    "iv": "0xf90613bb8e337ec0339aad21", 
    "wrapped_key_data": "xvslgrtg8kHzrvekny97tLSIeokpPwV8" 

Reference 528



AWS CloudHSM User Guide

  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<AAD>

AES GCM Additional Authenticated Data (AAD) value, in hex.

Required: No

<TAG_LENGTH_BITS>

AES GCM tag length in bits.

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

Reference 529



AWS CloudHSM User Guide

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Wrap a key with AES-NO-PAD using CloudHSM CLI

Use the key wrap aes-no-pad command in CloudHSM CLI to wrap a payload key using an AES key 
on the hardware security module (HSM) and the AES-NO-PAD wrapping mechanism. The payload 
key’s extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap aes-no-pad command, you must first have an AES key in your AWS CloudHSM 
cluster. You can generate an AES key for wrapping using the Generate a symmetric AES key with 
CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap aes-no-pad
Usage: key wrap aes-no-pad [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --wrapping-
filter [<WRAPPING_FILTER>...]

Reference 530



AWS CloudHSM User Guide

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap aes-no-pad command using an AES key with the
wrap attribute value set to true.

Example

aws-cloudhsm > key wrap aes-no-pad --payload-filter attr.label=payload-key --wrapping-
filter attr.label=aes-example
{ 
  "error_code": 0, 
  "data": { 
    "payload_key_reference": "0x00000000001c08f1", 
    "wrapping_key_reference": "0x00000000001c08ea", 
    "wrapped_key_data": "eXK3PMAOnKM9y3YX6brbhtMoC060EOH9" 
  }
}

Reference 531



AWS CloudHSM User Guide

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Reference 532



AWS CloudHSM User Guide

Wrap a key with AES-PKCS5-PAD using CloudHSM CLI

Use the key wrap aes-pkcs5-pad command in CloudHSM CLI to wrap a payload key using an AES 
key on the hardware security module (HSM) and the AES-PKCS5-PAD wrapping mechanism. The 
payload key's extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap aes-pkcs5-pad command, you must first have an AES key in your AWS 
CloudHSM cluster. You can generate an AES key for wrapping using the Generate a symmetric AES 
key with CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap aes-pkcs5-pad
Usage: key wrap aes-pkcs5-pad [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --
wrapping-filter [<WRAPPING_FILTER>...]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 

Reference 533



AWS CloudHSM User Guide

      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap aes-pkcs5-pad command using an AES key with the
wrap attribute value set to true.

Example

aws-cloudhsm > key wrap aes-pkcs5-pad --payload-filter attr.label=payload-key --
wrapping-filter attr.label=aes-example
{ 
  "error_code": 0, 
  "data": { 
    "payload_key_reference": "0x00000000001c08f1", 
    "wrapping_key_reference": "0x00000000001c08ea", 
    "wrapped_key_data": "MbuYNresfOKyGNnxKWen88nSfX+uUE/0qmGofSisicY=" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Reference 534



AWS CloudHSM User Guide

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Wrap a key with AES-ZERO-PAD using CloudHSM CLI

Use the key wrap aes-zero-pad command in CloudHSM CLI to wrap a payload key using an AES 
key on the hardware security module HSM) and the AES-ZERO-PAD wrapping mechanism. The 
payload key’s extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap aes-zero-pad command, you must first have an AES key in your AWS 
CloudHSM cluster. You can generate an AES key for wrapping using the Generate a symmetric AES 
key with CloudHSM CLI command with the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Reference 535



AWS CloudHSM User Guide

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap aes-zero-pad
Usage: key wrap aes-zero-pad [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --
wrapping-filter [<WRAPPING_FILTER>...]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap aes-zero-pad  command using an AES key with the
wrap attribute value set to true.

Example

aws-cloudhsm > key wrap aes-zero-pad --payload-filter attr.label=payload-key --
wrapping-filter attr.label=aes-example
{ 

Reference 536



AWS CloudHSM User Guide

  "error_code": 0, 
  "data": { 
    "payload_key_reference": "0x00000000001c08f1", 
    "wrapping_key_reference": "0x00000000001c08ea", 
    "wrapped_key_data": "L1wVlL/YeBNVAw6Mpk3owFJZXBzDLONt" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Reference 537



AWS CloudHSM User Guide

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Wrap a key with CLOUDHSM-AES-GCM using CloudHSM CLI

Use the key wrap cloudhsm-aes-gcm command in CloudHSM CLI to wrap a payload key using 
an AES key on the hardware security module (HSM) and the CLOUDHSM-AES-GCM wrapping 
mechanism. The payload key’s extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap cloudhsm-aes-gcm command, you must first have an AES key in your AWS 
CloudHSM cluster. You can generate an AES key for wrapping with the Generate a symmetric AES 
key with CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap cloudhsm-aes-gcm
Usage: key wrap cloudhsm-aes-gcm [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --
wrapping-filter [<WRAPPING_FILTER>...] --tag-length-bits <TAG_LENGTH_BITS>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 

Reference 538



AWS CloudHSM User Guide

          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
      --aad <AAD>
          Aes GCM Additional Authenticated Data (AAD) value, in hex 
      --tag-length-bits <TAG_LENGTH_BITS>
          Aes GCM tag length in bits 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap cloudhsm-aes-gcm command using an AES key.

Example

aws-cloudhsm > key wrap cloudhsm-aes-gcm --payload-filter attr.label=payload-key --
wrapping-filter attr.label=aes-example --tag-length-bits 64 --aad 0x10
{ 
  "error_code": 0, 
  "data": { 
    "payload_key_reference": "0x00000000001c08f1", 
    "wrapping_key_reference": "0x00000000001c08ea", 
    "wrapped_key_data": "6Rn8nkjEriDYlnP3P8nPkYQ8hplOEJ899zsrF+aTB0i/fIlZ" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

Reference 539



AWS CloudHSM User Guide

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<AAD>

AES GCM Additional Authenticated Data (AAD) value, in hex.

Required: No

<TAG_LENGTH_BITS>

AES GCM tag length in bits.

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

Reference 540



AWS CloudHSM User Guide

• The key unwrap command in CloudHSM CLI

Wrap a key with RSA-AES using CloudHSM CLI

Use the key wrap rsa-aes command in CloudHSM CLI to wrap a payload key using an RSA public 
key on the hardware security module (HSM) and the RSA-AES wrapping mechanism. The payload 
key’s extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap rsa-aes command, you must first have an RSA key in your AWS CloudHSM 
cluster. You can generate an RSA key pair using the The generate-asymmetric-pair category in 
CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap rsa-aes
Usage: key wrap rsa-aes [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --wrapping-
filter [<WRAPPING_FILTER>...] --hash-function <HASH_FUNCTION> --mgf <MGF>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 

Reference 541



AWS CloudHSM User Guide

          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
      --hash-function <HASH_FUNCTION>
          Hash algorithm [possible values: sha1, sha224, sha256, sha384, sha512] 
      --mgf <MGF>
          Mask Generation Function algorithm [possible values: mgf1-sha1, mgf1-sha224, 
 mgf1-sha256, mgf1-sha384, mgf1-sha512] 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap rsa-ae command using an RSA public key with the
wrap attribute value set to true.

Example

aws-cloudhsm > key wrap rsa-aes --payload-filter attr.label=payload-key --wrapping-
filter attr.label=rsa-public-key-example --hash-function sha256 --mgf mgf1-sha256
{ 
  "error_code": 0, 
  "data": { 
    "payload-key-reference": "0x00000000001c08f1", 
    "wrapping-key-reference": "0x00000000007008da", 
    "wrapped-key-data": "HrSE1DEyLjIeyGdPa9R+ebiqB5TIJGyamPker31ZebPwRA
+NcerbAJO8DJ1lXPygZcI21vIFSZJuWMEiWpe1R9D/5WSYgxLVKex30xCFqebtEzxbKuv4DOmU4meSofqREYvtb3EoIKwjyxCMRQFgoyUCuP4y0f0eSv0k6rSJh4NuCsHptXZbtgNeRcR4botN7LlzkEIUcq4fVHaatCwd0J1QGKHKyRhkol
+RL5WGXKe4nAboAkC5GO7veI5yHL1SaKlssSJtTL/CFpbSLsAFuYbv/NUCWwMY5mwyVTCSlw+HlgKK
+5TH1MzBaSi8fpfyepLT8sHy2Q/VRl6ifb49p6m0KQFbRVvz/OWUd6l4d97BdgtaEz6ueg==" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Reference 542



AWS CloudHSM User Guide

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<MGF>

Specifies the mask generation function.

Note

The mask generation function hash function must match the signing mechanism hash 
function.

Valid values

• mgf1-sha1

• mgf1-sha224

• mgf1-sha256

• mgf1-sha384

• mgf1-sha512

Required: Yes

Reference 543



AWS CloudHSM User Guide

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Wrap a key with RSA-OAEP using CloudHSM CLI

Use the key wrap rsa-oaep command in CloudHSM CLI to wrap a payload key using an RSA public 
key on the hardware security module (HSM) and the RSA-OAEP wrapping mechanism. The payload 
key’s extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

To use the key wrap rsa-oaep command, you must first have an RSA key in your AWS CloudHSM 
cluster. You can generate an RSA key pair using the The generate-asymmetric-pair category in 
CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Reference 544



AWS CloudHSM User Guide

Syntax

aws-cloudhsm > help key wrap rsa-oaep
Usage: key wrap rsa-oaep [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --wrapping-
filter [<WRAPPING_FILTER>...] --hash-function <HASH_FUNCTION> --mgf <MGF>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
      --hash-function <HASH_FUNCTION>
          Hash algorithm [possible values: sha1, sha224, sha256, sha384, sha512] 
      --mgf <MGF>
          Mask Generation Function algorithm [possible values: mgf1-sha1, mgf1-sha224, 
 mgf1-sha256, mgf1-sha384, mgf1-sha512] 
  -h, --help 
          Print help

Example

This example shows how to use the key wrap rsa-oaep command using an RSA public key with the
wrap attribute value set to true.

Example

aws-cloudhsm > key wrap rsa-oaep --payload-filter attr.label=payload-key --wrapping-
filter attr.label=rsa-public-key-example --hash-function sha256 --mgf mgf1-sha256
{ 

Reference 545



AWS CloudHSM User Guide

  "error_code": 0, 
  "data": { 
    "payload-key-reference": "0x00000000001c08f1", 
    "wrapping-key-reference": "0x00000000007008da", 
    "wrapped-key-data": "OjJe4msobPLz9TuSAdULEu17T5rMDWtSlLyBSkLbaZnYzzpdrhsbGLbwZJCtB/
jGkDNdB4qyTAOQwEpggGf6v+Yx6JcesNeKKNU8XZal/YBoHC8noTGUSDI2qr+u2tDc84NPv6d
+F2KOONXsSxMhmxzzNG/gzTVIJhOuy/B1yHjGP4mOXoDZf5+7f5M1CjxBmz4Vva/
wrWHGCSG0yOaWblEvOiHAIt3UBdyKmU+/
My4xjfJv7WGGu3DFUUIZ06TihRtKQhUYU1M9u6NPf9riJJfHsk6QCuSZ9yWThDT9as6i7e3htnyDhIhGWaoK8JU855cN/
YNKAUqkNpC4FPL3iw==" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Required: Yes

<MGF>

Specifies the mask generation function.

Reference 546



AWS CloudHSM User Guide

Note

The mask generation function hash function must match the signing mechanism hash 
function.

Valid values

• mgf1-sha1

• mgf1-sha224

• mgf1-sha256

• mgf1-sha384

• mgf1-sha512

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Wrap a key with RSA-PKCS using CloudHSM CLI

Use the key wrap rsa-pkcs command in CloudHSM CLI to wrap a payload key using an RSA public 
key on the hardware security module (HSM) and the RSA-PKCS wrapping mechanism. The payload 
key’s extractable attribute must be set to true.

Only the owner of a key, that is the crypto user (CU) who created the key, can wrap the key. Users 
who share the key can use the key in cryptographic operations.

Reference 547



AWS CloudHSM User Guide

To use the key wrap rsa-pkcs command, you must first have an RSA key in your AWS CloudHSM 
cluster. You can generate an RSA key pair using the The generate-asymmetric-pair category in 
CloudHSM CLI command and the wrap attribute set to true.

User type

The following types of users can run this command.

• Crypto users (CUs)

Requirements

• To run this command, you must be logged in as a CU.

Syntax

aws-cloudhsm > help key wrap rsa-pkcs
Usage: key wrap rsa-pkcs [OPTIONS] --payload-filter [<PAYLOAD_FILTER>...] --wrapping-
filter [<WRAPPING_FILTER>...]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 
      --payload-filter [<PAYLOAD_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 payload key 
      --wrapping-filter [<WRAPPING_FILTER>...] 
          Key reference (e.g. key-reference=0xabc) or space separated list of key 
 attributes in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a 
 wrapping key 
      --path <PATH>
          Path to the binary file where the wrapped key data will be saved 
      --wrapping-approval <WRAPPING_APPROVALR>
          File path of signed quorum token file to approve operation for wrapping key 
      --payload-approval <PAYLOAD_APPROVALR>
          File path of signed quorum token file to approve operation for payload key 
  -h, --help 
          Print help

Reference 548



AWS CloudHSM User Guide

Example

This example shows how to use the key wrap rsa-pkcs command using an RSA public key.

Example

aws-cloudhsm > key wrap rsa-pkcs --payload-filter attr.label=payload-key --wrapping-
filter attr.label=rsa-public-key-example
{ 
  "error_code": 0, 
  "data": { 
    "payload_key_reference": "0x00000000001c08f1", 
    "wrapping_key_reference": "0x00000000007008da", 
    "wrapped_key_data": "am0Nc7+YE8FWs+5HvU7sIBcXVb24QA0l65nbNAD+1bK+e18BpSfnaI3P+r8Dp
+pLu1ofoUy/
vtzRjZoCiDofcz4EqCFnGl4GdcJ1/3W/5WRvMatCa2d7cx02swaeZcjKsermPXYRO1lGlfq6NskwMeeTkV8R7Rx9artFrs1y0DdIgIKVaiFHwnBIUMnlQrR2zRmMkfwU1jxMYmOYyD031F5VbnjSrhfMwkww2la7uf/
c3XdFJ2+0Bo94c6og/
yfPcpOOobJlITCoXhtMRepSdO4OggYq/6nUDuHCtJ86pPGnNahyr7+sAaSI3a5ECQLUjwaIARUCyoRh7EFK3qPXcg==" 
  }

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PAYLOAD_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a payload key.

Required: Yes

<PATH>

Path to the binary file where the wrapped key data will be saved.

Required: No

<WRAPPING_FILTER>

Key reference (for example, key-reference=0xabc) or space separated list of key attributes 
in the form of attr.KEY_ATTRIBUTE_NAME=KEY_ATTRIBUTE_VALUE to select a wrapping 
key.

Reference 549



AWS CloudHSM User Guide

Required: Yes

<WRAPPING_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for wrapping key. 
Only required if wrapping key's key management service quorum value is greater than 1.

<PAYLOAD_APPROVALR>

Specifies the file path to a signed quorum token file to approve operation for payload key. Only 
required if payload key's key management service quorum value is greater than 1.

Related topics

• The key wrap command in CloudHSM CLI

• The key unwrap command in CloudHSM CLI

Log in to an HSM using CloudHSM CLI

You can use the login command in CloudHSM CLI to log in and out of each hardware security 
(HSM) in a AWS CloudHSM cluster. This command has the following sub-command:

• mfa-token-sign

Note

If you exceed five incorrect login attempts, your account is locked out. To unlock the 
account, an admin must reset your password using the user change-password command in 
cloudhsm_cli.

To troubleshoot login and logout

If you have more than one HSM in your cluster, you may be allowed additional incorrect login 
attempts before your account is locked out. This is because the CloudHSM client balances load 
across various HSMs. Therefore, the login attempt may not begin on the same HSM each time. If 
you are testing this functionality, we recommend you do so on a cluster with only one active HSM.

If you created your cluster before February 2018, your account is locked out after 20 incorrect login 
attempts.

Reference 550



AWS CloudHSM User Guide

User type

The following users can run these commands.

• Unactivated admin

• Admin

• Crypto user (CU)

Syntax

aws-cloudhsm > help login
Login to your cluster   
         
USAGE: 
    cloudhsm-cli login [OPTIONS] --username <USERNAME> --role <ROLE> [COMMAND] 
     
Commands: 
  mfa-token-sign  Login with token-sign mfa 
  help            Print this message or the help of the given subcommand(s)

OPTIONS: 
        --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

        --username <USERNAME>
            Username to access the Cluster 
         
        --role <ROLE>
            Role the user has in the Cluster 
             
           Possible values: 
           - crypto-user: A CryptoUser has the ability to manage and use keys 
           - admin:       An Admin has the ability to manage user accounts 

        --password <PASSWORD>
           Optional: Plaintext user's password. If you do not include this argument you 
 will be prompted for it 

  -h, --help 
          Print help (see a summary with '-h') 

Reference 551



AWS CloudHSM User Guide

       

Example

Example

This command logs you in to all HSMs in a cluster with the credentials of an admin user named
admin1.

aws-cloudhsm > login --username admin1 --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "admin1", 
    "role": "admin" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ). The username is not case sensitive in this command, 
username is always displayed in lowercase.

Required: Yes

<ROLE>

Specifies the role assigned to this user. This parameter is required. Valid values are admin,
crypto-user.

To get the user’s role, use the user list command. For detailed information about the user types 
on an HSM, see Understanding HSM users.

Reference 552



AWS CloudHSM User Guide

<PASSWORD>

Specifies the password of the user who is logging in to the HSMs.

Related topics

• Getting Started with CloudHSM CLI

• Activate the Cluster

Log in with MFA to an HSM using CloudHSM CLI

Use the login mfa-token-sign command in AWS CloudHSM CloudHSM CLI to log in to a hardware 
security module (HSM) using multi-factor authentication (MFA). To use this command, you must 
first set up MFA for CloudHSM CLI.

User type

The following users can run these commands.

• Admin

• Crypto user (CU)

Syntax

aws-cloudhsm > help login mfa-token-sign
Login with token-sign mfa

USAGE: 
    login --username <username> --role <role> mfa-token-sign --token <token>

OPTIONS: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
      --token <TOKEN>            Filepath where the unsigned token file will be written 
  -h, --help                     Print help

Reference 553



AWS CloudHSM User Guide

Example

Example

aws-cloudhsm > login --username test_user --role admin mfa-token-sign --token /home/
valid.token
Enter password:
Enter signed token file path (press enter if same as the unsigned token file):
{ 
  "error_code": 0, 
  "data": { 
    "username": "test_user", 
    "role": "admin" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<TOKEN>

Filepath where the unsigned token file will be written.

Required: Yes

Related topics

• Getting Started with CloudHSM CLI

• Activate the Cluster

• Using CloudHSM CLI to manage MFA

Log out of an HSM using CloudHSM CLI

Use the logout command in CloudHSM CLI to log out of each hardware security module (HSM) in 
an AWS CloudHSM cluster.

Reference 554



AWS CloudHSM User Guide

User type

The following users can run this command.

• Admin

• Crypto user (CU)

Syntax

aws-cloudhsm > help logout
Logout of your cluster

USAGE: 
    logout

OPTIONS: 
        --cluster-id <CLUSTER_ID> Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
    -h, --help                    Print help information 
    -V, --version                 Print version information

Example

Example

This command logs you out of all HSMs in a cluster.

aws-cloudhsm > logout
{ 
  "error_code": 0, 
  "data": "Logout successful"
}

Related topics

• Getting Started with CloudHSM CLI

• Activate the Cluster

Reference 555



AWS CloudHSM User Guide

The user category in CloudHSM CLI

In the CloudHSM CLI, user is a parent category for a group of commands that, when combined with 
the parent category, create a command specific to users. Currently, the user category consists of 
the following commands:

• user change-mfa

• user change-password

• user create

• user delete

• user list

• user replicate

The user change-mfa category in CloudHSM CLI

In the CloudHSM CLI, user change-mfa is a parent category for a group of commands that, 
when combined with the parent category, create a command specific to changing multi-factor 
authentication (MFA) for users.

Currently, this category consists of the following sub-command:

• token-sign

Change a user's MFA setup with CloudHSM CLI

Use the user change-mfa token-sign command in CloudHSM CLI to update a user account's multi-
factor authentication (MFA) setup. Any user account can run this command. Accounts with the 
Admin role can run this command for other users.

User type

The following users can run this command.

• Admin

• Crypto user

Reference 556



AWS CloudHSM User Guide

Syntax

Currently, there is only a single multi-factor strategy available for users: Token Sign.

aws-cloudhsm > help user change-mfa
Change a user's Mfa Strategy

Usage: 
    user change-mfa <COMMAND> 
   
Commands: 
  token-sign  Register or Deregister a public key using token-sign mfa strategy 
  help        Print this message or the help of the given subcommand(s) 
     

The Token Sign strategy asks for a Token file to write unsigned tokens to.

aws-cloudhsm > help user change-mfa token-sign
Register or Deregister a public key using token-sign mfa strategy

Usage: user change-mfa token-sign [OPTIONS] --username <USERNAME> --role <ROLE> <--
token <TOKEN>|--deregister>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --username <USERNAME>
          Username of the user that will be modified 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 
          - admin:       An Admin has the ability to manage user accounts 

      --change-password <CHANGE_PASSWORD>
          Optional: Plaintext user's password. If you do not include this argument you 
 will be prompted for it 

Reference 557



AWS CloudHSM User Guide

      --token <TOKEN>
          Filepath where the unsigned token file will be written. Required for enabling 
 MFA for a user 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 

      --deregister 
          Deregister the MFA public key, if present 

      --change-quorum 
          Change the Quorum public key along with the MFA key 

  -h, --help 
          Print help (see a summary with '-h')

Example

This command will write one unsigned token per HSM in your cluster to the file specified by token. 
When you are prompted, sign the tokens in the file.

Example : Write one unsigned token per HSM in your cluster

aws-cloudhsm > user change-mfa token-sign --username cu1 --change-password password --
role crypto-user --token /path/myfile
Enter signed token file path (press enter if same as the unsigned token file):
Enter public key PEM file path:/path/mypemfile
{ 
  "error_code": 0, 
  "data": { 
    "username": "test_user", 
    "role": "admin" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

Reference 558



AWS CloudHSM User Guide

<ROLE>

Specifies the role given to the user account. This parameter is required. For detailed information 
about the user types on an HSM, see Understanding HSM users.

Valid values

• Admin: Admins can manage users, but they cannot manage keys.

• Crypto user: Crypto users can create an manage keys and use keys in cryptographic 
operations.

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ).

You cannot change the name of a user after it is created. In CloudHSM CLI commands, the role 
and password are case-sensitive, but the username is not.

Required: Yes

<CHANGE_PASSWORD>

Specifies the plaintext new password of the user whose MFA is being registered/deregistered.

Required: Yes

<TOKEN>

File path where the unsigned token file will be written.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum user service quorum value is greater than 1.

<DEREGISTER>

Deregisters the MFA public key, if present.

<CHANGE-QUORUM>

Changes the quorum public key along with the MFA key.

Reference 559



AWS CloudHSM User Guide

Related topics

• Understanding 2FA for HSM users

Change a user's password with CloudHSM CLI

Use the user change-password command in CloudHSM CLI to change the password of an existing 
user in your AWS CloudHSM cluster. To enable MFA for a user, use the user change-mfa
command.

Any user can change their own password. In addition, users with the admin role can change the 
password of another user in the cluster. You do not need to enter the current password to make the 
change.

Note

You cannot change the password of a user who is currently logged in to the cluster.

User type

The following users can run this command.

• Admin

• Crypto user (CU)

Syntax

Note

To enable multi-factor authentication (MFA) for a user, use the user change-mfa command.

aws-cloudhsm > help user change-password
Change a user's password 

    Usage: 
        cloudhsm-cli user change-password [OPTIONS] --username <USERNAME> --role <ROLE>
 [--password <PASSWORD>] 

Reference 560



AWS CloudHSM User Guide

    
    Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --username <USERNAME>
          Username of the user that will be modified 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 
          - admin:       An Admin has the ability to manage user accounts 

      --password <PASSWORD>
          Optional: Plaintext user's password. If you do not include this argument you 
 will be prompted for it 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 
           
      --deregister-mfa <DEREGISTER-MFA>
          Deregister the user's mfa public key, if present 
           
      --deregister-quorum <DEREGISTER-QUORUM>
          Deregister the user's quorum public key, if present 
 -h, --help 
          Print help (see a summary with '-h')

Example

The following examples show how to use user change-password to reset the password for the 
current user or any other user in your cluster.

Example : Change your password

Any user in the cluster can use user change-password to change their own password.

The following output shows that Bob is currently logged in as a crypto user(CU).

aws-cloudhsm > user change-password --username bob --role crypto-user

Reference 561



AWS CloudHSM User Guide

Enter password:
Confirm password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "bob", 
    "role": "crypto-user" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum user service quorum value is greater than 1.

<DEREGISTER-MFA>

Deregisters the MFA public key, if present.

<DEREGISTER-QUORUM>

Deregister the Quorum public key, if present.

<PASSWORD>

Specifies the plaintext new password of the user. The following characters are not permitted ':'

Required: Yes

<ROLE>

Specifies the role given to the user account. This parameter is required. For detailed information 
about the user types on an HSM, see Understanding HSM users.

Valid values

• Admin: Admins can manage users, but they cannot manage keys.

• Crypto user: Crypto users can create an manage keys and use keys in cryptographic 
operations.

Reference 562



AWS CloudHSM User Guide

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ).

You cannot change the name of a user after it is created. In CloudHSM CLI commands, the role 
and password are case-sensitive, but the username is not.

Required: Yes

Related topics

• user list

• user create

• user delete

The user change-quorum category in CloudHSM CLI

In the CloudHSM CLI, user change-quorum is a parent category for a group of commands that, 
when combined with the parent category, create a command specific to changing quorum for 
users.

user change-quorum is used to register user quorum authentication using a specified quorum 
strategy. As of SDK 5.8.0, there is only a single quorum strategy available for users as shown below.

Currently, this category consists of the following category and sub-command:

• token-sign

• register

The user change-quorum token-sign category in CloudHSM CLI

In the CloudHSM CLI, user change-quorum token-sign is a parent category for commands that, 
when combined with this parent category, create a command specific to token-sign quorum 
operations.

Currently, the this category consists of the following commands:

• register

Reference 563



AWS CloudHSM User Guide

Register a user's token-sign quorum strategy using CloudHSM CLI

Use the user change-quorum token-sign register command in CloudHSM CLI to register the 
token-sign quorum strategy for an admin user.

User type

The following users can run this command.

• Admin

Syntax

aws-cloudhsm > help user change-quorum token-sign register
Register a user for quorum authentication with a public key

Usage: user change-quorum token-sign register --public-key <PUBLIC_KEY> --signed-
token <SIGNED_TOKEN>

Options: 
      --cluster-id <CLUSTER_ID>      Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
      --public-key <PUBLIC_KEY>      Filepath to public key PEM file 
      --signed-token <SIGNED_TOKEN>  Filepath with token signed by user private key 
  -h, --help Print help (see a summary with '-h')

Example

Example

To run this command you will need to be logged in as the user you wish to register quorum token-
sign for.

aws-cloudhsm > login --username admin1 --role admin
Enter password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "admin1", 
    "role": "admin" 
  }

Reference 564



AWS CloudHSM User Guide

}

The user change-quorum token-sign register command will register your public key with the 
HSM. As a result, it will qualify you as a quorum approver for quorum-required operations that 
need a user to obtain quorum signatures to meet the necessary quorum value threshold.

aws-cloudhsm > user change-quorum token-sign register \ 
    --public-key /home/mypemfile \ 
    --signed-token /home/mysignedtoken
{ 
  "error_code": 0, 
  "data": { 
    "username": "admin1", 
    "role": "admin" 
  }
}

You can now run the user list command and confirm that quorum token-sign has been registered 
for this user.

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin1", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [ 
          {         
            "strategy": "token-sign", 
            "status": "enabled" 

Reference 565



AWS CloudHSM User Guide

          } 
        ], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<PUBLIC-KEY>

Filepath to the public key PEM file.

Required: Yes

<SIGNED-TOKEN>

Filepath with token signed by user private key.

Required: Yes

Related topics

• Using CloudHSM CLI to manage quorum authentication

• Using quorum authentication for admins: first time setup

• Change the quorum minimum value for admins

• Service names and types that support quorum authentication

Create an AWS CloudHSM user with CloudHSM CLI

The user create command in CloudHSM CLI creates a user in your AWS CloudHSM cluster. Only user 
accounts with the admin role can run this command.

User type

The following types of users can run this command.

Reference 566



AWS CloudHSM User Guide

• Admin

Requirements

To run this command, you must be logged in as an admin user

Syntax

aws-cloudhsm > help user create
Create a new user

Usage: cloudhsm-cli user create [OPTIONS] --username <USERNAME> --role <ROLE> [--
password <PASSWORD>]

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --username <USERNAME>
          Username to access the HSM cluster 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 
          - admin:       An Admin has the ability to manage user accounts 

      --password <PASSWORD>
          Optional: Plaintext user's password. If you do not include this argument you 
 will be prompted for it 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 

  -h, --help 
          Print help (see a summary with '-h')

Example

These examples show how to use user create to create new users in your HSMs.

Reference 567



AWS CloudHSM User Guide

Example : Create a crypto user

This example creates an account in your AWS CloudHSM cluster with the crypto user role.

aws-cloudhsm > user create --username alice --role crypto-user
Enter password:
Confirm password:
{ 
  "error_code": 0, 
  "data": { 
    "username": "alice", 
    "role": "crypto-user" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ). The username is not case sensitive in this command, 
username is always displayed in lowercase.

Required: Yes

<ROLE>

Specifies the role assigned to this user. This parameter is required. Valid values are admin,
crypto-user.

To get the user’s role, use the user list command. For detailed information about the user types 
on an HSM, see Understanding HSM users.

<PASSWORD>

Specifies the password of the user who is logging in to the HSMs. The following characters are 
not permitted ':'

Required: Yes

Reference 568



AWS CloudHSM User Guide

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum user service quorum value is greater than 1.

Related topics

• user list

• user delete

• user change-password

Delete an AWS CloudHSM user with CloudHSM CLI

The user delete command in CloudHSM CLI deletes a user from your AWS CloudHSM cluster. 
Only user accounts with the admin role may run this command. You cannot delete a user who is 
currently logged into an HSM.

User type

The following types of users can run this command.

• Admin

Requirements

• You can't delete user accounts that own keys.

• Your user account must have the admin role to run this command.

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

aws-cloudhsm > help user delete
Delete a user

Usage: user delete [OPTIONS] --username <USERNAME> --role <ROLE>

Reference 569



AWS CloudHSM User Guide

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --username <USERNAME>
          Username to access the HSM cluster 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 
          - admin:       An Admin has the ability to manage user accounts 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation

Example

aws-cloudhsm > user delete --username alice --role crypto-user
{ 
  "error_code": 0, 
  "data": { 
    "username": "alice", 
    "role": "crypto-user" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<USERNAME>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ). The username is not case sensitive in this command, 
username is always displayed in lowercase.

Reference 570



AWS CloudHSM User Guide

Required: Yes

<ROLE>

Specifies the role assigned to this user. This parameter is required. Valid values are admin,
crypto-user.

To get the user’s role, use the user list command. For detailed information about the user types 
on an HSM, see Understanding HSM users.

Required: Yes

<APPROVAL>

Specifies the file path to a signed quorum token file to approve operation. Only required if 
quorum user service quorum value is greater than 1.

Required: Yes

Related topics

• user list

• user create

• user change-password

List all AWS CloudHSM users with CloudHSM CLI

The user list command in the CloudHSM CLI lists the user accounts present in your AWS CloudHSM 
cluster. You do not need to be logged in to CloudHSM CLI to run this command.

Note

If you add or delete HSMs, update the configuration files that the AWS CloudHSM client 
and the command line tools use. Otherwise, the changes that you make might not be 
effective on all HSMs in the cluster.

User type

The following types of users can run this command.

Reference 571



AWS CloudHSM User Guide

• All users. You do not need to be logged in to run this command.

Syntax

aws-cloudhsm > help user list
List the users in your cluster

USAGE: 
    user list

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
  -h, --help                     Print help

Example

This command lists the users present in your CloudHSM cluster.

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "test_user", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [ 
          { 
            "strategy": "token-sign", 
            "status": "enabled" 
          } 
        ], 

Reference 572



AWS CloudHSM User Guide

        "cluster-coverage": "full" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

The output includes the following user attributes:

• Username: Displays the user-defined friendly name for the user. Username is always displayed in 
lowercase.

• Role: Determines the operations that the user can perform on the HSM.

• Locked: Indicates whether this user account has been locked out.

• MFA: Indicates the supported multi-factor authentication mechanisms for this user account.

• Cluster coverage: Indicates the cluster-wide availability of this user account.

Related topics

• listUsers in key_mgmt_util

• user create

• user delete

• user change-password

Replicate a user with CloudHSM CLI

Use the user replicate command in CloudHSM CLI to replicate a user from a source AWS CloudHSM 
cluster to a destination AWS CloudHSM cluster.

User type

The following types of users can run this command.

Reference 573



AWS CloudHSM User Guide

• Admins (COs)

Requirements

• The source and destination clusters must be clones. This means one was created from a backup 
of the other, or they were both created from a common backup. See Creating clusters from 
backups for more information.

• To run this command, you must be logged in as an admin on both the source and destination 
clusters.

• In single command mode, the command will use the CLOUDHSM_PIN and CLOUDHSM_ROLE 
environmental variables to authenticate on the source cluster. See Single Command 
mode for more information. To provide credentials for the destination cluster, you need 
to set two additional environmental variables: DESTINATION_CLOUDHSM_PIN and 
DESTINATION_CLOUDHSM_ROLE:

$ export DESTINATION_CLOUDHSM_ROLE=<role>

$ export DESTINATION_CLOUDHSM_PIN=<username:password>

• In interactive mode, users will need to explicitly log into both the source and destination 
clusters.

Syntax

aws-cloudhsm > help user replicate
Replicate a user from a source to a destination cluster

Usage: user replicate --username <USERNAME> --role <ROLE> --source-cluster-
id <SOURCE_CLUSTER_ID> --destination-cluster-id <DESTINATION_CLUSTER_ID>

Options: 
      --username <USERNAME>
          Username of the user to replicate 

      --role <ROLE>
          Role the user has in the cluster 

          Possible values: 
          - crypto-user: A CryptoUser has the ability to manage and use keys 

Reference 574



AWS CloudHSM User Guide

          - admin:       An Admin has the ability to manage user accounts 

      --source-cluster-id <SOURCE_CLUSTER_ID>
          Source cluster ID 

      --destination-cluster-id <DESTINATION_CLUSTER_ID>
          Destination cluster ID 

  -h, --help 
          Print help (see a summary with '-h')

Examples

Example Example: Replicate user

This command replicates a user from a source cluster with to a cloned destination cluster. The 
example below demonstrates the output when logged in as an admin on both clusters.

admin-user@cluster-1234abcdefg > user replicate \ 
      --username example-admin \ 
      --role admin \ 
      --source-cluster-id cluster-1234abcdefg \ 
      --destination-cluster-id cluster-2345bcdefgh
{ 
  "error_code": 0, 
  "data": { 
    "user": { 
      "username": "example-admin", 
      "role": "admin", 
      "locked": "false", 
      "mfa": [], 
      "quorum": [], 
      "cluster-coverage": "full" 
    }, 
    "message": "Successfully replicated user" 
  }
}

Arguments

<USERNAME>

Specifies the username of the user to replicate in the source cluster.

Reference 575



AWS CloudHSM User Guide

Required: Yes

<ROLE>

Specifies the role assigned to this user. This parameter is required. Valid values are admin,
crypto-user.

To get the user’s role, use the user list command. For detailed information about the user types 
on an HSM, see Understanding HSM users.

Required: Yes

<SOURCE_CLUSTER_ID>

The source cluster ID.

Required: Yes

<DESTINATION_CLUSTER_ID>

The destination cluster ID.

Required: Yes

Related topics

• Connecting to multiple clusters with CloudHSM CLI

The quorum category in CloudHSM CLI

In the CloudHSM CLI, quorum is a parent category for a group of commands that, when combined 
with quorum, creates a command specific to quorum authentication, or M of N operations. 
Currently, this category consists of the token-sign sub-category which consists of its own 
commands. Click the link below for details.

• token-sign

Admin Services: Quorum authentication is used for admin privileged services like creating users, 
deleting users, changing user passwords, setting quorum values, and deactivating quorum and MFA 
capabilities.

Reference 576



AWS CloudHSM User Guide

Crypto User Services: Quorum authentication is used for crypto-user privileged services associated 
with a specific key like signing with a key, sharing/unsharing a key, wrapping/unwrapping a key, 
and setting a key's attribute. The quorum value of an associated key is configured when the key is 
generated, imported, or unwrapped. The quorum value must be equal to or less than the number 
of users that the key is associated with, which includes users that the key is shared with and the key 
owner.

Each service type is further broken down into a qualifying service name, which contains a specific 
set of quorum supported service operations that can be performed.

Service name Service type Service operations

user Admin • user create

• user delete

• user change-password

• user change-mfa

quorum Admin • quorum token-sign set-
quorum-value

cluster1 Admin • cluster mtls register-trust-
anchor

• cluster mtls deregister-
trust-anchor

• cluster mtls set-enfor 
cement

key-management Crypto User • key wrap

• key unwrap

• key share

• key unshare

• key set-attribute

key-usage Crypto User • key sign

[1] Cluster service is exclusively available on hsm2m.medium

Reference 577



AWS CloudHSM User Guide

Related topics

• Set up quorum authentication for AWS CloudHSM admins using CloudHSM CLI

• Manage quorum authentication (M of N access control) using CloudHSM CLI

The quorum token-sign category in CloudHSM CLI

In the CloudHSM CLI, quorum token-sign is a category for a group of commands that, when 
combined with quorum token-sign, create a command specific to quorum authentication, or M of 
N operations.

Currently, this category consists of the following commands:

• delete

• generate

• list

• list-quorum-values

• set-quorum-value

Delete quorum tokens using CloudHSM CLI

Use the quorum token-sign delete command in CloudHSM CLI to delete one or more tokens for a 
quorum authorized service.

User type

The following users can run this command.

• Admin

Syntax

aws-cloudhsm > help quorum token-sign delete 
Delete one or more Quorum Tokens

Usage: quorum token-sign delete --scope <SCOPE>

Options: 

Reference 578



AWS CloudHSM User Guide

      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --scope <SCOPE>
          Scope of which token(s) will be deleted 

          Possible values: 
          - user: Deletes all token(s) of currently logged in user 
          - all:  Deletes all token(s) on the HSM 
  -h, --help 
          Print help (see a summary with '-h')

Example

The following example shows how the quorum token-sign delete command in CloudHSM CLI can 
be used to delete one or more tokens for a quorum authorized service.

Example : Delete one or more tokens for a quorum authorized service

aws-cloudhsm > quorum token-sign delete --scope all
{ 
  "error_code": 0, 
  "data": "Deletion of quorum token(s) successful"
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<SCOPE>

The scope in which token(s) will be deleted in the AWS CloudHSM cluster.

Valid values

• User: Used to delete only tokens owned by the logged in user.

• All: Used to delete all tokens in the AWS CloudHSM cluster.

Reference 579



AWS CloudHSM User Guide

Related topics

• user list

• user create

• user delete

Generate a quorum token using CloudHSM CLI

Use the quorum token-sign generate command in CloudHSM CLI to generate a token for a 
quorum authorized service.

There is a limit to obtaining one active token per user per service on an HSM cluster for services 
user and quorum. This limit does not apply to tokens related to key services.

Note

Only Admins and Crypto Users may generate specific service tokens. For more information 
about service types and names, see Service names and types that support quorum 
authentication

Admin Services: Quorum authentication is used for admin privileged services like creating users, 
deleting users, changing user passwords, setting quorum values, and deactivating quorum and MFA 
capabilities.

Crypto User Services: Quorum authentication is used for crypto-user privileged services associated 
with a specific key like signing with a key, sharing/unsharing a key, wrapping/unwrapping a key, 
and setting a key's attribute. The quorum value of an associated key is configured when the key is 
generated, imported, or unwrapped. The quorum value must be equal to or less than the number 
of users that the key is associated with, which includes users that the key is shared with and the key 
owner.

Each service type is further broken down into a qualifying service name, which contains a specific 
set of quorum supported service operations that can be performed.

Service name Service type Service operations

user Admin • user create

Reference 580



AWS CloudHSM User Guide

Service name Service type Service operations

• user delete

• user change-password

• user change-mfa

quorum Admin • quorum token-sign set-
quorum-value

cluster1 Admin • cluster mtls register-trust-
anchor

• cluster mtls deregister-
trust-anchor

• cluster mtls set-enfor 
cement

key-management Crypto User • key wrap

• key unwrap

• key share

• key unshare

• key set-attribute

key-usage Crypto User • key sign

[1] Cluster service is exclusively available on hsm2m.medium

User type

The following users can run this command.

• Admin

• Crypto user (CU)

Syntax

aws-cloudhsm > help quorum token-sign generate
Generate a token

Reference 581



AWS CloudHSM User Guide

Usage: quorum token-sign generate --service <SERVICE> --token <TOKEN>

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --service <SERVICE>
          Service the token will be used for 

          Possible values: 
          - user: 
            User management service is used for executing quorum authenticated user 
 management operations 
          - quorum: 
            Quorum management service is used for setting quorum values for any quorum 
 service 
          - cluster:  
            Cluster management service is used for executing quorum for cluster 
 wide configuration managements like mtls enforcement, mtls registration and mtls 
 deregistration 
          - registration: 
            Registration service is used for registering a public key for quorum 
 authentication 
          - key-usage: 
            Key usage service is used for executing quorum authenticated key usage 
 operations 
          - key-management: 
            Key management service is used for executing quorum authenticated key 
 management operations 

      --token <TOKEN>
          Filepath where the unsigned token file will be written 
  -h, --help                     Print help

Example

This command will write one unsigned token per HSM in your cluster to the file specified by token.

Example : Write one unsigned token per HSM in your cluster

aws-cloudhsm > quorum token-sign generate --service user --token /home/tfile

Reference 582



AWS CloudHSM User Guide

{ 
  "error_code": 0, 
  "data": { 
    "filepath": "/home/tfile" 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<SERVICE>

Specifies the quorum authorized service for which to generate a token. This parameter is 
required.

Valid values

• user: The user management service that is used for executing quorum authorized user 
management operations.

• quorum: The quorum management service that is used for setting quorum authorized 
quorum values for any quorum authorized service.

• cluster: The cluster management service that is used for executing quorum for cluster wide 
configuration managements like mtls enforcement, mtls registration and mtls deregistration.

• registration: Generates an unsigned token for use in registering a public key for quorum 
authorization.

• key-usage: Generates an unsigned token that is used for executing quorum authorized key 
usage operations.

• key-management: Generates an unsigned token that is used for executing quorum 
authorized key management operations.

Required: Yes

<TOKEN>

Filepath where the unsigned token file will be written.

Reference 583



AWS CloudHSM User Guide

Required: Yes

Related topics

• Service names and types that support quorum authentication

List quorum tokens using CloudHSM CLI

Use the quorum token-sign list command in CloudHSM CLI to list all token-sign quorum tokens 
present in your AWS CloudHSM cluster. This includes tokens generated by other users. A token is 
bound to a user, so while you may see tokens from other users, you will only be able to use tokens 
associated with the currently logged in user.

For more information about service types and names, see Service names and types that support 
quorum authentication. For more information about the content displayed from listed tokens, see
the section called “Key management and usage with quorum (M of N)” for tokens associated with
key-management and key-usage services, and see the section called “User management with 
quorum (M of N)” for tokens associated with user, quorum, or cluster service, respectively.

User type

The following users can run this command.

• Admin

• Crypto user (CU)

Syntax

aws-cloudhsm > help quorum token-sign list
List the token-sign tokens in your cluster

Usage: quorum token-sign list

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
  -h, --help                     Print help

Reference 584



AWS CloudHSM User Guide

Example

This command will list all token-sign tokens present in your AWS CloudHSM cluster. This includes 
tokens generated by other users. A token is bound to a user, so while you may see tokens from 
other users, you will only be able to use tokens associated with the currently logged in user.

Example

aws-cloudhsm > quorum token-sign list
{ 
  "error_code": 0, 
  "data": { 
    "tokens": [ 
      { 
        "username": "admin", 
        "service": "quorum", 
        "approvals-required": 2, 
        "number-of-approvals": 0, 
        "token-timeout-seconds": 397, 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "admin", 
        "service": "user", 
        "approvals-required": 2, 
        "number-of-approvals": 0, 
        "token-timeout-seconds": 588, 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "crypto_user1", 
        "service": "key-management", 
        "key-reference": "0x00000000002c33f7", 
        "minimum-token-count": 1 
      }, 
      { 
        "username": "crypto_user1", 
        "service": "key-usage", 
        "key-reference": "0x00000000002c33f7", 
        "minimum-token-count": 1 
      } 
    ] 
  }

Reference 585



AWS CloudHSM User Guide

}

Related topics

• quorum token-sign generate

Show quorum values using CloudHSM CLI

Use the quorum token-sign list-quorum-values command in CloudHSM CLI to lists the quorum 
values set in your AWS CloudHSM cluster.

User type

The following users can run this command.

• All users. You do not need to be logged in to run this command.

Syntax

aws-cloudhsm > help quorum token-sign list-quorum-values
List current quorum values

Usage: quorum token-sign list-quorum-values

Options: 
      --cluster-id <CLUSTER_ID>  Unique Id to choose which of the clusters in the 
 config file to run the operation against. If not provided, will fall back to the value 
 provided when interactive mode was started, or error 
  -h, --help                     Print help

Example

This command lists quorum values set in your AWS CloudHSM cluster for each service.

Example

hsm1.medium:

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 

Reference 586



AWS CloudHSM User Guide

  "data": { 
    "user": 1, 
    "quorum": 1 
  }
}

hsm2m.medium:

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 
  "data": { 
    "user": 1, 
    "quorum": 1, 
    "cluster": 1 
  }
}

Related topics

• Service names and types that support quorum authentication

• Setup mTLS (recommended)

Update a quorum value using CloudHSM CLI

Use the quorum token-sign set-quorum-value command in CloudHSM CLI to set a new quorum 
value for a quorum authorized service.

User type

The following users can run this command.

• Admin

Syntax

aws-cloudhsm > help quorum token-sign set-quorum-value
Set a quorum value

Usage: quorum token-sign set-quorum-value [OPTIONS] --service <SERVICE> --value <VALUE>

Reference 587



AWS CloudHSM User Guide

Options: 
      --cluster-id <CLUSTER_ID>
          Unique Id to choose which of the clusters in the config file to run the 
 operation against. If not provided, will fall back to the value provided when 
 interactive mode was started, or error 

      --service <SERVICE>
          Service the token will be used for 

          Possible values: 
          - user: 
            User management service is used for executing quorum authenticated user 
 management operations 
          - quorum: 
            Quorum management service is used for setting quorum values for any quorum 
 service 
          - cluster:  
            Cluster management service is used for executing quorum for cluster 
 wide configuration managements like mtls enforcement, mtls registration and mtls 
 deregistration 

      --value <VALUE>
          Value to set for service 

      --approval <APPROVAL>
          Filepath of signed quorum token file to approve operation 

  -h, --help 
          Print help (see a summary with '-h')

Example

Example

In the following example, this command writes one unsigned token per HSM in your cluster to the 
file specified by token. When you are prompted, sign the tokens in the file.

aws-cloudhsm > quorum token-sign set-quorum-value --service quorum --value 2
{ 
  "error_code": 0, 
  "data": "Set Quorum Value successful"
}

Reference 588



AWS CloudHSM User Guide

You can then run the list-quorum-values command to confirm that the quorum value for the 
quorum management service has been set:

hsm1.medium:

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 
  "data": { 
    "user": 1, 
    "quorum": 2 
  }
}

hsm2m.medium:

aws-cloudhsm > quorum token-sign list-quorum-values
{ 
  "error_code": 0, 
  "data": { 
    "user": 1, 
    "quorum": 2, 
    "cluster": 1 
  }
}

Arguments

<CLUSTER_ID>

The ID of the cluster to run this operation on.

Required: If multiple clusters have been configured.

<APPROVAL>

The filepath of the signed token file to be approved on the HSM.

<SERVICE>

Specifies the quorum authorized service for which to generate a token. This parameter is 
required. For more information about service types and names, see Service names and types 
that support quorum authentication.

Reference 589



AWS CloudHSM User Guide

Valid values

• user: The user management service. Service used for executing quorum authorized user 
management operations.

• quorum: The quorum management service. Service used for setting a quorum authorized 
quorum values for any quorum authorized service.

• cluster: The cluster management service that is used for executing quorum for cluster wide 
configuration managements like mtls enforcement, mtls registration and mtls deregistration.

• registration: Generates a unsigned token for use in registering a public key for quorum 
authorization.

Required: Yes

<VALUE>

Specifies The quorum value to be set. The maximum quorum value is eight (8).

Require: Yes

Related topics

• quorum token-sign list-quorum-values

• Service names and types that support quorum authentication

• Setup mTLS (recommended)

AWS CloudHSM Management Utility (CMU)

The cloudhsm_mgmt_util command line tool helps crypto officers manage users in the hardware 
security modules (HSMs) in AWS CloudHSM clusters. The AWS CloudHSM Management Utility 
(CMU) includes tools that create, delete, and list users, and change user passwords.

The CMU and Key Management Utility (KMU) are part of the Client SDK 3 suite. Client SDK 3 and its 
related command line tools (Key Management Utility and CloudHSM Management Utility) are only 
available in the HSM type hsm1.medium.

cloudhsm_mgmt_util also includes commands that allow crypto users (CUs) to share keys and 
get and set key attributes. These commands complement the key management commands in the 
primary key management tool, key_mgmt_util.

AWS CloudHSM Management Utility 590



AWS CloudHSM User Guide

For a quick start, see Cloned clusters in AWS CloudHSM. For detailed information about the 
cloudhsm_mgmt_util commands and examples of using the commands, see Reference for AWS 
CloudHSM Management Utility commands .

Topics

• Supported platforms for AWS CloudHSM Management Utility

• Getting started with AWS CloudHSM Management Utility (CMU)

• Install and configure the AWS CloudHSM client for CMU (Linux)

• Install and configure the AWS CloudHSM client for CMU (Windows)

• Reference for AWS CloudHSM Management Utility commands

Supported platforms for AWS CloudHSM Management Utility

This topic describes the Linux and Windows platforms that the AWS CloudHSM Management Utility 
(CMU) supports.

Linux support

• Amazon Linux

• Amazon Linux 2

• CentOS 6.10+

• CentOS 7.3+

• CentOS 8

• Red Hat Enterprise Linux (RHEL) 6.10+

• Red Hat Enterprise Linux (RHEL) 7.9+

• Red Hat Enterprise Linux (RHEL) 8

• Ubuntu 16.04 LTS

• Ubuntu 18.04 LTS

Windows support

• Microsoft Windows Server 2012

• Microsoft Windows Server 2012 R2

• Microsoft Windows Server 2016

Supported platforms 591



AWS CloudHSM User Guide

• Microsoft Windows Server 2019

Getting started with AWS CloudHSM Management Utility (CMU)

AWS CloudHSM Management Utility (CMU) enables you to manage hardware security module 
(HSM) users. Use this topic to get started with basic HSM user management tasks, such as creating 
users, listing users, and connecting CMU to the cluster.

1. To use CMU, you must first use the configure tool to update the local CMU configuration with 
the --cmu parameter and an IP address from one of the HSMs in your cluster. Do this each 
time you use CMU to ensure you're managing HSM users on every HSM in the cluster.

Linux

$ sudo /opt/cloudhsm/bin/configure --cmu <IP address>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" --cmu <IP address>

2. Use the following command to start the CLI in interactive mode.

Linux

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cloudhsm_mgmt_util.exe" C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_mgmt_util.cfg

Output should be similar to the following depending on how many HSMs you have.

Connecting to the server(s), it may take time
depending on the server(s) load, please wait...

Connecting to server '10.0.2.9': hostname '10.0.2.9', port 2225...
Connected to server '10.0.2.9': hostname '10.0.2.9', port 2225.

Getting started 592



AWS CloudHSM User Guide

Connecting to server '10.0.3.11': hostname '10.0.3.11', port 2225...
Connected to server '10.0.3.11': hostname '10.0.3.11', port 2225.

Connecting to server '10.0.1.12': hostname '10.0.1.12', port 2225...
Connected to server '10.0.1.12': hostname '10.0.1.12', port 2225.

The prompt changes to aws-cloudhsm> when cloudhsm_mgmt_util is running.

3. Use the loginHSM command to log in to the cluster. Any type user can use this command to 
log in to the cluster.

The command in the following example logs in admin, which is the default crypto officer 
(CO). You set this user's password when you activated the cluster. You can use the -hpswd
parameter to hide your password.

aws-cloudhsm>loginHSM CO admin -hpswd

The system prompts you for your password. You enter the password, the system hides the 
password, and the output shows that the command was successful and that the you have 
connected to all the HSMs on the cluster.

Enter password:

loginHSM success on server 0(10.0.2.9)
loginHSM success on server 1(10.0.3.11)
loginHSM success on server 2(10.0.1.12)

4. Use listUsers to list all the users on the cluster.

aws-cloudhsm>listUsers

CMU lists all the users on the cluster.

Users on server 0(10.0.2.9):
Number of users found:2 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 

Getting started 593



AWS CloudHSM User Guide

         1              CO              admin                                    NO 
               0               NO 
         2              AU              app_user                                 NO 
               0               NO
Users on server 1(10.0.3.11):
Number of users found:2 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              CO              admin                                    NO 
               0               NO 
         2              AU              app_user                                 NO 
               0               NO
Users on server 2(10.0.1.12):
Number of users found:2 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              CO              admin                                    NO 
               0               NO 
         2              AU              app_user                                 NO 
               0               NO

5. Use createUser to create a CU user named example_user with a password of password1.

You use CU users in your applications to perform cryptographic and key management 
operations. You can create CU users because in step 3 you logged in as a CO user. Only CO 
users can perform user management tasks with CMU, such as creating and deleting users and 
changing the passwords of other users.

aws-cloudhsm>createUser CU example_user password1

CMU prompts you about the create user operation.

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Getting started 594



AWS CloudHSM User Guide

Do you want to continue(y/n)?

6. To create the CU user example_user, type y.

7. Use listUsers to list all the users on the cluster.

aws-cloudhsm>listUsers

CMU lists all the users on the cluster, including the new CU user you just created.

Users on server 0(10.0.2.9):
Number of users found:3 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              CO              admin                                    NO 
               0               NO 
         2              AU              app_user                                 NO 
               0               NO 
         3              CU              example_user                             NO 
               0               NO
Users on server 1(10.0.3.11):
Number of users found:3 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              CO              admin                                    NO 
               0               NO 
         2              AU              app_user                                 NO 
               0               NO 
         3              CU              example_user                             NO 
               0               NO
Users on server 2(10.0.1.12):
Number of users found:3 

    User Id             User Type       User Name                          
 MofnPubKey    LoginFailureCnt         2FA 
         1              CO              admin                                    NO 
               0               NO 
         2              AU              app_user                                 NO 
               0               NO 

Getting started 595



AWS CloudHSM User Guide

         3              CU              example_user                             NO 
               0               NO

8. Use the logoutHSM command to log out of the HSMs.

aws-cloudhsm>logoutHSM

logoutHSM success on server 0(10.0.2.9)
logoutHSM success on server 1(10.0.3.11)
logoutHSM success on server 2(10.0.1.12)

9. Use the quit command to stop cloudhsm_mgmt_util.

aws-cloudhsm>quit

disconnecting from servers, please wait...

Install and configure the AWS CloudHSM client for CMU (Linux)

To interact with the hardware security module (HSM) in your AWS CloudHSM cluster using the 
cloudhsm_mgmt_util (CMU), you need the AWS CloudHSM client software for Linux. You should 
install it on the Linux Amazon EC2 client instance that you created previously. You can also 
install a client if you are using Windows. For more information, see Install and configure the AWS 
CloudHSM client for CMU (Windows).

Tasks

• Step 1. Install the AWS CloudHSM client and command line tools

• Step 2. Edit the client configuration

Step 1. Install the AWS CloudHSM client and command line tools

Connect to your client instance and run the following commands to download and install the AWS 
CloudHSM client and command line tools.

Install the client (Linux) 596



AWS CloudHSM User Guide

Amazon Linux

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-latest.el6.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el6.x86_64.rpm

Amazon Linux 2

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm

CentOS 7

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm

CentOS 8

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-latest.el8.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el8.x86_64.rpm

RHEL 7

sudo yum install wget

Install the client (Linux) 597



AWS CloudHSM User Guide

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm

RHEL 8

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-latest.el8.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client_latest_amd64.deb

sudo apt install ./cloudhsm-client_latest_amd64.deb

Ubuntu 18.04 LTS

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client_latest_u18.04_amd64.deb

sudo apt install ./cloudhsm-client_latest_u18.04_amd64.deb

Step 2. Edit the client configuration

Before you can use the AWS CloudHSM client to connect to your cluster, you must edit the client 
configuration.

To edit the client configuration

1. If installing Client SDK 3 on cloudhsm_mgmt_util, complete the following steps to ensure all 
the nodes in the cluster are synced.

Install the client (Linux) 598



AWS CloudHSM User Guide

a. Run configure -a <IP of one of the HSMs>.

b. Restart the client service.

c. Run configure -m.

2. Copy your issuing certificate—the one that you used to sign the cluster's certificate—to the 
following location on the client instance: /opt/cloudhsm/etc/customerCA.crt. You need 
instance root user permissions on the client instance to copy your certificate to this location.

3. Use the following configure command to update the configuration files for the AWS CloudHSM 
client and command line tools, specifying the IP address of the HSM in your cluster. To get the 
HSM's IP address, view your cluster in the AWS CloudHSM console, or run the describe-clusters
AWS CLI command. In the command's output, the HSM's IP address is the value of the EniIp
field. If you have more than one HSM, choose the IP address for any of the HSMs; it doesn't 
matter which one.

sudo /opt/cloudhsm/bin/configure -a <IP address>
 
Updating server config in /opt/cloudhsm/etc/cloudhsm_client.cfg
Updating server config in /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

4. Go to Activate the cluster in AWS CloudHSM.

Install and configure the AWS CloudHSM client for CMU (Windows)

To work with a hardware security module (HSM) in your AWS CloudHSM cluster on Windows using 
the cloudhsm_mgmt_util (CMU), you need the AWS CloudHSM client software for Windows. You 
should install it on the Windows Server instance that you created previously.

Note

• If you are updating the client, existing configuration files from previous installations are
not overwritten.

• The AWS CloudHSM client installer for Windows automatically registers the 
Cryptography API: Next Generation (CNG) and Key Storage Provider (KSP). To uninstall 
the client, run the installer again and follow the uninstall instructions.

Install the client (Windows) 599

https://console.aws.amazon.com/cloudhsm/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

• If you are using Linux, you can install the Linux client. For more information, see Install 
and configure the AWS CloudHSM client for CMU (Linux).

To install (or update) the latest Windows client and command line tools

1. Connect to your Windows Server instance.

2. Download the AWSCloudHSMClient-latest.msi installer.

3. If installing Client SDK 3 on cloudhsm_mgmt_util, complete the following steps to ensure all 
the nodes in the cluster are synced.

a. Run configure.exe -a <IP of one of the HSMs>.

b. Restart the client service.

c. Run configure.exe -m.

4. Go to your download location and run the installer (AWSCloudHSMClient-latest.msi) with 
administrative privilege.

5. Follow the installer instructions, then choose Close after the installer has finished.

6. Copy your self-signed issuing certificate—the one that you used to sign the cluster 
certificate—to the C:\ProgramData\Amazon\CloudHSM folder.

7. Run the following command to update your configuration files. Be sure to stop and start the 
client during reconfiguration if you are updating it:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" -a <HSM IP address>

8. Go to Activate the cluster in AWS CloudHSM.

Reference for AWS CloudHSM Management Utility commands

The AWS CloudHSM cloudhsm_mgmt_util command line tool helps crypto officers manage users 
in the hardware security modules (HSMs) in the AWS CloudHSM cluster. It also includes commands 
that allow crypto users (CUs) to share keys, and get and set key attributes. These commands 
complement the primary key management commands in the key_mgmt_util command line tool.

For a quick start, see Cloned clusters in AWS CloudHSM.

Reference 600

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMClient-latest.msi


AWS CloudHSM User Guide

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util and log 
in to the HSM. Be sure that you log in with the user account type that can run the commands you 
plan to use.

To list all cloudhsm_mgmt_util commands, run the following command:

aws-cloudhsm> help

To get the syntax for a cloudhsm_mgmt_util command, run the following command:

aws-cloudhsm> help <command-name>

Note

Use the syntax as per the documentation. While the built-in software help may provide 
additional options, these should not be considered supported and should not be utilized in 
production code.

To run a command, enter the command name, or enough of the name to distinguish it from the 
names of other cloudhsm_mgmt_util commands.

For example, to get a list of users on the HSMs, enter listUsers or listU.

aws-cloudhsm> listUsers

To end your cloudhsm_mgmt_util session, run the following command:

aws-cloudhsm> quit

For help interpreting the key attributes, see the AWS CloudHSM key attribute reference for KMU.

The following topics describe commands in cloudhsm_mgmt_util.

Note

Some commands in key_mgmt_util and cloudhsm_mgmt_util have the same names. 
However, the commands typically have different syntax, different output, and slightly 
different functionality.

Reference 601



AWS CloudHSM User Guide

Command Description User Type

changePswd Changes the passwords of 
users on the HSMs. Any 
user can change their own 
password. COs can change 
anyone's password.

CO

createUser Creates users of all types on 
the HSMs.

CO

deleteUser Deletes users of all types 
from the HSMs.

CO

findAllKeys Gets the keys that a user 
owns or shares. Also gets a 
hash of the key ownership 
and sharing data for all keys 
on each HSM.

CO, AU

getAttribute Gets an attribute value for 
an AWS CloudHSM key and 
writes it to a file or stdout 
(standard output).

CU

getHSMInfo Gets information about the 
hardware on which an HSM is 
running.

All. Login is not required.

getKeyInfo Gets owners, shared users, 
and the quorum authentic 
ation status of a key.

All. Login is not required.

info Gets information about an 
HSM, including the IP address, 
hostname, port, and current 
user.

All. Login is not required.

Reference 602



AWS CloudHSM User Guide

Command Description User Type

listUsers Gets the users in each of the 
HSMs, their user type and ID, 
and other attributes.

All. Login is not required.

loginHSM and logoutHSM Log in and log out of an HSM. All.

quit Quits cloudhsm_mgmt_util. All. Login is not required.

server Enters and exits server mode 
on an HSM.

All.

registerQuorumPubKey Associates an HSM user with 
an asymmetric RSA-2048 key 
pair.

CO

setAttribute Changes the values of the 
label, encrypt, decrypt, wrap, 
and unwrap attributes of an 
existing key.

CU

shareKey Shares an existing key with 
other users.

CU

syncKey Syncs a key across cloned 
AWS CloudHSM clusters.

CU, CO

syncUser Syncs a user across cloned 
AWS CloudHSM clusters.

CO

Change a user's password using CMU

Use the changePswd command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to change 
the password of an existing user on the hardware security modules (HSM) in the AWS CloudHSM 
cluster.

Reference 603



AWS CloudHSM User Guide

Any user can change their own password. In addition, Crypto officers (COs and PCOs) can change 
the password of another CO or crypto user (CU). You do not need to enter the current password to 
make the change.

Note

You cannot change the password of a user who is currently logged into the AWS CloudHSM 
client or key_mgmt_util.

To troubleshoot changePswd

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following users can run this command.

• Crypto officers (CO)

• Crypto users (CU)

Syntax

Enter the arguments in the order specified in the syntax diagram. Use the -hpswd parameter 
to mask your password. To enable two-factor authentication (2FA) for a CO user, use the -2fa
parameter and include a file path. For more information, see the section called “Arguments”.

changePswd <user-type> <user-name> <password |-hpswd> [-2fa </path/to/authdata>]

Examples

The following examples show how to use changePassword to reset the password for the current 
user or any other user in your HSMs.

Reference 604



AWS CloudHSM User Guide

Example : Change your password

Any user on the HSMs can use changePswd to change their own password. Before you change 
the password, use info to get information about each of the HSMs in the cluster, including the 
username and the user type of the logged in user.

The following output shows that Bob is currently logged in as a crypto user(CU).

        aws-cloudhsm> info server 0
        
Id      Name                    Hostname         Port   State           Partition       
  LoginState
0       10.1.9.193              10.1.9.193      2225    Connected       hsm-jqici4covtv 
  Logged in as 'bob(CU)'
        
aws-cloudhsm> info server 1
        
Id      Name                    Hostname         Port   State           Partition       
  LoginState
1       10.1.10.7               10.1.10.7       2225    Connected       hsm-ogi3sywxbqx 
  Logged in as 'bob(CU)' 
         
       

To change password, Bob runs changePswd followed with the user type, username, and a new 
password.

aws-cloudhsm> changePswd CU bob newPassword

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?y
Changing password for bob(CU) on 2 nodes

Reference 605



AWS CloudHSM User Guide

Example : Change the password of another user

You must be a CO or PCO to change the password of another CO, or CU on the HSMs. Before you 
change the password for another user, use the info command to confirm that your user type is 
either CO or PCO.

The following output confirms that Alice, who is a CO, is currently logged in.

aws-cloudhsm>info server 0
        
Id      Name             Hostname         Port   State           Partition        
 LoginState
0       10.1.9.193       10.1.9.193        2225   Connected      hsm-jqici4covtv  
 Logged in as 'alice(CO)' 
         

aws-cloudhsm>info server 1
        
Id      Name             Hostname         Port   State           Partition        
 LoginState
0       10.1.10.7        10.1.10.7        2225   Connected       hsm-ogi3sywxbqx  
 Logged in as 'alice(CO)' 
         
       

Alice wants to reset the password of another user, John. Before she changes the password, she uses 
the listUsers command to verify John's user type.

The following output lists John as a CO user.

aws-cloudhsm> listUsers
Users on server 0(10.1.9.193):
Number of users found:5 

    User Id             User Type       User Name            MofnPubKey    
 LoginFailureCnt         2FA 
         1              PCO             admin                     YES               0   
             NO 
         2              AU              jane                       NO               0   
             NO 
         3              CU              bob                        NO               0   
             NO 

Reference 606



AWS CloudHSM User Guide

         4              CU              alice                      NO               0   
             NO 
         5              CO              john                       NO               0   
             NO
Users on server 1(10.1.10.7):
Number of users found:5 

    User Id             User Type       User Name            MofnPubKey    
 LoginFailureCnt         2FA 
         1              PCO             admin                     YES               0   
             NO 
         2              AU              jane                       NO               0   
             NO 
         3              CU              bob                        NO               0   
             NO 
         4              CO              alice                      NO               0   
             NO 
         5              CO              john                       NO               0   
             NO 

To change the password, Alice runs changePswd followed with John's user type, username, and a 
new password.

aws-cloudhsm>changePswd CO john newPassword

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?y
Changing password for john(CO) on 2 nodes

Arguments

Enter the arguments in the order specified in the syntax diagram. Use the -hpswd parameter to 
mask your password. To enable 2FA for a CO user, use the -2fa parameter and include a file path. 
For more information about working with 2FA, see Manage user 2FA

changePswd <user-type> <user-name> <password |-hpswd> [-2fa </path/to/authdata>]

Reference 607



AWS CloudHSM User Guide

<user-type>

Specifies the current type of the user whose password you are changing. You cannot use
changePswd to change the user type.

Valid values are CO, CU, PCO, and PRECO.

To get the user type, use listUsers. For detailed information about the user types on an HSM, 
see HSM user types for AWS CloudHSM Management Utility.

Required: Yes

<user-name>

Specifies the user's friendly name. This parameter is not case-sensitive. You cannot use
changePswd to change the user name.

Required: Yes

<password | ‐hpswd >

Specifies a new password for the user. Enter a string of 7 to 32 characters. This value is case 
sensitive. The password appears in plaintext when you type it. To hide your password, use the -
hpswd parameter in place of the password and follow the prompts.

Required: Yes

[-2fa </path/to/authdata>]

Specifies enabling 2FA for this CO user. To get the data necessary for setting up 2FA, include 
a path to a location in the file system with a file name after the -2fa parameter. For more 
information about working with 2FA, see Manage user 2FA.

Required: No

Related topics

• info

• listUsers

• createUser

• deleteUser

Reference 608



AWS CloudHSM User Guide

Create an AWS CloudHSM user with CMU

Use the createUser command in cloudhsm_mgmt_util (CMU) to create a user on the hardware 
security modules (HSM) in the AWS CloudHSM cluster. Only crypto officers (COs and PRECOs) can 
run this command. When the command succeeds, it creates the user in all HSMs in the cluster.

To troubleshoot createUser

If your HSM configuration is inaccurate, the user might not be created on all HSMs. To add the user 
to any HSMs in which it is missing, use the syncUser or createUser command only on the HSMs that 
are missing that user. To prevent configuration errors, run the configure tool with the -m option.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• Crypto officers (CO, PRECO)

Syntax

Enter the arguments in the order specified in the syntax diagram. Use the -hpswd parameter 
to mask your password. To create a CO user with two-factor authentication (2FA), use the -2fa
parameter and include a file path. For more information, see the section called “Arguments”.

createUser <user-type> <user-name> <password> |-hpswd> [-2fa </path/to/authdata>]

Examples

These examples show how to use createUser to create new users in your HSMs.

Example : Create a crypto officer

This example creates a crypto officer (CO) on the HSMs in a cluster. The first command uses
loginHSM to log in to the HSM as a crypto officer.

Reference 609



AWS CloudHSM User Guide

aws-cloudhsm> loginHSM CO admin 735782961

loginHSM success on server 0(10.0.0.1)
loginHSM success on server 1(10.0.0.2)
loginHSM success on server 1(10.0.0.3)

The second command uses the createUser command to create alice, a new crypto officer on the 
HSM.

The caution message explains that the command creates users on all of the HSMs in the cluster. 
But, if the command fails on any HSMs, the user will not exist on those HSMs. To continue, type y.

The output shows that the new user was created on all three HSMs in the cluster.

aws-cloudhsm> createUser CO alice 391019314

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?Invalid option, please type 'y' or 'n'

Do you want to continue(y/n)?y
Creating User alice(CO) on 3 nodes

When the command completes, alice has the same permissions on the HSM as the admin CO 
user, including changing the password of any user on the HSMs.

The final command uses the listUsers command to verify that alice exists on all three HSMs 
on the cluster. The output also shows that alice is assigned user ID 3.. You use the user ID to 
identify alice in other commands, such as findAllKeys.

aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 

Reference 610



AWS CloudHSM User Guide

         1              PRECO           admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              alice                                    NO     
           0               NO
Users on server 1(10.0.0.2):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PRECO           admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              alice                                    NO     
           0               NO

Users on server 1(10.0.0.3):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PRECO           admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              alice                                    NO     
           0               NO

Example : Create a crypto user

This example creates a crypto user (CU), bob, on the HSM. Crypto users can create and manage 
keys, but they cannot manage users.

After you type y to respond to the caution message, the output shows that bob was created on all 
three HSMs in the cluster. The new CU can log in to the HSM to create and manage keys.

The command used a password value of defaultPassword. Later, bob or any CO can use the
changePswd command to change his password.

aws-cloudhsm> createUser CU bob defaultPassword

Reference 611



AWS CloudHSM User Guide

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?Invalid option, please type 'y' or 'n'

Do you want to continue(y/n)?y
Creating User bob(CU) on 3 nodes

Arguments

Enter the arguments in the order specified in the syntax diagram. Use the -hpswd parameter to 
mask your password. To create a CO user with 2FA enabled, use the -2fa parameter and include a 
file path. For more information about 2FA, see Manage user 2FA.

createUser <user-type> <user-name> <password> |-hpswd> [-2fa </path/to/authdata>]

<user-type>

Specifies the type of user. This parameter is required.

For detailed information about the user types on an HSM, see HSM user types for AWS 
CloudHSM Management Utility.

Valid values:

• CO: Crypto officers can manage users, but they cannot manage keys.

• CU: Crypto users can create an manage keys and use keys in cryptographic operations.

The PRECO is converted to a CO when you assign a password during HSM activation.

Required: Yes

<user-name>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ).

You cannot change the name of a user after it is created. In cloudhsm_mgmt_util commands, 
the user type and password are case-sensitive, but the user name is not.

Reference 612



AWS CloudHSM User Guide

Required: Yes

<password | ‐hpswd >

Specifies a password for the user. Enter a string of 7 to 32 characters. This value is case-
sensitive. The password appears in plaintext when you type it. To hide your password, use the -
hpswd parameter in place of the password and follow the prompts.

To change a user password, use changePswd. Any HSM user can change their own password, but 
CO users can change the password of any user (of any type) on the HSMs.

Required: Yes

[-2fa </path/to/authdata>]

Specifies the creation of a CO user with 2FA enabled. To get the data necessary for setting up 
2FA authentication, include a path to a location in the file system with a file name after the
-2fa parameter. For more information about setting up and working with 2FA, see Manage 
user 2FA.

Required: No

Related topics

• listUsers

• deleteUser

• syncUser

• changePswd

Delete an AWS CloudHSM user using CMU

Use the deleteUser command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to delete a user 
from the hardware security modules (HSM) in the AWS CloudHSM cluster. Only crypto officers (CO) 
can run this command. You cannot delete a user who is currently logged into an HSM. For more 
information about deleting users, see How to Delete HSM Users.

Tip

You can't delete crypto users (CU) that own keys.

Reference 613



AWS CloudHSM User Guide

User type

The following types of users can run this command.

• CO

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

deleteUser <user-type> <user-name>

Example

This example deletes a crypto officer (CO) from the HSMs in a cluster. The first command uses
listUsers to list all users on the HSMs.

The output shows that user 3, alice, is a CO on the HSMs.

aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              alice                                    NO     
           0               NO
Users on server 1(10.0.0.2):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              alice                                    NO     
           0               NO

Reference 614



AWS CloudHSM User Guide

Users on server 1(10.0.0.3):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              alice                                    NO     
           0               NO

The second command uses the deleteUser command to delete alice from the HSMs.

The output shows that the command succeeded on all three HSMs in the cluster.

aws-cloudhsm> deleteUser CO alice
Deleting user alice(CO) on 3 nodes
deleteUser success on server 0(10.0.0.1)
deleteUser success on server 0(10.0.0.2)
deleteUser success on server 0(10.0.0.3)

The final command uses the listUsers command to verify that alice is deleted from all three of 
the HSMs on the cluster.

aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:2 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO
Users on server 1(10.0.0.2):
Number of users found:2 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                   YES     
           0               NO 

Reference 615



AWS CloudHSM User Guide

         2              AU              app_user                                 NO     
           0               NO
Users on server 1(10.0.0.3):
Number of users found:2 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                   YES     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

deleteUser <user-type> <user-name>

<user-type>

Specifies the type of user. This parameter is required.

Tip

You can't delete crypto users (CU) that own keys.

Valid values are CO, CU.

To get the user type, use listUsers. For detailed information about the user types on an HSM, 
see HSM user types for AWS CloudHSM Management Utility.

Required: Yes

<user-name>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ).

You cannot change the name of a user after it is created. In cloudhsm_mgmt_util commands, 
the user type and password are case-sensitive, but the user name is not.

Reference 616



AWS CloudHSM User Guide

Required: Yes

Related topics

• listUsers

• createUser

• syncUser

• changePswd

List the keys that an AWS CloudHSM crypto user owns using CMU

Use the findAllKeys command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to get the keys 
that a specified crypto user (CU) of AWS CloudHSM owns or shares. The command also returns a 
hash of the user data on each of the HSMs. You can use the hash to determine at a glance whether 
the users, key ownership, and key sharing data are the same on all HSMs in the cluster. In the 
output, the keys owned by the user are annotated by (o) and shared keys are annotated by (s).

findAllKeys returns public keys only when the specified CU owns the key, even though all CUs on 
the HSM can use any public key. This behavior is different from findKey in key_mgmt_util, which 
returns public keys for all CU users.

Only crypto officers (COs and PCOs) and appliance users (AUs) can run this command. Crypto users 
(CUs) can run the following commands:

• listUsers to find all users

• findKey in key_mgmt_util to find the keys that they can use

• getKeyInfo in key_mgmt_util to find the owner and shared users of a particular key they own or 
share

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following users can run this command.

Reference 617



AWS CloudHSM User Guide

• Crypto officers (CO, PCO)

• Appliance users (AU)

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

findAllKeys <user id> <key hash (0/1)> [<output file>]

Examples

These examples show how to use findAllKeys to find all keys for a user and get a hash of key 
user information on each of the HSMs.

Example : Find the keys for a CU

This example uses findAllKeys to find the keys in the HSMs that user 4 owns and shares. The 
command uses a value of 0 for the second argument to suppress the hash value. Because it omits 
the optional file name, the command writes to stdout (standard output).

The output shows that user 4 can use 6 keys: 8, 9, 17, 262162, 19, and 31. The output uses an (s)
to indicate keys that are explicitly shared by the user. The keys that the user owns are indicated by 
an (o) and include symmetric and private keys that the user does not share, and public keys that 
are available to all crypto users.

aws-cloudhsm> findAllKeys 4 0
Keys on server 0(10.0.0.1):
Number of keys found 6
number of keys matched from start index 0::6
8(s),9(s),17,262162(s),19(o),31(o)
findAllKeys success on server 0(10.0.0.1)

Keys on server 1(10.0.0.2):
Number of keys found 6
number of keys matched from start index 0::6
8(s),9(s),17,262162(s),19(o),31(o)
findAllKeys success on server 1(10.0.0.2)

Keys on server 1(10.0.0.3):
Number of keys found 6

Reference 618



AWS CloudHSM User Guide

number of keys matched from start index 0::6
8(s),9(s),17,262162(s),19(o),31(o)
findAllKeys success on server 1(10.0.0.3)

Example : Verify that user data is synchronized

This example uses findAllKeys to verify that all of the HSMs in the cluster contain the same users, 
key ownership, and key sharing values. To do this, it gets a hash of the key user data on each HSM 
and compares the hash values.

To get the key hash, the command uses a value of 1 in the second argument. The optional file 
name is omitted, so the command writes the key hash to stdout.

The example specifies user 6, but the hash value will be the same for any user that owns or shares 
any of the keys on the HSMs. If the specified user does not own or share any keys, such as a CO, the 
command does not return a hash value.

The output shows that the key hash is identical to both of the HSMs in the cluster. If one of the 
HSM had different users, different key owners, or different shared users, the key hash values would 
not be equal.

aws-cloudhsm> findAllKeys 6 1
Keys on server 0(10.0.0.1):
Number of keys found 3
number of keys matched from start index 0::3
8(s),9(s),11,17(s)
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49

findAllKeys success on server 0(10.0.0.1)
Keys on server 1(10.0.0.2):
Number of keys found 3
number of keys matched from start index 0::3
8(s),9(s),11(o),17(s)
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49

findAllKeys success on server 1(10.0.0.2)

This command demonstrates that the hash value represents the user data for all keys on the HSM. 
The command uses the findAllKeys for user 3. Unlike user 6, who owns or shares just 3 keys, user 3 
own or shares 17 keys, but the key hash value is the same.

Reference 619



AWS CloudHSM User Guide

aws-cloudhsm> findAllKeys 3 1
Keys on server 0(10.0.0.1):
Number of keys found 17
number of keys matched from start index 0::17
6(o),7(o),8(s),11(o),12(o),14(o),262159(o),262160(o),17(s),262162(s),19(s),20(o),21(o),262177(o),262179(o),262180(o),262181(o)
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49

findAllKeys success on server 0(10.0.0.1)
Keys on server 1(10.0.0.2):
Number of keys found 17
number of keys matched from start index 0::17
6(o),7(o),8(s),11(o),12(o),14(o),262159(o),262160(o),17(s),262162(s),19(s),20(o),21(o),262177(o),262179(o),262180(o),262181(o)
Key Hash:
55655676c95547fd4e82189a072ee1100eccfca6f10509077a0d6936a976bd49

findAllKeys success on server 1(10.0.0.2)

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

findAllKeys <user id> <key hash (0/1)> [<output file>]

<user id>

Gets all keys that the specified user owns or shares. Enter the user ID of a user on the HSMs. To 
find the user IDs of all users, use listUsers.

All user IDs are valid, but findAllKeys returns keys only for crypto users (CUs).

Required: Yes

<key hash>

Includes (1) or excludes (0) a hash of the user ownership and sharing data for all keys in each 
HSM.

When the user id argument represents a user who owns or shares keys, the key hash is 
populated. The key hash value is identical for all users who own or share keys on the HSM, even 
though they own and share different keys. However, when the user id represents a user who 
does not own or share any keys, such as a CO, the hash value is not populated.

Reference 620



AWS CloudHSM User Guide

Required: Yes

<output file>

Writes the output to the specified file.

Required: No

Default: Stdout

Related topics

• changePswd

• deleteUser

• listUsers

• syncUser

• findKey in key_mgmt_util

• getKeyInfo in key_mgmt_util

Get an AWS CloudHSM key attribute value using CMU

Use the getAttribute command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to get one 
attribute value for a key from all hardware security modules (HSM) in the AWS CloudHSM cluster 
and writes it to stdout (standard output) or to a file. Only crypto users (CUs) can run this command.

Key attributes are properties of a key. They include characteristics, like the key type, class, label, 
and ID, and values that represent actions that you can perform on the key, like encrypt, decrypt, 
wrap, sign, and verify.

You can use getAttribute only on keys that you own and key that are shared with you. You can 
run this command or the getAttribute command in key_mgmt_util, which writes one or all of the 
attribute values of a key to a file.

To get a list of attributes and the constants that represent them, use the listAttributes command. 
To change the attribute values of existing keys, use setAttribute in key_mgmt_util and setAttribute
in cloudhsm_mgmt_util. For help interpreting the key attributes, see the AWS CloudHSM key 
attribute reference for KMU.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

Reference 621



AWS CloudHSM User Guide

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following users can run this command.

• Crypto users (CU)

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

getAttribute <key handle> <attribute id> [<filename>]

Example

This example gets the value of the extractable attribute for a key in the HSMs. You can use a 
command like this to determine whether you can export a key from the HSMs.

The first command uses listAttributes to find the constant that represents the extractable attribute. 
The output shows that the constant for OBJ_ATTR_EXTRACTABLE is 354. You can also find this 
information with descriptions of the attributes and their values in the AWS CloudHSM key attribute 
reference for KMU.

aws-cloudhsm> listAttributes

Following are the possible attribute values for getAttribute: 

      OBJ_ATTR_CLASS                  = 0 
      OBJ_ATTR_TOKEN                  = 1 
      OBJ_ATTR_PRIVATE                = 2 
      OBJ_ATTR_LABEL                  = 3 
      OBJ_ATTR_TRUSTED                = 134 
      OBJ_ATTR_KEY_TYPE               = 256 
      OBJ_ATTR_ID                     = 258 
      OBJ_ATTR_SENSITIVE              = 259 
      OBJ_ATTR_ENCRYPT                = 260 
      OBJ_ATTR_DECRYPT                = 261 
      OBJ_ATTR_WRAP                   = 262 
      OBJ_ATTR_UNWRAP                 = 263 

Reference 622



AWS CloudHSM User Guide

      OBJ_ATTR_SIGN                   = 264 
      OBJ_ATTR_VERIFY                 = 266 
      OBJ_ATTR_DERIVE                 = 268 
      OBJ_ATTR_LOCAL                  = 355 
      OBJ_ATTR_MODULUS                = 288 
      OBJ_ATTR_MODULUS_BITS           = 289 
      OBJ_ATTR_PUBLIC_EXPONENT        = 290 
      OBJ_ATTR_VALUE_LEN              = 353 
      OBJ_ATTR_EXTRACTABLE            = 354 
      OBJ_ATTR_NEVER_EXTRACTABLE      = 356 
      OBJ_ATTR_ALWAYS_SENSITIVE       = 357 
      OBJ_ATTR_DESTROYABLE            = 370 
      OBJ_ATTR_KCV                    = 371 
      OBJ_ATTR_WRAP_WITH_TRUSTED      = 528       
      OBJ_ATTR_WRAP_TEMPLATE          = 1073742353 
      OBJ_ATTR_UNWRAP_TEMPLATE        = 1073742354 
      OBJ_ATTR_ALL                    = 512 
     

The second command uses getAttribute to get the value of the extractable attribute for the key 
with key handle 262170 in the HSMs. To specify the extractable attribute, the command uses 354, 
the constant that represents the attribute. Because the command does not specify a file name,
getAttribute writes the output to stdout.

The output shows that the value of the extractable attribute is 1 on all of the HSM. This value 
indicates that the owner of the key can export it. When the value is 0 (0x0), it cannot be exported 
from the HSMs. You set the value of the extractable attribute when you create a key, but you 
cannot change it.

aws-cloudhsm> getAttribute 262170 354

Attribute Value on server 0(10.0.1.10):
OBJ_ATTR_EXTRACTABLE
0x00000001

Attribute Value on server 1(10.0.1.12):
OBJ_ATTR_EXTRACTABLE
0x00000001

Attribute Value on server 2(10.0.1.7):
OBJ_ATTR_EXTRACTABLE
0x00000001

Reference 623



AWS CloudHSM User Guide

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

getAttribute <key handle> <attribute id> [<filename>]

<key-handle>

Specifies the key handle of the target key. You can specify only one key in each command. To 
get the key handle of a key, use findKey in key_mgmt_util.

You must own the specified key or it must be shared with you. To find the users of a key, use
getKeyInfo in key_mgmt_util.

Required: Yes

<attribute id>

Identifies the attribute. Enter a constant that represents an attribute, or 512, which represents 
all attributes. For example, to get the key type, enter 256, which is the constant for the
OBJ_ATTR_KEY_TYPE attribute.

To list the attributes and their constants, use listAttributes. For help interpreting the key 
attributes, see the AWS CloudHSM key attribute reference for KMU.

Required: Yes

<filename>

Writes the output to the specified file. Enter a file path.

If the specified file exists, getAttribute overwrites the file without warning.

Required: No

Default: Stdout

Related topics

• getAttribute in key_mgmt_util

• listAttributes

Reference 624



AWS CloudHSM User Guide

• setAttribute in cloudhsm_mgmt_util

• setAttribute in key_mgmt_util

• Key Attribute Reference

Get hardware information for each HSM in an AWS CloudHSM cluster with CMU

Use the getHSMInfo command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to get 
information about the hardware on which each hardware security module (HSM) runs, including 
the model, serial number, FIPS state, memory, temperature, and the version numbers of the 
hardware and firmware. The information also includes the server ID that cloudhsm_mgmt_util uses 
to refer to the HSM.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• All users. You do not have to be logged in to run this command.

Syntax

This command has no parameters.

getHSMInfo

Example

This example uses getHSMInfo to get information about the HSMs in the cluster.

aws-cloudhsm> getHSMInfo
Getting HSM Info on 3 nodes 
                *** Server 0 HSM Info *** 

        Label                :cavium 
        Model                :NITROX-III CNN35XX-NFBE 

Reference 625



AWS CloudHSM User Guide

        Serial Number        :3.0A0101-ICM000001 
        HSM Flags            :0 
        FIPS state           :2 [FIPS mode with single factor authentication] 

        Manufacturer ID      : 
        Device ID            :10 
        Class Code           :100000 
        System vendor ID     :177D 
        SubSystem ID         :10 

        TotalPublicMemory    :560596 
        FreePublicMemory     :294568 
        TotalPrivateMemory   :0 
        FreePrivateMemory    :0 

        Hardware Major       :3 
        Hardware Minor       :0 

        Firmware Major       :2 
        Firmware Minor       :03 

        Temperature          :56 C 

        Build Number         :13 

        Firmware ID          :xxxxxxxxxxxxxxx

...

Related topics

• info

Get AWS CloudHSM user info about a key using CMU

Use the getKeyInfo command in the AWS CloudHSM key_mgmt_util (KMU) to return the hardware 
security module (HSM) user IDs of users who can use the key, including the owner and crypto users 
(CU) with whom the key is shared. When quorum authentication is enabled on a key, getKeyInfo
also returns the number of users who must approve cryptographic operations that use the key. You 
can run getKeyInfo only on keys that you own and keys that are shared with you.

Reference 626



AWS CloudHSM User Guide

When you run getKeyInfo on public keys, getKeyInfo returns only the key owner, even though 
all users of the HSM can use the public key. To find the HSM user IDs of users in your HSMs, use
listUsers. To find the keys for a particular user, use findKey -u in key_mgmt_util. Crypto officers can 
use findAllKeys in cloudhsm_mgmt_util.

You own the keys that you create. You can share a key with other users when you create it. Then, to 
share or unshare an existing key, use shareKey in cloudhsm_mgmt_util.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• Crypto users (CU)

Syntax

getKeyInfo -k <key-handle> [<output file>]

Examples

These examples show how to use getKeyInfo to get information about the users of a key.

Example : Get the users for an asymmetric key

This command gets the users who can use the AES (asymmetric) key with key handle 262162. The 
output shows that user 3 owns the key and has shares it with users 4 and 6.

Only users 3, 4, and 6 can run getKeyInfo on key 262162.

aws-cloudhsm>getKeyInfo 262162
Key Info on server 0(10.0.0.1): 

        Token/Flash Key, 

Reference 627



AWS CloudHSM User Guide

        Owned by user 3 

        also, shared to following 2 user(s): 

                 4 
                 6
Key Info on server 1(10.0.0.2): 

        Token/Flash Key, 

        Owned by user 3 

        also, shared to following 2 user(s): 

                 4
                 6

Example : Get the users for a symmetric key pair

These commands use getKeyInfo to get the users who can use the keys in an ECC (symmetric) key 
pair. The public key has key handle 262179. The private key has key handle 262177.

When you run getKeyInfo on the private key (262177), it returns the key owner (3) and crypto 
users (CUs) 4, with whom the key is shared.

aws-cloudhsm>getKeyInfo -k 262177
Key Info on server 0(10.0.0.1): 

        Token/Flash Key, 

        Owned by user 3 

        also, shared to following 1 user(s): 

                 4
Key Info on server 1(10.0.0.2): 

        Token/Flash Key, 

        Owned by user 3 

        also, shared to following 1 user(s): 

Reference 628



AWS CloudHSM User Guide

                 4

When you run getKeyInfo on the public key (262179), it returns only the key owner, user 3.

aws-cloudhsm>getKeyInfo -k 262179
Key Info on server 0(10.0.3.10): 

        Token/Flash Key, 

        Owned by user 3

Key Info on server 1(10.0.3.6): 

        Token/Flash Key, 

        Owned by user 3

To confirm that user 4 can use the public key (and all public keys on the HSM), use the -u
parameter of findKey in key_mgmt_util.

The output shows that user 4 can use both the public (262179) and private (262177) key in the key 
pair. User 4 can also use all other public keys and any private keys that they have created or that 
have been shared with them.

Command:  findKey -u 4

Total number of keys present 8 

 number of keys matched from start index 0::7
11, 12, 262159, 262161, 262162, 19, 20, 21, 262177, 262179 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Example : Get the quorum authentication value (m_value) for a key

This example shows how to get the m_value for a key. The m_value is the number of users in the 
quorum who must approve any cryptographic operations that use the key and operations to share 
the unshare the key.

Reference 629



AWS CloudHSM User Guide

When quorum authentication is enabled on a key, a quorum of users must approve any 
cryptographic operations that use the key. To enable quorum authentication and set the quorum 
size, use the -m_value parameter when you create the key.

This command uses genSymKey to create a 256-bit AES key that is shared with user 4. It uses the
m_value parameter to enable quorum authentication and set the quorum size to two users. The 
number of users must be large enough to provide the required approvals.

The output shows that the command created key 10.

 Command:  genSymKey -t 31 -s 32 -l aes256m2 -u 4 -m_value 2

        Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 10 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

This command uses getKeyInfo in cloudhsm_mgmt_util to get information about the users of key
10. The output shows that the key is owned by user 3 and shared with user 4. It also shows that a 
quorum of two users must approve every cryptographic operation that uses the key.

aws-cloudhsm>getKeyInfo 10

Key Info on server 0(10.0.0.1): 

        Token/Flash Key, 

        Owned by user 3 

        also, shared to following 1 user(s): 

                 4 
         2 Users need to approve to use/manage this key
Key Info on server 1(10.0.0.2): 

        Token/Flash Key, 

        Owned by user 3 

Reference 630



AWS CloudHSM User Guide

        also, shared to following 1 user(s): 

                 4 
         2 Users need to approve to use/manage this key

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

getKeyInfo -k <key-handle> <output file>

<key-handle>

Specifies the key handle of one key in the HSM. Enter the key handle of a key that you own or 
share. This parameter is required.

Required: Yes

<output file>

Writes the output to the specified file, instead of stdout. If the file exists, the command 
overwrites it without warning.

Required: No

Default: stdout

Related topics

• getKeyInfo in key_mgmt_util

• findKey in key_mgmt_util

• findAllKeys in cloudhsm_mgmt_util

• listUsers

• shareKey

Get information for each HSM in an AWS CloudHSM cluster using CMU

Use the info command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to get information 
about each of the hardware security modules (HSM) in the AWS CloudHSM cluster, including 

Reference 631



AWS CloudHSM User Guide

the host name, port, IP address and the name and type of the user who is logged in to 
cloudhsm_mgmt_util on the HSM.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• All users. You do not have to be logged in to run this command.

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

info server <server ID>

Example

This example uses info to get information about an HSM in the cluster. The command uses 0 to 
refer to the first HSM in the cluster. The output shows the IP address, port, and the type and name 
of the current user.

aws-cloudhsm> info server 0
Id      Name                    Hostname         Port   State           Partition       
         LoginState
0       10.0.0.1                10.0.0.1        2225    Connected       hsm-udw0tkfg1ab 
         Logged in as 'testuser(CU)'

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

info server <server ID>

Reference 632



AWS CloudHSM User Guide

<server id>

Specifies the server ID of the HSM. The HSMs are assigned ordinal numbers that represent the 
order in which they are added to the cluster, beginning with 0. To find the server ID of an HSM, 
use getHSMInfo.

Required: Yes

Related topics

• getHSMInfo

• loginHSM and logoutHSM

List the attributes of an AWS CloudHSM key using CMU

Use the listAttributes command in the AWS CloudHSM cloudhsm_mgmt_util (CMU) to list 
the attributes of an AWS CloudHSM key and the constants that represent them. You use these 
constants to identify the attributes in getAttribute and setAttribute commands.

For help interpreting the key attributes, see the AWS CloudHSM key attribute reference for KMU.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

User type

The following users can run this command.

• All users. You do not have to be logged in to run this command.

Syntax

listAttributes [-h]

Example

This command lists the key attributes that you can get and change in key_mgmt_util and the 
constants that represent them. For help interpreting the key attributes, see the AWS CloudHSM key 
attribute reference for KMU. To represent all attributes, use 512.

Reference 633



AWS CloudHSM User Guide

Command: listAttributes

    Description
===========
The following are all of the possible attribute values for getAttribute. 

      OBJ_ATTR_CLASS                  = 0 
      OBJ_ATTR_TOKEN                  = 1 
      OBJ_ATTR_PRIVATE                = 2 
      OBJ_ATTR_LABEL                  = 3 
      OBJ_ATTR_TRUSTED                = 134 
      OBJ_ATTR_KEY_TYPE               = 256 
      OBJ_ATTR_ID                     = 258 
      OBJ_ATTR_SENSITIVE              = 259 
      OBJ_ATTR_ENCRYPT                = 260 
      OBJ_ATTR_DECRYPT                = 261 
      OBJ_ATTR_WRAP                   = 262 
      OBJ_ATTR_UNWRAP                 = 263 
      OBJ_ATTR_SIGN                   = 264 
      OBJ_ATTR_VERIFY                 = 266 
      OBJ_ATTR_DERIVE                 = 268 
      OBJ_ATTR_LOCAL                  = 355 
      OBJ_ATTR_MODULUS                = 288 
      OBJ_ATTR_MODULUS_BITS           = 289 
      OBJ_ATTR_PUBLIC_EXPONENT        = 290 
      OBJ_ATTR_VALUE_LEN              = 353 
      OBJ_ATTR_EXTRACTABLE            = 354 
      OBJ_ATTR_NEVER_EXTRACTABLE      = 356 
      OBJ_ATTR_ALWAYS_SENSITIVE       = 357 
      OBJ_ATTR_DESTROYABLE            = 370 
      OBJ_ATTR_KCV                     = 371 
      OBJ_ATTR_WRAP_WITH_TRUSTED       = 528 
      OBJ_ATTR_WRAP_TEMPLATE           = 1073742353 
      OBJ_ATTR_UNWRAP_TEMPLATE        = 1073742354 
      OBJ_ATTR_ALL                    = 512 
     

Parameters

-h

Displays help for the command.

Reference 634



AWS CloudHSM User Guide

Required: Yes

Related topics

• getAttribute

• setAttribute

• Key Attribute Reference

List all AWS CloudHSM users using CMU

Use the listUsers command in the AWS CloudHSM cloudhsm_mgmt_util to get the users in each of 
the hardware security modules (HSM), along with their user type and other attributes. All types of 
users can run this command. You do not even need to be logged in to cloudhsm_mgmt_util to run 
this command.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• All users. You do not need to be logged in to run this command.

Syntax

This command has no parameters.

listUsers

Example

This command lists the users on each of the HSMs in the cluster and displays their attributes. 
You can use the User ID attribute to identify users in other commands, such as deleteUser,
changePswd, and findAllKeys.

Reference 635



AWS CloudHSM User Guide

aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:6 

    User Id             User Type       User Name            MofnPubKey    
 LoginFailureCnt         2FA 
         1              PCO             admin                     YES               0   
             NO 
         2              AU              app_user                   NO               0   
             NO 
         3              CU              crypto_user1               NO               0   
             NO 
         4              CU              crypto_user2               NO               0   
             NO 
         5              CO              officer1                  YES               0   
             NO 
         6              CO              officer2                   NO               0   
             NO
Users on server 1(10.0.0.2):
Number of users found:5 

    User Id             User Type       User Name            MofnPubKey    
 LoginFailureCnt         2FA 
         1              PCO             admin                     YES               0   
             NO 
         2              AU              app_user                   NO               0   
             NO 
         3              CU              crypto_user1               NO               0   
             NO 
         4              CU              crypto_user2               NO               0   
             NO 
         5              CO              officer1                  YES               0   
             NO

The output includes the following user attributes:

• User ID: Identifies the user in key_mgmt_util and cloudhsm_mgmt_util commands.

• User type: Determines the operations that the user can perform on the HSM.

• User Name: Displays the user-defined friendly name for the user.

• MofnPubKey: Indicates whether the user has registered a key pair for signing quorum 
authentication tokens.

Reference 636



AWS CloudHSM User Guide

• LoginFailureCnt: Indicates the number of times the user has unsuccessfully logged in.

• 2FA: Indicates that the user has enabled multi-factor authentication.

Related topics

• listUsers in key_mgmt_util

• createUser

• deleteUser

• changePswd

Log in and out of an HSM using AWS CloudHSM Management Utility

Use the loginHSM and logoutHSM commands in the AWS CloudHSM cloudhsm_mgmt_util to log 
in and out of each HSM in a cluster. Any user of any type can use these commands.

Note

If you exceed five incorrect login attempts, your account is locked out. To unlock the 
account, a cryptographic officer (CO) must reset your password using the changePswd
command in cloudhsm_mgmt_util.

To troubleshoot loginHSM and logoutHSM

Before you run these cloudhsm_mgmt_util commands, you must start cloudhsm_mgmt_util.

If you add or delete HSMs, update the configuration files that the AWS CloudHSM client and the 
command line tools use. Otherwise, the changes that you make might not be effective on all HSMs 
in the cluster.

If you have more than one HSM in your cluster, you may be allowed additional incorrect login 
attempts before your account is locked out. This is because the CloudHSM client balances load 
across various HSMs. Therefore, the login attempt may not begin on the same HSM each time. If 
you are testing this functionality, we recommend you do so on a cluster with only one active HSM.

If you created your cluster before February 2018, your account is locked out after 20 incorrect login 
attempts.

Reference 637



AWS CloudHSM User Guide

User type

The following users can run these commands.

• Pre-crypto officer (PRECO)

• Crypto officer (CO)

• Crypto user (CU)

Syntax

Enter the arguments in the order specified in the syntax diagram. Use the -hpswd parameter to 
mask your password. To login with two-factor authentication (2FA), use the -2fa parameter and 
include a file path. For more information, see the section called “Arguments”.

loginHSM <user-type> <user-name> <password> |-hpswd> [-2fa </path/to/authdata>]

logoutHSM

Examples

These examples show how to use loginHSM and logoutHSM to log in and out of all HSMs in a 
cluster.

Example : Log in to the HSMs in a cluster

This command logs you in to all HSMs in a cluster with the credentials of a CO user named admin
and a password of co12345. The output shows that the command was successful and that you 
have connected to the HSMs (which, in this case, are server 0 and server 1).

aws-cloudhsm>loginHSM CO admin co12345

loginHSM success on server 0(10.0.2.9)
loginHSM success on server 1(10.0.3.11)

Example : Log in with a hidden password

This command is the same as the example above, except this time you specify that the system 
should hide the password.

Reference 638



AWS CloudHSM User Guide

aws-cloudhsm>loginHSM CO admin -hpswd

The system prompts you for your password. You enter the password, the system hides the 
password, and the output shows that the command was successful and that the you have 
connected to the HSMs.

Enter password:

loginHSM success on server 0(10.0.2.9)
loginHSM success on server 1(10.0.3.11)

aws-cloudhsm>

Example : Log out of an HSM

This command logs you out of the HSMs that you are currently logged in to (which, in this case, are
server 0 and server 1). The output shows that the command was successful and that you have 
disconnected from the HSMs.

aws-cloudhsm>logoutHSM

logoutHSM success on server 0(10.0.2.9)
logoutHSM success on server 1(10.0.3.11)

Arguments

Enter the arguments in the order specified in the syntax diagram. Use the -hpswd parameter to 
mask your password. To login with two-factor authentication (2FA), use the -2fa parameter and 
include a file path. For more information about working with 2FA, see Manage user 2FA

loginHSM <user-type> <user-name> <password> |-hpswd> [-2fa </path/to/authdata>]

<user type>

Specifies the type of user who is logging in to the HSMs. For more information, see User Type
above.

Required: Yes

Reference 639



AWS CloudHSM User Guide

<user name>

Specifies the user name of the user who is logging in to the HSMs.

Required: Yes

<password | ‐hpswd >

Specifies the password of the user who is logging in to the HSMs. To hide your password, use 
the -hpswd parameter in place of the password and follow the prompt.

Required: Yes

[-2fa </path/to/authdata>]

Specifies that the system should use a second factor to authenticate this 2FA-enabled CO user. 
To get the necessary data for logging in with 2FA, include a path to a location in the file system 
with a file name after the -2fa parameter. For more information about working with 2FA, see
Manage user 2FA.

Required: No

Related topics

• Getting Started with cloudhsm_mgmt_util

• Activate the Cluster

Associate AWS CloudHSM users with keys using CMU

Use the registerQuorumPubKey command in the AWS CloudHSM cloudhsm_mgmt_util to 
associate hardware security module (HSM) users with asymmetric RSA-2048 key pairs. Once you 
associate HSM users with keys, those users can use the private key to approve quorum requests 
and the cluster can use the registered public key to verify the signature is from the user. For more 
information about quorum authentication, see Managing Quorum Authentication (M of N Access 
Control).

Tip

In the AWS CloudHSM documentation, quorum authentication is sometimes referred to as 
M of N (MofN), which means a minimum of M approvers out of a total number N approvers.

Reference 640



AWS CloudHSM User Guide

User type

The following types of users can run this command.

• Crypto officers (CO)

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

registerQuorumPubKey <user-type> <user-name> <registration-token> <signed-registration-
token> <public-key>

Examples

This example shows how to use registerQuorumPubKey to register crypto officers (CO) as 
approvers on quorum authentication requests. To run this command, you must have an asymmetric 
RSA-2048 key pair, a signed token, and an unsigned token. For more information about these 
requirements, see the section called “Arguments”.

Example : Register an HSM user for quorum authentication

This example registers a CO named quorum_officer as an approver for quorum authentication.

aws-cloudhsm> registerQuorumPubKey CO <quorum_officer> </path/to/
quorum_officer.token> </path/to/quorum_officer.token.sig> </path/to/quorum_officer.pub>

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?y
registerQuorumPubKey success on server 0(10.0.0.1)

The final command uses the listUsers command to verify that quorum_officer is registered as an 
MofN user.

Reference 641



AWS CloudHSM User Guide

aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:3 

    User Id             User Type       User Name                          MofnPubKey   
  LoginFailureCnt         2FA 
         1              PCO             admin                                    NO     
           0               NO 
         2              AU              app_user                                 NO     
           0               NO 
         3              CO              quorum_officer                          YES     
           0               NO

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

registerQuorumPubKey <user-type> <user-name> <registration-token> <signed-registration-
token> <public-key>

<user-type>

Specifies the type of user. This parameter is required.

For detailed information about the user types on an HSM, see HSM user types for AWS 
CloudHSM Management Utility.

Valid values:

• CO: Crypto officers can manage users, but they cannot manage keys.

Required: Yes

<user-name>

Specifies a friendly name for the user. The maximum length is 31 characters. The only special 
character permitted is an underscore ( _ ).

You cannot change the name of a user after it is created. In cloudhsm_mgmt_util commands, 
the user type and password are case-sensitive, but the user name is not.

Required: Yes

Reference 642



AWS CloudHSM User Guide

<registration-token>

Specifies the path to a file that contains an unsigned registration token. Can have any random 
data of max file size of 245 bytes. For more information about creating an unsigned registration 
token, see Create and Sign a Registration Token.

Required: Yes

<signed-registration-token>

Specifies the path to a file that contains the SHA256_PKCS mechanism signed hash of the 
registration-token. For more information, see Create and Sign a Registration Token.

Required: Yes

<public-key>

Specifies the path to a file that contains the public key of an asymmetric RSA-2048 key pair. Use 
the private key to sign the registration token. For more information, see Create an RSA Key Pair.

Required: Yes

Note

The cluster uses the same key for quorum authentication and for two-factor 
authentication (2FA). This means you can't rotate a quorum key for a user that has 2FA 
enabled using registerQuorumPubKey. To rotate the key, you must use changePswd. 
For more information about using quorum authentication and 2FA, see Quorum 
Authentication and 2FA.

Related topics

• Create an RSA Key Pair

• Create and Sign a Registration Token

• Register the Public Key with the HSM

• Managing Quorum Authentication (M of N Access Control)

• Quorum Authentication and 2FA

• listUsers

Reference 643



AWS CloudHSM User Guide

Interact with one HSM in an AWS CloudHSM cluster using CMU

Use the server command in the AWS CloudHSM cloudhsm_mgmt_util to enter server mode and 
interact directly with a particular hardware security module (HSM) instance.

Normally, when you issue a command in cloudhsm_mgmt_util, the command effects all HSMs in 
the designated cluster (global mode). However, there may be circumstances for which you need to 
issue commands to a single HSM. For instance, in the event that automatic synchronization fails, 
you may need to sync keys and users on an HSM in order to maintain consistency across the cluster.

Upon successful initiation, the aws-cloudhsm > command prompt is replaced with the server >
command prompt.

In order to exit server mode, use the exit command. Upon successful exit, you will be returned to 
the cloudhsm_mgmt_util command prompt.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util.

User type

The following users can run this command.

• All users.

Prerequisites

In order to enter server mode, you must first know the server number of the target HSM. Server 
numbers are listed in the trace output generated by cloudhsm_mgmt_util upon initiation. Server 
numbers are assigned in the same order that the HSMs appear in the configuration file. For this 
example, we assume that server 0 is the server that corresponds to the desired HSM.

Syntax

To start server mode:

server <server-number>

To exit server mode:

server> exit

Reference 644



AWS CloudHSM User Guide

Example

This command enters server mode on an HSM with server number 0.

aws-cloudhsm> server 0

Server is in 'E2' mode...

In order to exit server mode, use the exit command.

server0> exit

Arguments

server <server-number>

<server-number>

Specifies the server number of the target HSM.

Required: Yes

There are no arguments for the exit command.

Related topics

• syncKey

• createUser

• deleteUser

Set the attributes of AWS CloudHSM keys using CMU

Use the setAttribute command in the AWS CloudHSM cloudhsm_mgmt_util to change the value of 
the label, encrypt, decrypt, wrap, and unwrap attributes of a key in the HSMs. You can also use the
setAttribute command in key_mgmt_util to convert a session key to a persistent key. You can only 
change the attributes of keys that you own.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

Reference 645



AWS CloudHSM User Guide

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following users can run this command.

• Crypto users (CU)

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

setAttribute <key handle> <attribute id>

Example

This example shows how to disable the decrypt functionality of a symmetric key. You can use a 
command like this one to configure a wrapping key, which should be able to wrap and unwrap 
other keys but not encrypt or decrypt data.

The first step is to create the wrapping key. This command uses genSymKey in key_mgmt_util to 
generate a 256-bit AES symmetric key. The output shows that the new key has key handle 14.

$  genSymKey -t 31 -s 32 -l aes256

Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 14 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Next, we want to confirm the current value of the decrypt attribute. To get the attribute ID of 
the decrypt attribute, use listAttributes. The output shows that the constant that represents 
the OBJ_ATTR_DECRYPT attribute is 261. For help interpreting the key attributes, see the AWS 
CloudHSM key attribute reference for KMU.

aws-cloudhsm> listAttributes

Reference 646



AWS CloudHSM User Guide

Following are the possible attribute values for getAttribute: 

      OBJ_ATTR_CLASS                  = 0 
      OBJ_ATTR_TOKEN                  = 1 
      OBJ_ATTR_PRIVATE                = 2 
      OBJ_ATTR_LABEL                  = 3 
      OBJ_ATTR_TRUSTED                = 134 
      OBJ_ATTR_KEY_TYPE               = 256 
      OBJ_ATTR_ID                     = 258 
      OBJ_ATTR_SENSITIVE              = 259 
      OBJ_ATTR_ENCRYPT                = 260 
      OBJ_ATTR_DECRYPT                = 261 
      OBJ_ATTR_WRAP                   = 262 
      OBJ_ATTR_UNWRAP                 = 263 
      OBJ_ATTR_SIGN                   = 264 
      OBJ_ATTR_VERIFY                 = 266 
      OBJ_ATTR_DERIVE                 = 268 
      OBJ_ATTR_LOCAL                  = 355 
      OBJ_ATTR_MODULUS                = 288 
      OBJ_ATTR_MODULUS_BITS           = 289 
      OBJ_ATTR_PUBLIC_EXPONENT        = 290 
      OBJ_ATTR_VALUE_LEN              = 353 
      OBJ_ATTR_EXTRACTABLE            = 354 
      OBJ_ATTR_NEVER_EXTRACTABLE      = 356 
      OBJ_ATTR_ALWAYS_SENSITIVE       = 357 
      OBJ_ATTR_DESTROYABLE            = 370 
      OBJ_ATTR_KCV                    = 371 
      OBJ_ATTR_WRAP_WITH_TRUSTED      = 528 
      OBJ_ATTR_WRAP_TEMPLATE          = 1073742353 
      OBJ_ATTR_UNWRAP_TEMPLATE        = 1073742354 
      OBJ_ATTR_ALL                    = 512

To get the current value of the decrypt attribute for key 14, the next command uses getAttribute in 
cloudhsm_mgmt_util.

The output shows that the value of the decrypt attribute is true (1) on both HSMs in the cluster.

aws-cloudhsm> getAttribute 14 261
      
Attribute Value on server 0(10.0.0.1):
OBJ_ATTR_DECRYPT

Reference 647



AWS CloudHSM User Guide

0x00000001

Attribute Value on server 1(10.0.0.2):
OBJ_ATTR_DECRYPT
0x00000001

This command uses setAttribute to change the value of the decrypt attribute (attribute 261) of key 
14 to 0. This disables the decrypt functionality on the key.

The output shows that the command succeeded on both HSMs in the cluster.

aws-cloudhsm> setAttribute 14 261 0
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)? y
setAttribute success on server 0(10.0.0.1)
setAttribute success on server 1(10.0.0.2)

The final command repeats the getAttribute command. Again, it gets the decrypt attribute 
(attribute 261) of key 14.

This time, the output shows that the value of the decrypt attribute is false (0) on both HSMs in the 
cluster.

aws-cloudhsm > getAttribute 14 261
Attribute Value on server 0(10.0.3.6):
OBJ_ATTR_DECRYPT
0x00000000

Attribute Value on server 1(10.0.1.7):
OBJ_ATTR_DECRYPT
0x00000000

Arguments

setAttribute <key handle> <attribute idb

Reference 648



AWS CloudHSM User Guide

<key-handle>

Specifies the key handle of a key that you own. You can specify only one key in each command. 
To get the key handle of a key, use findKey in key_mgmt_util. To find the users of a key, use
getKeyInfo.

Required: Yes

<attribute id>

Specifies the constant that represents the attribute that you want to change. You can specify 
only one attribute in each command. To get the attributes and their integer values, use
listAttributes. For help interpreting the key attributes, see the AWS CloudHSM key attribute 
reference for KMU.

Valid values:

• 3 – OBJ_ATTR_LABEL.

• 134 – OBJ_ATTR_TRUSTED.

• 260 – OBJ_ATTR_ENCRYPT.

• 261 – OBJ_ATTR_DECRYPT.

• 262 – OBJ_ATTR_WRAP.

• 263 – OBJ_ATTR_UNWRAP.

• 264 – OBJ_ATTR_SIGN.

• 266 – OBJ_ATTR_VERIFY.

• 268 – OBJ_ATTR_DERIVE.

• 370 – OBJ_ATTR_DESTROYABLE.

• 528 – OBJ_ATTR_WRAP_WITH_TRUSTED.

• 1073742353 – OBJ_ATTR_WRAP_TEMPLATE.

• 1073742354 – OBJ_ATTR_UNWRAP_TEMPLATE.

Required: Yes

Related topics

• setAttribute in key_mgmt_util

• getAttribute

Reference 649



AWS CloudHSM User Guide

• listAttributes

• Key Attribute Reference

Exit the CMU

Use the quit command in the AWS CloudHSM cloudhsm_mgmt_util to exit the 
cloudhsm_mgmt_util. Any user of any type can use this command.

Before you run any cloudhsm_mgmt_util command, you must start cloudhsm_mgmt_util.

User type

The following users can run this command.

• All users. You do not need to be logged in to run this command.

Syntax

quit

Example

This command exits cloudhsm_mgmt_util. Upon successful completion, you are returned to your 
regular command line. This command has no output parameters.

aws-cloudhsm> quit

disconnecting from servers, please wait...

Related topics

• Getting Started with cloudhsm_mgmt_util

Share AWS CloudHSM keys using CMU

Use the shareKey command in the AWS CloudHSM cloudhsm_mgmt_util to share and unshare keys 
that you own with other crypto users. Only the key owner can share and unshare a key. You can 
also share a key when you create it.

Reference 650



AWS CloudHSM User Guide

Users who share the key can use the key in cryptographic operations, but they cannot delete, 
export, share, or unshare the key, or change its attributes. When quorum authentication is enabled 
on a key, the quorum must approve any operations that share or unshare the key.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• Crypto users (CU)

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

User Type: Crypto user (CU)

shareKey <key handle> <user id> <(share/unshare key?) 1/0>

Example

The following examples show how to use shareKey to share and unshare keys that you own with 
other crypto users.

Example : Share a key

This example uses shareKey to share an ECC private key that the current user owns with another 
crypto user on the HSMs. Public keys are available to all users of the HSM, so you cannot share or 
unshare them.

The first command uses getKeyInfo to get the user information for key 262177, an ECC private key 
on the HSMs.

The output shows that key 262177 is owned by user 3, but is not shared.

aws-cloudhsm>getKeyInfo 262177

Reference 651



AWS CloudHSM User Guide

Key Info on server 0(10.0.3.10): 

        Token/Flash Key, 

        Owned by user 3

Key Info on server 1(10.0.3.6): 

        Token/Flash Key, 

        Owned by user 3

This command uses shareKey to share key 262177 with user 4, another crypto user on the HSMs. 
The final argument uses a value of 1 to indicate a share operation.

The output shows that the operation succeeded on both HSMs in the cluster.

aws-cloudhsm>shareKey 262177 4 1
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?y
shareKey success on server 0(10.0.3.10)
shareKey success on server 1(10.0.3.6)

To verify that the operation succeeded, the example repeats the first getKeyInfo command.

The output shows that key 262177 is now shared with user 4.

aws-cloudhsm>getKeyInfo 262177

Key Info on server 0(10.0.3.10): 

        Token/Flash Key, 

        Owned by user 3 

        also, shared to following 1 user(s): 

Reference 652



AWS CloudHSM User Guide

                 4
Key Info on server 1(10.0.3.6): 

        Token/Flash Key, 

        Owned by user 3 

        also, shared to following 1 user(s): 

                 4

Example : Unshare a key

This example unshares a symmetric key, that is, it removes a crypto user from the list of shared 
users for the key.

This command uses shareKey to remove user 4 from the list of shared users for key 6. The final 
argument uses a value of 0 to indicate an unshare operation.

The output shows that the command succeeded on both HSMs. As a result, user 4 can no longer 
use key 6 in cryptographic operations.

aws-cloudhsm>shareKey 6 4 0
*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. AWS does NOT synchronize these changes automatically with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
****************************************************************

Do you want to continue(y/n)?y
shareKey success on server 0(10.0.3.10)
shareKey success on server 1(10.0.3.6)

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

shareKey <key handle> <user id> <(share/unshare key?) 1/0>

Reference 653



AWS CloudHSM User Guide

<key-handle>

Specifies the key handle of a key that you own. You can specify only one key in each command. 
To get the key handle of a key, use findKey in key_mgmt_util. To verify that you own a key, use
getKeyInfo.

Required: Yes

<user id>

Specifies the user ID the crypto user (CU) with whom you are sharing or unsharing the key. To 
find the user ID of a user, use listUsers.

Required: Yes

<share 1 or unshare 0>

To share the key with the specified user, type 1. To unshare the key, that is, to remove the 
specified user from the list of shared users for the key, type 0.

Required: Yes

Related topics

• getKeyInfo

Synchronize keys across the AWS CloudHSM cluster using CMU

Use the syncKey command in the AWS CloudHSM cloudhsm_mgmt_util to manually synchronize 
keys across HSM instances within a cluster or across cloned clusters. In general, you will not need 
to use this command, as HSM instances within a cluster sync keys automatically. However, key 
synchronization across cloned clusters must be done manually. Cloned clusters are usually created 
in different AWS Regions in order to simplify the global scaling and disaster recovery processes.

You cannot use syncKey to synchronize keys across arbitrary clusters: one of the clusters must have 
been created from a backup of the other. Additionally, both clusters must have consistent CO and 
CU credentials in order for the operation to be successful. For more information, see HSM Users.

To use syncKey, you must first create an AWS CloudHSM configuration file that specifies one HSM 
from the source cluster and one from the destination cluster. This will allow cloudhsm_mgmt_util 
to connect to both HSM instances. Use this configuration file to start cloudhsm_mgmt_util. Then 
log in with the credentials of a CO or a CU who owns the keys you want to synchronize.

Reference 654



AWS CloudHSM User Guide

User type

The following types of users can run this command.

• Crypto officers (CO)

• Crypto users (CU)

Note

COs can use syncKey on any keys, while CUs can only use this command on keys that they 
own. For more information, see the section called “User types”.

Prerequisites

Before you begin, you must know the key handle of the key on the source HSM to be 
synchronized with the destination HSM. To find the key handle, use the listUsers command to list 
all identifiers for named users. Then, use the findAllKeys command to find all keys that belong to a 
particular user.

You also need to know the server IDs assigned to the source and destination HSMs, which are 
shown in the trace output returned by cloudhsm_mgmt_util upon initiation. These are assigned in 
the same order that the HSMs appear in the configuration file.

Follow the instructions in Using CMU Across Cloned Clusters and initialize cloudhsm_mgmt_util 
with the new config file. Then, enter server mode on the source HSM by issuing the server
command.

Syntax

Note

To run syncKey, first enter server mode on the HSM which contains the key to be 
synchronized.

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

User Type: Crypto user (CU)

Reference 655



AWS CloudHSM User Guide

syncKey <key handle> <destination hsm>

Example

Run the server command to log into the source HSM and enter server mode. For this example, we 
assume that server 0 is the source HSM.

aws-cloudhsm> server 0

Now run the syncKey command. In this example, we assume key 261251 is to be synced to server 
1.

aws-cloudhsm> syncKey 261251 1
syncKey success

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

syncKey <key handle> <destination hsm>

<key handle>

Specifies the key handle of the key to sync. You can specify only one key in each command. To 
get the key handle of a key, use findAllKeys while logged in to an HSM server.

Required: Yes

<destination hsm>

Specifies the number of the server to which you are syncing a key.

Required: Yes

Related topics

• listUsers

• findAllKeys

• describe-clusters in AWS CLI

Reference 656

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

• server

Synchronize users across the AWS CloudHSM cluster using CMU

Use the syncUser command in the AWS CloudHSM cloudhsm_mgmt_util to manually synchronize 
crypto users (CUs) or crypto officers (COs) across HSM instances within a cluster or across cloned 
clusters. AWS CloudHSM does not automatically synchronize users. Generally, you manage users in 
global mode so that all HSMs in a cluster are updated together. You might need to use syncUser
if an HSM is accidentally desynchronized (for example, due to password changes) or if you want to 
rotate user credentials across cloned clusters. Cloned clusters are usually created in different AWS 
Regions to simplify the global scaling and disaster recovery processes.

Before you run any CMU command, you must start CMU and log in to the HSM. Be sure that you 
log in with a user type that can run the commands you plan to use.

If you add or delete HSMs, update the configuration files for CMU. Otherwise, the changes that you 
make might not be effective for all HSMs in the cluster.

User type

The following types of users can run this command.

• Crypto officers (CO)

Prerequisites

Before you begin, you must know the user ID of the user on the source HSM to be synchronized 
with the destination HSM. To find the user ID, use the listUsers command to list all users on the 
HSMs in a cluster.

You also need to know the server ID assigned to the source and destination HSMs, which are 
shown in the trace output returned by cloudhsm_mgmt_util upon initiation. These are assigned in 
the same order that the HSMs appear in the configuration file.

If you are synchronizing HSMs across cloned clusters, follow the instructions in Using CMU Across 
Cloned Clusters and initialize cloudhsm_mgmt_util with the new config file.

When you are ready to run syncUser, enter server mode on the source HSM by issuing the server
command.

Reference 657



AWS CloudHSM User Guide

Syntax

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

syncUser <user ID> <server ID>

Example

Run the server command to log into the source HSM and enter server mode. For this example, we 
assume that server 0 is the source HSM.

aws-cloudhsm> server 0

Now run the syncUser command. For this example, we assume that user 6 is the user to be synced, 
and server 1 is the destination HSM.

server 0> syncUser 6 1
ExtractMaskedObject: 0x0 !
InsertMaskedObject: 0x0 !
syncUser success

Arguments

Because this command does not have named parameters, you must enter the arguments in the 
order specified in the syntax diagram.

syncUser <user ID> <server ID>

<user ID>

Specifies the ID of the user to sync. You can specify only one user in each command. To get the 
ID of a user, use listUsers.

Required: Yes

<server ID>

Specifies the server number of the HSM to which you are syncing a user.

Required: Yes

Reference 658



AWS CloudHSM User Guide

Related topics

• listUsers

• describe-clusters in AWS CLI

• server

AWS CloudHSM Key Management Utility (KMU)

The key management utility (KMU) is a command line tool for AWS CloudHSM that helps 
crypto users (CU) manage keys on the hardware security modules (HSM). KMU includes multiple 
commands that generate, delete, import, and export keys, get and set attributes, find keys, and 
perform cryptographic operations.

KMU and CMU are part of the Client SDK 3 suite.

For a quick start, see Getting started with AWS CloudHSM key_mgmt_util. For detailed information 
about the commands, see Reference for AWS CloudHSM Key Management Utility commands. For 
help interpreting the key attributes, see the AWS CloudHSM key attribute reference for KMU.

To use key_mgmt_util if you are using Linux, connect to your client instance and then see Install 
and configure the AWS CloudHSM client for KMU (Linux). If you are using Windows, see Install and 
configure the AWS CloudHSM client for KMU (Windows).

Topics

• Getting started with AWS CloudHSM key_mgmt_util

• Install and configure the AWS CloudHSM client for KMU (Linux)

• Install and configure the AWS CloudHSM client for KMU (Windows)

• Reference for AWS CloudHSM Key Management Utility commands

Getting started with AWS CloudHSM key_mgmt_util

AWS CloudHSM includes two command line tools with the AWS CloudHSM client software. The
cloudhsm_mgmt_util tool includes commands to manage HSM users. The key_mgmt_util tool 
includes commands to manage keys. To get started with the key_mgmt_util command line tool, 
see the following topics.

Topics

Key Management Utility 659

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

• Set up AWS CloudHSM key_mgmt_util

• Log in to the HSMs in an AWS CloudHSM cluster using KMU

• Log out from the HSMs in an AWS CloudHSM cluster using KMU

• Stop the AWS CloudHSM key_mgmt_util

If you encounter an error message or unexpected outcome for a command, see the
Troubleshooting AWS CloudHSM topics for help. For details about the key_mgmt_util commands, 
see Reference for AWS CloudHSM Key Management Utility commands.

Set up AWS CloudHSM key_mgmt_util

Complete the following setup before you use AWS CloudHSM key_mgmt_util (KMU).

Topics

• Step 1. Start the AWS CloudHSM client

• Step 2. Start key_mgmt_util

Step 1. Start the AWS CloudHSM client

Before you use key_mgmt_util, you must start the AWS CloudHSM client. The client is a daemon 
that establishes end-to-end encrypted communication with the HSMs in your cluster. The 
key_mgmt_util tool uses the client connection to communicate with the HSMs in your cluster. 
Without it, key_mgmt_util doesn't work.

To start the AWS CloudHSM client

Use the following command to start the AWS CloudHSM client.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client start

Getting started 660



AWS CloudHSM User Guide

CentOS 7

$ sudo service cloudhsm-client start

CentOS 8

$ sudo service cloudhsm-client start

RHEL 7

$ sudo service cloudhsm-client start

RHEL 8

$ sudo service cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client start

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe start AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

C:\Program Files\Amazon\CloudHSM>start "cloudhsm_client" cloudhsm_client.exe C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

Step 2. Start key_mgmt_util

After you start the AWS CloudHSM client, use the following command to start key_mgmt_util.

Getting started 661



AWS CloudHSM User Guide

Amazon Linux

$ /opt/cloudhsm/bin/key_mgmt_util

Amazon Linux 2

$ /opt/cloudhsm/bin/key_mgmt_util

CentOS 7

$ /opt/cloudhsm/bin/key_mgmt_util

CentOS 8

$ /opt/cloudhsm/bin/key_mgmt_util

RHEL 7

$ /opt/cloudhsm/bin/key_mgmt_util

RHEL 8

$ /opt/cloudhsm/bin/key_mgmt_util

Ubuntu 16.04 LTS

$ /opt/cloudhsm/bin/key_mgmt_util

Ubuntu 18.04 LTS

$ /opt/cloudhsm/bin/key_mgmt_util

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\key_mgmt_util.exe"

The prompt changes to Command: when key_mgmt_util is running.

Getting started 662



AWS CloudHSM User Guide

If the command fails, such as returning a Daemon socket connection error message, try
updating your configuration file.

Log in to the HSMs in an AWS CloudHSM cluster using KMU

Use the loginHSM command in key_mgmt_util (KMU) to log in to the hardware security modules 
(HSM) in an AWS CloudHSM cluster. The following command logs in as a crypto user (CU) named
example_user. The output indicates a successful login for all three HSMs in the cluster.

Command:   loginHSM -u CU -s example_user -p <PASSWORD>
Cfm3LoginHSM returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

The following shows the syntax for the loginHSM command.

Command:   loginHSM -u <USER TYPE> -s <USERNAME> -p <PASSWORD>

Log out from the HSMs in an AWS CloudHSM cluster using KMU

Use the logoutHSM command in key_mgmt_util (KMU) to log out from the hardware security 
modules (HSM) in an AWS CloudHSM cluster.

Command:   logoutHSM
Cfm3LogoutHSM returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Stop the AWS CloudHSM key_mgmt_util

Use the exit command to stop the AWS CloudHSM key_mgmt_util.

Command:   exit

Getting started 663



AWS CloudHSM User Guide

Install and configure the AWS CloudHSM client for KMU (Linux)

To interact with the hardware security module (HSM) in your AWS CloudHSM cluster using the 
key_mgmt_util (KMU), you need the AWS CloudHSM client software for Linux. You should install it 
on the Linux EC2 client instance that you created previously. You can also install a client if you are 
using Windows. For more information, see Install and configure the AWS CloudHSM client for KMU 
(Windows).

Tasks

• Step 1. Install the AWS CloudHSM client and command line tools

• Step 2. Edit the client configuration

Step 1. Install the AWS CloudHSM client and command line tools

Connect to your client instance and run the following commands to download and install the AWS 
CloudHSM client and command line tools.

Amazon Linux

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-latest.el6.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el6.x86_64.rpm

Amazon Linux 2

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm

CentOS 7

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

Install the client (Linux) 664



AWS CloudHSM User Guide

sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm

CentOS 8

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-latest.el8.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el8.x86_64.rpm

RHEL 7

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm

RHEL 8

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-latest.el8.x86_64.rpm

sudo yum install ./cloudhsm-client-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client_latest_amd64.deb

sudo apt install ./cloudhsm-client_latest_amd64.deb

Install the client (Linux) 665



AWS CloudHSM User Guide

Ubuntu 18.04 LTS

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client_latest_u18.04_amd64.deb

sudo apt install ./cloudhsm-client_latest_u18.04_amd64.deb

Step 2. Edit the client configuration

Before you can use the AWS CloudHSM client to connect to your cluster, you must edit the client 
configuration.

To edit the client configuration

1. Copy your issuing certificate—the one that you used to sign the cluster's certificate—to the 
following location on the client instance: /opt/cloudhsm/etc/customerCA.crt. You need 
instance root user permissions on the client instance to copy your certificate to this location.

2. Use the following configure command to update the configuration files for the AWS CloudHSM 
client and command line tools, specifying the IP address of the HSM in your cluster. To get the 
HSM's IP address, view your cluster in the AWS CloudHSM console, or run the describe-clusters
AWS CLI command. In the command's output, the HSM's IP address is the value of the EniIp
field. If you have more than one HSM, choose the IP address for any of the HSMs; it doesn't 
matter which one.

sudo /opt/cloudhsm/bin/configure -a <IP address>
 
Updating server config in /opt/cloudhsm/etc/cloudhsm_client.cfg
Updating server config in /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

3. Go to Activate the cluster in AWS CloudHSM.

Install and configure the AWS CloudHSM client for KMU (Windows)

To work with a hardware security module (HSM) in your AWS CloudHSM cluster on Windows using 
the key_mgmt_util (KMU), you need the AWS CloudHSM client software for Windows. You should 
install it on the Windows Server instance that you created previously.

Install the client (Windows) 666

https://console.aws.amazon.com/cloudhsm/
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

To install (or update) the latest Windows client and command line tools

1. Connect to your Windows Server instance.

2. Download the latest (AWSCloudHSMClient-latest.msi) from the downloads page.

3. Go to your download location and run the installer (AWSCloudHSMClient-latest.msi) with 
administrative privilege.

4. Follow the installer instructions, then choose Close after the installer has finished.

5. Copy your self-signed issuing certificate—the one that you used to sign the cluster 
certificate—to the C:\ProgramData\Amazon\CloudHSM folder.

6. Run the following command to update your configuration files. Be sure to stop and start the 
client during reconfiguration if you are updating it:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" -a <HSM IP address>

7. Go to Activate the cluster in AWS CloudHSM.

Notes:

• If you are updating the client, existing configuration files from previous installations are not
overwritten.

• The AWS CloudHSM client installer for Windows automatically registers the Cryptography API: 
Next Generation (CNG) and Key Storage Provider (KSP). To uninstall the client, run the installer 
again and follow the uninstall instructions.

• If you are using Linux, you can install the Linux client. For more information, see Install and 
configure the AWS CloudHSM client for KMU (Linux).

Reference for AWS CloudHSM Key Management Utility commands

The key_mgmt_util command line tool helps you to manage keys in the hardware security 
modules (HSM) in your AWS CloudHSM cluster, including creating, deleting, and finding keys and 
their attributes. It includes multiple commands, each of which is described in detail in this topic.

For a quick start, see Getting started with AWS CloudHSM key_mgmt_util. For help interpreting the 
key attributes, see the AWS CloudHSM key attribute reference for KMU. For information about the 
cloudhsm_mgmt_util command line tool, which includes commands to manage the HSM and users 
in your cluster, see AWS CloudHSM Management Utility (CMU).

Reference 667

https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-history.html


AWS CloudHSM User Guide

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

To list all key_mgmt_util commands, type:

Command: help

To get help for a particular key_mgmt_util command, type:

Command: <command-name> -h

To end your key_mgmt_util session, type:

Command: exit

The following topics describe commands in key_mgmt_util.

Note

Some commands in key_mgmt_util and cloudhsm_mgmt_util have the same names. 
However, the commands typically have different syntax, different output, and slightly 
different functionality.

Command Description

aesWrapUnwrap Encrypts and decrypts the contents of a key in 
a file.

deleteKey Deletes a key from the HSMs.

Error2String Gets the error that corresponds to a 
key_mgmt_util hexadecimal error code.

exit Exits the key_mgmt_util.

exportPrivateKey Exports a copy of a private key from an HSM 
to a file on disk.

Reference 668



AWS CloudHSM User Guide

Command Description

exportPubKey Exports a copy of a public key from an HSM to 
a file.

exSymKey Exports a plaintext copy of a symmetric key 
from the HSMs to a file.

extractMaskedObject Extracts a key from an HSM as a masked 
object file.

findKey Search for keys by key attribute value.

findSingleKey Verifies that a key exists on all HSMs in the 
cluster.

genDSAKeyPair Generates a Digital Signing Algorithm (DSA) 
key pair in your HSMs.

genECCKeyPair Generates an Elliptic Curve Cryptography
(ECC) key pair in your HSMs.

genRSAKeyPair Generates an RSA asymmetric key pair in your 
HSMs.

genSymKey Generates a symmetric key in your HSMs

getAttribute Gets the attribute values for an AWS 
CloudHSM key and writes them to a file.

getCaviumPrivKey Creates a fake PEM-format version of a private 
key and exports it to a file.

getCert Retrieves an HSM's partitions certificates and 
saves them to a file.

Reference 669

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29


AWS CloudHSM User Guide

Command Description

getKeyInfo Gets the HSM user IDs of users who can use 
the key.

If the key is quorum controlled, it gets the 
number of users in the quorum.

help Displays help information about the 
commands available in key_mgmt_util.

importPrivateKey Imports a private key into an HSM.

importPubKey Imports a public key into an HSM.

imSymKey Imports a plaintext copy of a symmetric key 
from a file into the HSM.

insertMaskedObject Inserts a masked object from a file on disk into 
an HSM contained by related cluster to the 
object's origin cluster. Related clusters are any 
clusters generated from a backup of the origin 
cluster.

??? Determines whether or not a given file 
contains a real private key or a example PEM 
key.

listAttributes Lists the attributes of an AWS CloudHSM key 
and the constants that represent them.

listUsers Gets the users in the HSMs, their user type and 
ID, and other attributes.

loginHSM and logoutHSM Log in and out of the HSMs in a cluster.

setAttribute Converts a session key to a persistent key.

sign Generate a signature for a file using a chosen 
private key.

Reference 670



AWS CloudHSM User Guide

Command Description

unWrapKey Imports a wrapped (encrypted) key from a file 
into the HSMs.

verify Verifies whether a given key was used to sign a 
given file.

wrapKey Exports an encrypted copy of a key from the 
HSM to a file.

Encrypt and decrypt an AWS CloudHSM file using KMU

Use the aesWrapUnwrap command in AWS CloudHSM key_mgmt_util to encrypt or decrypt the 
contents of a file on disk. This command is designed to wrap and unwrap encryption keys, but you 
can use it on any file that contains less than 4 KB (4096 bytes) of data.

aesWrapUnwrap uses AES Key Wrap. It uses an AES key on the HSM as the wrapping or 
unwrapping key. Then it writes the result to another file on disk.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

aesWrapUnwrap -h

aesWrapUnwrap -m <wrap-unwrap mode>
              -f <file-to-wrap-unwrap> 
              -w <wrapping-key-handle>               
              [-i <wrapping-IV>]  
              [-out <output-file>]

Examples

These examples show how to use aesWrapUnwrap to encrypt and decrypt an encryption key in a 
file.

Reference 671

https://tools.ietf.org/html/rfc5649


AWS CloudHSM User Guide

Example : Wrap an encryption key

This command uses aesWrapUnwrap to wrap a Triple DES symmetric key that was exported from 
the HSM in plaintext into the 3DES.key file. You can use a similar command to wrap any key saved 
in a file.

The command uses the -m parameter with a value of 1 to indicate wrap mode. It uses the -w
parameter to specify an AES key in the HSM (key handle 6) as the wrapping key. It writes the 
resulting wrapped key to the 3DES.key.wrapped file.

The output shows that the command was successful and that the operation used the default IV, 
which is preferred.

 Command:  aesWrapUnwrap -f 3DES.key -w 6 -m 1 -out 3DES.key.wrapped

        Warning: IV (-i) is missing. 
                 0xA6A6A6A6A6A6A6A6 is considered as default IV
result data:
49 49 E2 D0 11 C1 97 22
17 43 BD E3 4E F4 12 75
8D C1 34 CF 26 10 3A 8D
6D 0A 7B D5 D3 E8 4D C2
79 09 08 61 94 68 51 B7

result written to file 3DES.key.wrapped 

        Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS

Example : Unwrap an encryption key

This example shows how to use aesWrapUnwrap to unwrap (decrypt) a wrapped (encrypted) key 
in a file. You might want to do an operation like this one before importing a key to the HSM. For 
example, if you try to use the imSymKey command to import an encrypted key, it returns an error 
because the encrypted key doesn't have the format that is required for a plaintext key of that type.

The command unwraps the key in the 3DES.key.wrapped file and writes the plaintext to the
3DES.key.unwrapped file. The command uses the -m parameter with a value of 0 to indicate 
unwrap mode. It uses the -w parameter to specify an AES key in the HSM (key handle 6) as the 
wrapping key. It writes the resulting wrapped key to the 3DES.key.unwrapped file.

 Command:  aesWrapUnwrap -m 0 -f 3DES.key.wrapped -w 6 -out 3DES.key.unwrapped

Reference 672



AWS CloudHSM User Guide

        Warning: IV (-i) is missing. 
                 0xA6A6A6A6A6A6A6A6 is considered as default IV
result data:
14 90 D7 AD D6 E4 F5 FA
A1 95 6F 24 89 79 F3 EE
37 21 E6 54 1F 3B 8D 62

result written to file 3DES.key.unwrapped 

        Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Parameters

-h

Displays help for the command.

Required: Yes

-m

Specifies the mode. To wrap (encrypt) the file content, type 1; to unwrap (decrypt) the file 
content, type 0.

Required: Yes

-f

Specifies the file to wrap. Enter a file that contains less than 4 KB (4096 bytes) of data. This 
operation is designed to wrap and unwrap encryption keys.

Required: Yes

-w

Specifies the wrapping key. Enter the key handle of an AES key on the HSM. This parameter is 
required. To find key handles, use the findKey command.

To create a wrapping key, use genSymKey to generate an AES key (type 31).

Required: Yes

-i

Specifies an alternate initial value (IV) for the algorithm. Use the default value unless you have 
a special condition that requires an alternative.

Reference 673



AWS CloudHSM User Guide

Default: 0xA6A6A6A6A6A6A6A6. The default value is defined in the AES Key Wrap algorithm 
specification.

Required: No

-out

Specifies an alternate name for the output file that contains the wrapped or unwrapped 
key. The default is wrapped_key (for wrap operations) and unwrapped_key (for unwrap 
operations) in the local directory.

If the file exists, the aesWrapUnwrap overwrites it without warning. If the command fails,
aesWrapUnwrap creates an output file with no contents.

Default: For wrap: wrapped_key. For unwrap: unwrapped_key.

Required: No

Related topics

• exSymKey

• imSymKey

• unWrapKey

• wrapKey

Delete an AWS CloudHSM key using KMU

Use the deleteKey command in the AWS CloudHSM key_mgmt_util to delete a key from the 
hardware security module (HSM) in an AWS CloudHSM cluster. You can only delete one key at a 
time. Deleting one key in a key pair has no effect on the other key in the pair.

Only the key owner can delete a key. Users who share the key can use it in cryptographic 
operations, but not delete it.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

deleteKey -h  

Reference 674

https://tools.ietf.org/html/rfc3394


AWS CloudHSM User Guide

deleteKey -k

Examples

These examples show how to use deleteKey to delete keys from your HSMs.

Example : Delete a key

This command deletes the key with key handle 6. When the command succeeds, deleteKey returns 
success messages from each HSM in the cluster.

Command: deleteKey -k 6

        Cfm3DeleteKey returned: 0x00 : HSM Return: SUCCESS 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Example : Delete a key (failure)

When the command fails because no key has the specified key handle, deleteKey returns an invalid 
object handle error message.

Command: deleteKey -k 252126

        Cfm3FindKey returned: 0xa8 : HSM Error: Invalid object handle is passed to this 
 operation 

        Cluster Error Status 
        Node id 1 and err state 0x000000a8 : HSM Error: Invalid object handle is passed 
 to this operation 
        Node id 2 and err state 0x000000a8 : HSM Error: Invalid object handle is passed 
 to this operation

When the command fails because the current user is not the owner of the key, the command 
returns an access denied error.

Command:  deleteKey -k 262152

Reference 675



AWS CloudHSM User Guide

Cfm3DeleteKey returned: 0xc6 : HSM Error: Key Access is denied.

Parameters

-h

Displays command line help for the command.

Required: Yes

-k

Specifies the key handle of the key to delete. To find the key handles of keys in the HSM, use
findKey.

Required: Yes

Related topics

• findKey

Describe an AWS CloudHSM error using KMU

Use the Error2String helper command in the AWS CloudHSM key_mgmt_util to return the error 
that corresponds to a key_mgmt_util hexadecimal error code. You can use this command when 
troubleshooting your commands and scripts.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

Error2String -h

Error2String -r <response-code>

Examples

These examples show how to use Error2String to get the error string for a key_mgmt_util error 
code.

Reference 676



AWS CloudHSM User Guide

Example : Get an error description

This command gets the error description for the 0xdb error code. The description explains that an 
attempt to log in to key_mgmt_util failed because the user has the wrong user type. Only crypto 
users (CU) can log in to key_mgmt_util.

        Command:  Error2String -r 0xdb
        
        Error Code db maps to HSM Error: Invalid User Type.

Example : Find the error code

This example shows where to find the error code in a key_mgmt_util error. The error code, 0xc6, 
appears after the string: Cfm3<command-name> returned: .

In this example, getKeyInfo indicates that the current user (user 4) can use the key in cryptographic 
operations. Nevertheless, when the user tries to use deleteKey to delete the key, the command 
returns error code 0xc6.

        Command:  deleteKey -k 262162

        Cfm3DeleteKey returned: <0xc6> : HSM Error: Key Access is denied 

        Cluster Error Status

        Command:  getKeyInfo -k 262162
        
        Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

       Owned by user 3 

       also, shared to following 1 user(s): 

                4
        

If the 0xc6 error is reported to you, you can use an Error2String command like this one to look up 
the error. In this case, the deleteKey command failed with an access denied error because the key 
is shared with the current user but owned by a different user. Only key owners have permission to 
delete a key.

Reference 677



AWS CloudHSM User Guide

        Command:  Error2String -r 0xa8
        
        Error Code c6 maps to HSM Error: Key Access is denied      

Parameters

-h

Displays help for the command.

Required: Yes

-r

Specifies a hexadecimal error code. The 0x hexadecimal indicator is required.

Required: Yes

Exit the AWS CloudHSM KMU

Use the exit command in the AWS CloudHSM key_mgmt_util to exit the key_mgmt_util. Upon 
successful exit, you will be returned to your standard command line.

Before you run any key_mgmt_util command, you must start key_mgmt_util.

Syntax

exit

Parameters

There are no parameters for this command.

Related topics

• Start key_mgmt_util

Export a private AWS CloudHSM key using KMU

Use the exportPrivateKey command in the AWS CloudHSM key_mgmt_util to export an 
asymmetric private key from a hardware security module (HSM) to a file. The HSM does not allow 

Reference 678



AWS CloudHSM User Guide

direct export of keys in cleartext. The command wraps the private key using an AES wrapping key 
you specify, decrypts the wrapped bytes, and copies the cleartext private key to a file.

The exportPrivateKey command does not remove the key from the HSM, change its key attributes, 
or prevent you from using the key in further cryptographic operations. You can export the same 
key multiple times.

You can only export private keys that have OBJ_ATTR_EXTRACTABLE attribute value 1. You must 
specify an AES wrapping key that has OBJ_ATTR_WRAP and OBJ_ATTR_DECRYPT attributes value
1. To find a key's attributes, use the getAttribute command.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

exportPrivateKey -h

exportPrivateKey -k <private-key-handle>
                 -w <wrapping-key-handle>
                 -out <key-file>
                 [-m <wrapping-mechanism>] 
                 [-wk <wrapping-key-file>] 
         

Examples

This example shows how to use exportPrivateKey to export a private key out of an HSM.

Example : Export a private key

This command exports a private key with handle 15 using a wrapping key with handle 16 to a PEM 
file called exportKey.pem. When the command succeeds, exportPrivateKey returns a success 
message.

Command: exportPrivateKey -k 15 -w 16 -out exportKey.pem

Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Reference 679



AWS CloudHSM User Guide

PEM formatted private key is written to exportKey.pem

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-k

Specifies the key handle of the private key to be exported.

Required: Yes

-w

Specifies the key handle of the wrapping key. This parameter is required. To find key handles, 
use the findKey command.

To determine whether a key can be used as a wrapping key, use getAttribute to get the value 
of the OBJ_ATTR_WRAP attribute (262). To create a wrapping key, use genSymKey to create an 
AES key (type 31).

If you use the -wk parameter to specify an external unwrapping key, the -w wrapping key is 
used to wrap, but not unwrap, the key during export.

Required: Yes

-out

Specifies the name of the file to which the exported private key will be written.

Required: Yes

-m

Specifies the wrapping mechanism with which to wrap the private key being exported. The only 
valid value is 4, which represents the NIST_AES_WRAP mechanism.

Reference 680



AWS CloudHSM User Guide

Default: 4 (NIST_AES_WRAP)

Required: No

-wk

Specifies the key to be used to unwrap the key being exported. Enter the path and name of a 
file that contains a plaintext AES key.

When you include this parameter, exportPrivateKey uses the key in the -w file to wrap the key 
being exported and uses the key specified by the -wk parameter to unwrap it.

Default: Use the wrapping key specified in the -w parameter to both wrap and unwrap.

Required: No

Related topics

• importPrivateKey

• wrapKey

• unWrapKey

• genSymKey

Export a public AWS CloudHSM key using KMU

Use the exportPubKey command in the AWS CloudHSM key_mgmt_util to export a public key in 
an HSM to a file. You can use it to export public keys that you generate in an HSM. You can also use 
this command to export public keys that were imported into an HSM, such as those imported with 
the importPubKey command.

The exportPubKey operation copies the key material to a file that you specify. But it does not 
remove the key from the HSM, change its key attributes, or prevent you from using the key in 
further cryptographic operations. You can export the same key multiple times.

You can only export public keys that have a OBJ_ATTR_EXTRACTABLE value of 1. To find a key's 
attributes, use the getAttribute command.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the 
HSM as a crypto user (CU).

Reference 681



AWS CloudHSM User Guide

Syntax

exportPubKey -h

exportPubKey -k <public-key-handle>
             -out <key-file>
        

Examples

This example shows how to use exportPubKey to export a public key from an HSM.

Example : Export a public key

This command exports a public key with handle 10 to a file called public.pem. When the 
command succeeds, exportPubKey returns a success message.

Command: exportPubKey -k 10 -out public.pem

PEM formatted public key is written to public.pem

Cfm3ExportPubKey returned: 0x00 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-k

Specifies the key handle of the public key to be exported.

Required: Yes

-out

Specifies the name of the file to which the exported public key will be written.

Reference 682



AWS CloudHSM User Guide

Required: Yes

Related topics

• importPubKey

• Generate Keys

Export a plaintext copy of an AWS CloudHSM key using KMU

Use the exSymKey command in the AWS CloudHSM key_mgmt_util tool to export a plaintext 
copy of a symmetric key from the hardware security module (HSM) and saves it in a file on disk. To 
export an encrypted (wrapped) copy of a key, use wrapKey. To import a plaintext key, like the ones 
that exSymKey exports, use imSymKey.

During the export process, exSymKey uses an AES key that you specify (the wrapping key) to wrap
(encrypt) and then unwrap (decrypt) the key to be exported. However, the result of the export 
operation is a plaintext (unwrapped) key on disk.

Only the owner of a key, that is, the CU user who created the key, can export it. Users who share 
the key can use it in cryptographic operations, but they cannot export it.

The exSymKey operation copies the key material to a file that you specify, but it does not 
remove the key from the HSM, change its key attributes, or prevent you from using the key in 
cryptographic operations. You can export the same key multiple times.

exSymKey exports only symmetric keys. To export public keys, use exportPubKey. To export private 
keys, use exportPrivateKey.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

exSymKey -h

exSymKey -k <key-to-export>
         -w <wrapping-key>
         -out <key-file>
         [-m 4]  

Reference 683



AWS CloudHSM User Guide

         [-wk <unwrapping-key-file> ]

Examples

These examples show how to use exSymKey to export symmetric keys that you own from your 
HSMs.

Example : Export a 3DES symmetric key

This command exports a Triple DES (3DES) symmetric key (key handle 7). It uses an existing AES 
key (key handle 6) in the HSM as the wrapping key. Then it writes the plaintext of the 3DES key to 
the 3DES.key file.

The output shows that key 7 (the 3DES key) was successfully wrapped and unwrapped, and then 
written to the 3DES.key file.

Warning

Although the output says that a "Wrapped Symmetric Key" was written to the output file, 
the output file contains a plaintext (unwrapped) key.

        Command: exSymKey -k 7 -w 6 -out 3DES.key

       Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Wrapped Symmetric Key written to file "3DES.key"

Example : Exporting with session-only wrapping key

This example shows how to use a key that exists only in the session as the wrapping key. Because 
the key to be exported is wrapped, immediately unwrapped, and delivered as plaintext, there is no 
need to retain the wrapping key.

This series of commands exports an AES key with key handle 8 from the HSM. It uses an AES 
session key created especially for the purpose.

Reference 684



AWS CloudHSM User Guide

The first command uses genSymKey to create a 256-bit AES key. It uses the -sess parameter to 
create a key that exists only in the current session.

The output shows that the HSM creates key 262168.

        Command:  genSymKey -t 31 -s 32 -l AES-wrapping-key -sess

        Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 262168 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

Next, the example verifies that key 8, the key to be exported, is a symmetric key that is extractable. 
It also verifies that the wrapping key, key 262168, is an AES key that exists only in the session. You 
can use the findKey command, but this example exports the attributes of both keys to files and 
then uses grep to find the relevant attribute values in the file.

These commands use getAttribute with an -a value of 512 (all) to get all attributes for keys
8 and 262168. For information about the key attributes, see the the section called “Key attribute 
reference”.

getAttribute -o 8 -a 512 -out attributes/attr_8
getAttribute -o 262168 -a 512 -out attributes/attr_262168

These commands use grep to verify the attributes of the key to be exported (key 8) and the 
session-only wrapping key (key 262168).

    // Verify that the key to be exported is a symmetric key. 
     $  grep -A 1 "OBJ_ATTR_CLASS" attributes/attr_8     
     OBJ_ATTR_CLASS 
    0x04
   
    // Verify that the key to be exported is extractable. 
     $  grep -A 1 "OBJ_ATTR_KEY_TYPE" attributes/attr_8
    OBJ_ATTR_EXTRACTABLE 
    0x00000001

    // Verify that the wrapping key is an AES key 
     $  grep -A 1 "OBJ_ATTR_KEY_TYPE" attributes/attr_262168

Reference 685



AWS CloudHSM User Guide

    OBJ_ATTR_KEY_TYPE 
    0x1f

    // Verify that the wrapping key is a session key 
     $  grep -A 1 "OBJ_ATTR_TOKEN" attributes/attr_262168
    OBJ_ATTR_TOKEN 
    0x00    
    
    // Verify that the wrapping key can be used for wrapping 
      $  grep -A 1 "OBJ_ATTR_WRAP" attributes/attr_262168
    OBJ_ATTR_WRAP 
    0x00000001  

Finally, we use an exSymKey command to export key 8 using the session key (key 262168) as the 
wrapping key.

When the session ends, key 262168 no longer exists.

        Command:  exSymKey -k 8 -w 262168 -out aes256_H8.key

        Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Wrapped Symmetric Key written to file "aes256_H8.key"
      

Example : Use an external unwrapping key

This example shows how to use an external unwrapping key to export a key from the HSM.

When you export a key from the HSM, you specify an AES key on the HSM to be the wrapping 
key. By default, that wrapping key is used to wrap and unwrap the key to be exported. However, 
you can use the -wk parameter to tell exSymKey to use an external key in a file on disk for 
unwrapping. When you do, the key specified by the -w parameter wraps the target key, and the key 
in the file specified by the -wk parameter unwraps the key.

Because the wrapping key must be an AES key, which is symmetric, the wrapping key in the HSM 
and unwrapping key on disk must be have the same key material. To do this, you must import the 
wrapping key to the HSM or export the wrapping key from the HSM before the export operation.

Reference 686



AWS CloudHSM User Guide

This example creates a key outside of the HSM and imports it into the HSM. It uses the internal 
copy of the key to wrap a symmetric key that is being exported, and the copy of key in the file to 
unwrap it.

The first command uses OpenSSL to generate a 256-bit AES key. It saves the key to the aes256-
forImport.key file. The OpenSSL command does not return any output, but you can use several 
commands to confirm its success. This example uses the wc (word count) tool, which confirms that 
the file that contains 32 bytes of data.

$  openssl rand -out keys/aes256-forImport.key 32

$ wc keys/aes256-forImport.key
 0  2 32 keys/aes256-forImport.key

This command uses the imSymKey command to import the AES key from the aes256-
forImport.key file to the HSM. When the command completes, the key exists in the HSM with 
key handle 262167 and in the aes256-forImport.key file.

Command:  imSymKey -f keys/aes256-forImport.key -t 31 -l aes256-imported -w 6

        Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Unwrapped.  Key Handle: 262167 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

This command uses the key in an export operation. The command uses exSymKey to export key
21, a 192-bit AES key. To wrap the key, it uses key 262167, which is the copy that was imported 
into the HSM. To unwrap the key, it uses the same key material in the aes256-forImport.key
file. When the command completes, key 21 is exported to the aes192_h21.key file.

        Command:  exSymKey -k 21 -w 262167 -out aes192_H21.key -wk aes256-forImport.key 

        Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS

Reference 687



AWS CloudHSM User Guide

Wrapped Symmetric Key written to file "aes192_H21.key"

Parameters

-h

Displays help for the command.

Required: Yes

-k

Specifies the key handle of the key to export. This parameter is required. Enter the key handle 
of a symmetric key that you own. This parameter is required. To find key handles, use the
findKey command.

To verify that a key can be exported, use the getAttribute command to get the value of the
OBJ_ATTR_EXTRACTABLE attribute, which is represented by constant 354. Also, you can export 
only keys that you own. To find the owner of a key, use the getKeyInfo command.

Required: Yes

-w

Specifies the key handle of the wrapping key. This parameter is required. To find key handles, 
use the findKey command.

A wrapping key is a key in the HSM that is used to encrypt (wrap) and then decrypt (unwrap) the 
key to be exported. Only AES keys can be used as wrapping keys.

You can use any AES key (of any size) as a wrapping key. Because the wrapping key wraps, and 
then immediately unwraps, the target key, you can use as session-only AES key as a wrapping 
key. To determine whether a key can be used as a wrapping key, use getAttribute to get the 
value of the OBJ_ATTR_WRAP attribute, which is represented by the constant 262. To create a 
wrapping key, use genSymKey to create an AES key (type 31).

If you use the -wk parameter to specify an external unwrapping key, the -w wrapping key is 
used to wrap, but not to unwrap, the key during export.

Note

Key 4 represents an unsupported internal key. We recommend that you use an AES key 
that you create and manage as the wrapping key.

Reference 688



AWS CloudHSM User Guide

Required: Yes

-out

Specifies the path and name of the output file. When the command succeeds, this file contains 
the exported key in plaintext. If the file already exists, the command overwrites it without 
warning.

Required: Yes

-m

Specifies the wrapping mechanism. The only valid value is 4, which represents the
NIST_AES_WRAP mechanism.

Required: No

Default: 4

-wk

Use the AES key in the specified file to unwrap the key that is being exported. Enter the path 
and name of a file that contains a plaintext AES key.

When you include this parameter. exSymKey uses the key in the HSM that is specified by the -
w parameter to wrap the key that is being exported and it uses the key in the -wk file to unwrap 
it. The -w and -wk parameter values must resolve to the same plaintext key.

Required: No

Default: Use the wrapping key on the HSM to unwrap.

Related topics

• genSymKey

• imSymKey

• wrapKey

Extract an AWS CloudHSM key using KMU

Use the extractMaskedObject command in the AWS CloudHSM key_mgmt_util to extract a key 
from a hardware security module (HSM) and saves it to a file as a masked object. Masked objects 

Reference 689



AWS CloudHSM User Guide

are cloned objects that can only be used after inserting them back into the original cluster by using 
the insertMaskedObject command. You can only insert a masked object into the same cluster from 
which it was generated, or a clone of that cluster. This includes any cloned versions of the cluster 
generated by copying a backup across regions and using that backup to create a new cluster.

Masked objects are an efficient way to offload and synchronize keys, including nonextractable 
keys (that is, keys that have a OBJ_ATTR_EXTRACTABLE value of 0). This way, keys can be securely 
synced across related clusters in different regions without the need to update the AWS CloudHSM
configure file.

Important

Upon insertion, masked objects are decrypted and given a key handle that is different from 
the key handle of the original key. A masked object includes all metadata associated with 
the original key, including attributes, ownership and sharing information, and quorum 
settings. If you need to sync keys across clusters in an application, use syncKey in the 
cloudhsm_mgmt_util instead.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM. 
The extractMaskedObject command can be used either by the CU who owns the key or any CO.

Syntax

extractMaskedObject -h

extractMaskedObject -o <object-handle>
                    -out <object-file>

Examples

This example shows how to use extractMaskedObject to extract a key from an HSM as a masked 
object.

Example : Extract a masked object

This command extracts a masked object out of an HSM from a key with handle 524295 and saves it 
as a file called maskedObj. When the command succeeds, extractMaskedObject returns a success 
message.

Reference 690



AWS CloudHSM User Guide

Command: extractMaskedObject -o 524295 -out maskedObj

Object was masked and written to file "maskedObj" 

        Cfm3ExtractMaskedObject returned: 0x00 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-o

Specifies the handle of the key to extract as a masked object.

Required: Yes

-out

Specifies the name of the file to which the masked object will be saved.

Required: Yes

Related topics

• insertMaskedObject

• syncKey

• Copying a Backup Across Regions

• Creating an AWS CloudHSM Cluster from a Previous Backup

Search for AWS CloudHSM keys by attributes using KMU

Use the findKey command in the AWS CloudHSM key_mgmt_util to search for keys by the values 
of the key attributes. When a key matches all the criteria that you set, findKey returns the key 
handle. With no parameters, findKey returns the key handles of all the keys that you can use in the 
HSM. To find the attribute values of a particular key, use getAttribute.

Reference 691



AWS CloudHSM User Guide

Like all key_mgmt_util commands, findKey is user specific. It returns only the keys that the current 
user can use in cryptographic operations. This includes keys that current user owns and keys that 
have been shared with the current user.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

findKey -h  

findKey [-c <key class>]  
        [-t <key type>] 
        [-l <key label>]  
        [-id <key ID>] 
        [-sess (0 | 1)]  
        [-u <user-ids>] 
        [-m <modulus>] 
        [-kcv <key_check_value>] 

Examples

These examples show how to use findKey to find and identify keys in your HSMs.

Example : Find all keys

This command finds all keys for the current user in the HSM. The output includes keys that the user 
owns and shares, and all public keys in the HSMs.

To get the attributes of a key with a particular key handle, use getAttribute. To determine 
whether the current user owns or shares a particular key, use getKeyInfo or findAllKeys in 
cloudhsm_mgmt_util.

Command: findKey

Total number of keys present 13 

 number of keys matched from start index 0::12
6, 7, 524296, 9, 262154, 262155, 262156, 262157, 262158, 262159, 262160, 262161, 262162 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 

Reference 692



AWS CloudHSM User Guide

        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Example : Find keys by type, user, and session

This command finds persistent AES keys that the current user and user 3 can use. (User 3 might be 
able to use other keys that the current user cannot see.)

Command: findKey -t 31 -sess 0 -u 3

Example : Find keys by class and label

This command finds all public keys for the current user with the 2018-sept label.

Command: findKey -c 2 -l 2018-sept

Example : Find RSA keys by modulus

This command finds RSA keys (type 0) for the current user that were created by using the modulus 
in the m4.txt file.

Command: findKey -t 0 -m m4.txt

Parameters

-h

Displays help for the command.

Required: Yes

-t

Finds keys of the specified type. Enter the constant that represents the key class. For example, 
to find 3DES keys, type -t 21.

Valid values:

• 0: RSA

• 1: DSA

• 3: EC

Reference 693

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography


AWS CloudHSM User Guide

• 16: GENERIC_SECRET

• 18: RC4

• 21: Triple DES (3DES)

• 31: AES

Required: No

-c

Finds keys in the specified class. Enter the constant that represents the key class. For example, 
to find public keys, type -c 2.

Valid values for each key type:

• 2: Public. This class contains the public keys of public–private key pairs.

• 3: Private. This class contains the private keys of public–private key pairs.

• 4: Secret. This class contains all symmetric keys.

Required: No

-l

Finds keys with the specified label. Type the exact label. You cannot use wildcard characters or 
regular expressions in the --l value.

Required: No

-id

Finds the key with the specified ID. Type the exact ID string. You cannot use wildcard characters 
or regular expressions in the -id value.

Required: No

-sess

Finds keys by session status. To find keys that are valid only in the current session, type 1. To 
find persistent keys, type 0.

Required: No

-u

Finds keys the specified users and the current user share. Type a comma-separated list of HSM 
user IDs, such as -u 3 or -u 4,7. To find the IDs of users on an HSM, use listUsers.

Reference 694

http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cos01/pkcs11-curr-v2.40-cos01.html#_Toc408226962
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard


AWS CloudHSM User Guide

When you specify one user ID, findKey returns the keys for that user. When you specify multiple 
user IDs, findKey returns the keys that all the specified users can use.

Because findKey only returns keys that the current user can use, the -u results are always 
identical to or a subset of the current user's keys. To get all keys that are owned by or shared 
with any user, crypto officers (COs) can use findAllKeys in cloudhsm_mgmt_util.

Required: No

-m

Finds keys that were created by using the RSA modulus in the specified file. Type the path to file 
that stores the modulus.

-m specifies the binary file containing RSA modulus to match with (optional).

Required: No

-kcv

Finds keys with the specified key check value.

The key check value (KCV) is a 3-byte hash or checksum of a key that is generated when the 
HSM imports or generates a key. You can also calculate a KCV outside of the HSM, such as after 
you export a key. You can then compare the KCV values to confirm the identity and integrity of 
the key. To get the KCV of a key, use getAttribute.

AWS CloudHSM uses the following standard method to generate a key check value:

• Symmetric keys: First 3 bytes of the result of encrypting a zero-block with the key.

• Asymmetric key pairs: First 3 bytes of the SHA-1 hash of the public key.

• HMAC keys: KCV for HMAC keys is not supported at this time.

Required: No

Output

The findKey output lists the total number of matching keys and their key handles.

        Command:  findKey
Total number of keys present 10 

Reference 695



AWS CloudHSM User Guide

 number of keys matched from start index 0::9
6, 7, 8, 9, 10, 11, 262156, 262157, 262158, 262159 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Related topics

• findSingleKey

• getKeyInfo

• getAttribute

• findAllKeys in cloudhsm_mgmt_util

• Key Attribute Reference

Verify an AWS CloudHSM key using KMU

Use the findSingleKey command in the AWS CloudHSM key_mgmt_util tool to verify that a key 
exists on all hardware security modules (HSM) in the AWS CloudHSM cluster.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

findSingleKey -h

findSingleKey -k <key-handle>

Example

Example

This command verifies that key 252136 exists on all three HSMs in the cluster.

Command: findSingleKey -k 252136

Reference 696



AWS CloudHSM User Guide

Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS 

        Cluster Error Status 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

-h

Displays help for the command.

Required: Yes

-k

Specifies the key handle of one key in the HSM. This parameter is required.

To find key handles, use the findKey command.

Required: Yes

Related topics

• findKey

• getKeyInfo

• getAttribute

Generate an AWS CloudHSM DSA key pair using KMU

Use the genDSAKeyPair command in the AWS CloudHSM key_mgmt_util tool to generate a Digital 
Signing Algorithm (DSA) key pair in your hardware security modules (HSM). You must specify the 
modulus length; the command generates the modulus value. You can also assign an ID, share the 
key with other HSM users, create nonextractable keys, and create keys that expire when the session 
ends. When the command succeeds, it returns the key handles that the HSM assigns to the public 
and private keys. You can use the key handles to identify the keys to other commands.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Reference 697

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm


AWS CloudHSM User Guide

Tip

To find the attributes of a key that you have created, such as the type, length, label, and ID, 
use getAttribute. To find the keys for a particular user, use getKeyInfo. To find keys based 
on their attribute values, use findKey.

Syntax

genDSAKeyPair -h

genDSAKeyPair -m <modulus length> 
              -l <label> 
              [-id <key ID>]  
              [-min_srv <minimum number of servers>]  
              [-m_value <0..8>] 
              [-nex]  
              [-sess]  
              [-timeout <number of seconds> ] 
              [-u <user-ids>]  
              [-attest] 

Examples

These examples show how to use genDSAKeyPair to create a DSA key pair.

Example : Create a DSA key pair

This command creates a DSA key pair with a DSA label. The output shows that the key handle of 
the public key is 19 and the handle of the private key is 21.

Command: genDSAKeyPair -m 2048 -l DSA

        Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 19    private key handle: 21 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Reference 698



AWS CloudHSM User Guide

Example : Create a session-only DSA key pair

This command creates a DSA key pair that is valid only in the current session. The command 
assigns a unique ID of DSA_temp_pair in addition to the required (nonunique) label. You might 
want to create a key pair like this to sign and verify a session-only token. The output shows that 
the key handle of the public key is 12 and the handle of the private key is 14.

Command: genDSAKeyPair -m 2048 -l DSA-temp -id DSA_temp_pair -sess

        Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 12    private key handle: 14 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

To confirm that the key pair exists only in the session, use the -sess parameter of findKey with a 
value of 1 (true).

  Command: findKey -sess 1

  Total number of keys present 2 

 number of keys matched from start index 0::1
12, 14 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Example : Create a shared, nonextractable DSA key pair

This command creates a DSA key pair. The private key is shared with three other users, and 
it cannot be exported from the HSM. Public keys can be used by any user and can always be 
extracted.

        Command:  genDSAKeyPair -m 2048 -l DSA -id DSA_shared_pair -nex -u 3,5,6

        Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS 

Reference 699



AWS CloudHSM User Guide

        Cfm3GenerateKeyPair:    public key handle: 11    private key handle: 19 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Example : Create a quorum-controlled key pair

This command creates a DSA key pair with the label DSA-mV2. The command uses the -u
parameter to share the private key with user 4 and 6. It uses the -m_value parameter to require 
a quorum of at least two approvals for any cryptographic operations that use the private key. The 
command also uses the -attest parameter to verify the integrity of the firmware on which the 
key pair is generated.

The output shows that the command generates a public key with key handle 12 and a private key 
with key handle 17, and that the attestation check on the cluster firmware passed.

        Command:  genDSAKeyPair -m 2048 -l DSA-mV2 -m_value 2 -u 4,6 -attest

        Cfm3GenerateKeyPair: returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 12    private key handle: 17 

        Attestation Check : [PASS] 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
      

This command uses getKeyInfo on the private key (key handle 17). The output confirms that the 
key is owned by the current user (user 3) and that it is shared with users 4 and 6 (and no others). 
The output also shows that quorum authentication is enabled and the quorum size is two.

        Command:  getKeyInfo -k 17

        Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

        Owned by user 3 

Reference 700



AWS CloudHSM User Guide

        also, shared to following 2 user(s): 

                 4 
                 6 
         2 Users need to approve to use/manage this key

      

Parameters

-h

Displays help for the command.

Required: Yes

-m

Specifies the length of the modulus in bits. The only valid value is 2048.

Required: Yes

-l

Specifies a user-defined label for the key pair. Type a string. The same label applies to both keys 
in the pair. The maximum size allowable for label is 127 characters.

You can use any phrase that helps you to identify the key. Because the label does not have to be 
unique, you can use it to group and categorize keys.

Required: Yes

-id

Specifies a user-defined identifier for the key pair. Type a string that is unique in the cluster. The 
default is an empty string. The ID that you specify applies to both keys in the pair.

Default: No ID value.

Required: No

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of 
the -timeout parameter expires. If the key is not synchronized to the specified number of 
servers in the time allotted, it is not created.

Reference 701



AWS CloudHSM User Guide

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-m_value

Specifies the number of users who must approve any cryptographic operation that uses the 
private key in the pair. Type a value from 0 to 8.

This parameter establishes a quorum authentication requirement for the private key. The 
default value, 0, disables the quorum authentication feature for the key. When quorum 
authentication is enabled, the specified number of users must sign a token to approve 
cryptographic operations that use the private key, and operations that share or unshare the 
private key.

To find the m_value of a key, use getKeyInfo.

This parameter is valid only when the -u parameter in the command shares the key pair with 
enough users to satisfy the m_value requirement.

Default: 0

Required: No

-nex

Makes the private key nonextractable. The private key that is generated cannot be exported 
from the HSM. Public keys are always extractable.

Default: Both the public and private keys in the key pair are extractable.

Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

Reference 702



AWS CloudHSM User Guide

To change a session key to a persistent (token) key, use setAttribute.

Default: The key is persistent.

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number 
of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is 
synchronized to the minimum number of servers.

Required: No

-u

Shares the private key in the pair with the specified users. This parameter gives other HSM 
crypto users (CUs) permission to use the private key in cryptographic operations. Public keys can 
be used by any user without sharing.

Type a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID 
of the current user. To find HSM user IDs of CUs on the HSM, use listUsers. To share and unshare 
existing keys, use shareKey in the cloudhsm_mgmt_util.

Default: Only the current user can use the private key.

Required: No

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been 
tampered with.

Default: No attestation check.

Required: No

Related topics

• genRSAKeyPair

• genSymKey

Reference 703



AWS CloudHSM User Guide

• genECCKeyPair

Generate an AWS CloudHSM ECC key pair using KMU

Use the genECCKeyPair command in the AWS CloudHSM key_mgmt_util tool to generate 
an Elliptic Curve Cryptography (ECC) key pair in your hardware security modules (HSM). When 
running the genECCKeyPair command, you must specify the elliptic curve identifier and a label 
for the key pair. You can also share the private key with other CU users, create non-extractable 
keys, quorum-controlled keys, and keys that expire when the session ends. When the command 
succeeds, it returns the key handles that the HSM assigns to the public and private ECC keys. You 
can use the key handles to identify the keys to other commands.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Tip

To find the attributes of a key that you have created, such as the type, length, label, and ID, 
use getAttribute. To find the keys for a particular user, use getKeyInfo. To find keys based 
on their attribute values, use findKey.

Syntax

genECCKeyPair -h

genECCKeyPair -i <EC curve id>  
              -l <label>  
              [-id <key ID>] 
              [-min_srv <minimum number of servers>] 
              [-m_value <0..8>] 
              [-nex] 
              [-sess] 
              [-timeout <number of seconds> ] 
              [-u <user-ids>] 
              [-attest]

Examples

The following examples show how to use genECCKeyPair to create ECC key pairs in your HSMs.

Reference 704

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography


AWS CloudHSM User Guide

Example : Create and examine an ECC key pair

This command uses an NID_secp384r1 elliptic curve and an ecc14 label to create an ECC key pair. 
The output shows that the key handle of the private key is 262177 and the key handle of the 
public key is 262179. The label applies to both the public and private keys.

Command: genECCKeyPair -i 14 -l ecc14

        Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 262179    private key handle: 262177 

        Cluster Error Status 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

After generating the key, you can examine its attributes. Use getAttribute to write all of the 
attributes (represented by the constant 512) of the new ECC private key to the attr_262177 file.

Command: getAttribute -o 262177 -a 512 -out attr_262177
got all attributes of size 529 attr cnt 19
Attributes dumped into attr_262177 

        Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS

Then use the cat command to view the contents of the attr_262177 attribute file. The output 
shows the key is an elliptic curve private key that can be used for signing, but not for encrypting, 
decrypting, wrapping, unwrapping, or verifying. The key is persistent and exportable.

$  cat attr_262177

OBJ_ATTR_CLASS
0x03
OBJ_ATTR_KEY_TYPE
0x03
OBJ_ATTR_TOKEN
0x01
OBJ_ATTR_PRIVATE
0x01
OBJ_ATTR_ENCRYPT

Reference 705



AWS CloudHSM User Guide

0x00
OBJ_ATTR_DECRYPT
0x00
OBJ_ATTR_WRAP
0x00
OBJ_ATTR_UNWRAP
0x00
OBJ_ATTR_SIGN
0x01
OBJ_ATTR_VERIFY
0x00
OBJ_ATTR_LOCAL
0x01
OBJ_ATTR_SENSITIVE
0x01
OBJ_ATTR_EXTRACTABLE
0x01
OBJ_ATTR_LABEL
ecc2
OBJ_ATTR_ID

OBJ_ATTR_VALUE_LEN
0x0000008a
OBJ_ATTR_KCV
0xbbb32a
OBJ_ATTR_MODULUS
044a0f9d01d10f7437d9fa20995f0cc742552e5ba16d3d7e9a65a33e20ad3e569e68eb62477a9960a87911e6121d112b698e469a0329a665eba74ee5ac55eae9f5
OBJ_ATTR_MODULUS_BITS
0x0000019f

Example Using an invalid EEC curve

This command attempts to create an ECC key pair by using an NID_X9_62_prime192v1 curve. 
Because this elliptic curve is not valid for FIPS-mode HSMs, the command fails. The message 
reports that a server in the cluster is unavailable, but this does not typically indicate a problem 
with the HSMs in the cluster.

Command:  genECCKeyPair -i 1 -l ecc1

        Cfm3GenerateKeyPair returned: 0xb3 : HSM Error: This operation violates the 
 current configured/FIPS policies 

        Cluster Error Status 

Reference 706



AWS CloudHSM User Guide

        Node id 0 and err state 0x30000085 : HSM CLUSTER ERROR: Server in cluster is 
 unavailable

Parameters

-h

Displays help for the command.

Required: Yes

-i

Specifies the identifier for the elliptic curve. Enter an identifier.

Valid values:

• 2: NID_X9_62_prime256v1

• 14: NID_secp384r1

• 16: NID_secp256k1

Required: Yes

-l

Specifies a user-defined label for the key pair. Type a string. The same label applies to both keys 
in the pair. The maximum size allowable for label is 127 characters.

You can use any phrase that helps you to identify the key. Because the label does not have to be 
unique, you can use it to group and categorize keys.

Required: Yes

-id

Specifies a user-defined identifier for the key pair. Type a string that is unique in the cluster. The 
default is an empty string. The ID that you specify applies to both keys in the pair.

Default: No ID value.

Required: No

Reference 707



AWS CloudHSM User Guide

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of 
the -timeout parameter expires. If the key is not synchronized to the specified number of 
servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-m_value

Specifies the number of users who must approve any cryptographic operation that uses the 
private key in the pair. Type a value from 0 to 8.

This parameter establishes a quorum authentication requirement for the private key. The 
default value, 0, disables the quorum authentication feature for the key. When quorum 
authentication is enabled, the specified number of users must sign a token to approve 
cryptographic operations that use the private key, and operations that share or unshare the 
private key.

To find the m_value of a key, use getKeyInfo.

This parameter is valid only when the -u parameter in the command shares the key pair with 
enough users to satisfy the m_value requirement.

Default: 0

Required: No

-nex

Makes the private key nonextractable. The private key that is generated cannot be exported 
from the HSM. Public keys are always extractable.

Default: Both the public and private keys in the key pair are extractable.

Required: No

Reference 708



AWS CloudHSM User Guide

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute.

Default: The key is persistent.

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number 
of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is 
synchronized to the minimum number of servers.

Required: No

-u

Shares the private key in the pair with the specified users. This parameter gives other HSM 
crypto users (CUs) permission to use the private key in cryptographic operations. Public keys can 
be used by any user without sharing.

Type a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID 
of the current user. To find HSM user IDs of CUs on the HSM, use listUsers. To share and unshare 
existing keys, use shareKey in the cloudhsm_mgmt_util.

Default: Only the current user can use the private key.

Required: No

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been 
tampered with.

Reference 709



AWS CloudHSM User Guide

Default: No attestation check.

Required: No

Related topics

• genSymKey

• genRSAKeyPair

• genDSAKeyPair

Generate an AWS CloudHSM RSA key pair using KMU

Use the genRSAKeyPair command in the AWS CloudHSM key_mgmt_util tool to generate an
RSA asymmetric key pair. You specify the key type, modulus length, and a public exponent. The 
command generates a modulus of the specified length and creates the key pair. You can assign an 
ID, share the key with other HSM users, create nonextractable keys and keys that expire when the 
session ends. When the command succeeds, it returns a key handle that the HSM assigns to the key. 
You can use the key handle to identify the key to other commands.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Tip

To find the attributes of a key that you have created, such as the type, length, label, and ID, 
use getAttribute. To find the keys for a particular user, use getKeyInfo. To find keys based 
on their attribute values, use findKey.

Syntax

genRSAKeyPair -h

genRSAKeyPair -m <modulus length>
              -e <public exponent> 
              -l <label> 
              [-id <key ID>]  
              [-min_srv <minimum number of servers>]  
              [-m_value <0..8>] 

Reference 710

https://en.wikipedia.org/wiki/RSA_(cryptosystem)


AWS CloudHSM User Guide

              [-nex]  
              [-sess]  
              [-timeout <number of seconds> ] 
              [-u <user-ids>]  
              [-attest] 

Examples

These examples show how to use genRSAKeyPair to create asymmetric key pairs in your HSMs.

Example : Create and examine an RSA key pair

This command creates an RSA key pair with a 2048-bit modulus and an exponent of 65537. The 
output shows that the public key handle is 2100177 and the private key handle is 2100426.

Command: genRSAKeyPair -m 2048 -e 65537 -l rsa_test 

Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 2100177    private key handle: 
 2100426 

        Cluster Status: 
        Node id 0 status: 0x00000000 : HSM Return: SUCCESS 
        Node id 1 status: 0x00000000 : HSM Return: SUCCESS

The next command uses getAttribute to get the attributes of the public key that we just created. It 
writes the output to the attr_2100177 file. It is followed by a cat command that gets the content 
of the attribute file. For help interpreting the key attributes, see the AWS CloudHSM key attribute 
reference for KMU.

The resulting hexadecimal values confirm that it is a public key (OBJ_ATTR_CLASS 0x02) 
with a type of RSA (OBJ_ATTR_KEY_TYPE 0x00). You can use this public key to encrypt 
(OBJ_ATTR_ENCRYPT 0x01), but not to decrypt (OBJ_ATTR_DECRYPT 0x00). The results also 
include the key length (512, 0x200), the modulus, the modulus length (2048, 0x800), and the 
public exponent (65537, 0x10001).

Command:  getAttribute -o 2100177 -a 512 -out attr_2100177

Attribute size: 801, count: 26
Written to: attr_2100177 file 

Reference 711



AWS CloudHSM User Guide

        Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS

$  cat attr_2100177
OBJ_ATTR_CLASS
0x02
OBJ_ATTR_KEY_TYPE
0x00
OBJ_ATTR_TOKEN
0x01
OBJ_ATTR_PRIVATE
0x01
OBJ_ATTR_ENCRYPT
0x01
OBJ_ATTR_DECRYPT
0x00
OBJ_ATTR_WRAP
0x01
OBJ_ATTR_UNWRAP
0x00
OBJ_ATTR_SIGN
0x00
OBJ_ATTR_VERIFY
0x01
OBJ_ATTR_LOCAL
0x01
OBJ_ATTR_SENSITIVE
0x00
OBJ_ATTR_EXTRACTABLE
0x01
OBJ_ATTR_LABEL
rsa_test
OBJ_ATTR_ID

OBJ_ATTR_VALUE_LEN
0x00000200
OBJ_ATTR_KCV
0xc51c18
OBJ_ATTR_MODULUS
0xbb9301cc362c1d9724eb93da8adab0364296bde7124a241087d9436b9be57e4f7780040df03c2c
1c0fe6e3b61aa83c205280119452868f66541bbbffacbbe787b8284fc81deaeef2b8ec0ba25a077d
6983c77a1de7b17cbe8e15b203868704c6452c2810344a7f2736012424cf0703cf15a37183a1d2d0
97240829f8f90b063dd3a41171402b162578d581980976653935431da0c1260bfe756d85dca63857
d9f27a541676cb9c7def0ef6a2a89c9b9304bcac16fdf8183c0a555421f9ad5dfeb534cf26b65873
970cdf1a07484f1c128b53e10209cc6f7ac308669112968c81a5de408e7f644fe58b1a9ae1286fec

Reference 712



AWS CloudHSM User Guide

b3e4203294a96fae06f8f0db7982cb5d7f
OBJ_ATTR_MODULUS_BITS
0x00000800
OBJ_ATTR_PUBLIC_EXPONENT
0x010001
OBJ_ATTR_TRUSTED
0x00
OBJ_ATTR_WRAP_WITH_TRUSTED
0x00
OBJ_ATTR_DESTROYABLE
0x01
OBJ_ATTR_DERIVE
0x00
OBJ_ATTR_ALWAYS_SENSITIVE
0x00
OBJ_ATTR_NEVER_EXTRACTABLE
0x00

Example : Generate a shared RSA key pair

This command generates an RSA key pair and shares the private key with user 4, another CU on 
the HSM. The command uses the m_value parameter to require at least two approvals before 
the private key in the pair can be used in a cryptographic operation. When you use the m_value
parameter, you must also use -u in the command and the m_value cannot exceed the total 
number of users (number of values in -u + owner).

 Command:  genRSAKeyPair -m 2048 -e 65537 -l rsa_mofn -id rsa_mv2 -u 4 -m_value 2

        Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 27    private key handle: 28 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

-h

Displays help for the command.

Required: Yes

Reference 713



AWS CloudHSM User Guide

-m

Specifies the length of the modulus in bits. The minimum value is 2048.

Required: Yes

-e

Specifies the public exponent. The value must be an odd number greater than or equal to 
65537.

Required: Yes

-l

Specifies a user-defined label for the key pair. Type a string. The same label applies to both keys 
in the pair. The maximum size allowable for label is 127 characters.

You can use any phrase that helps you to identify the key. Because the label does not have to be 
unique, you can use it to group and categorize keys.

Required: Yes

-id

Specifies a user-defined identifier for the key pair. Type a string that is unique in the cluster. The 
default is an empty string. The ID that you specify applies to both keys in the pair.

Default: No ID value.

Required: No

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of 
the -timeout parameter expires. If the key is not synchronized to the specified number of 
servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Reference 714



AWS CloudHSM User Guide

Required: No

-m_value

Specifies the number of users who must approve any cryptographic operation that uses the 
private key in the pair. Type a value from 0 to 8.

This parameter establishes a quorum authentication requirement for the private key. The 
default value, 0, disables the quorum authentication feature for the key. When quorum 
authentication is enabled, the specified number of users must sign a token to approve 
cryptographic operations that use the private key, and operations that share or unshare the 
private key.

To find the m_value of a key, use getKeyInfo.

This parameter is valid only when the -u parameter in the command shares the key pair with 
enough users to satisfy the m_value requirement.

Default: 0

Required: No

-nex

Makes the private key nonextractable. The private key that is generated cannot be exported 
from the HSM. Public keys are always extractable.

Default: Both the public and private keys in the key pair are extractable.

Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute.

Default: The key is persistent.

Reference 715



AWS CloudHSM User Guide

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number 
of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is 
synchronized to the minimum number of servers.

Required: No

-u

Shares the private key in the pair with the specified users. This parameter gives other HSM 
crypto users (CUs) permission to use the private key in cryptographic operations. Public keys can 
be used by any user without sharing.

Type a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID 
of the current user. To find HSM user IDs of CUs on the HSM, use listUsers. To share and unshare 
existing keys, use shareKey in the cloudhsm_mgmt_util.

Default: Only the current user can use the private key.

Required: No

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been 
tampered with.

Default: No attestation check.

Required: No

Related topics

• genSymKey

• genDSAKeyPair

Reference 716



AWS CloudHSM User Guide

• genECCKeyPair

Generate an AWS CloudHSM symmetric key using KMU

Use the genSymKey command in the AWS CloudHSM key_mgmt_util tool to generate a symmetric 
key in your hardware security modules (HSM). You can specify the key type and size, assign an ID 
and label, and share the key with other HSM users. You can also create nonextractable keys and 
keys that expire when the session ends. When the command succeeds, it returns a key handle that 
the HSM assigns to the key. You can use the key handle to identify the key to other commands.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

genSymKey -h

genSymKey -t <key-type>
          -s <key-size> 
          -l <label> 
          [-id <key-ID>]  
          [-min_srv <minimum-number-of-servers>]  
          [-m_value <0..8>] 
          [-nex]  
          [-sess]  
          [-timeout <number-of-seconds> ] 
          [-u <user-ids>]  
          [-attest] 

Examples

These examples show how to use genSymKey to create symmetric keys in your HSMs.

Tip

To use the keys you make with these examples for HMAC operations, you must set
OBJ_ATTR_SIGN and OBJ_ATTR_VERIFY to TRUE after you generate the key. To set these 
values, use setAttribute in CloudHSM Management Utility (CMU). For more information, 
see setAttribute.

Reference 717



AWS CloudHSM User Guide

Example : Generate an AES key

This command creates a 256-bit AES key with an aes256 label. The output shows that the key 
handle of the new key is 6.

Command: genSymKey -t 31 -s 32 -l aes256

        Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 6 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Example : Create a session key

This command creates a nonextractable 192-bit AES key that is valid only in the current session. 
You might want to create a key like this to wrap (and then immediately unwrap) a key that is being 
exported.

Command: genSymKey -t 31 -s 24 -l tmpAES -id wrap01 -nex -sess 

Example : Return quickly

This command creates a generic 512-byte key with a label of IT_test_key. The command does 
not wait for the key to be synchronized to all HSMs in the cluster. Instead, it returns as soon as the 
key is created on any one HSM (-min_srv 1) or in 1 second (-timeout 1), whichever is shorter. If 
the key is not synchronized to the specified minimum number of HSMs before the timeout expires, 
it is not generated. You might want to use a command like this in a script that creates numerous 
keys, like the for loop in the following example.

Command: genSymKey -t 16 -s 512 -l IT_test_key -min_srv 1 -timeout 1

$  for i in {1..30};  
     do /opt/cloudhsm/bin/key_mgmt_util singlecmd loginHSM -u CU -s example_user -p 
 example_pwd genSymKey -l aes -t 31 -s 32 -min_srv 1 -timeout 1;  
 done;

Reference 718



AWS CloudHSM User Guide

Example : Create a quorum authorized generic key

This command creates a 2048-bit generic secret key with the label generic-mV2. The command 
uses the -u parameter to share the key with another CU, user 6. It uses the -m_value parameter 
to require a quorum of at least two approvals for any cryptographic operations that use the key. 
The command also uses the -attest parameter to verify the integrity of the firmware on which 
the key is generated.

The output shows that the command generated a key with key handle 9 and that the attestation 
check on the cluster firmware passed.

                Command:  genSymKey -t 16 -s 2048 -l generic-mV2 -m_value 2 -u 6 -
attest

        Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 9 

        Attestation Check : [PASS] 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
      

Example : Create and examine a key

This command creates a Triple DES key with a 3DES_shared label and an ID of IT-02. The key 
can be used by the current user, and users 4 and 5. The command fails if the ID is not unique in the 
cluster or if the current user is user 4 or 5.

The output shows that the new key has key handle 7.

Command: genSymKey -t 21 -s 24 -l 3DES_shared -id IT-02 -u 4,5

       Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 7 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Reference 719



AWS CloudHSM User Guide

To verify that the new 3DES key is owned by the current user and shared with users 4 and 5, use
getKeyInfo. The command uses the handle that was assigned to the new key (Key Handle: 7).

The output confirms that the key is owned by user 3 and shared with users 4 and 5.

Command:  getKeyInfo -k 7

        Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

        Owned by user 3 

        also, shared to following 2 user(s): 

                 4, 5

To confirm the other properties of the key, use getAttribute. The first command uses
getAttribute to get all attributes (-a 512) of key handle 7 (-o 7). It writes them to the attr_7
file. The second command uses cat to get the contents of the attr_7 file.

This command confirms that key 7 is a 192-bit (OBJ_ATTR_VALUE_LEN 0x00000018 or 24-byte) 
3DES (OBJ_ATTR_KEY_TYPE 0x15) symmetric key (OBJ_ATTR_CLASS 0x04) with a label of
3DES_shared (OBJ_ATTR_LABEL 3DES_shared) and an ID of IT_02 (OBJ_ATTR_ID IT-02). 
The key is persistent (OBJ_ATTR_TOKEN 0x01) and extractable (OBJ_ATTR_EXTRACTABLE 0x01) 
and can be used for encryption, decryption, and wrapping.

Tip

To find the attributes of a key that you have created, such as the type, length, label, and ID, 
use getAttribute. To find the keys for a particular user, use getKeyInfo. To find keys based 
on their attribute values, use findKey.

For help interpreting the key attributes, see the AWS CloudHSM key attribute reference for KMU.

Command:  getAttribute -o 7 -a 512 -out attr_7

got all attributes of size 444 attr cnt 17
Attributes dumped into attr_7 file 

        Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS

Reference 720



AWS CloudHSM User Guide

$  cat attr_7

OBJ_ATTR_CLASS
0x04
OBJ_ATTR_KEY_TYPE
0x15
OBJ_ATTR_TOKEN
0x01
OBJ_ATTR_PRIVATE
0x01
OBJ_ATTR_ENCRYPT
0x01
OBJ_ATTR_DECRYPT
0x01
OBJ_ATTR_WRAP
0x00
OBJ_ATTR_UNWRAP
0x00
OBJ_ATTR_SIGN
0x00
OBJ_ATTR_VERIFY
0x00
OBJ_ATTR_LOCAL
0x01
OBJ_ATTR_SENSITIVE
0x01
OBJ_ATTR_EXTRACTABLE
0x01
OBJ_ATTR_LABEL
3DES_shared
OBJ_ATTR_ID
IT-02
OBJ_ATTR_VALUE_LEN
0x00000018
OBJ_ATTR_KCV
0x59a46e

Reference 721



AWS CloudHSM User Guide

Tip

To use the keys you make with these examples for HMAC operations, you must set
OBJ_ATTR_SIGN and OBJ_ATTR_VERIFY to TRUE after you generate the key. To set these 
values, use setAttribute in CMU. For more information, see setAttribute.

Parameters

-h

Displays help for the command.

Required: Yes

-t

Specifies the type of the symmetric key. Enter the constant that represents the key type. For 
example, to create an AES key, type -t 31.

Valid values:

• 16: GENERIC_SECRET. A generic secret key is a byte array that does not conform to any 
particular standard, such as the requirements for an AES key.

• 18: RC4. RC4 keys are not valid on FIPS-mode HSMs

• 21: Triple DES (3DES). In accordance with NIST guidance, this is disallowed for clusters in FIPS 
mode after 2023. For clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 
Compliance: 2024 Mechanism Deprecation for details.

• 31: AES

Required: Yes

-s

Specifies the key size in bytes. For example, to create a 192-bit key, type 24.

Valid values for each key type:

• AES: 16 (128 bits), 24 (192 bits), 32 (256 bits)

• 3DES: 24 (192 bits)

• Generic Secret: <3584 (28672 bits)

Required: Yes

Reference 722

http://docs.oasis-open.org/pkcs11/pkcs11-curr/v2.40/cos01/pkcs11-curr-v2.40-cos01.html#_Toc408226962
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard


AWS CloudHSM User Guide

-l

Specifies a user-defined label for the key. Type a string.

You can use any phrase that helps you to identify the key. Because the label does not have to be 
unique, you can use it to group and categorize keys.

Required: Yes

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been 
tampered with.

Default: No attestation check.

Required: No

-id

Specifies a user-defined identifier for the key. Type a string that is unique in the cluster. The 
default is an empty string.

Default: No ID value.

Required: No

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of 
the -timeout parameter expires. If the key is not synchronized to the specified number of 
servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-m_value

Specifies the number of users who must approve any cryptographic operation that uses the key. 
Type a value from 0 to 8.

Reference 723



AWS CloudHSM User Guide

This parameter establishes a quorum authentication requirement for the key. The default value,
0, disables the quorum authentication feature for the key. When quorum authentication is 
enabled, the specified number of users must sign a token to approve cryptographic operations 
that use the key, and operations that share or unshare the key.

To find the m_value of a key, use getKeyInfo.

This parameter is valid only when the -u parameter in the command shares the key with 
enough users to satisfy the m_value requirement.

Default: 0

Required: No

-nex

Makes the key nonextractable. The key that is generated cannot be exported from the HSM.

Default: The key is extractable.

Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute.

Default: The key is persistent.

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number 
of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is 
synchronized to the minimum number of servers.

Reference 724



AWS CloudHSM User Guide

Required: No

-u

Shares the key with the specified users. This parameter gives other HSM crypto users (CUs) 
permission to use this key in cryptographic operations.

Type a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID 
of the current user. To find HSM user IDs of CUs on the HSM, use listUsers. To share and unshare 
existing keys, use shareKey in the cloudhsm_mgmt_util.

Default: Only the current user can use the key.

Required: No

Related topics

• exSymKey

• genRSAKeyPair

• genDSAKeyPair

• genECCKeyPair

• setAttribute

Get an AWS CloudHSM key attribute using KMU

Use the getAttribute command in the AWS CloudHSM key_mgmt_util to write one or all of the 
attribute values for an AWS CloudHSM key to a file. If the attribute you specify does not exist for 
the key type, such as the modulus of an AES key, getAttribute returns an error.

Key attributes are properties of a key. They include characteristics, like the key type, class, label, 
and ID, and values that represent actions that you can perform with the key, like encrypt, decrypt, 
wrap, sign, and verify.

You can use getAttribute only on keys that you own and key that are shared with you. You can 
run this command or the getAttribute command in cloudhsm_mgmt_util, which gets one attribute 
value of a key from all HSMs in a cluster, and writes it to stdout or to a file.

To get a list of attributes and the constants that represent them, use the listAttributes command. 
To change the attribute values of existing keys, use setAttribute in key_mgmt_util and setAttribute

Reference 725



AWS CloudHSM User Guide

in cloudhsm_mgmt_util. For help interpreting the key attributes, see the AWS CloudHSM key 
attribute reference for KMU.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

getAttribute -h  

getAttribute -o <key handle> 
             -a <attribute constant> 
             -out <file>

Examples

These examples show how to use getAttribute to get the attributes of keys in your HSMs.

Example : Get the key type

This example gets the type of the key, such an AES, 3DES, or generic key, or an RSA or elliptic curve 
key pair.

The first command runs listAttributes, which gets the key attributes and the constants that 
represent them. The output shows that the constant for key type is 256. For help interpreting the 
key attributes, see the AWS CloudHSM key attribute reference for KMU.

Command: listAttributes

Description
===========
The following are all of the possible attribute values for getAttributes. 

      OBJ_ATTR_CLASS                  = 0 
      OBJ_ATTR_TOKEN                  = 1 
      OBJ_ATTR_PRIVATE                = 2 
      OBJ_ATTR_LABEL                  = 3 
      OBJ_ATTR_KEY_TYPE               = 256 
      OBJ_ATTR_ID                     = 258 
      OBJ_ATTR_SENSITIVE              = 259 
      OBJ_ATTR_ENCRYPT                = 260 
      OBJ_ATTR_DECRYPT                = 261 
      OBJ_ATTR_WRAP                   = 262 

Reference 726



AWS CloudHSM User Guide

      OBJ_ATTR_UNWRAP                 = 263 
      OBJ_ATTR_SIGN                   = 264 
      OBJ_ATTR_VERIFY                 = 266 
      OBJ_ATTR_LOCAL                  = 355 
      OBJ_ATTR_MODULUS                = 288 
      OBJ_ATTR_MODULUS_BITS           = 289 
      OBJ_ATTR_PUBLIC_EXPONENT        = 290 
      OBJ_ATTR_VALUE_LEN              = 353 
      OBJ_ATTR_EXTRACTABLE            = 354 
      OBJ_ATTR_KCV                    = 371

The second command runs getAttribute. It requests the key type (attribute 256) for key handle
524296 and writes it to the attribute.txt file.

Command: getAttribute -o 524296 -a 256 -out attribute.txt
Attributes dumped into attribute.txt file

The final command gets the content of the key file. The output reveals that the key type is 0x15
or 21, which is a Triple DES (3DES) key. For definitions of the class and type values, see the Key 
Attribute Reference.

$  cat attribute.txt
OBJ_ATTR_KEY_TYPE
0x00000015

Example : Get all attributes of a key

This command gets all attributes of the key with key handle 6 and writes them to the attr_6 file. 
It uses an attribute value of 512, which represents all attributes.

Command: getAttribute -o 6 -a 512 -out attr_6
        
got all attributes of size 444 attr cnt 17
Attributes dumped into attribute.txt file 

        Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS>    

This command shows the content of a sample attribute file with all attribute values. Among the 
values, it reports that key is a 256-bit AES key with an ID of test_01 and a label of aes256.The 
key is extractable and persistent, that is, not a session-only key. For help interpreting the key 
attributes, see the AWS CloudHSM key attribute reference for KMU.

Reference 727



AWS CloudHSM User Guide

$  cat attribute.txt

OBJ_ATTR_CLASS
0x04
OBJ_ATTR_KEY_TYPE
0x15
OBJ_ATTR_TOKEN
0x01
OBJ_ATTR_PRIVATE
0x01
OBJ_ATTR_ENCRYPT
0x01
OBJ_ATTR_DECRYPT
0x01
OBJ_ATTR_WRAP
0x01
OBJ_ATTR_UNWRAP
0x01
OBJ_ATTR_SIGN
0x00
OBJ_ATTR_VERIFY
0x00
OBJ_ATTR_LOCAL
0x01
OBJ_ATTR_SENSITIVE
0x01
OBJ_ATTR_EXTRACTABLE
0x01
OBJ_ATTR_LABEL
aes256
OBJ_ATTR_ID
test_01
OBJ_ATTR_VALUE_LEN
0x00000020
OBJ_ATTR_KCV
0x1a4b31

Parameters

-h

Displays help for the command.

Reference 728



AWS CloudHSM User Guide

Required: Yes

-o

Specifies the key handle of the target key. You can specify only one key in each command. To 
get the key handle of a key, use findKey.

Also, you must own the specified key or it must be shared with you. To find the users of a key, 
use getKeyInfo.

Required: Yes

-a

Identifies the attribute. Enter a constant that represents an attribute, or 512, which represents 
all attributes. For example, to get the key type, type 256, which is the constant for the
OBJ_ATTR_KEY_TYPE attribute.

To list the attributes and their constants, use listAttributes. For help interpreting the key 
attributes, see the AWS CloudHSM key attribute reference for KMU.

Required: Yes

-out

Writes the output to the specified file. Type a file path. You cannot write the output to stdout.

If the specified file exists, getAttribute overwrites the file without warning.

Required: Yes

Related topics

• getAttribute in cloudhsm_mgmt_util

• listAttributes

• setAttribute

• findKey

• Key Attribute Reference

Reference 729



AWS CloudHSM User Guide

Export an AWS CloudHSM key to fake PEM format using KMU

Use the getCaviumPrivKey command in the AWS CloudHSM key_mgmt_util to export a private 
key from a hardware security module (HSM) in fake PEM format. The fake PEM file, which does 
not contain the actual private key material but instead references the private key in the HSM, can 
then be used to establish SSL/TLS offloading from your web server to AWS CloudHSM. For more 
information, see SSL/TLS Offload on Linux using Tomcat or SSL/TLS Offload on Linux using NGINX 
or Apache.

Before you run any key_mgmt_util command, you must start key_mgmt_util and login to the HSM 
as a crypto user (CU).

Syntax

getCaviumPrivKey -h

getCaviumPrivKey -k <private-key-handle>
                 -out <fake-PEM-file>
        

Examples

This example shows how to use getCaviumPrivKey to export a private key in fake PEM format.

Example : Export a fake PEM file

This command creates and exports a fake PEM version of a private key with handle 15 and saves 
it to a file called cavKey.pem. When the command succeeds, exportPrivateKey returns a success 
message.

Command: getCaviumPrivKey -k 15 -out cavKey.pem

Private Key Handle is written to cavKey.pem in fake PEM format 

        getCaviumPrivKey returned: 0x00 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

Reference 730



AWS CloudHSM User Guide

-h

Displays command line help for the command.

Required: Yes

-k

Specifies the key handle of the private key to be exported in fake PEM format.

Required: Yes

-out

Specifies the name of the file to which the fake PEM key will be written.

Required: Yes

Related topics

• importPrivateKey

• SSL/TLS Offload on Linux using Tomcat

• SSL/TLS Offload on Linux using NGINX or Apache

Get HSM partition certificates using AWS CloudHSM KMU

Use the getCert command in the AWS CloudHSM key_mgmt_util to retrieve a hardware security 
module's (HSM) partition certificates and saves them to a file. When you run the command, you 
designate the type of certificate to retrieve. To do that, you use one of the corresponding integers 
as described in the Parameters section that follows. To learn about the role of each of these 
certificates, see Verify HSM Identity.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

getCert -h  

getCert -f <file-name> 
        -t <certificate-type>

Reference 731



AWS CloudHSM User Guide

Example

This example shows how to use getCert to retrieve a cluster's customer root certificate and save it 
as a file.

Example : Retrieve a customer root certificate

This command exports a customer root certificate (represented by integer 4) and saves it to a file 
called userRoot.crt. When the command succeeds, getCert returns a success message.

Command: getCert -f userRoot.crt -s 4

Cfm3GetCert() returned 0 :HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-f

Specifies the name of the file to which the retrieved certificate will be saved.

Required: Yes

-s

An integer that specifies the type of partition certificate to retrieve. The integers and their 
corresponding certificate types are as follows:

• 1 – Manufacturer root certificate

• 2 – Manufacturer hardware certificate

• 4 – Customer root certificate

• 8 – Cluster certificate (signed by customer root certificate)

• 16 – Cluster certificate (chained to the manufacturer root certificate)

Required: Yes

Reference 732



AWS CloudHSM User Guide

Related topics

• Verify HSM Identity

Get the users of an AWS CloudHSM key using KMU

Use the getKeyInfo command in the AWS CloudHSM key_mgmt_util to return the hardware 
security module (HSM) user IDs of users who can use the key, including the owner and crypto users 
(CU) with whom the key is shared. When quorum authentication is enabled on a key, getKeyInfo
also returns the number of users who must approve cryptographic operations that use the key. You 
can run getKeyInfo only on keys that you own and keys that are shared with you.

When you run getKeyInfo on public keys, getKeyInfo returns only the key owner, even though 
all users of the HSM can use the public key. To find the HSM user IDs of users in your HSMs, use
listUsers. To find the keys for a particular user, use findKey -u.

You own the keys that you create. You can share a key with other users when you create it. Then, to 
share or unshare an existing key, use shareKey in cloudhsm_mgmt_util.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

getKeyInfo -h

getKeyInfo -k <key-handle>

Examples

These examples show how to use getKeyInfo to get information about the users of a key.

Example : Get the users for a symmetric key

This command gets the users who can use the AES (symmetric) key with key handle 9. The output 
shows that user 3 owns the key and has shared it with user 4.

Command:  getKeyInfo -k 9

       Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

       Owned by user 3 

Reference 733



AWS CloudHSM User Guide

       also, shared to following 1 user(s): 

                4

Example : Get the users for an asymmetric key pair

These commands use getKeyInfo to get the users who can use the keys in an RSA (asymmetric) key 
pair. The public key has key handle 21. The private key has key handle 20.

When you run getKeyInfo on the private key (20), it returns the key owner (3) and crypto users 
(CUs) 4 and 5, with whom the key is shared.

Command:  getKeyInfo -k 20

       Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

       Owned by user 3 

       also, shared to following 2 user(s): 

                4 
                5

When you run getKeyInfo on the public key (21), it returns only the key owner (3).

Command:  getKeyInfo -k 21

       Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

       Owned by user 3

To confirm that user 4 can use the public key (and all public keys on the HSM), use the -u
parameter of findKey.

The output shows that user 4 can use both the public (21) and private (20) key in the key pair. User 
4 can also use all other public keys and any private keys that they have created or that have been 
shared with them.

Command:  findKey -u 4
Total number of keys present 8 

Reference 734



AWS CloudHSM User Guide

 number of keys matched from start index 0::7
11, 12, 262159, 262161, 262162, 19, 20, 21 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Example : Get the quorum authentication value (m_value) for a key

This example shows how to get the m_value for a key, that is, the number of users in the quorum 
who must approve any cryptographic operations that use the key.

When quorum authentication is enabled on a key, a quorum of users must approve any 
cryptographic operations that use the key. To enable quorum authentication and set the quorum 
size, use the -m_value parameter when you create the key.

This command uses genRSAKeyPair to create an RSA key pair that is shared with user 4. It uses 
the m_value parameter to enable quorum authentication on the private key in the pair and set 
the quorum size to two users. The number of users must be large enough to provide the required 
approvals.

The output shows that the command created public key 27 and private key 28.

 Command:  genRSAKeyPair -m 2048 -e 195193 -l rsa_mofn -id rsa_mv2 -u 4 -m_value 2

        Cfm3GenerateKeyPair returned: 0x00 : HSM Return: SUCCESS 

        Cfm3GenerateKeyPair:    public key handle: 27    private key handle: 28 

        Cluster Error Status 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

This command uses getKeyInfo to get information about the users of the private key. The output 
shows that the key is owned by user 3 and shared with user 4. It also shows that a quorum of two 
users must approve every cryptographic operation that uses the key.

Command:  getKeyInfo -k 28

        Cfm3GetKey returned: 0x00 : HSM Return: SUCCESS 

Reference 735



AWS CloudHSM User Guide

        Owned by user 3 

        also, shared to following 1 user(s): 

                 4 
         2 Users need to approve to use/manage this key

Parameters

-h

Displays command line help for the command.

Required: Yes

-k

Specifies the key handle of one key in the HSM. Enter the key handle of a key that you own or 
share. This parameter is required.

To find key handles, use the findKey command.

Required: Yes

Related topics

• getKeyInfo in cloudhsm_mgmt_util

• listUsers

• findKey

• findAllKeys in cloudhsm_mgmt_util

Display help information for AWS CloudHSM KMU

Use the help command in the AWS CloudHSM key_mgmt_util to display information about all 
available key_mgmt_util commands.

Before you run help, you must start key_mgmt_util.

Syntax

help

Reference 736



AWS CloudHSM User Guide

Example

This example shows the output of the help command.

Example

Command:  help

Help Commands Available:

Syntax: <command> -h 

   Command               Description 
   =======               =========== 

   exit                   Exits this application 
   help                   Displays this information 

        Configuration and Admin Commands 
   getHSMInfo             Gets the HSM Information 
   getPartitionInfo       Gets the Partition Information 
   listUsers              Lists all users of a partition 
   loginStatus            Gets the Login Information 
   loginHSM               Login to the HSM 
   logoutHSM              Logout from the HSM 

        M of N commands 
   getToken               Initiate an MxN service and get Token 
   delToken               delete Token(s) 
   approveToken           Approves an MxN service 
   listTokens             List all Tokens in the current partition 

        Key Generation Commands 

        Asymmetric Keys: 
   genRSAKeyPair          Generates an RSA Key Pair 
   genDSAKeyPair          Generates a DSA Key Pair 
   genECCKeyPair          Generates an ECC Key Pair 

        Symmetric Keys: 
   genPBEKey              Generates a PBE DES3 key 
   genSymKey              Generates a Symmetric keys 

Reference 737



AWS CloudHSM User Guide

        Key Import/Export Commands 
   createPublicKey        Creates an RSA public key 
   importPubKey           Imports RSA/DSA/EC Public key 
   exportPubKey           Exports RSA/DSA/EC Public key 
   importPrivateKey       Imports RSA/DSA/EC private key 
   exportPrivateKey       Exports RSA/DSA/EC private key 
   imSymKey               Imports a Symmetric key 
   exSymKey               Exports a Symmetric key 
   wrapKey                Wraps a key from from HSM using the specified handle 
   unWrapKey              UnWraps a key into HSM using the specified handle 

        Key Management Commands 
   deleteKey              Delete Key 
   setAttribute           Sets an attribute of an object 
   getKeyInfo             Get Key Info about shared users/sessions 
   findKey                Find Key 
   findSingleKey          Find single Key 
   getAttribute           Reads an attribute from an object 

        Certificate Setup Commands 
   getCert                Gets Partition Certificates stored on HSM 

        Key Transfer Commands 
   insertMaskedObject     Inserts a masked object 
   extractMaskedObject    Extracts a masked object 

        Management Crypto Commands 
   sign                   Generates a signature 
   verify                 Verifies a signature 
   aesWrapUnwrap          Does NIST AES Wrap/Unwrap 

        Helper Commands 
   Error2String           Converts Error codes to Strings 
                          save key handle in fake PEM format 
   getCaviumPrivKey       Saves an RSA private key handle 
                          in fake PEM format 
   IsValidKeyHandlefile   Checks if private key file has 
                          an HSM key handle or a real key 
   listAttributes         List all attributes for getAttributes 
   listECCCurveIds        List HSM supported ECC CurveIds

Parameters

There are no parameters for this command.

Reference 738



AWS CloudHSM User Guide

Related topics

• loginHSM and logoutHSM

Import a private key using AWS CloudHSM KMU

Use the importPrivateKey command in the AWS CloudHSM key_mgmt_util to import an 
asymmetric private key from a file to a hardware security module (HSM). The HSM does not 
allow direct import of keys in cleartext. The command encrypts the private key using an AES 
wrapping key you specify and unwraps the key inside the HSM. If you are trying to associate an 
AWS CloudHSM key with a certificate, refer to this topic.

Note

You cannot import a password-protected PEM key using a symmetric or private key.

You must specify an AES wrapping key that has OBJ_ATTR_UNWRAP and OBJ_ATTR_ENCRYPT
attribute value 1. To find a key's attributes, use the getAttribute command.

Note

This command does not offer the option to mark the imported key as non-exportable.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

importPrivateKey -h

importPrivateKey -l <label>
                 -f <key-file>
                 -w <wrapping-key-handle>
                 [-sess] 
                 [-id <key-id>] 
                 [-m_value <0...8>] 
                 [min_srv <minimum-number-of-servers>] 
                 [-timeout <number-of-seconds>] 

Reference 739



AWS CloudHSM User Guide

                 [-u <user-ids>] 
                 [-wk <wrapping-key-file>] 
                 [-attest]

Examples

This example shows how to use importPrivateKey to import a private key into an HSM.

Example : Import a private key

This command imports the private key from a file named rsa2048.key with the label
rsa2048-imported and a wrapping key with handle 524299. When the command succeeds,
importPrivateKey returns a key handle for the imported key and a success message.

Command: importPrivateKey -f rsa2048.key -l rsa2048-imported -w 524299

BER encoded key length is 1216

Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS

Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS

Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS

Private Key Unwrapped.  Key Handle: 524301

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-l

Specifies the user-defined private key label.

Reference 740



AWS CloudHSM User Guide

Required: Yes

-f

Specifies the file name of the key to import.

Required: Yes

-w

Specifies the key handle of the wrapping key. This parameter is required. To find key handles, 
use the findKey command.

To determine whether a key can be used as a wrapping key, use getAttribute to get the value 
of the OBJ_ATTR_WRAP attribute (262). To create a wrapping key, use genSymKey to create an 
AES key (type 31).

If you use the -wk parameter to specify an external unwrapping key, the -w wrapping key is 
used to wrap, but not unwrap, the key during import.

Required: Yes

-sess

Specifies the imported key as a session key.

Default: The imported key is held as a persistent (token) key in the cluster.

Required: No

-id

Specifies the ID of the key to be imported.

Default: No ID value.

Required: No

-m_value

Specifies the number of users who must approve any cryptographic operation that uses the 
imported key. Enter a value from 0 to 8.

This parameter is valid only when the -u parameter in the command shares the key with 
enough users to satisfy the m_value requirement.

Default: 0

Reference 741



AWS CloudHSM User Guide

Required: No

-min_srv

Specifies the minimum number of HSMs on which the imported key is synchronized before 
the value of the -timeout parameter expires. If the key is not synchronized to the specified 
number of servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-timeout

Specifies the number of seconds to wait for the key to sync across HSMs when the min-serv
parameter is included. If no number is specified, the polling continues forever.

Default: No limit

Required: No

-u

Specifies the list of users with whom to share the imported private key. This parameter gives 
other HSM crypto users (CUs) permission to use the imported key in cryptographic operations.

Enter a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the HSM user ID 
of the current user. To find the HSM user IDs of CUs on the HSM, use listUsers.

Default: Only the current user can use the imported key.

Required: No

-wk

Specifies the key to be used to wrap the key that is being imported. Enter the path and name of 
a file that contains a plaintext AES key.

When you include this parameter, importPrivateKey uses the key in the -wk file to wrap the 
key being imported. It also uses the key specified by the -w parameter to unwrap it.

Reference 742



AWS CloudHSM User Guide

Default: Use the wrapping key specified in the -w parameter to both wrap and unwrap.

Required: No

-attest

Performs an attestation check on the firmware response to ensure that the firmware on which 
the cluster runs has not been compromised.

Required: No

Related topics

• wrapKey

• unWrapKey

• genSymKey

• exportPrivateKey

Import a public key using AWS CloudHSM KMU

Use the importPubKey command in the AWS CloudHSM key_mgmt_util to import a PEM format 
public key into a hardware security module (HSM). You can use it to import public keys that were 
generated outside of the HSM. You can also use the command to import keys that were exported 
from an HSM, such as those exported by the exportPubKey command.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

importPubKey -h

importPubKey -l <label>
             -f <key-file>
             [-sess] 
             [-id <key-id>] 
             [min_srv <minimum-number-of-servers>] 
             [-timeout <number-of-seconds>] 
         

Reference 743



AWS CloudHSM User Guide

Examples

This example shows how to use importPubKey to import a public key into an HSM.

Example : Import a public key

This command imports a public key from a file named public.pem with the label
importedPublicKey. When the command succeeds, importPubKey returns a key handle for the 
imported key and a success message.

Command: importPubKey -l importedPublicKey -f public.pem

Cfm3CreatePublicKey returned: 0x00 : HSM Return: SUCCESS

Public Key Handle: 262230 

        Cluster Error Status 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-l

Specifies the user-defined public key label.

Required: Yes

-f

Specifies the file name of the key to import.

Required: Yes

-sess

Designates the imported key as a session key.

Reference 744



AWS CloudHSM User Guide

Default: The imported key is held as a persistent (token) key in the cluster.

Required: No

-id

Specifies the ID of the key to be imported.

Default: No ID value.

Required: No

-min_srv

Specifies the minimum number of HSMs to which the imported key is synchronized before 
the value of the -timeout parameter expires. If the key is not synchronized to the specified 
number of servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-timeout

Specifies the number of seconds to wait for the key to sync across HSMs when the min-serv
parameter is included. If no number is specified, the polling continues forever.

Default: No limit

Required: No

Related topics

• exportPubKey

• Generate Keys

Import a plaintext symmetric key using AWS CloudHSM KMU

Use the imSymKey command in the AWS CloudHSM key_mgmt_util tool to import a plaintext copy 
of a symmetric key from a file into the hardware security module (HSM). You can use it to import 

Reference 745



AWS CloudHSM User Guide

keys that you generate by any method outside of the HSM and keys that were exported from an 
HSM, such as the keys that the exSymKey, command writes to a file.

During the import process, imSymKey uses an AES key that you select (the wrapping key) to wrap
(encrypt) and then unwrap (decrypt) the key to be imported. However, imSymKey works only 
on files that contain plaintext keys. To export and import encrypted keys, use the wrapKey and
unWrapKey commands.

Also, the imSymKey command imports only symmetric keys. To import public keys, use
importPubKey. To import private keys, use importPrivateKey or wrapKey.

Note

You cannot import a password-protected PEM key using a symmetric or private key.

Imported keys work very much like keys generated in the HSM. However, the value of the
OBJ_ATTR_LOCAL attribute is zero, which indicates that it was not generated locally. You can use 
the following command to share a symmetric key as you import it. You can use the shareKey
command in cloudhsm_mgmt_util to share the key after it is imported.

imSymKey -l aesShared -t 31 -f kms.key -w 3296 -u 5

After you import a key, be sure to mark or delete the key file. This command does not prevent you 
from importing the same key material multiple times. The result, multiple keys with distinct key 
handles and the same key material, make it difficult to track use of the key material and prevent it 
from exceeding its cryptographic limits.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

imSymKey -h

imSymKey -f <key-file> 
         -w <wrapping-key-handle>   
         -t <key-type> 
         -l <label> 
         [-id <key-ID>] 
         [-sess] 

Reference 746



AWS CloudHSM User Guide

         [-wk <wrapping-key-file> ] 
         [-attest] 
         [-min_srv <minimum-number-of-servers>] 
         [-timeout <number-of-seconds> ] 
         [-u <user-ids>] 
     

Examples

These examples show how to use imSymKey to import symmetric keys into your HSMs.

Example : Import an AES symmetric key

This example uses imSymKey to import an AES symmetric key into the HSMs.

The first command uses OpenSSL to generate a random 256-bit AES symmetric key. It saves the 
key in the aes256.key file.

$  openssl rand -out aes256-forImport.key 32

The second command uses imSymKey to import the AES key from the aes256.key file into 
the HSMs. It uses key 20, an AES key in the HSM, as the wrapping key and it specifies a label of
imported. Unlike the ID, the label does not need to be unique in the cluster. The value of the -t
(type) parameter is 31, which represents AES.

The output shows that the key in the file was wrapped and unwrapped, then imported into the 
HSM, where it was assigned the key handle 262180.

Command:  imSymKey -f aes256.key -w 20 -t 31 -l imported

        Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Unwrapped.  Key Handle: 262180 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Reference 747



AWS CloudHSM User Guide

The next command uses getAttribute to get the OBJ_ATTR_LOCAL attribute (attribute 355) of the 
newly imported key and writes it to the attr_262180 file.

Command:  getAttribute -o 262180 -a 355 -out attributes/attr_262180
Attributes dumped into attributes/attr_262180_imported file 

        Cfm3GetAttribute returned: 0x00 : HSM Return: SUCCESS

When you examine the attribute file, you can see that the value of the OBJ_ATTR_LOCAL attribute 
is zero, which indicates that the key material was not generated in the HSM.

$  cat attributes/attr_262180_local
OBJ_ATTR_LOCAL
0x00000000

Example : Move a symmetric key between clusters

This example shows how to use exSymKey and imSymKey to move a plaintext AES key between 
clusters. You might use a process like this one to create an AES wrapping that exists on the HSMs 
both clusters. Once the shared wrapping key is in place, you can use wrapKey and unWrapKey to 
move encrypted keys between the clusters.

The CU user who performs this operation must have permission to log in to the HSMs on both 
clusters.

The first command uses exSymKey to export key 14, a 32-bit AES key, from the cluster 1 into the
aes.key file. It uses key 6, an AES key on the HSMs in cluster 1, as the wrapping key.

Command: exSymKey -k 14 -w 6 -out aes.key

        Cfm3WrapKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapHostKey returned: 0x00 : HSM Return: SUCCESS

Wrapped Symmetric Key written to file "aes.key"

The user then logs into key_mgmt_util in cluster 2 and runs an imSymKey command to import the 
key in the aes.key file into the HSMs in cluster 2. This command uses key 252152, an AES key on 
the HSMs in cluster 2, as the wrapping key.

Reference 748



AWS CloudHSM User Guide

Because the wrapping keys that exSymKey and imSymKey use wrap and immediately unwrap the 
target keys, the wrapping keys on the different clusters need not be the same.

The output shows that the key was successfully imported into cluster 2 and assigned a key handle 
of 21.

Command:  imSymKey -f aes.key -w 262152 -t 31 -l xcluster

        Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Unwrapped.  Key Handle: 21 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

To prove that key 14 of cluster 1 and key 21 in cluster 2 have the same key material, get the key 
check value (KCV) of each key. If the KCV values are the same, the key material is the same.

The following command uses getAttribute in cluster 1 to write the value of the KCV attribute 
(attribute 371) of key 14 to the attr_14_kcv file. Then, it uses a cat command to get the content 
of the attr_14_kcv file.

Command:  getAttribute -o 14 -a 371 -out attr_14_kcv
Attributes dumped into attr_14_kcv file

$  cat attr_14_kcv
OBJ_ATTR_KCV
0xc33cbd

This similar command uses getAttribute in cluster 2 to write the value of the KCV attribute 
(attribute 371) of key 21 to the attr_21_kcv file. Then, it uses a cat command to get the content 
of the attr_21_kcv file.

Command:  getAttribute -o 21 -a 371 -out attr_21_kcv
Attributes dumped into attr_21_kcv file

Reference 749



AWS CloudHSM User Guide

$  cat attr_21_kcv
OBJ_ATTR_KCV
0xc33cbd

The output shows that the KCV values of the two keys are the same, which proves that the key 
material is the same.

Because the same key material exists in the HSMs of both clusters, you can now share encrypted 
keys between the clusters without ever exposing the plaintext key. For example, you can use the
wrapKey command with wrapping key 14 to export an encrypted key from cluster 1, and then use
unWrapKey with wrapping key 21 to import the encrypted key into cluster 2.

Example : Import a session key

This command uses the -sess parameters of imSymKey to import a 192-bit Triple DES key that is 
valid only in the current session.

The command uses the -f parameter to specify he file that contains the key to import, the -t
parameter to specify the key type, and the -w parameter to specify the wrapping key. It uses the -
l parameter to specify a label that categorizes the key and the -id parameter to create a friendly, 
but unique, identifier for the key. It also uses the -attest parameter to verify the firmware that is 
importing the key.

The output shows that the key was successfully wrapped and unwrapped, imported into the 
HSM, and assigned the key handle 37. Also, the attestation check passed, which indicates that the 
firmware has not been tampered.

Command:  imSymKey -f 3des192.key -w 6 -t 21 -l temp -id test01 -sess -attest

        Cfm3WrapHostKey returned: 0x00 : HSM Return: SUCCESS 

        Cfm3CreateUnwrapTemplate returned: 0x00 : HSM Return: SUCCESS 

        Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Unwrapped.  Key Handle: 37 

        Attestation Check : [PASS] 

        Cluster Error Status 

Reference 750



AWS CloudHSM User Guide

        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Next, you can use the getAttribute or findKey commands to verify the attributes of the newly 
imported key. The following command uses findKey to verify that key 37 has the type, label, and 
ID specified by the command, and that it is a session key. A shown on line 5 of the output, findKey
reports that the only key that matches all of the attributes is key 37.

Command:  findKey -t 21 -l temp -id test01 -sess 1
Total number of keys present 1 

 number of keys matched from start index 0::0
37 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Parameters

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been 
tampered with.

Default: No attestation check.

Required: No

-f

Specifies the file that contains that key to import.

The file must contain a plaintext copy of an AES or Triple DES key of the specified length. RC4 
and DES keys are not valid on FIPS-mode HSMs.

• AES: 16, 24 or 32 bytes

• Triple DES (3DES): 24 bytes

Required: Yes

Reference 751



AWS CloudHSM User Guide

-h

Displays help for the command.

Required: Yes

-id

Specifies a user-defined identifier for the key. Type a string that is unique in the cluster. The 
default is an empty string.

Default: No ID value.

Required: No

-l

Specifies a user-defined label for the key. Type a string.

You can use any phrase that helps you to identify the key. Because the label does not have to be 
unique, you can use it to group and categorize keys.

Required: Yes

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of 
the -timeout parameter expires. If the key is not synchronized to the specified number of 
servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

Reference 752



AWS CloudHSM User Guide

To change a session key to a persistent (token) key, use setAttribute.

Default: The key is persistent.

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number 
of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is 
synchronized to the minimum number of servers.

Required: No

-t

Specifies the type of the symmetric key. Enter the constant that represents the key type. For 
example, to create an AES key, enter -t 31.

Valid values:

• 21: Triple DES (3DES).

• 31: AES

Required: Yes

-u

Shares the key you are importing with specified users. This parameter gives other HSM crypto 
users (CUs) permission to use this key in cryptographic operations.

Type one ID or a comma-separated list of HSM user IDs, such as -u 5,6. Do not include the 
HSM user ID of the current user. To find the an ID, you can use the listUsers command in the 
cloudhsm_mgmt_util command line tool or the listUsers command in the key_mgmt_util 
command line tool.

Required: No

-w

Specifies the key handle of the wrapping key. This parameter is required. To find key handles, 
use the findKey command.

Reference 753

https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-listUsers.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-listUsers.html


AWS CloudHSM User Guide

A wrapping key is a key in the HSM that is used to encrypt ("wrap") and then decrypt ("unwrap) 
the key during the import process. Only AES keys can be used as wrapping keys.

You can use any AES key (of any size) as a wrapping key. Because the wrapping key wraps, and 
then immediately unwraps, the target key, you can use as session-only AES key as a wrapping 
key. To determine whether a key can be used as a wrapping key, use getAttribute to get the 
value of the OBJ_ATTR_WRAP attribute (262). To create a wrapping key, use genSymKey to 
create an AES key (type 31).

If you use the -wk parameter to specify an external wrapping key, the -w wrapping key is used 
to unwrap, but not to wrap, the key that is being imported.

Note

Key 4 is an unsupported internal key. We recommend that you use an AES key that you 
create and manage as the wrapping key.

Required: Yes

-wk

Use the AES key in the specified file to wrap the key that is being imported. Enter the path and 
name of a file that contains a plaintext AES key.

When you include this parameter. imSymKey uses the key in the -wk file to wrap the key being 
imported and it uses the key in the HSM that is specified by the -w parameter to unwrap it. The
-w and -wk parameter values must resolve to the same plaintext key.

Default: Use the wrapping key on the HSM to unwrap.

Required: No

Related topics

• genSymKey

• exSymKey

• wrapKey

• unWrapKey

Reference 754



AWS CloudHSM User Guide

• exportPrivateKey

• exportPubKey

Insert a masked object using AWS CloudHSM KMU

Use the insertMaskedObject command in the AWS CloudHSM key_mgmt_util to insert a masked 
object from a file into a designated hardware security module (HSM). Masked objects are cloned
objects that are extracted from an HSM by using the extractMaskedObject command. They can 
only be used after inserting them back into the original cluster. You can only insert a masked object 
into the same cluster from which it was generated, or a clone of that cluster. This includes any 
cloned versions of the original cluster generated by copying a backup across regions and using that 
backup to create a new cluster.

Masked objects are an efficient way to offload and synchronize keys, including nonextractable 
keys (that is, keys that have a OBJ_ATTR_EXTRACTABLE value of 0). This way, keys can be securely 
synced across related clusters in different regions without the need to update the AWS CloudHSM
configure file.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

insertMaskedObject -h

insertMaskedObject -f <filename>
                   [-min_srv <minimum-number-of-servers>] 
                   [-timeout <number-of-seconds>]

Examples

This example shows how to use insertMaskedObject to insert a masked object file into an HSM.

Example : Insert a masked object

This command inserts a masked object into an HSM from a file named maskedObj. When the 
command succeeds, insertMaskedObject returns a key handle for the key decrypted from the 
masked object, and a success message.

Command: insertMaskedObject -f maskedObj

Reference 755



AWS CloudHSM User Guide

Cfm3InsertMaskedObject returned: 0x00 : HSM Return: SUCCESS 
        New Key Handle: 262433 

        Cluster Error Status 
        Node id 2 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-f

Specifies the file name of the masked object to insert.

Required: Yes

-min_srv

Specifies the minimum number of servers on which the inserted masked object is synchronized 
before the value of the -timeout parameter expires. If the object is not synchronized to the 
specified number of servers in the time allotted, it is not inserted.

Default: 1

Required: No

-timeout

Specifies the number of seconds to wait for the key to sync across servers when the min-serv
parameter is included. If no number is specified, the polling continues forever.

Default: No limit

Required: No

Reference 756



AWS CloudHSM User Guide

Related topics

• extractMaskedObject

• syncKey

• Copying a Backup Across Regions

• Creating an AWS CloudHSM Cluster from a Previous Backup

Validate key file using AWS CloudHSM KMU

Use the IsValidKeyHandlefile command in the AWS CloudHSM key_mgmt_util to find out whether 
a key file contains a real private key or a fake RSA PEM key. A fake PEM file does not contain 
the actual private key material but instead references the private key in the HSM. Such a file 
can be used to establish SSL/TLS offloading from your web server to AWS CloudHSM. For more 
information, see SSL/TLS Offload on Linux using Tomcat or SSL/TLS Offload on Linux using NGINX 
or Apache.

Note

IsValidKeyHandlefile only works for RSA keys.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

IsValidKeyHandlefile -h

IsValidKeyHandlefile -f <rsa-private-key-file>
        

Examples

These examples show how to use IsValidKeyHandlefile to determine whether a given key file 
contains the real key material or fake PEM key material.

Example : Validate a real private key

This command confirms that the file called privateKey.pem contains real key material.

Reference 757



AWS CloudHSM User Guide

Command: IsValidKeyHandlefile -f privateKey.pem

Input key file has real private key

Example : Invalidate a fake PEM key

This command confirms that the file called caviumKey.pem contains fake PEM key material made 
from key handle 15.

Command: IsValidKeyHandlefile -f caviumKey.pem
            
Input file has invalid key handle: 15

Parameters

This command takes the following parameters.

-h

Displays command line help for the command.

Required: Yes

-f

Specifies the RSA private key file to be checked for valid key material.

Required: Yes

Related topics

• getCaviumPrivKey

• SSL/TLS Offload on Linux using Tomcat

• SSL/TLS Offload on Linux using NGINX or Apache

List the attributes of an AWS CloudHSM key using KMU

Use the listAttributes command in the AWS CloudHSM key_mgmt_util to list the attributes of an 
AWS CloudHSM key and the constants that represent them. You use these constants to identify the 

Reference 758



AWS CloudHSM User Guide

attributes in getAttribute and setAttribute commands. For help interpreting the key attributes, see 
the AWS CloudHSM key attribute reference for KMU.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

This command has no parameters.

listAttributes

Example

This command lists the key attributes that you can get and change in key_mgmt_util and the 
constants that represent them. For help interpreting the key attributes, see the AWS CloudHSM key 
attribute reference for KMU.

To represent all attributes in the getAttribute command in key_mgmt_util, use 512.

Command: listAttributes

Following are the possible attribute values for getAttributes: 

      OBJ_ATTR_CLASS                  = 0 
      OBJ_ATTR_TOKEN                  = 1 
      OBJ_ATTR_PRIVATE                = 2 
      OBJ_ATTR_LABEL                  = 3 
      OBJ_ATTR_KEY_TYPE               = 256 
      OBJ_ATTR_ENCRYPT                = 260 
      OBJ_ATTR_DECRYPT                = 261 
      OBJ_ATTR_WRAP                   = 262 
      OBJ_ATTR_UNWRAP                 = 263 
      OBJ_ATTR_SIGN                   = 264 
      OBJ_ATTR_VERIFY                 = 266 
      OBJ_ATTR_LOCAL                  = 355 
      OBJ_ATTR_MODULUS                = 288 
      OBJ_ATTR_MODULUS_BITS           = 289 
      OBJ_ATTR_PUBLIC_EXPONENT        = 290 
      OBJ_ATTR_VALUE_LEN              = 353 
      OBJ_ATTR_EXTRACTABLE            = 354 
      OBJ_ATTR_KCV                    = 371

Reference 759



AWS CloudHSM User Guide

Related topics

• listAttributes in cloudhsm_mgmt_util

• getAttribute

• setAttribute

• Key Attribute Reference

List all AWS CloudHSM users using KMU

Use the listUsers command in the AWS CloudHSM key_mgmt_util to get the users in the hardware 
security modules (HSM), along with their user type and other attributes.

In key_mgmt_util, listUsers returns output that represents all HSMs in the cluster, even if they are 
not consistent. To get information about the users in each HSM, use the listUsers command in 
cloudhsm_mgmt_util.

The user commands in key_mgmt_util, listUsers and getKeyInfo, are read-only commands that 
crypto users (CUs) have permission to run. The remaining user management commands are 
part of cloudhsm_mgmt_util. They are run by crypto officers (CO) who have user management 
permissions.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

listUsers  

listUsers -h

Example

This command lists the users of HSMs in the cluster and their attributes. You can use the User ID
attribute to identify users in other commands, such as findKey, getAttribute, and getKeyInfo.

Command:  listUsers 

        Number Of Users found 4 

Reference 760



AWS CloudHSM User Guide

        Index       User ID     User Type       User Name           MofnPubKey    
 LoginFailureCnt         2FA 
        1                1      PCO             admin                     NO            
    0               NO 
        2                2      AU              app_user                  NO            
    0               NO 
        3                3      CU              alice                     YES           
    0               NO 
        4                4      CU              bob                       NO            
    0               NO 
        5                5      CU              trent                     YES           
    0               NO 

        Cfm3ListUsers returned: 0x00 : HSM Return: SUCCESS

The output includes the following user attributes:

• User ID: Identifies the user in key_mgmt_util and cloudhsm_mgmt_util commands.

• User type: Determines the operations that the user can perform on the HSM.

• User Name: Displays the user-defined friendly name for the user.

• MofnPubKey: Indicates whether the user has registered a key pair for signing quorum 
authentication tokens.

• LoginFailureCnt: Indicates the number of times the user has unsuccessfully logged in.

• 2FA: Indicates that the user has enabled multi-factor authentication.

Parameters

-h

Displays help for the command.

Required: Yes

Related topics

• listUsers in cloudhsm_mgmt_util

• findKey

Reference 761



AWS CloudHSM User Guide

• getAttribute

• getKeyInfo

Log in and out of an HSM using AWS CloudHSM KMU

Use the loginHSM and logoutHSM commands in the AWS CloudHSM key_mgmt_util to log in and 
out of the hardware security modules (HSM) in a cluster. Once logged in to the HSMs, you can use 
key_mgmt_util to perform a variety of key management operations, including public and private 
key generation, synchronization, and wrapping.

Before you run any key_mgmt_util command, you must start key_mgmt_util. In order to manage 
keys with key_mgmt_util, you must log in to the HSMs as a crypto user (CU).

Note

If you exceed five incorrect login attempts, your account is locked out. If you created your 
cluster before February 2018, your account is locked out after 20 incorrect login attempts. 
To unlock the account, a cryptographic officer (CO) must reset your password using the
changePswd command in cloudhsm_mgmt_util.
If you have more than one HSM in your cluster, you may be allowed additional incorrect 
login attempts before your account is locked out. This is because the CloudHSM client 
balances load across various HSMs. Therefore, the login attempt may not begin on the 
same HSM each time. If you are testing this functionality, we recommend you do so on a 
cluster with only one active HSM.

Syntax

loginHSM -h

loginHSM -u <user type>
         { -p | -hpswd } <password>
         -s <username>

Example

This example shows how to log in and out of the HSMs in a cluster with the loginHSM and
logoutHSM commands.

Reference 762



AWS CloudHSM User Guide

Example : Log in to the HSMs

This command logs you into the HSMs as a crypto user (CU) with the username example_user and 
password aws. The output shows that you have logged into all HSMs in the cluster.

Command:  loginHSM -u CU -s example_user -p aws

Cfm3LoginHSM returned: 0x00 : HSM Return: SUCCESS 
     
Cluster Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Example : Log in with a hidden password

This command is the same as the example above, except this time you specify that the system 
should hide the password.

Command:  loginHSM -u CU -s example_user -hpswd

The system prompts you for your password. You enter the password, the system hides the 
password, and the output shows that the command was successful and that the you have 
connected to the HSMs.

Enter password:  

Cfm3LoginHSM returned: 0x00 : HSM Return: SUCCESS 
     
Cluster Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Command:

Example : Log out of the HSMs

This command logs you out of the HSMs. The output shows that you have logged out of all HSMs 
in the cluster.

Command: logoutHSM

Reference 763



AWS CloudHSM User Guide

Cfm3LogoutHSM returned: 0x00 : HSM Return: SUCCESS 
     
Cluster Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

-h

Displays help for this command.

-u

Specifies the login user type. In order to use key_mgmt_util, you must log in as a CU.

Required: Yes

-s

Specifies the login username.

Required: Yes

{ -p | -hpswd }

Specify the login password with -p. The password appears in plaintext when you type it. To 
hide your password, use the optional -hpswd parameter instead of -p and follow the prompt.

Required: Yes

Related topics

• exit

Set the attributes of AWS CloudHSM keys using KMU

Use the setAttribute command in the AWS CloudHSM key_mgmt_util to convert a key that is valid 
only in the current session to a persistent key that exists until you delete it. It does this by changing 
the value of the token attribute of the key (OBJ_ATTR_TOKEN) from false (0) to true (1). You can 
only change the attributes of keys that you own.

Reference 764



AWS CloudHSM User Guide

You can also use the setAttribute command in cloudhsm_mgmt_util to change the label, wrap, 
unwrap, encrypt, and decrypt attributes.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

setAttribute -h  

setAttribute -o <object handle> 
             -a 1 
     

Example

This example shows how to convert a session key to a persistent key.

The first command uses the -sess parameter of genSymKey to create a 192-bit AES key that is 
valid only in the current session. The output shows that the key handle of the new session key is
262154.

Command: genSymKey -t 31 -s 24 -l tmpAES -sess
      
        Cfm3GenerateSymmetricKey returned: 0x00 : HSM Return: SUCCESS 

        Symmetric Key Created.  Key Handle: 262154 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 

This command uses findKey to find the session keys in the current session. The output verifies that 
key 262154 is a session key.

Command:  findKey -sess 1

Total number of keys present 1 

 number of keys matched from start index 0::0
262154 

        Cluster Error Status 

Reference 765



AWS CloudHSM User Guide

        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

This command uses setAttribute to convert key 262154 from a session key to a persistent key. To 
do so, it changes the value of the token attribute (OBJ_ATTR_TOKEN) of the key from 0 (false) to 1
(true). For help interpreting the key attributes, see the AWS CloudHSM key attribute reference for 
KMU.

The command uses the -o parameter to specify the key handle (262154) and the -a parameter 
to specify the constant that represents the token attribute (1). When you run the command, it 
prompts you for a value for the token attribute. The only valid value is 1 (true); the value for a 
persistent key.

Command: setAttribute -o 262154 -a 1
         This attribute is defined as a boolean value. 
          Enter the boolean attribute value (0 or 1):1

        Cfm3SetAttribute returned: 0x00 : HSM Return: SUCCESS 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

To confirm that key 262154 is now persistent, this command uses findKey to search for session 
keys (-sess 1) and persistent keys (-sess 0). This time, the command does not find any session 
keys, but it returns 262154 in the list of persistent keys.

Command: findKey -sess 1

Total number of keys present 0 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Reference 766



AWS CloudHSM User Guide

Command: findKey -sess 0

Total number of keys present 5 

 number of keys matched from start index 0::4
6, 7, 524296, 9, 262154 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS 

        Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

Parameters

-h

Displays help for the command.

Required: Yes

-o

Specifies the key handle of the target key. You can specify only one key in each command. To 
get the key handle of a key, use findKey.

Required: Yes

-a

Specifies the constant that represents the attribute that you want to change. The only valid 
value is 1, which represents the token attribute, OBJ_ATTR_TOKEN.

To get the attributes and their integer values, use listAttributes.

Required: Yes

Related topics

• setAttribute in cloudhsm_mgmt_util

• getAttribute

• listAttributes

• Key Attribute Reference

Reference 767



AWS CloudHSM User Guide

Generate a signature using AWS CloudHSM KMU

Use the sign command in the AWS CloudHSM key_mgmt_util to use a chosen private key to 
generate a signature for a file.

In order to use sign, you must first have a private key in your HSM. You can generate a private key 
with the genSymKey, genRSAKeyPair, or genECCKeyPair commands. You can also import one 
with the importPrivateKey command. For more information, see Generate Keys.

The sign command uses a user-designated signing mechanism, represented by an integer, to sign a 
message file. For a list of possible signing mechanisms, see Parameters.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

sign -h

sign -f <file name>
     -k <private key handle>
     -m <signature mechanism>
     -out <signed file name>

Example

This example shows how to use sign to sign a file.

Example : Sign a file

This command signs a file named messageFile with a private key with handle 266309. It uses the
SHA256_RSA_PKCS (1) signing mechanism and saves the resulting signed file as signedFile.

Command: sign -f messageFile -k 266309 -m 1 -out signedFile

Cfm3Sign returned: 0x00 : HSM Return: SUCCESS

signature is written to file signedFile

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Reference 768



AWS CloudHSM User Guide

Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

Parameters

This command takes the following parameters.

-f

The name of the file to sign.

Required: Yes

-k

The handle of the private key to be used for signing.

Required: Yes

-m

An integer that represents the signing mechanism to be used for signing. The possible 
mechanisms correspond to the follow integers:

Signing Mechanism Corresponding Integer

SHA1_RSA_PKCS 0

SHA256_RSA_PKCS 1

SHA384_RSA_PKCS 2

SHA512_RSA_PKCS 3

SHA224_RSA_PKCS 4

SHA1_RSA_PKCS_PSS 5

SHA256_RSA_PKCS_PSS 6

SHA384_RSA_PKCS_PSS 7

SHA512_RSA_PKCS_PSS 8

Reference 769



AWS CloudHSM User Guide

Signing Mechanism Corresponding Integer

SHA224_RSA_PKCS_PSS 9

ECDSA_SHA1 15

ECDSA_SHA224 16

ECDSA_SHA256 17

ECDSA_SHA384 18

ECDSA_SHA512 19

Required: Yes

-out

The name of the file to which the signed file will be saved.

Required: Yes

Related topics

• verify

• importPrivateKey

• genRSAKeyPair

• genECCKeyPair

• genSymKey

• Generate Keys

Unwrap an AWS CloudHSM key using KMU

Use the unWrapKey command in the AWS CloudHSM key_mgmt_util tool to import a wrapped 
(encrypted) symmetric or private key from a file into the HSM. It is designed to import encrypted 
keys that were wrapped by the wrapKey command in key_mgmt_util, but it can also be used to 
unwrap keys that were wrapped with other tools. However, in those situations, we recommend 
using the PKCS#11 or JCE software libraries to unwrap the key.

Reference 770



AWS CloudHSM User Guide

Imported keys work like keys generated by AWS CloudHSM. However, the value of their
OBJ_ATTR_LOCAL attribute is zero, which indicates that they were not generated locally.

After you import a key, ensure that you mark or delete the key file. This command does not prevent 
you from importing the same key material multiple times. The results—multiple keys with distinct 
key handles and the same key material—make it difficult to track use of the key materials and 
prevent them from exceeding their cryptographic limits.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

unWrapKey -h

unWrapKey -f <key-file-name> 
          -w <wrapping-key-handle> 
          [-sess] 
          [-min_srv <minimum-number-of-HSMs>]           
          [-timeout <number-of-seconds>] 
          [-aad <additional authenticated data filename>] 
          [-tag_size <tag size>] 
          [-iv_file <IV file>] 
          [-attest] 
          [-m <wrapping-mechanism>] 
          [-t <hash-type>] 
          [-nex] 
          [-u <user id list>] 
          [-m_value <number of users needed for approval>] 
          [-noheader] 
          [-l <key-label>] 
          [-id <key-id>] 
          [-kt <key-type>] 
          [-kc <key-class>] 
          [-i <unwrapping-IV>] 
     

Example

These examples show how to use unWrapKey to import a wrapped key from a file into the 
HSMs. In the first example, we unwrap a key that was wrapped with the wrapKey key_mgmt_util 

Reference 771



AWS CloudHSM User Guide

command, and thus has a header. In the second example, we unwrap a key that was wrapped 
outside of key_mgmt_util, and thus does not have a header.

Example : Unwrap a key (with header)

This command imports a wrapped copy of a 3DES symmetric key into an HSM. The key is 
unwrapped with an AES key with label 6, which is cryptographically identical to the one that 
was used to wrap the 3DES key. The output shows that the key in the file was unwrapped and 
imported, and that the imported key's handle is 29.

        Command:  unWrapKey -f 3DES.key -w 6 -m 4

        Cfm3UnWrapKey returned: 0x00 : HSM Return: SUCCESS 

        Key Unwrapped.  Key Handle: 29 

        Cluster Error Status 
        Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
        Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Example : Unwrap a key (no header)

This command imports a wrapped copy of a 3DES symmetric key into an HSM. The key is 
unwrapped with an AES key with label 6, which is cryptographically identical to the one that 
was used to wrap the 3DES key. As this 3DES key was not wrapped with key_mgmt_util, the
noheader parameter is specified, along with its required accompanying parameters: a key label 
(unwrapped3DES), key class (4), and key type (21). The output shows that the key in the file was 
unwrapped and imported, and that the imported key's handle is 8.

Command: unWrapKey -f 3DES.key -w 6 -noheader -l unwrapped3DES -kc 4 -kt 21 -m 4
      
      Cfm3CreateUnwrapTemplate2 returned: 0x00 : HSM Return: SUCCESS 
       Cfm2UnWrapWithTemplate3 returned: 0x00 : HSM Return: SUCCESS 

       Key Unwrapped. Key Handle: 8 

       Cluster Error Status 
       Node id 1 and err state 0x00000000 : HSM Return: SUCCESS 
       Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

Reference 772



AWS CloudHSM User Guide

Parameters

-h

Displays help for the command.

Required: Yes

-f

The path and name of the file that contains the wrapped key.

Required: Yes

-w

Specifies the wrapping key. Enter the key handle of an AES key or RSA key on the HSM. This 
parameter is required. To find key handles, use the findKey command.

To create a wrapping key, use genSymKey to generate an AES key (type 31) or genRSAKeyPair
to generate an RSA key pair (type 0). If you are using an RSA key pair, be sure to wrap the 
key with one of the keys, and unwrap it with the other. To verify that a key can be used as a 
wrapping key, use getAttribute to get the value of the OBJ_ATTR_WRAP attribute, which is 
represented by constant 262.

Required: Yes

-sess

Creates a key that exists only in the current session. The key cannot be recovered after the 
session ends.

Use this parameter when you need a key only briefly, such as a wrapping key that encrypts, and 
then quickly decrypts, another key. Do not use a session key to encrypt data that you might 
need to decrypt after the session ends.

To change a session key to a persistent (token) key, use setAttribute.

Default: The key is persistent.

Required: No

Reference 773



AWS CloudHSM User Guide

-min_srv

Specifies the minimum number of HSMs on which the key is synchronized before the value of 
the -timeout parameter expires. If the key is not synchronized to the specified number of 
servers in the time allotted, it is not created.

AWS CloudHSM automatically synchronizes every key to every HSM in the cluster. To speed up 
your process, set the value of min_srv to less than the number of HSMs in the cluster and set a 
low timeout value. Note, however, that some requests might not generate a key.

Default: 1

Required: No

-timeout

Specifies how long (in seconds) the command waits for a key to be synchronized to the number 
of HSMs specified by the min_srv parameter.

This parameter is valid only when the min_srv parameter is also used in the command.

Default: No timeout. The command waits indefinitely and returns only when the key is 
synchronized to the minimum number of servers.

Required: No

-attest

Runs an integrity check that verifies that the firmware on which the cluster runs has not been 
tampered with.

Default: No attestation check.

Required: No

-nex

Makes the key nonextractable. The key that is generated cannot be exported from the HSM.

Default: The key is extractable.

Required: No

-m

The value representing the wrapping mechanism. CloudHSM supports the following 
mechanisms:

Reference 774



AWS CloudHSM User Guide

Mechanism Value

AES_KEY_WRAP_PAD_PKCS5 4

NIST_AES_WRAP_NO_PAD 5

NIST_AES_WRAP_PAD 6

RSA_AES 7

RSA_OAEP (for maximum data size, see the 
note later in this section)

8

AES_GCM 10

CLOUDHSM_AES_GCM 11

RSA_PKCS (for maximum data size, see the 
note later in this section). See note 1 below 
for an upcoming change.

12

Required: Yes

Note

When using the RSA_OAEP wrapping mechanism, the maximum key size that you can 
wrap is determined by the modulus of the RSA key and the length of the specified hash 
as follows: Maximum key size = modulusLengthInBytes-(2*hashLengthInBytes)-2.
When using the RSA_PKCS wrapping mechanism, the maximum key size that you can 
wrap is determined by the modulus of the RSA key as follows: Maximum key size = 
(modulusLengthInBytes -11).

-t

Hash algorithm Value

SHA1 2

Reference 775



AWS CloudHSM User Guide

Hash algorithm Value

SHA256 3

SHA384 4

SHA512 5

SHA224 (valid for RSA_AES and RSA_OAEP
mechanisms)

6

Required: No

-noheader

If you are unwrapping a key that was wrapped outside of key_mgmt_util, you must specify this 
parameter and all other associated parameters.

Required: No

Note

If you specify this parameter, you must also specify the following -noheader
parameters:

• -l

Specifies the label to be added to the unwrapped key.

Required: Yes

• -kc

Specifies the class of the key to be unwrapped. The following are acceptable values:

3 = private key from a public-private key pair

4 = secret (symmetric) key

Required: Yes

Reference 776



AWS CloudHSM User Guide

• -kt

Specifies the type of key to be unwrapped. The following are acceptable values:

0 = RSA

1 = DSA

3 = ECC

16 = GENERIC_SECRET

21 = DES3

31 = AES

Required: Yes

You can also optionally specify the following -noheader parameters:

• -id

The ID to be added to the unwrapped key.

Required: No

• -i

The unwrapping initialization vector (IV) to be used.

Required: No

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

Related topics

• wrapKey

• exSymKey

• imSymKey

Reference 777



AWS CloudHSM User Guide

Verify the signature of a file using AWS CloudHSMKMU

Use the verify command in the AWS CloudHSM key_mgmt_util to confirm whether or not a file 
has been signed by a given key. To do so, the verify command compares a signed file against a 
source file and analyzes whether they are cryptographically related based on a given public key and 
signing mechanism. Files can be signed in AWS CloudHSM with the sign operation.

Signing mechanisms are represented by the integers listed in the parameters section.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

verify -h

verify -f <message-file>
       -s <signature-file>
       -k <public-key-handle>
       -m <signature-mechanism>

Example

These examples show how to use verify to check whether a certain public key was used to sign a 
given file.

Example : Verify a file signature

This command attempts to verify whether a file named hardwarCert.crt was signed 
by public key 262276 using the SHA256_RSA_PKCS signing mechanism to produce the
hardwareCertSigned signed file. Because the given parameters represent a true signing 
relationship, the command returns a success message.

Command: verify -f hardwareCert.crt -s hardwareCertSigned -k 262276 -m 1

Signature verification successful

Cfm3Verify returned: 0x00 : HSM Return: SUCCESS

Reference 778



AWS CloudHSM User Guide

Example : Prove false signing relationship

This command verifies whether a file named hardwareCert.crt was signed by public key
262276 using the SHA256_RSA_PKCS signing mechanism to produce the userCertSigned
signed file. Because the given parameters do not make up a true signing relationship, the 
command returns an error message.

Command: verify -f hardwarecert.crt -s usercertsigned -k 262276 -m 1
Cfm3Verify returned: 0x1b

CSP Error: ERR_BAD_PKCS_DATA
        

Parameters

This command takes the following parameters.

-f

The name of the origin message file.

Required: Yes

-s

The name of the signed file.

Require: Yes

-k

The handle of the public key that is thought to be used to sign the file.

Required: Yes

-m

An integer that represents the proposed signing mechanism that is used to sign the file. The 
possible mechanisms correspond to the follow integers:

Signing Mechanism Corresponding Integer

SHA1_RSA_PKCS 0

Reference 779



AWS CloudHSM User Guide

Signing Mechanism Corresponding Integer

SHA256_RSA_PKCS 1

SHA384_RSA_PKCS 2

SHA512_RSA_PKCS 3

SHA224_RSA_PKCS 4

SHA1_RSA_PKCS_PSS 5

SHA256_RSA_PKCS_PSS 6

SHA384_RSA_PKCS_PSS 7

SHA512_RSA_PKCS_PSS 8

SHA224_RSA_PKCS_PSS 9

ECDSA_SHA1 15

ECDSA_SHA224 16

ECDSA_SHA256 17

ECDSA_SHA384 18

ECDSA_SHA512 19

Required: Yes

Related topics

• sign

• getCert

• Generate Keys

Reference 780



AWS CloudHSM User Guide

Export an AWS CloudHSM key using KMU

Use the wrapKey command in the AWS CloudHSM key_mgmt_util to export an encrypted copy 
of a symmetric or private key from the hardware security module (HSM) to a file. When you run
wrapKey, you specify the key to export, a key on the HSM to encrypt (wrap) the key that you want 
to export, and the output file.

The wrapKey command writes the encrypted key to a file that you specify, but it does not remove 
the key from the HSM or prevent you from using it in cryptographic operations. You can export the 
same key multiple times.

Only the owner of a key, that is, the crypto user (CU) who created the key, can export it. Users who 
share the key can use it in cryptographic operations, but they cannot export it.

To import the encrypted key back into the HSM, use unWrapKey. To export a plaintext key from 
an HSM, use exSymKey or exportPrivateKey as appropriate. The aesWrapUnwrap command cannot 
decrypt (unwrap) keys that wrapKey encrypts.

Before you run any key_mgmt_util command, you must start key_mgmt_util and log in to the HSM 
as a crypto user (CU).

Syntax

wrapKey -h

wrapKey -k <exported-key-handle>
        -w <wrapping-key-handle>
        -out <output-file>
        [-m <wrapping-mechanism>] 
        [-aad <additional authenticated data filename>] 
        [-t <hash-type>] 
        [-noheader] 
        [-i <wrapping IV>]   
        [-iv_file <IV file>] 
        [-tag_size <num_tag_bytes>>] 

     

Reference 781



AWS CloudHSM User Guide

Example

Example

This command exports a 192-bit Triple DES (3DES) symmetric key (key handle 7). It uses a 256-bit 
AES key in the HSM (key handle 14) to wrap key 7. Then, it writes the encrypted 3DES key to the
3DES-encrypted.key file.

The output shows that key 7 (the 3DES key) was successfully wrapped and written to the specified 
file. The encrypted key is 307 bytes long.

        Command:  wrapKey -k 7 -w 14 -out 3DES-encrypted.key -m 4

        Key Wrapped. 

        Wrapped Key written to file "3DES-encrypted.key length 307 

        Cfm2WrapKey returned: 0x00 : HSM Return: SUCCESS

Parameters

-h

Displays help for the command.

Required: Yes

-k

The key handle of the key that you want to export. Enter the key handle of a symmetric or 
private key that you own. To find key handles, use the findKey command.

To verify that a key can be exported, use the getAttribute command to get the value of 
the OBJ_ATTR_EXTRACTABLE attribute, which is represented by constant 354. For help 
interpreting the key attributes, see the AWS CloudHSM key attribute reference for KMU.

You can export only those keys that you own. To find the owner of a key, use the getKeyInfo
command.

Required: Yes

Reference 782



AWS CloudHSM User Guide

-w

Specifies the wrapping key. Enter the key handle of an AES key or RSA key on the HSM. This 
parameter is required. To find key handles, use the findKey command.

To create a wrapping key, use genSymKey to generate an AES key (type 31) or genRSAKeyPair
to generate an RSA key pair (type 0). If you are using an RSA key pair, be sure to wrap the 
key with one of the keys, and unwrap it with the other. To verify that a key can be used as a 
wrapping key, use getAttribute to get the value of the OBJ_ATTR_WRAP attribute, which is 
represented by constant 262.

Required: Yes

-out

The path and name of the output file. When the command succeeds, this file contains an 
encrypted copy of the exported key. If the file already exists, the command overwrites it 
without warning.

Required: Yes

-m

The value representing the wrapping mechanism. CloudHSM supports the following 
mechanisms:

Mechanism Value

AES_KEY_WRAP_PAD_PKCS5 4

NIST_AES_WRAP_NO_PAD 5

NIST_AES_WRAP_PAD 6

RSA_AES 7

RSA_OAEP (for maximum data size, see the 
note later in this section)

8

AES_GCM 10

CLOUDHSM_AES_GCM 11

Reference 783



AWS CloudHSM User Guide

Mechanism Value

RSA_PKCS (for maximum data size, see the 
note later in this section). See note 1 below 
for an upcoming change.

12

Required: Yes

Note

When using the RSA_OAEP wrapping mechanism, the maximum key size that you can 
wrap is determined by the modulus of the RSA key and the length of the specified hash 
as follows: Maximum key size = (modulusLengthInBytes-2*hashLengthInBytes-2).
When using the RSA_PKCS wrapping mechanism, the maximum key size that you can 
wrap is determined by the modulus of the RSA key as follows: Maximum key size = 
(modulusLengthInBytes -11).

-t

The value representing the hash algorithm. CloudHSM supports the following algorithms:

Hash algorithm Value

SHA1 2

SHA256 3

SHA384 4

SHA512 5

SHA224 (valid for RSA_AES and RSA_OAEP
mechanisms)

6

Required: No

Reference 784



AWS CloudHSM User Guide

-aad

The file name containing AAD.

Note

Valid only for AES_GCM and CLOUDHSM_AES_GCM mechanisms.

Required: No

-noheader

Omits the header that specifies CloudHSM-specific key attributes. Use this parameter only if you 
want to unwrap the key with tools outside of key_mgmt_util.

Required: No

-i

The initialization vector (IV) (hex value).

Note

Valid only when passed with the -noheader parameter for CLOUDHSM_AES_KEY_WRAP, 
and NIST_AES_WRAP mechanisms.

Required: No

-iv_file

The file in which you want to write the IV value obtained in response.

Note

Valid only when passed with the -noheader parameter for AES_GCM mechanism.

Required: No

-tag_size

The size of tag to be saved along with wrapped blob.

Reference 785



AWS CloudHSM User Guide

Note

Valid only when passed with the -noheader parameter for AES_GCM and
CLOUDHSM_AES_GCM mechanisms. Minimum tag size is eight.

Required: No

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

Related topics

• exSymKey

• imSymKey

• unWrapKey

AWS CloudHSM key attribute reference for KMU

The AWS CloudHSM key_mgmt_util commands use constants to represent the attributes of keys 
in a hardware security module (HSM). This topic can help you to identify the attributes, find the 
constants that represent them in commands, and understand their values.

You set the attributes of a key when you create it. To change the token attribute, which indicates 
whether a key is persistent or exists only in the session, use the setAttribute command in 
key_mgmt_util. To change the label, wrap, unwrap, encrypt, or decrypt attributes, use the
setAttribute command in cloudhsm_mgmt_util.

To get a list of attributes and their constants, use listAttributes. To get the attribute values for a 
key, use getAttribute.

The following table lists the key attributes, their constants, and their valid values.

Attribute Constant Values

OBJ_ATTR_ALL 512 Represents all attributes.

Reference 786



AWS CloudHSM User Guide

Attribute Constant Values

OBJ_ATTR_ALWAYS_SE 
NSITIVE

357 0: False.

1: True.

OBJ_ATTR_CLASS 0 2: Public key in a public–pr 
ivate key pair.
3: Private key in a public–pr 
ivate key pair.

4: Secret (symmetric) key.

OBJ_ATTR_DECRYPT 261 0: False.

1: True. The key can be used 
to decrypt data.

OBJ_ATTR_DERIVE 268 0: False.

1: True. The function derives 
the key.

OBJ_ATTR_DESTROYABLE 370 0: False.

1: True.

OBJ_ATTR_ENCRYPT 260 0: False.

1: True. The key can be used 
to encrypt data.

OBJ_ATTR_EXTRACTABLE 354 0: False.

1: True. The key can be 
exported from the HSMs.

OBJ_ATTR_ID 258 User-defined string. Must 
be unique in the cluster. The 
default is an empty string.

Reference 787



AWS CloudHSM User Guide

Attribute Constant Values

OBJ_ATTR_KCV 371 Key check value of the key. 
For more information, see
Additional Details.

OBJ_ATTR_KEY_TYPE 256 0: RSA.

1: DSA.

3: EC.

16: Generic secret.

18: RC4.

21: Triple DES (3DES).

31: AES.

OBJ_ATTR_LABEL 3 User-defined string. It does 
not have to be unique in the 
cluster.

OBJ_ATTR_LOCAL 355 0. False. The key was 
imported into the HSMs.

1: True.

OBJ_ATTR_MODULUS 288 The modulus that was used to 
generate an RSA key pair. For 
EC keys, this value represent 
s the DER-encoding of ANSI 
X9.62 ECPoint value "Q" in a 
hexadecimal format.

For other key types, this 
attribute does not exist.

Reference 788



AWS CloudHSM User Guide

Attribute Constant Values

OBJ_ATTR_MODULUS_BITS 289 The length of the modulus 
used to generate an RSA 
key pair. For EC keys this 
represents the ID of the 
elliptic curve used to generate 
the key.

For other key types, this 
attribute does not exist.

OBJ_ATTR_NEVER_EXT 
RACTABLE

356 0: False.

1: True. The key cannot be 
exported from the HSMs.

OBJ_ATTR_PUBLIC_EX 
PONENT

290 The public exponent used to 
generate an RSA key pair.

For other key types, this 
attribute does not exist.

OBJ_ATTR_PRIVATE 2 0: False.

1: True. This attribute 
indicates whether unauthent 
icated users can list the 
attributes of the key. Since 
the CloudHSM PKCS#11 
provider currently does not 
support public sessions, all 
keys (including public keys in 
a public-private key pair) have 
this attribute set to 1.

Reference 789



AWS CloudHSM User Guide

Attribute Constant Values

OBJ_ATTR_SENSITIVE 259 0: False. Public key in a 
public–private key pair.

1: True.

OBJ_ATTR_SIGN 264 0: False.

1: True. The key can be used 
for signing (private keys).

OBJ_ATTR_TOKEN 1 0: False. Session key.

1: True. Persistent key.

OBJ_ATTR_TRUSTED 134 0: False.

1: True.

OBJ_ATTR_UNWRAP 263 0: False.

1: True. The key can be used 
to decrypt keys.

OBJ_ATTR_UNWRAP_TE 
MPLATE

1073742354 Values should use the 
attribute template applied to 
any key unwrapped using this 
wrapping key.

OBJ_ATTR_VALUE_LEN 353 Key length in bytes.

OBJ_ATTR_VERIFY 266 0: False.

1: True. The key can be used 
for verification (public keys).

OBJ_ATTR_WRAP 262 0: False.

1: True. The key can be used 
to encrypt keys.

Reference 790



AWS CloudHSM User Guide

Attribute Constant Values

OBJ_ATTR_WRAP_TEMPLATE 1073742353 Values should use the 
attribute template to match 
the key wrapped using this 
wrapping key.

OBJ_ATTR_WRAP_WITH 
_TRUSTED

528 0: False.

1: True.

Additional Details

Key check value (KCV)

The key check value (KCV) is a 3-byte hash or checksum of a key that is generated when the 
HSM imports or generates a key. You can also calculate a KCV outside of the HSM, such as after 
you export a key. You can then compare the KCV values to confirm the identity and integrity of 
the key. To get the KCV of a key, use getAttribute.

AWS CloudHSM uses the following standard method to generate a key check value:

• Symmetric keys: First 3 bytes of the result of encrypting a zero-block with the key.

• Asymmetric key pairs: First 3 bytes of the SHA-1 hash of the public key.

• HMAC keys: KCV for HMAC keys is not supported at this time.

Reference 791



AWS CloudHSM User Guide

Offload operations with AWS CloudHSM Client SDKs

Use a Client SDK to offload cryptographic operations from platform or language-based 
applications to hardware security modules (HSMs).

AWS CloudHSM offers two major versions, and Client SDK 5 is the latest. It offers a variety of 
advantages over Client SDK 3 (the previous series). For more information, see  Benefits of Client 
SDK 5. For information about platform support, see AWS CloudHSM Client SDK 5 supported 
platforms.

The following topics describe how to work with AWS CloudHSM Client SDKs.

AWS CloudHSM supports the following components:

the section called “PKCS #11 library”

PKCS #11 is a standard for performing cryptographic operations on hardware security modules 
(HSMs). AWS CloudHSM offers implementations of the PKCS #11 library that are compliant with 
PKCS #11 version 2.40.

the section called “OpenSSL Dynamic Engine”

The AWS CloudHSM OpenSSL Dynamic Engine allows you to offload cryptographic operations 
to your CloudHSM cluster through the OpenSSL API.

the section called “JCE provider”

The AWS CloudHSM JCE provider is compliant with the Java Cryptographic Architecture (JCA). 
The provider allows you to perform cryptographic operations on the HSM.

the section called “Key storage provider (KSP)”

The AWS CloudHSM client for Windows includes CNG and KSP providers. Currently, only Client 
SDK 3 supports CNG and KSP providers.

Topics

• Check your AWS CloudHSM Client SDK version

• Compare AWS CloudHSM Client SDK component support

• Migrating from AWS CloudHSM Client SDK 3 to Client SDK 5

792



AWS CloudHSM User Guide

• Using Client SDK 5 to work with AWS CloudHSM

• Using previous SDK version to work with AWS CloudHSM

Check your AWS CloudHSM Client SDK version

Use the following commands to verify the version of Client SDK that you're using with AWS 
CloudHSM.

Amazon Linux

Use the following command:

rpm -qa | grep ^cloudhsm

Amazon Linux 2

Use the following command:

rpm -qa | grep ^cloudhsm

CentOS 6

Use the following command:

rpm -qa | grep ^cloudhsm

CentOS 7

Use the following command:

rpm -qa | grep ^cloudhsm

CentOS 8

Use the following command:

rpm -qa | grep ^cloudhsm

Check your version 793



AWS CloudHSM User Guide

RHEL 6

Use the following command:

rpm -qa | grep ^cloudhsm

RHEL 7

Use the following command:

rpm -qa | grep ^cloudhsm

RHEL 8

Use the following command:

rpm -qa | grep ^cloudhsm

Ubuntu 16.04 LTS

Use the following command:

apt list --installed | grep ^cloudhsm

Ubuntu 18.04 LTS

Use the following command:

apt list --installed | grep ^cloudhsm

Ubuntu 20.04 LTS

Use the following command:

apt list --installed | grep ^cloudhsm

Windows Server

Use the following command:

Check your version 794



AWS CloudHSM User Guide

wmic product get name,version

Compare AWS CloudHSM Client SDK component support

In addition to the command-line tools, Client SDK 3 contains components that enable off-loading 
cryptographic operations to the HSM from various platform or language-based applications. Client 
SDK 5 has parity with Client SDK 3, except it does not yet support CNG and KSP providers. The 
following table compares component availability in Client SDK 3 and Client SDK 5.

Component Client SDK 5 Client SDK 3

PKCS #11 library Yes Yes

JCE provider Yes Yes

OpenSSL Dynamic Engine Yes Yes

Key Storage Provider (KSP) Yes Yes

CloudHSM Management 

Utility (CMU)1

Yes Yes

Key Management Utility 

(KMU)1

Yes Yes

Configure tool Yes Yes

[1] CMU and KMU components are included in CloudHSM CLI with Client SDK 5.

The following sections describe the components.

PKCS #11 library

PKCS #11 is a standard for performing cryptographic operations on hardware security modules 
(HSMs). AWS CloudHSM offers implementations of the PKCS #11 library that are compliant with 
PKCS #11 version 2.40.

Compare component support 795



AWS CloudHSM User Guide

• For Client SDK 3, the PKCS #11 library is a Linux only component that matches Linux base 
support. For more information, see the section called “Linux support for Client SDK 3”.

• For Client SDK 5, the PKCS #11 library is a cross-platform component that matches Linux and 
Windows Client SDK 5 base support. For more information, see the section called “Linux support 
for Client SDK 5” and the section called “Windows support for Client SDK 5”.

CloudHSM Management Utility (CMU)

The CloudHSM Management Utility (CMU) command line tool helps crypto officers manage users in 
the HSMs. It includes tools that create, delete, and list users, and change user passwords. For more 
information, see AWS CloudHSM Management Utility (CMU).

Key Management Utility (KMU)

The Key Management Utility (KMU) is a command line tool that helps crypto users (CU) manage 
keys on the hardware security modules (HSM). For more information, see AWS CloudHSM Key 
Management Utility (KMU).

JCE provider

The AWS CloudHSM JCE provider is compliant with the Java Cryptographic Architecture (JCA). The 
provider allows you to perform cryptographic operations on the HSM.

The JCE provider is a Linux only component that matches Linux base support. For more 
information, see the section called “Linux support for Client SDK 3”.

• For Client SDK 3 requires OpenJDK 1.8

OpenSSL Dynamic Engine

The AWS CloudHSM OpenSSL Dynamic Engine allows you to offload cryptographic operations to 
your CloudHSM cluster through the OpenSSL API.

• For Client SDK 3, the OpenSSL Dynamic Engine is Linux only component that does not match 
Linux base support. See the exclusions below.

• Requires OpenSSL 1.0.2[f+]

Unsupported platforms:

CloudHSM Management Utility (CMU) 796



AWS CloudHSM User Guide

• CentOS 8

• Red Hat Enterprise Linux (RHEL) 8

• Ubuntu 18.04 LTS

These platforms ship with a version of OpenSSL incompatible with OpenSSL Dynamic Engine for 
Client SDK 3. AWS CloudHSM supports these platforms with OpenSSL Dynamic Engine for Client 
SDK 5.

• For Client SDK 5, the OpenSSL Dynamic Engine is a Linux only component that requires OpenSSL 
1.0.2, 1.1.1, or 3.x.

Key storage provider (KSP)

Key Storage Provider (KSP) is a cryptographic API specific to the Microsoft Windows operating 
system.

For Client SDK 3, the CNG and KSP providers is a Windows only component that matches Windows 
base support. For more information, see Windows support for AWS CloudHSM Client SDK 3.

For Client SDK 5, the Key Storage Provider (KSP) is a Windows only component that matches 
Windows base support. For more information, see Windows support for AWS CloudHSM Client SDK 
5.

Migrating from AWS CloudHSM Client SDK 3 to Client SDK 5

For detailed instructions on migrating from Client SDK 3 to Client SDK 5, refer to the following 
topics.

For functionality or use cases that are not supported by CloudHSM CLI, please reach out to
support.

• Migrate your AWS CloudHSM PKCS #11 library from Client SDK 3 to Client SDK 5

• Migrate your OpenSSL Dynamic Engine from AWS CloudHSM Client SDK 3 to Client SDK 5

• Migrate your Key Storage Provider (KSP) from AWS CloudHSM Client SDK 3 to Client SDK 5

• Migrate your JCE provider from AWS CloudHSM Client SDK 3 to Client SDK 5

• Migrate from AWS CloudHSM Client SDK 3 CMU and KMU to Client SDK 5 CloudHSM CLI

Key storage provider (KSP) 797

https://support.console.aws.amazon.com/support/home#/


AWS CloudHSM User Guide

Migrate your AWS CloudHSM PKCS #11 library from Client SDK 3 to 
Client SDK 5

Use this topic to migrate your AWS CloudHSM PKCS #11 library from Client SDK 3 to Client SDK 5. 
For benefits on migrating, see Benefits of AWS CloudHSM Client SDK 5.

In AWS CloudHSM, customer applications perform cryptographic operations using the AWS 
CloudHSM Client Software Development Kit (SDK). Client SDK 5 is the primary SDK that continues 
to have new features and platform support added to it.

To review migration instructions for all providers, see Migrating from AWS CloudHSM Client SDK 3 
to Client SDK 5.

Prepare by addressing breaking changes

Review these breaking changes and update your application in your development environment 
accordingly.

Wrap mechanisms have changed

Client SDK 3 mechanism Equivalent Client SDK 5 mechanism

CKM_AES_KEY_WRAP CKM_CLOUDHSM_AES_KEY_WRAP_P 
KCS5_PAD

CKM_AES_KEY_WRAP_PAD CKM_CLOUDHSM_AES_KEY_WRAP_Z 
ERO_PAD

CKM_CLOUDHSM_AES_KEY_WRAP_P 
KCS5_PAD

CKM_CLOUDHSM_AES_KEY_WRAP_P 
KCS5_PAD

CKM_CLOUDHSM_AES_KEY_WRAP_NO_PAD CKM_CLOUDHSM_AES_KEY_WRAP_NO_PAD

CKM_CLOUDHSM_AES_KEY_WRAP_Z 
ERO_PAD

CKM_CLOUDHSM_AES_KEY_WRAP_Z 
ERO_PAD

Migrate PKCS #11 library 798



AWS CloudHSM User Guide

ECDH

In Client SDK 3, you can use ECDH and specify a KDF. This functionality is not currently available in 
Client SDK 5. If your application needs this functionality, please reach out to support.

Key handles are now session-specific

To successfully use key handles in Client SDK 5, you must obtain key handles each time you run an 
application. If you have existing applications that will use the same key handles across different 
sessions, you must modify your code to obtain the key handle each time you run the application. 
For information on retrieving key handles, see this AWS CloudHSM PKCS #11 example. This change 
is in compliance with the PKCS #11 2.40 specification.

Migrate to Client SDK 5

Follow the instructions in this section to migrate from Client SDK 3 to Client SDK 5.

Note

Amazon Linux, Ubuntu 16.04, Ubuntu 18.04, CentOS 6, CentOS 8, and RHEL 6 are not 
currently supported with Client SDK 5. If you are currently using one of these platforms 
with Client SDK 3, you will need to choose a different platform when migrating to Client 
SDK 5.

1. Uninstall the PKCS #11 library for Client SDK 3.

Amazon Linux 2

$ sudo yum remove cloudhsm-client-pkcs11

CentOS 7

$ sudo yum remove cloudhsm-client-pkcs11

RHEL 7

$ sudo yum remove cloudhsm-client-pkcs11

Migrate PKCS #11 library 799

https://support.console.aws.amazon.com/support/home#/
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/find_objects/find_objects.c
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html#_Toc416959689


AWS CloudHSM User Guide

RHEL 8

$ sudo yum remove cloudhsm-client-pkcs11

2. Uninstall the Client Daemon for Client SDK 3.

Amazon Linux 2

$ sudo yum remove cloudhsm-client

CentOS 7

$ sudo yum remove cloudhsm-client

RHEL 7

$ sudo yum remove cloudhsm-client

RHEL 8

$ sudo yum remove cloudhsm-client

Note

Custom configurations need to be enabled again.

3. Install the Client SDK PKCS #11 library by following the steps in Install the PKCS #11 library 
for AWS CloudHSM Client SDK 5 .

4. Client SDK 5 introduces a new configuration file format and command-line bootstrapping 
tool. To bootstrap your Client SDK 5 PKCS #11 library, follow the instructions listed in the user 
guide under Bootstrap the Client SDK.

5. In your development environment, test your application. Make updates to your existing code 
to resolve your breaking changes before your final migration.

Migrate PKCS #11 library 800



AWS CloudHSM User Guide

Related topics

• Best practices for AWS CloudHSM

Migrate your OpenSSL Dynamic Engine from AWS CloudHSM Client 
SDK 3 to Client SDK 5

Use this topic to migrate your OpenSSL Dynamic Engine from AWS CloudHSM Client SDK 3 to 
Client SDK 5. For benefits on migrating, see Benefits of AWS CloudHSM Client SDK 5.

In AWS CloudHSM, customer applications perform cryptographic operations using the AWS 
CloudHSM Client Software Development Kit (SDK). Client SDK 5 is the primary SDK that continues 
to have new features and platform support added to it.

Note

Random number generation is not currently supported in Client SDK 5 with OpenSSL 
Dynamic Engine.

To review migration instructions for all providers, see Migrating from AWS CloudHSM Client SDK 3 
to Client SDK 5.

Migrate to Client SDK 5

Follow the instructions in this section to migrate from Client SDK 3 to Client SDK 5.

Note

Amazon Linux, Ubuntu 16.04, Ubuntu 18.04, CentOS 6, CentOS 8, and RHEL 6 are not 
currently supported with Client SDK 5. If you are currently using one of these platforms 
with Client SDK 3, you will need to choose a different platform when migrating to Client 
SDK 5.

1. Uninstall the OpenSSL Dynamic Engine for Client SDK 3.

Migrate OpenSSL Dynamic Engine 801



AWS CloudHSM User Guide

Amazon Linux 2

$ sudo yum remove cloudhsm-client-dyn

CentOS 7

$ sudo yum remove cloudhsm-client-dyn

RHEL 7

$ sudo yum remove cloudhsm-client-dyn

RHEL 8

$ sudo yum remove cloudhsm-client-dyn

2. Uninstall the Client Daemon for Client SDK 3.

Amazon Linux 2

$ sudo yum remove cloudhsm-client

CentOS 7

$ sudo yum remove cloudhsm-client

RHEL 7

$ sudo yum remove cloudhsm-client

RHEL 8

$ sudo yum remove cloudhsm-client

Migrate OpenSSL Dynamic Engine 802



AWS CloudHSM User Guide

Note

Custom configurations need to be enabled again.

3. Install the Client SDK OpenSSL Dynamic Engine by following the steps in Install the OpenSSL 
Dynamic Engine for AWS CloudHSM Client SDK 5.

4. Client SDK 5 introduces a new configuration file format and command-line bootstrapping tool. 
To bootstrap your Client SDK 5 OpenSSL Dynamic Engine, follow the instructions listed in the 
user guide under Bootstrap the Client SDK.

5. In your development environment, test your application. Make updates to your existing code 
to resolve your breaking changes before your final migration.

Related topics

• Best practices for AWS CloudHSM

Migrate your Key Storage Provider (KSP) from AWS CloudHSM Client 
SDK 3 to Client SDK 5

This topic explains how to migrate your Key Storage Provider (KSP) from AWS CloudHSM Client 
SDK 3 to Client SDK 5. For information about migration benefits, see Benefits of AWS CloudHSM 
Client SDK 5.

In AWS CloudHSM, you use the AWS CloudHSM Client Software Development Kit (SDK) to perform 
cryptographic operations. Client SDK 5 is the primary SDK that receives new features and platform 
support updates.

For migration instructions for all providers, see Migrating from AWS CloudHSM Client SDK 3 to 
Client SDK 5.

Migrate to Client SDK 5

1. Install the Client SDK 5 Key Storage Provider (KSP) on your Windows Server instance. For 
instructions, see Install the Key storage provider (KSP) for AWS CloudHSM Client SDK 5.

2. Configure your Client SDK 5 Key Storage Provider (KSP) using the new configuration file 
format and command-line bootstrapping tool. For instructions, see Bootstrap the Client SDK.

Migrate Key Storage Provider (KSP) 803



AWS CloudHSM User Guide

3. Key Storage Provider (KSP) for AWS CloudHSM Client SDK 5 includes SDK3 compatibility 
mode to support key reference files generated in SDK3. For more information, see SDK3 
compatibility mode for Key Storage Provider (KSP) for AWS CloudHSM.

Note

You must enable SDK3 compatibility mode when using Client SDK 3 generated key 
reference files with Client SDK 5.

Migrate to new Windows Server instances

1. Complete all steps in Migrate to Client SDK 5 on your new Windows Server instances.

2. Check for existing key reference files

On your original Windows Server instance, check for key reference files in C:\Users
\Default\AppData\Roaming\Microsoft\Crypto\CaviumKSP\GlobalPartition.

• If key reference files exist, copy all contents under C:\Users\Default\AppData\Roaming
\Microsoft\Crypto\CaviumKSP including GlobalPartition to the same directory 
path on your new Windows Server instance. Create the directory if it doesn't exist.

• If key reference files don't exist, use cloudhsm-cli key generate-file --encoding 
ksp-key-reference on your new Windows Server instance to create them. For 
instructions, see Generating KSP key references (Windows).

3. Verify root certificate

Check your root certificate in the trusted root certification authorities:

PS C:\Users\Administrator\Desktop> certutil -store Root

Root "Trusted Root Certification Authorities"
================ Certificate 0 ================
Serial Number: certificate-serial-number
Issuer: CN=MYRootCA 
 NotBefore: 2/5/2020 1:38 PM 
 NotAfter: 2/5/2021 1:48 PM 
 Issuer: CN=MYRootCA
Signature matches Public Key
Root Certificate: Subject matches Issuer

Migrate Key Storage Provider (KSP) 804



AWS CloudHSM User Guide

Cert Hash(sha1): cert-hash
No key provider information
Cannot find the certificate and private key for decryption.
CertUtil: -store command completed successfully.

Note

Note the certificate serial number for use in next step.

4. Export root certificate

Export the root certificate to a file:

certutil -store Root certificate-serial-number root-certificate-name.cer

5. Verify HSM-backend certificate

Check your HSM-backend certificate in the Personal certificate store:

PS C:\Users\Administrator\Desktop> certutil -store My

my "Personal"
================ Certificate 0 ================
Serial Number: certificate-serial-number
Issuer: CN=MYRootCA 
 NotBefore: 2/5/2020 1:38 PM 
 NotAfter: 2/5/2021 1:48 PM
Subject: CN=www.mydomain.com, OU=Certificate Management, O=Information Technology, 
 L=Houston, S=Texas, C=US
Non-root Certificate
Cert Hash(sha1): cert-hash
  Key Container = key-container-name
  Provider = Cavium Key Storage Provider
Private key is NOT exportable
Encryption test passed
CertUtil: -store command completed successfully.

Note

Note the certificate serial number for use in next step.

Migrate Key Storage Provider (KSP) 805



AWS CloudHSM User Guide

6. Export HSM-backend certificate

Export the HSM-backend certificate to a file:

certutil -store My certificate-serial-number signed-certificate-name.cer

7. Import root certificate

On your new Windows instance:

1. Copy the root CA file to your new Windows instance

2. Import the certificate:

certutil -addstore Root root-certificate-name.cer

8. Verify root certificate installation

Confirm the root certificate is properly installed:

PS C:\Users\Administrator\Desktop> certutil -store Root

Root "Trusted Root Certification Authorities"
================ Certificate 0 ================
Serial Number: certificate-serial-number
Issuer: CN=MYRootCA 
 NotBefore: 2/5/2020 1:38 PM 
 NotAfter: 2/5/2021 1:48 PM 
 Issuer: CN=MYRootCA
Signature matches Public Key
Root Certificate: Subject matches Issuer
Cert Hash(sha1): cert-hash
No key provider information
Cannot find the certificate and private key for decryption.
CertUtil: -store command completed successfully.

9. Import HSM-backend certificate

On your new Windows instance:

1. Copy the HSM-backend certificate to your new Windows instance

2. Import the certificate:

Migrate Key Storage Provider (KSP) 806



AWS CloudHSM User Guide

certutil -addstore My signed-certificate-name.cer

10. Verify HSM-backend certificate installation

Confirm the HSM-backend certificate is properly installed:

PS C:\Users\Administrator\Desktop> certutil -store My

my "Personal"
================ Certificate 0 ================
Serial Number: certificate-serial-number
Issuer: CN=MYRootCA 
 NotBefore: 2/5/2020 1:38 PM 
 NotAfter: 2/5/2021 1:48 PM
Subject: CN=www.mydomain.com, OU=Certificate Management, O=Information Technology, 
 L=Houston, S=Texas, C=US
Non-root Certificate
Cert Hash(sha1): cert-hash
No key provider information
Cannot find the certificate and private key for decryption.
CertUtil: -store command completed successfully.

Note

Note the certificate serial number for use in subsequent steps.

11. Create a key reference file (optional)

Complete this step only if you need to create new key reference file. Otherwise, proceed to the 
next step.

1. Install OpenSSL and extract the modulus:

openssl x509 -in signed-certificate-name.cer -modulus -noout

Note

The OpenSSL command outputs the modulus in the format: Modulus=modulus-
value. Note the modulus-value for use in the next command.

Migrate Key Storage Provider (KSP) 807

https://slproweb.com/products/Win32OpenSSL.html


AWS CloudHSM User Guide

2. Create key reference file with CloudHSM CLI, see Generating KSP key references (Windows):

& "C:\Program Files\Amazon\CloudHSM\bin\cloudhsm-cli.exe" key generate-
file --encoding ksp-key-reference --filter attr.class=private-key 
 attr.modulus=0xmodulus-value

Note

The modulus-value in CloudHSM CLI command arguments must be prefixed with
0x to indicate hexadecimal format.
Key reference files are created in C:\Users\Default\AppData\Roaming
\Microsoft\Crypto\CaviumKSP\GlobalPartition.

12. Create repair configuration

Create a file named repair.txt with the following content:

[Properties]
11 = "" ; Add friendly name property
2 = "{text}" ; Add Key Provider Information property
_continue_="Container=key-container-name&"
_continue_="Provider=Cavium Key Storage Provider&"
_continue_="Flags=0&"
_continue_="KeySpec=2"

Note

Replace key-container-name with the key reference filename from C:
\Users\Default\AppData\Roaming\Microsoft\Crypto\CaviumKSP
\GlobalPartition.

13. Repair certificate store

Run the repair command:

certutil -repairstore My certificate-serial-number repair.txt

Migrate Key Storage Provider (KSP) 808



AWS CloudHSM User Guide

Note

The certificate serial number is obtained from the previous steps when verifying HSM-
backend certificate installation.

14. Verify certificate association

Confirm the certificate is properly associated:

PS C:\Users\Administrator\Desktop> certutil -store My

my "Personal"
================ Certificate 0 ================
Serial Number: certificate-serial-number
Issuer: CN=MYRootCA 
 NotBefore: 2/5/2020 1:38 PM 
 NotAfter: 2/5/2021 1:48 PM
Subject: CN=www.mydomain.com, OU=Certificate Management, O=Information Technology, 
 L=Houston, S=Texas, C=US
Non-root Certificate
Cert Hash(sha1): cert-hash
  Key Container = key-container-name
  Provider = Cavium Key Storage Provider
Private key is NOT exportable
ERROR: Could not verify certificate public key against private key
CertUtil: -store command completed successfully.

Verify the output shows:

• The correct key container name

• The Cavium Key Storage Provider

• The ERROR: Could not verify certificate public key against private key
is a known issue, see Issue: Verification of a certificate store fails

15. Test your application

Before completing the migration:

1. Test your application in your development environment

2. Update your code to resolve any breaking changes

Migrate Key Storage Provider (KSP) 809



AWS CloudHSM User Guide

3. For application-specific guidance, see Integrating third-party applications with AWS 
CloudHSM

Verify the migration

After completing the migration steps, verify that:

• Your certificates are properly installed in the correct certificate stores

• Key reference files are present in the correct location

• Your application can perform cryptographic operations using the migrated certificates

Troubleshooting

If you encounter issues during migration, verify:

• All certificates are properly exported from the source system

• Certificate serial numbers match between systems

• Key container names in the repair.txt file match your key reference files

• SDK3 compatibility mode is enabled if using SDK3-generated key reference files

Related topics

• Best practices for AWS CloudHSM

Migrate your JCE provider from AWS CloudHSM Client SDK 3 to Client 
SDK 5

Use this topic to migrate your JCE provider from AWS CloudHSM Client SDK 3 to Client SDK 5. For 
benefits on migrating, see Benefits of AWS CloudHSM Client SDK 5.

In AWS CloudHSM, customer applications perform cryptographic operations using the AWS 
CloudHSM Client Software Development Kit (SDK). Client SDK 5 is the primary SDK that continues 
to have new features and platform support added to it.

The Client SDK 3 JCE provider uses custom classes and APIs that are not part of the standard 
JCE specification. Client SDK 5 for the JCE provider is complaint with the JCE specification and is 

Migrate JCE provider 810



AWS CloudHSM User Guide

backwards incompatible with Client SDK 3 in certain areas. Customer applications may require 
changes as part of the migration to Client SDK 5. This section outlines the changes required for a 
successful migration.

To review migration instructions for all providers, see Migrating from AWS CloudHSM Client SDK 3 
to Client SDK 5.

Topics

• Prepare by addressing breaking changes

• Migrate to Client SDK 5

• Related topics

Prepare by addressing breaking changes

Review these breaking changes and update your application in your development environment 
accordingly.

The Provider class and name have changed

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

Provider class and 
name

The JCE provider 
class in Client SDK 3 
is called CaviumPro 
vider  and has 
the Provider name
Cavium.

In Client SDK 5, the 
Provider class is 
called CloudHsmP 
rovider  and has 
the Provider name
CloudHSM.

An example of 
how to initialize 
the CloudHsmP 
rovider  object is 
available in the AWS 
CloudHSM GitHub 
sample repository.

Explicit login has changed, implicit has not

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

Explicit login Client SDK 3 uses 
the LoginManager

In Client SDK 5, 
the CloudHSM

For an example on 
how to use explicit 

Migrate JCE provider 811

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AESGCMEncryptDecryptRunner.java#L43-L50
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AESGCMEncryptDecryptRunner.java#L43-L50
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AESGCMEncryptDecryptRunner.java#L43-L50


AWS CloudHSM User Guide

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

class for explicit login
1.

provider implement 
s AuthProvider
for explicit login.
AuthProvider  is 
a standard Java class 
and follows Java's 
idiomatic way to 
log in to a Provider. 
With improved login 
state managemen 
t in Client SDK 
5, applications 
no longer need 
to monitor and 
perform login during 

reconnections2.

login with Client SDK 
5, see the LoginRunn 
er sample in the AWS 
CloudHSM GitHub 
sample repository.

Implicit login No changes are required for implicit login. 
The same properties file and all environment 
variables will continue to work for the implicit 
login when migrating from Client SDK 3 to 
Client SDK 5.

For an example on 
how to use implicit 
login with Client SDK 
5, see the LoginRunn 
er sample in the AWS 
CloudHSM GitHub 
sample repository.

• [1] Client SDK 3 code snippet:

LoginManager lm = LoginManager.getInstance(); 
                        
lm.login(partition, user, pass);

• [2] Client SDK 5 code snippet:

// Construct or get the existing provider object  

Migrate JCE provider 812

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java#L109C5-L141
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java#L109C5-L141
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java#L109C5-L141
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java#L143-L202
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java#L143-L202


AWS CloudHSM User Guide

AuthProvider provider = new CloudHsmProvider(); 
                        
// Call login method on the CloudHsmProvider object
// Here loginHandler is a CallbackHandler
provider.login(null, loginHandler);

For an example on how to use explicit login with Client SDK 5, see the LoginRunner sample in the 
AWS CloudHSM GitHub sample repository.

Key generation has changed

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

Key generation In Client SDK 
3, Cavium[Ke 
y-type]Al 
gorithmPa 
rameterSpec  is 
used to specify key 
generation parameter 
s. For a code snippet, 
see footnote 1.

In Client SDK 
5, KeyAttrib 
utesMap  is used to 
specify key generatio 
n attributes. For a 
code snippet, see 
footnote 2.

For an example 
on how to use
KeyAttrib 
utesMap  to 
generate a symmetric 
key, see the
SymmetricKeys 
sample in the AWS 
CloudHSM GitHub 
sample repository.

Key pair generation In Client SDK 
3, Cavium[Ke 
y-type]Al 
gorithmpa 
rameterSpec
is used to specify 
key pair generatio 
n parameters. For 
a code snippet, see 
footnote 3.

In Client SDK 
5, KeyPairAt 
tributesMap  is 
used to specify these 
parameters. For a 
code snippet, see 
footnote 4.

For an example 
on how to use
KeyAttrib 
utesMap  to 
generate an 
asymmetric key, see 
the AsymmetricKeys 
sample in the AWS 
CloudHSM GitHub 
sample repository.

• [1] Client SDK 3 key generation code snippet:

Migrate JCE provider 813

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java#L109C5-L141
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/SymmetricKeys.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/SymmetricKeys.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AsymmetricKeys.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AsymmetricKeys.java


AWS CloudHSM User Guide

KeyGenerator keyGen = KeyGenerator.getInstance("AES", "Cavium");
CaviumAESKeyGenParameterSpec aesSpec = new CaviumAESKeyGenParameterSpec(
keySizeInBits,
keyLabel,
isExtractable,
isPersistent);
keyGen.init(aesSpec);
SecretKey aesKey = keyGen.generateKey();

• [2] Client SDK 5 key generation code snippet:

KeyGenerator keyGen = KeyGenerator.getInstance("AES",
CloudHsmProvider.PROVIDER_NAME); 
                     
final KeyAttributesMap aesSpec = new KeyAttributesMap();
aesSpec.put(KeyAttribute.LABEL, keyLabel);
aesSpec.put(KeyAttribute.SIZE, keySizeInBits);
aesSpec.put(KeyAttribute.EXTRACTABLE, isExtractable);
aesSpec.put(KeyAttribute.TOKEN, isPersistent); 
                     
keyGen.init(aesSpec);
SecretKey aesKey = keyGen.generateKey();

• [3] Client SDK 3 key pair generation code snippet::

KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("rsa", "Cavium");
CaviumRSAKeyGenParameterSpec spec = new CaviumRSAKeyGenParameterSpec(
keySizeInBits,
new BigInteger("65537"),
label + ":public",
label + ":private",
isExtractable,
isPersistent); 
                     
keyPairGen.initialize(spec); 
                     
keyPairGen.generateKeyPair();

• [4] Client SDK 5 key pair generation code snippet:

KeyPairGenerator keyPairGen =
KeyPairGenerator.getInstance("RSA", providerName); 

Migrate JCE provider 814



AWS CloudHSM User Guide

                    
// Set attributes for RSA public key
final KeyAttributesMap publicKeyAttrsMap = new KeyAttributesMap();
publicKeyAttrsMap.putAll(additionalPublicKeyAttributes);
publicKeyAttrsMap.put(KeyAttribute.LABEL, label + ":Public");
publicKeyAttrsMap.put(KeyAttribute.MODULUS_BITS, keySizeInBits);
publicKeyAttrsMap.put(KeyAttribute.PUBLIC_EXPONENT,
new BigInteger("65537").toByteArray()); 
                     
// Set attributes for RSA private key
final KeyAttributesMap privateKeyAttrsMap = new KeyAttributesMap();
privateKeyAttrsMap.putAll(additionalPrivateKeyAttributes);
privateKeyAttrsMap.put(KeyAttribute.LABEL, label + ":Private"); 
                     
// Create KeyPairAttributesMap and use that to initialize the  
// keyPair generator
KeyPairAttributesMap keyPairSpec =
new KeyPairAttributesMapBuilder()
.withPublic(publicKeyAttrsMap)
.withPrivate(privateKeyAttrsMap)
.build(); 
                     
keyPairGen.initialize(keyPairSpec);
keyPairGen.generateKeyPair();

Finding, deleting, and referencing keys have changed

Finding an already generated key with AWS CloudHSM entails using the KeyStore. Client SDK 3 has 
two KeyStore types: Cavium and CloudHSM. Client SDK 5 only has one KeyStore type: CloudHSM.

Moving from the Cavium KeyStore to CloudHSM KeyStore requires a change of KeyStore type. 
Additionally, Client SDK 3 uses key handles to reference keys, while Client SDK 5 uses key labels. 
The resulting behavior changes are listed below.

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

Key references With Client SDK 3, 
applications use 
either key labels 
or key handles to 

In Client SDK 5, 
applications can use 
the AWS CloudHSM 
KeyStore Java class 

Migrate JCE provider 815



AWS CloudHSM User Guide

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

reference keys in the 
HSM. They use labels 
with KeyStore to find 
a key, or they use 
handles and create
CaviumKey  objects.

for Client SDK 5
to find keys by 
label. To find keys 
by handle, use the 
AWS CloudHSM
KeyStoreW 
ithAttributes
with AWS CloudHSM
KeyRefere 
nceSpec .

Finding multiple 
entries

When searching 
for a key using
getEntry, getKey, 
or getCertif 
icate  in scenarios 
where multiple items 
with the same criteria 
exist in the Cavium
KeyStore, only the 
first entry found will 
be returned.

With the AWS 
CloudHSM KeyStore
and KeyStoreW 
ithAttributes , 
this same scenario 
will result in an 
exception being 
thrown. To fix 
this problem, it is 
recommended to 
set unique labels 
for keys using the
Set the attributes of 
keys with CloudHSM 
CLI command in 
CloudHSM CLI. Or 
use KeyStoreW 
ithAttrib 
utes#getKeys  to 
return all keys that 
match the criteria.

Migrate JCE provider 816



AWS CloudHSM User Guide

What has changed What it was in Client 
SDK 3

What it is in Client 
SDK 5

Example

Find all keys It is possible in Client 
SDK 3 to find all 
keys in the HSM 
using Util.find 
AllKeys() .

Client SDK 5 makes 
finding keys simpler 
and more efficient by 
using the KeyStoreW 
ithAttributes
class. When possible, 
cache your keys to 
minimize latency. 
For more informati 
on, see Effectively 
manage keys in your 
application. When 
you need to retrieve 
all keys from the 
HSM, use KeyStoreW 
ithAttrib 
utes#getK 
eys  with an 
empty KeyAttrib 
utesMap .

An example that 
uses the KeyStoreW 
ithAttributes
class to find a key is 
available in the AWS 
CloudHSM GitHub 
sample repository
and a code snippet is 
shown in 1.

Key deletion Client SDK 3 
uses Util.dele 
teKey()  to delete a 
key.

The Key object 
in Client SDK 5 
implements the
Destroyable
interface which 
allows for keys to 
be deleted using the
destroy()  method 
of this interface.

An example code 
showing the delete 
key functionality 
can be found on the
CloudHSM GitHub 
sample repository. A 
sample snippet for 
each SDK is shown in
2.

• [1] a snippet is shown below:

Migrate JCE provider 817

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java#L205-L223
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java#L205-L223
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java#L205-L223
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java#L229-L234
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java#L229-L234


AWS CloudHSM User Guide

KeyAttributesMap findSpec = new KeyAttributesMap();
findSpec.put(KeyAttribute.LABEL, label);
findSpec.put(KeyAttribute.KEY_TYPE, keyType);
KeyStoreWithAttributes keyStore = KeyStoreWithAttributes.getInstance("CloudHSM"); 
                     
keyStore.load(null, null);
keyStore.getKey(findSpec);

• [2] Deleting a key in Client SDK 3:

Util.deleteKey(key);

Deleting a key in Client SDK 5:

((Destroyable) key).destroy();

Cipher unwrap operations have changed, other cipher operations have not

Note

No changes are required for Cipher encrypt/decrypt/wrap operations.

Unwrap operations require the Client SDK 3 CaviumUnwrapParameterSpec class to be replaced 
with one of the following classes specific to the cryptographic operations listed.

• GCMUnwrapKeySpec for AES/GCM/NoPadding unwrap

• IvUnwrapKeySpec for AESWrap unwrap and AES/CBC/NoPadding unwrap

• OAEPUnwrapKeySpec for RSA OAEP unwrap

Example snippet for OAEPUnwrapkeySpec:

OAEPParameterSpec oaepParameterSpec =
new OAEPParameterSpec( 
        "SHA-256", 
        "MGF1", 
        MGF1ParameterSpec.SHA256, 

Migrate JCE provider 818



AWS CloudHSM User Guide

        PSpecified.DEFAULT);

KeyAttributesMap keyAttributesMap = 
        new KeyAttributesMap(KeyAttributePermissiveProfile.KEY_CREATION);
keyAttributesMap.put(KeyAttribute.TOKEN, true);
keyAttributesMap.put(KeyAttribute.EXTRACTABLE, false);

OAEPUnwrapKeySpec spec = new OAEPUnwrapKeySpec(oaepParameterSpec, 
        keyAttributesMap);

Cipher hsmCipher = 
        Cipher.getInstance( 
                "RSA/ECB/OAEPPadding", 
                CloudHsmProvider.PROVIDER_NAME);
hsmCipher.init(Cipher.UNWRAP_MODE, key, spec);

Signature operations have not changed

No changes are required for Signature operations.

Migrate to Client SDK 5

Follow the instructions in this section to migrate from Client SDK 3 to Client SDK 5.

Note

Amazon Linux, Ubuntu 16.04, Ubuntu 18.04 CentOS 6, CentOS 8, and RHEL 6 are not 
currently supported with Client SDK 5. If you are currently using one of these platforms 
with Client SDK 3, you will need to choose a different platform when migrating to Client 
SDK 5.

1. Uninstall the JCE provider for Client SDK 3.

Amazon Linux 2

$ sudo yum remove cloudhsm-client-jce

CentOS 7

$ sudo yum remove cloudhsm-client-jce

Migrate JCE provider 819



AWS CloudHSM User Guide

RHEL 7

$ sudo yum remove cloudhsm-client-jce

RHEL 8

$ sudo yum remove cloudhsm-client-jce

2. Uninstall the Client Daemon for Client SDK 3.

Amazon Linux 2

$ sudo yum remove cloudhsm-client

CentOS 7

$ sudo yum remove cloudhsm-client

RHEL 7

$ sudo yum remove cloudhsm-client

RHEL 8

$ sudo yum remove cloudhsm-client

Note

Custom configurations need to be enabled again.

3. Install the Client SDK JCE provider by following the steps in Install the JCE provider for AWS 
CloudHSM Client SDK 5.

4. Client SDK 5 introduces a new configuration file format and command-line bootstrapping tool. 
To bootstrap your Client SDK 5 JCE provider, follow the instructions listed in the user guide 
under Bootstrap the Client SDK.

Migrate JCE provider 820



AWS CloudHSM User Guide

5. In your development environment, test your application. Make updates to your existing code 
to resolve your breaking changes before your final migration.

Related topics

• Best practices for AWS CloudHSM

Using Client SDK 5 to work with AWS CloudHSM

AWS CloudHSM includes two major Client SDK versions:

• Client SDK 5: This is our latest and default Client SDK. For information on the benefits and 
advantages it provides, see Benefits of AWS CloudHSM Client SDK 5.

• Client SDK 3: This is our older Client SDK. It includes a full set of components for platform and 
language-based applications compatibility and management tools.

For instructions on migrating from Client SDK 3 to Client SDK 5, see Migrating from AWS 
CloudHSM Client SDK 3 to Client SDK 5.

This topic describes Client SDK 5. To check what version of Client SDK you're using, see

Topics

• Benefits of AWS CloudHSM Client SDK 5

• AWS CloudHSM Client SDK 5 supported platforms

• PKCS #11 library for AWS CloudHSM Client SDK 5

• OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5

• Key storage provider (KSP) for AWS CloudHSM Client SDK 5

• JCE provider for AWS CloudHSM Client SDK 5

Benefits of AWS CloudHSM Client SDK 5

Compared to AWS CloudHSM Client SDK 3, Client SDK 5 is easier to manage, offers superior 
configurability, and increased reliability. Client SDK 5 also provides some additional key advantages 
to Client SDK 3.

Client SDK 5 821



AWS CloudHSM User Guide

Designed for serverless architecture

Client SDK 5 does not require a client daemon, so you no longer need to manage a background 
service. This helps users in a few important ways:

• Simplifies the application startup process. All you need to do to get started with CloudHSM is 
configure the SDK before running your application.

• You don't need a constantly running process, which makes integration with serverless 
components like Lambda and Elastic Container Service (ECS) easier.

Better third party integrations and easier portability

Client SDK 5 follows the JCE specification closely and provides easier portability between 
different JCE providers and better third party integrations

Improved user experience and configurability

Client SDK 5 improves log message readability and provides clearer exceptions and error-
handling mechanisms, all of which makes self-service triaging much easier for users. SDK 5 also 
offers a variety of configurations, which are listed in the Configure Tool page.

Broader platform support

Client SDK 5 offers more support for modern operating platforms. This includes support for 
ARM technologies and greater support for JCE, PKCS#11, and OpenSSL. For more information, 
refer to Supported platforms.

IPv6 connection support

Client SDK 5.14+ supports connections to dual-stack HSMs using IPv6.

Additional features and mechanisms

Client SDK 5 includes additional features and mechanisms that are not available in Client SDK 3, 
and Client SDK 5 will continue to add more mechanisms in the future.

Benefits of the latest SDK 822

https://docs.aws.amazon.com/cloudhsm/latest/userguide/configure-sdk-5.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-library_5.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/pkcs11-library.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/openssl-library.html


AWS CloudHSM User Guide

AWS CloudHSM Client SDK 5 supported platforms

Base support is different for each version of the AWS CloudHSM Client SDK. Platform support for 
components in an SDK typically matches base support, but not always. To determine platform 
support for a given component, first make sure the platform you want appears in the base section 
for the SDK, then check for any exclusions or any other pertinent information in the component 
section.

AWS CloudHSM supports only 64-bit operating systems.

Platform support changes over time. Earlier versions of the CloudHSM Client SDK may not support 
all the operating systems listed here. Use release notes to determine the operating system support 
for previous versions of the CloudHSM Client SDK. For more information, see Downloads for AWS 
CloudHSM Client SDK.

For supported platforms for the previous Client SDK, see AWS CloudHSM Client SDK 3 supported 
platforms

Client SDK 5 does not require a client daemon.

Topics

• Linux support for AWS CloudHSM Client SDK 5

• Windows support for AWS CloudHSM Client SDK 5

• Serverless support for AWS CloudHSM Client SDK 5

• HSM compatibility for AWS CloudHSM Client SDK 5

Linux support for AWS CloudHSM Client SDK 5

AWS CloudHSM Client SDK 5 supports the following Linux operating systems and platforms.

Supported platforms X86_64 Architecture ARM architecture

Amazon Linux 2 Yes Yes

Amazon Linux 2023 Yes Yes

Red Hat Enterprise Linux 8 
(8.3+)

Yes No

Supported platforms 823



AWS CloudHSM User Guide

Supported platforms X86_64 Architecture ARM architecture

Red Hat Enterprise Linux 9 
(9.2+)

Yes Yes

Ubuntu 22.04 LTS Yes Yes

Ubuntu 24.04 LTS Yes Yes

• SDK 5.16 was the last release to provide Ubuntu 20.04 LTS platform support. For more 
information, see the Ubuntu website.

• SDK 5.12 was the last release to provide CentOS 7 (7.8+) platform support. For more 
information, see the CentOS website.

• SDK 5.12 was the last release to provide Red Hat Enterprise Linux 7 (7.8+) platform support. For 
more information, see the Red Hat website.

• SDK 5.4.2 was the last release to provide CentOS 8 platform support. For more information, see 
the CentOS website.

Windows support for AWS CloudHSM Client SDK 5

AWS CloudHSM Client SDK 5 supports the following versions of Windows Server.

• Microsoft Windows Server 2016

• Microsoft Windows Server 2019

• Microsoft Windows Server 2022

Serverless support for AWS CloudHSM Client SDK 5

AWS CloudHSM Client SDK 5 supports the following AWS serverless services.

• AWS Lambda

• Docker/ECS

HSM compatibility for AWS CloudHSM Client SDK 5

The following table describes AWS CloudHSM Client SDK 5 compatibility for HSMs.

Supported platforms 824

https://ubuntu.com/blog/ubuntu-20-04-lts-end-of-life-standard-support-is-coming-to-an-end-heres-how-to-prepare
https://blog.centos.org/2023/04/end-dates-are-coming-for-centos-stream-8-and-centos-linux-7/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/rhel-7-end-of-maintenance
https://www.centos.org/centos-linux-eol/


AWS CloudHSM User Guide

hsm1.medium hsm2m.medium

Compatible with Client SDK version 5.0.0 and 
later.

Compatible with Client SDK version 5.9.0 and 
later.

PKCS #11 library for AWS CloudHSM Client SDK 5

PKCS #11 is a standard for performing cryptographic operations on hardware security modules 
(HSMs). AWS CloudHSM offers implementations of the PKCS #11 library that are compliant with 
PKCS #11 version 2.40.

For information about bootstrapping, see Connecting to the cluster. For troubleshooting, see
Known issues for the PKCS #11 library for AWS CloudHSM.

For information on using Client SDK 3, see Using previous SDK version to work with AWS 
CloudHSM.

Topics

• Install the PKCS #11 library for AWS CloudHSM Client SDK 5

• Authenticate to the PKCS #11 library for AWS CloudHSM Client SDK 5

• Supported key types for the PKCS #11 library for AWS CloudHSM Client SDK 5

• Supported mechanisms for the PKCS #11 library for AWS CloudHSM Client SDK 5

• Supported API operations for the PKCS #11 library for AWS CloudHSM Client SDK 5

• Key attributes in the PKCS #11 library for AWS CloudHSM Client SDK 5

• Code samples for the PKCS #11 library for AWS CloudHSM Client SDK 5

• Advanced configurations for PKCS #11 library for AWS CloudHSM

• Certificate storage with the PKCS #11 library

Install the PKCS #11 library for AWS CloudHSM Client SDK 5

This topic provides instructions for installing the latest version of the PKCS #11 library for the AWS 
CloudHSM Client SDK 5 version series. For more information about the Client SDK or PKCS #11 
library, see Using the Client SDK and PKCS #11 library.

With Client SDK 5, you are not required to install or run a client daemon.

PKCS #11 library 825



AWS CloudHSM User Guide

To run a single HSM cluster with Client SDK 5, you must first manage client key durability settings 
by setting disable_key_availability_check to True. For more information, see Key 
Synchronization and Client SDK 5 Configure Tool.

For more information about the PKCS #11 library in Client SDK 5, see PKCS #11 library.

Note

To run a single HSM cluster with Client SDK 5, you must first manage client key durability 
settings by setting disable_key_availability_check to True. For more information, 
see Key Synchronization and Client SDK 5 Configure Tool.

To install and configure the PKCS #11 library

1. Use the following commands to download and install the PKCS #11 library.

Amazon Linux 2023

Install the PKCS #11 library for Amazon Linux 2023 on X86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-pkcs11-latest.amzn2023.x86_64.rpm

$ sudo yum install ./cloudhsm-pkcs11-latest.amzn2023.x86_64.rpm

Install the PKCS #11 library for Amazon Linux 2023 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-pkcs11-latest.amzn2023.aarch64.rpm

$ sudo yum install ./cloudhsm-pkcs11-latest.amzn2023.aarch64.rpm

Amazon Linux 2

Install the PKCS #11 library for Amazon Linux 2 on X86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
pkcs11-latest.el7.x86_64.rpm

PKCS #11 library 826



AWS CloudHSM User Guide

$ sudo yum install ./cloudhsm-pkcs11-latest.el7.x86_64.rpm

Install the PKCS #11 library for Amazon Linux 2 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
pkcs11-latest.el7.aarch64.rpm

$ sudo yum install ./cloudhsm-pkcs11-latest.el7.aarch64.rpm

RHEL 9 (9.2+)

Install the PKCS #11 library for RHEL 9 on X86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-
pkcs11-latest.el9.x86_64.rpm

$ sudo yum install ./cloudhsm-pkcs11-latest.el9.x86_64.rpm

Install the PKCS #11 library for RHEL 9 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-
pkcs11-latest.el9.aarch64.rpm

$ sudo yum install ./cloudhsm-pkcs11-latest.el9.aarch64.rpm

RHEL 8 (8.3+)

Install the PKCS #11 library for RHEL 8 on X86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
pkcs11-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-pkcs11-latest.el8.x86_64.rpm

PKCS #11 library 827



AWS CloudHSM User Guide

Ubuntu 24.04 LTS

Install the PKCS #11 library for Ubuntu 24.04 LTS on X86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/
cloudhsm-pkcs11_latest_u24.04_amd64.deb

$ sudo apt install ./cloudhsm-pkcs11_latest_u24.04_amd64.deb

Install the PKCS #11 library for Ubuntu 24.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/
cloudhsm-pkcs11_latest_u24.04_arm64.deb

$ sudo apt install ./cloudhsm-pkcs11_latest_u24.04_arm64.deb

Ubuntu 22.04 LTS

Install the PKCS #11 library for Ubuntu 22.04 LTS on X86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/
cloudhsm-pkcs11_latest_u22.04_amd64.deb

$ sudo apt install ./cloudhsm-pkcs11_latest_u22.04_amd64.deb

Install the PKCS #11 library for Ubuntu 22.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/
cloudhsm-pkcs11_latest_u22.04_arm64.deb

$ sudo apt install ./cloudhsm-pkcs11_latest_u22.04_arm64.deb

Ubuntu 20.04 LTS

Install the PKCS #11 library for Ubuntu 20.04 LTS on X86_64 architecture:

PKCS #11 library 828



AWS CloudHSM User Guide

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/
cloudhsm-pkcs11_latest_u20.04_amd64.deb

$ sudo apt install ./cloudhsm-pkcs11_latest_u20.04_amd64.deb

Windows Server

Install the PKCS #11 library for Windows Server on X86_64 architecture:

1. Download PKCS #11 library for Client SDK 5.

2. Run the PKCS #11 library installer (AWSCloudHSMPKCS11-latest.msi) with Windows 
administrative privilege.

2. Use the configure tool to specify the location of the issuing certificate. For instructions, see
Specify the location of the issuing certificate.

3. To connect to your cluster, see Bootstrap the Client SDK.

4. You can find the PKCS #11 library files in the following locations:

• Linux binaries, configuration scripts, and log files:

/opt/cloudhsm

Windows binaries:

C:\Program Files\Amazon\CloudHSM

Windows configuration scripts and log files:

C:\ProgramData\Amazon\CloudHSM

Authenticate to the PKCS #11 library for AWS CloudHSM Client SDK 5

When you use the PKCS #11 library, your application runs as a particular crypto user (CU) in your 
HSMs in AWS CloudHSM. Your application can view and manage only the keys that the CU owns 
and shares. You can use an existing CU in your HSMs or create a new CU for your application. For 

PKCS #11 library 829

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-latest.msi


AWS CloudHSM User Guide

information on managing CUs, see Managing HSM users with CloudHSM CLI and Managing HSM 
users with CloudHSM Management Utility (CMU)

To specify the CU to PKCS #11 library, use the pin parameter of the PKCS #11 C_Login function. For 
AWS CloudHSM, the pin parameter has the following format:

<CU_user_name>:<password>

For example, the following command sets the PKCS #11 library pin to the CU with user name
CryptoUser and password CUPassword123!.

CryptoUser:CUPassword123!

Supported key types for the PKCS #11 library for AWS CloudHSM Client SDK 5

The PKCS #11 library for AWS CloudHSM Client SDK 5supports the following key types.

Key Type Description

AES Generate 128, 192, and 256-bit AES keys.

Triple DES (3DES, DESede) Generate 192-bit Triple DES keys. See note 1
below for an upcoming change.

EC Generate keys with the secp224r1 (P-224), 
secp256r1 (P-256), secp256k1 (Blockchain), 
secp384r1 (P-384), and secp521r1 (P-521) 
curves.

GENERIC_SECRET Generate 1 to 800 bytes generic secrets.

RSA Generate 2048-bit to 4096-bit RSA keys, in 
increments of 256 bits.

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

PKCS #11 library 830

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html#_Toc385057915


AWS CloudHSM User Guide

Supported mechanisms for the PKCS #11 library for AWS CloudHSM Client SDK 5

The PKCS #11 library is compliant with version 2.40 of the PKCS #11 specification. To invoke a 
cryptographic feature using PKCS #11, call a function with a given mechanism. The following 
sections summarize the combinations of functions and mechanisms supported by AWS CloudHSM 
Client SDK 5.

The PKCS #11 library supports the following algorithms:

• Encryption and decryption – AES-CBC, AES-CTR, AES-ECB, AES-GCM, DES3-CBC, DES3-ECB, 
RSA-OAEP, and RSA-PKCS

• Sign and verify – RSA, HMAC, and ECDSA; with and without hashing

• Hash/digest – SHA1, SHA224, SHA256, SHA384, and SHA512

• Key wrap – AES Key Wrap1, AES-GCM, RSA-AES, and RSA-OAEP

• Key derivation – SP800-108 Counter KDF and ECDH with KDF (Supported KDF algorithms are 
X9.63 with SHA1, SHA224, SHA256, SHA384, SHA512)

Topics

• Generate key and key pair functions

• Sign and verify functions

• Sign recover and verify recover functions

• Digest functions

• Encrypt and decrypt functions

• Derive key functions

• Wrap and Unwrap functions

• Maximum data size for each mechanism

• Mechanism annotations

Generate key and key pair functions

The AWS CloudHSM software library for PKCS #11 library allows you to use the following 
mechanisms for Generate Key and Key Pair functions.

• CKM_RSA_PKCS_KEY_PAIR_GEN

PKCS #11 library 831



AWS CloudHSM User Guide

• CKM_RSA_X9_31_KEY_PAIR_GEN – This mechanism is functionally identical to the
CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, but offers stronger guarantees for p and q
generation.

• CKM_EC_KEY_PAIR_GEN

• CKM_GENERIC_SECRET_KEY_GEN

• CKM_AES_KEY_GEN

• CKM_DES3_KEY_GEN – upcoming change listed in footnote 5.

Sign and verify functions

The AWS CloudHSM software library for PKCS #11 library allows you to use the following 
mechanisms for Sign and Verify functions. With Client SDK 5, the data is hashed locally in software. 
This means there is no limit on the size of the data that can be hashed by the SDK.

With Client SDK 5 RSA and ECDSA hashing is done locally so there is no data limit. With HMAC, 
there is a data limit. See footnote 2 for more info.

RSA

• CKM_RSA_X_509

• CKM_RSA_PKCS – single-part operations only.

• CKM_RSA_PKCS_PSS – single-part operations only.

• CKM_SHA1_RSA_PKCS

• CKM_SHA224_RSA_PKCS

• CKM_SHA256_RSA_PKCS

• CKM_SHA384_RSA_PKCS

• CKM_SHA512_RSA_PKCS

• CKM_SHA512_RSA_PKCS

• CKM_SHA1_RSA_PKCS_PSS

• CKM_SHA224_RSA_PKCS_PSS

• CKM_SHA256_RSA_PKCS_PSS

• CKM_SHA384_RSA_PKCS_PSS

• CKM_SHA512_RSA_PKCS_PSS

PKCS #11 library 832



AWS CloudHSM User Guide

ECDSA

• CKM_ECDSA – single-part operations only.

• CKM_ECDSA_SHA1

• CKM_ECDSA_SHA224

• CKM_ECDSA_SHA256

• CKM_ECDSA_SHA384

• CKM_ECDSA_SHA512

HMAC

• CKM_SHA_1_HMAC2

• CKM_SHA224_HMAC2

• CKM_SHA256_HMAC2

• CKM_SHA384_HMAC2

• CKM_SHA512_HMAC2

CMAC

• CKM_AES_CMAC

Sign recover and verify recover functions

Client SDK 5 does not support Sign Recover and Verify Recover functions.

Digest functions

The AWS CloudHSM software library for PKCS #11 library allows you to use the following 
mechanisms for Digest functions. With Client SDK 5, the data is hashed locally in software. This 
means there is no limit on the size of the data that can be hashed by the SDK.

• CKM_SHA_1

• CKM_SHA224

• CKM_SHA256

PKCS #11 library 833



AWS CloudHSM User Guide

• CKM_SHA384

• CKM_SHA512

Encrypt and decrypt functions

The AWS CloudHSM software library for PKCS #11 library allows you to use the following 
mechanisms for Encrypt and Decrypt functions.

• CKM_RSA_X_509

• CKM_RSA_PKCS – single-part operations only. Upcoming change listed in footnote 5.

• CKM_RSA_PKCS_OAEP – single-part operations only.

• CKM_AES_ECB

• CKM_AES_CTR

• CKM_AES_CBC

• CKM_AES_CBC_PAD

• CKM_DES3_CBC – upcoming change listed in footnote 5.

• CKM_DES3_ECB – upcoming change listed in footnote 5.

• CKM_DES3_CBC_PAD – upcoming change listed in footnote 5.

• CKM_AES_GCM 1, 2

• CKM_CLOUDHSM_AES_GCM3

Derive key functions

The AWS CloudHSM software library for PKCS #11 library supports the following key derivation 
mechanisms:

• CKM_SP800_108_COUNTER_KDF

• CKM_ECDH1_DERIVE - Supports ECDH key derivation with the following vendor-defined KDF 

types6:

• CKD_CLOUDHSM_X963_SHA1_KDF - X9.63 KDF with SHA17

• CKD_CLOUDHSM_X963_SHA224_KDF - X9.63 KDF with SHA2247

• CKD_CLOUDHSM_X963_SHA256_KDF - X9.63 KDF with SHA2567

PKCS #11 library 834



AWS CloudHSM User Guide

• CKD_CLOUDHSM_X963_SHA384_KDF - X9.63 KDF with SHA3847

• CKD_CLOUDHSM_X963_SHA512_KDF - X9.63 KDF with SHA5127

Wrap and Unwrap functions

The AWS CloudHSM software library for PKCS #11 library allows you to use the following 
mechanisms for Wrap and Unwrap functions.

For additional information regarding AES key wrapping, see AES Key Wrapping.

• CKM_RSA_PKCS – single-part operations only. An upcoming change is listed in footnote 5.

• CKM_RSA_PKCS_OAEP4

• CKM_AES_GCM1, 3

• CKM_CLOUDHSM_AES_GCM3

• CKM_RSA_AES_KEY_WRAP

• CKM_CLOUDHSM_AES_KEY_WRAP_NO_PAD3

• CKM_CLOUDHSM_AES_KEY_WRAP_PKCS5_PAD3

• CKM_CLOUDHSM_AES_KEY_WRAP_ZERO_PAD3

Maximum data size for each mechanism

The following table lists the maximum data size set for each mechanism:

Maximum data set size

Mechanism Maximum data size in bytes

CKM_SHA_1_HMAC 16288

CKM_SHA224_HMAC 16256

CKM_SHA256_HMAC 16288

CKM_SHA384_HMAC 16224

CKM_SHA512_HMAC 16224

PKCS #11 library 835



AWS CloudHSM User Guide

Mechanism Maximum data size in bytes

CKM_AES_CBC 16272

CKM_AES_GCM 16224

CKM_CLOUDHSM_AES_GCM 16224

CKM_DES3_CBC 16280

Mechanism annotations

• [1] When performing AES-GCM encryption, the HSM does not accept initialization vector (IV) 
data from the application. You must use an IV that it generates. The 12-byte IV provided by the 
HSM is written into the memory reference pointed to by the pIV element of the CK_GCM_PARAMS
parameters structure that you supply. To prevent user confusion, PKCS #11 SDK in version 1.1.1 
and later ensures that pIV points to a zeroized buffer when AES-GCM encryption is initialized.

• [2] When operating on data by using any of the following mechanisms, if the data buffer exceeds 
the maximum data size, the operation results in an error. For these mechanisms, all the data 
processing must occur inside the HSM. For information on maximum data size sets for each 
mechanism, refer to Maximum data size for each mechanism.

• [3] Vendor-defined mechanism. In order to use the CloudHSM vendor defined mechanisms, 
PKCS#11 applications must include /opt/cloudhsm/include/pkcs11t.h during compilation.

CKM_CLOUDHSM_AES_GCM: This proprietary mechanism is a programmatically safer alternative 
to the standard CKM_AES_GCM. It prepends the IV generated by the HSM to the ciphertext 
instead of writing it back into the CK_GCM_PARAMS structure that is provided during cipher 
initialization. You can use this mechanism with C_Encrypt, C_WrapKey, C_Decrypt, and
C_UnwrapKey functions. When using this mechanism, the pIV variable in the CK_GCM_PARAMS
struct must be set to NULL. When using this mechanism with C_Decrypt and C_UnwrapKey, the 
IV is expected to be prepended to the ciphertext that is being unwrapped.

CKM_CLOUDHSM_AES_KEY_WRAP_PKCS5_PAD: AES Key Wrap with PKCS #5 Padding.

CKM_CLOUDHSM_AES_KEY_WRAP_ZERO_PAD: AES Key Wrap with Zero Padding.

• [4] The following CK_MECHANISM_TYPE and CK_RSA_PKCS_MGF_TYPE are supported as
CK_RSA_PKCS_OAEP_PARAMS for CKM_RSA_PKCS_OAEP:

PKCS #11 library 836



AWS CloudHSM User Guide

• CKM_SHA_1 using CKG_MGF1_SHA1

• CKM_SHA224 using CKG_MGF1_SHA224

• CKM_SHA256 using CKG_MGF1_SHA256

• CKM_SHA384 using CKM_MGF1_SHA384

• CKM_SHA512 using CKM_MGF1_SHA512

• [5] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. 
For clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 
Mechanism Deprecation for details.

• [6] Vendor defined types. In order to use CloudHSM vendor defined types, PKCS#11 
applications must include cloudhsm_pkcs11_vendor_defs.h during compilation. This 
is found in /opt/cloudhsm/include/pkcs11/cloudhsm_pkcs11_vendor_defs.h
for Linux based platforms and C:\Program Files\Amazon\CloudHSM\include
\pkcs11\cloudhsm_pkcs11_vendor_defs.h for Windows based platforms

• [7] Key derivation functions (KDFs) are specified in RFC 8418, Section 2.1.

Supported API operations for the PKCS #11 library for AWS CloudHSM Client SDK 
5

The PKCS #11 library supports the following PKCS #11 API operations for AWS CloudHSM Client 
SDK 5.

• C_CloseAllSessions

• C_CloseSession

• C_CreateObject

• C_Decrypt

• C_DecryptFinal

• C_DecryptInit

• C_DecryptUpdate

• C_DeriveKey

• C_DestroyObject

• C_Digest

• C_DigestFinal

PKCS #11 library 837

https://datatracker.ietf.org/doc/html/rfc8418


AWS CloudHSM User Guide

• C_DigestInit

• C_DigestUpdate

• C_Encrypt

• C_EncryptFinal

• C_EncryptInit

• C_EncryptUpdate

• C_Finalize

• C_FindObjects

• C_FindObjectsFinal

• C_FindObjectsInit

• C_GenerateKey

• C_GenerateKeyPair

• C_GenerateRandom

• C_GetAttributeValue

• C_GetFunctionList

• C_GetInfo

• C_GetMechanismInfo

• C_GetMechanismList

• C_GetSessionInfo

• C_GetSlotInfo

• C_GetSlotList

• C_GetTokenInfo

• C_Initialize

• C_Login

• C_Logout

• C_OpenSession

• C_Sign

• C_SignFinal

• C_SignInit

• C_SignUpdate

PKCS #11 library 838



AWS CloudHSM User Guide

• C_UnWrapKey

• C_Verify

• C_VerifyFinal

• C_VerifyInit

• C_VerifyUpdate

• C_WrapKey

Key attributes in the PKCS #11 library for AWS CloudHSM Client SDK 5

An AWS CloudHSM key object can be a public, private, or secret key. Actions permitted on a key 
object are specified through attributes. Attributes are defined when the key object is created. When 
you use the PKCS #11 library for AWS CloudHSM, we assign default values as specified by the PKCS 
#11 standard.

AWS CloudHSM does not support all attributes listed in the PKCS #11 specification. We are 
compliant with the specification for all attributes we support. These attributes are listed in the 
respective tables.

Cryptographic functions such as C_CreateObject, C_GenerateKey, C_GenerateKeyPair,
C_UnwrapKey, and C_DeriveKey that create, modify, or copy objects take an attribute template 
as one of their parameters. For more information about passing an attribute template during 
object creation, see Generate keys through PKCS #11 library for examples.

The following topics provide more information about AWS CloudHSM key attributes.

Topics

• PKCS #11 library attributes tables for AWS CloudHSM Client SDK 5

• Modifying PKCS #11 library attributes for AWS CloudHSM Client SDK 5

• Interpreting PKCS #11 library error codes for AWS CloudHSM Client SDK 5

PKCS #11 library attributes tables for AWS CloudHSM Client SDK 5

The PKCS #11 library tables for AWS CloudHSM contain a list of attributes that differ by key types. 
It indicates whether a given attribute is supported for a particular key type when using a specific 
cryptographic function with AWS CloudHSM.

Legend:

PKCS #11 library 839

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/generate


AWS CloudHSM User Guide

• ✔  indicates that CloudHSM supports the attribute for the specific key type.

• ✖  indicates that CloudHSM does not support the attribute for the specific key type.

• R indicates that the attribute value is set to read-only for the specific key type.

• S indicates that the attribute cannot be read by the GetAttributeValue as it is sensitive.

• An empty cell in the Default Value column indicates that there is no specific default value 
assigned to the attribute.

GenerateKeyPair

Attribute Key Type Default 
Value

  EC private EC public RSA 
private

RSA public  

CKA_CLASS ✔ ✔ ✔ ✔

CKA_KEY_T 
YPE

✔ ✔ ✔ ✔

CKA_LABEL ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔

CKA_LOCAL R R R R True

CKA_TOKEN ✔ ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✖ ✔ ✖ ✔ False

PKCS #11 library 840



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_DECRY 
PT

✔ ✖ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔ ✔ ✔ ✔ True

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ True

CKA_SIGN ✔ ✖ ✔ ✖ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✖ ✖  

CKA_VERIF 
Y

✖ ✔ ✖ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✖  

CKA_WRAP ✖ ✔ ✖ ✔ False

CKA_WRAP_ 
TEMPLATE

✖ ✔ ✖ ✔  

CKA_TRUST 
ED

✖ ✔ ✖ ✔ False

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✖ ✔ ✖ False

PKCS #11 library 841



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_UNWRA 
P

✔ ✖ ✔ ✖ False

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✖ ✔ ✖  

CKA_SENSI 
TIVE

✔1 ✖ ✔1 ✖ True

CKA_ALWAY 
S_SENSITI 

VE

R ✖ R ✖  

CKA_EXTRA 
CTABLE

✔ ✖ ✔ ✖ True

CKA_NEVER 
_EXTRACTA 

BLE

R ✖ R ✖  

CKA_MODUL 
US

✖ ✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✔2  

CKA_PRIME 
_1

✖ ✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖ ✖  

PKCS #11 library 842



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_EXPON 
ENT_1

✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖ ✔2  

CKA_EC_PA 
RAMS

✖ ✔2 ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖ ✖  

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖  

CKA_CHECK 
_VALUE

R R R R  

PKCS #11 library 843



AWS CloudHSM User Guide

GenerateKey

Attribute Key Type Default 
Value

  AES DES3 Generic 
Secret

 

CKA_CLASS ✔ ✔ ✔

CKA_KEY_T 
YPE

✔ ✔ ✔

CKA_LABEL ✔ ✔ ✔

CKA_ID ✔ ✔ ✔

CKA_LOCAL R R R True

CKA_TOKEN ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✔ ✔ ✖ False

CKA_DECRY 
PT

✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔ ✔ ✔ True

CKA_DESTR 
OYABLE

✔ ✔ ✔ True

CKA_SIGN ✔ ✔ ✔ True

PKCS #11 library 844



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_SIGN_ 
RECOVER

✖ ✖ ✖  

CKA_VERIF 
Y

✔ ✔ ✔ True

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖  

CKA_WRAP ✔ ✔ ✖ False

CKA_WRAP_ 
TEMPLATE

✔ ✔ ✖  

CKA_TRUST 
ED

✔ ✔ ✖ False

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✔ ✔ False

CKA_UNWRA 
P

✔ ✔ ✖ False

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✔ ✖  

CKA_SENSI 
TIVE

✔ ✔ ✔ True

CKA_ALWAY 
S_SENSITI 

VE

✖ ✖ ✖  

PKCS #11 library 845



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_EXTRA 
CTABLE

✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R R R  

CKA_MODUL 
US

✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖  

PKCS #11 library 846



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_EC_PA 
RAMS

✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖  

CKA_VALUE 
_LEN

✔2 ✖ ✔2  

CKA_CHECK 
_VALUE

R R R  

CreateObject

Attribute Key Type Default 
Value

  EC 
private

EC 
public

RSA 
private

RSA 
public

AES DES3 Generic 
Secret

 

CKA_CLASS ✔2 ✔2 ✔2 ✔2 ✔2 ✔2 ✔2

CKA_KEY_T 
YPE

✔2 ✔2 ✔2 ✔2 ✔2 ✔2 ✔2

CKA_LABEL ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_LOCAL R R R R R R R False

PKCS #11 library 847



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_TOKEN ✔ ✔ ✔ ✔ ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 ✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✖ ✖ ✖ ✔ ✔ ✔ ✖ False

CKA_DECRY 
PT

✖ ✖ ✔ ✖ ✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ ✔ ✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔ True

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔ True

CKA_SIGN ✔ ✖ ✔ ✖ ✔ ✔ ✔ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✖ ✖ ✖ ✖ ✖ False

CKA_VERIF 
Y

✖ ✔ ✖ ✔ ✔ ✔ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✖ ✖ ✖ ✖  

CKA_WRAP ✖ ✖ ✖ ✔ ✔ ✔ ✖ False

PKCS #11 library 848



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_WRAP_ 
TEMPLATE

✖ ✔ ✖ ✔ ✔ ✔ ✖  

CKA_TRUST 
ED

✖ ✔ ✖ ✔ ✔ ✔ ✖ False

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✖ ✔ ✖ ✔ ✔ ✔ False

CKA_UNWRA 
P

✖ ✖ ✔ ✖ ✔ ✔ ✖ False

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✖ ✔ ✖ ✔ ✔ ✖  

CKA_SENSI 
TIVE

✔ ✖ ✔ ✖ ✔ ✔ ✔ True

CKA_ALWAY 
S_SENSITI 

VE

R ✖ R ✖ R R R  

CKA_EXTRA 
CTABLE

✔ ✖ ✔ ✖ ✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R ✖ R ✖ R R R  

CKA_MODUL 
US

✖ ✖ ✔2 ✔2 ✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✖ ✖ ✖ ✖  

PKCS #11 library 849



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_PRIME 
_1

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✔2 ✖ ✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✔2 ✔2 ✖ ✖ ✖  

CKA_EC_PA 
RAMS

✔2 ✔2 ✖ ✖ ✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✔2 ✖ ✖ ✖ ✖ ✖  

CKA_VALUE ✔2 ✖ ✖ ✖ ✔2 ✔2 ✔2  

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖ ✖ ✖ ✖  

PKCS #11 library 850



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_CHECK 
_VALUE

R R R R R R R  

UnwrapKey

Attribute Key Type Default 
Value

  EC 
private

RSA 
private

AES DES3 Generic 
Secret

 

CKA_CLASS ✔2 ✔2 ✔2 ✔2 ✔2

CKA_KEY_T 
YPE

✔2 ✔2 ✔2 ✔2 ✔2

CKA_LABEL ✔ ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔ ✔

CKA_LOCAL R R R R R False

CKA_TOKEN ✔ ✔ ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✖ ✖ ✔ ✔ ✖ False

PKCS #11 library 851



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_DECRY 
PT

✖ ✔ ✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔ ✔ ✔ ✔ ✔ True

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ ✔ True

CKA_SIGN ✔ ✔ ✔ ✔ ✔ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✖ ✖ ✖ False

CKA_VERIF 
Y

✖ ✖ ✔ ✔ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✖ ✖  

CKA_WRAP ✖ ✖ ✔ ✔ ✖ False

CKA_UNWRA 
P

✖ ✔ ✔ ✔ ✖ False

CKA_SENSI 
TIVE

✔ ✔ ✔ ✔ ✔ True

CKA_EXTRA 
CTABLE

✔ ✔ ✔ ✔ ✔ True

PKCS #11 library 852



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_NEVER 
_EXTRACTA 

BLE

R R R R R  

CKA_ALWAY 
S_SENSITI 

VE

R R R R R  

CKA_MODUL 
US

✖ ✖ ✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖ ✖ ✖  

PKCS #11 library 853



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_EC_PA 
RAMS

✖ ✖ ✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖ ✖ ✖  

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖ ✖  

CKA_CHECK 
_VALUE

R R R R R  

DeriveKey

Attribute Key Type Default 
Value

  AES DES3 Generic 
Secret

 

CKA_CLASS ✔2 ✔2 ✔2

CKA_KEY_T 
YPE

✔2 ✔2 ✔2

CKA_LABEL ✔ ✔ ✔

CKA_ID ✔ ✔ ✔

CKA_LOCAL R R R True

CKA_TOKEN ✔ ✔ ✔ False

PKCS #11 library 854



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_PRIVA 
TE

✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✔ ✔ ✖ False

CKA_DECRY 
PT

✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔ ✔ ✔ True

CKA_DESTR 
OYABLE

✔ ✔ ✔ True

CKA_SIGN ✔ ✔ ✔ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✖  

CKA_VERIF 
Y

✔ ✔ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖  

CKA_WRAP ✔ ✔ ✖ False

CKA_UNWRA 
P

✔ ✔ ✖ False

PKCS #11 library 855



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_SENSI 
TIVE

R R R True

CKA_EXTRA 
CTABLE

✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R R R  

CKA_ALWAY 
S_SENSITI 

VE

R R R  

CKA_MODUL 
US

✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖  

PKCS #11 library 856



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖  

CKA_EC_PA 
RAMS

✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖  

CKA_VALUE 
_LEN

✔2 ✖ ✔2  

CKA_CHECK 
_VALUE

R R R  

GetAttributeValue

Attribute Key Type

  EC 
private

EC 
public

RSA 
private

RSA 
public

AES DES3 Generic 
Secret

CKA_CLASS ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_KEY_T 
YPE

✔ ✔ ✔ ✔ ✔ ✔ ✔

PKCS #11 library 857



AWS CloudHSM User Guide

Attribute Key Type

CKA_LABEL ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_LOCAL ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_TOKEN ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 ✔1 ✔1 ✔1

CKA_ENCRY 
PT

✖ ✖ ✖ ✔ ✔ ✔ ✖

CKA_DECRY 
PT

✖ ✖ ✔ ✖ ✔ ✔ ✖

CKA_DERIV 
E

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_MODIF 
IABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_SIGN ✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_SIGN_ 
RECOVER

✖ ✖ ✔ ✖ ✖ ✖ ✖

CKA_VERIF 
Y

✖ ✔ ✖ ✔ ✔ ✔ ✔

PKCS #11 library 858



AWS CloudHSM User Guide

Attribute Key Type

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✔ ✖ ✖ ✖

CKA_WRAP ✖ ✖ ✖ ✔ ✔ ✔ ✖

CKA_WRAP_ 
TEMPLATE

✖ ✔ ✖ ✔ ✔ ✔ ✖

CKA_TRUST 
ED

✖ ✔ ✖ ✔ ✔ ✔ ✔

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_UNWRA 
P

✖ ✖ ✔ ✖ ✔ ✔ ✖

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✖ ✔ ✖ ✔ ✔ ✖

CKA_SENSI 
TIVE

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_EXTRA 
CTABLE

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_NEVER 
_EXTRACTA 

BLE

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_ALWAY 
S_SENSITI 

VE

R R R R R R R

PKCS #11 library 859



AWS CloudHSM User Guide

Attribute Key Type

CKA_MODUL 
US

✖ ✖ ✔ ✔ ✖ ✖ ✖

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✔ ✖ ✖ ✖

CKA_PRIME 
_1

✖ ✖ S ✖ ✖ ✖ ✖

CKA_PRIME 
_2

✖ ✖ S ✖ ✖ ✖ ✖

CKA_COEFF 
ICIENT

✖ ✖ S ✖ ✖ ✖ ✖

CKA_EXPON 
ENT_1

✖ ✖ S ✖ ✖ ✖ ✖

CKA_EXPON 
ENT_2

✖ ✖ S ✖ ✖ ✖ ✖

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ S ✖ ✖ ✖ ✖

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✔ ✔ ✖ ✖ ✖

CKA_EC_PA 
RAMS

✔ ✔ ✖ ✖ ✖ ✖ ✖

CKA_EC_PO 
INT

✖ ✔ ✖ ✖ ✖ ✖ ✖

CKA_VALUE S ✖ ✖ ✖ ✔ ✔ ✔

PKCS #11 library 860



AWS CloudHSM User Guide

Attribute Key Type

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖ ✔ ✖ ✔

CKA_CHECK 
_VALUE

✔ ✔ ✔ ✔ ✔ ✔ ✖

Attribute annotations

• [1] This attribute is partially supported by the firmware and must be explicitly set only to the 
default value.

• [2] Mandatory attribute.

Modifying PKCS #11 library attributes for AWS CloudHSM Client SDK 5

Some PKCS #11 library attributes for of an AWS CloudHSM object can be modified after the object 
has been created, whereas some cannot. To modify attributes, use the key set-attribute command 
from CloudHSM CLI. You can also derive a list of attributes by using the key list command from 
CloudHSM CLI.

The following list displays attributes that are allowed for modification after object creation:

• CKA_LABEL

• CKA_TOKEN

Note

Modification is allowed only for changing a session key to a token key. Use the key set-
attribute command from CloudHSM CLI to change the attribute value.

• CKA_ENCRYPT

• CKA_DECRYPT

• CKA_SIGN

• CKA_VERIFY

• CKA_WRAP

PKCS #11 library 861



AWS CloudHSM User Guide

• CKA_UNWRAP

• CKA_LABEL

• CKA_SENSITIVE

• CKA_DERIVE

Note

This attribute supports key derivation. It must be False for all public keys and cannot be 
set to True. For secret and EC private keys, it can be set to True or False.

• CKA_TRUSTED

Note

This attribute can be set to True or False by Crypto Officer (CO) only.

• CKA_WRAP_WITH_TRUSTED

Note

Apply this attribute to an exportable data key to specify that you can only wrap this key 
with keys marked as CKA_TRUSTED. Once you set CKA_WRAP_WITH_TRUSTED to true, 
the attribute becomes read-only and you cannot change or remove the attribute.

Interpreting PKCS #11 library error codes for AWS CloudHSM Client SDK 5

Specifying in the template a PKCS #11 library attribute that is not supported by a specific key 
results in an error. The following table contains error codes that are generated when you violate 
specifications:

Error Code Description

CKR_TEMPLATE_INCONSISTENT You receive this error when you specify an 
attribute in the attribute template, where the 
attribute complies with the PKCS #11 specifica 
tion, but is not supported by CloudHSM.

PKCS #11 library 862



AWS CloudHSM User Guide

Error Code Description

CKR_ATTRIBUTE_TYPE_INVALID You receive this error when you retrieve value 
for an attribute, which complies with the PKCS 
#11 specification, but is not supported by 
CloudHSM.

CKR_ATTRIBUTE_INCOMPLETE You receive this error when you do not specify 
the mandatory attribute in the attribute 
template.

CKR_ATTRIBUTE_READ_ONLY You receive this error when you specify a read-
only attribute in the attribute template.

Code samples for the PKCS #11 library for AWS CloudHSM Client SDK 5

The code samples on GitHub show you how to accomplish basic tasks using the PKCS #11 library 
for AWS CloudHSM Client SDK 5.

Prerequisites

Before running samples, perform the following steps to set up your environment:

• Install and configure the PKCS #11 library for Client SDK 5.

• Set up a cryptographic user (CU). Your application uses this HSM account to run the code 
samples on the HSM.

Code samples

Code Samples for the AWS CloudHSM Software Library for PKCS#11 are available on GitHub. 
This repository includes examples on how to do common operations using PKCS#11 including 
encryption, decryption, signing and verifying.

• Generate keys (AES, RSA, EC)

• List key attributes

• Encrypt and decrypt data with AES GCM

• Encrypt and decrypt data with AES_CTR

PKCS #11 library 863

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/generate
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/attributes/
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/encrypt/aes_gcm.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/encrypt/aes_ctr.c


AWS CloudHSM User Guide

• Encrypt and decrypt data with 3DES

• Sign and verify data with RSA

• Derive keys using HMAC KDF

• Wrap and unwrap keys with AES using PKCS #5 padding

• Wrap and unwrap keys with AES using no padding

• Wrap and unwrap keys with AES using zero padding

• Wrap and unwrap keys with AES-GCM

• Wrap and unwrap keys with RSA

Advanced configurations for PKCS #11 library for AWS CloudHSM

The AWS CloudHSM PKCS #11 provider includes the following advanced configuration, which is not 
part of the general configurations most customers utilize. These configurations provide additional 
capabilities.

• Connecting to multiple slots with PKCS #11

• Retry configuration for PKCS #11

Multiple slot configuration with PKCS #11 library for AWS CloudHSM

A single slot in Client SDK 5 PKCS #11 library represents a single connection to a cluster in AWS 
CloudHSM. With Client SDK 5, you can configure your PKCS11 library to allow multiple slots to 
connect users to multiple CloudHSM clusters from a single PKCS#11 application.

Use the instructions in this topic to make your application use multi-slot functionality to connect 
with multiple clusters.

Topics

• Multi-slot prerequisites for PKCS #11 library for AWS CloudHSM

• Configure the PKCS #11 library for multi-slot functionality for AWS CloudHSM

• Add a cluster with multi-slot functionality for AWS CloudHSM

• Remove a cluster with multi-slot functionality for AWS CloudHSM

PKCS #11 library 864

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/encrypt/des_ecb.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/sign/rsa_sign.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/derivation/hmac_kdf.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_no_padding_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_zero_padding_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/wrapping/aes_gcm_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/rsa_wrapping.c


AWS CloudHSM User Guide

Multi-slot prerequisites for PKCS #11 library for AWS CloudHSM

Before configuring for multiple slots for PKCS #11 library for AWS CloudHSM, complete the 
following prerequisites.

• Two or more AWS CloudHSM clusters to which you’d like to connect to, along with their cluster 
certificates.

• An EC2 instance with Security Groups correctly configured to connect to all of the clusters above. 
For more information about how to set up a cluster and the client instance, refer to Getting 
started with AWS CloudHSM.

• To set up multi-slot functionality, you must have already downloaded and installed the PKCS #11 
library. If you have not already done this, refer to the instructions in ???.

Configure the PKCS #11 library for multi-slot functionality for AWS CloudHSM

To configure your PKCS #11 library for multi-slot functionality for AWS CloudHSM, follow these 
steps:

1. Identify the clusters you want to connect to using multi-slot functionality.

2. Add these clusters to your PKCS #11 configuration by following the instructions in ???

3. The next time your PKCS#11 application runs, it will have multi-slot functionality.

Add a cluster with multi-slot functionality for AWS CloudHSM

When connecting to multiple slots with PKCS #11 for AWS CloudHSM, use the configure-pkcs11 
add-cluster command to add a cluster to your configuration.

Syntax

configure-pkcs11 add-cluster [OPTIONS]
        --cluster-id <CLUSTER ID> 
        [--region <REGION>] 
        [--endpoint <ENDPOINT>] 
        [--hsm-ca-cert <HSM CA CERTIFICATE FILE>] 
        [--client-cert-hsm-tls-file <CLIENT CERTIFICATE FILE>] 
        [--client-key-hsm-tls-file <CLIENT KEY FILE>] 
        [-h, --help]

PKCS #11 library 865



AWS CloudHSM User Guide

Examples

Add a cluster using the cluster-id parameter

Example

Use the configure-pkcs11 add-cluster along with the cluster-id parameter to add a cluster 
(with the ID of cluster-1234567) to your configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure-pkcs11 add-cluster --cluster-id <cluster-1234567>

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" add-cluster --
cluster-id <cluster-1234567>

Tip

If using configure-pkcs11 add-cluster with the cluster-id parameter doesn't result 
in the cluster being added, refer to the following example for a longer version of this 
command that also requires --region and --endpoint parameters to identify the cluster 
being added. If, for example, the region of the cluster is different than the one configured 
as your AWS CLI default, you should use the --region parameter to use the correct region. 
Additionally, you have the ability to specify the AWS CloudHSM API endpoint to use for 
the call, which may be necessary for various network setups, such as using VPC interface 
endpoints that don’t use the default DNS hostname for AWS CloudHSM.

Add a cluster using cluster-id, endpoint, and region parameters

Example

Use the configure-pkcs11 add-cluster along with the cluster-id, endpoint, and region
parameters to add a cluster (with the ID of cluster-1234567) to your configuration.

Linux

PKCS #11 library 866



AWS CloudHSM User Guide

$ sudo /opt/cloudhsm/bin/configure-pkcs11 add-cluster --cluster-id <cluster-1234567>
 --region <us-east-1> --endpoint <https://cloudhsmv2.us-east-1.amazonaws.com>
                    

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" add-cluster --
cluster-id <cluster-1234567>--region <us-east-1> --endpoint <https://cloudhsmv2.us-
east-1.amazonaws.com>
                    

For more information about the --cluster-id, --region, and --endpoint parameters, see the 
section called “Parameters”.

Parameters

--cluster-id <Cluster ID>

Makes a DescribeClusters call to find all of the HSM elastic network interface (ENI) IP 
addresses in the cluster associated with the cluster ID. The system adds the ENI IP addresses to 
the AWS CloudHSM configuration files.

Note

If you use the --cluster-id parameter from an EC2 instance within a VPC that does 
not have access to the public internet, then you must create an interface VPC endpoint 
to connect with AWS CloudHSM. For more information about VPC endpoints, see ???.

Required: Yes

--endpoint <Endpoint>

Specify the AWS CloudHSM API endpoint used for making the DescribeClusters call. You 
must set this option in combination with --cluster-id.

Required: No

--hsm-ca-cert <HsmCA Certificate Filepath>

Specifies the filepath to the HSM CA certificate.

PKCS #11 library 867



AWS CloudHSM User Guide

Required: No

--region <Region>

Specify the region of your cluster. You must set this option in combination with --cluster-
id.

If you don’t supply the --region parameter, the system chooses the region by attempting 
to read the AWS_DEFAULT_REGION or AWS_REGION environment variables. If those variables 
aren’t set, then the system checks the region associated with your profile in your AWS config 
file (typically ~/.aws/config) unless you specified a different file in the AWS_CONFIG_FILE
environment variable. If none of the above are set, the system defaults to the us-east-1
region.

Required: No

--client-cert-hsm-tls-file <client certificate hsm tls path>

Path to the client certificate used for TLS client-HSM mutual authentication.

Only use this option if you have registered at least one trust anchor onto HSM with CloudHSM 
CLI. You must set this option in combination with --client-key-hsm-tls-file.

Required: No

--client-key-hsm-tls-file <client key hsm tls path>

Path to the client key used for TLS client-HSM mutual authentication.

Only use this option if you have registered at least one trust anchor onto HSM with CloudHSM 
CLI. You must set this option in combination with --client-cert-hsm-tls-file.

Required: No

Remove a cluster with multi-slot functionality for AWS CloudHSM

When connecting to multiple slots with PKCS#11, use the configure-pkcs11 remove-cluster
command to remove a cluster from available PKCS #11 slots.

Syntax

configure-pkcs11 remove-cluster [OPTIONS]
        --cluster-id <CLUSTER ID>
        [-h, --help]

PKCS #11 library 868



AWS CloudHSM User Guide

Examples

Remove a cluster using the cluster-id parameter

Example

Use the configure-pkcs11 remove-cluster along with the cluster-id parameter to remove a 
cluster (with the ID of cluster-1234567) from your configuration.

Linux

$ sudo /opt/cloudhsm/bin/configure-pkcs11 remove-cluster --cluster-
id <cluster-1234567>
            

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" remove-cluster 
 --cluster-id <cluster-1234567>
            

For more information about the --cluster-id parameter, see the section called “Parameters”.

Parameter

--cluster-id <Cluster ID>

The ID of the cluster to remove from the configuration

Required: Yes

Retry commands for PKCS #11 library for AWS CloudHSM

AWS CloudHSM Client SDK 5.8.0 and later have a built-in automatic retry strategy which will retry 
HSM-throttled operations from the client side. When an HSM throttles operations because it is 
too busy performing previous operations and cannot take more requests, client SDKs will attempt 
to retry throttled operations up to 3 times while exponentially backing off. This automatic retry 
strategy can be set to one of two modes: off and standard.

PKCS #11 library 869



AWS CloudHSM User Guide

• off: The Client SDK will not perform any retry strategy for any throttled operations by the HSM.

• standard: This is the default mode for Client SDK 5.8.0 and later. In this mode, client SDKs will 
automatically retry throttled operations by exponentially backing off.

For more information, see HSM throttling.

Set retry commands to off mode

Linux

To set retry commands to off for Client SDK 5 on Linux

• You can use the following command to set retry configuration to off mode:

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --default-retry-mode off

Windows

To set retry commands to off for Client SDK 5 on Windows

• You can use the following command to set retry configuration to off mode:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --default-
retry-mode off

Certificate storage with the PKCS #11 library

The AWS CloudHSM PKCS #11 library supports storing public key certificates as "public objects" (as 
defined in PKCS #11 2.40) on hsm2m.medium clusters. This feature allows both public and private 
PKCS #11 sessions to create, retrieve, modify, and delete public key certificates.

To use certificate storage with the PKCS #11 library, you need to enable it in your client 
configuration. Once enabled, you can manage certificate objects from your PKCS #11 applications. 
Operations that apply to both certificate and key objects, such as C_FindObjects, will return results 
from both key and certificate storage.

Topics

• Enabling certificate storage

PKCS #11 library 870

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html#_Toc323205461


AWS CloudHSM User Guide

• Certificate storage API operations

• Certificate storage attributes

• Certificate storage audit logs

Enabling certificate storage

You can enable certificate storage on hsm2m.medium clusters using the PKCS #11 library 
configuration tool. This feature is available in SDK versions 5.13 and later. For a list of operations 
that support the certificate object type, see Certificate storage API operations.

To enable certificate storage, follow these steps for your operating system:

Linux

• Enable certificate storage

Run the following command:

$ sudo /opt/cloudhsm/bin/configure-pkcs11 --enable-certificate-storage

Windows

• Enable certificate storage

Open a command prompt and run the following command:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-pkcs11.exe" --enable-
certificate-storage

Certificate storage API operations

The following PKCS #11 operations support the certificate object type (CKO_CERTIFICATE):

General certificate operations

C_CreateObject

Creates a new certificate object.

PKCS #11 library 871



AWS CloudHSM User Guide

C_DestroyObject

Deletes an existing certificate object.

C_GetAttributeValue

Gets the value of one or more attributes of a certificate object.

C_SetAttributeValue

Updates the value of one or more attributes of a certificate object.

Certificate object search operations

C_FindObjectsInit

Starts a search for certificate objects.

C_FindObjects

Continues a search for certificate objects.

C_FindObjectsFinal

Ends a search for certificate objects.

Certificate storage attributes

The following table lists the supported certificate object attributes and their values:

Attribute Default value Description

CKA_CLASS Required Must be CKO_CERTIFICATE .

CKA_TOKEN True Must be True.

CKA_MODIFIABLE True Must be True.

CKA_PRIVATE False Must be False.

CKA_LABEL Empty Limit 127 characters.

CKA_COPYABLE False Must be False.

PKCS #11 library 872



AWS CloudHSM User Guide

Attribute Default value Description

CKA_DESTROYABLE True Must be True.

CKA_CERTI 
FICATE_TYPE

Required Must be CKC_X_509 .

CKA_TRUSTED False Must be False.

CKA_CERTI 
FICATE_CA 
TEGORY

CK_CERTIF 
ICATE_CAT 
EGORY_UNS 
PECIFIED

Must be CK_CERTIFICATE_CAT 
EGORY_UNSPECIFIED .

CKA_CHECK_VALUE Derived from
CKA_VALUE

Automatically set based on CKA_VALUE .

CKA_START_DATE Empty The certificate 'not before' date.

CKA_END_DATE Empty The certificate 'not after' date.

CKA_PUBLI 
C_KEY_INFO

Empty Maximum size is 16 kilobytes.

CKA_SUBJECT Required The certificate subject.

CKA_ID Empty Maximum size is 128 bytes. Uniqueness isn't 
enforced.

CKA_ISSUER Empty The certificate issuer.

CKA_SERIA 
L_NUMBER

Empty The certificate serial number.

CKA_VALUE Required Maximum size is 32 kilobytes.

PKCS #11 library 873



AWS CloudHSM User Guide

Certificate storage audit logs

AWS CloudHSM writes audit logs for certificate storage operations that modify data to a separate 
Amazon CloudWatch Events log stream within your cluster's CloudWatch log group. This log 
stream is named for the cluster, not for a specific HSM within the cluster.

For information about accessing audit logs in CloudWatch, see Working with Amazon CloudWatch 
Logs and AWS CloudHSM Audit Logs.

Log entry fields

object_handle

The unique identifier of the certificate object.

op_code

The operation performed or attempted. Possible values:

• CreateObject

• DestroyObject

• SetAttributeValues

response

OK if the operation succeeded, or one of the following error types:

• DuplicateAttribute

• InvalidAttributeValue

• ObjectNotFound

• MaxObjectsReached

• InternalFailure

attributes

The attributes modified, if any.

timestamp

The time when the operation occurred, in milliseconds since the Unix epoch.

PKCS #11 library 874



AWS CloudHSM User Guide

Audit log examples

CreateObject example

{ 
    "object_handle": 463180677312929947, 
    "op_code": "CreateObject", 
    "response": "OK", 
    "attributes": null, 
    "timestamp": 1725482483671
}

DestroyObject example

{ 
    "object_handle": 463180677312929947, 
    "op_code": "DestroyObject", 
    "response": "OK", 
    "attributes": null, 
    "timestamp": 1725482484559
}

SetAttributeValues example

{ 
    "object_handle": 463180678453346687, 
    "op_code": "SetAttributeValues", 
    "response": "OK", 
    "attributes": [ 
        "Label" 
    ], 
    "timestamp": 1725482488004
}

Unsuccessful CreateObject example

{ 
    "object_handle": null, 
    "op_code": "CreateObject", 
    "response": "MaxObjectsReached", 
    "attributes": null, 

PKCS #11 library 875



AWS CloudHSM User Guide

    "timestamp": 1726084937125
}

OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5

The AWS CloudHSM OpenSSL Dynamic Engine allows you to offload cryptographic operations to 
your CloudHSM cluster through the OpenSSL API.

AWS CloudHSM provides an OpenSSL Dynamic Engine, which you can read about in AWS 
CloudHSM SSL/TLS offload on Linux using Tomcat with JSSE or AWS CloudHSM SSL/TLS offload 
on Linux using NGINX or Apache with OpenSSL. For an example on using AWS CloudHSM with 
OpenSSL, refer to this AWS security blog. For information about platform support for SDKs, see
the section called “Supported platforms”. For troubleshooting, see Known issues for the OpenSSL 
Dynamic Engine for AWS CloudHSM.

Use the following sections to install and configure the AWS CloudHSM dynamic engine for 
OpenSSL, using Client SDK 5.

For information on using Client SDK 3, see Using previous SDK version to work with AWS 
CloudHSM.

Topics

• Install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5

• Supported key types for OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5

• Supported mechanisms for OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5

• Advanced configurations for OpenSSL for AWS CloudHSM

Install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5

Use the following sections to install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5.

Note

To run a single HSM cluster with Client SDK 5, you must first manage client key durability 
settings by setting disable_key_availability_check to True. For more information, 
see Key Synchronization and Client SDK 5 Configure Tool.

OpenSSL Dynamic Engine 876

https://aws.amazon.com/blogs/security/automate-the-deployment-of-an-nginx-web-service-using-amazon-ecs-with-tls-offload-in-cloudhsm/


AWS CloudHSM User Guide

To install and configure the OpenSSL Dynamic Engine

1. Use the following commands to download and install the OpenSSL engine.

Amazon Linux 2023

Install the OpenSSL Dynamic Engine for Amazon Linux 2023 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-dyn-latest.amzn2023.x86_64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.amzn2023.x86_64.rpm

Install the OpenSSL Dynamic Engine for Amazon Linux 2023 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-dyn-latest.amzn2023.aarch64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.amzn2023.aarch64.rpm

Amazon Linux 2

Install the OpenSSL Dynamic Engine for Amazon Linux 2 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
dyn-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.el7.x86_64.rpm

Install the OpenSSL Dynamic Engine for Amazon Linux 2 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
dyn-latest.el7.aarch64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.el7.aarch64.rpm

OpenSSL Dynamic Engine 877



AWS CloudHSM User Guide

RHEL 9 (9.2+)

Install the OpenSSL Dynamic Engine for RHEL 9 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-
dyn-latest.el9.x86_64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.el9.x86_64.rpm

Install the OpenSSL Dynamic Engine for RHEL 9 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-
dyn-latest.el9.aarch64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.el9.aarch64.rpm

RHEL 8 (8.3+)

Install the OpenSSL Dynamic Engine for RHEL 8 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
dyn-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-dyn-latest.el8.x86_64.rpm

Ubuntu 24.04 LTS

Install the OpenSSL Dynamic Engine for Ubuntu 24.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/
cloudhsm-dyn_latest_u24.04_amd64.deb

$ sudo apt install ./cloudhsm-dyn_latest_u24.04_amd64.deb

Install the OpenSSL Dynamic Engine for Ubuntu 24.04 LTS on ARM64 architecture:

OpenSSL Dynamic Engine 878



AWS CloudHSM User Guide

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/
cloudhsm-dyn_latest_u24.04_arm64.deb

$ sudo apt install ./cloudhsm-dyn_latest_u24.04_arm64.deb

Ubuntu 22.04 LTS

Install the OpenSSL Dynamic Engine for Ubuntu 22.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/
cloudhsm-dyn_latest_u22.04_amd64.deb

$ sudo apt install ./cloudhsm-dyn_latest_u22.04_amd64.deb

Install the OpenSSL Dynamic Engine for Ubuntu 22.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/
cloudhsm-dyn_latest_u22.04_arm64.deb

$ sudo apt install ./cloudhsm-dyn_latest_u22.04_arm64.deb

Ubuntu 20.04 LTS

Install the OpenSSL Dynamic Engine for Ubuntu 20.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/
cloudhsm-dyn_latest_u20.04_amd64.deb

$ sudo apt install ./cloudhsm-dyn_latest_u20.04_amd64.deb

You have installed the shared library for the dynamic engine at /opt/cloudhsm/lib/
libcloudhsm_openssl_engine.so.

2. Bootstrap Client SDK 5. For more information about bootstrapping, see Bootstrap the Client 
SDK.

OpenSSL Dynamic Engine 879



AWS CloudHSM User Guide

3. Set an environment variable with the credentials of a crypto user (CU). For information about 
creating CUs, see User management with CMU.

$ export CLOUDHSM_PIN=<HSM user name>:<password>

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing 
the credentials of the CU. In Client SDK 3 you store the CU credentials in the
n3fips_password environment variable. Client SDK 5 supports both environment 
variables, but we recommend using CLOUDHSM_PIN.

4. Connect your installation of OpenSSL Dynamic Engine to the cluster. For more information, 
see Connect to the Cluster.

5. Bootstrap the Client SDK 5. For more information, see the section called “Bootstrap the Client 
SDK”.

Verify the OpenSSL Dynamic Engine for Client SDK 5

Use the following command to verify your installation of OpenSSL Dynamic Engine.

$ openssl engine -t cloudhsm

The following output verifies your configuration:

(cloudhsm) CloudHSM OpenSSL Engine 
     [ available ]

Supported key types for OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 
5

The AWS CloudHSM OpenSSL Dynamic Engine supports the following key types with Client SDK 5.

Key Type Description

EC ECDSA sign/verify for P-256, P-384, and 
secp256k1 key types. To generate EC keys that 

OpenSSL Dynamic Engine 880



AWS CloudHSM User Guide

Key Type Description

are interoperable with the OpenSSL engine, 
see Export an asymmetric key with CloudHSM 
CLI.

RSA RSA key generation for 2048, 3072, and 
4096-bit keys.RSA sign/verify. Verification is 
offloaded to OpenSSL software.

Supported mechanisms for OpenSSL Dynamic Engine for AWS CloudHSM Client 
SDK 5

The AWS CloudHSM OpenSSL Dynamic Engine supports the following mechanisms for Sign and 
Verify functions with Client SDK 5.

Sign and verify functions

With Client SDK 5, the data is hashed locally in software. This means there is no limit on the size of 
the data that can be hashed.

RSA Signature Types

• SHA1withRSA

• SHA224withRSA

• SHA256withRSA

• SHA384withRSA

• SHA512withRSA

ECDSA Signature Types

• SHA1withECDSA

• SHA224withECDSA

• SHA256withECDSA

• SHA384withECDSA

• SHA512withECDSA

OpenSSL Dynamic Engine 881



AWS CloudHSM User Guide

Advanced configurations for OpenSSL for AWS CloudHSM

The AWS CloudHSM OpenSSL provider includes the following advanced configuration, which is not 
part of the general configurations most customers utilize. These configurations provide additional 
capabilities.

• Retry commands for OpenSSL

Retry commands for OpenSSL for AWS CloudHSM

AWS CloudHSM Client SDK 5.8.0 and later have a built-in automatic retry strategy which will retry 
HSM-throttled operations from the client side. When an HSM throttles operations because it is 
too busy performing previous operations and cannot take more requests, client SDKs will attempt 
to retry throttled operations up to 3 times while exponentially backing off. This automatic retry 
strategy can be set to one of two modes: off and standard.

• off: The Client SDK will not perform any retry strategy for any throttled operations by the HSM.

• standard: This is the default mode for Client SDK 5.8.0 and later. In this mode, client SDKs will 
automatically retry throttled operations by exponentially backing off.

For more information, see HSM throttling.

Set retry commands to off mode

You can use the following command to set retry commands to off mode:

$ sudo /opt/cloudhsm/bin/configure-dyn --default-retry-mode off

Key storage provider (KSP) for AWS CloudHSM Client SDK 5

Key Storage Provider (KSP) is a cryptographic API specific to the Microsoft Windows operating 
system. Key Storage Provider (KSP) enables developers to use cryptographic techniques to secure 
Windows-based applications.

For information about bootstrapping, see Connecting to the cluster.

For information on using Client SDK 3, see Using previous SDK version to work with AWS 
CloudHSM.

Topics

Key storage provider (KSP) 882



AWS CloudHSM User Guide

• Install the Key storage provider (KSP) for AWS CloudHSM Client SDK 5

• Authenticate to the Key storage provider (KSP) for AWS CloudHSM Client SDK 5

• Supported key types for Key Storage Provider (KSP) for AWS CloudHSM Client SDK 5

• Supported API operations Key storage provider (KSP) for AWS CloudHSM Client SDK 5

• Advanced configurations for KSP for AWS CloudHSM

Install the Key storage provider (KSP) for AWS CloudHSM Client SDK 5

Use the following sections to install the Key storage provider (KSP) for AWS CloudHSM Client SDK 
5.

Note

To run a single HSM cluster with Client SDK 5, you must first manage client key durability 
settings by setting disable_key_availability_check to True. For more information, 
see Key Synchronization and Client SDK 5 Configure Tool.

To install and configure the Key Storage Provider (KSP)

1. Install the Key Storage Provider (KSP) for Windows Server on x86_64 architecture, open 
PowerShell as an administrator and run the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/
AWSCloudHSMKSP-latest.msi -Outfile C:\AWSCloudHSMKSP-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMKSP-latest.msi /
quiet /norestart /log C:\client-install.txt' -Wait

2. Use the configure tool to specify the location of the issuing certificate. For instructions, see
Specify the location of the issuing certificate.

3. To connect to your cluster, see Bootstrap the Client SDK.

4. You can find the Key Storage Provider (KSP) files in the following locations:

• Windows binaries:

C:\Program Files\Amazon\CloudHSM

Key storage provider (KSP) 883



AWS CloudHSM User Guide

Windows configuration scripts and log files:

C:\ProgramData\Amazon\CloudHSM

Authenticate to the Key storage provider (KSP) for AWS CloudHSM Client SDK 5

Before you use the Key storage provider (KSP) for AWS CloudHSM Client SDK 5, you must set the 
login credentials for the HSM on your system. You have two options:

• Windows Credentials Manager (recommended for better security)

• System environment variables (simpler setup)

Windows Credential Manager

You can set up credentials using either the set_cloudhsm_credentials utility or the Windows 
Credentials Manager interface.

• Using the set_cloudhsm_credentials utility:

The Windows installer includes the set_cloudhsm_credentials utility. You can use this 
utility to conveniently pass HSM login credentials to Windows Credential Manager. If you want to 
compile this utility from source, you can use the Python code included in the installer.

1. Navigate to C:\Program Files\Amazon\CloudHSM\tools\.

2. Run the following command:

set_cloudhsm_credentials.exe --username <CU USER> --password <CU PASSWORD>

• Using the Credential Manager interface:

1. Open Credential Manager:

• Enter credential manager in the taskbar search box

• Select Credential Manager

2. Select Windows Credentials to manage Windows credentials.

3. Select Add a generic credential

4. Enter the following details:

• Internet or Network Address: CLOUDHSM_PIN.

Key storage provider (KSP) 884



AWS CloudHSM User Guide

• Username: <CU USER>.

• Password: <CU PASSWORD>.

5. Choose OK

System environment variables

You can set system environment variables to identify your HSM and crypto user (CU).

Warning

Setting credentials through system environment variables stores your password in plaintext 
on your system. For better security, use Windows Credential Manager instead.

You can set environment variables using:

• The setx.

• The Windows System Properties Control Panel (Advanced tab).

• set permanent system environment variables Programmatic methods.

To set the system environment variable:

CLOUDHSM_PIN=<CU USERNAME>:<CU PASSWORD>

Identifies a crypto user (CU) in the HSM and provides all required login information. Your 
application authenticates and runs as this CU. The application has the permissions of this CU 
and can view and manage only the keys that the CU owns and shares. To create a new CU, use 
the user create command in CloudHSM CLI. To find existing CUs, use the user list command in 
CloudHSM CLI.

For example:

setx /m CLOUDHSM_PIN test_user:password123

Key storage provider (KSP) 885

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://msdn.microsoft.com/en-us/library/system.environment.setenvironmentvariable(v=vs.110).aspx


AWS CloudHSM User Guide

Supported key types for Key Storage Provider (KSP) for AWS CloudHSM Client 
SDK 5

The AWS CloudHSM Key Storage Provider (KSP) supports the following key types with Client SDK 5.

Key Type Description

EC Generate keys with the secp256r1 (P-256), 
secp384r1 (P-384), and secp521r1 (P-521) 
curves.

RSA Generate 2048, 3072, and 4096-bit RSA keys.

Supported API operations Key storage provider (KSP) for AWS CloudHSM Client 
SDK 5

The parameters in the KSP are defined by Microsoft KSP. See the Microsoft documentation for 
more information.

The Key Storage Provider (KSP) supports the following KSP API operations for AWS CloudHSM 
Client SDK 5.

• NCryptOpenStorageProvider

• NCryptOpenKey

• NCryptCreatePersistedKey

• NCryptGetProperty

• NCryptSetProperty

• NCryptFinalizeKey

• NCryptDeleteKey

• NCryptFreeObject

• NCryptFreeBuffer

• NCryptIsAlgSupported

• NCryptEnumAlgorithms

• NCryptEnumKeys

• NCryptExportKey

Key storage provider (KSP) 886

https://learn.microsoft.com/en-us/windows/win32/api/ncrypt/


AWS CloudHSM User Guide

• NCryptSignHash

• NCryptVerifySignature

NCryptOpenStorageProvider function with Key Storage Provider (KSP)

The NCryptOpenStorageProvider function loads and initializes the Key Storage Provider (KSP).

Parameters

phProvider [out]

A pointer to a NCRYPT_PROV_HANDLE variable that stores the provider handle.

pszProviderName [in]

A pointer to a null-terminated Unicode string identifying the key storage provider. AWS 
CloudHSM Key Storage Provider (KSP) supports the following values:

Value Meaning

L"CloudHSM Key Storage Provider" Identifies Client SDK 5 provider name. We 
recommend using this name by default.

L"Cavium Key Storage Provider" Identifies the Client SDK 3 provider name. 
Supported for backward compatibility.

Note

Values are wide-character string literal, as indicated by L before the literal.

dwFlags [in]

Flags that modify the behavior of the function. No flags are defined for this function.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Key storage provider (KSP) 887



AWS CloudHSM User Guide

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NCryptOpenKey with Key storage provider (KSP)

The NCryptOpenKey function opens a key that exists in the Key Storage Provider (KSP).

Parameters

hProvider [in]

The KSP handle that contains the key. Use NCryptOpenStorageProvider to get the handle.

phKey [out]

A pointer to a NCRYPT_KEY_HANDLE variable that stores the key handle.

pszKeyName [in]

A pointer to a null-terminated Unicode string containing the key name.

dwLegacyKeySpec [in, unused]

AWS CloudHSM Key Storage Provider (KSP) doesn't use this parameter.

dwFlags [in]

Flags that modify function's behavior. No flags are defined for this function.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

Key storage provider (KSP) 888



AWS CloudHSM User Guide

Return code Description

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hProvider  is not valid.

NTE_BAD_KEYSET The key name provided did not return unique 
result.

NCryptCreatePersistedKey with Key storage provider (KSP)

The NCryptCreatePersistedKey function creates a new key and stores it in the Key Storage 
Provider (KSP). You can use the NCryptSetProperty function to set its properties after creation. 
You must call NCryptFinalizeKey before you can use the key.

Parameters

hProvider [in]

The handle of the key storage provider where you will create the key. Use
NCryptOpenStorageProvider to get this handle.

phKey [out]

The address of an NCRYPT_KEY_HANDLE variable that stores the key handle.

pszAlgId [in]

A pointer to a null-terminated Unicode string that specifies the cryptographic algorithm 
identifier for creating the key.

AWS CloudHSM Key Storage Provider (KSP) supports the following algorithms:

Constant/value Description

BCRYPT_RSA_ALGORITHM

"RSA"

The RSA public key algorithm.

Key storage provider (KSP) 889



AWS CloudHSM User Guide

Constant/value Description

BCRYPT_ECDSA_P256_ALGORITHM

"ECDSA_P256"

The 256-bit prime elliptic curve digital 
signature algorithm (FIPS 186-2).

BCRYPT_ECDSA_P384_ALGORITHM

"ECDSA_P384"

The 384-bit prime elliptic curve digital 
signature algorithm (FIPS 186-2).

BCRYPT_ECDSA_P521_ALGORITHM

"ECDSA_P521"

The 521-bit prime elliptic curve digital 
signature algorithm (FIPS 186-2).

pszKeyName [in, optional]

A pointer to a null-terminated Unicode string that contains the name of the key. If this 
parameter is NULL, this function will create an ephemeral key that is not persisted.

dwLegacyKeySpec [in, unused]

AWS CloudHSM Key Storage Provider (KSP) doesn't use this parameter.

dwFlags [in]

Flags to modify the function's behavior. Use zero or more of the following values:

Value Meaning

NCRYPT_MACHINE_KEY_FLAG This flag has no effect.

NCRYPT_SILENT_FLAG This flag has no effect.

NCRYPT_OVERWRITE_KEY_FLAG Specifying this flag overwrites any existing 
key with the same name in the HSM.

Without this flag, the function returns 
NTE_EXISTS.

Key storage provider (KSP) 890



AWS CloudHSM User Guide

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The function completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_NOT_SUPPORTED The pszAlgId parameter contains an 
unsupported value.

NTE_EXISTS A key with the specified name already exists 
and operation didn't use  NCRYPT_OV 
ERWRITE_KEY_FLAG .

NCryptGetProperty with Key storage provider (KSP)

The NCryptGetProperty function retrieves property values for a key storage object.

Parameters

hObject [in]

The handle of the object whose property you want to retrieve. You can use:

• A provider handle (NCRYPT_PROV_HANDLE)

• A key handle (NCRYPT_KEY_HANDLE)

pszProperty  [in]

A pointer to a null-terminated Unicode string containing the property name to retrieve.

Key storage provider (KSP) 891



AWS CloudHSM User Guide

When using NCRYPT_PROV_HANDLE, AWS CloudHSM Key Storage Provider (KSP) supports the 
following KSP identifiers:

Identifier/Value Description

NCRYPT_IMPL_TYPE_PROPERTY

L"Impl Type"

A DWORD containing flags that define 
provider implementation details

NCRYPT_MAX_NAME_LENGTH_PROPERTY

L"Max Name Length"

A DWORD containing the maximum length 
(in characters) for a persistent key name.

NCRYPT_NAME_PROPERTY

L"Name"

A pointer to a null-terminated Unicode 
string containing the KSP name.

NCRYPT_VERSION_PROPERTY

L"Version"

A DWORD containing the provider version 
(high word: major version, low word: minor 
version).

NCRYPT_USE_CONTEXT_PROPERTY

L"Use Context"

A pointer to a null-terminated Unicode 
string describing the operation context.

NCRYPT_SECURITY_DESCR_SUPPO 
RT_PROPERTY

L"Security Descr Support"

Indicates if the provider supports security 
descriptors for keys.

When using NCRYPT_KEY_HANDLE, AWS CloudHSM Key Storage Provider (KSP) supports the 
following KSP identifiers:

Identifier/Value Description

NCRYPT_ALGORITHM_PROPERTY

L"Algorithm Name"

A null-terminated Unicode string containing 
the key's algorithm name.

Key storage provider (KSP) 892



AWS CloudHSM User Guide

Identifier/Value Description

NCRYPT_BLOCK_LENGTH_PROPERTY

L"Block Length"

A DWORD containing the encryption block 
length in bytes.

NCRYPT_EXPORT_POLICY_PROPERTY

L"Export Policy"

A DWORD containing flags that specify the 
persisted key's export policy.

NCRYPT_KEY_USAGE_PROPERTY

L"Key Usage"

A DWORD containing flags that define key 
usage details.

NCRYPT_KEY_TYPE_PROPERTY

L"Key Type"

A DWORD containing flags that define the 
key type.

NCRYPT_LENGTH_PROPERTY

L"Length"

A DWORD containing the key length in bits.

NCRYPT_LENGTHS_PROPERTY

L"Lengths"

A pointer to an NCRYPT_SUPPORTED_L 
ENGTHS structure containing supported key 
sizes.

NCRYPT_NAME_PROPERTY

L"Name"

A pointer to a null-terminated Unicode 
string containing the key name.

NCRYPT_SECURITY_DESCR_PROPERTY

L"Security Descr"

A pointer to a SECURITY_DESCRIPTOR 
structure containing key access control 
information.

NCRYPT_ALGORITHM_GROUP_PROPERTY

L"Algorithm Group"

A null-terminated Unicode string containing 
the object's algorithm group name.

NCRYPT_UNIQUE_NAME_PROPERTY

L"Unique Name"

A pointer to a null-terminated Unicode 
string containing the key's unique name.

Key storage provider (KSP) 893



AWS CloudHSM User Guide

Note

Values are wide-character string literal, as indicated by L before the literal.

pbOutput [out]

The address of a buffer to store the property value. Specify the buffer size using cbOutput.

To determine the required buffer size, set this parameter to NULL. The function stores the 
required size (in bytes) in the location pointed to by pcbResult.

cbOutput [in]

The size of the pbOutput buffer in bytes.

pcbResult [out]

A pointer to a DWORD variable that stores the number of bytes copied to thepbOutput buffer.

If the pbOutput is NULL, this stores the required size (in bytes).

dwFlags [in]

Flags to modify the function's behavior. You can use zero or:

Value Meaning

NCRYPT_SILENT_FLAG This flag has no effect.

When pszProperty is NCRYPT_SECURITY_DESCR_PROPERTY, use one or a combination of:

Value Meaning

OWNER_SECURITY_INFORMATION This flag has no effect.

GROUP_SECURITY_INFORMATION This flag has no effect.

DACL_SECURITY_INFORMATION This flag has no effect.

LABEL_SECURITY_INFORMATION This flag has no effect.

Key storage provider (KSP) 894



AWS CloudHSM User Guide

Value Meaning

SACL_SECURITY_INFORMATION This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_NOT_SUPPORTED The pszAlgId parameter contains a value 
that is not supported.

NTE_INVALID_HANDLE The handle in hObject is not valid.

NTE_BUFFER_TOO_SMALL The cbOutput parameter is too small for 
return values.

NCryptSetProperty with Key storage provider (KSP)

The NCryptSetProperty function sets property values for a key storage object.

Parameters

hObject [in]

The handle of the object whose property you want to set. You can use:

• A provider handle (NCRYPT_PROV_HANDLE)

Key storage provider (KSP) 895



AWS CloudHSM User Guide

• A key handle (NCRYPT_KEY_HANDLE)

pszProperty  [in]

A pointer to a null-terminated Unicode string containing the property name to retrieve.

When using NCRYPT_PROV_HANDLE, AWS CloudHSM Key Storage Provider (KSP) supports the 
following KSP identifiers:

Identifier/Value Description

NCRYPT_USE_CONTEXT_PROPERTY

L"Use Context"

A pointer to a null-terminated Unicode 
string describing the operation context.

When using NCRYPT_KEY_HANDLE, AWS CloudHSM Key Storage Provider (KSP) supports the 
following KSP identifiers:

Identifier/Value Description

NCRYPT_KEY_USAGE_PROPERTY

L"Key Usage"

A DWORD containing a set of flags that 
define key usage details. This property only 
applies to keys. This can contain zero or a 
combination of one or more of the following 
values.

NCRYPT_ALLOW_DECRYPT_FLAG (0x000000 
01)

NCRYPT_ALLOW_SIGNING_FLAG (0x000000 
02)

NCRYPT_LENGTH_PROPERTY

L"Length"

A DWORD containing the key length in bits.

NCRYPT_EXPORT_POLICY_PROPERTY

L"Export Policy"

A DWORD containing flags that specify 
the persisted key's export policy. This can 
contain zero or a combination of one or 
more of the following values.

Key storage provider (KSP) 896



AWS CloudHSM User Guide

Identifier/Value Description

NCRYPT_ALLOW_EXPORT_FLAG (0x000000 
01)

Note

Values are wide-character string literal, as indicated by L before the literal.

pbInput [in]

The address of a buffer that contains the new property value. cbInput contains the size of the 
buffer.

cbInput [in]

The size of the pbInput buffer in bytes.

dwFlags [in]

Flags that modify function's behavior. No flags are defined for this function.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

Key storage provider (KSP) 897



AWS CloudHSM User Guide

Return code Description

NTE_NOT_SUPPORTED The pszProperty  parameter contains a 
value that is not supported.

NTE_INVALID_HANDLE The handle in hObject is not valid.

NTE_BAD_DATA The data pointed by pbInput and cbInput is 
not valid.

NCryptFinalizeKey with Key storage provider (KSP)

The NCryptFinalizeKey function completes a KSP key. You must call this function before you 
can use the key.

Parameters

hKey [in]

The handle of the key to complete. Get this handle by calling the NCryptCreatePersistedKey
function.

dwFlags [in]

Flags to modify the function's behavior. You can use zero or these values:

Value Meaning

NCRYPT_SILENT_FLAG This flag has no effect.

NCRYPT_NO_KEY_VALIDATION This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Key storage provider (KSP) 898



AWS CloudHSM User Guide

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hKey is not valid.

NTE_NOT_SUPPORTED The dwFlags parameter contains a value that 
is not supported.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NCryptDeleteKey with Key storage provider (KSP)

The NCryptDeleteKey function deletes a KSP key from the Key Storage Provider (KSP).

Parameters

hKey [in]

The handle of the key to delete.

dwFlags [in]

Flags to modify the function's behavior. You can use zero or more of the following values:

Value Meaning

NCRYPT_SILENT_FLAG This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Key storage provider (KSP) 899



AWS CloudHSM User Guide

Return code Description

ERROR_SUCCESS The function was successful.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hKey is not valid.

NTE_INTERNAL_ERROR A internal error happened when deleting key.

NCryptFreeObject with Key storage provider (KSP)

The NCryptFreeObject function releases provider or key handle from the Key Storage Provider 
(KSP).

Parameters

hObject [in]

The handle of the object to release. You can use:

• A provider handle (NCRYPT_PROV_HANDLE)

• A key handle (NCRYPT_KEY_HANDLE)

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_HANDLE The handle in hObject is not valid.

Key storage provider (KSP) 900



AWS CloudHSM User Guide

NCryptFreeBuffer with Key storage provider (KSP)

The NCryptFreeBuffer function releases a block of memory that was allocated by the Key 
Storage Provider (KSP).

Parameters

pvInput [in]

The address of the memory to released.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_FAIL The operation couldn't complete.

NCryptIsAlgSupported with Key storage provider (KSP)

NCryptIsAlgSupported function determines if Key Storage Provider (KSP) supports a specific 
cryptographic algorithm.

Parameters

hProvider [in]

The handle of the key storage provider. Use NCryptOpenStorageProvider to get the handle.

pszAlgId [in]

A pointer to a null-terminated Unicode string that contains the identifier of the cryptographic 
algorithm to create the key. AWS CloudHSM Key Storage Provider (KSP) supports the following 
algorithms:

Key storage provider (KSP) 901



AWS CloudHSM User Guide

Constant/value Description

BCRYPT_RSA_ALGORITHM

"RSA"

The RSA public key algorithm.

BCRYPT_ECDSA_P256_ALGORITHM

"ECDSA_P256"

The 256-bit prime elliptic curve digital 
signature algorithm (FIPS 186-2).

BCRYPT_ECDSA_P384_ALGORITHM

"ECDSA_P384"

The 384-bit prime elliptic curve digital 
signature algorithm (FIPS 186-2).

BCRYPT_ECDSA_P521_ALGORITHM

"ECDSA_P521"

The 521-bit prime elliptic curve digital 
signature algorithm (FIPS 186-2).

dwFlags [in]

Flags that modify function behavior. This can be zero or the following value:

Value Meaning

NCRYPT_SILENT_FLAG This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

Key storage provider (KSP) 902



AWS CloudHSM User Guide

Return code Description

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_NOT_SUPPORTED The pszAlgId parameter contains an 
unsupported value.

NTE_INVALID_HANDLE The handle in hProvider  is not valid.

NCryptEnumAlgorithms with Key storage provider (KSP)

The NCryptEnumAlgorithms function retrieves the names of algorithms that the Key Storage 
Provider (KSP) supports.

Parameters

hProvider [in]

The handle of the key storage provider for which to enumerate the algorithms. Use the
NCryptOpenStorageProvider function to get this handle.

dwAlgOperations [in]

A set of values that specify which algorithm classes to enumerate. You can use zero to 
enumerate all algorithms, or combine one or more of these values:

Value Meaning

NCRYPT_ASYMMETRIC_ENCRYPTIO 
N_OPERATION

0x00000004

List the asymmetric encryption algorithms.

NCRYPT_SIGNATURE_OPERATION

0x00000010

List the digital signature algorithms.

Key storage provider (KSP) 903



AWS CloudHSM User Guide

pdwAlgCount [out]

The address of a DWORD that stores the number of elements in the ppAlgList array.

ppAlgList [out]

The address of an NCryptAlgorithmName structure pointer that stores an array of registered 
algorithm names. The pdwAlgCount parameter indicates the number of elements in this array.

dwFlags [in]

Flags to modify the function's behavior. Use zero or the following value:

Value Meaning

NCRYPT_SILENT_FLAG This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_NOT_SUPPORTED The dwAlgOperations  parameter contains 
an unsupported value.

NCryptEnumKeys with Key storage provider (KSP)

NCryptEnumKeys function lists the keys stored in the Key Storage Provider (KSP).

Key storage provider (KSP) 904



AWS CloudHSM User Guide

Parameters

hProvider [in]

The key storage provider handle. Use NCryptOpenStorageProvider to get this handle.

pszScope [in, unused]

Set this parameter to NULL.

ppKeyName [out]

A pointer address to an NCryptKeyName structure that stores the key name. To free this 
memory after use, call NCryptFreeBuffer.

ppEnumState [in, out]

A VOID pointer address that tracks the enumeration progress. The key storage provider uses this 
information internally to manage the enumeration sequence. To start a new enumeration from 
the beginning, set this pointer to NULL.

To free this memory after completing the enumeration, pass this pointer to the
NCryptFreeBuffer.

dwFlags [in]

Flags to modify the function's behavior. This function has no flags.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hProvider  is not valid.

Key storage provider (KSP) 905



AWS CloudHSM User Guide

Return code Description

NTE_NO_MORE_ITEMS The enumeration has listed all available keys.

NCryptExportKey with Key storage provider (KSP)

The NCryptExportKey function exports a KSP key to a memory BLOB. This function only 
supports exporting public keys.

Parameters

hKey [in]

The handle of the key to export.

hExportKey [in, unused]

AWS CloudHSM Key Storage Provider (KSP) doesn't use this parameter.

pszBlobType [in]

A null-terminated Unicode string that specifies the BLOB type to export. AWS CloudHSM Key 
Storage Provider (KSP) supports the following values:

Value Meaning

BCRYPT_RSAPUBLIC_BLOB Exports an RSA public key. The pbOutput
buffer contains a BCRYPT_RSAKEY_BLOB
structure followed by the key data.

BCRYPT_ECCPUBLIC_BLOB Exports an ECC public key. The pbOutput
buffer contains a BCRYPT_ECCKEY_BLOB
structure followed by the key data.

pParameterList [in, unused]

AWS CloudHSM Key Storage Provider (KSP) doesn't use this parameter.

Key storage provider (KSP) 906



AWS CloudHSM User Guide

pbOutput [out, optional]

A buffer address to store the key BLOB. Specify the buffer size using cbOutput. If set to NULL, 
the function stores the required size (in bytes) in the DWORD pointed to by pcbResult.

cbOutput [in]

The size of the pbOutput buffer in bytes.

pcbResult [out]

A DWORD variable address that stores the number of bytes copied to the pbOutput buffer. If
pbOutput is NULL, the function stores the required buffer size in bytes.

dwFlags [in]

Flags that modify how the function works. You can use zero or the following:

Value Meaning

NCRYPT_SILENT_FLAG This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hProvider  is not valid.

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_BAD_KEY_STATE The key state is not valid.

Key storage provider (KSP) 907



AWS CloudHSM User Guide

Return code Description

NTE_NOT_SUPPORTED The pszBlobType  or dwFlags parameter 
 contains an unsupported value.

STATUS_INTERNAL_ERROR An internal error happened during the 
operation.

NCryptSignHash with Key storage provider (KSP)

The NCryptSignHash function creates a signature of a hash value.

Parameters

hKey [in]

The handle of the key to use to sign the hash.

pPaddingInfo [in, optional]

A pointer to a structure containing padding information. The structure type depends on the
dwFlags value. Use this parameter only with asymmetric keys; set to NULL for other key types.

pbHashValue [in]

A pointer to a buffer containing the hash value to sign. Specify the buffer size using
cbHashValue.

cbHashValue [in]

The size, in bytes, of the pbHashValue buffer to sign.

pbSignature [out]

The address of a buffer to store the signature. Specify the buffer size using cbSignature.

To determine the required buffer size, set this parameter to NULL. The function stores the 
required size (in bytes) in the location pointed to by pcbResult.

cbSignature [in]

The size of the pbSignature buffer in bytes. The function ignores this parameter if
pbSignature is NULL.

Key storage provider (KSP) 908



AWS CloudHSM User Guide

pcbResult [out]

A pointer to a DWORD variable that stores the number of bytes copied to the pbSignature
buffer.

If pbSignature is NULL, this stores the required buffer size, in bytes.

dwFlags [in]

Flags to modify the function's behavior. The allowed flags depend on your key type. Use one of 
these values:

Value Meaning

BCRYPT_PAD_PKCS1 Uses the PKCS1 padding scheme. Set
pPaddingInfo  to point to a BCRYPT_PK 
CS1_PADDING_INFO  structure.

BCRYPT_PAD_PSS Uses the Probabilistic Signature Scheme 
(PSS) padding scheme. Set pPaddingI 
nfo  parameter to point to a BCRYPT_PS 
S_PADDING_INFO  structure.

NCRYPT_SILENT_FLAG This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hKey is not valid.

Key storage provider (KSP) 909



AWS CloudHSM User Guide

Return code Description

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_BUFFER_TOO_SMALL The pcbOutput  parameter is too small for 
return values.

NTE_BAD_KEY_STATE The key state is not valid.

NTE_INTERNAL_ERROR An internal error happened when signing the 
hash.

NCryptVerifySignature with Key storage provider (KSP)

The NCryptVerifySignature function confirms whether a signature matches a specified hash.

Parameters

hKey [in]

The handle of the key to use to decrypt the signature. You must use the public key portion of 
the key pair that was used to sign the data with the NCryptSignHash.

pPaddingInfo [in, optional]

A pointer to a structure containing padding information. The structure type depends on the
dwFlags value. Use this parameter only with asymmetric keys; set to NULL for other key types.

pbHashValue [in]

A pointer to a buffer containing the hash value to sign. Specify the buffer size using
cbHashValue.

cbHashValue [in]

The size of the pbHashValue buffer in bytes.

pbSignature [out]

The address of a buffer containing the signed hash of the data. Use NCryptSignHash to create 
this signature. Specify the buffer size using cbSignature.

Key storage provider (KSP) 910



AWS CloudHSM User Guide

cbSignature [in]

The size of the pbSignature buffer in bytes. Use NCryptSignHash to create the signature.

dwFlags [in]

Flags to modify the function's behavior. The allowed flags depend on your key type. Use one of 
these values:

Value Meaning

NCRYPT_PAD_PKCS1_FLAG Indicates the signature used PKCS1 
padding. Set pPaddingInfo  to point 
to a BCRYPT_PKCS1_PADDING_INFO
structure.

NCRYPT_PAD_PSS_FLAG Indicates the signature used Probabilistic 
Signature Scheme (PSS) padding. Set 
pPaddingInfo  to point to a BCRYPT_PS 
S_PADDING_INFO  structure.

NCRYPT_SILENT_FLAG This flag has no effect.

Return Value

The function returns a status code to indicate success or failure.

Common return codes include:

Return code Description

ERROR_SUCCESS The operation completed successfully.

NTE_INVALID_PARAMETER One or more parameters are not valid.

NTE_FAIL The operation couldn't complete.

NTE_INVALID_HANDLE The handle in hKey is not valid.

Key storage provider (KSP) 911



AWS CloudHSM User Guide

Return code Description

NTE_BAD_FLAGS The dwFlags parameter contains an invalid 
value.

NTE_BAD_SIGNATURE The signature was not verified.

NTE_BAD_KEY_STATE The key state is not valid.

NTE_INTERNAL_ERROR An internal error happened while verifying the 
signature.

Advanced configurations for KSP for AWS CloudHSM

The AWS CloudHSM Key Storage Provider (KSP) includes the following advanced configuration, 
which is not part of the general configurations most customers utilize. These configurations 
provide additional capabilities.

• SDK3 compatibility mode for KSP

SDK3 compatibility mode for Key Storage Provider (KSP) for AWS CloudHSM

Key Storage Provider (KSP) implements different approaches for HSM key interaction:

• Client SDK 5: Provides direct communication with keys stored in the HSM, eliminating the need 
for local reference files

• Client SDK 3: Maintains local files on the Windows server that act as references to keys stored in 
the HSM, using these files to facilitate key operations

For customers migrating from Client SDK 3 to Client SDK 5, enabling SDK3 compatibility mode 
option supports operations using existing key reference files while preserving the underlying HSM 
key storage architecture.

Key storage provider (KSP) 912



AWS CloudHSM User Guide

Enable SDK3 compatibility mode

Windows

To enable SDK3 compatibility mode for Key Storage Provider (KSP) for Client SDK 5 in 
Windows

• You can use the following command to enable SDK3 compatibility mode:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --enable-
sdk3-compatibility-mode

Disable SDK3 compatibility mode

Windows

To disable SDK3 compatibility mode for Key Storage Provider (KSP) for Client SDK 5 in 
Windows

• You can use the following command to disable SDK3 compatibility mode:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-ksp.exe" --disable-
sdk3-compatibility-mode

JCE provider for AWS CloudHSM Client SDK 5

The AWS CloudHSM JCE provider is a provider implementation built from the Java Cryptographic 
Extension (JCE) provider framework. The JCE allows you to perform cryptographic operations 
using the Java Development Kit (JDK). In this guide, the AWS CloudHSM JCE provider is sometimes 
referred to as the JCE provider. Use the JCE provider and the JDK to offload cryptographic 
operations to the HSM. For troubleshooting, see Known issues for the JCE SDK for AWS CloudHSM.

For information on using Client SDK 3, see Using previous SDK version to work with AWS 
CloudHSM.

Topics

• Install the JCE provider for AWS CloudHSM Client SDK 5

• Supported key types for JCE provider for AWS CloudHSM Client SDK 5

JCE provider 913



AWS CloudHSM User Guide

• Key management basics in the JCE provider for AWS CloudHSM Client SDK 5

• Supported mechanisms for JCE provider for AWS CloudHSM Client SDK 5

• Supported Java key attributes for AWS CloudHSM Client SDK 5

• Code samples for the AWS CloudHSM software library for Java for Client SDK 5

• AWS CloudHSM JCE provider Javadocs

• AWS CloudHSM KeyStore Java class for Client SDK 5

• Advanced configurations for AWS CloudHSM JCE for Client SDK 5

Install the JCE provider for AWS CloudHSM Client SDK 5

The JCE provider for AWS CloudHSM Client SDK 5 is compatible with OpenJDK 8, OpenJDK 11, 
OpenJDK 17, and OpenJDK 21. You can download both from the OpenJDK website.

Use the following sections to install and provide credentials to the provider.

Note

To run a single HSM cluster with Client SDK 5, you must first manage client key durability 
settings by setting disable_key_availability_check to True. For more information, 
see Key Synchronization and Client SDK 5 Configure Tool.

Topics

• Step 1: Install the JCE provider

• Step 2: Provide credentials to the JCE provider

Step 1: Install the JCE provider

1. Use the following commands to download and install the JCE provider.

Amazon Linux 2023

Install the JCE provider for Amazon Linux 2023 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-jce-latest.amzn2023.x86_64.rpm

JCE provider 914

https://openjdk.java.net/


AWS CloudHSM User Guide

$ sudo yum install ./cloudhsm-jce-latest.amzn2023.x86_64.rpm

Install the JCE provider for Amazon Linux 2023 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/
cloudhsm-jce-latest.amzn2023.aarch64.rpm

$ sudo yum install ./cloudhsm-jce-latest.amzn2023.aarch64.rpm

Amazon Linux 2

Install the JCE provider for Amazon Linux 2 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
jce-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-jce-latest.el7.x86_64.rpm

Install the JCE provider for Amazon Linux 2 on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
jce-latest.el7.aarch64.rpm

$ sudo yum install ./cloudhsm-jce-latest.el7.aarch64.rpm

RHEL 9 (9.2+)

Install the JCE provider for RHEL 9 (9.2+) on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-
jce-latest.el9.x86_64.rpm

$ sudo yum install ./cloudhsm-jce-latest.el9.x86_64.rpm

Install the JCE provider for RHEL 9 (9.2+) on ARM64 architecture:

JCE provider 915



AWS CloudHSM User Guide

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-
jce-latest.el9.aarch64.rpm

$ sudo yum install ./cloudhsm-jce-latest.el9.aarch64.rpm

RHEL 8 (8.3+)

Install the JCE provider for RHEL 8 on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
jce-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-jce-latest.el8.x86_64.rpm

Ubuntu 24.04 LTS

Install the JCE provider for Ubuntu 24.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/
cloudhsm-jce_latest_u24.04_amd64.deb

$ sudo apt install ./cloudhsm-jce_latest_u24.04_amd64.deb

Install the JCE provider for Ubuntu 24.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/
cloudhsm-jce_latest_u24.04_arm64.deb

$ sudo apt install ./cloudhsm-jce_latest_u24.04_arm64.deb

Ubuntu 22.04 LTS

Install the JCE provider for Ubuntu 22.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/
cloudhsm-jce_latest_u22.04_amd64.deb

JCE provider 916



AWS CloudHSM User Guide

$ sudo apt install ./cloudhsm-jce_latest_u22.04_amd64.deb

Install the JCE provider for Ubuntu 22.04 LTS on ARM64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/
cloudhsm-jce_latest_u22.04_arm64.deb

$ sudo apt install ./cloudhsm-jce_latest_u22.04_arm64.deb

Ubuntu 20.04 LTS

Install the JCE provider for Ubuntu 20.04 LTS on x86_64 architecture:

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/
cloudhsm-jce_latest_u20.04_amd64.deb

$ sudo apt install ./cloudhsm-jce_latest_u20.04_amd64.deb

Windows Server

Install the JCE provider for Windows Server on x86_64 architecture, open PowerShell as an 
administrator and run the following command:

PS C:\> wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/
Windows/AWSCloudHSMJCE-latest.msi -Outfile C:\AWSCloudHSMJCE-latest.msi

PS C:\> Start-Process msiexec.exe -ArgumentList '/i C:\AWSCloudHSMJCE-
latest.msi /quiet /norestart /log C:\client-install.txt' -Wait

2. Bootstrap Client SDK 5. For more information about bootstrapping, see Bootstrap the Client 
SDK.

3. Locate the following JCE provider files:

Linux

• /opt/cloudhsm/java/cloudhsm-<version>.jar

• /opt/cloudhsm/bin/configure-jce

JCE provider 917



AWS CloudHSM User Guide

• /opt/cloudhsm/bin/jce-info

Windows

• C:\Program Files\Amazon\CloudHSM\java\cloudhsm-<version>.jar>

• C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe

• C:\Program Files\Amazon\CloudHSM\bin\jce_info.exe

Step 2: Provide credentials to the JCE provider

Before your Java application can use an HSM, the HSM needs to first authenticate the application. 
HSMs authenticate using either an explicit login or implicit login method.

Explicit login – This method lets you provide AWS CloudHSM credentials directly in the application. 
It uses the method from the AuthProvider, where you pass a CU username and password in the 
pin pattern. For more information, see Login to an HSM code example.

Implicit login – This method lets you set AWS CloudHSM credentials either in a new property file, 
system properties, or as environment variables.

• System properties – Set credentials through system properties when running your application. 
The following examples show two different ways that you can do this:

Linux

$ java -DHSM_USER=<HSM user name> -DHSM_PASSWORD=<password>

System.setProperty("HSM_USER","<HSM user name>");
System.setProperty("HSM_PASSWORD","<password>");

Windows

PS C:\> java -DHSM_USER=<HSM user name> -DHSM_PASSWORD=<password>

System.setProperty("HSM_USER","<HSM user name>");
System.setProperty("HSM_PASSWORD","<password>");

• Environment variables – Set credentials as environment variables.

JCE provider 918

https://docs.oracle.com/javase/8/docs/api/java/security/AuthProvider.html
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java


AWS CloudHSM User Guide

Linux

$ export HSM_USER=<HSM user name>
$ export HSM_PASSWORD=<password>

Windows

PS C:\> $Env:HSM_USER="<HSM user name>"
PS C:\> $Env:HSM_PASSWORD="<password>"

Credentials might not be available if the application does not provide them or if you attempt an 
operation before the HSM authenticates session. In those cases, the CloudHSM software library for 
Java searches for the credentials in the following order:

1. System properties

2. Environment variables

Supported key types for JCE provider for AWS CloudHSM Client SDK 5

The AWS CloudHSM software library for Java enables you to generate the following key types.

Key Type Description

AES Generate 128, 192, and 256-bit AES keys.

Triple DES (3DES, DESede) Generate a 192-bit Triple DES Key See footnote 1

for an upcoming change.

EC Generate EC key pairs – NIST curves secp224r1 
(P-224), secp256r1 (P-256), secp256k1 (B 
lockchain), secp384r1 (P-384), and secp521r1 
(P-521).

GENERIC_SECRET Generate 1 to 800 bytes generic secrets.

HMAC Hash support for SHA1, SHA224, SHA256, 
SHA384, SHA512.

JCE provider 919



AWS CloudHSM User Guide

Key Type Description

RSA Generate 2048-bit to 4096-bit RSA keys, in 
increments of 256 bits.

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

Key management basics in the JCE provider for AWS CloudHSM Client SDK 5

The basics on key management in the JCE provider involve importing keys, exporting keys, loading 
keys by handle, or deleting keys. For more information on managing keys, see the Manage keys
code example.

You can also find more JCE provider code examples at Code samples.

Supported mechanisms for JCE provider for AWS CloudHSM Client SDK 5

This topic provides information about supported mechanisms for JCE provider with AWS CloudHSM 
Client SDK 5. For information about the Java Cryptography Architecture (JCA) interfaces and 
engine classes supported by AWS CloudHSM, see the following topics.

Topics

• Generate key and key pair functions

• Cipher functions

• Sign and verify functions

• Digest functions

• Hash-based message authentication code (HMAC) functions

• Cipher-based message authentication code (CMAC) functions

• Key Agreement Functions

• Convert keys to key specifications using key factories

• Mechanism annotations

JCE provider 920

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java


AWS CloudHSM User Guide

Generate key and key pair functions

The AWS CloudHSM software library for Java allows you to use the following operations for 
generate key and key pair functions.

• RSA

• EC

• AES

• DESede (Triple DES)see note 1

• GenericSecret

Cipher functions

The AWS CloudHSM software library for Java supports the following algorithm, mode, and padding 
combinations.

Algorithm Mode Padding Notes

AES CBC AES/CBC/N 
oPadding

AES/CBC/P 
KCS5Padding

Implements
Cipher.EN 
CRYPT_MODE
and Cipher.DE 
CRYPT_MODE .

Implements
Cipher.UN 
WRAP_MODE 
for AES/CBC 
NoPadding

AES ECB AES/ECB/P 
KCS5Padding

AES/ECB/N 
oPadding

Implements
Cipher.EN 
CRYPT_MODE
and Cipher.DE 
CRYPT_MODE .

JCE provider 921



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

AES CTR AES/CTR/N 
oPadding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE .

AES GCM AES/GCM/N 
oPadding

Implements
Cipher.WR 
AP_MODE ,
Cipher.UN 
WRAP_MODE

, Cipher.EN 
CRYPT_MODE , 
and Cipher.DE 
CRYPT_MODE .

When performing  
 AES-GCM encryptio 
n, the HSM ignores 
the initialization 
vector (IV)  in the 
request and uses an 
IV that it generates. 
When the operation  
completes, you must 
call Cipher.ge 
tIV()  to get the  
 IV.

JCE provider 922



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

AESWrap ECB AESWrap/ECB/
NoPadding

AESWrap/ECB/
PKCS5Padding

AESWrap/ECB/
ZeroPadding

Implements
Cipher.WR 
AP_MODE  and
Cipher.UN 
WRAP_MODE .

DESede (Triple DES) CBC DESede/CBC/
PKCS5Padding

DESede/CBC/
NoPadding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE . See 
note 1 below for an 
upcoming change.

DESede (Triple DES) ECB DESede/ECB/
NoPadding

DESede/ECB/
PKCS5Padding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE . See 
note 1 below for an 
upcoming change.

JCE provider 923



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

RSA ECB RSA/ECB/P 

KCS1Padding  see 

note 1

RSA/ECB/O 
AEPPadding

RSA/ECB/O 
AEPWithSH 
A-1ANDMGF 
1Padding

RSA/ECB/O 
AEPWithSH 
A-224ANDM 
GF1Padding

RSA/ECB/O 
AEPWithSH 
A-256ANDM 
GF1Padding

RSA/ECB/O 
AEPWithSH 
A-384ANDM 
GF1Padding

RSA/ECB/O 
AEPWithSH 
A-512ANDM 
GF1Padding

Implements
Cipher.WR 
AP_MODE ,
Cipher.UN 
WRAP_MODE

, Cipher.EN 
CRYPT_MODE , 
and Cipher.DE 
CRYPT_MODE .

JCE provider 924



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

RSA ECB RSA/ECB/N 
oPadding

Implements
Cipher.EN 
CRYPT_MODE
and Cipher.DE 
CRYPT_MODE .

RSAAESWrap ECB RSAAESWrap/ECB/
OAEPPadding

RSAAESWrap/ECB/
OAEPWithSHA- 
1ANDMGF1P 
adding

RSAAESWrap/ECB/
OAEPWithSHA- 
224ANDMGF 
1Padding

RSAAESWrap/ECB/
OAEPWithSHA- 
256ANDMGF 
1Padding

RSAAESWrap/ECB/
OAEPWithSHA- 
384ANDMGF 
1Padding

RSAAESWrap/ECB/
OAEPWithSHA- 
512ANDMGF 
1Padding

Implements
Cipher.WR 
AP_MODE  and
Cipher.UN 
WRAP_MODE .

JCE provider 925



AWS CloudHSM User Guide

Sign and verify functions

The AWS CloudHSM software library for Java supports the following types of signature and 
verification. With Client SDK 5 and signature algorithms with hashing, the data is hashed locally in 
software before being sent to the HSM for the signature/verification. This means there is no limit 
on the size of the data that can be hashed by the SDK.

RSA Signature Types

• NONEwithRSA

• RSASSA-PSS

• SHA1withRSA

• SHA1withRSA/PSS

• SHA1withRSAandMGF1

• SHA224withRSA

• SHA224withRSAandMGF1

• SHA224withRSA/PSS

• SHA256withRSA

• SHA256withRSAandMGF1

• SHA256withRSA/PSS

• SHA384withRSA

• SHA384withRSAandMGF1

• SHA384withRSA/PSS

• SHA512withRSA

• SHA512withRSAandMGF1

• SHA512withRSA/PSS

ECDSA Signature Types

• NONEwithECDSA

• SHA1withECDSA

• SHA224withECDSA

JCE provider 926



AWS CloudHSM User Guide

• SHA256withECDSA

• SHA384withECDSA

• SHA512withECDSA

Digest functions

The AWS CloudHSM software library for Java supports the following message digests. With Client 
SDK 5, the data is hashed locally in software. This means there is no limit on the size of the data 
that can be hashed by the SDK.

• SHA-1

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Hash-based message authentication code (HMAC) functions

The AWS CloudHSM software library for Java supports the following HMAC algorithms.

• HmacSHA1 (Maximum data size in bytes: 16288)

• HmacSHA224 (Maximum data size in bytes: 16256)

• HmacSHA256 (Maximum data size in bytes: 16288)

• HmacSHA384 (Maximum data size in bytes: 16224)

• HmacSHA512 (Maximum data size in bytes: 16224)

Cipher-based message authentication code (CMAC) functions

CMACs (Cipher-based message authentication codes) create message authentication codes (MACs) 
using a block cipher and a secret key. They differ from HMACs in that they use a block symmetric 
key method for the MACs rather than a hashing method.

The AWS CloudHSM software library for Java supports the following CMAC algorithms.

• AESCMAC

JCE provider 927



AWS CloudHSM User Guide

Key Agreement Functions

The AWS CloudHSM software library for Java supports ECDH with Key Derivation Functions (KDF). 
The following KDF types are supported:

• ECDHwithX963SHA1KDF Supports X9.63 KDF SHA1 algorithm2

• ECDHwithX963SHA224KDF Supports X9.63 KDF SHA224 algorithm2

• ECDHwithX963SHA256KDF Supports X9.63 KDF SHA256 algorithm2

• ECDHwithX963SHA384KDF Supports X9.63 KDF SHA384 algorithm2

• ECDHwithX963SHA512KDF Supports X9.63 KDF SHA512 algorithm2

Convert keys to key specifications using key factories

You can use key factories to convert keys to key specifications. AWS CloudHSM has two types of 
key factories for JCE:

SecretKeyFactory: Used to import or derive symmetric keys. Using SecretKeyFactory, you can pass 
a supported Key or a supported KeySpec to import or derive symmetric keys into AWS CloudHSM. 
Following are the supported specs for KeyFactory:

• For SecretKeyFactory's generateSecret method following KeySpec classes are supported:

• KeyAttributesMapcan be used to import a key bytes with additional attributes as a CloudHSM 
Key. An example can be found here here.

• SecretKeySpeccan be used to import a symmetric key spec as a CloudHSM Key.

• AesCmacKdfParameterSpeccan be used to derive symmetric keys using another CloudHSM 
AES Key.

Note

SecretKeyFactory's translateKey method takes any key that implements the key
interface.

JCE provider 928

https://docs.oracle.com/javase/8/docs/api/java/security/spec/KeySpec.html
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java
https://docs.oracle.com/javase/8/docs/api/javax/crypto/spec/SecretKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/Key.html


AWS CloudHSM User Guide

KeyFactory: Used for importing asymmetric keys. Using KeyFactory, you can pass a supported Key 
or supported KeySpec to import an asymmetric key into AWS CloudHSM. For more information, 
refer to the following resources:

• For KeyFactory's generatePublic method, following KeySpec classes are supported:

• CloudHSM KeyAttributesMap for both RSA and EC KeyTypes, including:

• CloudHSM KeyAttributesMap for both RSA and EC public KeyTypes. An example can be found
here

• X509EncodedKeySpec for both RSA and EC Public Key

• RSAPublicKeySpec for RSA Public Key

• ECPublicKeySpec for EC Public Key

• For KeyFactory's generatePrivate method, following KeySpec classes are supported:

• CloudHSM KeyAttributesMap for both RSA and EC KeyTypes, including:

• CloudHSM KeyAttributesMap for both RSA and EC public KeyTypes. An example can be found
here

• PKCS8EncodedKeySpec for both EC and RSA Private Key

• RSAPrivateCrtKeySpec for RSA Private Key

• ECPrivateKeySpec for EC Private Key

For KeyFactory's translateKey method, it takes in any Key that implements the Key Interface.

Mechanism annotations

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

[2] Key derivation functions (KDFs) are specified in RFC 8418, Section 2.1.

Supported Java key attributes for AWS CloudHSM Client SDK 5

This topic provides information about supported Java key attributes for AWS CloudHSM Client SDK 
5. This topic describes how to use a proprietary extension for the JCE provider to set key attributes. 
Use this extension to set supported key attributes and their values during these operations:

• Key generation

• Key import

JCE provider 929

https://docs.oracle.com/javase/8/docs/api/java/security/spec/KeySpec.html
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java
https://docs.oracle.com/javase/8/docs/api/java/security/spec/X509EncodedKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/spec/RSAPublicKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/spec/ECPublicKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/spec/KeySpec.html
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java
https://docs.oracle.com/javase/8/docs/api/java/security/spec/PKCS8EncodedKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/spec/RSAPrivateCrtKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/spec/ECPrivateKeySpec.html
https://docs.oracle.com/javase/8/docs/api/java/security/Key.html
https://datatracker.ietf.org/doc/html/rfc8418


AWS CloudHSM User Guide

For examples of how to use key attributes, see the section called “Code samples”.

Topics

• Understanding attributes

• Supported attributes

• Setting attributes for a key

Understanding attributes

Use key attributes to specify what actions are permitted on key objects, including public, private or 
secret keys. Key attributes and values are defined during key object creation operations.

The Java Cryptography Extension (JCE) does not specify how you should set values on key 
attributes, so most actions were permitted by default. In contrast, the PKCS# 11 standard defines a 
comprehensive set of attributes with more restrictive defaults. Starting with the JCE provider 3.1, 
AWS CloudHSM provides a proprietary extension that enables you to set more restrictive values for 
commonly used attributes.

Supported attributes

You can set values for the attributes listed in the following table. As a best practice, only set values 
for attributes you wish to make restrictive. If you don’t specify a value, AWS CloudHSM uses the 
default value specified in the table below. An empty cell in the Default Value columns indicates 
that there is no specific default value assigned to the attribute.

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

DECRYPT TRUE   TRUE True indicates 
you can use the 
key to decrypt 
any buffer. You 
generally set 
this to FALSE 
for a key whose 

JCE provider 930



AWS CloudHSM User Guide

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

WRAP is set to 
true.

DERIVE       Allows a key 
to be used to 
derive other 
keys.

ENCRYPT TRUE TRUE   True indicates 
you can use the 
key to encrypt 
any  buffer.

EXTRACTABLE TRUE   TRUE True indicates 
you can export 
this key out  of 
the HSM.

ID   A user-defined 
value used to 
identify the key.

KEY_TYPE       Used to identify 
the type of key 
(AES, DESede, 
generic secret, 
EC, or RSA).

JCE provider 931



AWS CloudHSM User Guide

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

LABEL     A user-defi 
ned string 
allowing you 
to convenien 
tly identify keys 
on your HSM. 
To follow best 
practice, use a 
unique label for 
each key so it 
is easier to find 
later.

LOCAL       Indicates a key 
generated by 
the HSM.

OBJECT_CL 
ASS

      Used to identify 
the Object 
Class of a key 
(SecretKey, 
PublicKey or 
PrivateKey).

JCE provider 932



AWS CloudHSM User Guide

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

PRIVATE TRUE TRUE TRUE True indicates 
that a user may 
not access  the 
key until the 
user is authentic 
ated. For clarity, 
users cannot 
access  any 
keys on AWS 
CloudHSM 
until they are 
authenticated, 
even if this 
attribute is set 
to FALSE.

SIGN TRUE   TRUE True indicates 
you can use the 
key to sign a 
message  digest. 
This is generally 
set to FALSE for 
public keys and 
for private keys  
 that you have 
archived.

JCE provider 933



AWS CloudHSM User Guide

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

SIZE       An attribute 
that defines the 
size of a key. 
For more details 
about supported 
key sizes, refer 
to Supported 
mechanisms for 
Client SDK 5.

TOKEN FALSE FALSE FALSE A permanent 
key which is 
replicated across 
all HSMs in the 
cluster and  
 included in 
backups. TOKEN 
= FALSE implies 
an ephemeral 
key which is  
 automatically 
erased when 
the connectio 
n to the HSM 
is broken or 
logged  out.

UNWRAP TRUE   TRUE True indicates 
you can use the 
key to unwrap 
(import) another 
key.

JCE provider 934

https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-lib-supported_5.html#java-keys_5
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-lib-supported_5.html#java-keys_5
https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-lib-supported_5.html#java-keys_5


AWS CloudHSM User Guide

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

VERIFY TRUE TRUE   True indicates 
you can use the 
key to verify a 
signature. This 
is generally set 
to FALSE for 
private keys.

WRAP TRUE TRUE   True indicates 
you can use the 
key to wrap  
another key. You 
will generally set 
this to FALSE for 
private keys.

JCE provider 935



AWS CloudHSM User Guide

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

WRAP_WITH 
_TRUSTED

FALSE   FALSE True indicates 
a key can only 
be wrapped and 
unwrapped with 
keys that have 
the   TRUSTED
attribute set to 
true. Once a key 
has WRAP_WITH 
_TRUSTED
set to true, 
that attribute 
is read-only 
and can’t be 
set to false. To 
read about trust 
wrapping, see
Using trusted 
keys to control 
key unwraps.

Note

You get broader support for attributes in the PKCS#11 library. For more information, see
Supported PKCS #11 Attributes.

Setting attributes for a key

KeyAttributesMap is a Java Map-like object, which you can use to set attribute values for key 
objects. The methods for KeyAttributesMap function similar to the methods used for Java map 
manipulation.

JCE provider 936

https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_using_trusted_keys_control_key_wrap.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_using_trusted_keys_control_key_wrap.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_using_trusted_keys_control_key_wrap.html


AWS CloudHSM User Guide

To set custom values on attributes, you have two options:

• Use the methods listed in the following table

• Use builder patterns demonstrated later in this document

Attribute map objects support the following methods to set attributes:

Operation Return Value KeyAttributesMap
method

Get the value of a key 
attribute for an existing key

Object (containing the value) 
or null

get(keyAttribute)

Populate the value of one key 
attribute

The previous value associate 
d with key attribute, or null if 
there was no mapping for a 
key attribute

put(keyAttribute, value)

Populate values for multiple 
key attributes

N/A putAll(keyAttributesMap)

Remove a key-value pair from 
the attribute map

The previous value associate 
d with key attribute, or null if 
there was no mapping for a 
key  attribute

remove(keyAttribute)

Note

Any attributes you do not explicitly specify are set to the defaults listed in the preceding 
table in the section called “Supported attributes”.

Setting attributes for a key pair

Use the Java class KeyPairAttributesMap to handle key attributes for a key pair.
KeyPairAttributesMap encapsulates two KeyAttributesMap objects; one for a public key and 
one for a private key.

JCE provider 937



AWS CloudHSM User Guide

To set individual attributes for the public key and private key separately, you can use the put()
method on corresponding KeyAttributes map object for that key. Use the getPublic()
method to retrieve the attribute map for the public key, and use getPrivate() to retrieve the 
attribute map for the private key. Populate the value of multiple key attributes together for both 
public and private key pairs using the putAll() with a key pair attributes map as its argument.

Code samples for the AWS CloudHSM software library for Java for Client SDK 5

This topic provides resources and information on Java code samples for AWS CloudHSM Client SDK 
5.

Prerequisites

Before running the samples, you must set up your environment:

• Install and configure the Java Cryptographic Extension (JCE) provider.

• Set up a valid HSM user name and password. Cryptographic user (CU) permissions are sufficient 
for these tasks. Your application uses these credentials to log in to the HSM in each example.

• Decide how to provide credentials to the JCE provider.

Code samples

The following code samples show you how to use the AWS CloudHSM JCE provider to perform 
basic tasks. More code samples are available on GitHub.

• Log in to an HSM

• Manage keys

• Generate Symmetric Keys

• Generate Asymmetric Keys

• Encrypt and decrypt with AES-GCM

• Encrypt and decrypt with AES-CTR

• Encrypt and decrypt with DESede-ECBsee note 1

• Sign and Verify with RSA Keys

• Sign and Verify with EC Keys

• Use supported key attributes

• Use the CloudHSM key store

JCE provider 938

https://github.com/aws-samples/aws-cloudhsm-jce-examples/tree/sdk5
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/SymmetricKeys.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AsymmetricKeys.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AESGCMEncryptDecryptRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/AESCTREncryptDecryptRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/DESedeECBEncryptDecryptRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/RSAOperationsRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/ECOperationsRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyAttributesRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/KeyStoreExampleRunner.java


AWS CloudHSM User Guide

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

AWS CloudHSM JCE provider Javadocs

Use the JCE provider Javadocs to get usage information on Java types and methods defined in 
the AWS CloudHSM JCE SDK. To download the latest Javadocs for AWS CloudHSM, see the AWS 
CloudHSM latest Client SDK release section on the Downloads page.

You can import Javadocs into an integrated development environment (IDE) or view them in a web 
browser.

AWS CloudHSM KeyStore Java class for Client SDK 5

The AWS CloudHSM KeyStore class provides a special-purpose PKCS12 key store. This key store 
can store certificates along with your key data and correlate them to key data stored on AWS 
CloudHSM. The AWS CloudHSM KeyStore class implements the KeyStore Service Provider 
Interface (SPI) of the Java Cryptography Extension (JCE). For more information about using
KeyStore, see Class KeyStore.

Note

Because certificates are public information, and to maximize storage capacity for 
cryptographic keys, AWS CloudHSM does not support storing certificates on HSMs.

Choose the appropriate key store for AWS CloudHSM Client SDK 5

The AWS CloudHSM Java Cryptographic Extension (JCE) provider offers a special-purpose AWS 
CloudHSM KeyStore. The AWS CloudHSM KeyStore class supports offloading key operations to 
the HSM, local storage of certificates and certificate-based operations.

Load the special-purpose CloudHSM KeyStore as follows:

KeyStore ks = KeyStore.getInstance("CloudHSM")

Initialize the AWS CloudHSM KeyStore Client SDK 5

Log into the AWS CloudHSM KeyStore the same way that you log into the JCE provider. You can 
use either environment variables or the system property file, and you should log in before you start 

JCE provider 939

https://devdocs.io/openjdk~8/java/security/keystore


AWS CloudHSM User Guide

using the CloudHSM KeyStore. For an example of logging into an HSM using the JCE provider, see
Login to an HSM.

If desired, you can specify a password to encrypt the local PKCS12 file which holds key store data. 
When you create the AWS CloudHSM Keystore, you set the password and provide it when using the 
load, set and get methods.

Instantiate a new CloudHSM KeyStore object as follows:

ks.load(null, null);

Write keystore data to a file using the store method. From that point on, you can load the existing 
keystore using the load method with the source file and password as follows:

ks.load(inputStream, password);

Use AWS CloudHSM KeyStore or AWS CloudHSM Client SDK 5

AWS CloudHSM KeyStore complies with the JCE Class KeyStore specification and provides the 
following functions.

• load

Loads the key store from the given input stream. If a password was set when saving the key 
store, this same password must be provided for the load to succeed. Set both parameters to null 
to initialize an new empty key store.

KeyStore ks = KeyStore.getInstance("CloudHSM");
ks.load(inputStream, password);

• aliases

Returns an enumeration of the alias names of all entries in the given key store instance. Results 
include objects stored locally in the PKCS12 file and objects resident on the HSM.

Sample code:

KeyStore ks = KeyStore.getInstance("CloudHSM");
for(Enumeration<String> entry = ks.aliases(); entry.hasMoreElements();) {     
    String label = entry.nextElement();     

JCE provider 940

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/sdk5/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java
https://devdocs.io/openjdk~8/java/security/keystore


AWS CloudHSM User Guide

    System.out.println(label);
}

• containsalias

Returns true if the key store has access to at least one object with the specified alias. The key 
store checks objects stored locally in the PKCS12 file and objects resident on the HSM.

• deleteEntry

Deletes a certificate entry from the local PKCS12 file. Deleting key data stored in an HSM is not 
supported using the AWS CloudHSM KeyStore. You can delete keys using the destroy method 
of the Destroyable interface.

((Destroyable) key).destroy();

• getCertificate

Returns the certificate associated with an alias if available. If the alias does not exist or 
references an object which is not a certificate, the function returns NULL.

KeyStore ks = KeyStore.getInstance("CloudHSM");
Certificate cert = ks.getCertificate(alias);

• getCertificateAlias

Returns the name (alias) of the first key store entry whose data matches the given certificate.

KeyStore ks = KeyStore.getInstance("CloudHSM");
String alias = ks.getCertificateAlias(cert);

• getCertificateChain

Returns the certificate chain associated with the given alias. If the alias does not exist or 
references an object which is not a certificate, the function returns NULL.

• getCreationDate

Returns the creation date of the entry identified by the given alias. If a creation date is not 
available, the function returns the date on which the certificate became valid.

• getKey

JCE provider 941

https://devdocs.io/openjdk~8/javax/security/auth/destroyable#destroy--


AWS CloudHSM User Guide

GetKey is passed to the HSM and returns a key object corresponding to the given label. As
getKey directly queries the HSM, it can be used for any key on the HSM regardless of whether it 
was generated by the KeyStore.

Key key = ks.getKey(keyLabel, null);

• isCertificateEntry

Checks if the entry with the given alias represents a certificate entry.

• isKeyEntry

Checks if the entry with the given alias represents a key entry. The action searches both the 
PKCS12 file and the HSM for the alias.

• setCertificateEntry

Assigns the given certificate to the given alias. If the given alias is already being used to identify 
a key or certificate, a KeyStoreException is thrown. You can use JCE code to get the key 
object and then use the KeyStore SetKeyEntry method to associate the certificate to the key.

• setKeyEntry with byte[] key

This API is currently unsupported with Client SDK 5.

• setKeyEntry with Key object

Assigns the given key to the given alias and stores it inside the HSM. If the key does not already 
exist inside the HSM, it will be imported into the HSM as an extractable session key.

If the Key object is of type PrivateKey, it must be accompanied by a corresponding certificate 
chain.

If the alias already exists, the SetKeyEntry call throws a KeyStoreException and prevents 
the key from being overwritten. If the key must be overwritten, use KMU or JCE for that purpose.

• engineSize

Returns the number of entries in the keystore.

• store

Stores the key store to the given output stream as a PKCS12 file and secures it with the given 
password. In addition, it persists all loaded keys (which are set using setKey calls).

JCE provider 942



AWS CloudHSM User Guide

Advanced configurations for AWS CloudHSM JCE for Client SDK 5

The AWS CloudHSM JCE provider includes the following advanced configurations, which are not 
part of the general configurations most customers utilize.

• Connecting to multiple clusters

• Key extraction using JCE

• Retry configuration for JCE

Connecting to multiple AWS CloudHSM clusters with the JCE provider

This configuration allows a single client instance to communicate to multiple AWS CloudHSM 
clusters. Compared to having a single instance only communicate with a single cluster, this can 
be a cost-savings feature for some use cases. The CloudHsmProvider class is AWS CloudHSM's 
implementation of Java Security's Provider class. Each instance of this class represents a 
connection to your entire AWS CloudHSM cluster. You instantiate this class and add it to Java 
Security provider's list so that you can interact with it using standard JCE classes.

The following example instantiates this class and adds it to Java Security provider’s list:

if (Security.getProvider(CloudHsmProvider.PROVIDER_NAME) == null) { 
    Security.addProvider(new CloudHsmProvider());
}

CloudHsmProvider can be configured in two ways:

1. Configure with file (default configuration)

2. Configure using code

The following topics describe these configurations, and how to connect to multiple clusters.

Topics

• Configure the AWS CloudHSMCloudHsmProvider class with a file (Default configuration)

• Configure the AWS CloudHSMCloudHsmProvider class using code

• Connect to multiple AWS CloudHSM clusters

JCE provider 943

https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html


AWS CloudHSM User Guide

Configure the AWS CloudHSMCloudHsmProvider class with a file (Default configuration)

The default way to configure the AWS CloudHSM CloudHsmProvider class is with a file.

When you instantiate CloudHsmProvider using default constructor, by default it will look for 
configuration file in /opt/cloudhsm/etc/cloudhsm-jce.cfg path in Linux. This configuration 
file can be configured using the configure-jce.

An object created using the default constructor will use the default CloudHSM provider name
CloudHSM. The provider name is useful to interact with JCE to let it know which provider to use for 
various operation. An example to use CloudHSM provider name for Cipher operation is as below:

Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", "CloudHSM");

Configure the AWS CloudHSMCloudHsmProvider class using code

As of Client SDK version 5.8.0, you can also configure the AWS CloudHSM CloudHsmProvider
class using Java code. The way to do this is using an object of CloudHsmProviderConfig class. 
You can build this object using CloudHsmProviderConfigBuilder.

CloudHsmProvider has another constructor which takes the CloudHsmProviderConfig object, 
as the following sample shows.

Example

CloudHsmProviderConfig config = CloudHsmProviderConfig.builder()   
                                    .withCluster(   
                                        CloudHsmCluster.builder()   
                                            .withHsmCAFilePath(hsmCAFilePath) 
                                            
 .withClusterUniqueIdentifier("CloudHsmCluster1") 
        .withServer(CloudHsmServer.builder().withHostIP(hostName).build())   
                        .build())   
        .build();
CloudHsmProvider provider = new CloudHsmProvider(config);

In this example, the name of the JCE provider is CloudHsmCluster1. This is the name that 
application can then use to interact with JCE:

JCE provider 944



AWS CloudHSM User Guide

Example

Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", "CloudHsmCluster1");

Alternatively, applications can also use the provider object created above to let JCE know to use 
that provider for the operation:

Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", provider);

If a unique identifier is not specified with the withClusterUniqueIdentifier method, a 
randomly generated provider name is created for you. To get this randomly generated identifier, 
applications can call provider.getName() to get the identifier.

Connect to multiple AWS CloudHSM clusters

Each CloudHsmProvider represents a connection to your AWS CloudHSM Cluster. If you 
want to talk to another cluster from the same application, you can create another object of
CloudHsmProvider with configurations for your other cluster and you can interact with this 
other cluster either using the provider object or using the provider name, as shown in the following 
example.

Example

CloudHsmProviderConfig config = CloudHsmProviderConfig.builder()   
                                    .withCluster(   
                                        CloudHsmCluster.builder()   
                                            .withHsmCAFilePath(hsmCAFilePath) 
                                            
 .withClusterUniqueIdentifier("CloudHsmCluster1") 
        .withServer(CloudHsmServer.builder().withHostIP(hostName).build())   
                        .build())   
        .build();
CloudHsmProvider provider1 = new CloudHsmProvider(config);

if (Security.getProvider(provider1.getName()) == null) { 
    Security.addProvider(provider1);
}

CloudHsmProviderConfig config2 = CloudHsmProviderConfig.builder()   
                                    .withCluster(   
                                        CloudHsmCluster.builder()   

JCE provider 945



AWS CloudHSM User Guide

                                            .withHsmCAFilePath(hsmCAFilePath2) 
                                            
 .withClusterUniqueIdentifier("CloudHsmCluster2") 
        .withServer(CloudHsmServer.builder().withHostIP(hostName2).build())   
                        .build())   
        .build();
CloudHsmProvider provider2 = new CloudHsmProvider(config2);

if (Security.getProvider(provider2.getName()) == null) { 
    Security.addProvider(provider2);
}

Once you have configured both the providers (both the clusters) above, you can interact with them 
either using the provider object or using the provider name.

Expanding upon this example that shows how to talk to cluster1, you could use the following 
sample for a AES/GCM/NoPadding operation:

Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", provider1);

And in the same application to do "AES" Key generation on the second cluster using the provider 
name, you could also use the following sample:

Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding", provider2.getName());

Key extraction using JCE for AWS CloudHSM

The Java Cryptography Extension (JCE) uses an architecture that allows different cryptography 
implementations to be plugged in. AWS CloudHSM ships one such JCE provider that offloads 
cryptographic operations to the HSM. For most other JCE providers to work with keys stored in 
AWS CloudHSM, they must extract the key bytes from your HSMs in clear text into your machine’s 
memory for their use. HSMs typically only allow keys to be extracted as wrapped objects, not clear 
text. However, to support inter-provider integration use cases, AWS CloudHSM allows an opt-in 
configuration option to enable extraction of the key bytes in the clear.

Important

JCE offloads operations to AWS CloudHSM whenever the AWS CloudHSM provider is 
specified or an AWS CloudHSM key object is used. You do not need to extract keys in clear 
if you expect your operation to happen inside the HSM. Key extraction in clear text is 

JCE provider 946



AWS CloudHSM User Guide

only needed when your application cannot use secure mechanisms such as wrapping and 
unwrapping a key due to restrictions from a third party library or JCE provider.

The AWS CloudHSM JCE Provider allows extraction of public keys to work with external JCE 
providers by default. The following methods are always allowed:

Class Method Format (getEncoded)

EcPublicKey getEncoded() X.509

  getW() N/A

RSAPublicKey getEncoded() X.509

  getPublicExponent() N/A

CloudHsmRsaPrivateCrtKey getPublicExponent() N/A

The AWS CloudHSM JCE Provider doesn’t allow extraction of key bytes in clear for the private or
secret keys by default. If your use case requires it, you can enable extraction of key bytes in clear 
for private or secret keys under the following conditions:

1. The EXTRACTABLE attribute for private and secret keys is set to true.

• By default, the EXTRACTABLE attribute for private and secret keys is set to true.
EXTRACTABLE keys are keys that are permitted to be exported out of the HSM. For more 
information see Supported Java attributes for Client SDK 5.

2. The WRAP_WITH_TRUSTED attribute for the private and secret keys is set to false.

• getEncoded, getPrivateExponent, and getS cannot be used with private keys that 
cannot be exported in clear. WRAP_WITH_TRUSTED doesn't allow your private keys to 
exported out of the HSM in clear. For more information see Using trusted keys to control key 
unwraps.

Allow the JCE provider to extract private key secrets out of AWS CloudHSM

Use the following steps to allow AWS CloudHSM JCE provider to extract your private key secrets.

JCE provider 947



AWS CloudHSM User Guide

Important

This configuration change allows extraction of all EXTRACTABLE key bytes in clear from 
your HSM cluster. For better security, you should consider using key wrapping methods to 
extract the key out of the HSM securely. This prevents unintentional extraction of your key 
bytes from the HSM.

1. Use the following commands to enable your private or secret keys to be extracted in JCE:

Linux

$ /opt/cloudhsm/bin/configure-jce --enable-clear-key-extraction-in-software

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --enable-
clear-key-extraction-in-software

2. Once you enable your clear key extraction, the following methods are enabled for extracting 
private keys into memory.

Class Method Format (getEncoded)

Key getEncoded() RAW

ECPrivateKey getEncoded() PKCS#8

  getS() N/A

RSAPrivateCrtKey getEncoded() X.509

  getPrivateExponent() N/A

  getPrimeP() N/A

  getPrimeQ() N/A

JCE provider 948



AWS CloudHSM User Guide

Class Method Format (getEncoded)

  getPrimeExponentP() N/A

  getPrimeExponentQ() N/A

  getCrtCoefficient() N/A

If you want restore the default behavior and not allow JCE to export keys in clear, run the following 
command:

Linux

$ /opt/cloudhsm/bin/configure-jce --disable-clear-key-extraction-in-software

Windows

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --disable-clear-
key-extraction-in-software

Retry commands for JCE for AWS CloudHSM

AWS CloudHSM Client SDK 5.8.0 and later have a built-in automatic retry strategy which will retry 
HSM-throttled operations from the client side. When an HSM throttles operations because it is 
too busy performing previous operations and cannot take more requests, client SDKs will attempt 
to retry throttled operations up to 3 times while exponentially backing off. This automatic retry 
strategy can be set to one of two modes: off and standard.

• off: The Client SDK will not perform any retry strategy for any throttled operations by the HSM.

• standard: This is the default mode for Client SDK 5.8.0 and later. In this mode, client SDKs will 
automatically retry throttled operations by exponentially backing off.

For more information, see HSM throttling.

JCE provider 949



AWS CloudHSM User Guide

Set retry commands to off mode

Linux

To set retry commands to off for Client SDK 5 on Linux

• You can use the following command to set retry configuration to off mode:

$ sudo /opt/cloudhsm/bin/configure-jce --default-retry-mode off

Windows

To set retry commands to off for Client SDK 5 on Windows

• You can use the following command to set retry configuration to off mode:

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\configure-jce.exe" --default-
retry-mode off

Using previous SDK version to work with AWS CloudHSM

SDK versions 5.8.0 and earlier have reached their end of support. After March 31, 2025 
documentation for SDK versions 3.4.4 and earlier will no longer be available.

AWS CloudHSM includes two major Client SDK versions:

• Client SDK 5: This is our latest and default Client SDK. For information on the benefits and 
advantages it provides, see Benefits of AWS CloudHSM Client SDK 5.

• Client SDK 3: This is our older Client SDK. It includes a full set of components for platform and 
language-based applications compatibility and management tools.

For instructions on migrating from Client SDK 3 to Client SDK 5, see Migrating from AWS 
CloudHSM Client SDK 3 to Client SDK 5.

Previous version 950



AWS CloudHSM User Guide

This topic describes Client SDK 3. To see what version of Client SDK you're using, see Check your 
AWS CloudHSM Client SDK version.

To download, see Downloads.

Topics

• Upgrade AWS CloudHSM Client SDK 3 on Linux

• AWS CloudHSM Client SDK 3 supported platforms

• PKCS #11 library for AWS CloudHSM Client SDK 3

• OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

• JCE provider for AWS CloudHSM Client SDK 3

• Cryptography API: Next Generation (CNG) and key storage providers (KSP) for AWS CloudHSM

Upgrade AWS CloudHSM Client SDK 3 on Linux

SDK versions 5.8.0 and earlier have reached their end of support. After March 31, 2025 
documentation for SDK versions 3.4.4 and earlier will no longer be available.

With AWS CloudHSM Client SDK 3.1 and higher, the version of the client daemon and any 
components you install must match to upgrade. For all Linux-based systems, you must use a single 
command to batch upgrade the client daemon with the same version of the PKCS #11 library, the 
Java Cryptographic Extension (JCE) provider, or the OpenSSL Dynamic Engine. This requirement 
does not apply to Windows-based systems because the binaries for the CNG and KSP providers are 
already included in the client daemon package.

To check the client daemon version

• On a Red Hat-based Linux system (including Amazon Linux and CentOS), use the following 
command:

rpm -qa | grep ^cloudhsm

• On an Debian-based Linux system, use the following command:

apt list --installed | grep ^cloudhsm

Upgrade Client SDK 3 951



AWS CloudHSM User Guide

• On a Windows system, use the following command:

wmic product get name,version

Topics

• Prerequisites

• Step 1: Stop the client daemon

• Step 2: Upgrade the client SDK

• Step 3: Start the client daemon

Prerequisites

Download the latest version of AWS CloudHSM client daemon and choose your components.

Note

You do not have to install all the components. For every component you have installed, you 
must upgrade that component to match the version of the client daemon.

Latest Linux client daemon

Amazon Linux

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-latest.el6.x86_64.rpm

Amazon Linux 2

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

CentOS 7

sudo yum install wget

Upgrade Client SDK 3 952



AWS CloudHSM User Guide

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

CentOS 8

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-latest.el8.x86_64.rpm

RHEL 7

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-latest.el7.x86_64.rpm

RHEL 8

sudo yum install wget

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client_latest_amd64.deb

Ubuntu 18.04 LTS

wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client_latest_u18.04_amd64.deb

Upgrade Client SDK 3 953



AWS CloudHSM User Guide

Latest PKCS #11 library

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-pkcs11-latest.el6.x86_64.rpm

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-pkcs11-latest.el7.x86_64.rpm

CentOS 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-pkcs11-latest.el7.x86_64.rpm

CentOS 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-pkcs11-latest.el8.x86_64.rpm

RHEL 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-pkcs11-latest.el7.x86_64.rpm

RHEL 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-pkcs11-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client-pkcs11_latest_amd64.deb

Upgrade Client SDK 3 954



AWS CloudHSM User Guide

Ubuntu 18.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client-pkcs11_latest_u18.04_amd64.deb

Latest OpenSSL Dynamic Engine

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-dyn-latest.el6.x86_64.rpm

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-dyn-latest.el7.x86_64.rpm

CentOS 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-dyn-latest.el7.x86_64.rpm

RHEL 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-dyn-latest.el7.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client-dyn_latest_amd64.deb

Latest JCE provider

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-jce-latest.el6.x86_64.rpm

Upgrade Client SDK 3 955



AWS CloudHSM User Guide

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-jce-latest.el7.x86_64.rpm

CentOS 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-jce-latest.el7.x86_64.rpm

CentOS 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-jce-latest.el8.x86_64.rpm

RHEL 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-jce-latest.el7.x86_64.rpm

RHEL 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-jce-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client-jce_latest_amd64.deb

Ubuntu 18.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client-jce_latest_u18.04_amd64.deb

Step 1: Stop the client daemon

Use the following command to stop the client daemon.

Upgrade Client SDK 3 956



AWS CloudHSM User Guide

Amazon Linux

$ sudo stop cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client stop

CentOS 7

$ sudo service cloudhsm-client stop

CentOS 8

$ sudo service cloudhsm-client stop

RHEL 7

$ sudo service cloudhsm-client stop

RHEL 8

$ sudo service cloudhsm-client stop

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client stop

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client stop

Step 2: Upgrade the client SDK

The following command shows the syntax required to upgrade the client daemon and components. 
Before you run the command, remove any components you don't intend to upgrade.

Upgrade Client SDK 3 957



AWS CloudHSM User Guide

Amazon Linux

$ sudo yum install ./cloudhsm-client-latest.el6.x86_64.rpm \ 
               <./cloudhsm-client-pkcs11-latest.el6.x86_64.rpm> \ 
               <./cloudhsm-client-dyn-latest.el6.x86_64.rpm> \ 
               <./cloudhsm-client-jce-latest.el6.x86_64.rpm>

Amazon Linux 2

$ sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm \ 
               <./cloudhsm-client-pkcs11-latest.el7.x86_64.rpm> \ 
               <./cloudhsm-client-dyn-latest.el7.x86_64.rpm> \ 
               <./cloudhsm-client-jce-latest.el7.x86_64.rpm>

CentOS 7

$ sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm \ 
               <./cloudhsm-client-pkcs11-latest.el7.x86_64.rpm> \ 
               <./cloudhsm-client-dyn-latest.el7.x86_64.rpm> \ 
               <./cloudhsm-client-jce-latest.el7.x86_64.rpm>

CentOS 8

$ sudo yum install ./cloudhsm-client-latest.el8.x86_64.rpm \ 
               <./cloudhsm-client-pkcs11-latest.el8.x86_64.rpm> \               
               <./cloudhsm-client-jce-latest.el8.x86_64.rpm>

RHEL 7

$ sudo yum install ./cloudhsm-client-latest.el7.x86_64.rpm \ 
               <./cloudhsm-client-pkcs11-latest.el7.x86_64.rpm> \ 
               <./cloudhsm-client-dyn-latest.el7.x86_64.rpm> \ 
               <./cloudhsm-client-jce-latest.el7.x86_64.rpm>

RHEL 8

$ sudo yum install ./cloudhsm-client-latest.el8.x86_64.rpm \ 
               <./cloudhsm-client-pkcs11-latest.el8.x86_64.rpm> \ 
               <./cloudhsm-client-jce-latest.el8.x86_64.rpm>

Upgrade Client SDK 3 958



AWS CloudHSM User Guide

Ubuntu 16.04 LTS

$ sudo apt install ./cloudhsm-client_latest_amd64.deb \ 
               <cloudhsm-client-pkcs11_latest_amd64.deb> \ 
               <cloudhsm-client-dyn_latest_amd64.deb> \ 
               <cloudhsm-client-jce_latest_amd64.deb>

Ubuntu 18.04 LTS

$ sudo apt install ./cloudhsm-client_latest_u18.04_amd64.deb \ 
               <cloudhsm-client-pkcs11_latest_amd64.deb> \ 
               <cloudhsm-client-jce_latest_amd64.deb>

Step 3: Start the client daemon

Use the following command to start the client daemon.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client start

CentOS 7

$ sudo service cloudhsm-client start

CentOS 8

$ sudo service cloudhsm-client start

RHEL 7

$ sudo service cloudhsm-client start

Upgrade Client SDK 3 959



AWS CloudHSM User Guide

RHEL 8

$ sudo service cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 20.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 22.04 LTS

Support for OpenSSL Dynamic Engine is not yet available.

AWS CloudHSM Client SDK 3 supported platforms

SDK versions 5.8.0 and earlier have reached their end of support. After March 31, 2025 
documentation for SDK versions 3.4.4 and earlier will no longer be available.

AWS CloudHSM Client SDK 3 requires a client daemon and offers command-line tools including, 
CloudHSM Management Utility (CMU), key management utility (KMU), and the configure tool.

Base support is different for each version of the AWS CloudHSM Client SDK. Typically platform 
support for components in an SDK matches base support, but not always. To determine platform 
support for a given component, first make sure the platform you want appears in the base section 
for the SDK, then check for any exclusions or any other pertinent information in the component 
section.

Platform support changes over time. Earlier versions of the CloudHSM Client SDK may not support 
all the operating systems listed here. Use release notes to determine the operating system support 

Supported platforms 960



AWS CloudHSM User Guide

for previous versions of the CloudHSM Client SDK. For more information, see Downloads for AWS 
CloudHSM Client SDK.

AWS CloudHSM supports only 64-bit operating systems.

Topics

• Linux support for AWS CloudHSM Client SDK 3

• Windows support for AWS CloudHSM Client SDK 3

• HSM compatibility for AWS CloudHSM Client SDK 3

Linux support for AWS CloudHSM Client SDK 3

AWS CloudHSM Client SDK 3 supports the following Linux operating systems and platforms.

• Amazon Linux

• Amazon Linux 2

• CentOS 6.10+ 2

• CentOS 7.3+

• CentOS 8 1,4

• Red Hat Enterprise Linux (RHEL) 6.10+ 2

• Red Hat Enterprise Linux (RHEL) 7.3+

• Red Hat Enterprise Linux (RHEL) 8 1

• Ubuntu 16.04 LTS 3

• Ubuntu 18.04 LTS 1

[1] No support for OpenSSL Dynamic Engine. For more information, see OpenSSL Dynamic Engine.

[2] No support for Client SDK 3.3.0 and later.

[3] SDK 3.4 is the last supported release on Ubuntu 16.04.

[4] SDK 3.4 is the last supported release on CentOS 8.3+.

Windows support for AWS CloudHSM Client SDK 3

AWS CloudHSM Client SDK 3 supports the following versions of Windows Server.

Supported platforms 961



AWS CloudHSM User Guide

• Microsoft Windows Server 2012

• Microsoft Windows Server 2012 R2

• Microsoft Windows Server 2016

• Microsoft Windows Server 2019

HSM compatibility for AWS CloudHSM Client SDK 3

The following table describes AWS CloudHSM Client SDK 3 compatibility for HSMs.

hsm1.medium hsm2m.medium

Compatible with Client version SDK 3.1.0 and 
later.

Not supported.

PKCS #11 library for AWS CloudHSM Client SDK 3

PKCS #11 is a standard for performing cryptographic operations on hardware security modules 
(HSM) in AWS CloudHSM.

For information about bootstrapping, see Connecting to the cluster.

Topics

• Install the PKCS #11 library for AWS CloudHSM Client SDK 3

• Authenticate to the PKCS #11 library for AWS CloudHSM Client SDK 3

• Supported key types for PKCS #11 library for AWS CloudHSM Client SDK 3

• Supported mechanisms for AWS CloudHSM Client SDK 3

• Supported API operations for AWS CloudHSM Client SDK 3

• Key attributes in the PKCS #11 library for AWS CloudHSM Client SDK 3

• Code samples for the PKCS #11 library for AWS CloudHSM Client SDK 3

Install the PKCS #11 library for AWS CloudHSM Client SDK 3

This topic provides instructions for installing the PKCS #11 library for the AWS CloudHSM Client 
SDK 3 version series. For more information about the Client SDK or PKCS #11 library, see Using the 
Client SDK and PKCS #11 library.

PKCS #11 library 962



AWS CloudHSM User Guide

Prerequisites for Client SDK 3

The PKCS #11 library requires the AWS CloudHSM client.

If you haven't installed and configured the AWS CloudHSM client, do that now by following the 
steps at Install the client (Linux). After you install and configure the client, use the following 
command to start it.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo systemctl cloudhsm-client start

CentOS 7

$ sudo systemctl cloudhsm-client start

CentOS 8

$ sudo systemctl cloudhsm-client start

RHEL 7

$ sudo systemctl cloudhsm-client start

RHEL 8

$ sudo systemctl cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo systemctl cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo systemctl cloudhsm-client start

PKCS #11 library 963



AWS CloudHSM User Guide

Ubuntu 20.04 LTS

$ sudo systemctl cloudhsm-client start

Install the PKCS #11 library for Client SDK 3

The following command downloads and installs the PKCS #11 library.

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-pkcs11-latest.el6.x86_64.rpm

$ sudo yum install ./cloudhsm-client-pkcs11-latest.el6.x86_64.rpm

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-pkcs11-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-pkcs11-latest.el7.x86_64.rpm

CentOS 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-pkcs11-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-pkcs11-latest.el7.x86_64.rpm

CentOS 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-pkcs11-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-client-pkcs11-latest.el8.x86_64.rpm

PKCS #11 library 964



AWS CloudHSM User Guide

RHEL 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-pkcs11-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-pkcs11-latest.el7.x86_64.rpm

RHEL 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-pkcs11-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-client-pkcs11-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client-pkcs11_latest_amd64.deb

$ sudo apt install ./cloudhsm-client-pkcs11_latest_amd64.deb

Ubuntu 18.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client-pkcs11_latest_u18.04_amd64.deb

$ sudo apt install ./cloudhsm-client-pkcs11_latest_u18.04_amd64.deb

• If the EC2 instance on which you installed the PKCS #11 library has no other components from 
Client SDK 3 installed, you must bootstrap Client SDK 3. You only have to do this once on each 
instance with a component from Client SDK 3.

• You can find the PKCS #11 library files in the following locations:

Linux binaries, configuration scripts, certificates, and log files:

/opt/cloudhsm/lib

PKCS #11 library 965



AWS CloudHSM User Guide

Authenticate to the PKCS #11 library for AWS CloudHSM Client SDK 3

When you use the PKCS #11 library, your application runs as a particular crypto user (CU) in 
your HSMs in AWS CloudHSM. Your application can view and manage only the keys that the CU 
owns and shares. You can use an existing CU in your HSMs or create a new CU. For information 
on managing CUs, see Managing HSM users with CloudHSM CLI and Managing HSM users with 
CloudHSM Management Utility (CMU).

To specify the CU to PKCS #11 library, use the pin parameter of the PKCS #11 C_Login function. For 
AWS CloudHSM, the pin parameter has the following format:

<CU_user_name>:<password>

For example, the following command sets the PKCS #11 library pin to the CU with user name
CryptoUser and password CUPassword123!.

CryptoUser:CUPassword123!

Supported key types for PKCS #11 library for AWS CloudHSM Client SDK 3

The PKCS #11 library supports the following key types with AWS CloudHSM Client SDK 3.

Key Type Description

RSA Generate 2048-bit to 4096-bit RSA keys, in 
increments of 256 bits.

EC Generate keys with the secp224r1 (P-224), 
secp256r1 (P-256), secp256k1 (Blockchain), 
secp384r1 (P-384), and secp521r1 (P-521) 
curves.

AES Generate 128, 192, and 256-bit AES keys.

DES3 (Triple DES) Generate 192-bit DES3 keys. See note 1 below 
for an upcoming change.

GENERIC_SECRET Generate 1 to 64 bytes generic secrets.

PKCS #11 library 966

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html#_Toc385057915


AWS CloudHSM User Guide

• [1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. 
For clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 
Mechanism Deprecation for details.

Supported mechanisms for AWS CloudHSM Client SDK 3

The PKCS #11 library supports the following algorithms for AWS CloudHSM Client SDK 3:

• Encryption and decryption – AES-CBC, AES-CTR, AES-ECB, AES-GCM, DES3-CBC, DES3-ECB, 
RSA-OAEP, and RSA-PKCS

• Sign and verify – RSA, HMAC, and ECDSA; with and without hashing

• Hash/digest – SHA1, SHA224, SHA256, SHA384, and SHA512

• Key wrap – AES Key Wrap,4 AES-GCM, RSA-AES, and RSA-OAEP

• Key derivation – ECDH,5 SP800-108 CTR KDF

The PKCS #11 library mechanism-function table

The PKCS #11 library is compliant with version 2.40 of the PKCS #11 specification. To invoke a 
cryptographic feature using PKCS #11, call a function with a given mechanism. The following table 
summarizes the combinations of functions and mechanisms supported by AWS CloudHSM.

Interpreting the supported PKCS #11 mechanism-function table

A  ✔  mark indicates that AWS CloudHSM supports the mechanism for the function. We do not 
support all possible functions listed in the PKCS #11 specification. A  ✖  mark indicates that AWS 
CloudHSM does not yet support the mechanism for the given function, even though the PKCS #11 
standard allows it. Empty cells indicate that PKCS #11 standard does not support the mechanism 
for the given function.

Supported PKCS #11 library mechanisms and functions

Mechanism Functions

  Generate 
Key or

Key 
Pair

Sign & 
Verify

SR & 
VR

Digest Encrypt 
& 

Decrypt

Derive 
Key

Wrap & 
UnWrap

PKCS #11 library 967



AWS CloudHSM User Guide

Mechanism Functions

CKM_RSA_P 
KCS_KEY_P 
AIR_GEN

✔            

CKM_RSA_X 
9_31_KEY_ 
PAIR_GEN

✔
2            

CKM_RSA_X 
_509

  ✔     ✔    

CKM_RSA_P 

KCS see 

note 8

  ✔
1 ✖   ✔

1   ✔
1

CKM_RSA_P 
KCS_OAEP

        ✔1   ✔
6

CKM_SHA1_ 
RSA_PKCS

  ✔
3.2          

CKM_SHA22 
4_RSA_PKC 

S

  ✔
3.2          

CKM_SHA25 
6_RSA_PKC 

S

  ✔
3.2          

CKM_SHA38 
4_RSA_PKC 

S

  ✔
2,3.2          

CKM_SHA51 
2_RSA_PKC 

S

  ✔
3.2          

PKCS #11 library 968



AWS CloudHSM User Guide

Mechanism Functions

CKM_RSA_P 
KCS_PSS

  ✔
1          

CKM_SHA1_ 
RSA_PKCS_ 

PSS

  ✔
3.2          

CKM_SHA22 
4_RSA_PKC 

S_PSS

  ✔
3.2          

CKM_SHA25 
6_RSA_PKC 

S_PSS

  ✔
3.2          

CKM_SHA38 
4_RSA_PKC 

S_PSS

  ✔
2,3.2          

CKM_SHA51 
2_RSA_PKC 

S_PSS

  ✔
3.2          

CKM_EC_KE 
Y_PAIR_GE 

N

✔            

CKM_ECDSA   ✔
1          

CKM_ECDSA 
_SHA1

  ✔
3.2          

CKM_ECDSA 
_SHA224

  ✔
3.2          

PKCS #11 library 969



AWS CloudHSM User Guide

Mechanism Functions

CKM_ECDSA 
_SHA256

  ✔
3.2          

CKM_ECDSA 
_SHA384

  ✔
3.2          

CKM_ECDSA 
_SHA512

  ✔
3.2          

CKM_ECDH1 
_DERIVE

          ✔
5  

CKM_SP800 
_108_COUN 
TER_KDF

          ✔  

CKM_GENER 
IC_SECRET 
_KEY_GEN

✔            

CKM_AES_K 
EY_GEN

✔            

CKM_AES_E 
CB

        ✔   ✖

CKM_AES_C 
TR

        ✔   ✖

CKM_AES_C 
BC

        ✔
3.3   ✖

CKM_AES_C 
BC_PAD

        ✔   ✖

PKCS #11 library 970



AWS CloudHSM User Guide

Mechanism Functions

CKM_DES3_ 
KEY_GEN

see note 8

✔            

CKM_DES3_ 
CBC

see note 8

        ✔
3.3   ✖

CKM_DES3_ 
CBC_PAD

see note 8

        ✔   ✖

CKM_DES3_ 
ECB

see note 8

        ✔   ✖

CKM_AES_G 
CM

        ✔
3.3, 4   ✔

7.1

CKM_CLOUD 
HSM_AES_G 

CM

        ✔
7.1   ✔

7.1

CKM_SHA_1       ✔
3.1      

CKM_SHA_1 
_HMAC

  ✔
3.3          

CKM_SHA22 
4

      ✔
3.1      

CKM_SHA22 
4_HMAC

  ✔
3.3          

PKCS #11 library 971



AWS CloudHSM User Guide

Mechanism Functions

CKM_SHA25 
6

      ✔
3.1      

CKM_SHA25 
6_HMAC

  ✔
3.3          

CKM_SHA38 
4

      ✔
3.1      

CKM_SHA38 
4_HMAC

  ✔
3.3          

CKM_SHA51 
2

      ✔
3.1      

CKM_SHA51 
2_HMAC

  ✔
3.3          

CKM_RSA_A 
ES_KEY_WR 

AP

            ✔

CKM_AES_K 
EY_WRAP

            ✔

CKM_AES_K 
EY_WRAP_P 

AD

            ✔

CKM_CLOUD 
HSM_AES_K 
EY_WRAP_N 

O_PAD

            ✔
7.1

PKCS #11 library 972



AWS CloudHSM User Guide

Mechanism Functions

CKM_CLOUD 
HSM_AES_K 
EY_WRAP_P 
KCS5_PAD

            ✔
7.1

CKM_CLOUD 
HSM_AES_K 
EY_WRAP_Z 
ERO_PAD

            ✔
7.1

Mechanism annotations

• [1] Single-part operations only.

• [2] Mechanism is functionally identical to the CKM_RSA_PKCS_KEY_PAIR_GEN mechanism, but 
offers stronger guarantees for p and q generation.

• [3.1] AWS CloudHSM approaches hashing differently based on the Client SDK. For Client SDK 3, 
where we do the hashing depends on data size and whether you’re using single-part or multipart 
operations.

Single-part operations in Client SDK 3

Table 3.1 lists the maximum data set size for each mechanism for Client SDK 3. The entire hash is 
computed inside the HSM. No support for data sizes greater than 16KB.

Table 3.1, Maximum data set size for single-part operations

Mechanism Maximum Data Size

CKM_SHA_1 16296

CKM_SHA224 16264

CKM_SHA256 16296

CKM_SHA384 16232

PKCS #11 library 973



AWS CloudHSM User Guide

Mechanism Maximum Data Size

CKM_SHA512 16232

Multipart operations Client SDK 3

Support for data sizes greater than 16 KB, but data size determines where the hashing takes 
place. Data buffers less than 16 KB are hashed inside the HSM. Buffers between 16 KB and the 
maximum data size for your system are hashed locally in software. Remember: Hash functions do 
not require cryptographic secrets, so you can safely compute them outside of the HSM.

• [3.2] AWS CloudHSM approaches hashing differently based on the Client SDK. For Client SDK 3, 
where we do the hashing depends on data size and whether you’re using single-part or multipart 
operations.

Single-part operations Client SDK 3

Table 3.2 lists the maximum data set size for each mechanism for Client SDK 3. No support for 
data sizes greater than 16KB.

Table 3.2, Maximum data set size for single-part operations

Mechanism Maximum Data Size

CKM_SHA1_RSA_PKCS 16296

CKM_SHA224_RSA_PKCS 16264

CKM_SHA256_RSA_PKCS 16296

CKM_SHA384_RSA_PKCS 16232

CKM_SHA512_RSA_PKCS 16232

CKM_SHA1_RSA_PKCS_PSS 16296

CKM_SHA224_RSA_PKCS_PSS 16264

CKM_SHA256_RSA_PKCS_PSS 16296

PKCS #11 library 974



AWS CloudHSM User Guide

Mechanism Maximum Data Size

CKM_SHA384_RSA_PKCS_PSS 16232

CKM_SHA512_RSA_PKCS_PSS 16232

CKM_ECDSA_SHA1 16296

CKM_ECDSA_SHA224 16264

CKM_ECDSA_SHA256 16296

CKM_ECDSA_SHA384 16232

CKM_ECDSA_SHA512 16232

Multipart operations Client SDK 3

Support for data sizes greater than 16 KB, but data size determines where the hashing takes 
place. Data buffers less than 16 KB are hashed inside the HSM. Buffers between 16 KB and the 
maximum data size for your system are hashed locally in software. Remember: Hash functions do 
not require cryptographic secrets, so you can safely compute them outside of the HSM.

• [3.3] When operating on data by using any of the following mechanisms, if the data buffer 
exceeds the maximum data size, the operation results in an error. For these mechanisms, all the 
data processing must occur inside the HSM. The following table lists maximum data size set for 
each mechanism:

Table 3.3, Maximum data set size

Mechanism Maximum Data Size

CKM_SHA_1_HMAC 16288

CKM_SHA224_HMAC 16256

CKM_SHA256_HMAC 16288

CKM_SHA384_HMAC 16224

PKCS #11 library 975



AWS CloudHSM User Guide

Mechanism Maximum Data Size

CKM_SHA512_HMAC 16224

CKM_AES_CBC 16272

CKM_AES_GCM 16224

CKM_CLOUDHSM_AES_GCM 16224

CKM_DES3_CBC 16280

• [4] When performing AES-GCM encryption, the HSM does not accept initialization vector (IV) 
data from the application. You must use an IV that it generates. The 12-byte IV provided by the 
HSM is written into the memory reference pointed to by the pIV element of the CK_GCM_PARAMS
parameters structure that you supply. To prevent user confusion, PKCS #11 SDK in version 1.1.1 
and later ensures that pIV points to a zeroized buffer when AES-GCM encryption is initialized.

• [5] Client SDK 3 only. Mechanism is implemented to support SSL/TLS offload cases and is 
executed only partially within the HSM. Before using this mechanism, see "Issue: ECDH key 
derivation is executed only partially within the HSM" in Known issues for the PKCS #11 library for 
AWS CloudHSM. CKM_ECDH1_DERIVE does not support the secp521r1 (P-521) curve.

• [6] The following CK_MECHANISM_TYPE and CK_RSA_PKCS_MGF_TYPE are supported as
CK_RSA_PKCS_OAEP_PARAMS for CKM_RSA_PKCS_OAEP:

• CKM_SHA_1 using CKG_MGF1_SHA1

• CKM_SHA224 using CKG_MGF1_SHA224

• CKM_SHA256 using CKG_MGF1_SHA256

• CKM_SHA384 using CKM_MGF1_SHA384

• CKM_SHA512 using CKM_MGF1_SHA512

• [7.1] Vendor-defined mechanism. In order to use the CloudHSM vendor defined mechanisms, 
PKCS#11 applications must include /opt/cloudhsm/include/pkcs11t.h during compilation.

CKM_CLOUDHSM_AES_GCM: This proprietary mechanism is a programmatically safer alternative 
to the standard CKM_AES_GCM. It prepends the IV generated by the HSM to the ciphertext 
instead of writing it back into the CK_GCM_PARAMS structure that is provided during cipher 
initialization. You can use this mechanism with C_Encrypt, C_WrapKey, C_Decrypt, and
C_UnwrapKey functions. When using this mechanism, the pIV variable in the CK_GCM_PARAMS

PKCS #11 library 976



AWS CloudHSM User Guide

struct must be set to NULL. When using this mechanism with C_Decrypt and C_UnwrapKey, the 
IV is expected to be prepended to the ciphertext that is being unwrapped.

CKM_CLOUDHSM_AES_KEY_WRAP_PKCS5_PAD: AES Key Wrap with PKCS #5 Padding

CKM_CLOUDHSM_AES_KEY_WRAP_ZERO_PAD: AES Key Wrap with Zero Padding

For additional information regarding AES key wrapping, see AES Key Wrapping.

• [8] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. 
For clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 
Mechanism Deprecation for details.

Supported API operations for AWS CloudHSM Client SDK 3

The PKCS #11 library supports the following PKCS #11 API operations for AWS CloudHSM Client 
SDK 3.

• C_CloseAllSessions

• C_CloseSession

• C_CreateObject

• C_Decrypt

• C_DecryptFinal

• C_DecryptInit

• C_DecryptUpdate

• C_DeriveKey

• C_DestroyObject

• C_Digest

• C_DigestFinal

• C_DigestInit

• C_DigestUpdate

• C_Encrypt

• C_EncryptFinal

• C_EncryptInit

• C_EncryptUpdate

PKCS #11 library 977



AWS CloudHSM User Guide

• C_Finalize

• C_FindObjects

• C_FindObjectsFinal

• C_FindObjectsInit

• C_GenerateKey

• C_GenerateKeyPair

• C_GenerateRandom

• C_GetAttributeValue

• C_GetFunctionList

• C_GetInfo

• C_GetMechanismInfo

• C_GetMechanismList

• C_GetSessionInfo

• C_GetSlotInfo

• C_GetSlotList

• C_GetTokenInfo

• C_Initialize

• C_Login

• C_Logout

• C_OpenSession

• C_Sign

• C_SignFinal

• C_SignInit

• C_SignRecover (Client SDK 3 support only)

• C_SignRecoverInit (Client SDK 3 support only)

• C_SignUpdate

• C_UnWrapKey

• C_Verify

• C_VerifyFinal

• C_VerifyInit

PKCS #11 library 978



AWS CloudHSM User Guide

• C_VerifyRecover (Client SDK 3 support only)

• C_VerifyRecoverInit (Client SDK 3 support only)

• C_VerifyUpdate

• C_WrapKey

Key attributes in the PKCS #11 library for AWS CloudHSM Client SDK 3

A key object can be a public, private, or secret key. Actions permitted on a key object are specified 
through attributes. Attributes are defined when the key object is created. When you use the PKCS 
#11 library for AWS CloudHSM, we assign default values as specified by the PKCS #11 standard.

AWS CloudHSM does not support all attributes listed in the PKCS #11 specification. We are 
compliant with the specification for all attributes we support. These attributes are listed in the 
respective tables.

Cryptographic functions such as C_CreateObject, C_GenerateKey, C_GenerateKeyPair,
C_UnwrapKey, and C_DeriveKey that create, modify, or copy objects take an attribute template 
as one of their parameters. For more information about passing an attribute template during 
object creation, see Generate keys through PKCS #11 library sample.

The following topics provide more information about AWS CloudHSM key attributes for Client SDK 
3.

Topics

• PKCS #11 library attributes table for AWS CloudHSM Client SDK 3

• Modifying PKCS #11 library attributes for AWS CloudHSM Client SDK 3

• Interpreting PKCS #11 library error codes for AWS CloudHSM Client SDK 3

PKCS #11 library attributes table for AWS CloudHSM Client SDK 3

The PKCS #11 library table for AWS CloudHSM Client SDK 3 contains a list of attributes that differ 
by key types. It indicates whether a given attribute is supported for a particular key type when 
using a specific cryptographic function with AWS CloudHSM.

Legend:

• ✔  indicates that CloudHSM supports the attribute for the specific key type.

• ✖  indicates that CloudHSM does not support the attribute for the specific key type.

PKCS #11 library 979

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/generate


AWS CloudHSM User Guide

• R indicates that the attribute value is set to read-only for the specific key type.

• S indicates that the attribute cannot be read by the GetAttributeValue as it is sensitive.

• An empty cell in the Default Value column indicates that there is no specific default value 
assigned to the attribute.

GenerateKeyPair

Attribute Key Type Default 
Value

  EC private EC public RSA 
private

RSA public  

CKA_CLASS ✔ ✔ ✔ ✔

CKA_KEY_T 
YPE

✔ ✔ ✔ ✔

CKA_LABEL ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔

CKA_LOCAL R R R R True

CKA_TOKEN ✔ ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✖ ✔ ✖ ✔ False

CKA_DECRY 
PT

✔ ✖ ✔ ✖ False

PKCS #11 library 980



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_DERIV 
E

✔ ✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔1 ✔1 ✔1 ✔1 True

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ True

CKA_SIGN ✔ ✖ ✔ ✖ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✔3 ✖  

CKA_VERIF 
Y

✖ ✔ ✖ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✔4  

CKA_WRAP ✖ ✔ ✖ ✔ False

CKA_WRAP_ 
TEMPLATE

✖ ✔ ✖ ✔  

CKA_TRUST 
ED

✖ ✔ ✖ ✔ False

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✖ ✔ ✖ False

CKA_UNWRA 
P

✔ ✖ ✔ ✖ False

PKCS #11 library 981



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✖ ✔ ✖  

CKA_SENSI 
TIVE

✔ ✖ ✔ ✖ True

CKA_ALWAY 
S_SENSITI 

VE

R ✖ R ✖  

CKA_EXTRA 
CTABLE

✔ ✖ ✔ ✖ True

CKA_NEVER 
_EXTRACTA 

BLE

R ✖ R ✖  

CKA_MODUL 
US

✖ ✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✔2  

CKA_PRIME 
_1

✖ ✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖ ✖  

PKCS #11 library 982



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_EXPON 
ENT_2

✖ ✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖ ✔2  

CKA_EC_PA 
RAMS

✖ ✔2 ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖ ✖  

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖  

CKA_CHECK 
_VALUE

R R R R  

GenerateKey

Attribute Key Type Default 
Value

  AES DES3 Generic 
Secret

 

CKA_CLASS ✔ ✔ ✔

PKCS #11 library 983



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_KEY_T 
YPE

✔ ✔ ✔

CKA_LABEL ✔ ✔ ✔

CKA_ID ✔ ✔ ✔

CKA_LOCAL R R R True

CKA_TOKEN ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✔ ✔ ✖ False

CKA_DECRY 
PT

✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔1 ✔1 ✔1 True

CKA_DESTR 
OYABLE

✔ ✔ ✔ True

CKA_SIGN ✔ ✔ ✔ True

CKA_SIGN_ 
RECOVER

✖ ✖ ✖  

CKA_VERIF 
Y

✔ ✔ ✔ True

PKCS #11 library 984



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖  

CKA_WRAP ✔ ✔ ✖ False

CKA_WRAP_ 
TEMPLATE

✔ ✔ ✖  

CKA_TRUST 
ED

✔ ✔ ✖ False

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✔ ✔ False

CKA_UNWRA 
P

✔ ✔ ✖ False

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✔ ✖  

CKA_SENSI 
TIVE

✔ ✔ ✔ True

CKA_ALWAY 
S_SENSITI 

VE

✖ ✖ ✖  

CKA_EXTRA 
CTABLE

✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R R R  

PKCS #11 library 985



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_MODUL 
US

✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖  

CKA_EC_PA 
RAMS

✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖  

PKCS #11 library 986



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_VALUE 
_LEN

✔2 ✖ ✔2  

CKA_CHECK 
_VALUE

R R R  

CreateObject

Attribute Key Type Default 
Value

  EC 
private

EC 
public

RSA 
private

RSA 
public

AES DES3 Generic 
Secret

 

CKA_CLASS ✔2 ✔2 ✔2 ✔2 ✔2 ✔2 ✔2

CKA_KEY_T 
YPE

✔2 ✔2 ✔2 ✔2 ✔2 ✔2 ✔2

CKA_LABEL ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_LOCAL R R R R R R R False

CKA_TOKEN ✔ ✔ ✔ ✔ ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 ✔1 ✔1 ✔1 True

PKCS #11 library 987



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_ENCRY 
PT

✖ ✖ ✖ ✔ ✔ ✔ ✖ False

CKA_DECRY 
PT

✖ ✖ ✔ ✖ ✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ ✔ ✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔1 ✔1 ✔1 ✔1 ✔1 ✔1 ✔1 True

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔ True

CKA_SIGN ✔ ✖ ✔ ✖ ✔ ✔ ✔ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✔3 ✖ ✖ ✖ ✖ False

CKA_VERIF 
Y

✖ ✔ ✖ ✔ ✔ ✔ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✔4 ✖ ✖ ✖  

CKA_WRAP ✖ ✖ ✖ ✔ ✔ ✔ ✖ False

CKA_WRAP_ 
TEMPLATE

✖ ✔ ✖ ✔ ✔ ✔ ✖  

CKA_TRUST 
ED

✖ ✔ ✖ ✔ ✔ ✔ ✖ False

PKCS #11 library 988



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✖ ✔ ✖ ✔ ✔ ✔ False

CKA_UNWRA 
P

✖ ✖ ✔ ✖ ✔ ✔ ✖ False

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✖ ✔ ✖ ✔ ✔ ✖  

CKA_SENSI 
TIVE

✔ ✖ ✔ ✖ ✔ ✔ ✔ True

CKA_ALWAY 
S_SENSITI 

VE

R ✖ R ✖ R R R  

CKA_EXTRA 
CTABLE

✔ ✖ ✔ ✖ ✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R ✖ R ✖ R R R  

CKA_MODUL 
US

✖ ✖ ✔2 ✔2 ✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✖ ✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✔ ✖ ✖ ✖ ✖  

PKCS #11 library 989



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_COEFF 
ICIENT

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✔ ✖ ✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✔2 ✖ ✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✔2 ✔2 ✖ ✖ ✖  

CKA_EC_PA 
RAMS

✔2 ✔2 ✖ ✖ ✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✔2 ✖ ✖ ✖ ✖ ✖  

CKA_VALUE ✔2 ✖ ✖ ✖ ✔2 ✔2 ✔2  

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖ ✖ ✖ ✖  

CKA_CHECK 
_VALUE

R R R R R R R  

PKCS #11 library 990



AWS CloudHSM User Guide

UnwrapKey

Attribute Key Type Default 
Value

  EC 
private

RSA 
private

AES DES3 Generic 
Secret

 

CKA_CLASS ✔2 ✔2 ✔2 ✔2 ✔2

CKA_KEY_T 
YPE

✔2 ✔2 ✔2 ✔2 ✔2

CKA_LABEL ✔ ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔ ✔

CKA_LOCAL R R R R R False

CKA_TOKEN ✔ ✔ ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✖ ✖ ✔ ✔ ✖ False

CKA_DECRY 
PT

✖ ✔ ✔ ✔ ✖ False

CKA_DERIV 
E

✔ ✔ ✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔1 ✔1 ✔1 ✔1 ✔1 True

PKCS #11 library 991



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ ✔ True

CKA_SIGN ✔ ✔ ✔ ✔ ✔ False

CKA_SIGN_ 
RECOVER

✖ ✔3 ✖ ✖ ✖ False

CKA_VERIF 
Y

✖ ✖ ✔ ✔ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✖ ✖  

CKA_WRAP ✖ ✖ ✔ ✔ ✖ False

CKA_UNWRA 
P

✖ ✔ ✔ ✔ ✖ False

CKA_SENSI 
TIVE

✔ ✔ ✔ ✔ ✔ True

CKA_EXTRA 
CTABLE

✔ ✔ ✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R R R R R  

CKA_ALWAY 
S_SENSITI 

VE

R R R R R  

CKA_MODUL 
US

✖ ✖ ✖ ✖ ✖  

PKCS #11 library 992



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖ ✖ ✖  

CKA_EC_PA 
RAMS

✖ ✖ ✖ ✖ ✖  

CKA_EC_PO 
INT

✖ ✖ ✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖ ✖ ✖  

PKCS #11 library 993



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖ ✖  

CKA_CHECK 
_VALUE

R R R R R  

DeriveKey

Attribute Key Type Default 
Value

  AES DES3 Generic 
Secret

 

CKA_CLASS ✔2 ✔2 ✔2

CKA_KEY_T 
YPE

✔2 ✔2 ✔2

CKA_LABEL ✔ ✔ ✔

CKA_ID ✔ ✔ ✔

CKA_LOCAL R R R True

CKA_TOKEN ✔ ✔ ✔ False

CKA_PRIVA 
TE

✔1 ✔1 ✔1 True

CKA_ENCRY 
PT

✔ ✔ ✖ False

CKA_DECRY 
PT

✔ ✔ ✖ False

PKCS #11 library 994



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_DERIV 
E

✔ ✔ ✔ False

CKA_MODIF 
IABLE

✔1 ✔1 ✔1 True

CKA_DESTR 
OYABLE

✔1 ✔1 ✔1 True

CKA_SIGN ✔ ✔ ✔ False

CKA_SIGN_ 
RECOVER

✖ ✖ ✖  

CKA_VERIF 
Y

✔ ✔ ✔ False

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖  

CKA_WRAP ✔ ✔ ✖ False

CKA_UNWRA 
P

✔ ✔ ✖ False

CKA_SENSI 
TIVE

✔ ✔ ✔ True

CKA_EXTRA 
CTABLE

✔ ✔ ✔ True

CKA_NEVER 
_EXTRACTA 

BLE

R R R  

PKCS #11 library 995



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_ALWAY 
S_SENSITI 

VE

R R R  

CKA_MODUL 
US

✖ ✖ ✖  

CKA_MODUL 
US_BITS

✖ ✖ ✖  

CKA_PRIME 
_1

✖ ✖ ✖  

CKA_PRIME 
_2

✖ ✖ ✖  

CKA_COEFF 
ICIENT

✖ ✖ ✖  

CKA_EXPON 
ENT_1

✖ ✖ ✖  

CKA_EXPON 
ENT_2

✖ ✖ ✖  

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ ✖  

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✖  

CKA_EC_PA 
RAMS

✖ ✖ ✖  

PKCS #11 library 996



AWS CloudHSM User Guide

Attribute Key Type Default 
Value

CKA_EC_PO 
INT

✖ ✖ ✖  

CKA_VALUE ✖ ✖ ✖  

CKA_VALUE 
_LEN

✔2 ✖ ✔2  

CKA_CHECK 
_VALUE

R R R  

GetAttributeValue

Attribute Key Type

  EC 
private

EC 
public

RSA 
private

RSA 
public

AES DES3 Generic 
Secret

CKA_CLASS ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_KEY_T 
YPE

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_LABEL ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_ID ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_LOCAL ✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_TOKEN ✔ ✔ ✔ ✔ ✔ ✔ ✔

PKCS #11 library 997



AWS CloudHSM User Guide

Attribute Key Type

CKA_PRIVA 
TE

✔1 ✔1 ✔1 ✔1 ✔1 ✔1 ✔1

CKA_ENCRY 
PT

✖ ✖ ✖ ✔ ✔ ✔ ✖

CKA_DECRY 
PT

✖ ✖ ✔ ✖ ✔ ✔ ✖

CKA_DERIV 
E

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_MODIF 
IABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_DESTR 
OYABLE

✔ ✔ ✔ ✔ ✔ ✔ ✔

CKA_SIGN ✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_SIGN_ 
RECOVER

✖ ✖ ✔ ✖ ✖ ✖ ✖

CKA_VERIF 
Y

✖ ✔ ✖ ✔ ✔ ✔ ✔

CKA_VERIF 
Y_RECOVER

✖ ✖ ✖ ✔ ✖ ✖ ✖

CKA_WRAP ✖ ✖ ✖ ✔ ✔ ✔ ✖

CKA_WRAP_ 
TEMPLATE

✖ ✔ ✖ ✔ ✔ ✔ ✖

CKA_TRUST 
ED

✖ ✔ ✖ ✔ ✔ ✔ ✔

PKCS #11 library 998



AWS CloudHSM User Guide

Attribute Key Type

CKA_WRAP_ 
WITH_TRUS 

TED

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_UNWRA 
P

✖ ✖ ✔ ✖ ✔ ✔ ✖

CKA_UNWRA 
P_TEMPLAT 

E

✔ ✖ ✔ ✖ ✔ ✔ ✖

CKA_SENSI 
TIVE

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_EXTRA 
CTABLE

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_NEVER 
_EXTRACTA 

BLE

✔ ✖ ✔ ✖ ✔ ✔ ✔

CKA_ALWAY 
S_SENSITI 

VE

R R; R R R R R

CKA_MODUL 
US

✖ ✖ ✔ ✔ ✖ ✖ ✖

CKA_MODUL 
US_BITS

✖ ✖ ✖ ✔ ✖ ✖ ✖

CKA_PRIME 
_1

✖ ✖ S ✖ ✖ ✖ ✖

CKA_PRIME 
_2

✖ ✖ S ✖ ✖ ✖ ✖

PKCS #11 library 999



AWS CloudHSM User Guide

Attribute Key Type

CKA_COEFF 
ICIENT

✖ ✖ S ✖ ✖ ✖ ✖

CKA_EXPON 
ENT_1

✖ ✖ S ✖ ✖ ✖ ✖

CKA_EXPON 
ENT_2

✖ ✖ S ✖ ✖ ✖ ✖

CKA_PRIVA 
TE_EXPONE 

NT

✖ ✖ S ✖ ✖ ✖ ✖

CKA_PUBLI 
C_EXPONEN 

T

✖ ✖ ✔ ✔ ✖ ✖ ✖

CKA_EC_PA 
RAMS

✔ ✔ ✖ ✖ ✖ ✖ ✖

CKA_EC_PO 
INT

✖ ✔ ✖ ✖ ✖ ✖ ✖

CKA_VALUE S ✖ ✖ ✖ ✔2 ✔2 ✔2

CKA_VALUE 
_LEN

✖ ✖ ✖ ✖ ✔ ✖ ✔

CKA_CHECK 
_VALUE

✔ ✔ ✔ ✔ ✔ ✔ ✖

Attribute annotations

• [1] This attribute is partially supported by the firmware and must be explicitly set only to the 
default value.

PKCS #11 library 1000



AWS CloudHSM User Guide

• [2] Mandatory attribute.

• [3] Client SDK 3 only. The CKA_SIGN_RECOVER attribute is derived from the CKA_SIGN
attribute. If being set, it can only be set to the same value that is set for CKA_SIGN. If not set, it 
derives the default value of CKA_SIGN. Since CloudHSM only supports RSA-based recoverable 
signature mechanisms, this attribute is currently applicable to RSA public keys only.

• [4] Client SDK 3 only. The CKA_VERIFY_RECOVER attribute is derived from the CKA_VERIFY
attribute. If being set, it can only be set to the same value that is set for CKA_VERIFY. If not 
set, it derives the default value of CKA_VERIFY. Since CloudHSM only supports RSA-based 
recoverable signature mechanisms, this attribute is currently applicable to RSA public keys only.

Modifying PKCS #11 library attributes for AWS CloudHSM Client SDK 3

Some attributes of an object can be modified after the object has been created, whereas some 
cannot. To modify attributes, use the setAttribute command from cloudhsm_mgmt_util. You can 
also derive a list of attributes and the constants that represent them by using the listAttribute
command from cloudhsm_mgmt_util.

The following list displays attributes that are allowed for modification after object creation:

• CKA_LABEL

• CKA_TOKEN

Note

Modification is allowed only for changing a session key to a token key. Use the
setAttribute command from key_mgmt_util to change the attribute value.

• CKA_ENCRYPT

• CKA_DECRYPT

• CKA_SIGN

• CKA_VERIFY

• CKA_WRAP

• CKA_UNWRAP

• CKA_LABEL

• CKA_SENSITIVE

PKCS #11 library 1001



AWS CloudHSM User Guide

• CKA_DERIVE

Note

This attribute supports key derivation. It must be False for all public keys and cannot be 
set to True. For secret and EC private keys, it can be set to True or False.

• CKA_TRUSTED

Note

This attribute can be set to True or False by Crypto Officer (CO) only.

• CKA_WRAP_WITH_TRUSTED

Note

Apply this attribute to an exportable data key to specify that you can only wrap this key 
with keys marked as CKA_TRUSTED. Once you set CKA_WRAP_WITH_TRUSTED to true, 
the attribute becomes read-only and you cannot change or remove the attribute.

Interpreting PKCS #11 library error codes for AWS CloudHSM Client SDK 3

Specifying in the template a PKCS #11 library attribute that is not supported by a specific key 
results in an error. The following table contains error codes that are generated when you violate 
specifications:

Error Code Description

CKR_TEMPLATE_INCONSISTENT You receive this error when you specify an 
attribute in the attribute template, where the 
attribute complies with the PKCS #11 specifica 
tion, but is not supported by CloudHSM.

CKR_ATTRIBUTE_TYPE_INVALID You receive this error when you retrieve value 
for an attribute, which complies with the PKCS 

PKCS #11 library 1002



AWS CloudHSM User Guide

Error Code Description

#11 specification, but is not supported by 
CloudHSM.

CKR_ATTRIBUTE_INCOMPLETE You receive this error when you do not specify 
the mandatory attribute in the attribute 
template.

CKR_ATTRIBUTE_READ_ONLY You receive this error when you specify a read-
only attribute in the attribute template.

Code samples for the PKCS #11 library for AWS CloudHSM Client SDK 3

The code samples on GitHub show you how to accomplish basic tasks using the PKCS #11 library 
for AWS CloudHSM.

Sample code prerequisites

Before running the samples, perform the following steps to set up your environment:

• Install and configure the PKCS #11 library for Client SDK 3.

• Set up a cryptographic user (CU). Your application uses this HSM account to run the code 
samples on the HSM.

Code samples

Code Samples for the AWS CloudHSM Software Library for PKCS#11 are available on GitHub. 
This repository includes examples on how to do common operations using PKCS#11 including 
encryption, decryption, signing and verifying.

• Generate keys (AES, RSA, EC)

• List key attributes

• Encrypt and decrypt data with AES GCM

• Encrypt and decrypt data with AES_CTR

• Encrypt and decrypt data with 3DES

• Sign and verify data with RSA

PKCS #11 library 1003

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/generate
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/attributes/
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/encrypt/aes_gcm.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/encrypt/aes_ctr.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/encrypt/des_ecb.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/sign/rsa_sign.c


AWS CloudHSM User Guide

• Derive keys using HMAC KDF

• Wrap and unwrap keys with AES using PKCS #5 padding

• Wrap and unwrap keys with AES using no padding

• Wrap and unwrap keys with AES using zero padding

• Wrap and unwrap keys with AES-GCM

• Wrap and unwrap keys with RSA

OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

The AWS CloudHSM OpenSSL Dynamic Engine enables you to offload cryptographic operations to 
your CloudHSM cluster through the OpenSSL API.

AWS CloudHSM Client SDK 3 does require a client daemon to connect to the cluster. It supports:

• RSA key generation for 2048, 3072, and 4096-bit keys.

• RSA sign/verify.

• RSA encrypt/decrypt.

• Random number generation that is cryptographically secure and FIPS-validated.

Use the following sections to install and configure the AWS CloudHSM dynamic engine for 
OpenSSL.

Topics

• Prerequisites for OpenSSL Dynamic Engine with AWS CloudHSM Client SDK 3

• Install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

• Use the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

Prerequisites for OpenSSL Dynamic Engine with AWS CloudHSM Client SDK 3

For information about platform support, see AWS CloudHSM Client SDK 3 supported platforms.

Before you can use the AWS CloudHSM dynamic engine for OpenSSL with Client SDK 3, you need 
the AWS CloudHSM client.

OpenSSL Dynamic Engine 1004

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/derivation/hmac_kdf.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_no_padding_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_zero_padding_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/tree/master/src/wrapping/aes_gcm_wrapping.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/rsa_wrapping.c


AWS CloudHSM User Guide

The client is a daemon that establishes end-to-end encrypted communication with the HSMs in 
your cluster, and the OpenSSL engine communicates locally with the client. To install and configure 
the AWS CloudHSM client, see Install the client (Linux). Then use the following command to start it.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo systemctl cloudhsm-client start

CentOS 6

$ sudo systemctl start cloudhsm-client

CentOS 7

$ sudo systemctl cloudhsm-client start

RHEL 6

$ sudo systemctl start cloudhsm-client

RHEL 7

$ sudo systemctl cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo systemctl cloudhsm-client start

Install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

The following steps describe how to install and configure the AWS CloudHSM dynamic engine for 
OpenSSL with Client SDK 3. For information about upgrading, see Upgrade Client SDK 3.

OpenSSL Dynamic Engine 1005



AWS CloudHSM User Guide

To install and configure the OpenSSL engine

1. Use the following commands to download and install the OpenSSL engine.

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-dyn-latest.el6.x86_64.rpm

$ sudo yum install ./cloudhsm-client-dyn-latest.el6.x86_64.rpm

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-dyn-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-dyn-latest.el7.x86_64.rpm

CentOS 6

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-dyn-latest.el6.x86_64.rpm

$ sudo yum install ./cloudhsm-client-dyn-latest.el6.x86_64.rpm

CentOS 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-dyn-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-dyn-latest.el7.x86_64.rpm

RHEL 6

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-dyn-latest.el6.x86_64.rpm

OpenSSL Dynamic Engine 1006



AWS CloudHSM User Guide

$ sudo yum install ./cloudhsm-client-dyn-latest.el6.x86_64.rpm

RHEL 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-dyn-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-dyn-latest.el7.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/
cloudhsm-client-dyn_latest_amd64.deb

$ sudo apt install ./cloudhsm-client-dyn_latest_amd64.deb

The OpenSSL engine is installed at /opt/cloudhsm/lib/libcloudhsm_openssl.so.

2. Use the following command to set an environment variable named n3fips_password that 
contains the credentials of a crypto user (CU).

$ export n3fips_password=<HSM user name>:<password>

Use the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

To use the AWS CloudHSM dynamic engine for OpenSSL from an OpenSSL-integrated application, 
ensure that your application uses the OpenSSL dynamic engine named cloudhsm. The shared 
library for the dynamic engine is located at /opt/cloudhsm/lib/libcloudhsm_openssl.so.

To use the AWS CloudHSM dynamic engine for OpenSSL from the OpenSSL command line, use the
-engine option to specify the OpenSSL dynamic engine named cloudhsm. For example:

$ openssl s_server -cert <server.crt> -key <server.key> -engine cloudhsm

OpenSSL Dynamic Engine 1007



AWS CloudHSM User Guide

JCE provider for AWS CloudHSM Client SDK 3

The AWS CloudHSM JCE provider is a provider implementation built from the Java Cryptographic 
Extension (JCE) provider framework. The JCE allows you to perform cryptographic operations 
using the Java Development Kit (JDK). In this guide, the AWS CloudHSM JCE provider is sometimes 
referred to as the JCE provider. Use the JCE provider and the JDK to offload cryptographic 
operations to the HSM.

Topics

• Install the JCE provider for AWS CloudHSM Client SDK 3

• Key management basics in the JCE provider for AWS CloudHSM Client SDK 3

• Supported mechanisms for Client SDK 3 for AWS CloudHSM Client SDK 3

• Supported Java key attributes for AWS CloudHSM Client SDK 3

• Code samples for the AWS CloudHSM software library for Java for Client SDK 3

• AWS CloudHSM KeyStore Java class for Client SDK 3

Install the JCE provider for AWS CloudHSM Client SDK 3

Before you can use the JCE provider, you need the AWS CloudHSM client.

The client is a daemon that establishes end-to-end encrypted communication with the HSMs in 
your cluster. The JCE provider communicates locally with the client. If you haven't installed and 
configured the AWS CloudHSM client package, do that now by following the steps at Install the 
client (Linux). After you install and configure the client, use the following command to start it.

Note that the JCE provider is supported only on Linux and compatible operating systems.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo systemctl cloudhsm-client start

JCE provider 1008



AWS CloudHSM User Guide

CentOS 7

$ sudo systemctl cloudhsm-client start

CentOS 8

$ sudo systemctl cloudhsm-client start

RHEL 7

$ sudo systemctl cloudhsm-client start

RHEL 8

$ sudo systemctl cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo systemctl cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo systemctl cloudhsm-client start

Ubuntu 20.04 LTS

$ sudo systemctl cloudhsm-client start

Use the following sections to install, validate, and provide credentials to the provider.

Topics

• Step 1: Install the JCE provider

• Step 2: Validate the installation

• Step 3: Provide credentials to the JCE provider

JCE provider 1009



AWS CloudHSM User Guide

Step 1: Install the JCE provider

Use the following commands to download and install the JCE provider. This provider is supported 
only on Linux and compatible operating systems.

Note

For upgrading, see Upgrade Client SDK 3.

Amazon Linux

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL6/cloudhsm-
client-jce-latest.el6.x86_64.rpm

$ sudo yum install ./cloudhsm-client-jce-latest.el6.x86_64.rpm

Amazon Linux 2

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-jce-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-jce-latest.el7.x86_64.rpm

CentOS 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-jce-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-jce-latest.el7.x86_64.rpm

CentOS 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-jce-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-client-jce-latest.el8.x86_64.rpm

JCE provider 1010



AWS CloudHSM User Guide

RHEL 7

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-
client-jce-latest.el7.x86_64.rpm

$ sudo yum install ./cloudhsm-client-jce-latest.el7.x86_64.rpm

RHEL 8

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-
client-jce-latest.el8.x86_64.rpm

$ sudo yum install ./cloudhsm-client-jce-latest.el8.x86_64.rpm

Ubuntu 16.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Xenial/cloudhsm-
client-jce_latest_amd64.deb

$ sudo apt install ./cloudhsm-client-jce_latest_amd64.deb

Ubuntu 18.04 LTS

$ wget https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Bionic/cloudhsm-
client-jce_latest_u18.04_amd64.deb

$ sudo apt install ./cloudhsm-client-jce_latest_u18.04_amd64.deb

After you run the preceding commands, you can find the following JCE provider files:

• /opt/cloudhsm/java/cloudhsm-<version>.jar

• /opt/cloudhsm/java/cloudhsm-test-<version>.jar

• /opt/cloudhsm/java/hamcrest-all-1.3.jar

• /opt/cloudhsm/java/junit.jar

• /opt/cloudhsm/java/log4j-api-2.17.1.jar

• /opt/cloudhsm/java/log4j-core-2.17.1.jar

JCE provider 1011



AWS CloudHSM User Guide

• /opt/cloudhsm/lib/libcaviumjca.so

Step 2: Validate the installation

Perform basic operations on the HSM to validate the installation.

To validate JCE provider installation

1. (Optional) If you don't already have Java installed in your environment, use the following 
command to install it.

Linux (and compatible libraries)

$ sudo yum install java-1.8.0-openjdk

Ubuntu

$ sudo apt-get install openjdk-8-jre

2. Use the following commands to set the necessary environment variables. Replace <HSM user 
name> and <password> with the credentials of a crypto user (CU).

$ export LD_LIBRARY_PATH=/opt/cloudhsm/lib

$ export HSM_PARTITION=PARTITION_1

$ export HSM_USER=<HSM user name>

$ export HSM_PASSWORD=<password>

3. Use the following command to run the basic functionality test. If successful, the command's 
output should be similar to the one that follows.

$ java8 -classpath "/opt/cloudhsm/java/*" org.junit.runner.JUnitCore 
 TestBasicFunctionality

JUnit version 4.11
.2018-08-20 17:53:48,514 DEBUG [main] TestBasicFunctionality 
 (TestBasicFunctionality.java:33) - Adding provider.

JCE provider 1012



AWS CloudHSM User Guide

2018-08-20 17:53:48,612 DEBUG [main] TestBasicFunctionality 
 (TestBasicFunctionality.java:42) - Logging in.
2018-08-20 17:53:48,612 INFO [main] cfm2.LoginManager (LoginManager.java:104) - 
 Looking for credentials in HsmCredentials.properties
2018-08-20 17:53:48,612 INFO [main] cfm2.LoginManager (LoginManager.java:122) - 
 Looking for credentials in System.properties
2018-08-20 17:53:48,613 INFO [main] cfm2.LoginManager (LoginManager.java:130) - 
 Looking for credentials in System.env 
 SDK Version: 2.03
2018-08-20 17:53:48,655 DEBUG [main] TestBasicFunctionality 
 (TestBasicFunctionality.java:54) - Generating AES Key with key size 256.
2018-08-20 17:53:48,698 DEBUG [main] TestBasicFunctionality 
 (TestBasicFunctionality.java:63) - Encrypting with AES Key.
2018-08-20 17:53:48,705 DEBUG [main] TestBasicFunctionality 
 (TestBasicFunctionality.java:84) - Deleting AES Key.
2018-08-20 17:53:48,707 DEBUG [main] TestBasicFunctionality 
 (TestBasicFunctionality.java:92) - Logging out.

Time: 0.205

OK (1 test)

Step 3: Provide credentials to the JCE provider

HSMs need to authenticate your Java application before the application can use them. Each 
application can use one session. HSMs authenticate a session by using either explicit login or 
implicit login method.

Explicit login – This method lets you provide CloudHSM credentials directly in the application. It 
uses the LoginManager.login() method, where you pass the CU user name, password, and the 
HSM partition ID. For more information about using the explicit login method, see the Login to an 
HSM code example.

Implicit login – This method lets you set CloudHSM credentials either in a new property file, 
system properties, or as environment variables.

• New property file – Create a new file named HsmCredentials.properties and add it to your 
application's CLASSPATH. The file should contain the following:

HSM_PARTITION = PARTITION_1
HSM_USER = <HSM user name>

JCE provider 1013

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java


AWS CloudHSM User Guide

HSM_PASSWORD = <password>

• System properties – Set credentials through system properties when running your application. 
The following examples show two different ways that you can do this:

$ java -DHSM_PARTITION=PARTITION_1 -DHSM_USER=<HSM user name> -
DHSM_PASSWORD=<password>

System.setProperty("HSM_PARTITION","PARTITION_1");
System.setProperty("HSM_USER","<HSM user name>");
System.setProperty("HSM_PASSWORD","<password>");

• Environment variables – Set credentials as environment variables.

$ export HSM_PARTITION=PARTITION_1
$ export HSM_USER=<HSM user name>
$ export HSM_PASSWORD=<password>

Credentials might not be available if the application does not provide them or if you attempt an 
operation before the HSM authenticates session. In those cases, the CloudHSM software library for 
Java searches for the credentials in the following order:

1. HsmCredentials.properties

2. System properties

3. Environment variables

Error handling

The error handling is easier with the explicit login than the implicit login method. When you use 
the LoginManager class, you have more control over how your application deals with failures. The 
implicit login method makes error handling difficult to understand when the credentials are invalid 
or the HSMs are having problems in authenticating session.

Key management basics in the JCE provider for AWS CloudHSM Client SDK 3

The basics on key management in the JCE provider involve importing keys, exporting keys, loading 
keys by handle, or deleting keys. For more information on managing keys, see the Manage keys
code example.

JCE provider 1014

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java


AWS CloudHSM User Guide

You can also find more JCE provider code examples at Code samples.

Supported mechanisms for Client SDK 3 for AWS CloudHSM Client SDK 3

This topic provides information about supported mechanisms for JCE provider with AWS CloudHSM 
Client SDK 3. For information about the Java Cryptography Architecture (JCA) interfaces and 
engine classes supported by AWS CloudHSM, see the following topics.

Topics

• Supported keys

• Supported ciphers

• Supported digests

• Supported hash-based message authentication code (HMAC) algorithms

• Supported sign/verify mechanisms

• Mechanism annotations

Supported keys

The AWS CloudHSM software library for Java enables you to generate the following key types.

• AES – 128, 192, and 256-bit AES keys.

• DESede – 92 bit 3DES key. See note 1 below for an upcoming change.

• ECC key pairs for NIST curves secp256r1 (P-256), secp384r1 (P-384), and secp256k1 (Blockchain).

• RSA – 2048-bit to 4096-bit RSA keys, in increments of 256 bits.

In addition to standard parameters, we support the following parameters for each key that is 
generated.

• Label: A key label that you can use to search for keys.

• isExtractable: Indicates whether the key can be exported from the HSM.

• isPersistent: Indicates whether the key remains on the HSM when the current session ends.

JCE provider 1015



AWS CloudHSM User Guide

Note

Java library version 3.1 provides the ability to specify parameters in greater detail. For 
more information, see Supported Java Attributes.

Supported ciphers

The AWS CloudHSM software library for Java supports the following algorithm, mode, and padding 
combinations.

Algorithm Mode Padding Notes

AES CBC AES/CBC/N 
oPadding

AES/CBC/P 
KCS5Padding

Implements
Cipher.EN 
CRYPT_MODE
and Cipher.DE 
CRYPT_MODE .

AES ECB AES/ECB/N 
oPadding

AES/ECB/P 
KCS5Padding

Implements
Cipher.EN 
CRYPT_MODE
and Cipher.DE 
CRYPT_MODE . Use  
 Transformation AES.

AES CTR AES/CTR/N 
oPadding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE .

AES GCM AES/GCM/N 
oPadding

Implements
Cipher.EN 
CRYPT_MODE
and Cipher.DE 
CRYPT_MOD 
E ,   Cipher.WR 

JCE provider 1016



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

AP_MODE , and  
  Cipher.UN 
WRAP_MODE .

When performing  
 AES-GCM encryptio 
n, the HSM ignores 
the initialization 
vector (IV)  in the 
request and uses an 
IV that it generates. 
When the operation  
completes, you must 
call Cipher.ge 
tIV()  to get the  
 IV.

AESWrap ECB AESWrap/ECB/
ZeroPadding

AESWrap/ECB/
NoPadding

AESWrap/ECB/
PKCS5Padding

Implements
Cipher.WR 
AP_MODE , and
Cipher.UN 
WRAP_MODE . Use  
 Transformation AES.

JCE provider 1017



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

DESede (Triple DES) CBC DESede/CBC/
NoPadding

DESede/CBC/
PKCS5Padding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE .

The key generation 
routines accept a size 
of 168 or 192 bits.  
 However, internally, 
all DESede keys are 
192 bits.

See note 1 below for 
an upcoming change.

DESede (Triple DES) ECB DESede/ECB/
NoPadding

DESede/ECB/
PKCS5Padding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE .

The key generation 
routines accept a size 
of 168 or 192 bits.  
 However, internally, 
all DESede keys are 
192 bits.

See note 1 below for 
an upcoming change.

JCE provider 1018



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

RSA ECB RSA/ECB/N 
oPadding

RSA/ECB/P 
KCS1Padding

Implements
Cipher.EN 
CRYPT_MODE
and   Cipher.DE 
CRYPT_MODE .

See note 1 below for 
an upcoming change.

RSA ECB RSA/ECB/O 
AEPPadding

RSA/ECB/O 
AEPWithSH 
A-1ANDMGF 
1Padding

RSA/ECB/O 
AEPWithSH 
A-224ANDM 
GF1Padding

RSA/ECB/O 
AEPWithSH 
A-256ANDM 
GF1Padding

RSA/ECB/O 
AEPWithSH 
A-384ANDM 
GF1Padding

RSA/ECB/O 
AEPWithSH 
A-512ANDM 
GF1Padding

Implements
Cipher.EN 
CRYPT_MOD 
E , Cipher.DE 
CRYPT_MOD 
E ,   Cipher.WR 
AP_MODE , and  
  Cipher.UN 
WRAP_MODE .

OAEPPadding  is
OAEP with the   SHA-1
padding type.

JCE provider 1019



AWS CloudHSM User Guide

Algorithm Mode Padding Notes

RSAAESWrap ECB OAEPPADDING Implements
Cipher.WR 
AP_Mode  and
Cipher.UN 
WRAP_MODE .

Supported digests

The AWS CloudHSM software library for Java supports the following message digests.

• SHA-1

• SHA-224

• SHA-256

• SHA-384

• SHA-512

Note

Data under 16 KB in length are hashed on the HSM, while larger data are hashed locally in 
software.

Supported hash-based message authentication code (HMAC) algorithms

The AWS CloudHSM software library for Java supports the following HMAC algorithms.

• HmacSHA1

• HmacSHA224

• HmacSHA256

• HmacSHA384

• HmacSHA512

JCE provider 1020



AWS CloudHSM User Guide

Supported sign/verify mechanisms

The AWS CloudHSM software library for Java supports the following types of signature and 
verification.

RSA Signature Types

• NONEwithRSA

• SHA1withRSA

• SHA224withRSA

• SHA256withRSA

• SHA384withRSA

• SHA512withRSA

• SHA1withRSA/PSS

• SHA224withRSA/PSS

• SHA256withRSA/PSS

• SHA384withRSA/PSS

• SHA512withRSA/PSS

ECDSA Signature Types

• NONEwithECDSA

• SHA1withECDSA

• SHA224withECDSA

• SHA256withECDSA

• SHA384withECDSA

• SHA512withECDSA

Mechanism annotations

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

JCE provider 1021



AWS CloudHSM User Guide

Supported Java key attributes for AWS CloudHSM Client SDK 3

This topic describes how to use a proprietary extension for the Java library version 3.1 to set key 
attributes for AWS CloudHSM Client SDK 3. Use this extension to set supported key attributes and 
their values during these operations:

• Key generation

• Key import

• Key unwrap

Note

The extension for setting custom key attributes is an optional feature. If you already have 
code that functions in Java library version 3.0, you do not need to modify that code. Keys 
you create will continue to contain the same attributes as before.

Topics

• Understanding attributes

• Supported attributes

• Setting attributes for a key

• Putting it all together

Understanding attributes

You use key attributes to specify what actions are permitted on key objects, including public, 
private or secret keys. You define key attributes and values during key object creation operations.

However, the Java Cryptography Extension (JCE) does not specify how you should set values on key 
attributes, so most actions were permitted by default. In contrast, the PKCS# 11 standard defines 
a comprehensive set of attributes with more restrictive defaults. Starting with the Java library 
version 3.1, CloudHSM provides a proprietary extension that enables you to set more restrictive 
values for commonly used attributes.

JCE provider 1022



AWS CloudHSM User Guide

Supported attributes

You can set values for the attributes listed in the table below. As a best practice, only set values 
for attributes you wish to make restrictive. If you don’t specify a value, CloudHSM uses the default 
value specified in the table below. An empty cell in the Default Value columns indicates that there 
is no specific default value assigned to the attribute.

Attribute Default Value Notes

  Symmetric Key Public Key 
in Key Pair

Private Key 
in Key Pair

 

CKA_TOKEN FALSE FALSE FALSE A permanent 
key which is 
replicated across 
all HSMs in 
the cluster 
and included 
in backups. 
CKA_TOKEN = 
FALSE implies 
a session key, 
which is only 
loaded onto  
 one HSM and 
automatically 
erased when 
the connection 
to the HSM is  
broken.

CKA_LABEL     A user-defi 
ned string. It 
allows you to 
conveniently 
identify keys on 
your HSM.

JCE provider 1023



AWS CloudHSM User Guide

Attribute Default Value Notes

CKA_EXTRA 
CTABLE

TRUE   TRUE True indicates 
you can export 
this key out of 
the HSM.

CKA_ENCRYPT TRUE TRUE   True indicates 
you can use the 
key to encrypt 
any buffer.

CKA_DECRYPT TRUE   TRUE True indicates 
you can use the 
key to decrypt 
any buffer. You 
generally set 
this to FALSE 
for a key whose 
CKA_WRAP is 
set to true.

CKA_WRAP TRUE TRUE   True indicates 
you can use 
the key to wrap 
another key. You 
will  generally 
set this to FALSE 
for private keys.

CKA_UNWRAP TRUE   TRUE True indicates 
you can use the 
key to unwrap 
(import) another 
key.

JCE provider 1024



AWS CloudHSM User Guide

Attribute Default Value Notes

CKA_SIGN TRUE   TRUE True indicates 
you can use the 
key to sign a 
message digest. 
This is generally 
set to FALSE for 
public keys and 
for private keys 
that you have 
archived.

CKA_VERIFY TRUE TRUE   True indicates 
you can use the 
key to verify a 
signature. This 
is generally set 
to FALSE  for 
private keys.

CKA_PRIVATE TRUE TRUE TRUE True indicates 
that a user may 
not access the 
key until the 
user is authentic 
ated. For  clarity, 
users cannot 
access any keys 
on CloudHSM 
until they are  
 authenticated, 
even if this 
attribute is set 
to FALSE.

JCE provider 1025



AWS CloudHSM User Guide

Note

You get broader support for attributes in the PKCS#11 library. For more information, see
Supported PKCS #11 Attributes.

Setting attributes for a key

CloudHsmKeyAttributesMap is a Java Map-like object, which you can use to set attribute values 
for key objects. The methods for CloudHsmKeyAttributesMap function similar to the methods 
used for Java map manipulation.

To set custom values on attributes, you have two options:

• Use the methods listed in the following table

• Use builder patterns demonstrated later in this document

Attribute map objects support the following methods to set attributes:

Operation Return Value CloudHSMKeyAttribu 
tesMap  method

Get the value of a key 
attribute for an existing key

Object (containing the value) 
or null

get(keyAttribute)

Populate the value of one key 
attribute

The previous value associate 
d with key attribute, or null if 
there was no mapping for a 
key attribute

put(keyAttribute, value)

Populate values for multiple 
key attributes

N/A putAll(keyAttributesMap)

Remove a key-value pair from 
the attribute map

The previous value associate 
d with key attribute, or null if 
there was no mapping for a 
key  attribute

remove(keyAttribute)

JCE provider 1026

https://devdocs.io/openjdk~8/java/util/map


AWS CloudHSM User Guide

Note

Any attributes you do not explicitly specify are set to the defaults listed in the preceding 
table in the section called “Supported attributes”.

Builder pattern example

Developers will generally find it more convenient to utilize classes through the Builder pattern. As 
examples:

import com.amazonaws.cloudhsm.CloudHsmKeyAttributes;
import com.amazonaws.cloudhsm.CloudHsmKeyAttributesMap;
import com.amazonaws.cloudhsm.CloudHsmKeyPairAttributesMap;

CloudHsmKeyAttributesMap keyAttributesSessionDecryptionKey =  
   new CloudHsmKeyAttributesMap.Builder() 
      .put(CloudHsmKeyAttributes.CKA_LABEL, "ExtractableSessionKeyEncryptDecrypt") 
      .put(CloudHsmKeyAttributes.CKA_WRAP, false) 
      .put(CloudHsmKeyAttributes.CKA_UNWRAP, false) 
      .put(CloudHsmKeyAttributes.CKA_SIGN, false) 
      .put(CloudHsmKeyAttributes.CKA_VERIFY, false) 
      .build();

CloudHsmKeyAttributesMap keyAttributesTokenWrappingKey =  
   new CloudHsmKeyAttributesMap.Builder() 
      .put(CloudHsmKeyAttributes.CKA_LABEL, "TokenWrappingKey") 
      .put(CloudHsmKeyAttributes.CKA_TOKEN, true) 
      .put(CloudHsmKeyAttributes.CKA_ENCRYPT, false) 
      .put(CloudHsmKeyAttributes.CKA_DECRYPT, false) 
      .put(CloudHsmKeyAttributes.CKA_SIGN, false) 
      .put(CloudHsmKeyAttributes.CKA_VERIFY, false) 
      .build();    

Developers may also utilize pre-defined attribute sets as a convenient way to enforce best practices 
in key templates. As an example:

//best practice template for wrapping keys

CloudHsmKeyAttributesMap commonKeyAttrs = new CloudHsmKeyAttributesMap.Builder() 
    .put(CloudHsmKeyAttributes.CKA_EXTRACTABLE, false) 

JCE provider 1027



AWS CloudHSM User Guide

    .put(CloudHsmKeyAttributes.CKA_DECRYPT, false) 
    .build();

// initialize a new instance of CloudHsmKeyAttributesMap by copying commonKeyAttrs
// but with an appropriate label

CloudHsmKeyAttributesMap firstKeyAttrs = new CloudHsmKeyAttributesMap(commonKeyAttrs);
firstKeyAttrs.put(CloudHsmKeyAttributes.CKA_LABEL, "key label");

// alternatively, putAll() will overwrite existing values to enforce conformance

CloudHsmKeyAttributesMap secondKeyAttrs = new CloudHsmKeyAttributesMap();
secondKeyAttrs.put(CloudHsmKeyAttributes.CKA_DECRYPT, true);
secondKeyAttrs.put(CloudHsmKeyAttributes.CKA_ENCRYPT, true);
secondKeyAttrs.put(CloudHsmKeyAttributes.CKA_LABEL, “safe wrapping key”);
secondKeyAttrs.putAll(commonKeyAttrs); // will overwrite CKA_DECRYPT to be FALSE   

Setting attributes for a key pair

Use the Java class CloudHsmKeyPairAttributesMap to handle key attributes for a key pair.
CloudHsmKeyPairAttributesMap encapsulates two CloudHsmKeyAttributesMap objects; 
one for a public key and one for a private key.

To set individual attributes for the public key and private key separately, you can use the
put() method on corresponding CloudHsmKeyAttributes map object for that key. Use the
getPublic() method to retrieve the attribute map for the public key, and use getPrivate()
to retrieve the attribute map for the private key. Populate the value of multiple key attributes 
together for both public and private key pairs using the putAll() with a key pair attributes map 
as its argument.

Builder pattern example

Developers will generally find it more convenient to set key attributes through the Builder pattern. 
For example:

import com.amazonaws.cloudhsm.CloudHsmKeyAttributes;
import com.amazonaws.cloudhsm.CloudHsmKeyAttributesMap;
import com.amazonaws.cloudhsm.CloudHsmKeyPairAttributesMap;

//specify attributes up-front  
CloudHsmKeyAttributesMap keyAttributes =  
    new CloudHsmKeyAttributesMap.Builder() 

JCE provider 1028



AWS CloudHSM User Guide

        .put(CloudHsmKeyAttributes.CKA_SIGN, false) 
        .put(CloudHsmKeyAttributes.CKA_LABEL, "PublicCertSerial12345") 
        .build();

CloudHsmKeyPairAttributesMap keyPairAttributes = 
    new CloudHsmKeyPairAttributesMap.Builder() 
        .withPublic(keyAttributes) 
        .withPrivate( 
            new CloudHsmKeyAttributesMap.Builder() //or specify them inline  
                .put(CloudHsmKeyAttributes.CKA_LABEL, "PrivateCertSerial12345") 
                .put (CloudHSMKeyAttributes.CKA_WRAP, FALSE) 
                .build() 
        ) 
        .build();       

Note

For more information about this proprietary extension, see the Javadoc archive and the
sample on GitHub. To explore the Javadoc, download and expand the archive.

Putting it all together

To specify key attributes with your key operations, follow these steps:

1. Instantiate CloudHsmKeyAttributesMap for symmetric keys or
CloudHsmKeyPairAttributesMap for key pairs.

2. Define the attributes object from step 1 with the required key attributes and values.

3. Instantiate a Cavium*ParameterSpec class, corresponding to your specific key type, and 
pass into its constructor this configured attributes object.

4. Pass this Cavium*ParameterSpec object into a corresponding crypto class or method.

For reference, the following table contains the Cavium*ParameterSpec classes and methods 
which support custom key attributes.

Key Type Parameter Spec Class Example Constructors

Base Class CaviumKeyGenAlgori 
thmParameterSpec

CaviumKeyGenAlgori 
thmParameterSpec(C 

JCE provider 1029

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/CloudHsm_CustomKeyAttributes_Javadoc.zip
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/CustomKeyAttributesRunner.java


AWS CloudHSM User Guide

Key Type Parameter Spec Class Example Constructors

loudHsmKeyAttribut 
esMap  keyA 
ttributesMap)

DES CaviumDESKeyGenPar 
ameterSpec

CaviumDESKeyGenPar 
ameterSpec(int 
keySize, byte[] iv, 
CloudHsmKeyAttribu 
tesMap  key 
AttributesMap)

RSA CaviumRSAKeyGenPar 
ameterSpec

CaviumRSAKeyGenPar 
ameterSpec(int 
keysize, BigInteger 
publicExponent,  Clo 
udHsmKeyPairAttrib 
utesMap keyPairAt 
tributesMap)

Secret CaviumGenericSecre 
tKeyGenParameterSp 
ec

CaviumGenericSecre 
tKeyGenParameterSp 
ec(int size, 
CloudHsmKeyAttribu 
tesMap  key 
AttributesMap)

AES CaviumAESKeyGenPar 
ameterSpec

CaviumAESKeyGenPar 
ameterSpec(int 
keySize, byte[] iv, 
CloudHsmKeyAttribu 
tesMap  key 
AttributesMap)

JCE provider 1030



AWS CloudHSM User Guide

Key Type Parameter Spec Class Example Constructors

EC CaviumECGenParamet 
erSpec

CaviumECGenParamet 
erSpec(String 
stdName, CloudHsmK 
eyPairAttributesMa 
p  keyPairA 
ttributesMap)

Sample code: Generate and wrap a key

These brief code samples demonstrate the steps for two different operations: Key Generation and 
Key Wrapping:

// Set up the desired key attributes

KeyGenerator keyGen = KeyGenerator.getInstance("AES", "Cavium");
CaviumAESKeyGenParameterSpec keyAttributes = new CaviumAESKeyGenParameterSpec( 
    256, 
    new CloudHsmKeyAttributesMap.Builder() 
        .put(CloudHsmKeyAttributes.CKA_LABEL, "MyPersistentAESKey") 
        .put(CloudHsmKeyAttributes.CKA_EXTRACTABLE, true) 
        .put(CloudHsmKeyAttributes.CKA_TOKEN, true) 
        .build()
);

// Assume we already have a handle to the myWrappingKey
// Assume we already have the wrappedBytes to unwrap

// Unwrap a key using Custom Key Attributes

CaviumUnwrapParameterSpec unwrapSpec = new 
 CaviumUnwrapParameterSpec(myInitializationVector, keyAttributes);

Cipher unwrapCipher = Cipher.getInstance("AESWrap", "Cavium");
unwrapCipher.init(Cipher.UNWRAP_MODE, myWrappingKey, unwrapSpec);
Key unwrappedKey = unwrapCipher.unwrap(wrappedBytes, "AES", Cipher.SECRET_KEY);    

JCE provider 1031



AWS CloudHSM User Guide

Code samples for the AWS CloudHSM software library for Java for Client SDK 3

This topic provides resources and information on Java code samples for AWS CloudHSM Client SDK 
3.

Prerequisites

Before running the samples, you must set up your environment:

• Install and configure the Java Cryptographic Extension (JCE) provider and the AWS CloudHSM 
client package.

• Set up a valid HSM user name and password. Cryptographic user (CU) permissions are sufficient 
for these tasks. Your application uses these credentials to log in to the HSM in each example.

• Decide how to provide credentials to the JCE provider.

Code samples

The following code samples show you how to use the AWS CloudHSM JCE provider to perform 
basic tasks. More code samples are available on GitHub.

• Log in to an HSM

• Manage keys

• Generate an AES key

• Encrypt and decrypt with AES-GCM

• Encrypt and decrypt with AES-CTR

• Encrypt and decrypt with D3DES-ECBsee note 1

• Wrap and unwrap keys with AES-GCM

• Wrap and unwrap keys with AES

• Wrap and unwrap keys with RSA

• Use supported key attributes

• Enumerate keys in the key store

• Use the CloudHSM key store

• Sign messages in a multi-threaded sample

• Sign and Verify with EC Keys

JCE provider 1032

https://github.com/aws-samples/aws-cloudhsm-jce-examples/
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/SymmetricKeys.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/AESGCMEncryptDecryptRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/AESCTREncryptDecryptRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/DESedeECBEncryptDecryptRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/AESGCMWrappingRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/AESWrappingRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/RSAWrappingRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/CustomKeyAttributesRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyStoreExampleRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/CloudHSMKeyStoreExampleRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/SignThreadedRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/ECOperationsRunner.java


AWS CloudHSM User Guide

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

AWS CloudHSM KeyStore Java class for Client SDK 3

The AWS CloudHSM KeyStore class provides a special-purpose PKCS12 key store that allows 
access to AWS CloudHSM keys through applications such as keytool and jarsigner. This key store 
can store certificates along with your key data and correlate them to key data stored on AWS 
CloudHSM.

Note

Because certificates are public information, and to maximize storage capacity for 
cryptographic keys, AWS CloudHSM does not support storing certificates on HSMs.

The AWS CloudHSM KeyStore class implements the KeyStore Service Provider Interface (SPI) 
of the Java Cryptography Extension (JCE). For more information about using KeyStore, see Class 
KeyStore.

Choose the appropriate key store for AWS CloudHSM Client SDK 3

The AWS CloudHSM Java Cryptographic Extension (JCE) provider comes with a default pass-
through, read-only key store that passes all transactions to the HSM. This default key store is 
distinct from the special-purpose AWS CloudHSM KeyStore. In most situations, you will obtain 
better runtime performance and throughput by using the default. You should only use the AWS 
CloudHSM KeyStore for applications where you require support for certificates and certificate-
based operations in addition to offloading key operations to the HSM.

Although both key stores use the JCE provider for operations, they are independent entities and do 
not exchange information with each other.

Load the default key store for your Java application as follows:

KeyStore ks = KeyStore.getInstance("Cavium");

Load the special-purpose CloudHSM KeyStore as follows:

JCE provider 1033

https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html


AWS CloudHSM User Guide

KeyStore ks = KeyStore.getInstance("CloudHSM")

Initialize the AWS CloudHSM KeyStore for Client SDK 3

Log into the AWS CloudHSM KeyStore the same way that you log into the JCE provider. You can 
use either environment variables or the system property file, and you should log in before you start 
using the CloudHSM KeyStore. For an example of logging into an HSM using the JCE provider, see
Login to an HSM.

If desired, you can specify a password to encrypt the local PKCS12 file which holds key store data. 
When you create the AWS CloudHSM Keystore, you set the password and provide it when using the 
load, set and get methods.

Instantiate a new CloudHSM KeyStore object as follows:

ks.load(null, null);

Write keystore data to a file using the store method. From that point on, you can load the existing 
keystore using the load method with the source file and password as follows:

ks.load(inputStream, password);

Use the AWS CloudHSM KeyStore for AWS CloudHSM Client SDK 3

A CloudHSM KeyStore object is generally used through a third-party application such as jarsigner
or keytool. You can also access the object directly with code.

AWS CloudHSM KeyStore complies with the JCE Class KeyStore specification and provides the 
following functions.

• load

Loads the key store from the given input stream. If a password was set when saving the key 
store, this same password must be provided for the load to succeed. Set both parameters to null 
to initialize an new empty key store.

KeyStore ks = KeyStore.getInstance("CloudHSM");
ks.load(inputStream, password);

• aliases

JCE provider 1034

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/LoginRunner.java
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html


AWS CloudHSM User Guide

Returns an enumeration of the alias names of all entries in the given key store instance. Results 
include objects stored locally in the PKCS12 file and objects resident on the HSM.

Sample code:

KeyStore ks = KeyStore.getInstance("CloudHSM");
for(Enumeration<String> entry = ks.aliases(); entry.hasMoreElements();)  
 {     
  String label = entry.nextElement();     
  System.out.println(label); 
 }

• ContainsAlias

Returns true if the key store has access to at least one object with the specified alias. The key 
store checks objects stored locally in the PKCS12 file and objects resident on the HSM.

• DeleteEntry

Deletes a certificate entry from the local PKCS12 file. Deleting key data stored in an HSM 
is not supported using the AWS CloudHSM KeyStore. You can delete keys with CloudHSM’s
key_mgmt_util tool.

• GetCertificate

Returns the certificate associated with an alias if available. If the alias does not exist or 
references an object which is not a certificate, the function returns NULL.

KeyStore ks = KeyStore.getInstance("CloudHSM");
Certificate cert = ks.getCertificate(alias)

• GetCertificateAlias

Returns the name (alias) of the first key store entry whose data matches the given certificate.

KeyStore ks = KeyStore.getInstance("CloudHSM");
String alias = ks.getCertificateAlias(cert)

• GetCertificateChain

Returns the certificate chain associated with the given alias. If the alias does not exist or 
references an object which is not a certificate, the function returns NULL.

JCE provider 1035

https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util.html


AWS CloudHSM User Guide

• GetCreationDate

Returns the creation date of the entry identified by the given alias. If a creation date is not 
available, the function returns the date on which the certificate became valid.

• GetKey

GetKey is passed to the HSM and returns a key object corresponding to the given label. As
getKey directly queries the HSM, it can be used for any key on the HSM regardless of whether it 
was generated by the KeyStore.

Key key = ks.getKey(keyLabel, null);

• IsCertificateEntry

Checks if the entry with the given alias represents a certificate entry.

• IsKeyEntry

Checks if the entry with the given alias represents a key entry. The action searches both the 
PKCS12 file and the HSM for the alias.

• SetCertificateEntry

Assigns the given certificate to the given alias. If the given alias is already being used to identify 
a key or certificate, a KeyStoreException is thrown. You can use JCE code to get the key 
object and then use the KeyStore SetKeyEntry method to associate the certificate to the key.

• SetKeyEntry with byte[] key

This API is currently unsupported with Client SDK 3.

• SetKeyEntry with Key object

Assigns the given key to the given alias and stores it inside the HSM. If the Key object is not of 
type CaviumKey, the key is imported into the HSM as an extractable session key.

If the Key object is of type PrivateKey, it must be accompanied by a corresponding certificate 
chain.

If the alias already exists, the SetKeyEntry call throws a KeyStoreException and prevents 
the key from being overwritten. If the key must be overwritten, use KMU or JCE for that purpose.

• EngineSize
JCE provider 1036



AWS CloudHSM User Guide

Returns the number of entries in the keystore.

• Store

Stores the key store to the given output stream as a PKCS12 file and secures it with the given 
password. In addition, it persists all loaded keys (which are set using setKey calls).

Cryptography API: Next Generation (CNG) and key storage providers 
(KSP) for AWS CloudHSM

The AWS CloudHSM client for Windows includes CNG and KSP providers.

Key storage providers (KSPs) enable key storage and retrieval. For example, if you add the Microsoft 
Active Directory Certificate Services (AD CS) role to your Windows server and choose to create a 
new private key for your certificate authority (CA), you can choose the KSP that will manage key 
storage. When you configure the AD CS role, you can choose this KSP. For more information, see
Create Windows Server CA.

Cryptography API: Next Generation (CNG) is a cryptographic API specific to the Microsoft Windows 
operating system. CNG enables developers to use cryptographic techniques to secure Windows-
based applications. At a high level, the AWS CloudHSM implementation of CNG provides the 
following functionality:

• Cryptographic Primitives – enable you to perform fundamental cryptographic operations.

• Key Import and Export – enables you to import and export asymmetric keys.

• Data Protection API (CNG DPAPI) – enables you to easily encrypt and decrypt data.

• Key Storage and Retrieval -–enables you to securely store and isolate the private key of an 
asymmetric key pair.

Topics

• Verify the KSP and CNG Providers for AWS CloudHSM

• Prerequisites for using the AWS CloudHSM Windows Client

• Associate an AWS CloudHSM key with a certificate

• Code sample for CNG provider for AWS CloudHSM

KSP and CNG providers 1037



AWS CloudHSM User Guide

Verify the KSP and CNG Providers for AWS CloudHSM

The KSP and CNG providers are installed when you install the Windows AWS CloudHSM client. You 
can install the client by following the steps at Install the client (Windows).

Use the following sections to verify the installation of the providers.

Configure and run the Windows AWS CloudHSM client

To start the Windows CloudHSM client, you must first satisfy the Prerequisites. Then, update the 
configuration files that the providers use and start the client by completing the steps below. You 
need to do these steps the first time you use the KSP and CNG providers and after you add or 
remove HSMs in your cluster. This way, AWS CloudHSM is able to synchronize data and maintain 
consistency across all HSMs in the cluster.

Step 1: Stop the AWS CloudHSM client

Before you update the configuration files that the providers use, stop the AWS CloudHSM client. If 
the client is already stopped, running the stop command has no effect.

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe stop AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

Use Ctrl+C in the command window where you started the AWS CloudHSM client.

Step 2: Update the AWS CloudHSM configuration files

This step uses the -a parameter of the Configure tool to add the elastic network interface (ENI) IP 
address of one of the HSMs in the cluster to the configuration file.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\configure.exe" -a <HSM ENI IP>

To get the ENI IP address of an HSM in your cluster, navigate to the AWS CloudHSM console, 
choose clusters, and select the desired cluster. You can also use the DescribeClusters operation, 
the describe-clusters command, or the Get-HSM2Cluster PowerShell cmdlet. Type only one ENI IP 
address. It does not matter which ENI IP address you use.

KSP and CNG providers 1038

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-HSM2Cluster.html


AWS CloudHSM User Guide

Step 3: Start the AWS CloudHSM client

Next, start or restart the AWS CloudHSM client. When the AWS CloudHSM client starts, it uses the 
ENI IP address in its configuration file to query the cluster. Then it adds the ENI IP addresses of all 
HSMs in the cluster to the cluster information file.

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe start AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

C:\Program Files\Amazon\CloudHSM>start "cloudhsm_client" cloudhsm_client.exe C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

Checking the KSP and CNG providers

You can use either of the following commands to determine which providers are installed on your 
system. The commands list the registered KSP and CNG providers. The AWS CloudHSM client does 
not need to be running.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\ksp_config.exe" -enum

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cng_config.exe" -enum

To verify that the KSP and CNG providers are installed on your Windows Server EC2 instance, you 
should see the following entries in the list:

Cavium CNG Provider
Cavium Key Storage Provider

If the CNG provider is missing, run the following command.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\cng_config.exe" -register

If the KSP provider is missing, run the following command.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\ksp_config.exe" -register

KSP and CNG providers 1039



AWS CloudHSM User Guide

Prerequisites for using the AWS CloudHSM Windows Client

Before you can start the Windows AWS CloudHSM client and use the KSP and CNG providers, you 
must set the login credentials for the HSM on your system. You can set credentials through either 
Windows Credentials Manager or system environment variable. We recommend you use Windows 
Credential Manager for storing credentials. This option is available with AWS CloudHSM client 
version 2.0.4 and later. Using environment variable is easier to set up, but less secure than using 
Windows Credential Manager.

Windows Credential Manager

You can use either the set_cloudhsm_credentials utility or the Windows Credentials Manager 
interface.

• Using the set_cloudhsm_credentials utility:

The set_cloudhsm_credentials utility is included in your Windows installer. You can use this 
utility to conveniently pass HSM login credentials to Windows Credential Manager. If you want to 
compile this utility from source, you can use the Python code that is included in the installer.

1. Go to the C:\Program Files\Amazon\CloudHSM\tools\ folder.

2. Run the set_cloudhsm_credentials.exe file with the CU username and password 
parameters.

set_cloudhsm_credentials.exe --username <CU USER> --password <CU PASSWORD>

• Using the Credential Manager interface:

You can use the Credential Manager interface to manually manage your credentials.

1. To open Credential Manager, type credential manager in the search box on the taskbar 
and select Credential Manager.

2. Select Windows Credentials to manage Windows credentials.

3. Select Add a generic credential and fill out the details as follows:

• In Internet or Network Address, enter the target name as cloudhsm_client.

• In Username and Password enter the CU credentials.

• Click OK.

KSP and CNG providers 1040



AWS CloudHSM User Guide

System environment variables

You can set system environment variables that identify an HSM and a crypto user (CU) for your 
Windows application. You can use the setx command to set system environment variables, or 
set permanent system environment variables programmatically or in the Advanced tab of the 
Windows System Properties Control Panel.

Warning

When you set credentials through system environment variables, the password is available 
in plaintext on a user’s system. To overcome this problem, use Windows Credential 
Manager.

Set the following system environment variables:

n3fips_password=<CU USERNAME>:<CU PASSWORD>

Identifies a crypto user (CU) in the HSM and provides all required login information. Your 
application authenticates and runs as this CU. The application has the permissions of this CU 
and can view and manage only the keys that the CU owns and shares. To create a new CU, use
createUser. To find existing CUs, use listUsers.

For example:

setx /m n3fips_password test_user:password123

Associate an AWS CloudHSM key with a certificate

Before you can use AWS CloudHSM keys with third-party tools, such as Microsoft's SignTool, you 
must import the key's metadata into the local certificate store and associate the metadata with 
a certificate. To import the key's metadata, use the import_key.exe utility which is included in 
CloudHSM version 3.0 and higher. The following steps provide additional information, and sample 
output.

Step 1: Import your certificate

On Windows, you should be able to double-click the certificate to import it to your local certificate 
store.

KSP and CNG providers 1041

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://msdn.microsoft.com/en-us/library/system.environment.setenvironmentvariable(v=vs.110).aspx
https://docs.microsoft.com/en-us/windows/win32/seccrypto/signtool


AWS CloudHSM User Guide

However, if double-clicking doesn't work, use the Microsoft Certreq tool to import the certificate 
into the certificate manager. For example:

certreq -accept <certificatename>

If this action fails and you receive the error, Key not found, continue to Step 2. If the certificate 
appears in your key store, you've completed the task and no further action is necessary.

Step 2: Gather certificate-identifying information

If the previous step wasn't successful, you'll need to associate your private key with a certificate. 
However, before you can create the association, you must first find the certificate's Unique 
Container Name and Serial Number. Use a utility, such as certutil, to display the needed certificate 
information. The following sample output from certutil shows the container name and the serial 
number.

================ Certificate 1 ================ Serial Number: 
   72000000047f7f7a9d41851b4e000000000004Issuer: CN=Enterprise-CANotBefore: 10/8/2019 
 11:50 
   AM NotAfter: 11/8/2020 12:00 PMSubject: CN=www.example.com, OU=Certificate 
 Management, 
   O=Information Technology, L=Seattle, S=Washington, C=USNon-root CertificateCert 
   Hash(sha1): 7f d8 5c 00 27 bf 37 74 3d 71 5b 54 4e c0 94 20 45 75 bc 65No key 
 provider 
   information Simple container name: CertReq-39c04db0-6aa9-4310-93db-db0d9669f42c 
 Unique 
   container name: CertReq-39c04db0-6aa9-4310-93db-db0d9669f42c 

Step 3: Associate the AWS CloudHSM private key with the certificate

To associate the key with the certificate, first be sure to start the AWS CloudHSM client daemon. 
Then, use import_key.exe (which is included in CloudHSM version 3.0 and higher) to associate the 
private key with the certificate. When specifying the certificate, use its simple container name. 
The following example shows the command and the response. This action only copies the key's 
metadata; the key remains on the HSM.

$> import_key.exe –RSA CertReq-39c04db0-6aa9-4310-93db-db0d9669f42c

Successfully opened Microsoft Software Key Storage Provider : 0NCryptOpenKey failed : 
 80090016

KSP and CNG providers 1042

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn296456%28v%3dws.11%29


AWS CloudHSM User Guide

Step 4: Update the certificate store

Be certain the AWS CloudHSM client daemon is still running. Then, use the certutil verb, -
repairstore, to update the certificate serial number. The following sample shows the command and 
output. See the Microsoft documentation for information about the -repairstore verb.

C:\Program Files\Amazon\CloudHSM>certutil -f -csp "Cavium Key Storage Provider"-
repairstore my "72000000047f7f7a9d41851b4e000000000004"
my "Personal"
================ Certificate 1 ================
Serial Number: 72000000047f7f7a9d41851b4e000000000004
Issuer: CN=Enterprise-CA
NotBefore: 10/8/2019 11:50 AM
NotAfter: 11/8/2020 12:00 PM
Subject: CN=www.example.com, OU=Certificate Management, O=Information Technology, 
 L=Seattle, S=Washington, C=US
Non-root CertificateCert Hash(sha1): 7f d8 5c 00 27 bf 37 74 3d 71 5b 54 4e c0 94 20 45 
 75 bc 65        
SDK Version: 3.0  
Key Container = CertReq-39c04db0-6aa9-4310-93db-db0d9669f42c  
Provider = "Cavium Key Storage Provider"
Private key is NOT exportableEncryption test passedCertUtil: -repairstore command 
 completed successfully. 
   

After updating the certificate serial number you can use this certificate and the corresponding AWS 
CloudHSM private key with any third-party signing tool on Windows.

Code sample for CNG provider for AWS CloudHSM

** Example code only – Not for production use **
This sample code is for illustrative purposes only. Do not run this code in production.

The following sample shows how to enumerate the registered cryptographic providers on your 
system to find the CNG provider installed with CloudHSM client for Windows. The sample also 
shows how to create an asymmetric key pair and how to use the key pair to sign data.

KSP and CNG providers 1043

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/cc732443(v=ws.11)?redirectedfrom=MSDN#-repairstore


AWS CloudHSM User Guide

Important

Before you run this example, you must set up the HSM credentials as explained in the 
prerequisites. For details, see Prerequisites for using the AWS CloudHSM Windows Client.

// CloudHsmCngExampleConsole.cpp : Console application that demonstrates CNG 
 capabilities.
// This example contains the following functions.
//
//   VerifyProvider()          - Enumerate the registered providers and retrieve Cavium 
 KSP and CNG providers.
//   GenerateKeyPair()         - Create an RSA key pair.
//   SignData()                - Sign and verify data.
//

#include "stdafx.h"
#include <Windows.h>

#ifndef NT_SUCCESS
#define NT_SUCCESS(Status) ((NTSTATUS)(Status) >= 0)
#endif

#define CAVIUM_CNG_PROVIDER L"Cavium CNG Provider"
#define CAVIUM_KEYSTORE_PROVIDER L"Cavium Key Storage Provider"

// Enumerate the registered providers and determine whether the Cavium CNG provider
// and the Cavium KSP provider exist.
//
bool VerifyProvider()
{ 
  NTSTATUS status; 
  ULONG cbBuffer = 0; 
  PCRYPT_PROVIDERS pBuffer = NULL; 
  bool foundCng = false; 
  bool foundKeystore = false; 

  // Retrieve information about the registered providers. 
  //   cbBuffer - the size, in bytes, of the buffer pointed to by pBuffer. 
  //   pBuffer - pointer to a buffer that contains a CRYPT_PROVIDERS structure. 

KSP and CNG providers 1044



AWS CloudHSM User Guide

  status = BCryptEnumRegisteredProviders(&cbBuffer, &pBuffer); 

  // If registered providers exist, enumerate them and determine whether the 
  // Cavium CNG provider and Cavium KSP provider have been registered. 
  if (NT_SUCCESS(status)) 
  { 
    if (pBuffer != NULL) 
    { 
      for (ULONG i = 0; i < pBuffer->cProviders; i++) 
      { 
        // Determine whether the Cavium CNG provider exists. 
        if (wcscmp(CAVIUM_CNG_PROVIDER, pBuffer->rgpszProviders[i]) == 0) 
        { 
          printf("Found %S\n", CAVIUM_CNG_PROVIDER); 
          foundCng = true; 
        } 

        // Determine whether the Cavium KSP provider exists. 
        else if (wcscmp(CAVIUM_KEYSTORE_PROVIDER, pBuffer->rgpszProviders[i]) == 0) 
        { 
          printf("Found %S\n", CAVIUM_KEYSTORE_PROVIDER); 
          foundKeystore = true; 
        } 
      } 
    } 
  } 
  else 
  { 
    printf("BCryptEnumRegisteredProviders failed with error code 0x%08x\n", status); 
  } 

  // Free memory allocated for the CRYPT_PROVIDERS structure. 
  if (NULL != pBuffer) 
  { 
    BCryptFreeBuffer(pBuffer); 
  } 

  return foundCng == foundKeystore == true;
}

// Generate an asymmetric key pair. As used here, this example generates an RSA key 
 pair  
// and returns a handle. The handle is used in subsequent operations that use the key 
 pair.  

KSP and CNG providers 1045



AWS CloudHSM User Guide

// The key material is not available.
//
// The key pair is used in the SignData function.
//
NTSTATUS GenerateKeyPair(BCRYPT_ALG_HANDLE hAlgorithm, BCRYPT_KEY_HANDLE *hKey)
{ 
  NTSTATUS status; 

  // Generate the key pair. 
  status = BCryptGenerateKeyPair(hAlgorithm, hKey, 2048, 0); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptGenerateKeyPair failed with code 0x%08x\n", status); 
    return status; 
  } 

  // Finalize the key pair. The public/private key pair cannot be used until this  
  // function is called. 
  status = BCryptFinalizeKeyPair(*hKey, 0); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptFinalizeKeyPair failed with code 0x%08x\n", status); 
    return status; 
  } 

  return status;
}

// Sign and verify data using the RSA key pair. The data in this function is hardcoded
// and is for example purposes only.
//
NTSTATUS SignData(BCRYPT_KEY_HANDLE hKey)
{ 
  NTSTATUS status; 
  PBYTE sig; 
  ULONG sigLen; 
  ULONG resLen; 
  BCRYPT_PKCS1_PADDING_INFO pInfo; 

  // Hardcode the data to be signed (for demonstration purposes only). 
  PBYTE message = (PBYTE)"d83e7716bed8a20343d8dc6845e57447"; 
  ULONG messageLen = strlen((char*)message); 

  // Retrieve the size of the buffer needed for the signature. 

KSP and CNG providers 1046



AWS CloudHSM User Guide

  status = BCryptSignHash(hKey, NULL, message, messageLen, NULL, 0, &sigLen, 0); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptSignHash failed with code 0x%08x\n", status); 
    return status; 
  } 

  // Allocate a buffer for the signature. 
  sig = (PBYTE)HeapAlloc(GetProcessHeap(), 0, sigLen); 
  if (sig == NULL) 
  { 
    return -1; 
  } 

  // Use the SHA256 algorithm to create padding information. 
  pInfo.pszAlgId = BCRYPT_SHA256_ALGORITHM; 

  // Create a signature. 
  status = BCryptSignHash(hKey, &pInfo, message, messageLen, sig, sigLen, &resLen, 
 BCRYPT_PAD_PKCS1); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptSignHash failed with code 0x%08x\n", status); 
    return status; 
  } 

  // Verify the signature. 
  status = BCryptVerifySignature(hKey, &pInfo, message, messageLen, sig, sigLen, 
 BCRYPT_PAD_PKCS1); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptVerifySignature failed with code 0x%08x\n", status); 
    return status; 
  } 

  // Free the memory allocated for the signature. 
  if (sig != NULL) 
  { 
    HeapFree(GetProcessHeap(), 0, sig); 
    sig = NULL; 
  } 

  return 0;
}

KSP and CNG providers 1047



AWS CloudHSM User Guide

// Main function.
//
int main()
{ 
  NTSTATUS status; 
  BCRYPT_ALG_HANDLE hRsaAlg; 
  BCRYPT_KEY_HANDLE hKey = NULL; 

  // Enumerate the registered providers. 
  printf("Searching for Cavium providers...\n"); 
  if (VerifyProvider() == false) { 
    printf("Could not find the CNG and Keystore providers\n"); 
    return 1; 
  } 

  // Get the RSA algorithm provider from the Cavium CNG provider. 
  printf("Opening RSA algorithm\n"); 
  status = BCryptOpenAlgorithmProvider(&hRsaAlg, BCRYPT_RSA_ALGORITHM, 
 CAVIUM_CNG_PROVIDER, 0); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptOpenAlgorithmProvider RSA failed with code 0x%08x\n", status); 
    return status; 
  } 

  // Generate an asymmetric key pair using the RSA algorithm. 
  printf("Generating RSA Keypair\n"); 
  GenerateKeyPair(hRsaAlg, &hKey); 
  if (hKey == NULL) 
  { 
    printf("Invalid key handle returned\n"); 
    return 0; 
  } 
  printf("Done!\n"); 

  // Sign and verify [hardcoded] data using the RSA key pair. 
  printf("Sign/Verify data with key\n"); 
  SignData(hKey); 
  printf("Done!\n"); 

  // Remove the key handle from memory. 
  status = BCryptDestroyKey(hKey); 
  if (!NT_SUCCESS(status)) 

KSP and CNG providers 1048



AWS CloudHSM User Guide

  { 
    printf("BCryptDestroyKey failed with code 0x%08x\n", status); 
    return status; 
  } 

  // Close the RSA algorithm provider. 
  status = BCryptCloseAlgorithmProvider(hRsaAlg, NULL); 
  if (!NT_SUCCESS(status)) 
  { 
    printf("BCryptCloseAlgorithmProvider RSA failed with code 0x%08x\n", status); 
    return status; 
  } 

  return 0;
}

KSP and CNG providers 1049



AWS CloudHSM User Guide

Integrating third-party applications with AWS CloudHSM

Some of the use cases for AWS CloudHSM involve integrating third-party software applications 
with the HSM in your AWS CloudHSM cluster. By integrating third-party software with AWS 
CloudHSM, you can accomplish a variety of security-related goals. The following topics describe 
how to accomplish some of these goals.

Topics

• Improve your web server security with SSL/TLS offload in AWS CloudHSM

• Configure Windows Server as a certificate authority (CA) with AWS CloudHSM

• Oracle database transparent data encryption (TDE) with AWS CloudHSM

• Use Microsoft SignTool with AWS CloudHSM to sign files

• Java Keytool and Jarsigner integration with AWS CloudHSM

• Use Microsoft Manifest Generation and Editing Tool (Mage.exe) with AWS CloudHSM to sign files

• Other third-party vendor integrations with AWS CloudHSM

Improve your web server security with SSL/TLS offload in AWS 
CloudHSM

Web servers and their clients (web browsers) can use Secure Sockets Layer (SSL) or Transport Layer 
Security (TLS) protocols to confirm the identity of the web server and establish a secure connection 
that sends and receives webpages or other data over the internet. This is commonly known as 
HTTPS. The web server uses a public–private key pair and an SSL/TLS public key certificate to 
establish an HTTPS session with each client. This process involves a lot of computation for web 
servers, but you can offload some of this to your AWS CloudHSM cluster, which is referred to as SSL 
acceleration. Offloading reduces the computational burden on your web servers and provides extra 
security by storing servers’ private keys in HSMs.

The following topics provide an overview of how SSL/TLS offload with AWS CloudHSM works and 
tutorials for setting up SSL/TLS offload with AWS CloudHSM on the following platforms.

For Linux, use OpenSSL Dynamic Engine on the NGINX or Apache HTTP Server web server software

For Windows, use the Internet Information Services (IIS) for Windows Server web server software

Topics

SSL/TLS offload 1050

https://nginx.org/en/
https://httpd.apache.org/
https://www.iis.net/


AWS CloudHSM User Guide

• How SSL/TLS offload with AWS CloudHSM works

• AWS CloudHSM SSL/TLS offload on Linux using NGINX or Apache with OpenSSL

• AWS CloudHSM SSL/TLS offload on Linux using Tomcat with JSSE

• AWS CloudHSM SSL/TLS offload on Windows using IIS with KSP

• Add a load balancer with Elastic Load Balancing for AWS CloudHSM(optional)

How SSL/TLS offload with AWS CloudHSM works

To establish an HTTPS connection, your web server performs a handshake process with clients. 
As part of this process, the server offloads some of the cryptographic processing to the HSMs in 
the AWS CloudHSM cluster, as shown in the following figure. Each step of the process is explained 
below the figure.

Note

The following image and process assumes that RSA is used for server verification and key 
exchange. The process is slightly different when Diffie–Hellman is used instead of RSA.

1. The client sends a hello message to the server.

2. The server responds with a hello message and sends the server's certificate.

3. The client performs the following actions:

How it works 1051



AWS CloudHSM User Guide

a. Verifies that the SSL/TLS server certificate is signed by a root certificate that the client trusts.

b. Extracts the public key from the server certificate.

c. Generates a pre-master secret and encrypts it with the server's public key.

d. Sends the encrypted pre-master secret to the server.

4. To decrypt the client's pre-master secret, the server sends it to the HSM. The HSM uses the 
private key in the HSM to decrypt the pre-master secret and then it sends the pre-master secret 
to the server. Independently, the client and server each use the pre-master secret and some 
information from the hello messages to calculate a master secret.

5. The handshake process ends. For the rest of the session, all messages sent between the client 
and the server are encrypted with derivatives of the master secret.

To learn how to configure SSL/TLS offload with AWS CloudHSM, see one of the following topics:

• AWS CloudHSM SSL/TLS offload on Linux using NGINX or Apache with OpenSSL

• AWS CloudHSM SSL/TLS offload on Linux using Tomcat with JSSE

• AWS CloudHSM SSL/TLS offload on Windows using IIS with KSP

AWS CloudHSM SSL/TLS offload on Linux using NGINX or Apache with 
OpenSSL

This topic provides step-by-step instructions for setting up SSL/TLS offload with AWS CloudHSM 
on a Linux web server.

Topics

• Overview

• Step 1: Set up the prerequisites

• Step 2: Generate the private key and SSL/TLS certificate

• Step 3: Configure the web server

• Step 4: Enable HTTPS traffic and verify the certificate

Overview

On Linux, the NGINX and Apache HTTP Server web server software integrate with OpenSSL to 
support HTTPS. The AWS CloudHSM dynamic engine for OpenSSL provides an interface that 

Offload on Linux with OpenSSL 1052

https://nginx.org/en/
https://httpd.apache.org/
https://www.openssl.org/


AWS CloudHSM User Guide

enables the web server software to use the HSMs in your cluster for cryptographic offloading 
and key storage. The OpenSSL engine is the bridge that connects the web server to your AWS 
CloudHSM cluster.

To complete this tutorial, you must first choose whether to use the NGINX or Apache web server 
software on Linux. Then the tutorial shows you how to do the following:

• Install the web server software on an Amazon EC2 instance.

• Configure the web server software to support HTTPS with a private key stored in your AWS 
CloudHSM cluster.

• (Optional) Use Amazon EC2 to create a second web server instance and Elastic Load Balancing 
to create a load balancer. Using a load balancer can increase performance by distributing the 
load across multiple servers. It can also provide redundancy and higher availability if one or more 
servers fail.

When you're ready to get started, go to Step 1: Set up the prerequisites.

Step 1: Set up the prerequisites

Different platforms require different prerequisites. Use the prerequisites section below that 
matches your platform.

Prerequisites for Client SDK 5

To set up web server SSL/TLS offload with Client SDK 5, you need the following:

• An active AWS CloudHSM cluster with at least two hardware security modules (HSM)

Note

You can use a single HSM cluster, but you must first disable client key durability. For more 
information, see Manage Client Key Durability Settings and Client SDK 5 Configure Tool.

• An Amazon EC2 instance running a Linux operating system with the following software installed:

• A web server (either NGINX or Apache)

• The OpenSSL Dynamic Engine for Client SDK 5

• A crypto user (CU) to own and manage the web server's private key on the HSM.

Offload on Linux with OpenSSL 1053



AWS CloudHSM User Guide

To set up a Linux web server instance and create a CU on the HSM

1. Install and configure the OpenSSL Dynamic Engine for AWS CloudHSM. For more information 
about installing OpenSSL Dynamic Engine, see OpenSSL Dynamic Engine for Client SDK 5.

2. On an EC2 Linux instance that has access to your cluster, install either NGINX or Apache web 
server:

Amazon Linux

• NGINX

$ sudo yum install nginx

• Apache

$ sudo yum install httpd24 mod24_ssl

Amazon Linux 2

• For information on how to download the latest version of NGINX on Amazon Linux 2, see 
the NGINX website.

The latest version of NGINX available for Amazon Linux 2 uses a version of OpenSSL that 
is newer than the system version of OpenSSL. After installing NGINX, you need to create 
a symbolic link from the AWS CloudHSM OpenSSL Dynamic Engine library to the location 
that this version of OpenSSL expects

$ sudo ln -sf /opt/cloudhsm/lib/libcloudhsm_openssl_engine.so /usr/lib64/
engines-1.1/cloudhsm.so

• Apache

$ sudo yum install httpd mod_ssl

Amazon Linux 2023

• NGINX

Offload on Linux with OpenSSL 1054

https://nginx.org/en/linux_packages.html


AWS CloudHSM User Guide

$ sudo yum install nginx

• Apache

$ sudo yum install httpd mod_ssl

CentOS 7

• For information on how to download the latest version of NGINX on CentOS 7, see the
NGINX website.

The latest version of NGINX available for CentOS 7 uses a version of OpenSSL that is 
newer than the system version of OpenSSL. After installing NGINX, you need to create a 
symbolic link from the AWS CloudHSM OpenSSL Dynamic Engine library to the location 
that this version of OpenSSL expects

$ sudo ln -sf /opt/cloudhsm/lib/libcloudhsm_openssl_engine.so /usr/lib64/
engines-1.1/cloudhsm.so

• Apache

$ sudo yum install httpd mod_ssl

Red Hat 7

• For information on how to download the latest version of NGINX on Red Hat 7, see the
NGINX website.

The latest version of NGINX available for Red Hat 7 uses a version of OpenSSL that is 
newer than the system version of OpenSSL. After installing NGINX, you need to create a 
symbolic link from the AWS CloudHSM OpenSSL Dynamic Engine library to the location 
that this version of OpenSSL expects

$ sudo ln -sf /opt/cloudhsm/lib/libcloudhsm_openssl_engine.so /usr/lib64/
engines-1.1/cloudhsm.so

• Apache

Offload on Linux with OpenSSL 1055

https://nginx.org/en/linux_packages.html
https://nginx.org/en/linux_packages.html


AWS CloudHSM User Guide

$ sudo yum install httpd mod_ssl

CentOS 8

• NGINX

$ sudo yum install nginx

• Apache

$ sudo yum install httpd mod_ssl

Red Hat 8

• NGINX

$ sudo yum install nginx

• Apache

$ sudo yum install httpd mod_ssl

Ubuntu 18.04

• NGINX

$ sudo apt install nginx

• Apache

$ sudo apt install apache2

Ubuntu 20.04

• NGINX

Offload on Linux with OpenSSL 1056



AWS CloudHSM User Guide

$ sudo apt install nginx

• Apache

$ sudo apt install apache2

Ubuntu 22.04

• NGINX

$ sudo apt install nginx

• Apache

$ sudo apt install apache2

Ubuntu 24.04

• NGINX

$ sudo apt install nginx

• Apache

$ sudo apt install apache2

3. Use CloudHSM CLI to create a crypto user. For more information about managing HSM users, 
see Managing HSM users with CloudHSM CLI.

Tip

Keep track of the CU user name and password. You will need them later when you 
generate or import the HTTPS private key and certificate for your web server.

After you complete these steps, go to Step 2: Generate the private key and SSL/TLS certificate.

Offload on Linux with OpenSSL 1057



AWS CloudHSM User Guide

Notes

• To use Security-Enhanced Linux (SELinux) and web servers, you must allow outbound TCP 
connections on port 2223, which is the port Client SDK 5 uses to communicate with the HSM.

• To create and activate a cluster and give an EC2 instance access to the cluster, complete the steps 
in Getting Started with AWS CloudHSM. The getting started offers step-by-step instruction for 
creating an active cluster with one HSM and an Amazon EC2 client instance. You can use this 
client instance as your web server.

• To avoid disabling client key durability, add more than one HSM to your cluster. For more 
information, see Adding an HSM to an AWS CloudHSM cluster.

• To connect to your client instance, you can use SSH or PuTTY. For more information, see
Connecting to Your Linux Instance Using SSH or Connecting to Your Linux Instance from 
Windows Using PuTTY in the Amazon EC2 documentation.

Step 2: Generate the private key and SSL/TLS certificate

To enable HTTPS, your web server application (NGINX or Apache) needs a private key and a 
corresponding SSL/TLS certificate. To use web server SSL/TLS offload with AWS CloudHSM, you 
must store the private key in an HSM in your AWS CloudHSM cluster. You will first generate a 
private key and use the key to create a certificate signing request (CSR). You then export a fake 
PEM private key from the HSM, which is a private key file in PEM format which contains a reference 
to the private key stored on the HSM (it's not the actual private key). Your web server uses the fake 
PEM private key file to identify the private key on the HSM during SSL/TLS offload.

Generate a private key and certificate

Generate a private key

This section shows you how to generate a keypair using the CloudHSM CLI. Once you have a key 
pair generated inside the HSM, you can export it as a fake PEM file and generate the corresponding 
certificate.

Install and configure the CloudHSM CLI

1. Install and Configure the CloudHSM CLI.

2. Use the following command to start the CloudHSM CLI.

$ /opt/cloudhsm/bin/cloudhsm-cli interactive

Offload on Linux with OpenSSL 1058

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html


AWS CloudHSM User Guide

3. Run the following command to log in to the HSM. Replace <user name> with the user name 
of your crypto-user

Command: login --username <user name> --role crypto-user

Generate a Private Key

Depending on your use case, you can either generate an RSA or an EC key pair. Do one of the 
following:

• To generate an RSA private key on an HSM

Use the key generate-asymmetric-pair rsa command to generate an RSA key pair. This 
example generates an RSA key pair with a modulus of 2048, a public exponent of 65537, public 
key label of tls_rsa_pub, and private key label of tls_rsa_private.

aws-cloudhsm > key generate-asymmetric-pair rsa \
--public-exponent 65537 \
--modulus-size-bits 2048 \
--public-label tls_rsa_pub \
--private-label tls_rsa_private
--private-attributes sign=true
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x0000000000280cc8", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 
        "key-type": "rsa", 
        "label": "tls_rsa_pub", 
        "id": "", 

Offload on Linux with OpenSSL 1059



AWS CloudHSM User Guide

        "check-value": "0x01fe6e", 
        "class": "public-key", 
        "encrypt": true, 
        "decrypt": false, 
        "token": true, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 512, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xb1d27e857a876f4e9fd5de748a763c539b359f937eb4b4260e30d1435485a732c878cdad9c72538e2215351b1d41358c9bf80b599c
73a80fdb457aa7b20cd61e486c326e2cfd5e124a7f6a996437437812b542e3caf85928aa866f0298580f7967ee6aa01440297d7308fdd9b76b70d1b67f12634d
f6e6296d6c116d5744c6d60d14d3bf3cb978fe6b75ac67b7089bafd50d8687213b31abc7dc1bad422780d29c851d5102b56f932551eaf52a9591fd8c43d81ecc
133022653225bd129f8491101725e9ea33e1ded83fb57af35f847e532eb30cd7e726f23910d2671c6364092e834697ec3cef72cc23615a1ba7c5e100156ae0ac
ac3160f0ca9725d38318b7", 
        "modulus-size-bits": 2048 
      } 
    }, 
    "private_key": { 
      "key-reference": "0x0000000000280cc7", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "cluster-coverage": "full" 
      }, 
      "attributes": { 

Offload on Linux with OpenSSL 1060



AWS CloudHSM User Guide

        "key-type": "rsa", 
        "label": "tls_rsa_private", 
        "id": "", 
        "check-value": "0x01fe6e", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": true, 
        "token": true, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 1217, 
        "public-exponent": "0x010001", 
        "modulus": 
 "0xb1d27e857a876f4e9fd5de748a763c539b359f937eb4b4260e30d1435485a732c878cdad9c72538e2215351b1d41358c9bf80b599c73a80fdb457aa7b20cd61e486c326e2cfd5e124a7f6a996437437812b542e3caf85928aa866f0298580f7967ee6aa01440297d7308fdd9b76b70d1b67f12634df6e6296d6c116d5744c6d60d14d3bf3cb978fe6b75ac67b7089bafd50d8687213b31abc7dc1bad422780d29c851d5102b56f932551eaf52a9591fd8c43d81ecc133022653225bd129f8491101725e9ea33e1ded83fb57af35f847e532eb30cd7e726f23910d2671c6364092e834697ec3cef72cc23615a1ba7c5e100156ae0acac3160f0ca9725d38318b7", 
        "modulus-size-bits": 2048 
      } 
    } 
  }
}

• To generate an EC private key on an HSM

Use the key generate-asymmetric-pair ec command to generate an EC key pair. 
This example generates an EC key pair with the prime256v1 curve (corresponding to the
NID_X9_62_prime256v1 curve), a public key label of tls_ec_pub, and a private key label of
tls_ec_private.

aws-cloudhsm > key generate-asymmetric-pair ec \ 
    --curve prime256v1 \ 
    --public-label tls_ec_pub \ 

Offload on Linux with OpenSSL 1061



AWS CloudHSM User Guide

    --private-label tls_ec_private 
    --private-attributes sign=true
{ 
  "error_code": 0, 
  "data": { 
    "public_key": { 
      "key-reference": "0x000000000012000b", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "cluster-coverage": "session" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "tls_ec_pub", 
        "id": "", 
        "check-value": "0xd7c1a7", 
        "class": "public-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": false, 
        "always-sensitive": false, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": false, 
        "sign": false, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 57, 
        "ec-point": 
 "0x047096513df542250a6b228fd9cb67fd0c903abc93488467681974d6f371083fce1d79da8ad1e9ede745fb9f38ac8622a1b3ebe9270556000c", 

Offload on Linux with OpenSSL 1062



AWS CloudHSM User Guide

        "curve": "secp224r1" 
      } 
    },
"private_key": { 
      "key-reference": "0x000000000012000c", 
      "key-info": { 
        "key-owners": [ 
          { 
            "username": "cu1", 
            "key-coverage": "full" 
          } 
        ], 
        "shared-users": [], 
        "cluster-coverage": "session" 
      }, 
      "attributes": { 
        "key-type": "ec", 
        "label": "tls_ec_private", 
        "id": "", 
        "check-value": "0xd7c1a7", 
        "class": "private-key", 
        "encrypt": false, 
        "decrypt": false, 
        "token": false, 
        "always-sensitive": true, 
        "derive": false, 
        "destroyable": true, 
        "extractable": true, 
        "local": true, 
        "modifiable": true, 
        "never-extractable": false, 
        "private": true, 
        "sensitive": true, 
        "sign": true, 
        "trusted": false, 
        "unwrap": false, 
        "verify": false, 
        "wrap": false, 
        "wrap-with-trusted": false, 
        "key-length-bytes": 122, 
        "ec-point": 
 "0x047096513df542250a6b228fd9cb67fd0c903abc93488467681974d6f371083fce1d79da8ad1e9ede745fb9f38ac8622a1b3ebe9270556000c", 
        "curve": "secp224r1" 
      } 

Offload on Linux with OpenSSL 1063



AWS CloudHSM User Guide

    } 
  }
}

Export a fake PEM private key file

Once you have a private key on the HSM, you must export a fake PEM private key file. This file does 
not contain the actual key data, but it allows the OpenSSL Dynamic Engine to identify the private 
key on the HSM. You can then you use the private key to create a certificate signing request (CSR) 
and sign the CSR to create the certificate.

Use the key generate-file command to export the private key in fake PEM format and save it 
to a file. Replace the following values with your own.

• <private_key_label> – Label of the private key you generated in the previous step.

• <web_server_fake_pem.key> – Name of the file that your fake PEM key will be written to.

aws-cloudhsm > key generate-file --encoding reference-pem --
path <web_server_fake_pem.key> --filter attr.label=<private_key_label>
{ 
  "error_code": 0, 
  "data": { 
    "message": "Successfully generated key file" 
  }
}

Exit the CloudHSM CLI

Run the following command to stop the CloudHSM CLI.

aws-cloudhsm > quit

You should now have a new file on your system, located at the path specified by
<web_server_fake_pem.key> in the preceding command. This file is the fake PEM private key 
file.

Offload on Linux with OpenSSL 1064



AWS CloudHSM User Guide

Generate a self-signed certificate

Once you have generated a fake PEM private key, you can use this file to generate a certificate 
signing request (CSR) and certificate.

In a production environment, you typically use a certificate authority (CA) to create a certificate 
from a CSR. A CA is not necessary for a test environment. If you do use a CA, send the CSR file to 
them and use signed SSL/TLS certificate that they provide you in your web server for HTTPS.

As an alternative to using a CA, you can use the AWS CloudHSM OpenSSL Dynamic Engine to 
create a self-signed certificate. Self-signed certificates are not trusted by browsers and should not 
be used in production environments. They can be used in test environments.

Warning

Self-signed certificates should be used in a test environment only. For a production 
environment, use a more secure method such as a certificate authority to create a 
certificate.

Install and configure the OpenSSL Dynamic Engine

1. Connect to your client instance.

2. the section called “Install”

Generate a certificate

1. Obtain a copy of your fake PEM file generated in an earlier step.

2. Create a CSR

Run the following command to use the AWS CloudHSM OpenSSL Dynamic Engine to create a 
certificate signing request (CSR). Replace <web_server_fake_pem.key> with the name of 
the file that contains your fake PEM private key. Replace <web_server.csr> with the name 
of the file that contains your CSR.

The req command is interactive. Respond to each field. The field information is copied into 
your SSL/TLS certificate.

Offload on Linux with OpenSSL 1065



AWS CloudHSM User Guide

$ openssl req -engine cloudhsm -new -key <web_server_fake_pem.key> -
out <web_server.csr>

3. Create a self-signed certificate

Run the following command to use the AWS CloudHSM OpenSSL Dynamic Engine to sign 
your CSR with your private key on your HSM. This creates a self-signed certificate. Replace the 
following values in the command with your own.

• <web_server.csr> – Name of the file that contains the CSR.

• <web_server_fake_pem.key> – Name of the file that contains the fake PEM private key.

• <web_server.crt> – Name of the file that will contain your web server certificate.

$ openssl x509 -engine cloudhsm -req -days 365 -in <web_server.csr> -
signkey <web_server_fake_pem.key> -out <web_server.crt>

After you complete these steps, go to Step 3: Configure the web server.

Step 3: Configure the web server

Update your web server software's configuration to use the HTTPS certificate and corresponding 
fake PEM private key that you created in the previous step. Remember to backup your existing 
certificates and keys before you start. This will finish setting up your Linux web server software for 
SSL/TLS offload with AWS CloudHSM.

Complete the steps from one of the following sections.

Topics

• Configure NGINX web server

• Configure Apache web server

Configure NGINX web server

Use this section to configure NGINX on supported platforms.

Offload on Linux with OpenSSL 1066



AWS CloudHSM User Guide

To update the web server configuration for NGINX

1. Connect to your client instance.

2. Run the following command to create the required directories for the web server certificate 
and the fake PEM private key.

$ sudo mkdir -p /etc/pki/nginx/private

3. Run the following command to copy your web server certificate to the required location. 
Replace <web_server.crt> with the name of your web server certificate.

$ sudo cp <web_server.crt> /etc/pki/nginx/server.crt

4. Run the following command to copy your fake PEM private key to the required location. 
Replace <web_server_fake_pem.key> with the name of the file that contains your fake 
PEM private key.

$ sudo cp <web_server_example_pem.key> /etc/pki/nginx/private/server.key

5. Run the following command to change the file ownership so that the user named nginx can 
read them.

$ sudo chown nginx /etc/pki/nginx/server.crt /etc/pki/nginx/private/server.key

6. Run the following command to back up the /etc/nginx/nginx.conf file.

$ sudo cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.backup

7. Update the NGINX configuration.

Note

Each cluster can support a maximum of 1000 NGINX worker processes across all NGINX 
web servers.

Amazon Linux

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

Offload on Linux with OpenSSL 1067



AWS CloudHSM User Guide

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.
server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 
    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2; 
    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 
    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 

Offload on Linux with OpenSSL 1068



AWS CloudHSM User Guide

            

Amazon Linux 2

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.
server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 
    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2; 
    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 

Offload on Linux with OpenSSL 1069



AWS CloudHSM User Guide

    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 
             

Amazon Linux 2023

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.
server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 
    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2; 
    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

Offload on Linux with OpenSSL 1070



AWS CloudHSM User Guide

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 
    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 
             

CentOS 7

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.     
server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 
    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2; 

Offload on Linux with OpenSSL 1071



AWS CloudHSM User Guide

    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 
    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 
             

CentOS 8

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.
server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 

Offload on Linux with OpenSSL 1072



AWS CloudHSM User Guide

    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2 TLSv1.3; 
    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 
    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 
             

Red Hat 7

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.

Offload on Linux with OpenSSL 1073



AWS CloudHSM User Guide

server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 
    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2; 
    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 
    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 
             

Red Hat 8

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

Offload on Linux with OpenSSL 1074



AWS CloudHSM User Guide

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server.
server { 
    listen       443 ssl http2 default_server; 
    listen       [::]:443 ssl http2 default_server; 
    server_name  _; 
    root         /usr/share/nginx/html; 

    ssl_certificate "/etc/pki/nginx/server.crt"; 
    ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
    # It is *strongly* recommended to generate unique DH parameters 
    # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 2048 
    #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
    ssl_session_cache shared:SSL:1m; 
    ssl_session_timeout  10m; 
    ssl_protocols TLSv1.2 TLSv1.3; 
    ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
    ssl_prefer_server_ciphers on; 

    # Load configuration files for the default server block. 
    include /etc/nginx/default.d/*.conf; 

    location / { 
    } 

    error_page 404 /404.html; 
    location = /40x.html { 
    } 

    error_page 500 502 503 504 /50x.html; 
    location = /50x.html { 
    }
} 

Offload on Linux with OpenSSL 1075



AWS CloudHSM User Guide

            

Ubuntu 16.04 LTS

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm; 
    env n3fips_password;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server. 
    server { 
        listen       443 ssl http2 default_server; 
        listen       [::]:443 ssl http2 default_server; 
        server_name  _; 
        root         /usr/share/nginx/html; 
     
        ssl_certificate "/etc/pki/nginx/server.crt"; 
        ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
        # It is *strongly* recommended to generate unique DH parameters 
        # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 
 2048 
        #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
        ssl_session_cache shared:SSL:1m; 
        ssl_session_timeout  10m; 
        ssl_protocols TLSv1.2; 
        ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-
GCM-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
        ssl_prefer_server_ciphers on; 
     
        # Load configuration files for the default server block. 
        include /etc/nginx/default.d/*.conf; 
     
        location / { 
        } 
     

Offload on Linux with OpenSSL 1076



AWS CloudHSM User Guide

        error_page 404 /404.html; 
        location = /40x.html { 
        } 
     
        error_page 500 502 503 504 /50x.html; 
        location = /50x.html { 
        } 
    } 
                 

Ubuntu 18.04 LTS

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm; 
    env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server. 
    server { 
        listen       443 ssl http2 default_server; 
        listen       [::]:443 ssl http2 default_server; 
        server_name  _; 
        root         /usr/share/nginx/html; 
     
        ssl_certificate "/etc/pki/nginx/server.crt"; 
        ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
        # It is *strongly* recommended to generate unique DH parameters 
        # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 
 2048 
        #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
        ssl_session_cache shared:SSL:1m; 
        ssl_session_timeout  10m; 
        ssl_protocols TLSv1.2 TLSv1.3; 
        ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-
GCM-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 

Offload on Linux with OpenSSL 1077



AWS CloudHSM User Guide

        ssl_prefer_server_ciphers on; 
     
        # Load configuration files for the default server block. 
        include /etc/nginx/default.d/*.conf; 
     
        location / { 
        } 
     
        error_page 404 /404.html; 
        location = /40x.html { 
        } 
     
        error_page 500 502 503 504 /50x.html; 
        location = /50x.html { 
        } 
    } 
                 

Ubuntu 20.04 LTS

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm; 
    env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server. 
    server { 
        listen       443 ssl http2 default_server; 
        listen       [::]:443 ssl http2 default_server; 
        server_name  _; 
        root         /usr/share/nginx/html; 
     
        ssl_certificate "/etc/pki/nginx/server.crt"; 
        ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
        # It is *strongly* recommended to generate unique DH parameters 
        # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 
 2048 
        #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
        ssl_session_cache shared:SSL:1m; 

Offload on Linux with OpenSSL 1078



AWS CloudHSM User Guide

        ssl_session_timeout  10m; 
        ssl_protocols TLSv1.2 TLSv1.3; 
        ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-
GCM-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
        ssl_prefer_server_ciphers on; 
     
        # Load configuration files for the default server block. 
        include /etc/nginx/default.d/*.conf; 
     
        location / { 
        } 
     
        error_page 404 /404.html; 
        location = /40x.html { 
        } 
     
        error_page 500 502 503 504 /50x.html; 
        location = /50x.html { 
        } 
    } 
                 

Ubuntu 22.04 LTS

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm; 
  env CLOUDHSM_PIN;

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server. 
    server { 
        listen       443 ssl http2 default_server; 
        listen       [::]:443 ssl http2 default_server; 
        server_name  _; 
        root         /usr/share/nginx/html; 

Offload on Linux with OpenSSL 1079



AWS CloudHSM User Guide

    
        ssl_certificate "/etc/pki/nginx/server.crt"; 
        ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
        # It is *strongly* recommended to generate unique DH parameters 
        # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 
 2048 
        #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
        ssl_session_cache shared:SSL:1m; 
        ssl_session_timeout  10m; 
        ssl_protocols TLSv1.2 TLSv1.3; 
        ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-
GCM-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
        ssl_prefer_server_ciphers on; 
     
        # Load configuration files for the default server block. 
        include /etc/nginx/default.d/*.conf; 
     
        location / { 
        } 
     
        error_page 404 /404.html; 
        location = /40x.html { 
        } 
     
        error_page 500 502 503 504 /50x.html; 
        location = /50x.html { 
        } 
    } 
               

Ubuntu 24.04 LTS

Use a text editor to edit the /etc/nginx/nginx.conf file. This requires Linux root 
permissions. At the top of the file, add the following lines:

ssl_engine cloudhsm; 
  env CLOUDHSM_PIN;

Offload on Linux with OpenSSL 1080



AWS CloudHSM User Guide

Then add the following to the TLS section of the file:

# Settings for a TLS enabled server. 
    server { 
        listen       443 ssl http2 default_server; 
        listen       [::]:443 ssl http2 default_server; 
        server_name  _; 
        root         /usr/share/nginx/html; 
     
        ssl_certificate "/etc/pki/nginx/server.crt"; 
        ssl_certificate_key "/etc/pki/nginx/private/server.key"; 
        # It is *strongly* recommended to generate unique DH parameters 
        # Generate them with: openssl dhparam -out /etc/pki/nginx/dhparams.pem 
 2048 
        #ssl_dhparam "/etc/pki/nginx/dhparams.pem"; 
        ssl_session_cache shared:SSL:1m; 
        ssl_session_timeout  10m; 
        ssl_protocols TLSv1.2 TLSv1.3; 
        ssl_ciphers "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-
SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-
RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-
GCM-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA"; 
        ssl_prefer_server_ciphers on; 
     
        # Load configuration files for the default server block. 
        include /etc/nginx/default.d/*.conf; 
     
        location / { 
        } 
     
        error_page 404 /404.html; 
        location = /40x.html { 
        } 
     
        error_page 500 502 503 504 /50x.html; 
        location = /50x.html { 
        } 
    } 
               

Offload on Linux with OpenSSL 1081



AWS CloudHSM User Guide

Save the file.

8. Back up the systemd configuration file, and then set the EnvironmentFile path.

Amazon Linux

No action required.

Amazon Linux 2

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Amazon Linux 2023

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open /lib/systemd/system/nginx.service in a text editor. Under the [Service] 
section, add:

EnvironmentFile=/etc/sysconfig/nginx

CentOS 7

No action required.

CentOS 8

1. Back up the nginx.service file.

Offload on Linux with OpenSSL 1082



AWS CloudHSM User Guide

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Red Hat 7

No action required.

Red Hat 8

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Ubuntu 16.04

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Offload on Linux with OpenSSL 1083



AWS CloudHSM User Guide

Ubuntu 18.04

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Ubuntu 20.04 LTS

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Ubuntu 22.04 LTS

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

Offload on Linux with OpenSSL 1084



AWS CloudHSM User Guide

Ubuntu 24.04 LTS

1. Back up the nginx.service file.

$ sudo cp /lib/systemd/system/nginx.service /lib/systemd/system/
nginx.service.backup

2. Open the /lib/systemd/system/nginx.service file in a text editor, and then 
under the [Service] section, add the following path:

EnvironmentFile=/etc/sysconfig/nginx

9. Check if the /etc/sysconfig/nginx file exists, and then do one of the following:

• If the file exists, back up the file by running the following command:

$ sudo cp /etc/sysconfig/nginx /etc/sysconfig/nginx.backup

• If the file doesn't exist, open a text editor, and then create a file named nginx in the /etc/
sysconfig/ folder.

10. Configure the NGINX environment.

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing the 
credentials of the CU.

Amazon Linux

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Offload on Linux with OpenSSL 1085



AWS CloudHSM User Guide

Save the file.

Amazon Linux 2

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Amazon Linux 2023

As the Linux root user, open /etc/sysconfig/nginx file in a text editor. For example,

sudo vi /etc/sysconfig/nginx

Add the Cryptography User (CU) credentials:

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

CentOS 7

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Offload on Linux with OpenSSL 1086



AWS CloudHSM User Guide

CentOS 8

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Red Hat 7

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Red Hat 8

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Ubuntu 16.04 LTS

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

n3fips_password=<CU user name>:<password>

Offload on Linux with OpenSSL 1087



AWS CloudHSM User Guide

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Ubuntu 18.04 LTS

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Ubuntu 20.04 LTS

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Ubuntu 22.04 LTS

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

Ubuntu 24.04 LTS

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

Offload on Linux with OpenSSL 1088



AWS CloudHSM User Guide

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Save the file.

11. Start the NGINX web server.

Amazon Linux

Open the /etc/sysconfig/nginx file in a text editor. This requires Linux root 
permissions. Add the Cryptography User (CU) credentials:

$ sudo service nginx start

Amazon Linux 2

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Amazon Linux 2023

Stop all NGINX processes

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Offload on Linux with OpenSSL 1089



AWS CloudHSM User Guide

Start NGINX

$ sudo systemctl start nginx

CentOS 7

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

CentOS 8

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Red Hat 7

Stop any running NGINX process

$ sudo systemctl stop nginx

Offload on Linux with OpenSSL 1090



AWS CloudHSM User Guide

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Red Hat 8

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Ubuntu 16.04 LTS

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Offload on Linux with OpenSSL 1091



AWS CloudHSM User Guide

Ubuntu 18.04 LTS

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Ubuntu 20.04 LTS

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

Ubuntu 22.04 LTS

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Offload on Linux with OpenSSL 1092



AWS CloudHSM User Guide

Start the NGINX process

$ sudo systemctl start nginx

Ubuntu 24.04 LTS

Stop any running NGINX process

$ sudo systemctl stop nginx

Reload the systemd configuration to pick up the latest changes

$ sudo systemctl daemon-reload

Start the NGINX process

$ sudo systemctl start nginx

12. (Optional) Configure your platform to start NGINX at start-up.

Amazon Linux

$ sudo chkconfig nginx on

Amazon Linux 2

$ sudo systemctl enable nginx

Amazon Linux 2023

$ sudo systemctl enable nginx

CentOS 7

No action required.

Offload on Linux with OpenSSL 1093



AWS CloudHSM User Guide

CentOS 8

$ sudo systemctl enable nginx

Red Hat 7

No action required.

Red Hat 8

$ sudo systemctl enable nginx

Ubuntu 16.04 LTS

$ sudo systemctl enable nginx

Ubuntu 18.04 LTS

$ sudo systemctl enable nginx

Ubuntu 20.04 LTS

$ sudo systemctl enable nginx

Ubuntu 22.04 LTS

$ sudo systemctl enable nginx

Ubuntu 24.04 LTS

$ sudo systemctl enable nginx

After you update your web server configuration, go to Step 4: Enable HTTPS traffic and verify the 
certificate.

Configure Apache web server

Use this section to configure Apache on supported platforms.
Offload on Linux with OpenSSL 1094



AWS CloudHSM User Guide

To update the web server configuration for Apache

1. Connect to your Amazon EC2 client instance.

2. Define default locations for certificates and private keys for your platform.

Amazon Linux

In the /etc/httpd/conf.d/ssl.conf file, ensure these values exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

Amazon Linux 2

In the /etc/httpd/conf.d/ssl.conf file, ensure these values exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

Amazon Linux 2023

Open /etc/httpd/conf.d/ssl.conf file. Add these values if they don't already exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

CentOS 7

In the /etc/httpd/conf.d/ssl.conf file, ensure these values exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

CentOS 8

In the /etc/httpd/conf.d/ssl.conf file, ensure these values exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

Offload on Linux with OpenSSL 1095



AWS CloudHSM User Guide

Red Hat 7

In the /etc/httpd/conf.d/ssl.conf file, ensure these values exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

Red Hat 8

In the /etc/httpd/conf.d/ssl.conf file, ensure these values exist:

SSLCertificateFile       /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile    /etc/pki/tls/private/localhost.key

Ubuntu 16.04 LTS

In the /etc/apache2/sites-available/default-ssl.conf file, ensure these values 
exist:

SSLCertificateFile       /etc/ssl/certs/localhost.crt
SSLCertificateKeyFile    /etc/ssl/private/localhost.key

Ubuntu 18.04 LTS

In the /etc/apache2/sites-available/default-ssl.conf file, ensure these values 
exist:

SSLCertificateFile       /etc/ssl/certs/localhost.crt
SSLCertificateKeyFile    /etc/ssl/private/localhost.key

Ubuntu 20.04 LTS

In the /etc/apache2/sites-available/default-ssl.conf file, ensure these values 
exist:

SSLCertificateFile       /etc/ssl/certs/localhost.crt
SSLCertificateKeyFile    /etc/ssl/private/localhost.key

Offload on Linux with OpenSSL 1096



AWS CloudHSM User Guide

Ubuntu 22.04 LTS

In the /etc/apache2/sites-available/default-ssl.conf file, ensure these values 
exist:

SSLCertificateFile       /etc/ssl/certs/localhost.crt
SSLCertificateKeyFile    /etc/ssl/private/localhost.key

Ubuntu 24.04 LTS

In the /etc/apache2/sites-available/default-ssl.conf file, ensure these values 
exist:

SSLCertificateFile       /etc/ssl/certs/localhost.crt
SSLCertificateKeyFile    /etc/ssl/private/localhost.key

3. Copy your web server certificate to the required location for your platform.

Amazon Linux

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Amazon Linux 2

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Amazon Linux 2023

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

CentOS 7

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Offload on Linux with OpenSSL 1097



AWS CloudHSM User Guide

Replace <web_server.crt> with the name of your web server certificate.

CentOS 8

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Red Hat 7

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Red Hat 8

$ sudo cp <web_server.crt> /etc/pki/tls/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Ubuntu 16.04 LTS

$ sudo cp <web_server.crt> /etc/ssl/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Ubuntu 18.04 LTS

$ sudo cp <web_server.crt> /etc/ssl/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Ubuntu 20.04 LTS

$ sudo cp <web_server.crt> /etc/ssl/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

Ubuntu 22.04 LTS

$ sudo cp <web_server.crt> /etc/ssl/certs/localhost.crt

Offload on Linux with OpenSSL 1098



AWS CloudHSM User Guide

Replace <web_server.crt> with the name of your web server certificate.

Ubuntu 24.04 LTS

$ sudo cp <web_server.crt> /etc/ssl/certs/localhost.crt

Replace <web_server.crt> with the name of your web server certificate.

4. Copy your fake PEM private key to the required location for your platform.

Amazon Linux

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Amazon Linux 2

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Amazon Linux 2023

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

CentOS 7

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

CentOS 8

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Offload on Linux with OpenSSL 1099



AWS CloudHSM User Guide

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Red Hat 7

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Red Hat 8

$ sudo cp <web_server_example_pem.key> /etc/pki/tls/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Ubuntu 16.04 LTS

$ sudo cp <web_server_example_pem.key> /etc/ssl/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Ubuntu 18.04 LTS

$ sudo cp <web_server_example_pem.key> /etc/ssl/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Ubuntu 20.04 LTS

$ sudo cp <web_server_example_pem.key> /etc/ssl/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Offload on Linux with OpenSSL 1100



AWS CloudHSM User Guide

Ubuntu 22.04 LTS

$ sudo cp <web_server_example_pem.key> /etc/ssl/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

Ubuntu 24.04 LTS

$ sudo cp <web_server_example_pem.key> /etc/ssl/private/localhost.key

Replace <web_server_example_pem.key> with the name of the file that contains your 
fake PEM private key.

5. Change ownership of these files if required by your platform.

Amazon Linux

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Provides read permission to the user named apache.

Amazon Linux 2

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Provides read permission to the user named apache.

Amazon Linux 2023

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Provides read permission to the user named apache.

CentOS 7

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Offload on Linux with OpenSSL 1101



AWS CloudHSM User Guide

Provides read permission to the user named apache.

CentOS 8

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Provides read permission to the user named apache.

Red Hat 7

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Provides read permission to the user named apache.

Red Hat 8

$ sudo chown apache /etc/pki/tls/certs/localhost.crt /etc/pki/tls/private/
localhost.key

Provides read permission to the user named apache.

Ubuntu 16.04 LTS

No action required.

Ubuntu 18.04 LTS

No action required.

Ubuntu 20.04 LTS

No action required.

Ubuntu 22.04 LTS

No action required.

Ubuntu 24.04 LTS

No action required.

6. Configure Apache directives for your platform.

Offload on Linux with OpenSSL 1102



AWS CloudHSM User Guide

Amazon Linux

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Save the file.

Amazon Linux 2

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-

Offload on Linux with OpenSSL 1103



AWS CloudHSM User Guide

SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Save the file.

Amazon Linux 2023

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

The Apache configuration file defines server behavior. Edit this file with root permissions.

Update or add the following directives:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Save the file.

CentOS 7

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-Offload on Linux with OpenSSL 1104



AWS CloudHSM User Guide

SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Save the file.

CentOS 8

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLProtocol TLSv1.2 TLSv1.3
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA
SSLProxyCipherSuite HIGH:!aNULL

Save the file.

Red Hat 7

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

Offload on Linux with OpenSSL 1105



AWS CloudHSM User Guide

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Save the file.

Red Hat 8

Locate the SSL file for this platform:

/etc/httpd/conf.d/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLProtocol TLSv1.2 TLSv1.3
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA
SSLProxyCipherSuite HIGH:!aNULL

Save the file.

Ubuntu 16.04 LTS

Locate the SSL file for this platform:

/etc/apache2/mods-available/ssl.conf

Offload on Linux with OpenSSL 1106



AWS CloudHSM User Guide

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Save the file.

Enable the SSL module and default SSL site configuration:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Ubuntu 18.04 LTS

Locate the SSL file for this platform:

/etc/apache2/mods-available/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA

Offload on Linux with OpenSSL 1107



AWS CloudHSM User Guide

SSLProtocol TLSv1.2 TLSv1.3

Save the file.

Enable the SSL module and default SSL site configuration:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Ubuntu 20.04 LTS

Locate the SSL file for this platform:

/etc/apache2/mods-available/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA
SSLProtocol TLSv1.2 TLSv1.3

Save the file.

Enable the SSL module and default SSL site configuration:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Ubuntu 22.04 LTS

Locate the SSL file for this platform:
Offload on Linux with OpenSSL 1108



AWS CloudHSM User Guide

/etc/apache2/mods-available/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-
RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA
SSLProtocol TLSv1.2 TLSv1.3

Save the file.

Enable the SSL module and default SSL site configuration:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

Ubuntu 24.04 LTS

Locate the SSL file for this platform:

/etc/apache2/mods-available/ssl.conf

This file contains Apache directives which define how your server should run. Directives 
appear on the left, followed by a value. Use a text editor to edit this file. This requires Linux 
root permissions.

Update or enter the following directives with these values:

SSLCryptoDevice cloudhsm
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-

Offload on Linux with OpenSSL 1109



AWS CloudHSM User Guide

RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES128-SHA:DHE-RSA-AES256-
SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA256:ECDHE-ECDSA-AES256-GCM-
SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES128-SHA256:ECDHE-ECDSA-AES256-SHA:ECDHE-ECDSA-AES128-SHA
SSLProtocol TLSv1.2 TLSv1.3

Save the file.

Enable the SSL module and default SSL site configuration:

$ sudo a2enmod ssl
$ sudo a2ensite default-ssl

7. Configure an environment-values file for your platform.

Amazon Linux

No action required. Environment values go in /etc/sysconfig/httpd

Amazon Linux 2

Open the httpd service file:

/lib/systemd/system/httpd.service

Under the [Service] section, add the following:

EnvironmentFile=/etc/sysconfig/httpd

Amazon Linux 2023

Open /lib/systemd/system/httpd.service

Under the [Service] section, add:

EnvironmentFile=/etc/sysconfig/httpd

CentOS 7

Open the httpd service file:

Offload on Linux with OpenSSL 1110



AWS CloudHSM User Guide

/lib/systemd/system/httpd.service

Under the [Service] section, add the following:

EnvironmentFile=/etc/sysconfig/httpd

CentOS 8

Open the httpd service file:

/lib/systemd/system/httpd.service

Under the [Service] section, add the following:

EnvironmentFile=/etc/sysconfig/httpd

Red Hat 7

Open the httpd service file:

/lib/systemd/system/httpd.service

Under the [Service] section, add the following:

EnvironmentFile=/etc/sysconfig/httpd

Red Hat 8

Open the httpd service file:

/lib/systemd/system/httpd.service

Under the [Service] section, add the following:

EnvironmentFile=/etc/sysconfig/httpd

Offload on Linux with OpenSSL 1111



AWS CloudHSM User Guide

Ubuntu 16.04 LTS

No action required. Environment values go in /etc/sysconfig/httpd

Ubuntu 18.04 LTS

No action required. Environment values go in /etc/sysconfig/httpd

Ubuntu 20.04 LTS

No action required. Environment values go in /etc/sysconfig/httpd

Ubuntu 22.04 LTS

No action required. Environment values go in /etc/sysconfig/httpd

Ubuntu 24.04 LTS

No action required. Environment values go in /etc/sysconfig/httpd

8. In the file that stores environment variables for your platform, set an environment variable 
that contains the credentials of the cryptographic user (CU):

Amazon Linux

Use a text editor to edit the /etc/sysconfig/httpd.

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Amazon Linux 2

Use a text editor to edit the /etc/sysconfig/httpd.

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Amazon Linux 2023

Open /etc/sysconfig/httpd, add:

Offload on Linux with OpenSSL 1112



AWS CloudHSM User Guide

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

CentOS 7

Use a text editor to edit the /etc/sysconfig/httpd.

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

CentOS 8

Use a text editor to edit the /etc/sysconfig/httpd.

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Red Hat 7

Use a text editor to edit the /etc/sysconfig/httpd.

ssl_engine cloudhsm;
env CLOUDHSM_PIN;

Replace <CU user name> and <password> with the CU credentials.

Red Hat 8

Use a text editor to edit the /etc/sysconfig/httpd.

CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Offload on Linux with OpenSSL 1113



AWS CloudHSM User Guide

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing the 
credentials of the CU.

Ubuntu 16.04 LTS

Use a text editor to edit the /etc/apache2/envvars.

export n3fips_password=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Ubuntu 18.04 LTS

Use a text editor to edit the /etc/apache2/envvars.

export CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing 
the credentials of the CU. In Client SDK 3 you stored the CU credentials in the
n3fips_password environment variable. Client SDK 5 supports both environment 
variables, but we recommend using CLOUDHSM_PIN.

Ubuntu 20.04 LTS

Use a text editor to edit the /etc/apache2/envvars.

export CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Offload on Linux with OpenSSL 1114



AWS CloudHSM User Guide

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing 
the credentials of the CU. In Client SDK 3 you stored the CU credentials in the
n3fips_password environment variable. Client SDK 5 supports both environment 
variables, but we recommend using CLOUDHSM_PIN.

Ubuntu 22.04 LTS

Use a text editor to edit the /etc/apache2/envvars.

export CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing 
the credentials of the CU. In Client SDK 3 you stored the CU credentials in the
n3fips_password environment variable. Client SDK 5 supports both environment 
variables, but we recommend using CLOUDHSM_PIN.

Ubuntu 24.04 LTS

Use a text editor to edit the /etc/apache2/envvars.

export CLOUDHSM_PIN=<CU user name>:<password>

Replace <CU user name> and <password> with the CU credentials.

Note

Client SDK 5 introduces the CLOUDHSM_PIN environment variable for storing 
the credentials of the CU. In Client SDK 3 you stored the CU credentials in the

Offload on Linux with OpenSSL 1115



AWS CloudHSM User Guide

n3fips_password environment variable. Client SDK 5 supports both environment 
variables, but we recommend using CLOUDHSM_PIN.

9. Start the Apache web server.

Amazon Linux

$ sudo systemctl daemon-reload
$ sudo service httpd start

Amazon Linux 2

$ sudo systemctl daemon-reload
$ sudo service httpd start

Amazon Linux 2023

$ sudo systemctl daemon-reload
$ sudo service httpd start

CentOS 7

$ sudo systemctl daemon-reload
$ sudo service httpd start

CentOS 8

$ sudo systemctl daemon-reload
$ sudo service httpd start

Red Hat 7

$ sudo systemctl daemon-reload
$ sudo service httpd start

Red Hat 8

$ sudo systemctl daemon-reload
$ sudo service httpd start

Offload on Linux with OpenSSL 1116



AWS CloudHSM User Guide

Ubuntu 16.04 LTS

$ sudo service apache2 start

Ubuntu 18.04 LTS

$ sudo service apache2 start

Ubuntu 20.04 LTS

$ sudo service apache2 start

Ubuntu 22.04 LTS

$ sudo service apache2 start

Ubuntu 24.04 LTS

$ sudo service apache2 start

10. (Optional) Configure your platform to start Apache at start-up.

Amazon Linux

$ sudo chkconfig httpd on

Amazon Linux 2

$ sudo chkconfig httpd on

Amazon Linux 2023

$ sudo chkconfig httpd on

CentOS 7

$ sudo chkconfig httpd on

Offload on Linux with OpenSSL 1117



AWS CloudHSM User Guide

CentOS 8

$ systemctl enable httpd

Red Hat 7

$ sudo chkconfig httpd on

Red Hat 8

$ systemctl enable httpd

Ubuntu 16.04 LTS

$ sudo systemctl enable apache2

Ubuntu 18.04 LTS

$ sudo systemctl enable apache2

Ubuntu 20.04 LTS

$ sudo systemctl enable apache2

Ubuntu 22.04 LTS

$ sudo systemctl enable apache2

Ubuntu 24.04 LTS

$ sudo systemctl enable apache2

After you update your web server configuration, go to Step 4: Enable HTTPS traffic and verify the 
certificate.

Offload on Linux with OpenSSL 1118



AWS CloudHSM User Guide

Step 4: Enable HTTPS traffic and verify the certificate

After you configure your web server for SSL/TLS offload with AWS CloudHSM, add your web server 
instance to a security group that allows inbound HTTPS traffic. This allows clients, such as web 
browsers, to establish an HTTPS connection with your web server. Then make an HTTPS connection 
to your web server and verify that it's using the certificate that you configured for SSL/TLS offload 
with AWS CloudHSM.

Topics

• Enable inbound HTTPS connections

• Verify that HTTPS uses the certificate that you configured

Enable inbound HTTPS connections

To connect to your web server from a client (such as a web browser), create a security group that 
allows inbound HTTPS connections. Specifically, it should allow inbound TCP connections on port 
443. Assign this security group to your web server.

To create a security group for HTTPS and assign it to your web server

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Security groups in the navigation pane.

3. Choose Create security group.

4. For Create Security Group, do the following:

a. For Security group name, type a name for the security group that you are creating.

b. (Optional) Type a description of the security group that you are creating.

c. For VPC, choose the VPC that contains your web server Amazon EC2 instance.

d. Select Add Rule.

e. For Type, select HTTPS from the drop-down window.

f. For Source, enter a source location.

g. Choose Create security group.

5. In the navigation pane, choose Instances.

6. Select the check box next to your web server instance.

Offload on Linux with OpenSSL 1119

https://console.aws.amazon.com/ec2/


AWS CloudHSM User Guide

7. Select the Actions drop-down menu at the top of the page. Select Security and then Change 
Security Groups.

8. For Associated security groups, select the search box and choose the security group that you 
created for HTTPS. Then choose Add Security Groups.

9. Select Save.

Verify that HTTPS uses the certificate that you configured

After you add the web server to a security group, you can verify that SSL/TLS offload is using your 
self-signed certificate. You can do this with a web browser or with a tool such as OpenSSL s_client.

To verify SSL/TLS offload with a web browser

1. Use a web browser to connect to your web server using the public DNS name or IP address 
of the server. Ensure that the URL in the address bar begins with https://. For example,
https://ec2-52-14-212-67.us-east-2.compute.amazonaws.com/.

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

2. Use your web browser to view the web server certificate. For more information, see the 
following:

• For Mozilla Firefox, see View a Certificate on the Mozilla Support website.

• For Google Chrome, see Understand Security Issues on the Google Tools for Web Developers 
website.

Other web browsers might have similar features that you can use to view the web server 
certificate.

3. Ensure that the SSL/TLS certificate is the one that you configured your web server to use.

Offload on Linux with OpenSSL 1120

https://www.openssl.org/docs/manmaster/man1/s_client.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html
https://support.mozilla.org/en-US/kb/secure-website-certificate#w_view-a-certificate
https://developers.google.com/web/tools/chrome-devtools/security


AWS CloudHSM User Guide

To verify SSL/TLS offload with OpenSSL s_client

1. Run the following OpenSSL command to connect to your web server using HTTPS. Replace
<server name> with the public DNS name or IP address of your web server.

openssl s_client -connect <server name>:443

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

2. Ensure that the SSL/TLS certificate is the one that you configured your web server to use.

You now have a website that is secured with HTTPS. The private key for the web server is stored in 
an HSM in your AWS CloudHSM cluster.

To add a load balancer, see Add a load balancer with Elastic Load Balancing for AWS 
CloudHSM(optional).

AWS CloudHSM SSL/TLS offload on Linux using Tomcat with JSSE

This topic provides step-by-step instructions for setting up SSL/TLS offload using Java Secure 
Socket Extension (JSSE) with the AWS CloudHSM JCE SDK.

Topics

• Overview

• Step 1: Set up the prerequisites

• Step 2: Generate or import a private key and SSL/TLS certificate

• Step 3: Configure the Tomcat web server

• Step 4: Enable HTTPS traffic and verify the certificate

Offload on Linux with JSSE 1121

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html


AWS CloudHSM User Guide

Overview

In AWS CloudHSM, Tomcat web servers work on Linux to support HTTPS. The AWS CloudHSM JCE 
SDK provides an interface that can be used with JSSE (Java Secure Socket Extension) to enable use 
of HSMs for such web servers. AWS CloudHSM JCE is the bridge that connects JSSE to your AWS 
CloudHSM cluster. JSSE is a Java API for Secure Sockets Layer (SSL) and Transport Layer Security 
(TLS) protocols.

Step 1: Set up the prerequisites

Follow these prerequisites to use a Tomcat web server with AWS CloudHSM for SSL/TLS offload on 
Linux. These prerequisites must be met to set up web server SSL/TLS offload with Client SDK 5 and 
a Tomcat web server.

Note

Different platforms require different prerequisites. Always follow the correct installation 
steps for your platform.

Prerequisites

• An Amazon EC2 instance running a Linux operating system with A tomcat web server installed.

• A crypto user (CU) to own and manage the web server's private key on the HSM.

• An active AWS CloudHSM cluster with at least two hardware security modules (HSMs) that have
JCE for Client SDK 5 installed and configured.

Note

You can use a single HSM cluster, but you must first disable client key durability. For more 
information, see Manage Client Key Durability Settings and Client SDK 5 Configure Tool.

How to meet the prerequisites

1. Install and configure the JCE for AWS CloudHSM on an active AWS CloudHSM cluster with at 
least two hardware security modules (HSMs). For more information about installation, see JCE 
for Client SDK 5.

Offload on Linux with JSSE 1122



AWS CloudHSM User Guide

2. On an EC2 Linux instance that has access to your AWS CloudHSM cluster, follow the Apache 
Tomcat instructions to download and install the Tomcat web server.

3. Use CloudHSM CLI to create a crypto user (CU). For more information about managing HSM 
users, see Managing HSM users with CloudHSM CLI.

Tip

Keep track of the CU user name and password. You will need them later when you 
generate or import the HTTPS private key and certificate for your web server.

4. To setup JCE with Java Keytool, follow the instructions in Use Client SDK 5 to integrate AWS 
CloudHSM with Java Keytool and Jarsigner.

After you complete these steps, go to Step 2: Generate or import a private key and SSL/TLS 
certificate.

Notes

• To use Security-Enhanced Linux (SELinux) and web servers, you must allow outbound TCP 
connections on port 2223, which is the port Client SDK 5 uses to communicate with the HSM.

• To create and activate a cluster and give an EC2 instance access to the cluster, complete the 
steps in Getting Started with AWS CloudHSM. This section offers step-by-step instructions for 
creating an active cluster with one HSM and an Amazon EC2 client instance. You can use this 
client instance as your web server.

• To avoid disabling client key durability, add more than one HSM to your cluster. For more 
information, see Adding an HSM to an AWS CloudHSM cluster.

• To connect to your client instance, you can use SSH or PuTTY. For more information, see
Connecting to Your Linux Instance Using SSH or Connecting to Your Linux Instance from 
Windows Using PuTTY in the Amazon EC2 documentation.

Step 2: Generate or import a private key and SSL/TLS certificate

To enable HTTPS, your Tomcat web server application needs a private key and a corresponding 
SSL/TLS certificate. To use web server SSL/TLS offload with AWS CloudHSM, you must store the 
private key in an HSM in your AWS CloudHSM cluster.

Offload on Linux with JSSE 1123

https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html


AWS CloudHSM User Guide

Note

If you don't yet have a private key and a corresponding certificate, generate a private key in 
an HSM. You use the private key to create a certificate signing request (CSR), which you use 
to create the SSL/TLS certificate.

You create a local AWS CloudHSM KeyStore file that contains a reference to your private key on 
the HSM and the associated certificate. Your web server uses the AWS CloudHSM KeyStore file to 
identify the private key on the HSM during SSL/TLS offload.

Topics

• Generate a private key

• Generate a self-signed certificate

Generate a private key

This section shows you how to generate a key pair using the KeyTool from JDK. Once you have 
a key pair generated inside the HSM, you can export it as a KeyStore file, and generate the 
corresponding certificate.

Depending on your use case, you can either generate an RSA or an EC key pair. The following steps 
show how to generate an RSA key pair.

Use the genkeypair command in KeyTool to generate an RSA key pair

1. After replacing the <VARIABLES> below with your specific data, use the following command 
to generate a keystore file named jsse_keystore.keystore, which will have a reference of 
your private key on the HSM.

$ keytool -genkeypair -alias <UNIQUE ALIAS FOR KEYS> -keyalg <KEY ALGORITHM> -
keysize <KEY SIZE> -sigalg <SIGN ALGORITHM> \ 
        -keystore <PATH>/<JSSE KEYSTORE NAME>.keystore -storetype CLOUDHSM \ 
        -dname CERT_DOMAIN_NAME \ 
        -J-classpath '-J'$JAVA_LIB'/*:/opt/cloudhsm/java/*:./*' \ 
        -provider "com.amazonaws.cloudhsm.jce.provider.CloudHsmProvider" \ 
        -providerpath "$CLOUDHSM_JCE_LOCATION" \ 
        -keypass <KEY PASSWORD> -storepass <KEYSTORE PASSWORD>

Offload on Linux with JSSE 1124



AWS CloudHSM User Guide

• <PATH>: The path that you want to generate your keystore file.

• <UNIQUE ALIAS FOR KEYS>: This is used to uniquely identify your key on the HSM. This 
alias will be set as the LABEL attribute for the key.

• <KEY PASSWORD>: We store reference to your key in the local keystore file, and this 
password protects that local reference.

• <KEYSTORE PASSWORD>: This is the password for your local keystore file.

• <JSSE KEYSTORE NAME>: Name of the Keystore file.

• <CERT DOMAIN NAME>: X.500 Distinguished name.

• <KEY ALGORITHM>: Key algorithm to generate key pair (For example, RSA and EC).

• <KEY SIZE>: Key size to generate key pair (for example, 2048, 3072, and 4096).

• <SIGN ALGORITHM>: Key size to generate key pair (for example, SHA1withRSA, 
SHA224withRSA, SHA256withRSA, SHA384withRSA, and SHA512withRSA).

2. To confirm the command was successful, enter the following command and verify you have 
successfully generated an RSA key pair.

$ ls <PATH>/<JSSE KEYSTORE NAME>.keystore

Generate a self-signed certificate

Once you have generated a private key along with the keystore file, you can use this file to 
generate a certificate signing request (CSR) and certificate.

In a production environment, you typically use a certificate authority (CA) to create a certificate 
from a CSR. A CA is not necessary for a test environment. If you do use a CA, send the CSR file to 
them and use signed SSL/TLS certificate that they provide you in your web server for HTTPS.

As an alternative to using a CA, you can use the KeyTool to create a self-signed certificate. Self-
signed certificates are not trusted by browsers and should not be used in production environments. 
They can be used in test environments.

Offload on Linux with JSSE 1125



AWS CloudHSM User Guide

Warning

Self-signed certificates should be used in a test environment only. For a production 
environment, use a more secure method, such as a certificate authority to create a 
certificate.

Generate a certificate

1. Obtain a copy of your keystore file generated in an earlier step.

2. Run the following command to use the KeyTool to create a certificate signing request (CSR).

$ keytool -certreq -keyalg RSA -alias unique_alias_for_key -file certreq.csr \ 
        -keystore <JSSE KEYSTORE NAME>.keystore -storetype CLOUDHSM \ 
        -J-classpath '-J$JAVA_LIB/*:/opt/cloudhsm/java/*:./*' \ 
        -keypass <KEY PASSWORD> -storepass <KEYSTORE PASSWORD>

Note

The output file of the certificate signing request is certreq.csr.

Sign a certificate

• After replacing the <VARIABLES> below with your specific data, run the following command 
to sign your CSR with your private key on your HSM. This creates a self-signed certificate.

$ keytool -gencert -infile certreq.csr -outfile certificate.crt \ 
    -alias <UNIQUE ALIAS FOR KEYS> -keypass <KEY_PASSWORD> -
storepass <KEYSTORE_PASSWORD> -sigalg SIG_ALG \ 
    -storetype CLOUDHSM -J-classpath '-J$JAVA_LIB/*:/opt/cloudhsm/java/*:./*' \ 
    -keystore jsse_keystore.keystore

Note

certificate.crt is the signed certificate that uses the alias’s private key.

Offload on Linux with JSSE 1126



AWS CloudHSM User Guide

Import a certificate in Keystore

• After replacing the <VARIABLES> below with your specific data, run the following command 
to import a signed certificate as a trusted certificate. This step will store the certificate in the 
keystore entry identified by alias.

$ keytool -import -alias <UNIQUE ALIAS FOR KEYS> -keystore jsse_keystore.keystore \ 
    -file certificate.crt -storetype CLOUDHSM \ 
    -v -J-classpath '-J$JAVA_LIB/*:/opt/cloudhsm/java/*:./*' \ 
    -keypass <KEY PASSWORD> -storepass <KEYSTORE_PASSWORD>

Convert a certificate to a PEM

• Run following command to convert the signed certificate file (.crt) to a PEM. The PEM file 
will be used to send the request from the http client.

$ openssl x509 -inform der -in certificate.crt -out certificate.pem

After you complete these steps, go to Step 3: Configure the web server.

Step 3: Configure the Tomcat web server

Update your web server software's configuration to use the HTTPS certificate and corresponding 
PEM file that you created in the previous step. Remember to backup your existing certificates and 
keys before you start. This will finish setting up your Linux web server software for SSL/TLS offload 
with AWS CloudHSM. For more information, refer to the Apache Tomcat 9 Configuration Reference.

Stop the server

• After replacing the <VARIABLES> below with your specific data, run following command to 
stop Tomcat Server before updating configuration

$ /<TOMCAT DIRECTORY>/bin/shutdown.sh

• <TOMCAT DIRECTORY>: Your Tomcat installation directory.

Offload on Linux with JSSE 1127

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html


AWS CloudHSM User Guide

Update the Tomcat classpath

1. Connect to your client instance.

2. Locate the Tomcat installation folder.

3. After replacing the <VARIABLES> below with your specific data, use the following command 
to add Java library and AWS CloudHSM Java path in Tomcat classpath, located in Tomcat/bin/
catalina.sh file.

$ sed -i 's@CLASSPATH="$CLASSPATH""$CATALINA_HOME"\/bin\/
bootstrap.jar@CLASSPATH="$CLASSPATH""$CATALINA_HOME"\/bin\/bootstrap.jar:'" 
         <JAVA LIBRARY>"'\/*:\/opt\/cloudhsm\/java\/*:.\/*@' <TOMCAT PATH> /bin/
catalina.sh

• <JAVA LIBRARY>: Java JRE Library location.

• <TOMCAT PATH>: Tomcat installation folder.

Add an HTTPS connector in the server configuration.

1. Go to the Tomcat installation folder.

2. After replacing the <VARIABLES> below with your specific data, use the following command 
to add an HTTPS connector to use certificates generated in prerequisites:

$ sed -i '/<Connector port="8080"/i <Connector port=\"443\" maxThreads=\"200\" 
 scheme=\"https\" secure=\"true\" SSLEnabled=\"true\" keystoreType=\"CLOUDHSM\" 
 keystoreFile=\" 
         <CUSTOM DIRECTORY>/<JSSE KEYSTORE NAME>.keystore\" keystorePass=\"<KEYSTORE 
 PASSWORD>\" keyPass=\"<KEY PASSWORD>
        \" keyAlias=\"<UNIQUE ALIAS FOR KEYS>" clientAuth=\"false\" sslProtocol=
\"TLS\"/>' <TOMCAT PATH>/conf/server.xml

• <CUSTOM DIRECTORY>: Directory where keystore file is located.

• <JSSE KEYSTORE NAME>: Name of the Keystore file.

• <KEYSTORE PASSWORD>: This is the password for your local keystore file.

• <KEY PASSWORD>: We store reference to your key in the local keystore file, and this 
password protects that local reference.

• <UNIQUE ALIAS FOR KEYS>: This is used to uniquely identify your key on the HSM. This 
alias will be set as the LABEL attribute for the key.

Offload on Linux with JSSE 1128



AWS CloudHSM User Guide

• <TOMCAT PATH>: The path to your Tomcat folder.

Start Server

• After replacing the <VARIABLES> below with your specific data, use the following command 
to start Tomcat Server:

$ /<TOMCAT DIRECTORY>/bin/startup.sh

Note

<TOMCAT DIRECTORY> is the name of your Tomcat installation directory.

After you update your web server configuration, go to Step 4: Enable HTTPS traffic and verify the 
certificate.

Step 4: Enable HTTPS traffic and verify the certificate

After you configure your web server for SSL/TLS offload with AWS CloudHSM, add your web server 
instance to a security group that allows inbound HTTPS traffic. This allows clients, such as web 
browsers, to establish an HTTPS connection with your web server. Then make an HTTPS connection 
to your web server and verify that it's using the certificate that you configured for SSL/TLS offload 
with AWS CloudHSM.

Topics

• Enable inbound HTTPS connections

• Verify that HTTPS uses the certificate that you configured

Enable inbound HTTPS connections

To connect to your web server from a client (such as a web browser), create a security group that 
allows inbound HTTPS connections. Specifically, it should allow inbound TCP connections on port 
443. Assign this security group to your web server.

To create a security group for HTTPS and assign it to your web server

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Offload on Linux with JSSE 1129

https://console.aws.amazon.com/ec2/


AWS CloudHSM User Guide

2. Choose Security groups in the navigation pane.

3. Choose Create security group.

4. For Create Security Group, do the following:

a. For Security group name, type a name for the security group that you are creating.

b. (Optional) Type a description of the security group that you are creating.

c. For VPC, choose the VPC that contains your web server Amazon EC2 instance.

d. Select Add Rule.

e. For Type, select HTTPS from the drop-down window.

f. For Source, enter a source location.

g. Choose Create security group.

5. In the navigation pane, choose Instances.

6. Select the check box next to your web server instance.

7. Select the Actions drop-down menu at the top of the page. Select Security and then Change 
Security Groups.

8. For Associated security groups, select the search box and choose the security group that you 
created for HTTPS. Then choose Add Security Groups.

9. Select Save.

Verify that HTTPS uses the certificate that you configured

After you add the web server to a security group, you can verify that SSL/TLS offload is using your 
self-signed certificate. You can do this with a web browser or with a tool such as OpenSSL s_client.

To verify SSL/TLS offload with a web browser

1. Use a web browser to connect to your web server using the public DNS name or IP address 
of the server. Ensure that the URL in the address bar begins with https://. For example,
https://ec2-52-14-212-67.us-east-2.compute.amazonaws.com/.

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 

Offload on Linux with JSSE 1130

https://www.openssl.org/docs/manmaster/man1/s_client.html


AWS CloudHSM User Guide

information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

2. Use your web browser to view the web server certificate. For more information, see the 
following:

• For Mozilla Firefox, see View a Certificate on the Mozilla Support website.

• For Google Chrome, see Understand Security Issues on the Google Tools for Web Developers 
website.

Other web browsers might have similar features that you can use to view the web server 
certificate.

3. Ensure that the SSL/TLS certificate is the one that you configured your web server to use.

To verify SSL/TLS offload with OpenSSL s_client

1. Run the following OpenSSL command to connect to your web server using HTTPS. Replace
<server name> with the public DNS name or IP address of your web server.

openssl s_client -connect <server name>:443

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

2. Ensure that the SSL/TLS certificate is the one that you configured your web server to use.

You now have a website that is secured with HTTPS. The private key for the web server is stored in 
an HSM in your AWS CloudHSM cluster.

To add a load balancer, see Add a load balancer with Elastic Load Balancing for AWS 
CloudHSM(optional).

Offload on Linux with JSSE 1131

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html
https://support.mozilla.org/en-US/kb/secure-website-certificate#w_view-a-certificate
https://developers.google.com/web/tools/chrome-devtools/security
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html


AWS CloudHSM User Guide

AWS CloudHSM SSL/TLS offload on Windows using IIS with KSP

This tutorial provides step-by-step instructions for setting up SSL/TLS offload with AWS CloudHSM 
on a Windows web server.

Topics

• Overview

• Step 1: Set up the prerequisites

• Step 2: Create a certificate signing request (CSR) and certificate

• Step 3: Configure the web server

• Step 4: Enable HTTPS traffic and verify the certificate

Overview

On Windows, the Internet Information Services (IIS) for Windows Server web server application 
natively supports HTTPS. The AWS CloudHSM key storage provider (KSP) for Microsoft's 
Cryptography API: Next Generation (CNG) provides the interface that allows IIS to use the HSMs in 
your cluster for cryptographic offloading and key storage. The AWS CloudHSM KSP is the bridge 
that connects IIS to your AWS CloudHSM cluster.

This tutorial shows you how to do the following:

• Install the web server software on an Amazon EC2 instance.

• Configure the web server software to support HTTPS with a private key stored in your AWS 
CloudHSM cluster.

• (Optional) Use Amazon EC2 to create a second web server instance and Elastic Load Balancing 
to create a load balancer. Using a load balancer can increase performance by distributing the 
load across multiple servers. It can also provide redundancy and higher availability if one or more 
servers fail.

When you're ready to get started, go to Step 1: Set up the prerequisites.

Step 1: Set up the prerequisites

Different platforms require different prerequisites. Use the prerequisites section below that 
matches your platform.

Offload on Windows 1132

https://www.iis.net/


AWS CloudHSM User Guide

Topics

• Prerequisites for Client SDK 5

• Prerequisites for Client SDK 3

Prerequisites for Client SDK 5

To set up web server SSL/TLS offload with AWS CloudHSM, you need the following:

• An active AWS CloudHSM cluster with at least one HSM.

• An Amazon EC2 instance running a Windows operating system with the following software 
installed:

• The AWS CloudHSM client software for Windows.

• Internet Information Services (IIS) for Windows Server.

• A crypto user (CU) to own and manage the web server's private key on the HSM.

Note

This tutorial uses Microsoft Windows Server 2019. Microsoft Windows Server 2016 and 
2022 is also supported.

To set up a Windows Server instance and create a CU on the HSM

1. Complete the steps in Getting started. When you launch the Amazon EC2 client, choose a 
Windows Server 2019 AMI. When you complete these steps, you have an active cluster with at 
least one HSM. You also have an Amazon EC2 client instance running Windows Server with the 
AWS CloudHSM client software for Windows installed.

2. (Optional) Add more HSMs to your cluster. For more information, see Adding an HSM to an 
AWS CloudHSM cluster.

3. Connect to your Windows server. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide.

4. Use CloudHSM CLI to create a crypto user (CU). Keep track of the CU user name and password. 
You will need them to complete the next step.

Offload on Windows 1133

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

Note

For information on creating a user, see Managing HSM users with CloudHSM CLI.

5. Set the login credentials for the HSM, using the CU user name and password that you created 
in the previous step.

6. In step 5, if you used Windows Credentials Manager to set HSM credentials, download
psexec.exe from SysInternals to run the following command as NT Authority\SYSTEM:

psexec.exe -s "C:\Program Files\Amazon\CloudHsm\tools\set_cloudhsm_credentials.exe" 
 --username <USERNAME> --password <PASSWORD>

Replace <USERNAME> and <PASSWORD> with the HSM credentials.

To install IIS on your Windows Server

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. On your Windows server, start Server Manager.

3. In the Server Manager dashboard, choose Add roles and features.

4. Read the Before you begin information, and then choose Next.

5. For Installation Type, choose Role-based or feature-based installation. Then choose Next.

6. For Server Selection, choose Select a server from the server pool. Then choose Next.

7. For Server Roles, do the following:

a. Select Web Server (IIS).

b. For Add features that are required for Web Server (IIS), choose Add Features.

c. Choose Next to finish selecting server roles.

8. For Features, accept the defaults. Then choose Next.

9. Read the Web Server Role (IIS) information. Then choose Next.

10. For Select role services, accept the defaults or change the settings as preferred. Then choose
Next.

11. For Confirmation, read the confirmation information. Then choose Install.

Offload on Windows 1134

https://live.sysinternals.com/psexec.exe
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

12. After the installation is complete, choose Close.

After you complete these steps, go to Step 2: Create a certificate signing request (CSR) and 
certificate.

Prerequisites for Client SDK 3

To set up web server SSL/TLS offload with AWS CloudHSM, you need the following:

• An active AWS CloudHSM cluster with at least one HSM.

• An Amazon EC2 instance running a Windows operating system with the following software 
installed:

• The AWS CloudHSM client software for Windows.

• Internet Information Services (IIS) for Windows Server.

• A crypto user (CU) to own and manage the web server's private key on the HSM.

Note

This tutorial uses Microsoft Windows Server 2016. Microsoft Windows Server 2012 is also 
supported, but Microsoft Windows Server 2012 R2 is not.

To set up a Windows Server instance and create a CU on the HSM

1. Complete the steps in Getting started. When you launch the Amazon EC2 client, choose a 
Windows Server 2016 or Windows Server 2012 AMI. When you complete these steps, you have 
an active cluster with at least one HSM. You also have an Amazon EC2 client instance running 
Windows Server with the AWS CloudHSM client software for Windows installed.

2. (Optional) Add more HSMs to your cluster. For more information, see Adding an HSM to an 
AWS CloudHSM cluster.

3. Connect to your Windows server. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide.

4. Use CloudHSM CLI to create a crypto user (CU). Keep track of the CU user name and password. 
You will need them to complete the next step.

Offload on Windows 1135

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

Note

For information on creating a user, see Managing HSM users with CloudHSM CLI.

5. Set the login credentials for the HSM, using the CU user name and password that you created 
in the previous step.

6. In step 5, if you used Windows Credentials Manager to set HSM credentials, download
psexec.exe from SysInternals to run the following command as NT Authority\SYSTEM:

psexec.exe -s "C:\Program Files\Amazon\CloudHsm\tools\set_cloudhsm_credentials.exe" 
 --username <USERNAME> --password <PASSWORD>

Replace <USERNAME> and <PASSWORD> with the HSM credentials.

To install IIS on your Windows Server

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. On your Windows server, start Server Manager.

3. In the Server Manager dashboard, choose Add roles and features.

4. Read the Before you begin information, and then choose Next.

5. For Installation Type, choose Role-based or feature-based installation. Then choose Next.

6. For Server Selection, choose Select a server from the server pool. Then choose Next.

7. For Server Roles, do the following:

a. Select Web Server (IIS).

b. For Add features that are required for Web Server (IIS), choose Add Features.

c. Choose Next to finish selecting server roles.

8. For Features, accept the defaults. Then choose Next.

9. Read the Web Server Role (IIS) information. Then choose Next.

10. For Select role services, accept the defaults or change the settings as preferred. Then choose
Next.

11. For Confirmation, read the confirmation information. Then choose Install.

Offload on Windows 1136

https://live.sysinternals.com/psexec.exe
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

12. After the installation is complete, choose Close.

After you complete these steps, go to Step 2: Create a certificate signing request (CSR) and 
certificate.

Step 2: Create a certificate signing request (CSR) and certificate

To enable HTTPS, your web server needs an SSL/TLS certificate and a corresponding private key. 
To use SSL/TLS offload with AWS CloudHSM, you store the private key in the HSM in your AWS 
CloudHSM cluster. To do this, you use the AWS CloudHSM key storage provider (KSP) for Microsoft's 
Cryptography API: Next Generation (CNG) to create a certificate signing request (CSR). Then you 
give the CSR to a certificate authority (CA), which signs the CSR to produce a certificate.

Topics

• Create a CSR with Client SDK 5

• Create a CSR with Client SDK 3

• Get a signed certificate and import it

Create a CSR with Client SDK 5

1. On your Windows Server, use a text editor to create a certificate request file 
named IISCertRequest.inf. The following shows the contents of an example
IISCertRequest.inf file. For more information about the sections, keys, and values that 
you can specify in the file, see Microsoft's documentation. Do not change the ProviderName
value.

[Version]
Signature = "$Windows NT$"
[NewRequest]
Subject = "CN=example.com,C=US,ST=Washington,L=Seattle,O=ExampleOrg,OU=WebServer"
HashAlgorithm = SHA256
KeyAlgorithm = RSA
KeyLength = 2048
ProviderName = "CloudHSM Key Storage Provider"
KeyUsage = 0xf0
MachineKeySet = True
[EnhancedKeyUsageExtension]
OID=1.3.6.1.5.5.7.3.1

Offload on Windows 1137

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1#BKMK_New


AWS CloudHSM User Guide

2. Use the Windows certreq command to create a CSR from the IISCertRequest.inf file 
that you created in the previous step. The following example saves the CSR to a file named
IISCertRequest.csr. If you used a different file name for your certificate request file, 
replace IISCertRequest.inf with the appropriate file name. You can optionally replace
IISCertRequest.csr with a different file name for your CSR file.

C:\>certreq -new IISCertRequest.inf IISCertRequest.csr

CertReq: Request Created

The IISCertRequest.csr file contains your CSR. You need this CSR to get a signed 
certificate.

Create a CSR with Client SDK 3

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. Use the following command to start the AWS CloudHSM client daemon.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client start

CentOS 7

$ sudo service cloudhsm-client start

CentOS 8

$ sudo service cloudhsm-client start

Offload on Windows 1138

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

RHEL 7

$ sudo service cloudhsm-client start

RHEL 8

$ sudo service cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client start

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe start AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

C:\Program Files\Amazon\CloudHSM>start "cloudhsm_client" cloudhsm_client.exe 
 C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

3. On your Windows Server, use a text editor to create a certificate request file 
named IISCertRequest.inf. The following shows the contents of an example
IISCertRequest.inf file. For more information about the sections, keys, and values that 
you can specify in the file, see Microsoft's documentation. Do not change the ProviderName
value.

[Version]
Signature = "$Windows NT$"
[NewRequest]
Subject = "CN=example.com,C=US,ST=Washington,L=Seattle,O=ExampleOrg,OU=WebServer"
HashAlgorithm = SHA256
KeyAlgorithm = RSA

Offload on Windows 1139

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1#BKMK_New


AWS CloudHSM User Guide

KeyLength = 2048
ProviderName = "Cavium Key Storage Provider"
KeyUsage = 0xf0
MachineKeySet = True
[EnhancedKeyUsageExtension]
OID=1.3.6.1.5.5.7.3.1

4. Use the Windows certreq command to create a CSR from the IISCertRequest.inf file 
that you created in the previous step. The following example saves the CSR to a file named
IISCertRequest.csr. If you used a different file name for your certificate request file, 
replace IISCertRequest.inf with the appropriate file name. You can optionally replace
IISCertRequest.csr with a different file name for your CSR file.

C:\>certreq -new IISCertRequest.inf IISCertRequest.csr
        SDK Version: 2.03

CertReq: Request Created

The IISCertRequest.csr file contains your CSR. You need this CSR to get a signed 
certificate.

Get a signed certificate and import it

In a production environment, you typically use a certificate authority (CA) to create a certificate 
from a CSR. A CA is not necessary for a test environment. If you do use a CA, send the CSR file 
(IISCertRequest.csr) to it and use the CA to create a signed SSL/TLS certificate.

As an alternative to using a CA, you can use a tool like OpenSSL to create a self-signed certificate.

Warning

Self-signed certificates are not trusted by browsers and should not be used in production 
environments. They can be used in test environments.

The following procedures show how to create a self-signed certificate and use it to sign your web 
server's CSR.

Offload on Windows 1140

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1
https://www.openssl.org/


AWS CloudHSM User Guide

To create a self-signed certificate

1. Use the following OpenSSL command to create a private key. You can optionally replace
SelfSignedCA.key with the file name to contain your private key.

openssl genrsa -aes256 -out SelfSignedCA.key 2048
Generating RSA private key, 2048 bit long modulus
......................................................................+++
.........................................+++
e is 65537 (0x10001)
Enter pass phrase for SelfSignedCA.key:
Verifying - Enter pass phrase for SelfSignedCA.key:

2. Use the following OpenSSL command to create a self-signed certificate using the private key 
that you created in the previous step. This is an interactive command. Read the on-screen 
instructions and follow the prompts. Replace SelfSignedCA.key with the name of the file 
that contains your private key (if different). You can optionally replace SelfSignedCA.crt
with the file name to contain your self-signed certificate.

openssl req -new -x509 -days 365 -key SelfSignedCA.key -out SelfSignedCA.crt
Enter pass phrase for SelfSignedCA.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

Offload on Windows 1141



AWS CloudHSM User Guide

To use your self-signed certificate to sign your web server's CSR

• Use the following OpenSSL command to use your private key and self-signed certificate to 
sign the CSR. Replace the following with the names of the files that contain the corresponding 
data (if different).

• IISCertRequest.csr – The name of the file that contains your web server's CSR

• SelfSignedCA.crt – The name of the file that contains your self-signed certificate

• SelfSignedCA.key – The name of the file that contains your private key

• IISCert.crt – The name of the file to contain your web server's signed certificate

openssl x509 -req -days 365 -in IISCertRequest.csr \ 
                            -CA SelfSignedCA.crt \ 
                            -CAkey SelfSignedCA.key \ 
                            -CAcreateserial \ 
                            -out IISCert.crt
Signature ok
subject=/ST=IIS-HSM/L=IIS-HSM/OU=IIS-HSM/O=IIS-HSM/CN=IIS-HSM/C=IIS-HSM
Getting CA Private Key
Enter pass phrase for SelfSignedCA.key:

After you complete the previous step, you have a signed certificate for your web server 
(IISCert.crt) and a self-signed certificate (SelfSignedCA.crt). When you have these files, go 
to Step 3: Configure the web server.

Step 3: Configure the web server

Update your IIS website's configuration to use the HTTPS certificate that you created at the end of 
the previous step. This will finish setting up your Windows web server software (IIS) for SSL/TLS 
offload with AWS CloudHSM.

If you used a self-signed certificate to sign your CSR, you must first import the self-signed 
certificate into the Windows Trusted Root Certification Authorities.

To import your self-signed certificate into the Windows Trusted Root Certification Authorities

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

Offload on Windows 1142

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

2. Copy your self-signed certificate to your Windows server.

3. On your Windows Server, open the Control Panel.

4. For Search Control Panel, type certificates. Then choose Manage computer certificates.

5. In the Certificates ‐ Local Computer window, double-click Trusted Root Certification 
Authorities.

6. Right-click on Certificates and then choose All Tasks, Import.

7. In the Certificate Import Wizard, choose Next.

8. Choose Browse, then find and select your self-signed certificate. If you created your self-
signed certificate by following the instructions in the previous step of this tutorial, your self-
signed certificate is named SelfSignedCA.crt. Choose Open.

9. Choose Next.

10. For Certificate Store, choose Place all certificates in the following store. Then ensure that
Trusted Root Certification Authorities is selected for Certificate store.

11. Choose Next and then choose Finish.

To update the IIS website's configuration

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. Start the AWS CloudHSM client daemon.

3. Copy your web server's signed certificate—the one that you created at the end of this tutorial's 
previous step—to your Windows server.

4. On your Windows Server, use the Windows certreq command to accept the signed certificate, 
as in the following example. Replace IISCert.crt with the name of the file that contains 
your web server's signed certificate.

C:\>certreq -accept IISCert.crt
        SDK Version: 2.03

5. On your Windows server, start Server Manager.

6. In the Server Manager dashboard, in the top right corner, choose Tools, Internet Information 
Services (IIS) Manager.

7. In the Internet Information Services (IIS) Manager window, double-click your server name. 
Then double-click Sites. Select your website.

Offload on Windows 1143

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1


AWS CloudHSM User Guide

8. Select SSL Settings. Then, on the right side of the window, choose Bindings.

9. In the Site Bindings window, choose Add.

10. For Type, choose https. For SSL certificate, choose the HTTPS certificate that you created at 
the end of this tutorial's previous step.

Note

If you encounter an error during this certificate binding, restart your server and retry 
this step.

11. Choose OK.

After you update your website's configuration, go to Step 4: Enable HTTPS traffic and verify the 
certificate.

Step 4: Enable HTTPS traffic and verify the certificate

After you configure your web server for SSL/TLS offload with AWS CloudHSM, add your web server 
instance to a security group that allows inbound HTTPS traffic. This allows clients, such as web 
browsers, to establish an HTTPS connection with your web server. Then make an HTTPS connection 
to your web server and verify that it's using the certificate that you configured for SSL/TLS offload 
with AWS CloudHSM.

Topics

• Enable inbound HTTPS connections

• Verify that HTTPS uses the certificate that you configured

Enable inbound HTTPS connections

To connect to your web server from a client (such as a web browser), create a security group that 
allows inbound HTTPS connections. Specifically, it should allow inbound TCP connections on port 
443. Assign this security group to your web server.

To create a security group for HTTPS and assign it to your web server

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Security groups in the navigation pane.

Offload on Windows 1144

https://console.aws.amazon.com/ec2/


AWS CloudHSM User Guide

3. Choose Create security group.

4. For Create Security Group, do the following:

a. For Security group name, type a name for the security group that you are creating.

b. (Optional) Type a description of the security group that you are creating.

c. For VPC, choose the VPC that contains your web server Amazon EC2 instance.

d. Select Add Rule.

e. For Type, select HTTPS from the drop-down window.

f. For Source, enter a source location.

g. Choose Create security group.

5. In the navigation pane, choose Instances.

6. Select the check box next to your web server instance.

7. Select the Actions drop-down menu at the top of the page. Select Security and then Change 
Security Groups.

8. For Associated security groups, select the search box and choose the security group that you 
created for HTTPS. Then choose Add Security Groups.

9. Select Save.

Verify that HTTPS uses the certificate that you configured

After you add the web server to a security group, you can verify that SSL/TLS offload is using your 
self-signed certificate. You can do this with a web browser or with a tool such as OpenSSL s_client.

To verify SSL/TLS offload with a web browser

1. Use a web browser to connect to your web server using the public DNS name or IP address 
of the server. Ensure that the URL in the address bar begins with https://. For example,
https://ec2-52-14-212-67.us-east-2.compute.amazonaws.com/.

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

Offload on Windows 1145

https://www.openssl.org/docs/manmaster/man1/s_client.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html


AWS CloudHSM User Guide

2. Use your web browser to view the web server certificate. For more information, see the 
following:

• For Mozilla Firefox, see View a Certificate on the Mozilla Support website.

• For Google Chrome, see Understand Security Issues on the Google Tools for Web Developers 
website.

Other web browsers might have similar features that you can use to view the web server 
certificate.

3. Ensure that the SSL/TLS certificate is the one that you configured your web server to use.

To verify SSL/TLS offload with OpenSSL s_client

1. Run the following OpenSSL command to connect to your web server using HTTPS. Replace
<server name> with the public DNS name or IP address of your web server.

openssl s_client -connect <server name>:443

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

2. Ensure that the SSL/TLS certificate is the one that you configured your web server to use.

You now have a website that is secured with HTTPS. The private key for the web server is stored in 
an HSM in your AWS CloudHSM cluster.

To add a load balancer, see Add a load balancer with Elastic Load Balancing for AWS 
CloudHSM(optional).

Offload on Windows 1146

https://support.mozilla.org/en-US/kb/secure-website-certificate#w_view-a-certificate
https://developers.google.com/web/tools/chrome-devtools/security
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html


AWS CloudHSM User Guide

Add a load balancer with Elastic Load Balancing for AWS 
CloudHSM(optional)

After you set up SSL/TLS offload with one web server, you can create more web servers and 
an Elastic Load Balancing load balancer that routes HTTPS traffic to the web servers. A load 
balancer can reduce the load on your individual web servers by balancing traffic across two or more 
servers. It can also increase the availability of your website because the load balancer monitors the 
health of your web servers and only routes traffic to healthy servers. If a web server fails, the load 
balancer automatically stops routing traffic to it.

Topics

• Step 1. Create a subnet for a second web server

• Step 2. Create the second web server

• Step 3. Create the load balancer

Step 1. Create a subnet for a second web server

Before you can create another web server, you need to create a new subnet in the same VPC that 
contains your existing web server and AWS CloudHSM cluster.

To create a new subnet

1. Open the Subnets section of the Amazon VPC console.

2. Choose Create Subnet.

3. In the Create Subnet dialog box, do the following:

a. For Name tag, type a name for your subnet.

b. For VPC, choose the AWS CloudHSM VPC that contains your existing web server and AWS 
CloudHSM cluster.

c. For Availability Zone, choose an Availability Zone that is different from the one that 
contains your existing web server.

d. For IPv4 CIDR block, type the CIDR block to use for the subnet. For example, type
10.0.10.0/24.

e. Choose Yes, Create.

4. Select the check box next to the public subnet that contains your existing web server. This is 
different from the public subnet that you created in the previous step.

Add a load balancer (optional) 1147

https://console.aws.amazon.com/vpc/home#subnets:


AWS CloudHSM User Guide

5. In the content pane, choose the Route Table tab. Then choose the link for the route table.

6. Select the check box next to the route table.

7. Choose the Subnet Associations tab. Then choose Edit.

8. Select the check box next to the public subnet that you created earlier in this procedure. Then 
choose Save.

Step 2. Create the second web server

Complete the following steps to create a second web server with the same configuration as your 
existing web server.

To create a second web server

1. Open the Instances section of the Amazon EC2 console at.

2. Select the check box next to your existing web server instance.

3. Choose Actions, Image, and then Create Image.

4. In the Create Image dialog box, do the following:

a. For Image name, type a name for the image.

b. For Image description, type a description for the image.

c. Choose Create Image. This action reboots your existing web server.

d. Choose the View pending image ami-<AMI ID> link.

Add a load balancer (optional) 1148

https://console.aws.amazon.com/ec2/v2/home#Instances:


AWS CloudHSM User Guide

In the Status column, note your image status. When your image status is available (this 
might take several minutes), go to the next step.

5. In the navigation pane, choose Instances.

6. Select the check box next to your existing web server.

7. Choose Actions and choose Launch More Like This.

8. Choose Edit AMI.

9. In the left navigation pane, choose My AMIs. Then clear the text in the search box.

10. Next to your web server image, choose Select.

11. Choose Yes, I want to continue with this AMI (<image name> - ami-<AMI ID>).

12. Choose Next.

13. Select an instance type, and then choose Next: Configure Instance Details.

14. For Step 3: Configure Instance Details, do the following:

a. For Network, choose the VPC that contains your existing web server.

b. For Subnet, choose the public subnet that you created for the second web server.

c. For Auto-assign Public IP, chooseEnable.

d. Change the remaining instance details as preferred. Then choose Next: Add Storage.

15. Change the storage settings as preferred. Then choose Next: Add Tags.

16. Add or edit tags as preferred. Then choose Next: Configure Security Group.

17. For Step 6: Configure Security Group, do the following:

a. For Assign a security group, choose Select an existing security group.

Add a load balancer (optional) 1149



AWS CloudHSM User Guide

b. Select the check box next to the security group named cloudhsm-<cluster ID>-sg. 
AWS CloudHSM created this security group on your behalf when you created the cluster. 
You must choose this security group to allow the web server instance to connect to the 
HSMs in the cluster.

c. Select the check box next to the security group that allows inbound HTTPS traffic. You
created this security group previously.

d. (Optional) Select the check box next to a security group that allows inbound SSH (for 
Linux) or RDP (for Windows) traffic from your network. That is, the security group 
must allow inbound TCP traffic on port 22 (for SSH on Linux) or port 3389 (for RDP on 
Windows). Otherwise, you cannot connect to your client instance. If you don't have a 
security group like this, you must create one and then assign it to your client instance 
later.

Choose Review and Launch.

18. Review your instance details, and then choose Launch.

19. Choose whether to launch your instance with an existing key pair, create a new key pair, or 
launch your instance without a key pair.

• To use an existing key pair, do the following:

1. Choose Choose an existing key pair.

2. For Select a key pair, choose the key pair to use.

3. Select the check box next to I acknowledge that I have access to the selected private 
key file (<private key file name>.pem), and that without this file, I won't be able 
to log into my instance.

• To create a new key pair, do the following:

1. Choose Create a new key pair.

2. For Key pair name, type a key pair name.

3. Choose Download Key Pair and save the private key file in a secure and accessible 
location.

Warning

You cannot download the private key file again after this point. If you do not 
download the private key file now, you will be unable to access the client instance.

Add a load balancer (optional) 1150



AWS CloudHSM User Guide

• To launch your instance without a key pair, do the following:

1. Choose Proceed without a key pair.

2. Select the check box next to I acknowledge that I will not be able to connect to this 
instance unless I already know the password built into this AMI.

Choose Launch Instances.

Step 3. Create the load balancer

Complete the following steps to create an Elastic Load Balancing load balancer that routes HTTPS 
traffic to your web servers.

To create a load balancer

1. Open the Load balancers section of the Amazon EC2 console.

2. Choose Create Load Balancer.

3. In the Network Load Balancer section, choose Create.

4. For Step 1: Configure Load Balancer, do the following:

a. For Name, type a name for the load balancer that you are creating.

b. In the Listeners section, for Load Balancer Port, change the value to 443.

c. In the Availability Zones section, for VPC, choose the VPC that contains your web servers.

d. In the Availability Zones section, choose the subnets that contain your web servers.

e. Choose Next: Configure Routing.

5. For Step 2: Configure Routing, do the following:

a. For Name, type a name for the target group that you are creating.

b. For Port, change the value to 443.

c. Choose Next: Register Targets.

6. For Step 3: Register Targets, do the following:

a. In the Instances section, select the check boxes next to your web server instances. Then 
choose Add to registered.

b. Choose Next: Review.

7. Review your load balancer details, then choose Create.

Add a load balancer (optional) 1151

https://console.aws.amazon.com/ec2/v2/home#LoadBalancers:


AWS CloudHSM User Guide

8. When the load balancer has been successfully created, choose Close.

After you complete the preceding steps, the Amazon EC2 console shows your Elastic Load 
Balancing load balancer.

When your load balancer's state is active, you can verify that the load balancer is working. That is, 
you can verify that it's sending HTTPS traffic to your web servers with SSL/TLS offload with AWS 
CloudHSM. You can do this with a web browser or a tool such as OpenSSL s_client.

To verify that your load balancer is working with a web browser

1. In the Amazon EC2 console, find the DNS name for the load balancer that you just created. 
Then select the DNS name and copy it.

2. Use a web browser such as Mozilla Firefox or Google Chrome to connect to your load balancer 
using the load balancer's DNS name. Ensure that the URL in the address bar begins with 
https://.

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

3. Use your web browser to view the web server certificate. For more information, see the 
following:

• For Mozilla Firefox, see View a Certificate on the Mozilla Support website.

• For Google Chrome, see Understand Security Issues on the Google Tools for Web Developers 
website.

Other web browsers might have similar features that you can use to view the web server 
certificate.

4. Ensure that the certificate is the one that you configured the web server to use.

Add a load balancer (optional) 1152

https://www.openssl.org/docs/manmaster/man1/s_client.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html
https://support.mozilla.org/en-US/kb/secure-website-certificate#w_view-a-certificate
https://developers.google.com/web/tools/chrome-devtools/security


AWS CloudHSM User Guide

To verify that your load balancer is working with OpenSSL s_client

1. Use the following OpenSSL command to connect to your load balancer using HTTPS. Replace
<DNS name> with the DNS name of your load balancer.

openssl s_client -connect <DNS name>:443

Tip

You can use a DNS service such as Amazon Route 53 to route your website's domain 
name (for example, https://www.example.com/) to your web server. For more 
information, see Routing Traffic to an Amazon EC2 Instance in the Amazon Route 53 
Developer Guide or in the documentation for your DNS service.

2. Ensure that the certificate is the one that you configured the web server to use.

You now have a website that is secured with HTTPS, with the web server's private key stored in an 
HSM in your AWS CloudHSM cluster. Your website has two web servers and a load balancer to help 
improve efficiency and availability.

Configure Windows Server as a certificate authority (CA) with 
AWS CloudHSM

AWS CloudHSM offers support to configure Windows Server as a certificate authority (CA) through 
Client SDK 3 and Client SDK 5. The steps to use these tools will vary depending on the version of 
the client SDK in which you currently have downloaded. The following sections provide information 
to each SDK.

Topics

• Configure Windows Server as a certificate authority (CA) with Client SDK 5

• Configure Windows Server as a certificate authority (CA) with Client SDK 3

Windows Server CA 1153

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-to-ec2-instance.html


AWS CloudHSM User Guide

Configure Windows Server as a certificate authority (CA) with Client 
SDK 5

In a public key infrastructure (PKI), a certificate authority (CA) is a trusted entity that issues digital 
certificates. These digital certificates bind a public key to an identity (a person or organization) by 
means of public key cryptography and digital signatures. To operate a CA, you must maintain trust 
by protecting the private key that signs the certificates issued by your CA. You can store the private 
key in the HSM in your AWS CloudHSM cluster, and use the HSM to perform the cryptographic 
signing operations.

In this tutorial, you use Windows Server and AWS CloudHSM to configure a CA. You install the AWS 
CloudHSM client software for Windows on your Windows server, then add the Active Directory 
Certificate Services (AD CS) role to your Windows Server. When you configure this role, you use 
an AWS CloudHSM key storage provider (KSP) to create and store the CA's private key on your 
AWS CloudHSM cluster. The KSP is the bridge that connects your Windows server to your AWS 
CloudHSM cluster. In the last step, you sign a certificate signing request (CSR) with your Windows 
Server CA.

For more information, see the following topics:

Topics

• Step 1: Set up the prerequisites

• Step 2: Create a Windows Server CA with AWS CloudHSM

• Step 3: Sign a certificate signing request (CSR) with your Windows Server CA with AWS 
CloudHSM

Step 1: Set up the prerequisites

To set up Windows Server as a certificate authority (CA) with AWS CloudHSM, you need the 
following:

• An active AWS CloudHSM cluster with at least one HSM.

• An Amazon EC2 instance running a Windows Server operating system with the AWS CloudHSM 
client software for Windows installed. This tutorial uses Microsoft Windows Server 2016.

• A cryptographic user (CU) to own and manage the CA's private key on the HSM.

Client SDK 5 with Windows Server CA 1154



AWS CloudHSM User Guide

To set up the prerequisites for a Windows Server CA with AWS CloudHSM

1. Complete the steps in Getting started. When you launch the Amazon EC2 client, choose a 
Windows Server AMI. This tutorial uses Microsoft Windows Server 2016. When you complete 
these steps, you have an active cluster with at least one HSM. You also have an Amazon EC2 
client instance running Windows Server with the AWS CloudHSM client software for Windows 
installed.

2. (Optional) Add more HSMs to your cluster. For more information, see Adding an HSM to an 
AWS CloudHSM cluster.

3. Connect to your client instance. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide.

4. Create a crypto user (CU) using Managing HSM users with CloudHSM CLI or Managing HSM 
users with CloudHSM Management Utility (CMU). Keep track of the CU user name and 
password. You will need them to complete the next step.

5. Set the login credentials for the HSM, using the CU user name and password that you created 
in the previous step.

6. In step 5, if you used Windows Credentials Manager to set HSM credentials, download
psexec.exe from SysInternals to run the following command as NT Authority\SYSTEM:

psexec.exe -s "C:\Program Files\Amazon\CloudHsm\tools\set_cloudhsm_credentials.exe" 
 --username <USERNAME> --password <PASSWORD>

Replace <USERNAME> and <PASSWORD> with the HSM credentials.

To create a Windows Server CA with AWS CloudHSM, go to Create Windows Server CA.

Step 2: Create a Windows Server CA with AWS CloudHSM

To create a Windows Server CA, you add the Active Directory Certificate Services (AD CS) role to 
your Windows Server. When you add this role, you use an AWS CloudHSM key storage provider 
(KSP) to create and store the CA's private key on your AWS CloudHSM cluster.

Note

When you create your Windows Server CA, you can choose to create a root CA or a 
subordinate CA. You typically make this decision based on the design of your public key 

Client SDK 5 with Windows Server CA 1155

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://live.sysinternals.com/psexec.exe


AWS CloudHSM User Guide

infrastructure and the security policies of your organization. This tutorial explains how to 
create a root CA for simplicity.

To add the AD CS role to your Windows Server and create the CA's private key

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. On your Windows server, start Server Manager.

3. In the Server Manager dashboard, choose Add roles and features.

4. Read the Before you begin information, and then choose Next.

5. For Installation Type, choose Role-based or feature-based installation. Then choose Next.

6. For Server Selection, choose Select a server from the server pool. Then choose Next.

7. For Server Roles, do the following:

a. Select Active Directory Certificate Services.

b. For Add features that are required for Active Directory Certificate Services, choose Add 
Features.

c. Choose Next to finish selecting server roles.

8. For Features, accept the defaults, and then choose Next.

9. For AD CS, do the following:

a. Choose Next.

b. Select Certification Authority, and then choose Next.

10. For Confirmation, read the confirmation information, and then choose Install. Do not close 
the window.

11. Choose the highlighted Configure Active Directory Certificate Services on the destination 
server link.

12. For Credentials, verify or change the credentials displayed. Then choose Next.

13. For Role Services, select Certification Authority. Then choose Next.

14. For Setup Type, select Standalone CA. Then choose Next.

15. For CA Type, select Root CA. Then choose Next.

Client SDK 5 with Windows Server CA 1156

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

Note

You can choose to create a root CA or a subordinate CA based on the design of your 
public key infrastructure and the security policies of your organization. This tutorial 
explains how to create a root CA for simplicity.

16. For Private Key, select Create a new private key. Then choose Next.

17. For Cryptography, do the following:

a. For Select a cryptographic provider, choose one of the CloudHSM Key Storage Provider
options from the menu. These are the AWS CloudHSM key storage providers. For example, 
you can choose RSA#CloudHSM Key Storage Provider.

b. For Key length, choose one of the key length options.

c. For Select the hash algorithm for signing certificates issued by this CA, choose one of 
the hash algorithm options.

Choose Next.

18. For CA Name, do the following:

a. (Optional) Edit the common name.

b. (Optional) Type a distinguished name suffix.

Choose Next.

19. For Validity Period, specify a time period in years, months, weeks, or days. Then choose Next.

20. For Certificate Database, you can accept the default values, or optionally change the location 
for the database and the database log. Then choose Next.

21. For Confirmation, review the information about your CA; Then choose Configure.

22. Choose Close, and then choose Close again.

You now have a Windows Server CA with AWS CloudHSM. To learn how to sign a certificate signing 
request (CSR) with your CA, go to Sign a CSR.

Client SDK 5 with Windows Server CA 1157



AWS CloudHSM User Guide

Step 3: Sign a certificate signing request (CSR) with your Windows Server CA with 
AWS CloudHSM

You can use your Windows Server CA with AWS CloudHSM to sign a certificate signing request 
(CSR). To complete these steps, you need a valid CSR. You can create a CSR in several ways, 
including the following:

• Using OpenSSL

• Using the Windows Server Internet Information Services (IIS) Manager

• Using the certificates snap-in in the Microsoft Management Console

• Using the certreq command line utility on Windows

The steps for creating a CSR are outside the scope of this tutorial. When you have a CSR, you can 
sign it with your Windows Server CA.

To sign a CSR with your Windows Server CA

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. On your Windows server, start Server Manager.

3. In the Server Manager dashboard, in the top right corner, choose Tools, Certification 
Authority.

4. In the Certification Authority window, choose your computer name.

5. From the Action menu, choose All Tasks, Submit new request.

6. Select your CSR file, and then choose Open.

7. In the Certification Authority window, double-click Pending Requests.

8. Select the pending request. Then, from the Action menu, choose All Tasks, Issue.

9. In the Certification Authority window, double-click Issued Requests to view the signed 
certificate.

10. (Optional) To export the signed certificate to a file, complete the following steps:

a. In the Certification Authority window, double-click the certificate.

b. Choose the Details tab, and then choose Copy to File.

c. Follow the instructions in the Certificate Export Wizard.

Client SDK 5 with Windows Server CA 1158

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

You now have a Windows Server CA with AWS CloudHSM, and a valid certificate signed by the 
Windows Server CA.

Configure Windows Server as a certificate authority (CA) with Client 
SDK 3

In a public key infrastructure (PKI), a certificate authority (CA) is a trusted entity that issues digital 
certificates. These digital certificates bind a public key to an identity (a person or organization) by 
means of public key cryptography and digital signatures. To operate a CA, you must maintain trust 
by protecting the private key that signs the certificates issued by your CA. You can store the private 
key in the HSM in your AWS CloudHSM cluster, and use the HSM to perform the cryptographic 
signing operations.

In this tutorial, you use Windows Server and AWS CloudHSM to configure a CA. You install the AWS 
CloudHSM client software for Windows on your Windows server, then add the Active Directory 
Certificate Services (AD CS) role to your Windows Server. When you configure this role, you use 
an AWS CloudHSM key storage provider (KSP) to create and store the CA's private key on your 
AWS CloudHSM cluster. The KSP is the bridge that connects your Windows server to your AWS 
CloudHSM cluster. In the last step, you sign a certificate signing request (CSR) with your Windows 
Server CA.

For more information, see the following topics:

Topics

• Step 1: Set up the prerequisites

• Step 2: Create a Windows Server CA with AWS CloudHSM

• Step 3: Sign a certificate signing request (CSR) with your Windows Server CA with AWS 
CloudHSM

Step 1: Set up the prerequisites

To set up Windows Server as a certificate authority (CA) with AWS CloudHSM, you need the 
following:

• An active AWS CloudHSM cluster with at least one HSM.

• An Amazon EC2 instance running a Windows Server operating system with the AWS CloudHSM 
client software for Windows installed. This tutorial uses Microsoft Windows Server 2016.

Client SDK 3 with Windows Server CA 1159



AWS CloudHSM User Guide

• A cryptographic user (CU) to own and manage the CA's private key on the HSM.

To set up the prerequisites for a Windows Server CA with AWS CloudHSM

1. Complete the steps in Getting started. When you launch the Amazon EC2 client, choose a 
Windows Server AMI. This tutorial uses Microsoft Windows Server 2016. When you complete 
these steps, you have an active cluster with at least one HSM. You also have an Amazon EC2 
client instance running Windows Server with the AWS CloudHSM client software for Windows 
installed.

2. (Optional) Add more HSMs to your cluster. For more information, see Adding an HSM to an 
AWS CloudHSM cluster.

3. Connect to your client instance. For more information, see Connect to Your Instance in the
Amazon EC2 User Guide.

4. Create a crypto user (CU) using Managing HSM users with CloudHSM CLI or Managing HSM 
users with CloudHSM Management Utility (CMU). Keep track of the CU user name and 
password. You will need them to complete the next step.

5. Set the login credentials for the HSM, using the CU user name and password that you created 
in the previous step.

6. In step 5, if you used Windows Credentials Manager to set HSM credentials, download
psexec.exe from SysInternals to run the following command as NT Authority\SYSTEM:

   psexec.exe -s "C:\Program Files\Amazon\CloudHsm\tools
\set_cloudhsm_credentials.exe" --username <USERNAME> --password <PASSWORD>

Replace <USERNAME> and <PASSWORD> with the HSM credentials.

To create a Windows Server CA with AWS CloudHSM, go to Create Windows Server CA.

Step 2: Create a Windows Server CA with AWS CloudHSM

To create a Windows Server CA, you add the Active Directory Certificate Services (AD CS) role to 
your Windows Server. When you add this role, you use an AWS CloudHSM key storage provider 
(KSP) to create and store the CA's private key on your AWS CloudHSM cluster.

Client SDK 3 with Windows Server CA 1160

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://live.sysinternals.com/psexec.exe


AWS CloudHSM User Guide

Note

When you create your Windows Server CA, you can choose to create a root CA or a 
subordinate CA. You typically make this decision based on the design of your public key 
infrastructure and the security policies of your organization. This tutorial explains how to 
create a root CA for simplicity.

To add the AD CS role to your Windows Server and create the CA's private key

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. On your Windows server, start Server Manager.

3. In the Server Manager dashboard, choose Add roles and features.

4. Read the Before you begin information, and then choose Next.

5. For Installation Type, choose Role-based or feature-based installation. Then choose Next.

6. For Server Selection, choose Select a server from the server pool. Then choose Next.

7. For Server Roles, do the following:

a. Select Active Directory Certificate Services.

b. For Add features that are required for Active Directory Certificate Services, choose Add 
Features.

c. Choose Next to finish selecting server roles.

8. For Features, accept the defaults, and then choose Next.

9. For AD CS, do the following:

a. Choose Next.

b. Select Certification Authority, and then choose Next.

10. For Confirmation, read the confirmation information, and then choose Install. Do not close 
the window.

11. Choose the highlighted Configure Active Directory Certificate Services on the destination 
server link.

12. For Credentials, verify or change the credentials displayed. Then choose Next.

13. For Role Services, select Certification Authority. Then choose Next.

Client SDK 3 with Windows Server CA 1161

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

14. For Setup Type, select Standalone CA. Then choose Next.

15. For CA Type, select Root CA. Then choose Next.

Note

You can choose to create a root CA or a subordinate CA based on the design of your 
public key infrastructure and the security policies of your organization. This tutorial 
explains how to create a root CA for simplicity.

16. For Private Key, select Create a new private key. Then choose Next.

17. For Cryptography, do the following:

a. For Select a cryptographic provider, choose one of the Cavium Key Storage Provider
options from the menu. These are the AWS CloudHSM key storage providers. For example, 
you can choose RSA#Cavium Key Storage Provider.

b. For Key length, choose one of the key length options.

c. For Select the hash algorithm for signing certificates issued by this CA, choose one of 
the hash algorithm options.

Choose Next.

18. For CA Name, do the following:

a. (Optional) Edit the common name.

b. (Optional) Type a distinguished name suffix.

Choose Next.

19. For Validity Period, specify a time period in years, months, weeks, or days. Then choose Next.

20. For Certificate Database, you can accept the default values, or optionally change the location 
for the database and the database log. Then choose Next.

21. For Confirmation, review the information about your CA; Then choose Configure.

22. Choose Close, and then choose Close again.

You now have a Windows Server CA with AWS CloudHSM. To learn how to sign a certificate signing 
request (CSR) with your CA, go to Sign a CSR.

Client SDK 3 with Windows Server CA 1162



AWS CloudHSM User Guide

Step 3: Sign a certificate signing request (CSR) with your Windows Server CA with 
AWS CloudHSM

You can use your Windows Server CA with AWS CloudHSM to sign a certificate signing request 
(CSR). To complete these steps, you need a valid CSR. You can create a CSR in several ways, 
including the following:

• Using OpenSSL

• Using the Windows Server Internet Information Services (IIS) Manager

• Using the certificates snap-in in the Microsoft Management Console

• Using the certreq command line utility on Windows

The steps for creating a CSR are outside the scope of this tutorial. When you have a CSR, you can 
sign it with your Windows Server CA.

To sign a CSR with your Windows Server CA

1. If you haven't already done so, connect to your Windows server. For more information, see
Connect to Your Instance in the Amazon EC2 User Guide.

2. On your Windows server, start Server Manager.

3. In the Server Manager dashboard, in the top right corner, choose Tools, Certification 
Authority.

4. In the Certification Authority window, choose your computer name.

5. From the Action menu, choose All Tasks, Submit new request.

6. Select your CSR file, and then choose Open.

7. In the Certification Authority window, double-click Pending Requests.

8. Select the pending request. Then, from the Action menu, choose All Tasks, Issue.

9. In the Certification Authority window, double-click Issued Requests to view the signed 
certificate.

10. (Optional) To export the signed certificate to a file, complete the following steps:

a. In the Certification Authority window, double-click the certificate.

b. Choose the Details tab, and then choose Copy to File.

c. Follow the instructions in the Certificate Export Wizard.

Client SDK 3 with Windows Server CA 1163

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

You now have a Windows Server CA with AWS CloudHSM, and a valid certificate signed by the 
Windows Server CA.

Oracle database transparent data encryption (TDE) with AWS 
CloudHSM

Transparent Data Encryption (TDE) is used to encrypt database files. Using TDE, database software 
encrypts data before storing it on disk. The data in the database's table columns or tablespaces are 
encrypted with a table key or tablespace key. Some versions of Oracle's database software offer 
TDE. In Oracle TDE, these keys are encrypted with a TDE master encryption key. You can achieve 
greater security by storing the TDE master encryption key in the HSMs in your AWS CloudHSM 
cluster.

In this solution, you use Oracle Database installed on an Amazon EC2 instance. Oracle Database 
integrates with the AWS CloudHSM software library for PKCS #11 to store the TDE master key in 
the HSMs in your cluster.

Oracle database encryption 1164



AWS CloudHSM User Guide

Important

• We recommend installing Oracle Database on an Amazon EC2 instance.

Complete the following steps to accomplish Oracle TDE integration with AWS CloudHSM.

Topics

• Step 1. Set up the prerequisites

• Step 3: Generate the Oracle TDE master encryption key

Step 1. Set up the prerequisites

To accomplish Oracle TDE integration with AWS CloudHSM, you need the following:

• An active AWS CloudHSM cluster with at least one HSM.

• An Amazon EC2 instance running the Amazon Linux operating system with the following 
software installed:

• The AWS CloudHSM client and command line tools.

• The AWS CloudHSM software library for PKCS #11.

• Oracle Database. AWS CloudHSM supports Oracle TDE integration. Client SDK 5.6 and higher 
support Oracle TDE for Oracle Database 19c. Client SDK 3 supports Oracle TDE for Oracle 
Database versions 11g and 12c.

• A cryptographic user (CU) to own and manage the TDE master encryption key on the HSMs in 
your cluster.

Complete the following steps to set up all of the prerequisites.

To set up the prerequisites for Oracle TDE integration with AWS CloudHSM

1. Complete the steps in Getting started. After you do so, you'll have an active cluster with one 
HSM. You will also have an Amazon EC2 instance running the Amazon Linux operating system. 
The AWS CloudHSM client and command line tools will also be installed and configured.

2. (Optional) Add more HSMs to your cluster. For more information, see Adding an HSM to an 
AWS CloudHSM cluster.

Set up prerequisites 1165



AWS CloudHSM User Guide

3. Connect to your Amazon EC2 client instance and do the following:

a. Install the AWS CloudHSM software library for PKCS #11.

b. Install Oracle Database. For more information, see the Oracle Database documentation. 
Client SDK 5.6 and higher support Oracle TDE for Oracle Database 19c. Client SDK 3 
supports Oracle TDE for Oracle Database versions 11g and 12c.

c. Use the cloudhsm_mgmt_util command line tool to create a cryptographic user (CU) on 
your cluster. For more information about creating a CU, see How to Manage HSM Users 
with CMU and HSM users.

Step 3: Generate the Oracle TDE master encryption key

To generate the Oracle TDE master key on the HSMs in your cluster, complete the steps in the 
following procedure.

To generate the master key

1. Use the following command to open Oracle SQL*Plus. When prompted, type the system 
password that you set when you installed Oracle Database.

sqlplus / as sysdba

Note

For Client SDK 3, you must set the CLOUDHSM_IGNORE_CKA_MODIFIABLE_FALSE
environment variable each time you generate a master key. This variable is only 
needed for master key generation. For more information, see "Issue: Oracle sets the 
PCKS #11 attribute CKA_MODIFIABLE during master key generation, but the HSM 
does not support it" in Known Issues for Integrating Third-Party Applications.

2. Run the SQL statement that creates the master encryption key, as shown in the following 
examples. Use the statement that corresponds to your version of Oracle Database. Replace
<CU user name> with the user name of the cryptographic user (CU). Replace <password>
with the CU password.

Step 3: Generate the Oracle TDE master encryption key 1166

https://docs.oracle.com/en/database/


AWS CloudHSM User Guide

Important

Run the following command only once. Each time the command is run, it creates a new 
master encryption key.

• For Oracle Database version 11, run the following SQL statement.

SQL> alter system set encryption key identified by "<CU user name>:<password>";

• For Oracle Database version 12 and version 19c, run the following SQL statement.

SQL> administer key management set key identified by "<CU user 
 name>:<password>";

If the response is System altered or keystore altered, then you successfully generated 
and set the master key for Oracle TDE.

3. (Optional) Run the following command to verify the status of the Oracle wallet.

SQL> select * from v$encryption_wallet;

If the wallet is not open, use one of the following commands to open it. Replace <CU user 
name> with the name of the cryptographic user (CU). Replace <password> with the CU 
password.

• For Oracle 11, run the following command to open the wallet.

SQL> alter system set encryption wallet open identified by "<CU user 
 name>:<password>";

To manually close the wallet, run the following command.

SQL> alter system set encryption wallet close identified by "<CU user 
 name>:<password>";

• For Oracle 12 and Oracle 19c, run the following command to open the wallet.

Step 3: Generate the Oracle TDE master encryption key 1167



AWS CloudHSM User Guide

SQL> administer key management set keystore open identified by "<CU user 
 name>:<password>";

To manually close the wallet, run the following command.

SQL> administer key management set keystore close identified by "<CU user 
 name>:<password>";

Use Microsoft SignTool with AWS CloudHSM to sign files

AWS CloudHSM offers support to use Microsoft Signtool to sign file through Client SDK 3 and 
Client SDK 5. The steps to use these tools will vary depending on the version of the client SDK in 
which you currently have downloaded. The following sections provide information to each SDK.

Topics

• Use Microsoft SignTool with Client SDK 5 to sign files

• Use Microsoft SignTool with Client SDK 3 to sign files

Use Microsoft SignTool with Client SDK 5 to sign files

In cryptography and public key infrastructure (PKI), digital signatures are used to confirm that data 
has been sent by a trusted entity. Signatures also indicate that the data has not been tampered 
with in transit. A signature is an encrypted hash that is generated with the sender's private key. 
The receiver can verify the data integrity by decrypting its hash signature with the sender's public 
key. In turn, it is the sender's responsibility to maintain a digital certificate. The digital certificate 
demonstrates the sender's ownership of the private key and provides the recipient with the public 
key that is needed for decryption. As long as the private key is owned by the sender, the signature 
can be trusted. AWS CloudHSM provides secure FIPS 140-2 level 3 validated hardware for you to 
secure these keys with exclusive single-tenant access.

Many organizations use Microsoft SignTool, a command line tool that signs, verifies, and 
timestamps files to simplify the code signing process. You can use AWS CloudHSM to securely store 
your key pairs until they are needed by SignTool, thus creating an easily automatable workflow for 
signing data.

The following topics provide an overview of how to use SignTool with AWS CloudHSM.

Microsoft SignTool 1168



AWS CloudHSM User Guide

Topics

• Step 1: Set up the prerequisites

• Step 2: Create a signing certificate

• Step 3: Sign a file

Step 1: Set up the prerequisites

To use Microsoft SignTool with AWS CloudHSM, you need the following:

• An Amazon EC2 client instance running a Windows operating system.

• A certificate authority (CA), either self-maintained or established by a third-party provider.

• An active AWS CloudHSM cluster in the same virtual public cloud (VPC) as your EC2 instance. The 
cluster must contain at least one HSM.

• A crypto user (CU) to own and manage keys in the AWS CloudHSM cluster.

• An unsigned file or executable.

• The Microsoft Windows Software Development Kit (SDK).

To set up the prerequisites for using AWS CloudHSM with Windows SignTool

1. Follow the instructions in the Getting Started section of this guide to launch a Windows EC2 
instance and an AWS CloudHSM cluster.

2. If you would like to host your own Windows Server CA, follow steps 1 and 2 in Configuring 
Windows Server as a Certificate Authority with AWS CloudHSM. Otherwise, continue to use 
your publicly trusted third-party CA.

3. Download and install one of the following versions of the Microsoft Windows SDK on your 
Windows EC2 instance:

• Microsoft Windows SDK 10

• Microsoft Windows SDK 8.1

• Microsoft Windows SDK 7

The SignTool executable is part of the Windows SDK Signing Tools for Desktop Apps 
installation feature. You can omit the other features to be installed if you don’t need them. 
The default installation location is:

Client SDK 5 with Microsoft SignTool 1169

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-8-1-sdk
https://www.microsoft.com/en-us/download/details.aspx?id=8279


AWS CloudHSM User Guide

C:\Program Files (x86)\Windows Kits\<SDK version>\bin\<version number>\<CPU 
 architecture>\signtool.exe

You can now use the Microsoft Windows SDK, your AWS CloudHSM cluster, and your CA to Create a 
Signing Certificate.

Step 2: Create a signing certificate

Now that you've downloaded the Windows SDK on to your EC2 instance, you can use it to generate 
a certificate signing request (CSR). The CSR is an unsigned certificate that is eventually passed 
to your CA for signing. In this example, we use the certreq executable that's included with the 
Windows SDK to generate the CSR.

To generate a CSR using the certreq executable

1. If you haven't already done so, connect to your Windows EC2 instance. For more information, 
see Connect to Your Instance in the Amazon EC2 User Guide.

2. Create a file called request.inf that contains the lines below. Replace the Subject
information with that of your organization. For an explanation of each parameter, see
Microsoft's documentation.

[Version]
Signature= $Windows NT$
[NewRequest]
Subject = "C=<Country>,CN=<www.website.com>,O=<Organization>,OU=<Organizational-
Unit>,L=<City>,S=<State>"
RequestType=PKCS10
HashAlgorithm = SHA256
KeyAlgorithm = RSA
KeyLength = 2048
ProviderName = "CloudHSM Key Storage Provider"
KeyUsage = "CERT_DIGITAL_SIGNATURE_KEY_USAGE"
MachineKeySet = True
Exportable = False

3. Run certreq.exe. For this example, we save the CSR as request.csr.

certreq.exe -new request.inf request.csr

Client SDK 5 with Microsoft SignTool 1170

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1#BKMK_New


AWS CloudHSM User Guide

Internally, a new key pair is generated on your AWS CloudHSM cluster, and the pair's private 
key is used to create the CSR.

4. Submit the CSR to your CA. If you are using a Windows Server CA, follow these steps:

a. Enter the following command to open the CA tool:

certsrv.msc

b. In the new window, right-click the CA server's name. Choose All Tasks, and then choose
Submit new request.

c. Navigate to request.csr's location and choose Open.

d. Navigate to the Pending Requests folder by expanding the Server CA menu. Right-click 
on the request you just created, and under All Tasks choose Issue.

e. Now navigate to the Issued Certificates folder (above the Pending Requests folder).

f. Choose Open to view the certificate, and then choose the Details tab.

g. Choose Copy to File to start the Certificate Export Wizard. Save the DER-encoded X.509 
file to a secure location as signedCertificate.cer.

h. Exit the CA tool and use the following command, which moves the certificate file to the 
Personal Certificate Store in Windows. It can then be used by other applications.

certreq.exe -accept signedCertificate.cer

You can now use your imported certificate to Sign a File .

Step 3: Sign a file

You are now ready to use SignTool and your imported certificate to sign your example file. In order 
to do so, you need to know the certificate's SHA-1 hash, or thumbprint. The thumbprint is used to 
ensure that SignTool only uses certificates that are verified by AWS CloudHSM. In this example, we 
use PowerShell to get the certificate's hash. You can also use the CA's GUI or the Windows SDK's
certutil executable.

To obtain a certificate's thumbprint and use it to sign a file

1. Open PowerShell as an administrator and run the following command:

Client SDK 5 with Microsoft SignTool 1171



AWS CloudHSM User Guide

Get-ChildItem -path cert:\LocalMachine\My

Copy the Thumbprint that is returned.

2. Navigate to the directory within PowerShell that contains SignTool.exe. The default 
location is C:\Program Files (x86)\Windows Kits\10\bin\10.0.17763.0\x64.

3. Finally, sign your file by running the following command. If the command is successful, 
PowerShell returns a success message.

signtool.exe sign /v /fd sha256 /sha1 <thumbprint> /sm C:\Users\Administrator
\Desktop\<test>.ps1

4. (Optional) To verify the signature on the file, use the following command:

signtool.exe verify /v /pa C:\Users\Administrator\Desktop\<test>.ps1

Use Microsoft SignTool with Client SDK 3 to sign files

In cryptography and public key infrastructure (PKI), digital signatures are used to confirm that data 
has been sent by a trusted entity. Signatures also indicate that the data has not been tampered 

Client SDK 3 with Microsoft SignTool 1172



AWS CloudHSM User Guide

with in transit. A signature is an encrypted hash that is generated with the sender's private key. 
The receiver can verify the data integrity by decrypting its hash signature with the sender's public 
key. In turn, it is the sender's responsibility to maintain a digital certificate. The digital certificate 
demonstrates the sender's ownership of the private key and provides the recipient with the public 
key that is needed for decryption. As long as the private key is owned by the sender, the signature 
can be trusted. AWS CloudHSM provides secure FIPS 140-2 level 3 validated hardware for you to 
secure these keys with exclusive single-tenant access.

Many organizations use Microsoft SignTool, a command line tool that signs, verifies, and 
timestamps files to simplify the code signing process. You can use AWS CloudHSM to securely store 
your key pairs until they are needed by SignTool, thus creating an easily automatable workflow for 
signing data.

The following topics provide an overview of how to use SignTool with AWS CloudHSM.

Topics

• Step 1: Set up the prerequisites

• Step 2: Create a signing certificate

• Step 3: Sign a file

Step 1: Set up the prerequisites

To use Microsoft SignTool with AWS CloudHSM, you need the following:

• An Amazon EC2 client instance running a Windows operating system.

• A certificate authority (CA), either self-maintained or established by a third-party provider.

• An active AWS CloudHSM cluster in the same virtual public cloud (VPC) as your EC2 instance. The 
cluster must contain at least one HSM.

• A crypto user (CU) to own and manage keys in the AWS CloudHSM cluster.

• An unsigned file or executable.

• The Microsoft Windows Software Development Kit (SDK).

To set up the prerequisites for using AWS CloudHSM with Windows SignTool

1. Follow the instructions in the Getting Started section of this guide to launch a Windows EC2 
instance and an AWS CloudHSM cluster.

Client SDK 3 with Microsoft SignTool 1173



AWS CloudHSM User Guide

2. If you would like to host your own Windows Server CA, follow steps 1 and 2 in Configuring 
Windows Server as a Certificate Authority with AWS CloudHSM. Otherwise, continue to use 
your publicly trusted third-party CA.

3. Download and install one of the following versions of the Microsoft Windows SDK on your 
Windows EC2 instance:

• Microsoft Windows SDK 10

• Microsoft Windows SDK 8.1

• Microsoft Windows SDK 7

The SignTool executable is part of the Windows SDK Signing Tools for Desktop Apps 
installation feature. You can omit the other features to be installed if you don’t need them. 
The default installation location is:

C:\Program Files (x86)\Windows Kits\<SDK version>\bin\<version number>\<CPU 
 architecture>\signtool.exe

You can now use the Microsoft Windows SDK, your AWS CloudHSM cluster, and your CA to Create a 
Signing Certificate.

Step 2: Create a signing certificate

Now that you've downloaded the Windows SDK on to your EC2 instance, you can use it to generate 
a certificate signing request (CSR). The CSR is an unsigned certificate that is eventually passed 
to your CA for signing. In this example, we use the certreq executable that's included with the 
Windows SDK to generate the CSR.

To generate a CSR using the certreq executable

1. If you haven't already done so, connect to your Windows EC2 instance. For more information, 
see Connect to Your Instance in the Amazon EC2 User Guide.

2. Create a file called request.inf that contains the lines below. Replace the Subject
information with that of your organization. For an explanation of each parameter, see
Microsoft's documentation.

[Version]
Signature= $Windows NT$

Client SDK 3 with Microsoft SignTool 1174

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-8-1-sdk
https://www.microsoft.com/en-us/download/details.aspx?id=8279
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1#BKMK_New


AWS CloudHSM User Guide

[NewRequest]
Subject = "C=<Country>,CN=<www.website.com>,O=<Organization>,OU=<Organizational-
Unit>,L=<City>,S=<State>"
RequestType=PKCS10
HashAlgorithm = SHA256
KeyAlgorithm = RSA
KeyLength = 2048
ProviderName = "Cavium Key Storage Provider"
KeyUsage = "CERT_DIGITAL_SIGNATURE_KEY_USAGE"
MachineKeySet = True
Exportable = False

3. Run certreq.exe. For this example, we save the CSR as request.csr.

certreq.exe -new request.inf request.csr

Internally, a new key pair is generated on your AWS CloudHSM cluster, and the pair's private 
key is used to create the CSR.

4. Submit the CSR to your CA. If you are using a Windows Server CA, follow these steps:

a. Enter the following command to open the CA tool:

certsrv.msc

b. In the new window, right-click the CA server's name. Choose All Tasks, and then choose
Submit new request.

c. Navigate to request.csr's location and choose Open.

d. Navigate to the Pending Requests folder by expanding the Server CA menu. Right-click 
on the request you just created, and under All Tasks choose Issue.

e. Now navigate to the Issued Certificates folder (above the Pending Requests folder).

f. Choose Open to view the certificate, and then choose the Details tab.

g. Choose Copy to File to start the Certificate Export Wizard. Save the DER-encoded X.509 
file to a secure location as signedCertificate.cer.

h. Exit the CA tool and use the following command, which moves the certificate file to the 
Personal Certificate Store in Windows. It can then be used by other applications.

certreq.exe -accept signedCertificate.cer

Client SDK 3 with Microsoft SignTool 1175



AWS CloudHSM User Guide

You can now use your imported certificate to Sign a File .

Step 3: Sign a file

You are now ready to use SignTool and your imported certificate to sign your example file. In order 
to do so, you need to know the certificate's SHA-1 hash, or thumbprint. The thumbprint is used to 
ensure that SignTool only uses certificates that are verified by AWS CloudHSM. In this example, we 
use PowerShell to get the certificate's hash. You can also use the CA's GUI or the Windows SDK's
certutil executable.

To obtain a certificate's thumbprint and use it to sign a file

1. Open PowerShell as an administrator and run the following command:

Get-ChildItem -path cert:\LocalMachine\My

Copy the Thumbprint that is returned.

2. Navigate to the directory within PowerShell that contains SignTool.exe. The default 
location is C:\Program Files (x86)\Windows Kits\10\bin\10.0.17763.0\x64.

3. Finally, sign your file by running the following command. If the command is successful, 
PowerShell returns a success message.

signtool.exe sign /v /fd sha256 /sha1 <thumbprint> /sm C:\Users\Administrator
\Desktop\<test>.ps1

Client SDK 3 with Microsoft SignTool 1176



AWS CloudHSM User Guide

4. (Optional) To verify the signature on the file, use the following command:

signtool.exe verify /v /pa C:\Users\Administrator\Desktop\<test>.ps1

Java Keytool and Jarsigner integration with AWS CloudHSM

AWS CloudHSM offers integration with the Java Keytool and Jarsigner utilities through Client SDK 
3 and Client SDK 5. The steps to use these tools will vary depending on the version of the client 
SDK in which you currently have downloaded. The following sections provide information to each 
SDK.

Topics

• Use Client SDK 5 to integrate AWS CloudHSM with Java Keytool and Jarsigner

• Use Client SDK 3 to integrate AWS CloudHSM with Java Keytool and Jarsigner

Use Client SDK 5 to integrate AWS CloudHSM with Java Keytool and 
Jarsigner

AWS CloudHSM key store is a special-purpose JCE key store that utilizes certificates associated 
with keys on your hardware security module (HSM) through third-party tools such as keytool and
jarsigner. AWS CloudHSM does not store certificates on the HSM, as certificates are public, non-
confidential data. The AWS CloudHSM key store stores the certificates in a local file and maps the 
certificates to corresponding keys on your HSM.

When you use the AWS CloudHSM key store to generate new keys, no entries are generated in the 
local key store file – the keys are created on the HSM. Similarly, when you use the AWS CloudHSM 
key store to search for keys, the search is passed on to the HSM. When you store certificates in the 

Java Keytool and Jarsigner 1177



AWS CloudHSM User Guide

AWS CloudHSM key store, the provider verifies that a key pair with the corresponding alias exists 
on the HSM, and then associates the certificate provided with the corresponding key pair.

Topics

• Prerequisites for integrating AWS CloudHSM with Java Keytool and Jarsigner using Client SDK 5

• Use AWS CloudHSM key store with keytool using Client SDK 5

• Use AWS CloudHSM key store with Jarsigner using Client SDK 5

• Known issues for AWS CloudHSM integration Java Keytool and Jarsigner using Client SDK 5

Prerequisites for integrating AWS CloudHSM with Java Keytool and Jarsigner 
using Client SDK 5

To use the AWS CloudHSM key store, you must first initialize and configure the AWS CloudHSM JCE 
SDK. Use the following steps to do so.

Step 1: Install the JCE

To install the JCE, including the AWS CloudHSM client prerequisites, follow the steps for installing 
the Java library.

Step 2: Add HSM login credentials to environment variables

Set up environment variables to contain your HSM login credentials.

Linux

$ export HSM_USER=<HSM user name>

$ export HSM_PASSWORD=<HSM password>

Windows

PS C:\> $Env:HSM_USER=<HSM user name>

PS C:\> $Env:HSM_PASSWORD=<HSM password>

Client SDK 5 with Java Keytool and Jarsigner 1178



AWS CloudHSM User Guide

Note

The AWS CloudHSM JCE offers various login options. To use the AWS CloudHSM key store 
with third-party applications, you must use implicit login with environment variables. If you 
want to use explicit login through application code, you must build your own application 
using the AWS CloudHSM key store. For additional information, see the article on Using 
AWS CloudHSM Key Store.

Step 3: Registering the JCE provider

To register the JCE provider in the Java CloudProvider configuration, follow these steps:

1. Open the java.security configuration file in your Java installation for editing.

2. In the java.security configuration file, add
com.amazonaws.cloudhsm.jce.provider.CloudHsmProvider as the last provider. For 
example, if there are nine providers in the java.security file, add the following provider as 
the last provider in the section:

security.provider.10=com.amazonaws.cloudhsm.jce.provider.CloudHsmProvider

Note

Adding the AWS CloudHSM provider as a higher priority may negatively impact your 
system's performance because the AWS CloudHSM provider will be prioritized for 
operations that may be safely offloaded to software. As a best practice, always specify the 
provider you wish to use for an operation, whether it is the AWS CloudHSM or a software-
based provider.

Note

Specifying -providerName, -providerclass, and -providerpath command line 
options when generating keys using keytool with the AWS CloudHSM key store may cause 
errors.

Client SDK 5 with Java Keytool and Jarsigner 1179



AWS CloudHSM User Guide

Use AWS CloudHSM key store with keytool using Client SDK 5

Keytool is a popular command line utility for common key and certificate tasks. A complete tutorial 
on keytool is out of scope for AWS CloudHSM documentation. This article explains the specific 
parameters you should use with various keytool functions when utilizing AWS CloudHSM as the 
root of trust through the AWS CloudHSM key store.

When using keytool with the AWS CloudHSM key store, specify the following arguments to any 
keytool command:

Linux

-storetype CLOUDHSM -J-classpath< '-J/opt/cloudhsm/java/*'>

Windows

-storetype CLOUDHSM -J-classpath<'-J"C:\Program Files\Amazon\CloudHSM\java\*"'>

If you want to create a new key store file using AWS CloudHSM key store, see Use the AWS 
CloudHSM KeyStore for AWS CloudHSM Client SDK 3. To use an existing key store, specify its name 
(including path) using the –keystore argument to keytool. If you specify a non-existent key store 
file in a keytool command, the AWS CloudHSM key store creates a new key store file.

Create new AWS CloudHSM keys with keytool

You can use keytool to generate RSA, AES, and DESede type of key supported by the AWS 
CloudHSM JCE SDK.

Important

A key generated through keytool is generated in software, and then imported into AWS 
CloudHSM as an extractable, persistent key.

We strongly recommend generating non-exportable keys outside of keytool, and then importing 
corresponding certificates to the key store. If you use extractable RSA or EC keys through keytool 
and Jarsigner, the providers export keys from the AWS CloudHSM and then use the key locally for 
signing operations.

Client SDK 5 with Java Keytool and Jarsigner 1180

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html


AWS CloudHSM User Guide

If you have multiple client instances connected to your AWS CloudHSM cluster, be aware that 
importing a certificate on one client instance’s key store won't automatically make the certificates 
available on other client instances. To register the key and associated certificates on each client 
instance you need to run a Java application as described in the section called “Generate a CSR 
using keytool”. Alternatively, you can make the necessary changes on one client and copy the 
resulting key store file to every other client instance.

Example 1: To generate a symmetric AES-256 key and save it in a key store file named, 
"example_keystore.store", in the working directory. Replace <secret label> with a unique label.

Linux

$ keytool -genseckey -alias <secret label> -keyalg aes \ 
 -keysize 256 -keystore example_keystore.store \ 
 -storetype CloudHSM -J-classpath '-J/opt/cloudhsm/java/*' \ 

Windows

PS C:\> keytool -genseckey -alias <secret label> -keyalg aes ` 
 -keysize 256 -keystore example_keystore.store ` 
 -storetype CloudHSM -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'

Example 2: To generate an RSA 2048 key pair and save it in a key store file named, 
"example_keystore.store" in the working directory. Replace <RSA key pair label> with a 
unique label.

Linux

$ keytool -genkeypair -alias <RSA key pair label> \ 
 -keyalg rsa -keysize 2048 \ 
 -sigalg sha512withrsa \ 
 -keystore example_keystore.store \ 
 -storetype CLOUDHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*'

Windows

PS C:\> keytool -genkeypair -alias <RSA key pair label> ` 
 -keyalg rsa -keysize 2048 ` 
 -sigalg sha512withrsa ` 

Client SDK 5 with Java Keytool and Jarsigner 1181



AWS CloudHSM User Guide

 -keystore example_keystore.store ` 
 -storetype CLOUDHSM ` 
 -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'   

You can find a list of supported signature algorithms in the Java library.

Delete an AWS CloudHSM key using keytool

The AWS CloudHSM key store doesn't support deleting keys. You can delete keys using the destroy 
method of the Destroyable interface.

((Destroyable) key).destroy();

Generate an AWS CloudHSM CSR using keytool

You receive the greatest flexibility in generating a certificate signing request (CSR) if you use the
OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5. The following command uses keytool 
to generate a CSR for a key pair with the alias, example-key-pair.

Linux

$ keytool -certreq -alias <key pair label> \ 
 -file my_csr.csr \ 
 -keystore example_keystore.store \ 
 -storetype CLOUDHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*' 

Windows

PS C:\> keytool -certreq -alias <key pair label> ` 
 -file my_csr.csr ` 
 -keystore example_keystore.store ` 
 -storetype CLOUDHSM ` 
 -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'

Note

To use a key pair from keytool, that key pair must have an entry in the specified key store 
file. If you want to use a key pair that was generated outside of keytool, you must import 

Client SDK 5 with Java Keytool and Jarsigner 1182

https://devdocs.io/openjdk%7E8/javax/security/auth/destroyable#destroy--


AWS CloudHSM User Guide

the key and certificate metadata into the key store. For instructions on importing the 
keystore data see the section called “Use keytool to import certificates into key store ”.

Use keytool to import intermediate and root certificates into AWS CloudHSM key store

To import a CA certificate in AWS CloudHSM, you must enable verification of a full certificate chain 
on a newly imported certificate. The following command shows an example.

Linux

$ keytool -import -trustcacerts -alias rootCAcert \ 
 -file rootCAcert.cert -keystore example_keystore.store \ 
 -storetype CLOUDHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*'

Windows

PS C:\> keytool -import -trustcacerts -alias rootCAcert ` 
 -file rootCAcert.cert -keystore example_keystore.store ` 
 -storetype CLOUDHSM ` 
 -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'

If you connect multiple client instances to your AWS CloudHSM cluster, importing a certificate on 
one client instance’s key store won't automatically make the certificate available on other client 
instances. You must import the certificate on each client instance.

Use keytool to delete certificates from AWS CloudHSM key store

The following command shows an example of how to delete a AWS CloudHSM certificate from a 
Java keytool key store.

Linux

$ keytool -delete -alias mydomain \ 
 -keystore example_keystore.store \ 
 -storetype CLOUDHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*'

Client SDK 5 with Java Keytool and Jarsigner 1183



AWS CloudHSM User Guide

Windows

PS C:\> keytool -delete -alias mydomain ` 
 -keystore example_keystore.store ` 
 -storetype CLOUDHSM ` 
 -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'

If you connect multiple client instances to your AWS CloudHSM cluster, deleting a certificate 
on one client instance’s key store won't automatically remove the certificate from other client 
instances. You must delete the certificate on each client instance.

Import a working certificate into AWS CloudHSM key store using keytool

Once a certificate signing request (CSR) is signed, you can import it into the AWS CloudHSM key 
store and associate it with the appropriate key pair. The following command provides an example.

Linux

$ keytool -importcert -noprompt -alias <key pair label> \ 
 -file my_certificate.crt \ 
 -keystore example_keystore.store \ 
 -storetype CLOUDHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*'

Windows

PS C:\> keytool -importcert -noprompt -alias <key pair label> ` 
 -file my_certificate.crt ` 
 -keystore example_keystore.store ` 
 -storetype CLOUDHSM ` 
 -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'

The alias should be a key pair with an associated certificate in the key store. If the key is generated 
outside of keytool, or is generated on a different client instance, you must first import the key and 
certificate metadata into the key store.

The certificate chain must be verifiable. If you can't verify the certificate, you might need to import 
the signing (certificate authority) certificate into the key store so the chain can be verified.

Client SDK 5 with Java Keytool and Jarsigner 1184



AWS CloudHSM User Guide

Export a certificate from AWS CloudHSM using keytool

The following example generates a certificate in binary X.509 format. To export a human readable 
certificate from AWS CloudHSM, add -rfc to the -exportcert command.

Linux

$ keytool -exportcert -alias <key pair label> \ 
 -file my_exported_certificate.crt \ 
 -keystore example_keystore.store \ 
 -storetype CLOUDHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*'

Windows

PS C:\> keytool -exportcert -alias <key pair label> ` 
 -file my_exported_certificate.crt ` 
 -keystore example_keystore.store ` 
 -storetype CLOUDHSM ` 
 -J-classpath '-J"C:\Program Files\Amazon\CloudHSM\java\*"'

Use AWS CloudHSM key store with Jarsigner using Client SDK 5

Jarsigner is a popular command line utility for signing JAR files using a key securely stored on a 
hardware security module (HSM). A complete tutorial on Jarsigner is out of scope for the AWS 
CloudHSM documentation. This section explains the Jarsigner parameters you should use to sign 
and verify signatures with AWS CloudHSM as the root of trust through the AWS CloudHSM key 
store.

Set up AWS CloudHSM keys and certificates with Jarsigner

Before you can sign AWS CloudHSM JAR files with Jarsigner, make sure you have set up or 
completed the following steps:

1. Follow the guidance in the AWS CloudHSM key store prerequisites .

2. Set up your signing keys and the associated certificates and certificate chain which should 
be stored in the AWS CloudHSM key store of the current server or client instance. Create the 
keys on the AWS CloudHSM and then import associated metadata into your AWS CloudHSM 
key store. If you want to use keytool to set up the keys and certificates, see the section called 
“Create new keys with keytool”. If you use multiple client instances to sign your JARs, create 

Client SDK 5 with Java Keytool and Jarsigner 1185



AWS CloudHSM User Guide

the key and import the certificate chain. Then copy the resulting key store file to each client 
instance. If you frequently generate new keys, you may find it easier to individually import 
certificates to each client instance.

3. The entire certificate chain should be verifiable. For the certificate chain to be verifiable, you 
may need to add the CA certificate and intermediate certificates to the AWS CloudHSM key 
store. See the code snippet in the section called “Sign a JAR file” for instruction on using Java 
code to verify the certificate chain. If you prefer, you can use keytool to import certificates. For 
instructions on using keytool, see the section called “Use keytool to import certificates into key 
store ”.

Sign a JAR file using AWS CloudHSM and Jarsigner

Use the following command to sign a JAR file using AWS CloudHSM and Jarsigner:

Linux;

For OpenJDK 8

jarsigner -keystore example_keystore.store \ 
 -signedjar signthisclass_signed.jar \ 
 -sigalg sha512withrsa \ 
 -storetype CloudHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*:/usr/lib/jvm/java-1.8.0/lib/tools.jar' \ 
 -J-Djava.library.path=/opt/cloudhsm/lib \ 
 signthisclass.jar <key pair label>
      

For OpenJDK 11, OpenJDK 17, and OpenJDK 21

jarsigner -keystore example_keystore.store \ 
 -signedjar signthisclass_signed.jar \ 
 -sigalg sha512withrsa \ 
 -storetype CloudHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*' \ 
 -J-Djava.library.path=/opt/cloudhsm/lib \ 
 signthisclass.jar <key pair label>
      

Windows

For OpenJDK8

Client SDK 5 with Java Keytool and Jarsigner 1186



AWS CloudHSM User Guide

jarsigner -keystore example_keystore.store ` 
 -signedjar signthisclass_signed.jar ` 
 -sigalg sha512withrsa ` 
 -storetype CloudHSM ` 
 -J-classpath '-JC:\Program Files\Amazon\CloudHSM\java\*;C:\Program Files\Java
\jdk1.8.0_331\lib\tools.jar' ` 
  "-J-Djava.library.path='C:\Program Files\Amazon\CloudHSM\lib\'" ` 
 signthisclass.jar <key pair label>
      

For OpenJDK 11, OpenJDK 17, and OpenJDK 21

jarsigner -keystore example_keystore.store ` 
 -signedjar signthisclass_signed.jar ` 
 -sigalg sha512withrsa ` 
 -storetype CloudHSM ` 
 -J-classpath '-JC:\Program Files\Amazon\CloudHSM\java\*'` 
  "-J-Djava.library.path='C:\Program Files\Amazon\CloudHSM\lib\'" ` 
 signthisclass.jar <key pair label>
      

Use the following command to verify a signed JAR:

Linux

For OpenJDK8

jarsigner -verify \ 
 -keystore example_keystore.store \ 
 -sigalg sha512withrsa \ 
 -storetype CloudHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*:/usr/lib/jvm/java-1.8.0/lib/tools.jar' \ 
 -J-Djava.library.path=/opt/cloudhsm/lib \ 
 signthisclass_signed.jar <key pair label>
      

For OpenJDK 11, OpenJDK 17, and OpenJDK 21

jarsigner -verify \ 
 -keystore example_keystore.store \ 

Client SDK 5 with Java Keytool and Jarsigner 1187



AWS CloudHSM User Guide

 -sigalg sha512withrsa \ 
 -storetype CloudHSM \ 
 -J-classpath '-J/opt/cloudhsm/java/*' \ 
 -J-Djava.library.path=/opt/cloudhsm/lib \ 
 signthisclass_signed.jar <key pair label>
      

Windows

For OpenJDK 8

jarsigner -verify ` 
 -keystore example_keystore.store ` 
 -sigalg sha512withrsa ` 
 -storetype CloudHSM ` 
 -J-classpath '-JC:\Program Files\Amazon\CloudHSM\java\*;C:\Program Files\Java
\jdk1.8.0_331\lib\tools.jar' ` 
 "-J-Djava.library.path='C:\Program Files\Amazon\CloudHSM\lib\'" ` 
 signthisclass_signed.jar <key pair label>
      

For OpenJDK 11, OpenJDK 17, and OpenJDK 21

jarsigner -verify ` 
 -keystore example_keystore.store ` 
 -sigalg sha512withrsa ` 
 -storetype CloudHSM ` 
 -J-classpath '-JC:\Program Files\Amazon\CloudHSM\java\*` 
 "-J-Djava.library.path='C:\Program Files\Amazon\CloudHSM\lib\'" ` 
 signthisclass_signed.jar <key pair label>
      

Known issues for AWS CloudHSM integration Java Keytool and Jarsigner using 
Client SDK 5

The following list provides the current list of known issues for integrations with AWS CloudHSM 
and Java Keytool and Jarsigner using Client SDK 5.

1. We do not support EC keys with Keytool and Jarsigner.

Client SDK 5 with Java Keytool and Jarsigner 1188



AWS CloudHSM User Guide

Use Client SDK 3 to integrate AWS CloudHSM with Java Keytool and 
Jarsigner

AWS CloudHSM key store is a special-purpose JCE key store that utilizes certificates associated 
with keys on your hardware security module (HSM) through third-party tools such as keytool and
jarsigner. AWS CloudHSM does not store certificates on the HSM, as certificates are public, non-
confidential data. The AWS CloudHSM key store stores the certificates in a local file and maps the 
certificates to corresponding keys on your HSM.

When you use the AWS CloudHSM key store to generate new keys, no entries are generated in the 
local key store file – the keys are created on the HSM. Similarly, when you use the AWS CloudHSM 
key store to search for keys, the search is passed on to the HSM. When you store certificates in the 
AWS CloudHSM key store, the provider verifies that a key pair with the corresponding alias exists 
on the HSM, and then associates the certificate provided with the corresponding key pair.

Topics

• Prerequisites for integrating AWS CloudHSM with Java Keytool and Jarsigner using Client SDK 3

• Use AWS CloudHSM key store with keytool using Client SDK 3

• Use AWS CloudHSM key store with Jarsigner using Client SDK 3

• Known issues for AWS CloudHSM integration Java Keytool and Jarsigner using Client SDK 3

• Register pre-existing keys with AWS CloudHSM key store

Prerequisites for integrating AWS CloudHSM with Java Keytool and Jarsigner 
using Client SDK 3

To use the AWS CloudHSM key store, you must first initialize and configure the AWS CloudHSM JCE 
SDK. Use the following steps to do so.

Step 1: Install the JCE

To install the JCE, including the AWS CloudHSM client prerequisites, follow the steps for installing 
the Java library.

Step 2: Add HSM login credentials to environment variables

Set up environment variables to contain your HSM login credentials.

Client SDK 3 with Java Keytool and Jarsigner 1189



AWS CloudHSM User Guide

export HSM_PARTITION=PARTITION_1
export HSM_USER=<HSM user name> 
export HSM_PASSWORD=<HSM password> 
                                          

Note

The CloudHSM JCE offers various login options. To use the AWS CloudHSM key store with 
third-party applications, you must use implicit login with environment variables. If you 
want to use explicit login through application code, you must build your own application 
using the AWS CloudHSM key store. For additional information, see the article on Using 
AWS CloudHSM Key Store.

Step 3: Register the JCE provider

To register the JCE provider, in the Java CloudProvider configuration.

1. Open the java.security configuration file in your Java installation, for editing.

2. In the java.security configuration file, add com.cavium.provider.CaviumProvider as the 
last provider. For example, if there are nine providers in the java.security file, add the following 
provider as the last provider in the section. Adding the Cavium provider as a higher priority may 
negatively impact your system's performance.

security.provider.10=com.cavium.provider.CaviumProvider

Note

Power users may be accustomed to specifying -providerName, -providerclass, 
and -providerpath command line options when using keytool, instead of updating 
the security configuration file. If you attempt to specify command line options when 
generating keys with AWS CloudHSM key store, it will cause errors.

Use AWS CloudHSM key store with keytool using Client SDK 3

Keytool is a popular command line utility for common key and certificate tasks on Linux systems. 
A complete tutorial on keytool is out of scope for AWS CloudHSM documentation. This article 

Client SDK 3 with Java Keytool and Jarsigner 1190

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html


AWS CloudHSM User Guide

explains the specific parameters you should use with various keytool functions when utilizing AWS 
CloudHSM as the root of trust through the AWS CloudHSM key store.

When using keytool with the AWS CloudHSM key store, specify the following arguments to any 
keytool command:

-storetype CLOUDHSM \ 
  -J-classpath '-J/opt/cloudhsm/java/*' \ 
  -J-Djava.library.path=/opt/cloudhsm/lib

If you want to create a new key store file using AWS CloudHSM key store, see Use the AWS 
CloudHSM KeyStore for AWS CloudHSM Client SDK 3. To use an existing key store, specify its name 
(including path) using the –keystore argument to keytool. If you specify a non-existent key store 
file in a keytool command, the AWS CloudHSM key store creates a new key store file.

Create new AWS CloudHSM keys with keytool

You can use keytool to generate any type of key supported by the AWS CloudHSM JCE SDK. See a 
full list of keys and lengths in the  Supported Keys article in the Java Library.

Important

A key generated through keytool is generated in software, and then imported into AWS 
CloudHSM as an extractable, persistent key.

Instructions for creating non-extractable keys directly on the hardware security module (HSM), 
and then using them with keytool or Jarsigner, are shown in the code sample in Registering Pre-
existing Keys with AWS CloudHSM Key Store. We strongly recommend generating non-exportable 
keys outside of keytool, and then importing corresponding certificates to the key store. If you use 
extractable RSA or EC keys through keytool and jarsigner, the providers export keys from the AWS 
CloudHSM and then use the key locally for signing operations.

If you have multiple client instances connected to your CloudHSM cluster, be aware that importing 
a certificate on one client instance’s key store won't automatically make the certificates available 
on other client instances. To register the key and associated certificates on each client instance you 
need to run a Java application as described in Generate a CSR using Keytool. Alternatively, you can 
make the necessary changes on one client and copy the resulting key store file to every other client 
instance.

Client SDK 3 with Java Keytool and Jarsigner 1191



AWS CloudHSM User Guide

Example 1: To generate a symmetric AES-256 key and save it in a key store file named, 
"example_keystore.store", in the working directory. Replace <secret label> with a unique label.

keytool -genseckey -alias <secret label> -keyalg aes \ 
  -keysize 256 -keystore example_keystore.store \ 
  -storetype CloudHSM -J-classpath '-J/opt/cloudhsm/java/*' \ 
  -J-Djava.library.path=/opt/cloudhsm/lib/

Example 2: To generate an RSA 2048 key pair and save it in a key store file named, 
"example_keystore.store" in the working directory. Replace <RSA key pair label> with a 
unique label.

keytool -genkeypair -alias <RSA key pair label> \ 
        -keyalg rsa -keysize 2048 \ 
        -sigalg sha512withrsa \ 
        -keystore example_keystore.store \ 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

Example 3: To generate a p256 ED key and save it in a key store file named, 
"example_keystore.store" in the working directory. Replace <ec key pair label> with a unique 
label.

keytool -genkeypair -alias <ec key pair label> \ 
        -keyalg ec -keysize 256 \ 
        -sigalg SHA512withECDSA \ 
        -keystore example_keystore.store \ 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

You can find a list of supported signature algorithms in the Java library.

Delete an AWS CloudHSM key using keytool

The AWS CloudHSM key store doesn't support deleting keys. To delete key, you must use the
deleteKey function of AWS CloudHSM's command line tool, Delete an AWS CloudHSM key using 
KMU.

Client SDK 3 with Java Keytool and Jarsigner 1192



AWS CloudHSM User Guide

Generate an AWS CloudHSM CSR using keytool

You receive the greatest flexibility in generating a certificate signing request (CSR) if you use the
OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5. The following command uses keytool 
to generate a CSR for a key pair with the alias, example-key-pair.

keytool -certreq -alias <key pair label> \ 
        -file example_csr.csr \ 
        -keystore example_keystore.store \ 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

Note

To use a key pair from keytool, that key pair must have an entry in the specified key store 
file. If you want to use a key pair that was generated outside of keytool, you must import 
the key and certificate metadata into the key store. For instructions on importing the 
keystore data see Importing Intermediate and root certificates into AWS CloudHSM Key 
Store using Keytool.

Use keytool to import intermediate and root certificates into AWS CloudHSM key store

To import a CA certificate into AWS CloudHSM, you must enable verification of a full certificate 
chain on a newly imported certificate. The following command shows an example.

keytool -import -trustcacerts -alias rootCAcert \ 
        -file rootCAcert.cert -keystore example_keystore.store \ 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

If you connect multiple client instances to your AWS CloudHSM cluster, importing a certificate on 
one client instance’s key store won't automatically make the certificate available on other client 
instances. You must import the certificate on each client instance.

Client SDK 3 with Java Keytool and Jarsigner 1193



AWS CloudHSM User Guide

Use keytool to delete certificates from AWS CloudHSM key store

The following command shows an example of how to delete an AWS CloudHSM certificate from a 
Java keytool key store.

keytool -delete -alias mydomain -keystore \ 
        -keystore example_keystore.store \ 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

If you connect multiple client instances to your AWS CloudHSM cluster, deleting a certificate 
on one client instance’s key store won't automatically remove the certificate from other client 
instances. You must delete the certificate on each client instance.

Import a working certificate into AWS CloudHSM key store using keytool

Once a certificate signing request (CSR) is signed, you can import it into the AWS CloudHSM key 
store and associate it with the appropriate key pair. The following command provides an example.

keytool -importcert -noprompt -alias <key pair label> \ 
        -file example_certificate.crt \ 
        -keystore example_keystore.store 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

The alias should be a key pair with an associated certificate in the key store. If the key is generated 
outside of keytool, or is generated on a different client instance, you must first import the key and 
certificate metadata into the key store. For instructions on importing the certificate metadata, see 
the code sample in Registering Pre-existing Keys with AWS CloudHSM Key Store.

The certificate chain must be verifiable. If you can't verify the certificate, you might need to import 
the signing (certificate authority) certificate into the key store so the chain can be verified.

Export a certificate from AWS CloudHSM using keytool

The following example generates a certificate in binary X.509 format. To export a human readable 
certificate from AWS CloudHSM, add -rfc to the -exportcert command.

keytool -exportcert -alias <key pair label> \ 
        -file example_exported_certificate.crt \ 

Client SDK 3 with Java Keytool and Jarsigner 1194



AWS CloudHSM User Guide

        -keystore example_keystore.store \ 
        -storetype CLOUDHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib/

Use AWS CloudHSM key store with Jarsigner using Client SDK 3

Jarsigner is a popular command line utility for signing JAR files using a key securely stored on a 
hardware security module (HSM). A complete tutorial on Jarsigner is out of scope for the AWS 
CloudHSM documentation. This section explains the Jarsigner parameters you should use to sign 
and verify signatures with AWS CloudHSM as the root of trust through the AWS CloudHSM key 
store.

Set up AWS CloudHSM keys and certificates with Jarsigner

Before you can sign AWS CloudHSM JAR files with Jarsigner, make sure you have set up or 
completed the following steps:

1. Follow the guidance in the AWS CloudHSM Key store prerequisites .

2. Set up your signing keys and the associated certificates and certificate chain which should 
be stored in the AWS CloudHSM key store of the current server or client instance. Create the 
keys on the AWS CloudHSM and then import associated metadata into your AWS CloudHSM 
key store. Use the code sample in Registering Pre-existing Keys with AWS CloudHSM Key 
Store to import metadata into the key store. If you want to use keytool to set up the keys 
and certificates, see Create new AWS CloudHSM keys with keytool. If you use multiple client 
instances to sign your JARs, create the key and import the certificate chain. Then copy the 
resulting key store file to each client instance. If you frequently generate new keys, you may find 
it easier to individually import certificates to each client instance.

3. The entire certificate chain should be verifiable. For the certificate chain to be verifiable, you 
may need to add the CA certificate and intermediate certificates to the AWS CloudHSM key 
store. See the code snippet in Sign a JAR file using AWS CloudHSM and Jarsigner for instruction 
on using Java code to verify the certificate chain. If you prefer, you can use keytool to import 
certificates. For instructions on using keytool, see Using Keytool to import intermediate and root 
certificates into AWS CloudHSM Key Store.

Sign a JAR file using AWS CloudHSM and Jarsigner

Use the following command to sign a JAR file using AWS CloudHSM and jarsigner:

Client SDK 3 with Java Keytool and Jarsigner 1195



AWS CloudHSM User Guide

jarsigner -keystore example_keystore.store \ 
        -signedjar signthisclass_signed.jar \ 
        -sigalg sha512withrsa \ 
        -storetype CloudHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*:/usr/lib/jvm/java-1.8.0/lib/tools.jar' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib \ 
        signthisclass.jar <key pair label>

Use the following command to verify a signed JAR:

jarsigner -verify \ 
        -keystore example_keystore.store \ 
        -sigalg sha512withrsa \ 
        -storetype CloudHSM \ 
        -J-classpath '-J/opt/cloudhsm/java/*:/usr/lib/jvm/java-1.8.0/lib/tools.jar' \ 
        -J-Djava.library.path=/opt/cloudhsm/lib \ 
        signthisclass_signed.jar <key pair label>

Known issues for AWS CloudHSM integration Java Keytool and Jarsigner using 
Client SDK 3

The following list provides the current list of known issues for integrations with AWS CloudHSM 
and Java Keytool and Jarsigner using Client SDK 3.

• When generating keys using keytool, the first provider in provider configuration cannot be 
CaviumProvider.

• When generating keys using keytool, the first (supported) provider in the security configuration 
file is used to generate the key. This is generally a software provider. The generated key is then 
given an alias and imported into the AWS CloudHSM HSM as a persistent (token) key during the 
key addition process.

• When using keytool with AWS CloudHSM key store, do not specify -providerName, -
providerclass, or -providerpath options on the command line. Specify these options in the 
security provider file as described in the Key store prerequisites.

• When using non-extractable EC keys through keytool and Jarsigner, the SunEC provider needs to 
be removed/disabled from the list of providers in the java.security file. If you use extractable EC 
keys through keytool and Jarsigner, the providers export key bits from the AWS CloudHSM HSM 
and use the key locally for signing operations. We do not recommend you use exportable keys 
with keytool or Jarsigner.

Client SDK 3 with Java Keytool and Jarsigner 1196



AWS CloudHSM User Guide

Register pre-existing keys with AWS CloudHSM key store

For maximum security and flexibility in attributes and labeling, we recommend you generate your 
AWS CloudHSM signing keys using key_mgmt_util. You can also use a Java application to generate 
the key in AWS CloudHSM.

The following section provides a code sample that demonstrates how to generate a new key pair 
on the HSM and register it using existing keys imported to the AWS CloudHSM key store. The 
imported keys are available for use with third-party tools such as keytool and Jarsigner.

To use a pre-existing key, modify the code sample to look up a key by label instead of generating 
a new key. Sample code for looking up a key by label is available in the KeyUtilitiesRunner.java 
sample on GitHub.

Important

Registering a key stored on AWS CloudHSM with a local key store does not export the key. 
When the key is registered, the key store registers the key's alias (or label) and correlates 
locally store certificate objects with a key pair on the AWS CloudHSM. As long as the key 
pair is created as non-exportable, the key bits won't leave the HSM.

                       
                       
                       // 
 // Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. 
 // 
 // Permission is hereby granted, free of charge, to any person obtaining a copy of 
 this 
 // software and associated documentation files (the "Software"), to deal in the 
 Software 
 // without restriction, including without limitation the rights to use, copy, modify, 
 // merge, publish, distribute, sublicense, and/or sell copies of the Software, and to 
 // permit persons to whom the Software is furnished to do so. 
 // 
 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
 // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
 // PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 
 // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 

Client SDK 3 with Java Keytool and Jarsigner 1197

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java


AWS CloudHSM User Guide

 // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 // 
  
package com.amazonaws.cloudhsm.examples;

import com.cavium.key.CaviumKey;
import com.cavium.key.parameter.CaviumAESKeyGenParameterSpec;
import com.cavium.key.parameter.CaviumRSAKeyGenParameterSpec;
import com.cavium.asn1.Encoder;
import com.cavium.cfm2.Util;

import javax.crypto.KeyGenerator;

import java.io.ByteArrayInputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

import java.math.BigInteger;

import java.security.*;
import java.security.cert.Certificate;
import java.security.cert.CertificateException;
import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.security.KeyStore.PasswordProtection;
import java.security.KeyStore.PrivateKeyEntry;
import java.security.KeyStore.Entry;

import java.util.Calendar;
import java.util.Date;
import java.util.Enumeration;

//
// KeyStoreExampleRunner demonstrates how to load a keystore, and associate a 
 certificate with a
// key in that keystore.
//
// This example relies on implicit credentials, so you must setup your environment 
 correctly.
//

Client SDK 3 with Java Keytool and Jarsigner 1198



AWS CloudHSM User Guide

// https://docs.aws.amazon.com/cloudhsm/latest/userguide/java-library-
install.html#java-library-credentials
//

public class KeyStoreExampleRunner { 

     private static byte[] COMMON_NAME_OID = new byte[] { (byte) 0x55, (byte) 0x04, 
 (byte) 0x03 }; 
     private static byte[] COUNTRY_NAME_OID = new byte[] { (byte) 0x55, (byte) 0x04, 
 (byte) 0x06 }; 
     private static byte[] LOCALITY_NAME_OID = new byte[] { (byte) 0x55, (byte) 0x04, 
 (byte) 0x07 }; 
     private static byte[] STATE_OR_PROVINCE_NAME_OID = new byte[] { (byte) 0x55, 
 (byte) 0x04, (byte) 0x08 }; 
     private static byte[] ORGANIZATION_NAME_OID = new byte[] { (byte) 0x55, (byte) 
 0x04, (byte) 0x0A }; 
     private static byte[] ORGANIZATION_UNIT_OID = new byte[] { (byte) 0x55, (byte) 
 0x04, (byte) 0x0B }; 

     private static String helpString = "KeyStoreExampleRunner%n" + 
            "This sample demonstrates how to load and store keys using a keystore.%n%n" 
 + 
            "Options%n" + 
            "\t--help\t\t\tDisplay this message.%n" + 
            "\t--store <filename>\t\tPath of the keystore.%n" + 
            "\t--password <password>\t\tPassword for the keystore (not your CU 
 password).%n" + 
            "\t--label <label>\t\t\tLabel to store the key and certificate under.%n" + 
            "\t--list\t\t\tList all the keys in the keystore.%n%n"; 

    public static void main(String[] args) throws Exception { 
        Security.addProvider(new com.cavium.provider.CaviumProvider()); 
        KeyStore keyStore = KeyStore.getInstance("CloudHSM"); 

        String keystoreFile = null; 
        String password = null; 
        String label = null; 
        boolean list = false; 
        for (int i = 0; i < args.length; i++) { 
            String arg = args[i]; 
            switch (args[i]) { 
                case "--store": 
                    keystoreFile = args[++i]; 
                    break; 

Client SDK 3 with Java Keytool and Jarsigner 1199



AWS CloudHSM User Guide

                case "--password": 
                    password = args[++i]; 
                    break; 
                case "--label": 
                    label = args[++i]; 
                    break; 
                case "--list": 
                    list = true; 
                    break; 
                case "--help": 
                    help(); 
                    return; 
            } 
        } 

        if (null == keystoreFile || null == password) { 
            help(); 
            return; 
        } 

        if (list) { 
            listKeys(keystoreFile, password); 
            return; 
        } 

        if (null == label) { 
            label = "Keystore Example Keypair"; 
        } 

        // 
        // This call to keyStore.load() will open the pkcs12 keystore with the supplied 
        // password and connect to the HSM. The CU credentials must be specified using 
        // standard CloudHSM login methods. 
        // 
        try { 
            FileInputStream instream = new FileInputStream(keystoreFile); 
            keyStore.load(instream, password.toCharArray()); 
        } catch (FileNotFoundException ex) { 
            System.err.println("Keystore not found, loading an empty store"); 
            keyStore.load(null, null); 
        } 

        PasswordProtection passwd = new PasswordProtection(password.toCharArray()); 
        System.out.println("Searching for example key and certificate..."); 

Client SDK 3 with Java Keytool and Jarsigner 1200



AWS CloudHSM User Guide

        PrivateKeyEntry keyEntry = (PrivateKeyEntry) keyStore.getEntry(label, passwd); 
        if (null == keyEntry) { 
            // 
            // No entry was found, so we need to create a key pair and associate a 
 certificate. 
            // The private key will get the label passed on the command line. The 
 keystore alias 
            // needs to be the same as the private key label. The public key will have 
 ":public" 
            // appended to it. The alias used in the keystore will We associate the 
 certificate 
            // with the private key. 
            // 
            System.out.println("No entry found, creating..."); 
            KeyPair kp = generateRSAKeyPair(2048, label + ":public", label); 
            System.out.printf("Created a key pair with the handles %d/%d%n", 
 ((CaviumKey) kp.getPrivate()).getHandle(), ((CaviumKey) kp.getPublic()).getHandle()); 

            // 
            // Generate a certificate and associate the chain with the private key. 
            // 
            Certificate self_signed_cert = generateCert(kp); 
            Certificate[] chain = new Certificate[1]; 
            chain[0] = self_signed_cert; 
            PrivateKeyEntry entry = new PrivateKeyEntry(kp.getPrivate(), chain); 

            // 
            // Set the entry using the label as the alias and save the store. 
            // The alias must match the private key label. 
            // 
            keyStore.setEntry(label, entry, passwd); 

            FileOutputStream outstream = new FileOutputStream(keystoreFile); 
            keyStore.store(outstream, password.toCharArray()); 
            outstream.close(); 

            keyEntry = (PrivateKeyEntry) keyStore.getEntry(label, passwd); 
        } 

        long handle = ((CaviumKey) keyEntry.getPrivateKey()).getHandle(); 
        String name = keyEntry.getCertificate().toString(); 
        System.out.printf("Found private key %d with certificate %s%n", handle, name); 
    } 

Client SDK 3 with Java Keytool and Jarsigner 1201



AWS CloudHSM User Guide

    private static void help() { 
        System.out.println(helpString); 
    } 

    // 
    // Generate a non-extractable / non-persistent RSA keypair. 
    // This method allows us to specify the public and private labels, which 
    // will make KeyStore aliases easier to understand. 
    // 
    public static KeyPair generateRSAKeyPair(int keySizeInBits, String publicLabel, 
 String privateLabel) 
            throws InvalidAlgorithmParameterException, NoSuchAlgorithmException, 
 NoSuchProviderException { 

        boolean isExtractable = false; 
        boolean isPersistent = false; 
        KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("rsa", "Cavium"); 
        CaviumRSAKeyGenParameterSpec spec = new 
 CaviumRSAKeyGenParameterSpec(keySizeInBits, new BigInteger("65537"), publicLabel, 
 privateLabel, isExtractable, isPersistent); 

        keyPairGen.initialize(spec); 

        return keyPairGen.generateKeyPair(); 
    } 

    // 
    // Generate a certificate signed by a given keypair. 
    // 
    private static Certificate generateCert(KeyPair kp) throws CertificateException { 
        CertificateFactory cf = CertificateFactory.getInstance("X509"); 
        PublicKey publicKey = kp.getPublic(); 
        PrivateKey privateKey = kp.getPrivate(); 
        byte[] version = Encoder.encodeConstructed((byte) 0, 
 Encoder.encodePositiveBigInteger(new BigInteger("2"))); // version 1 
        byte[] serialNo = Encoder.encodePositiveBigInteger(new BigInteger(1, 
 Util.computeKCV(publicKey.getEncoded()))); 

        // Use the SHA512 OID and algorithm. 
        byte[] signatureOid = new byte[] { 
            (byte) 0x2A, (byte) 0x86, (byte) 0x48, (byte) 0x86, (byte) 0xF7, (byte) 
 0x0D, (byte) 0x01, (byte) 0x01, (byte) 0x0D }; 
        String sigAlgoName = "SHA512WithRSA"; 

Client SDK 3 with Java Keytool and Jarsigner 1202



AWS CloudHSM User Guide

         byte[] signatureId = Encoder.encodeSequence( 
                                         Encoder.encodeOid(signatureOid), 
                                         Encoder.encodeNull()); 

         byte[] issuer = Encoder.encodeSequence( 
                                     encodeName(COUNTRY_NAME_OID, "<Country>"), 
                                     encodeName(STATE_OR_PROVINCE_NAME_OID, "<State>"), 
                                     encodeName(LOCALITY_NAME_OID, "<City>"), 
                                     encodeName(ORGANIZATION_NAME_OID, 
 "<Organization>"), 
                                     encodeName(ORGANIZATION_UNIT_OID, "<Unit>"), 
                                     encodeName(COMMON_NAME_OID, "<CN>") 
                                 ); 

         Calendar c = Calendar.getInstance(); 
         c.add(Calendar.DAY_OF_YEAR, -1); 
         Date notBefore = c.getTime(); 
         c.add(Calendar.YEAR, 1); 
         Date notAfter = c.getTime(); 
         byte[] validity = Encoder.encodeSequence( 
                                         Encoder.encodeUTCTime(notBefore), 
                                         Encoder.encodeUTCTime(notAfter) 
                                     ); 
         byte[] key = publicKey.getEncoded(); 

         byte[] certificate = Encoder.encodeSequence( 
                                         version, 
                                         serialNo, 
                                         signatureId, 
                                         issuer, 
                                         validity, 
                                         issuer, 
                                         key); 
         Signature sig; 
         byte[] signature = null; 
         try { 
             sig = Signature.getInstance(sigAlgoName, "Cavium"); 
             sig.initSign(privateKey); 
             sig.update(certificate); 
             signature = Encoder.encodeBitstring(sig.sign()); 

         } catch (Exception e) { 
             System.err.println(e.getMessage()); 

Client SDK 3 with Java Keytool and Jarsigner 1203



AWS CloudHSM User Guide

             return null; 
         } 

         byte [] x509 = Encoder.encodeSequence( 
                         certificate, 
                         signatureId, 
                         signature 
                         ); 
         return cf.generateCertificate(new ByteArrayInputStream(x509)); 
    } 

     // 
     // Simple OID encoder. 
     // Encode a value with OID in ASN.1 format 
     // 
     private static byte[] encodeName(byte[] nameOid, String value) { 
         byte[] name = null; 
         name = Encoder.encodeSet( 
                     Encoder.encodeSequence( 
                             Encoder.encodeOid(nameOid), 
                             Encoder.encodePrintableString(value) 
                     ) 
                 ); 
         return name; 
     } 

    // 
    // List all the keys in the keystore. 
    // 
    private static void listKeys(String keystoreFile, String password) throws Exception 
 { 
        KeyStore keyStore = KeyStore.getInstance("CloudHSM"); 

        try { 
            FileInputStream instream = new FileInputStream(keystoreFile); 
            keyStore.load(instream, password.toCharArray()); 
        } catch (FileNotFoundException ex) { 
            System.err.println("Keystore not found, loading an empty store"); 
            keyStore.load(null, null); 
        } 

        for(Enumeration<String> entry = keyStore.aliases(); entry.hasMoreElements();) { 
            System.out.println(entry.nextElement()); 
        } 

Client SDK 3 with Java Keytool and Jarsigner 1204



AWS CloudHSM User Guide

    }

} 
          
                        
                       

Use Microsoft Manifest Generation and Editing Tool (Mage.exe) 
with AWS CloudHSM to sign files

Note

AWS CloudHSM supports only the 64-bit Mage tool included in the Windows SDK for .NET 
Framework 4.8.1 and later.

The following topics provide an overview of how to use  Mage.exe  with AWS CloudHSM.

Topics

• Step 1: Set up the prerequisites

• Step 2: Create a signing certificate

• Step 3: Sign a file

Step 1: Set up the prerequisites

To use Microsoft Mage.exe with AWS CloudHSM, you need the following:

• An Amazon EC2 instance running a Windows operating system

• A certificate authority (CA), either self-maintained or from a third-party provider

• An active AWS CloudHSM cluster in the same virtual private cloud (VPC) as your EC2 instance, 
with at least one HSM

• A crypto user (CU) to own and manage keys in the AWS CloudHSM cluster

• An unsigned file or executable

• The Microsoft Windows Software Development Kit (SDK)

Microsoft Manifest Generation and Editing Tool 1205

https://learn.microsoft.com/en-us/dotnet/framework/tools/mage-exe-manifest-generation-and-editing-tool


AWS CloudHSM User Guide

To set up the prerequisites for using AWS CloudHSM with Mage.exe

1. Launch a Windows EC2 instance and an AWS CloudHSM cluster by following the instructions in 
the Getting Started section of this guide.

2. If you want to host your own Windows Server CA, complete steps 1 and 2 in Configuring 
Windows Server as a Certificate Authority with AWS CloudHSM. Otherwise, use your publicly 
trusted third-party CA.

3. Download and install Microsoft Windows SDK for .NET Framework 4.8.1 or later on your 
Windows EC2 instance:

• Microsoft Windows SDK 10

The mage.exe executable is part of the Windows SDK Tools. The default installation location 
is:

C:\Program Files (x86)\Windows Kits\<SDK version>\bin\<version number>\x64\Mage.exe

After completing these steps, you can use the Microsoft Windows SDK, your AWS CloudHSM 
cluster, and your CA to create a signing certificate.

Step 2: Create a signing certificate

Now that you've installed the Windows SDK on your EC2 instance, you can use it to generate a 
certificate signing request (CSR). The CSR is an unsigned certificate that you submit to your CA 
for signing. In this example, we use the certreq executable included with the Windows SDK to 
generate the CSR.

To generate a CSR using the certreq executable

1. Connect to your Windows EC2 instance. For more information, see Connect to Your Instance in 
the Amazon EC2 User Guide.

2. Create a file named request.inf with the following content. Replace the Subject
information with your organization's details:

[Version]
Signature= $Windows NT$
[NewRequest]

Step 2: Create a signing certificate 1206

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2_GetStarted.html#ec2-connect-to-instance-windows


AWS CloudHSM User Guide

Subject = "C=<Country>,CN=<www.website.com>,O=<Organization>,OU=<Organizational-
Unit>,L=<City>,S=<State>"
RequestType=PKCS10
HashAlgorithm = SHA256
KeyAlgorithm = RSA
KeyLength = 2048
ProviderName = "CloudHSM Key Storage Provider"
KeyUsage = "CERT_DIGITAL_SIGNATURE_KEY_USAGE"
MachineKeySet = True
Exportable = False

For an explanation of each parameter, see Microsoft's documentation.

3. Run certreq.exe to generate the CSR:

certreq.exe -new request.inf request.csr

This command generates a new key pair on your AWS CloudHSM cluster and uses the private 
key to create the CSR.

4. Submit the CSR to your CA. If you're using a Windows Server CA, follow these steps:

a. Open the CA tool:

certsrv.msc

b. In the new window, right-click the CA server's name. Choose All Tasks, and then choose
Submit new request.

c. Navigate to the location of request.csr and choose Open.

d. Expand the Server CA menu and navigate to the Pending Requests folder. Right-click the 
request you just created, choose All Tasks, and then choose Issue.

e. Navigate to the Issued Certificates folder.

f. Choose Open to view the certificate, and then choose the Details tab.

g. Choose Copy to File to start the Certificate Export Wizard. Save the DER-encoded X.509 
file to a secure location as signedCertificate.cer.

h. Exit the CA tool and run the following command to move the certificate file to the 
Personal Certificate Store in Windows:

certreq.exe -accept signedCertificate.cer
Step 2: Create a signing certificate 1207

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/certreq_1#BKMK_New


AWS CloudHSM User Guide

You can now use your imported certificate to sign a file.

Step 3: Sign a file

Now that you have Mage.exe and your imported certificate, you can sign a file. You need to know 
the certificate's SHA-1 hash, or thumbprint. The thumbprint ensures that Mage.exe only uses 
certificates verified by AWS CloudHSM. In this example, we use PowerShell to get the certificate's 
hash.

To obtain a certificate's thumbprint and use it to sign a file

1. Navigate to the directory containing mage.exe. The default location is:

C:\Program Files (x86)\Microsoft SDKs\Windows\v10.0A\bin\NETFX 4.8.1 Tools\x64

2. To create a sample application file using Mage.exe, run the following command:

mage.exe -New Application -ToFile C:\Users\Administrator\Desktop\sample.application

3. Open PowerShell as an administrator and run the following command:

Get-ChildItem -path cert:\LocalMachine\My

Copy the Thumbprint, Key Container, and Provider values from the output.

4. Sign your file by running the following command:

mage.exe -Sign -CertHash <thumbprint> -KeyContainer <keycontainer> -
CryptoProvider <CloudHSM Key Storage Provider/Cavium Key Storage Provider> C:\Users
\Administrator\Desktop\<sample.application>

Step 3: Sign a file 1208



AWS CloudHSM User Guide

If the command is successful, PowerShell returns a success message.

5. To verify the signature on the file, use the following command:

mage.exe -Verify -CryptoProvider <CloudHSM Key Storage Provider/Cavium Key Storage 
 Provider> C:\Users\Administrator\Desktop\<sample.application>

Other third-party vendor integrations with AWS CloudHSM

Several third-party vendors support AWS CloudHSM as a root of trust. This means that you can 
utilize a software solution of your choice while creating and storing the underlying keys in your 
CloudHSM cluster. As a result, your workload in AWS can rely on the latency, availability, reliability, 
and elasticity benefits of CloudHSM. The following list includes third-party vendors that support 
CloudHSM.

Note

AWS does not endorse or vouch for any third-party vendor.

• Hashicorp Vault is a secrets management tool designed to enable collaboration and governance 
across organizations. It supports AWS Key Management Service and AWS CloudHSM as roots of 
trust for additional protection.

• Thycotic Secrets Server helps customers manage sensitive credentials across privileged 
accounts. It supports AWS CloudHSM as a root of trust.

• P6R's KMIP adapter allows you to utilize your AWS CloudHSM instances through a standard 
KMIP interface.

• PrimeKey EJBCA is a popular open source solution for PKI. It allows you to create and store key 
pairs securely with AWS CloudHSM.

• Box KeySafe provides encryption key management for cloud content to many organizations with 
strict security, privacy, and regulatory compliance requirements. Customers can further secure 
KeySafe keys directly in AWS Key Management Service or indirectly in AWS CloudHSM via AWS 
KMS Custom Key Store.

• Insyde Software supports AWS CloudHSM as a root of trust for firmware signing.

• F5 BIG-IP LTM supports AWS CloudHSM as a root of trust.

Other third-party vendor integrations 1209

https://www.hashicorp.com
https://thycotic.com
https://www.p6r.com/software/ksg.html
https://aws.amazon.com/marketplace/seller-profile?id=7edf9048-58e6-4086-9d98-b8e0c1d78fce
https://blog.box.com
https://www.insyde.com
https://techdocs.f5.com


AWS CloudHSM User Guide

• Cloudera Navigator Key HSM allows you to use your CloudHSM cluster to create and store keys 
for Cloudera Navigator Key Trustee Server.

• Venafi Trust Protection Platform provides comprehensive machine identity management for 
TLS, SSH, and code signing with AWS CloudHSM key generation and protection.

Other third-party vendor integrations 1210

https://www.cloudera.com
https://marketplace.venafi.com/details/aws-cloudhsm/


AWS CloudHSM User Guide

Monitoring AWS CloudHSM

In addition to the logging features built into the Client SDK, you can also use AWS CloudTrail, 
Amazon CloudWatch Logs, and Amazon CloudWatch to monitor AWS CloudHSM.

Client SDK logs

Use Client SDK logging to monitor diagnostic and troubleshooting information from the 
applications you create.

CloudTrail

Use CloudTrail to monitor all API calls in your AWS account, including the calls you make to 
create and delete clusters, hardware security modules (HSM), and resource tags.

CloudWatch Logs

Use CloudWatch Logs to monitor the logs from your HSM instances, which include events for 
create and delete HSM users, change user passwords, create and delete keys, and more.

CloudWatch

Use CloudWatch to monitor the health of your cluster in real time.

Topics

• Working with AWS CloudHSM client SDK logs

• Working with AWS CloudTrail and AWS CloudHSM

• Working with Amazon CloudWatch Logs and AWS CloudHSM Audit Logs

• Getting CloudWatch metrics for AWS CloudHSM

Working with AWS CloudHSM client SDK logs

You can retrieve logs generated by the Client SDK. AWS CloudHSM offers an implementation of 
logging with Client SDK 3 and Client SDK 5.

Topics

• Client SDK 5 logging

• Client SDK 3 logging

Client SDK logs 1211



AWS CloudHSM User Guide

Client SDK 5 logging

Client SDK 5 logs contain information for each component in a file named for the component. You 
can use the configure tool for Client SDK 5 to configure logging for each component.

If you do not specify a location for the file, the system writes logs to the default location:

PKCS #11 library

• Linux

/opt/cloudhsm/run/cloudhsm-pkcs11.log

Windows

C:\Program Files\Amazon\CloudHSM\cloudhsm-pkcs11.log

OpenSSL Dynamic Engine

• Linux

stderr

JCE provider

• Linux

/opt/cloudhsm/run/cloudhsm-jce.log

Windows

C:\Program Files\Amazon\CloudHSM\cloudhsm-jce.log

For information on how to configure logging for Client SDK 5, see the Client SDK 5 Configure tool

Client SDK 5 logging 1212



AWS CloudHSM User Guide

Client SDK 3 logging

Client SDK 3 logs contain detailed information from the AWS CloudHSM client daemon. The 
location of the logs depends on the operating system of the Amazon EC2 client instance where you 
run the client daemon.

Amazon Linux

In Amazon Linux, the AWS CloudHSM client logs are written to the file named /opt/
cloudhsm/run/cloudhsm_client.log. You can use logrotate or a similar tool to rotate and 
manage these logs.

Amazon Linux 2

In Amazon Linux 2, the AWS CloudHSM Client logs are collected and stored in the journal. You 
can use journalctl to view and manage these logs. For example, use the following command to 
view the AWS CloudHSM Client logs.

journalctl -f -u cloudhsm-client

CentOS 7

In CentOS 7, the AWS CloudHSM Client logs are collected and stored in the journal. You can use
journalctl to view and manage these logs. For example, use the following command to view the 
AWS CloudHSM Client logs.

journalctl -f -u cloudhsm-client

CentOS 8

In CentOS 8, the AWS CloudHSM Client logs are collected and stored in the journal. You can use
journalctl to view and manage these logs. For example, use the following command to view the 
AWS CloudHSM Client logs.

journalctl -f -u cloudhsm-client

RHEL 7

In Red Hat Enterprise Linux 7, the AWS CloudHSM Client logs are collected and stored in the
journal. You can use journalctl to view and manage these logs. For example, use the following 
command to view the AWS CloudHSM Client logs.

Client SDK 3 logging 1213



AWS CloudHSM User Guide

journalctl -f -u cloudhsm-client

RHEL 8

In Red Hat Enterprise Linux 8, the AWS CloudHSM Client logs are collected and stored in the
journal. You can use journalctl to view and manage these logs. For example, use the following 
command to view the AWS CloudHSM Client logs.

journalctl -f -u cloudhsm-client

Ubuntu 16.04

In Ubuntu 16.04, the AWS CloudHSM Client logs are collected and stored in the journal. You can 
use journalctl to view and manage these logs. For example, use the following command to view 
the AWS CloudHSM Client logs.

journalctl -f -u cloudhsm-client

Ubuntu 18.04

In Ubuntu 18.04, the AWS CloudHSM Client logs are collected and stored in the journal. You can 
use journalctl to view and manage these logs. For example, use the following command to view 
the AWS CloudHSM Client logs.

journalctl -f -u cloudhsm-client

Windows

• For Windows client 1.1.2+:

AWS CloudHSM client logs are written to a cloudhsm.log file in the AWS CloudHSM 
program files folder (C:\Program Files\Amazon\CloudHSM\). Each log file name is 
suffixed with a timestamp indicating when the AWS CloudHSM client was started.

• For Windows client 1.1.1 and older:

The client logs are not written to a file. The logs are displayed at the command prompt or in 
the PowerShell window where you started the AWS CloudHSM client.

Client SDK 3 logging 1214



AWS CloudHSM User Guide

Working with AWS CloudTrail and AWS CloudHSM

AWS CloudHSM is integrated with AWS CloudTrail, a service that provides a record of actions 
taken by a user, role, or an AWS service in AWS CloudHSM. CloudTrail captures all API calls for 
AWS CloudHSM as events. The calls captured include calls from the AWS CloudHSM console and 
code calls to the AWS CloudHSM API operations. If you create a trail, you can enable continuous 
delivery of CloudTrail events to an Amazon S3 bucket, including events for AWS CloudHSM. If you 
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event 
history. Using the information collected by CloudTrail, you can determine the request that was 
made to AWS CloudHSM, the IP address from which the request was made, who made the request, 
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide. For a full list of AWS 
CloudHSM API operations, see Actions in the AWS CloudHSM API Reference.

AWS CloudHSM information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in 
AWS CloudHSM, that activity is recorded in a CloudTrail event along with other AWS service events 
in Event history. You can view, search, and download recent events in your AWS account. For more 
information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS CloudHSM, create 
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when 
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all 
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify. 
Additionally, you can configure other AWS services to further analyze and act upon the event data 
collected in CloudTrail logs. For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from 
Multiple Accounts

AWS CloudTrail 1215

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html


AWS CloudHSM User Guide

CloudTrail logs all AWS CloudHSM operations, including read-only operations, such as
DescribeClusters and ListTags, and management operations, such as InitializeCluster,
CreatHsm, and DeleteBackup.

Every event or log entry contains information about who generated the request. The identity 
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user 
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding AWS CloudHSM log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that 
you specify. CloudTrail log files contain one or more log entries. An event represents a single 
request from any source and includes information about the requested action, the date and time of 
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the 
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AWS CloudHSM
CreateHsm action.

{ 
    "eventVersion": "1.05", 
    "userIdentity": { 
        "type": "AssumedRole", 
        "principalId": "AROAJZVM5NEGZSTCITAMM:ExampleSession", 
        "arn": "arn:aws:sts::111122223333:assumed-role/AdminRole/ExampleSession", 
        "accountId": "111122223333", 
        "accessKeyId": "ASIAIY22AX6VRYNBGJSA", 
        "sessionContext": { 
            "attributes": { 
                "mfaAuthenticated": "false", 
                "creationDate": "2017-07-11T03:48:44Z" 
            }, 
            "sessionIssuer": { 
                "type": "Role", 

Understanding AWS CloudHSM log file entries 1216

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html


AWS CloudHSM User Guide

                "principalId": "AROAJZVM5NEGZSTCITAMM", 
                "arn": "arn:aws:iam::111122223333:role/AdminRole", 
                "accountId": "111122223333", 
                "userName": "AdminRole" 
            } 
        } 
    }, 
    "eventTime": "2017-07-11T03:50:45Z", 
    "eventSource": "cloudhsm.amazonaws.com", 
    "eventName": "CreateHsm", 
    "awsRegion": "us-west-2", 
    "sourceIPAddress": "205.251.233.179", 
    "userAgent": "aws-internal/3", 
    "requestParameters": { 
        "availabilityZone": "us-west-2b", 
        "clusterId": "cluster-fw7mh6mayb5" 
    }, 
    "responseElements": { 
        "hsm": { 
            "eniId": "eni-65338b5a", 
            "clusterId": "cluster-fw7mh6mayb5", 
            "state": "CREATE_IN_PROGRESS", 
            "eniIp": "10.0.2.7", 
            "hsmId": "hsm-6lz2hfmnzbx", 
            "subnetId": "subnet-02c28c4b", 
            "availabilityZone": "us-west-2b" 
        } 
    }, 
    "requestID": "1dae0370-65ec-11e7-a770-6578d63de907", 
    "eventID": "b73a5617-8508-4c3d-900d-aa8ac9b31d08", 
    "eventType": "AwsApiCall", 
    "recipientAccountId": "111122223333"
}

Working with Amazon CloudWatch Logs and AWS CloudHSM 
Audit Logs

When an HSM in your account receives a command from the AWS CloudHSM command line tools
or software libraries, it records its execution of the command in audit log form. The HSM audit 
logs include all client-initiated management commands, including those that create and delete the 

Audit logs 1217



AWS CloudHSM User Guide

HSM, log into and out of the HSM, and manage users and keys. These logs provide a reliable record 
of actions that have changed the state of the HSM.

AWS CloudHSM collects your HSM audit logs and sends them to Amazon CloudWatch Logs on your 
behalf. You can use the features of CloudWatch Logs to manage your AWS CloudHSM Audit Logs, 
including searching and filtering the logs and exporting log data to Amazon S3. You can work with 
your HSM audit logs in the Amazon CloudWatch console or use the CloudWatch Logs commands in 
the AWS CLI and CloudWatch Logs SDKs.

Topics

• How HSM audit logging works

• Viewing AWS CloudHSM audit logs in CloudWatch Logs

• Interpreting AWS CloudHSM audit logs

• AWS CloudHSM audit log reference

How HSM audit logging works

Audit logging is automatically enabled in all AWS CloudHSM clusters. It cannot be disabled or 
turned off, and no settings can prevent AWS CloudHSM from exporting the logs to CloudWatch 
Logs. Each log event has a time stamp and sequence number that indicate the order of events and 
help you detect any log tampering.

Each HSM instance generates its own log. The audit logs of various HSMs, even those in the same 
cluster, are likely to differ. For example, only the first HSM in each cluster records initialization of 
the HSM. Initialization events do not appear in the logs of HSMs that are cloned from backups. 
Similarly, when you create a key, the HSM that generates the key records a key generation event. 
The other HSMs in the cluster record an event when they receive the key via synchronization.

AWS CloudHSM collects the logs and posts them to CloudWatch Logs in your account. To 
communicate with the CloudWatch Logs service on your behalf, AWS CloudHSM uses a service-
linked role. The IAM policy that is associated with the role allows AWS CloudHSM to perform only 
the tasks required to send the audit logs to CloudWatch Logs.

Important

If you created a cluster before January 20, 2018, and have not yet created an attached 
service-linked role, you must manually create one. This is necessary for CloudWatch to 

How logging works 1218

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/cli/latest/reference/logs/index.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/


AWS CloudHSM User Guide

receive audit logs from your AWS CloudHSM cluster. For more information about service-
linked role creation, see Understanding Service-Linked Roles, as well as Creating a Service-
Linked Role in the IAM User Guide.

Viewing AWS CloudHSM audit logs in CloudWatch Logs

Amazon CloudWatch Logs organizes the audit logs into log groups and, within a log group, into
log streams. Each log entry is an event. AWS CloudHSM creates one log group for each cluster 
and one log stream for each HSM in the cluster. You do not have to create any CloudWatch Logs 
components or change any settings.

• The log group name is /aws/cloudhsm/<cluster ID>; for example /aws/cloudhsm/
cluster-likphkxygsn. When you use the log group name in a AWS CLI or PowerShell 
command, be sure to enclose it in double quotation marks.

• The log stream name is the HSM ID; for example, hsm-nwbbiqbj4jk.

In general, there is one log stream for each HSM. However, any action that changes the HSM ID, 
such as when an HSM fails and is replaced, creates a new log stream.

For more information about CloudWatch Logs concepts, see Concepts in the Amazon CloudWatch 
Logs User Guide.

You can view the audit logs for an HSM from the CloudWatch Logs page in the AWS Management 
Console, the CloudWatch Logs commands in the AWS CLI, the CloudWatch Logs PowerShell 
cmdlets, or the CloudWatch Logs SDKs. For instructions, see View Log Data in the Amazon 
CloudWatch Logs User Guide.

For example, the following image shows the log group for the cluster-likphkxygsn cluster in 
the AWS Management Console.

Viewing logs 1219

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatchLogsConcepts.html
https://docs.aws.amazon.com/cli/latest/reference/logs/index.html#cli-aws-logs
https://docs.aws.amazon.com/powershell/latest/reference/items/Amazon_CloudWatch_Logs_cmdlets.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Amazon_CloudWatch_Logs_cmdlets.html
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html#ViewingLogData


AWS CloudHSM User Guide

When you choose the cluster log group name, you can view the log stream for each of the 
HSMs in the cluster. The following image shows the log streams for the HSMs in the cluster-
likphkxygsn cluster.

When you choose an HSM log stream name, you can view the events in the audit log. For example, 
this event, which has a sequence number of 0x0 and an Opcode of CN_INIT_TOKEN, is typically 
the first event for the first HSM in each cluster. It records the initialization of the HSM in the cluster.

Viewing logs 1220



AWS CloudHSM User Guide

You can use all the many features in CloudWatch Logs to manage your audit logs. For example, you 
can use the Filter events feature to find particular text in an event, such as the CN_CREATE_USER
Opcode.

To find all events that do not include the specified text, add a minus sign (-) before the text. For 
example, to find events that do not include CN_CREATE_USER, enter -CN_CREATE_USER.

Viewing logs 1221



AWS CloudHSM User Guide

Interpreting AWS CloudHSM audit logs

The events in the HSM audit logs have standard fields. Some event types have additional fields 
that capture useful information about the event. For example, user login and user management 
events include the user name and user type of the user. Key management commands include the 
key handle.

Several of the fields provide particularly important information. The Opcode identifies the 
management command that is being recorded. The Sequence No identifies an event in the log 
stream and indicates the order in which it was recorded.

For example, the following example event is the second event (Sequence No: 0x1) in the log 
stream for an HSM. It shows the HSM generating a password encryption key, which is part of its 
startup routine.

Time: 12/19/17 21:01:17.140812, usecs:1513717277140812
Sequence No : 0x1
Reboot counter : 0xe8

Interpreting logs 1222



AWS CloudHSM User Guide

Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_GEN_PSWD_ENC_KEY (0x1d)
Session Handle : 0x1004001
Response : 0:HSM Return: SUCCESS
Log type : MINIMAL_LOG_ENTRY (0)

The following fields are common to every AWS CloudHSM event in the audit log.

Time

The time that the event occurred in the UTC time zone. The time is displayed as a human-
readable time and Unix time in microseconds.

Reboot counter

A 32-bit persistent ordinal counter that is incremented when the HSM hardware is rebooted.

All events in a log stream have the same reboot counter value. However, the reboot counter 
might not be unique to a log stream, as it can differ across different HSM instances in the same 
cluster.

Sequence No

A 64-bit ordinal counter that is incremented for each log event. The first event in each log 
stream has a sequence number of 0x0. There should be no gaps in the Sequence No values. 
The sequence number is unique only within a log stream.

Command type

A hexadecimal value that represents the category of the command. Commands in the AWS 
CloudHSM log streams have a command type of CN_MGMT_CMD (0x0) or CN_CERT_AUTH_CMD
(0x9).

Opcode

Identifies the management command that was executed. For a list of Opcode values in the AWS 
CloudHSM audit logs, see AWS CloudHSM audit log reference.

Session handle

Identifies the session in which the command was run and the event was logged.

Response

Records the response to the management command. You can search the Response field for
SUCCESS and ERROR values.

Interpreting logs 1223



AWS CloudHSM User Guide

Log type

Indicates the log type of the AWS CloudHSM log that recorded the command.

• MINIMAL_LOG_ENTRY (0)

• MGMT_KEY_DETAILS_LOG (1)

• MGMT_USER_DETAILS_LOG (2)

• GENERIC_LOG

Examples of audit log events

The events in a log stream record the history of the HSM from its creation to deletion. You can 
use the log to review the lifecycle of your HSMs and gain insight into its operation. When you 
interpret the events, note the Opcode, which indicates the management command or action, and 
the Sequence No, which indicates the order of events.

Topics

• Example: Initialize the first HSM in a cluster

• Login and logout events

• Example: Create and delete users

• Example: Create and delete a key pair

• Example: Generate and synchronize a key

• Example: Export a key

• Example: Import a key

• Example: Share and unshare a key

Example: Initialize the first HSM in a cluster

The audit log stream for the first HSM in each cluster differs significantly from the log streams of 
other HSMs in the cluster. The audit log for the first HSM in each cluster records its creation and 
initialization. The logs of additional HSMs in the cluster, which are generated from backups, begin 
with a login event.

Interpreting logs 1224



AWS CloudHSM User Guide

Important

The following initialization entries will not appear in the CloudWatch logs of clusters 
initialized before the release of the CloudHSM audit logging feature (August 30, 2018). For 
more information, see Document History.

The following example events appear in the log stream for the first HSM in a cluster. The first event 
in the log — the one with Sequence No 0x0 — represents the command to initialize the HSM 
(CN_INIT_TOKEN). The response indicates that the command was successful (Response : 0: 
HSM Return: SUCCESS).

Time: 12/19/17 21:01:16.962174, usecs:1513717276962174
Sequence No : 0x0
Reboot counter : 0xe8
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_INIT_TOKEN (0x1)
Session Handle : 0x1004001
Response : 0:HSM Return: SUCCESS
Log type : MINIMAL_LOG_ENTRY (0)

The second event in this example log stream (Sequence No 0x1) records the command to create 
the password encryption key that the HSM uses (CN_GEN_PSWD_ENC_KEY).

This is a typical startup sequence for the first HSM in each cluster. Because subsequent HSMs in the 
same cluster are clones of the first one, they use the same password encryption key.

Time: 12/19/17 21:01:17.140812, usecs:1513717277140812
Sequence No : 0x1
Reboot counter : 0xe8
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_GEN_PSWD_ENC_KEY (0x1d)
Session Handle : 0x1004001
Response : 0:HSM Return: SUCCESS
Log type : MINIMAL_LOG_ENTRY (0)

The third event in this example log stream (Sequence No 0x2) is the creation of the appliance 
user (AU), which is the AWS CloudHSM service. Events that involve HSM users include extra fields 
for the user name and user type.

Interpreting logs 1225



AWS CloudHSM User Guide

Time: 12/19/17 21:01:17.174902, usecs:1513717277174902
Sequence No : 0x2
Reboot counter : 0xe8
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_CREATE_APPLIANCE_USER (0xfc)
Session Handle : 0x1004001
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : app_user
User Type : CN_APPLIANCE_USER (5)

The fourth event in this example log stream (Sequence No 0x3) records the CN_INIT_DONE
event, which completes the initialization of the HSM.

Time: 12/19/17 21:01:17.298914, usecs:1513717277298914
Sequence No : 0x3
Reboot counter : 0xe8
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_INIT_DONE (0x95)
Session Handle : 0x1004001
Response : 0:HSM Return: SUCCESS
Log type : MINIMAL_LOG_ENTRY (0)

You can follow the remaining events in the startup sequence. These events might include several 
login and logout events, and the generation of the key encryption key (KEK). The following event 
records the command that changes the password of the precrypto officer (PRECO). This command 
activates the cluster.

Time: 12/13/17 23:04:33.846554, usecs:1513206273846554
Sequence No: 0x1d
Reboot counter: 0xe8
Command Type(hex): CN_MGMT_CMD (0x0)
Opcode: CN_CHANGE_PSWD (0x9)
Session Handle: 0x2010003
Response: 0:HSM Return: SUCCESS
Log type: MGMT_USER_DETAILS_LOG (2)
User Name: admin
User Type: CN_CRYPTO_PRE_OFFICER (6)

Interpreting logs 1226



AWS CloudHSM User Guide

Login and logout events

When interpreting your audit log, note events that record users logging and in and out of the HSM. 
These events help you to determine which user is responsible for management commands that 
appear in sequence between the login and logout commands.

For example, this log entry records a login by a crypto officer named admin. The sequence number,
0x0, indicates that this is the first event in this log stream.

When a user logs into an HSM, the other HSMs in the cluster also record a login event for the user. 
You can find the corresponding login events in the log streams of other HSMs in the cluster shortly 
after the initial login event.

Time: 01/16/18 01:48:49.824999, usecs:1516067329824999
Sequence No : 0x0
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0x7014006
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : admin
User Type : CN_CRYPTO_OFFICER (2)

The following example event records the admin crypto officer logging out. The sequence number,
0x2, indicates that this is the third event in the log stream.

If the logged in user closes the session without logging out, the log stream includes an
CN_APP_FINALIZE or close session event (CN_SESSION_CLOSE), instead of a CN_LOGOUT event. 
Unlike the login event, this logout event typically is recorded only by the HSM that executes the 
command.

Time: 01/16/18 01:49:55.993404, usecs:1516067395993404
Sequence No : 0x2
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGOUT (0xe)
Session Handle : 0x7014000
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : admin

Interpreting logs 1227



AWS CloudHSM User Guide

User Type : CN_CRYPTO_OFFICER (2)

If a login attempt fails because the user name is invalid, the HSM records a CN_LOGIN event with 
the user name and type provided in the login command. The response displays error message 157, 
which explains that the user name does not exist.

Time: 01/24/18 17:41:39.037255, usecs:1516815699037255
Sequence No : 0x4
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0xc008002
Response : 157:HSM Error: user isn't initialized or user with this name doesn't exist
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : ExampleUser
User Type : CN_CRYPTO_USER (1)

If a login attempt fails because the password is invalid, the HSM records a CN_LOGIN event with 
the user name and type provided in the login command. The response displays the error message 
with the RET_USER_LOGIN_FAILURE error code.

Time: 01/24/18 17:44:25.013218, usecs:1516815865013218
Sequence No : 0x5
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0xc008002
Response : 163:HSM Error: RET_USER_LOGIN_FAILURE
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : testuser
User Type : CN_CRYPTO_USER (1)

Example: Create and delete users

This example shows the log events that are recorded when a crypto officer (CO) creates and deletes 
users.

The first event records a CO, admin, logging into the HSM. The sequence number of 0x0 indicates 
that this is the first event in the log stream. The name and type of the user who logged in are 
included in the event.

Interpreting logs 1228



AWS CloudHSM User Guide

Time: 01/16/18 01:48:49.824999, usecs:1516067329824999
Sequence No : 0x0
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0x7014006
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : admin
User Type : CN_CRYPTO_OFFICER (2)

The next event in the log stream (sequence 0x1) records the CO creating a new crypto user (CU). 
The name and type of the new user are included in the event.

Time: 01/16/18 01:49:39.437708, usecs:1516067379437708
Sequence No : 0x1
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_CREATE_USER (0x3)
Session Handle : 0x7014006
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : bob
User Type : CN_CRYPTO_USER (1)

Then, the CO creates another crypto officer, alice. The sequence number indicates that this action 
followed the previous one with no intervening actions.

Time: 01/16/18 01:49:55.993404, usecs:1516067395993404
Sequence No : 0x2
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_CREATE_CO (0x4)
Session Handle : 0x7014007
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : alice
User Type : CN_CRYPTO_OFFICER (2)

Later, the CO named admin logs in and deletes the crypto officer named alice. The HSM records 
a CN_DELETE_USER event. The name and type of the deleted user are included in the event.

Interpreting logs 1229



AWS CloudHSM User Guide

Time: 01/23/18 19:58:23.451420, usecs:1516737503451420
Sequence No : 0xb
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_DELETE_USER (0xa1)
Session Handle : 0x7014007
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : alice
User Type : CN_CRYPTO_OFFICER (2)

Example: Create and delete a key pair

This example shows the events that are recorded in an HSM audit log when you create and delete a 
key pair.

The following event records the crypto user (CU) named crypto_user logging in to the HSM.

Time: 12/13/17 23:09:04.648952, usecs:1513206544648952
Sequence No: 0x28
Reboot counter: 0xe8
Command Type(hex): CN_MGMT_CMD (0x0)
Opcode: CN_LOGIN (0xd)
Session Handle: 0x2014005
Response: 0:HSM Return: SUCCESS
Log type: MGMT_USER_DETAILS_LOG (2)
User Name: crypto_user
User Type: CN_CRYPTO_USER (1)

Next, the CU generates a key pair (CN_GENERATE_KEY_PAIR). The private key has key handle
131079. The public key has key handle 131078.

Time: 12/13/17 23:09:04.761594, usecs:1513206544761594
Sequence No: 0x29
Reboot counter: 0xe8
Command Type(hex): CN_MGMT_CMD (0x0)
Opcode: CN_GENERATE_KEY_PAIR (0x19)
Session Handle: 0x2014004
Response: 0:HSM Return: SUCCESS
Log type: MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle: 131079

Interpreting logs 1230



AWS CloudHSM User Guide

Public Key Handle: 131078

The CU immediately deletes the key pair. A CN_DESTROY_OBJECT event records the deletion of the 
public key (131078).

Time: 12/13/17 23:09:04.813977, usecs:1513206544813977
Sequence No: 0x2a
Reboot counter: 0xe8
Command Type(hex): CN_MGMT_CMD (0x0)
Opcode: CN_DESTROY_OBJECT (0x11)
Session Handle: 0x2014004
Response: 0:HSM Return: SUCCESS
Log type: MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle: 131078
Public Key Handle: 0

Then, a second CN_DESTROY_OBJECT event records the deletion of the private key (131079).

Time: 12/13/17 23:09:04.815530, usecs:1513206544815530
Sequence No: 0x2b
Reboot counter: 0xe8
Command Type(hex): CN_MGMT_CMD (0x0)
Opcode: CN_DESTROY_OBJECT (0x11)
Session Handle: 0x2014004
Response: 0:HSM Return: SUCCESS
Log type: MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle: 131079
Public Key Handle: 0

Finally, the CU logs out.

Time: 12/13/17 23:09:04.817222, usecs:1513206544817222
Sequence No: 0x2c
Reboot counter: 0xe8
Command Type(hex): CN_MGMT_CMD (0x0)
Opcode: CN_LOGOUT (0xe)
Session Handle: 0x2014004
Response: 0:HSM Return: SUCCESS
Log type: MGMT_USER_DETAILS_LOG (2)
User Name: crypto_user
User Type: CN_CRYPTO_USER (1)

Interpreting logs 1231



AWS CloudHSM User Guide

Example: Generate and synchronize a key

This example shows the effect of creating a key in a cluster with multiple HSMs. The key is 
generated on one HSM, extracted from the HSM as a masked object, and inserted in the other 
HSMs as a masked object.

Note

The client tools might fail to synchronize the key. Or the command might include the
min_srv parameter, which synchronizes the key only to the specified number of HSMs. 
In either case, the AWS CloudHSM service synchronizes the key to the other HSMs in the 
cluster. Because the HSMs record only client-side management commands in their logs, the 
server-side synchronization is not recorded in the HSM log.

First consider the log stream of the HSM that receives and executes the commands. The log stream 
is named for HSM ID, hsm-abcde123456, but the HSM ID does not appear in the log events.

First, the testuser crypto user (CU) logs in to the hsm-abcde123456 HSM.

Time: 01/24/18 00:39:23.172777, usecs:1516754363172777
Sequence No : 0x0
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0xc008002
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : testuser
User Type : CN_CRYPTO_USER (1)

The CU runs an exSymKey command to generate a symmetric key. The hsm-abcde123456 HSM 
generates a symmetric key with a key handle of 262152. The HSM records a CN_GENERATE_KEY
event in its log.

Time: 01/24/18 00:39:30.328334, usecs:1516754370328334
Sequence No : 0x1
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_GENERATE_KEY (0x17)
Session Handle : 0xc008004

Interpreting logs 1232



AWS CloudHSM User Guide

Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 262152
Public Key Handle : 0

The next event in the log stream for hsm-abcde123456 records the first step in the key 
synchronization process. The new key (key handle 262152) is extracted from the HSM as a masked 
object.

Time: 01/24/18 00:39:30.330956, usecs:1516754370330956
Sequence No : 0x2
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_EXTRACT_MASKED_OBJECT_USER (0xf0)
Session Handle : 0xc008004
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 262152
Public Key Handle : 0

Now consider the log stream for HSM hsm-zyxwv987654, another HSM in the same cluster. This 
log stream also includes a login event for the testuser CU. The time value shows that occurs 
shortly after the user logs in to the hsm-abcde123456 HSM.

Time: 01/24/18 00:39:23.199740, usecs:1516754363199740
Sequence No : 0xd
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0x7004004
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : testuser
User Type : CN_CRYPTO_USER (1)

This log stream for this HSM does not have a CN_GENERATE_KEY event. But it does have an event 
that records synchronization of the key to this HSM. The CN_INSERT_MASKED_OBJECT_USER
event records the receipt of key 262152 as a masked object. Now key 262152 exists on both HSMs 
in the cluster.

Time: 01/24/18 00:39:30.408950, usecs:1516754370408950

Interpreting logs 1233



AWS CloudHSM User Guide

Sequence No : 0xe
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_INSERT_MASKED_OBJECT_USER (0xf1)
Session Handle : 0x7004003
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 262152
Public Key Handle : 0

When the CU user logs out, this CN_LOGOUT event appears only in the log stream of the HSM that 
received the commands.

Example: Export a key

This example shows the audit log events that are recorded when a crypto user (CU) exports keys 
from a cluster with multiple HSMs.

The following event records the CU (testuser) logging into key_mgmt_util.

Time: 01/24/18 19:42:22.695884, usecs:1516822942695884
Sequence No : 0x26
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_LOGIN (0xd)
Session Handle : 0x7004004
Response : 0:HSM Return: SUCCESS
Log type : MGMT_USER_DETAILS_LOG (2)
User Name : testuser
User Type : CN_CRYPTO_USER (1)

The CU runs an exSymKey command to export key 7, a 256-bit AES key. The command uses key 6, 
a 256-bit AES key on the HSMs, as the wrapping key.

The HSM that receives the command records a CN_WRAP_KEY event for key 7, the key that is being 
exported.

Time: 01/24/18 19:51:12.860123, usecs:1516823472860123
Sequence No : 0x27
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_WRAP_KEY (0x1a)

Interpreting logs 1234



AWS CloudHSM User Guide

Session Handle : 0x7004003
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 7
Public Key Handle : 0

Then, the HSM records a CN_NIST_AES_WRAP event for the wrapping key, key 6. The key is 
wrapped and then immediately unwrapped, but the HSM records only one event.

Time: 01/24/18 19:51:12.905257, usecs:1516823472905257
Sequence No : 0x28
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_NIST_AES_WRAP (0x1e)
Session Handle : 0x7004003
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 6
Public Key Handle : 0

The exSymKey command writes the exported key to a file but does not change the key on the 
HSM. Consequently, there are no corresponding events in the logs of other HSMs in the cluster.

Example: Import a key

This example shows the audit log events that are recorded when you import keys into the HSMs in 
a cluster. In this example, the crypto user (CU) uses the imSymKey command to import an AES key 
into the HSMs. The command uses key 6 as the wrapping key.

The HSM that receives the commands first records a CN_NIST_AES_WRAP event for key 6, the 
wrapping key.

Time: 01/24/18 19:58:23.170518, usecs:1516823903170518
Sequence No : 0x29
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_NIST_AES_WRAP (0x1e)
Session Handle : 0x7004003
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 6
Public Key Handle : 0

Interpreting logs 1235



AWS CloudHSM User Guide

Then, the HSM records a CN_UNWRAP_KEY event that represents the import operation. The 
imported key is assigned a key handle of 11.

Time: 01/24/18 19:58:23.200711, usecs:1516823903200711
Sequence No : 0x2a
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_UNWRAP_KEY (0x1b)
Session Handle : 0x7004003
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 11
Public Key Handle : 0

When a new key is generated or imported, the client tools automatically attempt to 
synchronize the new key to other HSMs in the cluster. In this case, the HSM records a
CN_EXTRACT_MASKED_OBJECT_USER event when key 11 is extracted from the HSM as a masked 
object.

Time: 01/24/18 19:58:23.203350, usecs:1516823903203350
Sequence No : 0x2b
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_EXTRACT_MASKED_OBJECT_USER (0xf0)
Session Handle : 0x7004003
Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 11
Public Key Handle : 0

The log streams of other HSMs in the cluster reflect the arrival of the newly imported key.

For example, this event was recorded in the log stream of a different HSM in the same cluster. This
CN_INSERT_MASKED_OBJECT_USER event records the arrival of a masked object that represents 
key 11.

Time: 01/24/18 19:58:23.286793, usecs:1516823903286793
Sequence No : 0xb
Reboot counter : 0x107
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_INSERT_MASKED_OBJECT_USER (0xf1)
Session Handle : 0xc008004

Interpreting logs 1236



AWS CloudHSM User Guide

Response : 0:HSM Return: SUCCESS
Log type : MGMT_KEY_DETAILS_LOG (1)
Priv/Secret Key Handle : 11
Public Key Handle : 0

Example: Share and unshare a key

This example shows the audit log event that is recorded when a crypto user (CU) shares or unshares 
ECC private key with other crypto users. The CU uses the shareKey command and provides the key 
handle, the user ID, and the value 1 to share or value 0 to unshare the key.

In the following example, the HSM that receives the command, records a CM_SHARE_OBJECT event 
that represents the share operation.

Time: 02/08/19 19:35:39.480168, usecs:1549654539480168
Sequence No : 0x3f
Reboot counter : 0x38
Command Type(hex) : CN_MGMT_CMD (0x0)
Opcode : CN_SHARE_OBJECT (0x12)
Session Handle : 0x3014007
Response : 0:HSM Return: SUCCESS
Log type : UNKNOWN_LOG_TYPE (5)

AWS CloudHSM audit log reference

AWS CloudHSM records HSM management commands in audit log events. Each event has an 
operation code (Opcode) value that identifies the action that occurred and its response. You can 
use the Opcode values to search, sort, and filter the logs.

The following table defines the Opcode values in an AWS CloudHSM audit log.

Operation Code (Opcode) Description

User Login: These events include the user name and user type

CN_LOGIN (0xd) User login

CN_LOGOUT (0xe) User logout

Log reference 1237



AWS CloudHSM User Guide

Operation Code (Opcode) Description

CN_APP_FINALIZE The connection with the HSM was closed. 
Any session keys or quorum tokens from this 
connection were deleted.

CN_CLOSE_SESSION The session with the HSM was closed. Any 
session keys or quorum tokens from this 
session were deleted.

User Management: These events include the user name and user type

CN_CREATE_USER (0x3) Create a crypto user (CU)

CN_CREATE_CO Create a crypto officer (CO)

CN_DELETE_USER Delete a user

CN_CHANGE_PSWD Change a user password

CN_SET_M_VALUE Set quorum authentication (M of N) for a user 
action

CN_APPROVE_TOKEN Approve a quorum authentication token for a 
user action

CN_DELETE_TOKEN Delete one or more quorum tokens

CN_GET_TOKEN Request a signing token to initiate a quorum 
operation

Key Management: These events include the key handle

CN_GENERATE_KEY Generate a symmetric key

CN_GENERATE_KEY_PAIR (0x19) Generate an asymmetric key pair

CN_CREATE_OBJECT Import a public key (without wrapping)

CN_MODIFY_OBJECT Set a key attribute

Log reference 1238



AWS CloudHSM User Guide

Operation Code (Opcode) Description

CN_DESTROY_OBJECT (0x11) Deletion of a session key

CN_TOMBSTONE_OBJECT Deletion of a token key

CN_SHARE_OBJECT Share or unshare a key

CN_WRAP_KEY Export an encrypted copy of a key (wrapKey)

CN_UNWRAP_KEY Import an encrypted copy of a key (unwrapKey
)

CN_DERIVE_KEY Derive a symmetric key from an existing key

CN_NIST_AES_WRAP Encrypt or decrypt a key with an AES key

CN_INSERT_MASKED_OBJECT_USER Insert an encrypted key with attributes from 
another HSM in the cluster.

CN_EXTRACT_MASKED_OBJECT_USER Wraps/encrypts a key with attributes from the 
HSM to be sent to another HSM in the cluster.

Back up HSMs

CN_BACKUP_BEGIN Begin the backup process

CN_BACKUP_END Completed the backup process

CN_RESTORE_BEGIN Begin restoring from a backup

CN_RESTORE_END Completed the restoration process from a 
backup

Certificate-Based Authentication

CN_CERT_AUTH_STORE_CERT Stores the cluster certificate

HSM Instance Commands

CN_INIT_TOKEN (0x1) Start the HSM initialization process

Log reference 1239

https://docs.aws.amazon.com/cloudhsm/latest/userguide/manage-key-sync.html#concepts-key-sync
https://docs.aws.amazon.com/cloudhsm/latest/userguide/manage-key-sync.html#concepts-key-sync


AWS CloudHSM User Guide

Operation Code (Opcode) Description

CN_INIT_DONE The HSM initialization process has finished

CN_GEN_KEY_ENC_KEY Generate a key encryption key (KEK)

CN_GEN_PSWD_ENC_KEY (0x1d) Generate a password encryption key (PEK)

HSM crypto commands

CN_FIPS_RAND Generate a FIPS-compliant random number

Getting CloudWatch metrics for AWS CloudHSM

Use CloudWatch to monitor your AWS CloudHSM cluster in real time. The metrics can be grouped 
by region, cluster ID, or cluster ID and HSM ID.

The AWS/CloudHSM namespace includes the following metrics:

Metric Description

HsmUnhealthy The HSM instance is not performing properly. AWS CloudHSM automatically 
replaces  unhealthy instances for you. You may choose to proactively expand 
cluster  size to reduce performance impact while we are replacing the HSM.

HsmTemper 

ature 1
The junction temperature of the hardware processor. The system shuts 
down  if temperature reaches 110 degrees Centigrade.

HsmKeysSe 
ssionOccupied

The number of session keys being used by the HSM instance.

HsmKeysTo 
kenOccupied

The number of token keys being used by the HSM instance and the cluster.  

HsmSslCtx 

sOccupied 1
The number of end-to-end encrypted channels currently established for the  
 HSM instance. Up to 2,048 channels are allowed.

HsmSessio 
nCount

The number of open connections to the HSM instance. Up to 2,048 are 
allowed. By default,  the client daemon is configured to open two sessions 

CloudWatch metrics 1240



AWS CloudHSM User Guide

Metric Description

with each HSM instance  under one end-to-end encrypted channel. AWS 
CloudHSM may also have  up to 2 connections open with the HSM to 
monitor the health of the HSMs.

HsmUsersA 
vailable

The number of additional users that can be created. This equals the  
 maximum number of users (listed in HsmUsersMax) minus  the users 
created to date.

HsmUsersMax 1 The maximum number of users that can be created on the HSM instance.

Interface 
Eth2Octet 

sInput 1

The cumulative sum of incoming traffic to the HSM to date.

Interface 
Eth2Octet 

sOutput 1

The cumulative sum of outgoing traffic to the HSM to date.

• [1] This metric is not available for hsm2m.medium.

CloudWatch metrics 1241



AWS CloudHSM User Guide

AWS CloudHSM performance information

For production AWS CloudHSM clusters, you should have at least two hardware security module 
(HSM) instances spread across different availability zones in a region. We recommend load testing 
your cluster to determine the peak load you should anticipate, and then add one more HSM to 
it to ensure high availability. For applications requiring durability of newly generated keys, we 
recommend at least three HSM instances spread across different availability zones in a region.

Performance data

The performance of AWS CloudHSM clusters vary based on specific workload. To increase 
performance, you can add additional HSM instances to your clusters. Performance can vary based 
on configuration, data size, and additional application load on your EC2 instances. We encourage 
load testing your application to determine scaling needs.

The following table shows approximate performance for common cryptographic algorithms 
running on an EC2 instance with hsm1.medium instances.

Performance data for hsm1.medium

Operation Two-HSM cluster1 Three-HSM cluster2 Six-HSM cluster3

RSA 2048-bit sign 2,000 ops/sec 3,000 ops/sec 5,000 ops/sec

EC P256 sign 500 ops/sec 750 ops/sec 1,500 ops/sec

The following table shows approximate performance for common cryptographic algorithms 
running on an EC2 instance with hsm2m.medium.

Performance data for hsm2m.medium

Operation Two-HSM cluster1 Three-HSM cluster2 Six-HSM cluster3

RSA 2048-bit sign 2000 ops/sec 3000 ops/sec 5000 ops/sec

EC P256 sign 3000 ops/sec 4500 ops/sec 7000 ops/sec

Performance data 1242



AWS CloudHSM User Guide

• [1] A two-HSM cluster with the Java multi-threaded application running on one c4.large EC2 
instance with one HSM in the same AZ as the EC2 instance.

• [2] A three-HSM cluster with the Java multi-threaded application running on one c4.large EC2 
instance with one HSM in the same AZ as the EC2 instance.

• [3] A six-HSM cluster with the Java multi-threaded application running on one c4.large EC2 
instance with two HSMs in the same AZ as the EC2 instance.

HSM throttling

When your workload exceeds your cluster’s HSM capacity, you will receive error messages stating 
HSMs are busy or throttled. For details on what to do when this happens, see HSM throttling

HSM throttling 1243

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/


AWS CloudHSM User Guide

Security in AWS CloudHSM

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center 
and network architecture that is built to meet the requirements of the most security-sensitive 
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes 
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS 
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS 
Compliance Programs. To learn about the compliance programs that apply to AWS CloudHSM, 
see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You 
are also responsible for other factors including the sensitivity of your data, your company’s 
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when 
using AWS CloudHSM. The following topics show you how to configure AWS CloudHSM to meet 
your security and compliance objectives. You also learn how to use other AWS services that help 
you to monitor and secure your AWS CloudHSM resources.

Contents

• Control API access with IAM policies

• Data protection in AWS CloudHSM

• Identity and access management for AWS CloudHSM

• Compliance

• Resilience in AWS CloudHSM

• Infrastructure security in AWS CloudHSM

• AWS CloudHSM and VPC endpoints

• Update management in AWS CloudHSM

1244

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/


AWS CloudHSM User Guide

Control API access with IAM policies

Upgrade IAM policies to IPv6

AWS CloudHSM customers use IAM policies to control access to AWS CloudHSM APIs and prevent 
any IP addresses outside the configured range from being able to access AWS CloudHSM APIs.

The cloudhsmv2.<region>.api.aws dual-stack endpoint where AWS CloudHSM APIs are hosted 
supports IPv6 in addition to IPv4.

Customers who need to support both IPv4 and IPv6 must update their IP address filtering policies 
to handle IPv6 addresses, otherwise it will impact their ability to connect to AWS CloudHSM over 
IPv6.

Who should upgrade?

Customers who use dual addressing with policies containing aws:sourceIp are impacted by this 
upgrade. Dual addressing means that the network supports both IPv4 and IPv6.

If you are using dual addressing, you must update your IAM policies that are currently configured 
with IPv4 format addresses to include IPv6 format addresses.

For help with access issues, contact Support.

Note

The following customers are not impacted by this upgrade:

• Customers who are on only IPv4 networks.

What is IPv6?

IPv6 is the next generation IP standard intended to eventually replace IPv4. The previous version, 
IPv4, uses a 32-bit addressing scheme to support 4.3 billion devices. IPv6 instead uses 128-bit 
addressing to support approximately 340 trillion trillion trillion (or 2 to the 128th power) devices.

For more details, refer VPC IPv6 webpage.

2001:cdba:0000:0000:0000:0000:3257:9652

Control API access with IAM policies 1245

https://support.console.aws.amazon.com/support/home/?nc1=f_dr#/case/create
https://aws.amazon.com/vpc/ipv6/


AWS CloudHSM User Guide

2001:cdba:0:0:0:0:3257:9652
2001:cdba::3257:965

Updating an IAM policy for IPv6

IAM policies are currently used to set an allowed range of IP addresses using the aws:SourceIp
filter.

Dual addressing supports both IPv4 and IPv6 traffic. If your network uses dual addressing, you 
must update any IAM polices used for IP address filtering to include IPv6 address ranges.

For example, below policy identifies allowed IPv4 address ranges 192.0.2.0.* and
203.0.113.0.* in the Condition element.

# https://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_policies_examples_aws_deny-ip.html
{ 
    "Version": "2012-10-17", 
    "Statement": { 
        "Effect": "Deny", 
        "Action": "*", 
        "Resource": "*", 
        "Condition": { 
            "NotIpAddress": { 
                "*aws:SourceIp*": [ 
                    "*192.0.2.0/24*", 
                    "*203.0.113.0/24*" 
                ] 
            }, 
            "Bool": { 
                "aws:ViaAWSService": "false" 
            } 
        } 
    }
}

To update this policy, change the Condition element to include the IPv6 address ranges
2001:DB8:1234:5678::/64 and 2001:cdba:3257:8593::/64.

Upgrade IAM policies to IPv6 1246



AWS CloudHSM User Guide

Note

DO NOT REMOVE the existing IPv4 addresses because they are needed for backward 
compatibility.

"Condition": { 
                "NotIpAddress": { 
                    "*aws:SourceIp*": [ 
                        "*192.0.2.0/24*", <<DO NOT REMOVE existing IPv4 address>> 
                        "*203.0.113.0/24*", <<DO NOT REMOVE existing IPv4 address>> 
                        "*2001:DB8:1234:5678::/64*", <<New IPv6 IP address>> 
                        "*2001:cdba:3257:8593::/64*" <<New IPv6 IP address>> 
                    ] 
                }, 
                "Bool": { 
                    "aws:ViaAWSService": "false" 
                } 
            }

Verify your client supports IPv6

Customers using the cloudhsmv2.{region}.api.aws endpoint are advised to verify if they are able to 
connect to it. The following steps describe how to perform the verification.

This examples uses Linux and curl version 8.6.0 and uses the AWS CloudHSM service endpoints
which has IPv6 enabled endpoints located at the api.aws endpoint.

Note

Switch the AWS Region to the same Region where the client is located. In this example, we 
use the US East (N. Virginia) – us-east-1 endpoint.

1. Determine if the endpoint resolves with an IPv6 address using the following dig command.

dig +short AAAA cloudhsmv2.us-east-1.api.aws
2600:1f18:e2f:4e05:1a8a:948e:7c08:c1c3

Upgrade IAM policies to IPv6 1247

https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html


AWS CloudHSM User Guide

2. Determine if the client network can make an IPv6 connection using the following curl
command. A 404 response code means the connection succeeded, while a 0 response code 
means the connection failed.

curl --ipv6 -o /dev/null --silent -w "\nremote ip: %{remote_ip}\nresponse code: 
 %{response_code}\n" https://cloudhsmv2.us-east-1.api.aws

remote ip: 2600:1f18:e2f:4e05:1a8a:948e:7c08:c1c3
response code: 404

If a remote IP was identified and the response code is not 0, a network connection was successfully 
made to the endpoint using IPv6. The remote IP should be an IPv6 address because the operating 
system should select the protocol that is valid for the client. If the remote IP is not an IPv6 address, 
use the following command to force curl to use IPv4.

curl --ipv4 -o /dev/null --silent -w "\nremote ip: %{remote_ip}\nresponse code: 
 %{response_code}\n" https://cloudhsmv2.us-east-1.api.aws

remote ip: 3.123.154.250
response code: 404

If the remote IP is blank or the response code is 0, the client network or the network path to the 
endpoint is IPv4-only. You can verify this configuration with the following curl command.

curl -o /dev/null --silent -w "\nremote ip: %{remote_ip}\nresponse code: 
 %{response_code}\n" https://cloudhsmv2.us-east-1.api.aws

remote ip: 3.123.154.250
response code: 404

Data protection in AWS CloudHSM

The AWS shared responsibility model applies to data protection in AWS CloudHSM. As described 
in this model, AWS is responsible for protecting the global infrastructure that runs all of the 
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this 
infrastructure. You are also responsible for the security configuration and management tasks for 
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.

Data protection 1248

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/


AWS CloudHSM User Guide

For information about data protection in Europe, see the AWS Shared Responsibility Model and 
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set 
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM). 
That way, each user is given only the permissions necessary to fulfill their job duties. We also 
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail 
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User 
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and 
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a 
command line interface or an API, use a FIPS endpoint. For more information about the available 
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your 
customers' email addresses, into tags or free-form text fields such as a Name field. This includes 
when you work with AWS CloudHSM or other AWS services using the console, API, AWS CLI, or AWS 
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for 
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that 
you do not include credentials information in the URL to validate your request to that server.

Encryption at rest

When AWS CloudHSM makes a backup from an HSM, the HSM encrypts its data before sending 
it to AWS CloudHSM. The data is encrypted using a unique, ephemeral encryption key. For more 
information, see AWS CloudHSM cluster backups.

Encryption at rest 1249

https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/


AWS CloudHSM User Guide

Encryption in transit

Communication between the AWS CloudHSM client and the HSM in your cluster is encrypted from 
end to end. This communication can be decrypted only by your client and your HSM. For more 
information, see End-to-end encryption.

AWS CloudHSM client end-to-end encryption

Communication between the client instance and the HSMs in your cluster is encrypted from end to 
end. Only your client and your HSMs can decrypt the communication.

The following process explains how the client establishes end-to-end encrypted communication 
with an HSM.

1. Your client establishes a Transport Layer Security (TLS) connection with the server that hosts 
your HSM hardware. Your cluster's security group allows inbound traffic to the server only from 
client instances in the security group. The client also checks the server's certificate to ensure that 
it's a trusted server.

2. Next, the client establishes an encrypted connection with the HSM hardware. The HSM has the 
cluster certificate that you signed with your own certificate authority (CA), and the client has 
the CA's root certificate. Before the client–HSM encrypted connection is established, the client 
verifies the HSM's cluster certificate against its root certificate. The connection is established 
only when the client successfully verifies that the HSM is trusted.

Encryption in transit 1250



AWS CloudHSM User Guide

Security of cluster backups

When AWS CloudHSM makes a backup from the HSM, the HSM encrypts all of its data before 
sending it to AWS CloudHSM. The data never leaves the HSM in plaintext form. Additionally, 
backups cannot be decrypted by AWS because AWS doesn’t have access to key used to decrypt the 
backups.

To encrypt its data, the HSM uses a unique, ephemeral encryption key known as the ephemeral 
backup key (EBK). The EBK is an AES 256-bit encryption key generated inside the HSM when 
AWS CloudHSM makes a backup. The HSM generates the EBK, then uses it to encrypt the HSM's 
data with a FIPS-approved AES key wrapping method that complies with NIST special publication 
800-38F. Then the HSM gives the encrypted data to AWS CloudHSM. The encrypted data includes 
an encrypted copy of the EBK.

To encrypt the EBK, the HSM uses another encryption key known as the persistent backup key 
(PBK). The PBK is also an AES 256-bit encryption key. To generate the PBK, the HSM uses a 
FIPS-approved key derivation function (KDF) in counter mode that complies with NIST special 
publication 800-108. The inputs to this KDF include the following:

• A manufacturer key backup key (MKBK), permanently embedded in the HSM hardware by the 
hardware manufacturer.

Cluster backups 1251

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf


AWS CloudHSM User Guide

• An AWS key backup key (AKBK), securely installed in the HSM when it's initially configured by 
AWS CloudHSM.

The encryption processes are summarized in the following figure. The backup encryption key 
represents the persistent backup key (PBK) and the ephemeral backup key (EBK).

AWS CloudHSM can restore backups onto only AWS-owned HSMs made by the same manufacturer. 
Because each backup contains all users, keys, and configuration from the original HSM, the 
restored HSM contains the same protections and access controls as the original. The restored data 
overwrites all other data that might have been on the HSM prior to restoration.

A backup consists of only encrypted data. Before the service stores a backup in Amazon S3, the 
service encrypts the backup again using AWS Key Management Service (AWS KMS).

Identity and access management for AWS CloudHSM

AWS uses security credentials to identify you and to grant you access to your AWS resources. You 
can use features of AWS Identity and Access Management (IAM) to allow other users, services, and 
applications to use your AWS resources fully or in a limited way. You can do this without sharing 
your security credentials.

By default, IAM users don't have permission to create, view, or modify AWS resources. To allow an 
IAM user to access resources such as a load balancer, and to perform tasks, you:

1. Create an IAM policy that grants the IAM user permission to use the specific resources and API 
actions they need.

2. Attach the policy to the IAM user or the group that the IAM user belongs to.

Identity and access management 1252



AWS CloudHSM User Guide

When you attach a policy to a user or group of users, it allows or denies the users permission to 
perform the specified tasks on the specified resources.

For example, you can use IAM to create users and groups under your AWS account. An IAM user can 
be a person, a system, or an application. Then you grant permissions to the users and groups to 
perform specific actions on the specified resources using an IAM policy.

Grant permissions using IAM policies

When you attach a policy to a user or group of users, it allows or denies the users permission to 
perform the specified tasks on the specified resources.

An IAM policy is a JSON document that consists of one or more statements. Each statement is 
structured as shown in the following example.

{ 
  "Version": "2012-10-17", 
  "Statement":[{ 
    "Effect": "<effect>", 
    "Action": "<action>", 
    "Resource": "<resource-arn>", 
    "Condition": { 
      "<condition>": { 
        "<key>":"<value>" 
      } 
    } 
  }]
}

• Effect— The effect can be Allow or Deny. By default, IAM users don't have permission to use 
resources and API actions, so all requests are denied. An explicit allow overrides the default. An 
explicit deny overrides any allows.

• Action— The action is the specific API action for which you are granting or denying permission. 
For more information about specifying action, see API actions for AWS CloudHSM.

• Resource— The resource that's affected by the action. AWS CloudHSM does not support 
resource-level permissions. You must use the * wildcard to specify all AWS CloudHSM resources.

• Condition— You can optionally use conditions to control when your policy is in effect. For more 
information, see Condition keys for AWS CloudHSM.

Grant permissions using IAM policies 1253



AWS CloudHSM User Guide

For more information, see the IAM User Guide.

API actions for AWS CloudHSM

In the Action element of your IAM policy statement, you can specify any API action that AWS 
CloudHSM offers. You must prefix the action name with the lowercase string cloudhsm:, as shown 
in the following example.

"Action": "cloudhsm:DescribeClusters"

To specify multiple actions in a single statement, enclose them in square brackets and separate 
them with a comma, as shown in the following example.

"Action": [ 
    "cloudhsm:DescribeClusters", 
    "cloudhsm:DescribeHsm"
]

You can also specify multiple actions using the * wildcard. The following example specifies all API 
action names for AWS CloudHSM that start with List.

"Action": "cloudhsm:List*"

To specify all API actions for AWS CloudHSM, use the * wildcard, as shown in the following 
example.

"Action": "cloudhsm:*"

For the list of API actions for AWS CloudHSM, see AWS CloudHSM Actions.

Condition keys for AWS CloudHSM

When you create a policy, you can specify the conditions that control when the policy is in effect. 
Each condition contains one or more key-value pairs. There are global condition keys and service-
specific condition keys.

AWS CloudHSM has no service-specific context keys.

API actions for AWS CloudHSM 1254

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_Operations.html


AWS CloudHSM User Guide

For more information about global condition keys, see AWS Global Condition Context Keys in the
IAM User Guide.

Predefined AWS managed policies for AWS CloudHSM

The managed policies created by AWS grant the required permissions for common use cases. 
You can attach these policies to your IAM users, based on the access to AWS CloudHSM that they 
require:

• AWSCloudHSMFullAccess — Grants full access required to use AWS CloudHSM features.

• AWSCloudHSMReadOnlyAccess — Grants read-only access to AWS CloudHSM features.

Customer managed policies for AWS CloudHSM

We recommend that you create an IAM administrators group for AWS CloudHSM that contains 
only the permissions required to run AWS CloudHSM. Attach the policy with the appropriate 
permissions to this group. Add IAM users to the group as needed. Each user that you add inherits 
the policy from the administrators group.

Also, we recommend that you create additional user groups based on the permissions that your 
users need. This ensures that only trusted users have access to critical API actions. For example, 
you could create a user group that you use to grant read-only access to clusters and HSMs. Because 
this group does not allow a user to delete clusters or HSMs, an untrusted user cannot affect the 
availability of a production workload.

As new AWS CloudHSM management features are added over time, you can ensure that only 
trusted users are given immediate access. By assigning limited permissions to policies at creation, 
you can manually assign new feature permissions to them later.

The following are example policies for AWS CloudHSM. For information about how to create a 
policy and attach it to an IAM user group, see Creating Policies on the JSON Tab in the IAM User 
Guide.

Examples

• Read Only Permissions

• Power User Permissions

• Admin Permissions

Predefined AWS managed policies for AWS CloudHSM 1255

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor


AWS CloudHSM User Guide

Example Example: Read-only permissions

This policy allows access to the DescribeClusters and DescribeBackups API actions. It also 
includes additional permissions for specific Amazon EC2 API actions. It does not allow the user to 
delete clusters or HSMs.

{ 
   "Version": "2012-10-17", 
   "Statement": { 
      "Effect": "Allow", 
      "Action": [ 
         "cloudhsm:DescribeClusters", 
         "cloudhsm:DescribeBackups", 
         "cloudhsm:ListTags" 
      ], 
      "Resource": "*" 
   }
}

Example Example: Power user permissions

This policy allows access to a subset of the AWS CloudHSM API actions. It also includes additional 
permissions for specific Amazon EC2 actions. It does not allow the user to delete clusters or HSMs. 
You must include the iam:CreateServiceLinkedRole action to allow AWS CloudHSM to 
automatically create the AWSServiceRoleForCloudHSM service-linked role in your account. This 
role allows AWS CloudHSM to log events. For more information, see Service-linked roles for AWS 
CloudHSM.

Note

To see the specific permissions for each API, refer to Actions, resources, and condition keys 
for AWS CloudHSM in the Service Authorization Reference.

{ 
   "Version": "2012-10-17", 
   "Statement": { 
      "Effect": "Allow", 
      "Action": [ 
         "cloudhsm:DescribeClusters", 

Customer managed policies for AWS CloudHSM 1256

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudhsm.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awscloudhsm.html


AWS CloudHSM User Guide

         "cloudhsm:DescribeBackups", 
         "cloudhsm:CreateCluster", 
         "cloudhsm:CreateHsm", 
         "cloudhsm:RestoreBackup", 
         "cloudhsm:CopyBackupToRegion", 
         "cloudhsm:InitializeCluster", 
         "cloudhsm:ListTags", 
         "cloudhsm:TagResource", 
         "cloudhsm:UntagResource", 
         "ec2:CreateNetworkInterface", 
         "ec2:DescribeNetworkInterfaces", 
         "ec2:DescribeNetworkInterfaceAttribute", 
         "ec2:DetachNetworkInterface", 
         "ec2:DeleteNetworkInterface", 
         "ec2:CreateSecurityGroup", 
         "ec2:AuthorizeSecurityGroupIngress", 
         "ec2:AuthorizeSecurityGroupEgress", 
         "ec2:RevokeSecurityGroupEgress", 
         "ec2:DescribeSecurityGroups", 
         "ec2:DeleteSecurityGroup", 
         "ec2:CreateTags", 
         "ec2:DescribeVpcs", 
         "ec2:DescribeSubnets", 
         "iam:CreateServiceLinkedRole" 
      ], 
      "Resource": "*" 
   }
}

Example Example: Admin permissions

This policy allows access to all AWS CloudHSM API actions, including the actions to delete HSMs 
and clusters. It also includes additional permissions for specific Amazon EC2 actions. You must 
include the iam:CreateServiceLinkedRole action to allow AWS CloudHSM to automatically 
create the AWSServiceRoleForCloudHSM service-linked role in your account. This role allows AWS 
CloudHSM to log events. For more information, see Service-linked roles for AWS CloudHSM.

{ 
   "Version":"2012-10-17", 
   "Statement":{ 
      "Effect":"Allow", 
      "Action":[ 
         "cloudhsm:*", 

Customer managed policies for AWS CloudHSM 1257



AWS CloudHSM User Guide

         "ec2:CreateNetworkInterface", 
         "ec2:DescribeNetworkInterfaces", 
         "ec2:DescribeNetworkInterfaceAttribute", 
         "ec2:DetachNetworkInterface", 
         "ec2:DeleteNetworkInterface", 
         "ec2:CreateSecurityGroup", 
         "ec2:AuthorizeSecurityGroupIngress", 
         "ec2:AuthorizeSecurityGroupEgress", 
         "ec2:RevokeSecurityGroupEgress", 
         "ec2:DescribeSecurityGroups", 
         "ec2:DeleteSecurityGroup", 
         "ec2:CreateTags", 
         "ec2:DescribeVpcs", 
         "ec2:DescribeSubnets", 
         "iam:CreateServiceLinkedRole" 
      ], 
      "Resource":"*" 
   }
}

Service-linked roles for AWS CloudHSM

The IAM policy that you created previously to Customer managed policies for AWS CloudHSM
includes the iam:CreateServiceLinkedRole action. AWS CloudHSM defines a service-linked 
role named AWSServiceRoleForCloudHSM. The role is predefined by AWS CloudHSM and includes 
permissions that AWS CloudHSM requires to call other AWS services on your behalf. The role makes 
setting up your service easier because you don’t need to manually add the role policy and trust 
policy permissions.

The role policy allows AWS CloudHSM to create Amazon CloudWatch Logs log groups and log 
streams and write log events on your behalf. You can view it below and in the IAM console.

{ 
    "Version": "2018-06-12", 
    "Statement": [ 
        { 
            "Effect": "Allow", 
            "Action": [ 
                "logs:CreateLogGroup", 
                "logs:CreateLogStream", 
                "logs:PutLogEvents", 

Service-linked roles 1258

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role


AWS CloudHSM User Guide

                "logs:DescribeLogStreams" 
            ], 
            "Resource": [ 
                "arn:aws:logs:*:*:*" 
            ] 
        } 
    ]
}

The trust policy for the AWSServiceRoleForCloudHSM role allows AWS CloudHSM to assume the 
role.

{ 
  "Version": "2018-06-12", 
  "Statement": [ 
    { 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "cloudhsm.amazonaws.com" 
      }, 
      "Action": "sts:AssumeRole" 
    } 
  ]
}

Creating a service-linked role (automatic)

AWS CloudHSM creates the AWSServiceRoleForCloudHSM role when you create a cluster if you 
include the iam:CreateServiceLinkedRole action in the permissions that you defined when 
you created the AWS CloudHSM administrators group. See Customer managed policies for AWS 
CloudHSM.

If you already have one or more clusters and just want to add the AWSServiceRoleForCloudHSM
role, you can use the console, the create-cluster command, or the CreateCluster API operation 
to create a cluster. Then use the console, the delete-cluster command, or the DeleteCluster API 
operation to delete it. Creating the new cluster creates the service-linked role and applies it to all 
clusters in your account. Alternatively, you can create the role manually. See the following section 
for more information.

Service-linked roles 1259

https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/create-cluster.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/delete-cluster.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DeleteCluster.html


AWS CloudHSM User Guide

Note

You do not need to perform all of the steps outlined in Getting started with 
AWS CloudHSM to create a cluster if you are only creating it to add the
AWSServiceRoleForCloudHSM role.

Creating a service-linked role (manual)

You can use the IAM console, AWS CLI, or API to create the AWSServiceRoleForCloudHSM role. For 
more information, see Creating a Service-Linked Role in the IAM User Guide.

Editing the service-linked role

AWS CloudHSM does not allow you to edit the AWSServiceRoleForCloudHSM role. After the role 
is created, for example, you cannot change its name because various entities might reference the 
role by name. Also, you cannot change the role policy. You can, however, use IAM to edit the role 
description. For more information, see Editing a Service–Linked Role in the IAM User Guide.

Deleting the service-linked role

You cannot delete a service-linked role as long as a cluster to which it has been applied still exists. 
To delete the role, you must first delete each HSM in your cluster and then delete the cluster. Every 
cluster in your account must be deleted. You can then use the IAM console, AWS CLI, or API to 
delete the role. For more information about deleting a cluster, see Deleting an AWS CloudHSM 
cluster. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Compliance

For clusters in FIPS mode, AWS CloudHSM provides FIPS-approved HSMs that meet PCI-PIN, 
PCI-3DS, and SOC2 compliance requirements. AWS CloudHSM also gives customers the option 
of choosing clusters that are non-FIPS mode. For details on what certification and compliance 
requirements apply to each, see AWS CloudHSM cluster modes.

Relying on a FIPS-validated HSM can help you meet corporate, contractual, and regulatory 
compliance requirements for data security in the AWS Cloud.

Compliance 1260

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role


AWS CloudHSM User Guide

FIPS 140-2 Compliance

The Federal Information Processing Standard (FIPS) Publication 140-2 is a US government 
security standard that specifies security requirements for cryptographic modules that protect 
sensitive information. The type hsm1.medium HSMs provided by AWS CloudHSM are FIPS 
140-2 level 3 certified (Certificate #4218). For more information, refer to FIPS validation for 
hardware.

FIPS 140-3 Compliance

The Federal Information Processing Standard (FIPS) Publication 140-3 is a US government 
security standard that specifies security requirements for cryptographic modules that protect 
sensitive information. The type hsm2m.medium HSMs provided by AWS CloudHSM are FIPS 
140-3 level 3 certified (Certificate #4703). For more information, refer to FIPS validation for 
hardware.

PCI DSS Compliance

The Payment Card Industry Data Security Standard (PCI DSS) is a proprietary information 
security standard administered by the PCI Security Standards Council. The HSMs provided by 
AWS CloudHSM comply with PCI DSS.

PCI PIN Compliance

PCI PIN provides security requirement and assessment standards for transmitting, processing, 
and managing personal identification number (PIN) data, information that is used for 
transactions at ATMs and point-of-sale (POS) terminals. The hsm1.medium and hsm2m.medium 
HSMs that are provided by AWS CloudHSM are both PCI PIN compliant. For more information, 
refer to the article AWS CloudHSM is now PCI PIN certified.

PCI-3DS Compliance

PCI 3DS (or Three Domain Secure, 3-D Secure) provides security of data for EMV 3D secure e-
commerce payments. PCI 3DS provides another layer of security for online shopping. The type 
hsm1.medium HSMs provided by AWS CloudHSM are PCI-3DS compliant.

SOC2

SOC2 is a framework to help service organizations demonstrate their cloud and data center 
security controls. AWS CloudHSM has implemented SOC2 controls in critical areas to adhere to 
the trusted service principles. For further information, refer to The AWS SOC FAQs page.

Compliance 1261

https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program/Certificate/4218
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4703
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://www.pcisecuritystandards.org/
https://aws.amazon.com/blogs/security/aws-cloudhsm-is-now-pci-pin-certified/
https://aws.amazon.com/compliance/soc-faqs/


AWS CloudHSM User Guide

AWS CloudHSM PCI-PIN compliance FAQs

PCI PIN provides security requirement and assessment standards for transmitting, processing, and 
managing personal identification number (PIN) data, information that is used for transactions at 
ATMs and point-of-sale (POS) terminals.

The PCI-PIN Attestation of Compliance (AOC) and Responsibility Summary is available to 
customers through AWS Artifact, a self-service portal for on-demand access to AWS compliance 
reports. For more information, sign in to AWS Artifact in the AWS Management Console, or learn 
more at Getting Started with AWS Artifact.

FAQs

Q: What is the Attestation of Compliance and Responsibility Summary?

Attestation Of Compliance (AOC) is produced by a Qualified PIN Assessor (QPA) attesting AWS 
CloudHSM meets the applicable controls in the PCI-PIN standard. The responsibility summary 
matrix describes the controls which are the respective responsibilities of AWS CloudHSM and its 
customers.

Q: How do I obtain the AWS CloudHSM Attestation of Compliance?

The PCI-PIN Attestation of Compliance (AOC) is available to customers through AWS Artifact, a 
self-service portal for on-demand access to AWS compliance reports. For more information, sign 
in to AWS Artifact in the AWS Management Console, or learn more at Getting Started with AWS 
Artifact.

Q: How can I learn which PCI PIN controls I am responsible for?

For detailed information please see "AWS CloudHSM PCI PIN Responsibility Summary" from the 
AWS PCI PIN Compliance Package, available to customers through AWS Artifact, a self-service 
portal for on-demand access to AWS compliance reports. For more information, sign in to AWS 
Artifact in the AWS Management Console, or learn more at Getting Started with AWS Artifact.

Q: As an AWS CloudHSM customer, can I rely on PCI-PIN Attestation of Compliance (AOC)?

Customers must manage their own PCI-PIN compliance. You are required to go through a formal 
PCI-PIN attestation process through a Qualified PIN Assessor (QPA) to verify that your payment 
workload satisfies all PCI-PIN controls/requirements. However, for the controls which AWS is 
responsible for, your QPA can rely on AWS CloudHSM Attestation of Compliance (AOC) without 
further testing.

PCI-PIN FAQs 1262

https://console.aws.amazon.com/artifact
https://aws.amazon.com/artifact/getting-started/
https://console.aws.amazon.com/artifact
https://aws.amazon.com/artifact/getting-started/
https://aws.amazon.com/artifact/getting-started/
https://console.aws.amazon.com/artifact
https://console.aws.amazon.com/artifact
https://aws.amazon.com/artifact/getting-started/


AWS CloudHSM User Guide

Q: Is AWS CloudHSM responsible for PCI-PIN requirements related to Key Management Life 
cycle?

AWS CloudHSM is responsible for the physical device lifecycle of the HSMs. Customers are 
responsible for the key management life cycle requirements in the PCI-PIN standard.

Q: Which AWS CloudHSM controls are PCI-PIN compliant?

The AOC summarizes the AWS CloudHSM controls which are assessed by QPA. The PCI-PIN 
Responsibility Summary is available to customers through AWS Artifact, a self-service portal for 
on-demand access to AWS compliance reports.

Q: Does AWS CloudHSM support payment functions such as PIN translation and DUKPT?

No, AWS CloudHSM provides general purpose HSMs. Over time we may provide payment functions. 
Although the service does not perform payment functions directly, the AWS CloudHSM PCI PIN 
attestation of compliance enables customers to attain their own PCI compliance for their services 
running on AWS CloudHSM. If you are interested in using AWS Payment Cryptography services for 
your workload, please refer to the blog "Move Payment Processing to the Cloud with AWS Payment 
Cryptography."

Deprecation Notifications

From time to time, AWS CloudHSM may deprecate functionality in order to remain compliant with 
the requirements of FIPS 140, PCI-DSS, PCI-PIN, PCI-3DS, SOC2, or because of end-of-support 
hardware. This page lists the changes that currently apply.

HSM1 Deprecation

The AWS CloudHSM hsm1.medium instance type will reach its end of support on December 1, 
2025. To ensure continued service, we're introducing the following changes:

• Starting April 2025, you won't be able to create new hsm1.medium clusters.

• Starting April 2025, we will begin automatically migrating existing hsm1.medium clusters to the 
new hsm2m.medium instance type.

The hsm2m.medium instance type is compatible with your current AWS CloudHSM instance type 
and offers improved performance. To avoid disruption to your applications, you must upgrade to 
latest version of client SDK. For upgrade instructions, see ???.

Deprecations 1263

https://aws.amazon.com/blogs/aws/new-move-payment-processing-to-the-cloud-with-aws-payment-cryptography/
https://aws.amazon.com/blogs/aws/new-move-payment-processing-to-the-cloud-with-aws-payment-cryptography/


AWS CloudHSM User Guide

You have two options for migration:

1. Opt in to a CloudHSM-managed migration when you're ready. For more information, ???.

2. Create a new hsm2m.medium cluster from a backup of your hsm1 cluster and redirect your 
application to the new cluster. We recommend using a blue/green deployment strategy for 
this approach. For more information, see ???.

FIPS 140 Compliance: 2024 Mechanism Deprecation

The National Institute of Standards and Technology (NIST)1 advises that support for Triple DES 
(DESede, 3DES, DES3) encryption and RSA key wrap and unwrap with PKCS#1 v1.5 padding is 
disallowed after December 31, 2023. Therefore, support for these end on January 1, 2024 in 
our Federal Information Processing Standard (FIPS) mode clusters. Support for these remain for 
clusters in non-FIPs mode.

This guidance applies to the following cryptographic operations:

• Triple DES key generation

• CKM_DES3_KEY_GEN for the PKCS#11 Library

• DESede Keygen for the JCE Provider

• genSymKey with -t=21 for the KMU

• Encryption with Triple DES keys (note: decrypt operations are allowed)

• For the PKCS #11 Library: CKM_DES3_CBC encrypt, CKM_DES3_CBC_PAD encrypt, and
CKM_DES3_ECB encrypt

• For the JCE Provider: DESede/CBC/PKCS5Padding encrypt, DESede/CBC/NoPadding
encrypt, DESede/ECB/Padding encrypt, and DESede/ECB/NoPadding encrypt

• RSA key wrap, unwrap, encrypt, and decrypt with PKCS#1 v1.5 padding

• CKM_RSA_PKCS wrap, unwrap, encrypt, and decrypt for the PKCS#11 SDK

• RSA/ECB/PKCS1Padding wrap, unwrap, encrypt, and decrypt for the JCE SDK

• wrapKey and unWrapKey with -m 12 for the KMU (note 12 is the value for mechanism
RSA_PKCS)

[1] For details on this change, refer to Table 1 and Table 5 in  Transitioning the Use of 
Cryptographic Algorithms and Key Lengths.
Deprecations 1264

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf


AWS CloudHSM User Guide

Resilience in AWS CloudHSM

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions 
provide multiple physically separated and isolated Availability Zones, which are connected with 
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you 
can design and operate applications and databases that automatically fail over between zones 
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than 
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure. 
For more information about AWS CloudHSM features to support resiliency, see AWS CloudHSM 
cluster high availability and load balancing.

Infrastructure security in AWS CloudHSM

As a managed service, AWS CloudHSM is protected by the AWS global network security procedures 
that are described in the Amazon Web Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access AWS CloudHSM through the network. Additionally, 
requests must be signed by using an access key ID and a secret access key that is associated with 
an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary 
security credentials to sign requests.

Network isolation

A virtual private cloud (VPC) is a virtual network in your own logically isolated area in the AWS 
cloud. You can create a cluster in a private subnet in your VPC. You can create private subnets 
when you create a VPC. For more information, see Create a virtual private cloud (VPC) for AWS 
CloudHSM.

When you create an HSM, AWS CloudHSM put an elastic network interface (ENI) in your subnet 
so that you can interact with your HSMs. For more information, see AWS CloudHSM cluster 
architecture.

AWS CloudHSM creates a security group that allows inbound and outbound communication 
between HSMs in your cluster. You can use this security group to enable your EC2 instances to 
communicate with the HSMs in your cluster. For more information, see Configure the Client 
Amazon EC2 instance security groups for AWS CloudHSM.

Resilience 1265

https://aws.amazon.com/about-aws/global-infrastructure/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html


AWS CloudHSM User Guide

Authorization of users

With AWS CloudHSM, operations performed on the HSM require the credentials of an 
authenticated HSM user. For more information, see the section called “User types”.

AWS CloudHSM and VPC endpoints

You can establish a private connection between your VPC and AWS CloudHSM by creating an
interface VPC endpoint. Interface endpoints are powered by AWS PrivateLink, a technology that 
enables you to privately access AWS CloudHSM APIs without an internet gateway, NAT device, 
VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public 
IP addresses to communicate with AWS CloudHSM APIs. Traffic between your VPC and AWS 
CloudHSM does not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User 
Guide.

Considerations for AWS CloudHSM VPC endpoints

Before you set up an interface VPC endpoint for AWS CloudHSM, ensure that you review Interface 
endpoint properties and limitations in the Amazon VPC User Guide.

• AWS CloudHSM supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for AWS CloudHSM

You can create a VPC endpoint for the AWS CloudHSM service using either the Amazon VPC 
console or the AWS Command Line Interface (AWS CLI). For more information, see Creating an 
interface endpoint in the Amazon VPC User Guide.

To create a VPC endpoint for AWS CloudHSM, use the following service name:

com.amazonaws.<region>.cloudhsmv2

For example, in the US West (Oregon) Region (us-west-2), the service name would be:

com.amazonaws.us-west-2.cloudhsmv2

Authorization of users 1266

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint


AWS CloudHSM User Guide

To make it easier to use the VPC endpoint, you can enable a private DNS hostname for your 
VPC endpoint. If you select the Enable Private DNS Name option, the standard AWS CloudHSM 
DNS hostnames (https://cloudhsmv2.<region>.amazonaws.com and https://
cloudhsmv2.<region>.api.aws) resolves to your VPC endpoint.

This option makes it easier to use the VPC endpoint. The AWS SDKs and AWS CLI use the standard 
AWS CloudHSM DNS hostname by default, so you do not need to specify the VPC endpoint URL in 
applications and commands.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC 
User Guide.

Creating a VPC endpoint policy for AWS CloudHSM

You can attach an endpoint policy to your VPC endpoint that controls access to AWS CloudHSM. 
The policy specifies the following information:

• The principal that can perform actions.

• The actions that can be performed.

• The resources on which actions can be performed.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC 
User Guide.

Example: VPC endpoint policy for AWS CloudHSM actions

The following is an example of an endpoint policy for AWS CloudHSM. When attached to an 
endpoint, this policy grants access to the listed AWS CloudHSM actions for all principals on all 
resources. See Identity and access management for AWS CloudHSM for other AWS CloudHSM 
actions and their corresponding IAM permissions.

{ 
   "Statement":[ 
      { 
         "Principal":"*", 
         "Effect":"Allow", 
         "Action":[ 
            "<cloudhsm>:<DescribeBackups>", 
            "<cloudhsm>:<DescribeClusters>", 
            "<cloudhsm>:<ListTags>", 

Creating a VPC endpoint policy for AWS CloudHSM 1267

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-private-dns
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html


AWS CloudHSM User Guide

         ], 
         "Resource":"*" 
      } 
   ]
}

Update management in AWS CloudHSM

AWS manages the firmware. Firmware is maintained by a third party, and must be evaluated by 
NIST for FIPS 140-2 Level 3 or FIPS 140-3 Level 3 compliance depending on the hsm type. Only 
firmware that has been cryptographically signed by the FIPS key, which AWS does not have access 
to, can be installed.

Update management 1268



AWS CloudHSM User Guide

Troubleshooting AWS CloudHSM

If you encounter problems with AWS CloudHSM, the following topics can help you resolve them.

Topics

• AWS CloudHSM known issues

• AWS CloudHSM Client SDK 3 key synchronization failures

• AWS CloudHSM Client SDK 3 verify HSM performance with the pkpspeed tool

• AWS CloudHSM Client SDK 5 user contains inconsistent values

• AWS CloudHSM Client SDK 5 user replicate failures

• AWS CloudHSM Client SDK 5 key replicate failures

• AWS CloudHSM error seen during key availability check

• AWS CloudHSM extracting keys using JCE

• HSM throttling

• Keep HSM users in sync across HSMs in the AWS CloudHSM cluster

• Lost connection to the AWS CloudHSM cluster

• Missing AWS CloudHSM audit logs in CloudWatch

• Custom IVs with non-compliant length for AES key wrap in AWS CloudHSM

• Resolving AWS CloudHSM cluster creation failures

• Retrieving AWS CloudHSM client configuration logs

AWS CloudHSM known issues

AWS CloudHSM has the following known issues. Choose a topic to learn more.

Topics

• Known issues for all HSM instances

• Known issues for AWS CloudHSM hsm1.medium instances

• Known issues for AWS CloudHSM hsm2m.medium instances

• Known issues for the PKCS #11 library for AWS CloudHSM

• Known issues for the JCE SDK for AWS CloudHSM

AWS CloudHSM known issues 1269



AWS CloudHSM User Guide

• Known issues for the OpenSSL Dynamic Engine for AWS CloudHSM

• Known issues for the Key Storage Provider (KSP) for AWS CloudHSM

• Known issues for Amazon EC2 instances running Amazon Linux 2 with AWS CloudHSM

• Known issues for integrating third-party applications with AWS CloudHSM

• Known issues for AWS CloudHSM cluster modification

• Known issues of operation failure using AWS CloudHSM client version 5.12.0 on hsm2.medium

Known issues for all HSM instances

The following issues impact all AWS CloudHSM users regardless of whether they use the 
key_mgmt_util command line tool, the PKCS #11 SDK, the JCE SDK, or the OpenSSL SDK.

Topics

• Issue: AES key wrapping uses PKCS #5 padding instead of providing a standards-compliant 
implementation of key wrap with zero padding

• Issue: The client daemon requires at least one valid IP address in its configuration file to 
successfully connect to the cluster

• Issue: There was an upper limit of 16 KB on data that can be hashed and signed by AWS 
CloudHSM using Client SDK 3

• Issue: Imported keys could not be specified as non-exportable

• Issue: The default mechanism for the wrapKey and unWrapKey commands in the key_mgmt_util 
has been removed

• Issue: If you have a single HSM in your cluster, HSM failover does not work correctly

• Issue: If you exceed the key capacity of the HSMs in your cluster within a short period of time, the 
client enters an unhandled error state

• Issue: Digest operations with HMAC keys of size greater than 800 bytes are not supported

• Issue: The client_info tool, distributed with Client SDK 3, deletes the contents of the path 
specified by the optional output argument

• Issue: You receive an error when running the SDK 5 configure tool using the --cluster-id 
argument in containerized environments

• Issue: You receive the error "Failed to create cert/key from provided pfx file. Error: NotPkcs8"

• Issue: ECDSA signing fails with "invalid mechanism" error starting with SDK 5.16

Known issues for all HSM instances 1270



AWS CloudHSM User Guide

Issue: AES key wrapping uses PKCS #5 padding instead of providing a standards-
compliant implementation of key wrap with zero padding

Additionally, key wrap with no padding and zero padding is not supported.

• Impact: There is no impact if you wrap and unwrap using this algorithm within AWS CloudHSM. 
However, keys wrapped with AWS CloudHSM cannot be unwrapped within other HSMs or 
software that expects compliance to the no-padding specification. This is because eight bytes of 
padding data might be added to the end of your key data during a standards-compliant unwrap. 
Externally wrapped keys cannot be properly unwrapped into an AWS CloudHSM instance.

• Workaround: To externally unwrap a key that was wrapped with AES Key Wrap with PKCS #5 
Padding on an AWS CloudHSM instance, strip the extra padding before you attempt to use the 
key. You can do this by trimming the extra bytes in a file editor or copying only the key bytes into 
a new buffer in your code.

• Resolution status: With the 3.1.0 client and software release, AWS CloudHSM provides 
standards-compliant options for AES key wrapping. For more information, see AES Key 
Wrapping.

Issue: The client daemon requires at least one valid IP address in its configuration 
file to successfully connect to the cluster

• Impact: If you delete every HSM in your cluster and then add another HSM, which gets a new IP 
address, the client daemon continues to search for your HSMs at their original IP addresses.

• Workaround: If you run an intermittent workload, we recommend that you use the IpAddress
argument in the CreateHsm function to set the elastic network interface (ENI) to its original 
value. Note than an ENI is specific to an Availability Zone (AZ). The alternative is to delete the /
opt/cloudhsm/daemon/1/cluster.info file and then reset the client configuration to the 
IP address of your new HSM. You can use the client -a <IP address> command. For more 
information, see Install and Configure the AWS CloudHSM Client (Linux) or Install and Configure 
the AWS CloudHSM Client (Windows).

Issue: There was an upper limit of 16 KB on data that can be hashed and signed 
by AWS CloudHSM using Client SDK 3

• Resolution status: Data less than 16KB in size continues to be sent to the HSM for hashing. We 
have added capability to hash locally, in software, data between 16KB and 64KB in size. Client 

Known issues for all HSM instances 1271

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateHsm.html


AWS CloudHSM User Guide

SDK 5 will explicitly fail if the data buffer is larger than 64KB. You must update your client and 
SDK(s) to a version greater than 5.0.0 or higher to benefit from the fix.

Issue: Imported keys could not be specified as non-exportable

• Resolution Status: This issue is fixed. No action is required on your part to benefit from the fix.

Issue: The default mechanism for the wrapKey and unWrapKey commands in the 
key_mgmt_util has been removed

• Resolution: When using the wrapKey or unWrapKey commands, you must use the -m option 
to specify the mechanism. See the examples in the wrapKey or unWrapKey articles for more 
information.

Issue: If you have a single HSM in your cluster, HSM failover does not work 
correctly

• Impact: If the single HSM instance in your cluster loses connectivity, the client will not reconnect 
with it even if the HSM instance is later restored.

• Workaround: We recommend at least two HSM instances in any production cluster. If you use 
this configuration, you will not be impacted by this issue. For single-HSM clusters, bounce the 
client daemon to restore connectivity.

• Resolution status:  This issue has been resolved in the AWS CloudHSM client 1.1.2 release. You 
must upgrade to this client to benefit from the fix.

Issue: If you exceed the key capacity of the HSMs in your cluster within a short 
period of time, the client enters an unhandled error state

• Impact:  When the client encounters the unhandled error state, it freezes and must be restarted.

• Workaround: Test your throughput to ensure you are not creating session keys at a rate that the 
client is unable to handle. You can lower your rate by adding an HSM to the cluster or slowing 
down the session key creation.

• Resolution status:  This issue has been resolved in the AWS CloudHSM client 1.1.2 release. You 
must upgrade to this client to benefit from the fix.

Known issues for all HSM instances 1272



AWS CloudHSM User Guide

Issue: Digest operations with HMAC keys of size greater than 800 bytes are not 
supported

• Impact: HMAC keys larger than 800 bytes can be generated on or imported into the HSM. 
However, if you use this larger key in a digest operation via the JCE or key_mgmt_util, the 
operation will fail. Note that if you are using PKCS11, HMAC keys are limited to a size of 64 
bytes.

• Workaround: If you will be using HMAC keys for digest operations on the HSM, ensure the size is 
smaller than 800 bytes.

• Resolution status: None at this time.

Issue: The client_info tool, distributed with Client SDK 3, deletes the contents of 
the path specified by the optional output argument

• Impact: All existing files and sub-directories under the specified output path may be 
permanently lost.

• Workaround: Do not use the optional argument -output path when using the client_info
tool.

• Resolution status: This issue has been resolved in the Client SDK 3.3.2 release. You must 
upgrade to this client to benefit from the fix.

Issue: You receive an error when running the SDK 5 configure tool using the --
cluster-id argument in containerized environments

You receive the following error when using the --cluster-id argument with the Configure Tool:

No credentials in the property bag

This error is caused by an update to Instance Metadata Service Version 2 (IMDSv2). For more 
information, see the IMDSv2 documentation.

• Impact: This issue will impact users running the configure tool on SDK versions 5.5.0 and later in 
containerized environments and utilizing EC2 instance metadata to provide credentials.

• Workaround: Set the PUT response hop limit to at least two. For guidance on how to do this, see
Configure the instance metadata options.

Known issues for all HSM instances 1273

https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-history.html#client-version-3-3-2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-options.html


AWS CloudHSM User Guide

Issue: You receive the error "Failed to create cert/key from provided pfx file. 
Error: NotPkcs8"

• Workaround: You can convert the custom SSL private key to PKCS8 format with 
openssl command: openssl pkcs8 -topk8 -inform PEM -outform PEM -in
ssl_private_key -out ssl_private_key_pkcs8

• Resolution status: This issue has been resolved in the client SDK 5.12.0 release. You must 
upgrade to this client version or later to benefit from the fix.

Issue: ECDSA signing fails with "invalid mechanism" error starting with SDK 5.16

• Impact: ECDSA signing operations fail when using hash functions that are weaker than the key 
strength. This failure occurs because FIPS 186-5 requires the hash function to be at least as 
strong as the key strength.

You might see an error similar to this in your client logs:

[cloudhsm_provider::hsm1::session::ecdsa::sign::common][][] Digest security strength 
 (80) is weaker than the key security strength (128)

• Workaround: If you can't update your hash functions, you can migrate to non-FIPS clusters, 
which don't enforce the hash strength requirement. However, we recommend updating your 
hash functions to maintain FIPS compliance.

As an additional workaround, we have added a configuration option to bypass this requirement. 
Please note, this option is not recommended, as using ECDSA with weaker hash functions does 
not follow security best practices. To use this option, run the following command (replacing
configure-cli with the configure tool for the SDK being used: the section called “Syntax”):

sudo /opt/cloudhsm/bin/configure-cli --enable-ecdsa-with-weak-hash-function

• Resolution: Use a hash function that is at least as strong as your ECDSA key. For information 
about hash function and ECDSA key strengths, see Tables 2 and 3 in NIST SP 800-57 Part 1 Rev 
5.

Known issues for AWS CloudHSM hsm1.medium instances

The following issues impact all AWS CloudHSM hsm1.medium instances.

Known issues for hsm1.medium 1274

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf


AWS CloudHSM User Guide

Topics

• Issue: The HSM cannot create more than 250 users

Issue: The HSM cannot create more than 250 users

• Workaround: This issue is resolved on AWS CloudHSM hsm2m.medium instance types.

• Resolution status: None at this time.

Known issues for AWS CloudHSM hsm2m.medium instances

The following issues impact all AWS CloudHSM hsm2m.medium instances.

Topics

• Issue: Increased login latency on hsm2m.medium

• Issue: A CO using trying to set the trusted attribute of a key will fail with Client SDK 5.12.0 and 
earlier

• Issue: ECDSA verify will fail with Client SDK 5.12.0 and earlier for clusters in FIPS mode

• Issue: Only the PEM-formatted certificates can be registered as mtls trust anchors with 
CloudHSM CLI

• Issue: Customer applications will stop processing all requests when using mTLS with a 
passphrase protected client private key.

• Issue: User replicate fails when using the CloudHSM CLI

• Issue: Operations can fail during backup creation

• Issue: Client SDK 5.8 and above do not perform automatic retries for HSM throttled operations in 
some scenarios on hsm2m.medium

Issue: Increased login latency on hsm2m.medium

• Impact: The hsm2m.medium adheres to the latest FIPS 140-3 Level 3 requirements. Logging 
into hsm2m.medium follows enhanced security and compliance requirements, which results in 
increased latency.

• Workaround: If possible, serialize login requests in the same application to avoid extended 
latency during login. Multiple login requests in parallel will cause increased latency.

Known issues for hsm2m.medium 1275



AWS CloudHSM User Guide

Issue: A CO using trying to set the trusted attribute of a key will fail with Client 
SDK 5.12.0 and earlier

• Impact: Any CO user attempting to set the trusted attribute of a key will receive an error 
indicating that User type should be CO or CU.

• Resolution: Future versions of the Client SDK will resolve this issue. Updates will be announced 
in our user guide's Document history.

Issue: ECDSA verify will fail with Client SDK 5.12.0 and earlier for clusters in FIPS 
mode

• Impact: ECDSA verify operation performed for HSMs in FIPS mode will fail.

• Resolution status: This issue has been resolved in the client SDK 5.13.0 release. You must 
upgrade to this client version or later to benefit from the fix.

Issue: Only the PEM-formatted certificates can be registered as mtls trust anchors 
with CloudHSM CLI

• Impact: Certificates in DER format cannot be registered as mTLS trust anchors with CloudHSM 
CLI.

• Workaround: You can convert a certificate in DER format to PEM format with openssl 
command: openssl x509 -inform DER -outform PEM -in certificate.der -out
certificate.pem

Issue: Customer applications will stop processing all requests when using mTLS 
with a passphrase protected client private key.

• Impact: All operations performed by the application will be halted and the user will be 
prompted for the passphrase on standard input multiple times throughout the lifetime of 
application. Operations will timeout and fail if passphrase is not provided before the operation's 
timeout duration.

Known issues for hsm2m.medium 1276



AWS CloudHSM User Guide

• Workaround: Passphrase encrypted private keys are not supported for mTLS. Remove 
passphrase encryption from client private key

Issue: User replicate fails when using the CloudHSM CLI

• Impact: User replication fails on hsm2m.medium instances when using the CloudHSM CLI. The
user replicate command works as expected on hsm1.medium instances.

• Resolution:  We're working to resolve this issue. For updates, see the Document history in the 
user guide.

Issue: Operations can fail during backup creation

• Impact: Operations like generating random numbers can fail on hsm2m.medium instances while 
AWS CloudHSM creates a backup.

• Resolution: To minimize service interruptions, implement these best practices:

• Create a multi-HSM cluster

• Configure your applications to retry cluster operations

For more information about best practices, see Best practices for AWS CloudHSM.

Issue: Client SDK 5.8 and above do not perform automatic retries for HSM 
throttled operations in some scenarios on hsm2m.medium

• Impact: Client SDK 5.8 and above will not retry some HSM throttled operations

• Workaround: Follow best practices to architect your cluster to handle load and implement 
application level retries. We are currently working on a fix. Updates will be announced in our user 
guide's Document history.

Known issues for the PKCS #11 library for AWS CloudHSM

The following issues impact the PKCS #11 library for AWS CloudHSM.

Topics

• Issue: AES key wrap in version 3.0.0 of the PKCS #11 library does not validate IVs before use

Known issues for the PKCS #11 library 1277



AWS CloudHSM User Guide

• Issue: PKCS#11 SDK 2.0.4 and earlier versions always used the default IV of 
0xA6A6A6A6A6A6A6A6 for AES key wrap and unwrap

• Issue: The CKA_DERIVE attribute was not supported and was not handled

• Issue: The CKA_SENSITIVE attribute was not supported and was not handled

• Issue: Multipart hashing and signing are not supported

• Issue: C_GenerateKeyPair does not handle CKA_MODULUS_BITS or CKA_PUBLIC_EXPONENT in 
the private template in a manner that is compliant with standards

• Issue: Buffers for the C_Encrypt and C_Decrypt API operations cannot exceed 16 KB when using 
the CKM_AES_GCM mechanism

• Issue: Elliptic-curve Diffie-Hellman (ECDH) key derivation is executed partially within the HSM

• Issue: Verification of secp256k1 signatures fails on EL6 platforms such as CentOS6 and RHEL 6

• Issue: Incorrect sequence of function calls gives undefined results instead of failing

• Issue: Read Only Session is not supported in SDK 5

• Issue: cryptoki.h header file is Windows-only

Issue: AES key wrap in version 3.0.0 of the PKCS #11 library does not validate IVs 
before use

If you specify an IV shorter than 8 bytes in length, it is padded with unpredictable bytes before use.

Note

This impacts C_WrapKey with CKM_AES_KEY_WRAP mechanism only.

• Impact: If you provide an IV that is shorter than 8 bytes in version 3.0.0 of PKCS #11 library, you 
may be unable to unwrap the key.

• Workarounds:

• We strongly recommend you upgrade to version 3.0.1 or higher of the PKCS #11 library, which 
properly enforces IV length during AES key wrap. Amend your wrapping code to pass a NULL 
IV, or specify the default IV of 0xA6A6A6A6A6A6A6A6. For more information, see Custom IVs 
with Non-Compliant Length for AES Key Wrap.

• If you wrapped any keys with version 3.0.0 of the PKCS #11 library using an IV shorter than 8 
bytes, reach out to us for support.

Known issues for the PKCS #11 library 1278

https://aws.amazon.com/support


AWS CloudHSM User Guide

• Resolution status: This issue has been resolved in version 3.0.1 of the PKCS #11 library. To wrap 
keys using AES key wrap, specify an IV that is NULL or 8 bytes long.

Issue: PKCS#11 SDK 2.0.4 and earlier versions always used the default IV of
0xA6A6A6A6A6A6A6A6 for AES key wrap and unwrap

User-provided IVs were silently ignored.

Note

This impacts C_WrapKey with CKM_AES_KEY_WRAP mechanism only.

• Impact:

• If you used PKCS#11 SDK 2.0.4 or an earlier version and a user-provided IV, your keys are 
wrapped with the default IV of 0xA6A6A6A6A6A6A6A6.

• If you used PKCS#11 SDK 3.0.0 or later and a user-provided IV, your keys are wrapped with the 
user-provided IV.

• Workarounds:

• To unwrap keys wrapped with PKCS#11 SDK 2.0.4 or earlier use the default IV of
0xA6A6A6A6A6A6A6A6.

• To unwrap keys wrapped with PKCS#11 SDK 3.0.0 or later, use the user-provided IV.

• Resolution status: We strongly recommend that you amend your wrapping and unwrapping 
code to pass a NULL IV, or specify the default IV of 0xA6A6A6A6A6A6A6A6.

Issue: The CKA_DERIVE attribute was not supported and was not handled

• Resolution status: We have implemented fixes to accept CKA_DERIVE if it is set to FALSE.
CKA_DERIVE set to TRUE will not be supported until we begin to add key derivation function 
support to AWS CloudHSM. You must update your client and SDK(s) to version 1.1.1 or higher to 
benefit from the fix.

Known issues for the PKCS #11 library 1279



AWS CloudHSM User Guide

Issue: The CKA_SENSITIVE attribute was not supported and was not handled

• Resolution status: We have implemented fixes to accept and properly honor the
CKA_SENSITIVE attribute. You must update your client and SDK(s) to version 1.1.1 or higher to 
benefit from the fix.

Issue: Multipart hashing and signing are not supported

• Impact: C_DigestUpdate and C_DigestFinal are not implemented. C_SignFinal is also 
not implemented and will fail with CKR_ARGUMENTS_BAD for a non-NULL buffer.

• Workaround: Hash your data within your application and use AWS CloudHSM only for signing 
the hash.

• Resolution status: We are fixing the client and the SDKs to correctly implement multipart 
hashing. Updates will be announced in the AWS CloudHSM forum and on the version history 
page.

Issue: C_GenerateKeyPair does not handle CKA_MODULUS_BITS or
CKA_PUBLIC_EXPONENT in the private template in a manner that is compliant 
with standards

• Impact: C_GenerateKeyPair should return CKA_TEMPLATE_INCONSISTENT when the private 
template contains CKA_MODULUS_BITS or CKA_PUBLIC_EXPONENT. It instead generates a 
private key for which all usage fields are set to FALSE. The key cannot be used.

• Workaround: We recommend that your application check the usage field values in addition to 
the error code.

• Resolution status: We are implementing fixes to return the proper error message when an 
incorrect private key template is used. The updated PKCS #11 library will be announced on the 
version history page.

Issue: Buffers for the C_Encrypt and C_Decrypt API operations cannot exceed 
16 KB when using the CKM_AES_GCM mechanism

AWS CloudHSM does not support multipart AES-GCM encryption.

• Impact: You cannot use the CKM_AES_GCM mechanism to encrypt data larger than 16 KB.

Known issues for the PKCS #11 library 1280



AWS CloudHSM User Guide

• Workaround:  You can use an alternative mechanism such as CKM_AES_CBC,
CKM_AES_CBC_PAD, or you can divide your data into pieces and encrypt each piece using
AES_GCM individually. If you’re using AES_GCM, you must manage the division of your data and 
subsequent encryption. AWS CloudHSM does not perform multipart AES-GCM encryption for 
you. Note that FIPS requires that the initialization vector (IV) for AES-GCM be generated on the 
HSM. Therefore, the IV for each piece of your AES-GCM encrypted data will be different.

• Resolution status: We are fixing the SDK to fail explicitly if the data buffer is too large. We return
CKR_MECHANISM_INVALID for the C_EncryptUpdate and C_DecryptUpdate API operations. 
We are evaluating alternatives to support larger buffers without relying on multipart encryption. 
Updates will be announced in the AWS CloudHSM forum and on the version history page.

Issue: Elliptic-curve Diffie-Hellman (ECDH) key derivation is executed partially 
within the HSM

Your EC private key remains within the HSM at all times, but the key derivation process is 
performed in multiple steps. As a result, intermediate results from each step are available on the 
client.

• Impact: In Client SDK 3, the key derived using the CKM_ECDH1_DERIVE mechanism is first 
available on the client and is then imported into the HSM. A key handle is then returned to your 
application.

• Workaround: If you are implementing SSL/TLS Offload in AWS CloudHSM, this limitation may 
not be an issue. If your application requires your key to remain within an FIPS boundary at all 
times, consider using an alternative protocol that does not rely on ECDH key derivation.

• Resolution status: SDK 5.16 now supports ECDH with Key Derivation which is performed entirely 
within the HSM.

Issue: Verification of secp256k1 signatures fails on EL6 platforms such as 
CentOS6 and RHEL 6

This happens because the CloudHSM PKCS#11 library avoids a network call during initialization 
of the verification operation by using OpenSSL to verify EC curve data. Since Secp256k1 is not 
supported by the default OpenSSL package on EL6 platforms, the initialization fails.

• Impact: Secp256k1 signature verification will fail on EL6 platforms. The verify call will fail with a
CKR_HOST_MEMORY error.

Known issues for the PKCS #11 library 1281



AWS CloudHSM User Guide

• Workaround: We recommend using either Amazon Linux 1 or any EL7 platform if your PKCS#11 
application needs to verify secp256k1 signatures. Alternatively, upgrade to a version of the 
OpenSSL package that supports the secp256k1 curve.

• Resolution status: We are implementing fixes to fall back to the HSM if local curve validation is 
not available. The updated PKCS#11 library will be announced on the version history page.

Issue: Incorrect sequence of function calls gives undefined results instead of 
failing

• Impact: If you call an incorrect sequence of functions, the final result is incorrect even though 
the individual function calls return success. For instance, decrypted data may not match the 
original plaintext or signatures may fail to verify. This issue affects both single part and multi-
part operations.

Examples of incorrect function sequences:

• C_EncryptInit/C_EncryptUpdate followed by C_Encrypt

• C_DecryptInit/C_DecryptUpdate followed by C_Decrypt

• C_SignInit/C_SignUpdate followed by C_Sign

• C_VerifyInit/C_VerifyUpdate followed by C_Verify

• C_FindObjectsInit followed by C_FindObjectsInit

• Workaround: Your application should, in compliance with the PKCS #11 specification, use the 
right sequence of function calls for both single and multi-part operations. Your application 
should not rely on the CloudHSM PKCS #11 library to return an error under this circumstance.

Issue: Read Only Session is not supported in SDK 5

• Issue: SDK 5 does not support opening Read-Only sessions with C_OpenSession.

• Impact: If you attempt to call C_OpenSession without providing CKF_RW_SESSION, the call 
will fail with the error CKR_FUNCTION_FAILED.

• Workaround: When opening a session, you must pass the CKF_SERIAL_SESSION | 
CKF_RW_SESSION flags to the C_OpenSession function call.

Known issues for the PKCS #11 library 1282



AWS CloudHSM User Guide

Issue: cryptoki.h header file is Windows-only

• Issue: With AWS CloudHSM Client SDK 5 versions 5.0.0 through 5.4.0 on Linux, the header file /
opt/cloudhsm/include/pkcs11/cryptoki.h is only compatible with Windows operating 
systems.

• Impact: You may encounter issues when trying to include this header file in your application on 
Linux-based operating systems.

• Resolution status: Upgrade to AWS CloudHSM Client SDK 5 version 5.4.1 or above, which 
includes a Linux-compatible version of this header file.

Known issues for the JCE SDK for AWS CloudHSM

The following issues impact the JCE SDK for AWS CloudHSM.

Topics

• Issue: When working with asymmetric key pairs, you see occupied key capacity even when you 
are not explicitly creating or importing keys

• Issue: The JCE KeyStore is read only

• Issue: Buffers for AES-GCM encryption cannot exceed 16,000 bytes

• Issue: Elliptic-curve Diffie-Hellman (ECDH) key derivation is executed partially within the HSM

• Issue: KeyGenerator and KeyAttribute incorrectly interprets key size parameter as number of 
bytes instead of bits

• Issue: Client SDK 5 throws the warning “An illegal reflective access operation has occurred”

• Issue: JCE session pool is exhausted

• Issue: Client SDK 5 memory leak with getKey operations

Issue: When working with asymmetric key pairs, you see occupied key capacity 
even when you are not explicitly creating or importing keys

• Impact: This issue can cause your HSMs to unexpectedly run out of key space and occurs when 
your application uses a standard JCE key object for crypto operations instead of a CaviumKey
object. When you use a standard JCE key object, CaviumProvider implicitly imports that key 
into the HSM as a session key and does not delete this key until the application exits. As a result, 

Known issues for the JCE SDK 1283



AWS CloudHSM User Guide

keys build up while the application is running and can cause your HSMs to run out of free key 
space, thus freezing your application.

• Workaround: When using the CaviumSignature class, CaviumCipher class, CaviumMac class, 
or the CaviumKeyAgreement class, you should supply the key as a CaviumKey instead of a 
standard JCE key object.

You can manually convert a normal key to a CaviumKey using the ImportKey class, and can 
then manually delete the key after the operation is complete.

• Resolution status: We are updating the CaviumProvider to properly manage implicit imports. 
The fix will be announced on the version history page once available.

Issue: The JCE KeyStore is read only

• Impact: You cannot store an object type that is not supported by the HSM in the JCE keystore 
today. Specifically, you cannot store certificates in the keystore. This precludes interoperability 
with tools like jarsigner, which expect to find the certificate in the keystore.

• Workaround: You can rework your code to load certificates from local files or from an S3 bucket 
location instead of from the keystore.

• Resolution status: You can use AWS CloudHSM keystore to store certificates.

Issue: Buffers for AES-GCM encryption cannot exceed 16,000 bytes

Multi-part AES-GCM encryption is not supported.

• Impact: You cannot use AES-GCM to encrypt data larger than 16,000 bytes.

• Workaround:  You can use an alternative mechanism, such as AES-CBC, or you can divide your 
data into pieces and encrypt each piece individually. If you divide the data, you must manage the 
divided ciphertext and its decryption. Because FIPS requires that the initialization vector (IV) for 
AES-GCM be generated on the HSM, the IV for each AES-GCM-encrypted piece of data will be 
different.

• Resolution status: We are fixing the SDK to fail explicitly if the data buffer is too large. We are 
evaluating alternatives that support larger buffers without relying on multi-part encryption. 
Updates will be announced in the AWS CloudHSM forum and on the version history page.

Known issues for the JCE SDK 1284

https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java


AWS CloudHSM User Guide

Issue: Elliptic-curve Diffie-Hellman (ECDH) key derivation is executed partially 
within the HSM

Your EC private key remains within the HSM at all times, but the key derivation process is 
performed in multiple steps. As a result, intermediate results from each step are available on the 
client. An ECDH key derivation sample is available in the Java code samples.

• Impact:  Client SDK 3 adds ECDH functionality to the JCE. When you use the KeyAgreement
class to derive a SecretKey, it is first available on the client and is then imported into the HSM. A 
key handle is then returned to your application.

• Workaround: If you are implementing SSL/TLS Offload in AWS CloudHSM, this limitation may 
not be an issue. If your application requires your key to remain within an FIPS boundary at all 
times, consider using an alternative protocol that does not rely on ECDH key derivation.

• Resolution status: SDK 5.16 now supports ECDH with Key Derivation which is performed entirely 
within the HSM.

Issue: KeyGenerator and KeyAttribute incorrectly interprets key size parameter as 
number of bytes instead of bits

When generating a key using the init function of the KeyGenerator class or the SIZE attribute of 
the AWS CloudHSM KeyAttribute enum, the API incorrectly expects the argument to be the number 
of key bytes, when it should instead be the number of key bits.

• Impact: Client SDK versions 5.4.0 through 5.4.2 incorrectly expects the key size to be provided to 
the specified APIs as bytes.

• Workaround: Convert the key size from bits to bytes before using the KeyGenerator class or 
KeyAttribute enum to generate keys using the AWS CloudHSM JCE provider if using Client SDK 
versions 5.4.0 through 5.4.2.

• Resolution status: Upgrade your client SDK version to 5.5.0 or later, which includes a fix to 
correctly expect key sizes in bits when using the KeyGenerator class or KeyAttribute enum to 
generate keys.

Issue: Client SDK 5 throws the warning “An illegal reflective access operation has 
occurred”

When using Client SDK 5 with Java 11, CloudHSM throws the following Java warning:

Known issues for the JCE SDK 1285

https://docs.oracle.com/javase/8/docs/api/javax/crypto/KeyGenerator.html#init-int-


AWS CloudHSM User Guide

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by 
 com.amazonaws.cloudhsm.jce.provider.CloudHsmKeyStore (file:/opt/cloudhsm/java/
cloudhsm-jce-5.6.0.jar) to field java.security .KeyStore.keyStoreSpi
WARNING: Please consider reporting this to the maintainers of 
 com.amazonaws.cloudhsm.jce.provider.CloudHsmKeyStore
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective 
 access operations
WARNING: All illegal access operations will be denied in a future release 
       

This issue is fixed in Client SDK version 5.8 and later.

Issue: JCE session pool is exhausted

Impact: You may not be able to perform operations in JCE after seeing the following message:

com.amazonaws.cloudhsm.jce.jni.exception.InternalException: There are too many 
 operations  
happening at the same time: Reached max number of sessions in session pool: 1000

Workarounds:

• Restart your JCE application if you’re experiencing impact.

• When performing an operation, you may need to complete the JCE operation before losing 
reference to the operation.

Note

Depending on the operation, a completion method may be needed.

Operation Completion method(s)

Cipher
doFinal()  in encrypt or decrypt mode

wrap() in wrap mode

Known issues for the JCE SDK 1286



AWS CloudHSM User Guide

Operation Completion method(s)

unwrap() in unwrap mode

KeyAgreement generateSecret()  or generateS 
ecret(String)

KeyPairGenerator generateKeyPair() , genKeyPair() , or
reset()

KeyStore No method needed

MAC doFinal()  or reset()

MessageDigest digest() or reset()

SecretKeyFactory No method needed

SecureRandom No method needed

Signature sign() in sign mode

verify() in verify mode

Resolution status: We have resolved this issue in Client SDK 5.9.0 and later. To fix this issue, 
upgrade your Client SDK to one of these versions.

Issue: Client SDK 5 memory leak with getKey operations

• Impact: The API getKey operation has a memory leak in JCE in Client SDK versions 5.10.0 and 
earlier. If you’re using the getKey API multiple times in your application, it will lead to increased 
memory growth and consequently increase the memory footprint in your application. Over time 
this may cause throttling errors or require the application to be restarted.

• Workaround: We recommend upgrading to Client SDK 5.11.0. If this can't be done, we 
recommend not calling the getKey API multiple times in your application. Rather, reuse the 
previously returned key from the prior getKey operation as much as possible.

• Resolution status: Upgrade your client SDK version to 5.11.0 or later, which includes a fix for this 
issue.

Known issues for the JCE SDK 1287



AWS CloudHSM User Guide

Known issues for the OpenSSL Dynamic Engine for AWS CloudHSM

These are the known issues for OpenSSL Dynamic Engine for AWS CloudHSM.

Topics

• Issue: You cannot install AWS CloudHSM OpenSSL Dynamic Engine on RHEL 6 and CentOS6

• Issue: Only RSA offload to the HSM is supported by default

• Issue: RSA encryption and decryption with OAEP padding using a key on the HSM is not 
supported

• Issue: Only private key generation of RSA and ECC keys is offloaded to the HSM

• Issue: You cannot install OpenSSL Dynamic Engine for Client SDK 3 on RHEL 8, CentOS 8, or 
Ubuntu 18.04 LTS

• Issue: SHA-1 Sign and Verify deprecation on RHEL 9 (9.2+)

• Issue: AWS CloudHSM OpenSSL Dynamic Engine is incompatible with the FIPS provider for 
OpenSSL v3.x

• Issue: SSL/TLS offload fails with ECDSA cipher suites in TLS 1.0 and TLS 1.1 starting with SDK 
5.16

Issue: You cannot install AWS CloudHSM OpenSSL Dynamic Engine on RHEL 6 and 
CentOS6

• Impact: The OpenSSL Dynamic Engine only supports OpenSSL 1.0.2[f+]. By default, RHEL 6 and 
CentOS 6 ship with OpenSSL 1.0.1.

• Workaround:  Upgrade the OpenSSL library on RHEL 6 and CentOS 6 to version 1.0.2[f+].

Issue: Only RSA offload to the HSM is supported by default

• Impact: To maximize performance, the SDK is not configured to offload additional functions 
such as random number generation or EC-DH operations.

• Workaround: Please contact us through a support case if you need to offload additional 
operations.

• Resolution status: We are adding support to the SDK to configure offload options through a 
configuration file. The update will be announced on the version history page once available.

Known issues for the OpenSSL Dynamic Engine 1288



AWS CloudHSM User Guide

Issue: RSA encryption and decryption with OAEP padding using a key on the HSM 
is not supported

• Impact: Any call to RSA encryption and decryption with OAEP padding fails with a divide-by-zero 
error. This occurs because the OpenSSL dynamic engine calls the operation locally using the fake 
PEM file instead of offloading the operation to the HSM.

• Workaround:  You can perform this procedure by using either the PKCS #11 library for AWS 
CloudHSM Client SDK 5 or the JCE provider for AWS CloudHSM Client SDK 5.

• Resolution status: We are adding support to the SDK to correctly offload this operation. The 
update will be announced on the version history page once available.

Issue: Only private key generation of RSA and ECC keys is offloaded to the HSM

For any other key type, the OpenSSL AWS CloudHSM engine is not used for call processing. The 
local OpenSSL engine is used instead. This generates a key locally in software.

• Impact: Because the failover is silent, there is no indication that you have not received a key 
that was securely generated on the HSM. You will see an output trace that contains the string
"...........++++++" if the key is locally generated by OpenSSL in software. This trace is 
absent when the operation is offloaded to the HSM. Because the key is not generated or stored 
on the HSM, it will be unavailable for future use.

• Workaround: Only use the OpenSSL engine for key types it supports. For all other key types, use 
PKCS #11 or JCE in applications, or use key_mgmt_util in the CLI.

Issue: You cannot install OpenSSL Dynamic Engine for Client SDK 3 on RHEL 8, 
CentOS 8, or Ubuntu 18.04 LTS

• Impact: By default, RHEL 8, CentOS 8, and Ubuntu 18.04 LTS ship a version of OpenSSL that is 
not compatible with OpenSSL Dynamic Engine for Client SDK 3.

• Workaround: Use a Linux platform that provides support for OpenSSL Dynamic Engine. For 
more information about supported platforms, see Supported Platforms.

• Resolution status:  AWS CloudHSM supports these platforms with OpenSSL Dynamic Engine for 
Client SDK 5. For more information, see Supported Platforms and OpenSSL Dynamic Engine.

Known issues for the OpenSSL Dynamic Engine 1289



AWS CloudHSM User Guide

Issue: SHA-1 Sign and Verify deprecation on RHEL 9 (9.2+)

• Impact: The usage of the SHA-1 message digest for cryptographic purposes has been deprecated 
in RHEL 9 (9.2+). As a result, sign and verify operations with SHA-1 using the OpenSSL Dynamic 
Engine will fail.

• Workaround: If your scenario requires the use of SHA-1 for signing/verifying existing or third-
party cryptographic signatures, see Enhancing RHEL Security: Understanding SHA-1 deprecation 
on RHEL 9 (9.2+) and RHEL 9 (9.2+) Release Notes for further details.

Issue: AWS CloudHSM OpenSSL Dynamic Engine is incompatible with the FIPS 
provider for OpenSSL v3.x

• Impact: You will receive an error if you attempt to utilize the AWS CloudHSM OpenSSL Dynamic 
Engine when the FIPS provider is enabled for OpenSSL versions 3.x.

• Workaround: To use the AWS CloudHSM OpenSSL Dynamic Engine with OpenSSL versions 3.x, 
ensure that the "default" provider is configured. Read more about the default provider on the
OpenSSL Website.

Issue: SSL/TLS offload fails with ECDSA cipher suites in TLS 1.0 and TLS 1.1 
starting with SDK 5.16

• Impact: Connection attempts using TLS 1.0 or TLS 1.1 fail because these versions use SHA-1 for 
signing, which doesn't meet FIPS 186-5 requirements.

• Workaround: If you can't upgrade TLS versions immediately, you can migrate to non-FIPS 
clusters, which don't enforce the hash strength requirement. However, we recommend upgrading 
to TLS 1.2 or TLS 1.3 to maintain FIPS compliance and security best practices.

• Resolution: Upgrade your implementation to use TLS 1.2 or TLS 1.3. The Internet Engineering 
Task Force (IETF) has deprecated TLS 1.0 and TLS 1.1 due to security concerns.

Known issues for the Key Storage Provider (KSP) for AWS CloudHSM

These are the known issues for Key Storage Provider (KSP) for AWS CloudHSM.

Topics

• Issue: Verification of a certificate store fails

Known issues for the Key Storage Provider (KSP) 1290

https://www.redhat.com/en/blog/rhel-security-sha-1-package-signatures-distrusted-rhel-9
https://www.redhat.com/en/blog/rhel-security-sha-1-package-signatures-distrusted-rhel-9
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/9.0_release_notes/overview
https://www.openssl.org/docs/man3.0/man7/OSSL_PROVIDER-default.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://datatracker.ietf.org/doc/rfc8996/


AWS CloudHSM User Guide

• Issue: Container name inconsistency in the certificate store while using SDK3 compatibility mode 
for Client SDK 5

Issue: Verification of a certificate store fails

When using Client SDK versions 5.14 and 5.15, calling certutil -store my 
CERTIFICATE_SERIAL_NUMBER throws the following error:

ERROR: Could not verify certificate public key against private key

• Impact:  You cannot use certutil to validate a certificate store created with Client SDK 5.

• Workaround:  Validate the key pair associated with the certificate by signing a file using the 
private key and verifying the signature using the public key. This can be done using Microsoft 
SignTool by following the steps provided here.

• Resolution Status:  We're working to add support for verifying certificates using certutil. The 
fix will be announced on the version history page once available.

Issue: Container name inconsistency in the certificate store while using SDK3 
compatibility mode for Client SDK 5

When using the certutil -store my CERTIFICATE_SERIAL_NUMBER command to view 
certificates whose key-reference files were generated using generate-file command in AWS CLI 
5.16.0, the following error occurs:

ERROR: Container name inconsistent: CONTAINER_NAME

This error occurs because there is a mismatch between the container name stored in the certificate 
and the key reference file name generated by the CloudHSM CLI.

• Impact:  Despite this error, the certificates and their associated keys remain fully functional. All 
applications using these certificates will continue to work normally.

• Workaround:  To resolve this error, rename the key reference filename to Simple or Unique 
container name. Refer to the following sample output of the command certutil -store my

Subject: CN=www.website.com, OU=Organizational-Unit, O=Organization, L=City, S=State, 
 C=US  

Known issues for the Key Storage Provider (KSP) 1291



AWS CloudHSM User Guide

Non-root Certificate
Cert Hash(sha1): 1add52
Key Container = 7e3c-b2f5
Simple container name: tq-3daacd89
Unique container name: tq-3daacd89
ERROR: Container name inconsistent: 7e3c-b2f5

By default, the key reference files will be stored in C:\Users\Default\AppData\Roaming
\Microsoft\Crypto\CaviumKSP\GlobalPartition

1. Rename the key reference file to the simple container name.

2. Repair the certificate store with the new key container name. Refer to steps 12 to 14 in  KSP 
Migration for more details.

Known issues for Amazon EC2 instances running Amazon Linux 2 with 
AWS CloudHSM

The following issues impact AWS CloudHSM and Amazon EC2 instances that are running on 
Amazon Linux 2.

Issue: Amazon Linux 2 version 2018.07 uses an updated ncurses package 
(version 6) that is currently incompatible with the AWS CloudHSM SDKs

You see the following error returned upon running the AWS CloudHSM cloudhsm_mgmt_util or
key_mgmt_util:

/opt/cloudhsm/bin/cloudhsm_mgmt_util: error while loading shared libraries: 
 libncurses.so.5: cannot open shared object file: No such file or directory

• Impact: Instances running on Amazon Linux 2 version 2018.07 will be unable to use all AWS 
CloudHSM utilities.

• Workaround:  Issue the following command on your Amazon Linux 2 EC2 instances to install the 
supported ncurses package (version 5):

sudo yum update && yum install ncurses-compat-libs

• Resolution status: This issue has been resolved in the AWS CloudHSM client 1.1.2 release. You 
must upgrade to this client to benefit from the fix.

Known issues for Amazon EC2 instances running Amazon Linux 2 1292



AWS CloudHSM User Guide

Known issues for integrating third-party applications with AWS 
CloudHSM

The following issues impact AWS CloudHSM when integrating with third-party applications.

Issue: Client SDK 3 does not support Oracle setting PKCS #11 attribute
CKA_MODIFIABLE during master key generation

This limit is defined in the PKCS #11 library. For more information, see annotation 1 on Supported 
PKCS #11 Attributes.

• Impact: Oracle master key creation fails.

• Workaround: Set the special environment variable
CLOUDHSM_IGNORE_CKA_MODIFIABLE_FALSE to TRUE when creating a new master key. This 
environment variable is only needed for master key generation and you do not need to use 
this environment variable for anything else. For example, you would use this variable for the 
first master key you create and then you would only use this environment variable again if you 
wanted to rotate your master key edition. For more information, see Generate the Oracle TDE 
Master Encryption Key.

• Resolution status: We are improving the HSM firmware to fully support the CKA_MODIFIABLE 
attribute. Updates will be announced in the AWS CloudHSM forum and on the version history 
page

Known issues for AWS CloudHSM cluster modification

The following issues impact customers attempting to use the modify-cluster API to change the 
HSM type of a cluster.

Topics

• Issue: Login latency increases due to increased PBKDF2 iterations

• Issue: Unable to modify HSM type due to token key creation

Known issues for integrating third-party applications 1293



AWS CloudHSM User Guide

Issue: Login latency increases due to increased PBKDF2 iterations

• Impact: Clusters with a large amount of users will experience an extended migration period. 
This is due to changes in the backup restoration process performing PBKDF2 operations per user 
when restoring an hsm1.medium backup to hsm2m.medium for the first time.

• Workaround: Design your applications to be resilient to an extended migration period.

• Resolution status: No resolution status.

Issue: Unable to modify HSM type due to token key creation

• Impact: Customers performing token key based workloads will be unable to start their 
migration. This is done because the HSM will be placed into a limited-write mode to prevent 
dataloss scenarios during the HSM type modification.

• Workaround: Stop creating and deleting token keys and then wait 7 days. Alternatively, please 
reach out to support if you

• Cannot handle blocking token key migrations and cannot do a blue/green deployment.

• Can handle blocking token key operations for the duration of the migration, but can’t wait the 
full 7 day period.

• Resolution status: This issue has been resolved. Customers performing token key based 
workloads can now begin the migration. Token key creations and deletions will be blocked for 
the duration of the migration.

Known issues of operation failure using AWS CloudHSM client version 
5.12.0 on hsm2.medium

The following issues impact AWS CloudHSM when using AWS CloudHSM client version 5.12.0

Issue: Error during get-attribute operation

If you're migrating from hsm1.medium to hsm2m.medium and using CloudHSM Client SDK 5.12.0, 
you may observe errors related to attribute handling.

You might see the following error message in the client logs: Error in deserialization of 
data: Invalid integer conversion

Impact: Below operations will fail using client version 5.12.0

Known issues of operation failure using AWS CloudHSM client version 5.12.0 on hsm2.medium 1294



AWS CloudHSM User Guide

• In PKCS#11 SDK, calls to C_GetAttributeValue fail

• In CloudHSM CLI, the key list command shows no attributes in the output

• In CloudHSM CLI, key generate-file may fail for keys generated using hsm1.medium

Resolution: We recommend upgrading to the latest version of the SDK which resolves this issue.

AWS CloudHSM Client SDK 3 key synchronization failures

In Client SDK 3, if client-side synchronization fails, AWS CloudHSM makes a best-effort response 
to clean up any unwanted keys that may have been created (and are now unwanted). This process 
involves removing unwanted key material immediately or marking unwanted material for later 
removal. In both these cases, the resolution does not require any action from you. In the rare case 
that AWS CloudHSM cannot remove and cannot mark unwanted key material, you must delete the 
key material.

Problem: You attempt a token key generation, import, or unwrap operation and see errors that 
specify a failure to tombstone.

2018-12-24T18:28:54Z liquidSecurity ERR: print_node_ts_status:
[create_object_min_nodes]Key: 264617 failed to tombstone on node:1

Cause: AWS CloudHSM was unsuccessful removing and marking unwanted key material.

Resolution: An HSM in your cluster contains unwanted key material that is not marked as 
unwanted. You must manually remove the key material. To manually delete unwanted key 
material, use key_mgmt_util (KMU) or an API from the PKCS #11 library or the JCE provider. For 
more information, see deleteKey or Client SDKs.

To make token keys more durable, AWS CloudHSM fails key creation operations that don't succeed 
on the minimum number of HSMs specified in client-side synchronization settings. For more 
information, see Key Synchronization in AWS CloudHSM.

AWS CloudHSM Client SDK 3 verify HSM performance with the 
pkpspeed tool

This topic describes how to verify AWS CloudHSM hardware security module (HSM) performance 
with Client SDK 3.

Client SDK 3 key synchronization failures 1295



AWS CloudHSM User Guide

To verify the performance of the HSMs in your AWS CloudHSM cluster, you can use the pkpspeed 
(Linux) or pkpspeed_blocking (Windows) tool that is included with Client SDK 3. The pkpspeed tool 
executes under ideal conditions and directly calls the HSM to execute operations without going 
through an SDK such as PKCS11. We recommend load testing your application independently to 
determine your scaling needs. We do not recommend running the following tests: Random (I), 
ModExp (R), and EC point mul (Y).

For more information about installing the client on a Linux EC2 instance, see Install and configure 
the AWS CloudHSM client for CMU (Linux). For more information about installing the client on a 
Windows instance, see Install and configure the AWS CloudHSM client for CMU (Windows).

After you install and configure the AWS CloudHSM client, run the following command to start it.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client start

CentOS 7

$ sudo service cloudhsm-client start

CentOS 8

$ sudo service cloudhsm-client start

RHEL 7

$ sudo service cloudhsm-client start

RHEL 8

$ sudo service cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client start

Client SDK 3 verify performance 1296



AWS CloudHSM User Guide

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client start

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe start AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

C:\Program Files\Amazon\CloudHSM>start "cloudhsm_client" cloudhsm_client.exe C:
\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

If you have already installed the client software, you might need to download and install the latest 
version to get pkpspeed. You can find the pkpspeed tool at /opt/cloudhsm/bin/pkpspeed in 
Linux or C:\Program Files\Amazon\CloudHSM\ in Windows.

To use pkpspeed, run the pkpspeed command or pkpspeed_blocking.exe, specifying the 
user name and password of a crypto user (CU) on the HSM. Then set the options to use while 
considering the following recommendations.

Test recommendations

• To test the performance of RSA sign and verify operations, choose the RSA_CRT cipher in Linux 
or option B in Windows. Don't choose RSA (option A in Windows). The ciphers are equivalent, but
RSA_CRT is optimized for performance.

• Start with a small number of threads. For testing AES performance, one thread is typically 
enough to show maximum performance. For testing RSA performance(RSA_CRT), three or four 
threads is typically enough.

Configurable options for the pkpspeed tool

• FIPS Mode: AWS CloudHSM is always in FIPS mode (See AWS CloudHSM FAQs for details). This 
can be verified by using the CLI tools as documented in the AWS CloudHSM User Guide and 
running the  Get hardware information for each HSM in an AWS CloudHSM cluster with CMU 
command which will indicate the FIPS mode status.

Test recommendations 1297

https://aws.amazon.com/cloudhsm/faqs/


AWS CloudHSM User Guide

• Test type (blocking versus non-blocking): This specifies how operations are performed in a 
threaded manner. You will most likely get better numbers using non-blocking. This is because 
they utilize threads and concurrency.

• Number of threads: Number of threads to run the test with.

• Time in seconds to run the test (max = 600): pkpspeed produces results measured in 
"OPERATIONS/second" and reports this value for each second that the test is run. For example, if 
the test is run for 5 seconds the output may look like the following sample values:

• OPERATIONS/second 821/1

• OPERATIONS/second 833/1

• OPERATIONS/second 845/1

• OPERATIONS/second 835/1

• OPERATIONS/second 837/1

Tests that can be ran with the pkpspeed tool

• AES GCM: Tests AES GCM mode encryption.

• Basic 3DES CBC: Tests 3DES CBC mode encryption. See note 1 below for an upcoming change.

• Basic AES: Tests AES CBC/ECB encryption.

• Digest: Tests hash digest.

• ECDSA Sign: Tests ECDSA sign.

• ECDSA Verify: Tests ECDSA verify.

• FIPS Random: Tests generation of a FIPS-compliant random number (Note: this can only be used 
in blocking mode).

• HMAC: Tests HMAC.

• Random: This test is not relevant because we are using FIPS 140-2 HSM’s.

• RSA non-CRT versus RSA_CRT: Tests RSA sign and verify operations.

• RSA OAEP Enc: Tests RSA OAEP encryption.

• RSA OAEP Dec: Tests RSA OAEP decryption.

• RSA private dec non-CRT: Tests RSA Private key encryption (non-optimized).

• RSA private key dec CRT: Tests RSA Private key encryption (optimized).

• RSA PSS Sign: Tests RSA PSS sign.

• RSA PSS Verify: Tests RSA PSS verify.

Tests that can be ran with the pkpspeed tool 1298



AWS CloudHSM User Guide

• RSA public key enc: Tests RSA Public key encryption.

RSA public key encryption, RSA private decryption non-CRT, and RSA private key decryption CRT 
will also prompt the user to answer the following:

Do you want to use static key [y/n]

If y is entered, a pre-computed key is imported into the HSM.

If n is entered, a new key is generated.

[1] In accordance with NIST guidance, this is disallowed for clusters in FIPS mode after 2023. For 
clusters in non-FIPS mode, it is still allowed after 2023. See FIPS 140 Compliance: 2024 Mechanism 
Deprecation for details.

Examples

The following examples show the options that you can choose with pkpspeed (Linux) or 
pkpspeed_blocking (Windows) to test the HSM's performance for RSA and AES operations.

Example – Using pkpspeed to test RSA performance

You can run this example on Windows, Linux, and compatible operating systems.

Linux

Use these instructions for Linux and compatible operating systems.

/opt/cloudhsm/bin/pkpspeed -s CU user name -p password

SDK Version: 2.03 

        Available Ciphers: 
                AES_128 
                AES_256 
                3DES 
                RSA  (non-CRT. modulus size can be 2048/3072) 
                RSA_CRT (same as RSA)
For RSA, Exponent will be 65537

Current FIPS mode is: 00002

Examples 1299



AWS CloudHSM User Guide

Enter the number of thread [1-10]: 3
Enter the cipher: RSA_CRT
Enter modulus length: 2048
Enter time duration in Secs: 60
Starting non-blocking speed test using data length of 245 bytes...
[Test duration is 60 seconds]

Do you want to use static key[y/n] (Make sure that KEK is available)?n       

Windows

c:\Program Files\Amazon\CloudHSM>pkpspeed_blocking.exe -s CU user name -p password

Please select the test you want to run

RSA non-CRT------------------->A
RSA CRT----------------------->B
Basic 3DES CBC---------------->C
Basic AES--------------------->D
FIPS Random------------------->H
Random------------------------>I
AES GCM ---------------------->K

eXit------------------------>X
B

Running 4 threads for 25 sec

Enter mod size(2048/3072):2048
Do you want to use Token key[y/n]n
Do you want to use static key[y/n] (Make sure that KEK is available)?  n
OPERATIONS/second                821/1
OPERATIONS/second                833/1
OPERATIONS/second                845/1
OPERATIONS/second                835/1
OPERATIONS/second                837/1
OPERATIONS/second                836/1
OPERATIONS/second                837/1
OPERATIONS/second                849/1
OPERATIONS/second                841/1
OPERATIONS/second                856/1
OPERATIONS/second                841/1
OPERATIONS/second                847/1

Examples 1300



AWS CloudHSM User Guide

OPERATIONS/second                838/1
OPERATIONS/second                843/1
OPERATIONS/second                852/1
OPERATIONS/second                837/

Example – Using pkpspeed to test AES performance

Linux

Use these instructions for Linux and compatible operating systems.

/opt/cloudhsm/bin/pkpspeed -s <CU user name> -p <password>

SDK Version: 2.03 

        Available Ciphers: 
                AES_128 
                AES_256 
                3DES 
                RSA  (non-CRT. modulus size can be 2048/3072) 
                RSA_CRT (same as RSA)
For RSA, Exponent will be 65537

Current FIPS mode is: 00000002
Enter the number of thread [1-10]: 1
Enter the cipher: AES_256
Enter the data size [1-16200]: 8192
Enter time duration in Secs: 60
Starting non-blocking speed test using data length of 8192 bytes...

Windows

c:\Program Files\Amazon\CloudHSM>pkpspeed_blocking.exe -s CU user name -p password
login as USER
Initializing Cfm2 library 
        SDK Version: 2.03 

 Current FIPS mode is: 00000002
Please enter the number of threads [MAX=400] : 1
Please enter the time in seconds to run the test [MAX=600]: 20

Examples 1301



AWS CloudHSM User Guide

Please select the test you want to run

RSA non-CRT------------------->A
RSA CRT----------------------->B
Basic 3DES CBC---------------->C
Basic AES--------------------->D
FIPS Random------------------->H
Random------------------------>I
AES GCM ---------------------->K

eXit------------------------>X
D

Running 1 threads for 20 sec

Enter the key size(128/192/256):256
Enter the size of the packet in bytes[1-16200]:8192
OPERATIONS/second                9/1
OPERATIONS/second                10/1
OPERATIONS/second                11/1
OPERATIONS/second                10/1
OPERATIONS/second                10/1
OPERATIONS/second                10/...

AWS CloudHSM Client SDK 5 user contains inconsistent values

The user list command in AWS CloudHSM Client SDK 5 returns a list of all users, and user 
properties, in your cluster. If any of a user’s properties have the value "inconsistent", this user is 
not synchronized across your cluster. This means that the user exists with different properties on 
different HSMs in the cluster. Based on which property is inconsistent, different repair steps can be 
taken.

The following table includes steps to resolve inconsistencies for a single user. If a single user 
has multiple inconsistencies, resolve them by following these steps from top to bottom. If there 
are multiple users with inconsistencies, work through this list for each user, fully resolving the 
inconsistencies for that user before moving on the next.

Client SDK 5 user contains inconsistent values 1302



AWS CloudHSM User Guide

Note

To perform these steps you should ideally be logged in as an admin. If your admin account 
is not consistent, go through these steps logging in with the admin and repeating the steps 
until all properties are consistent. After your admin account is consistent, you can proceed 
to use that admin to synchronize other users in the cluster.

Inconsistent 
property

Example output of 
user list

Implication Recovery method

User "role" is "inconsis 
tent"

{
"username":  
"test_user",     
"role": 
 "inconsistent ", 
     
"locked": 
 "false",     
"mfa": [],      
"cluster-
coverage": 
 "full"
}

This user is a 
CryptoUser on some 
HSMs, and an Admin 
on other HSMs. This 
can happen if two 
SDKs attempt to 
create the same 
user, at the same 
time, with different 
roles.You must 
remove this user, and 
re-create it with the 
desired role.

1. Login as an admin.

2. Delete the user on 
all HSMs:

user delete 
--username
<user's name>
--role admin

user delete 
--username
<user's name>
--role crypto-user

3. Create the user 
with the desired 
role:

user create 
--username
<user's name>
--role <desired 
role>

Client SDK 5 user contains inconsistent values 1303



AWS CloudHSM User Guide

Inconsistent 
property

Example output of 
user list

Implication Recovery method

User "cluster- 
coverage" is "inconsis 
tent"

{
"username": 
 "test_user",   
   
"role": "crypto-u 
ser",     
"locked": 
 "false",     
"mfa": [],      
"cluster-
coverage": 
 "inconsistent "
}

This user exists on 
a subset of HSMs 
in the cluster.This 
can happen if a
user create partially 
succeeded, or if a
user delete partially 
succeeded.

You must finish your 
previous operation 
, either creating or 
removing this user 
from your cluster.

If the user should not 
exist, follow these 
steps:

1. Login as an admin.

2. Run this command:

user delete 
--usernam 
e<user's name>
--role admin

3. Now, run the 
following 
command:

user delete 
--usernam 
e<user's name>
--role crypto-user

If the user should 
exist, follow these 
steps:

1. Login as an admin.

2. Run the following 
command:

user create 
--username
<user's name>
--role <desired 
role>

Client SDK 5 user contains inconsistent values 1304



AWS CloudHSM User Guide

Inconsistent 
property

Example output of 
user list

Implication Recovery method

User "locked" 
parameter is "inconsis 
tent" or "true"

{
"username":  
"test_user",     
"role": "crypto-u 
ser",     
"locked" 
: inconsistent , 
     
"mfa": [],      
"cluster-
coverage": 
 "full"
}

This user is locked 
out on a subset of 
HSMs.

This can happen 
if a user uses the 
wrong password and 
only connects to a 
subset of HSMs in the 
cluster.

You must change the 
user's credentials to 
be consistent across 
the cluster.

If the user has MFA 
activated, follow 
these steps:

1. Login as an admin.

2. Run the following 
command to 
temporarily 
deactivate MFA:

user change-
mfa token-sig 
n --username
<user's name>
--role <desired 
role> --disable

3. Change the user's 
password so they 
can log into all 
HSMs:

user change-pa 
ssword --usernam 
e <user's name>
--role <desired 
role>

If MFA should be 
active for the user, 
follow these steps:

1. Have the user 
log in and re-
enable MFA (this 

Client SDK 5 user contains inconsistent values 1305



AWS CloudHSM User Guide

Inconsistent 
property

Example output of 
user list

Implication Recovery method

will require them 
to sign tokens 
and provide their 
public key in a PEM 
file):

user change-
mfa token-sig 
n --username
<user's name>
--role <desired 
role> —token 
<File>

Client SDK 5 user contains inconsistent values 1306



AWS CloudHSM User Guide

Inconsistent 
property

Example output of 
user list

Implication Recovery method

MFA status is 
"inconsistent"

{     
"username": 
 "test_user",   
   
"role": "crypto-u 
ser",     
"locked": 
 "false",     
"mfa": [ 
  {             
   "strategy": 
 "token-sign", 
   "status": 
 "inconsistent " 
   }     
],      
"cluster-
coverage": 
 "full"
}

This user has 
different MFA flags 
on different HSMs in 
the cluster.

This can happen if 
an MFA operation 
only completed on a 
subset of HSMs.

You must reset the 
user's password, and 
allow them to re-
enable MFA.

If the user has MFA 
activated, follow 
these steps:

1. Login as an admin.

2. Run the following 
command to 
temporarily 
deactivate MFA:

user change-
mfa token-sig 
n --username
<user's name>
--role <desired 
role> --disable

3. You will also need 
to then change the 
user's password so 
they can log into 
all HSMs:

user change-pa 
ssword --usernam 
e <user's name>
--role <desired 
role>

If MFA should be 
active for the user, 
follow these steps:

1. Have the user 
log in and re-

Client SDK 5 user contains inconsistent values 1307



AWS CloudHSM User Guide

Inconsistent 
property

Example output of 
user list

Implication Recovery method

enable MFA (this 
will require them 
to sign tokens 
and provide their 
public key in a PEM 
file):

user change-
mfa token-sig 
n --username
<user's name>
--role <desired 
role> —token 
<File>

AWS CloudHSM Client SDK 5 user replicate failures

The user replicate command in the CloudHSM CLI replicates a user between cloned AWS 
CloudHSM clusters. This guide addresses failures due to user inconsistencies within the source 
cluster or between the source and destination clusters. User replicate verifies that users are 
consistent by checking the following attributes:

• User Role

• Account Lock Status

• Quorum Status

• Multi-Factor Authentication (MFA) Status

Problem: The selected user is not synchronized throughout the cluster

The user replication process checks for user synchronization throughout the source cluster. If a 
user's attribute has the value "inconsistent", this means the user isn't synchronized across the 
cluster. User replication fails with the following error message:

Client SDK 5 user replicate failures 1308



AWS CloudHSM User Guide

{ 
  "error_code": 1, 
  "data": "Specified user is inconsistent across the cluster"
}

To check for user desynchronization in the source cluster:

• Run the user list command in the CloudHSM CLI.

aws-cloudhsm > user list
{ 
  "error_code": 0, 
  "data": { 
    "users": [ 
      { 
        "username": "admin", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      }, 
      { 
        "username": "example-inconsistent-user", 
        "role": "admin", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "inconsistent" 
      }, 
      { 
        "username": "app_user", 
        "role": "internal(APPLIANCE_USER)", 
        "locked": "false", 
        "mfa": [], 
        "quorum": [], 
        "cluster-coverage": "full" 
      } 
    ] 
  }
}

Problem: The selected user is not synchronized throughout the cluster 1309



AWS CloudHSM User Guide

      

Resolution: Synchronize user attributes throughout the source cluster

• To synchronize user information throughout the source cluster, refer to the following: AWS 
CloudHSM Client SDK 5 user contains inconsistent values.

Problem: User exists on the destination cluster with different attributes

If a user already exists with the same reference exists in one or more HSMs in the destination 
cluster but has different user attributes, the following error may occur:

{ 
  "error_code": 1, 
  "data": "User replicate failed on 1 of 3 connections"
}

Resolution

1. Determine which version of the user should be kept.

2. Delete the unwanted user in the appropirate cluster by running the user delete command. 
See Delete an AWS CloudHSM user with CloudHSM CLI for more information.

3. Replicate the user by running the user replicate command.

AWS CloudHSM Client SDK 5 key replicate failures

The key replicate command in the CloudHSM CLI replicates a key from a source AWS 
CloudHSM cluster to a destination AWS CloudHSM cluster. This guide addresses failures caused by 
inconsistencies within the source cluster or between the source and destination clusters.

Problem: The selected key is not synchronized throughout the cluster

The key replication process checks for key synchronization throughout the source cluster. If any key 
information or attributes have the value "inconsistent", this means the key isn't synchronized across 
the cluster. Key replication fails with the following error message:

{ 

Problem: User exists on the destination cluster with different attributes 1310



AWS CloudHSM User Guide

  "error_code": 1, 
  "data": "The selected key is not synchronized throughout the cluster"
}

To check for key desynchronization in the source cluster:

1. Run the key list command in the CloudHSM CLI.

2. Use the --filter flag to specify the key.

3. Add the --verbose flag to see the full output with key coverage information.

aws-cloudhsm > key list --filter attr.label=example-desynchronized-key-label --verbose
{ 
  "error_code": 0, 
  "data": { 
    "matched_keys": [ 
      { 
        "key-reference": "0x000000000048000f", 
        "key-info": { 
          "key-owners": [ 
            { 
              "username": "cu1", 
              "key-coverage": "full" 
            } 
          ], 
          "shared-users": [], 
        "key-quorum-values": { 
          "manage-key-quorum-value": 0, 
          "use-key-quorum-value": 0 
        }, 
          "cluster-coverage": "full" 
        }, 
        "attributes": { 
          "key-type": "aes", 
          "label": "example-desynchronized-key-label", 
          "id": "0x", 
          "check-value": "0xbe79db", 
          "class": "secret-key", 
          "encrypt": false, 
          "decrypt": false, 
          "token": true, 
          "always-sensitive": true, 

Problem: The selected key is not synchronized throughout the cluster 1311



AWS CloudHSM User Guide

          "derive": false, 
          "destroyable": true, 
          "extractable": true, 
          "local": true, 
          "modifiable": true, 
          "never-extractable": false, 
          "private": true, 
          "sensitive": true, 
          "sign": "inconsistent", 
          "trusted": false, 
          "unwrap": false, 
          "verify": true, 
          "wrap": false, 
          "wrap-with-trusted": false, 
          "key-length-bytes": 16 
        } 
      } 
    ], 
    "total_key_count": 1, 
    "returned_key_count": 1 
  }
}
      

Resolution: Synchronize key information and attributes throughout the source cluster

To synchronize key information and attributes throughout the source cluster:

1. For inconsistent key attributes: Use the key set-attribute command to set the desired 
attribute for the specific key.

2. For inconsistent shared user coverage: Use the key share or key unshare commands to 
adjust key sharing with the desired users.

Problem: Key with same reference exists in destination cluster with 
different information or attributes

If a key with the same reference exists in the destination cluster but has different information or 
attributes, the following error may occur:

{ 
  "error_code": 1, 

Problem: Key with same reference exists in destination cluster with different information or attributes 1312



AWS CloudHSM User Guide

  "data": "Key replicate failed on 1 of 3 connections"
}

Resolution

1. Determine which version of the key should be kept.

2. Delete the unwanted key version using the key delete command in the appropriate cluster.

3. Replicate the key from the cluster that has the correct version.

AWS CloudHSM error seen during key availability check

Problem: An AWS CloudHSM hardware security module (HSM) is returning the following error:

Key <KEY HANDLE> does not meet the availability requirements - The key must be 
 available on at least 2 HSMs before being used.

Cause: Key availability checks look for keys that, under rare but possible conditions, could be lost. 
This error usually occurs in clusters with only one HSM or in clusters with two HSMs during a period 
in which one of them is being replaced. In these situations, the following customer operations 
likely prompted the above error:

• A new key was generated using a command like The generate-symmetric category in 
CloudHSM CLI or The generate-asymmetric-pair category in CloudHSM CLI.

• A List keys for a user with CloudHSM CLI operation was started.

• A new instance of the SDK was started.

Note

OpenSSL frequently forks new instances of the SDK.

Resolution/recommendation: Choose from the following actions to prevent this error from 
occurring:

• Use the --disable-key-availability-check parameter to set key availability to false in the 
configure file of your configure tool. For more information, see the AWS CloudHSM Client SDK 5 
configuration parameters section of the Configure tool.

AWS CloudHSM error seen during key availability check 1313



AWS CloudHSM User Guide

• If using a cluster with two HSMs, avoid using the operations that prompted the error, except 
during initialization code.

• Increase the amount of HSMs in your cluster to at least three.

AWS CloudHSM extracting keys using JCE

Use the following sections to troubleshoot issues extracting AWS CloudHSM keys using JCE.

getEncoded, getPrivateExponent, or getS returns null

getEncoded, getPrivateExponent, and getS will return null because they are by default 
disabled. To enable them, refer to Key extraction using JCE for AWS CloudHSM.

If getEncoded, getPrivateExponent, and getS return null after being enabled, your key does 
not meet the right prerequisites. For more information, refer to Key extraction using JCE for AWS 
CloudHSM.

getEncoded, getPrivateExponent, or getS return key bytes outside of 
the HSM

You or someone with access to your system has enabled clear key extraction. See the following 
pages for more information, including how to reset this configuration to the default disabled state.

• Key extraction using JCE for AWS CloudHSM

• Protecting and extracting keys from an HSM

HSM throttling

When your workload exceeds your AWS CloudHSM cluster’s hardware security module (HSM) 
capacity, you will receive error messages stating HSMs are busy or throttled. When this happens, 
you may see reduced throughput or an increased rate of rejection requests from HSMs. 
Additionally, HSMs may send the following busy errors.

For Client SDK 5

• In PKCS11, busy errors map to CKR_FUNCTION_FAILED. This error can happen for multiple 
reasons, but if HSM throttling causes this error the following log lines will appear in your log:

Extracting keys using JCE 1314



AWS CloudHSM User Guide

• [cloudhsm_provider::hsm1::hsm_connection::e2e_encryption::error] Failed 
to prepare E2E response. Error: Received error response code from 
Server. Response Code: 187

• [cloudhsm_pkcs11::decryption::aes_gcm] Received error from the server. 
Error: This operation is already in progress. Internal error code: 
0x000000BB

• In JCE, busy errors map to
com.amazonaws.cloudhsm.jce.jni.exception.InternalException: Unexpected 
error with the Provider: The HSM could not queue the request for 
processing.

• Other SDKs' busy errors print out the following message: Received error response code 
from Server. Response Code: 187.

For Client SDK 3

• In PKCS11, busy errors map to CKR_OPERATION_ACTIVE errors.

• In JCE, busy errors map to CFM2Exception with status of 0xBB (187). Applications can use
getStatus() function on CFM2Exception to check what status is returned by the HSM.

• Other SDKs busy errors will print out the following message: HSM Error: HSM is already 
busy generating the keys(or random bytes) for another request.

Resolution

You can resolve these issues by completing one or more of the following actions:

• Add retry commands for rejected HSM operations in your application layer. Before enabling retry 
commands, ensure your cluster is adequately sized to meet peak loads.

Note

For Client SDK 5.8.0 and above, retry commands are turned on by default. For details on 
each SDK’s retry command configuration, refer to Advanced configurations for the Client 
SDK 5 configure tool.

• Add more HSMs to your cluster by following the instructions in Scaling HSMs in an AWS 
CloudHSM cluster.

Resolution 1315



AWS CloudHSM User Guide

Important

We recommend load testing your cluster to determine the peak load you should 
anticipate, and then add one more HSM to it to ensure high availability.

Keep HSM users in sync across HSMs in the AWS CloudHSM 
cluster

To manage your HSM's users, you use a AWS CloudHSM command line tool known as 
cloudhsm_mgmt_util. It communicates only with the HSMs that are in the tool's configuration file. 
It's not aware of other HSMs in the cluster that are not in the configuration file.

AWS CloudHSM synchronizes the keys on your HSMs across all other HSMs in the cluster, but it 
doesn't synchronize the HSM's users or policies. When you use cloudhsm_mgmt_util to manage 
HSM users, these user changes might affect only some of the cluster's HSMs—the ones that are in 
the cloudhsm_mgmt_util configuration file. This can cause problems when AWS CloudHSM syncs 
keys across HSMs in the cluster, because the users that own the keys might not exist on all HSMs in 
the cluster.

To avoid these problems, edit the cloudhsm_mgmt_util configuration file before managing users. 
For more information, see ???.

Lost connection to the AWS CloudHSM cluster

When you configured the AWS CloudHSM client, you provided the IP address of the first HSM in 
your cluster. This IP address is saved in the configuration file for the AWS CloudHSM client. When 
the client starts, it tries to connect to this IP address. If it can't—for example, because the HSM 
failed or you deleted it—you might see errors like the following:

LIQUIDSECURITY: Daemon socket connection error

LIQUIDSECURITY: Invalid Operation

To resolve these errors, update the configuration file with the IP address of an active, reachable 
HSM in the cluster.

Keep HSM users in sync 1316



AWS CloudHSM User Guide

To update the configuration file for the AWS CloudHSM client

1. Use one of the following ways to find the IP address of an active HSM in your cluster.

• View the HSMs tab on the cluster details page in the AWS CloudHSM console.

• Use the AWS Command Line Interface (AWS CLI) to issue the describe-clusters command.

You need this IP address in a subsequent step.

2. Use the following command to stop the client.

Amazon Linux

$ sudo stop cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client stop

CentOS 7

$ sudo service cloudhsm-client stop

CentOS 8

$ sudo service cloudhsm-client stop

RHEL 7

$ sudo service cloudhsm-client stop

RHEL 8

$ sudo service cloudhsm-client stop

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client stop

Lost connection 1317

https://console.aws.amazon.com/cloudhsm/home
https://docs.aws.amazon.com/cli/latest/reference/cloudhsmv2/describe-clusters.html


AWS CloudHSM User Guide

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client stop

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe stop AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

Use Ctrl+C in the command window where you started the AWS CloudHSM client.

3. Use the following command to update the client's configuration file, providing the IP address 
that you found in a previous step.

$ sudo /opt/cloudhsm/bin/configure -a <IP address>

4. Use the following command to start the client.

Amazon Linux

$ sudo start cloudhsm-client

Amazon Linux 2

$ sudo service cloudhsm-client start

CentOS 7

$ sudo service cloudhsm-client start

CentOS 8

$ sudo service cloudhsm-client start

Lost connection 1318



AWS CloudHSM User Guide

RHEL 7

$ sudo service cloudhsm-client start

RHEL 8

$ sudo service cloudhsm-client start

Ubuntu 16.04 LTS

$ sudo service cloudhsm-client start

Ubuntu 18.04 LTS

$ sudo service cloudhsm-client start

Windows

• For Windows client 1.1.2+:

C:\Program Files\Amazon\CloudHSM>net.exe start AWSCloudHSMClient

• For Windows clients 1.1.1 and older:

C:\Program Files\Amazon\CloudHSM>start "cloudhsm_client" cloudhsm_client.exe 
 C:\ProgramData\Amazon\CloudHSM\data\cloudhsm_client.cfg

Missing AWS CloudHSM audit logs in CloudWatch

If you created an AWS CloudHSM cluster before January 20th, 2018, you will need to manually 
configure a service-linked role in order to enable the delivery of that cluster's audit logs. For 
instructions on how to enable a service-linked role on an HSM cluster, see Understanding Service-
Linked Roles, as well as Creating a Service-Linked Role in the IAM User Guide.

Missing AWS CloudHSM audit logs in CloudWatch 1319

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role


AWS CloudHSM User Guide

Custom IVs with non-compliant length for AES key wrap in 
AWS CloudHSM

This troubleshooting topic helps you determine if your application generates irrecoverable 
wrapped keys. If you are impacted by this issue, use this topic to address the problem.

Topics

• Determine whether your code generates irrecoverable wrapped keys

• Actions you must take if your code generates irrecoverable wrapped keys

Determine whether your code generates irrecoverable wrapped keys

You are impacted only if you meet all the conditions below:

Condition How do I know?

Your application uses PKCS #11 library The PKCS #11 library is installed as the
libpkcs11.so  file in your /opt/clou 
dhsm/lib  folder. Applications written in the 
C language generally use the PKCS #11 library 
directly, while application written in Java 
may be using the library indirectly via a Java 
abstraction layer. If you're using Windows, you 
are NOT affected, as PKCS #11 library is not 
presently available for Windows.

Your application specifically uses version 3.0.0 
of the PKCS #11 library

If you received an email from the AWS 
CloudHSM team, you are likely using version 
3.0.0 of the PKCS #11 library.

To check the software version on your 
application instances, use this command:

rpm -qa | grep ^cloudhsm

Non-compliant AES key wraps 1320



AWS CloudHSM User Guide

Condition How do I know?

You wrap keys using AES key wrapping AES key wrapping means you use an AES key 
to wrap out some other key. The correspon 
ding mechanism name is CKM_AES_K 
EY_WRAP . It is used with the function
C_WrapKey . Other AES based wrapping 
mechanisms that use initialization vectors 
(IVs), such as CKM_AES_GCM  and CKM_CLOUD 
HSM_AES_GCM , are not affected by this 
issue. Learn more about functions and 
mechanisms.

You specify a custom IV when calling AES key 
wrapping, and the length of this IV is shorter 
than 8

AES key wrap is generally initialized using a
CK_MECHANISM  structure as follows:

CK_MECHANISM mech = {CKM_AES_ 
KEY_WRAP, IV_POINTER, IV_LENGTH 
};

This issue applies to you only if:

• IV_POINTER is not NULL

• IV_LENGTH is less than 8 bytes

If you do not meet all the conditions above, you may stop reading now. Your wrapped keys can be 
unwrapped properly, and this issue does not impact you. Otherwise, see the section called “Actions 
you must take if your code generates irrecoverable wrapped keys”.

Actions you must take if your code generates irrecoverable wrapped 
keys

You should take the following three steps:

1. Immediately upgrade your PKCS #11 library to a newer version

• Latest PKCS #11 library for Amazon Linux, CentOS 6 and RHEL 6

• Latest PKCS #11 library for Amazon Linux 2, CentOS 7 and RHEL 7

Actions you must take if your code generates irrecoverable wrapped keys 1321



AWS CloudHSM User Guide

• Latest PKCS #11 library for Ubuntu 16.04 LTS

2. Update your software to use a standards-compliant IV

We strongly recommend you follow our sample code and simply specify a NULL IV, which causes 
the HSM to utilize the standards-compliant default IV. Alternatively, you may explicitly specify 
the IV as 0xA6A6A6A6A6A6A6A6 with a corresponding IV length of 8. We do not recommend 
using any other IV for AES key wrapping, and will explicitly disable custom IVs for AES key 
wrapping in a future version of the PKCS #11 library.

Sample code for properly specifying the IV appears in aes_wrapping.c on GitHub.

3. Identify and recover existing wrapped keys

You should identify any keys you wrapped using version 3.0.0 of the PKCS #11 library, and then 
contact support for assistance (https://aws.amazon.com/support) in recovering these keys.

Important

This issue only impacts keys wrapped with version 3.0.0 of the PKCS #11 library. You can 
wrap keys using earlier versions (2.0.4 and lower-numbered packages) or later versions 
(3.0.1 and higher-numbered packages) of the PKCS #11 library.

Resolving AWS CloudHSM cluster creation failures

When you create a cluster, AWS CloudHSM creates the AWSServiceRoleForCloudHSM service-linked 
role, if the role does not already exist. If AWS CloudHSM cannot create the service-linked role, your 
attempt to create a cluster might fail.

This topic explains how to resolve the most common problems so you can create a cluster 
successfully. You need to create this role only one time. Once the service-linked role is created 
in your account, you can use any of the supported methods to create additional clusters and to 
manage them.

The following sections offer suggestions to troubleshoot cluster creation failures that are related to 
the service-linked role. If you try them but are still unable to create a cluster, contact Support. For 
more information about the AWSServiceRoleForCloudHSM service-linked role, see Service-linked 
roles for AWS CloudHSM.

Resolving AWS CloudHSM cluster creation failures 1322

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/wrapping/aes_wrapping.c#L72
https://aws.amazon.com/support
https://aws.amazon.com/contact-us/


AWS CloudHSM User Guide

Topics

• Add the missing permission

• Create the service-linked role manually

• Use a non-federated user

Add the missing permission

To create a service-linked role, the user must have the iam:CreateServiceLinkedRole
permission. If the IAM user who is creating the cluster does not have this permission, the cluster 
creation process fails when it tries to create the service-linked role in your AWS account.

When a missing permission causes the failure, the error message includes the following text.

This operation requires that the caller have permission to call 
 iam:CreateServiceLinkedRole to create the CloudHSM Service Linked Role.

To resolve this error, give the IAM user who is creating the cluster the AdministratorAccess
permission or add the iam:CreateServiceLinkedRole permission to the user's IAM policy. For 
instructions, see Adding Permissions to a New or Existing User.

Then try to create the cluster again.

Create the service-linked role manually

You can use the IAM console, CLI, or API to create the AWSServiceRoleForCloudHSM service-linked 
role. For more information, see Creating a Service-Linked Role in the IAM User Guide.

Use a non-federated user

Federated users, whose credentials originate outside of AWS, can perform many of the tasks of a 
non-federated user. However, AWS does not allow users to make the API calls to create a service-
linked role from a federated endpoint.

To resolve this problem, create a non-federated user with the iam:CreateServiceLinkedRole
permission, or give an existing non-federated user the iam:CreateServiceLinkedRole
permission. Then have that user create a cluster from the AWS CLI. This creates the service-linked 
role in your account.

Add the missing permission 1323

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#w2ab1c19c19c26b9
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role


AWS CloudHSM User Guide

Once the service-linked role is created, if you prefer, you can delete the cluster that the non-
federated user created. Deleting the cluster does not affect the role. Thereafter, any user with the 
required permissions, included federated users, can create AWS CloudHSM clusters in your account.

To verify that the role was created, open the IAM console at https://console.aws.amazon.com/iam/
and choose Roles. Or use the IAM get-role command in the AWS CLI.

$  aws iam get-role --role-name AWSServiceRoleForCloudHSM
{ 
    "Role": { 
        "Description": "Role for CloudHSM service operations", 
        "AssumeRolePolicyDocument": { 
            "Version": "2012-10-17", 
            "Statement": [ 
                { 
                    "Action": "sts:AssumeRole", 
                    "Effect": "Allow", 
                    "Principal": { 
                        "Service": "cloudhsm.amazonaws.com" 
                    } 
                } 
            ] 
        }, 
        "RoleId": "AROAJ4I6WN5QVGG5G7CBY", 
        "CreateDate": "2017-12-19T20:53:12Z", 
        "RoleName": "AWSServiceRoleForCloudHSM", 
        "Path": "/aws-service-role/cloudhsm.amazonaws.com/", 
        "Arn": "arn:aws:iam::111122223333:role/aws-service-role/cloudhsm.amazonaws.com/
AWSServiceRoleForCloudHSM" 
    }
}

Retrieving AWS CloudHSM client configuration logs

AWS CloudHSM offers tools for Client SDK 3 and Client SDK 5 to gather information about your 
environment for AWS Support to troubleshoot problems.

Topics

• AWS CloudHSM Client SDK 5 support tool

• AWS CloudHSM Client SDK 3 support tool

Retrieving AWS CloudHSM client configuration logs 1324

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html


AWS CloudHSM User Guide

AWS CloudHSM Client SDK 5 support tool

The script for AWS CloudHSM Client SDK 5 extracts the following information:

• The configuration file for the Client SDK 5 component

• Available log files

• Current version of the operating system

• Package information

Running the info tool for Client SDK 5

Client SDK 5 includes a client support tool for each component, but all tools function the same. 
Run the tool to create an output file with all the gathered information.

The tools use a syntax like this:

[ pkcs11 | dyn | jce ]_info

For example, to gather information for support from a Linux host running PKCS #11 library and 
have the system write to the default directory, you would run this command:

/opt/cloudhsm/bin/pkcs11_info

The tool creates the output file inside the /tmp directory.

PKCS #11 library

To gather support data for PKCS #11 library on Linux

• Use the support tool to gather data.

/opt/cloudhsm/bin/pkcs11_info

To gather support data for PKCS #11 library on Windows

• Use the support tool to gather data.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\pkcs11_info.exe"

Client SDK 5 support tool 1325



AWS CloudHSM User Guide

OpenSSL Dynamic Engine

To gather support data for OpenSSL Dynamic Engine on Linux

• Use the support tool to gather data.

/opt/cloudhsm/bin/dyn_info

JCE provider

To gather support data for JCE provider on Linux

• Use the support tool to gather data.

/opt/cloudhsm/bin/jce_info

To gather support data for JCE provider on Windows

• Use the support tool to gather data.

PS C:\> & "C:\Program Files\Amazon\CloudHSM\bin\jce_info.exe"

Retrieving logs from a serverless environment

To configure for serverless environments, like Fargate or Lambda, we recommend you configure 
your AWS CloudHSM log type to term. Once configured to term, the serverless environment will 
be able to output to CloudWatch.

To get the client logs from CloudWatch, see Working with log groups and log streams in the 
Amazon CloudWatch Logs User Guide.

AWS CloudHSM Client SDK 3 support tool

The script for the AWS CloudHSM Client SDK 3 extracts the following information:

• Operating system and its current version

• Client configuration information from cloudhsm_client.cfg, cloudhsm_mgmt_util.cfg, 
and application.cfg files

Client SDK 3 support tool 1326

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html


AWS CloudHSM User Guide

• Client logs from the location specific to the platform

• Cluster and HSM information by using cloudhsm_mgmt_util

• OpenSSL information

• Current client and build version

• Installer version

Running the info tool for Client SDK 3

The script creates an output file with all the gathered information. The script creates the output file 
inside the /tmp directory.

Linux: /opt/cloudhsm/bin/client_info

Windows: C:\Program Files\Amazon\CloudHSM\client_info

Warning

This script has a known issue for Client SDK 3 versions 3.1.0 through 3.3.1. We strongly 
recommend you upgrade to version 3.3.2 which includes a fix for this issue. Please refer to 
the Known Issues page for more information before using this tool.

Client SDK 3 support tool 1327

https://docs.aws.amazon.com/cloudhsm/latest/userguide/ki-all.html#ki-all-9


AWS CloudHSM User Guide

AWS CloudHSM quotas

Quotas, formerly known as limits, are the assigned values for AWS resources. The following quotas 
apply to your AWS CloudHSM resources per AWS Region and AWS account. The default quota is the 
initial value applied by AWS, and these values are listed in the table below. An adjustable quota can 
be increased above the default quota.

Service quotas

Resource Default Quota Adjustable?

Clusters 4 Yes

HSMs 6 Yes

HSMs per cluster 28 No

The recommended way of requesting a quota increase is to open the Service Quotas console. In the 
console, choose your service and quota, and submit your request. For more information, see the
Service Quotas documentation.

The quotas in the following System Quotas table are not adjustable.

System quotas

Resource Quota for hsm1.medium Quota for hsm2m.medium

Maximum keys per cluster 3,300 16,666 total keys, with 
asymmetric keys having a 
maximum of 3,333

Maximum users per cluster 250 1,024

Maximum length of a user 
name

31 characters 31 characters

Required password length 8 to 32 characters 8 to 32 characters

1328

https://console.aws.amazon.com/servicequotas/home?region=us-east-1#!/dashboard
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html


AWS CloudHSM User Guide

Resource Quota for hsm1.medium Quota for hsm2m.medium

Maximum number of 
concurrent client connections 

per cluster1

900 900

Maximum number of 
PKCS#11 sessions per 
application

1,024 1,024

[1] A client connection for Client SDK 3 is a client daemon. For Client SDK 5, a client connection is 
an application.

1329



AWS CloudHSM User Guide

Downloads for AWS CloudHSM Client SDK

The following topics provide downloads for AWS CloudHSM client SDKs.

Note

For information on what platforms are supported by each Client SDK, refer to AWS 
CloudHSM Client SDK 5 supported platforms and AWS CloudHSM Client SDK 3 supported 
platforms.

Topics

• AWS CloudHSM latest Client SDK release

• AWS CloudHSM previous Client SDK releases

• AWS CloudHSM deprecated Client SDK releases

• AWS CloudHSM end-of-life Client SDK releases

AWS CloudHSM latest Client SDK release

In March 2021, AWS CloudHSM released Client SDK version 5.0.0, which introduces an all-new 
Client SDK with different requirements, capabilities, and platform support.

Client SDK 5 is fully supported for production environments, and offers the same components and 
level of support as Client SDK 3. For more information, see Compare AWS CloudHSM Client SDK 
component support.

This section includes the latest version of the Client SDK.

Client SDK 5 release: Version 5.16.0

Amazon Linux 2023

Download version 5.16.0 software for Amazon Linux 2023 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum d63271304f32f49838390a58d94a2140ae8a744ac64efcf0e6a65983c858d862)

• OpenSSL Dynamic Engine (SHA256 checksum 

25d78c1df82355601ed6887bb47d64a06380d001da15a070cfa89dce65417fb6)

Latest release 1330

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.16.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.16.0-1.amzn2023.x86_64.rpm


AWS CloudHSM User Guide

• JCE provider (SHA256 checksum fcd876813e5d114e2b042765ff98b256410e988a4e373ea1aae6f260aebdd554)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 7f1441eb08daa7ceab91161900d89974ee86e0a3c54d878a29e43db775bd04f5)

Download version 5.16.0 software for Amazon Linux 2023 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 0b42e4e89cddda10c5be5f295a52d7a541bba057a3a07d3d9b192cf9eb49c776)

• OpenSSL Dynamic Engine (SHA256 checksum 

e8ee949d44b9f9ba64ed36eb7944acacbd1d76d7cf09d5492deae5928a9953e9)

• JCE provider (SHA256 checksum 67a6fd8f7b5dfc60ec6d6d380c31035675373b542205ec7e5a687175191cd275)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 1e6c3053b19aded54045a3baa9fe2545f81a35332366cf2d77dca92ee888e654)

Amazon Linux 2

Download version 5.16.0 software for Amazon Linux 2 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 5a89ff9801f89f51e27e70869f2713cfe9bbd87d1198246cffaafe74aff9e809)

• OpenSSL Dynamic Engine (SHA256 checksum 

991b6288289d07972915aa0be6dfd6b3c33c1d6312bc304225715e30832e688f)

• JCE provider (SHA256 checksum c5e673f79c2efd83195a288a5c8860c4bf74dba5bc8e422741dd5cc1be230fb3)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum b9021b0b348c08f433e7cce247ab1710e2a79f33a82ac36e1d6a4672171028db)

Download version 5.16.0 software for Amazon Linux 2 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 97677a7f9759637b548205d31c9a08a3e7b27dfa5a38e9a4e8e2398ae9869a5a)

• OpenSSL Dynamic Engine (SHA256 checksum 

dde369dc4efd9f59e5c9a5459a532ad5d273f87839fba6dd5dcde2c3a2b61517)

• JCE provider (SHA256 checksum b7d96e7453e26ff07ccd9437b102f4c21857c79daa6315054728fc7ac66150bc)

Client SDK 5 release: Version 5.16.0 1331

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.16.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.16.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.16.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.16.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.16.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.16.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.16.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.16.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.16.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.16.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.16.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.16.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.16.0-1.el7.aarch64.rpm


AWS CloudHSM User Guide

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum c7386ac016b14ea8cb96a6ed655a67f46826cdb925bd87902277b5ce9b593d51)

RHEL 9 (9.2+)

Download version 5.16.0 software for RHEL 9 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 178d3e1ff0ec8cdc7f8c8be9aab772b4195602bb1c48dea692b628689be5ea3d)

• OpenSSL Dynamic Engine (SHA256 checksum 

0488ad66cd825fafee70d1a1ccb1c8045b089af7b7d6ccadbec75f535376048c)

• JCE provider (SHA256 checksum cc9a60fa981a46c674de1e715d92ec1b8cd5c801394bfb3f0d101880589d4202)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum cb7e3ce6704f015d5b9462f12e6ad5489366fb3e80f554a2bdf7f04e688be1a9)

Download version 5.16.0 software for RHEL 9 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 9567fb016b641821869919d4d6e9754ae08fd549381446640ff135a1e225b809)

• OpenSSL Dynamic Engine (SHA256 checksum 

8c46a9dd908e77a0d8412e7050621d0c570e091845480815c230e26d1917227b)

• JCE provider (SHA256 checksum 78a7c714aedd068e5e2f12f5044a6ce1618e6dfacbcdd91b4a9b505842dcc6c9)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum d2340ef4092ca6c1fa1ac8b484550508a5d9d8670e663bef6e595a07f8151be3)

RHEL 8 (8.3+)

Download version 5.16.0 software for RHEL 8 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 47bf628a4a2663b8e8c7207b43e5af1d05ed2247e85e1371773596c132c9a4ec)

• OpenSSL Dynamic Engine (SHA256 checksum 

49dd44243863121f7781e0f4ac556828c746d85db723864ccf16ea5fb042846a)

• JCE provider (SHA256 checksum c5e8a6664e6a8e5338a98b3845bed029f5936b517e6043aeb65ad58c3364eed8)

Client SDK 5 release: Version 5.16.0 1332

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.16.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.16.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.16.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.16.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.16.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.16.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.16.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.16.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.16.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-pkcs11-5.16.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-dyn-5.16.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-jce-5.16.0-1.el8.x86_64.rpm


AWS CloudHSM User Guide

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 71f2cd6bd8892ccaea845bfe575cdf20016dd7176e5216b76290e499c822a2f2)

Ubuntu 24.04 LTS

Download version 5.16.0 software for Ubuntu 24.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum fd7e78050aba017b7dc859f0b1e6f354f56b22091cb262b328aad204064a2960)

• OpenSSL Dynamic Engine (SHA256 checksum 

9d2a9e8049caa12c8027ad2963fa30f22e1032d4025e39a4e2d5985073c283f5)

• JCE provider (SHA256 checksum ae19c13f55e01538e989e8693aaf3a5d998c60f1ed71e721a34404a228947c20)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 7ebedb3e8c4b8e01cc1e5dfe32ae18c9542d9c2940c77bd71ee102093aaf1d1c)

Download version 5.16.0 software for Ubuntu 24.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum cfd9526cf495e81a2477b464ca3c124a89d07b1a366a14b39eeb27d6b5e2404b)

• OpenSSL Dynamic Engine (SHA256 checksum 

02a5cc2cd9442b7bf982bb3ae44c9b134758b46e68e46fe4729b4adf1320d75c)

• JCE provider (SHA256 checksum 124d04f667a7222d624f528404a289405669f4e4a1983b8a7926758bf67e35ec)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum b874556b34ff5f0d082ca19f62822cf97d6e7074ce3861d7577090f99cba0cbd)

Ubuntu 22.04 LTS

Download version 5.16.0 software for Ubuntu 22.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum e36d9bf900e195e417db261034d820cb935bec5135a0aa332d46019c70257cac)

• OpenSSL Dynamic Engine (SHA256 checksum 

2c39129a5acce96b8693ce8c4b4aa174d9c13bc8ea3c2652fa505b4e0a933842)

• JCE provider (SHA256 checksum 03b70d834985a2500b73eecd831bff4f30389eb67460bf1d799466e59a9f9cfd)

Client SDK 5 release: Version 5.16.0 1333

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-cli-5.16.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.16.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.16.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.16.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.16.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.16.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.16.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.16.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.16.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.16.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.16.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.16.0-1_u22.04_amd64.deb


AWS CloudHSM User Guide

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 3fc4fc662188ebbd430d9b5e01a57774567b926f3478d0a455fee4968c47460d)

Download version 5.16.0 software for Ubuntu 22.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum c835d9bb604b5c47a702fd45267ffb9dfa37d68dd0734391f060835ea680a169)

• OpenSSL Dynamic Engine (SHA256 checksum 

943213a0f14b50fbdf3a90286e7f7ab219ab77750698f5062013873419484a04)

• JCE provider (SHA256 checksum 0ecc3e65a3b94c2dd3913f44aba58764e5558a8bedd3b742a42e4769533f3734)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 8558328b224b850cf9e1b3c4f8773565a90e38ab43e2c9e90bc5b841f98898d2)

Ubuntu 20.04 LTS

Download version 5.16.0 software for Ubuntu 20.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 64a01e84d898aca3cd03f22022cf8dbbc806a1735a84df5f820ba5bfa3339b0e)

• OpenSSL Dynamic Engine (SHA256 checksum 

53a73cfc60c3fddd3ad9173bf6e602faf289f20935b3c469a137847148442954)

• JCE provider (SHA256 checksum 09544cb8129af4d06a241e1fbc0b6e6c207e1a518e5cb202f7b6c9802507d1b8)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum e1fdf1e014541f57d3ba4688bad88e7557e32ba974e020b4da76f85f1fc6aa29)

Windows Server 2025

Download version 5.16.0 software for Windows Server 2025 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 6d3142d178127372de9ab40e7af5dc81fa7c627a18286dd521ad786d0947f17d)

• JCE provider (SHA256 checksum 9f5c28583b5127b90e753dd7ce6d081bbe4810c0c30c424192704efa6ad1be34)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 22cfed533f528e0975f452af51d334baa1b5c143e722182dca107622e703b1ca)

Client SDK 5 release: Version 5.16.0 1334

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.16.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.16.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.16.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.16.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.16.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-pkcs11_5.16.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-dyn_5.16.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-jce_5.16.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-cli_5.16.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.16.0-1.msi


AWS CloudHSM User Guide

• Key Storage Provider (KSP) (SHA256 checksum 

9045c4f3e81093c4b49b93f3ea3f5caf2a4e6980628e0db2d971c437dc203bfc)

Windows Server 2022

Download version 5.16.0 software for Windows Server 2022 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 6d3142d178127372de9ab40e7af5dc81fa7c627a18286dd521ad786d0947f17d)

• JCE provider (SHA256 checksum 9f5c28583b5127b90e753dd7ce6d081bbe4810c0c30c424192704efa6ad1be34)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 22cfed533f528e0975f452af51d334baa1b5c143e722182dca107622e703b1ca)

• Key Storage Provider (KSP) (SHA256 checksum 

9045c4f3e81093c4b49b93f3ea3f5caf2a4e6980628e0db2d971c437dc203bfc)

Windows Server 2019

Download version 5.16.0 software for Windows Server 2019 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 6d3142d178127372de9ab40e7af5dc81fa7c627a18286dd521ad786d0947f17d)

• JCE provider (SHA256 checksum 9f5c28583b5127b90e753dd7ce6d081bbe4810c0c30c424192704efa6ad1be34)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

• CloudHSM CLI (SHA256 checksum 22cfed533f528e0975f452af51d334baa1b5c143e722182dca107622e703b1ca)

• Key Storage Provider (KSP) (SHA256 checksum 

9045c4f3e81093c4b49b93f3ea3f5caf2a4e6980628e0db2d971c437dc203bfc)

Windows Server 2016

Download version 5.16.0 software for Windows Server 2016 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 6d3142d178127372de9ab40e7af5dc81fa7c627a18286dd521ad786d0947f17d)

• JCE provider (SHA256 checksum 9f5c28583b5127b90e753dd7ce6d081bbe4810c0c30c424192704efa6ad1be34)

• Javadocs for AWS CloudHSM (SHA256 checksum 

bbbbe99e427b7b4d51d7018a97c4d44372db020e44fdbb76fd3954fb104010e3)

Client SDK 5 release: Version 5.16.0 1335

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.16.0-javadoc.jar


AWS CloudHSM User Guide

• CloudHSM CLI (SHA256 checksum 22cfed533f528e0975f452af51d334baa1b5c143e722182dca107622e703b1ca)

• Key Storage Provider (KSP) (SHA256 checksum 

9045c4f3e81093c4b49b93f3ea3f5caf2a4e6980628e0db2d971c437dc203bfc)

Client SDK 5.16 adds ECDH with X963 KDF support on hsm2m.medium cluster type for JCE 
provider and PKCS #11 library. Client SDK 5.16 also adds support for generating KSP key reference 
files on Windows Server with CloudHSM CLI.

CloudHSM CLI

• Added support for generating KSP key reference files on Windows Server, for more information, 
see Generating KSP key references (Windows).

JCE provider

• Added ECDH with X963 KDF support on hsm2m.medium cluster type, see Supported 
mechanisms for JCE provider for AWS CloudHSM Client SDK 5.

PKCS #11 library

• Added ECDH with X963 KDF support on hsm2m.medium cluster type, see Supported 
mechanisms for the PKCS #11 library for AWS CloudHSM Client SDK 5.

Bug fixes/Improvements

• Fixed a bug where session keys were not properly cleaned during disconnection.

• Fixed an issue where successful mTLS logout operations on hsm2m.medium incorrectly returned 
an error response.

• Fixed an issue with connection failure during the windows startup.

• Fixed an issue where SDK info tools displayed incorrect output on Ubuntu systems.

• Fixed an issue that previously allowed ECDSA with weaker hashes in FIPS mode.

AWS CloudHSM previous Client SDK releases

This section lists previous Client SDK releases.

Previous release 1336

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.16.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.16.0-1.msi


AWS CloudHSM User Guide

Version 5.15.0

Amazon Linux 2023

Download version 5.15.0 software for Amazon Linux 2023 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 41ef3178811df1dbb03b2cbac83fe0f4768bdc9b17005c409f1c0229f93ef11c)

• OpenSSL Dynamic Engine (SHA256 checksum 

afa1f9f8bd99f54866dea1b8928c00b951a6e492f5f36d0d6c7c38fff341d609)

• JCE provider (SHA256 checksum 6ea775e05570ef3497a4df5c35a6ec1c682aea73c48e7fecec3e541af995759e)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 78c10bb213dd14fcfc5836e358de6aedac61db05125fd61137b0082214fdecbe)

Download version 5.15.0 software for Amazon Linux 2023 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum cd0617d29b6d64c00c8e14fd9a92f604e14acda4746f4f0b86b9de42367192fb)

• OpenSSL Dynamic Engine (SHA256 checksum 

bc9acfdd04eb1246eb3d5b0a8f3736ec017c0d1699d5395f85868d4a1722cd83)

• JCE provider (SHA256 checksum 96d05301486206577b7be05aac561649167b57272c9c06ff839fd8ff2b5d96d5)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum b870eadb27736a2cde98022d57e9704c67ae15878cf0b910738859cdabaa35a2)

Amazon Linux 2

Download version 5.15.0 software for Amazon Linux 2 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum c70ae4f0181a8187c9380481c51c1d03e12236dd86863ec818ed3f210b294c8e)

• OpenSSL Dynamic Engine (SHA256 checksum 

08e9fd1dd80efa637f9a1727bb0de205ba124a3776b2e8bc21008ee458063a42)

• JCE provider (SHA256 checksum 7932ed060e72c53b2556f30694b0ffe5342b244b6628c7a9dc03966aa49c8fe6)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 0a939e4d5d0a2ff308c7a1d9e73ebc865e426214d556bde1bd29dbe807fbb583)

Previous release 1337

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.15.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.15.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.15.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.15.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.15.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.15.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.15.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.15.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.15.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.15.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.15.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.15.0-1.el7.x86_64.rpm


AWS CloudHSM User Guide

Download version 5.15.0 software for Amazon Linux 2 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum bcf907a8fb4722b09c54b8e5785fe2b8cffcedd6ee3fdda2d21879a012138077)

• OpenSSL Dynamic Engine (SHA256 checksum 

8f70edc3a6a4a1bf0264c6567b1dda1ac69055f206753f88eeadbb8bf3bf9f38)

• JCE provider (SHA256 checksum 75dd67736bb08fe7e46e113af10803a255ba8edee3016ca963c1ee94fe59d43b)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 1c2ecf90c955281d99bcd8d1956d63debb15bbc8419744c83f88821ef8b78aee)

RHEL 9 (9.2+)

Download version 5.15.0 software for RHEL 9 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 65bd0b815eebc806674a7bf7c54e9f884595881547f5fffd08ff6a38aabdccbe)

• OpenSSL Dynamic Engine (SHA256 checksum 

f2af9f5882ab2e5a11defecc660f8af5c4d9d6e2e2b89873e6833fc2976f44ac)

• JCE provider (SHA256 checksum 5124bace5d1544775c891f13a0e309b30dd73699116c46ecc9a77bba5f9cf633)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 1eec31fb2c0ab3c2839d9bdb37874cf8dbc74a383279068fce9e8613966d06e0)

Download version 5.15.0 software for RHEL 9 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum f498697519afa04b6b0362a4388a6a38e2cb6813b781d6ce3d97a7de89c5cbfe)

• OpenSSL Dynamic Engine (SHA256 checksum 

5410da63108a1b209e567e9bccf8bd7e4035af88b0d58b9d78b10917be1b40c1)

• JCE provider (SHA256 checksum b46f233e6994d2c0ed505dc5c717ee3009daaeb2063d260aa78e06273770bffa)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum e9f93eaa58db2f7ea1174164ef96ab219700933d353243c3c6ab1aebac5ccffe)

RHEL 8 (8.3+)

Download version 5.15.0 software for RHEL 8 on x86_64 architecture:

Previous release 1338

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.15.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.15.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.15.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.15.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.15.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.15.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.15.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.15.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.15.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.15.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.15.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.15.0-1.el9.aarch64.rpm


AWS CloudHSM User Guide

• PKCS #11 library (SHA256 checksum 87131e179d0e60ade302ec07b22803cfb39294bf060b786c41f154d95791ac94)

• OpenSSL Dynamic Engine (SHA256 checksum 

f412a2f5cd761db5940288bb252ce060d44735c6b436bb6d4fa7d3687a44a026)

• JCE provider (SHA256 checksum d0844f55c08f9ff9c393138a9041efe1b59dc3dce20c0b2c23406efe6acc43db)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 9fd8033e478ce6d7d640c063c4f007359cb04c19d519826a745ad0885f96a0f8)

Ubuntu 24.04 LTS

Download version 5.15.0 software for Ubuntu 24.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum ca5f2f80ae921cfebdc5c8bc35c39d2b19cfabfd5981932409eaf2e7c00a9097)

• OpenSSL Dynamic Engine (SHA256 checksum 

e44cd7b678a421957c84e4fc0f70280360fd4e1e66f4cabdd1b20b955ee5fcca)

• JCE provider (SHA256 checksum bc6382f12769c3d87c34522d0d616b7a8c108574c003814e1300938c386655ac)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum f786be86c204680e670f7817376ff376733ebd96b51c31e9c98213078596637f)

Download version 5.15.0 software for Ubuntu 24.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 1ecf057d67137c0e9e1bb0dda57d581690c647b0360c3a617a8dc668919d08de)

• OpenSSL Dynamic Engine (SHA256 checksum 

4f3d23e6b798f88be587108d8e6a225d796a3d080aef61ea384eb74a1270612a)

• JCE provider (SHA256 checksum b9fd16bdcc1fcf59fde0d3e0debee500b0b7edfdff69209e84d14393097fe9d2)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum a95922d9b44e64a64723db0c21ac89566515a5a6c87de990af4a9e1f40c7424f)

Ubuntu 22.04 LTS

Download version 5.15.0 software for Ubuntu 22.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 966be12eb32de813ca07e766abf7b5616c0d2e105e9296d920aadaca10e5afdf)

Previous release 1339

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-pkcs11-5.15.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-dyn-5.15.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-jce-5.15.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-cli-5.15.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.15.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.15.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.15.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.15.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.15.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.15.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.15.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.15.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.15.0-1_u22.04_amd64.deb


AWS CloudHSM User Guide

• OpenSSL Dynamic Engine (SHA256 checksum 

f2840151d87b7f9cbff68993c25397afd48a16f054abf0f2fd4624662d3087d6)

• JCE provider (SHA256 checksum 01aebdda05640e50a82cae04c5cb6d33ab909dadd917bd834957d4f75ad8c577)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 2e5eba9409abc429828505779c512cd2424719766c0e488f50aee288966cf61d)

Download version 5.15.0 software for Ubuntu 22.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 614f74f101c9c64fff515128c5a59fa23de5047494fe248e8aabdab441092b3e)

• OpenSSL Dynamic Engine (SHA256 checksum 

c15d6db77b76bce690749b73b947567eb5f2d76669887843116d0ce56c1f8ea7)

• JCE provider (SHA256 checksum bca8511d5c0a173b0fef326016ce5091b6e6829fa2b3cb45ed5621290ae3e42a)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 2f5b673148b682d7e34619c51b5e8799abe7dc7fd4f046158a0d05320ba24dc1)

Ubuntu 20.04 LTS

Download version 5.15.0 software for Ubuntu 20.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 86c8394b5ddff91a71194fb87c327efde36baa2380e559c04f9d543a6e74d61b)

• OpenSSL Dynamic Engine (SHA256 checksum 

0a4227389fea61e6e7ac7cfa715eb341f7a4eeae9ed10e4c96da2c0dd4a18f9e)

• JCE provider (SHA256 checksum 65b2d926ff9dfbe6c7864bc3a41b3da2383bc731dd199bcef8805a0543fbe612)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 09c2e55bcf72f9e530717950d8c5fdfd48574ae6ccb09a049526ca5b2a3b8aa9)

Windows Server 2025

Download version 5.15.0 software for Windows Server 2025 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum a903b63fe286f15bf669c0555b1fa4d86b33592ed05af0809acac28c0d3ace16)

• JCE provider (SHA256 checksum fdef6251f06d77d51fddbc2184d3eec87ddec4fe35b3ac620343eb66c95ddf64)

Previous release 1340

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.15.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.15.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.15.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.15.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.15.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.15.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.15.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-pkcs11_5.15.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-dyn_5.15.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-jce_5.15.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-cli_5.15.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.15.0-1.msi


AWS CloudHSM User Guide

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 6cc9205fe1fc514ddd9774f824e512940d6b1bc4cc0e251265bc46ab99746c28)

• Key Storage Provider (KSP) (SHA256 checksum 

52ed9b08cd0ce100b8dcd3d8e8f411b6201f9f1b27872b19d1136c0bf36a29b8)

Windows Server 2022

Download version 5.15.0 software for Windows Server 2022 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum a903b63fe286f15bf669c0555b1fa4d86b33592ed05af0809acac28c0d3ace16)

• JCE provider (SHA256 checksum fdef6251f06d77d51fddbc2184d3eec87ddec4fe35b3ac620343eb66c95ddf64)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 6cc9205fe1fc514ddd9774f824e512940d6b1bc4cc0e251265bc46ab99746c28)

• Key Storage Provider (KSP) (SHA256 checksum 

52ed9b08cd0ce100b8dcd3d8e8f411b6201f9f1b27872b19d1136c0bf36a29b8)

Windows Server 2019

Download version 5.15.0 software for Windows Server 2019 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum a903b63fe286f15bf669c0555b1fa4d86b33592ed05af0809acac28c0d3ace16)

• JCE provider (SHA256 checksum fdef6251f06d77d51fddbc2184d3eec87ddec4fe35b3ac620343eb66c95ddf64)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 6cc9205fe1fc514ddd9774f824e512940d6b1bc4cc0e251265bc46ab99746c28)

• Key Storage Provider (KSP) (SHA256 checksum 

52ed9b08cd0ce100b8dcd3d8e8f411b6201f9f1b27872b19d1136c0bf36a29b8)

Windows Server 2016

Download version 5.15.0 software for Windows Server 2016 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum a903b63fe286f15bf669c0555b1fa4d86b33592ed05af0809acac28c0d3ace16)

Previous release 1341

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.15.0-1.msi


AWS CloudHSM User Guide

• JCE provider (SHA256 checksum fdef6251f06d77d51fddbc2184d3eec87ddec4fe35b3ac620343eb66c95ddf64)

• Javadocs for AWS CloudHSM (SHA256 checksum 

ce5d92731f2a9c7f46c92bba92f3d0adff4ceb06b9d653597994100dfc352fbe)

• CloudHSM CLI (SHA256 checksum 6cc9205fe1fc514ddd9774f824e512940d6b1bc4cc0e251265bc46ab99746c28)

• Key Storage Provider (KSP) (SHA256 checksum 

52ed9b08cd0ce100b8dcd3d8e8f411b6201f9f1b27872b19d1136c0bf36a29b8)

Client SDK 5.15 adds support for replicating a user across cloned clusters with CloudHSM CLI. 
Client SDK 5.15 also adds installation packages for PKCS #11 library, JCE provider, CloudHSM CLI, 
and Key Storage Provider (KSP) for Windows Server 2025.

Platform support

• Added support for Windows Server 2025 for PKCS #11 library, JCE provider, CloudHSM CLI, and 
Key Storage Provider (KSP).

CloudHSM CLI

• Added the following command:

• Replicate a user with CloudHSM CLI

Version 5.14.0

Amazon Linux 2023

Download version 5.14.0 software for Amazon Linux 2023 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 05e7a3882166c694a7a09bc735f08f91c8145a4215176665eacacdf3e509abe8)

• OpenSSL Dynamic Engine (SHA256 checksum 

f4dd9966988418e100c276dc0d521f91afdfc0e6c008dbf8eda446ebaca83c14)

• JCE provider (SHA256 checksum c4dee5c1173f6a1c7683aedb58e61d329c36933435c416f288d94bc9a68a6b31)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 1fad069fde305450254287e43750d597db9af0cb8fd168300cd5eaed9e2af33a)

Download version 5.14.0 software for Amazon Linux 2023 on ARM64 architecture:

Previous release 1342

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.15.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.15.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.14.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.14.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.14.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.14.0-1.amzn2023.x86_64.rpm


AWS CloudHSM User Guide

• PKCS #11 library (SHA256 checksum 9f34163d02bce26c1280e589310cda891d27995c50cec0a7fe083100ecff2b69)

• OpenSSL Dynamic Engine (SHA256 checksum 

7444a4daad6e4715c82d6c39a7b03a07ee0201a13fe0f98da96acbf9d24abf6c)

• JCE provider (SHA256 checksum 3393fe3a0f5c3a9c92106d74b7de074c818e095f97d2cfd600dbd47779b90b37)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum d9a2edce48c5f6646d5a351cb431712f2d2fc62d21f8318e7bb1ce579819d7f4)

Amazon Linux 2

Download version 5.14.0 software for Amazon Linux 2 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 9c47b90bfa0ad51627cdb0dd8f148a56090fbdeb2490f1ab4009170c7b9c1120)

• OpenSSL Dynamic Engine (SHA256 checksum 

215f9768331565085a317585b3dbe0514b251fdc428c96ed32491c4abb9fea56)

• JCE provider (SHA256 checksum a802f941e95fcbf0ef37775fc096c0d6ae4c916fa08330a9d56defc5f99ff2b7)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum ac10f23dd81264b1d10a0760f62b5006d2b2b66bf1c6378248ca9326afb65a83)

Download version 5.14.0 software for Amazon Linux 2 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum f2d1550f043c655ef5d51e2ca14a0416886d99902e0702bd7f30f93b2c563d4d)

• OpenSSL Dynamic Engine (SHA256 checksum 

2c8e2c81af53ba3646d1f947894d84b9b54780bbca79b58f354125e4ac9427c0)

• JCE provider (SHA256 checksum 3f9c881056e6905d46358585db72143b59971958a708fa4ac75cb53994487213)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 6d5985e44c9852409dd3d342239fbbf7d0f9ad43d445e0980153c9b9eafe2b6f)

RHEL 9 (9.2+)

Download version 5.14.0 software for RHEL 9 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum c4812210421ff2fa5dac8477a2e6b10552aabd88b1f03d717e044e7293823158)

Previous release 1343

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.14.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.14.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.14.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.14.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.14.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.14.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.14.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.14.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.14.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.14.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.14.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.14.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.14.0-1.el9.x86_64.rpm


AWS CloudHSM User Guide

• OpenSSL Dynamic Engine (SHA256 checksum 

3f6aeaa6ae1faae7d8bba1596f358cad1eec9e562cf08aaab9ded92cabe94719)

• JCE provider (SHA256 checksum bd8f120b08f738ad4d1534b0e32aad903758d5e75d3aba7cb9ff6a77dec533db)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 84f13a9babd767edf90dabb0b14034ec5b2208898123a13966dd6b8519961c27)

Download version 5.14.0 software for RHEL 9 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 3faa1de563aa9773939cab7b39907dcb7b981ed7225019f9070a9dd52db7ae70)

• OpenSSL Dynamic Engine (SHA256 checksum 

13b41ac47ef7ee7bf78f585b8347ca4da9ebc296e4fc1e6a0c2ff5b333354ca6)

• JCE provider (SHA256 checksum 06803655ebe54d59c180bb17ac6fe56337bdd58ad0f6fe87c50ff8df32f70258)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum e6b4e9688d0db9d72bbee3450fe19736d640c9931adbd4f4ef73cb7ac2a08cf4)

RHEL 8 (8.3+)

Download version 5.14.0 software for RHEL 8 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum e400aeea6dbf7721f97e71c643a0db4f5f1094fb197fc46dc0ab293de9d16f2d)

• OpenSSL Dynamic Engine (SHA256 checksum 

bfcc27d251e62f9eba0fd508e7d08dc62126642d4cdd0b5566183957768b8c54)

• JCE provider (SHA256 checksum b5500031b572c918a8df4a0347e01c8ea00a7366b865b310bd92427fa1ed53e3)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 000712d0a691efc64a6c5d54bfeb1ab48b315ebb5dd6926b0502e326bf700291)

Ubuntu 24.04 LTS

Download version 5.14.0 software for Ubuntu 24.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum bbec70a198a4b173620b4018accc297ce6a6a80d372706e0101997d6bca35bca)

Previous release 1344

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.14.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.14.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.14.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.14.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.14.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.14.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.14.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-pkcs11-5.14.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-dyn-5.14.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-jce-5.14.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-cli-5.14.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.14.0-1_u24.04_amd64.deb


AWS CloudHSM User Guide

• OpenSSL Dynamic Engine (SHA256 checksum 

fcb77f75bd465b22401a09a20c410985833340295101263b7171cdcc4ac9f980)

• JCE provider (SHA256 checksum e1fa16aae2f6095c89a8bf392ef2cb9ca4db8853c858904ff90abf4bb491d74b)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum af32e0ac1c5f8c7f8cb40d255abe7c63ce9d981293187a3fb452562fa05756f4)

Download version 5.14.0 software for Ubuntu 24.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 1232318b084347889f92136536537ca519373683ce39bcec20f6ac3fa2f42d7c)

• OpenSSL Dynamic Engine (SHA256 checksum 

1745ee3a33d8e6ea72644e903c55c6a206204cf0a8bea200bc4a7b15736ed801)

• JCE provider (SHA256 checksum 7a44acabbc90c996594ed53661937f9242850823347f7c386f02fc041a97471a)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum e6778bd12c55fd152b50033833531fe569472f4f2bd9927a345eb126e8305739)

Ubuntu 22.04 LTS

Download version 5.14.0 software for Ubuntu 22.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 6b4b1620e9a85267950633b171dd188b7ac7094e371e188fabc1bef7a911a16f)

• OpenSSL Dynamic Engine (SHA256 checksum 

fee5f0a65fab0f46ad58689af5dc510721581f31364d3be5cbbf79f5d9a60db8)

• JCE provider (SHA256 checksum 5883a3d15e160d65f8e26f185e1ee30f68becad5f6fcd16abc1c4586689800b5)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 7b1a8cd2962f4be7325154c080dabfb820beac5629e272c3a3ebc0e6cab11d27)

Download version 5.14.0 software for Ubuntu 22.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 8680f63fd74272ea0e4d4c32dfb96b3eb9b60e03483c202d4e9b65ee101a178f)

• OpenSSL Dynamic Engine (SHA256 checksum 

c757304e8fc5f38be3bab7ac6d37a35dcb56d31e62f7194da62b3a176593d1d8)

Previous release 1345

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.14.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.14.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.14.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.14.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.14.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.14.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.14.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.14.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.14.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.14.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.14.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.14.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.14.0-1_u22.04_arm64.deb


AWS CloudHSM User Guide

• JCE provider (SHA256 checksum a78ee59341da56af315d126ec7ed9f0dafe6e99649f659db2436be3863cb035b)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 18931bff869a0bd54846b3296d870fa19beba5652f979352be8fba6307e6d1aa)

Ubuntu 20.04 LTS

Download version 5.14.0 software for Ubuntu 20.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum f1461c16b135ebcc17deec46aab88bd113ea122b8942fc188d4f05cd03e919a8)

• OpenSSL Dynamic Engine (SHA256 checksum 

89211a7a7ed50eda2dc385c31ea76f1fbabd389ca691204873531d983c3eb0f7)

• JCE provider (SHA256 checksum f098c32d61a53b073459a75d88b68e377a9b16335874fae060cb10df0da00df0)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum ff91fb930717c917344af2ba344dc6e02bd5abc004dcb6147e9412b67e2aa7ab)

Windows Server 2022

Download version 5.14.0 software for Windows Server 2022 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum ee5a8e8e85fff7acd0bbafa23740e3981f7dc52e708972b600c2b26603786838)

• JCE provider (SHA256 checksum 2ae0274f09f66981c03fd1e3c264e896ba7cd211168ea31369335db1b3ea2e77)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 3938654f88ce010042e48909e23991e178e411e2bd9e3c9ec25fcb8157c0cd55)

• Key Storage Provider (KSP) (SHA256 checksum 

b026e4d8c11e9ff6f22a7b9e10b8bb29e7572665f0d7978a3cef7d2354b7693f)

Windows Server 2019

Download version 5.14.0 software for Windows Server 2019 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum ee5a8e8e85fff7acd0bbafa23740e3981f7dc52e708972b600c2b26603786838)

• JCE provider (SHA256 checksum 2ae0274f09f66981c03fd1e3c264e896ba7cd211168ea31369335db1b3ea2e77)

Previous release 1346

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.14.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.14.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-pkcs11_5.14.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-dyn_5.14.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-jce_5.14.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-cli_5.14.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.14.0-1.msi


AWS CloudHSM User Guide

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 3938654f88ce010042e48909e23991e178e411e2bd9e3c9ec25fcb8157c0cd55)

• Key Storage Provider (KSP) (SHA256 checksum 

b026e4d8c11e9ff6f22a7b9e10b8bb29e7572665f0d7978a3cef7d2354b7693f)

Windows Server 2016

Download version 5.14.0 software for Windows Server 2016 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum ee5a8e8e85fff7acd0bbafa23740e3981f7dc52e708972b600c2b26603786838)

• JCE provider (SHA256 checksum 2ae0274f09f66981c03fd1e3c264e896ba7cd211168ea31369335db1b3ea2e77)

• Javadocs for AWS CloudHSM (SHA256 checksum 

173087a8f286dc4f88dc915ecc00aa515bec0ae2faf219654df9f3422d8e83bb)

• CloudHSM CLI (SHA256 checksum 3938654f88ce010042e48909e23991e178e411e2bd9e3c9ec25fcb8157c0cd55)

• Key Storage Provider (KSP) (SHA256 checksum 

b026e4d8c11e9ff6f22a7b9e10b8bb29e7572665f0d7978a3cef7d2354b7693f)

Client SDK 5.14 adds support for quorum controlled key usage and key management operations 
using CloudHSM CLI. Client SDK 5.14 also adds support for Key storage provider (KSP) for AWS 
CloudHSM Client SDK 5 for windows platforms. Additionally, Client SDK 5.14 adds installation 
packages for PKCS #11 library, JCE provider, CloudHSM CLI, and Key Storage Provider (KSP) for 
Windows Server 2022.

Platform support

• Added support for Windows Server 2022 for PKCS #11 library, JCE provider, CloudHSM CLI, and 
Key Storage Provider (KSP).

CloudHSM CLI

• Added support for quorum controlled key usage and key management operations.

Previous release 1347

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.14.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.14.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMKSP-5.14.0-1.msi


AWS CloudHSM User Guide

Key Storage Provider (KSP)

• Added support for Key Storage Provider (KSP), a cryptographic API specific to the Microsoft 
Windows operating system. For more information, see Key storage provider (KSP) for AWS 
CloudHSM Client SDK 5

Version 5.13.0

Amazon Linux 2

Download version 5.13.0 software for Amazon Linux 2 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum cefbcfe15f0bed09a2bc9b0c15824067dfede8ceb1ad6373659c7e583a604c95)

• OpenSSL Dynamic Engine (SHA256 checksum 

7b384253f0a124b55092e6ab18e23d9c95067d55fa8167ef7817bd2ae1becd29)

• JCE provider (SHA256 checksum cfac14b593b027bdb8010d6019328e7129143be06ffe223d2d50c4b7e1ac747a)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 6b762f0884368d2e234c5f6d45b4aeefb52d686105ec2c1affdbcdbb8dda7500)

Download version 5.13.0 software for Amazon Linux 2 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum ed0352cb33b4cb9fd3d2a00a8654f53e7290535474641a1714151b4190c1de07)

• OpenSSL Dynamic Engine (SHA256 checksum 

5e55e24175167f38a7358178ba252cb7629def0de4c99eee8a25d44649ebe5ec)

• JCE provider (SHA256 checksum 4e19807e792f10ffd9819d381f02ad1485aaf45fee7f660054211b8f52224ed2)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum bf90dec12f39eb685df34d82fdf2dac1c87a86fbf8a03aabde2107113081a083)

Amazon Linux 2023

Download version 5.13.0 software for Amazon Linux 2023 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 7f95ca9dcdf19627333257d28b81d06cd5f10c70df1e2aa10a57af34213328eb)

Previous release 1348

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.13.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.13.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.13.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.13.0-1.el7.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-pkcs11-5.13.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-dyn-5.13.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-jce-5.13.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL7/cloudhsm-cli-5.13.0-1.el7.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.13.0-1.amzn2023.x86_64.rpm


AWS CloudHSM User Guide

• OpenSSL Dynamic Engine (SHA256 checksum 

52de525d691b404b87c6381d4c71c9b5a51a80ada1c078d6433032bb4840ebe7)

• JCE provider (SHA256 checksum 98c69a66e353568e416a1daba161cf49e95e3196c82ae66628519aec82479787)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 5b08e80ff26fef91c2693a8def394ec02d69ea36604c189885f9e1205aa83da0)

Download version 5.13.0 software for Amazon Linux 2023 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 3797803ceaea2ea2f495b7e08c9e344fad755b1919b93f341b5dc7246c484988)

• OpenSSL Dynamic Engine (SHA256 checksum 

71bbd800adc024df13dd503268217530a6e85fae2ab0c07c75cd3f5905fd526a)

• JCE provider (SHA256 checksum 3d7213810899ebace2e6664fbd722edbf2a771f70d68a35885ed75007f3de2cb)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 381420610beed60b7a402fb0f7c518b1b8df74690b6539f16c115342ef75cbee)

RHEL 8 (8.3+)

Download version 5.13.0 software for RHEL 8 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 1a4d42b88f79f64ebc9fa55d091556cf04a16796014fa0488ade43cda62a0731)

• OpenSSL Dynamic Engine (SHA256 checksum 

d7658ea876c1a6209637fc4a4ef47e0421ea47e54d1d7d10eacc7eefabb86021)

• JCE provider (SHA256 checksum 54aae2a6e8b2a43e806c1320fff638345f88ade7e510a6b63c55573327ba160c)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 587592eb395af73b33beadd67af5765354904d1cc92f83c0548a308af842a6c7)

RHEL 9 (9.2+)

Download version 5.13.0 software for RHEL 9 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 4e68cd8055300c40e8b4cb9a4303e84870c2b517a74c16f2bd6a10fcbab5f426)

Previous release 1349

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.13.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.13.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.13.0-1.amzn2023.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-pkcs11-5.13.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-dyn-5.13.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-jce-5.13.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Amzn2023/cloudhsm-cli-5.13.0-1.amzn2023.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-pkcs11-5.13.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-dyn-5.13.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-jce-5.13.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL8/cloudhsm-cli-5.13.0-1.el8.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.13.0-1.el9.x86_64.rpm


AWS CloudHSM User Guide

• OpenSSL Dynamic Engine (SHA256 checksum 

a8ae26dc0eda9f143c4a44a3a7e399772039e238d8b5b0f36256cdd8ae6dc30b)

• JCE provider (SHA256 checksum 2948e6cec865f0934ac501a2d4724b1b8c4dc2d15b61155c41d60a0257e74110)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 0f4b84b572722de119edbb35d50a00e3c390b019a88a9c3f279a9b76225b4520)

Download version 5.13.0 software for RHEL 9 on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 0bea8d7e46bc7e9bd5fa36f64d43416ea400332602720f0ae162eb7b12eda312)

• OpenSSL Dynamic Engine (SHA256 checksum 

d96eddd33c5034357e8cc3c157ff1a03dafbaeb3f09b31ed324a2cbe9e424c01)

• JCE provider (SHA256 checksum 34bcabf11d0b7d34e6fc48c07ba9a383a4df26491e7c4c00cd7fcbf50cd30298)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum be7a22e5f64db4211f86eb361f79c5db93c237bd28ac0db5c274bba210cd431a)

Ubuntu 20.04 LTS

Download version 5.13.0 software for Ubuntu 20.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 97b3686b007c3d3a0d97f6774ad182d5702f6a233060522f4674fd233b3eafe9)

• OpenSSL Dynamic Engine (SHA256 checksum 

3d453a428a920c2fccd40bb18fe11b7dba3194da6fb3e457ade77d1d2cfe2b35)

• JCE provider (SHA256 checksum 6e6e68d1ee6f14df9370bf6d37055328a49bf28e57de23152ddc9c51e8014508)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 2515705e66e118deaee9694a47fdb74ad64e66067a690545039dc2802e4e198f)

Ubuntu 22.04 LTS

Download version 5.13.0 software for Ubuntu 22.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 53ffd1d6353e6facb022631e4f258200a6efabeaf00ee9f4bf4418ec27633a39)

Previous release 1350

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.13.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.13.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.13.0-1.el9.x86_64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-pkcs11-5.13.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-dyn-5.13.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-jce-5.13.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/EL9/cloudhsm-cli-5.13.0-1.el9.aarch64.rpm
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-pkcs11_5.13.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-dyn_5.13.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-jce_5.13.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Focal/cloudhsm-cli_5.13.0-1_u20.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.13.0-1_u22.04_amd64.deb


AWS CloudHSM User Guide

• OpenSSL Dynamic Engine (SHA256 checksum 

4f49e0946ba376b3c2cef05c5ee63cd78202a08907ea0ac8027095e16e47eed1)

• JCE provider (SHA256 checksum 2840a8938c22de6a9e6130b250bc7dd7fc512d274d7a702e944db3d1396c0222)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 9e8592967c330f50552249017695d116adbbc54321a35be33a48ca18d739beae)

Download version 5.13.0 software for Ubuntu 22.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum 4ab4961eb97ec0cf8bd818176c99da763a416903e24855e0dd6b31f776a01f26)

• OpenSSL Dynamic Engine (SHA256 checksum 

f1a396bf9ac2d1e970e027e2ab7d388fc0f0634d3e9c16b91d6dd889698514ad)

• JCE provider (SHA256 checksum 4035bc68fe7bf978b83f4fd0eb99e49efe874c2e128f62e800b9ec95c8142ec0)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 099137b934ec81d6bb87137f919d99a810f3149858ccdd69df51418f7e5485d9)

Ubuntu 24.04 LTS

Download version 5.13.0 software for Ubuntu 24.04 LTS on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 7057ce0d74c50635eeede91edcf3ef2e7915bed6b1f73b7bca45ba3a44392b7e)

• OpenSSL Dynamic Engine (SHA256 checksum 

d76b59bf0ba1325adbb1ad3cea8050a38db1517e48c9d9bd1001a232df285904)

• JCE provider (SHA256 checksum e4296cef92f99e49d6ca6c0d07a82de5e1551a6ec550252c52329561533f4f6d)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 47516fc88c8089edcd82e942f17351df7bfba8c7d640c9f909ad48ba4d980022)

Download version 5.13.0 software for Ubuntu 24.04 LTS on ARM64 architecture:

• PKCS #11 library (SHA256 checksum f2aefc6517ad4c6ef63124f380ae1f26fc2eb423d0a02e5b7ceda6769784a74f)

• OpenSSL Dynamic Engine (SHA256 checksum 

6159f4eb648159d37f304982725e5ed0dc34e7fd0658a8dc8ccacf2b75a1f4d2)

Previous release 1351

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.13.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.13.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.13.0-1_u22.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-pkcs11_5.13.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-dyn_5.13.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-jce_5.13.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Jammy/cloudhsm-cli_5.13.0-1_u22.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.13.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.13.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.13.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.13.0-1_u24.04_amd64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-pkcs11_5.13.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-dyn_5.13.0-1_u24.04_arm64.deb


AWS CloudHSM User Guide

• JCE provider (SHA256 checksum eeaf7e0345dcf78ae14595e4ab7967dd95fb6da06a42913423f76234f47ca3fc)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum 8656590f2caa5cd8c930b116ed12504caf99254f00c7563b90d799e6f69b2e77)

Windows Server 2016

Download version 5.13.0 software for Windows Server 2016 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 77e32ad8d28b1073286e95f8b350f99dd26c62ff32897fb86e9d79aef9c190fb)

• JCE provider (SHA256 checksum 191135271e912cf858d24ad4b07c7ff57c9c4a1b3635513cc6ab8dd5dc1a0e42)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum bb7960dd7bff73a1430cf2edc1bf36b0161309e5c354f0db44eaf086568507d5)

Windows Server 2019

Download version 5.13.0 software for Windows Server 2019 on x86_64 architecture:

• PKCS #11 library (SHA256 checksum 77e32ad8d28b1073286e95f8b350f99dd26c62ff32897fb86e9d79aef9c190fb)

• JCE provider (SHA256 checksum 191135271e912cf858d24ad4b07c7ff57c9c4a1b3635513cc6ab8dd5dc1a0e42)

• Javadocs for AWS CloudHSM (SHA256 checksum 

11b5de4a400861cc796b4b2ecaec706603e61ae7640bd0c4e2b090c7034d6318)

• CloudHSM CLI (SHA256 checksum bb7960dd7bff73a1430cf2edc1bf36b0161309e5c354f0db44eaf086568507d5)

Client SDK 5.13 adds support for configuring mutual TLS on hsm2m.medium cluster types. For 
information on using mutual TLS with CloudHSM, see Set up mutual TLS between client and AWS 
CloudHSM (recommended). Client SDK 5.13 also adds installation packages for Ubuntu 24.04 LTS.

Platform support

• Added support for Ubuntu 24.04 LTS on x86_64 and ARM64 architectures for all SDKs.

Previous release 1352

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-jce_5.13.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Noble/cloudhsm-cli_5.13.0-1_u24.04_arm64.deb
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.13.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.13.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.13.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMPKCS11-5.13.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMJCE-5.13.0-1.msi
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/JCE/cloudhsm-jce-5.13.0-javadoc.jar
https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Windows/AWSCloudHSMCLI-5.13.0-1.msi


AWS CloudHSM User Guide

CloudHSM CLI

• Added support for admin users to run the  Replicate a key with CloudHSM CLI  command. Client 
SDK 5.12 introduced the key replicate command for use by crypto users.

• Added the following command:

• The cluster mtls category in CloudHSM CLI

Bug fixes/Improvements

• Fixed an issue to decrease the time required for the client to detect unhealthy HSM connections, 
which helps prevent connection drop errors during lambda warm starts.

Version 5.12.0

Client SDK 5.12.0 adds ARM support to several platforms and performance improvements for all 
SDKs. New features have been added to the CloudHSM CLI and JCE provider.

Platform support

• Added support for Amazon Linux 2023 on ARM64 architecture for all SDKs.

• Added support for Red Hat Enterprise Linux 9 (9.2+) on ARM64 architecture for all SDKs.

• Added support for Ubuntu 22.04 LTS on ARM64 architecture for all SDKs.

CloudHSM CLI

• Added the following command:

• Replicate a key with CloudHSM CLI

• Added support for connecting to multiple clusters. For more information, see Connecting to 
multiple clusters with CloudHSM CLI.

JCE provider

• Added KeyReferenceSpec for retrieving keys using  KeyStoreWithAttributes.

• Added getKeys for retrieving multiple keys at once using  KeyStoreWithAttributes.

Previous release 1353



AWS CloudHSM User Guide

Performance improvements

• Performance improvements for the AES CBC NoPadding operation for all SDKs.

Version 5.11.0

Client SDK 5.11.0 adds new features, improves stability, and includes bug fixes for all SDKs.

Platform support

• Added support for Amazon Linux 2023 and RHEL 9 (9.2+) for all SDKs.

• Removed support for Ubuntu 18.04 LTS due to its recent end of life.

• Removed support for Amazon Linux due to its recent end of life.

CloudHSM CLI

• Added the following commands:

• The crypto sign category in CloudHSM CLI

• The crypto verify category in CloudHSM CLI

• Import a PEM format key with CloudHSM CLI

• The key unwrap command in CloudHSM CLI

• The key wrap command in CloudHSM CLI

• Export an asymmetric key with CloudHSM CLI now supports export of public keys.

OpenSSL Dynamic Engine

• The AWS CloudHSM OpenSSL Dynamic Engine is now supported on platforms that come 
installed with an OpenSSL library version of 3.x. This includes Amazon Linux 2023, RHEL 9 (9.2+), 
and Ubuntu 22.04.

JCE

• Added support for JDK 17 and JDK 21.

• Added support for AES keys to be used for HMAC operations.

• Added the new key attribute ID.

Previous release 1354



AWS CloudHSM User Guide

• Introduced a new DataExceptionCause variant for key exhaustion:
DataExceptionCause.KEY_EXHAUSTED.

Bug fixes/Improvements

• Increased the max length for the label attribute from 126 to 127 characters.

• Fixed a bug which prevented unwrapping of EC keys with the RsaOaep mechanism.

• Resolved a known issue for the getKey operation in the JCE provider. Refer to Issue: Client SDK 5 
memory leak with getKey operations for details.

• Improved logging in all SDKs for Triple DES keys that have hit their maximum encryption block 
limit, per FIPS 140-2.

• Added known issues for the OpenSSL Dynamic Engine. See Known issues for the OpenSSL 
Dynamic Engine for AWS CloudHSM for details.

Version 5.10.0

Client SDK 5.10.0 improves stability and includes bug fixes for all SDKs.

CloudHSM CLI

• Added new commands that allow customers to manage keys using CloudHSM CLI, including:

• Create symmetric keys and asymmetric key pairs

• Share and unshare keys

• List and filter keys using key attributes

• Set key attributes

• Generate key reference files

• Delete keys

• Improved error logging.

• Added support for multi-line unicode commands in interactive mode.

Bug fixes/Improvements

• Improved performance for importing, unwrapping, deriving, and creating sessions keys for all 
SDKs.

Previous release 1355



AWS CloudHSM User Guide

• Fixed a bug in the JCE Provider that prevented temp files to be removed on exit.

• Fixed a bug that caused a connection error under certain conditions after HSMs in the cluster are 
replaced.

• Modified JCE getVersion output format to handle large minor version numbers and include 
patch number.

Platform support

• Added support for Ubuntu 22.04 with JCE, PKCS #11, and CloudHSM CLI (support for OpenSSL 
Dynamic Engine is not yet available).

Version 5.9.0

Client SDK 5.9.0 improves stability and includes bug fixes for all SDKs. An optimization has 
been made for all SDKs to inform applications of operation failure immediately when an HSM is 
determined unavailable. This release includes performance enhancements for JCE.

JCE provider

• Enhanced performance

• Fixed a known issue for session pool exhaustion

AWS CloudHSM deprecated Client SDK releases

Versions 5.8.0 and earlier are deprecated. We do not recommend using deprecated releases in 
production workloads. We do not provide backwards compatible updates for deprecated releases, 
nor do we host deprecated releases for download. If you experience production impact while using 
deprecated releases, you must upgrade to obtain software fixes.

Deprecated Client SDK 5 releases

This section lists deprecated Client SDK 5 releases.

Version 5.8.0

Version 5.8.0 introduces quorum authentication for CloudHSM CLI, SSL/TLS offload with JSSE, 
multi-slot support for PKCS #11, multi-cluster/multi-user support for JCE, key extraction with JCE, 

Deprecated releases 1356



AWS CloudHSM User Guide

supported keyFactory for JCE, new retry configurations for non-terminal return codes, and includes 
improved stability and bug fixes for all SDKs.

PKCS #11 library

• Added support for multi-slot configuration.

JCE provider

• Added configuration based key extraction.

• Added support for multi-cluster and multi-user configurations.

• Added support for SSL and TLS offload with JSSE.

• Added unwrap support for AES/CBC/NoPadding.

• Added new types of key factories: SecretKeyFactory and KeyFactory.

CloudHSM CLI

• Added support for quorum authentication

Version 5.7.0

Version 5.7.0 introduces CloudHSM CLI and includes a new cipher-based message authentication 
code (CMAC) algorithm. This release adds ARM architecture on Amazon Linux 2. JCE provider 
Javadocs are now available for AWS CloudHSM.

PKCS #11 library

• Improved stability and bug fixes.

• Now supported on ARM architecture with Amazon Linux 2.

• Algorithms

• CKM_AES_CMAC (sign and verify)

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

• Now supported on ARM architecture with Amazon Linux 2.

Deprecated Client SDK 5 releases 1357



AWS CloudHSM User Guide

JCE provider

• Improved stability and bug fixes.

• Algorithms

• AESCMAC

Version 5.6.0

Version 5.6.0 includes new mechanism support for PKCS #11 library and JCE provider. Additionally, 
version 5.6 supports Ubuntu 20.04.

PKCS #11 library

• Improved stability and bug fixes.

• Mechanisms

• CKM_RSA_X_509, for encrypt, decrypt, sign, and verify modes

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Improved stability and bug fixes.

• Ciphers

• RSA/ECB/NoPadding, for encrypt and decrypt modes

Supported keys

• EC with curves secp224r1 and secp521r1

Platform support

• Added support for Ubuntu 20.04.

Deprecated Client SDK 5 releases 1358



AWS CloudHSM User Guide

Version 5.5.0

Version 5.5.0 adds support for OpenJDK 11, Keytool and Jarsigner integration, and additional 
mechanisms to the JCE provider. Resolves a known issue regarding a KeyGenerator class incorrectly 
interpreting key size parameter as number of bytes instead of bits.

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Support for the Keytool and Jarsigner utilities

• Support for OpenJDK 11 on all platforms

• Ciphers

• AES/CBC/NoPadding Encrypt and Decrypt mode

• AES/ECB/PKCS5Padding Encrypt and Decrypt mode

• AES/CTR/NoPadding Encrypt and Decrypt mode

• AES/GCM/NoPadding Wrap and Unwrap mode

• DESede/ECB/PKCS5Padding Encrypt and Decrypt mode

• DESede/CBC/NoPadding Encrypt and Decrypt mode

• AESWrap/ECB/NoPadding Wrap and Unwrap mode

• AESWrap/ECB/PKCS5Padding Wrap and Unwrap mode

• AESWrap/ECB/ZeroPadding Wrap and Unwrap mode

• RSA/ECB/PKCS1Padding Wrap and Unwrap mode

• RSA/ECB/OAEPPadding Wrap and Unwrap mode

• RSA/ECB/OAEPWithSHA-1ANDMGF1Padding Wrap and Unwrap mode

• RSA/ECB/OAEPWithSHA-224ANDMGF1Padding Wrap and Unwrap mode

• RSA/ECB/OAEPWithSHA-256ANDMGF1Padding Wrap and Unwrap mode

• RSA/ECB/OAEPWithSHA-384ANDMGF1Padding Wrap and Unwrap modeDeprecated Client SDK 5 releases 1359

https://docs.aws.amazon.com/cloudhsm/latest/userguide/ki-jce-sdk.html#ki-jce-6


AWS CloudHSM User Guide

• RSA/ECB/OAEPWithSHA-512ANDMGF1Padding Wrap and Unwrap mode

• RSAAESWrap/ECB/OAEPPadding Wrap and Unwrap mode

• RSAAESWrap/ECB/OAEPWithSHA-1ANDMGF1Padding Wrap and Unwrap mode

• RSAAESWrap/ECB/OAEPWithSHA-224ANDMGF1Padding Wrap and Unwrap mode

• RSAAESWrap/ECB/OAEPWithSHA-256ANDMGF1Padding Wrap and Unwrap mode

• RSAAESWrap/ECB/OAEPWithSHA-384ANDMGF1Padding Wrap and Unwrap mode

• RSAAESWrap/ECB/OAEPWithSHA-512ANDMGF1Padding Wrap and Unwrap mode

• KeyFactory and SecretKeyFactory

• RSA – 2048-bit to 4096-bit RSA keys, in increments of 256 bits

• AES – 128, 192, and 256-bit AES keys

• EC key pairs for NIST curves secp256r1 (P-256), secp384r1 (P-384), and secp256k1

• DESede (3DES)

• GenericSecret

• HMAC – with SHA1, SHA224, SHA256, SHA384, SHA512 hash support

• Sign/Verify

• RSASSA-PSS

• SHA1withRSA/PSS

• SHA224withRSA/PSS

• SHA256withRSA/PSS

• SHA384withRSA/PSS

• SHA512withRSA/PSS

• SHA1withRSAandMGF1

• SHA224withRSAandMGF1

• SHA256withRSAandMGF1

• SHA384withRSAandMGF1

• SHA512withRSAandMGF1

Version 5.4.2

Version 5.4.2 includes improved stability and bug fixes for all SDKs. This is also the last release for 
the CentOS 8 platform. For more information, see the CentOS website .
Deprecated Client SDK 5 releases 1360

https://www.centos.org/centos-linux-eol/


AWS CloudHSM User Guide

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Improved stability and bug fixes.

Version 5.4.1

Version 5.4.1 resolves a known issue with the PKCS #11 library. This is also the last release for the 
CentOS 8 platform. For more information, see the CentOS website.

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Improved stability and bug fixes.

Version 5.4.0

Version 5.4.0 adds initial support for the JCE provider for all platforms. The JCE provider is 
compatible with OpenJDK 8.

PKCS #11 library

• Improved stability and bug fixes.

Deprecated Client SDK 5 releases 1361

https://www.centos.org/centos-linux-eol/


AWS CloudHSM User Guide

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Key types

• RSA – 2048-bit to 4096-bit RSA keys, in increments of 256 bits.

• AES – 128, 192, and 256-bit AES keys.

• ECC key pairs for NIST curves secp256r1 (P-256), secp384r1 (P-384), and secp256k1.

• DESede (3DES)

• HMAC – with SHA1, SHA224, SHA256, SHA384, SHA512 hash support.

• Ciphers (encrypt and decrypt only)

• AES/GCM/NoPadding

• AES/ECB/NoPadding

• AES/CBC/PKCS5Padding

• DESede/ECB/NoPadding

• DESede/CBC/PKCS5Padding

• AES/CTR/NoPadding

• RSA/ECB/PKCS1Padding

• RSA/ECB/OAEPPadding

• RSA/ECB/OAEPWithSHA-1ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-224ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-256ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-384ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-512ANDMGF1Padding

• Digests

• SHA-1

• SHA-224

• SHA-256

• SHA-384
Deprecated Client SDK 5 releases 1362



AWS CloudHSM User Guide

• SHA-512

• Sign/Verify

• NONEwithRSA

• SHA1withRSA

• SHA224withRSA

• SHA256withRSA

• SHA384withRSA

• SHA512withRSA

• NONEwithECDSA

• SHA1withECDSA

• SHA224withECDSA

• SHA256withECDSA

• SHA384withECDSA

• SHA512withECDSA

• Integration with the Java KeyStore

Version 5.3.0

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Add support for ECDSA sign/verify with curves P-256, P-384, and secp256k1.

• Add support for the platforms: Amazon Linux, Amazon Linux 2, CentOS 7.8+, RHEL 7 (7.8+).

• Add support for OpenSSL version 1.0.2.

• Improved stability and bug fixes.

JCE provider

• Key types

• RSA – 2048-bit to 4096-bit RSA keys, in increments of 256 bits.

Deprecated Client SDK 5 releases 1363



AWS CloudHSM User Guide

• AES – 128, 192, and 256-bit AES keys.

• EC key pairs for NIST curves secp256r1 (P-256), secp384r1 (P-384), and secp256k1.

• DESede (3DES)

• HMAC – with SHA1, SHA224, SHA256, SHA384, SHA512 hash support.

• Ciphers (encrypt and decrypt only)

• AES/GCM/NoPadding

• AES/ECB/NoPadding

• AES/CBC/PKCS5Padding

• DESede/ECB/NoPadding

• DESede/CBC/PKCS5Padding

• AES/CTR/NoPadding

• RSA/ECB/PKCS1Padding

• RSA/ECB/OAEPPadding

• RSA/ECB/OAEPWithSHA-1ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-224ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-256ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-384ANDMGF1Padding

• RSA/ECB/OAEPWithSHA-512ANDMGF1Padding

• Digests

• SHA-1

• SHA-224

• SHA-256

• SHA-384

• SHA-512

• Sign/Verify

• NONEwithRSA

• SHA1withRSA

• SHA224withRSA

• SHA256withRSA

• SHA384withRSA

Deprecated Client SDK 5 releases 1364



AWS CloudHSM User Guide

• SHA512withRSA

• NONEwithECDSA

• SHA1withECDSA

• SHA224withECDSA

• SHA256withECDSA

• SHA384withECDSA

• SHA512withECDSA

• Integration with the Java KeyStore

Version 5.2.1

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

Version 5.2.0

Version 5.2.0 adds support additional key types and mechanisms to the PKCS #11 library.

PKCS #11 library

Key Types

• ECDSA– P-224, P-256, P-384, P-521 and secp256k1 curves

• Triple DES (3DES)

Mechanisms

• CKM_EC_KEY_PAIR_GEN

• CKM_DES3_KEY_GEN

• CKM_DES3_CBC

• CKM_DES3_CBC_PAD

Deprecated Client SDK 5 releases 1365



AWS CloudHSM User Guide

• CKM_DES3_ECB

• CKM_ECDSA

• CKM_ECDSA_SHA1

• CKM_ECDSA_SHA224

• CKM_ECDSA_SHA256

• CKM_ECDSA_SHA384

• CKM_ECDSA_SHA512

• CKM_RSA_PKCS for Encrypt/Decrypt

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

Version 5.1.0

Version 5.1.0 adds support for additional mechanisms to the PKCS #11 library.

PKCS #11 library

Mechanisms

• CKM_RSA_PKCS for Wrap/Unwrap

• CKM_RSA_PKCS_PSS

• CKM_SHA1_RSA_PKCS_PSS

• CKM_SHA224_RSA_PKCS_PSS

• CKM_SHA256_RSA_PKCS_PSS

• CKM_SHA384_RSA_PKCS_PSS

• CKM_SHA512_RSA_PKCS_PSS

• CKM_AES_ECB

• CKM_AES_CTR

• CKM_AES_CBC

• CKM_AES_CBC_PAD

• CKM_SP800_108_COUNTER_KDF

Deprecated Client SDK 5 releases 1366



AWS CloudHSM User Guide

• CKM_GENERIC_SECRET_KEY_GEN

• CKM_SHA_1_HMAC

• CKM_SHA224_HMAC

• CKM_SHA256_HMAC

• CKM_SHA384_HMAC

• CKM_SHA512_HMAC

• CKM_RSA_PKCS_OAEP Wrap/Unwrap only

• CKM_RSA_AES_KEY_WRAP

• CKM_CLOUDHSM_AES_KEY_WRAP_NO_PAD

• CKM_CLOUDHSM_AES_KEY_WRAP_PKCS5_PAD

• CKM_CLOUDHSM_AES_KEY_WRAP_ZERO_PAD

API Operations

• C_CreateObject

• C_DeriveKey

• C_WrapKey

• C_UnWrapKey

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

Version 5.0.1

Version 5.0.1 adds initial support for OpenSSL Dynamic Engine.

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Initial release of OpenSSL Dynamic Engine.

Deprecated Client SDK 5 releases 1367



AWS CloudHSM User Guide

• This release offers introductory support for key types and OpenSSL APIs:

• RSA key generation for 2048, 3072, and 4096-bit keys

• OpenSSL APIs:

• RSA Sign using RSA PKCS with SHA1/224/256/384/512 & RSA PSS

• RSA Key Generation

For more information, see OpenSSL Dynamic Engine .

• Platforms supported: CentOS 8.3+, Red Hat Enterprise Linux (RHEL) 8.3+, and Ubuntu 18.04 LTS

• Requires: OpenSSL 1.1.1

For more information, see Supported Platforms.

• Support for SSL/TLS Offload on CentOS 8.3+, Red Hat Enterprise Linux (RHEL) 8.3, and Ubuntu 
18.04 LTS, including NGINX 1.19 (for select cipher suites).

For more information, see SSL/TLS Offload on Linux using Tomcat or SSL/TLS Offload on Linux 
using NGINX or Apache.

Version 5.0.0

Version 5.0.0 is the first release.

PKCS #11 library

• This is the initial release.

Introductory PKCS #11 library support in client SDK version 5.0.0

This section details support for key types, mechanisms, API operations and attributes Client SDK 
version 5.0.0.

Key Types:

• AES– 128, 192, and 256-bit AES keys

• RSA– 2048-bit to 4096-bit RSA keys, in increments of 256 bits

Mechanisms:

• CKM_AES_GCM

Deprecated Client SDK 5 releases 1368

https://www.openssl.org/docs/man1.1.1/man3/EVP_DigestSignInit.html
https://www.openssl.org/docs/man1.1.1/man1/genrsa.html


AWS CloudHSM User Guide

• CKM_AES_KEY_GEN

• CKM_CLOUDHSM_AES_GCM

• CKM_RSA_PKCS

• CKM_RSA_X9_31_KEY_PAIR_GEN

• CKM_SHA1

• CKM_SHA1_RSA_PKCS

• CKM_SHA224

• CKM_SHA224_RSA_PKCS

• CKM_SHA256

• CKM_SHA256_RSA_PKCS

• CKM_SHA384

• CKM_SHA384_RSA_PKCS

• CKM_SHA512

• CKM_SHA512_RSA_PKCS

API Operations:

• C_CloseAllSessions

• C_CloseSession

• C_Decrypt

• C_DecryptFinal

• C_DecryptInit

• C_DecryptUpdate

• C_DestroyObject

• C_Digest

• C_DigestFinal

• C_DigestInit

• C_DigestUpdate

• C_Encrypt

• C_EncryptFinal

Deprecated Client SDK 5 releases 1369



AWS CloudHSM User Guide

• C_EncryptInit

• C_EncryptUpdate

• C_Finalize

• C_FindObjects

• C_FindObjectsFinal

• C_FindObjectsInit

• C_GenerateKey

• C_GenerateKeyPair

• C_GenerateRandom

• C_GetAttributeValue

• C_GetFunctionList

• C_GetInfo

• C_GetMechanismInfo

• C_GetMechanismList

• C_GetSessionInfo

• C_GetSlotInfo

• C_GetSlotList

• C_GetTokenInfo

• C_Initialize

• C_Login

• C_Logout

• C_OpenSession

• C_Sign

• C_SignFinal

• C_SignInit

• C_SignUpdate

• C_Verify

• C_VerifyFinal

• C_VerifyInit

• C_VerifyUpdate

Deprecated Client SDK 5 releases 1370



AWS CloudHSM User Guide

Attributes:

• GenerateKeyPair

• All RSA Key attributes

• GenerateKey

• All AES Key attributes

• GetAttributeValue

• All RSA Key attributes

• All AES Key attributes

Samples:

• Generate keys (AES, RSA, EC)

• List key attributes

• Encrypt and decrypt data with AES GCM

• Sign and verify data with RSA

Deprecated Client SDK 3 releases

This section lists deprecated Client SDK 3 releases.

Version 3.4.4

Version 3.4.4 adds updates to JCE provider.

AWS CloudHSM Client Software

• Updated the version for consistency.

PKCS #11 library

• Updated the version for consistency.

OpenSSL Dynamic Engine

• Updated the version for consistency.

Deprecated Client SDK 3 releases 1371

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/generate
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/attributes/
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/encrypt/aes_gcm.c
https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples/blob/master/src/sign/rsa_sign.c


AWS CloudHSM User Guide

JCE provider

• Update log4j to version 2.17.1.

Windows (CNG and KSP providers)

• Updated the version for consistency.

Version 3.4.3

Version 3.4.3 adds updates to JCE provider.

AWS CloudHSM Client Software

• Updated the version for consistency.

PKCS #11 library

• Updated the version for consistency.

OpenSSL Dynamic Engine

• Updated the version for consistency.

JCE provider

• Update log4j to version 2.17.0.

Windows (CNG and KSP providers)

• Updated the version for consistency.

Version 3.4.2

Version 3.4.2 adds updates to JCE provider.

AWS CloudHSM Client Software

• Updated the version for consistency.

Deprecated Client SDK 3 releases 1372



AWS CloudHSM User Guide

PKCS #11 library

• Updated the version for consistency.

OpenSSL Dynamic Engine

• Updated the version for consistency.

JCE provider

• Update log4j to version 2.16.0.

Windows (CNG and KSP providers)

• Updated the version for consistency.

Version 3.4.1

Version 3.4.1 adds updates to JCE provider.

AWS CloudHSM Client Software

• Updated the version for consistency.

PKCS #11 library

• Updated the version for consistency.

OpenSSL Dynamic Engine

• Updated the version for consistency.

JCE provider

• Update log4j to version 2.15.0.

Windows (CNG and KSP providers)

Deprecated Client SDK 3 releases 1373



AWS CloudHSM User Guide

• Updated the version for consistency.

Version 3.4.0

Version 3.4.0 adds updates to all components.

AWS CloudHSM Client Software

• Improved stability and bug fixes.

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Improved stability and bug fixes.

Windows (CNG and KSP providers)

• Improved stability and bug fixes.

Version 3.3.2

Version 3.3.2 resolves an  issue with the client_info script.

AWS CloudHSM Client Software

• Updated the version for consistency.

PKCS #11 library

• Updated the version for consistency.

Deprecated Client SDK 3 releases 1374

https://docs.aws.amazon.com/cloudhsm/latest/userguide/ki-all.html#ki-all-9


AWS CloudHSM User Guide

OpenSSL Dynamic Engine

• Updated the version for consistency.

JCE provider

• Updated the version for consistency.

Windows (CNG and KSP providers)

• Updated the version for consistency.

Version 3.3.1

Version 3.3.1 adds updates to all components.

AWS CloudHSM Client Software

• Improved stability and bug fixes.

PKCS #11 library

• Improved stability and bug fixes.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Improved stability and bug fixes.

Windows (CNG and KSP providers)

• Improved stability and bug fixes.

Deprecated Client SDK 3 releases 1375



AWS CloudHSM User Guide

Version 3.3.0

Version 3.3.0 adds two-factor authentication (2FA) and other improvements.

AWS CloudHSM Client Software

• Added 2FA authentication for crypto officers (CO). For more information, see Managing Two-
Factor Authentication for Crypto Officers.

• Removed platform support for RedHat Enterprise Linux 6 and CentOS 6. For more information, 
see Linux Support.

• Added a standalone version of CMU for use with Client SDK 5 or Client SDK 3. This is the same 
version of CMU included with the client daemon of version 3.3.0, and now you can download 
CMU without downloading the client daemon.

PKCS #11 library

• Improved stability and bug fixes.

• Removed platform support for RedHat Enterprise Linux 6 and CentOS 6. For more information, 
see Linux Support.

OpenSSL Dynamic Engine

• Updated the version for consistency

• Removed platform support for RedHat Enterprise Linux 6 and CentOS 6. For more information, 
see Linux Support.

JCE provider

• Improved stability and bug fixes.

• Removed platform support for RedHat Enterprise Linux 6 and CentOS 6. For more information, 
see Linux Support.

Windows (CNG and KSP providers)

• Updated the version for consistency

Deprecated Client SDK 3 releases 1376



AWS CloudHSM User Guide

Version 3.2.1

Version 3.2.1 adds a compliance analysis between the AWS CloudHSM implementation of the PKCS 
#11 library and the PKCS #11 standard, new platforms, and other improvements.

AWS CloudHSM Client Software

• Add platform support for CentOS 8, RHEL 8, and Ubuntu 18.04 LTS. For more information, see
??? .

PKCS #11 library

• PKCS #11 library compliance report for client SDK 3.2.1

• Add platform support for CentOS 8, RHEL 8, and Ubuntu 18.04 LTS. For more information, see
??? .

OpenSSL Dynamic Engine

• No support for CentOS 8, RHEL 8, and Ubuntu 18.04 LTS. For more information, see ???.

JCE provider

• Add platform support for CentOS 8, RHEL 8, and Ubuntu 18.04 LTS. For more information, see
??? .

Windows (CNG and KSP providers)

• Improved stability and bug fixes.

Version 3.2.0

Version 3.2.0 adds support for masking passwords and other improvements.

AWS CloudHSM Client Software

• Adds support for hiding your password when using command-line tools. For more information, 
see loginHSM and logoutHSM  (cloudhsm_mgmt_util) and loginHSM and logoutHSM
(key_mgmt_util).

Deprecated Client SDK 3 releases 1377

https://s3.amazonaws.com/cloudhsmv2-software/CloudHsmClient/Docs/PKCS11ComplianceReportSDK3-2-1.pdf


AWS CloudHSM User Guide

PKCS #11 library

• Adds support for hashing large data in software for some PKCS #11 mechanisms that were 
previously unsupported. For more information, see Supported Mechanisms.

OpenSSL Dynamic Engine

• Improved stability and bug fixes.

JCE provider

• Updated the version for consistency.

Windows (CNG and KSP providers)

• Improved stability and bug fixes.

Version 3.1.2

Version 3.1.2 adds updates to JCE provider.

AWS CloudHSM Client Software

• Updated the version for consistency

PKCS #11 library

• Updated the version for consistency

OpenSSL Dynamic Engine

• Updated the version for consistency

JCE provider

• Update log4j to version 2.13.3

Deprecated Client SDK 3 releases 1378



AWS CloudHSM User Guide

Windows (CNG and KSP providers)

• Updated the version for consistency

Version 3.1.1

AWS CloudHSM Client Software

• Updated the version for consistency.

PKCS #11 Library

• Updated the version for consistency.

OpenSSL Dynamic Engine

• Updated the version for consistency.

JCE provider

• Bug fixes and performance improvements.

Windows (CNG, KSP)

• Updated the version for consistency.

Version 3.1.0

Version 3.1.0 adds standards-compliant AES key wrapping.

AWS CloudHSM Client Software

• A new requirement for upgrade: the version of your client must match the version of any 
software libraries you are using. To upgrade, you must use a batch command that upgrades the 
client and all the libraries at the same time. For more information, see Client SDK 3 Upgrade.

• Key_mgmt_util (KMU) includes the following updates:

• Added two new AES key wrap methods – standards-compliant AES key wrap with zero padding 
and AES key wrap with no padding. For more information, see wrapKey and unwrapKey.

Deprecated Client SDK 3 releases 1379



AWS CloudHSM User Guide

• Disabled ability to specify custom IV when wrapping a key using AES_KEY_WRAP_PAD_PKCS5. 
For more information, see AES Key Wrapping.

PKCS #11 Library

• Added two new AES key wrap methods – standards-compliant AES key wrap with zero padding 
and AES key wrap with no padding. For more information, see AES Key Wrapping.

• You can configure salt length for RSA-PSS signatures. To learn how to use this feature, see
Configurable salt length for RSA-PSS signatures on GitHub.

OpenSSL Dynamic Engine

• BREAKING CHANGE: TLS 1.0 and 1.2 cipher suites with SHA1 are not available in OpenSSL 
Engine 3.1.0. This issue will be resolved shortly.

• If you intend to install the OpenSSL Dynamic Engine library on RHEL 6 or CentOS 6, see a known 
issue about the default OpenSSL version installed on those operating systems.

• Improved stability and bug fixes

JCE provider

• BREAKING CHANGE: To address an issue with Java Cryptography Extension (JCE) compliance, 
AES wrap and unwrap now properly use the AESWrap algorithm instead of the AES algorithm. 
This means Cipher.WRAP_MODE and  Cipher.UNWRAP_MODE no longer succeed for AES/ECB 
and AES/CBC mechanisms.

To upgrade to client version 3.1.0, you must update your code. If you have existing wrapped keys, 
you must pay particular attention to the mechanism you use to unwrap and how IV defaults 
have changed. If you wrapped keys with client version 3.0.0 or earlier, then in 3.1.1 you must use 
AESWrap/ECB/PKCS5Padding to unwrap your existing keys. For more information, see AES Key 
Wrapping.

• You can list multiple keys with the same label from the JCE provider. To learn how to iterate 
through all available keys, see Find all keys on GitHub.

• You can set more restrictive values for attributes during key creation, including specifying 
different labels for public and private keys. For more information, see Supported Java Attributes.

Deprecated Client SDK 3 releases 1380

https://github.com/aws-samples/aws-cloudhsm-pkcs11-examples
https://github.com/aws-samples/aws-cloudhsm-jce-examples/blob/master/src/main/java/com/amazonaws/cloudhsm/examples/KeyUtilitiesRunner.java


AWS CloudHSM User Guide

Windows (CNG, KSP)

• Improved stability and bug fixes.

AWS CloudHSM end-of-life Client SDK releases

The following AWS CloudHSM client versions have reached the end of support. These AWS 
CloudHSM client versions are no longer compatible with the service and will not receive updates. 
To preserve the security of your application, AWS CloudHSM might refuse connections from 
releases that have reached the end of support.

• SDK versions 3.4.4 and earlier have reached the end of support.

• SDK versions 5.8.0 and earlier have reached the end of support.

End-of-life releases 1381



AWS CloudHSM User Guide

Document history

This topic describes significant updates to the AWS CloudHSM User Guide.

Topics

• Recent updates

• Earlier updates

Recent updates

The following table describes significant changes to this documentation since April 2018. In 
addition to major changes listed here, we also update the documentation frequently to improve 
the descriptions and examples, and to address the feedback you send us. To be notified about 
significant changes, use the link in the upper right corner to subscribe to the RSS feed.

For details on new releases, see Downloads for AWS CloudHSM Client SDK

Change Description Date

Added new release Released AWS CloudHSM 
client version 5.16.0.

May 1, 2025

Added new release Released AWS CloudHSM 
client version 5.15.0.

February 3, 2025

Added new release Released AWS CloudHSM 
client version 5.14.0.

November 26, 2024

New HSM type and cluster 
mode

Added support for creating 
(hsm2m.medium) in FIPS 
mode clusters.

August 20, 2024

Added new release Released AWS CloudHSM 
client version 5.13.0.

August 13, 2024

Recent updates 1382

https://docs.aws.amazon.com/cloudhsm/latest/userguide/latest-releases.html#client-version-5-16-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-15-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-14-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cluster-hsm-types.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cluster-hsm-types.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-13-0


AWS CloudHSM User Guide

New HSM type and cluster 
mode

Launched a new HSM type 
(hsm2m.medium) and a new 
cluster mode (non-FIPS).

June 10, 2024

Added new release Released AWS CloudHSM 
client version 5.12.0.

March 20, 2024

Added new release Released AWS CloudHSM 
client version 5.11.0.

January 17, 2024

Added new release Released AWS CloudHSM 
client version 5.10.0.

July 28, 2023

Added new release Released AWS CloudHSM 
client version 5.9.0.

May 23, 2023

Added new release Released AWS CloudHSM 
client version 5.8.0.

March 16, 2023

Added new release Released AWS CloudHSM 
client version 5.7.0.

November 16, 2022

Added new release Released AWS CloudHSM 
client version 5.6.0.

September 1, 2022

Added new release Released AWS CloudHSM 
client version 5.5.0.

May 13, 2022

Added new release Released AWS CloudHSM 
client version 5.4.2.

March 18, 2022

Added new release Released AWS CloudHSM 
client version 5.4.1.

February 10, 2022

Added new release Released the AWS CloudHSM 
JCE provider version 5.4.0 for 
Windows platforms.

February 1, 2022

Recent updates 1383

https://docs.aws.amazon.com/cloudhsm/latest/userguide/cluster-hsm-types.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cluster-hsm-types.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-12-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-11-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-10-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-5-9-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated#client-version-5-8-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-7-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-6-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-5-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-4-2
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-4-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-4-0


AWS CloudHSM User Guide

Added new release Released the AWS CloudHSM 
client version 5.4.0, which 
adds initial support for the 
JCE provider for all Linux 
platforms.

January 28, 2022

Added new release Released AWS CloudHSM 
client version 5.3.0.

January 3, 2022

Added new release Released AWS CloudHSM 
client version 3.4.4.

January 3, 2022

Added new release Released AWS CloudHSM 
client version 3.4.3.

December 20, 2021

Added new release Released AWS CloudHSM 
client version 3.4.2.

December 15, 2021

Added new release Released AWS CloudHSM 
client version 3.4.1.

December 10, 2021

Added new release Released AWS CloudHSM 
client version 5.2.1.

October 4, 2021

Added new release Released AWS CloudHSM 
client version 3.4.0.

August 25, 2021

Added new release Released AWS CloudHSM 
client version 5.2.0.

August 3, 2021

Added new release Released AWS CloudHSM 
client version 3.3.2.

July 2, 2021

Added new release Released AWS CloudHSM 
client version 5.1.0.

June 1, 2021

Added new release Released AWS CloudHSM 
client version 3.3.1.

April 26, 2021

Recent updates 1384

https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-4-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-3-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/client-version-previous.html#client-version-3-4-4
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-4-3
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-4-2
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-4-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-2-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-4-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-2-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-3-2
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-1-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-3-1


AWS CloudHSM User Guide

Added new release Released AWS CloudHSM 
client version 5.0.1.

April 8, 2021

Added new release Released AWS CloudHSM 
client version 5.0.0.  

March 12, 2021

Added new content Added interface VPC 
endpoint, an AWS feature 
that allows you to create a 
private connection between 
your VPC and AWS CloudHSM 
without requiring access over 
the internet or through a NAT 
device, a VPN connection, 
or an AWS Direct Connect 
connection.

February 10, 2021

Added new release Released AWS CloudHSM 
client version 3.3.0.

February 3, 2021

Add new content Added managed backup 
retention, a feature that 
automatically deletes old 
backups.

November 18, 2020

Add new content Added a compliance report 
that analyzes the AWS 
CloudHSM Client SDK 3.2.1 
implementation of the PKCS 
#11 library with the PKCS #11 
standard.

October 29, 2020

Added new release Released AWS CloudHSM 
client version 3.2.1.

October 8, 2020

Added new content Added documentation that 
describes key synchronization 
settings in AWS CloudHSM.

September 1, 2020

Recent updates 1385

https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-0-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-5-0-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm-vpc-endpoint.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-3-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/manage-backup-retention.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-2-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-2-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/manage-key-sync.html


AWS CloudHSM User Guide

Added new release Released AWS CloudHSM 
client version 3.2.0.

August 31, 2020

Added new release Released AWS CloudHSM 
client version 3.1.2.

July 30, 2020

Added new release Released AWS CloudHSM 
client version 3.1.1.

June 3, 2020

Added new release Released AWS CloudHSM 
client version 3.1.0.

May 21, 2020

Added new release Released AWS CloudHSM 
client version 3.0.1.

April 20, 2020

Added new release Released AWS CloudHSM 
client version 3.0.0 for 
Windows Server platform.

October 30, 2019

Added new release Released AWS CloudHSM 
client version 3.0.0 for all 
platforms, except Windows.

October 22, 2019

Added new release Released AWS CloudHSM 
client version 2.0.4.

August 26, 2019

Added new release Released AWS CloudHSM 
client version 2.0.3.

May 13, 2019

Added new release Released AWS CloudHSM 
client version 2.0.1.

March 21, 2019

Added new release Released AWS CloudHSM 
client version 2.0.0.

February 6, 2019

Added region support Added AWS CloudHSM 
support for the EU (Stockhol 
m) and AWS GovCloud (US-
East) regions.

December 19, 2018

Recent updates 1386

https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-2-0
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-1-2
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-1-1
https://docs.aws.amazon.com/cloudhsm/latest/userguide/deprecated.html#client-version-3-1


AWS CloudHSM User Guide

Added new release Released AWS CloudHSM 
client version 1.1.2 for 
Windows.

November 20, 2018

Updated known issues New content was added to 
the Troubleshooting guide.

November 8, 2018

Added new release Released AWS CloudHSM 
client version 1.1.2 for Linux 
platforms.

November 8, 2018

Added region support Added AWS CloudHSM 
support for the EU (Paris) and 
Asia Pacific (Seoul)  regions.

October 24, 2018

Added new content Added the ability to delete 
and restore AWS CloudHSM 
backups.

September 10, 2018

Added new content Added automatic audit 
log delivery to Amazon 
CloudWatch Logs.

August 13, 2018

Added new content Added the ability to copy 
an AWS CloudHSM cluster 
backup across regions.

July 30, 2018

Added region support Added AWS CloudHSM 
support for the EU (London) 
region.

June 13, 2018

Added new content Added AWS CloudHSM 
client and library support 
for Amazon Linux 2, Red Hat 
Enterprise Linux (RHEL)  6, 
Red Hat Enterprise Linux 
(RHEL) 7, CentOS 6, CentOS 
7, and Ubuntu 16.04 LTS.  

May 10, 2018

Recent updates 1387

https://docs.aws.amazon.com/cloudhsm/latest/userguide/KnownIssues.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/delete-restore-backup.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/get-hsm-audit-logs-using-cloudwatch.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/copy-backup-to-region.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cmu-install-and-configure-client-linux.html


AWS CloudHSM User Guide

Added new release Added a Windows AWS 
CloudHSM client.

April 30, 2018

Earlier updates

The following table describes the important changes to the AWS CloudHSM prior to 2018.

Change Description Date

New content Added quorum authentic 
ation (M of N access control) 
for crypto  officers (COs). 
For more information, see
Using CloudHSM Managemen 
t Utility (CMU) to manage 
quorum authentication (M of 
N access control).

November 9, 2017

Update Added documentation 
about using the key_mgmt_ 
util command line tool.  
 For more information, see
Reference for AWS CloudHSM 
Key Management Utility 
commands.

November 9, 2017

New content Added Oracle Transparent 
Data Encryption. For more 
information, see   Oracle 
database encryption.

October 25, 2017

New content Added SSL Offload. For more 
information, see SSL/TLS 
offload.

October 12, 2017

Earlier updates 1388

https://docs.aws.amazon.com/cloudhsm/latest/userguide/ksp-library


AWS CloudHSM User Guide

Change Description Date

New guide This release introduces AWS 
CloudHSM

August 14, 2017

Earlier updates 1389


	AWS CloudHSM
	Table of Contents
	What is AWS CloudHSM?
	AWS CloudHSM use cases
	How AWS CloudHSM works
	AWS CloudHSM clusters
	Users in AWS CloudHSM
	Keys in AWS CloudHSM
	Client SDKs for AWS CloudHSM
	AWS CloudHSM cluster backups
	Supported Regions for AWS CloudHSM

	Pricing for AWS CloudHSM

	Getting started with AWS CloudHSM
	Create IAM administrative groups for AWS CloudHSM
	Create an IAM user and administrator group
	Sign up for an AWS account
	Create a user with administrative access


	Create a virtual private cloud (VPC) for AWS CloudHSM
	Create a cluster in AWS CloudHSM
	Review the security group for your cluster in AWS CloudHSM
	Launch an Amazon EC2 client instance for interacting with AWS CloudHSM
	Configure the Client Amazon EC2 instance security groups for AWS CloudHSM
	Step 1. Modify the default security group
	Step 2. Connect the Amazon EC2 instance to the AWS CloudHSM cluster

	Create an HSM in AWS CloudHSM
	Verify the identity and authenticity of your cluster's HSM in AWS CloudHSM (optional)
	Step 1. Get certificates from the HSM
	Step 2. Get the root certificates
	Step 3. Verify certificate chains
	Step 4. Extract and compare public keys

	Initialize the cluster in AWS CloudHSM
	Step 1. Get the cluster CSR
	Step 2. Sign the CSR
	Create a private key
	Use the private key to create a self-signed certificate
	Sign the cluster CSR

	Step 3. Initialize the cluster

	Install and configure CloudHSM CLI
	Activate the cluster in AWS CloudHSM
	Set up mutual TLS between client and AWS CloudHSM (recommended)
	Step 1. Create and register a trust anchor onto the HSM
	Create a private key and self-signed root certificate
	Register the trust anchor onto the HSM

	Step 2. Enable mTLS for AWS CloudHSM
	Create a private key and client certificate chain
	Configure mTLS for Client SDK 5

	Step 3. Set the mTLS enforcement for AWS CloudHSM

	Create and use keys in AWS CloudHSM

	Best practices for AWS CloudHSM
	AWS CloudHSM cluster management best practices
	Scale your cluster to handle peak traffic
	Architect your cluster for high availability
	Have at least three HSMs to ensure durability for newly generated keys
	Secure access to your cluster
	Reduce costs by scaling to your needs

	AWS CloudHSM user management best practices
	Protect your HSM users' credentials
	Have at least two admins to prevent lockout
	Enable quorum for all user management operations
	Create multiple crypto users, each with limited permissions

	AWS CloudHSM key management best practices
	Choose the right key type
	Manage key storage limits
	Managing and securing key wrapping

	AWS CloudHSM application integration best practices
	Bootstrap your Client SDK
	Authenticate to perform operations
	Effectively manage keys in your application
	
	

	Use multi-threading
	Handle throttling errors
	Integrate retries on cluster operations
	Implement disaster recovery strategies

	AWS CloudHSM monitoring best practices
	Monitor client logs
	Monitor audit logs
	Monitor AWS CloudTrail
	Monitor Amazon CloudWatch metrics


	Clusters in AWS CloudHSM
	AWS CloudHSM cluster architecture
	AWS CloudHSM cluster synchronization
	AWS CloudHSM cluster high availability and load balancing
	AWS CloudHSM cluster modes
	HSM types in AWS CloudHSM
	Connect the client SDK to the AWS CloudHSM cluster
	Place the issuing certificate on each EC2 instance
	Specify the location of the issuing certificate
	Bootstrap the Client SDK
	To get an IP address for the cluster
	To bootstrap Client SDK 5
	To bootstrap Client SDK 3


	Scaling HSMs in an AWS CloudHSM cluster
	Adding an HSM to an AWS CloudHSM cluster
	Removing an HSM from an AWS CloudHSM cluster

	Deleting an AWS CloudHSM cluster
	Creating AWS CloudHSM clusters from backups
	Create clusters from backups (console)
	Create clusters from backups (AWS CLI)
	Create clusters from backups (AWS CloudHSM API)

	Cluster HSM type migration
	Migrating from hsm1.medium to hsm2m.medium
	Overview of the hsm1.medium to hsm2m.medium migration process
	Prerequisites for migrating to hsm2m.medium
	Cluster limited-write mode
	Starting the migration
	Rolling back the migration
	Synchronizing data after a rollback



	HSM users in AWS CloudHSM
	HSM user management with CloudHSM CLI
	Prerequisites for user management in CloudHSM CLI
	Get the IP address of an HSM in AWS CloudHSM
	Download CloudHSM CLI

	HSM user types for CloudHSM CLI
	Unactivated admin
	Admin
	Crypto user (CU)
	Appliance user (AU)

	HSM user permissions table for CloudHSM CLI
	Create an HSM user admin using CloudHSM CLI
	Create an HSM crypto user using CloudHSM CLI
	List all HSM users in the cluster using CloudHSM CLI
	Change HSM user passwords using CloudHSM CLI
	Delete HSM users using CloudHSM CLI
	Manage MFA for HSM users using CloudHSM CLI
	Quorum authentication and MFA in AWS CloudHSM clusters using CloudHSM CLI
	MFA key pair requirements for AWS CloudHSM using CloudHSM CLI
	Set up MFA for CloudHSM CLI
	Create users with MFA enabled for CloudHSM CLI
	Log in users with MFA enabled for CloudHSM CLI
	Rotate keys for users with MFA enabled for CloudHSM CLI
	Deregister an MFA public key using CloudHSM CLI
	Token file reference for MFA with CloudHSM CLI

	Manage quorum authentication (M of N access control) using CloudHSM CLI
	Quorum authentication process for CloudHSM CLI
	Supported AWS CloudHSM service names and types for quorum authentication with CloudHSM CLI
	

	Set up quorum authentication for AWS CloudHSM admins using CloudHSM CLI
	Prerequisites
	Step 1. Create and register a key for signing
	Create an RSA key pair
	Create and sign a registration token
	Register the public key with the HSM

	Step 2. Set the quorum minimum value on the HSM
	Quorum minimum values
	


	User management with quorum authentication enabled for AWS CloudHSM using CloudHSM CLI
	Step 1. Get a quorum token
	Step 2. Get signatures from approving admins
	Step 3. Approve the token on the AWS CloudHSM cluster and execute a user management operation

	Change the quorum minimum value for AWS CloudHSM using CloudHSM CLI


	HSM user management with CloudHSM Management Utility (CMU)
	Prerequisites for user management in AWS CloudHSM Management Utility
	Get the IP address of an HSM in AWS CloudHSM
	Using CMU with Client SDK 3.2.1 and earlier
	Download CloudHSM Management Utility

	HSM user types for AWS CloudHSM Management Utility
	Precrypto officer (PRECO)
	Crypto officer (CO)
	Crypto user (CU)
	Appliance user (AU)

	HSM user permissions table for AWS CloudHSM Management Utility
	Create HSM users using AWS CloudHSM Management Utility
	List all HSM users in the cluster using AWS CloudHSM Management Utility
	Change HSM user passwords using AWS CloudHSM Management Utility
	Delete HSM users using AWS CloudHSM Management Utility
	Manage 2FA for users using AWS CloudHSM Management Utility
	Quorum authentication and 2FA in AWS CloudHSM clusters using AWS CloudHSM Management Utility
	2FA key pair requirements for AWS CloudHSM using AWS CloudHSM Management Utility
	Create users with 2FA enabled for AWS CloudHSM Management Utility users
	Manage 2FA for HSM users using AWS CloudHSM Management Utility
	Disable 2FA for HSM users using AWS CloudHSM Management Utility
	Configuration reference for 2FA with AWS CloudHSM Management Utility

	Using CloudHSM Management Utility (CMU) to manage quorum authentication (M of N access control)
	Quorum authentication process for AWS CloudHSM Management Utility
	Set up quorum authentication for AWS CloudHSM crypto officers
	Prerequisites
	Step 1. Create and register a key for signing
	Create an RSA key pair
	Create and sign a registration token
	Register the public key with the HSM

	Step 2. Set the quorum minimum value on the HSM

	User management with quorum authentication enabled for AWS CloudHSM Management Utility
	Step 1. Get a quorum token
	Step 2. Get signatures from approving COs
	Step 3. Approve the signed token on the HSM
	Step 4. Use the token for user management operations

	Change the quorum minimum value with AWS CloudHSM Management Utility



	Keys in AWS CloudHSM
	Key synchronization and durability settings in AWS CloudHSM
	AWS CloudHSM key concepts
	Understanding AWS CloudHSM key synchronization
	Change AWS CloudHSM client key durability settings
	Client SDK 5 client key durability settings
	
	Client SDK 5 concepts
	Managing client key durability settings

	Client SDK 3 client key durability settings
	Setting up the configuration file for client key durability
	Configuration reference

	KMU and client-side synchronization


	Synchronizing keys across cloned AWS CloudHSM clusters

	AES key wrapping in AWS CloudHSM
	Supported algorithms
	Understanding initialization vectors in AES key wrap

	Using AES key wrap in AWS CloudHSM
	


	Using trusted keys in AWS CloudHSM
	Understanding trusted keys in AWS CloudHSM
	Trusted key attributes in AWS CloudHSM
	How to use trusted keys to wrap data keys in AWS CloudHSM
	Step 1: Set the data key's CKA_WRAP_WITH_TRUSTED to true
	Option 1: If generating a new key, set CKA_WRAP_WITH_TRUSTED to true
	Option 2: If using an existing key, use CloudHSM CLI to set its CKA_WRAP_WITH_TRUSTED to true

	Step 2: Set the trusted key's CKA_TRUSTED to true
	Step 3. Use the trusted key to wrap the data key

	How to unwrap a data key with a trusted key for AWS CloudHSM

	Key management with CloudHSM CLI
	Generate keys with CloudHSM CLI
	Generate symmetric keys with CloudHSM CLI
	Generate an AES key
	Arguments
	Generate generic secret key
	Arguments



	Generate asymmetric keys using CloudHSM CLI
	Generate an RSA key
	Arguments
	Generate EC (elliptic curve cryptography) key pairs
	Arguments



	AWS CloudHSM key related topics

	Delete keys using CloudHSM CLI
	Example: Delete a key
	Related topics

	Share and unshare keys using CloudHSM CLI
	Example: Sharing and unsharing a key
	Related topics

	Filter keys using CloudHSM CLI
	Requirements
	Filtering to find a single key
	Filtration Errors
	Related topics

	Mark a key as trusted using CloudHSM CLI
	Manage quorum authentication (M of N access control) using CloudHSM CLI
	Quorum authentication process for CloudHSM CLI
	Supported AWS CloudHSM service names and types for quorum authentication with CloudHSM CLI
	

	Set up quorum authentication for AWS CloudHSM crypto-users using CloudHSM CLI
	Prerequisites
	Step 1. Create and register a key for signing
	Create an RSA key pair
	Create a registration token
	Sign the unsigned registration token
	Register the public key with the HSM

	Step 2. Set the key quorum values during key generation

	Key management and usage with quorum authentication enabled for AWS CloudHSM using CloudHSM CLI
	Step 1. Get a quorum token
	Step 2. Get signatures from approving crypto-users
	Step 3. Approve the token on the CloudHSM; cluster and execute an operation



	Key management with the AWS CloudHSM KMU
	Generate keys with the AWS CloudHSM KMU
	Generate symmetric keys with the AWS CloudHSM KMU
	Generate RSA key pairs with the AWS CloudHSM KMU
	Generate ECC (elliptic curve cryptography) key pairs using the AWS CloudHSM KMU

	Import keys with the AWS CloudHSM KMU
	Import secret keys with the AWS CloudHSM KMU
	Import public keys with the AWS CloudHSM KMU

	Export keys with the AWS CloudHSM KMU
	Export secret keys with the AWS CloudHSM KMU
	Export public keys with the AWS CloudHSM KMU

	Delete keys with KMU and CMU
	Share and unshare keys with KMU and CMU
	How to mark a key as trusted with the AWS CloudHSM Management Utility


	Cluster backups in AWS CloudHSM
	Working with AWS CloudHSM cluster backups
	Removing expired keys or inactive users
	Considering disaster recovery

	Delete AWS CloudHSM cluster backups
	Restore AWS CloudHSM backups
	Configure AWS CloudHSM backup retention policy
	Managed backup retention

	Copying AWS CloudHSM cluster backups across AWS Regions
	Copy backups to different Regions (console)
	Copy backups to different Regions (AWS CLI)
	Copy backups to different Regions (AWS CloudHSM API)

	Working with shared backups in AWS CloudHSM
	Prerequisites for sharing backups
	Sharing a backup
	Unsharing a shared backup
	Identifying a shared backup
	Permissions for shared backups
	Permissions for owners
	Permissions for consumers

	Billing and metering


	Cloned clusters in AWS CloudHSM
	Get an IP address for an HSM
	Related topics

	Tag AWS CloudHSM resources
	Add or update tags for AWS CloudHSM resources
	List tags for AWS CloudHSM resources
	Remove tags from AWS CloudHSM resources

	AWS CloudHSM command line tools
	AWS CloudHSM configure tool
	AWS CloudHSM Client SDK 5 configure tool
	AWS CloudHSM Client SDK 5 configuration syntax
	AWS CloudHSM Client SDK 5 configuration parameters
	AWS CloudHSM Client SDK 5 configuration examples
	Bootstrap Client SDK 5
	Specify cluster, region, and endpoint for Client SDK 5
	Update client certificate and key for TLS client-HSM mutual authentication
	Disable client key durability settings
	Manage logging options
	Place the issuing certificate for Client SDK 5

	Advanced configurations for the Client SDK 5 configure tool
	AWS CloudHSM Client SDK 5 related topics

	AWS CloudHSM Client SDK 3 configure tool
	AWS CloudHSM Client SDK 3 configuration syntax
	AWS CloudHSM Client SDK 3 configuration parameters
	AWS CloudHSM Client SDK 3 configuration examples
	AWS CloudHSM Client SDK 3 configuration related topics


	AWS CloudHSM Command Line Interface (CLI)
	AWS CloudHSM Command Line Interface (CLI) supported platforms
	Linux support
	Windows support

	Migrate from AWS CloudHSM Client SDK 3 CMU and KMU to Client SDK 5 CloudHSM CLI
	Getting started with AWS CloudHSM Command Line Interface (CLI)
	Install the CloudHSM CLI
	Use the CloudHSM CLI

	Command modes in CloudHSM CLI
	Interactive mode
	Single Command mode

	Key attributes for CloudHSM CLI
	Supported attributes for CloudHSM CLI
	Check value in CloudHSM CLI
	Related topics for CloudHSM CLI

	Advanced configurations for CloudHSM CLI
	Connecting to multiple clusters with CloudHSM CLI
	Multi-cluster prerequisites for AWS CloudHSM
	Configure the CloudHSM CLI for multi-cluster functionality
	Add a cluster to your AWS CloudHSM configuration
	Syntax
	Examples
	Add a cluster using the cluster-id parameter
	Add a cluster using cluster-id, endpoint, and region parameters

	Parameters

	Remove a cluster from your AWS CloudHSM configuration
	Syntax
	Examples
	Remove a cluster using the cluster-id parameter

	Parameter

	Interact with multiple clusters in AWS CloudHSM
	Examples
	Setting a default cluster-id when using interactive mode
	Setting the cluster-id when running a single command




	Reference for CloudHSM CLI commands
	The cluster category in CloudHSM CLI
	Activate a cluster with CloudHSM CLI
	User type
	Syntax
	Example
	Related topics

	List HSMs with CloudHSM CLI
	User type
	Syntax
	Example
	Related topics

	The cluster mtls category in CloudHSM CLI
	Deregister a trust anchor with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Get the mTLS enforcement level with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	List trust anchors with CloudHSM CLI
	User type
	Syntax
	Example
	Arguments
	Related topics

	Register a trust anchor with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Set the mTLS enforcement level with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics



	The crypto category in CloudHSM CLI
	The crypto sign category in CloudHSM CLI
	Generate a signature with the ECDSA mechanism in CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Generate a signature with the RSA-PKCS mechanism in CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Generate a signature with the RSA-PKCS-PSS mechanism in CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Related topics

	The crypto verify category in CloudHSM CLI
	Verify a signature signed with the ECDSA mechanism in CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Verify a signature signed with the RSA-PKCS mechanism in CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Verify a signature signed with the RSA-PKCS-PSS mechanism in CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics



	The key category in CloudHSM CLI
	Delete a key with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Export an asymmetric key with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Generating KSP key references (Windows)
	Prerequisites
	File location
	Syntax
	Example – Generate a KSP key reference using an attribute filter of a private key
	Example – Generate KSP key references for all key pairs

	Related topics

	The generate-asymmetric-pair category in CloudHSM CLI
	Generate an asymmetric EC key pair with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Generate an asymmetric RSA key pair with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics


	The generate-symmetric category in CloudHSM CLI
	Generate a symmetric AES key with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Generate a symmetric Generic Secret key with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics


	Import a PEM format key with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	List keys for a user with CloudHSM CLI
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Replicate a key with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Set the attributes of keys with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example: Setting a key attribute
	Arguments
	Related topics

	Share a key using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example: Share a key with another CU
	Arguments
	Related topics

	Unshare a key using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example: Unshare a key with another CU
	Arguments
	Related topics

	The key unwrap command in CloudHSM CLI
	Unwrap a key with AES-GCM using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Unwrap a key with AES-NO-PAD using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Unwrap a key with AES-PKCS5-PAD using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Unwrap a key with AES-ZERO-PAD using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Unwrap a key with CLOUDHSM-AES-GCM using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Unwrap a key with RSA-AES using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Unwrap a key with RSA-OAEP using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics

	Unwrap a key with RSA-PKCS using CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics


	The key wrap command in CloudHSM CLI
	Wrap a key with AES-GCM using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with AES-NO-PAD using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with AES-PKCS5-PAD using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with AES-ZERO-PAD using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with CLOUDHSM-AES-GCM using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with RSA-AES using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with RSA-OAEP using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Wrap a key with RSA-PKCS using CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics



	Log in to an HSM using CloudHSM CLI
	To troubleshoot login and logout
	User type
	Syntax
	Example
	Arguments
	Related topics
	Log in with MFA to an HSM using CloudHSM CLI
	User type
	Syntax
	Example
	Arguments
	Related topics


	Log out of an HSM using CloudHSM CLI
	User type
	Syntax
	Example
	Related topics

	The user category in CloudHSM CLI
	The user change-mfa category in CloudHSM CLI
	Change a user's MFA setup with CloudHSM CLI
	User type
	Syntax
	Example
	Arguments

	Related topics


	Change a user's password with CloudHSM CLI
	User type
	Syntax
	Example
	Arguments
	Related topics

	The user change-quorum category in CloudHSM CLI
	The user change-quorum token-sign category in CloudHSM CLI
	Register a user's token-sign quorum strategy using CloudHSM CLI
	User type
	Syntax
	Example
	Arguments
	Related topics



	Create an AWS CloudHSM user with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	Delete an AWS CloudHSM user with CloudHSM CLI
	User type
	Requirements
	Syntax
	Example
	Arguments
	Related topics

	List all AWS CloudHSM users with CloudHSM CLI
	User type
	Syntax
	Example
	Related topics

	Replicate a user with CloudHSM CLI
	User type
	Requirements
	Syntax
	Examples
	Arguments
	Related topics


	The quorum category in CloudHSM CLI
	
	Related topics
	The quorum token-sign category in CloudHSM CLI
	Delete quorum tokens using CloudHSM CLI
	User type
	Syntax
	Example
	Arguments
	Related topics

	Generate a quorum token using CloudHSM CLI
	
	User type
	Syntax
	Example
	Arguments
	Related topics

	List quorum tokens using CloudHSM CLI
	User type
	Syntax
	Example
	Related topics

	Show quorum values using CloudHSM CLI
	User type
	Syntax
	Example
	Related topics

	Update a quorum value using CloudHSM CLI
	User type
	Syntax
	Example
	Arguments
	Related topics





	AWS CloudHSM Management Utility (CMU)
	Supported platforms for AWS CloudHSM Management Utility
	Linux support
	Windows support

	Getting started with AWS CloudHSM Management Utility (CMU)
	Install and configure the AWS CloudHSM client for CMU (Linux)
	Step 1. Install the AWS CloudHSM client and command line tools
	Step 2. Edit the client configuration

	Install and configure the AWS CloudHSM client for CMU (Windows)
	Reference for AWS CloudHSM Management Utility commands
	Change a user's password using CMU
	To troubleshoot changePswd
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Create an AWS CloudHSM user with CMU
	To troubleshoot createUser
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Delete an AWS CloudHSM user using CMU
	User type
	Syntax
	Example
	Arguments
	Related topics

	List the keys that an AWS CloudHSM crypto user owns using CMU
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Get an AWS CloudHSM key attribute value using CMU
	User type
	Syntax
	Example
	Arguments
	Related topics

	Get hardware information for each HSM in an AWS CloudHSM cluster with CMU
	User type
	Syntax
	Example
	Related topics

	Get AWS CloudHSM user info about a key using CMU
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Get information for each HSM in an AWS CloudHSM cluster using CMU
	User type
	Syntax
	Example
	Arguments
	Related topics

	List the attributes of an AWS CloudHSM key using CMU
	User type
	Syntax
	Example
	Parameters
	Related topics

	List all AWS CloudHSM users using CMU
	User type
	Syntax
	Example
	Related topics

	Log in and out of an HSM using AWS CloudHSM Management Utility
	To troubleshoot loginHSM and logoutHSM
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Associate AWS CloudHSM users with keys using CMU
	User type
	Syntax
	Examples
	Arguments
	Related topics

	Interact with one HSM in an AWS CloudHSM cluster using CMU
	User type
	Prerequisites
	Syntax
	Example
	Arguments
	Related topics

	Set the attributes of AWS CloudHSM keys using CMU
	User type
	Syntax
	Example
	Arguments
	Related topics

	Exit the CMU
	User type
	Syntax
	Example
	Related topics

	Share AWS CloudHSM keys using CMU
	User type
	Syntax
	Example
	Arguments
	Related topics

	Synchronize keys across the AWS CloudHSM cluster using CMU
	User type
	Prerequisites
	Syntax
	Example
	Arguments
	Related topics

	Synchronize users across the AWS CloudHSM cluster using CMU
	User type
	Prerequisites
	Syntax
	Example
	Arguments
	Related topics



	AWS CloudHSM Key Management Utility (KMU)
	Getting started with AWS CloudHSM key_mgmt_util
	Set up AWS CloudHSM key_mgmt_util
	Step 1. Start the AWS CloudHSM client
	Step 2. Start key_mgmt_util

	Log in to the HSMs in an AWS CloudHSM cluster using KMU
	Log out from the HSMs in an AWS CloudHSM cluster using KMU
	Stop the AWS CloudHSM key_mgmt_util

	Install and configure the AWS CloudHSM client for KMU (Linux)
	Step 1. Install the AWS CloudHSM client and command line tools
	Step 2. Edit the client configuration

	Install and configure the AWS CloudHSM client for KMU (Windows)
	Reference for AWS CloudHSM Key Management Utility commands
	Encrypt and decrypt an AWS CloudHSM file using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Delete an AWS CloudHSM key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Describe an AWS CloudHSM error using KMU
	Syntax
	Examples
	Parameters

	Exit the AWS CloudHSM KMU
	Syntax
	Parameters
	Related topics

	Export a private AWS CloudHSM key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Export a public AWS CloudHSM key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Export a plaintext copy of an AWS CloudHSM key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Extract an AWS CloudHSM key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Search for AWS CloudHSM keys by attributes using KMU
	Syntax
	Examples
	Parameters
	Output
	Related topics

	Verify an AWS CloudHSM key using KMU
	Syntax
	Example
	Parameters
	Related topics

	Generate an AWS CloudHSM DSA key pair using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Generate an AWS CloudHSM ECC key pair using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Generate an AWS CloudHSM RSA key pair using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Generate an AWS CloudHSM symmetric key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Get an AWS CloudHSM key attribute using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Export an AWS CloudHSM key to fake PEM format using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Get HSM partition certificates using AWS CloudHSM KMU
	Syntax
	Example
	Parameters
	Related topics

	Get the users of an AWS CloudHSM key using KMU
	Syntax
	Examples
	Parameters
	Related topics

	Display help information for AWS CloudHSM KMU
	Syntax
	Example
	Parameters
	Related topics

	Import a private key using AWS CloudHSM KMU
	Syntax
	Examples
	Parameters
	Related topics

	Import a public key using AWS CloudHSM KMU
	Syntax
	Examples
	Parameters
	Related topics

	Import a plaintext symmetric key using AWS CloudHSM KMU
	Syntax
	Examples
	Parameters
	Related topics

	Insert a masked object using AWS CloudHSM KMU
	Syntax
	Examples
	Parameters
	Related topics

	Validate key file using AWS CloudHSM KMU
	Syntax
	Examples
	Parameters
	Related topics

	List the attributes of an AWS CloudHSM key using KMU
	Syntax
	Example
	Related topics

	List all AWS CloudHSM users using KMU
	Syntax
	Example
	Parameters
	Related topics

	Log in and out of an HSM using AWS CloudHSM KMU
	Syntax
	Example
	Parameters
	Related topics

	Set the attributes of AWS CloudHSM keys using KMU
	Syntax
	Example
	Parameters
	Related topics

	Generate a signature using AWS CloudHSM KMU
	Syntax
	Example
	Parameters
	Related topics

	Unwrap an AWS CloudHSM key using KMU
	Syntax
	Example
	Parameters
	Related topics

	Verify the signature of a file using AWS CloudHSMKMU
	Syntax
	Example
	Parameters
	Related topics

	Export an AWS CloudHSM key using KMU
	Syntax
	Example
	Parameters
	Related topics

	AWS CloudHSM key attribute reference for KMU
	Additional Details




	Offload operations with AWS CloudHSM Client SDKs
	Check your AWS CloudHSM Client SDK version
	Compare AWS CloudHSM Client SDK component support
	PKCS #11 library
	CloudHSM Management Utility (CMU)
	Key Management Utility (KMU)
	JCE provider
	OpenSSL Dynamic Engine
	Key storage provider (KSP)

	Migrating from AWS CloudHSM Client SDK 3 to Client SDK 5
	Migrate your AWS CloudHSM PKCS #11 library from Client SDK 3 to Client SDK 5
	Prepare by addressing breaking changes
	Wrap mechanisms have changed
	ECDH
	Key handles are now session-specific

	Migrate to Client SDK 5
	Related topics

	Migrate your OpenSSL Dynamic Engine from AWS CloudHSM Client SDK 3 to Client SDK 5
	Migrate to Client SDK 5
	Related topics

	Migrate your Key Storage Provider (KSP) from AWS CloudHSM Client SDK 3 to Client SDK 5
	Migrate to Client SDK 5
	Migrate to new Windows Server instances
	Verify the migration
	Troubleshooting
	Related topics

	Migrate your JCE provider from AWS CloudHSM Client SDK 3 to Client SDK 5
	Prepare by addressing breaking changes
	The Provider class and name have changed
	Explicit login has changed, implicit has not
	Key generation has changed
	Finding, deleting, and referencing keys have changed
	Cipher unwrap operations have changed, other cipher operations have not
	Signature operations have not changed

	Migrate to Client SDK 5
	Related topics


	Using Client SDK 5 to work with AWS CloudHSM
	Benefits of AWS CloudHSM Client SDK 5
	AWS CloudHSM Client SDK 5 supported platforms
	Linux support for AWS CloudHSM Client SDK 5
	Windows support for AWS CloudHSM Client SDK 5
	Serverless support for AWS CloudHSM Client SDK 5
	HSM compatibility for AWS CloudHSM Client SDK 5

	PKCS #11 library for AWS CloudHSM Client SDK 5
	Install the PKCS #11 library for AWS CloudHSM Client SDK 5
	Authenticate to the PKCS #11 library for AWS CloudHSM Client SDK 5
	Supported key types for the PKCS #11 library for AWS CloudHSM Client SDK 5
	Supported mechanisms for the PKCS #11 library for AWS CloudHSM Client SDK 5
	Generate key and key pair functions
	Sign and verify functions
	Sign recover and verify recover functions
	Digest functions
	Encrypt and decrypt functions
	Derive key functions
	Wrap and Unwrap functions
	Maximum data size for each mechanism
	Mechanism annotations

	Supported API operations for the PKCS #11 library for AWS CloudHSM Client SDK 5
	Key attributes in the PKCS #11 library for AWS CloudHSM Client SDK 5
	PKCS #11 library attributes tables for AWS CloudHSM Client SDK 5
	GenerateKeyPair
	GenerateKey
	CreateObject
	UnwrapKey
	DeriveKey
	GetAttributeValue

	Modifying PKCS #11 library attributes for AWS CloudHSM Client SDK 5
	Interpreting PKCS #11 library error codes for AWS CloudHSM Client SDK 5

	Code samples for the PKCS #11 library for AWS CloudHSM Client SDK 5
	Prerequisites
	Code samples

	Advanced configurations for PKCS #11 library for AWS CloudHSM
	Multiple slot configuration with PKCS #11 library for AWS CloudHSM
	Multi-slot prerequisites for PKCS #11 library for AWS CloudHSM
	Configure the PKCS #11 library for multi-slot functionality for AWS CloudHSM
	Add a cluster with multi-slot functionality for AWS CloudHSM
	Syntax
	Examples
	Add a cluster using the cluster-id parameter
	Add a cluster using cluster-id, endpoint, and region parameters

	Parameters

	Remove a cluster with multi-slot functionality for AWS CloudHSM
	Syntax
	Examples
	Remove a cluster using the cluster-id parameter

	Parameter


	Retry commands for PKCS #11 library for AWS CloudHSM
	Set retry commands to off mode


	Certificate storage with the PKCS #11 library
	Enabling certificate storage
	Certificate storage API operations
	General certificate operations
	Certificate object search operations

	Certificate storage attributes
	Certificate storage audit logs
	Log entry fields
	Audit log examples
	CreateObject example
	DestroyObject example
	SetAttributeValues example
	Unsuccessful CreateObject example




	OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5
	Install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5
	Verify the OpenSSL Dynamic Engine for Client SDK 5

	Supported key types for OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5
	Supported mechanisms for OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 5
	Sign and verify functions

	Advanced configurations for OpenSSL for AWS CloudHSM
	Retry commands for OpenSSL for AWS CloudHSM
	Set retry commands to off mode



	Key storage provider (KSP) for AWS CloudHSM Client SDK 5
	Install the Key storage provider (KSP) for AWS CloudHSM Client SDK 5
	Authenticate to the Key storage provider (KSP) for AWS CloudHSM Client SDK 5
	Windows Credential Manager
	System environment variables

	Supported key types for Key Storage Provider (KSP) for AWS CloudHSM Client SDK 5
	Supported API operations Key storage provider (KSP) for AWS CloudHSM Client SDK 5
	NCryptOpenStorageProvider function with Key Storage Provider (KSP)
	Parameters
	Return Value

	NCryptOpenKey with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptCreatePersistedKey with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptGetProperty with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptSetProperty with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptFinalizeKey with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptDeleteKey with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptFreeObject with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptFreeBuffer with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptIsAlgSupported with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptEnumAlgorithms with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptEnumKeys with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptExportKey with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptSignHash with Key storage provider (KSP)
	Parameters
	Return Value

	NCryptVerifySignature with Key storage provider (KSP)
	Parameters
	Return Value


	Advanced configurations for KSP for AWS CloudHSM
	SDK3 compatibility mode for Key Storage Provider (KSP) for AWS CloudHSM
	Enable SDK3 compatibility mode
	Disable SDK3 compatibility mode



	JCE provider for AWS CloudHSM Client SDK 5
	Install the JCE provider for AWS CloudHSM Client SDK 5
	Step 1: Install the JCE provider
	Step 2: Provide credentials to the JCE provider

	Supported key types for JCE provider for AWS CloudHSM Client SDK 5
	Key management basics in the JCE provider for AWS CloudHSM Client SDK 5
	Supported mechanisms for JCE provider for AWS CloudHSM Client SDK 5
	Generate key and key pair functions
	Cipher functions
	Sign and verify functions
	Digest functions
	Hash-based message authentication code (HMAC) functions
	Cipher-based message authentication code (CMAC) functions
	Key Agreement Functions
	Convert keys to key specifications using key factories
	Mechanism annotations

	Supported Java key attributes for AWS CloudHSM Client SDK 5
	Understanding attributes
	Supported attributes
	Setting attributes for a key
	Setting attributes for a key pair


	Code samples for the AWS CloudHSM software library for Java for Client SDK 5
	Prerequisites
	Code samples

	AWS CloudHSM JCE provider Javadocs
	

	AWS CloudHSM KeyStore Java class for Client SDK 5
	Choose the appropriate key store for AWS CloudHSM Client SDK 5
	Initialize the AWS CloudHSM KeyStore Client SDK 5
	Use AWS CloudHSM KeyStore or AWS CloudHSM Client SDK 5

	Advanced configurations for AWS CloudHSM JCE for Client SDK 5
	Connecting to multiple AWS CloudHSM clusters with the JCE provider
	Configure the AWS CloudHSMCloudHsmProvider class with a file (Default configuration)
	Configure the AWS CloudHSMCloudHsmProvider class using code
	Connect to multiple AWS CloudHSM clusters

	Key extraction using JCE for AWS CloudHSM
	
	Allow the JCE provider to extract private key secrets out of AWS CloudHSM

	Retry commands for JCE for AWS CloudHSM
	Set retry commands to off mode




	Using previous SDK version to work with AWS CloudHSM
	Upgrade AWS CloudHSM Client SDK 3 on Linux
	To check the client daemon version
	Prerequisites
	Latest Linux client daemon
	Latest PKCS #11 library
	Latest OpenSSL Dynamic Engine
	Latest JCE provider

	Step 1: Stop the client daemon
	Step 2: Upgrade the client SDK
	Step 3: Start the client daemon

	AWS CloudHSM Client SDK 3 supported platforms
	Linux support for AWS CloudHSM Client SDK 3
	Windows support for AWS CloudHSM Client SDK 3
	HSM compatibility for AWS CloudHSM Client SDK 3

	PKCS #11 library for AWS CloudHSM Client SDK 3
	Install the PKCS #11 library for AWS CloudHSM Client SDK 3
	Prerequisites for Client SDK 3
	Install the PKCS #11 library for Client SDK 3

	Authenticate to the PKCS #11 library for AWS CloudHSM Client SDK 3
	Supported key types for PKCS #11 library for AWS CloudHSM Client SDK 3
	Supported mechanisms for AWS CloudHSM Client SDK 3
	The PKCS #11 library mechanism-function table

	Supported API operations for AWS CloudHSM Client SDK 3
	Key attributes in the PKCS #11 library for AWS CloudHSM Client SDK 3
	PKCS #11 library attributes table for AWS CloudHSM Client SDK 3
	GenerateKeyPair
	GenerateKey
	CreateObject
	UnwrapKey
	DeriveKey
	GetAttributeValue

	Modifying PKCS #11 library attributes for AWS CloudHSM Client SDK 3
	Interpreting PKCS #11 library error codes for AWS CloudHSM Client SDK 3

	Code samples for the PKCS #11 library for AWS CloudHSM Client SDK 3
	Sample code prerequisites
	Code samples


	OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3
	Prerequisites for OpenSSL Dynamic Engine with AWS CloudHSM Client SDK 3
	Install the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3
	Use the OpenSSL Dynamic Engine for AWS CloudHSM Client SDK 3

	JCE provider for AWS CloudHSM Client SDK 3
	Install the JCE provider for AWS CloudHSM Client SDK 3
	Step 1: Install the JCE provider
	Step 2: Validate the installation
	Step 3: Provide credentials to the JCE provider

	Key management basics in the JCE provider for AWS CloudHSM Client SDK 3
	Supported mechanisms for Client SDK 3 for AWS CloudHSM Client SDK 3
	Supported keys
	Supported ciphers
	Supported digests
	Supported hash-based message authentication code (HMAC) algorithms
	Supported sign/verify mechanisms
	Mechanism annotations

	Supported Java key attributes for AWS CloudHSM Client SDK 3
	Understanding attributes
	Supported attributes
	Setting attributes for a key
	Builder pattern example
	Setting attributes for a key pair
	Builder pattern example

	Putting it all together
	Sample code: Generate and wrap a key


	Code samples for the AWS CloudHSM software library for Java for Client SDK 3
	Prerequisites
	Code samples

	AWS CloudHSM KeyStore Java class for Client SDK 3
	Choose the appropriate key store for AWS CloudHSM Client SDK 3
	Initialize the AWS CloudHSM KeyStore for Client SDK 3
	Use the AWS CloudHSM KeyStore for AWS CloudHSM Client SDK 3


	Cryptography API: Next Generation (CNG) and key storage providers (KSP) for AWS CloudHSM
	Verify the KSP and CNG Providers for AWS CloudHSM
	Configure and run the Windows AWS CloudHSM client
	Step 1: Stop the AWS CloudHSM client
	Step 2: Update the AWS CloudHSM configuration files
	Step 3: Start the AWS CloudHSM client

	Checking the KSP and CNG providers

	Prerequisites for using the AWS CloudHSM Windows Client
	Windows Credential Manager
	System environment variables

	Associate an AWS CloudHSM key with a certificate
	Step 1: Import your certificate
	Step 2: Gather certificate-identifying information
	Step 3: Associate the AWS CloudHSM private key with the certificate
	Step 4: Update the certificate store

	Code sample for CNG provider for AWS CloudHSM



	Integrating third-party applications with AWS CloudHSM
	Improve your web server security with SSL/TLS offload in AWS CloudHSM
	How SSL/TLS offload with AWS CloudHSM works
	AWS CloudHSM SSL/TLS offload on Linux using NGINX or Apache with OpenSSL
	Overview
	Step 1: Set up the prerequisites
	Prerequisites for Client SDK 5
	
	Notes



	Step 2: Generate the private key and SSL/TLS certificate
	Generate a private key and certificate
	Generate a private key
	Generate a self-signed certificate


	Step 3: Configure the web server
	Configure NGINX web server
	Configure Apache web server

	Step 4: Enable HTTPS traffic and verify the certificate
	Enable inbound HTTPS connections
	Verify that HTTPS uses the certificate that you configured


	AWS CloudHSM SSL/TLS offload on Linux using Tomcat with JSSE
	Overview
	Step 1: Set up the prerequisites
	Prerequisites
	
	How to meet the prerequisites
	Notes



	Step 2: Generate or import a private key and SSL/TLS certificate
	Generate a private key
	Generate a self-signed certificate

	Step 3: Configure the Tomcat web server
	Step 4: Enable HTTPS traffic and verify the certificate
	Enable inbound HTTPS connections
	Verify that HTTPS uses the certificate that you configured


	AWS CloudHSM SSL/TLS offload on Windows using IIS with KSP
	Overview
	Step 1: Set up the prerequisites
	Prerequisites for Client SDK 5
	Prerequisites for Client SDK 3

	Step 2: Create a certificate signing request (CSR) and certificate
	Create a CSR with Client SDK 5
	Create a CSR with Client SDK 3
	Get a signed certificate and import it

	Step 3: Configure the web server
	Step 4: Enable HTTPS traffic and verify the certificate
	Enable inbound HTTPS connections
	Verify that HTTPS uses the certificate that you configured


	Add a load balancer with Elastic Load Balancing for AWS CloudHSM(optional)
	Step 1. Create a subnet for a second web server
	Step 2. Create the second web server
	Step 3. Create the load balancer


	Configure Windows Server as a certificate authority (CA) with AWS CloudHSM
	Configure Windows Server as a certificate authority (CA) with Client SDK 5
	Step 1: Set up the prerequisites
	Step 2: Create a Windows Server CA with AWS CloudHSM
	Step 3: Sign a certificate signing request (CSR) with your Windows Server CA with AWS CloudHSM

	Configure Windows Server as a certificate authority (CA) with Client SDK 3
	Step 1: Set up the prerequisites
	Step 2: Create a Windows Server CA with AWS CloudHSM
	Step 3: Sign a certificate signing request (CSR) with your Windows Server CA with AWS CloudHSM


	Oracle database transparent data encryption (TDE) with AWS CloudHSM
	Step 1. Set up the prerequisites
	Step 3: Generate the Oracle TDE master encryption key

	Use Microsoft SignTool with AWS CloudHSM to sign files
	Use Microsoft SignTool with Client SDK 5 to sign files
	Step 1: Set up the prerequisites
	Step 2: Create a signing certificate
	Step 3: Sign a file

	Use Microsoft SignTool with Client SDK 3 to sign files
	Step 1: Set up the prerequisites
	Step 2: Create a signing certificate
	Step 3: Sign a file


	Java Keytool and Jarsigner integration with AWS CloudHSM
	Use Client SDK 5 to integrate AWS CloudHSM with Java Keytool and Jarsigner
	Prerequisites for integrating AWS CloudHSM with Java Keytool and Jarsigner using Client SDK 5
	Step 1: Install the JCE
	Step 2: Add HSM login credentials to environment variables
	Step 3: Registering the JCE provider

	Use AWS CloudHSM key store with keytool using Client SDK 5
	Create new AWS CloudHSM keys with keytool
	Delete an AWS CloudHSM key using keytool
	Generate an AWS CloudHSM CSR using keytool
	Use keytool to import intermediate and root certificates into AWS CloudHSM key store
	Use keytool to delete certificates from AWS CloudHSM key store
	Import a working certificate into AWS CloudHSM key store using keytool
	Export a certificate from AWS CloudHSM using keytool

	Use AWS CloudHSM key store with Jarsigner using Client SDK 5
	Set up AWS CloudHSM keys and certificates with Jarsigner
	Sign a JAR file using AWS CloudHSM and Jarsigner

	Known issues for AWS CloudHSM integration Java Keytool and Jarsigner using Client SDK 5

	Use Client SDK 3 to integrate AWS CloudHSM with Java Keytool and Jarsigner
	Prerequisites for integrating AWS CloudHSM with Java Keytool and Jarsigner using Client SDK 3
	Step 1: Install the JCE
	Step 2: Add HSM login credentials to environment variables
	Step 3: Register the JCE provider

	Use AWS CloudHSM key store with keytool using Client SDK 3
	Create new AWS CloudHSM keys with keytool
	Delete an AWS CloudHSM key using keytool
	Generate an AWS CloudHSM CSR using keytool
	Use keytool to import intermediate and root certificates into AWS CloudHSM key store
	Use keytool to delete certificates from AWS CloudHSM key store
	Import a working certificate into AWS CloudHSM key store using keytool
	Export a certificate from AWS CloudHSM using keytool

	Use AWS CloudHSM key store with Jarsigner using Client SDK 3
	Set up AWS CloudHSM keys and certificates with Jarsigner
	Sign a JAR file using AWS CloudHSM and Jarsigner

	Known issues for AWS CloudHSM integration Java Keytool and Jarsigner using Client SDK 3
	Register pre-existing keys with AWS CloudHSM key store


	Use Microsoft Manifest Generation and Editing Tool (Mage.exe) with AWS CloudHSM to sign files
	Step 1: Set up the prerequisites
	Step 2: Create a signing certificate
	Step 3: Sign a file

	Other third-party vendor integrations with AWS CloudHSM

	Monitoring AWS CloudHSM
	Working with AWS CloudHSM client SDK logs
	Client SDK 5 logging
	Client SDK 3 logging

	Working with AWS CloudTrail and AWS CloudHSM
	AWS CloudHSM information in CloudTrail
	Understanding AWS CloudHSM log file entries

	Working with Amazon CloudWatch Logs and AWS CloudHSM Audit Logs
	How HSM audit logging works
	Viewing AWS CloudHSM audit logs in CloudWatch Logs
	Interpreting AWS CloudHSM audit logs
	Examples of audit log events
	Example: Initialize the first HSM in a cluster
	Login and logout events
	Example: Create and delete users
	Example: Create and delete a key pair
	Example: Generate and synchronize a key
	Example: Export a key
	Example: Import a key
	Example: Share and unshare a key


	AWS CloudHSM audit log reference

	Getting CloudWatch metrics for AWS CloudHSM

	AWS CloudHSM performance information
	Performance data
	

	HSM throttling

	Security in AWS CloudHSM
	Control API access with IAM policies
	Upgrade IAM policies to IPv6
	Who should upgrade?
	What is IPv6?
	Updating an IAM policy for IPv6
	Verify your client supports IPv6


	Data protection in AWS CloudHSM
	Encryption at rest
	Encryption in transit
	AWS CloudHSM client end-to-end encryption
	Security of cluster backups

	Identity and access management for AWS CloudHSM
	Grant permissions using IAM policies
	API actions for AWS CloudHSM
	Condition keys for AWS CloudHSM
	Predefined AWS managed policies for AWS CloudHSM
	Customer managed policies for AWS CloudHSM
	Service-linked roles for AWS CloudHSM
	Creating a service-linked role (automatic)
	Creating a service-linked role (manual)
	Editing the service-linked role
	Deleting the service-linked role


	Compliance
	AWS CloudHSM PCI-PIN compliance FAQs
	FAQs

	Deprecation Notifications
	HSM1 Deprecation
	FIPS 140 Compliance: 2024 Mechanism Deprecation


	Resilience in AWS CloudHSM
	Infrastructure security in AWS CloudHSM
	Network isolation
	Authorization of users

	AWS CloudHSM and VPC endpoints
	Considerations for AWS CloudHSM VPC endpoints
	Creating an interface VPC endpoint for AWS CloudHSM
	Creating a VPC endpoint policy for AWS CloudHSM

	Update management in AWS CloudHSM

	Troubleshooting AWS CloudHSM
	AWS CloudHSM known issues
	Known issues for all HSM instances
	Issue: AES key wrapping uses PKCS #5 padding instead of providing a standards-compliant implementation of key wrap with zero padding
	Issue: The client daemon requires at least one valid IP address in its configuration file to successfully connect to the cluster
	Issue: There was an upper limit of 16 KB on data that can be hashed and signed by AWS CloudHSM using Client SDK 3
	Issue: Imported keys could not be specified as non-exportable
	Issue: The default mechanism for the wrapKey and unWrapKey commands in the key_mgmt_util has been removed
	Issue: If you have a single HSM in your cluster, HSM failover does not work correctly
	Issue: If you exceed the key capacity of the HSMs in your cluster within a short period of time, the client enters an unhandled error state
	Issue: Digest operations with HMAC keys of size greater than 800 bytes are not supported
	Issue: The client_info tool, distributed with Client SDK 3, deletes the contents of the path specified by the optional output argument
	Issue: You receive an error when running the SDK 5 configure tool using the --cluster-id argument in containerized environments
	Issue: You receive the error "Failed to create cert/key from provided pfx file. Error: NotPkcs8"
	Issue: ECDSA signing fails with "invalid mechanism" error starting with SDK 5.16

	Known issues for AWS CloudHSM hsm1.medium instances
	Issue: The HSM cannot create more than 250 users

	Known issues for AWS CloudHSM hsm2m.medium instances
	Issue: Increased login latency on hsm2m.medium
	Issue: A CO using trying to set the trusted attribute of a key will fail with Client SDK 5.12.0 and earlier
	Issue: ECDSA verify will fail with Client SDK 5.12.0 and earlier for clusters in FIPS mode
	Issue: Only the PEM-formatted certificates can be registered as mtls trust anchors with CloudHSM CLI
	Issue: Customer applications will stop processing all requests when using mTLS with a passphrase protected client private key.
	Issue: User replicate fails when using the CloudHSM CLI
	Issue: Operations can fail during backup creation
	Issue: Client SDK 5.8 and above do not perform automatic retries for HSM throttled operations in some scenarios on hsm2m.medium

	Known issues for the PKCS #11 library for AWS CloudHSM
	Issue: AES key wrap in version 3.0.0 of the PKCS #11 library does not validate IVs before use
	Issue: PKCS#11 SDK 2.0.4 and earlier versions always used the default IV of 0xA6A6A6A6A6A6A6A6 for AES key wrap and unwrap
	Issue: The CKA_DERIVE attribute was not supported and was not handled
	Issue: The CKA_SENSITIVE attribute was not supported and was not handled
	Issue: Multipart hashing and signing are not supported
	Issue: C_GenerateKeyPair does not handle CKA_MODULUS_BITS or CKA_PUBLIC_EXPONENT in the private template in a manner that is compliant with standards
	Issue: Buffers for the C_Encrypt and C_Decrypt API operations cannot exceed 16 KB when using the CKM_AES_GCM mechanism
	Issue: Elliptic-curve Diffie-Hellman (ECDH) key derivation is executed partially within the HSM
	Issue: Verification of secp256k1 signatures fails on EL6 platforms such as CentOS6 and RHEL 6
	Issue: Incorrect sequence of function calls gives undefined results instead of failing
	Issue: Read Only Session is not supported in SDK 5
	Issue: cryptoki.h header file is Windows-only

	Known issues for the JCE SDK for AWS CloudHSM
	Issue: When working with asymmetric key pairs, you see occupied key capacity even when you are not explicitly creating or importing keys
	Issue: The JCE KeyStore is read only
	Issue: Buffers for AES-GCM encryption cannot exceed 16,000 bytes
	Issue: Elliptic-curve Diffie-Hellman (ECDH) key derivation is executed partially within the HSM
	Issue: KeyGenerator and KeyAttribute incorrectly interprets key size parameter as number of bytes instead of bits
	Issue: Client SDK 5 throws the warning “An illegal reflective access operation has occurred”
	Issue: JCE session pool is exhausted
	Issue: Client SDK 5 memory leak with getKey operations

	Known issues for the OpenSSL Dynamic Engine for AWS CloudHSM
	Issue: You cannot install AWS CloudHSM OpenSSL Dynamic Engine on RHEL 6 and CentOS6
	Issue: Only RSA offload to the HSM is supported by default
	Issue: RSA encryption and decryption with OAEP padding using a key on the HSM is not supported
	Issue: Only private key generation of RSA and ECC keys is offloaded to the HSM
	Issue: You cannot install OpenSSL Dynamic Engine for Client SDK 3 on RHEL 8, CentOS 8, or Ubuntu 18.04 LTS
	Issue: SHA-1 Sign and Verify deprecation on RHEL 9 (9.2+)
	Issue: AWS CloudHSM OpenSSL Dynamic Engine is incompatible with the FIPS provider for OpenSSL v3.x
	Issue: SSL/TLS offload fails with ECDSA cipher suites in TLS 1.0 and TLS 1.1 starting with SDK 5.16

	Known issues for the Key Storage Provider (KSP) for AWS CloudHSM
	Issue: Verification of a certificate store fails
	Issue: Container name inconsistency in the certificate store while using SDK3 compatibility mode for Client SDK 5

	Known issues for Amazon EC2 instances running Amazon Linux 2 with AWS CloudHSM
	Issue: Amazon Linux 2 version 2018.07 uses an updated ncurses package (version 6) that is currently incompatible with the AWS CloudHSM SDKs

	Known issues for integrating third-party applications with AWS CloudHSM
	Issue: Client SDK 3 does not support Oracle setting PKCS #11 attribute CKA_MODIFIABLE during master key generation

	Known issues for AWS CloudHSM cluster modification
	Issue: Login latency increases due to increased PBKDF2 iterations
	Issue: Unable to modify HSM type due to token key creation

	Known issues of operation failure using AWS CloudHSM client version 5.12.0 on hsm2.medium
	Issue: Error during get-attribute operation


	AWS CloudHSM Client SDK 3 key synchronization failures
	AWS CloudHSM Client SDK 3 verify HSM performance with the pkpspeed tool
	Test recommendations
	Configurable options for the pkpspeed tool
	Tests that can be ran with the pkpspeed tool
	Examples

	AWS CloudHSM Client SDK 5 user contains inconsistent values
	AWS CloudHSM Client SDK 5 user replicate failures
	Problem: The selected user is not synchronized throughout the cluster
	Problem: User exists on the destination cluster with different attributes

	AWS CloudHSM Client SDK 5 key replicate failures
	Problem: The selected key is not synchronized throughout the cluster
	Problem: Key with same reference exists in destination cluster with different information or attributes

	AWS CloudHSM error seen during key availability check
	AWS CloudHSM extracting keys using JCE
	getEncoded, getPrivateExponent, or getS returns null
	getEncoded, getPrivateExponent, or getS return key bytes outside of the HSM

	HSM throttling
	For Client SDK 5
	For Client SDK 3
	Resolution

	Keep HSM users in sync across HSMs in the AWS CloudHSM cluster
	Lost connection to the AWS CloudHSM cluster
	Missing AWS CloudHSM audit logs in CloudWatch
	Custom IVs with non-compliant length for AES key wrap in AWS CloudHSM
	Determine whether your code generates irrecoverable wrapped keys
	Actions you must take if your code generates irrecoverable wrapped keys

	Resolving AWS CloudHSM cluster creation failures
	Add the missing permission
	Create the service-linked role manually
	Use a non-federated user

	Retrieving AWS CloudHSM client configuration logs
	AWS CloudHSM Client SDK 5 support tool
	Running the info tool for Client SDK 5
	Retrieving logs from a serverless environment

	AWS CloudHSM Client SDK 3 support tool
	Running the info tool for Client SDK 3



	AWS CloudHSM quotas
	Downloads for AWS CloudHSM Client SDK
	AWS CloudHSM latest Client SDK release
	Client SDK 5 release: Version 5.16.0

	AWS CloudHSM previous Client SDK releases
	Version 5.15.0
	Version 5.14.0
	Version 5.13.0
	Version 5.12.0
	Version 5.11.0
	Version 5.10.0
	Version 5.9.0

	AWS CloudHSM deprecated Client SDK releases
	Deprecated Client SDK 5 releases
	Version 5.8.0
	Version 5.7.0
	Version 5.6.0
	Version 5.5.0
	Version 5.4.2
	Version 5.4.1
	Version 5.4.0
	Version 5.3.0
	Version 5.2.1
	Version 5.2.0
	Version 5.1.0
	Version 5.0.1
	Version 5.0.0
	Introductory PKCS #11 library support in client SDK version 5.0.0


	Deprecated Client SDK 3 releases
	Version 3.4.4
	Version 3.4.3
	Version 3.4.2
	Version 3.4.1
	Version 3.4.0
	Version 3.3.2
	Version 3.3.1
	Version 3.3.0
	Version 3.2.1
	Version 3.2.0
	Version 3.1.2
	Version 3.1.1
	Version 3.1.0


	AWS CloudHSM end-of-life Client SDK releases

	Document history
	Recent updates
	Earlier updates


